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Preface

The subject of flight dynamics and control is an important and integral part of any
quality aerospace education curriculum. With the affinity and bias I have for this sub-
ject, I even go to the extent of saying that this discipline is an essential part of aerospace
education. If wemake the analogy of a flight vehicle to a human body, I liken this subject
as the “brain” of the human body. After all, a flight vehicle on its own is of no use (or life-
less) without its ability to maneuver from one point to another point. In the first half of
the 20th century, flight essentially meant atmospheric flight, while the second half of the
20th century expanded that notion to space vehicles as well. Thus, it is only fitting that
the students of the 21st century be conversant with both aero and space flight vehicle
dynamics and control. It is indeed accepted that there are plenty of excellent textbooks
available on this general subject area.However, a close examination of the contents of the
currently available textbooks reveals that the majority of those textbooks are exclusively
aimed at either aircraft flight dynamics and control or at spacecraft flight dynamics and
control, as can be seen from the references given at the end of this preface.
While universities and academic institutions with large and separate aerospace engi-

neering departments can afford the luxury of teaching flight vehicle dynamics and con-
trol at the undergraduate level separately for air vehicles and space vehicles, in gen-
eral, the most likely scenario in majority of the undergraduate curricula across major
higher education institutions across the globe is that this type of separate, exclusive
treatment for both of these types of vehicles within the available undergraduate curricu-
lum became constrained by faculty/staff resources, the academic institution’s mission as
well as student body interests and the local job market. Hence, of late, it is felt that the
undergraduate student body is better served if it is introduced to few basics of both
aircraft flight vehicle dynamics and of spacecraft (satellite) dynamics and control to
conform to the ABET guidelines of a satisfactory and adequate dynamics and control
discipline coverage in a typical aerospace engineering department. Our then aerospace
engineering department at the Ohio State University embraced this viewpoint. Within
this viewpoint, it became increasingly clear that there is a need for an undergraduate
level textbook that provides the needed exposure to the fundamentals of both air vehi-
cles as well as space vehicles, adjacent to one another, so that the undergraduate student
has the option to specialize in either of those two application areas for their advanced
learning. For a long period of time, two separate textbooks (expensive) were prescribed;
one catering to aircraft dynamics and control and another catering to spacecraft dynam-
ics and control.The practicality of the coverage of the subject in a limited time (of either
in a semester or in a quarter, depending on the academic institution’s calendar) dictated
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that only a very minor part of each of those books was used in the entire course, leaving
the students somewhat dissatisfied with a feeling that they did not get “value” for the
money they spent on the dual set of textbooks. This observation solidified my desire to
author a textbook that covers both topics in a single volume, which in turn would serve
as a single textbook for the entire core/elective sequence of courses in the undergrad-
uate curriculum. Hence the resulting title of this book, namely “Flight Dynamics and
Control of Aero and Space Vehicles”. Even though there are few books that treat both
of these vehicles together, the covered material is too advanced and not suitable for the
standard undergraduate population.
Typically, in a semester system, the Fall semester of the junior year starts with a flight

vehicle dynamics (AAE 3520, at OSU) core course, then the Spring semester has a core
course on the fundamentals of flight vehicle control (AAE 3521, at OSU), which deals
with basic transfer function based linear control systems theory with applications to
flight vehicles. A more advanced state space based time domain modern control theory
based course with flight vehicle applications is offered as an elective at the senior level.
Thus the entire flight vehicle dynamics and control at the undergraduate level consists
of a year long sequence of three courses. This scenario at OSU, that existed for a long
time and continues to exist even now, provided this author the needed incentive to serve
the undergraduate student body at a place like OSU by offering them a single textbook
that they can use throughout their undergraduate days at OSU. This type of textbook
has to have contents such that it provides sufficiently strong coverage of both aircraft
and spacecraft dynamics and control areas simultaneously, thereby preparing them to
embark on pursuing higher learning in either of those two areas of their choice and
passion. It turns out that while writing this book with this viewpoint, many intellectually
stimulating and rewarding insights surfaced that clearly highlighted the similarities as
well as the differences in the subject matter between these two types of flight vehicles.
As an educator, this author believes that this type of overview on the treatment of the
subject between these two types of vehicles is much more valuable than mastering the
subject matter related to either of those two types of vehicles individually. This in itself
provided sufficient impetus for the author to complete this textbook with a unified and
integrated treatment given to these types of highly important flight vehicles that form
the backbone of the aerospace education and practice.
As such, by its scope and intent, this book does not promise elaborate discussion and

exposure to a variety of topics within each of these two types of vehicles, namely aircraft
and spacecraft. Instead, it offers the minimum needed, yet sufficiently strong exposure,
to the basic topics in dynamics and control of each of these two types of vehicles. Thus,
it is hoped that the content of this book is evaluated and appreciated more from the
appropriate balance between breadth and depth in the coverage on each of these flight
vehicles.The overall objective of the book is to achieve a reasonably satisfactory balance
between the coverage on each of these two types of vehicles. In that sense, this book
does not conflict or replace the contributions of the many excellent textbooks available
on each of these individual types of vehicles, but instead gets inspired by themandmakes
that type of subject matter available to the student in a single volume, but with only the
needed degree of emphasis each type of vehicle warrants, in an undergraduate curricu-
lum. Thus the interested student is left with the option of learning additional advanced
material in any single discipline from those textbooks specialized in either aircraft or
spacecraft.
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The material covered in this book is essentially divided into four parts; Parts I (flight
vehicle dynamics), II (flight vehicle control via classical transfer function based meth-
ods), III (flight vehicle control via modern, state space based methods), and IV (other
related flight vehicles). It also contains four Appendices (A,B,C, andD), where Appendix
A presents useful data related to aircraft and satellites (needed for Part I), Appendix B
summarizes a brief review of Laplace transform theory (needed for Part II), Appendix
C summarizes a brief review of matrix theory and linear algebra (needed for Part III),
and finally Appendix D, which summarizes all theMATLAB commands used or needed
along with author suppliedMATLAB subroutines (for forming the Fuller matrices).The
suggested options for use of the entire material in the book are as follows.

Courses Suggested parts in textbook

Flight vehicle dynamics Part I + Appendices A, C, and D
Flight vehicle control using transfer
function based control theory

Part II + Part IV + Appendices A,
B, C, and D

Flight vehicle control using time
domain state space based control
theory

Part III + Part IV + Appendices
A, B, C, and D

Each of the above suggested courses is suitable for a complete semester long course
on the said subject matter in the undergraduate curriculum at a standard American
(possibly worldwide) university. For example, at OSU, the first course content is taught
as a core course AAE3520 in the Fall semester of the junior year, the second course
content is taught as as a core course AAE3521 in the Spring semester of the junior year
and finally the third course content is taught as a technical elective at the senior year.
Thus this book is intended to serve as a single textbook for the undergraduate to cover
entire the flight dynamics and control course sequence at OSU, covering the needed
material in both the aeronautical as well as space vehicles in a single volume for each of
the coursesmentioned above. It is believed that this feature is indeed the strength of this
book that would serve the undergraduate education in a standard aerospace engineering
department at any university.
While the above arrangement of the usage of the book in its entirety portrays the

situation at The Ohio State University, it is possible that the contents of the book can
also be used in various different combinations, tailored to the situation of any specific
dynamics and control sequence of courses at a given academic institution. For example,
within the flight vehicle dynamics course, the chapters are arranged in such away that all
the chapters dealing with aircraft dynamics can be gathered together and that content
can be taught continually focusing only on aircraft and then do the same with all the
chapters dealingwith satellite/spacecraft.However, this author still believes that treating
both these types of vehicles together and highlighting the similarities and differences at
appropriate junctures in the course would be more rewarding for the student.
Each chapter starts with an overview of its highlights and then ends with a chapter

summary, underscoring the utility of that chapter’s contents in the overall scheme of
things.The body of the chapter is illustrated with a generous number of solved examples
and the exercises at the end of each chapter would help the student evaluate his/her
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progress in understanding the material within that chapter. References relevant to that
chapter are provided at the the end of that chapter.
An undertaking of this magnitude would not have been possible without the help

and support of an amazing group of friends, colleagues and students with like minded
zeal and enthusiasm for this project. I would like to take this opportunity to convey my
heartfelt thanks to all the many individuals who helped either directly or indirectly. In
particular, the following individuals deserve a special mention. It is indeed a pleasure to
get a chance to acknowledge their support and contributions. They include undergrad-
uate students Gabe Scherer, Apoorva Chaubal, and IlyasWanMohd Zani, who not only
helped with the word processing but also provided valuable feedback on the organiza-
tion of the content having learnt the subject taught by me. Their “student perspective”
helped immensely in my presentation of the content of the book. Among them, Ilyas
deserves additional appreciation for his passion and efforts towards this project. I
would also like to thank the administration of the Department of Mechanical and
Aerospace Engineering at the Ohio State University for providing the needed resources
for this project. I would also like to thank the Aerospace Engineering department at the
Indian Institute of Science, Bangalore, India, for honoring me with the Satish Dhawan
Visiting Chaired Professorship during my sabbatical there and providing me with the
much needed solitude and intellectual atmosphere that was essential in completing
this project. It is also a pleasure to thank the staff at Wiley, especially Paul Petralia,
who initiated this process, and Sherlin Benjamin, Hannah Lee, Shalisha Sukanya and
Ashwani Veejai Raj who helped bring this book production process to completion.
Finally, it is indeed a pleasure to formally thank my wife Sreerama, who put up with my
absence for long periods of time immersed in this task, and supported me by making
me focus onmy goal with minimal distractions. In addition, it is also a pleasure to thank
my other family members, my eldest son Vivek, his wife Aditi, my younger son Pavan
and his wife Sasha. They, based on their interaction with their peer undergraduate
student community at Cornell, Columbia, Yale, Berkeley and Stanford (during their
collective, undergraduate (and graduate) education at those institutions), felt that my
authorship of an undergraduate level textbook with this type of unified treatment to
both air and space vehicles would be of appreciable value to the students and thus they
not only encouraged me to stay on course but also supported me by taking an active
role in shaping the final product. It is my sincere hope and wish that this contribution
to undergraduate education is deemed successful and useful by the student community,
not only at OSU but also at all other universities as well.

Rama K. Yedavalli
Columbus, OH, USA
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Perspective of the Book

The overarching objective of this book is to present the fundamentals of the analysis
(mathematical modeling) and synthesis (designing control systems) in a conceptual way
within a systems level framework, for a dynamic system so that it behaves the way we
desire and then show the application of these concepts to the specific application area,
namely dynamics and control of flight vehicles, including both aero (atmospheric) as
well as space vehicles.
Dynamic systems are those whose behavior varies as a function of time. As such,

their dynamic behavior is described by differential equations whereas static systems are
those whose behavior is described by algebraic equations with no dependence on time.
Sincemost physical systems engineers are interested in controlling are dynamic systems,
in this book, we focus our attention on dynamic systems. Depending on the underly-
ing basic principles used in the investigation, dynamic systems can be categorized as
mechanical, electrical, aerospace, chemical, biological, and various other systems, as
shown in Figure 1. The approach taken in this book is to be as generic as possible by
treating the subject at a “systems” level in the preliminary stages and then specializing
the details to a specific application system. In our case, the field considered for applica-
tion is the dynamics and control of flight vehicles, which include atmospheric vehicles
such as aircraft, as well as space vehicles such as satellites.
Once the focus of book is determined to be aero and space vehicles, it is acknowl-

edged that for a really comprehensive coverage of this subject, one needs to consider
the four pillars of this subject matter, namely dynamics, navigation, guidance, and con-
trol. However, realizing that in an undergraduate curriculum there is not sufficient time
to cover all these four aspects, we focus our attention to two pillars, which we consider
to be the most important, namely dynamics and control. The reason for this viewpoint
is that navigation (position information of the vehicle) tends to demand knowledge that
is centered around sensors and avionics with a considerable electrical engineering flavor
and fortunately the fundamental concepts behind navigation are somewhat embedded
in the dynamics pillar (in the form of Euler angles and coordinate transformations, etc.)
and thus we assume the navigation discussion is indirectly absorbed in the dynamics
pillar. Similarly the guidance pillar revolves around the determination of the “desired
behavior” for the vehicle and typically guidance commands act as reference inputs in
a control system. Thus we design a control system assuming the desired or reference
behavior is given by the guidance system (guidance computer). Thus in the end, we
believe that emphasizing the dynamics part and the control part of the subject mat-
ter, with the understanding of the important role played by navigation and guidance in
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Dynamics Systems

Electrical Chemical OtherMechanicalAerospace

Figure 1 Dynamics systems in various fields.

Figure 2 Boeing 747-400. Credit: Delta.

the overall scheme of things, would do complete justice to the Undergraduate education
objective and hence the book completely focuses on these two pillars, justifying the title
of the book being “Flight Dynamics and Control of Aero and Space Vehicles”.

Perspective on the Contents of the Book with its Unique
Features

In Part I of the book, our focus is on obtaining mathematical models, namely the
equations of motion, for aero and space flight vehicles. Since model based control
systems analysis and design is the overarching objective of the subject matter to be
grasped by the student, naturally the first step is to develop these mathematical models
(i.e. getting the equations of motion) for use later in the control system analysis and
design. The mathematical modeling for flight vehicles is carried out in this book by
applying primarily Newton’s laws of motion for a rigid body with specialization to air-
craft motion as well as spacecraft motion.The Lagrangian energy approach to modeling
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Figure 3 International Space Station. Courtesy of NASA.

is also briefly used in spacecraft dynamics to introduce the student to the many other,
albeit more advanced methods of mathematical modeling of dynamic systems (such as
Lagrange and Hamiltonian approaches) but it is felt that these advanced methods can
be further pursued after mastering the Newtonian approach at the basic undergraduate
level.
The unique features of Part I of the book include a thorough discussion of the con-

ceptual similarities and differences in the state space representation of the equations of
motion between atmospheric flight vehicles and space flight vehicles. This was possible
because of the simultaneous treatment given to these two types of vehicles in this book
in a unified framework.
In Part II of the book, our focus is on gathering themathematical tools needed to solve

and analyze the mathematical models (the equations of motion) developed in Part I.
In accordance with the chronological progress of the subjectmatter, in this part we learn
the methods to solve the linear, constant coefficient ordinary differential equations by
the Laplace transform method. This in turn leads to the concept of the transfer func-
tion in the frequency domain. Hence, this part emphasizes the control systems analysis
and design from the transfer function based frequency domain viewpoint. Accordingly,
application to aircraft and spacecraft dynamics and control from frequency domain,
transfer function based methods are covered and emphasized in this part.
The unique features of Part II of the book include the conceptual treatment of the

systems level classical control design methods to aircraft control applications with
heightened exposure to automatic landing control systems (within longitudinal aircraft
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dynamics) and a conceptual discussion on steady coordinated turn control methods
(within lateral/directional aircraft dynamics). In addition, the classical control theory
application to spacecraft includes an application problem that is non-routine, with
specific focus on the control design for a specific satellite, with significant similarity to
the “Aryabhata” satellite, which happens to be the first satellite built by the Indian Space
Research Organization, with which this author had interaction with in his graduate
student days. This is deemed to be of good educational value to the undergraduate
students as they grasp all the control design steps and appreciate the importance of all
the theory they have learnt so far.
In Part III of the book, our focus continues to be on developing the ability to solve

and analyze the mathematical models (the equations of motion) developed in Part I,
from a different point of view. In accordance with the chronological progress of the
subject matter, in this part, we gather and learn other methods to solve the linear,
constant coefficient ordinary differential equations, directly in the time domain using
the state space system description. This in turn leads to the use of many matrix theory
related methods such as the state transition matrix and the evolution of the state
and output variables trajectories as a function of time. Topics such as controllability,
observability, and dynamic stability via eigenvalues become very relevant and form the
bulk of the content in this part. Control systems analysis and design via time domain,
state space based methods, such as pole placement controllers and linear quadratic
regulation (LQR) based controllers are covered along with their applications to aircraft
and spacecraft flight control systems.
The unique features of Part III of the book include a thorough treatment on the neces-

sary and sufficient conditions for the Hurwitz stability of a real matrix, which happens
to be the plant matrix for a linear state space system.This author believes that this is the
first time in a textbook that the Fuller matrices and the resulting conditions for Hurwitz
stability of a real matrix are highlighted along with a discussion of the interrelation-
ship between the Routh–Hurwitz criterion, Fuller’s criterion and the popular Lyapunov
matrix equation criterion. In addition, in the popular LQR optimal control method, the
importance of getting the “trade-off” curve between the state regulation cost and con-
trol regulation cost is given heightened exposure. Also, the determination of multiple
control gains (via Brogan’s method) that all place the closed loop system eigenvalues at
the same given “desired” locations is illustrated with examples. In this connection, the
inadequacy of the currently existing MATLAB routine out-putting only a single gain
as part of the solution to this problem formulation is pointed out. A few other inade-
quacies of currently existing MATLAB routines in a few other problem formulations
are also pointed out, with the hope that in the future MATLAB will expand its algo-
rithms to alleviate these inadequacies for the benefit of future research in state space
based control methods. Finally, the application of the LQR design method in the space-
craft applications presented in this book is deemed unique, and is not discussed in other
spacecraft control books as it involves a rewarding, insightful application to the satellite
formation flying problem. Another unique feature is the introduction of concepts such
as “strong stability” in observer based feedback control systems and “spillover instabili-
ties” in twomodel (a higher order evaluation model being driven by lower order control
design model) control theory.
In Part IV of the book, in addition to summarizing some overview type coverage on

aircraft dynamics and control froman industry viewpoint aswell as on satellite dynamics
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and control in a tutorial fashion, our focus extends to covering some other related fight
vehicles such as helicopters, quadcopters (representing rotorcraft flight vehicles), mis-
siles and hypersonic flight vehicles in the form of “mini” tutorials.
The unique features of Part IV of the book include bringing awareness to the con-

ceptual similarities and differences in the dynamics and control issues related to these
other types of flight vehicle.This coverage is thus deemed to offer “completeness” to the
overall subject of dynamics and control of aero and space flight vehicles, making the stu-
dent put the entire contents of the other three parts (I, II, and III) of the book in proper
“perspective”.





1

Part I

Flight Vehicle Dynamics



2

Roadmap to Part I

“Absence of Evidence is not Evidence of Absence”
– Carl Sagan Astronomer

Part I covers the dynamics (mathematical modeling of equations of motion) of both
aero as well as space vehicles. This part in turn consists of chapters 1 to 7. Chapter 1
treats the subject in a generic way and introduces the basic concepts needed to be able
to write down the elaborate equations of motion in later chapters. Chapter 2 then devel-
ops the detailed development of the equations of motion, first for a general rigid body
in three dimensional space. Then one section specializes these general equations to the
specific case of aircraft with the relevant assumptions specific to the aircraft situation.
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Then in the next section, they are specialized to the case of spacecraft (satellites) with
the assumptions and approaches followed in the spacecraft situation. Along the way, the
student is made to clearly understand the similarities as well as differences in the devel-
oped equations of motion for these two distinct situations. Then Chapter 3 presents a
generic viewpoint on how to linearize a set of nonlinear differential equations about
a given operating point and then briefly presents the generic concepts of stability of a
dynamic system for the general case and then thoroughly covers the stability conditions
for a linear, time invariant system. Finally a thorough response analysis of a simple lin-
ear second order system is presented. Chapter 4 then focuses on aircraft static stability
and control issues. Within that context, all the concepts of static stability and control
for an aircraft in a trimmed condition considering both the longitudinal case as well as
the lateral/directional case are presented.Then Chapter 5 considers the dynamic stabil-
ity concept and develops the linearized perturbed motion equations needed later in the
control design process, along with the longitudinal modes of approximation as well as
the lateral/directional modes of approximations. Chapter 6 deals with spacecraft pas-
sive control and stabilization issues. It covers various passive and semi-active control
methods for satellite attitude stabilization and control such as spin, dual-spin, grav-
ity gradient stabilization, etc. Finally Chapter 7 covers spacecraft dynamic stability and
control. It carries out the analysis of dynamic behavior for an axi-symmetric satellite in
uncontrolled, torque free situation along with the linearized models for use in the three
axis control design later, along with a discussion on the modeling of various disturbance
torques in the space environment.
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1

An Overview of the Fundamental Concepts of Modeling of a
Dynamic System

1.1 Chapter Highlights

In this chapter, we discuss the fundamental concepts and steps needed to carry out the
analysis of a generic dynamic system. The importance of making realistic, engineering
judgment based approximations to develop tractable, simple mathematical models for
the specific system at hand is highlighted.Then two very important basic mathematical
tools, namely the time rate of change of vectors in absolute and relative frames as well as
the role of coordinate transformations in deriving the equations ofmotion are explained.

1.2 Stages of a Dynamic System Investigation
and Approximations

Dynamic systems, as mentioned earlier, are systems that change as a function of time.
Our objective at this early stage will be to understand and predict the dynamic behavior
of a given system.Then, in the later parts of this book, we expand our focus to controlling
and improving the behavior of dynamic systems to the way we desire. Typically, there
are few basic stages one needs to follow to make this investigation more systematic and
logical. We now outline those fundamental stages of investigation. Clearly this list of
stages is not exhaustive but these are the stages we focus on in this book.

Stage 1. Specify the system to be studied and imagine a physical model whose behavior
will match sufficiently closely the behavior of the actual system.

Stage 2. Derive a mathematical model to represent the physical model, i.e. write the
equations of motion (usually represented by differential equations).

Stage 3. Study and analyze the dynamical behavior by solving these differential
equations.

Stage 4. Make design decisions, that is, design a control system so that the system
behaves the way we want.

More advanced stages would include a thorough simulation of the fully designed sys-
tem (both in a computational framework as well as in an experimental setup) and then
possibly building a scalable prototype. This book emphasizes only the basic four stages
mentioned above.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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A more detailed and enlightening discussion of these stages is given in classical
textbooks such as [4]. An aspect that deserves special mention in following the above
orderly steps is the need for diligence in deriving tractable, simple mathematical models
that capture the essential features of the system under considerationwithout undue, and
unnecessary details. This is accomplished by making reasonably valid approximations
supported by common sense and engineering judgment. Let us elaborate on this. These
engineering approximations can be categorized as follows.

1. Neglecting small effects. Neglecting small effects results in considerable savings
in the number of variables in a differential equation as well as the complexity of the
mathematical model. For example, when we attempt to write down themathematical
model of an aircraft in motion, we can neglect the effect of solar radiation pressure
on the wings as that effect is much smaller and thus negligible compared to themajor
aerodynamic forces acting on the aircraft. Of course, what is a small effect is a relative
concept, because the torque generated by same solar radiation pressure could be a
significant effect when we are writing down the equations of motion for a satellite
in a geosynchronous orbit. Thus extreme care needs to be exercised in making this
small effect approximation. The underlying thought process is that there is nothing
wrong in making approximations as long as they are reasonably valid for the specific
system under consideration.

2. Assuming the environment surrounding the system is unaltered by the system
(independent environment).This assumption is predicated by the need for us to be
more precise about what constitutes the system under consideration. For example,
when we model the automobile dynamics on a paved road, it is fairly reasonable to
assume thatwe can study the automobile dynamicswithoutworrying aboutmodeling
of the paved road. However, if all terrain vehicle dynamics is being modeled, it is only
reasonable to include the characteristics of the terrain and its parameters (such as
icy roads, soil properties of the road, etc.) as part of the system being considered.
Thus being cognizant of what constitutes a system and its surroundings helps us to
simplify the number and complexity of the equations, just as in the case of the small
effects approximation.

3. Replacing distributed characteristics by lumped characteristics. This is a very
important assumption one needs to be rigorous about. This is due to the fact that
this assumption, when reasonably valid, helps not only lessen the complexity of the
equations but even leads to simplicity in the method employed to solve the result-
ing equations. For example, for any body, the mass is distributed along the area (or
volume) of the body with possible mass density variations along the body. So if we
account for these, strictly speaking, our system becomes a distributed parameter
system andwemay end upwith partial differential equations, which are obviously dif-
ficult to solve. However, if a body is fairly rigid with constant mass density, a lumped
parameter approximation is reasonable, and in this case we can get away with ordi-
nary differential equations, which are relatively easier to solve.Thus unless it is really
necessary, there is no need to resort to distributed parameter modeling of structures
(bodies). When the structure is highly flexible, it may be necessary to resort to dis-
tributed parameter modeling because only then can one account for or capture the
structural flexibility and locations of actuators and sensor effects in the control sys-
tem design. For this reason, in the early 1980s, the dynamics and control of large
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flexible space structures became an active topic of research [1, 5–8] resulting in new
insights such as control and observation spillover instabilities. Similarly, by the same
token, neglecting structural flexibility and the inherent interaction between aeroelas-
ticity and control system components resulted in the failure of flexible boom satellites
such as Voyager, which were modeled as rigid bodies.

4. Assuming simple linear cause and effect relationships between physical vari-
ables.This assumption is also one that has far reaching consequences in simplifying
the nature of resulting differential equations and the methodology needed to solve
those equations. For tractability and gaining physical insight, this is a good approx-
imation to start with. For example, when we assume a linear relationship between
various physical variables, it is likely that the resulting differential equations turn out
to be linear differential equations. In this connection, it is important for the student
to have complete clarity in deciding when an ordinary differential equation is a linear
and when it is a nonlinear equation, as there seems to be still some confusion in the
student’s mind. For example, the following differential equation

d3x
dt3

+ 4d
2x
dt2

+ t3 dx
dt

+ 3x = sin 5t (1.1)

is a linear differential equation. Note that one of the coefficients (namely t3) is nonlin-
ear in nature but that nonlinearity is in the independent variable t.Thus this equation
is still a linear differential equation, albeit with time varying coefficients. Clearly, by
this logic

d3x
dt3

+ 4d
2x
dt2

+ x2 dx
dt

+ 3x = sin 5t (1.2)

is a nonlinear differential equation because this time the coefficient x2 is nonlinear in
the dependent variable x, making it a nonlinear differential equation, which is obvi-
ously more difficult to solve.
Thus this linearity approximation makes it easy to come up with a linear differen-
tial equation (possibly with time varying coefficients), which are relatively easier to
solve. In fact, it is true that even among linear differential equations, the ones with
time varying coefficients (namely linear, time varying systems) are relatively more
difficult to solve than those with constant coefficients [namely linear time invariant
(LTI) systems]. This leads us to another following approximation that simplifies the
analysis even further.

5. Assume constant (time invariant) parameters. As mentioned above, this approxi-
mation leads us to linear constant coefficient ordinary differential equations, which
are the simplest to solve. In fact, in the entire rest of this book, we focus on LTI
systems, which allows us to take advantage of the vast body of solution techniques,
giving rise to amazingly rich theory for designing automatic control systems for linear
dynamic systems.

6. Neglecting uncertainty and noise.Obviously, assuming fixed, known nominal val-
ues for all the parameters encountered in the system equations allows us to obtain a
complete solution to that particular nominal system, which forms the basis for the
content of this book. Assuming uncertainty (or perturbations) in the parameters and
the solution techniques that account for the accommodation of this uncertainty in
the analysis and design stage forms the new subject area of robust control of linear
dynamic systems, which is beyond the scope this book. Interested students in this



8 1 An Overview of the Fundamental Concepts of Modeling of a Dynamic System

Table 1.1 Approximations and their mathematical simplifications.

Approximation Mathematical simplification

Neglect small effects Reduces number and complexity of differential
equation

Independent environment Reduces number and complexity of differential
equation

Replacing distributed
characteristic by lumped
characteristic

Leads to ordinary differential equations instead
of partial differential equations

Assume linear relationships Make equations linear
Constant parameters Leads to constant coefficient in differential

equations
Neglect uncertainty and noise Avoids statistical treatment

research can consult various books written on this subject [2, 3, 9] including the one
by this author [10].
Similarly, incorporating noise into the modeling process leads to other branches of
control theory. For example, modeling noise as a stochastic process leads to stochas-
tic control theory, which in itself is vast, based on probability theory concepts. Other
areas like fuzzy control and adaptive control also address the effect of including the
effects of noise and other disturbances.

In summary, the mathematical ramifications of these simplifications are shown in
Table 1.1.
In this chapter, our aim is to derive the equations of motion for a body in three dimen-

sional space. For this, we need to first gather a few fundamental concepts; just like when
building a component or a device, we need few tools like a hammer and a screwdriver.
In what follows, we attempt to gather those basic tools (concepts).

1.3 Concepts Needed to Derive Equations of Motion

There are two basic concepts we discuss here. One is the ability to derive an expression
for the time rate of change of a vector, based on the coordinate frame in which that vec-
tor is expressed, and the other is the ability to make coordinate transformations so that
one can easily transform the equations from one coordinate frame to another coordi-
nate frame. These two concepts together allow us to derive the entire set of equations
of motion for a body that undergoes translational as well as rotational motion. Since
a body’s motion is always expressed relative to a given coordinate frame, we need to
introduce the notion of using different coordinate frames for a given purpose and then
be able to transform from one frame to another. While in the most general framework
we can visualize various frames and routinely go from one frame to another frame, it
is important to start with some basic concepts related to coordinate frames and their
transformations. In that spirit, we first consider the most basic situation of having two
frames. One is the inertial coordinate frame, in which the frame stays fixed with neither
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(rectilinear) translation nor any rotation. Thus the inertial coordinate frame is a fixed
coordinate frame.The other coordinate frame we need to introduce is the body (or vehi-
cle) fixed coordinate frame. Since this frame is fixed to the body, as the body undergoes
translational and rotational motion, so does this body fixed frame. In that sense, the
body fixed frame is a moving frame (in contrast to the inertial frame, which is a sta-
tionary frame). It is important to recall here that Newton’s laws of motion, which are
basic laws of motion we invoke for writing down the equations of motion for a body in
motion, are always stated with respect to the inertial coordinate frame. Thus, the time
rate of change of a vector needs to be derived taking into account the coordinate frame in
which the vector is expressed. This leads us to the first fundamental concept, explained
below.

1.3.1 Time Rate of Change Vectors in a Moving (Body Fixed) Frame and
a Stationary (Non-rotating, Inertial) Frame

When considering a body in motion, first attach a body fixed reference frame within the
body. Quantities in the body fixed frame are indicated using lower case characters xyz.
The term xyz frame or ijk frame may be used interchangeably with body frame. We also
consider an inertial frame, which we fix (perhaps at the center of the earth, or at a point
on the surface of the earth).The inertial (stationary)) frame is indicated using the upper
case charactersXYZ, and the termXYZ frame or IJK framemay be used interchangeably
with ”inertial frame.Thus we have a moving frame and an inertial reference frame (with
respect to which Newton’s laws are stated).
Sign convention for reference frames. We assume all the coordinate frame triads

(with three axes) to follow the right hand rule. Once the first axis (X axis) is designated,
all the other axes follow the right hand rule.Thus if north is taken as theX axis, thenwest
(to its left) is taken as the Y axis and accordingly the Z axis will be pointing upwards and
the counterclockwise rotation is taken as the positive angle of rotation.Wedesignate this
triad as theNWU (north, west, up) frame. By the same token, if we draw theY axis to the
right of the X axis, then the Z axis is downwards, and we label this as the NED (north,
east, down) frame and in this the clockwise rotation is taken as the positive rotation.
When we draw the triad on paper, in the NWU frame, the Z axis is pointing away from
the page while in the NED frame, the Z axis is pointing into the page. It is better to be
very clear from the beginning that these guidelines are being followed so that there is
no confusion in visualizing the frames and being consistent with the sign convention.
Adherence to this sign convention results in uniformity and uniqueness (whenever it
exists) in the solutions to posed problems.
Any vector can then be expressed in terms of either the moving frame components or

the inertial frame components. For example, consider an arbitrary vector A expressed
in moving frame coordinates whose unit vectors are i, j, k as:

A = Axi + Ayj + Azk (1.3)

where Ax,Ay andAz are the components of A expressed in the moving xyz frame. By the
same token, it is also possible to expressA in terms of the inertial frame components, as:

A = AXI + AY J + AZK (1.4)
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where AX ,AY and AZ are the components in the XYZ inertial frame, and I, J , and K are
the unit vectors in the XYZ frame.
Then, if we are interested in the time rate of change of vector A, in the inertial frame

coordinates, we have:

d
dt

A = d
dt

AXI +
d
dt

AY J +
d
dt

AZK + Ax
�
�
��dI

dt

0

+ Ay
�
�
��dJ

dt

0

+ Az
�
�
��dK

dt

0

= ȦXI + ȦY J + ȦZK . (1.5)

The unit vectors I, J ,K in Equation 1.5 by definition have a fixed magnitude. It is impor-
tant to note that these particular unit vectors, by virtue of our definition of the inertial
frame, also have a fixed direction. Therefore they are constants with respect to time;
their derivative with respect to time is zero.
Recall we defined the body frame with respect to our body (an aircraft or spacecraft);

when the orientation of the body changes, so does the direction of the unit vectors i, j, k.
Therefore, when A is expressed in the body frame coordinates we have to take into con-
sideration the change in the directions of the unit vectors i, j, k. Mathematically, this
means we have to consider the translation and rotation of the body frame with respect
to the inertial frame.
If the body is in pure translation with respect to the inertial frame (i.e. the body frame

is not rotating with respect to the inertial frame), then:
d
dt

A = ȦXI + ȦY J + ȦZK

= Ȧxi + Ȧyj + Ȧzk + Ax
�
�
��di

dt

0

+ Ay
�
�
���dj

dt

0

+ Az
�
�
��dk

dt

0

= Ȧxi + Ȧyj + Ȧzk. (1.6)

The body frame maintains the same direction throughout the motion and thus the time
rate of change of unit vectors (i, j, k) is zero. However, this motion is a very restricted
motion and does not represent the most common general motion, in which the body
undergoes general translational as well as rotational motion.
In themost general case of the body undergoing both translational as well as rotational

motion, where the moving frame rotates with an angular velocity 𝜔, expressed in the
moving frame components, then the time rate of change of A (expressed in body frame
components) is given by:

d
dt

A = Ȧxi + Ȧyj + Ȧzk + Ax
di
dt

+ Ay

dj

dt
+ Az

dk
dt

. (1.7)

The above can in turn be written as,(
d
dt

A
)

XYZ
=
(

d
dt

A
)

xyz
+ 𝜔 × A. (1.8)

Here, 𝜔 is expressed as,

𝜔(t) = 𝜔x(t)i + 𝜔y(t)j + 𝜔z(t)k (1.9)
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and ( dA
dt
)xyz as,

(
dA
dt

)xyz = Ȧx(t)i + Ȧy(t)j + Ȧz(t)k. (1.10)

This is an extremely important relationship that gets applied again and again in the
derivation of equations of motion for a body in a three dimensional space. In some
literature, this equation is referred to as Charle’s theorem and we follow the same
nomenclature.

1.3.2 Coordinate Transformations

Another important concept needed is the concept of coordinate transformations
through the rotation matrices. Whenever we have two reference frames, obviously
the orientation of one reference frame with respect to the other can be related by
a series of rotations through appropriate angles. For example, consider the simple
situation below where we consider two reference frames differing in orientation by an
arbitrary angle, say 𝜃. For consistency in notation, as explained in the sign convention
discussion before, we assume the positive angles are interpreted by following the
right hand rule convention for all the triads of the coordinate frames. In turn, we
follow the NED frame convention, wherein all positive angles are in the clockwise
direction.
Clearly the components x and y are related to components X and Y as in Figure 1.1

(note Z = z, and both point into the plane of the page):

X = x cos 𝜃 − y sin 𝜃
Y = y cos 𝜃 + x sin 𝜃.

In otherwords, we can relate the (X,Y ,Z) components (i.e. theXYZ frame) to the (x, y, z)
components (i.e. the xyz frame) by the following matrix form:

⎡⎢⎢⎣
X
Y
Z

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
x
y
z

⎤⎥⎥⎥⎦
(1.11)

⎡⎢⎢⎣
X
Y
Z

⎤⎥⎥⎦ =
[
R𝜃

] ⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ . (1.12)

Figure 1.1 A simple coordinate transformation. X

Y

y

x
θ

θ
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Obviously if the xyz frame components are known and rotation angle 𝜃 is known, we
can determine the XYZ components and vice versa, i.e.:

⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ =
[
Rot 𝜃

]−1 ⎡⎢⎢⎢⎣
X
Y
Z

⎤⎥⎥⎥⎦
. (1.13)

The rotation matrix (known as R𝜃) is also called the direction cosine matrix.
You can observe that the above direction cosinematrix (DCM) is basically relating the

unit vectors in one frame to the unit vectors in another frame, i.e.

⎡⎢⎢⎣
i
j
k

⎤⎥⎥⎦ =
[
DCM

] ⎡⎢⎢⎣
I
J
K

⎤⎥⎥⎦ . (1.14)

In general, if we have two reference frames with unit vectors I1,J1,K1 and I2,J2,K2, then
it can be seen that we can write

I1 = cos 𝛼11I2 + cos 𝛼12J2 + cos 𝛼13K2 (1.15)
J
1
= cos 𝛼21I2 + cos 𝛼22J2 + cos 𝛼23K2 (1.16)

K1 = cos 𝛼31I2 + cos 𝛼32J2 + cos 𝛼33K2. (1.17)

Thus

⎡⎢⎢⎣
I1
J
1

K1

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣
cos 𝛼11 cos 𝛼12 cos 𝛼13
cos 𝛼21 cos 𝛼22 cos 𝛼23
cos 𝛼31 cos 𝛼32 cos 𝛼33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
I2
J
2

K2

⎤⎥⎥⎥⎦
. (1.18)

Now you see why thismatrix is called the direction cosinematrix. Obviously, knowing
the direction cosine matrix elements we can also visualize the angle(s) between those
two reference frames by taking inverse cosine angles corresponding to the entries of the
direction cosine matrix.
A pictorial representation of this is depicted in Figure 1.2.
It is interesting and important to know that the direction cosine matrix has the fol-

lowing important features:

• It is an orthogonal matrix, meaning [DCM]−1 = [DCM]T .
• All elements of this matrix have numerical values ≤ 1. Thus the length of each of its

column vector is 1.
• The three column vectors of this matrix are mutually orthogonal. Note that two vec-

tors x and y are orthogonal to each other when xTy = yTx = 0.
• The determinant of this matrix is ±1. If the reference frame vectors follow the right

hand rule, the determinant is +1.
• There is only one real eigenvalue for this matrix, which happens to be equal to ±1,

again +1 for right handed frames.

In the above simple illustration of the coordinate transformation concept we showed
two frames, differing from each other by only one angular rotation, and how they can
be related to each other. However, for a general body in motion in a three dimensional
space, it is shown that a minimum of three angular rotations are needed to go from
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J1

J2

cos α13

cos α11

cos α12

α11

α12

α13

K2

K1

I2

I1

Figure 1.2 Direction cosines.

the stationary inertial reference frame to any arbitrary orientation of the moving body
frame. While there are myriad ways of going from the XYZ frame to an arbitrary xyz
frame, we follow a particular orderly sequence of three rotations labeled as Euler angles.
Again, carefully following the clockwise as the positive angle rotation, the orderly
sequence of rotations for bringing the XYZ frame to an arbitrary orientation of an xyz
frame is as follows:

1. RotationΨ. First rotation: rotate the XYZ frame about the Z axis by an angleΨ to go
to an intermediate frame x1y1z1. Thus Z = z1 and the relationship between the XYZ
frame and the x1y1z1 frame is given in Figure 1.3.

⎡⎢⎢⎢⎣
X
Y
Z

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
cosΨ − sinΨ 0
sinΨ cosΨ 0
0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
y1
z1

⎤⎥⎥⎥⎦
(1.19)

⎡⎢⎢⎢⎣
X
Y
Z

⎤⎥⎥⎥⎦
=
[
Rot Ψ

] ⎡⎢⎢⎢⎣
x1
y1
z1

⎤⎥⎥⎥⎦
(1.20)

Figure 1.3 First rotationΨwhere the (Z, z1) axes point into the
page.

X

Y

y1

x1

Ψ

Ψ(Z, z1)
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z1

x1

x2

z2

Θ

Θ (y1, y2)

Figure 1.4 Second rotationΘ where the (y1, y2) axes point
into the page.

2. Rotation Θ. Second rotation: rotate the x1y1z1 frame about the y1 axis by an angle Θ
to go to an intermediate frame x2y2z2. Thus y2 = y1 and we have (see Figure 1.4),

⎡⎢⎢⎢⎣
x1
y1
z1

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

cosΘ 0 sinΘ
0 1 0

− sinΘ 0 cosΘ

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x2
y2
z2

⎤⎥⎥⎥⎦
(1.21)

⎡⎢⎢⎢⎣
x1
y1
z1

⎤⎥⎥⎥⎦
=
[
Rot Θ

] ⎡⎢⎢⎢⎣
x2
y2
z2

⎤⎥⎥⎥⎦
(1.22)

3. RotationΦ.Third and final rotation: rotate the x2y2z2 frame about the x2 axis and by
angle Φ to go to the xyz frame. Thus we have (see Figure 1.5),

⎡⎢⎢⎣
x2
y2
z2

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0
0 cosΦ − sinΦ
0 sinΦ cosΦ

⎤⎥⎥⎦
⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ (1.23)

⎡⎢⎢⎣
x2
y2
z2

⎤⎥⎥⎦ =
[
Rot Φ

] ⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ . (1.24)

Thus finally the relationship between the XYZ frame and the moving frame xyz is
given by:

⎡⎢⎢⎣
X
Y
Z

⎤⎥⎥⎦ =
[
Rot Ψ

] [
Rot Θ

] [
Rot Φ

] ⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ . (1.25)

(x2, x)

z2

y2

y

z

Φ

Φ

Figure 1.5 Third and final rotationΦ where the (x2, x) axes
point into the page.
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Carrying out the above multiplication, we obtain

⎡⎢⎢⎢⎣
X
Y
Z

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
cosΘ cosΨ sinΦ sinΘ cosΨ − cosΦ sinΨ cosΦ sinΘ cosΨ + sinΦ sinΨ
cosΘ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ cosΦ sinΘ sinΨ − sinΦ cosΨ
− sinΘ sinΦ cosΘ cosΦ cosΘ

⎤⎥⎥⎥⎦
×
⎡⎢⎢⎢⎣
x
y
z

⎤⎥⎥⎥⎦
.

We denote this composite direction cosine matrix as the S matrix. Just as each rota-
tion matrix is an orthogonal matrix, meaning its inverse is simply its transpose, this
composite rotation matrix S is also an orthogonal matrix. Thus S−1 = ST .

• It may be noted that this orderly sequence of rotations to go from the XYZ to the
xyz frame is not unique. However, for consistency, we choose to follow this particular
orderly sequence so that all of us will get the same answer when solving problems
involving these coordinate transformations. It is also interesting to point out that, for
sufficiently small angles, this orderly sequence does not matter.

• It can be seen that the above rotation matrices are essentially functions of trigono-
metric terms involving sines and cosines of angles. As such, there exists the possibility
of singularities occurring in these matrices when the angles reach those values that
make the the determinants of those matrices zero. However, to keep the concepts
(at the undergraduate level) simple and straightforward without deviating too much
from the main ideas, we assume that these angles are such that they keep the rotation
matrices non-singular.

• Also, when we resolve a vector into components in two different coordinate frames,
it is implicitly assumed that the origin of the two reference frames are coincident. In
other words, we translate (without any rotation) one coordinate frame to the other
until the origins of both frames coincide.

We now conclude this chapter with an example through which we can illustrate the
application of the above two fundamental concepts. The example we consider helps us
to understand why it is beneficial to launch a satellite from a launching station located
at the equator.

1.4 Illustrative Example

A vehicle is at rest on the surface of the Earth at latitude 𝜆 and longitude 𝜇. Find the
absolute velocity and acceleration of the body (i.e. velocity and acceleration of the body
with respect to the initial frame S, which is as shown in Figure 1.6). The Earth’s rotation
rate is denoted by 𝜔e.
In Figure 1.6, we included a few coordinate frames, S, E, and V . We take S frame to be

the inertial (fixed) reference frame.The E frame is the one fixed at a point on the surface
of the Earth, where that point is at a latitude 𝜆 and a longitude 𝜇. The V frame is the
vehicle fixed frame, fixed at a point within the vehicle. For this problem at hand, we do
not require thisV frame. As usual, in each of these frames, we define the X,Y ,Z vectors
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ωE
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YS

YE
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XE

YVZV

XV

Frame S

Frame E

Frame V

Figure 1.6 Motion of a body on the surface of
the Earth.

using the right hand rule (positive) sign convention, giving rise to the NED frame
(where north is the positive X direction, East is the positive Y direction and down is the
positive Z direction). Clearly, the vehicle’s angular velocity with respect to the S frame
is given by 𝜔E,S = −𝜔ekS (because the body is at rest, this is the only angular velocity
component we have). Notice the negative sign in this expression, which is important.
We nowneed to establish the relationship between the S frame and the E frame. In this

example, since theE framehas a specific orientation, it can be seen thatwe can start from
the S frame and reach the E frame orientation by only two angular rotations. In other
words, among the three Euler angle rotations, we need only two Euler angle rotations, so
that theXS,YS,ZS frame can reach theXE,YE,ZE frame in two angular rotations, namely
the longitude angle𝜇 and the latitude angle 𝜆. It is clear that the first Euler angle rotation,
namely Ψ is same as the longitude angle 𝜇. So, we can simply replace Ψ with the angle
𝜇 in the composite rotation matrix. Then, we observe that the other two Euler angle
rotations Θ and Φ should satisfy the constraint that

Θ + Φ = 90 − 𝜆 (1.26)
because 𝜆 varies from zero (Equator) to 90 degrees.This constraint can be satisfied with
two options, namely either (i) Θ = 90 − 𝜆 andΦ = 0 or (ii) Θ = 0 andΦ = 90 − 𝜆. Thus
we can enforce these options into the composite rotation matrix S to get the final rela-
tionship between theXS,YS,ZS frame and theXE,YE,ZE frame in terms of the two angles
𝜇 and 𝜆.
Let us select the first option. So we substitute (90 − 𝜆) for Θ and select Φ = 0 in the

composite rotationmatrix S. Noting that cos(90 − 𝜆) = sin 𝜆 and sin(90 − 𝜆) = cos 𝜆we
then get the relationship between XS,YS,ZS and XE,YE,ZE frames as given by

⎡⎢⎢⎣
XS
YS
ZS

⎤⎥⎥⎦ =
⎡⎢⎢⎣

cos𝜇 sin 𝜆 − sin𝜇 cos𝜇 cos 𝜆
sin𝜇 sin 𝜆 cos𝜇 sin𝜇 cos 𝜆

− cos 𝜆 0 sin 𝜆

⎤⎥⎥⎦
⎡⎢⎢⎣
XE
YE
ZE

⎤⎥⎥⎦ .
Another way to arrive at this conclusion is as follows: First rotation: rotate the

XS,YS,ZS axis by the longitude angle 𝜇 about the ZS axis to reach an intermediate frame
X1,Y1,Z1. So from Figure 1.7

XS = X1 cos𝜇 − Y1 sin𝜇
YS = X1 sin𝜇 + Y1 cos𝜇
ZS = Z1.
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Figure 1.7 First rotation 𝜇 where the (ZS, Z1) axes point into the page. XS

YS

Y1

X1

μ

μ(Zs,Z 1)

Thus,⎡⎢⎢⎣
XS
YS
ZS

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos𝜇 − sin𝜇 0
sin𝜇 cos𝜇 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
X1
Y1
Z1

⎤⎥⎥⎦ .
Now we do the second rotation with the Euler angle Θ.
Second rotation: rotate X1, Y1, Z1 about Y1 axis by the second Euler angle Θ to reach

XE, YE, ZE.
Thus the relationship between X1,Y1,Z1 and XE,YE,ZE is given by

⎡⎢⎢⎣
X1
Y1
Z1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

cosΘ 0 sinΘ
0 1 0

− sinΘ 0 cosΘ

⎤⎥⎥⎦
⎡⎢⎢⎣
XE
YE
ZE

⎤⎥⎥⎦ .
However from the definition of the latitude angle 𝜆, we observe that Θ is nothing

but (90 − 𝜆). Hence, we substitute (90 − 𝜆) for Θ. Noting that cos(90 − 𝜆) = sin 𝜆 and
sin(90 − 𝜆) = cos 𝜆 we then get the relationship between X1,Y1,Z1 and XE,YE,ZE as
given by (see Figure 1.8)

⎡⎢⎢⎣
X1
Y1
Z1

⎤⎥⎥⎦ =
⎡⎢⎢⎣

sin 𝜆 0 cos 𝜆
0 1 0

− cos 𝜆 0 sin 𝜆

⎤⎥⎥⎦
⎡⎢⎢⎣
XE
YE
ZE

⎤⎥⎥⎦ .
Then the final relationship between XS,YS,ZS and XE,YE,ZE is given by

⎡⎢⎢⎣
XS
YS
ZS

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos𝜇 − sin𝜇 0
sin𝜇 cos𝜇 0
0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

sin 𝜆 0 cos 𝜆
0 1 0

− cos 𝜆 0 sin 𝜆

⎤⎥⎥⎦
⎡⎢⎢⎣
XE
YE
ZE

⎤⎥⎥⎦ .
So, ⎡⎢⎢⎣

XS
YS
ZS

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos𝜇 sin 𝜆 − sin𝜇 cos𝜇 cos 𝜆
sin𝜇 sin 𝜆 cos𝜇 sin𝜇 cos 𝜆
− cos 𝜆 0 sin 𝜆

⎤⎥⎥⎦
⎡⎢⎢⎣
XE
YE
ZE

⎤⎥⎥⎦
Figure 1.8 Second rotation 𝜃 where the (Y1, YE) axes point into the page.
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which is exactly the same as the one we obtained before. What is important to realize
from the above exercises is that the Euler angle Θ itself is not same as the latitude angle
𝜆, becauseΘ is an anglemeasured from an intermediate axis frame, whereas the latitude
angle is an anglemeasured fromeither the equitorial plane or from the polar plane.Thus,
in general, care needs to be taken in getting the relationship between two frames with
constraints as a special case of the general three Euler angle orderly rotation sequence. It
is left to the reader to check that we obtain the same relationship as the one we derived
using option two as well, where we could substitute Θ = 0 and make Φ = 90 − 𝜆 in the
composite rotation matrix S.
Finally, at any rate, from the above relationship between the XS,YS,ZS and XE,YE,ZE

frames, we note that

ZS = − cos 𝜆XE + sin 𝜆ZE

i.e.

kS = − cos 𝜆iE + sin 𝜆kE.

Now the angular velocity 𝜔E,S can be expressed in terms of the components of the E
frame as

𝜔E,S = −𝜔ekS
= −𝜔e(− cos 𝜆iE + sin 𝜆kE) (1.27)
= 𝜔e cos 𝜆iE − 𝜔e sin 𝜆kE.

Now, the absolute velocity of the vehicle is given by(dr
dt

)
S
=
(dr
dt

)
E
+ 𝜔E,S × r (1.28)

where r is the position vector of the vehicle, which can be expressed as r = −RekE where
Re is the radius of the Earth (≈ 4000 miles). Since Re is constant, obviously

(
dr
dt

)
E
= 0.

Therefore, the absolute velocity uabs is

uabs =
(dr
dt

)
S

= 0 + 𝜔E,S × r

=
|||||||

iE j
E

kE
𝜔e cos 𝜆 0 −𝜔e sin 𝜆

0 0 −Re

||||||| (1.29)

= Re𝜔e cos 𝜆jE
i.e. the absolute velocity is of the magnitude Re𝜔e cos 𝜆 in the local easterly direction.
Now you see why it is advisable to launch a satellite or any object in the equatorial

plane in the easterly direction! Because even at rest, the object possesses a velocity of
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Re𝜔e (almost close to 1500 ft s−1) at a point on the equator (𝜆 = 0, Re =4000 miles,
𝜔e = 0.728 × 10−4 rad s−1 with respect to the inertial S frame).
Notice how the two fundamental concepts we learnt have helped us to rigorously

establish that it is indeed advantageous to launch a satellite from a launching station
located at the equator. For this reason, there are nations that have built launching sta-
tions on the equator (for example, France). Obviously, for locations with high latitude,
this almost becomes a necessity, because we know from the orbital mechanics course
that plane changes in orbits are prohibitively fuel expensive. However, countries like
Russia, which is at a very high latitude, choose to use different ways to launch their satel-
lites without requiring plane changes (for example, viaMolinya orbits).TheUS launches
most of its satellites from the Cape Caneveral station in Florida, which is at a latitude of
about 28∘. This concludes the message given by this illustrative example.
We now present another example, which further illustrates the importance of coordi-

nate transformations.

Example 1.1 In the previous example, we obtained

uabs =
(dr
dt

)
XYZ

=
(dr
dt

)
xyz

+ 𝜔 × r

= 0 + 𝜔 × r
= Re𝜔e cos 𝜆jE.

(1.30)

Our aim now is to write uabs in the inertial frame components iS, jS, and kS.

Solution
Weknow the relationship between (iS, jS, kS) in terms of (iE, jE, kE) via the transformation
matrix given in the previous problem. Since this rotationmatrix is orthogonal, it has the
property that its inverse is equal to its transpose.
Therefore we have⎡⎢⎢⎣

iE
j
E
kE

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cos𝜇 sin 𝜆 sin𝜇 sin 𝜆 − cos 𝜆
− sin𝜇 cos𝜇 0

cos𝜇 cos 𝜆 sin𝜇 cos 𝜆 sin 𝜆

⎤⎥⎥⎦
⎡⎢⎢⎣
iS
j
S
kS

⎤⎥⎥⎦ . (1.31)

From the above matrix, we observe that

j
E
= − sin𝜇iS + cos𝜇j

S
. (1.32)

And so

uabs = −Re𝜔e cos 𝜆 sin𝜇iS + Re𝜔e cos 𝜆 cos𝜇jS. (1.33)

Thus we now have the absolute velocity in terms of the inertial frame components.
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1.5 Further Insight into Absolute Acceleration

Now going back to the analysis, we can now calculate the absolute acceleration of the
body by applying Charle’s theorem:

aabs = (
d2r
dt2

)S

= (
duabs

dt
)S

= (
duabs

dt
)E + 𝜔E,S × uabs

(1.34)

where uabs is expressed in the E frame components, i.e.

uabs = Re𝜔e cos 𝜆jE. (1.35)

Now

(
duabs

dt
)E = d

dt
(Re𝜔e cos 𝜆jE)

= −Re𝜔e�̇� sin 𝜆jE

(1.36)

and the cross product term, 𝜔E,S × uabs, is||||||||
iE j

E
kE

𝜔e cos 𝜆 0 −𝜔e sin 𝜆

0 Re𝜔e cos 𝜆 0

||||||||
. (1.37)

Since the vehicle is at rest at the position considered, �̇� = 0. Therefore, aabs = 𝜔E,S ×
uabs. Note that if the bodywas not at rest in the problem to start with, wewould getmany
more terms in the absolute velocity and acceleration expressions. You may recognize
that these extra terms in the acceleration to be of Coriolis in nature. In Exercise 1.3, you
will get a chance to do a similar problem with �̇� ≠ 0.

1.6 Chapter Summary

• In this chapter, we presented an overview of the standard practice of dynamics inves-
tigation along with the need to make approximations to keep the modeling process
as simple and tractable as possible without compromising the salient points of the
dynamical behavior.

• We have learnt that making approximations is valid as long as there is a reasonable
justification for making that approximation.

• We have learnt two fundamental concepts that are useful for later use in deriving
the detailed equations of motion. The first one is Charle’s theorem, which governs
the rate of change of a vector, when the vector is expressed in body fixed (moving)
coordinate frame. The second one is the concept of coordinate transformations in
which we learnt that the components in different coordinate frames can be related
to each other with the help of the Euler angles. Their usefulness is demonstrated by
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application to a practical situation wherein it is established that launching a satellite
from a station located on the equator has an advantage in saving fuel.

1.7 Exercises

• Exercise 1.1. As part of the solution to the example problem above, we obtained the
relationship between the components of the S frame in terms of the components of
theE frame.Nowobtain the components of theE frame in terms of the components of
the S frame analytically.Then obtain the corresponding numerical values for 𝜇 = 30∘
and 𝜆 = 45∘.

• Exercise 1.2. Complete the expansion of absolute acceleration aabs = 𝜔E,S × uabs for a
body at rest on the surface of the Earth.

• Exercise 1.3. An expression for the absolute velocity and absolute acceleration of a
vehicle on the surface of the spherical Earth was derived under the assumption that
the vehicle was at rest in a previous worked out example. Now assume a non-zero rate
of change for the latitude angle �̇�, where �̇� is defined as

�̇� ≡
u
Re

(1.38)

where u is the velocity of the vehicle, on the equator, headed on a highway due north.
Also note

�̈� ≡
a
Re

(1.39)

where a is the acceleration of the vehicle. Find the expressions for uabs and aabs given
𝜇 = 0,

u = 60 mph (1.40)
a = 0.05 ft s−2 (1.41)

𝜔e = 0.728 × 10−4 rad∕s−1. (1.42)

• Exercise 1.4. Obtain the composite rotation matrix S making a small angle approxi-
mation. Note that when the angles (in radians) are assumed to be very small, sin𝜃 is
approximately equal to 𝜃 and cos𝜃 is approximately equal to 1.

• Exercise 1.5. Investigate which of the following matrices can be qualified to be a
proper, rotation matrix between two frames that obey the right hand rule.

R1 =
⎡⎢⎢⎣
−0.6 0 −0.8
0.8 0 −0.6
0 −1 0

⎤⎥⎥⎦ (1.43)

R2 =
⎡⎢⎢⎣
0.6 0 −0.8
−0.8 0 −0.6
0 −1 0

⎤⎥⎥⎦ (1.44)

R3 =
⎡⎢⎢⎣

0 −0.8 −0.6
0 −0.6 0.8

−1.1 0 0

⎤⎥⎥⎦ . (1.45)
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2

Basic Nonlinear Equations of Motion in Three
Dimensional Space

2.1 Chapter Highlights

In this chapter, we embark on the task of deriving the equations of motion for a rigid
body in three dimensional motion. This general motion can be viewed as consisting of
the translationalmotion of the center ofmass of the rigid body and the rotationalmotion
of the rigid body about its center of mass. Note that for a general motion of the rigid
body in three dimensions, we thus have three translational degrees of freedom and three
rotational degrees of freedom.We plan to derive these six degrees of freedom equations
by careful application of Newton’s law of motion. The translational motion is governed
by the rate of change of linear momentum and the rotational motion is governed by the
rate of change of angular momentum. Note that the rotational motion about the center
of mass is also referred to as attitude dynamics. The following development is valid for
any rigid body in motion (with respect to an inertial reference frame) and thus up to
some point is applicable to deriving equations of motion for an aircraft in atmosphere
as well as for a satellite in Earth’s orbit. By recognizing the appropriate external forces
acting on the body, we eventually specialize these equations of motion separately for
aircraft and satellites in Earth’s orbit. The equations of motion for these two situations
(aircraft/spacecraft) are also specialized in accordance with the body frame (moving
frame) selection, as we shall see later. It is also important to observe as to at which junc-
ture in the derivation of these equations of motion the body is assumed to be rigid.This
helps us to figure out the neededmodifications for deriving the equations ofmotion for a
flexible body. For extension of these equations for a flexible body, the reader is referred
to other excellent books such as [4, 8]. Since this book primarily caters to an under-
graduate student body, an advanced topic such as flexible body equations of motion is
considered beyond the scope of this book.

2.2 Derivation of Equations of Motion for a General
Rigid Body

Since we are attempting to derive the equations ofmotion, the starting point is the appli-
cation of Newton’s laws of motion to the body. Let us start with the two fundamental
laws of motion, namely:

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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(a) Rate of change of linear momentum:

L̇ = d
dt

L =
∑

Fapplied → translational dynamics.

(b) Rate of change of angular momentum:

Ḣ = d
dt

H =
∑

Mapplied → rotational/attitude dynamics.

We start by assuming two coordinate frames, one is a body-fixed (moving) refer-
ence frame and the other is an inertial (fixed) reference frame. The inertial reference
frame can be conveniently selected to be an Earth centered reference frame (ideally with
one axis passing through the poles and the other two axes in the equatorial plane), see
Figure 2.1.
Consider a mass particle within the body denoted by dm. Let the position vectors of

the origin of the body frame C, the mass particle dm be as shown (with respect to the
inertial reference frame) in Figure 2.1.
Thus we have:

d
dt ∫

dr′

dt
dm =

∑
Fapplied (2.1)

d
dt ∫

r′ ×
dr′

dt
dm =

∑
Mapplied. (2.2)

2.2.1 Translational Motion: Force Equations for a General Rigid Body

Note that Newton’s laws are always stated with respect to the fixed inertial reference
frame. Note also that

r′ = rc + r. (2.3)

y

z

x

C

Body Frame

dm

Y

Z

X

O

Inertial Frame

Figure 2.1 The body frame relative to the inertial frame.
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Figure 2.2 The position vectors of the origin of
the body frame C and the mass particle dm.

C

rc

O

dm

r

r′

Refer to Figure 2.2 above. If cm is the center of mass of the body, then by the definition
of the center of mass of the body, we have:

∫
rdm = mrcm∕c (2.4)

where rcm∕c is the position vector of the center of mass of the body from the origin of the
body fixed moving reference frame. Obviously if we select the origin of the body frame
as the center of mass of the body, we get the simplification

∫
rdm = 0. (2.5)

So we select C as the center of mass of the body. Now consider the linear momentum
equation

d
dt ∫

d
dt

r′dm = d
dt ∫

d
dt

(rc + r)dm

= d
dt

d
dt ∫

(rc + r)dm. (2.6)

Then, at this stage, we make another assumption, namely that the mass is constant (i.e.
dm
dt

= 0). Under this assumption, we observe that we can interchange the integral and
derivative operations in the right hand side of the above equation and thus equation 2.6
can be further simplified as

d
dt

d
dt

[
∫

rcdm +
�
�
���

∫
rdm

]0

= d
dt

d
dt ∫

rcdm

= d
dt

d
dt

rc ∫ dm (2.7)

= d
dt

d
dt

rcm.

Note rc is independent of dm. Therefore

m d
dt

d
dt

rc = m d
dt

𝑣c =
∑

Fapplied (2.8)

where d
dt
rc = 𝑣c the velocity of the center of mass of the body.

This equation is the iconic Newton’s second law of motion (F = ma); but it can be
seen that it is too simplistic and somewhat casual. It is very important to understand
how many assumptions and approximations were made to get to this point.
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Note that when the force F vector in Equation 2.1 is taken to be the inverse square law
of the Earth’s gravitational field and is |F| = GMm

r2
acting along the vector, rc, whereM is

the mass of the Earth andm is the mass of the orbiting body, we can write:
d2rc
dt2

+ 𝜇

r3c
rc = 0 (2.9)

where 𝜇 = GM is the gravitational constant. This is the so-called orbit equation. Thus
the translational motion of a rigid body in Earth’s central force field becomes the orbital
motion.
However for any rigid body flying in the Earth’s atmosphere, the gravitational accel-

eration can be taken to be fairly constant and thus, from now on, for a rigid body in the
Earth’s atmosphere, we take the fixed inertial reference frame to be simply the coordinate
frame fixed on the surface of the Earth with one axis going local north, one axis going
east, and the local vertical down as the third axis. Equations of motion derived under
this simple assumption are the so-called flat Earth approximation equations. Thus the
translational motion for a rigid body under flat Earth approximation (i.e. acceleration
due to gravity is taken as a constant) is:

m
d𝑣c
dt

= m
d2rc
dt2

= mgK + Faero + F thrust (2.10)
= Fgravity + Faero + F thrust

i.e.

m
d𝑣c
dt

= m
d2rc
dt2

= Fg + Faero + F thrust (2.11)

where Fg is the weight acting vertically downwards.

2.2.2 Rotational Motion: moment equations for a General Rigid Body

Now consider moment equations. We have:

d
dt ∫

dr′

dt
dm =

∑
Fapplied (2.12)

d
dt ∫

r′ ×
dr′

dt
dm = r′ ×

∑
Fapplied. (2.13)

Substituting r′ = rc + r into the above equations, we have:

d
dt ∫

(rc + r) ×
dr′

dt
dm = (rc + r) ×

∑
Fapplied (2.14)

d
dt

[
∫

rc ×
dr′

dt
dm +

∫
r ×

dr′

dt
dm

]
= rc ×

∑
Fapplied + r ×

∑
Fapplied. (2.15)

Now cross product equation 2.12 with rc to get:

d
dt ∫

rc ×
dr′

dt
dm = rc ×

∑
Fapplied (2.16)
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i.e.

rc ×
∑

Fapplied +
d
dt ∫

r ×
dr′

dt
dm = rc ×

∑
Fapplied + r ×

∑
Fapplied. (2.17)

From this, we get

r ×
∑

Fapplied =
d
dt ∫

r × d
dt

r′dm

= d
dt ∫

r × d
dt

(rc + r)dm

= d
dt ∫

r ×
drc
dt

dm + d
dt ∫

r ×
dr
dt

dm.

(2.18)

In the first term above, since rc is independent of mass particle dm, we canmake it come
out of that time derivative term. Then we have the right hand side as

= d
dt ∫ ����rdm 0 ×

drc
dt

+ d
dt ∫

r ×
dr
dt

dm. (2.19)

Thus we finally have

d
dt ∫

r ×
dr
dt

dm = r ×
∑

Fapplied =
∑

Mapplied . (2.20)

The interesting thing here is that we finally have the moment equation expressed in
terms of r rather than r′. This is important to note, because r is a quantity one can mea-
sure or physically visualize. So, now we have the translational (force) equations and the
rotational (moment) equations, both in vector form.

m
d𝑣c
dt

= Fapplied general translational motion (2.21a)

d
dt ∫

r ×
dr
dt

dm =
∑

Mapplied
general rotational motion about the
center of mass of the body. (2.21b)

When we assume acceleration due to gravity is constant, they can be modified to

m
d𝑣c
dt

= W + FA + FT
flat Earth approximation
translational motion (2.22a)

d
dt ∫

r ×
dr
dt

dm =
∑

Mapplied
rotational motion, describing attitude
dynamics about the center of gravity. (2.22b)

Here W is the weight of the rigid body, which is nothing but the force of gravity under
constant acceleration assumption.

2.2.3 Scalar Motion Equations for a General Rigid Body

Unless these two vector relations are resolved into scalar equations (three translational
and three rotational), they are not useful. Soweneed to convert them to scalar equations.
Thus we need to express vectors 𝑣c, rc, r and F and M, etc., into component form. We
can resolve all these vectors in question either into components along the body reference
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frame or along the inertial frame. For reasons that will become clear soon, we choose to
express these vectors along the components in the body frame. Thus let,

𝑣c = 𝑣cx(t)i + 𝑣cy(t)j + 𝑣cz(t)k

𝜔(t) = 𝜔x(t)i + 𝜔y(t)j + 𝜔z(t)k (2.23)

Mext(t) = Mx(t)i +My(t)j +Mz(t)k.

Since all these vectors are expressed in body frame components and this body is trans-
lating and rotating with respect to the inertial frame, we have to use Charle’s theorem to
take into account the moving nature of the ijk frame whenever we encounter any term
containing a derivative of a vector (i.e. whenever we see d

dt
A, where A is any arbitrary

vector). Once that vector is expressed in the body frame components, we use Charle’s
theorem, given by(dA

dt

)
XYZ frame

=
(dA

dt

)
xyz frame

+ 𝜔 × A. (2.24)

Now consider the force equation again:

m
d𝑣c
dt

= Fapplied. (2.25)

Since 𝑣c is expressed in body frame components and the derivation in the above equation
is with respect to the inertial frame, we have to apply equation 2.24. Doing this we get:

m
[(d𝑣c

dt

)
+ 𝜔 × 𝑣c

]
= Fapplied (2.26)

where
d𝑣c
dt

= ̇𝑣cxi + ̇𝑣cyj + ̇𝑣czk (2.27)

and

𝜔 × 𝑣c =
|||||||

i j k
𝜔x 𝜔y 𝜔z
𝑣cx 𝑣cy 𝑣cz

||||||| . (2.28)

Carrying out the cross multiplication and gathering the i, j, and k components and we
get (omitting the time arguments):

force equations
m( ̇𝑣cx − 𝑣cy𝜔z + 𝑣cz𝜔y) = Fx
m( ̇𝑣cy + 𝑣cx𝜔z − 𝑣cz𝜔x) = Fy
m( ̇𝑣cz − 𝑣cx𝜔y + 𝑣cy𝜔x) = Fz

. (2.29)

Thus, the above three scalar equations describe the general translational motion of a
rigid body in three dimensional space. These are commonly referred to as the three
degrees of freedom (3DOF) translational motion equations.
Now consider the moment equation:

d
dt ∫

r × d
dt

rdm =
∑

Mapplied (2.30)
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i.e.

angular momentum
H =

∫
r ×

dr
dt

dm

=
∫

r × (ṙ + 𝜔 × r)dm
. (2.31)

However, from the rigid body assumption ṙ = 0 (i.e. the mass particle does not have any
relative motion within the body). Mathematically, this is expressed as

dx(t)
dt

=
dy(t)
dt

= dz(t)
dt

= 0. (2.32)

Thus, under the rigid body assumption, position components x, y, and z are not functions
of time and can be taken as constants. Therefore

H =
∫

r × (𝜔 × r)dm. (2.33)

Now,
r × (𝜔 × r) = [𝜔x(y2 + z2) − 𝜔yxy − 𝜔zxz]i

+ [−𝜔xxy + 𝜔y(x2 + z2) − 𝜔zyz]j

+ [−𝜔xxz − 𝜔yyz + 𝜔z(y2 + x2)]k. (2.34)
Now define moments and products of inertia:

∫
(y2 + z2)dm = Ixx (2.35a)

∫
(x2 + z2)dm = Iyy (2.35b)

∫
(x2 + y2)dm = Izz (2.35c)

∫
xydm = Ixy (2.36a)

∫
xzdm = Ixz (2.36b)

∫
yzdm = Iyz. (2.36c)

Note that these are constant for a givenmass distribution of the body. Keep inmind that
moments of inertia are always positive, whereas products of inertia can be positive or
negative. Now you realize why we choose to express r(t) in terms of body frame com-
ponents because this choice gives moments and products of inertia to be constant and
they can be computed a priori, without any consideration to the position of the body in
the three dimensional space. Thus,

H = Hxi +Hyj +Hzk (2.37)

where,
Hx = Ixx𝜔x − Ixy𝜔y − Ixz𝜔z (2.38)
Hy = −Ixy𝜔x + Iyy𝜔y − Iyz𝜔z (2.39)
Hz = −Ixz𝜔x − Iyz𝜔y + Izz𝜔z (2.40)
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or, in matrix form,

⎡⎢⎢⎣
Hx
Hy
Hz

⎤⎥⎥⎦ =
⎡⎢⎢⎣

Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ (2.41)

i.e.

H = I 𝜔 (where I is a symmetric matrix with constant entries.) (2.42)
H = Hxi +Hyj +Hzk (2.43)

i.e.

Hx = Ixx𝜔x − Ixy𝜔y − Ixz𝜔z (2.44)
Hy = −Ixy𝜔x + Iyy𝜔y − Iyz𝜔z (2.45)
Hx = −Ixz𝜔x − Iyz𝜔y + Izz𝜔z. (2.46)

This is expressed more conveniently in matrix form

H = I𝜔 (2.47)

where,

⎡⎢⎢⎣
Hx
Hy
Hz

⎤⎥⎥⎦ =
⎡⎢⎢⎣
Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ . (2.48)

Note the moment of inertia matrix I is a symmetric, positive definite matrix. Here the
body’s angular velocity 𝜔 expressed in body fixed coordinate frame is

𝜔 = 𝜔xi + 𝜔yj + 𝜔zk. (2.49)

The external applied moments are then given by the rate of change of angular momen-
tum, namely:∑

Mapplied = Mxi +Myj +Mzk
= Ḣ + 𝜔 ×H.

(2.50)

Thus we have:

Mx = Ḣx + (𝜔yHz − 𝜔zHy) (2.51)
My = Ḣy + (𝜔zHx − 𝜔xHz) (2.52)
Mz = Ḣz + (𝜔xHy − 𝜔yHx). (2.53)

Carrying out the cross multiplication and gathering all the i, j, k components we finally
get the scalar moment equations as

Ḣx + (𝜔yHz − 𝜔zHy) = Mroll rolling moment equation (2.54a)
Ḣy + (𝜔zHx − 𝜔xHz) = Mpitch pitching moment equation (2.54b)
Ḣz + (𝜔xHy − 𝜔yHx) = Myaw yawing moment equation. (2.54c)

The above three scalar equations describe the general rotationalmotion about the center
of mass for a rigid body.
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This completes the derivation of the force and moment equations for a general rigid
body in three dimensional space.

Example 2.1 The angular momentum components of a rigid body about its mass cen-
ter is observed (in units of N ⋅m ⋅ s) to be:

H =
⎡⎢⎢⎣
1000
300
500

⎤⎥⎥⎦
and the body’s moment of inertia is given in units of N m s2 as

I =
⎡⎢⎢⎣
30 −10 0
−10 40 0
0 0 20

⎤⎥⎥⎦ .
Obtain the angular velocity components for the body.

Solution
We know H = I𝜔; therefore,

𝜔 = I−1H

=
⎡⎢⎢⎣
0.0364 0.0091 0
0.0091 0.0273 0

0 0 0.05

⎤⎥⎥⎦
⎡⎢⎢⎣
1000
300
500

⎤⎥⎥⎦
=
⎡⎢⎢⎣
6.36
9.09
25

⎤⎥⎥⎦ .

Example 2.2 Suppose we are given incomplete data characterizing the rotation of a
rigid body about its center of mass:

⎡⎢⎢⎣
Hx
475
2250

⎤⎥⎥⎦ =
⎡⎢⎢⎣
50 −15 −Ixz
−15 30 −Iyz
−Ixz −Iyz 60

⎤⎥⎥⎦
⎡⎢⎢⎣
15
30
40

⎤⎥⎥⎦ .
Find the angular momentum component Hx.

Solution
Recognize that this is an algebraic system of equations in three equations and three
unknowns, Ixz, Iyz, and Hx. Taking advantage of the fact that moment of inertia matrix
is a symmetric matrix and then solving those three simultaneous equations, we obtain

Ixz = 0
Iyz = 5
Hx = 300 N m s.
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Depending on the external applied forces and moments, these equations can be spe-
cialized to different scenarios. In the next two sections, we specialize these equations of
motion for an aircraft and and a spacecraft (satellite) respectively, taking into account
the external applied forces and moments specific to their situations.

2.3 Specialization of Equations of Motion to Aero
(Atmospheric) Vehicles

In this section, we specialize the above equations of motion, taking into account the
the nature of applied external forces and moments that govern an aircraft in motion. In
this connection, the first step in tailoring these equations to the aircraft dynamics is to
change the nomenclature to that is widely used and embraced by the aircraft dynamics
community. Accordingly, we express the velocity of the center of mass 𝑣c, the angular
velocity vector 𝜔, the moment vectorM in the body fixed frame as follows:

r(t) = x(t)i + y(t)j + z(t)k

𝑣c(t) = U(t)i + V (t)j +W (t)k

𝜔(t) = P(t)i + Q(t)j + R(t)k

Maero(t) = L(t)i +M(t)j + N(t)k.

(2.55)

In other words, we use letters U , V , andW for denoting linear velocity components; P,
Q, and R for angular velocity components; and L, M, and N for aerodynamic moment
components, which happens to be a well established standard notation for writing down
aircraft specific dynamics. Here the letter L used for rolling moment should not be con-
fused with the lift force, which is sometimes also denoted as L. We assume caution on
the part of the reader and believe that we are able to distinguish between them based on
the context in which this letter is used. From now on, we follow this specialized notation
for aircraft specific dynamics. Thus, we have

d𝑣c
dt

= U̇i + V̇ j + Ẇk (2.56)

and

𝜔 × 𝑣c =
|||||||
i j k
P Q R
U V W

||||||| . (2.57)

Carrying out the cross multiplication and gathering the i, j, and k components we get
the force equations (omitting the time arguments)

m(U̇ − VR +WQ) = Fx (2.58)
m(V̇ +UR −WP) = Fy (2.59)
m(Ẇ −UQ + VP) = Fz (2.60)

where

Fx = Fgx + FAx + FTx (2.61)
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Fy = Fgy + FAy + FTy (2.62)
Fz = Fgz + FAz + FTz (2.63)

where Fg is the gravitational force, FA represents the aerodynamic forces, and FT is
the thrust force(s). Note that Fg, under the flat earth approximation, is nothing but the
weight. We now want to express the gravitational force (weight), which always acts ver-
tically downwards, in terms of the body frame axes. We denote the weight by Wt to
differentiate it from the letterW we used for the vertical velocity.

2.3.1 Components of the Weight in Body Frame

Since the gravitational acceleration always acts vertically downwards, we have the grav-
itational force (weight) vector given by:

Wt = mgK (2.64)

where K is the unit vector in the fixed frame vertically downwards. However, we want
to express this force in terms of body frame components. So using the Euler angle rela-
tionships, we can get:

Wt = mgK
= m(gxi + gyj + gzk).

(2.65)

However, through the composite rotation matrix S, we know the relationship between
the unit vector K and the body frame unit vectors i, j and k, which is given by

K = − sinΘi + cosΘ(sinΦj + cosΦk) = − sinΘi + cosΘ sinΦj + cosΘ cosΦk.

Substituting for K in terms of i, j, k, we get:

gx = −g sinΘ (2.66)
gy = g sinΦ cosΘ (2.67)
gz = g cosΦ cosΘ. (2.68)

Until now, we have focused on the force equations describing the translational motion
of the aircraft. Now consider the moment equation:

d
dt ∫

r × d
dt

rdm =
∑

Mapplied (2.69)

i.e. the angular momentum is

H =
∫

r ×
dr
dt

dm

=
∫

r × (ṙ + 𝜔 × r)dm.

(2.70)

However, from the rigid body assumption ṙ = 0 (i.e. the mass particle does not have any
relative motion within the body). Mathematically, this is expressed as

dx(t)
dt

=
dy(t)
dt

= dz(t)
dt

= 0. (2.71)
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Therefore

H =
∫

r × (𝜔 × r)dm (2.72)

Now,
r × (𝜔 × r) = [P(y2 + z2] − Qxy − Rxz]i + [−Pxy + Q(x2 + z2) − Ryz]j

+ [−Pxz − Qyz + R(y2 + x2)]k.
(2.73)

As mentioned before, moments and products of inertia are given by:

∫
(y2 + z2)dm = Ixx (2.74a)

∫
(x2 + z2)dm = Iyy (2.74b)

∫
(x2 + y2)dm = Izz (2.74c)

∫
xydm = Ixy (2.75a)

∫
xzdm = Ixz (2.75b)

∫
yzdm = Iyz. (2.75c)

Thus,

H = Hxi +Hyj +Hzk (2.76)

where

Hx = IxxP − IxyQ − IxzR (2.77)
Hy = −IxyP + IyyQ − IyzR (2.78)
Hz = −IxzP − IyzQ + IzzR (2.79)

or, in matrix form⎡⎢⎢⎢⎣
Hx

Hy

Hz

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
P
Q
R

⎤⎥⎥⎥⎦
(2.80)

i.e.

H = I 𝜔 (2.81)

where I is a symmetric (constant) matrix.
Note that these moments of inertia can be computed a priori once we select the body

fixed frame within the body. For example, for an aircraft, the (+)x axis can be taken
along a fuselage reference line and the (+)y axis along the right wing and the moments
of inertia can be calculated based on these axes. However there is a special axes frame
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called a principal axes frame that one can use in computing themoments of inertia.This
special frame has the property that the moment of inertia matrix I is pure diagonal and
thus in the principal axes frame, the products of inertia are all zero and the diagonal
moments of inertia are called principal moments of inertia’. Note that every arbitrary
shaped body has a principal axes frame in it. However, for an arbitrarily shaped body, it
is difficult to identify how the principal axes are oriented within the body. Of course, for
some specially shaped bodies, we can easily identify the principal axes. For example, for
themajority of the time if a body has symmetry about an axis, that axis qualifies as being
a principal axis. Generally, in practice, a convenient general body frame is selected and
the principal axes are identified in relation to this original body frame.
Recall that

d
dt

H =
dH
dt

+ 𝜔 ×H = Ḣ + 𝜔 ×H =
∑

Mapplied. (2.82)

Carrying out the cross multiplication and gathering all the i, j, and k components we
finally get the scalar moment equations as

Ḣx + (QHz − RHy) = L rolling moment equation (2.83a)

Ḣy + (RHx − PHz) = M pitching moment equation (2.83b)

Ḣz + (PHy − QHx) = N yawing moment equation. (2.83c)

Recalling that

d
dt

H =
dH
dt

+ 𝜔 ×H = Ḣ + 𝜔 ×H =
∑

Mapplied (2.84)

where

Ḣ = Ḣxi + Ḣyj + Ḣzk (2.85a)

Ḣx = IxxṖ − IxyQ̇ − IxzṘ (2.85b)

Ḣy = −IxyṖ + IyyQ̇ − IyzṘ (2.85c)

Ḣz = −IxzṖ − IyzQ̇ + IzzṘ. (2.85d)

Since an aircraft is symmetric about the xz plane, Ixy = Iyz = 0. Thus we finally get the
moment equations, which describe the rotational motion of the aircraft:

IxxṖ − IxzṘ + QR(Izz − Iyy) − IxzPQ = L (2.86a)

IyyQ̇ + RP(Ixx − Izz) + Ixz(P2 − R2) = M (2.86b)

IzzṘ − IxzṖ + PQ(Iyy − Ixx) + IxzQR = N . (2.86c)

This completes the discussion of aircraft equations of motion.
Note that these equations are nonlinear, highly coupled first order differential

equations, which are obviously very difficult to solve analytically.
Having reached an important juncture in the derivation of equations of motion for an

aircraft, it is time to pause and review and summarize all these equations of motion in
a compact way in one place.
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2.3.2 Review of the Equations of Motion for Aircraft

XYZ or Xf Yf Zf → inertial fixed eeference frame(I, J ,Kor if , jf , kf are unit vectors)
xyz → body axes reference frame(i, j, k are unit vectors)

𝑣c = velocity of the mass center of mass of the body (i.e. a∕c) = Ui + Vj +Wk

𝜔 = angular velocity of the body = Pi + Qj + Rk

FA = aerodynamic forces = FAx
i + FAy

j + FAz
k

g = gravitational acceleration = gxi + gyj + gzk

MA = aerodynamic moments = LAi +MAj + NAk

MT = propulsive moments = LTi +MTj + NTk

FT = thrust forces = FTx
i + FTy

j + FTz
k

Ψ,Θ, and Φ → Euler angles

m(U̇ − VR +WQ) = −mg sinΘ + Fx
m(V̇ +UR −WP) = mg sinΦ cosΘ + Fy
m(Ẇ −UQ + VP) = mg cosΦ cosΘ + Fz

(2.87)

IxxṖ − IxzṘ − IxzPQ + (Izz − Iyy)RQ = L
IyyQ̇ + (Ixx − Izz)PR − Ixz(P2 − R2) = M
IzzṘ − IxzṖ + (Iyy − Ixx)PQ + IxzQR = N

(2.88)

P = Φ̇ − Ψ̇ sinΘ
Q = Θ̇ cosΦ + Ψ̇ cosΘ sinΦ
R = Ψ̇ cosΘ cosΦ − Θ̇ sinΦ .

(2.89a)

It is helpful to view this relationship between body angular rates and the Euler angle
rates in a matrix format as follows:

⎡⎢⎢⎣
P
Q
R

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 − sinΘ
0 cosΦ cosΘ sinΦ
0 − sinΦ cosΘ cosΦ

⎤⎥⎥⎦
⎡⎢⎢⎣
Φ̇
Θ̇
Ψ̇

⎤⎥⎥⎦ . (2.89b)

Note that, in general,

P ≠ Φ̇ Q ≠ Θ̇ R ≠ Ψ̇. (2.89c)

In an exercise at the end of this chapter, the student is asked to derive the above rela-
tionship between body angular rates and the Euler angle rates.
Alternatively, it is insightful to look at this same relationship linking Euler angle rates

to the body angular rates as follows:

Φ̇ = P + Q sinΦ tanΘ + R cosΦ tanΘ (2.89d)

Θ̇ = Q cosΦ − R sinΦ (2.89e)

Ψ̇ = (Q sinΦ + R cosΦ) secΘ. (2.89f)
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Finally,

⎡⎢⎢⎣
I
J
K

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cosΘ cosΨ sinΦ sinΘ cosΨ − cosΦ sinΨ cosΦ sinΘ cosΨ + sinΦ sinΨ
cosΘ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ cosΦ sinΘ sinΨ − sinΦ cosΦ
− sinΘ sinΦ cosΘ cosΦ cosΘ

⎤⎥⎥⎦
×
⎡⎢⎢⎣
i
j
k

⎤⎥⎥⎦ . (2.90)

At this point in time, we observe that we have a set of nonlinear, highly coupled,
first order constant coefficient ordinary differential equations completely describing the
translational and rotational motion of an aircraft in a flat earth situation. However, these
equations still do not help us to visualize the flight path of an aircraft with respect to a
ground station on Earth (i.e. with respect to the inertial frame, which for our current
purposes is a frame fixed at a point on the surface of the Earth). The reason the above
equations do not serve that purpose is that all these equations are expressed in the body
fixed (moving) coordinate frame. In order to get the orientation and flight path of the
aircraft with respect to the inertial frame, we need to relate these body fixed frame com-
ponents to the inertial frame components. Recall that this was done with the help of
Euler angles. In what follows, we now present a procedure to visualize the orientation
and flight path of an aircraft.

2.3.3 Orientation and Flight Path of the Aircraft Relative to a Fixed Frame

Recall that we chose to express:

𝑣c(t) = U(t)i + V (t)j +W (t)k (2.91)

where 𝑣c is the velocity of the aircraft in the body frame components, with respect to
the inertial frame. Note that the components of velocityU(t), V (t) andW (t) are known
quantities, measured from aircraft sensors. However, what we really want is the plane’s
position and velocity in the inertial frame components (i.e. an airport control tower):

𝑣c(t) = Uf (t)I + Vf(t)J +Wf(t)K

= ṗN(t)I + ṗE(t)J + [−ḣ(t)]K
(2.92)

Here ̇pN, ṗE and ḣ denote the time derivatives of the position coordinates (i.e. the velocity
components) in the inertial frame, which has (+)X towards the north, (+)Y towards
the east, and (+)Z pointing downwards (the NED frame might be used interchangeably
with inertial frame). Keep in mind that the height h in equation 2.92 has a negative sign
in front of it because h(t) is height (measured above the ground) where as K is taken
positive vertically downwards. In order to get the position of the aircraft with respect to
the inertial frame, we first get the velocity components with respect to the inertial frame
and then integrate, i.e.:

rc(t) =
[
∫

Uf (t)dt
]
I +

[
∫

Vf(t)dt
]
J +

[
∫

Wf(t)dt
]
K

= pN(t)I + pE(t)J + [−h(t)]K
(2.93)

where rc(t) is the flight path of aircraft with respect to the inertial frame.
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Fortunately, it is easy to see how to we get Uf , Vf andWf , the components of velocity
in the inertial frame. Remember that U(t), V (t) and W (t) are quantities that can be
measured by instrumentation on the aircraft. So knowing U(t), V (t) andW (t), we have
to compute Uf , Vf and Wf . This can be done easily through the Euler angles. We have
already established the relationship between body frame components and the inertial
frame components via the composite rotation matrix S. Thus

⎡⎢⎢⎣
Uf
Vf
Wf

⎤⎥⎥⎦ = [the composite rotation matrix S]
⎡⎢⎢⎣
U
V
W

⎤⎥⎥⎦ (2.94)

or

⎡⎢⎢⎣
I
J
K

⎤⎥⎥⎦ = [the composite rotation matrix S]
⎡⎢⎢⎣
i
j
k

⎤⎥⎥⎦ . (2.95)

This composite rotation matrix S was derived in the previous chapter. Recall that these
Euler angles allow us to relate the body frame components to the inertial frame compo-
nents and vice versa. Thus:

⎡⎢⎢⎣
Uf
Vf
Wf

⎤⎥⎥⎦ = [(RotΨ)(RotΘ)(RotΦ)]
⎡⎢⎢⎣
U
V
W

⎤⎥⎥⎦ (2.96)

i.e.

⎡⎢⎢⎣
I
J
K

⎤⎥⎥⎦ = [(RotΨ)(RotΘ)(RotΦ)]
⎡⎢⎢⎣
i
j
k

⎤⎥⎥⎦ (2.97)

⎡⎢⎢⎣
I
J
K

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cosΘ cosΨ sinΦ sinΘ cosΨ − cosΦ sinΨ cosΦ sinΘ cosΨ + sinΦ sinΨ
cosΘ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ cosΦ sinΘ sinΨ − sinΦ cosΨ
− sinΘ sinΦ cosΘ cosΦ cosΘ

⎤⎥⎥⎦
×
⎡⎢⎢⎣
i
j
k

⎤⎥⎥⎦ .

2.3.4 Procedure to get the Flight Path with Respect to a Fixed Frame

1. For given torques L, M, and N (they are zero if uncontrolled motion is of interest)
and inertia distribution Ixx, Iyy, Izz, etc. integrate equations 2.88 to P,Q,R.

2. Substituting these P,Q,R functions, integrate the equations 2.89a to get the Euler
angles, Ψ, Θ, Φ, as functions of time.

3. Knowing P,Q,R and Ψ, Θ, Φ as functions of time as well as the applied forces Fx, Fy
and Fz, integrate equations 2.87 to get U ,V , andW .

4. Knowing these components (in the i, j, k frame), obtain the corresponding compo-
nents of the velocity vector in the inertial frame (I, J ,K frame) using the direction
cosine matrix (equation 2.90).
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Once we get Uf, Vf, and Wf, the position coordinates in the inertial frame are
obtained by:

pN(t) = ∫
Ufdt; pE(t) = ∫

Vfdt; −h(t) =
∫

Wfdt. (2.98)

Obviously, in a real life situation, all the above steps are carried out by online computa-
tions for which extensive simulation codes with sophisticated numerical analysis tools
being employed are made available by industries like Boeing and others. However, to
convey the basic idea of visualizing the flight path determination in a conceptual way, in
what follows, we present a very simple example in which appropriate assumptions are
made to simplify the above equations and steps.

Example 2.3 An aircraft is flying straight and level at a constant velocity of 337.77 ft
s−1, and then performs a symmetric pull up such that Θ̇ = 0.05 rads−1 = constant.
Assume the aircraft’s x axis is aligned with the flight path throughout the motion and
that at t = 0, pN = 0, pE = 0 and h = 5000 ft. Find the position coordinates pN, pE and
h at t = 5 s. Assume Ψ = 0.

Solution
This is a very special case of the general motion discussed in the equations of motion.
Given that:
U = constant = 337.77 ft s−1, V = 0 (motion only in the vertical plane).
Since the body x axis is aligned with the free stream velocity vector throughout the

motion, we see thatW = 0.
Also, as far as rotational motion is concerned, P = 0 (no roll), R = 0 (no yaw), Ψ = 0,

Φ = 0 (because of symmetrical pull up) and Θ̇ = Q = constant = 0.05 rad s−1. Θ̇ = Q
because in this motion throughout, the body y axis and the inertial Y axis are parallel to
each other.
Now⎡⎢⎢⎣

ṗN
ṗE
−ḣ

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cosΘ cosΨ ∗ ∗
cosΘ sinΨ ∗ ∗
− sinΘ ∗ ∗

⎤⎥⎥⎦
⎡⎢⎢⎣
U
V
W

⎤⎥⎥⎦ (2.99)

where ∗ denotes entries we do not care or worry about. For the above given situation,
the navigation equations are:

⎡⎢⎢⎣
ṗN
ṗE
ḣ

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cosΘ ∗ ∗

0 ∗ ∗
sinΘ ∗ ∗

⎤⎥⎥⎦
⎡⎢⎢⎣
U
0
0

⎤⎥⎥⎦ . (2.100)

Thus ṗN = U cosΘ, ṗE = 0, ḣ = U sinΘ.
Given that Θ̇ = 0.05 rads−1 = constant; Θ(t) = 0.05t

∴ ṗN = 337.77 cos(0.05t)

pN(t)|t0=0,t=5 = ∫

5

0
337.77 cos(0.05t)dt = 1671.3 ft

pE(t) = 0
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ḣ = 337.77 sin(0.05t) h(0) = 5000 ft

h(t) =
∫

5

0
337.77 sin(0.05t) dt = 5210 ft.

Then the aircraft’s initial position and its position after five seconds are shown in
Figures 2.3 and 2.4.

2.3.5 Point Mass Performance Equations

Up until now, we have focused on the derivation of equations of motion that consisted
of all the six degrees of freedom, namely three equations governing the translational
degrees of freedom and three equations governing the attitude (rotational) degrees of

h(0) = 5000 ft

At t = 0 sec

Figure 2.3 Position of aircraft at t = 0.

1671 ft

U

5000 ft

5210 ft

At t = 5 sec

Ur = PN

Figure 2.4 Position of aircraft at t = 5.
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freedom. However, sometimes in trajectory planning, performance analysis (like range,
endurance, etc.), and optimization related issues, there is no need for any emphasis on
the attitude rotational degrees of freedom, but instead the aircraft can be treated as a
particle, i.e. as a point of fixed mass. However, in this situation, the emphasis is more on
how this particle is traveling in an aerodynamic environment, that iswe attempt to follow
the wind. As such, we employ the so-called vehicle carried frame (as [4] denotes it),
rather than a vehicle fixed frame, which can still be present.Theflat Earth approximation
still holds. Therefore we now need to concern ourselves with two body frames.

1. The vehicle-carried frame, or thewind frame, indicated by the subscriptW.Theorigin
of this frame is fixed to the center of mass of the vehicle. Its orientation moves with
the body as such: its XW axis aligned with the relative wind 𝑣∞; the ZW axis is in the
longitudinal plane of the aircraft; and the YW axis is directed along the right wing of
the aircraft normal to the XW axis.

2. The inertial frame, indicated by subscript I. As you recall, the inertial frame is fixed
on a flat earth defined such that its XI axis is positive North; YI axis positive east; and
ZI axis positive downwards.

Of course, the body-fixed frame, indicated in this section with the subscript V can
still be present. This frame, as you recall, has its origin at the center of mass; the XV
axis pointing out the nose of the aircraft; the YV axis pointing out the right wing of the
aircraft; and the ZV mutually perpendicular.
The angle of attack 𝛼 and sideslip 𝛽 relate thewind frame to the body fixed frame.Here,

𝛼 lies in the XVZV plane, and 𝛽 lies in the XWYW plane. To relate the wind frame and
inertial frame, we once again enlist the aid of Euler angles 𝜓W (labeled velocity heading
angle), 𝛾 (labeled the flight path angle) and 𝜙W (labeled velocity bank angle). The sub-
scriptW is to distinguish these Euler angles from those relating the body fixed frame to
the inertial frame. Then the direction cosine matrix becomes:

⎡⎢⎢⎢⎣
iW
jW
kW

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎣
1 0 0
0 cos𝜙W sin𝜙W
0 − sin𝜙W cos𝜙W

⎤⎥⎥⎦
⎡⎢⎢⎣
cos 𝛾 0 − sin 𝛾
0 1 0

sin 𝛾 0 cos 𝛾

⎤⎥⎥⎦
⎡⎢⎢⎣
cos𝜓W sin𝜓W 0
− sin𝜓W cos𝜓W 0

0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
iI
jI
kI

⎤⎥⎥⎥⎦
.

(2.101)

Notice that in the wind frame velocity has a component only along the XW axis, as such:

uV = uViW + 0jW + 0kW. (2.102)

Likewise, the aerodynamic force vector can be decomposed into the drag, sideforce,
and lift

FA = −DiW + SjW − LkW. (2.103)

Here the letter L is used to denote the lift force, letter D to denote the drag force and
letter S to denote the side force. The thrust forces in the wind frame become:

FT = TxiW + TyjW + TzkW. (2.104)

The main advantage of the wind frame is the simplification of the velocity and aerody-
namic force vectors.
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Wenowderive the equations ofmotion in thewind axes frame.We startwithNewton’s
second law of motion, stated here again for convenience:

m d
dt

uV =
∑

F . (2.105)

Recall Charles’s theorem, also restated here for convenience(duV

dt

)
I
=
(duV

dt

)
W
+ 𝜔 × uV. (2.106)

Defining angular velocity 𝜔 as

𝜔 ≡ PWiW + QWjW + RWkW (2.107)

and carrying out the cross product, we arrive at the following:(duV

dt

)
I
= ̇uViW + uVRWjW − uVQWkW. (2.108)

Substituting Equations 2.108, 2.102, 2.103, and 2.104 intoNewton’s second law,we arrive
at the three scalar equations of motion:

m ̇uV = mgxW + FPx − D (2.109)

muRW = mgyW + FPy + S (2.110)

−muVQW = mgzW + FPz − L. (2.111)

Notice that the components of gravitational force in the wind frames gxW, gyW, and gzW
need to be related to the inertial frame using Euler angles. Analogous to the gravitational
force in the vehicle-fixed frame, the gravitational forces in the vehicle-carried, or wind
frame, are:

gxW = −g sin 𝛾 (2.112)

gyW = g sin𝜙W cos 𝛾 (2.113)

gzW = g cos𝜙W cos 𝛾. (2.114)

It can be shown that the Euler rates relating the wind frame to the inertial frame are
expressed:

PW = �̇�W − �̇�W sin 𝛾 (2.115)
QW = �̇� cos𝜙W + �̇�W sin𝜙W cos 𝛾 (2.116)
RW = �̇�W cos𝜙W cos 𝛾 − �̇� sin𝜙W. (2.117)

Substituting Equations 2.112 through 2.117 into equations 2.109 through 2.111, we
arrive at the scalar equations of translational motion in the wind frame

m ̇uV = −mg sin 𝛾 + F ′
Px − D (2.118)

muV(�̇�W cos𝜙W cos 𝛾 − �̇� sin𝜙W) = mg sin𝜙W cos 𝛾 + F ′
PY + S (2.119)

muV(�̇� cos𝜙W + �̇�W sin𝜙W cos 𝛾) = −mg cos𝜙W cos 𝛾 − F ′
PZ + L. (2.120)

Now, supposing the thrust acts along the XV axis, the translational equations become:

m ̇uV = −mg sin 𝛾 + F ′
Px − D + T cos 𝛼 cos 𝛽 (2.121)
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muV(�̇�W cos𝜙W cos 𝛾 − �̇� sin𝜙W) = mg sin𝜙W cos 𝛾 + T cos 𝛼 sin−𝛽 + S
(2.122)

muV(�̇� cos𝜙W + �̇�W sin𝜙W cos 𝛾) = −mg cos𝜙W cos 𝛾 + T sin 𝛼 + L. (2.123)

It can also be shown that the position equations in the wind frame are:

ẊI = uV cos 𝛾 cos𝜓W (2.124)

ẎI = uV cos 𝛾 sin𝜓W (2.125)

ḣ = uV sin 𝛾. (2.126)

These above equations together completely describe the point mass performance
equations, which are helpful in trajectory planning, performance analysis, and any
optimization exercises in which taking the aircraft as a point mass is justified.
Note that the above vehicle carried frame is strictly used only for the translational

motion of the aircraft and that too for simple performance analysis wherein treating the
aircraft as a point mass is justified. It is important to realize that there is a significant
conceptual difference between a vehicle-carried frame and a vehicle-fixed frame. It is
left as an exercise for the student to argue as to why this vehicle-carried frame analysis
cannot be used for describing the rotational motion equations (see Exercise 2.6).
In the next section, we focus on the task of specializing the general rigid body

equations of motion to the spacecraft specific dynamics.

2.4 Specialization of Equations of Motion to Spacecraft

2.4.1 Translational Motion: Orbit Equation

Recall that the dominant force in space is gravity force governed by Newton’s law of
gravitation which states that the gravitational force between the Earth and the (smaller
mass) body is inversely proportional to the square of the distance between them acting
along the line joining the centers of the two bodies. Thus

Fg = m
d𝑣c
dt

(2.127)

= −GMm
r3c

rc. (2.128)

Rearranging,

m
d2rc
dt2

+ GMm
r3c

rc = 0 (2.129)

or

m
d2rc
dt2

+m 𝜇

r3c
rc = 0 (2.130)

where 𝜇 = GM is a known, physical constant. G is the universal constant of gravitation
with a value 6.6695 × 10−11 m3 kg−1 s−2. The combined constant 𝜇 = GM with Earth
taken as the main body exerting the gravitational force (with satellite being the other
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small body) has a value in theMKS units as 𝜇 = 3.986 × 1014 m3 s−2 and is referred to as
the Earth gravitational constant. Keep in mind that this physical constant has a numeri-
cal value that depends on the units chosen as well as on the issue of which celestial body
is themain body of gravitational attraction in the two-body problemwe are considering.
Clearly the two-body problem we are looking into in this chapter is the one with Earth
and the satellite together.
This is the famous orbit equation, the study of which leads to a separate course on

orbital mechanics, which is out of scope of this book. The interested student needs to
take a full length course, typically offered as a technical elective at the undergraduate
senior level.
However, the orbit equation can be simplified using the concept of the two-body

problem in orbital mechanics where the satellite and the Earth are the only two bod-
ies considered with the satellite experiencing only the Earth’s gravitational field. In this
problem formulation, the satellite is taken as point mass. In what follows, we present
the translational equations of motion for a satellite, taken as a point mass in Earth’s
gravitational field.

2.4.2 Point Mass Satellite Translational Motion Equations in Earth’s
Gravitational Field

This two-body problem formulation is pictorially represented in Figure 2.5. Going for-
ward, we omit the subscript C for the position vector of the point mass satellite (with
mass m) and simply denote it as r. These equations of motion are derived using the
Lagrangian method, which is based on the concept of conservation of energy. We use
the polar coordinates, namely radial direction along r, the transverse planar direction
via the angle 𝜃 and the azimuthal direction via the angle 𝜙. Note that the polar coor-
dinates are also sometimes called spherical coordinates and are thus different from the
standard Cartesian coordinates. The relationships between these different coordinates
are discussed in [3].
To derive the equations of motion in this framework, we use the Lagrangian method

as opposed to the Newtonian method we adopted before. Note that Newton’s method

satellite
mass m

z

earth

y

x

z = polar axis
x–y = equatorial plane

θ

φ
r

uφ uθ

ur

Figure 2.5 Satellite in orbit.
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is based on the momentum (linear and angualr momentum) concept, whereas the
Lagrangian method is based on the concept of energy. Accordingly, we obtain the
kinetic energy and potential energy of the point mass and derive the equations of
motion by evaluating the rate of change of the these energies via the Lagrangian
formula.
The kinetic energy is basically K = 1

2
m𝑣2 (where 𝑣 is the magnitude of the satellite’s

velocity) and is given by

K = m
2
(ṙ2 + (r�̇�)2 + (r�̇� cos𝜙)2). (2.131)

The potential energy P is given by P = −𝜇m∕r where 𝜇 is the gravitational constant
mentioned before.
The Lagrangian function is defined as the difference between the kinetic and potential

energies and is denoted byℒ = K − P. Then the dynamics of the system is specified by
the famous Lagrange equations, namely that

d
dt

(
𝜕L
dṙ

)
− 𝜕L

𝜕r
= ur (2.132)

d
dt

(
𝜕L
d�̇�

)
− 𝜕L

𝜕𝜃
= u𝜃 (2.133)

d
dt

(
𝜕L
d�̇�

)
− 𝜕L

𝜕𝜙
= u𝜙. (2.134)

Taking derivatives as needed, and assembling all the terms, we finally obtain the follow-
ing equations.

m
(
r̈ − r�̇�2cos2𝜙 − r�̇�2 + 𝜇

r2
)
= ur (2.135)

m(�̈�r2cos2𝜙 + 2rṙ�̇�cos2𝜙 − 2r2�̇��̇� cos𝜙 sin𝜙) = (r cos𝜙)u𝜃 (2.136)

m(�̈�r2 + r2�̇�2 cos𝜙 sin𝜙 + 2rṙ�̇�) = ru𝜙. (2.137)

As before, it can be seen that these equations are also highly nonlinear coupled ordi-
nary differential equations. At a later stage, we linearize these equations about an equi-
librium solution, as will be discussed later in Chapter 3, and use the resulting linearized
equations for control design purposes.
One solution of these equations turns out to be the situation that corresponds to a

circular, equatorial orbit, given by the values

x∗(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

r∗(t)
ṙ∗(t)
𝜃∗(t)
�̇�∗(t)
𝜙∗(t)
�̇�∗(t)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

r0
0
𝜔t
𝜔

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
(2.138)

where r0 is the radius of the circular orbit. Note that for this nominal situation, the con-
trol variables are all zero, i.e

u∗(t) = 0. (2.139)
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Thus, we linearize the above nonlinear equations about this nominal circular,
equatorial orbit, following the linearization procedure discussed later in Chapter 3,
and attempt to design control systems to maintain this nominal scenario under the
presence of disturbances and perturbations.
We continue the discussion of the equations of motion development for satellites/s-

pacecraft by now switching our attention to the rotational (attitude) motion of the vehi-
cle around its center of mass. Note that in a previous section, we already obtained the
rotational motion equations for a general rigid body in a three dimensional space. How-
ever, in this section, we extend those equations specifically for a satellite acknowledging
the fact that the body is orbiting around the Earth. In other words, the coupling between
orbital motion and the satellite’s rotational (attitude) motion is taken into considera-
tion. For simplicity, we focus only on the simple case of an ideal circular Keplerian orbit
without any orbital perturbation taken into account.

2.4.3 Rotational (Attitude) Motion Equations for a Satellite in a Circular Orbit

For this, we first define an orbit reference frame and a body fixed reference frame (just
as before for the aircraft case) and relate these two frames by again the Euler angles.
The orbit reference frame is selected such that its x axis, denoted by xo, is along the
tangential direction to the orbit plane. Let it be the northerly axis. Rotation about this
xo axis becomes the roll rotation. Then following the right hand rule, the orbit y axis,
denoted by yo, is perpendicular to the orbital plane, in the easterly direction. Rotation
about this yo axis is becomes the pitch axis rotation. Finally the downward local vertical
axis is the yaw axis, denoted by zo.Thus when the satellite body fixed frame axes, i.e. the
body xyz frame, coincides with the orbital xoyozo frame, which is labeled as the nominal
situation, the Euler angles are zero. When these two frames differ by the standard Euler
angles with Ψ as the first rotation about the zo axis, Θ as the second rotation about the
intermediate y axis and finally the last rotationΦ about the x axis, they become the error
angles in the satellite body roll, pitch, and yaw angles. Thus the relationship between
satellite body axes and the orbital frame axes is as usual given by the composite rotation
matrix as follows:

⎡⎢⎢⎣
x
y
z

⎤⎥⎥⎦ =
⎡⎢⎢⎣

cosΘ cosΨ cosΘ sinΨ − sinΘ
sinΦ sinΘ cosΨ − cosΦ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ sinΦ cosΘ
cosΦ sinΘ cosΨ + sinΦ sinΨ cosΦ sinΘ sinΨ − sinΦ cosΨ cosΦ cosΘ

⎤⎥⎥⎦
×
⎡⎢⎢⎣
xo
yo
zo

⎤⎥⎥⎦ .
Note that satellite body kinematics relative to the orbiting frame (i.e. the relationship

between body angular rates to the Euler angle rates) is as before given by

⎡⎢⎢⎣
𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 − sinΘ
0 cosΦ cosΘ sinΦ
0 − sinΦ cosΘ cosΦ

⎤⎥⎥⎦
⎡⎢⎢⎣
Φ̇
Θ̇
Ψ̇

⎤⎥⎥⎦ . (2.140)

The overall attitude dynamics of the spacecraft is given by the dynamics of the spacecraft
body frame relative to an inertial frame. For that, we relate the body frame to the orbit
frame and then relate the orbit frame to the inertial frame. For a general orbit, this is
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a quite a formidable task. To simplify matters, this is where we assume the orbit to be
a simple circular, planar, ideal Keplerian orbit. With this assumption, we realize that in
this special case, the orbit yo axis is inertially fixed since it is parallel to the orbit angular
momentumvector, and the orbiting frame rotates once per orbit about yo with a constant
angular velocity given by the orbital rate, denoted by

𝜔o =
√

𝜇

r3o
(2.141)

where 𝜇 is the gravitational constant of the earth and ro is the radius of the circular orbit.
Note that components of the angular velocity vector of the orbit frame with respect to
the inertial frame, namely, 𝜔T

oI, are [0 − 𝜔o 0]. The minus sign is due to the realization
that the direction of yo is the negative of the direction of the orbital angular momentum.
Thus, the body angular velocity componentswith respect to the inertial frame, are finally
given by

𝜔x = Φ̇ − Ψ̇ sinΘ (2.142)

𝜔y = (Θ̇ − 𝜔o) cosΦ + Ψ̇ sinΦ cosΘ (2.143)

𝜔z = Ψ̇ cosΘ cosΦ − Θ̇ sinΦ. (2.144)

For now, the above nonlinear relationships relate the body angular rates with respect
to the inertial frame (expressed in body frame components) through the Euler angles.
Since it is difficult to analyze these nonlinear equations, we eventually linearize these
about a given nominal scenario, which is the subject matter in a later chapter. The main
purpose of the development of nonlinear equations up to this point is to parallel the
treatment of the subject we have carried out in the aircraft case, so that the student can
see the similarities and differences between the those two cases.
With that spirit, let us now complete the discussion on the development of the rest

of the set of equations, namely the rotational attitude motion equations of a rigid
body (which in our current case is the spacecraft). For that, let us recall the general
rigid body rotational motion equations we derived in the first few sections. We had, for
angular momentum:

H = Hxi +Hyj +Hzk (2.145)

i.e.

Hx = Ixx𝜔x − Ixy𝜔y − Ixz𝜔z (2.146)

Hy = −Ixy𝜔x + Iyy𝜔y − Iyz𝜔z (2.147)

Hx = −Ixz𝜔x − Iyz𝜔y + Izz𝜔z. (2.148)

This is expressed more conveniently in matrix form

H = I𝜔 (2.149)

where ⎡⎢⎢⎣
Hx
Hy
Hz

⎤⎥⎥⎦ =
⎡⎢⎢⎣
Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ . (2.150)
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Note the moment of inertia matrix I is a symmetric, positive definite matrix. Here the
body’s angular velocity 𝜔 expressed in a body-fixed coordinate frame is

𝜔 = 𝜔xi + 𝜔yj + 𝜔zk. (2.151)

The external applied moments are then given by the rate of change of angular momen-
tum, namely:∑

Mapplied = Mxi +Myj +Mzk

= Ḣ + 𝜔 ×H.
(2.152)

Thus we have:

Mx = Ḣx + (𝜔yHz − 𝜔zHy) (2.153)

My = Ḣy + (𝜔zHx − 𝜔xHz) (2.154)

Mz = Ḣz + (𝜔xHy − 𝜔yHx). (2.155)

In the original body-fixed axes, we have the corresponding rotational energy as

2Trot = Ixx𝜔2
x + Iyy𝜔2

y + Izz𝜔2
z − 2𝜔x𝜔zIxz − 2𝜔y𝜔zIyz − 2𝜔x𝜔yIxy. (2.156)

Accordingly, note that if a rigid body has a rotational energy given by

2Trot = 20𝜔2
x + 30𝜔2

y + 15𝜔2
z − 20𝜔x𝜔y − 30𝜔x𝜔z (2.157)

the corresponding moment of inertia matrix is given by

I =
⎡⎢⎢⎣
20 −10 −15
−10 30 0
−15 0 15

⎤⎥⎥⎦ . (2.158)

At this point, we introduce the concept of principal axes. The principal axes frame
is a specific body fixed frame in which the products of inertia, when calculated along
these axes, becomes zero. Thus the moment of inertia matrix is a pure diagonal matrix
with the diagonal elements representing the principal moments of inertia. We get much
more simplified equations ofmotion in the principal axes frame: observe Equation 2.149
simplify to:

Hp = Ip𝜔p (2.159)

where the subscript p indicates the relevant quantities are expressed in the principle axis
frame.
Note the angular velocity 𝜔p in the principle axes frame is expressed as

𝜔p = 𝜔1e1 + 𝜔2e2 + 𝜔3e3 (2.160)

and e1, e2, e3 are the unit vectors along the principal axes. In other words,

Hp = H1e1 +H2e2 +H3e3. (2.161)

Again, this is expressed best in matrix form as

⎡⎢⎢⎣
H1
H2
H3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
I1 0 0
0 I2 0
0 0 I3

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜔1
𝜔2
𝜔3

⎤⎥⎥⎦ . (2.162)
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Thus we get:
M1 = I1�̇�1 + I3𝜔2𝜔3 − I2𝜔2𝜔3 (2.163a)

M2 = I2�̇�2 + I1𝜔1𝜔3 − I3𝜔1𝜔3 (2.163b)

M3 = I3�̇�3 + I2𝜔1𝜔2 − I1𝜔1𝜔2 (2.163c)
or

M1 = I1�̇�1 + (I3 − I2)𝜔2𝜔3 (2.164a)

M2 = I2�̇�2 + (I1 − I3)𝜔1𝜔3 (2.164b)

M3 = I3�̇�3 + (I2 − I1)𝜔1𝜔2. (2.164c)
Again you can see that these differential equations are nonlinear and coupled. We will
linearize these equations about some operating trajectory or nominal trajectory later
and then analyze the behavior of the motion under a small perturbation assumption.
Before we do this, it is important to understand the relationship between an arbitrary
body fixed reference frame (denoted by subscripts x, y, z) and the principal axes refer-
ence frame (denoted by subscripts 1, 2, 3).
If we obtain the eigenvalues and normalized eigenvectors of the 3 × 3 matrix I, then

because the I matrix is symmetric, positive, and definite, we obtain three real positive
eigenvalues and the corresponding three real eigenvectors. These three real, positive
eigenvalues are nothing but the three principal moments of inertia, I1, I2, and I3 from
Equation 2.162.
Let the corresponding three real normalized eigenvectors e1, e2, e3 respectively be:

e1 =
⎡⎢⎢⎣
e1x
e1y
e1z

⎤⎥⎥⎦ , e2 =
⎡⎢⎢⎣
e2x
e2y
e2z

⎤⎥⎥⎦ , e3 =
⎡⎢⎢⎣
e3x
e3y
e3z

⎤⎥⎥⎦ . (2.165)

Then E, the 3 × 3 matrix formed by stacking these eigenvectors together is

E =
[
e1 e2 e3

]
=
⎡⎢⎢⎢⎣
e11x e22x e33x
e11y e22y e33y
e11z e22z e33z

⎤⎥⎥⎥⎦
. (2.166)

Note the matrix E is an orthogonal matrix, i.e. E−1 = ET . Therefore,
E−1IE = ETIE = Ip (2.167)

The elements of the E matrix can be thought of as the direction cosines matrix ele-
ments of the angles that relate the body frame to the principle axes frame. Thus we
have, ⎡⎢⎢⎣

𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ =
⎡⎢⎢⎣ E

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜔1
𝜔2
𝜔3

⎤⎥⎥⎦ (2.168)

and similarly,
⎡⎢⎢⎣
𝜔1
𝜔2
𝜔3

⎤⎥⎥⎦ =
⎡⎢⎢⎣ ET

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ . (2.169)
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The advantage of using principal axes and the principal moments of inertia is that
it significantly simplifies the resulting equations. For example, the angular momentum
components are simply H1 = I1𝜔1, H2 = I2𝜔2, and H3 = I3𝜔3. Similarly, the rotational
energy, denoted by Trot, can simply be written as

2Trot = I1𝜔2
1 + I2𝜔2

2 + I3𝜔2
3. (2.170)

Note that the angular momentum vector is given by

H = I1𝜔1e1 + I2𝜔2e2 + I3𝜔3e3. (2.171)

We have the magnitude of the angular momentum given by

H2 = I21𝜔
2
1 + I22𝜔

2
2 + I23𝜔

2
3. (2.172)

2.4.4 Torque-Free Motion of an Axi-symmetric Spacecraft

Recalling the rotation motion equations, with no externally applied moments,

I1�̇�1 + (I3 − I2)𝜔2𝜔3 = 0 (2.173a)

I2�̇�2 + (I1 − I3)𝜔1𝜔3 = 0 (2.173b)

I3�̇�3 + (I2 − I1)𝜔1𝜔2 = 0. (2.173c)

Now suppose we consider an axi-symmetric satellite, say with I1 = I2 = IT; the subscript
T denotes the transverse moment of inertia. Also denote I3 = IS; the subscript S indi-
cates the spin axis. Then we see that:

IT�̇�1 + (I3 − IT)𝜔2𝜔3 = 0 (2.174a)

IT�̇�2 + (IT − IS)𝜔1𝜔3 = 0 (2.174b)

IS�̇�3 = 0. (2.174c)

From (2.174c) we observe that 𝜔3 is a constant. Let 𝜔3 = Ω. Emphasizing the earlier
point, the axis 3 is the spin axis and the axes 1 and 2 are the transverse’ axes. Differen-
tiating Equation (2.174a) and substituting �̇�2 from Equation (2.174b) into the resulting
equation, we get,

𝜔1 + 𝜆2𝜔1 = 0 (2.175)

where 𝜆 is the constant:

𝜆 =
[ (IS − IT)

IT

]
Ω. (2.176)

The solution to (2.175) is of the form

𝜔1(t) = a cos 𝜆t + b sin 𝜆t (2.177)

where again a and b are constants and 𝜆 is the angular frequency. Multiplying (2.174a)
by 𝜔1 and (2.174b) by 𝜔2 and adding the two, we get

d
dt

(𝜔2
1 + 𝜔2

2) = 0 (2.178)
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which indicates the quantity (𝜔2
1 + 𝜔2

2) is a constant. We now take a closer look at the
transverse angular velocity resultant 𝜔T

𝜔T =
√

𝜔2
1 + 𝜔2

2. (2.179)

Then the magnitude of the total angular velocity 𝜔 can be expressed as

𝜔 =
√

𝜔2
1 + 𝜔2

2 + Ω2 =
√

𝜔2
T + Ω2 = constant. (2.180)

Since the angular momentum (in inertial space) H

d
dt

H = 0 =⇒ H = constant (2.181)

thus the angular momentum in inertial space has constant magnitude and direction
and is thus fixed in inertial space. Let I, J ,K be the unit vectors in inertial space and
since the total angular momentum vector is fixed in space, let us select, say vector K to
coincide with this angular momentum vector.This situation is pictorially represented in
Figure 2.6.
The spacecraft motion consists of the spacecraft rotation about its spin axis rotating

about the angularmomentumvector.This lattermotion is called nutationalmotion.This
situation is very similar to a rotating top or a spinning top.
This nutational motion can be represented in terms of the body cone and space cone,

as shown in Figures 2.7 and 2.8.The body cone is fixed in the body and its axis coincides
with the spin axis. The space cone is fixed in space and its axis is along the direction of
the angularmomentumH .The total angular velocity is along the line of contact between
the two cones.
For a disk shaped body, IS > IT, the inside surface of the body cone rolls on the outside

surface of the space cone as shown in Figure 2.7.
For a rod shaped body, IS < IT, the outside surface of the body cone rolls on the outside

surface of the space cone as shown in Figure 2.8.

Figure 2.6 Torque-free motion. K
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Figure 2.7 Motion for a disk shaped
body.
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Figure 2.8 Motion for a rod shaped body.

The nutation half-angle 𝜃 and the whole wobble half angle 𝛾 are also constant and are
given by:

tan 𝜃 =
HT

H3
=

IT𝜔T

IS𝜔3
=

IT𝜔T

ISΩ
= constant (2.182)

tan 𝛾 =
𝜔T

𝜔3
=

𝜔T

Ω
= constant. (2.183)

This completes the discussion of the development of the basic motion specific to the
attitude dynamics of a satellite in a circular orbit.

2.5 Flight Vehicle Dynamic Models in State Space
Representation

Now that we have the complete set of aircraft equations of motion as well as spacecraft
equations of motion , we observe a common feature for both of these sets of equations.
That common feature is that they all turn out to be a set of simultaneous first order ordi-
nary differential equations. Hence, from now on, to treat these equations in a unified
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framework from a systems level point of view, we express these equations in the form
widely known as the state space representation of a dynamic system. This is elaborated
next. Accordingly, let us now summarize the flight dynamic models of both aircraft as
well as spacecraft in this state space representation, which would be useful to analyze
in later chapters. State space representation of dynamic systems is a powerful concept
and we review those fundamentals in the next chapter. For that reason, viewing all the
equations of motion we derived up until now, whether it is an aircraft dynamics or satel-
lite attitude dynamics, from a state space representation point of view is very beneficial.
In general, the state space description of any dynamic system described by nonlinear,

ordinary differential equations is given by

⃗̇x = f⃗ (x⃗, u⃗, t)
y⃗ = h⃗(x⃗, u⃗, t)

}
(2.184)

where x⃗ is the vector of state variables, u⃗ is the vector of control variables, and y⃗ is the
vector of output variables. f⃗ and h⃗ are vectors of nonlinear functions in xi and ui. We
refer to this model as the state space representation of a dynamic system.
From the equations of motion we have derived, it can be seen that these equations can

be cast in the above form of a state variable representation.We now formally summarize
those equations (both for aircraft as well as for spacecraft) in the state variable form.

2.5.1 Aircraft Dynamics from the State Space Representation Point of View

Let us now summarize the final set of aircraft equations of motion we derived as follows.
The force equations describing translational motion:

U̇ = VR −WQ − g sinΘ + Fx
m

V̇ = WP −UR + g sinΦ cosΘ + Fy
m

Ẇ = UQ − VP + g cosΦ cosΘ + Fz
m
.

(2.185)

The moment equations describing rotational motion:

𝛾Ṗ = Ixz[Ixx − Iyy + Izz]PQ − [Izz(Izz − Iyy) + Ixz2]RQ + IzzL + IxzN

IyyQ̇ = (Izz − Ixx)PR − Ixz(P2 − R2) +M

𝛾Ṙ = [Ixx((Ixx − Iyy) + Ixz2]PQ − Ixz[Ixx − Iyy + Ixz]QR + IxzL + IxxN

𝛾 = IxxIzz − Ixz2.

(2.186)

The kinematic equations:

Φ̇ = P + Q sinΦ tanΘ + R cosΦ tanΘ (2.187)

Θ̇ = Q cosΦ − R sinΦ (2.188)

Ψ̇ = (Q sinΦ + R cosΦ) secΘ. (2.189)
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And the navigation equations:
⎡⎢⎢⎣
̇pN
ṗE
ḣ

⎤⎥⎥⎦ =
⎡⎢⎢⎣
cosΘ cosΨ sinΦ sinΘ cosΨ − cosΦ sinΨ cosΦ sinΘ cosΨ + sinΦ sinΨ
cosΘ sinΨ sinΦ sinΘ sinΨ + cosΦ cosΨ cosΦ sinΘ sinΨ − sinΦ cosΨ

sinΘ − sinΦ cosΘ − cosΦ cosΘ

⎤⎥⎥⎦
×
⎡⎢⎢⎣
U
V
W

⎤⎥⎥⎦ . (2.190)

Be careful to notice that in the above navigation equations, the last variable in the posi-
tion coordinates vector is taken to be ḣ and so the last row elements of the above nav-
igation rotation matrix entries have a negative sign in front of them, compared to the
last row elements of the original composite rotation matrix S given in Chapter 1.
Note that the above moment equations are deliberately written in such a way that in

each of those equations, the left hand side has the first order derivative of only one state
variable, so that it fits into the definition of state variable representation.Thus consider-
able effortwent into getting the original equations into the above state variable form.The
reason for this extra effort is that this current form can be seen to be a set of first order
differential equations in the most important twelve motion variables, namely U , V , W
(linear velocity components); P, Q, R (angular velocity components); Ψ, Θ, Φ (the Euler
angles); and finally pN, pE, h (the position coordinates). These critical motion variables,
whose derivatives describe the entiremotion of the aircraft are labeled, in a generic fash-
ion, as the state variables.That is the reason this full set of equations is referred to as the
state variable representation of the aircraft dynamics. More about the importance and
utility of state space representation of dynamic systems is discussed in the next chapter.
For a complete description of the state space representation, in addition to state vari-
ables, it is important to also identify the output variables and control variables. Output
variables are the variables we wish to control, that is, they are the controlled variables.
Typically, output variables are either a subset of state variables or they could be new vari-
ables but as a (possibly nonlinear) function of the state variables. In the above aircraft
dynamics, an example for an output variable could be the flight path angle, which we
wish to control. The flight path angle is obviously a function of the above state variables
and it is assumed that we are able to express the output variable in terms of these state
variables. In a later chapter dealing with linear models, we can demonstrate the process
of getting an output equation in terms of state variables. Next, we discuss the role of
control variables, sometimes referred to as input variables. As the name implies, con-
trol variables are those which are available for us to manipulate so that we can make the
output variables behave the way we want or desire. Note the subtle difference between
controlled variables and control variables. In our aircraft dynamics, for example, there
are many control variables such as aerodynamic forces, and moments generated by the
control surfaces (like elevators, ailerons and rudder, etc.), which are discussed in detail
in later chapters. Loosely speaking, the control variables are those variables that appear
as forcing functions, i.e inputs, that appear in the right hand side of the differential
equation. That is the reason control variables are often referred to as input variables.
In flight dynamics and control jargon, control variables provide actuation and thus we
can think of them as actuators. Finally, we do have what we label as measurement (or
sensor) variables. Obviously, these are variables that we measure with sensors. Clearly,
measurement (sensors) variables are typically a small subset of state variables as it is
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highly unlikely that we measure all the state variables. Again, just like output variables,
we assume that we know the functional relationship between measurement variables
and state variables. Note that typically the output variables happen to be the measure-
ment variables as well, but in general conceptually, output variables could be different
from measurement variables.

2.5.2 Spacecraft Dynamics from a State Space Representation Point of View

We have seen that in the spacecraft dynamics case, we have two sets of equations. One
set is for the translational motion of a point mass satellite in Earth’s gravitational field
in polar coordinates and the second set is the spacecraft attitude rotational dynamics
about its mass center. We summarize these two sets of equations separately from state
space representation framework.

2.5.2.1 Satellite Point Mass Translational Equations of Motion in Polar Coordinates
These equations can be written in terms of the state, input, and output vectors,
defined by

x(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r(t)
ṙ(t)
𝜃(t)
�̇�(t)
𝜙(t)
�̇�(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.191)

u(t) =
⎡⎢⎢⎢⎣
ur(t)
u𝜃(t)
u𝜙(t)

⎤⎥⎥⎥⎦
(2.192)

y(t) =
⎡⎢⎢⎢⎣
r(t)
𝜃(t)
𝜙(t)

⎤⎥⎥⎥⎦
. (2.193)

Thus, the state space representation of these equations is given by

ẋ = f (x,u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ṙ
r�̇�2cos2𝜙 + r�̇�2 − 𝜇

r2
+ ur

m
�̇�

−2ṙ�̇�∕r + 2�̇��̇� sin𝜙
cos𝜙

+ u𝜃

mr cos𝜙

�̇�

−�̇�2 cos𝜙 sin𝜙 − 2ṙ�̇�∕r + u𝜙∕mr

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(2.194)

and

y = Cx =
⎡⎢⎢⎢⎣
1 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 1 0

⎤⎥⎥⎥⎦
x. (2.195)



56 2 Basic Nonlinear Equations of Motion in Three Dimensional Space

Thus, in these satellite pointmass translationalmotion equations in polar coordinates,
we observe that we have six state variables (basically the radial, tangential and azimuthal
positions and their respective velocities) and three control variables, which are nothing
but the accelerations in the radial, tangential, and azimuthal directions.

2.5.2.2 Spacecraft Attitude (Rotational) Motion about its Center of Mass
Now we focus our attention on the attitude (rotational) motion of the spacecraft (i.e.
satellite) about its center of mass. We recall those equations of motion we derived in the
principal axes frame, set in a state space form, as follows:

�̇�1 = [(I2 − I3)∕I1]𝜔2𝜔3 +M1∕I1 (2.196a)
�̇�2 = [(I3 − I1)∕I2]𝜔1𝜔3 +M2∕I2 (2.196b)
�̇�3 = [(I1 − I2)∕I3]𝜔1𝜔2 +M3∕I3 (2.196c)

𝜔1 = Φ̇ − Ψ̇ sinΘ (2.197)

𝜔2 = (Θ̇ − 𝜔o) cosΦ + Ψ̇ sinΦ cosΘ (2.198)

𝜔3 = Ψ̇ cosΘ cosΦ − Θ̇ sinΦ. (2.199)

Keep in mind that the above equations are also specialized to a satellite in a circular
Keplerian orbit, wherein the circular orbit’s constant angular velocity is given by 𝜔o.
Note that in this situation, the Euler angles essentially take the role of roll angle error,
pitch angle error and the yaw angle error of the satellite’s deviation from the nominal
scenario (in which the body frame coincides with the orbit frame).
It is also useful to recall that the principal angular velocities are related to the

(arbitrary) body-fixed frame angular velocities by the normalized eigenvector matrix E,
given by

⎡⎢⎢⎣
𝜔1
𝜔2
𝜔3

⎤⎥⎥⎦ =
⎡⎢⎢⎣ ET

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ . (2.200)

In the spacecraft case, we realized that the translational motion in the Earth’s gravity
field became the orbit equation and in the idealistic case of perfect circular orbit with no
orbital perturbations, the orbital motion is essentially decoupled from the body attitude
motion. It needs to be kept inmind that in the presence of the realistic, practical situation
of orbital motion, where there are always orbital perturbations, this decoupling assump-
tion may not be valid. However, for a conceptual preliminary design, we ignore this
coupling and focus on the pure rotational attitude motion given by the above equations.
It is easy to see that the above equations are somewhat simplified (even though they are
also highly coupled, nonlinear differential equations like in the aircraft case) because
these equations are written in the special body axes frame, namely, the principal axes
frame. Following the discussion given for the aircraft case, it is not difficult to observe
that in this dynamics, the three angular velocities 𝜔1, 𝜔2, and 𝜔3 qualify to be the state
variables. The moments M1, M2, and M3 on the right hand side of the equations act as
the forcing functions. These torques can be viewed as consisting of control torques as
well as disturbance torques. Obviously control torques are the control variables in this
case. In the spacecraft situation, it is easy to observe that considerable effort and care
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needs to be expended to model and estimate the various disturbance torques acting on
the satellite and that information be used in designing the needed control torques to
control the attitude of the spacecraft in the presence of those disturbance torques. The
same comments we made regarding output variables and measurement variables in the
aircraft dynamics case equally hold in this case as well.Themain point to take away from
this discussion is that describing the satellite attitude dynamics in the state variable rep-
resentation makes its analysis and design follow almost the same conceptual path as in
the case of aircraft dynamics. This is the reason, in the next chapter, we treat the state
space representation of the flight vehicle dynamics from a generic, systems viewpoint
and analyze it.
As mentioned earlier, in a later chapter, we linearize these nonlinear equations about

their equilibrium solutions and use them for control design purposes.

2.5.3 Conceptual Differences Between Aircraft Dynamic Models
and Spacecraft Dynamic Models

Even though we observe that, in the end, both aircraft dynamics and spacecraft dynam-
ics lend themselves neatly to follow a rigorous mathematical framework through the
state space representation, there are few subtle differences from a practical viewpoint.
The first observation is that the above mathematical model we arrived at for aircraft is
of very high fidelity in the sense that the real motion of aircraft is likely to follow the
motion suggested by this model. In that sense, aircraft engineers need to think that it is
somewhat of a luxury that they have a thoroughly rigorous and reasonably dependable
mathematical model. In addition, it is always possible to estimate the values of the
various parameters in the equations ofmotion and verify their validity in a ground based
wind tunnel tests from their aerodynamics colleagues. The spacecraft engineers do not
have that luxury. In that sense, they are heavily dependent on the fidelity of the available
mathematical models generated by first principles, such as those we developed in this
chapter. Thus robustness to perturbations is a necessity in the case of satellite attitude
control systems design. Of course, robustness to perturbations is of importance in any
control systems design exercise but even more important in satellite attitude control
systems. This is justified even more by the fact that estimating the parameters and
disturbance torques encountered in the spacecraft environment is a non-trivial task in
view of the lack of any ground based tests that mimic the space environment. Another
observation, at least in the current state variable representation point of view, is that the
spacecraft attitude dynamicsmodel has only the principal moments of inertia as the real
parameters within the model whereas in the aircraft equations, mass, moments of iner-
tia, and products of inertia become the real parameters within the dynamics. Notice that
moments and products of inertia are very much functions of the shape and size of the
rigid body. In the case of aircraft, in addition, many aerodynamic coefficients that deter-
mine the stability derivatives (as discussed in later chapters) become the real parameters.
It is well recognized by now that robustness to perturbations in these real parame-
ters is of paramount importance in designing a control system for these aerospace
applications.
Fundamentals such as these covered in this chapter are also available in many

other textbooks such as [1, 2, 4–8] and the reader is encouraged to consult these and
other books to expand their horizons, not getting limited by the essential, necessary
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information provided in this book. This is intentional because the only major objective
of this book is to cover the most basic subject that is expected at an undergraduate
level, in both aero as well as space flight vehicle dynamics. As such, in each category
(i.e. aircraft and spacecraft), many elaborate and advanced concepts have not been
covered deliberately because within the time limitation inherent in an undergraduate
curriculum, the total content of coverage is necessarily limited anyway.

2.6 Chapter Summary

In this chapter, we first derived the equations of motion for a general rigid body in three
dimensional space. Then we specialized those equations to aircraft, in which the flat
Earth approximation (acceleration due to gravity taken as a constant) is enforced, along
with other features specific to an aircraft.We then carry out a similar exercisemaking the
equations specific to spacecraft (or a satellite). We recognize that in this case, the trans-
lational motion of the center of mass becomes the orbit equation, while the rotational
motion equations describe the attitude dynamics of the center of mass. Finally we repre-
sented all these equations ofmotion in a state variable representation, clearly identifying
the state variables, control variables, output variables and measurement variables. The
state variable representation of these equations of motion forms the starting point for
analyzing the dynamics and synthesizing control systems in subsequent chapters. With
this setup in mind, the next task of understanding the importance of linearizing these
nonlinear models is discussed in the next chapter.

2.7 Exercises

Exercise 2.1. An aircraft in a steady, level right turn is flying at a constant altitude and
a constant turning rate 𝜔turn. If P is the vehicle’s roll rate, Q the pitch rate, and R the
yaw rate, assuming a flat, non-rotating Earth, show that the vehicle’s roll, pitch, and
yaw rates will equal

P = −𝜔turn sinΘ

Q = 𝜔turn sinΦ cosΘ

R = 𝜔turn cosΦ cosΘ

where Φ is the roll Euler angle and Θ is the pitch Euler angle.
Exercise 2.2. Convert the angular velocity vector𝜔, given in terms of a mixture of inter-

mediate and inertial frame components as follows
𝜔 = Ψ̇ + Θ̇ + Φ̇

= Ψ̇K + Θ̇J
1
+ Φ̇I2

into body frame components
𝜔 = Pi + Qj + Rk.

In other words, get the relationship between the body angular velocity components
and the Euler angles and their rates.
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Exercise 2.3. Given that the rotational kinetic energy of a rigid body about its center of
mass is

Trot =
1
2
[25𝜔2

x + 34𝜔2
y + 41𝜔2

z − 24𝜔y𝜔z]

where x, y, z is a specified body-fixed coordinate set.
1. Determine the principal moments of inertia.
2. Calculate the angles between x, y, z and the principal axes 1, 2, 3.
3. Determine the magnitude of angular momentum, H .

Exercise 2.4. Consider a rigid body with inertia tensor

I⃗ =
⎡⎢⎢⎣

30 −Ixy −Ixz
−10 20 −Iyz
0 −Izy 30

⎤⎥⎥⎦ (Nm s2)

and angular velocity

�⃗� = 10i⃗ + 10⃗j + 10k⃗(rad s)−1.

If

H⃗ = 200i⃗ + 200⃗j + 400k⃗(N m s2)

determine the following.
1. Values of Izy, Ixy, Ixx, and Iyz.
2. Principal moments of inertia.
3. Rotational kinetic energy.

Exercise 2.5. Consider a rigid body with inertia tensor

I⃗ =
⎡⎢⎢⎣

20 −10 0
−10 30 0
0 0 40

⎤⎥⎥⎦ (N m s2)

and angular velocity

�⃗� = 10i⃗ + 20⃗j + 30k⃗(rad s)−1.

1. Find the angular momentum of this body about its center of mass
2. Find the principal moments of inertia.
3. Find the rotational kinetic energy.

Exercise 2.6. Given:

I =
⎡⎢⎢⎣
10 −7 −8
−7 20 −5
−8 −5 30

⎤⎥⎥⎦
obtain the principal moments of inertia and the orientation of the (x, y, z) frame with
respect to the (1, 2, 3) frame. Recall the principle moments of inertia are nothing but
the three eigenvalues of the I matrix. Likewise, the direction cosine matrix is the
matrix composed of the three normalized eigenvectors.We can easily determine both
the eigenvalues and the normalized eigenvectors using MATLAB’s built-in functions.
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Exercise 2.7. Explain what difficulties you would face if you used the vehicle carried
frame for describing the rotational motion of an aircraft and thus to conclude that we
only can use the standard vehicle fixed frame for describing the rotational motion of
the aircraft (as we have done before the discussion of the vehicle carried frame based
point mass performance equations).

Exercise 2.8. Consider a rigid body with axial symmetry and principal inertia

I1 = I2 (2.201)

I3 > I1. (2.202)

If it is acted upon by a small body-fixed, transverse torque, M1 = M, with M2 =
M3 = 0, then:
(a) Write the differential equations of motion for this situation. What special nature

do you observe in the resulting equations for this situation?
(b) Is 𝜔3 affectedM1? Explain.
(c) How is the angular momentum vector affected by M1? Explain the angular

momentum property when (i) M1 = 0, (ii) M1 = M = constant and finally when
M1 = M1(t), i.e it is a time varying torque.
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3

Linearization and Stability of Linear Time Invariant Systems

3.1 Chapter Highlights

In this chapter, we focus on the process of linearizing a set of nonlinear differential
equations about a given equilibrium (or steady state or nominal) point. This process
of linearization becomes an important step for the material in later chapters because it
is these linearized models that we use later for control design purposes. Once we decide
to deal with linearized/linear models, in this chapter, we also cover briefly a few basic
concepts about the stability of continuous time linear systems, with special emphasis
on a simple second order linear system. A thorough understanding of the simple second
order linear system stability is of high importance as it forms the fundamental, backbone
concept to deal with higher order systems later, because typically the stability behavior
of all higher order systems can be inferred or approximated from their dominant second
order system stability behavior. This chapter necessarily treats this subject matter in a
generic systems level framework, with the intent of applying these methods to aero and
space flight vehicle dynamic models in later chapters.

3.2 State Space Representation of Dynamic Systems

The state of a dynamic system is the smallest set of linearly independent variables (called
state variables) such that the knowledge of these variables at t = t0 together with the
input at t ≥ t0 completely determines the behavior of the system for any time t ≥ t0.
When a dynamic system is modeled by ordinary differential equations, it is relatively

easy to identify the set of state variables. For example, if we have a differential equation
d2𝜃
dt2

+ 5d𝜃
dt

+ 6𝜃 = et (3.1)

then it is easy to observe that we need 𝜃(t0) and
d𝜃
dt
(t0) to completely determine the

behavior of 𝜃(t) for all t ≥ t0. Thus 𝜃(t) and d𝜃
dt
(t) become the two state variables.

One main feature of the state space representation is that the set of differential
equations are expressed in first order form (in the state variables). Thus the state space

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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representation of the above second order differential equation is obtained by first
defining

𝜃(t) = x1(t)

and d𝜃(t)
dt

= x2(t)

⎫⎪⎬⎪⎭
→ 2 state variables

and then rewriting the above equation as two first order equations in the state variables
x1(t) and x2(t).

̇x1(t) = x2(t)

and

̇x2(t) =
d2𝜃
dt2

(t) = −5x2(t) − 6x1(t) + et

i.e. [
̇x1(t)
̇x2(t)

]
=
[

0 1
−6 −5

] [
x1(t)
x2(t)

]
+
[
0
1

]
et.

This is in the form
̇⃗x = Ax⃗ + Bu⃗

where u(t) = et . This is referred to as the state space representation of the dynamic sys-
tem represented by the equation 3.1.
In the above example, the equation considered is a linear differential equation and thus

the resulting state space description is a linear state space description, but this repre-
sentation can also be generalized to nonlinear set of equations. In fact the mathematical
models of many physical systems derived from first principles turn out to be nonlinear
differential equations. In particular, we focus here on systems governed by nonlinear
ordinary differential equations.
So in general, the state space description of any dynamic system described by nonlin-

ear first order ordinary differential equations is given by
̇⃗x = f⃗ (x⃗, u⃗, t)

where x⃗ is the state vector, u⃗ is the control vector and f⃗ is a vector of nonlinear functions
in xi and ui. Typically, we write

x⃗ ∈ Rn i.e. x⃗ =
⎡⎢⎢⎢⎣
x1
x2
⋮
xn

⎤⎥⎥⎥⎦
u⃗ ∈ Rm i.e. u⃗ =

⎡⎢⎢⎢⎣
u1
u2
⋮
um

⎤⎥⎥⎥⎦
.
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Consider the following three classes of nonlinear systems:

1. ⃗̇x = f⃗ (x⃗, u⃗, t)
2. ⃗̇x = f⃗ (x⃗, t)
3. ⃗̇x = f⃗ (x⃗).

Out of these, consider the second class of systems

⃗̇x = f⃗ (x⃗, t), x⃗(t0) = x⃗0.

We assume that the above equation, has a unique solution starting at the given initial
condition, i.e. we have one single solution corresponding to each initial condition. Let
us denote this solution as

x⃗(t; x⃗0, t0) ≡ x⃗(t) for simplicity
x⃗(t0; x⃗0, t0) ≡ x⃗0

3.2.1 Equilibrium State

In the above class of systems, a state x⃗e where f⃗ (x⃗e, t) = 0 for all t is called an equilibrium
state of the system, i.e. the equilibrium state corresponds to the constant solution of the
system. If the system is linear time invariant (i.e. f⃗ (x⃗, t) = Ax⃗), then there exists only one
equilibrium state if A is non-singular and many equilibrium states if A is singular. For
nonlinear systems there may be one or more equilibrium states.
Any isolated equilibrium point can always be transferred to the origin of the coordi-

nates

i.e. f⃗ (0, t) = 0

by a proper coordinate transformation. So one can always take x⃗e = 0 without any loss
of generality. The origin of state space is always an equilibrium point for linear systems
and for linear systems all equilibrium states behave the same way (because if x⃗(t) is a
solution x⃗(t) is also a solution; then x⃗(t) → x⃗(t) is also a solution for the linear system).
In such cases, the nonlinear differential equations are linearized about an equilibrium

to get a linear state space representation in small motions around the equilibrium. One
such linearization process is labeled as the Jacobianmethod and the resulting linearized
state space matrix is called the Jacobian matrix.

3.3 Linearizing a Nonlinear State Space Model

Consider the general nonlinear state variable model

⃗̇x = f⃗ (x⃗, u⃗, t)
y⃗ = h⃗(x⃗, u⃗, t)

}
. (3.2)

The above set of nonlinear differential equations can be linearized about a constant,
equilibrium solution, which can also be called the steady state solution.This is the most
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common type of linearization process, i.e. linearization about a given steady state con-
dition. In a slightly different viewpoint, the nonlinear system of equations can also be
linearized about a given nominal trajectory, where the nominal trajectory satisfies the
original nonlinear set of differential equations. It does not have to be a constant solution.
This linearization process can be referred to as the Jacobian linearization. Of course,
Jacobian linearization holds good for constant, steady state equilibrium conditions. In
what follows, we consider a simple, brute force linearization process which involves
expanding the original nonlinear equations in terms of the steady state plus some per-
turbation.Then assuming those perturbations to be small, we neglect second and higher
order terms alongwithmaking a small angle approximationwhenever there are trigono-
metric functions involved. We discuss the more general Jacobian linearization process
later in Part III of the book where we devote the entire discussion to linear state space
models.

3.3.1 Linearization about a Given Steady State Condition by Neglecting
Higher Order Terms

Let us assume the steady state of the system, denoted by x⃗ss, u⃗ss, and y⃗ss, is known or
given. Note that this steady state is typically a constant solution of the nonlinear system,
which is nothing but the equilibrium solution of the nonlinear equations.
Then we assume that the current state is a perturbation from this steady state (equi-

librium) condition.Then the difference between these steady state vector functions and
the current state functions x⃗(t), u⃗(t), and y⃗(t) are the perturbation functions. Thus we
have

x⃗(t) = x⃗ss + 𝛿x(t); u⃗(t) = u⃗ss + 𝛿u(t); y⃗(t) = y⃗ss + 𝛿y(t). (3.3)

We then expand the original nonlinear equations in terms of the steady state plus
perturbation terms. Note that the derivative of the steady state (constant) function is
zero. Similarly, if there are any trigonometric functions, such as sin 𝜃(t), we write 𝜃(t)
as a summation of a steady state angle 𝜃ss plus a perturbation angle 𝛿𝜃(t), and expand
sin 𝜃(t) in terms of the steady state angle 𝜃ss and the perturbation angle 𝛿𝜃(t). Until now,
we have not made any assumptions on the perturbation functions and angles. Now the
formal process of linearization involves the assumption that these perturbation terms
are sufficiently small. Under this assumption, we can afford to neglect the second and
higher order terms (the nonlinearity causing terms) because those terms would become
even much smaller than the linear terms. This also means that in the case of angles,
making small angle approximation entails writing sin 𝛿𝜃(t) as 𝛿𝜃(t) and cos 𝛿𝜃(t) as
equal to 1. Note that in a small angle approximation, we are assuming the angles to be
expressed in radians.
Thus, in summary, the process of linearization necessarily involves assuming small

perturbations around the nominal (or steady state or equilibrium) motion and neglect-
ing the second and higher order terms in the dependent variable (not in the indepen-
dent variable, time) and making a small angle approximation. Thus a linearized model
is valid, meaning it produces reasonably accurate motion behavior only for small per-
turbations about the constant steady state (equilibrium) condition. Since large motions
have to go through these small motion phases anyway, understanding the behavior of
linearized models becomes very important and forms the basis for understanding the
more involved nonlinear system behavior. Because of this, in this book, our focus and
emphasis will be on linear and linearized models.
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Example 3.1 Consider a simple nonlinear differential equation given by:

ḣ = U sinΘ.

Linearize the equation about the steady state values hss, Uss, and Θss, where the pertur-
bations are taken as 𝛿h, 𝛿U , and 𝛿Θ. Write the reference (steady state) equation as well
as the linearized, perturbation equation.

Solution
We expand each of the state variables into a steady state (static) term indicated by sub-
script ss and a perturbation (dynamic) term as explained before. Thus, we have:

d
dt

(hss + 𝛿h) = (Uss + 𝛿U) sin(Θo + 𝛿Θ).

We can expand the trigonometric terms with the following identities:

sin(A + B) = sinA cosB + cosA sinB
cos(A + B) = cosA cosB − sinA sinB.

We get,
̇hss + ̇𝛿h = Uss sinΘss cos 𝛿Θ +Uss cosΘss sin 𝛿Θ + 𝛿U sinΘss cos 𝛿Θ

+ 𝛿U cosΘss sin 𝛿Θ.

Note that since the steady state is constant, we take ̇hss as equal to zero.

Also make small angle approximation, namely that sin 𝛿x ≈ 𝛿x and cos 𝛿x ≈ 1, x here
being an arbitrary angle (usually less than ∼15∘). With this we get,

̇𝛿h = Uss sinΘss × 1 +Uss cosΘss𝛿Θ + 𝛿U sinΘss × 1 + cosΘss𝛿U𝛿Θ.

Notice that the above equation still contains a nonlinear term in the perturbation vari-
ables, namely the term 𝛿U𝛿Θ. Since we assume small perturbations for linearization
purposes, we need to neglect and remove this nonlinear term. Thus we get

̇𝛿h = Uss sinΘss × 1 +Uss cosΘss𝛿Θ + sinΘss𝛿U.

Now gather all those terms containing strictly only all pure static terms (those indi-
cated by subscript ss) and designate that as the steady state reference equation and
gather all the rest of the terms, the dynamic terms (indicated by the attached 𝛿) into
the perturbation equation. Following these steps, the steady state reference equation is
as follows:

hss = Uss sinΘss.

Note that the reference equation’s right hand side term mimics the right hand side of
the original nonlinear function. The perturbation equation is as follows:

̇𝛿h = Uss cosΘss𝛿Θ + 𝛿U sinΘss.

Suppose we know or are given the steady state values of Uss and Θss, then clearly the
above linearized equation can be compactly written as

̇𝛿h = c1𝛿Θ + c2𝛿U

where c1 and c2 are some known constants.
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This is the final linearized perturbation equation. Note that, with this linearization
procedure, the differential equation is always in the perturbation variable(s). It is impor-
tant to keep in mind that it is the perturbation angle that is assumed to be small, not the
steady state angle. The steady state angle Θss does not have any restrictions and thus
could be very large. Care needs to be taken in carefully expanding all the terms in the
original nonlinear equation, keeping track of any nonlinear terms in the perturbation
variables and then discarding them. Similarly vigilance is needed in making the small
angle approximation. A common mistake that often occurs is to make the sin 𝛿x term
zero instead of it being 𝛿x. Also, note that all the steady state variables, which take on
constant values, become constant coefficients in the linearized perturbation differential
equation. In that standard case, we label the resulting constant coefficient linear system
(in a state space representation) as a linear time invariant (LTI) system. It is possible
that in some cases, when the nominal (or the steady state or the equilibrium) motion
contains coefficients which are functions of the independent variable time, t, (even non-
linear terms in time, t), the dynamic system is still a linear system but with time varying
coefficients. In that case, we label it as a linear time varying (LTV) system. In other
words, in the generic state space system representation, the LTI models (in a vector,
matrix notation) are given by

̇⃗x = Ax⃗ + Bu⃗, ⃗x(0) = x⃗0 (3.4)

where matrices A and B are constant matrices, x and u denote vectors of dimension n
andm respectively, whereas the LTV models are given by

̇⃗x = A(t)x⃗ + B(t)u⃗, ⃗x(0) = x⃗0 (3.5)

where the matrices contain elements which could be time varying.
Once the linearized state space system is obtained about the equilibrium points, our

interest would then shift to understanding the stability of the resulting linear systems,
especially in the natural motion (i.e. uncontrolled, open loop situation). In the next
section, we learn about some fundamental concepts of stability of linear state space
dynamic systems,

3.4 Uncontrolled, Natural Dynamic Response and Stability
of First and Second Order Linear Dynamic Systems with State
Space Representation

In this section, we now focus our attention on the natural, uncontrolled (often referred
to as open loop situation in controls jargon) response of an LTI system, i.e we investigate
the nature of the response of

̇⃗x = Ax⃗ x⃗(0) = x⃗0. (3.6)

3.4.1 Dynamic Response of a First Order Linear System

Obviously, the simplest case for analyzing the natural dynamic response of linear
dynamic system would be a first order system, namely, when the constant matrix A is
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simply a 1 × 1 matrix, i.e. a scalar system (n = 1). In other words, a constant coefficient
differential equation in a single dependent variable. Thus we consider

ẋ = ax x(0) = x0. (3.7)

Note that for this simple case, the response is given by

x(t) = eatx0. (3.8)

Thus, the natural motion is simply an exponential motion. It is a stable (converging to
zero as time tends to ∞) motion when a is negative, a constant when a = 0 and finally
unstable (divergent motion) when a is positive. Thus it can be easily concluded that
first order systems never produce oscillatory behavior, and instead are always of pure
exponential in nature.
Next we turn our attention to second order systems. Since second order systems are

simple and quite frequently encountered, it is extremely important for the student to be
thoroughly familiar with a second order system response. An undergraduate student is
expected to be thoroughly conversant with this material.

3.4.2 Dynamic Response of a Second Order Linear System

The state space model of second order LTI system is given by:[
ẋ1(t)
ẋ2(t)

]
=
[
a11 a12
a21 a22

] [
x1(t)
x2(t)

]
. (3.9)

It may be recalled from the basic ordinary differential equation course the reader may
have taken in their undergraduate education that the solution to this simple system of
a set of simultaneous first order constant coefficient ordinary differential equations is
obtained by examining the eigenvalues and eigenvectors of the constant matrix A.
In other words, just as the first order linear system is of exponential nature, the second

order system response is also of exponential nature, albeit in terms of the eigenvalues of
the matrix A, namely

x(t) = c1e𝜆1t + c2e𝜆2t (3.10)

where the constants c1 and c2 determine the amplitude of the motion, which depend on
the eigenvector elements and the initial condition information.
Recall fromyour linear algebra ormatrix theory class that the eigenvalues of amatrixA

are given by the roots of the characteristic equation det(𝜆I − A) = 0 (or det(A − 𝜆I) = 0).
Sometimes, this characteristic equation is also referred to as the characteristic polyno-
mial. For an nth order matrix, this characteristic polynomial is an nth degree polyno-
mial. The n roots of this polynomial are the eigenvalues of the matrix A, denoted by 𝜆1,
𝜆2,…𝜆n. For a second order system described above, we obtain a second degree polyno-
mial as follows:

𝜆2 + p𝜆 + q = 0. (3.11)

The roots of the characteristic polynomial, namely 𝜆1 and 𝜆2, determine the nature of the
time response of the above linear second order system and the eigenvector and initial
condition information determine the amplitude of the time response. For understanding
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only the stability nature of the dynamic response, it is sufficient for us to focus on the
nature of the eigenvalues.
It is also known from basic linear algebra and matrix theory that

a11 + a22 = trace of A = 𝜆1 + 𝜆2 (3.12)

and that

a11a22 − a12a21 = determinant of A = 𝜆1𝜆2. (3.13)

That is, the trace of A is equal to the summation of the eigenvalues and the determinant
of A is equal to the product of eigenvalues.
Note that the two eigenvalues can be two real numbers or a complex conjugate pair

with some real part and an imaginary part. The real part itself can be zero or non-zero.
A zero real part of a complex conjugate pair (i.e pure imaginary eigenvalues) would

produce a pure simple harmonic motion type oscillatory motion because we know

ei𝜔 = sin𝜔 + i cos𝜔 (3.14)

and

e−i𝜔 = sin𝜔 − i cos𝜔 (3.15)

where i =
√
( − 1).

From the above observation, it is clear that for stability of the above second order sys-
tem it is necessary that the eigenvalues have real parts that are negative. Clearly positive
real part eigenvalues result in unstable (divergent)motion and zero real part (pure imag-
inary) eigenvalues produce pure simple harmonic motion (neutrally stable behavior).
This in turn implies that in the following characteristic polynomial

𝜆2 + p𝜆 + q = 0 (3.16)

the constants, p and q can be represented as follows:

p = −trace of A
and

q = determinant of A.

So both coefficients p and q are required to be positive for stability of a second order
system.
Assuming this necessary condition is satisfied, we now write this characteristic poly-

nomial in a generic form as:

𝜆2 + 2𝜉𝜔n𝜆 + 𝜔2
n = 0 (3.17)

where 𝜉 is the damping ratio (which is by default assumed to be positive) and 𝜔n is the
undamped natural frequency. Note that this nomenclature in terms of damping ratio
and undamped natural frequency is appropriate onlywhen both coefficients of the above
characteristic polynomial are positive. If any one of the coefficients p or q is negative, it
can be seen that the real parts of the roots of this second degree polynomial are always
positive indicating that time response becomes unbounded either in a non-oscillatory
(pure exponential fashion) or in an oscillatory way. For those situations, we simply label
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Figure 3.1 Second order system eigenvalue locations.
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those systems as unstable systems and refer to them as systems having negative damping
ratio. Thus the following discussion is specifically for those systems with both coeffi-
cients being positive. Thus, the roots of the characteristic equation, 𝜆1,2, are written in
the form:

𝜆1,2 = 𝜂 ± i𝜔 (3.18)

where 𝜂 and 𝜔 are defined as such:

𝜂 = −𝜉𝜔n (3.19)

𝜔 = 𝜔n

√
1 − 𝜉2. (3.20)

Here, 𝜂 is related to the damping ratio and 𝜔 is the damped natural frequency. These
eigenvalue locations are depicted in Figure 3.1.
In this notation, it is clear that the possibility of the two eigenvalues becoming pure

real, is manifested when the (positive) damping ratio 𝜉 becoming ≥ 1.
This in turn implies that whether the second degree characteristic polynomial of a

second order system possesses pure real roots or a complex conjugate pair, very much
depends on the numerical values of the two coefficients p and q of that characteristic
polynomial. Note that when two roots are pure real, the motion is pure exponential and
it does notmake sense to refer thatmotion using the terms natural frequencies (whether
undamped or damped). Those terms are used only when the motion is oscillatory, i.e
when the (non-negative) damping ratio is such that 0 ≤ 𝜉 < 1.
These concepts can also be illustrated graphically, as in Figure 3.1. Here, O marks one

complex-conjugate eigenvalue (𝜆1 = −a + ib). The other complex-conjugate eigenvalue
in the pair (𝜆2 = −a − ib), also exists in the third quadrant, but is not depicted explicitly
in the diagram; looking at one eigenvalue is sufficient to generate meaningful insights.
The reader should keep in mind though, that for real matrices the complex eigenvalues
occur only as complex conjugate pairs.
From earlier discussions, we observe that this is an exponentially damped oscillatory

motion.
Now, using the graphical depiction in Figure 3.1, we see the damping ratio can also be

expressed as:

𝜉 = sin 𝜃
= a√

a2 + b2
. (3.21)
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Figure 3.2 Time responses for various damping ratio.

We reiterate that whenever the second order system has a complex conjugate pair as its
two eigenvalues, the resulting time response has oscillatory nature, where the imaginary
part of the eigenvalues, namely the damped natural frequency 𝜔 dictates the oscillatory
nature, while the real part dictates the nature of those oscillations. If the real part is
negative, those oscillations decay over time and thus the resulting time response is a
damped sinusoid with a rate of decay decided by the damping ratio 𝜉. The period of this
oscillatory motion is given by

T = 2𝜋
𝜔

. (3.22)

The time responses for various damping ratios are depicted in Figure 3.2.
As mentioned earlier, when the damping ratio 𝜉 is zero, the time response is a pure

sinusoidal motion (simple harmonic motion). When the real part is negative, then we
refer the time response to be a stable time response, and when it is zero, it is referred
to as neutrally stable response. The damping ratio 𝜉 is of paramount importance to the
control system designer; indeed, its value determines the speed of response of the sys-
tem! For convenience, a summary of time responses for different values of damping ratio
is given in Table 3.1. One can also see in Figure 3.1 that for complex conjugate roots, the
diagonal distance from the origin to the root is the undamped natural frequency 𝜔n and
the imaginary component of the root is the damped natural frequency 𝜔.
We reiterate that for a second order linear system, both coefficients in the character-

istic equation being positive is a necessary and sufficient condition for stability of the
system. In other words, the moment one of the coefficients is negative or zero we can
say that the second order system is not stable. As mentioned earlier, an unstable system
with positive real part is labeled as having a negative damping ratio.Thus only for a stable
system, the damping ratio 𝜉 is always positive and the undamped natural frequency is a
real (positive) quantity.
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Table 3.1 Summary of time responses for various damping ratios.

Magnitude of
damping ratio Type of root Time response

𝜉 < −1 Two distinct positive, purely
real roots

Exponentially diverging

0 > 𝜉 > −1 Complex conjugate pair,
positive real part

Exponentially diverging
sinusoid

𝜉 = 0 Purely imaginary Purely sinusoidal
0 < 𝜉 < 1 Complex conjugate pair,

negative real part
Exponentially decaying sinusoid
(i.e. underdamped)

𝜉 = 1 Two repeated negative, purely
real

Exponentially decaying (i.e.
critically damped)

𝜉 > 1 Two distinct negative, purely
real

Exponentially decaying (i.e.
overdamped)

We can generalize the above discussion to higher order linear state space systems as
well where the plant matrix A is an n × nmatrix. Given ̇⃗x = Ax⃗ with x⃗(0) = x⃗0, the solu-
tion to the above system of equations is given by

x⃗(t) = c1𝑣1e𝜆1t + c2𝑣2e𝜆2t +…+ cn𝑣ne𝜆nt (3.23)

where 𝜆i is the n eigenvalues of the matrix A and 𝑣i is the n normalized eigenvectors
corresponding to each eigenvalue 𝜆i and ci scalar constants to be determined from the
initial condition vector x⃗0. From this expression, it is clear that the eigenvalues determine
the nature (i.e whether the trajectories xi(t) are converging to zero or diverging) of the
time response whereas the eigenvectors determine the amplitude of the time response.
Thus, we could determine the stability of this higher order system by computing the

eigenvalues of this higher order Amatrix. Note that the eigenvalues of the matrix A are
given by the roots of the characteristic equation det (𝜆I − A) = 0.Thus the stability of the
general linear time invariant system ẋ = Ax (ignoring the vector notation) is completely
determined by the real parts of the eigenvalues of thematrixA.Thus for continuous time
systems, the Hurwitz stability of the system is thus given by the following criterion. Let
𝜆i = 𝛽i + i𝜔i where i =

√
( − 1).

(a) The system is unstable if 𝛽i (real part of 𝜆i) > 0 for any distinct root or 𝛽i ≥ 0 for any
repeated root.

(b) The system is stable in the sense of Lyapunov if 𝛽i ≤ 0 for all distinct roots and 𝛽i < 0
for all repeated roots, i.e. there are no multiple poles on the imaginary axis and all
distinct poles are in the left half of the complex plane.

(c) The system is asypmtotically stable if 𝛽i < 0 for all roots.

Table 3.2 summarizes the Hurwitz stability conditions. A more thorough discussion of
the stability conditions for linear time invariant systems is discussed in a later chapter on
state space based modern control theory. For now, because of its simplicity as well as its
importance, it is necessary and sufficient for the undergraduate student to be thoroughly
familiar with the stability and dynamic response discussion we had in this chapter, espe-
cially for a simple second order linear state space system.
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Table 3.2 Hurwitz stability criteria for continuous time systems.

Unstable If 𝛽i > 0 for any single (or distinct) root
or 𝛽i ≥ 0 for any repeated root

Stable in the sense of Lyapunov If 𝛽i ≤ 0 for all distinct roots
or neutrally stable and 𝛽i < 0 for all repeated roots
Asymptotically stable If 𝛽i < 0 for all roots

Example 3.2 Consider a standard second order constant coefficient linear ordinary
differential equation, say of the form:

d2y(t)
dt2

+ 2
dy(t)
dt

+ 4y(t) = f (t) (3.24)

where f (t) is an external forcing function. For the homogeneous (no forcing function
case), f (t) = 0. Thus the dynamics is initiated by non-zero initial conditions. Let us
consider the homogeneous case.
Note that this second order single differential equation can also be written as a set of

two first order differential equations as follows. First define:

y(t) = x1(t) (3.25)

dy(t)
dt

= ẏ(t) = x2(t). (3.26)
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Then, we have:
ẋ1(t) = x2(t) (3.27)
ẋ2(t) = ÿ(t) = −2x2(t) − 4x1(t). (3.28)

The equivalent state space model is:[
ẋ1(t)
ẋ2(t)

]
=
[ 0 1
−4 −2

] [x1(t)
x2(t)

]
. (3.29)

The characteristic polynomial is given by
𝜆2 + 2𝜆 + 4 = 0. (3.30)

Comparing it with the generic characteristic polynomial
𝜆2 + 2𝜉𝜔n𝜆 + 𝜔2

n = 0 (3.31)
we observe that

𝜔2
n = 4 (3.32)

giving 𝜔n = 2. Note that 2𝜉𝜔n = 2. From this, it is seen that the real part −𝜉𝜔n = −1,
so that 𝜉𝜔n = 1. Substituting 𝜔n = 2, gives 𝜉 = 0.5. Since 𝜉 is such that 0 < 𝜉 < 1, we
immediately conclude that the response is a stable, damped oscillatory motion, with
the damping ratio and undamped natural frequency as determined above. Note that
the damped natural frequency 𝜔 = 1.732. This is nothing but the imaginary part of the
complex conjugate pair.The real part is−1. Notice that the undamped natural frequency
𝜔n is nothing but the square root of the sum of the real part square and the imaginary
part square. In other words, the two eigenvalues are−1 ± i1.732.We obtained this result
without actually computing the eigenvalues per se, but by first determining and knowing
the damping ratio value.

Thus, in summary, for determining the stability of a second order system response,
the damping ratio 𝜉 (and thus the trace of A) plays a very important role. The trace of
A has to be negative and the damping ratio 𝜉 has to be positive for stability. The natural
frequencies and the related determinant of A also play an important role. The determi-
nant of A has to be positive for stability. A guideline for determining a priori whether
a second degree characteristic polynomial possesses real or complex conjugate pairs is
to examine whether the coefficient p is >

√
q or not. If it is greater, it possesses pure

real roots. If not, it possesses complex complex conjugate pairs. If p = 0 or negative, the
system is not stable anyway.
The basic concepts covered in this chapter are also available in any of the excellent

textbooks such as [1, 2].
Now that we have developed the theory for linear continuous time time invariant

systems, in subsequent chapters, we apply these tools to study aircraft and spacecraft
dynamics.

3.5 Chapter Summary

In this chapter, we learned how to linearize a set of nonlinear differential equations in
state space representation about a given steady state (equilibrium) point so that the
linearized state space models can be used later for control design purposes. We then
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thoroughly analyzed the dynamic response and stability behavior of a simple yet highly
important linear second order state space system. In addition, we learnt that, also for
higher order linear state space dynamic systems, the negativity of the real parts of the
eigenvalues of the state space matrix A is a necessary and sufficient condition for Hur-
witz stability of the dynamic system.

3.6 Exercises

Exercise 3.1: The relation describing the height of an aircraft is a nonlinear differential
differential equation, as given here:

ḣ = U sinΘ − V sinΦ cosΘ −W cosΦ cosΘ.

Linearize the equation about the steady state values ho,Uo, Vo,Wo,Θo, andΦo, where
the perturbations are taken as 𝛿h, 𝛿U , 𝛿V , 𝛿W , 𝛿Θ, and 𝛿Φ. Write the reference
equation as well as the perturbation equation.

Exercise 3.2: Linearize the composite rotation matrix S (we came across this in
Chapter 1) and investigate if the linearized matrix is still orthogonal or not.

Exercise 3.3: Recall the rotational motion equations of a rigid body about its center of
mass in the principal axis frame (reproduced here for your convenience):

�̇�1 = [(I2 − I3)∕I1]𝜔2𝜔3 +M1∕I1 (3.33a)

�̇�2 = [(I3 − I1)∕I2]𝜔1𝜔3 +M2∕I2 (3.33b)

�̇�3 = [(I1 − I2)∕I3]𝜔1𝜔2 +M3∕I3. (3.33c)

Now assume, that the rigid body has axial symmetry so that principal inertia satisfy
the following conditions:

I1 = I2 (3.34)

I3 > I1. (3.35)

If it is acted upon by a small body-fixed, transverse torque, M1 = M, with M2 =
M3 = 0, then
(a) Write the resulting differential equations ofmotion for this situation in state space

form. Is it a nonlinear state space form or a linear state space form?
(b) Is 𝜔3 affected byM1? Explain.
(c) Solve for the three angular velocities from the resulting state space equations and

explainwhich of the angular velocities is constant andwhich ones are not constant
for the above (given) external torque situation.

Exercise 3.4: The eigenvalues of a square 4 x 4 matrix are given in the complex plane as
in Figure 3.3.
Calculate the natural frequency, damping ratio, the damped natural frequency and
the period for each of these complex conjugate pairs.

Exercise 3.5: Investigate the nature of time response for the linear second order sys-
tems given by the following characteristic equations. Where appropriate, calculate
the natural frequency, damping ratio, the damped natural frequency and the period.
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1. 𝜆2 + 2𝜆 + 4 = 0
2. 𝜆2 + 5𝜆 + 16 = 0
3. 𝜆2 + 4 = 0
4. 𝜆2 + 4𝜆 + 4 = 0.
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4

Aircraft Static Stability and Control

4.1 Chapter Highlights

In this chapter, we focus our attention on the analysis of dynamics specific to aircraft via
the linearized equations of motion. It turns out that in aircraft dynamics, because of the
safety considerations of a commercial aircraft, it becomes important to make sure that
even in a steady state (static) situation, the aircraft possesses characteristics whichmake
it tend to bring the attitude back to its steady state condition, when disturbed from the
trim condition, without any external control being applied. This feature of tendency to
come back to the trimmed state when disturbed from it, on its ownwithout any external
forcing function is labeled static stability and control of an aircraft. In dynamic stabil-
ity and control we are concerned with the actual motion of the vehicle under various
control inputs. Thus for an aircraft both static stability as well as dynamic stability are
of importance. Hence in this chapter, first we thoroughly discuss static stability (both
longitudinal as well as lateral/directional) issues and then shift the attention to dynamic
stability analysis in the next chapter. In some sense, this type of discussion involving
both static stability as well as dynamic stability analysis is somewhat unique for the case
of aircraft dynamics.

4.2 Analysis of Equilibrium (Trim) Flight for Aircraft:
Static Stability and Control

Assumptions:

• aircraft is a rigid body
• flat earth inertial frame (i.e. axes aligned with the local north, east, and vertical), see

Figure 4.1.
1. Nose up is a positive pitching moment.
2. Right wing down is a positive rolling moment.
3. Nose turning toward the right wing is a positive yawing moment.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Figure 4.1 Body fixed frame.

Table 4.1 below lists the standard Aircraft variables and parameters.
Now consider the steady state forces and moments:

Fx = CxQS L = ClQSb b = wing span
Fy = CyQS M = CmQSc c = mean aerodynamic chord

Fz = CzQS N = CnQSb S = wing area
Q = dynamic pressure = 1

2
𝜌V 2

∞

Cx,Cy,Cz,Cl,Cm,Cn are functions of Mach number, Reynolds number, 𝛼, 𝛽, 𝛼’, 𝛽 ’
Decouple the motion of a/c into:

Longitudinal→ pitch (motion in the xz plane)
Lateral/directional→ roll/yaw (coupled).

(a) Equilibrium or trim condition. If an aircraft is to remain in steady, uniform flight

(ΣF)cg = 0
(ΣM)cg = 0.

Table 4.1 Aircraft variables and parameters.

Motion Roll Pitch Yaw

Aerodynamic forces Fx Fy Fz
Thrust forces Tx Ty Tz

Gravitational Wx Wy Wz

Angular velocity, 𝜔 p(P) q(Q) r(R)
Linear velocity, V∞ u(U) 𝑣(V ) 𝑤(W )
Moments I(L) m(M) n(N)
Moments of inertia Ixx Iyy Izz
Products of inertia Iyx Izx Ixy



4.3 Static Longitudinal Stability 79

Stable Eq. State Unstable Eq. State Neutrally State

Figure 4.2 State of stability of a system.

(b) Stability. Movement in returning or the tendency to return to a given state of equi-
librium or trim condition, when perturbed from it.

(c) Static stability. Tendency to return to an equilibrium conditionwhen disturbed from
the trim condition.

(d) Dynamic stability. Actual time history of the resultant motion of a/c in response to
disturbances in the form of either external unwanted inputs or pilot control actions.

From the above definitions, it is clear that the dynamic stability notion is of more
importance and more encompassing than the pure static stability notion. However, in
the aircraft case, the static stability issue is of prime importance in its own right because,
in some sense, it is independent of any external excitation and simply brings out the
tendency of the aircraft to return to its equilibrium position when disturbed from it.
Put another way, an aircraft can be statically unstable, but yet can be made dynamically
stable with the help of control actions. As we shall see later, this is the reason many mil-
itary aircraft can be statically unstable, yet can be dynamically stable in the presence of
an automatic flight control system, but it is clear that without the proper working of the
automatic flight control system (i.e. an uncontrollable aircraft), the safety of the aircraft
would be compromised. Thus for commercial aircraft, we demand not only dynamic
stability, but a certain degree of static stability, so that on its own, in the uncontrolled
situation, at least the aircraft has the tendency to return to its trim condition. It is clear
that too much static stability interferes with aircraft’s maneuverability (or controllabil-
ity) and that is the reason, for highly maneuverable aircraft, it is common to sacrifice
some degree of static stability to achieve better maneuverability. Thus, in summary, for
safety critical systems like commercial aircraft, the issue of static stability becomes quite
important, and in the next section we focus our attention on static stability analysis
for aircraft. In this connection, it is convenient to analyze static longitudinal stability
(namely, motion within the xz plane, i.e. essentially the pitching moment situation) sep-
arately from static lateral/directional stability case. With this backdrop, we now address
the static longitudinal stability issue. The Figure 4.2 conceptually illustrates the concept
of an equilibrium position to be stable, unstable, or neutrally stable.

4.3 Static Longitudinal Stability

Consider the pitching moment about the center of gravity of a given aerodynamic sur-
face such as an airfoil as a function of the angle of attack 𝛼. To be able to trim (i.e.Cm = 0)
at positive angles of attack is called balancing (see Figure 4.3).
For mathematical simplicity as well as to understand the basic concepts with high

clarity, let us simply consider a simple basic linear relationship between the pitching
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Figure 4.3 Static longitudinal Stability.

moment coefficient Cm and the angle of attack 𝛼, as follows:

Cm = Cm0
+

dCm

d𝛼
𝛼

= Cm0
+ Cm𝛼

𝛼. (4.1)

Let us now consider different cases, where the slope Cm𝛼
is of different signs. Consider

the case when it is negative. Then, it can be seen that when there is a positive angle of
attack change, there is a negative pitching moment generated, and vice versa. In other
words, when Cm𝛼

< 0, the pitching moment generated is such that it tries to bring the
airfoil back into the trim condition, i.e. the pitching moment generated is a restoring
pitching moment; it has the tendency to bring it back to the trim condition, namely it is
a statically stable condition. Thus to ensure static longitudinal stability, we require

Cm𝛼
< 0. (4.2)

Since

Cm𝛼
≡

dCm

d𝛼

=
dCm

dCL

dCL

d𝛼
(4.3)

=
dCm

dCL
CL𝛼

and

CL𝛼 ≡
dCL

d𝛼
> 0. (4.4)

Therefore we can establish another requirement for static longitudinal stability:
dCm

dCL
< 0. (4.5)

In the diagram above, we show four types of airfoils with different characteristics:

• Cm0 > 0 andCm𝛼
> 0: this is an unbalanceable as well as a statically unstable situation.

• Cm0 > 0 and Cm𝛼
< 0: this is a balanceable as well as a statically stable situation.

• Cm0 < 0 and Cm𝛼
< 0: this is an unbalanceable but statically stable situation.

• Cm0 < 0 and Cm𝛼
> 0: This is a balanceable but statically unstable situation.
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Note that for static stability as well as balancing, we need:

Cm0 > 0 and Cm𝛼
< 0.

Note that the pitching moment slope is heavily dependent on the center of gravity
location about which we takemoments, i.e. as the center of gravitymoves, theCm versus
𝛼 curve changes.
Thus, basically Cm𝛼

(or the slope dCm

dCL
) essentially becomes a measure of the degree of

static longitudinal stability.
In what follows, we attempt to analyze the contribution of each of the components of

the aircraft such as the wing, fuselage, tail, etc. to the overall static longitudinal stability.
However, since wing is expected to be the major contributor in relationship to the fuse-
lage, we first analyze the contribution of the wing to static longitudinal stability and then
later the contribution of the tail, neglecting the contribution of the fuselage altogether
without sacrificing any conceptual understanding.

4.3.1 Contribution of Each Component to the Static Longitudinal Stability
(i.e. to the Pitching Moment)

Wing Contribution (Figure 4.4)

Mcgw = Macw + L cos(𝛼w − iw) (xcg − xacw ) + Lw sin(𝛼w − iw) zcg
+ Dw sin(𝛼w − iw) (xcg − xacw ) − Dw cos(𝛼w − iw) zcg (4.6)

= Cmcgw
QSc

where
Lw = CLw

QS, Dw = CDw
QS, Macw = Cmacw

QSc (4.7)

Cmcgw
= Cmacw

+ CLw

1
c
(xcg − xacw ) cos(∗) + CLw

1
c
zcg sin(∗)

+ CDw

1
c
(xcg − xacw ) sin(∗) − CDw

1
c
zcg sin(∗) (4.8)

Lw

iw

xacw

xcg

αw

Macw

zcg

cg

Dw

Nose

Wing Mean

Aerodynamic

Chord
V

∞

Figure 4.4 Wing contribution.
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Assuming small angles and letting CL >> CD and zcg <<< xcg where xcg =
xcg
c

and
xacw = xacw

c
, we get

Cmcgw
≈ Cmacw

+ CLw
(xcg − xacw ). (4.9)

Let us write

CLw
= CL0w

+ CL𝛼w
𝛼w (4.10)

and

Cmcgw
= Cm0w

+ Cm𝛼w
𝛼w. (4.11)

Then

Cmcgw
= Cmacw

+ CL0w
(xcg − xacw ) + CL𝛼w

𝛼w(xcg − xacw ) (4.12)

i.e.

Cm0w
= Cmacw

+ CL0w
(xcg − xacw ) (4.13)

and

Cm𝛼w
= CL𝛼w

(xcg − xacw ). (4.14)

Since the lift curve slope CL,𝛼,𝑤 is always positive, for Cm𝛼w
< 0 we require xcg < xacw .

Physically, this means the aircraft’s center of gravity has to be in front of the wing’s aero-
dynamic center, but this is typically not the case.
Note that, if at zero lift, CL0w

= 0, then Cm0w
= Cmacw

. Note that:

Cm0w
= Cmacw

+ CL0w
(xcg − xacw ). (4.15)

For Cm0w
> 0, we have to ensure Cmacw

>> 0. However, for the majority of low speed
aircraft with positive camber, Cmacw

< 0 and the center of gravity is aft of the wing aero-
dynamic center. For example, look at Figure 4.5.

Positive Camber

-or-

(At zero lift (i.e. CL0
 = 0))

Cmαcw
 = Cm0

 < 0 Cmαcw
 = Cm0

 = 0

Zero Camber

Cmαcw
 = Cm0

 > 0

Negative Camber

Cmαcw
 = Cm0

 > 0

Balancing possible

(Stability can be attained

by cg movement)

Cm = Cmαcw

Figure 4.5 Cambers of wings.
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So for all practical purposes, wing contribution to static longitudinal stability ismostly
destabilizing.
This implies that there needs to be another means to make Cm0w

> 0 and Cm𝛼w
< 0

for standard positive camber airfoils. This is accomplished by introducing the horizon-
tal tail.

Tail Contribution (Figure 4.6)

𝛼t = (𝛼w − iw) − 𝜀 + it (4.16)

Total lift L = Lw + Lt

CLQS = CLw
QS + CLt

QtSt (4.17)

CL = CLw
+ 𝜂

St
S
CLt

(4.18)

where 𝜂 is defined as the tail efficiency factor,

𝜂 =
Qt

Q

=
1
2
𝜌V 2

t
1
2
𝜌V 2

∞
.

(4.19)

Values for 𝜂 usually range from 0.8 to 1.2. In the wake region, 𝜂 < 1, in the slip stream,
𝜂 > 1.
Now the pitching moment due to the tail.
Assuming all the angles to be small so that we can make small angle approximations,

and that the drag force is relatively negligible compared to the lift force and that the ver-
tical distance between the tail and the center of gravity zcgt ≈ 0, our equation simplifies
considerably as follows:

Mt = −lt[Lt cos(∗) +����Dt sin(∗) ] −��zcgt [����Dt cos(∗) −�����Lt sin(∗) ] +���Mact

= −ltLt (4.20)

= −ltCLt
QtSt.

Vt

αt it

(αw–iw)

ε

Mean aerodynamic chord of the tail

airfoil

ε: Downwash angle

it: tail incidence angle

α: Effective angle of attack

V
∞

Figure 4.6 Tail contributions.
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Writing

Mt = Cmt
QSc (4.21)

we observe that

Cmt
=

Mt

QSc

=
−ltCLt

QtSt
QSc

= −
ltSt
Sc

CLt
𝜂

= −VH𝜂CLt

(4.22)

where VH is the horizontal tail volume ratio, defined

VH =
ltSt
Sc

(4.23)

Now

CLt
= CL0t

+ CL𝛼t
𝛼t = CL𝛼t

[(𝛼w − iw) − 𝜀 + it] (4.24)

Let

𝜀 = 𝜀0 +
d𝜀
d𝛼

𝛼w (4.25)

where

𝜀 =
2CLw

𝜋ARw
, (4.26)

𝜀0 =
2CL0

𝜋ARw
(4.27)

and

d𝜀
d𝛼

=
2CL𝛼c𝑤

𝜋ARw
(4.28)

Cmt
= −VH𝜂

[
CL𝛼t

{
(𝛼w − iw) − 𝜀0 −

d𝜀
d𝛼

𝛼w + it
}]

(4.29)

= VH𝜂CL𝛼t
(𝜀0 + iw − it) − VH𝜂CL𝛼t

𝛼w

(
1 − d𝜀

d𝛼

)
(4.30)

= Cm0t
+ Cm𝛼t

𝛼w (4.31)

where the trail contribution to Cm0
is

Cm0t
= VH𝜂CL𝛼t

(𝜀0 + iw − it). (4.32)

The tail contribution to Cm𝛼
is

Cm𝛼t
= VH𝜂CL𝛼t

(
1 − d𝜀

d𝛼

)
. (4.33)
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So in total
Cm0

= Cm0w
+ Cm0t

= Cmacw
+ CL0w

(xcg − xacw ) + VH𝜂CL𝛼t
(𝜀0 + iw − it). (4.34)

When CL0w
= 0 (which is the case most of the time), we observe that:

Cm0
= Cmacw

+ VH𝜂CL𝛼t
(𝜀0 + iw − it) (4.35)

From this we observe:
(i) Cm0

is independent of the CG location, xcg, and that
(ii) it should be such that it makes the second term highly positive (even when 𝜀0 = o

and iw = 0).
Thus the tail should be placed as in Figure 4.7 (i.e. it is negative).
Similarly

Cm𝛼
= Cm𝛼w

+ Cm𝛼t

= CL𝛼w
(xcg − xacw ) − VH𝜂CL𝛼t

(
1 − d𝜀

d𝛼

)
. (4.36)

Notice how the second term in the above equation introduces a highly negative com-
ponent into the Cm𝛼

equation, so that the total Cm𝛼
with the tail contribution becomes

negative, thereby achieving static longitudinal stability for aircraft with positive camber
airfoils.
Approximating 𝛼total = 𝛼w write the total pitching moment coefficient Cmcg

as:

Cmcg
= Cm0

+ Cm𝛼
𝛼 (4.37)

where Cm0
is given by equation (4.35) and Cm𝛼

is given by equation (4.36).
Note that

CL = CLw
+ CLt

Qt

Q

St
S

= CL0w
+ CL𝛼t

𝛼

{
CL𝛼t

𝛼

(
1 − d𝜀

d𝛼

)
− CL𝛼t

Qt

Q

St
S
(𝜀0 + iw − it)

}
.

(4.38)

WritingCL = CL0
+ CL𝛼

𝛼 we observe that for the total aircraft, which we approximate as
the sum of wing and tail contributions:

CL0
= CL0w

− CL𝛼t
𝜂
St
S
(𝜀0 + iw − it) (4.39)

CL𝛼
= CL𝛼w

+ CL𝛼t
𝜂
St
S

(
1 − d𝜀

d𝛼

)
(4.40)

Cm𝛼
= CL𝛼w

(xcg − xacw ) − CL𝛼t
𝜂
St
S

(
1 − d𝜀

d𝛼

)
(xact − xcg) (4.41)

Cm0
= Cmacw

+ CL0w
(xcg − xacw ) + CL𝛼t

𝜂
St
S
(𝜀0 + iw − it)(xact − xcg) (4.42)

Figure 4.7 Placement of tail. cg

lt
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cg

lt

Xcg

act

Xac,t

Xac,w

Figure 4.8 Pitching moment due to tail.

where we used the fact that
lt
c
= xact − xcg (4.43)

In the majority of standard situations, we assume Cmacw
< 0 and CL0

≅ CL0w
= 0.

An alternative to the wing/tail contribution formakingCm0
> 0 is the swept back wing

with twisted tips. A variant to this is the delta wing. Either twist the tip or employ neg-
ative camber or upturn trailing edge flap.
Now that we have essentially gathered the contributions of the wing and tail together

for the overall static longitudinal stability, we observe that there is a fictitious CG loca-
tion point along the straight line segment extending from the wing leading edge to the
tail cg, that has the property that if we take the pitching moment about that (special)
CG location, the pitchingmoment would be independent of the angle of attack. In other
words, this special CG location can be thought of as the aerodynamic center of the entire
aircraft.That special CG location is labeled as the neutral point, or to bemore precise in
the current situation stick fixed neutral point (see Figure 4.8). It will become clear later
as to why the adjective stick fixed is added here at this point, because, later we introduce
the notion of a stick free neutral point at which time the difference between stick fixed
and stick free becomes more clear.

4.4 Stick Fixed Neutral Point and CG Travel Limits

Stick fixed neutral point is that location of the center of gravity at which Cm𝛼
= 0, i.e.

about this special center of gravity location the pitching moment is independent of the
angle of attack, i.e. it is equivalent to the aerodynamic center for the entire aircraft. So
solving equation (4.42) for the xcg at which Cm𝛼

= 0, we get:

xNP = xcg|Cm𝛼
=0 =

[
xacw + 𝜂

St
S

CL𝛼t

CL𝛼w

(
1 − d𝜀

d𝛼

)]
[
1 + 𝜂

St
S

CL𝛼t

CL𝛼w

(
1 − d𝜀

d𝛼

)] (4.44)
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Cg aft of NP (Statically Unstable)

Cg forward of NP (Statically Stable)

xcg = xNP

Cm

Cm0

α

Figure 4.9 Cm versus 𝛼 for low speed aircraft.

Cg aft of NP (Statically Unstable)

Cg forward of NP (Statically Stable)

xcg = xNP

Cm

CL

Cm0

xcg < xNP → Cmα
 is negative

xcg = xNP → Cmα
 = 0

xcg < xNP → Cmα
 is positive

Figure 4.10 Cm versus CL for low speed aircraft.

With this definition of xNP, we can show that:

Cm𝛼
= CL𝛼

(xcg − xNP) (4.45)

i.e.
dCm

dCL
=

Cm𝛼

CL𝛼

= (xcg − xNP). (4.46)

Of note is the quantity xcg − xNP, which we define as the Static Margin. See Figures 4.9
and 4.10.
Thus again, for static longitudinal stability, we see that the center of gravity should be

in front of the neutral point, i.e. the stick fixed neutral point serves as the aft limit of
center of gravity travel before loss of static longitudinal stability.

Example 4.1 For a flying wing configuration, the coefficient of moment about the
aerodynamic center of the wingCmacw

= −0.1; the zero-angle lift coefficientCLo𝑤ing
= 0.3;

the location of the aerodynamic center is xacw = 0.2; the location of center of gravity is
xcg = 0.3; and the rate of change of lift coefficientwith respect to angle of attackCL𝛼

= 4.1
per radian. Given this information,

1. Determine if the aircraft is balanceable and longitudinally stable. Plot Cmcg
versus 𝛼,

and if balanceable, find the trim angle of attack.
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2. Repeat the above exercise with
(a) Cmacw

= 0.1 and xcg = 0.1
(b) Cmacw

= 0.1 and xcg = 0.2.

Solve this problem using the simplified equations:
CL = CLo

+ CL𝛼
𝛼

and
Cm = Cmo

+ Cm𝛼
𝛼.

Solution
From the contribution of the wing to static stability,

Cmcgw
= Cmacw

+ CL0w (xcg − xacw ) + CL𝛼w
(xcg − xacw )𝛼w

= Cm0w + Cm𝛼
𝛼w.

1. From the data
Cm0w = −0.1 + (0.3)(0.3 − 0.2)

= −0.07.
Also, from the given data, we observe that,

Cm𝛼
= (4.1)(0.3 − 0.2)
= 0.41.

Therefore
Cmcgw

= −0.07 + 0.41𝛼w.

From this it is clear that the aircraft is longitudinally unstable (because Cm𝛼
> 0 but

balanceable because Cm = 0 when 𝛼w = 9.9∘ (see Figure below).

9.9°
α

w

–0.07

C
mcgw

2. .(a) When Cmacw
= 0.1 and xcg = 0.1, we have

Cm0w = 0.1 + (0.3)(0.1 − 0.2)
= +0.07

Cm𝛼
= (4.1)(0.1 − 0.2)
= −0.41.
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Therefore

Cmcgw
= +0.07 − 0.41𝛼w.

This aircraft is longitudinally statically stable because Cm𝛼
< 0 and also balanced,

because Cm0w < 0. The trim angle of attack is again 9.9∘

0.07

9.9°
α

w

C
mcgw

(b) When Cmacw
= 0.1 and xcg = 0.2

Cm0w = 0.1 + (0.3)(0.2 − 0.2)
= 0.1

and
Cm𝛼

= (4.1)(0.2 − 0.2)
= 0.

This aircraft is neutrally stable, and unbalanceable

0.1

α
w

C
mcgw

Example 4.2 Consider the Boeing 747-400 with the dimensions given in Figure 4.11.
The wing area is S = 5500 ft2; wingspan b = 195 ft; aerodynamic chord c = 27 ft; and

the center of gravity is located at xcg = 0.25.We are also given the following aerodynamic
data:

𝜂 = 1.1
CL𝛼w

= 5.7 rad
CL𝛼t

= 5.0 rad.
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231 ft 10 in

(70.66 m)

72 ft 9 in

(22.17 m)

36 ft 1 in

(11.00 m)

211 ft 5 in*

(64.44 m)

63 ft 8 in

(19.41 m)

225 ft 2 in

(68.63 m)

84 ft 0 in

(25.60 m)

747-400

Figure 4.11 Dimensions of Boeing 747-400.

1. Without a tail, does this aircraft possess static longitudinal stability?
2. Find a set of different combinations of tail area St and the distance xact , such that the

total Cm𝛼 = −1.26 is achieved corresponding to xcg = 0.25. Use

d𝜖
d𝛼

=
2CL𝛼𝑤

𝜋ARw
.

3. For each of these configurations find the stick-fixed neutral point xNP and give the
neutral point location in physical units.

4. Now fix a particular St and xact . For this particular choice, calculate Cm𝛼
and static

margin for different values of the center of gravity location xcg where xcg is selected
to cover a wide range (aft and forward of xac𝑤). For this problem, use the following
simplified equations:

Cmcg
= Cm0 +

(
CL𝛼w

(xcg − xac𝑤) − CL𝛼t
𝜂
St
S

(
1 − d𝜖

d𝛼

)
(xact − xcg)

)
𝛼

where,

𝜂 =
Qt

Q

d𝜖
d𝛼

=
2CL𝛼𝑤

𝜋ARw

ARw = b2
S
.
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Solution
1. No. Since

xcg = 0.25

is same as

xacw
(which is assumed to be the quarter chord point), this aircraft’s staticmargin, without
tail, at this given CG is zero. Hence, it is not statically stable. It is neutrally stable.

2. We begin by evaluating the values of wing aspect ratio ARw

ARw = b2
S

= (195)2

5500
= 6.91

and the downwash d𝜖
d𝛼

using the analytic expression provided

d𝜖
d𝛼

=
2CL𝛼𝑤

𝜋ARw

= (2)(5.7)
𝜋 ∗ 6.91

= 0.52

We have the rate of change of pitching moment with respect to angle of attack

Cm𝛼
= CL𝛼𝑤

(xcg − xacw ) − CL𝛼t
𝜂
St
S
(xact − xcg)

(
1 − d𝜖

d𝛼

)
.

Rearranging,

St =
(CL𝛼𝑤

(xcg − xacw ) − Cm𝛼
)S

CL𝛼t𝜂(xact−xcg)
(
1− d𝜖

d𝛼

) .

Plugging in known values and simplifying, we obtain a relation between the aerody-
namic center location of the tail xact and the area of the tail St (see Figure 4.12) as
such

St =
2.65 × 103

xact − 0.25
.

Taking different sets of xact and St, we have the values shown in Table below

xact xact = xactc St % of S

3.68 99.36 ft 772 ft2 14%-appropriate
2.25 60.75 ft 1326 ft2 24.1%
1.25 31.05 ft 2652 ft2 47.72%
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3. For each value of St and xact , there is a corresponding value for the stick fixed neu-
tral point xNP. In other words, tail design allows us to manipulate the stick fixed
neutral point location, which in turn has an effect on static stability. The equation
for neutral point is as follows:

xNP =
xacw +

CL𝛼t

CL𝛼𝑤
𝜂
St
S
xact

(
1 − d𝜖

d𝛼

)
1 + CL𝛼t

CL𝛼𝑤
𝜂
St
S

(
1 − d𝜖

d𝛼

) .

With xact = 3.68 and St = 772ft, xNP is calculated to be 0.46; neutral point locations
can be found similarly for all other cases (See Figure 4.12).

Cm Xcg = 0.5

Xcg = 0.35

Xcg = 0.25

Xcg = 0.15

Xcg = XNP = 0.4567

α

Figure 4.12

4. Wefix xact = 3.68 and St = 772 ft so that xNP = 0.46.We then vary the center of gravity
location, finding the corresponding Cm𝛼

and the static margin (xcg − xNP) (See table
below).

xcg (xcg − xNP) Cm𝜶

0.15 −0.3067 Negative
2.25 −0.2067 Negative
0.35 −0.1067 Negative
0.4567 0 0
0.5 0.0433 Positive

4.4.1 Canard Plus the Wing Combination

Another possible configuration to achieve static longitudinal stability is to use, instead
of a tail, a control surface in front of the wing, which is called the Canard. In this case,
the wing will have a stabilizing effect on the static longitudinal stability. An aircraft with
Canard configuration, is shown in Figure 4.13.

4.5 Static Longitudinal Control with Elevator Deflection

In order to fly at different trim speeds (and angles of attack) without changing the static
stability characteristics, we need some form of longitudinal control. This is provided by
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Figure 4.13 Canard configuration. (Flickr.com: Peter Gronemann)

δe Up is

Negative
δe

δe Down is

Positive

Figure 4.14 Elevator deflection.

the elevator (see Figure 4.14). Now we write

CL = CL0
+ CL𝛼

𝛼 + CL𝛿e
𝛿e (4.47)

where

CL𝛿e
=

dCL

d𝛿e
(4.48)

Cm = Cm0
+ Cm𝛼

𝛼 + Cm𝛿e
𝛿e

= Cm0
+

dCm

dCL
CL + Cm𝛿e

𝛿e (4.49)

where

Cm𝛿e
≡

dCm

d𝛿e
. (4.50)

Note that, Cm𝛿e
and Cm𝛿e

do not exist simultaneously. In other words, depending on
how the aerodynamic data is presented, we use either the equation with Cm𝛼

or the
equation with

dCm

dCL
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Cm

CL or α
δe1 δe2 δe3

Figure 4.15 Cm versus cL and/or alpha.

separately for Cm. There is no direct relationship between Cm𝛿e
and Cm𝛿e

in this linear
range. In other words, Cm𝛿e

is simply the slope of the Cm versus 𝛿e curve (line) when the
data is given in terms the angle of attack 𝛼, whereas Cm𝛿e

is the slope of the Cm versus 𝛿e
curve (line) when the data is given in terms of CL (Figure 4.15).
The change in lift due to the elevator is

ΔL = ΔLt (4.51)

ΔCLQS = ΔCLt
QtSt (4.52)

ΔCL =
ΔCLt

QtSt
QS

= 𝜂ΔCLt

St
S
. (4.53)

Let

ΔCLt
=

dCLt

d𝛿e
𝛿e. (4.54)

However, as the elevator deflection changes, there is a change in the angle of attack of
the tail:

dCLt

d𝛿e
=

dCLt

d𝛼t
d𝛼t
d𝛿e

= CL𝛼 t
𝜏

(4.55)

where 𝜏 is defined as

𝜏 =
d𝛼t
d𝛿e

(4.56)

∴ CL𝛿e
=

St
S
𝜂CL𝛼 t

𝜏 (4.57)
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where 𝜏 is obtained empirically from wind tunnel tests. Similarly for pitching moment,
recall that

Cmtail
= −VH𝜂CLt

. (4.58)

Due to the elevator
ΔCm = −VH𝜂ΔCLt

= −VH𝜂CL𝛼 t
𝜏𝛿e.

(4.59)

If we write
ΔCm = Cm𝛿e

𝛿e
= dCm

d𝛿e
𝛿e. (4.60)

Then
Cm𝛿e

= −VH𝜂CL𝛼 t
𝜏

= −
St
S
𝜂CL𝛼 t

𝜏
lt
c

(4.61)

i.e.

Cm𝛿e
= −

St
S
𝜂CL𝛼 t

𝜏(xact − xcg). (4.62)

From Equation (4.57) and Equation (4.62) we observe that,

Cm𝛿e
= −CL𝛿e

(xact − xcg). (4.63)

We also have

Cm𝛼
= CL𝛼

(xcg − xNP). (4.64)

Now our interest is to obtain the trim angle of attack and elevator deflections.

4.5.1 Determination of Trim Angle of Attack and Trim Elevator Deflection

At trim, for small angles, from force distribution, we observe that the lift balances out
the weight, i.e.

L = W = mg (4.65)

CLtrim
QS = W → CLtrim

= W
1
2
𝜌SV 2

∞
. (4.66)

For moment trim, we need Cm = 0

∴Cm0
+ Cm𝛼

𝛼trim + Cm𝛿e
𝛿etrim = 0 (4.67)

Also

CLtrim
= W

1
2
𝜌SV 2

∞

= CL0
+ CL𝛼

𝛼trim + CL𝛿e
𝛿etrim.

(4.68)
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Thus from Equations (4.67) and (4.68), we have two equations (independent) and two
unknowns 𝛼trim and 𝛿etrim. So, solving for them, we get

𝛼trim =
(CLtrim

− CL0
)Cm𝛿e

+ Cm0
CL𝛿e

CL𝛼
Cm𝛿e

− Cm𝛼
CL𝛿e

(4.69)

𝛿etrim =
−[(CLtrim

− CL0
)Cm𝛼

+ Cm0
CL𝛼

]
Cm𝛿e

CL𝛼
− Cm𝛼

CL𝛿e

. (4.70)

If we use the Cm versus CL equation for trim,

0 = Cm0
+ (xcg − xNP)CLtrim

+ Cm𝛿e
𝛿etrim. (4.71)

Solving for 𝛿etrim, we get

𝛿etrim =
−[Cm0

+ (xcg − xNP)CLtrim
]

Cm𝛿e

. (4.72)

Note that 𝛼trim and 𝛿etrim can be written as,

𝛼trim = 𝛼0trim + aCLtrim
(4.73)

𝛿etrim = 𝛿e0trim + b′CLtrim
(4.74)

with appropriate definitions of the coefficients a and b′.

Example 4.3 For a given aircraft, we have:

CL = 0.1 + 0.1𝛼 + 0.02𝛿e
Cm0.2c

= 0.025 − 0.3CL − 0.01𝛿e.

Find xNP, 𝛼trim and 𝛿etrim for a flight at CLtrim
= 0.25.

Solution
From the above equations and our notation, we see that:

Cm0
= 0.025

dCm

dCL
= (xcg − xNP) = −0.3

xcg = 0.2

Cm𝛿e
= −0.01

CL0
= 0.1

CL𝛼
= 0.1

CL𝛿e
= 0.02.

Since xcg − xNP = 0.2 − xNP = −0.3 → xNP = 0.5.
Hence, for a flight at CLtrim

= 0.25, the 𝛼trim and 𝛿etrim are given by solving

0 = 0.025 − 0.3(0.25) − 0.01𝛿etrim
0.25 = 0.1 + 0.1𝛼trim + 0.02𝛿etrim
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from which we get

𝛿etrim = −5∘ (up elevator), 𝛼trim = 2.5∘.

Now coming back to the 𝛿etrim expressions given by either Equation (4.70) or
Equation (4.72), we observe that 𝛿etrim is a function of the CLtrim

and xcg.
Note that

𝛿etrim =
−(Cm0

+ (xcg − xNP)CLtrim
)

Cm𝛿e

(4.75)

=
−[(CLtrim

− CL0
)Cm𝛼

+ Cm0
CL𝛼

]
Cm𝛿e

CL𝛼
− Cm𝛼

CL𝛿e

. (4.76)

From these two equations, we see that:

d𝛿etrim
dCLtrim

=
−(xcg − xNP)

Cm𝛿e

=
−Cm𝛼

Cm𝛿e
CL𝛼

− Cm𝛼
CL𝛿e

.

(4.77)

Obviously, when xcg = xNP or when Cm𝛼
= 0 we have

d𝛿etrim
dCLtrim

= 0. (4.78)

This can be used as a new definition or interpretation of a neutral point: it is that center
of gravity location at which d𝛿etrim

dCLtrim

= 0, i.e. at this center of gravity location, no change in
elevator deflection is needed to get a change in lift coefficient, see Figures 4.16–4.17.

Figure 4.16 Trim speed versus 𝛿e trim.
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CLtrim
δetrim

–Cm0

Cmδe

Aft cg

Forward cg

xcg = xNP

Figure 4.17 Trim elevator angle
versus CLtrim

.

Most forward cg

location dictated by

maximum up elevator

deflection

Most aft cg location

dictated by the Neutral

point (Stick Fixed)

(if static stability is desired)

cg

xNP

Figure 4.18 Center of gravity travel.

From this plot, we observe that for a given trim lift coefficient (i.e. CLtrim
), as the center

of gravity is more forward (of the neutral point), the more negative elevator deflection
that is needed for trim. However, there is always a physical limitation on the elevator
deflection. Thus we can conclude that the most forward center of gravity location is
dictated by the maximum up elevator deflection allowed (Figure 4.18. We thus have a
window for the center of gravity travel from the static longitudinal stability considera-
tions.
This explains why in some small aircraft, the airline staff take note of the cargo and

personnel distribution pattern during the flight envelope. It is important that the CG
travel be restricted to this window as the mass distribution (cargo, personnel and fuel
and other factors) keeps changing during the flight.

4.5.2 Practical Determination of Stick Fixed Neutral Point

Since
d𝛿etrim
dCLtrim

= 0 at xcg = xNP (4.79)
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Figure 4.19 Practical method of
determining the neutral point.

dδetrim

dCLtrim

NP

(+)

(–)

xcg

and
d𝛿etrim
dCLtrim

< 0 when xcg < xNP (4.80)

and
d𝛿etrim
dCLtrim

> 0 when xcg > xNP (4.81)

this is often used as another criterion for defining the stick fixed neutral point. Also this
definition helps to find the stick fixed neutral point in a practical way, as in Figure 4.19:
For wind tunnel tests 𝛿etrim versus CLtrim

is plotted for different center of gravity loca-
tions.Then from that data, the slope d𝛿etrim

dCLtrim

is obtained and this information is plotted as
above (and interpolated if sufficient data is not available). The center of gravity location
at which d𝛿etrim

dCLtrim

= 0 is obviously the neutral point.
Caution: All of the above analysis is valid for low Mach #s and altitudes because in

this range, the values of coefficients such as Cm𝛼
, CL𝛼

, Cm0
, CL0

… are almost constant. If
these values change drastically during the flight conditions of interest, the above linear
analysis is not accurate.

4.6 Reversible Flight Control Systems: Stick Free, Stick Force
Considerations

In a reversible flight control system, the pilot stick movements get reflected in the hori-
zontal stabilizer movements and vice versa throughmechanical and other forms of link-
ages. In an irreversible control system, this transmission of control is one way, namely
the pilot stick movements get reflected in the horizontal stabilizer movements but not
the other way around. For this reason, in large aircraft like the Boeing 747, which uses
irreversible control systems, an artificial feel is provided to the pilot for the horizontal
stabilizer and other control surface movements, external to the cockpit.
An important consequence of the reversible control system is that the definition of

neutral point (center of gravity location for which Cm𝛼
= 0) must be reviewed. In the

case of a reversible control system, the stick is left free, and in the presence of the
aerodynamic forces and moments, it is clear that the elevator will always float to such



100 4 Aircraft Static Stability and Control

Forward Sector

Bob Weight

Art Sector

Followup

GATES LEARJET

MZS

ELEVATOR

CONTROL SYSTEM

Autopilot Pitch Servo

Down Spring·

Figure 4.20 Example of a typical reversible flight control system.

a position that the hingemoment at the elevator control surface becomes equal to 0 (see
Figure 4.20).

4.6.1 Stick Free Longitudinal Stability and Control

Hinge moment: He = ChQtSece
where

Ch = Ch0 + Ch𝛼t
𝛼t + Ch𝛿e

𝛿e + Ch𝛿t
𝛿t (4.82)

Here 𝛿t is the elevator tab deflection. Also Ch0 = 0 for symmetric airfoils. Let 𝛿t = 0.
Thus

Ch = Ch𝛼t
𝛼t + Ch𝛿e

𝛿e. (4.83)

Remember that when the control surface is left free, it will naturally float to an equilib-
rium position (i.e. where He = 0). Therefore Equation (4.83) becomes

Ch𝛼t
𝛼t + Ch𝛿e

𝛿efree = 0 (4.84)

i.e.

𝛿efree = −
Ch𝛼t

Ch𝛿e

𝛼t. (4.85)
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Usually, Ch𝛼t
and Ch𝛿e

are negative.They are mostly determined empirically from wind
tunnel tests. So for all positive 𝛼t, the elevator floats into an up position in equilibrium1.
Now we have

CLt
= CL0

+ CL𝛼t
𝛼t + CL𝛿e

𝛿efree (4.86)

= CL𝛼t
𝛼t − CL𝛿e

Ch𝛼t

Ch𝛿e

𝛼t (4.87)

= CL𝛼t
𝛼t

(
1 −

CL𝛿e

CL𝛼t

Ch𝛼t

Ch𝛿e

)
(4.88)

= C′
L𝛼t
𝛼t (4.89)

where

C′
L𝛼t

= CL𝛼t

(
1 −

CL𝛿e

CL𝛼t

Ch𝛼t

Ch𝛿e

)

= CL𝛼t
f .

(4.90)

In order to determine the stick free neutral point, we follow the same procedure as for
the stick fixed neutral point except thatwhereverCL𝛼t

appears, we replace it byC′
L𝛼t
. Car-

rying out this exercise (i.e. writing theCm expression and findingCm𝛼
and then equating

Cm𝛼
= 0), we get

x′NP =
xacw +

C′
L𝛼t

CL𝛼w

𝜂
St
S

(
1 − d𝜀

d𝛼

)
xact

1 +
C′

L𝛼t

CL𝛼w

𝜂
St
S

(
1 − d𝜀

d𝛼

) (4.91)

or

x′NP =
xacw +

CL𝛼t f

CL𝛼w

𝜂
St
S

(
1 − d𝜀

d𝛼

)
xact

1 +
CL𝛼t

f

CL𝛼w

𝜂
St
S

(
1 − d𝜀

d𝛼

) , (4.92)

It is left as an exercise for the reader to get an expression for xNP − x′NP.
Generally, x′NP is forward of xNPfixed

, i.e. the effect of the stick free situation is to reduce
the static margin (Figure 4.21. Thus x′NP (i.e. xNPfree

) is very important because now
xNPfree

becomes the most aft center of gravity location before we lose static longitudinal
stability.

1 When this free floating elevator angle for trim 𝛿efree differs from the 𝛿etrim, obviously some extra force is
required to hold the elevator. Obviously, this has to be provided by the pilot, which is very fatiguing. Trim
tabs are provided to relieve the pilot of this load. Trim tabs make 𝛿efree = 𝛿etrim.
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Figure 4.21 Cg travel under the stick free situation.

4.6.2 Stick Force

FS = GHe (4.93)

= QtSeceG
[
Ch0

+ Ch𝛼t

{
𝛼

(
1 − d𝜀

d𝛼

)
+ it − 𝜀0 + iw

}
+ Ch𝛿e

𝛿e + Ch𝛿t
𝛿t
]
(4.94)

where G =elevator gearing has units of rad ft−1 and is positive. However

𝛼trim = 𝛼0,trim + aCLtrim
(4.95)

𝛿etrim = 𝛿e0,trim + b′CLtrim
(4.96)

where

CLtrim
= W

QS
. (4.97)

Therefore

FS = 𝜂QSeceG
[
Ch0

+ Ch𝛼t

{
𝛼0,trim

(
1 − d𝜀

d𝛼

)
+ it − 𝜀0 + iw

}

+ Ch𝛿e
𝛿e0,trim + Ch𝛿t

𝛿t
]

+ 𝜂SeceG
[
aW
S
Ch𝛼t

(
1 − d𝜀

d𝛼

)
+ b′W

S
Ch𝛿e

]
(4.98)

i.e.

FS = B1
2
𝜌V 2

trim + A (4.99)
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Figure 4.22 Stick force.

where A is a constant, independent of the speed V and B is a constant that serves as
a coefficient of 1

2
𝜌V 2. Note that FS = A when V = 0. By proper selection of it and 𝛿t

one can make FS = 0. The condition FS = 0 is called the stick force trim. So essentially
it and 𝛿t (tab angle) can be used to achieve stick force trim. Note that the constant A
is a function of B, which in turn is a function of the center of gravity location. In other
words, A is a linear function.
The stick force FS is shown in Figure 4.22 and:

1. It is directly proportional to Sece and thus very sensitive to the size of the tab.
2. It is proportional to the square of the speed.
3. The center of gravity position affects only the constant term A. A forward movement

of the center of gravity produces an upward translation of the curve of FS versus V .

4.6.3 Stick Force Gradient, dFS
dV

:

The stick force gradient (at the Vtrim) plays an important role in speed stability analysis.
For speed stability, we require dFS

dV
< 0. Of course, the higher the gradient, the better it

is from the speed stability point of view, but at the same time, if the pilot does want to
change the trim speed, he/she has to exert a lot of force to change the trim speed. Thus
there is a trade-off between controllability and static speed stability. Consider

FS = B1
2
𝜌V 2

trim + A (4.100)

dFS
dV

= B𝜌V . (4.101)

At trim speed Vtrim, FS = 0 and B = − A
1
2
𝜌V 2

trim
(where it is assumed that a tab setting is

chosen to achieve this trim speed) and thus:

dFS
dV

= − 2A
Vtrim

(select Ch terms such that A is positive). (4.102)
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Thus, we can observe the following (with respect to a fixed Vtrim):
1. As the center of gravity moves forward, ||| dFSdV

||| increases, i.e. the gradient becomes
higher and higher as the center of gravity moves forward, but the stick force FS also
increases as the center of gravity moves forward.
∴ Another criterion for most forward center of gravity location is the allowable stick
force in the Vtrim region of interest.

2. In the absence of compressibility effects, the elevator control will be heaviest at:
a. sea level
b. low speed
c. forward center of gravity positions
d. maximum weight.

3. At xcg = x′NP, A = 0 → can be used as an alternative way of defining the stick free
neutral point. It is that center of gravity location at which dFS

dV
= 0, i.e. no stick force

is needed to change the trim speed at this center of gravity location.
The stick force per gram is sometimes used as a measure of maneuvering stability by
practicing engineers. Thus this stick force per gram is higher at a forward cg, regardless
of altitude. This phenomenon has significant implications for steep turning maneuvers.
For example, to performa level turn at 60∘ of bank requires 2 g in any airplane. In general,
the above analysis demonstrates that maneuvering at high altitude requires less column
force than it does at low altitudes.
In summary, it is clear that static longitudinal stability and speed stability are impor-

tant measures for the flight certification of an aircraft. Modern airplanes are evolving
such that the emphasis on the aircraft possessing high static stability is being reduced.
This is often termed as relaxed static stability (RSS). With RSS, it is possible to make
the aircraft more fuel efficient by designing it to be more aerodynamically efficient. In
such cases, the stability is augmented by active control systems, which will be discussed
later in in chapters dealing with flight vehicle control, such as in Chapters 8 and 19. It is
acknowledged by industries like Boeing that augmented stability provides better cruise
performance with no increase in the workload of the pilot and no adverse effects from
flying at an aft CG. Of course, the requirement on satisfactory handling qualities for
continued safe flight and landing following an augmented system failure puts a limit on
how far aft CG can go. As long as the CG travel is limited to the range where the most
aft location is the neutral point, the handling qualities will be adequate with or without
stability augmentation procedures.
This completes the discussion of the basic concepts needed in the topic of static lon-

gitudinal stability of aircraft. In a course that is explicitly dedicated to only aircraft
dynamics and control, it is possible to continue further and discuss other concepts such
as themaneuver point wherein the steady state considered is that of a steady vertical pull
up. This special CG location is similar to the neutral point concept but the details are
somewhat different.The interested student is encouraged to consult other excellent text-
books such as [35] to learn more about these advanced topics within static longitudinal
stability.
Now that we have gathered few basic concepts needed in static longitudinal stability,

we now shift our focus to briefly analyze similar concepts in the roll/yaw motion of the
aircraft. Relative to static longitudinal stability, our coverage of static directional stability
as well as the static lateral stability will be necessarily limited and brief.
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4.7 Static Directional Stability and Control

Themain, dominant variable in assessing static directional (yaw) stability is the sideslip
angle, 𝛽. We can write the yawing moment coefficient Cn

Cn = Cn𝛽𝛽 + Cn𝛿R𝛿R (4.103)

where 𝛿R is the rudder deflection.
However, strictly speaking, physically the yaw motion and roll motion are coupled in

the sense that rollmotion creates yawmoments and yawmotion creates rollingmoment.
So we would really have

Cn = Cn𝛽𝛽 + Cn𝛿R𝛿R + Cn𝛿A𝛿A (4.104)

where 𝛿A is the aileron angle (mainly used for roll control) andCn𝛿A is the cross coupling
term. For the present discussion, let us neglect the cross coupling term.

Cn = Cn𝛽𝛽 + Cn𝛿R𝛿R +����Cn𝛿A

neglect
A (4.105)

Static Directional Stability Criterion

When there is a positive sideslip angle disturbance (as shown in Figure 4.23), the restor-
ing yawingmoment (i.e. themomentwhich brings the aircraft back into the relativewind
direction) has to be in the sense as shown (i.e. positive yawing moment). Therefore the
criterion for static yaw stability is that:

Cn𝛽 > 0. (4.106)

Static Roll Stability and Control

Again sideslip 𝛽 is the main variable.

Cl = Cl𝛽 𝛽 + Cl𝛿A𝛿A. (4.107)

Figure 4.23 Directional moments.
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Here

𝛿A = 1
2
(𝛿AL + 𝛿AR) (4.108)

where 𝛿AL is positive downwards and 𝛿AR is positive upwards. So whenever the left
aileron and right aileron are deflected in the opposite direction, there is always a net
non-zero 𝛿A.
Rolling the rightwing down (for positive 𝛽) is by convention a positive rollingmoment.

So the restoring moment (to put wings level) should be in the direction that makes the
right wing go up (which is a negative rolling moment). Thus the static rolling stability
criterion is that:

Cl𝛽 < 0. (4.109)

Roll stability is achieved by

1. Wing dihedral, Figure 4.24.
2. Wing position on the fuselage:

(a) High wing–stabilizing, Figure 4.25.
(b) Low wing–destabilizing, Figure 4.26.

3. Wing sweep–stabilizing, Figure 4.27. The higher the wing span the higher the stabi-
lizing effect.

Γ Γ

Figure 4.24 Wing dihedral.

Figure 4.25 High wing.

Figure 4.26 Low wing.

Effective

Wing

Span

More

Lift

Figure 4.27 Swept wing.
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Figure 4.28 Forces in the event of an engine-out scenario. Thrust

Fails

lt

4.7.1 Static Lateral/Directional Control

Since roll and yaw are highly coupled, we discuss the lateral/directional control in a
coupled way as well.
The main consideration in static lateral/directional control is the sizing of the later-

al/directional motion control surfaces, namely rudder and aileron design. Major factors
that influence this design are:

a) Adverse yaw: when the aircraft is rolled into a turn, there is a sideslip generated and
this causes an unwanted yawmotion (called adverse yaw). So in order to have a coor-
dinated turn, there should be a yawing moment generated through the rudder to
compensate for adverse yaw.

b) Slip stream yaw motion: in propeller aircraft, if the vertical tail is in the slip stream,
there will be some yawing motion.

c) Crosswinds at take-off and landing: self-explanatory.
d) Spinning: yaw control is necessary to come out of a spin.
e) Anti-symmetric power (engine out situation): for multi-engine aircraft, there is a

heavy yawing moment that must be overcome by the rudder whenever one of the
engines fails (Figure 4.28).

It turns out, that out of all these factors, the rudder design is most influenced by the
engine out situation. Hence, in what follows, we analyze this particular situation and
assume that a rudder design that is satisfactory for this important scenario would be
adequate for the other scenarios considered above.

4.8 Engine Out Rudder/Aileron Power Determination:
Minimum Control Speed, VMC

Recall the yawing moment coefficient

Cn = Cn𝛽𝛽 + Cn𝛿R𝛿R +
NT

QSb
(4.110)

where

Cnthrust
QSb = Nthrust = Tlt. (4.111)
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Figure 4.29 VMC under rudder consideration.

In order to decide howmuch 𝛿Rwe need to trim after engine failure, for a given sideslip
angle 𝛽*

0 = Cn𝛽𝛽
∗ + Cn𝛿R𝛿R +

NT

QSb
. (4.112)

Rearranging the terms,

𝛿R =
−Cn𝛽𝛽

∗ − NT

QSb

Cn𝛿R
. (4.113)

For 𝛽∗ = 0

𝛿R =
−NT

QSbCn𝛿R

= −
NT

1
2
𝜌V 2SbCn𝛿R

.

(4.114)

From this expression, we see that as V decreases, 𝛿R increases (Figure 4.29).
The physical (i.e. mechanical or structural) limitation of 𝛿R gives rise to the concept of

minimum control speed VMc. VMc is the speed corresponding to the maximum rudder
deflection possible. Trying to trim at a speed lower than VMc would require a larger
rudder deflection than structurally permitted.

4.8.1 VMc from 𝜷max and Aileron Considerations

Since roll and yaw motion are coupled, it is possible to control yaw using the aileron as
well as control the roll using the rudder. So let us examine if the yawing moment gen-
erated by an engine out situation can be controlled by ailerons. So consider the rolling
moment equation:

Cl = Cl𝛽𝛽 + Cl𝛿R𝛿R + Cl𝛿A𝛿A +
�
�
���LT

QSb

0

(4.115)
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where LT is the rolling moment due to engine out situation, which we assume is negli-
gible. Recall that from the yaw equation

0 = Cn𝛽𝛽 + Cn𝛿R𝛿R +
NT

QSb
. (4.116)

In order to assess if we have sufficient 𝛿A available, in case no 𝛿R is used (i.e. 𝛿R = 0),
first approximately solve for themaximum 𝛽 (sideslip) generated in engine out situations
as such:

0 = Cn𝛽𝛽max +
NT

QSb
. (4.117)

In other other words,

𝛽max = −
NT

Cn𝛽QSb
. (4.118)

Then consider

0 = Cl𝛽𝛽max + Cl𝛿A𝛿A (4.119)

𝛿A = −
Cl𝛽𝛽max

Cl𝛿A
(4.120)

i.e.

𝛿A =
Cl𝛽NT

Cl𝛿ACn𝛽QSb
. (4.121)

If the 𝛿A determined from this approximate expression is below themaximumallowable
𝛿A, then we say the aircraft has sufficient lateral control power. Note that there is also
a VMc possible from the maximum 𝛿A consideration (from the above expression). The
eventual VMc is the one determined by the case that reaches |𝛿R|max or |𝛿A|max first.
Since roll/yaw are generally coupled, we now acknowledge this coupling between

them and revisit the minimum control speed concept by analyzing it in the presence of
this coupling between roll and yaw. We label this as VMc from exact equations.
VMc from exact equations (for the engine out case):

0 = Cn𝛽𝛽
∗ + Cn𝛿R𝛿R + Cn𝛿A𝛿A +

NT

QSb
(4.122)

0 = Cl𝛽𝛽
∗ + Cl𝛿R𝛿R + Cl𝛿A𝛿A +

LT

QSb
,

LT

QSb
= 0. (4.123)

Thus:[
Cn𝛿R Cn𝛿A
Cl𝛿R Cl𝛿A

] [
𝛿R
𝛿A

]
=

[
−Cn𝛽𝛽

∗ − NT

QSb
−Cl𝛽𝛽

∗

]
. (4.124)

This is in the formofAx = b. So one can easily solve for 𝛿R and 𝛿A. Even if 𝛽∗ = 0, you can
see that both 𝛿R and 𝛿A are dependent on the term NT

QSb
. So the minimum control speed

is determined by the equations and the relative maximum deflections of 𝛿R and 𝛿A.



Table 4.2 Examples of flight control system types [27].

Airplane Flaps Longitudinal (pitch) Lateral (roll) Directional (yaw)

Cessna Skyhawk Electric Elevator + trim tab in left
elevator, Reversible: cable driven

Frise ailerons, Reversible: Cable
Driven

Rudder + ground adjustable trim
tab, Reversible: cable driven

Cessna Cardinal Electric Stabilator with trim tab. Pilot
controls tab, Reversible: cable
driven

Frise ailerons, Reversible: Cable
Driven

Rudder + trim tab, Reversible:
cable driven

Rockwell
Sabreliner

Electric trailing
edge. Handley-Page
slats

Dual electric variable incidence
stabilizer, elevator + electric trim
tab with manual
override, Reversible: cable driven

Ailerons + electric trim tab in left
aileron, Reversible: cable driven

Rudder + electric trim
tab, Reversible: cable driven

Gates Learjet
35/36

Hydraulic Dual electric variable incidence
stabilizer + elevator, Reversible:
cable and push-rod driven

Ailerons + servo tab + electric
trim tab, Reversible: cable
driven, Hydraulic spoilers:
irreversible. Fly-by-wire

Rudder + electric trim
tab, Reversible: cable driven

Boeing 737 (dual
hydraulic control
system)

Hydraulic Elevator: hydraulic +manual
override with servo tabs, cable
driven, Variable incidence dual
electric stabilizer with dual
manual override

Hydraulic ailerons with manual
reversion, Semi-reversible: cable
driven, Hydraulic spoilers:
reversible cable driven

Hydraulic rudder with manual
reversion, Semi-reversible: cable
driven

Boeing 747
(irreversible triple
redundant +
fourth back-up)

Hydraulic Variable incidence tailplane with
split elevators

Four ailerons + spoilers Split rudder
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The exercises at the end of this chapter will help the student test the grasp of themate-
rial related to VMc and other static lateral/directional stability concepts.
This completes the discussion of the basic exposure to static stability concepts related

to aircraft. Now it is the appropriate juncture to shift our attention to the more impor-
tant concept of dynamic stability and control. As mentioned earlier, in dynamic stability
we analyze the actual time histories of the perturbed motion variables by developing
linearized differential equations for the perturbed (small) motion variables where the
perturbation is from the steady state trim (equilibrium) condition. Examples of flight
control system types are shown in Table 4.2.

4.9 Chapter Summary

In this chapter, we discussed the static stability and control issues for an aircraft. From
the dynamics point of view, the static case can be thought of as a snapshot at a given
time, typically in the steady state (constant) situation. This type of static stability anal-
ysis takes on an important role, in particular for commercial aircraft, because we want
to make sure, without any external control inputs, the aircraft possesses such character-
istics that, even at the design stage, they make the aircraft have the tendency to come
back to the equilibrium state when slightly disturbed from it. This analysis is carried
out thoroughly for the longitudinal (pitching moment) as well as for lateral/directional
motion. Typically for small motions the longitudinal analysis is decoupled from the lat-
eral(roll)/directional (yaw) motion whereas roll and yaw motions are coupled to each
other. The major concepts covered in the longitudinal analysis include concepts such
as the importance of neutral point, stick force and stick force gradient. The impor-
tance of CG travel on static longitudinal stability was brought out. Also the concept of
minimumcontrol speed as a function of rudder and aileron angles is brought out, under-
scoring the importance of the engine out scenario that becomes important for rudder
and aileron design. For more in depth treatment of any of the concepts presented in
this chapter, the reader is encouraged to consult the many excellent textbooks, com-
pletely dedicated to the aircraft dynamics and control, [1–42], referenced at the end of
this chapter.

4.10 Exercises

Exercise 4.1. If the slope of the Cm versus CL plot is −0.15 and the pitching moment at
zero lift is equal to 0.08 (per radian), determine the trim lift coefficient. If the center of
gravity of the aircraft is located at xcg = 0.3, determine the stick-fixed neutral point.
Assume 𝛿e = 0 throughout the problem.

Exercise 4.2. This exercise is essentially the same as the worked out example we have
done for the Boeing 747-400 jet transport aircraft.This time, consider an aircraft with
slightly different data: let the wing area S = 2600 ft2; wingspan b = 125 ft; aerody-
namic chord c = 20 ft; xacw = 0.25, and the center of gravity is located at xcg = 0.35.
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We are also given the following aerodynamic data:

𝜂 = 1.1
CL𝛼𝑤

= 4.81 rad
CL𝛼t

= 4.12 rad.

1. Without a tail, does this aircraft possess static longitudinal stability?
2. Find a set of different combinations of tail area St and the distance xact , such that

total Cm𝛼 = −1.478 is achieved corresponding to xcg = 0.25. Use

d𝜖
d𝛼

=
2CL𝛼𝑤

𝜋ARw
.

3. For each of these configurations find the stick-fixed neutral point xNP and give the
neutral point location in physical units.

4. Now fix a particular St and xact . For this particular choice, calculate Cm𝛼
and static

margin for different values of the center of gravity location xcg where xcg is selected
to cover a wide range (aft and forward of xac𝑤). For this problem, use the following
simplified equations:

Cmcg
= Cm0 +

(
CL𝛼w

(xcg − xac𝑤) − CL𝛼t
𝜂
St
S

(
1 − d𝜖

d𝛼

)
(xact − xcg)

)
𝛼

where

𝜂 =
Qt

Q
d𝜖
d𝛼

=
2CL𝛼𝑤

𝜋ARw

ARw = b2
S
.

Exercise 4.3. An aircraft has a pitchingmoment coefficient at zero lift equal to 0.08 (per
radian) and the stick-fixed neutral point is located at xNP = 0.45. If the aircraft is to
be trimmed at CLtrim

= 1.4 and has the following elevator characteristics

Cm𝛿e
= −1.03 rad s−1 (4.125)

and the elevator deflection 𝛿e ranging from 10∘ to −20∘, find the most forward CG
location for this aircraft to possess static stability.

Exercise 4.4. For the data shown below, determine the following:
(a) Stick fixed neutral point
(b) If we wish to fly the aircraft at a velocity if 125 ft s−1 at sea level, what would be the

trim lift coefficient and what would be the elevator angle.
W = 2750 lb
S = 180 ft2
xcg = 0.25
𝜌 = 2.377 × 10−3 slugs ft−3
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δe = 5°

C
L

0.15

0.0375

0 1.0

C
mcg

Exercise 4.5. For the aircraft data of the Boeing 747–400 jet transport, find the
stick free Neutral point (for the three combinations of xact and St, considered in
the solution sheet) if Ch𝛿e = −0.005 per degree and Ch𝛼t = −0.003 per degree and
𝜏 = 0.55 = d𝛼t

d𝛿e
.

Exercise 4.6. Given the following data for a glider with an elevator of 20 ft2 area and
root mean square chord length of 2 ft. All aerodynamic coefficients given in the data
are per degree.

Ch𝛼t
= −0.003, Ch𝛿e

= −0.0055, Ch𝛿t
= −0.003

Che
= 0, 𝛼0trim = 2∘, i𝜔 = 0, 𝜖 = 0∘, it = −1∘

𝛿e0trim
= 2∘, d𝜖

d𝛼
= 0.5, 𝜂 = 0.9, W

S
= 30lb ft−2

Cm𝛿e
= −0.008, 1

a
= 0.104, G = 10∘∕ft; 𝜌 = 2.377 × 10−3slugs∕ft3

Calculate and plot the stick force required versus the speed for a stick fixed static
margin dCm

dCL
= −0.15 for different tab settings as follows:

a) 𝛿t = −5∘(nose down, negative tab setting)
b) 𝛿t = −0∘
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c) 𝛿t = +5∘(nose up, positive tab setting)
Select a speed range of 0 ≤ V ≤ 3 or 400 ft/sec. Investigate if you can achieve stick
force trim with these tab settings or not.

𝛼trim = 𝛼0trim + aCLltrim

𝛿etrim = 𝛿e0trim
+ b′CLtrim

Exercise 4.7. A twin engine airplane has the following characteristics W = 8000 lbs,
S = 2000 ft2, b = 40 ft and CLmax

= 1.8. Each engine is capable of a velocity indepen-
dent thrust (at low speeds) of 1000 lbs. The engine thrust lines are 10 ft to either side
of the axis of symmetry. The aerodynamic data given by,

Cl𝛽 = −0.042 rad−1 Cn𝛽 = 0.069 rad−1

Cl𝛿A = 0.08 rad−1 Cn𝛿A = −0.008 rad−1

Cl𝛿R = 0.008 rad−1 Cn𝛿R = −0.08 rad−1|𝛿A|max = 25∘ |𝛿R|max = 30∘

• Assuming that there is no rollingmoment due to thrust (LT = 0), determine, for the
right engine out case, 𝛽∗ = 0, the plots of 𝛿A versus speed V and 𝛿R versus speed V.
Assume sea level conditions and use the uncoupled (approximate) equations. From
these plots, determine the minimum control speed VMC

• Also, using the coupled (exact) equations calculate the VMC by drawing the plots of
𝛿A and 𝛿R versus V

• Compare the value of VmC
you get from the coupled analysis and uncoupled

analysis.
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5

Aircraft Dynamic Stability and Control via Linearized Models

5.1 Chapter Highlights

In this chapter, as was the case with the previous chapter, we again focus our attention
on the analysis of dynamics specific to aircraft, via the linearized equations of motion.
In the previous chapter, we covered aircraft static stability and control. In this chapter, we
turn our attention to dynamic stability and control. In dynamic stability and control we
are concerned with the actual motion of the vehicle under various control inputs. Thus
for an aircraft, in the end, it is the dynamic stability that is of utmost importance. Even if
the aircraft is statically unstable (such as thosemilitary fighter aircraft which prefer high
maneuverability, sacrificing static stability), keeping the aircraft dynamically stable is of
paramount importance. Hence in this chapter, we thoroughly discuss dynamic stability
using linearized models. In this connection, in this chapter, we focus on the analysis of
natural motion (i.e. uncontrolled motion) and later in Parts II and III focus on designing
feedback control systems to control the aircraft dynamics in a desired fashion.

5.2 Analysis of Perturbed Flight from Trim: Aircraft Dynamic
Stability and Control

To develop the linearized equations of motion for the perturbed motion variables, we
first express eachmotion variable as consisting of a steady state (equilibrium, trim) term,
which is a constant plus a perturbation term. Then we expand the original nonlinear
differential equations we developed in the previous chapters and then assume the per-
turbations to be small so as to make small angle approximations and neglect all the
second and higher order terms in the perturbation variables, so that in the end, we come
upwith a set of linear differential equations in the (small) perturbationmotion variables.
Accordingly, the following substitutions are applied to all motion variables to derive the
perturbed state equations of motion:

U = U0 + usp
P = P0 + p
Ψ = Ψ0 + 𝜓

V = V0 + 𝑣

Q = Q0 + q
Θ = Θ0 + 𝜃

W = W0 +𝑤

R = R0 + r
Φ = Φ0 + 𝜙.

(5.1)

Equations (5.1) are known as the so-called perturbation equations: each variable is
considered to be the sum of a steady state quantity (indicated by a subscript 0) and a

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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perturbed state quantity (indicated by the lower case character). Similar substitutions
are carried out for the aerodynamic and thrust force and moments. Forces:

FAx
= FAx0

+ fAx

FAy
= FAy0

+ fAy

FAz
= FAz0

+ fAz

FTx
= FTx0

+ fTx

FTy
= FTy0

+ fTy

FTz
= FTz0

+ fTz
.

(5.2)

Moments:
L = LA0

+ lA
M = MA0

+mA
N = NA0

+ nA

LT = LT0
+ lT

MT = MT0
+mT

NT = NT0
+ nT .

(5.3)

Carrying out the perturbation substitutions (5.1) through (5.3) in Equations 2.87
and 2.88:

m{ ̇usp − (V0 + 𝑣)(R0 + r) + (W0 +𝑤)(Q0 + q)}
= −mg sin(Θ0 + 𝜃) + FAx0

+ fAx
+ FTx0

+ fTx
(5.4)

m{�̇� + (U0 + usp)(R0 + r) − (W0 +𝑤)(P0 + p)}
= mg sin(Φ0 + 𝜙) cos(Θ0 + 𝜃) + FAy0

+ fAy
+ FTy0

+ fTy
(5.5)

m{�̇� − (U0 + usp)(Q0 + q) + (V0 + 𝑣)(P0 + p)}
= mgcos(Φ0 + 𝜙) cos(Θ0 + 𝜃) + FAz0

+ fAz
+ FTz0

+ fTz
(5.6)

Ixxṗ − Ixzṙ − Ixz(P0 + p)(Q0 + q) + (Izz − Iyy)(R0 + r)(Q0 + q)
= LA0

+ lA + LT0
+ lT (5.7)

Iyyq̇ + (Ixx − Izz)(P0 + p)(R0 + r) + Ixz{(P0 + p)2 − (R0 + r)2}
= MA0

+mA +MT0
+mT (5.8)

Izzṙ − Ixzṗ + (Iyy − Ixx)(P0 + p)(Q0 + q) + Ixz(R0 + r)(Q0 + q)
= NA0

+ nA + NT0
+ nT . (5.9)

Up to this point, our equations are still sufficiently general to be applicable to flight
situations involving arbitrary perturbations. Now, we introduce a restriction on pertur-
bations, and define the perturbations 𝜃 and 𝜙 such that:

cos 𝜃 = cos𝜙 ≈ 1.0 (5.10)

sin 𝜃 ≈ 𝜃 and sin𝜙 ≈ 𝜙. (5.11)

This restricts the attitude and bank angle perturbations to roughly 15∘, which is still
sizable and therefore does not constitute any serious restriction from a practical point
of view. Restrictions 5.10 and 5.11 allow the trigonometric terms in Equations 5.4
through 5.9 to be expanded as follows:

sin(Θ0 + 𝜃) = sinΘ0 cos 𝜃 + cosΘ0 sin 𝜃
= sinΘ0 + 𝜃 cosΘ0 (5.12)
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sin(Φ0 + 𝜙) cos(Θ0 + 𝜃) = (sinΘ0 cos𝜙 + cosΦ0 sin𝜙)(cosΘ0 cos 𝜃 − sinΘ0 sin 𝜃)
= (sinΦ0 + 𝜙 cosΦ0)(cosΘ0 − 𝜃 sinΘ0)
= sinΦ0 cosΘ0 − 𝜃 sinΦ0 sinΘ0 + 𝜙 cosΦ0 cosΘ0

− 𝜙𝜃 cosΦ0 sinΘ0 (5.13)

cos(Θ0 + 𝜃) cos(Ψ0 + 𝜓) = (cosΘ0 cos 𝜃 − sinΘ0 sin 𝜃(cosΨ0 cos𝜓 − sinΨ0 sin𝜓)
= (cosΘ0 − 𝜃 sinΘ0)(cosΦ0 − 𝜓 sinΨ0)
= cosΘ0 cosΦ0 − 𝜓 sinΨ0 cosΘ0 − 𝜃 sinΘ0 cosΦ0

+ 𝜓𝜃 sinΘ0 sinΨ0 (5.14)

Employing the trigonometric identities 5.12, 5.13, and 5.14 while expanding
Equations 5.4 through 5.6 it is found that the equations of motion can be written
as in Table 5.1.
Observe that parts of the equations in Table 5.1 are underlinedwith one line.These are

steady-state terms. Note that the steady-state equations are embedded in the perturbed
state equations of Table 5.1. Since the steady state equations are inherently satisfied, they
can thus be eliminated from Table 5.1.
Observe that Table 5.1 also contains terms underlined with two lines.These items are

all nonlinear in nature, that is they contain products or cross-products of the perturba-
tion variables u, 𝑣, 𝑤, p, q, r, 𝜃 and 𝜙.
At this point it is assumed that the perturbations are sufficiently small for products and

cross-products of the perturbations to be negligible with respect to the perturbations
themselves. With this assumption the nonlinear terms of Table 5.1 become negligible
and the equations of perturbed motion simplify the following:

m( ̇usp − V0r − R0𝑣 +W0q + Q0𝑤) = −mg cosΘ0 + fAx
+ fTx

(5.15)
m(�̇� +U0r + R0u −W0p − P0𝑤) = −mg sinΦ0 sinΘ0 +mg𝜙 cosΦ0 cosΘ0

+ fAy
+ fTy

(5.16)

m(�̇� −U0q − Q0u + V0p + P0𝑣) = −mg𝜃 cosΦ0 sinΘ0 −mg𝜙 sinΦ0 cosΘ0

+ fAz
+ fTz

(5.17)
Ixxṗ − Ixzṙ − Ixz(P0q + Q0p) + (Izz − Iyy)(R0q + Q0r) = lA + lT (5.18)
Iyyq̇ + (Ixx − Izz)(P0r + R0p) + Ixz(2P0p − 2R0r) = mA +mT (5.19)
Izzṙ − Ixzṗ + (Iyy − Ixx)(P0q + Q0p) + Ixz(R0q + Q0r) = nA + nT (5.20)

Provided the perturbed aerodynamic and thrust forces and moments are linear in the
motion variables it is now clear that the equations of perturbed motion as reflected
by 5.15 through 5.20 are linear in the variables u, 𝑣, 𝑤, p, q, r, 𝜓 , 𝜃 and 𝜙. Observe
that we need to linearize the kinematic relations expressed by Equations 2.89. Carrying
out the perturbation substitution in equations 2.89 yields:

P0 + p = (Φ̇0 + �̇�) − (Ψ̇0 + �̇�) sin(Θ0 + 𝜃) (5.21)

Q0 + q = (Θ̇0 + �̇�) cos(Φ0 + 𝜙) + (Ψ̇0 + �̇�) cos(Θ0 + 𝜃) sin(Φ0 + 𝜙) (5.22)

R0 + r = (Ψ̇0 + �̇�) cos(Θ0 + 𝜃) cos(Φ0 + 𝜙) − (Θ̇0 + �̇�) sin(Φ0 + 𝜙). (5.23)



Table 5.1 Perturbation equations of motion with the restrictions cos 𝜃 = cos𝜙 ≈ 1; sin 𝜃 ≈ 𝜃; sin𝜙 ≈ 𝜙.

(−V0R0 +W0Q0) +m( ̇usp − V0r − R0𝑣 +W0q + Q0𝑤) +m(−𝑣r +𝑤q) = −mg sinΘ0 + FAx0
+ FTx0

−mg cosΘ0 + fAx
+ fTx

U0R0 +W0P0) +m(�̇� +U0r + R0usp −W0p − P0𝑤) +m(uspr −𝑤p) = mg sinΦ0 cosΘ0 + FAy0 + FTy0 −mg𝜃 sinΦ0 sinΘ0

+ mg𝜙 cosΦ0 cosΘ0 + fAy + fT y −mg𝜙𝜃 cosΦ0 sinΘ0

(−U0Q0 + V0P0) +m(�̇� −U0q − Q0usp + V0p + P0𝑣) +m(−uspq + 𝑣p) = mg cosΦ0 cosΘ0 + FAz0 + FTz0 −mg𝜃 cosΦ0 sinΘ0

− mg𝜙 sinΦ0 cosΘ0 + fAz + fTz +mg𝜙𝜃 sinΦ0 sinΘ0

xzP0Q0 + (Izz − Iyy)R0Q0 + Ixxṗ − Ixzṙ − Ixz(P0q + Q0p) + (Izz − Iyy)(R0q + Q0r) − Ixzpq + (Izz − Iyy)rq = LA0
+ LT0

+ lA + lT

− Izz)P0R0 + Ixz(P0
2 − Q0

2) + Iyyq̇ + (Ixx − Izz)(P0r + R0p) + Ixz(2P0p − 2R0r) + (Ixx − Izz)pr + Ixz(p2 − r2) = MA0 +MT0 +mA +mT

− Ixx)P0Q0 + IxzQ0R0 + Izzṙ − Ixzṗ + (Iyy − Ixx)(P0q + Q0p) + Ixz(R0q + Q0r) + (Iyy − Ixx)pq + Ixzqr = NA0
+ NT0

+ nA + nT
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Expanding these equations and using the restrictions 5.10 and 5.11 yields:

P0 + p = Φ̇0 + �̇� − Ψ̇0 sinΘ0 − Ψ̇0𝜃 cosΘ0 − �̇� sin Θ̇0 − �̇�𝜃 cosΘ0 (5.24)

Q0 + q = Θ̇0 cosΦ0 − Θ̇0𝜙 sinΦ0 + �̇� cosΦ0 − �̇�𝜙 sinΦ0 + Ψ̇0 cosΘ0 sinΦ0

+ Ψ̇0𝜙 cosΘ0 sinΦ0 − Ψ̇0𝜃 sinΘ0 sinΦ0 − Ψ̇0𝜙𝜃 sinΘ0 cosΦ0

+ �̇� cosΘ0 sinΦ0 + �̇�𝜙 cosΘ0 cosΦ0 − �̇�𝜃 sinΘ0 sinΦ0

− �̇�𝜃𝜙 sinΘ0 cosΦ0 (5.25)

R0 + r = Ψ̇0 cosΘ0 cosΦ0 − Ψ̇0𝜙 cosΘ0 sinΦ0 − Ψ̇0𝜃 sinΘ0 cosΦ0

− Ψ̇0𝜙𝜃 sinΘ0 sinΦ0 + �̇� cosΘ0 cosΦ0 − �̇�𝜙 cosΘ0 sinΦ0

− �̇�𝜃 sinΘ0 cosΦ0 + �̇�𝜃𝜙 sinΘ0 sinΦ0 − Θ̇0 sinΦ0 − Θ̇0𝜙 cosΦ0

− �̇� sinΦ0 − �̇�𝜙 cosΦ0 . (5.26)

By checking terms underlined with one line in equations 5.24 through 5.26 it is observed
that the steady state equations 2.89 are embedded in equations 5.24 through 5.26. Terms
underlined with two lines in equations 5.24 through 5.26 represent nonlinear terms.
Eliminating the steady state parts and introducing the small perturbation assumption
yields:

p = �̇� − Ψ̇0𝜃 cosΘ0 − �̇� sinΘ0 (5.27)
q = −Θ̇0𝜙 sinΦ0 + �̇� cosΦ0 + Ψ̇0 cosΘ0 cosΦ0 − Ψ̇0𝜃 sinΘ0 sinΦ0

+ �̇� cosΘ0 sin0 (5.28)
r = −Ψ̇0𝜙 cosΘ0 sinΦ0 − Ψ̇0𝜃 sinΘ0 cosΦ0 + �̇� cosΘ0 cosΦ0 − Θ̇0𝜙 cosΦ0

− �̇� sinΦ0 . (5.29)

Equations 5.24 through 5.26 should be used in conjunction with Equations 5.15
through 5.20. Together they form nine equations in nine variables. The reader will
observe that these equations are relative to an extremely general steady state. Once a
specific steady state is assumed, then these linearized equations can be specialized to
that particular steady state.
Themajority of airplane dynamics problems are concernedwith perturbations relative

to a steady state for which

(a) no initial side velocity exists: V0 = 0
(b) no initial bank angle exists: Φ0 = 0
(c) no initial angular velocities exist: P0 = Q0 = R0 = Ψ̇0 = Θ̇0 = Φ̇0 = 0.

Imposing the above restrictions onto Equations 5.15 and 5.20, and Equations 5.24
through 5.26 yields:

m( ̇usp +W0q) = −mg cosΘ0 + fAx
+ fTx

m(�̇� +U0r −W0p) = mg𝜙 cosΘ0 + fAy
+ fTy

(5.30)

m(�̇� −U0q) = −mg𝜃 sinΘ0 + fAz
+ fTz
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Ixxṗ − Ixzṙ = lA + lT
Iyyq̇ = mA +mT (5.31)
Izzṙ − Ixzṗ = nA + nT
p = �̇� − �̇� sinΘ0

q = �̇� (5.32)
r = �̇� cosΘ0.

Equations 5.30 through 5.32 form the basis formost studies of airplane dynamic stability,
response-to-control and automatic flight control system studies.

5.3 Linearized Equations of Motion in Terms of Stability
Derivatives For the Steady, Level Equilibrium Condition

In the stability axes frame, the aircraft body x axis is along the free stream velocity vector
so that the steady state angle of attack is zero, which in turn means Θ0 as well asW0, in
the above equations are zero.Thus the linearized equations ofmotion in stability axes are
presented below. First the force equations (in the X, Y , and Z directions, respectively):

m ̇usp = −mg𝜃 +
𝜕FAx

𝜕usp
usp +

𝜕FAx

𝜕𝑤
𝑤 +

𝜕FAx

𝜕q
q +

𝜕FAx

𝜙𝜃
𝜃 +

𝜕FAx

𝜙𝛿e
𝛿e (5.33)

m(�̇� +U0r) = mg𝜙 +
𝜕FAy

𝜕𝑣
𝑣 +

𝜕FAy

𝜕p
p +

𝜕FAy

𝜕r
r +

𝜕FAy

𝜙𝛿A
𝛿A +

𝜕FAy

𝜙𝛿R
𝛿R (5.34)

m(�̇� −U0q) = −mg sinΘ0𝜃 +
𝜕FAz

𝜕usp
usp +

𝜕FAz

𝜕𝑤
𝑤 +

𝜕FAz

𝜕q
q +

𝜕FAz

𝜙𝜃
𝜃 +

𝜕FAz

𝜙𝛿e
𝛿e.

(5.35)

Then the moment equations (about the X,Y , and Z axes, respectively):

Ixxṗ − Ixzṙ =
𝜕LA

𝜕𝑣
𝑣 +

𝜕LA

𝜕p
p +

𝜕LA

𝜕r
r +

𝜕LA

𝜙𝛿A
𝛿A +

𝜕LA

𝜙𝛿R
𝛿R (5.36)

Iyyq̇ =
𝜕MA

𝜕u
u +

𝜕MA

𝜕𝑤
𝑤 +

𝜕MA

𝜕q
q +

𝜕MA

𝜙𝜃
𝜃 +

𝜕MA

𝜙𝛿e
𝛿e (5.37)

Izzṙ − Ixzṗ =
𝜕NA

𝜕𝑣
𝑣 +

𝜕NA

𝜕p
p +

𝜕NA

𝜕r
r +

𝜕NA

𝜙𝛿A
𝛿A +

𝜕NA

𝜙𝛿R
𝛿R. (5.38)

And finally, the three kinematic equations:

�̇� = p (5.39)

�̇� = q (5.40)

�̇� = r. (5.41)
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Now denote
𝜕FAx

𝜕usp
∕m = X′

u (5.42)

𝜕FAy

𝜕𝑣
∕m = Y ′

𝑣 (5.43)

𝜕FAz

𝜕usp
∕m = Z′

u (5.44)

𝜕MA

𝜕usp
∕Iyy = M′

u (5.45)

and so on.
We label the above right hand terms as dimensional stability derivatives. Gathering

all the coefficients of each of the state variables, after appropriate manipulations and
adjustment of terms on each side, it is possible to label all the stability derivatives in a
concise form (as mentioned in [12]).
The linearized equations of motion, in the stability axes system, for an aircraft, are

reproduced below where the steady state condition is taken to be a steady level, cruise
flight and the control surface deflections are taken to be 𝛿e (elevator deflection), 𝛿A
(aileron deflection) and 𝛿R (rudder deflection).
Out of these nine equations ofmotion, the four that describemotion in the (x, z) plane

are called longitudinal equations of motion, and the other five out of plane equations are
labeled as lateral/directional equations of motion.
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5.4 State Space Representation for Longitudinal Motion
andModes of Approximation

The forces in the X direction (longitudinal motion) can be expressed in a concise
form [12] as:

̇usp = Xuusp + X𝑤𝑤 + Xqq + X𝜃𝜃 + X𝛿e𝛿e

�̇� = Zuusp + Z𝑤𝑤 + Zqq + Z𝜃𝜃 + Z𝛿e𝛿e

q̇ = Muusp +M𝑤𝑤 +Mqq +M𝜃𝜃 +M𝛿e𝛿e

�̇� = q.

It is convention in some texts to replace the vertical velocity𝑤with the angle of attack 𝛼
in these equations.The reader should keep inmind that the variables𝑤 and 𝛼 essentially
convey the same information, and can therefore be used interchangeably. Note that, in
the linear range, the vertical velocity 𝑤 is often used interchangeably with the angle of
attack 𝛼 because in the linearized model 𝑤 is related to 𝛼 via the expression 𝛼 = 𝑤∕U0.
In a vector-matrix format, they are:

⎡⎢⎢⎢⎢⎢⎣

̇usp

�̇�

q̇

�̇�

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Xu X𝑤 Xq X𝜃

Zu Zw Zq Z𝜃

Mu M𝑤 Mq M𝜃

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

usp

𝑤

q

𝜃

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

X𝛿e

Z𝛿e

M𝛿e

0

⎤⎥⎥⎥⎥⎥⎦
𝛿e (5.46)

Here themotion variablesu,𝑤 (or 𝛼), q, and 𝜃 are the state variables and the forcing func-
tion (input) variable 𝛿e is the control variable.Wewrite the above linearized longitudinal
equations of motion for an aircraft at a given steady state level flight condition (i.e. at a
given speed and altitude) in the state variable representation or state space formulation
mentioned in the previous chapters. Thus we have:

ẋ = Ax + Bu

where x is the vector of state variables, A is the constant coefficient matrix that involves
the stability derivatives, B is the constant coefficient matrix that involves the control
surface stability derivatives, and u is the vector of control variable. In our case:

x =

⎡⎢⎢⎢⎢⎢⎣

usp

𝑤

q
𝜃

⎤⎥⎥⎥⎥⎥⎦
(5.47)

and

u = 𝛿e. (5.48)

Note that in the longitudinal case the state vector x is of dimension 4 and the control
vector uc is of dimension 1 (single input) and thus A is a 4 × 4 matrix and B is a 4 × 1
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matrix. Recall that in a general set of linear constant coefficient differential equations in
state space representation, x is of dimension n and uc is of dimension m and thus A is
an n × nmatrix and B is a n ×mmatrix.
We can get similar state variable representation for the other five equations involving

lateral/directional motion with 𝑣, p, r, 𝜙, and 𝜓 as the state variables and the aileron
deflection, 𝛿A, and the rudder deflection, 𝛿R, as the control variables. For now, we focus
on the longitudinal case and provide a similar treatment in the lateral/directional case
in Section 5.5.The elements in thematricesA and B in the above state space representa-
tion are labeled as the stability derivatives of the aircraft. Notice that these have specific
numerical values based on the aircraft’s geometric parameters (like wing area S, mean
aerodynamic chord c and so on, mass and moment of inertia parameters, aerodynamic
parameters such as CL, CD, CL𝛼 , Cm𝛼 and so on, and most importantly on the flight con-
dition (for a given Mach number, altitude combination) itself. Since the linearization
is done about a steady state condition, which in turn depends on the flight condition
(cruise speed and altitude) all the rates of changes related to the aerodynamic forces
(such as lift and drag) and the aerodynamic moments are evaluated at that flight con-
dition and thus eventually take on some numerical values corresponding to that flight
condition. In other words, we obtain a set of A and Bmatrices corresponding to a given
flight condition within the flight envelope. The expressions for the entries of the A and
B matrices could be the non-dimensional stability derivatives or dimensional stability
derivatives depending on the nature of data used in the expressions for those stability
derivatives. We assume the explicit expressions given for the entries to be the dimen-
sional stability derivatives.
It is to be recognized that considerable effort goes into getting explicit expressions for

these dimensional stability derivatives, mostly obtained from wind tunnel tests by aero-
dynamics engineers. In a course completely dedicated to aircraft dynamics and control,
it is possible to go deeper into obtaining these explicit expressions. However, keeping the
scope of this book in mind, we basically direct the reader to the many good textbooks
available on pure aircraft dynamics and control such as [30, 31, 40] for those explicit
formulae for the entries of the Amatrix and Bmatrix in the above state space represen-
tation. Instead, we summarize the expressions for most of those stability derivatives and
discuss their importance. The way to get final numerical values for each of the above
stability derivatives (i.e. entries of the A and B matrices) for an aircraft at a given flight
condition are elaborated in [24]. It suffices to emphasize the fact that the numerical
value obtained for each of these stability derivatives embodies complete information
about the mass, geometric and aerodynamic parameters of the aircraft as well as the
specificity of the particular flight condition (Mach number and altitude). A typical flight
envelope with various flight conditions is depicted in Figure 5.1. In that sense, it is worth
reiterating that this simple state space equation ẋ = Ax + Bu amazingly contains all the
critical information that is specific to a particular aircraft at a particular flight condi-
tion. Looking at it from a mathematical point of view, it is a simple vector/matrix first
order differential equation, but looking at from an aeronautical engineering point of
view, that state space equation is indeed the aircraft itself! See Figure 5.2. This should
provide sufficientmotivation for the student to appreciate the use ofmathematicalmod-
eling in capturing the dynamics of an engineering system, an aircraft in our case here. It
underscores the close, powerful and useful connection between mathematics and engi-
neering.
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x = Ax + Bu∙

Figure 5.2 Illustration of the importance of mathematical models.

5.4.1 Summary and Importance of the Stability Derivatives

Borrowing material from books such as [24], we list the expressions for the stability
derivatives andwhen appropriate comment on the nature and importance of that deriva-
tive.
All stability derivatives are important but some are more important for flight control

than others.

5.4.1.1 Importance of Various Stability Derivatives in Longitudinal Motion
We now focus on a few stability derivatives of importance in the longitudinal motion.
A number of parameters appear frequently in the equations defining stability deriva-

tives. They are listed here for convenience (note that all the stability derivatives pre-
sented are dimensional): S is the surface area of the wing, c is the mean aerodynamic
chord, 𝜌 is the density, and b is the wing span.

5.4.2 Longitudinal Motion Stability Derivatives

5.4.2.1 Lift Related Stability Derivatives

Zw =
𝜌SU0

2m
(CL𝛼

+ CD).

The change in lift coefficient with a change in angle of attack, CL𝛼
, is often referred to as

the lift curve slope. It is always positive for values of angle of attack below the stall value.
The lift curve slope for the total airframe comprises components due to the wing, the
fuselage and the tail. Formost conventional aircraft it has been found to be generally true
that thewing contributes 85-90 percent to the value ofCL𝛼

. Consequently, any aeroelastic
distortion of the wing can appreciably alter CL𝛼

and, hence, Zw.

5.4.2.2 Pitching Moment Related Stability Derivatives

Mu ≜
𝜌SU0c
Iyy

(Cmu
+ Cm).

Thenon-dimensional pitchingmoment coefficient,Cm, is usually zero in trimmed flight,
except in cases of thrust asymmetry. Mu represents the change in pitching moment
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caused by a change in forward speed. Its magnitude can vary considerably and its sign
can change with changes in Mach number and in dynamic pressure and also as a result
of aeroelastic effects. In modern aircraft, the Mach number effects and the effects of
aeroelasticity have become increasingly important.

M𝑤 =
𝜌SU0c
2Iyy

Cm𝛼

The non-dimensional stability derivative, Cm𝛼
, is the change in the pitching moment

coefficient with angle of attack. It is referred to as the longitudinal static stability deriva-
tive. Cm𝛼

is very much affected by any aeroelastic distortions of the wing, the tail and
the fuselage. However, both sign and magnitude of Cm𝛼

are principally affected by the
location of the center of gravity of the aircraft. Cm𝛼

is proportional to the distance, xAC,
between the center of gravity and the aerodynamic center of the whole aircraft (which
often is also labeled as the static margin). xAC is measured positive forwards. If xAC is
zero, Cm𝛼

is zero. If xAC < 0, Cm𝛼
is negative and the aircraft is statically stable. If the

center of gravity is aft of the aerodynamic center, xAC < 0 and Cm𝛼
is positive, with the

consequence that the aircraft is statically unstable. In going from subsonic to supersonic
flight the aerodynamic center generally moves aft, and, therefore, if the center of gravity
remains fixed, Cm𝛼

will tend to increase for a statically stable aircraft. Thus M𝑤(M𝛼) is
closely related to the aircraft’s staticmargin. Because of the significance of static stability,
static margin, naturally M𝑤 (or M𝛼) is one of the most important longitudinal stability
derivatives.

Mq =
𝜌SU0c

2

4Iyy
Cmq

For conventional aircraft,Mq contributes a substantial part of the damping of the short
period motion. This damping comes mostly from changes in the angle of attack of the
tail and it is also proportional to the tail length, lT.
Mq is a very significant stability derivative which has a primary effect on the handling

qualities of the aircraft.

5.4.2.3 Control Related Stability Derivatives

Z𝛿E
=

−𝜌SU0
2

2m
CL𝛿E

Since CL𝛿E
is usually very small, Z𝛿E

is normally unimportant except when an aircraft
flight control system (AFCS) involving feedback of normal acceleration is used. Also, if
a tailless aircraft is being considered, the effective lever arm for the elevator (or ailerons)
is small, hence CL𝛿E

may be relatively large compared to Cm𝛿E
. In these cases, Z𝛿E

cannot
safely be neglected in any analysis.

M𝛿E
=

𝜌SU0
2c

2m
Cm𝛿E

.

Cm𝛿E
is termed the elevator control effectiveness; it is very important in aircraft design

and for AFCS work. When the elevator is located aft of the center of gravity, the normal
location,Cm𝛿E

is negative. Its value is determined chiefly by themaximum lift of the wing
and also the range of center of gravity travel which can occur during flight.
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Conceptually speaking, what is more important for the student to realize is that these
stability derivatives are a function of the specific flight condition (at a givenMach num-
ber and altitude, i.e. a point in the flight envelope) and are evaluated at that specific
flight condition. Thus we finally get numerical values for these stability derivatives as
they are evaluated at given flight conditions within the flight envelope. In other words,
this linearized model with a numerical set of entries in the A and Bmatrices is thought
of as representing the aircraft’s state at that particular flight condition.We then design a
flight control system for the aircraft to stabilize and damp out any oscillations for small
motions around that flight condition.
Note that we have linearized state space models of aircraft dynamics about a given

flight condition, which turn out to produce a fourth order plant matrix A for the lon-
gitudinal motion (which is decoupled, in the linear range, from the lateral/directional
motion). Asmentioned in the discussion on stability of linear time invariant systems, the
longitudinal dynamic stability and performance assessment involves finding the eigen-
values of a fourth order A matrix. Finding the eigenvalues of a fourth order system
obviously involves solving for the roots of a fourth degree polynomial. For early aeronau-
tical engineers working without the aid of computers, it was difficult, if not impossible,
to solve for the roots of the polynomial. For this reason, they approximated the motion
of the aircraft (both in longitudinal as well as lateral/directional cases) as smaller sub-
systems. This gives rise to the concept of modes of approximation, for longitudinal (as
well lateral/directional motion). First we discuss the longitudinal approximations and
then lateral/directional approximations.

5.4.3 Longitudinal Approximations

In the longitudinal case, there are twomodes of approximation, namely the short period
mode and the phugoid (long period) mode.

5.4.3.1 Phugoid Mode Approximation
We can think of the long-period or phugoid mode as a gradual interchange of potential
and kinetic energy about the equilibrium altitude and airspeed. An approximation to
the long period mode can be obtained by neglecting the pitching moment equation and
assuming that the change in angle of attack is zero, i.e.

𝛼 = 𝑤

U0
𝛼 = 0 → 𝑤 = 0. (5.49)

Making these assumptions, the homogeneous longitudinal state equations reduce to the
following:[

̇usp

�̇�

]
=
⎡⎢⎢⎣
Xu −g

−Zu

U0
0

⎤⎥⎥⎦
⎡⎢⎢⎣
usp

𝜃

⎤⎥⎥⎦ . (5.50)

Important remark: note that, since this second order system is an approximation of the
large fourth order system, the individual element values of the Amatrix of this approxi-
matemodel do not necessarily coincide with the individual elemental values of the origi-
nal fourth ordermatrix that correspond to the two state variables in the large order state
space system. Hence stability derivative values that appear in the second order approx-
imation model are obtained from the aerodynamic data with some approximations.
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Theeigenvalues of the long period approximation are obtained by solving the equation

|𝜆I − A| = 0 (5.51)

or ||||||
𝜆 − Xu g

Zu

U0
𝜆

|||||| = 0. (5.52)

Expanding the above determinant yields

𝜆2 = Xu𝜆 −
Zug
U0

= 0 (5.53)

or

𝜆p =

[
Xu ±

√
X2
u + 4

Zug
U0

]
∕2.0. (5.54)

The frequency and damping ratio can be expressed as

𝜔np =

√
−Zug
U0

(5.55)

𝜁p =
−Xu

2𝜔np
(5.56)

If we neglect compressibility effects, the frequency and damping ratios for the long-
period motion can be approximated by the following equations:

𝜔np =
√
2
g
U0

(5.57)

𝜁p =
1√
2

1
L∕D

. (5.58)

Notice that the frequency of oscillation and the damping ratio are inversely proportional
to the forward speed and the lift-to-drag ratio, respectively. We see from this approx-
imation that the phugoid damping is degraded as the aerodynamic efficiency (L∕D)
is increased. When pilots are flying an airplane under visual flight rules, the phugoid
damping and frequency can vary over a wide range and they will still find the airplane
acceptable to fly. On the other hand, if they are flying the airplane under instrument
flight rules, low phugoid damping will become very objectionable to them. To improve
the damping of the phugoid motion, the designer would have to reduce the lift-to-drag
ratio of the airplane. Because this would degrade the performance of the airplane, the
designer would find such a choice unacceptable and would look for another alternative,
such as an automatic stabilization system to provide the proper damping characteristics.

5.4.3.2 Short Period Approximation
We can think of the short period mode approximation as a motion with very little speed
changes but appreciable angle of attack changes on relatively fast (short period) time
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scales. An approximation to the short period mode can be obtained by neglecting the
speed changes but accounting for the changes in the angle of attack, i.e.

𝛼 = 𝑤

U0
; usp = 0 → 𝜃 = 0. (5.59)

Making these assumptions, the homogeneous longitudinal state equations reduce to the
following:[

�̇�

q̇

]
=

[
Zw Zq

M𝑤 Mq

][
𝑤

q

]
. (5.60)

Important remark: as mentioned in the case of the phugoid mode, the same remark
holds for this case as well, namely that the individual element values of the A matrix
of this approximate model do not necessarily coincide with the individual elemental
values of the original fourth order matrix that correspond to the two state variables in
the large order state space system. Hence stability derivative values that appear in the
second order approximation model are obtained from the aerodynamic data with some
approximations.
The eigenvalues of the short period approximation are obtained by solving the

equation

|𝜆I − A| = 0 (5.61)

and along the same lines as above for the phugoid mode, we can also obtain the short
period mode natural frequency 𝜔nSP and its damping ratio 𝜁sp in terms of the stability
derivatives.

5.4.4 Summary of Longitudinal Approximation Modes

Summarizing, the short period approximation is arrived at by assuming motion at
constant speed and the phugoid approximation is arrived at by assuming constant
angle of attack motion. A pictorial representation of these modes of motion is shown
in Figures 5.3 and 5.4.

1. Phugoid mode (long period mode):
(a) long period, lightly damped
(b) eigenvalues closer to the imaginary axis (dominant pair)
(c) motion with significant u and e, and very small pitch rate and angle of attack
(d) flight path: approximately one of constant total energy.
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2. Short period mode:
(a) short period, heavily damped
(b) far from imaginary axis
(c) motionwith oscillation of angle of attack variationwith negligible speed variation
(d) flight path: damped rapidly

Important remark: it needs to be kept in mind that this type of mode separation
is arrived at from physical considerations of the motion of a typical aircraft wherein
lot of assumptions have been made about the stability derivative information. Thus it
is not necessary that every aircraft exhibit a motion corresponding to these two types
of modes. These two types modes can be identified in a distinct fashion only if the real
parts and the imaginary parts of the two complex conjugate eigenvalue pairs of the larger
fourth order matrix have appreciable separation among them. In other words, for an
aircraft at a particular flight condition at which the stability derivatives take on such
values that the overall longitudinal fourth order matrix has very closely spaced complex
conjugate pair eigenvalues or possibly the eigenvalues do not even turn out to be two
complex conjugate pairs at all (indicating no oscillatory behavior) then it is not possible
to label them as strictly a short period mode and a phugoid mode. In the most common
and standard data situations it may be relatively easy to identify one mode as a pure
phugoid mode and another mode as a pure short periodmode but this is not necessarily
the case for each and every aircraft at each and every flight condition. This artifice of
approximating a fourth order systemdynamics into two smaller second order subsystem
dynamics is very much dependent on the makeup of the eigenvalues of the larger fourth
order system dynamics matrix and thus care needs to be exercised as to how to label the
overall motion as consisting of a short period mode and a phugoid mode.
Next, we turn our attention to lateral/directional motion.

5.5 State Space Representation for Lateral/Directional
Motion andModes of Approximation

We can write expressions for the forces and moments in the lateral/directional motion
as follows: the forces in the Y direction (lateral/directional motion)

�̇� = Y𝑣𝑣 + Ypp + Yrr + Y𝜓𝜓 + Y𝜙𝜙 + Y𝛿A𝛿A + Y𝛿R𝛿R. (5.62)

Rolling moment equation (lateral/directional motion)

ṗ = L𝑣𝑣 + Lpp + Lrr + L𝜓𝜓 + L𝜙𝜙 + L𝛿A𝛿A + L𝛿R𝛿R. (5.63)
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Yawing moment equation (lateral/directional motion)

ṙ = N𝑣𝑣 + Npp + Nrr + N𝜓𝜓 + N𝜙𝜙 + N𝛿A𝛿A + N𝛿R𝛿R. (5.64)

Euler (roll) angle rate (lateral/directional motion)

�̇� = r. (5.65)

Euler (yaw) angle rate (lateral/directional motion)

�̇� = p. (5.66)

Putting these five lateral/directional motion equations into a compact state space form,
we get:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̇�

ṗ

ṙ

�̇�

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y𝑣 Yp Yr Y𝜓 Y𝜙

L𝑣 Lp Lr L𝜓 L𝜙

N𝑣 Np Nr N𝜓 N𝜙

0 0 1 0 0

0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑣

p

r

𝜓

𝜙

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Y𝛿A Y𝛿R

L𝛿A L𝛿R

N𝛿A N𝛿R

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[
𝛿A

𝛿R

]
. (5.67)

This is the generic, standard state space representation of the aircraft lateral/directional
equations of motion, with 𝑣, p, r, 𝜙 and 𝜓 being the state variables. The aileron deflec-
tion, 𝛿A, and the rudder deflection, 𝛿R are the control variables. It is convention in some
texts to replace the side velocity 𝑣with the sideslip angle 𝛽 in these equations.The reader
should keep in mind that the variables 𝑣 and 𝛽 essentially convey the same information,
and can therefore be used interchangeably. Note that, in the linear range, the side veloc-
ity 𝑣 is often used interchangeably with the sideslip angle 𝛽 because in the linearized
model, 𝑣 is related to 𝛽 via the expression 𝛽 = 𝑣∕U0.

Relative Importance of Various Stability Derivatives in Lateral/Directional Motion
Asmentioned earlier in the longitudinal case discussion, all stability derivatives appear-
ing in the above A and Bmatrices are important but some are more important for flight
control than others. We now focus on a few stability derivatives of importance in later-
al/directional motion. Note that stability derivatives L𝛽 and L𝑣 are related and similarly
N𝑣 and N𝛽 are related.

5.5.1 Lateral/Directional Motion Stability Derivatives

5.5.1.1 Motion related

Y𝑣 =
𝜌SU0

2m
Cy𝛽 .

The side force that results from any sideslip motion is usually obtained from the fin of
the aircraft, and usually opposes the sideslip motion, i.e. Cy𝛽 < 0. However, for aircraft
with a slender fuselage, at large values of the angle of attack the forces can be in an aiding
direction. For certain (rare) configurations having awing of low aspect ratio but required
to operate at a large value of angle of attack, this force on the fuselage can counter the
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resisting force of the fin, which results in the stability derivative Cy𝛽 being positive. Such
positive values, even if very small, are undesirable because the reversed (or small) side
force makes it difficult for a pilot to detect sideslip motion and consequently makes a
coordinated turn difficult to achieve. Such values ofCy𝛽 also reduce the damping ratio of
the Dutch roll mode, whereas Cy𝛽 normally makes a large contribution to this damping.
In the normal caseCy𝛽 is not a derivativewhich causes great difficulty toAFCS designers.

L𝛽 =
𝜌SU0

2b
2Ixx

Cl𝛽 .

The change in the value of the rollingmoment coefficient with sideslip angleCl𝛽 is called
the effective dihedral.This derivative is very important in studies concerned with lateral
stability and control. It features in the damping of both the Dutch roll and the spiral
modes. It also affects the maneuvering capability of an aircraft, particularly when lateral
control is being exercised near stall by rudder action only. Usually small negative values
of Cl𝛽 are wanted, as such values improve the damping of both the Dutch roll and the
spiral modes, but such values are rarely obtained without considerable aerodynamic
difficulty.

N𝛽 =
𝜌U0

2

2
Sb
Ixx

Cn𝛽
.

The change in the yawing moment coefficient with change in sideslip angle Cn𝛽
us

referred to as the static directional or weathercock stability coefficient. It depends
upon the area of the fin and the lever arm. The aerodynamic contribution to Cn𝛽

from
the fin is positive, but the contribution from the aircraft body is negative. A positive
value of Cn𝛽

is regarded as static directional stability; a negative value signifies static
directional instability. Cn𝛽

primarily establishes the natural frequency of the Dutch roll
mode and is an important factor in establishing the characteristics of the spiral mode
stability. For good handling qualities Cn𝛽

should be large, although such values magnify
the disturbance effects from side gusts. At supersonic speeds Cn𝛽

is adversely affected
because the lift curve slope of the fin decreases.

Lp =
𝜌U0Sb2

4Ixx
Clp .

The change in rolling moment coefficient with change in rolling velocity, Clp , is referred
to as the roll damping derivative. Its value is determined almost entirely by the geometry
of the wing. In conjunction with Cl𝛿A

(q.v.), Clp establishes the maximum rolling veloc-
ity that can be obtained from the aircraft, an important flying quantity. Clp is always
negative, although it may become positive when the win (or parts of it) are stalled.

Np =
𝜌U0Sb2

4Ixz
Cnp

.

The change in rollingmoment coefficient with a change in rolling velocity,Cnp
, is usually

negative, although a positive value is desirable. The more negative Cnp
is, the smaller

the damping ratio of the Dutch roll mode and the greater the sideslip motion which
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accompanies entry to, or exit from, a turn.

Lr =
𝜌U0Sb2

4Ixx
Clr .

Thechange in rollingmoment coefficientwith a change in yawing velocity,Clr , has a con-
siderable effect on the spiral mode, but does not much affect the Dutch roll mode. For
good spiral stability, Clr should be positive but as small as possible. A major contribut-
ing factor to Clr is the lift force from the wing, but if the fin is located either above or
below the axis it also makes a substantial contribution to Clr , being positive or negative
dependent upon the fin’s geometry.

Nr =
𝜌U0Sb2

4Izz
Cnr

.

The change in yawing moment coefficient with a change in yawing velocity, Cnr
, is

referred to as the yaw damping derivative. Usually Cnr
is negative and is the main

contributor to the damping of the Dutch roll mode. It also contributes to the stability
of the spiral mode.

5.5.1.2 Control Related

Y𝛿 =
𝜌U2

0S
2m

Cy𝛿 .

The change in side force coefficient with rudder deflection, Cy𝛿R, is unimportant except
when considering an AFCS using lateral acceleration as feedback. Cy𝛿Ais nearly always
negligible. Because positive rudder deflection produces a positive side force, Cy𝛿R < 0.

L𝛿 =
𝜌U2

0Sb
2Ixx

Cl𝛿 .

Cl𝛿R is the change in rolling moment coefficient that results from rudder deflection. It is
usually negligible. Because the rudder is usually located above the axis, positive rudder
deflection produces positive rolling motion, i.e. Cl𝛿R > 0.
The change in rolling moment coefficient with a deflection of the ailerons, Cl𝛿A, is

referred to as the aileron effectiveness. In lateral dynamics it is the most important
control-related stability derivative. It is particularly important for low speed flight where
adequate lateral control is needed to counter asymmetric gusts that tend to roll the air-
craft.

N𝛿 =
𝜌U2

0Sb
2Izz

Cn𝛿
.

The change in yawing moment coefficient that results from a rudder deflection, Cn𝛿R,
is referred to as the rudder effectiveness. When the rudder is deflected to the left (i.e.
𝛿R > 0) a negative yawing moment is created on the aircraft, i.e. Cn𝛿R < 0.
The change in yawingmoment coefficient that results from an aileron deflection,Cn𝛿A,

results in adverse yaw ifCn𝛿A < 0, for when a pilot deflects the ailerons to produce a turn,
the aircraft will yaw initially in a direction opposite to that expected. When Cn𝛿A > 0,
the yaw that is favorable to that turning maneuver, this is referred to as proverse yaw.
Whatever sign Cn𝛿A takes its value ought to be small for good lateral control.
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Just as we discussed the approximation of variousmodes ofmotion in the longitudinal
case, we can do a similar exercise in the lateral/directional case as well. However, there
are considerable differences in the nature of these modes of approximation between the
longitudinal case and the lateral/directional case. We elaborate on them next.

5.5.2 Lateral/Directional Approximations

In getting these approximations, we simply neglect the �̇� equation because in the lin-
ear range, for small motions, 𝜓 is essentially a constant. Thus we consider only four
lateral/directional equations of motion, which are summarized here:

⎡⎢⎢⎢⎢⎢⎣

�̇�

ṗ

ṙ

�̇�

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Y𝑣 Yp Yr Y𝜙

L𝑣 Lp Lr L𝜙

N𝑣 Np Nr N𝜙

0 1 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝑣

p

r

𝜙

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

Y𝛿A Y𝛿R

L𝛿A L𝛿R

N𝛿A N𝛿R

0 0

⎤⎥⎥⎥⎥⎥⎦

[
𝛿A

𝛿R

]
. (5.68)

Noting that the lateral/directional equations of motion consist of again four state vari-
ables, which makes finding the eigenvalues of the above A matrix without aid from a
computer difficult as in the longitudinalmotion case. Again, early aeronautical engineers
worked around this by approximating lateral motion as comprised of three separate
modes, called roll subsidence, spiral Convergence/divergence, and the Dutch roll.

5.5.3 Roll Subsidence Approximation

Suppose an airplane flying in a steady, level, unaccelerated flight is disturbed by a gust of
wind into a roll.Then, the wing that dips down will see an increased angle of attack 𝛼, as
the air effectively comes up to meet the wing. The other wing, which rolls up, will have
the opposite effect (i.e. a decreased effective angle of attack). Obviously, the wing that
is dipped down will produce more lift than the wing which is tilted upwards. This lift
differential produces a restoring moment that ramps up the roll rate exponentially until
the restoring moment balances the disturbing moment, and equilibrium is achieved.
From this qualitative discussion, we can say that the roll subsidencemode is a converging
maneuver.
Quantitatively, the roll subsidence mode can be approximated with a single degree of

freedom, as follows (Figure 5.5)

ṗ = −
p
𝜏

(5.69)

where 𝜏 is the roll time constant. As it turns out, the eigenvalue corresponding to roll
subsidence is negative and purely real. It is also fairly large in magnitude, and thus we
can say that roll subsidence is a highly converging maneuver.

5.5.4 Spiral Convergence/Divergence Approximation

Again consider an airplane in steady, level, unaccelerated flight that is disturbed into
a roll. This generates a small sideslip velocity 𝑣. Then the incoming air hits the verti-
cal stabilizer at an incidence angle 𝛽, which generates extra tail lift and thus a yawing
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Figure 5.5 Roll subsidence approximation.

moment. This yawing moment actually increases the sideslip in a vicious cycle that, left
unchecked, will see the plane slowly diverge in roll, yaw, and altitude. Plainly speaking,
the aircraft will spiral into the ground. Therefore it is important that the aeronautical
engineer designs the aircraft in such a way as to stabilize the spiral mode (i.e. make it
converge instead of diverge).
Mathematically, the spiral approximation is this[

0
ṙ

]
=

[
L𝛽 Lr

N𝛽 Nr

][
𝛽

r

]
. (5.70)

Substituting the algebraic relationship of the first equation into the second differen-
tial equation, we get a single scalar differential equation in the state variable r. Thus,
it becomes a first order system. This is labeled as spiral mode (Figure 5.6).
As it happens, the eigenvalue associated with the spiral mode is purely real and is

given by 𝜆spiral = [L𝛽Nr − LrN𝛽]∕L𝛽 . Stability derivatives L𝛽 (reflecting dihedral effect)
andNr (reflecting yaw rate damping) are usually negative quantities, On the other hand
N𝛽 (reflecting directional stability) and Lr (roll moment due to yaw rate) are usually pos-
itive quantities.Thus the sign of this real eigenvalue depends on the numerical values for
a specific flight condition of a specific aircraft.Therefore the spiral mode becomes stable
if this eigenvalue is negative and this is labeled as spiral convergence; unstable if posi-
tive. It should be noted that this eigenvalue is smaller in magnitude than that associated
with the roll subsidence mode. We can conclude that the spiral mode is characterized
by slow, often unstable motion.

5.5.5 Dutch Roll Approximation

Again consider an aircraft in steady, level, unaccelerated flight that is disturbed, this
time such that oscillations in yaw ensue. As a wing yaws forward, it will see a higher
incoming wind velocity; the wing yawing back sees a slower incoming wind velocity.
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Figure 5.6 Spiral mode.

This produces an oscillatory lift differential. Recall yaw and roll are coupled. Therefore
The Dutch roll mode is analogous to the short period. However, while the short period
consists of oscillations in angle of attack 𝛼, the Dutch roll mode consists of oscillations
in yaw that couple into roll (Figure 5.7).
Since the vertical stabilizer is less effective than the horizontal stabilizers, the Dutch

roll mode is not damped as well as the short period; the frequency of oscillations
between the short and Dutch roll is comparable, however. Quantitatively, the Dutch

Figure 5.7 The Dutch roll mode.
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roll mode is expressed as:

[
�̇�

ṙ

]
=
⎡⎢⎢⎢⎣
Y𝛽

uo

Yr

uo

N𝛽 Nr

⎤⎥⎥⎥⎦
[
𝛽

r

]
. (5.71)

5.5.6 Summary of Lateral/Directional Approximation Modes

1. Dutch Roll mode:
(a) Has lateral oscillations with motion consisting of mainly yawing and rolling

together.
(b) Eigenvalues are always a complex conjugate pair with negative real part.

2. Spiral mode (convergent/divergent):
(a) Consists mainly of yawing at nearly zero sideslip with some rolling.
(b) Aerodynamic forces in this mode are very small.
(c) Flight path: long, smooth return to reference path, if it is of convergent mode.
(d) The single real eigenvalue is of very low magnitude with it being negative for a

convergent situation, positive for a divergent situation.
3. Roll subsidence mode:

(a) Almost pure rotational motion about the x axis (fuselage axis).
(b) Significant aerodynamic variables are sideslip angle 𝛽 and roll rate p.
(c) The single real eigenvalue is of relatively large magnitude but always negative

giving a convergent motion.
Important remark: finally, as mentioned in the Longitudinal motion approximations

discussion, the same remark holds for this case as well, namely that the individual ele-
ment values of the Amatrix of all these approximate models do not necessarily coincide
with the individual elemental values of the original fourth order matrix that correspond
to the state variables in the large order state space system. Hence stability derivative val-
ues that appear in the these approximation models are obtained from the aerodynamic
data with some approximations.
This completes the discussion of the development the linearized equations of motion

for an aircraft. This is a very important step in the overall scheme of things, because we
propose to use these linear models to design flight control systems, which constitute the
material in Parts II and III of this book.

5.6 Chapter Summary

In this chapter, which specializes the analysis to aircraft dynamics explicitly, we have
learnt the concepts related to dynamic stability of the aircraft motion. Recall that static
stability deals with a situation that is a snapshot at a given time, which happens to be
the equilibrium (or steady state) whereas dynamic stability deals with the actual time
histories of the trajectories (for small motions in the linear range) when perturbed from
the trim condition. We have also learnt that a typical aircraft, in the dynamic stability
situation, exhibits a dynamic behavior that has few specific characteristics and those are
calledmodes of motion. In the longitudinal case, we observed that the aircraft possesses
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two distinct modes labeled short period mode (motion at constant altitude, but varying
angle of attack) and phugoid mode (motion at constant angle of attack but varying alti-
tude). Similarly the roll/yaw motion exhibits modes of motion labeled as the Dutch roll
mode, roll subsidencemode, and spiral convergence/divergentmode. Formore in depth
treatment of any of the concepts presented in this chapter, the reader is encouraged to
consult themany excellent textbooks, completely dedicated to the aircraft dynamics and
control, [40], [1], [30], [35], [15], [25], [29], [18], [41], [7], [14], [32], [20], [24], [12], [31],
[17], [42], [19], [26], [36], [38], [9], [34], [39], [13], [10], [21], [4], [37], [3], [6], [2], [23],
[22], [27], [28], [16], [8], [11], [5], [33] referenced at the end of this chapter.

5.7 Exercises

Exercise 5.1. The longitudinal aircraft equations of motion, in linear state space form,
are given by

⎡⎢⎢⎢⎢⎢⎣

̇usp

�̇�

q̇

�̇�

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Xu X𝑤 0 −g cos 𝜃0
Zu Zw Uo −g sin 𝜃0
Mu M𝑤 Mq 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

usp

𝑤

q

𝜃

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

X𝛿e

Z𝛿e

M𝛿e

0

⎤⎥⎥⎥⎥⎥⎦
𝛿e

where the forward speed change usp, vertical speed change 𝑤, pitch rate change q
and pitch angle change 𝜃 are the state variables; elevator deflection 𝛿e is the control
variable. If the flight path angle 𝛾 is defined as

𝛾 = 𝜃 − 𝛼

= 𝜃 − 𝑤

Uo

and the normal acceleration at the center of gravity location is given by

azcg = �̇� −Uoq

where Uo is the constant, nominal forward velocity, obtain the C and D matrices for
the above state description if
1. 𝛾 is taken as the output variable, and
2. azcg is taken as the output variable.

Exercise 5.2. The longitudinal aircraft equations of motion, in linear state space form,
of a particular aircraft at a particular flight condition, are given by

⎡⎢⎢⎢⎢⎢⎣

̇usp

�̇�

q̇

�̇�

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

−0.0018 0.02 0.0006 −0.331

−0.002 −0.06 1 0

0.328 11.02 −0.08 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

usp

𝑤

q

𝜃

⎤⎥⎥⎥⎥⎥⎦
where the forward speed change usp, vertical speed change 𝑤, pitch rate change q
and pitch angle change 𝜃 are the state variables. Investigate the nature of the modes
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(i.e if it has the two types of modes we discussed before or not and, if they exist,
the corresponding damping ratio and undamped and damped natural frequencies for
those modes) for this aircraft.

Exercise 5.3. Repeat the exercise of Exercise 5.2 above with the following longitudinal
dynamics matrix of another aircraft.

⎡⎢⎢⎢⎢⎢⎣

̇usp

�̇�

q̇

�̇�

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

−0.045 0.036 0.0006 −32.2

−0.369 −2.02 168.8 0

0.0019 −0.039 −2.948 0

0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

usp

𝑤

q

𝜃

⎤⎥⎥⎥⎥⎥⎦
.

Exercise 5.4. In this exercise, we consider lateral/directional dynamics matrix of an air-
craft. ⎡⎢⎢⎢⎢⎢⎣

�̇�

ṗ

ṙ

�̇�

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

−0.254 0 −1.0 0.182

−16.02 −8.40 2.19 0

4.488 −0.350 −0.760 0

0 1 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛽

p

r

𝜙

⎤⎥⎥⎥⎥⎥⎦
.

Identify the lateral/directional modes of motion and their characteristics including
the natural frequency and damping ratios for any existing oscillatory modes.

Exercise 5.5. In this exercise, we consider the lateral/directional dynamics matrix of
another aircraft, with a different set of values for its stability derivatives. In particular,
for this aircraft only the (2,1) element is different from the previous aircraft data.

⎡⎢⎢⎢⎢⎢⎣

�̇�

ṗ

ṙ

�̇�

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

−0.254 0 −1.0 0.182

−11.02 −8.40 2.19 0

4.488 −0.350 −0.760 0

0 1 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

𝛽

p

r

𝜙

⎤⎥⎥⎥⎥⎥⎦
.

Identify the lateral/directional modes of motion and their characteristics including
the natural frequency and damping ratios for any existing oscillatory modes.
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6

Spacecraft Passive Stabilization and Control

6.1 Chapter Highlights

In this chapter, we focus our attention on the analysis of passive methods for spacecraft
(or satellite) stabilization and control. This chapter on passive methods for stabilization
and control parallels the spirit of aircraft static stability and control.With this backdrop,
we briefly review various means of passive control methodologies for satellite attitude
stabilization and control. Then we obtain the conditions for stabilization via these pas-
sive methods.

6.2 Passive Methods for Satellite Attitude Stabilization
and Control

The methods available for attitude stabilization and control can be classified into two
main categories – passive and active.
Passive systems are those making use of the ambient phenomena and not requiring

power or data processing equipment. Active systems use power fromwithin the satellite.
The major passive methods of satellite stabilization and control are:

1. Spin stabilization
2. Dual spin
3. Gravity gradient
4. Magnetic
5. Aerodynamic
6. Radiation pressure.

The major active methods are:

1. Momentum exchange devices (like reaction wheels and control moment gyros).
2. Mass expulsion devices (reaction jets).

A more detailed and rigorous classification is as follows.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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6.2.1 Passive Systems

• Employ environmental/physical torque sources for momentum control.
• Require no on-board power; therefore, no sensors or control logic.
In this chapter, we focus on these passive methods.
Major constituents of passive systems and their primary applications include:

• Spin-stabilized systems without a spin speed, reorientation, or spin-axis procession
control capability, for inertial orientation of the spin axis with cumulative errors
allowed over the mission life.

6.2.1.1 Spin Stabilization
Spin stabilization is an accepted means of maintaining vehicle attitude, since a spinning
body has a natural resistance to torques about axes other than the spin axis.The satellite
acts like a gyro wheel with high angular momentum. In order that the desired spin axis
be maintained, the polar moment of inertia about the spin axis must exceed the lateral
moments of inertia. One problem associated with this method is the spin rate decay
caused by eddy currents due to interaction with the Earth’s magnetic field. Another dif-
ficulty is wobbling. Friction dampers are used to damp out any wobbling due to initial
thrust misalignment and external torques.

6.2.1.2 Dual Spin Stabilization and Control
The dual spin stabilized satellite consists of two bodies coupled to each other through
a bearing. Relative motion between the two bodies is possible about one common axis
and usually one of the bodies is spun at a much faster rate with respect to the other.The
other body may be totally de-spun or slowly spinning about the common axis.
Normally the spinning part is such that its angular momentum is sufficient to provide

the necessary stiffness to the satellite against transverse disturbing torques.The spin axis
is nominally kept normal to the orbital plane (i.e. aligned with the pitch axis). While the
rotor spin imparts inherent stability to the pitch axis, the pitch attitude control may be
accomplished by momentum exchange between the two bodies by suitably accelerating
(or decelerating) the spinning part.

6.2.1.3 Gravity Gradient Stabilization and Control
In gravity gradient stabilization the vehicle must have a single axis about which the
moment of inertia is a minimum. This axis will then become aligned with the local
vertical. A long cylinder or dumbbell configuration are examples of this criterion. This
method makes use of the fact that a small difference in gravity force exists between the
two extreme tip masses of the booms of a dumbbell shaped satellite. Assuming a satel-
lite with cylindrical symmetry about its Z axis, with moments of inertia Ix and Iz, the
gravity-gradient torque is given by:

𝜏 = 3
2
𝜔2

0(Ix − Iz) sin 2𝜃 (dynescm) (6.1)

where 𝜔0 = the orbit angular rate (rad s−1) and 𝜃 = the angle between the satellite’s Z
axis and the local vertical. Since the satellite has cylindrical mass symmetry, Ix = Iy. To
develop a substantial torque it is necessary that Ix be very much greater than Iz . We also
see that the gravity gradient torque is less effective for satellites at very high altitudes
where the orbital period is very great and therefore 𝜔2

0 is very small.
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The natural period of oscillation (libration period) of a gravity stabilized satellite is
given by:

T|| = 2𝜋

𝜔0

√
3
(
1 − Iz

Ix

) (s) (6.2)

in the plane of the orbit; and by:

T1 =
𝜋

𝜔0

√
3
(
1 − Iz

Ix

) (s) (6.3)

in the plane perpendicular to the orbit. For a satellite having an orbital period of 100min
and having Ix >> Iz we find that T|| = 57.8 min and T1 = 50.0 min. These very long
libration periods, when combined with the any disturbance torques that are present,
make damping of the satellite oscillations a difficult problem. For an Earth satellite to
achieve passive gravity gradient stabilization it is necessary to follow certain procedures.
These procedures will of course differ somewhat for various satellite missions, but some
problems common to all will be discussed herein. It should be presumed that the long
extension, or boom, that is required to alter the mass distribution of the satellite will
be extended after the satellite is in orbit. The first thing that must be accomplished is
to remove virtually all the spin that may have been imparted to the satellite during the
launch procedure. A device that rapidly removes the spin energy of a satellite is the
so-called “yo-yo” consisting of two weights attached to cables that are wrapped around
the satellite. When the weights are released they spin out from the satellite causing a
tension in the cables, which results in a retarding torque on the satellite. The next pro-
cedure is to align the satellite vertically with the correct side facing downward.This can
be accomplished by energizing an electromagnet rigidly attached to the satellite. When
the particular, pre-determined face of the satellite is directed downward, the tumbling
rate of the satellite at this timewill be 1.5 rpo.The satellite is now in amost advantageous
condition for capture into gravity gradient attitude stabilization. The boom would then
be erected and the electromagnet turned off by radio command from a ground station.
The satellite will then have its tumbling angular rate reduced by the ratio of the satel-
lite’s moment of inertia. For a typical satellite design, the moment of inertia might be
increased by a factor of 100, resulting in a decrease in the satellite’s tumbling rate to 0.015
rpo, which is essentially stopped in inertial space. In order to be vertically stabilized the
satellite must then achieve a tumbling rate in inertial space of 1.0 rpo. Immediately after
the boom is erected the satellite continues in its orbital motion with its Z axis essen-
tially fixed in inertial space. As the satellitemoves away from themagnetic pole, a gravity
gradient torque continues to act, resulting in planar libration motion of the satellite.

6.2.1.4 Magnetic Control
The interaction of the Earth’s magnetic field with magnetic moments fixed or generated
within the satellite will produce torques on the vehicle. This torque is given by:

T = M × B (6.4)
where M = generated magnetic moment and B = Earth’s magnetic field intensity. The
torque developed can then be used for control purposes, provided that a suitable control
law forM can be chosen.
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6.2.1.5 Aerodynamic Control
For a satellite that operates at minimum altitudes, the aerodynamic force acts on the
cross-sectional area of the satellite normal to the velocity vector at the center of pressure.

6.2.1.6 Solar Radiation Pressure
In the literature there aremany references to the effects of the solar photon pressure field
on attitude control and the flight path of the space vehicles. For application purposes, it
is necessary only tomake certain that the centroid of solar pressure on the craft is “down
sun” from the center of mass. The action is analogous to that of a sea anchor that holds
the bow of a boat into the wind during a storm.
Attitude control using solar radiation pressure is of much significance only interplan-

etary vehicles and for near earth satellites, the effect of solar radiation pressure is negli-
gible.
There are, however, some significant operational limitations and design considera-

tions in the utilization of passive control systems:

1. The system will have an extremely low speed of response (on the order of hours) and
a limited acceleration capability (small control torques).

2. There is little or no flexibility for changing arbitrarily the nominal spacecraft orien-
tation during mission.

3. They are sensitive to predictable or unpredictable perturbations.
4. Initial stabilization problems.
5. Damping of librational motion is difficult. The advantages are simplicity, high relia-

bility and less power.

6.2.2 Passive/Semi-Active Control

Active attitude control systems provide the greatest design flexibility for the controlled
orientation of a spacecraft in the presence of significant perturbations and maneuvers.
When passive methods are combined with few features of active control systems we
categorize them as passive/semi-active systems. For example, controlling or damping
the oscillations of a gravity gradient stabilized satellite or a dual spin stabilized satellite
with active nutation dampers can be viewed as passive/semi-active control. We reserve
the phrase active control for those caseswhen independent three axis control is achieved
withmomentum exchange devises (such as reactionwheels) andmass expulsion devices
such as reaction jets.

6.3 Stability Conditions for Linearized Models of Single Spin
Stabilized Satellites

Recall the rotational equations of motion in principal axes given by:

I1�̇�1 + (I3 − I2)𝜔2𝜔3 = M1 (6.5a)

I2�̇�2 + (I1 − I3)𝜔1𝜔3 = M2 (6.5b)

I3�̇�3 + (I2 − I1)𝜔1𝜔2 = M3. (6.5c)
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Now let us select one of the principal axes, say 3, about which we have the satellite
spinning at a constant angular velocity, i.e.𝜔3 = Ω= constant and we assume that in the
ideal or nominal or steady state or equilibrium situation, this spin is pure spin, i.e. the
entire angular velocity 𝜔 is along only the 3 axis, thus the nominal trajectory is as such:

𝜔30 = Ω = constant (6.6)
M10 = M20 = M30 = 0 (6.7)
𝜔10 = 𝜔20 = 0. (6.8)

Now let us linearize the above nonlinear set of equations about this nominal situation.
So, write:

𝜔1 = 𝜔10 + 𝛿𝜔1 M1 = M10 + 𝛿M1 (6.9a)

𝜔2 = 𝜔20 + 𝛿𝜔2 M2 = M20 + 𝛿M2 (6.9b)

𝜔3 = 𝜔30 + 𝛿𝜔3 M3 = M30 + 𝛿M3. (6.9c)
Substituting these into the above nonlinear equations, and neglecting second and
higher order terms and using the above nominal values, we get a set of linearized
equations in the perturbation variables as follows:

⎡⎢⎢⎢⎣
̇𝛿𝜔1
̇𝛿𝜔2
̇𝛿𝜔3

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

�̇�1

�̇�2

�̇�3 − Ω

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

0
( I2 − I3

I1

)
Ω 0( I3 − I1

I2

)
Ω 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝛿𝜔1 = 𝜔1

𝛿𝜔2 = 𝜔2

𝛿𝜔3 = 𝜔3 − Ω

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

1
I1

0 0

0 1
I2

0

0 0 1
I3

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝛿M1

𝛿M2

𝛿M3

⎤⎥⎥⎥⎦
.

(6.10)

Now let us analyze the stability of this linear model with no input torques (i.e.
𝛿M1 = 𝛿M2 = 𝛿M3 = 0), i.e. the uncontrolled motion. Then we have the homogeneous
system of linear equations as:

⎡⎢⎢⎣
̇x1(t)
̇x2(t)
̇x3(t)

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣
0 k1 0
k2 0 0
0 0 0

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
x1(t)
x2(t)
x3(t)

⎤⎥⎥⎥⎦
(6.11)

where x1(t), x2(t) and x3(t) are the state variables given by
x1(t) = 𝜔1(t) (6.12)
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x2(t) = 𝜔2(t) (6.13)

x3(t) = 𝜔3(t) − Ω. (6.14)
Stability Conditions for Linearized Single Spin Satellite Attitude Motion Clearly
the stability of the above linear system is determined by the eigenvalues of the matrix

A =
⎡⎢⎢⎣
0 k1 0
k2 0 0
0 0 0

⎤⎥⎥⎦ . (6.15)

We observe that one of the eigenvalues of the matrix is 0, i.e. the equation given by:.
x3(t) = 0 → x3(t) = constant. Obviously the trajectory 𝜔3(t) − Ω = constant. Of course
when that constant is non-zero, there is always an error in the angular velocity𝜔3(t) − Ω
and we need a controller to make this error (𝜔3(t) − Ω) go to zero in the steady state!
With regards to the other two angular velocities,𝜔1 and𝜔2, their stability is determined
by the eigenvalues of the matrix

A =
[
0 k1
k2 0

]
(6.16)

which are given by

𝜆1,2 = ±
√
k1k2 (6.17)

where

k1k2 =
( I3 − I1

I2

)( I2 − I3
I1

)
Ω2. (6.18)

Clearly, if k1k2 is positive (i.e. k1k2 > 0), then one eigenvalues is positive real and the
other eigenvalues are negative real making the trajectories 𝜔1 and 𝜔2 unstable. If k1k2
is negative, then we have a pair of pure imaginary roots, making the trajectories pure
simple harmonic (sinusoidal motion with zero damping) making them neutrally stable.
Now let us determine the nature of conditions on the moment of inertia for this to

happen. The Table 6.1 summarizes the conditions of stability.
Thus spin about the maximum and minimum moments of inertia is neutrally stable

and spin about the intermediate moment of inertia axes is unstable. However in practi-
cal cases, with some energy dissipation (damping) spin about the minimummoment of
inertia is also unstable. So for all practical purposes spin about the maximum moment
of inertia is the only desirable situation. However, even in this situation, the system is
only neutrally stable, requiring a control system to make it asymptotically stable. The
control design aspect is discussed in later chapters.

Table 6.1 Stability conditions for a spin stabilized satellite.

Case Stability Physical shape of spacecraft

I3 > I2 ≥ I1 k1k2 < 0,neutrally stable Spin about maximumM.O.I
I3 < I2 < I1 k1k2 < 0,Neutrally stable Spin about minimumM.O.I.
I1 > I3, I2 < I3 k1k2 > 0,Unstable Spin about intermediate M.O.I.
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6.4 Stability Conditions for a Dual Spin Stabilized Satellite

Perhaps one of the most innovative ideas in spacecraft dynamics and control is the con-
cept of dual spin stabilization. The major contributors in this area are [13, 17].
The major advantage of the dual spin stabilization is that it overcomes the limitation

of a single spin stabilized satellite in that it cannot have the antennas oriented towards a
specific point on earth. In a dual spin stabilized satellite, there are two rotating parts, one
rotor spinning at a faster rate providing gyroscopic stabilization (like a single spin satel-
lite) and a slowly spinning (one revolution per orbit) platform pointing toward earth.
Developing stability conditions for a dual spin stabilized satellite became a challeng-
ing task and here we briefly review those stability conditions developed by the above
mentioned contributors.
For an axi-symmetric dual spin stabilized spacecraft as depicted in Figure 6.1, the

kinetic energy T , magnitude of the angular momentum H , and the nutation frequency
𝜔n are

T = 1
2
(IT𝜔2

T + IsP𝜔2
P + IsR𝜔2

R) (6.19)

H2 = (IsP𝜔P + IsR𝜔R)2 + (IT𝜔T)2 (6.20)

𝜔n =
IsP𝜔P + IsR𝜔R

IT
(6.21)

where IT is the transverse moment of inertia of the spacecraft, IsR is the spin moment
of inertia of the rotor, IsP the spin moment of inertia of the platform, 𝜔T the transverse
angular velocity of the spacecraft,𝜔P the spin angular velocity of the platform, and𝜔R the
spin angular velocity of the rotor. We assume no external torque and a frictionless shaft.
From the conservation of angularmomentum, Ḣ = 0.Differentiating Equation 6.20with

Figure 6.1 Motion of a dual spin
stablilized satellite.
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respect to time and applying the conservation of angular momentum, we obtain

IT𝜔T�̇�T = −
IsP𝜔P + IsR𝜔R

IT
(IsP�̇�P + IsR�̇�R)

= −𝜔n(IsP�̇�P + IsR�̇�R). (6.22)

Differentiating Equation 6.19 with respect to time, we arrive at

Ṫ = ṪP + ṪR

= IT𝜔T�̇�T + IsP𝜔P�̇�P + IsR𝜔R�̇�R.
(6.23)

Combining Equations 6.22 and 6.23, we have

Ṫ = ṪP + ṪR

= −(𝜔n − 𝜔P)IsP�̇�p − (𝜔n − 𝜔R)IsR�̇�R

= −𝜆PIsP�̇�P − 𝜆RIsR�̇�R

(6.24)

where 𝜆P and 𝜆R are the frequencies of oscillating accelerations in the platform and in
the rotor, respectively. Because the rotor and the platform are assumed to be uncoupled
about the spin axis, the reaction torques that tend to change angular rates are written
from Equation 6.24 as

IsP�̇�P = −
ṪP

𝜆P
(6.25a)

IsR�̇�R = −
ṪR

𝜆R
. (6.25b)

Combining Equations 6.22 and 6.25, we obtain

IT𝜔T�̇�T = 𝜔n

( ṪP

𝜆P
+

ṪR

𝜆R

)
. (6.26)

Recall that the nutation angle 𝜃 and the 𝜔T are related by

sin 𝜃 = (IT𝜔T)∕H, (6.27)

Realizing that 𝜃 is no longer constant, differentiating 6.27 with respect to time and using
6.26 we have

�̇� =
2IT

sin 2𝜃
𝜔n

H2

( ṪP

𝜆P
+

ṪR

𝜆R

)
(6.28)

Note that single-spin stabilization case is a special case of 6.28, obtained by letting
𝜆P = 𝜆R = and Ṫ = ṪP + ṪR.
For a stable spacecraft, the nutation anglemust decay with time (i.e. �̇� < 0).Therefore,

we arrive at our stability condition:

ṪP

𝜆P
+ Ṫ

𝜆R
< 0. (6.29)
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Assuming the rotor angular momentum is much larger than the platform angular
momentum (i.e. IsR𝜔R >> IsP𝜔P), we can write

𝜆P = 𝜔n − 𝜔P

=
IsP𝜔P + IsR𝜔R

IT
− 𝜔P

≈
IsR𝜔R

IT

(6.30a)

𝜆R = 𝜔n − 𝜔R

=
IsP𝜔P + IsR𝜔R

IT
− 𝜔R

≈
( IsR
IT

− 1
)
𝜔R.

(6.30b)

Applying Equation 6.30 to inequality 6.29, the stability conditions can be expressed as

ṪP

IsR∕IT
+

ṪR

(IsR∕IT) − 1
< 0 (6.31)

and there are two cases:

1. IsR > IT, in which case the spacecraft is stable if energy dissipation occurs in either
the platform or the rotor. Therefore a nutational damper can be placed on either the
platform or the rotor.

2. IsR < IT. In this case, the first term in 6.31 is negative (notice that ṪP and ṪR are already
required to be negative) and the second is positive.The stability condition for this case
becomes

|ṪP| > |ṪR
IsR∕IT

(IsR∕IT) − 1
| (6.32)

As an example, [1], for a dual spin stabilized spacecraft with
IsR
IT

= 2
3

(6.33)

the magnitude of the energy dissipation rate of the platform should be at least twice the
dissipation rate in the rotor. Hence the damper must be placed on platform.

6.5 Chapter Summary

In this chapter, which specializes in the analysis of spacecraft (satellite) dynamics explic-
itly, we have briefly reviewed the basic passive and active methods of stabilization and
control for spacecraft, withmore emphasis on passivemethods.We obtained the condi-
tions for stability in terms of themoments of inertia distribution for single spin and dual
spin stabilized satellites. For more in depth treatment of any of the concepts presented
in this chapter, the reader is encouraged to consult the many excellent textbooks, com-
pletely dedicated to spacecraft dynamics and control: [21], [14], [12], [11], [15], [8], [23],
[22], [3], [1], [2], [9], [18], [19], [6], [7], [5], [10], [16], [20], [24], [4], [13], [17] referenced
at the end of this chapter.
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6.6 Exercises

Exercise 6.1. Consider an axi-symmetric dual spin stabilized spacecraft with
ISR = 20 nm s−2 and IT = 30 nm s−2 and 𝜔R = 100 rpm, ISP = 25 nm s−2 and
𝜔P = 1 rpm. Find the nutation frequency 𝜔n in rad s−1 and determine the conditions
for stability of this satellite.

Exercise 6.2. Consider different ratios of
IsR
IT

, (at least three) and analyze the stability

conditions for the dual spin stabilized satellite.
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7

Spacecraft Dynamic Stability and Control via Linearized Models

7.1 Chapter Highlights

In this chapter, we focus our attention on the analysis of dynamics specific to spacecraft
(or satellites). Since the equations of motion are written in the principal axis frame, the
nature of the equations is quite different from the aircraft specific equations. With this
backdrop, we obtain the linearized equations of motion for dynamic stability for later
use in control system design.We cover the cases of (i) linearized perturbation dynamics
for satellites perturbed from the nominal pure spin stabilized state, (ii) the basic transla-
tional motion perturbation equations for a satellite perturbed from the nominal circular
orbit, and (iii) the basic rotational (attitude) motion perturbation equations for a satel-
lite perturbed from the nominal circular orbit. These linearized models are extremely
important for control system design purposes.

7.2 Active Control: Three Axis Stabilization and Control

Active attitude control systems provide the greatest design flexibility for the controlled
orientation of a spacecraft in the presence of significant perturbations and maneuvers.
These active control systems use sensors and actuators to produce a control signal in a
feedback control framework so that the output is made to behave in a desired way. Nat-
urally, active control systems are to be used when the performance specifications of the
mission are stringent and the pointing accuracy is of importance. Needless to say, active
control system implementation is expensive and is thus used when the mission success
warrants it.The typical attitude actuators aremomentumexchange devices such as reac-
tion wheels and mass expulsion devices such as reaction jets. A tutorial type summary
on attitude sensors and actuators is given in Part D of this book. For now, we briefly
mention few features of these actuators.

7.2.1 Momentum Exchange Devices: Reaction Wheels

These utilize the principle of conservation of total angular momentum, whereby, in the
absence of externally applied torques, if one part of a closed system increases itsmomen-
tumby a prescribed amount, the rest of the system loses an equal amount ofmomentum.
Momentum bias control systems are becoming increasingly popular for the control of

spacecraft in both low and synchronous orbits.Themajor advantage of such systems are
their ability to provide three axis control without the need of a yaw sensor. Roll and pitch

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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may be controlled by signals generated from a conventional horizon sensor whereas yaw
control is effected through the kinematics of quarter orbit coupling, i.e. a yaw error at
one point in the orbit becomes a roll error a quarter of an orbit later.

7.2.2 Momentum Exchange Devices: Gyrotorquers (or CMGs)

A properly designed gyrostabilizer system can function not only as a damper but also as
a means of satellite attitude control. A gyrostabilizer is considered to be a rotating wheel
gimball in such a way that the spin axis of the wheel can precess about an axis (output
axis), normal to the spin axis in response to angular rates about a third axis (input axis)
mutually perpendicular to both the spin and output axes. In short, a gyrostabilizer is a
gyroscope but used in such a way that it not only senses rates but also supplies torques
directly to the vehicle to be stabilized.

7.2.3 Mass Expulsion Devices: Reaction Jets

Conceptually, the simplest means of orienting the satellite is by generating external
torques in the opposite direction to that of disturbance torques by mass expulsion.This
can be done by placing pans of mass expulsion devices (reaction jets) about each of the
control axes. However, since fuel storage is limited, reaction jet control is normally not
recommended as a main control device but it is only used in back-up models like:
1. Detumbling
2. Desaturation of momentum exchange devices
3. Orienting the spin vector of the satellite.
Onemajor occasion that warrants the use of reaction jets for control is at themomen-

tum dumping phase. Note that when secular disturbance torques act on the satellite, the
momentum wheels (or reaction wheels) need to accelerate continuously to reduce the
attitude error generated by these secular disturbance torques, which in turn necessi-
tates the increase in their angular speeds, reaching unsafe levels. So there is a need to
dump that momentum (i.e de-saturate the wheel) so that it does not reach that unsafe
zone. During that momentum dumping phase, the reaction jets take over to control the
attitude error. In most of the situations, it is expedient to employ reaction jets in an
on–off manner. In other words, it is prudent to tolerate some error in the attitude until
it reaches a threshold level and then activate the reaction jets to reduce the error back
to zero and turn them off to save the fuel. During that reaction jet off cycle, the error
builds up until the threshold level when again the jets are activated. Deciding the opti-
mal on–off mode of reaction jet control is the most important control system design
problem. The resulting attitude motion is then characterized by a limit cycle.
The calculation of the fuel weight necessary to accomplish certain objectives is an

important part of the attitude control study involving reaction jets. If for any mode of
operation, the thrust history as a function of time is known, then from the relation:

T = Ẇ
g0

Ve = ẆIsp (7.1)

T = thrust
Ẇ is the fuel consumption rate
g0 is the acceleration due to gravity at the Earth’s surface
Ve is the exhaust velocity of the propellant
isp is the specific impulse of the propellant (fuel).
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Wemay calculate the required fuel weight by:

𝑤 =
∫

T
Isp

dt. (7.2)

The jets and momentum storage devices complement one another, the storage devices
counter the cyclical torques on the vehicle without loss of mass, and the jets counter
long term secular torques by periodically expelling momentum from the storage system
as the storage devices near spin saturation.
In what follows, we focus on the three axis stabilization of a satellite by active con-

trol using these attitude sensors and actuators in a feedback control framework for the
dynamic stability and control of the satellite. As part of the control design process, we
now gather the needed linearized models for the satellite attitude dynamics for use later
in the control systemdesign to be discussed inChapters 8 and 19.The typical axis system
for three axis control systems is shown in Figure 7.1.

7.2.4 LinearizedModels of Single Spin Stabilized Satellites for Control Design

We have carried out this exercise in the previous chapter when addressing the
stability conditions for the single spin stabilization issue. At that time, we focused on

I1 (yaw)

I2 (pitch)
I1 < I3 < I2

I3 (roll)V

ωo

Figure 7.1 Satellite axes.
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Figure 7.2 Three axis satellite control.

the uncontrolled (open loop, natural) motion. For completeness, we reproduce that
linearized model here.

⎡⎢⎢⎣
�̇�1
�̇�2
�̇�3

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣

�̇�1
�̇�2

�̇�3 − Ω

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

0
( I2 − I3

I1

)
Ω 0( I3 − I1

I2

)
Ω 0 0

0 0 0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
𝜔1 = 𝜔1

𝜔2 = 𝜔2

𝜔3 = 𝜔3 − Ω

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

1
I1

0 0

0 1
I2

0

0 0 1
I3

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
M1

M2

M3

⎤⎥⎥⎥⎦
.

(7.3)

Active control of this dynamics can be achieved by controlling the motion about all the
three axes by active control devices such as momentum/reaction wheels and reaction
jets. A pictorial representation of a three axis stabilized satellite is shown in Figure 7.2.

7.3 Linearized Translational Equations of Motion for a
Satellite in a Nominal Circular Orbit for Control Design

ẋ = f (x,u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ṙ
r�̇�2cos2𝜙 + r�̇�2 − k

r2
+

ur

m
�̇�

−2ṙ�̇�∕r + 2�̇��̇� sin𝜙
cos𝜙

+
u𝜃

mr cos𝜙
�̇�

−�̇�2 cos𝜙 sin𝜙 − 2ṙ�̇�∕r + u𝜙∕mr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.4)
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and

y = Cx =
⎡⎢⎢⎣
1 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 1 0

⎤⎥⎥⎦ x. (7.5)

One solution of these equations (circular, equatorial orbit), is

x∗(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

r∗(t)
ṙ∗(t)
𝜃∗(t)
�̇�∗(t)
𝜙∗(t)
�̇�∗(t)

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

r0
0
𝜔t
𝜔

0
0

⎤⎥⎥⎥⎥⎥⎥⎦
(7.6)

where

u∗(t) = 0. (7.7)

Linearizing the above nonlinear equations about the nominal circular orbit, we obtain

̇̂x = Ax̂(t) + Bû(t) (7.8)

ŷ = Cx̂(t) (7.9)

A ≜

df

dx
|∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
3𝜔2 0 0 2𝜔r0 0 0
0 0 0 1 0 0
0 −2𝜔

r0
0 0 0 0

0 0 0 0 0 1
0 0 0 0 −𝜔2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(7.10)

B ≜

df

du
|∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
1
m

0 0
0 0 0
0 1

mr0
0

0 0 0
0 0 1

mr0
.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.11)

We will normalize our units so thatm = r0 = 1, and the matrix above will become

̇̂x(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
3𝜔2 0 0 2𝜔 0 0
0 0 0 1 0 0
0 −2𝜔 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −𝜔2 0

⎤⎥⎥⎥⎥⎥⎥⎦
x̂(t) +

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
û(t) (7.12)
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ŷ(t) =
⎡⎢⎢⎣
1 0 0 0 0 0
0 0 1 0 0 0
1 0 0 0 1 0

⎤⎥⎥⎦ x̂(t). (7.13)

The sixth order system may be broken into one fourth order and one second order sys-
tem as follows. The fourth order system is given by

⎡⎢⎢⎢⎣
̇̂x1
̇̂x2
̇̂x3
̇̂x4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
0 1 0 0

3𝜔2 0 0 2𝜔
0 0 0 1
0 −2𝜔 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x̂1
x̂2
x̂3
x̂4

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
0 0
1 0
0 0
0 1

⎤⎥⎥⎥⎦
[
û1
û2

]
(7.14)

[
ŷ1
ŷ2

]
=
[
1 0 0 0
0 0 1 0

] ⎡⎢⎢⎢⎣
x̂1
x̂2
x̂3
x̂4

⎤⎥⎥⎥⎦
(7.15)

and the second order system is given by[
̇̂x5
̇̂x6

]
=
[

0 1
−𝜔2 0

] [
x̂5
x̂6

]
+
[
0
1

]
û3 (7.16)

y3 =
[
1 0

] [x̂5
x̂6

]
. (7.17)

In the control system design part of the book, we attempt to design linear feedback
controllers based on the above linearized models.

7.4 Linearized Rotational (Attitude) Equations of Motion
for a Satellite in a Nominal Circular Orbit for Control Design

Recall that, in Chapter 2, we derived the nonlinear rotational (attitude) equations of
motion for a satellite in a nominal circular orbit with a constant orbit angular velocity
denoted by𝜔o whose value depends on the orbit radius.We now revisit those equations
and linearize them assuming small angle approximation and neglecting second and
higher order terms. The angular velocity components of the satellite in a circular orbit,
expressed in body frame (principal axes frame) are given by

⎡⎢⎢⎣
𝜔1
𝜔2
𝜔3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 − sin 𝜃
0 cos𝜙 cos 𝜃 sin𝜙
0 − sin𝜙 cos𝜙 cos 𝜃

⎤⎥⎥⎦
⎡⎢⎢⎣
�̇�

�̇�

�̇�

⎤⎥⎥⎦ − 𝜔o

⎡⎢⎢⎣
cos 𝜃 sin𝜓

cos𝜙 cos𝜓 + sin𝜙 sin 𝜃 sin𝜓
cos𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓

⎤⎥⎥⎦ .
(7.18)

Noting that the angular momentum vector of the satellite body given by H is
[I1𝜔1 I2𝜔2 I3𝜔3]T and that these components are expressed in the body frame, the
resulting moment equations, after linearization, are given by

⎡⎢⎢⎣
I1(�̈� − �̇�𝜔o) + (I2 − I3)(𝜔2

o𝜙 + 𝜔o�̇�)
I2�̈�

I3(�̈� + �̇�𝜔o) + (I2 − I1)(𝜔2
o𝜓 − 𝜔o�̇�)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
Mext1
Mext2
Mext3

⎤⎥⎥⎦ (7.19)
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whereMexti are the external applied moments along the three principal axes. The above
linearization process is left as an exercise for the student/reader (see Exercise 7.1).
Note that in this linearization process, the pitch axis dynamics and control is com-

pletely decoupled from the roll/yaw axes dynamics. However, the roll/yaw axis dynamics
are coupled even in the linear range. Later in the control system design chapters, we
design a control system to stabilize and meet the performance requirements on the
satellite to reduce these roll, yaw, and pitch attitude errors.

7.5 Open Loop (Uncontrolled Motion) Behavior of Spacecraft
Models

Oncewe obtain the linearizedmodels for control design purposes, it is important to ana-
lyze the open loop system (i.e the uncontrolled system, with no external control torques
applied) stability characteristics of the system we wish to control. It turns out that in all
the linearized models we considered above, the open loop system happens to be either
neutrally stable or even unstable in some cases. This is in quite contrast to the aircraft
case where for the majority of commercial aircraft dynamic models the longitudinal
modes of motion in open loop such as short period mode or phugoid mode are mostly
open loop stable, albeit with insufficient damping ratios. This means that for the major-
ity of spacecraft applications active feedback control is a necessity. This feature clearly
highlights the important role to be played by automatic flight vehicle control systems in
spacecraft applications.

7.6 External Torque Analysis: Control Torques Versus
Disturbance Torques

Since the external applied torques (or moments) have considerable influence on the
dynamic behavior of the satellite dynamics, it is important to understand and analyze
this external moment scenario in satellite attitude stabilization and control. For a given
control objective, some of these external applied moments could be used as control
torques for attitude stabilization and control. However, it also happens that some of
these external torques present could also become disturbance torques while controlling
the satellite using the control torques. So it is critical that the engineer decide which of
these torques are used as control torques and which of them are to be treated as dis-
turbance torques for a given mission. While the design of control torques is very much
dependent on the performance specifications, it is important to simultaneously model
the disturbance torques as well and prepare a budget for the attitude errors generated
under the presence of these disturbance torques. This in turn requires an analysis of
the nature of these disturbance torques as to whether they are cyclical or secular (con-
stantly acting). Then this knowledge about the disturbance torques needs to be used in
the control systems design phase and make sure that the control torques are designed
such that the closed loop system not only is stable but deliver satisfactory performance
in the sense of meeting the mission design specifications under the presence of the dis-
turbance torques.
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Typical values of the torques on a small spacecraft as a function of the orbital altitude
are shown in Figure 7.3.

7.7 Chapter Summary

In this chapter, which specializes in the analysis of spacecraft (satellite) dynamics explic-
itly, we have derived the linearized equations ofmotion for later use in the control system
design.The same analysis is used to characterize the various disturbance torques acting
on the satellite, tailored to the space/orbit environment. For more in depth treatment
of any of the concepts presented in this chapter, the reader is encouraged to consult
the many excellent textbooks, completely dedicated to spacecraft dynamics and con-
trol: [18], [12], [11], [10], [13], [8], [20], [19], [3], [1], [2], [9], [15], [16], [6], [7], [5], [14],
[22], [17], [21], [4], referenced at the end of this chapter.

7.8 Exercises

Exercise 7.1. Carry out the detailed linearization process of the rotational (attitude)
equations of motion for a satellite in a circular orbit with constant orbital angular
velocity 𝜔o and verify the accuracy of the model description given in this chapter for
that problem.

Exercise 7.2. For the above problem (Exercise 1), obtain the specific A and B matrices
for a satellite in geosynchronous equatorial orbit with inertia information taken for
few particular satellites given in Appendix A.Then thoroughly analyze the open loop
stability of those satellites along with the undamped natural frequency and damping
ratio information for any complex conjugate pair eigenvalues.
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Part II

Fight Vehicle Control via Classical Transfer Function Based Methods
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Roadmap to Part II

“Thedesire to excel is important butwhat ismore important is the desire to prepare”
– Bobby Knight, Basketball Coach

Part II covers Fundamentals of Flight Vehicle Control via Classical, Transfer Function
Based methods and consists of Chapters 8 through 14.The basics of Laplace transforms
and the use of transfer functions in solving ordinary differential equations are presented
in Appendix B and form the background needed for the material in this part. Chapter 8
gives an overview of the block diagram based approach in flight control system design,
which is common to both aircraft as well as spacecraft situations. The approach taken
in this Part II of the book is to introduce the basic control systems concepts in a generic
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systems level point of view and then illustrate the application of each of those generic
control system methods to both aircraft application simultaneously with the spacecraft
application, thereby emphasizing the power of a generic systems level approach in con-
trol systems analysis and design methods. Thus after introducing few basics of block
diagram algebra in Chapter 8, the student is made to learn the art of being able to draw
a block diagram for the control problem at hand. Chapter 9 then covers the typical time
domain specifications of a control system including the concepts of relative stability
and steady state errors. Then a few basic controller structures (proportional, integral
and derivative controllers) along with their generalizations, namely lead networks, lag
networks, and lead/lag networks, are covered. Then Chapter 10 presents the role of
the famous Routh–Hurwitz criterion in assessing the stability of a dynamic system and
the illustration of this method to both aircraft and spacecraft situations. Chapter 11
introduces the root locus design methodology.Then Chapter 12 presents the frequency
response design methodology via Bode plots. Illustration of application of these design
methods in designing autopilot and control augmentation systems for aircraft is given
in Chapter 13. A similar exercise is carried out for the satellite attitude control systems
design in Chapter 14, focusing a specific satellite as part of a project of interest to the
Indian Space Research Organization.
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8

Transfer Function Based Linear Control Systems

8.1 Chapter Highlights

In this chapter, we focus on the concept of a transfer function in the Laplace variable
domain and learn about the use of this concept in solving linear constant coefficient dif-
ferential equations. In that connection, we also learn about the many useful features of
a transfer function along with the strengths and weaknesses of this concept. Finally, we
apply this concept to the application of aircraft linear dynamics as well as of satellite lin-
ear dynamics and derive the needed transfer functions for later use in designing control
systems using frequency domain techniques.

8.1.1 The Concept of Transfer Function: Single Input, Single Output System

Consider a linear, time invariant system, described by linear state space description (as
elaborated in Chapters 1–7), given by

⃗̇x = Ax⃗ + Bu
y = Cx⃗ + Du

where y and u are of dimension 1 (single input and single output, a SISO system) but x⃗ is
a vector of dimension n. Our intent is to get the time response of output y(t) for a given
input function u(t). In other words, we want to know the output as a function of time for
a given input function u(t). The relationship between a scalar output for a given scalar
input (i.e. a SISO system) in the Laplace (frequency) domain, with the imposition of
zero initial conditions, then becomes a simple algebraic ratio of the Laplace transformed
output function over the Laplace transformed input function; this is labeled the transfer
function between the output and the input.
Thus in general for a SISO system,we can represent the algebraic relationship between

the output Y (s) and the input U(s) as shown in the block diagram in Figure 8.1.
Y (s)
U(s)

= G(s) (8.1)

or

Y (s) = G(s)U(s).

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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G(s)
U(s) Y(s) Figure 8.1 A simple block diagram depicting a single input U(s), a single

output Y(s) and a transfer function G(s),

Hence, the transfer function between output Y (s) and input U(s) for the above men-
tioned linear time invariant system is given by

G(s) = Y (s)
U(s)

= N(s)
D(s)

.

(8.2)

In the above notation, N(s) denotes the numerator function in the Laplace variable and
D(s) denotes the denominator function. Keep inmind that when the ratio of the polyno-
mialsN(s) andD(s) is written as above,N(s) ≠ Y (s) andD(s) ≠ U(s). In otherwords,Y (s)
specifically stands for the Laplace transformed output variable and U(s) stands for the
Laplace transformed input variable whereas the numerator N(s) and the denominator
D(s) of the transfer function G(s) simply have mathematical polynomial interpretation,
not physical variable interpretation.
It is extremely important to keep in mind that the algebraic relationship between the

output and input is strictly valid only in the Laplace domain, and not in the time domain.
Thus only in the Laplace domain, we have

Y (s) = G(s)U(s). (8.3)

It is completely unacceptable and erroneous to think that

y(t) = g(t)u(t) (8.4)
and similarly it is erroneous tomix up Laplace domain functions and time domain func-
tions in a single equation or expression.
Also note that for the general single input single output system as shown in 8.1, the

transfer function relating the output and the input is also given in terms of the state
variable description of the system, as given by

G(s) = Y (s)
U(s)

= C(sIn×n − A)−1B

= N(s)
D(s)

.

(8.5)

Note that C is a 1 × nmatrix and B is a n × 1 matrix and D is a scalar. Then the denomi-
nator polynomial is an n th degree polynomial. With A,B,C,D as inputs, MATLAB has
a command to obtain the transfer function.

[Num, Den] = ss2tf(A,B,C,D,1)

Note that the state space to transfer function route is unique. Transfer function to state
space, however is not unique.
In summary, to get the transfer function G(s) of a linear time invariant system (i.e.

a system described by linear constant coefficient differential equations), we transform
those differential equations into Laplace domain functions, and impose zero initial con-
ditions and then take the ratio of the output function Y (s) over the input function U(s).
Let us illustrate this procedure with the help of few examples.
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8.1.2 An Example for Getting Transfer Functions from State Space Models

Example 8.1 Suppose[
ẋ1
ẋ2

]
=
[
1 1
0 2

] [
x1
x2

]
+
[
3
4

]
u.

First, recognize that this is simply a system of simultaneous differential equations

ẋ1 = x1 + x2 + 3u
ẋ2 = 2x2 + 4u.

Let the output y(t) be the state variable x1(t) itself, i.e the C matrix is given by

C = [1 0]. (8.6)

Note that we are getting the transfer function between an output Y (s) for any any yet
unspecified input function U(s) i.e. the transfer function

X1(s)
U(s)

= G(s)

does not depend on the specific input function. Once we get the transfer function
between Y (s) and U(s), then we obtain the output Y (s) for a specific given input
u(t) where, in the relationship Y (s) = G(s)U(s), we substitute for U(s), the Laplace
transform of the given specific input function u(t). Once we have Y (s) then y(t) is
obtained by inverse Laplace transformation.

8.1.3 A Systematic Way of Getting the Transfer Function via the Formula
G(s) = C(sI − A)−1B

Since the output is y = x1, in the example being considered, we obtain the corresponding
C matrix, which in our case is

C = [1 0]

and we use the formula in Equation 8.5 to obtain the transfer function of a single input
single output system as follows:

X1(s)
U(s)

= C(sIn×n − A)−1B

= [1 0]

{[
s 0
0 s

]
−

[
1 1
0 2

]}−1 [
3
4

]

= [1 0]

[
(s − 1) −1

0 (s − 2)

]−1 [
3
4

]

= [1 0]
⎡⎢⎢⎢⎣

1
(s − 1)

1
(s − 1)(s − 2)

0 1
(s − 2)

⎤⎥⎥⎥⎦
[
3
4

]
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=
[

1
(s − 1)

1
(s − 1)(s − 2)

][ 3
4

]

= 3
(s − 1)

+ 4
(s − 1)(s − 2)

= 3(s − 2) + 4
(s − 1)(s − 2)

= 3s − 2
(s − 1)(s − 2)

.

Thus
X1(s)
U(s)

= 3s − 2
(s − 1)(s − 2)

= 3s − 2
s2 − 3s + 2

.

8.1.4 A Brute Force ad hoc Method

We have
ẋ1 = x1 + x2 + 3u
ẋ2 = 2x2 + 4u.

Taking Laplace transforms throughout with zero initial conditions, we get
sX1(s) = X1(s) + X2(s) + 3U(s)
sX2(s) = 2X2(s) + 4U(s)

i.e.
(s − 1)X1(s) = X2(s) + 3U(s)
(s − 2)X2(s) = 4U(s)

i.e. [
s − 1 −1
0 s − 2

] [
X1(s)
X2(s)

]
=
[
3
4

]
U(s).

Dividing both sides by U(s),

[
s − 1 −1
0 s − 2

] ⎡⎢⎢⎢⎣
X1(s)
U(s)
X2(s)
U(s)

⎤⎥⎥⎥⎦
=

[
3
4

]
.

Since we want X1(s)
U(s)

, apply Cramer’s rule.

X1(s)
U(s)

=

|||||
3 −1
4 (s − 2)

||||||||||
(s − 1) −1

0 (s − 2)

|||||
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= 3(s − 2) + 4
(s − 1)(s − 2)

= (3s − 2)
(s − 1)(s − 2)

= 3s − 2
s2 − 3s + 2

which is the same as calculated using the formula given in Equation 8.5.

8.1.5 Use of a Transfer Function in Solving an LTI System of Equations

Once we get the transfer function G(s) between the output and the input for a given
LTI system of equations, we can get the output response y(t) for a given specific input
function u(t). From Example 8.1 above, we had

X1(s)
U(s)

= 3s − 2
(s − 1)(s − 2)

.

Now suppose we want x1(t) when u(t) = e−t , then we first get

U(s) = [e−t]
= 1

s + 1
.

Then

X1(s) =
[

(3s − 2)
(s − 1)(s − 2)

]
U(s)

=
(

(3s − 2)
(s − 1)(s − 2)

)( 1
s + 1

)
= (3s − 2)

(s − 1)(s − 2)(s + 1)
.

By partial fraction expansion, we obtain

X1(s) =
A

(s − 1)
+ B

(s − 2)
+ C

(s + 1)

=
− 1

2

(s − 1)
+

4
3

(s − 2)
+

− 5
3

(s + 1)
.

Then by inverse Laplace transformation, we get

x1(t) = −1[X1(s)]

= −1
2
et + 4

3
e2t − 5

3
e−t.

It is very important to note that, from Laplace transformation theorems,

−1(F1(s)F2(s)) ≠ f1(t)f2(t)

but

−1(F1(s)F2(s)) = f1(t) ∗ f2(t)
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where ∗ denotes the convolution integral, i.e.

f1(t) ∗ f2(t) =
∫

t

0
f1(𝜏)f2(t − 𝜏)d𝜏

=
∫

t

0
f2(𝜏)f1(t − 𝜏)d𝜏.

Similarly

(f1(t)f2(t)) ≠ F1(s)F2(s)

but
(f1(t) ∗ f2(t)) = F1(s)F2(s).

8.1.6 Impulse Response is the Transfer Function

Now suppose the input u(t) is an impulse of magnitude 1 (i.e. unit impulse), so that
U(s) = 1. Then

YIR(s) = G(s). (8.7)

Therefore
yIR(t) = g(t)

= −1[G(s)]
(8.8)

where the subscript IR indicates that this is the impulse response. Thus, the transfer
function can also be defined as the Laplace transformation of the impulse response.Thus
oncewe know the transfer function (or Laplace transform of the impulse response), then
we get the response to any other given input. This is a very important concept (that the
impulse response in the Laplace domain itself is the transfer function) that plays amajor
role in identifying transfer function of an LTI system.

8.2 Poles and Zeroes in Transfer Functions and Their Role
in the Stability and Time Response of Systems

Consider the transfer function G(s) between a given output y(t) and any input u(t) as
described in Equation 8.5, reproduced below for convenience:

G(s) = Y (s)
U(s)

= N(s)
D(s)

where N(s) is the numerator polynomial and D(s) is the denominator polynomial. Let
us write G(s) in the pole-zero format, i.e.

G(s) =
K(s + z1)(s + z2) · · · (s + zm)
(s + p1)(s + p2) · · · (s + pn)

.

Thus s = −z1, s = −z2,…,s = −zm, are the finite zeroes of the transfer function and
s = −p1, s = −p2,…,s = −pn, are the finite poles of the transfer function. Note that, in
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the general case, there arem finite zeroes and n finite poles. When m > n, we label the
transfer function as an improper transfer function. When m = n, we denote that as a
proper transfer function. Finally when m < n, we label that as a strictly proper transfer
function. Since an improper transfer function can always be split into a proper transfer
function plus a strictly proper transfer function (including the possibility that they can
be simply constants as well), we focus our attention on these two categories.
Note that poles and zeroes can be real and/or complex conjugate pairs. For example,

the following transfer function is a strictly proper transfer function, with real poles and
zeroes.

(1)
G(s) = s + 2

(s + 1)(s + 3)
s = −2 is a finite real zero
s = −1, s = −3 are two real poles.

(2) The following is also a strictly proper transfer function with real zeroes but with a
complex conjugate pair of poles.

G(s) = s + 5
s2 + 2s + 4

= s + 5
(s + 1 + j1.732)(s + 1 − j1.732)

s = −5 is a finite real zero
s1,2 = −1 ± j1.732 is complex conjugate pair of poles.

Let us now consider the impulse response of a systemwith the abovementioned general
transfer function representation:

y(t) = −1[G(s)]

= −1
[K(s + z1)(s + z2) · · · (s + zm)
(s + p1)(s + p2) · · · (s + pn)

]

= −1
[ A1

s + p1
+

A2

s + p2
+

A3

s + p3
· · · +

An

s + pn

]
= A1e−p1t + A2e−p2t + A3e−p3t + · · · + Ane−pnt.

Note that if −pi (i.e. the poles) is real, then the time response is essentially exponential
in nature whereas if it is a complex conjugate pair (i.e. terms like ea±jb) the time response
is oscillatory with exponential decay or growth depending on the sign of the real part
of the pole. Similarly when they (the poles) are real, if they are negative, it implies expo-
nential decay and if they are positive, it implies exponential growth. Thus whether the
poles are real or complex conjugate pairs, the real part of the poles determine decay or
growth. If the real parts of the poles are negative, we have a decaying time response as
t → ∞, which indicates a stable time response whereas if the real parts of the poles are
positive, we have an unbounded growth in the time response as t → ∞ and this amounts
to unstable behavior, as shown in Figure 8.2.
So negative real part poles contribute to stable time responses and positive real part

poles contribute to unstable behavior in the time response.



176 8 Transfer Function Based Linear Control Systems

×

×

×

×

R

Im

(a)

×

×

×

×

R

Im

(b)

Figure 8.2 (Locations of poles in the complex plane. (a) Stable poles. (b) Unstable poles.

We also observe that the zeroes of the transfer function only affect the amplitudes of
the time response.
Thus we can say that the zeroes of the transfer function contribute to the amplitudes

of the time response whereas the poles of the transfer function contribute to the stability
or instability of the time response with poles in the negative (left) half of the complex
plane contributing to stability and poles in the positive (right) half of the complex plane
contributing to instability.

8.2.1 Minimum Phase and Non-minimum Phase Transfer Functions

Consider the above transfer function description given by
y(t) = −1[G(s)]

= −1
[K(s + z1)(s + z2) · · · (s + zm)
(s + p1)(s + p2) · · · (s + pn)

]
.

If in the above transfer function the poles are all stable, we refer to it as a stable
transfer function. If both the zeros as well as poles (all of them) are stable, we refer to
it as a minimum phase transfer function. If all the poles are stable but the zeros are all
not stable, we refer to it as a non-minimum phase transfer function.This categorization
plays an important role later in the control design process. Conceptually, it suffices to
realize that it is obviously more difficult (sometimes, not even possible) to design a
control system that delivers satisfactory stability and performance characteristics when
controlling a non-minimum phase system. Let us now illustrate few of these concepts
by another example.

Example 8.2 Given the following LTI differential equation
d2x
dt2

+ dx
dt

+ 8x = dz
dt

+ 3z

obtain the trajectory x(t) when the input trajectory is given by
z(t) = e−2t.

Initial conditions are zero.

Solution
Taking the Laplace transforms throughout, we have

s2X(s) + sX(s) + 8X(s) = sZ(s) + 3Z(s)
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where

X(s) = [x(t)]

and

Z(s) = [z(t)]

i.e.

(s2 + s + 8)X(s) = (s + 3)Z(s).

Thus the transfer function between X(s) and Z(s) is
X(s)
Z(s)

= s + 3
s2 + s + 8

.

Note that this is a minimum phase transfer function. Now suppose

z(t) = e−2t

which in the Laplace domain is

Z(s) = 1
(s + 2)

.

Then the response of the system to the exponential input above is

X(s) =
( s + 3
s2 + s + 8

)( 1
s + 2

)
.

The poles of X(s) are

s1 = −2

s2,3 = −1
2
± j

√
31
2

≈ −0.5 ± j2.7838.

To convert from the Laplace space to the time domain,

x(t) = −1
[

(s + 3)
(s + 2)(s2 + s + 8)

]

= −1
[

A
(s + 2)

+ Bs + C
(s2 + s + 8)

]
.

Solving for A,B,C we get A = 0.1,B = −0.1,C = 1.1. So

X(s) = 0.1
(s + 2)

+ (−0.1)s + 1.1
(s + 1

2
)2 + 7.75

= 0.1
(s + 2)

−
0.1(s + 1

2
)

(s + 1
2
)2 + 7.75

+ 1.15
(s + 1

2
)2 + 7.75

.

Looking at the Laplace transform tables, we observe that

x(t) = 0.1e−2t − e−
1
2
t

[
0.1 cos

√
7.75t − 1.15√

7.75
sin

√
7.75t

]
.
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It is also possible to do the partial fraction expansion in the standard single pole form
as follows:

X(s) = (s + 3)
(s + 2)(s + 0.5 + j2.7838)(s + 0.5 − j2.7838)

= A
(s + 2)

+ B
(s + 0.5 + j⃗2.7838)

+ C
(s + 0.5 − j⃗2.7838)

but these time constants B and C turn out to be complex! In fact C = B where B is the
complex conjugate of B. Then

x(t) = Ae−2t + Be−(0.5+j2.7838)t + Ce−(0.5−j2.7838)

Then using the identities

sin 𝜃 = ej𝜃 − e−j𝜃
2j

cos 𝜃 = ej𝜃 + e−j𝜃
2

the above can be written as

x(t) = Ae−2t + Be−(0.5+j2.7838)t + Be−(0.5−j2.7838)

= Ae−2t + e−0.5t((b1 + jb2)e−j2.7838t + (b1 − jb2)ej2.7838t)

= Ae−2t + e−0.5t[2b1 cos(2.7838t) + 2b2 sin(2.7838t)]

= Ae−2t + B1e−0.5t cos(2.7838t) + B2e−0.5t sin(2.7838t).

Themain point here is that whenever there is a complex conjugate pair of poles, the cor-
responding time response is oscillatory. The real part of the complex pole determines
the rate of decay or divergence appearing in the exponential term and the imaginary
part of the complex pole determines the frequency of the oscillations. If the real part
is negative, these oscillations are damped oscillations. If the real part is zero, these are
undamped oscillations; finally if the real part is positive, they lead to divergent oscilla-
tions. The constants A, B1, and B2 simply determine the amplitudes of the oscillations.
In the above example, we do have damped oscillations and the overall response is stable
and decays with time.

8.2.2 Importance of the Final Value Theorem

Consider again the transfer function X(s)
Z(s)

in the previous example. It is given by

X(s)
Z(s)

= s + 3
s2 + s + 8

. (8.9)

Note that the above transfer function has a stable denominator because the three poles
are stable. Hence, if we give a unit step as an input to the above system, there exists a
steady state value and suppose we are interested in finding that steady state value. This
can be easily obtained by the application of the final value theorem given in the table of
Laplace transform theorems.Note that, for the final value theorem (FVT) to be valid, the
function sX(s) is required to be stable. In the present case, with a step input in z(t), where
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Z(s) = 1∕s, we observe that, indeed sX(s) is stable and sowe can get the steady state value
of the function x(t), denoted by xss. Thus, in this case, xss = x(∞) = lim

s→0
sX(s) = 3∕8.

The utility of the FVT is that once we establish that the final value for f (t) exists (by
checking the stability of the function sF(s)) the steady state (final) value of the time func-
tion fss is then given by a one-shot application of the FVT without having to compute
the entire time history of the function f (t) by the inverse Laplace transform exercise,
which offers considerable savings and effort.
Having covered these fundamental concepts on transfer functions, we now shift

our attention to the application of these concepts to aircraft and spacecraft dynamics
problems.

8.3 Transfer Functions for Aircraft Dynamics Application

Recall that, in Part I of this book, we already obtained the linearized, constant coef-
ficient ordinary differential equations of motion for aircraft and spacecraft problems.
We now convert them into input/output transfer function format by specifying one of
those motion variables as an input and another one as an output. Let us illustrate this
procedure by considering a linear aircraft model.

Example 8.3 A fighter aircraft flying at 200m s−1 at a height of 10000 m has the short
period equations of motion

�̇� = −6𝛼 + q
q̇ = −5𝛼 − 0.6q − 12𝛿e.

It is also known that Θ̇ = q, where Θ is the pitch angle, 𝛼 is the angle of attack, q is the
pitch rate, and 𝛿e is the elevator deflection.

1. Find the transfer function q
𝛿e
(s) both by hand and using MATLAB.

2. Also obtain the transfer functions 𝛼

𝛿e
(s) and Θ

𝛿e
(s)

Taking Laplace transforms (with zero initial conditions),

s𝛼(s) = −6𝛼(s) + q(s)
sq(s) = −5𝛼(s) − 0.6q(s) − 12𝛿e(s).

This is now an algebraic system of equations. Gathering like terms in the first equation
and solve for 𝛼 as such:

𝛼(s) =
q(s)
s + 6

.

Substituting this into the second equation and rearranging the terms, we arrive at:
q(s)
𝛿e(s)

= −12(s + 6)
s2 + 6.6s + 8.6

.

Alternatively we can write the state space model ẋ = Ax + Bu as[
�̇�

q̇

]
=
[
−6 1
−5 −0.6

] [
𝛼

q

]
+
[

0
−12

]
𝛿e.
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Since q is the output of interest, we can write

q =
[
0 1

] [𝛼
q

]
which is theCmatrix in the state space representation Y = Cx + Du. Recognize that the
D is simply scalar zero (ie. a zero 1 × 1 matrix). Therefore

q
𝛿e
(s) = C(sI − A)−1B

=
[
0 1

] [s + 6 −1
5 s + 0.6

][
0

−12

]
q(s)
𝛿e(s)

= −12(s + 6)
s2 + 6.6s + 8.6

which is same as the answer we obtained above.

Example 8.4 Consider the full set of longitudinal equations of motion of a given air-
craft at a given flight condition

q̇ = −0.65q − 0.2�̇� − 𝛼 − 1.2𝛿e
u̇sp = 225𝛿th + 0.035𝛼 − 9.81Θ − .18usp

�̇� = q − 0.2usp − .6𝛼 − 0.035𝛿e
Θ̇ = q.

Note the presence of two control variables 𝛿th and 𝛿e. Also note the presence of the �̇�
term in the first equation. Then,

1. Find the transfer function q
𝛿e
(s) using MATLAB.

2. Also obtain the transfer functions 𝛼

𝛿e
(s) and Θ

𝛿e
(s). Note that, even though strictly

speaking, we need to use different symbols to distinguish Laplace functions from
time functions, for better association with the physical variables, we use the same
symbols for both in this problem formulation.

Solution
We want to put the given system

q̇ = −0.65q − 0.2�̇� − 𝛼 − 1.2𝛿e
u̇sp = 225𝛿th + 0.035𝛼 − 9.81Θ − .18usp

�̇� = q − 0.2usp − .6𝛼 − 0.035𝛿e
Θ̇ = q

into state space format ẋ = Ax + Bu. We begin to do so by gathering all derivative terms
(those indicated by a dot) to the left hand side of the equation. To do so requires elim-
inating the �̇� term from the first equation; we do so by substituting the third equation
into the �̇� term as follows

q̇ = −0.65q − 0.2(q − 0.2usp − 0.6𝛼 − 0.035𝛿e) − 𝛼 − 1.2𝛿e
= −0.85q + 0.04usp − 0.88𝛼 − 1.193𝛿e.



8.3 Transfer Functions for Aircraft Dynamics Application 181

Denoting q, usp, 𝛼, and Θ as the state variables, and 𝛿e and 𝛿th as the control variables,
we arrive at the following state space representation

⎡⎢⎢⎢⎣
q̇
̇usp
�̇�

Θ̇

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
−0.85 0.04 −0.88 0
0 −0.18 0.035 −9.81
1 −0.2 −0.6 0
1 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
q
usp
𝛼

Θ

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
−1.193 0

0 2.25
−0.035 0

0 0

⎤⎥⎥⎥⎦
[
𝛿e
𝛿th

]
.

1. We desire the transfer function q
𝛿e
(s). To obtain this by hand is an exercise in algebra

left to the reader. The procedure to obtain the transfer function using MATLAB is
shown.We observe that the Amatrix that is needed as an argument in theMATLAB
command is

A =
⎡⎢⎢⎢⎣
−0.85 0.04 −0.88 0
0 −0.18 0.035 −9.81
1 −0.2 −0.6 0
1 0 0 0

⎤⎥⎥⎥⎦
and because the elevator deflection 𝛿e is the control variable of interest, the matrix B
is taken to be the column matrix

B =
⎡⎢⎢⎢⎣
−1.193

0
−0.035

0

⎤⎥⎥⎥⎦
because this columnmatrix is associated with the input 𝛿e. Since q is the output vari-
able of interest, the C matrix is taken to be

C =
[
1 0 0 0

]
.

The Dmatrix is simply a zero scalar. We feed this information to MATLAB using its
inbuilt function as such

[num,den]=ss2tf(A,B,C,D,1)

which yields the outputs

num = 0 -1.193 -0.8997 -0.1317 0

and

den = 1 1.63 1.658 0.6472 1.962

from which we obtain our transfer function
q
𝛿e
(s) = −1.193s3 − 0.8997s2 − 0.1317s

s4 + 1.63s3 + 1.658s2 + 0.6472s + 1.962
.

2. This time we desire the transfer function Θ
𝛿e
. The A matrix will remain the same as

in the previous example, because the system we are describing has not changed; we
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simply have a different output. The B matrix is still the same as before because the
input remains as 𝛿e. Thus,

B =
⎡⎢⎢⎢⎣
−1.193

0
−0.035

0

⎤⎥⎥⎥⎦
.

Since, this time, Θ is the output, the corresponding C matrix is taken to be
C =

[
0 0 0 1

]
.

Using the MATLAB command,

[num,den]=ss2tf(A,B,C,D,1)

which yields the outputs

num = 0 0 -1.193 -0.9041 -0.1325

and
den = 1 1.63 1.658 0.6472 1.962

from we obtain our transfer function
Θ
𝛿e
(s) = −1.193s2 − 0.9041s − 0.1325

s4 + 1.63s3 + 1.658s2 + 0.6472s + 1.962
.

To obtain the transfer function 𝛼

𝛿th
, we now set the Bmatrix to be the second column

of the original Bmatrix,

B =
⎡⎢⎢⎢⎣

0
2.25
0
0

⎤⎥⎥⎥⎦
and the C matrix to be[

0 0 1 0
]
.

As previously, the A and Dmatrices are unchanged. The MATLAB command

[num,den]=ss2tf(A,B,C,D,1)

then yields the outputs

num = 0 0 -0.45 -0.2925 0

and

den = 1 1.63 1.658 0.6472 1.962

noindentfrom which we obtain our transfer function
𝛼

𝛿th
(s) = −0.45s2 − 0.2925s

s4 + 1.63s3 + 1.658s2 + 0.6472s + 1.962
.

Next, we switch our attention to the spacecraft dynamics case.
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8.4 Transfer Functions for Spacecraft Dynamics Application

Recall that we have already obtained the linearized equations of motion for the attitude
dynamics of satellite in a circular orbit in Part I. We can now use those linearized
equations of satellite attitude motion, and get the appropriate transfer functions
between an output variable and the control (input) variable. For illustrating this
procedure, we reproduce the linearized equations of motion of a satellite attitude
dynamics, which are given by

⎡⎢⎢⎣
I1(�̈� − �̇�𝜔o) + (I2 − I3)(𝜔2

o𝜙 + 𝜔o�̇�)
I2�̈�

I3(�̈� + �̇�𝜔o) + (I2 − I1)(𝜔2
o𝜓 − 𝜔o�̇�)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
Mext1
Mext2
Mext3

⎤⎥⎥⎦ (8.10)

whereMexti are the external applied moments along the three principal axes.
Note that the pitch attitude angle motion is completely decoupled from the roll/yaw

motion. Let us then consider this simple case of getting the transfer function between
the pitch angle and the applied external control torque. Noting that

I2�̈� = Mext2

Let us now separate out the control torque from the disturbance torque and rewrite the
forcing function as

I2�̈� = Mc +Md.

Then the transfer function between output 𝜃(s) and the input control torque Mc(s) is
given by

𝜃

Mc
(s) = 1

I2s2

where I2 is the principal moment of inertia of the satellite about the pitch axis. Recall
that when forming a transfer function between an output and an input, we assume zero
initial conditions for the output variable. Also in a SISO system framework, in a transfer
function, we can consider only one input and one output at a time. Hence for getting
the transfer function between the output pitch angle 𝜃 and the control torque Mc, we
ignore the disturbance torque as an input. However, we could get the transfer function
between the output pitch angle 𝜃 and the disturbance torqueMd, as well by ignoring the
control torqueMc as an input and obtain,

𝜃

Md
(s) = 1

I2s2
.

Notice that since it is a linear system, superposition holds and thus the total response
of the output to both inputs together is simply the sum of the output response to each
individual input.
We can carry out a similar exercise for getting the needed transfer functions for the

coupled roll/yaw motion as well by utilizing the following state space model of the rol-
l/yaw motion, given by[

I1(�̈� − �̇�𝜔o) + (I2 − I3)(𝜔2
o𝜙 + 𝜔o�̇�)

I3(�̈� + �̇�𝜔o) + (I2 − I1)(𝜔2
o𝜓 − 𝜔o�̇�)

]
=
[
Mext1
Mext3

]
. (8.11)
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Denoting 𝜙, �̇�, 𝜓 , and �̇� as the state variables and Mc as the input variable, we can get
the state space representation with the appropriate A and B matrices. Similarly based
on the specification of the output variable, we can get the appropriate C and D matri-
ces. Getting the needed transfer function between the specified output variable and the
control torque Mc, for a satellite in a circular orbit of given radius (and thus a constant
𝜔o), is left as an exercise for the student.

8.5 Chapter Summary

In this chapter, we have learnt the importance of the concept of the transfer function
and its use in the solution of linear constant coefficient ordinary differential equations.
We have examined the main properties of transfer functions in the form of poles and
zeroes and their role in the natural motion (impulse response) and the stability of the
resulting motion. We understood the important difference between a minimum phase
and non-minimum phase transfer function. All these concepts form the foundation for
more advanced material in in the remainder of this book. Finally, we obtained various
needed transfer functions (for use later in the control system design) for both aircraft
dynamics application as well as spacecraft dynamics application. Fundamental concepts
discussed in this chapter can be found in other textbooks dedicated to control systems
such as [1–5].

8.6 Exercises

Exercise 8.1. Using the given information in the Example 8.1 problem, obtain the trans-
fer function

G(s) =
X2

U
(s).

Exercise 8.2. Using the given information in the Example 8.4 problem, obtain the trans-
fer functions

G1(s) =
usp

𝛿e
(s)

G2(s) = 𝛼

𝛿e
(s)

G3(s) =
Θ
𝛿th

(s).

Exercise 8.3. Using the given information in the Example 8.4 problem, obtain the trans-
fer functions

G1(s) =
𝛾(s)
𝛿e(s)

G2(s) =
𝛾(s)
𝛿th(s)

where 𝛾 is the flight path angle defined as

𝛾 = Θ − 𝛼.
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Exercise 8.4. In the satellite attitude dynamics, obtain the following transfer functions

G1(s) =
�̇�(s)
Mc(s)

G2(s) =
𝜓(s)
Md(s)

for a geosynchronous circular orbit. Use Ix = Iz = 90 kg m2 and Iy = 60 kg m2.

Exercise 8.5. Given

Y (s) = s + 3
s2 + s + 4

what is the nature of y(t)?
(a) Pure exponential
(b) Decaying (damped) sinusoidal
(c) Pure harmonic
(d) Unstable (divergent).
Now suppose the zero associated with the system Y (s) is changed from s + 3 to s − 3.
What now is the nature of y(t)?
(a) Pure exponential
(b) Decaying (damped) exponential
(c) Pure harmonic
(d) Unstable (divergent).
This new Y (s) can best be described as
(a) Minimum phase
(b) Non-minimum phase.

Exercise 8.6. What are the poles of the system

H(s) = 20(s + 10)
s2 + 110s + 1000

. (8.12)

(a) 20 and 100
(b) 20, 110, and 1000
(c) 10, 20, and 100
(d) 10 and 100.

Exercise 8.7. Identify the type of natural response (overdamped, critically damped, or
underdamped) associated with each of the following characteristic polynomials:
(a) s2 + 8s + 12
(b) s2 + s + 1
(c) 3s2 + 9s + 2
(d) 42 + s + 40
(e) s2 + 4s + 4.

Exercise 8.8. For the Laplace transformed signal Y (s) = 3s−5
s2+4s+2

, find y(t) for t ≥ 0.

Exercise 8.9. Use the Laplace transform method to solve dy
dt
+ 4y = 6e2t .
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9

Block Diagram Representation of Control Systems

9.1 Chapter Highlights

In the previous chapter, we presented the methodology for getting transfer functions
between a given (single) output and a (single) input in the Laplace (frequency) domain.
The corresponding transfer function, denoted by G(s), is represented by a block as in
Figure 9.1. In this chapter, we gather the transfer functions of various components of a
control system and put them together in a complete block diagram based on the con-
trol objective. We then learn how to manipulate the various transfer functions within
that block diagram to obtain the transfer function between any desired output and any
desired input within that block diagram by following the rules of block diagram alge-
bra.We also introduce various controller structures such as proportional (P), integral (I)
and derivative (D), i.e. PID controllers as blocks within the complete block diagram, and
demonstrate the role of these controllers in meeting the various design specifications of
the control system. Finally we apply them to control problems in aircraft application as
well as spacecraft application.

9.2 Standard Block Diagram of a Typical Control System

In this section, we represent a typical control system block diagram in a very simplified,
generic fashion with the most critical blocks needed to understand the basic principles
of block diagram algebra.The basic idea is to write the block diagram in such a way that
we assume the overall input to the control system is the desired behavior of the output
and the overall output to the block diagram is the actual behavior of the output. We
assume that the actual behavior of the output is always measured by a sensor and this
actual behavior is compared to the desired behavior via a comparator, which is repre-
sented as a summer junction in the block diagram. Then the error between the desired
behavior and the actual behavior is fed to a controller, which thenmanipulates that error
signal in an appropriate fashion and generates the correct signal as an input to the actu-
ator, which supplies the needed input signal to the plant (the system dynamics which is
being controlled) until the output of the plant, which is when the actual behavior of the
system being controlled comes as close as possible to the desired behavior.Thus the con-
troller plays the most crucial part in reducing the error between the actual behavior and
the desired behavior. In other words, we assume all the transfer functions in the block
diagram, except that of the controller, are given or known.Then the idea is to design an

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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G(s)R(s)
+

–
E(s)

Y(s)
Figure 9.1 A unity feedback control system.

appropriate controller transfer function that takes all the other given or known transfer
functions into consideration in its design. For a quick approximate analysis and design
typically the actuator and sensor are taken as giving instantaneous outputs, whichmeans
the transfer functions corresponding to them are constant gains. If that is too unrealis-
tic, we can also incorporate the dynamic models of the actuator and sensor by transfer
functions, either as a first order or a second order transfer function. When this is done,
we say we are taking the actuator and sensor dynamics into consideration. While this
is more realistic, keep in mind that it also complicates the design of the controller. So
a typical compromise is to consider the actuator dynamics (which are relatively slow
in producing the desired outputs from them) but ignore the dynamics of the sensors
which in reality are also very fast acting devices. Also it is possible that the controller
can be split into various components and be placed at different places within the block
diagram (either in the feedforward path or in the feedback path or in both paths). With
this backdrop, in what follows, we assume the simplest form of a block diagram with
these different blocks combined into one transfer function in the feedforward path and
one transfer function in the feedback path, so that we can easily manipulate and obtain
the few fundamental transfer functions needed to analyze the control system behavior.
When the entire feedback path is such that the actual behavior of the output is directly
fed into the comparator summing junction, we label it as a unity feedback system, as
shown in Fig 9.1
Realize that this type of block diagram representation of a control system is not only

serving the purpose of a pictorial representation for the control system at hand, but
actually contains significant mathematical content. In other words, this type of block
diagram is indeed a pictorial representation ofmathematical (algebraic) equations.Thus
in the Figure 9.1 the signal E(s) is mathematically equivalent to the algebraic equation
E(s) = R(s) − Y (s) and similarly

G(s) = Y (s)
E(s)

(9.1)

i.e Y (s) = G(s)E(s). With this understanding, consider the non-unity feedback system in
Fig 9.2.
For a system in this form, we define the following:

• The feedforward transfer function G(s) is

G(s) = Y (s)
E(s)

. (9.2)

• The feedback transfer function H(s) is

H(s) = B(s)
Y (s)

. (9.3)

G(s)

H(s)B(s)

R(s)
+

–
E(s)

Y(s)
Figure 9.2 A non-unity feedback control system.
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• The open loop transfer function G(s)H(s) is

G(s)H(s) = B(s)
E(s)

. (9.4)

It is left as an exercise to the reader to then show that the closed loop transfer function
M(s) given by Y (s)

R(s)
and the error transfer function given by E(s)

R(s)
have the following transfer

functions, namely that:

• The closed loop transfer functionM(s) is

M(s) = G(s)
1+G(s)H(s)

= Y (s)
R(s)

.
(9.5)

• The error transfer function E(s)
R(s)

is

E(s)
R(s)

= 1
1 + G(s)H(s)

. (9.6)

Sometimes when r(t) and y(t) are of the same units, the error e(t) is defined as e(t) =
r(t) − y(t) occasionally, irrespective of whether H(s) is equal to one or not. In that case,

E(s)
R(s)

= 1 + G(s)[H(s) − 1]
1 + G(s)H(s)

but the majority of the time, we will use E(s) = R(s) − B(s).
Thus, the process of getting the transfer function between some specified output vari-

able and a specified input variable amounts to some basic block diagram algebra. The
following examples convey this procedure.

Example 9.1 Find the closed loop transfer function Y (s)
R(s)

in Figure 9.3.

Solution
The diagram in Figure 9.3 is equivalent to the diagram in Figure 9.4.
This conclusion can be arrived at by simply carrying out the algebraic mathematical

manipulations that exist within the given block diagram in a systematic way. Start by

R(s)

B(s)

+

–
E(s) δE(s)

Y(s)

5

2
s+5

2
s+1

(3s+4)
s2+5s+7

Figure 9.3 Block diagram for Example 9.1.

R(s)
+

–
Y(s)

5
s+1

2(3s+4)
(s+5)(s2+5s+7)

Figure 9.4 Simplification of the Example 9.1 block diagram.
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naming every input and output signal of each blockwithin the given block diagram.Then
write out down the mathematical (algebraic in nature) relationships between all those
input and output signals and thenmanipulate those mathematical relationships tailored
in such a way as to simplify the final block diagram into the standard block diagram. Let
us illustrate this procedure for the above block diagram of the given problem.
We observe that

B(s) = 5
s + 1

Y (s).

We also see that

Y (s) = (3s + 4)
(s2 + 5s + 7)

𝛿E(s)

where

𝛿E(s) = 2
(s + 5)

E(s).

Notice that

E(s) = R(s) − B(s) = R(s) − 5
s + 1

Y (s).

Then, after few more appropriate algebraic manipulations, we get

Y (s)
[
1 + 10(3s + 4)

(s + 5)(s2 + 5s + 7)(s + 1)

]
=
[

2(3s + 4)
(s + 5)(s2 + 5s + 7)

]
R(s)

which then yields the final desired transfer function, namely Y (s)∕R(s),

Y (s)
R(s)

=

2(3s + 4)
(s + 5)(s2 + 5s + 7)

1 + 10(3s + 4)
(s + 5)(s2 + 5s + 7)(s + 1)

= 2(3s + 4)
(s + 1)(s + 5)(s2 + 5s + 7) + 30s + 40

=
6(s + 4

3
)

s4 + 11s3 + 42s3 + 97s + 75
.

Thus the closed loop transfer function has one zero at s = − 4
3
, and four poles at the roots

of the denominator polynomial, which are s ≈ −6.60389, s ≈ −1.25931, s ≈ −1.5684 −
j⃗2.56096, and s ≈ −1.5684 + j⃗2.56096.
Note that the (open) loop transfer function is given by

G(s) = 10(3s + 4)
(s + 5)(s2 + 5s + 7)(s + 1)

. (9.7)

The feedforward transfer function is

G(s) = 2(3s + 4)
(s + 5)(s2 + 5s + 7)

. (9.8)

The feedback transfer function is

H(s) = 5
(s + 1)

. (9.9)
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The error transfer function
E(s)
R(s)

= 1

1 + 10(3s + 4)
(s + 5)(s2 + 5s + 7)(s + 1)

= (s + 5)(s2 + 5s + 7)(s + 1)
(s + 5)(s2 + 5s + 7)(s + 1) + 30s + 40

= s4 + 11s3 + 42s2 + 67s + 35
s4 + 11s3 + 42s2 + 97s + 75

.

Example 9.2 Find the closed-loop transfer function for the system depicted in
Figure 9.5.

Solution
We simplify the problem according to the steps in Figure 9.6

Figure 9.5 Block diagram for Example
9.2. R(s)

B(s)

+

+

–
Y(s)

X(s)

+

2

10
s+1

1
s

R(s)
X(s)

B(s)

(a) Step 1

+

+

+

–
Y(s)

2s

10
s+1

1
s

R(s)

(b) Step 2

+

–
Y(s)

2s+1

10
s(s+1)

(c) Step 3

R(s) Y(s)

10
s(s+1)

1+ 
10(2s+1)
s(s+1)

(d) Step 4

R(s) Y(s)
10

s2 + 21s+10

Figure 9.6 Simplification of the control block diagram in Example 9.2.
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R(s)

D(s)

+ + +

–
Y(s)

H(s)

G2(s)G1(s)

Figure 9.7 Block diagram of a system
subjected to disturbance.

After this simplification, we get
Y (s)
R(s)

= 10
s2 + 21s + 10

.

9.2.1 A Closed Loop System Subjected to Disturbance

Because all of these systems have to be single input single output (SISO) for themethods
we have gone over, we cannot get the transfer function from input and the disturbance at
the same time, therefore we have to set the disturbance to zero to get the transfer func-
tion between the input and output or set the input to zero to get the transfer function
between the disturbance and the output. Consider the system shown in Figure 9.7.
It can be easily shown that

Y (s)
R(s)

||||D(s)=0 = G1(s)G2(s)
1 + G1(s)G2(s)H(s)

Y (s)
D(s)

||||R(s)=0 = G2(s)
1 + G1(s)G2(s)H(s)

.

At this juncture, it is appropriate to switch the discussion to understanding various
time domain response specifications, which are then used as design specifications,
so that we attempt to design a controller transfer function to meet those design
specifications.

9.3 Time Domain Performance Specifications in Control
Systems

Given the transfer function between an output and an input, as seen in Figure 9.8, i.e.
Y (s)
R(s)

= M(s) =
N(s) = numerator polynomial
D(s) = denominator polynomial

Y (s) = M(s)R(s).

Our eventual interest is to get y(t) for a given input r(t), see Figure 9.9 and Table 9.1.
Typical response or performance characteristics or specifications are in terms of:

(a) Transient response
(b) Steady state response
(c) Relative stability
(d) Frequency response specifications.
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Figure 9.8 Simple system.
M(s)R(s) Y(s)

(a) (b)

(c) (d)

(e)

Figure 9.9 Typical input signals in control systems.

Table 9.1 Key to typical input signals in control systems.

Illustration r(t), t > 0 Signal R(s)

9.9a 𝛿 Unit impulse 1

9.9b 1 Unit step 1
s

9.9c t Unit ramp k
s2

9.9d t2 Parabolic k
s3

9.9e sin𝜔t Pure oscillatory 𝜔

𝜔2 + s2

The first three are mostly time domain specifications.The time response is composed
of two parts:

y(t) = yt(t) + yss(t)
↓ ↓

That part which
goes to zero as

t → ∞
→ Transient Steady state
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9.3.1 Typical Time Response Specifications of Control Systems

9.3.1.1 Transient Response: First Order Systems

Y (s)
R(s)

= M(s) = N(s)
(s + a)

i.e. the denominator polynomial is of degree 1.

9.3.1.2 Unit Step Response

Y (s) = N(s)
s(s + a)

=
k1
s
+

k2
s + a

y(t) = k1 + k2e−at
Steady state Transient response.

Figure 9.10 shows the first order signals.
t = 1

a
= T is called the time constant of the system.The smaller the time constant, the

faster the system response.

9.3.1.3 Second Order Systems

Y (s)
R(s)

= M(s) = N(s)
s2 + 2𝜉𝜔ns + 𝜔2

n

i.e. the denominator polynomial is of degree 2. Suppose

Y (s)
R(s)

= M(s) =
𝜔2

n

s2 + 2𝜉𝜔ns + 𝜔2
n
.

9.3.1.4 Unit Step Response

Y (s) =
𝜔2

n

s(s2 + 2𝜉𝜔ns + 𝜔2
n)

y(t) = 1 + e−𝜉𝜔nt√
1 − 𝜉2

sin

[
𝜔n

√
1 − 𝜉2t − tan−1

√
1 − 𝜉2

−𝜉

]

Figure 9.11 demonstrates the influence of pole placement on time response. Typical
specifications are given in terms of the case 0 < 𝜉 < 1, illustrated in Figure 9.12.

t

(a)

tT

0.632
1

y(t)r(t)

(b)

Figure 9.10 First order signals. (a) Input signal. (b) Output signal.
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y(t)

y(t)

y(t)

y(t)

y(t)

y(t)i

i

i

i

ii

t t

t t

t t

(b)(a)

ξ > 1 

ξ = 1 

0 < ξ < 1 

(d)(c)

(f)(e)

×

×

×

×

×

×

×

×

×

×

×

×

R R

R R

R R

Figure 9.11 Influence of pole placement on time response.

ttmaxtd
0

0.1

0.5

0.9
1

tr
ts

Max Overshoot

y(t)

Figure 9.12 Specifications in the time domain.

(a) Maximum overshoot is a measure of relative stability.

%Maximum overshoot = Maximum overshoot
Final value

∗ 100%.

(b) Delay time td is the time to reach 50% of the final value.
(c) Rise time tr is the time taken from 10% to 90% of the final value.
(d) Settling time ts is the time taken to settle to about ±4% to 5% of the final value.

Typically,
tmax =

𝜋

𝜔n
√
1 − 𝜉2
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Maximum overshoot = e
− 𝜋𝜉√

1−𝜉2

%maximum overshoot = 100e
− 𝜋𝜉√

1−𝜉2

td ≅
1 + 0.6𝜉 + 0.15𝜉2

𝜔n

tr ≅
1 + 1.1𝜉 + 1.4𝜉2

𝜔n

ts ≅
3

𝜉𝜔n
(5% tolerance).

It is customary to take 1
𝜉𝜔n

as the time constant of a second order system.
Now that we have gathered these design specifications, the next step is to see what

type of controller structures (by which we imply what type of controller transfer func-
tions) would be suitable to meet these design specifications. Naturally, the controller
transfer function we inject into the above control system block diagram has significant
influence on the closed loop systembehavior. So in the next section, we build a fewuseful
controller transfer functions that are likely to meet the standard design specifications.

9.4 Typical Controller Structures in SISO Control Systems

Consider the typical control system block diagram in Figure 9.13. Standard controller
structures are:
(1) GC(s) = KP → proportional controller
(2) GC(s) = KP + KDs → proportional derivative (PD) controller
(3) GC(s) = KP +

KI

s
→ proportional integral (PI) controller.

However. these typical controllers are ideal cases of more general practical controllers
given as follows.

9.4.1 Lead Network or Lead Compensator

Here |z| < |p|. See Figure 9.14.
R(s)

+

–
Controller

GC(s)

Feedback
Element

H(s)

Plant
GP (s)

Figure 9.13 Typical control system block
diagram.

×

R

–z–p

Im Figure 9.14 Lead compensator poles and zeroes.
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Figure 9.15 Lead network.

OutputInput

The PD controller is a special case of this.
A lead compensator improves relative stability and is mostly used to satisfy damping

ratio and natural frequency requirements. A possible mechanization of this network
using RLC (resistor, inductor, and capacitor) elements is shown in Figure 9.15. In elec-
trical engineering notation, this is a high-pass filter.

9.4.2 Lag Network or Lag Compensator

Here |p| < |z|. See Figure 9.16.
The PI controller is a special case of this.
A lag compensator reduces steady-state efforts to tk type inputs (especially for a step

input that is like k = 0, t0 input). A possible mechanization of this network using RLC
elements is shown in Figure 9.17. In electrical engineering notation, this is a low-pass
filter.
Obviously, in the majority of the situations, a combination of these two is warranted,

which is termed a lead-lag compensator:

GC(s) =
K(s + z1)(s + z2)
(s + p1)(s + p2)

.

By carefully adjusting the pole and zero locations as well as the gain K of the compen-
sator, we can design a controller that can satisfy both the relative stability requirements
as well as steady-state error requirements.
Let us now illustrate how placing the poles and zeroes of the controller affects the

closed loop behavior, which in turn can be used to get guidelines on selecting the gainK .

Figure 9.16 Lag compensator poles and zeroes.

R
×

–p

i

–z

Figure 9.17 Lag network.

OutputInput
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9.4.3 Relative Stability: Need for Derivative Controllers

In general, to improve the relative stability of the closed loop control system, we typically
employ derivative (PD) controllers. By relative stability, wemean improving the damping
ratio and natural frequency specifications or simply stabilizing an unstable (open loop)
system. Let us illustrate this by an example.
Suppose the open loop transfer function of a system is K1

s2 +4
Naturally, this is

an undamped second order system and is neutrally stable. If we employ only a
proportional controller, we get Figure 9.18; the closed loop transfer function is

Y (s)
R(s)

=
K1Ka

s2 + (4 + KaK1)
.

So whatever gain K you use, you are not changing the neutral stability character of the
control system. If instead we use a proportional derivative controller (see Figure 9.19),
we have, say, GC(s) = Ka(s + 5), then the closed loop transfer function is

Y (s)
R(s)

=
K1Kas + 4 + 5KaK1

(s2 + K1Kas + 4 + 5KaK1)
.

Thus by varying the gains Ka and K1, we can stabilize the closed loop system.
However, by improving the relative stability characterization, we may have worsened

the steady state error response characterization. That is, there is typically a trade-off
between relative stability and the steady-state error response! So in general we should
be careful as to how much gain we use in the PD controller!

9.4.4 Steady-State Error Response: Need for Integral Controllers

Figure 9.20 shows a closed-loop block diagram. We have seen that
E(s)
R(s)

= 1
1 + GC(s)GP(s)

.

Suppose that

GP(s) =
1

(s + 1)(s + 2)
(9.10)

R(s)
+

–
Ka

P Controller Plant

K1

s2 + 4

Figure 9.18 System with proportional controller.

R(s)
+

–
Ka (s+5)

PD Controller Plant

K1

s2 + 4

Figure 9.19 System with proportional
derivative controller.
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Figure 9.20 Closed-loop block diagram.
R(s)

E(s)
Y(s)

+

–
GC(s) GP(s)

and

GC(s) = K . (9.11)

That is, GC is a proportional controller. Then
E(s)
R(s)

= 1
1 + K

(s+1)(s+2)

= (s + 1)(s + 2)
s2 + 3s + 2 + K

. (9.12)

Suppose the input r(t) is a step input, i.e. R(s) = 1
s
. Then the steady-state error due to a

step input is

lim
s→0

sE(s) = lim
s→0

s[(s + 1)(s + 2)]
s[s2 + 3s + 2 + K]

= 2
2 + K

.

Thus there is a finite steady state error due to a step input. You may want to make this
steady state zero. For that we employ integral controllers.
So, in general, we can say that one way to improve the steady state error response (i.e.

reducing the steady state errors) is to increase the type of the system’s open loop transfer
function. Incidentally, the type of an open loop transfer function is simply the number
of poles at the origin. Thus if we have no poles at the origin, we call it a type 0 system;
if we have one pole at the origin (i.e. an s in the denominator), then it is a type 1 system
and so on. This in turn means that we can introduce integration into the controller, i.e.
integral control action can be used in general to reduce steady state errors.
The proportional controller in Figure 9.21 gives a finite steady state error for a step

input (type 0).
The integral controller in Figure 9.22 gives zero steady state error for a step input

(now it is a type 1 system). However, in the integral controller case the gain K has to

Figure 9.21 Proportional controller
example.

R(s) Y(s)
+

–
K

GC(s) GP(s)

1
(s + 1)(s + 2)

Figure 9.22 Integral controller example.

R(s) Y(s)
+

–

GC(s)
Integral Controller GP(s)

1
(s + 1)(s + 2)

K
s
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be selected carefully because, while increasing the type of the system, we may make the
closed loop system unstable if we do not select the gain K carefully. Compare the closed
loop characteristic equations of the systems shown in Figures 9.21 and 9.22 and see, if
for the second case, you can find a value of gain K that keeps the closed loop system
stable.

9.4.5 Basic Philosophy in Transfer Function Based Control Design Methods

It turns out that basically the control design philosophy in the classical transfer func-
tion based methods is to essentially iterate the selection of these gains associated with
a PID (or lead-lag) controller transfer functions until a satisfactory response is achieved
that meets the design specifications. Thus, philosophically, these design methods are
somewhat trial and error based methods. However, the design procedure is conceptu-
ally simple and easily understood. It is important to realize that this simple PID con-
trol design methodology turns out to be quite effective in many real world applications
and is thus deemed quite useful and powerful. Notice that conceptually the PID design
methodology embodies the past, present, and future features in the controller, where
the proportional (P) gain represents the present, the integral (PI) gain represents the
past (looking past) and the derivative (PD) gain represents the future (looking ahead).
Thus it is not surprising that they perform very well in achieving the desired closed loop
system behavior.

9.5 Chapter Summary

In this chapter, we have presented the main ideas of representing a control system in a
block diagram format and learnt a few techniques of block diagram algebra by which
we can algebraically manipulate these various transfer functions so that we can obtain a
transfer function between any given output variable of interest and a given input variable
of interest. We then discussed various controller structures such as a proportional (P),
integral(I) and derivative (D) actions, and combinations thereof, labeled PID controllers,
and understood in what circumstances these controller structures are used. We then
learnt about the corresponding practical versions of them in the form of a lead network
(as a more practical transfer function representing PD control action), a lag network
(as a more practical transfer function representing PI control action), and a lead/lag
network (as a more practical transfer function representing PID control action). We
have also presented few important time domain performance specifications such as rise
time, settling time and percentage overshoot, etc., so that they can be used as design
specifications to be met by the control system so that the actual output behaves as close
to the desired output behavior as possible. Since the majority of the practical control
systems follow this philosophy, the contents of this chapter are highly important and
useful. Fundamental concepts discussed in this chapter can be found in other textbooks
dedicated to control systems such as [1–5].
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9.6 Exercises

Exercise 9.1. Given that a non-unity feedback system, shown in Figure 9.23

Figure 9.23 Non-unity feedback system.

H(s)

R(s)

B(s)

+
– G(s)

E(s) Y(s)

can always be converted to a unity feedback system, as shown in Figure 9.24,

Figure 9.24 Unity feedback system.
Geq(S)

R(s)+

–

E(s) Y(s)

get the Geq(s) expression in terms of G(s) and H(s).
Exercise 9.2. Reduce the block diagrams shown in Figures 9.25 and 9.26, finally obtain-
ing the overall system transfer function Y (s)∕R(s).

Figure 9.25

R(s)+ + +

–

Y(s)

G2(s)

G1(s)

H1(s)

Figure 9.26 R(s)

+
–

Y(s)1
s+1

3
s+4

Exercise 9.3. Find the solution of the differential equation:
d2x
dt2

+ dx
dt

+ 8x = dz
dt

+ 3z.

Exercise 9.4. Find the closed loop transfer function Y (s)
R(s)

for the block diagram shown in
Figure 9.27.

Exercise 9.5. Find the closed loop transfer function Y (s)∕R(s) for the block diagram
shown in Figure 9.28.
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R(s)
+

–
Y(s)

+

–

2
s

10
s2+4

1
s+1

Figure 9.27

Y(S)R(S)
+

–
G1

H3

H1

H2

G2

+

–

+

–
G3

Figure 9.28

Exercise 9.6. Find a controller G(s) such that the overall system of Figure 8.3 is second
order and critically damped. A solution to this problem is not unique.

G(s)
R(s) Y(s)1

s+2

Figure 9.29
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10

Stability Testing of Polynomials

10.1 Chapter Highlights

In this chapter we introduce techniques to determine if a real constant coefficient poly-
nomial has roots with negative real parts or not. As seen from the previous chapter, for
a linear time invariant system, the transfer function between a desired output variable
and an input variable has a numerator polynomial and a denominator polynomial. For a
known given input in the Laplace domain, then the corresponding output variable’s time
history depends on the pole behavior of that output function, which in turn implies that
the output response depends on the roots of the denominator polynomial of that output
function (in the Laplace domain). If the poles are stable, meaning that the roots of the
denominator polynomial have negative real parts, then the time histories of the output
variable converge to a steady state value, making the output have stable behavior. Hence
we need a procedure to determine the roots of an arbitrary degree polynomial with real
coefficients. In this chapter, we present a popular and important technique known as
the Routh–Hurwitz criterion.The attractive feature of this technique is that we can infer
the stability of the polynomial without actually solving for all the roots per se. Instead it
quickly gives an answer as to whether all the roots have negative real parts or not, just by
a few algebraic manipulations with the (real) coefficients of the polynomial. Rigorously
speaking we need to make a distinction between a polynomial with real coefficients,
which naturally occurs in either the numerator polynomial or a denominator polyno-
mial in a transfer function in the Laplace domain, and another polynomial with real
coefficients, which is widely known as the characteristic polynomial of a matrix. The
characteristic polynomial of a matrix is obtained through the equation Det(𝜆I − A) = 0,
which is an nth degree polynomial for a matrix of order n. Even though this distinction
becomes more important in a later part of the book wherein we are interested in the
stability of a matrix, i.e. to know whether the eigenvalues of a matrix have negative real
parts or not. Note that the eigenvalues of a real matrix are nothing but the roots of the
characteristic polynomial of the matrix A. For now, in this chapter, we do not make any
distinction between these two types of polynomials and simply consider the problem of
deciding whether an nth degree polynomial with real coefficients has negative real part
roots or not.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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10.2 Coefficient Tests for Stability: Routh–Hurwitz Criterion

For first- and second-order polynomials, stability can be easily determined by inspection
of the polynomial. First and second order polynomials are stable if all coefficients in the
polynomial are non-zero and positive. For example, the polynomials

s + 7 = 0

and

3s2 + s + 10 = 0

are stable polynomials. On the other hand, the polynomial

3s2 + s − 10 = 0

is unstable. For higher order polynomials, the positivity of the polynomial coefficients by
themselves is only a necessary condition for stability but not sufficient. A polynomial of
with all roots in the left side of the complex plane (LHP) has factors of the form (s + a),
with a > 0. Thus the necessity of the positivity of the coefficients is easy to establish.
When multiplied out, the polynomial must have all coefficients of the same algebraic
sign (in case, the coefficient of the highest degree is not positive to start with). Also,
no coefficient can be zero or missing for stability. For instance, we can tell by inspection
the characteristic polynomial s2 + bs + c = 0will have two (possibly complex-conjugate)
LHP roots, so long as b > 0 and c > 0.
However, for higher order (n ≥ 3) polynomials, to get a necessary and sufficient con-

dition for the stability of the polynomial we need to resort to a more sophisticated
procedure. This test is widely known as the Routh–Hurwitz criterion. We now learn
about that simple test.

10.2.1 Stability of Polynomials with Real Coefficients via Polynomial
Coefficient Testing: The Routh–Hurwitz Criterion

TheRouth–Hurwitz test is a powerful numerical and analytical procedure to determine
howmany roots of a polynomial are in the RHP and howmany are on the imaginary axis.
It does not give exact roots of the polynomial, but is usually far quicker than factoring
the polynomials. Recall that any given polynomial expression, such as

s5 + s4 + 3s3 + 9s2 + 16s + 10 = 0

can be generalized as such

a0sn + a1sn−1 + a2sn−2 + a3sn−3 + · · · + an−1s + an = 0

where we assume that the leading coefficient a0 is positive. A polynomial with the lead-
ing coefficient as unity is called a monic polynomial.
Asmentioned earlier, a necessary condition for the above polynomial to have negative

real part roots is that all the coefficients be positive. Hence, if any of the coefficients are
zero or negative, we can easily conclude that the polynomial is unstable.
To start the Routh–Hurwitz test, we then assume that all the coefficients are positive.

Then we write the well known Routh–Hurwitz (R–H) table in the following pattern,
where we write, in descending powers of s, starting with the highest power of the
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polynomial, sn though s0 to the left of the table. Then we enter the coefficients of the
polynomial in the first two rows alternating with the odd degree coefficients in one row
and the even in the other.

sn a0 a2 a4 a6 . . . . .
sn−1 a1 a3 a5 a7 . . . . .
sn−2 b1 b2 b3 b4 . . . .
sn−3 c1 c2 c3 . . . .

⋮s2 f1 f2
s1 g1 g2
s0 h1

where the entries in the third row and onwards are computed as follows.

sn a0 a2 a4 a6 . . . . .
sn−1 a1 a3 a5 a7 . . . . .

sn−2
s2
s1
s0

The Routh–Hurwitz test involves filling in the rest of the table in a certain way. The
number that will be in the circle above the formula in the third row is denoted by b1,
which is computed as follows:

−
|||| a0 a2
a1 a3

||||
a1

= b1.

The rest of the entries in the third row are denoted by bi (i = 2, 3,…) and are computed
as follows:

−
|||| a0 a4
a1 a5

||||
a1

= b2.

The next entries in the fourth row, denoted by ci are computed as follows:

−
|||| a1 a3
b1 b2

||||
b1

= c1.

The rest of the entries in the fourth row are denoted by ci (i = 2, 3,…) and are computed
as follows:

−
|||| a1 a5
b1 b3

||||
b1

= c2.

This procedure is continued until all the rows until s0 are filled. Then the necessary and
sufficient condition for the roots of the characteristic polynomial to have negative real
parts and thus be Hurwitz stable is that all the entries of the first column of the R–H
table be all positive.
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Example 10.1 Let us now illustrate this procedure with a simple example. Consider
the same characteristic polynomial mentioned before, namely,

s5 + s4 + 3s3 + 9s2 + 16s + 10 = 0.

Let us form the R–H table for this polynomial.
s5 1 3 16
s4 1 9 10
s3 -6 6
s2

s1
s0

b1 =
−
|||||
1 3
1 9

|||||
1

= −6.

Continuing the process

b2 =
−
|||| 1 16
1 10

||||
1

=
−
|||| 1 16
1 10

||||
1

= 6.

The next entries in the s2 row are

c1 =
−
|||| 1 9
−6 6

||||
−6

= 9

and further entries would be zeroes.
s5 1 3 16
s4 1 9 10
s3 −6 6
s2 9 10
s1
s0

Continuing this process would finally complete the R–H table, which now looks like:
s5 1 3 16
s4 1 9 10
s3 −6 6
s2 9 10
s1 114/9
s0 10

The number of RHP roots of the polynomial is equal to the number of algebraic sign
changes in the first (left most) column of the table, starting from top to bottom. This
example has two RHP roots because the sign changes twice, once from positive one to
negative six and then back to positive nine. Hence this polynomial (and the matrix that
gives rise to this characteristic polynomial) is unstable. We could have concluded that
the polynomial is unstable at the time we obtained the b1 coefficient as −6, but in this
example we continued further to complete the entire R–H table to simply know how
many RHP roots are there in the poynomial because that is actually what the objective
of the RH criterion is.
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Example 10.2 Let us now illustrate this procedure with another simple example.
Consider the characteristic polynomial mentioned before, namely,

s5 + s4 + 3s3 + 9s2 + 16s + 10 = 0.

Let us form the R–H table for this polynomial.

s5 1 12 16
s4 1 9 10
s3 3 6
s2

s1
s0

b1 =
−
|||||
1 12
1 9

|||||
1

= 3.

Continuing the process

b2 =
−
|||||
1 16
1 10

|||||
1

=
−
|||||
1 16
1 10

|||||
1

= 6.

The next entries in the s2 row are

c1 =
−
|||| 1 9
3 6

||||
3

= 7

and further entries would be zeroes. Completing the R–H table would result in

s5 1 3 16
s4 1 9 10
s3 3 6
s2 7 10
s1
s0

Continuing this process would give you:

s5 1 12 16
s4 1 9 10
s3 3 6
s2 7 10
s1 12/7
s0 10

In this example, the first column entries of the R–H table are all positive (no sign
changes). Hence this polynomial is Hurwitz stable.
Notice that the stability of polynomial is quite sensitive to the numerical values of the

coefficients of the polynomial.
Sometimes, based on the numerical values of the coefficients, we may run into some

unusual situations that may prevent us from completing the R–H table. We now discuss
few of those situations.
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10.3 Left Column Zeros of the Array

Consider the polynomial:
s4 + s3 + 2s2 + 2s + 3.

A snag develops in the Routh–Hurwitz test:
s4 1 2 3
s3 1 2
s2 0 3
s1
s0

The first entry in the row corresponding to s1 will be

b1 =
−
|||| 1 2
0 3

||||
0

which involves division by zero.This situation can be resolved by replacing the left zero
by a small positive number, denoted by 𝜖 and continuing the process:

s4 1 2 3
s3 1 2
s2 𝜖 3
s1 2𝜖 − 3

𝜖

s0 3

Since,

lim
𝜖→0

2 − 3
𝜖
= −∞

s4 1
s3 1
s2 0+
s1 −∞
s0 3

Since there are sign changes in the first column, this polynomial is unstable.
An alternative method for circumventing left column zeros is to introduce additional

known roots to the polynomial, thereby increasing its order, and that would allow us
to change the coefficients so that the left column zero does not occur. Another method
is to substitute ( 1

p
) for s and get a new polynomial in p and then complete the test with

that new polynomial. The exercises at the end of the chapter will help the student to
illustrate these approaches.

10.4 Imaginary Axis Roots

There are three basic types of factors possible in an even degree polynomial.
(s + ja)(s − ja) = (s2 + a2)
(s + a)(s − a) = (s2 − a2)

(s + a + jb)(s + a − jb)(s − a + jb)(s − a − jb) = s4 + 2(b2 − a2)s2 + (a2 + b2)2.
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For the polynomial
s4 + s3 + 5s2 + 3s + 6
s4 1 5 6
s3 1 3
s2 2 6
s1 0 0

When the entire row has zeroes, it indicates the possible presence of pure imaginary
axis (i.e zero real part) roots.We then form the so-called auxiliary polynomial (or divisor
polynomial) corresponding to the row above the row with all zeroes. In the above, the
auxiliary (or divisor) polynomial is given by

2s2 + 6 (divisor of the original polynomial).
We then replace the row of zeroes by the coefficients of the derivatives of the divisor
polynomial,

d
ds

(2s2 + 6) = 4s

and then complete the R–H table. For this example, the R–H table is then:
s4 1 5 6
s3 1 3
s2 2 6
s1 4 8
s0 6

Since there are no sign changes, there are no RHP roots. However, there are two roots
on the imaginary axis (roots with zero real parts).This tells us that the above polynomial
is unstable due to the presence of roots on the imaginary axis, but with no RHP roots.
We now present an application in control systems where the R–H criterion can

play significant role in the design of controllers. The following example illustrates this
application.

10.5 Adjustable Systems

We can also use the R–H criterion to determine the range of values for stability for an
adjustable parameter within a given characteristic equation. Let us illustrate this proce-
dure with a simple example.

Example 10.3 Find the range or ranges of an adjustable parameter K for which the
closed loop of a unity feedback system whose open loop transfer function T(s) given by

T(s) = 2s + K
s2(s2 + 2s + 4)

is stable.

Solution
Forming the closed loop transfer function (1 + T(s)) = 0, we obtain the closed loop char-
acteristic polynomial as

s4 + 2s3 + 4s2 + 2s + K = 0.
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From inspection of the closed loop characteristic polynomial, we can already observe
that K > 0 is a necessary condition for stability. Completing the Routh–Hurwitz test in
terms of K will help us to get the necessary and sufficient condition for stability. So we
form the R–H table as such

s4 1 4 K
s3 2 2
s2 3 K
s1 6 − 2K

3
s0 K

We know there must be no sign changes to ensure zero RHP roots. Therefore, from the
last two lines of the R–H table, we have our upper and lower bounds for K

• K > 0 and
• 6−2K

3
> 0.

Solving the second inequality, we obtain the the upper bound K < 3. Therefore, we see
0 < K < 3 is the acceptable range of the adjustable parameter to ensure stability of the
closed loop system.

Thus, it can be seen that the R–H criterion can be effectively used tomake some useful
design decisions in control systems.

10.6 Chapter Summary

In this chapter, we presented a highly popular and important technique, known as the
Routh–Hurwitz criterion, for determining whether a given a polynomial of arbitrary
degree with real coefficients has all its roots with negative real parts or not, without
actually solving for the roots of that polynomial. This simple coefficient test is a quick
means to assess whether the given transfer function with its denominator polynomial
known is stable or not. The stability issue for a linear control system in Laplace domain
is a very important first step in designing control systems in later chapters for achieving
or meeting various other performance specifications. Naturally, the foremost concern
in designing a control system would be the stability of the closed loop system before we
embark on the task of improving its performance to meet all the other design specifi-
cations.As such the content of this chapter is very important and useful. Fundamental
concepts discussed in this chapter can be found in other textbooks dedicated to control
systems such as [1–5].

10.7 Exercises

Exercise 10.1. Examine the stability of the polynomial

s3 + 6s2 + 11s + 6 = 0.

Exercise 10.2. Investigate the stability of the polynomial

s4 + 6s3 + 26s2 + 56s + 80 = 0.
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Exercise 10.3. Investigate the stability of the polynomial

s4 + 10s3 + 35s2 + 50s + 24 = 0.

Exercise 10.4. Investigate the stability of the polynomial

s5 + 2s4 + 3s3 + 6s2 + 2s + 1 = 0.

Exercise 10.5. The open loop transfer function of a unity feedback system is given by

G(s) = K
s(1 + sT1)(1 + sT2)

.

Derive an expression for gain K in terms of T1 and T2 for the closed loop system to
be stable.

Exercise 10.6. Find the range(s) of the adjustable parameterK > 0 forwhich the systems
of Figure 10.1 and 10.2 are stable.

Figure 10.1
K

–

+ 10

s
s+1

R(s) Y(s)

s2+3s+10

Figure 10.2

–

+R(s) 10
s2+ks+10

1
s+3

Y(s)
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Root Locus Technique for Control Systems Analysis and Design

11.1 Chapter Highlights

In this chapter, we present an elegant, graphical technique called the root locus tech-
nique, so that we can visualize the closed loop poles as the gain K is varied using only
the open loop transfer function information.Thus, the root locus is the locus of the roots
of the closed loop characteristic polynomial as the gain K is varied but without actually
solving for the roots of the closed loop characteristic polynomial. This graphical tech-
nique basically shows the locus of the closed loop poles as a function of the gain K by
using the pole/zero information of the open loop transfer function. So by drawing the
root locus based on the open loop transfer function, we can visualize what the closed
loop poles are as the gain K is varied. Root locus is a powerful control systems analysis
and design method that is widely used in many engineering system applications. In this
chapter, we present the rules by which we can quickly and approximately construct the
root locus and then use the drawn root locus to design an appropriate controller transfer
function along with the gain K to meet the various closed loop design specifications in
terms of the desired pole locations.

11.2 Introduction

Consider the open loop transfer function, defined as KG(s)H(s), where we can usually
easily determine the poles. Note that they do not vary with the gain K . However, deter-
mining the poles of the closed loop transfer function given by

T(s) = KG(s)
1 + KG(s)H(s)

(11.1)

can be difficult because we would have to factor the denominator, which becomes a
function of the gain K . Thus as the gain K changes the roots of the closed loop charac-
teristic polynomial (namely 1 + KG(s)H(s) = 0, which in turn are the poles of the closed
loop transfer function T(s)) keeps changing. Clearly, it would be extremely helpful if we
graphically visualize where those closed loop poles reside in the complex plane as gain
K is varied.This is what the root locus is, namely the locus of the closed loop poles in the
complex plane as the gainK is varied.Themost attractive feature of root locus technique
is that this locus can be drawn by simply using all the known information about the open
loop transfer functionwithout actually being concerned about building the actual closed

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
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214 11 Root Locus Technique for Control Systems Analysis and Design

loop transfer function itself. Thus one of the objectives of this chapter is to learn how
to draw the root locus quickly, albeit approximately, so that we can make quick conclu-
sions and decisions about what gain K needs to be used in the control design so that the
closed loop system meets the design specifications. Naturally, the root locus technique
is ideally suited for cases where the design specifications are in terms of desired closed
loop pole locations. To get deeper insight into the behavior of closed loop poles as the
gain K changes, let us write the above closed loop transfer function in a more detailed
way as follows:

G(s) =
NG(s)
DG(s)

H(s) =
NH(s)
DH(s)

.

Then the closed-loop transfer function becomes

T(s) =
KNG(s)DH(s)

DG(s)DH(s) + KNG(s)NH(s)
. (11.2)

Notice that when the gain K is zero, the closed loop poles are nothing but the poles of
the open loop transfer function. On the other extreme, as gain K tends to∞, the closed
loop poles reach towards the open loop zeroes. Sowe already obtain one rule for drawing
the root locus approximately, namely that the root locus starts from the poles of the open
loop transfer function and ends at the zeroes of the open loop transfer function. Note
that, any complex number, 𝜎 + j𝑤 described in Cartesian coordinates can be graphically
represented by a vector. The function defines the complex arithmetic to be performed
in order to evaluate F(s) at any point, s. Thus it can be seen that

M =
∏

zero length∏
pole lengths

=

m∏
i=1

|(s + zi)|
n∏
j=1

|(s + pj)|
. (11.3)

The angle, 𝜃, at any point, s, in the complex plane, is
𝜃 =

∑
zero angles −

∑
pole angles (11.4)

=
m∑
i=1

∠(s + zi) −
n∑
j=1

∠(s + pj). (11.5)

We now use the above conceptual observations to help us determine the conditions
that need to be satisfied for any point s in the complex plane to be qualified as a point
on the root locus. Thus there are few rules to be followed for us to build the root locus.
In what follows, we elaborate on these properties to be obeyed by the points on the root
locus in an orderly fashion.

11.3 Properties of the Root Locus

The closed loop transfer function is

T(s) = KG(s)
1 + KG(s)H(s)

. (11.6)
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A closed loop pole is that point s in the complex plane that satisfies the following
constraint, namely that at that point the closed loop characteristic polynomial (i.e. the
polynomial in the denominator) becomes zero, or

KG(s)H(s) = −1 = 1∠(2k + 1)180∘ k = 0,±1,±2,±3,… . (11.7)

A value of s is a closed-loop pole if

|KG(s)H(s)| = 1 (11.8)

and

∠KG(s)H(s) = (2k + 1)180∘ (11.9)

where K is

K = 1|G(s)H(s)| . (11.10)

The value of gain is evaluated using

K = 1|G(s)H(s)| = 1
M

=
∏

pole lengths∏
zero length

. (11.11)

Let us demonstrate this relationship for the second order system.

Example 11.1 If we have an open-loop transfer function of KG(s)H(s) = K
s(s+20)

,
determine the nature of the closed loop poles.

Solution
Because this is a second order system factoring the denominator is not that difficult. So
to convey the main concept of root locus drawing, let us use simple standard way of get-
ting the actual closed loop poles. Let us use Equation 11.2 to find the closed-loop poles.

T(s) =
KNG(s)DH(s)

DG(s)DH(s) + KNG(s)NH(s)

= K
s(s + 20) + K

= K
s2 + 20s + K

.

(11.12)

Looking at the denominator we can see that the closed-loop poles depend on the gain
K , so as K is varied, so do the locations of the closed loop poles. Varying the gain K we
can generate Table 11.1. If we graph the table, which can be seen in Figure 11.2, we can
see a pattern emerging. When the gain is less than 100, the system is overdamped. At
100, the system is critically damped and above that it is underdamped.
The thought process outlined in the above example is the basis for the root locus. If

we drew a line connecting the different poles for each possible gain K , we would have a
continuous locus for all the closed loop poles as a function of the gain K . That is exactly
what we mean by root locus. For a system with the open loop transfer function given by

KG(s)H(s) = K
s(s + 20)

(11.13)

the root locus is finally shown in Figure 11.1.
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Table 11.1 Closed-loop pole location as a function of the gain K .

Gain K Pole 1 Pole 2

0 0 −20

20 −18.94 −1.05

40 −17.74 −2.25

60 −16.32 −3.67

80 −14.47 −5.52

100 −10 −10

120 −10 + j 4.47 −10 − j 4.47

140 −10 + j 6.32 −10 − j 6.32

160 −10 + j 7.74 −10 − j 7.74

180 −10 + j 8.94 −10 − j 8.94

200 −10 + j 10 −10 − j 10

Im

Re

Figure 11.1 Root locus for the transfer function given in Equation 11.13.

Figure 11.2 depicts the gain at each point on the root locus. Notice that getting
the closed loop pole locations at every gain K was relatively easy because this was
only a second order system. However, for higher order systems this would become
increasingly difficult and impractical. Which is why determining the root locus for a
more general higher order open loop transfer function requires a far more sophisticated
procedure, which was developed by Evans using some fundamental simple logical
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Figure 11.2 MATLAB poles graphed on the complex plane for the transfer function given in Equation
11.13.

arguments. This attractive graphical technique of drawing the root locus quickly and
approximately (to serve the design purpose) is possible by following some rules of root
locus construction devised by Evans. Thus Evans can be regarded as the father of the
root locus. In what follows, we briefly summarize these rules of root locus construction
laid out by Evans [4, 5]. Interestingly, Evans developed this root locus technique while
working in the aircraft industry. In this newmillenniumwith advanced use of computer
technology, it is true that we can get the actual and exact root locus in a relatively easier
way compared to the time when Evans initiated this process. What is important to
realize is that the ability to draw the root locus quickly and approximately the Evans
way can never be underestimated because this ability to draw root locus following
these rules can still be used to verify and confirm the correctness of the exact root
locus because, after all, in this computer age, it is still possible to enter the data in an
erroneous way, and not know about it. Thus the danger of garbage in, garbage out
applies very well to any computer generated code or procedure. Thus learning about
the Evans root locus technique is still very important and beneficial for a student
mastering control systems even in this computer age. With that understood, we now
briefly summarize the rules.
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11.4 Sketching the Root Locus

The following five rules are used in sketching the root locus.The rules yield a sketch that
gives intuitive insight into the behavior of a control system with minimal calculations.

1. Number of branches. The number of branches of the root locus equals the number
of closed-loop poles.

2. Symmetry. The root locus is symmetrical about the real axis.
3. Real axis segments. On the real axis, for K > 0 the root locus exists to the left of an

odd number of real axis, finite open-loop poles and/or finite open-loop zeroes.
4. Starting and ending points. The root locus begins at the finite poles of G(s)H(s) and

ends at the finite and infinite zeros of G(s)H(s).
5. Behavior at infinity. The root locus approaches straight line asymptotes as the locus

approaches infinity. Further, the equation of the asymptotes is given by the real axis
intercept, 𝜎a, and angle, 𝜃a, as follows:

𝜎a =
∑

finite poles −
∑

finite zeros
#finite poles − #finite zeros

(11.14)

𝜃a =
(2k + 1)𝜋

#finite poles − #finite zeros
(11.15)

where k = 0,±1,±2,±3 and the angle is given in radians with respect to the positive
extension of the real axis.

Example 11.2 Sketch the root locus for the transfer function

T(s) = s + 4
(s + 2)(s + 6)(s + 8)

.

Solution
First we will look at the number of branches.The transfer function has three finite poles,
so it will have three branches. Next the starting points are the finite poles, so they will be
at (−2, 0), (−6, 0), (−8, 0). The end points are at the finite and infinite zeros, so there will
be one finite ending point at (−4, 0) and two end points at infinity. Now looking at the
real axis segments, we know that the root locus exists left of an odd number of real axis,
finite poles and/or finite zeros, so the root locus will be (−2, 0) to (−4, 0) and (−6, 0) to
(−8, 0) on the real axis. Now that we knowwhat it looks like on the real-axis we will look
at its behavior at infinity. So we need to find the asymptote intercepts and angles.

𝜎a =
∑

finite poles −
∑

finite zeros
#finite poles − #finite zeros

= [(−2) + (−6) + (−8)] − [−4]
3 − 1

= −12
2

= −6

𝜃a =
(2k + 1)𝜋

#finite poles − #finite zeros
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Figure 11.3 MATLAB sketch of the root locus using the first five rules.

= (2k + 1)𝜋
3 − 1

= (2k + 1)𝜋
2

= 𝜋

2
(for k = 0) and 3𝜋

2
(for k = 1).

Finally we know it will be symmetric about the real axis, so using everything we have
calculated up to this point, Figure 11.3 shows what our sketch should look like.
The actual root locus can be see in Figure 11.4. With the rules in the next section we

will be able to get our sketch a lot closer to the actual root locus.

11.5 Refining the Sketch

The rules in the previous section help generate the root locus sketch rapidly. Now if
we want more details for a more accurate sketch we can further refine the sketch by
few important points of interest and the gains associated with them.With that in mind,
we now attempt to calculate the real axis breakaway and break-in points, the j𝜔 axis
crossing, angles of departure from complex poles, and angles of arrival to complex zeros.
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Figure 11.4 MATLAB root locus example.

11.5.1 Real Axis Breakaway and Break-In Points

The point where the root locus leaves the real axis, −𝜎1 is called the breakaway point,
and the point where the locus returns to the real axis, 𝜎2 is called the break-in point.
At the breakaway or break-in point, the branches of the root locus form an angle of

180∘∕n with the real axis, where n is the number of closed-loop poles arriving at or
departing from the single breakaway or break-in point on the real axis One of the meth-
ods to find the points is to use differential calculus to find the maximum and minimum
of the gain K .

K = − 1
G(s)H(s)

. (11.16)

For points along the real axis where breakaway and break-in points could exist s = 𝜎.
Therefore the equation becomes

K = − 1
G(𝜎)H(𝜎)

. (11.17)

So if we take the derivative of the equation and set it to zero we will find the maximum
and minimum, which will give us the breakaway and break-in points.
A second way to find the breakaway and break-in points is a variation of the first

method and is called the transition method. It eliminates the differentiation, giving us
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this relationship
m∑
1

1
𝜎 + zi

=
n∑
1

1
𝜎 + pi

. (11.18)

11.5.2 The j𝝎 Axis Crossings

The j𝜔 axis crossing is a point on the root locus that separates the stable operation of the
system from the unstable operation. The value of 𝜔 at the axis crossing yields the fre-
quency of oscillation, while the gain at the j𝜔 axis crossing usually yields the maximum
positive gain for the system to be stable.
To find the j𝜔 axis crossing, it is possible to use the Routh–Hurwitz criterion in con-

junction with the root locus procedure. Recall that we can infer that a row of zeroes in
the R–H table indicates an imaginary axis crossing. Thus it is relatively easy to find the
gain at which the j𝜔 axis crossing occurs. Then going up one row and solving for the
roots will yield the frequency at the j𝜔 axis crossing.

11.5.3 Angles of Departure and Arrival

The root locus departs from complex, open-loop poles and arrives at complex,
open-loop zeros. If we assume a point on the root locus 𝜖 close to a complex pole, the
sum of angles drawn from all finite poles and zeros to this point will be an odd multiple
of 180∘. Except for the pole 𝜖 that is close to the point under consideration, we assume
all angles of all other poles and zeros are drawn directly to the pole near the point. Thus
the only unknown angle is the one sum of the angle drawn from the pole close to 𝜖. We
can then solve for the unknown angle, which is also the angle of departure from the
complex pole.

−𝜃1 + 𝜃2 + 𝜃3 − 𝜃4 − 𝜃5 − 𝜃6 = (2k + 1)180∘ (11.19)

or

𝜃1 = 𝜃2 + 𝜃3 − 𝜃4 − 𝜃5 − 𝜃6 − (2k + 1)180∘. (11.20)

Using a similar process we can find the angle of arrival to a complex zero

𝜃2 = 𝜃1 − 𝜃3 + 𝜃4 + 𝜃5 − 𝜃6 + (2k + 1)180∘. (11.21)

Example 11.3 Draw the root locus for the system with the open-loop transfer
function

KG(s)H(s) = (s − 1)(s − 4)
(s + 3)(3 + 6)

.

Solution
We will start again using the first five rules and the add the new rules we have just gone
over. First we can see that there will be two branches because we have two closed-loop
poles. Next looking at the starting and ending points we see that the two starting points
are (−3, 0) and (−6, 0) and the ending points are (1, 0) and (4, 0). Now the real axis seg-
ments exist from (−3, 0) to (−6, 0) and from (1, 0) to (4, 0). Because all the zeros are finite,
there is no need to calculate the behavior at infinity. Now we need to find out what the
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Figure 11.5 MATLAB root locus example.

root locus does between the two real axis segments, first we will calculate where they
breakaway and break-in to the axis.

m∑
1

1
𝜎 + zi

=
n∑
1

1
𝜎 + pi

= 1
𝜎 − 1

+ 1
𝜎 − 4

= 1
𝜎 + 3

+ 1
𝜎 + 6

.

Simplifying,

𝜎2 + 2𝜎 − 9 = 0.

Then the breakaway point is 𝜎1 = −1 −
√
10 = −4.16 and the break-in point 𝜎2 = −1 +√

10 = 2.16. Now we have all the information we need to draw a good sketch of the root
locus which can be found in Figure 11.5.

Now that we know how to draw the root locus, it is important to note that the root
locus is very sensitive to the open loop pole and zero locations. Sometimes even the
slightest changes in the open loop pole and zero locations can have a drastic impact on
the look of the root locus,making it look very different. See these root loci in Figure 11.6.
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Figure 11.6 Differences in root locus.

Until now, we have simply learnt the importance of the root locus and the way to draw
it quickly. However the major contribution of the root locus technique lies in its utility
in control system design. Its powerful and attractive role can be realized when we use it
for design purposes. Let us now elaborate on the use of root locus technique in a control
design scenario.

11.6 Control Design using the Root Locus Technique

Suppose for a system the open loop transfer function is

KG(s)H(s) = K
(s + 1)(s + 2)

.

The root locus for this transfer function is shown in Figure 11.7, which shows that the
closed loop system is stable for all positive values of gain K . However, the system is type
0 and thus there is a steady state error due to a step input. Suppose you want to make
the steady state error due to a step input zero. Then you would insert an integrator in
the loop to make it a type 1 system. Then the new open loop transfer function is

KG(s)H(s) = K
s(s + 1)(s + 2)

i.e. we used an integral controller.

Figure 11.7 Root Locus plot for the above given
open loop transfer function.

R

–1–2

Im
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Figure 11.8 Root locus plot with integrator.
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Figure 11.9 Root locus plot with a pole at s = −3.

If you now draw the root locus for this new system it looks like Figure 11.8. This tells
us that with the integrator in there, the closed loop system is no longer stable for all
values of K but is stable only for some specific range of K . Instead if we added a pole at,
say, s = −3, i.e. (s + 3) then the open loop transfer function would be

KG(s)H(s) = K
(s + 1)(s + 2)(s + 3)

and the root locus would be Figure 11.9.Thus the gain at which instability occurs would
be much higher, i.e. we could have more gain range to use before instability occurs.
Obviously the locations of the open loop poles and zeroes have a drastic influence on
the shape of the root locus.
Suppose we added a zero to the open loop transfer function (i.e. used a proportional

derivative controller). Then the open loop transfer function is

KG(s)H(s) = K(s + 3)
(s + 1)(s + 2)

and the root locus would be as in Figure 11.10. Now we see that the closed loop system
is stable for all values of gain K . That is why we say derivative control (with appropriate
zero location) improves relative stability, but does not do any improvement for steady
state errors but integral control improves steady state error performance but deterio-
rates the relative stability. So from this discussion, it is clear that the gain, K , and the
locations of the poles and zeroes of the controller have a direct influence on the root
locus, which helps us to decide whether these controller parameters can be used for a
satisfactory design. Note that the root locus is very sensitive to the numerical values
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Figure 11.10 Root locus plot with proportional derivative.

for these controller parameters (namely the gain, pole, and zero locations) and thus one
has to be cautious about the numerical values being used in the analysis and design
procedures.
In the exercises at the end of this chapter, the reader will get a chance to design a

controller that is required to satisfy different specifications and the root locus can be
used to achieve these objectives.

11.7 Using MATLAB to Draw the Root Locus

Getting a very accurate, well defined root locus can be hard to draw by hand and can
involve complex calculations. MATLAB is not only a great way to draw the root locus,
but to also find the gain K at any point. There are only a few commands that one needs
to know to draw the root locus.

1. To input the transfer function in MATLAB there are a few different commands.
(a) The first way is if you have the equation simplified and you know all the

zeros and poles of the open-loop transfer function, then using the command
sys = zpk(z,p,k) will create the system in MATLAB. In the commands z
and p are the vectors of real or complex poles and zeros, and k is the gain.

(b) The second way is when you have the transfer function in a polynomial form
sys = tf(num,den), where num is the numerator vector and den is the
denominator vector.

2. Now to get the root locus you can use the command rlocus(sys).

Example 11.4 Draw the root locus of the system

KG(s)H(s) = (s + 2)2

s2(s + 10)(s2 + 6s + 25)
.

Solution
First we will get it in a polynomial form so we can use both methods on it. Doing so, we
get

KG(s)H(s) = s2 + 4s + 4
s5 + 16s4 + 85s3 + 250s2

.
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Figure 11.11 MATLAB root locus example.

As detailed above, there are two approaches to define a system in MATLAB:

• sys = zpk(z,p,k), where z=[-2 -2], p=[ 0 0 -10 -3-4*i -3+4*i],
and k=[1]

• sys = tf(num,den), where num=[1 4 4] and den=[1 16 85 250 0 0].
Notice the two zeros in the den input field are the coefficients of the s1 and s0

terms.

Having now defined sys in MATLAB, we use the rlocus(sys) command, which
outputs the root locus for the specified transfer function. The output is presented in
Figure 11.11.

11.8 Chapter Summary

In this chapter, we have learnt the concept of the root locus and the rules that help us
draw the root locus using the open loop transfer function information. We then applied
this root locus technique in a design setting to synthesize control systems to meet vari-
ous closed loop system performance specifications, mostly given in the form of desired
closed loop pole locations. Fundamental concepts discussed in this chapter can be found
in other textbooks dedicated to control systems such as [1–3, 6, 7].
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11.9 Exercises

Exercise 11.1. Sketch the general shape of the root locus for each of the open-loop
pole-zero plots shown Figure 11.12.
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Figure 11.12 Figures for Exercise 11.1.
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Exercise 11.2. Sketch the root locus for the unity feedback systems for the following
transfer functions.
(a)

G(s) = K(s + 2)(s + 5)
(s2 + 9s + 25)

(b)

G(s) = K
(s + 1)3(s + 5)

.

Exercise 11.3. For the open-loop pole zero plot shown in Figure 11.13, sketch the root
locus and find the break-in point.

σ
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s-plane

©©

j1

–j1

–2 +1–3

Figure 11.13

Exercise 11.4. For the open-loop transfer function

KG(s)H(s) = 10
(s + 2)(s + p1)

(11.22)

obtain an equivalent transfer function of a control systemwhose equivalent open loop
transfer function can be written as

KG(s)H(s) = p1Geq(s)

so that p1 takes the role of the gain K , allowing us to plot the root locus as a function
of p1.

Exercise 11.5: Take a unity feedback system

R(s) Gc(s) Gp(s) Y(s)
–

+

and let

Gp(s) =
1

s(s2 + 4s + 5)
. (11.23)

(a) Design a cascade lag compensator to reduce the steady state error for a ramp input
by tenfold over the uncompensated system. Analyze the effect on relative stability.
Note the uncompensated system is the one with Gc(s) = 1.
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(b) For the sameGp(s) as above, design a cascade lead compensator such that there is
a reasonable trade off between relative stability and steady state error. Use

Gc(s) =
K(s + a)
s + b

. (11.24)
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12

Frequency Response Analysis and Design

12.1 Chapter Highlights

This chapter presents a very important and usefulmaterial that is verywidely used in the
analysis and design of control systems. It essentially deals with the study of the steady
state response of system output for a given periodic oscillatory input function such as a
trigonometric sine or a cosine function. Hence the label, frequency response.Themoti-
vation for thoroughly studying the response to a sine/cosine function comes from the
fact that any analytic function f (t) can be expressed as the summation of sine and cosine
functions in a Fourier series and thus if we understand the behavior of the output to a
sine/cosine function, then for a linear system, since superposition holds, one can get
the response to any arbitrary time function as a sum of the responses of the frequency
responses at various frequencies. In this chapter we present another graphical technique
labeled the Bode plot by which one can quickly draw the amplitude and phase response
of the output function (in the Laplace domain) as a function of the frequency 𝜔. The
Bode plot gives very useful information about the speed of response of the output in
terms of measures such as bandwidth, peak resonance, etc. In addition, measures of
stability margins called gain margin and phase margin can easily be determined from
the Bode plots [1].

12.2 Introduction

The output response of a linear system represented by a transfer function to sinusoidal
inputs is called the system’s frequency response. It can be obtained from knowledge of
its pole and zero locations.
Let us consider a system described by

Y (s)
U(s)

= G(s) (12.1)

where the input u(t) = A sin(𝜔0t)1(t).The input sinusoidal function has a Laplace trans-
form

U(s) =
A𝜔0

s2 + 𝜔2
0
. (12.2)

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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With zero initial conditions, the Laplace transform of the output is

Y (s) = G(s)
A𝜔0

s2 + 𝜔2
0
. (12.3)

A partial fraction expansion, given by

Y (s) =
𝛼1

s − p1
+

𝛼2

s − p2
+ · · · +

𝛼n

s − pn
+

𝛼0

s + j𝜔0
+

𝛼∗
0

s + j𝜔0
(12.4)

where p1, p2,… , pn are the poles ofG(s). In the above, the residual 𝛼∗
0 is the complex con-

jugate of 𝛼0. Let us assume the transfer function G(s) is a stable transfer function. Then
the steady state output response would consist of only the response pertaining to the last
two partial fractions containing last two residuals 𝛼0 𝛼∗

0 .Thus the output response would
be another sinusoidal function (just like the input) except that its amplitude is different
from the input amplitude and in addition would have a phase angle 𝜙. The phase angle
𝜙 and the ratio of output amplitude over input amplitude, denoted asM, of this output
response in the time domain are then given by

𝜙 = tan−1
[ Im(𝛼0)
Re(𝛼0)

]
(12.5)

M = |G(j𝜔0)| (12.6)

𝜙 = tan−1
[ Im[G(j𝜔0)]
Re[G(j𝜔0)]

]
= ∠G(j𝜔0).

(12.7)

In polar form,
G(j𝜔0) = Mej𝜙. (12.8)

The magnitude M is given by |G(j𝜔)|, and the phase 𝜙 is given by ∠[G(j𝜔)]; that is, the
magnitude and the angle of the complex quantityG(s) are evaluated with s taking on the
values along the imaginary axis (s = j𝜔). In otherwords, the steady state output response
is completely determined by the angle of the transfer function throughwhich the input is
passing, and by the magnitude of the transfer function through which the input is pass-
ing.This information about the phase andmagnitude of the transfer function constitutes
the frequency response of that transfer function or of the linear system represented by
that transfer function. The frequency response of a linear system sheds considerable
insight into the various speed of response characteristics of that linear system such as
how fast the output is produced for a given input and how rich the output information
is, i.e. how much of the input information is contained in that output and so on. The
metrics by which this speed of response is characterized are called frequency response
specifications, which include labels such as bandwidth, cut off (break) frequencies, peak
resonant frequency, gain margin and phase margin among others. We now elaborate on
these frequency response specifications.

12.3 Frequency Response Specifications

If we consider any control system with an output and an input with the understanding
that the output follow the input, in the ideal case when the output exactly duplicates the
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Figure 12.1 Ideal frequency response.
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input, we observe that the ideal frequency response would be as shown in Figure 12.1.
However, obviously, in practice, the frequency responses are never like these. So by
looking at the actual frequency responses and their closeness to the ideal response,
we can get a feel for the goodness of the control system. So these measures of
goodness are the frequency response specifications, which are as follows (shown in
Figure 12.2).

i) Mp is the peak resonance, the maximum value of |G(⃗j𝜔)|. This is related to rela-
tive stability because a large peak resonance leads to a large overshoot in the time
response.

ii) 𝜔p is the resonant frequency, the frequency at which peak resonance occurs.
iii) BW is the bandwidth, the most important frequency response specification. It is the

frequency at which the magnitude drops to 70.7% of its zero-frequency level. The
bandwidth is a measure of the speed of response.

Clearly a large bandwidth is desirable because it means a fast acting system. A low band-
widthmeans the system is slow and sluggish. In other words, an instantaneous response
in the time domain is equivalent to an infinite bandwidth in the frequency domain.
Two other important specifications in the frequency domain are the gain margin and

the phase margin. These two concepts are related to determining the stability of the
closed-loop system, again just by looking at the frequency response of the open loop
transfer function.Thus if we plot the frequency response of the open loop transfer func-
tion for a given gain K , then the gain margin is simply the number of times the gain
can be increased before it becomes unstable (assuming the instability occurs when we
increase the gain, which is themost common situation). So the gainmargin, as the name
implies, is the cushion the system has before instability arises. So in a way, it is ameasure
of the degree of stability.
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12.3.1 Frequency Response Determination

Example 12.1 Given a transfer function

G(s) = 1
(s + 1)

determine its frequency response.

Solution
We need to calculate |G(⃗j𝜔)| and ∠G(⃗j𝜔). The magnitude is given by

M(𝜔) = |G(⃗j𝜔)|
= 1|⃗j𝜔 + 1|
= 1√

1 + 𝜔2

and the phase is given by

Φ(𝜔) = ∠G(⃗j𝜔) = ∠1 − ∠(1 + j⃗𝜔)

= 0 − tan−1𝜔

1
= −tan−1𝜔.

If we plot M(𝜔) and Φ(𝜔) as a function of frequency, we get the plots in Figure 12.3.
These are called Bode plots, named after their inventor Bode, who happened to be an
electrical engineer working in the radio communications field.
The MATLAB routine [Mag, Phase, 𝜔] = bode [Num, Den] or bode

[Num, Den, 𝜔] gives the Bode plots for more complicated transfer functions.

As with the root locus in the previous chapter, here it is also advantageous to learn
the capability of drawing Bode plots quickly and approximately, even though using
MATLABwe can draw the exact Bode plot. So in what follows, we again try to learn few
rules to draw the Bode plots quickly in what we label as straight line approximations of
Bode plots.
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0.707
1.0
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π
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Figure 12.3 Bode plots.
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12.4 Advantages of Working with the Frequency Response
in Terms of Bode Plots

1. Dynamic compensator designs can be based entirely on Bode plots.
2. Bode plots can be determined experimentally.
3. Bode plots of systems in series simply add, which is quite convenient.
4. The use of log scale permits a much wider range of frequencies to be displayed on a

single plot than is possible with linear scales.

12.4.1 Straight Line Approximation of Bode Plots

In working with frequency response, it is more convenient to replace s with j𝜔 and to
write the transfer function in the Bode form

KG(j𝜔) = K0
(j𝜔𝜏1 + 1)(j𝜔𝜏2 + 1)…
(j𝜔𝜏a + 1)(j𝜔𝜏b + 1)…

. (12.9)

The transfer functions can also be rewritten as

KG(j𝜔) = K0
j𝜔𝜏1 + 1
j𝜔𝜏a + 1

. (12.10)

Then

∠KG(j𝜔) = ∠K0 + ∠(j𝜔𝜏1 + 1) − ∠(j𝜔)2 − ∠(j𝜔𝜏1 + 1) (12.11)
log |KG(j𝜔)| = log |K0| + log |j𝜔𝜏1 + 1| − log |(j𝜔)2| − log |j𝜔𝜏a + 1|. (12.12)

In decibels, the equation becomes

|KG(j𝜔)|db = 20 log |K0| + 20 log |j𝜔𝜏1 + 1|
− 20 log |(j𝜔)2| − 20 log |j𝜔𝜏a + 1|. (12.13)

To sketch the complete Bode plot of a given transfer function in a quick and approx-
imate way, we employ the concept of straight line approximation. In other words, we
approximate the actual curves we get as a function of frequency into straight lines in
certain frequency ranges. These straight lines are of different slopes based on the pole
zero nature of the given transfer function. To be able to estimate those slopes, we con-
struct a preliminary straight line approximation plot for each pole and zero present in
the transfer function and then algebraically add or subtract them based on the nature
of the poles and zeroes present in the transfer function. For this, let us first consider the
possible scenarios of pole zero terms we encounter in a typical transfer function.
All of the transfer functions we have dealt with so far have been composed of one of

these three classes of terms:

1. k0(j𝜔)n
2. (j𝜔𝜏 + 1)±1
3. [( j𝜔

𝜔n
)2 + 2𝜉 j𝜔

𝜔n
+ 1]±1.

1. The first term k0(j𝜔)n

log k0|(j𝜔)n| = log k0 + n log |(j𝜔)|. (12.14)
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Themagnitude plot of this term is a straight line with a slope of n × (20 db/ decade).
This term is the only class of term that affects the slope at the lowest frequencies
because all other terms are constant in the region. The phase of k0(j𝜔)n is n × 90∘.

2. (j𝜔𝜏 + 1)±1. Because of the nature of this term it approaches one asymptote at very
low frequencies and another one at very high frequencies.
(a) For j𝜔𝜏 ≪ 1, (j𝜔𝜏 + 1) ≅ 1
(b) For j𝜔𝜏 ≫ 1, (j𝜔𝜏 + 1) ≅ j𝜔𝜏 .
For our Bode plot sketch we will define a break point 𝜔 = 1

𝜏
, where before the break

point the slopewill be equal to zero and after the break point it will behave like k0(j𝜔)n
and have a slope equal to n × (20 db/decade). The phase curve can be drawn in a
similar fashion using high and low frequency asymptotes.
(a) For j𝜔𝜏 ≪ 1, ∠1 = 0∘
(b) For j𝜔𝜏 ≅ 1, ∠j𝜔𝜏 + 1 ≅ 45∘
(c) For j𝜔𝜏 ≫ 1, ∠j𝜔𝜏 = 90∘.

3. [( j𝜔
𝜔n
)2 + 2𝜉 j𝜔

𝜔n
+ 1]±1 This term is very similar to the last but with a few differences.

First the break point is now 𝜔 = 𝜔n. Also the magnitude change of the slope is n ×
(40 db/decade), which is twice that of the previous term. Finally the phase curve is
n × 180∘ and the transition though the break point varies with the damping ratio 𝜉.
Because of the dependence on the damping ratio a rough sketch can be drawn using
the following formula

|G(j𝜔)| = 1
2𝜉

at 𝜔 = 𝜔n. (12.15)

Because of this we usually drawn a small peak at the break point to show the resonant
peak.

12.4.2 Summary of Bode Plot Rules

1. Manipulate the transfer function into the Bode form given.
2. Determine the value of n for theK0(j𝜔)n term (class 1). Plot the low frequencymagni-

tude asymptote through the pointK0 at𝜔 = 1 with a slope of n(or n × 20 db/decade).
3. Complete the composite magnitude asymptotes: extend the low frequency asymp-

tote until the first frequency break point. Then step the slope by ±20 db or ±40 db,
depending on whether the break point is from a first or second order term in the
numerator or denominator. Continue through all break points in ascending order.

4. Sketch in the approximate magnitude curve: increase the asymptote value by a factor
of 1.4 (+3 db) at first order numerator break points, and decrease it by a factor of
0.707 (−3 db) at first order denominator break points. At second order break points,
sketch in the resonant peak (or valley).

5. Plot the low-frequency asymptote of the phase curve, 𝜙 = n × 90∘.
6. As a guide, sketch in the approximate phase curve by changing the phase by ±90∘ or

±180∘ at each break point in ascending order. For first order terms in the numerator,
the change of phase is +90∘; for those in the denominator the change is −90∘. For
second order terms, the change is ±180∘.

7. Locate the asymptotes for each individual phase curve so that their phase change
corresponds to the steps in the phase toward or away from the approximate curve
indicated by Step 6.
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8. Graphically add each phase curve. Use grids if an accuracy of about ±5∘ is desired.
If less accuracy is acceptable, the composite curve can be done by eye. Keep in mind
that the curve will start at the lowest frequency asymptote and end on the highest
frequency asymptote and will approach the intermediate asymptotes to an extent
that is determined by how close the break points are to each other.
Let us now illustrate the procedure with an example.

Example 12.2 Draw the Bode plot for the transfer function

KG(s)H(s) = s + 3
s(s2 + s + 25)

.

Solution

1. Rearranging the transfer function into the Bode form gives

KG(s)H(s) =
3( s
3
+ 1)

25s( s
2

25
+ s

25
+ 1)

=

3
25

( s
3
+ 1)

s( s
2

5
+ s

25
+ 1)

.

2. The low frequency asymptote is −20 db/decade because of the s in the denominator.
3. Looking at the transfer function we can see that there will be two break points, one

at 3 from the zero and one at 5 from the natural frequency 𝜔n of the complex pole.
Because the break point at 3 is from a zero, the slope will increase by 20 db/decade,
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Figure 12.4 MATLAB Bode plot with sketch overtop.
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which will change it from −20 db/decade to 0 db/decade. Then the complex pole at
5 will change the slope by −40 db/decade.

4. See the sketch in Figure 12.4. Notice the resonant peak at 𝜔 = 5.
5. The low frequency phase will be 𝜙 = −90∘.
6. The zero at 3 will raise the phase by 90∘ and the complex pole at 5 will lower the phase

by 180∘.
7. The phase curve is sketched in the bottom part of Figure 12.4.

12.5 Examples on Frequency Response

Example 12.3

1. (a) G(s) = 1
s(s+1)

. To get the frequency response, we need to compute the magnitude
of G(s) along s = j⃗𝜔 and the angle of G(s) along s = j⃗𝜔.

|G(⃗j𝜔)| = 1|⃗j𝜔(⃗j𝜔 + 1)| = 1|(⃗j𝜔)2 + j⃗𝜔| = 1| − 𝜔2 + j⃗𝜔|
= 1√

(−𝜔2)2 + (𝜔)2
= 1√

𝜔4 + 𝜔2
= 1

𝜔
√
(𝜔2 + 1)

.

Similarly

∠G(⃗j𝜔) = 0 − ∠(−𝜔2 + j⃗𝜔) = −tan−1 Imaginary part
Real part

= −tan−1 𝜔

−𝜔2 = −tan−1 1
−𝜔

(Second quadrant).

Plotting these two quantities as a function of 𝜔, we get Figure 12.5.
At 𝜔 = 1, ∠G(⃗j𝜔) = −135∘. At 𝜔 = ∞, ∠G(⃗j𝜔) = −180∘.

(b) G(s) = 1
1+5s

, so G(⃗j𝜔) = 1
1+5⃗j𝜔

.

|G(⃗j𝜔)| = 1√
1 + 25𝜔2

∠G(⃗j𝜔) = 0 − tan−1 5𝜔
1

(First quadrant)
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Figure 12.5 Bode plot for Example 12.1(a).
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Figure 12.6 Bode plot for Example 12.1(b).
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At 𝜔 = 0.2, ∠G(⃗j𝜔) = −45∘. At 𝜔 = ∞, ∠G(⃗j𝜔) = −90∘.
See the resulting Bode Plots in Figure 12.6

12.5.1 Bode’s Gain Phase Relationship

An important Bode plot theorem is:
For any stable minimum-phase system (that is, one with no RHP zeros or poles), the

phase of G(j𝜔) is uniquely related to the magnitude of G(j𝜔).
which can be simplified with an approximation

∠G(j𝜔) ≅ n × 90∘ (12.16)
where n is the slope of G|(j𝜔)| in units of decades of amplitude per decades of
frequency.
Adjust the slope of the magnitude curve |KG(j𝜔)| so that it crosses over magnitude

1(0 db) with a slope of -1 (−20 db) for a decade around 𝜔e.

12.5.2 Non-minimum Phase Systems

A transfer function that has all poles and zeros in the LHP is a minimum phase transfer
function, which has a lot of special properties. One is that they are stable for all gains
k and that you can use Bode plot rules to approximate the phase change. Consider the
transfer functions

G1(s) = 10 s + 1
s + 10

(12.17)

G2(s) = 10 s − 1
s + 10

. (12.18)

Both transfer functions have the same magnitude for all frequencies of
|G1(j𝜔)| = |G2(j𝜔)|. (12.19)

As you can see in Figure 12.7 the magnitude of both transfer functions is the same but
the phase is different. The phase for the minimum phase transfer function follows the
rules that were laid out above, but the non-minimum phase transfer function does not,
and cannot be modeled by the rules above. Because of this, this chapter will only deal
with minimum phase transfer functions.
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Figure 12.7 MATLAB generated Bode plot for G1(s) and G2(s).

12.6 Stability: Gain and Phase Margins

A large number of control systems behave in a pattern similar to the ones we have seen,
where they are stable for small gain K values but as K gets bigger the system becomes
unstable. To measure the stability of these types of systems we can employ two metrics:
gain margin and phase margin.
The gain margin (GM) is the factor by which the gain can be raised before instability

results. The GM can also be determined from a root locus with respect to K by not-
ing two values of K : (1) at the point where the root locus crosses the j𝜔 axis, and (2) at
the nominal closed-loop poles. The GM is the ratio of these two values. The gain mar-
gin can also be directly read off of a Bode plot my measuring the vertical line between
the |KG(j𝜔)| curve and the |KG(j𝜔)| = 1 curve at the frequency where ∠KG(j𝜔) = 180∘.
Analytically, the gain margin is the reciprocal of the magnitude |G(j𝜔)| at the frequency
where the phase angle is−180∘. Defining the phase crossover frequency𝜔c to be the fre-
quency at which the phase angle of the open-loop transfer function equals −180∘ gives
the gain margin Kg:

Kg =
1|G(j𝜔1)| . (12.20)
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In terms of decibels,

Kg db = 20 logKg = −20 log |G(j𝜔1)|. (12.21)

Thephasemargin(PM) is the amount bywhich the phase ofG(j𝜔) exceeds−180∘ when|KG(j𝜔)| = 1.The term crossover frequency𝜔c is used to denote the frequency at which
the gain is 1 or 0 db.The phasemargin is more commonly used to specify control system
performance because it is most closely related to the damping ratio of the system.

PM = tan−1

⎡⎢⎢⎢⎣
2𝜁√√

1 + 4𝜁4 − 2𝜁2

⎤⎥⎥⎥⎦
. (12.22)

A good approximation that can be used up to phase margins of 70∘ is

𝜁 ≅ PM
100

. (12.23)

The phase margin is also that amount of additional phase lag at the gain crossover
frequency required to bring the system to the verge of instability. The gain crossover
frequency is the frequency at which |G(j𝜔)|, the magnitude of the open-loop transfer
function, is unity. The phase margin 𝛾 is 180∘ plus the phase angle 𝜙 of the open-loop
transfer function at the gain crossover frequency, or

𝛾 = 180∘ + 𝜙. (12.24)

The gain margin for the second-order system is infinite GM = ∞, because the phase
curve does not cross−180∘ as the frequency increases. It would also be true for any first
or second order system.
PM = 30∘ is often judged to be the lowest adequate value.

12.6.1 Gain and Phase Margins Determined Analytically

Example 12.4 Consider a system with open loop transfer function

KGH = 10
s(s + 1)(s + 5)

. (12.25)

Let us say we need the gain and phase margins for this system.
Gain Margin. This needs the phase crossover frequency 𝜔c. It is that frequency

at which the phase is −180∘.

∠KGH = ∠10
∠(s(s + 1)(s + 5))

||||s=j⃗𝜔
= ∠10 − ∠(⃗j𝜔(⃗j𝜔 + 1)(⃗j𝜔 + 5))

= ∠10 − ∠(−6𝜔2 + j⃗(5𝜔 − 𝜔3))

= 0 − ∠[⃗j(5𝜔 − 𝜔3) − 6𝜔2]

= −tan−1 5𝜔 − 𝜔3

−6𝜔2 .
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Equating the above to −180∘,

∴ tan−1 5𝜔 − 𝜔3

−6𝜔2 = 180∘.

Solving, we see the crossover frequency 𝜔c = 2.24 rad
s
. Now at this phase crossover fre-

quency, the magnitude of KGH is to be found.|||||
10

−6𝜔2 + j⃗(5𝜔 − 𝜔3)

|||||𝜔=𝜔c

= 10√
36𝜔4

c + (5𝜔c − 𝜔3
c)2

= 10
30

= 1
3

∴GM = 1|KGH|𝜔=𝜔c

= 1
1
3

= 3

In dB GM = 20 log103 = 9.542 dB .

Phase Margin.We need the gain crossover frequency 𝜔g. It is that frequency at which
the magnitude of KGH is equal to 1, i.e. |KGH| = 1. Now

|||||
10

j⃗𝜔(⃗j𝜔 + 1)(⃗j𝜔 + 5)

||||| =
10√

(5𝜔 − 𝜔3)2 + (−6𝜔2)2

||||||𝜔=𝜔g

= 1

100
36𝜔4

g + (5𝜔g − 𝜔3
g)2

= 1 ⇒ 𝜔6
g + 26𝜔4

g + 25𝜔2
g − 100 = 0

or 𝛽3 + 26𝛽2 + 25𝛽 − 100 = 0 where 𝛽 = 𝜔2
g.

Solving for 𝛽, we get

𝛽 =
⎧⎪⎨⎪⎩
−24.8310
−2.6747
1.5057

So 𝜔g =
√
1.5057 = .227 ≈ 1.23rad

s
.

Now

Φ = ∠KGH|𝜔=𝜔g
= −tan−1

(5𝜔g − 𝜔3
g)

−6𝜔2
g

= −tan−1 4.25
−9.0777

= −154.7∘

𝛾 = PM = 180∘ + Φ = 180∘ − 154.7∘ = 25.3∘ .

Example 12.5 Now, consider another example with the transfer function given by:

G(s) = 2000
(s + 2)(s + 7)(s + 16)

= 2000
s3 + 25s2 + 158s + 224

G(⃗j𝜔) = 2000
(⃗j𝜔 + 2)(⃗j𝜔 + 7)(⃗j𝜔 + 16)

= 2000
(⃗j𝜔)3 + 25(⃗j𝜔)2 + 158(⃗j𝜔) + 224

= 2000
(224 − 25𝜔2) + j⃗(158𝜔 − 𝜔3)

.
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Now to find the gain margin, we need to find the phase crossover frequency𝜔c. It is that
frequency at which the ∠G(⃗j𝜔) = −180∘. So

∠G(⃗j𝜔) = 0 − tan−1 158𝜔 − 𝜔3

224 − 25𝜔2 = −180∘

tan 180∘ = 0 = 158𝜔 − 𝜔3

224 − 25𝜔2

= 158𝜔 − 𝜔3.

Solving for the positive root, we find 𝜔 = 𝜔c = 12.6. Now the magnitude |G(⃗j𝜔)| at this
frequency 𝜔c is |G(⃗j𝜔c)| and is given by

|G(⃗j𝜔c)| = 2000√
(224 − 25𝜔2

c)2 + (158𝜔c − 𝜔3
c)2

= 0.5367.

Therefore the gain margin Kg is:

Kg = 1|G(⃗j𝜔c)|
= 1

0.5367
= 1.863.

And in decibels the gain margin is

10 logKg = 10 log10(1.8637)
= 5.404 dB.

Now to find the phase margin, we need to calculate the gain crossover frequency 𝜔g,
which is that frequency at which the |G(⃗j𝜔g)| = 1.

|G(⃗j𝜔g)| = 2000√
(224 − 25𝜔2

g)2 + (158𝜔g − 𝜔3
g)2

= 1.

Squaring both numerator and denominator, we get
(2000)2

(224 − 25𝜔2
g)2 + (158𝜔g − 𝜔3

g)2
= 1.

Expanding, we get

𝜔6
g + 307𝜔4

g + 14081𝜔2
g − 3949824 = 0.

Defining 𝜔2
g = 𝛽, we get

𝛽3 + 307𝛽2 + 14081𝛽 − 3949824 = 0.

Getting the roots of this polynomial by MATLAB, we have

𝛽 = (−1.9555 ± j⃗0.9344) × 102

= 0.8409 × 102 = 84.09.
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Figure 12.8 MATLAB generated Bode plot for Example 12.2.

Therefore

𝜔g =
√
𝛽

=
√
84.09

= 9.17 rad
s

and
∠G(⃗j𝜔g) = −tan−1

158𝜔g − 𝜔3
g

224 − 25𝜔2
g
where 𝜔g = 9.17 rad

s
≅ −160∘

∴ Phase margin, PM = 180 + ∠G(⃗j𝜔g) = 180∘ − 160∘

= 20∘

GM = 5.4 dB and PM = 20∘.

The gain margin and phase margin can be easily read off the Bode plot in Figure 12.8.

12.6.2 Steady State Errors

To find the steady state error of a system you have to start out with the error transfer
function

E(s)
R(s)

= 1
1 + G(s)H(s)

. (12.26)
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Then using the final value theorem we get

ess =
R(s)

(1 + Kp)s
. (12.27)

So depending on the system type and input type, only one of the static error constants
are finite and significant. The static position coefficient is

ess =
1

1 + Kp
(12.28)

and for a step inputKp is constant and the error is
1

1+Kp
. For a unity feedback systemwith

a unit ramp input, the steady state error is

ess =
1
K𝑣

(12.29)

which is called the velocity error. For a second order system with a parabolic input we
get an acceleration error which is

ess =
1
Ka

. (12.30)

For steady state errors see Table 12.1.

12.6.3 Closed-Loop Frequency Response

Consider a system in which |KG(j𝜔)| shows the typical behavior|KG(j𝜔)| ≫ 1 (12.31)

|KG(j𝜔)| ≪ 1. (12.32)
The closed-loop frequency response magnitude is approximated by

|𝜏(j𝜔)| = |||| KG(j𝜔)
1 + KG(j𝜔)

||||
≅

{
1 𝜔 ≪ 𝜔c|KG| 𝜔 ≫ 𝜔c

.

(12.33)

|𝜏(j𝜔)| depends greatly on the PM in the vicinity of𝜔c, and because of this, the following
approximation was generated

𝜔c ≤ 𝜔BW ≤ 2𝜔c (12.34)

Table 12.1 Steady State Errors.

Type 0 Type 1 Type 2

Input
Steady state
error formula

Static error
constant Error

Static error
constant Error

Static error
constant Error

Step, u(t) 1
1 + Kp

Kp =constant
1

1 + Kp
Kp = inf 0 Kp = inf 0

Ramp, tu(t) 1
K
𝑣

K
𝑣
= 0 inf K

𝑣
=constant 1

K
𝑣

K
𝑣
= inf 0

Parabola, 1
2
2u(t) 1

Ka
Ka = 0 inf Ka = 0 inf Ka =constant

1
Ka
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12.7 Notes on Lead and Lag Compensation via Bode Plots

12.7.1 Properties of the Lead Compensator

• The lead compensator is used to improve the transient response or relative stability.
• The lead compensator is basically a high pass filter (i.e. the high frequencies are passed

but low frequencies are attenuated).
• The lead compensator increases the gain crossover frequency (i.e. it shifts the com-

pensated new gain crossover frequency to the right of the old uncompensated gain
crossover frequency).

• A proportional derivative controller is a special case of the lead compensator.
The transfer function of the lead compensator has the following form:

D(s) = (1 + Ts)
(1 + 𝛼Ts)

where 𝛼 < 1

=
KC(s + z)
(s + p)

(i.e. the zero of the compensator is in front of the pole in the left half of the plane). The
magnitude and phase characteristics of the lead compensator are shown in Figure 12.9.

12.7.2 Properties of the Lag Compensator

The lag compensator works in the opposite way. It has the following characteristics (see
Figure 12.10.

• D(s) = 1 + Ts
1 + 𝛼Ts

= Klag
(s + z)
(s + p)

, 𝛼 > 1
• We normally place the pole and zero of a lag network very close to each other.
• The lag compensator is basically a low pass filter (i.e. low frequencies are passed but

high frequencies are attenuated).
• The lag compensator decreases the gain crossover frequency (i.e. it shifts the new

compensated gain crossover frequency to the left of the old uncompensated gain
crossover frequency).

• A proportional integral controller is a special case of the lag compensator.
• The lag compensator is thus used to improve steady state error behavior.

ω1
αT

1
T

0

dB

ω0

Φ(ω)

|G(jω)|�

Figure 12.9 Bode plot for lead
compensation.
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Figure 12.10 Bode plot for lag compensation.
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12.7.3 Steps in the Design of Lead Compensators Using the Bode Plot
Approach

1. Determine the open loop gain K to satisfy the requirement on the steady state error
coefficients.

2. Using the gain K thus determined, evaluate the phase margin of the uncompensated
system.

3. Determine the necessary phase lead Φa to be added to the system.

4. Determine the attenuation factor 𝛼 by using 𝛼 =
1 − sinΦa

1 + sinΦa
.

5. Select 1
T
to be that frequency where the magnitude of the uncompensated system is

equal to−20 log
(

1√
𝛼

)
or, very crudely, select 1

T
to be a little left of the gain crossover

frequency of the uncompensated system.
6. Once you have 1

T
and 1

𝛼T
, determine KC, z, and p.

7. Now you have the complete transfer function of the compensator. Redraw themagni-
tude and phase of the compensated open loop transfer functionD(s),Gp(s) andmake
sure that the phase margin and gain margin and the steady state error requirements
are met.

12.7.4 Steps in the Design of Lag Compensators Using Bode Plot Approach

1. Determine the open loop gain K such that the requirement on the particular error
coefficient is satisfied.

2. Using the gainK thus determined, draw the Bode plots of the uncompensated system
and determine the phase and gain margins of the uncompensated system.

3. If the specifications on the phase and gain margins are not satisfied, then find the
frequency point where the phase angle of the open loop transfer function is equal
to −180∘ plus the required phase margin. The required phase margin is the specified
phasemargin plus 5–10∘. Choose this frequency as the new gain crossover frequency.

4. Choose the corner frequency𝜔 = 1∕T (corresponding to the zero of the lag network)
one decade below the new gain crossover frequency.

5. Determine the attenuation necessary to bring the magnitude curve down to 0 db
at the new gain crossover frequency. Noting that this attenuation is −20 log 𝛽,
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determine the value of 𝛽. Then the other corner frequency (corresponding to the
pole of the lag network) is determined from 𝜔 = 1∕(𝛽T).

6. Now you have the complete transfer function of the compensator. Redraw themagni-
tude and phase of the compensated open loop transfer functionD(s),Gp(s) andmake
sure that the phase margin and gain margin and the steady state error requirements
are all met.

12.8 Chapter Summary

In this chapter we have understood the meaning and importance of frequency response
in the analysis and design of control systems. We have seen how the ability to draw
the Bode plots via straight line approximations helps us to quickly get an idea of the
speed of response of the output for a sinusoid input, using the information about var-
ious break frequencies leading to concepts such as low pass filter, high pass filter, and
band pass filter, and their usefulness in shaping the controller transfer functions. We
also have observed the complementary relationship between frequency response and
time response in the sense of the larger the bandwidth, the faster the time response.
Fundamental concepts discussed in this chapter can be found in other textbooks ded-

icated to control systems such as [2–6].

12.9 Exercises

Exercise 12.1.
(a) Calculate the magnitude and phase of

G(s) = 1
s + 20

by hand for 𝜔=1, 2, 5, 10, 20, 50, and 100 rad s−1.
(b) Sketch the asymptotes for G(s) according to the Bode plot rules, and compare

these with your computed results from part (a).
Exercise 12.2. Sketch the asymptotes of the Bode plot magnitude and phase for each
of the following open-loop transfer functions. After completing the hand sketches,
verify tour results using MATLAB.
(a)

G(s) = 1
(s + 1)(s2 + 4s + 2)

(b)
G(s) = s

(s + 1)(s + 30)(s2 + 2s + 1000)

(c)
G(s) = s + 2

s(s + 1)(s + 10)(s + 30)
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(d)
G(s) = (s + 4)

s(s + 10)(s + 2s + 2)

(e)
G(s) = (s + 4)

s2(s + 10)(s2 + 6s + 25)
.

Exercise 12.3. The block diagram of a control system as shown in Figure below

R(s) Gc(s) Gp(s) Y(s)
+

–

Treating the uncompensated system as

Gp(s) =
2500

s(s + 25)
analyze the open loop transfer function properties, in particular
(a) the phase margin
(b) the gain crossover frequency
(c) the gain margin.
Then apply the classical control theory we have learnt in this chapter to
(d) design a lead network to increase the phase margin to 45∘.
Use MATLAB to verify all your calculations, along with the analytical calculations
of phase margin for the uncompensated system. Repeat the exercise by varying the
values of 𝛼 and 𝜏 and observe the trend of the phase margin. In particular,
(e) obtain the results for a new phase margin of 60∘.

Exercise 12.4. Take a unity feedback system as shown in Figure below

R(s) Gc(s) Gp(s) Y(s)
+

–

and let

Gp(s) =
1

s(s2 + 4s + 5)
. (12.35)

(a) Design a cascade lag compensator to reduce the steady state error for a ramp input
by tenfold over the uncompensated system. Analyze the effect on relative stability.
Note the uncompensated system is the one with Gc(s) = 1.

(b) For the same Gp(s) as above, design a cascade lead compensator such that there
is a reasonable trade off between relative stability and steady state error. Use

Gc(s) =
K(s + a)
s + b

. (12.36)
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13

Applications of Classical Control Methods to Aircraft Control

13.1 Chapter Highlights

This chapter’s objective is to apply the various frequency domain and classical control
design techniques we have learnt in the previous chapters to the specific field of air-
craft flight control systems. In that connection, we recall the aircraft dynamics and from
that identify the output variables, input variables and the measurement variables and
represent the control objective in a block diagram format and get the needed transfer
functions from the equations of motion and then apply the theoretical tools we have
learnt up to now for the specific application of aircraft flight control systems. It so hap-
pens that the aircraft flight control literature naturally always follows the theoretical
developments in control systems theory.Thus, it is no wonder that we cover the subject
of aircraft flight control systems after we learn the theoretical techniques such as the
R–H criterion, root locus and Bode plots.
Since this book’s objective is to treat both aircraft as well as spacecraft flight control

systems in a unified framework, the application of classical control theory to aircraft
flight control problems cannot be as exhaustive as those in books specifically dedicated
to aircraft flight control systems. For that reason, in this chapter, we basically cover the
essential material related to aircraft flight control systems, the literature on which is
quite voluminous. Hence we approach this subject in a more conceptual fashion. In the
spirit of many excellent books that are written on the specific subject of aircraft control
systems, [40], [1], [30], [35], [15], [25], [29], [18], [41], [7], [14], [32], [20], [24], [12],
[31], [17], [42], [19], [26], [36], [38], [9], [34], [39], [13], [10], [21], [4], [37], [3], [6], [2],
[23], [22], [27], [28], [16], [8], [11], [5], [33], we briefly divide the coverage in the form
of longitudinal autopilots along with a brief discussion on automatic landing control
systems. Then we briefly review a few specific lateral/directional aircraft flight control
systems as well. Note that, conceptually, the same control design philosophy is applied
to both of these types of control systems with the understanding that we simply use the
aircraft longitudinal equations ofmotion for building the longitudinal dynamics transfer
functions whereas we use the lateral/directional equations of motion when building the
lateral/directional transfer functions.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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13.2 Aircraft Flight Control Systems (AFCS)

Recall from Part I of the book (on Flight Vehicle Dynamics) that, in the linearized
equations of motion for aircraft flight dynamics, the longitudinal equations of motion
were decoupled from the lateral/directional equations of motion. Thus, in the control
systems design exercise, it is customary to treat the subject of AFCS also in two phases,
one for controlling longitudinal motion variables (i.e. pitch motion) and the other
for controlling lateral/directional variables (i.e roll/yaw motion). Recall that the state
variables in the longitudinal motion in the linear regime are the (i) forward speed
change (i.e. change from the equilibrium state) (usp), (ii) angle of attack (𝛼) or the
vertical velocity (𝑤) change, (iii) the pitch angle change, 𝜃, and the pitch rate change,
q. Typically in longitudinal motion, the control variables are the elevator angle 𝛿e (and
any other aerodynamic control surface deflections). The control variable related to the
engine (propulsion system) is the throttle angle 𝛿th. In industry, it is also customary to
categorize AFCS in accordance with the control objective of the control system. For
example, for an aircraft with a stable phugoid or short period mode with an inadequate
open loop damping ratio of the mode, if the control objective is to increase the damping
ratio of the mode in the closed loop, that control system is termed as a stability
augmentation system (SAS).Thus roll dampers, pitch dampers and yaw dampers can be
classified as SASs. On the other hand, if the control objective is to achieve a particular
type of response for a given motion variable, then that control system is categorized
as a control augmentation system (CAS). A steady coordinated turn control system
control, a systems to achieve a desired roll rate or pitch rate or normal acceleration,
etc., can be classified as a CAS. Finally control systems that regulate a given motion
variable (i.e hold its value constant), thereby giving pilot relief are called autopilots.
For example Mach hold (holding speed constant, like in cruise control), altitude hold,
pitch attitude hold, bank angle hold, heading hold/VOR hold, etc. could be classified
as autopilots. However, there is no obligation to strictly follow this nomenclature. It
is more a matter of familiarity with industry practice. At the conceptual level, all of
these are simply control systems designed to achieve a particular control objective.
With this background, we now briefly discuss the specifics of a few of these control
systems, mostly borrowing from the existing literature, referenced at the end of
this chapter.

13.3 Longitudinal Control Systems

In this section, we focus on all those control systems that attempt to control longitudinal
motion variables, such as speed usp, angle of attack 𝛼, pitch angle 𝜃, and pitch rate q. For
brevity, we focus on only a few of these control objectives, and illustrate the basic steps
of design through block diagram representation of that particular control objective.The
understanding is that a similar conceptual procedure can be applied to any other con-
trol objective. With that in mind, we present a brief account of a control system whose
objective is to regulate the pitch angle change to zero.Thus the nomenclature introduced
before this is a pitch displacement autopilot.
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13.3.1 Pitch Displacement Autopilot

The simplest form of autopilot, which is the type that first appeared in aircraft and is still
being used in some of the older transport aircraft, is the pitch displacement autopilot,
namely keeping the perturbed pitch angle 𝜃 to remain constant at a given value, which
could be zero.This autopilot was designed to hold the aircraft in straight and level flight
with little or no maneuvering capability.
For this type of autopilot the aircraft is initially trimmed to straight and level flight,

the reference aligned, and then the autopilot engaged. If the pitch altitude varies from
the reference, a voltage eg, is produced by the signal generator on the vertical gyro. This
voltage is then amplified and fed to the elevator servo. The elevator servo can be elec-
tromechanical or hydraulic with an electrically operated valve.The servo then positions
the elevator, causing the aircraft to pitch about the Y axis and so returning it to the
desired pitch attitude. The elevator servo is, in general, at least a second order system,
but if properly designed, its natural frequency is higher than that of the aircraft. If the
damping ratio is high enough, the elevator servo can be represented by a sensitivity
(gain) multiplied by a first order time lag. Representative characteristic times vary from
0.1 to 0.03 s.The longitudinal transfer function is generated from the dynamic model of
the short period approximation.
A typical block diagram for this control system is presented in Figure 13.1.
It needs to be kept in mind that the specific controller we design is very much depen-

dent on the specifics of the dynamics of that particular aircraft. For example, the short
period dynamics transfer function of a particular aircraft, such as a conventional trans-
port flying at 150 mph at sea level could have a transfer function given by

𝜃(s)
𝛿e(s)

= (s + 3.1)
s(s2 + 2.8s + 3.24)

. (13.1)

The representative block diagram and the corresponding root locus are shown in
Figures 13.2 and 13.3.

Amplifier
Elevator
Servo

egθref

θ

θeδe δe Aircraft
Dynamics

Vertical
Gyro

Figure 13.1 Displacement autopilot.

–(s+3.1)

s(s2+2.8s+3.24)s+12.5

–Ses
egθref θ

θ

+

–

δe

Figure 13.2 Block diagram for the conventional transport and autopilot.
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Figure 13.3 Root locus for conventional transport and autopilot.
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Figure 13.4 Root locus for jet transport and autopilot.

Suppose now a second aircraft, which is a jet transport flying at 600 ft s−1 at 40,000 ft
has a transfer function, given by

𝜃(s)
𝛿e(s)

= (s + 0.306)
s(s2 + 0.805s + 1.325)

(13.2)

Then for this aircraft’s specific transfer function, the root locus turns out to be as shown
in Figure 13.4.
Naturally, if we decide to design the controller gain by the root locus method, care

needs to be taken to observe that the gain range for stability is quite different for one
aircraft compared to the other aircraft. Carefully compare the above two root locus dia-
grams (shown in Figures 13.3 and 13.4) to realize that the gain determination as well as
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Figure 13.5 Displacement autopilot with pitch rate feedback for damping.

the ranges of these gains allowed to keep the closed loop system stable could be quite
different for these two distinct aircraft with distinct transfer functions.

13.3.2 Pitch Displacement Autopilot Augmented by Pitch Rate Feedback

Since the gain range for stability is limited in the above designs, one way to improve on
these designs is to augment the system by adding pitch rate feedback, which amounts
to PD control action because we are now feeding the derivative of pitch angle, namely
the pitch rate q. The corresponding block diagrams for this are given in Figures 13.5
and 13.6.
It is interesting as well as educational to observe that, with pitch rate feedback added,

the corresponding root locus becomes as shown Figure 13.7.
The root locus shown in Figure 13.7 clearly shows the improvement in the control gain

range because this time the closed loop system is stable for all positive gains in the rate
gyro/amplifier gain combination.
Although most aircraft are designed to be statically stable (Cm𝛼 is negative), certain

flight conditions can result in large changes in the longitudinal stability, see Figure 13.8.
Such changes occur in some high performance aircraft as they enter the transonic
region. However, an even more severe shift in the longitudinal stability results in
some high performance aircraft at high angles of attack, a phenomenon referred to as
pitch-up.
Pitch-up is most likely to occur in aircraft that have the horizontal stabilizer mounted

well above the wing of the aircraft; a common place is the top of the vertical stabilizer.
This is sometimes done to obtain the end-plate effect on the vertical stabilizer and thus
increase the effectiveness of the vertical stabilizer. Another factor that contributes to

ecg

eg ea

θ

θ
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θ
–1.39(s+0.306)

(s2+0.805s+1.325)

–10

s+10 s
1

Figure 13.6 Block diagram for the jet transport and displacement autopilot with pitch rate feedback
added for damping.
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Figure 13.7 Root locus for the inner loop of the jet transport and autopilot with pitch rate feedback.
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Figure 13.8 Cm versus 𝛼 for an aircraft subject to pitch-up.

this unstable flight condition is a wing with a low aspect ratio. Such a wing has a large
downwash velocity that increases rapidly as the angle of attack of the wing is increased.
As the high horizontal tail moves down into this wing wake, pitch-up occurs if the

downwash velocity becomes high enough. Pitch-up may occur in straight-wing as well
as swept-wing aircraft. For the swept-wing aircraft the forward shift of the center of
pressure of thewing at high angles of attack is also a contributing factor. A practical solu-
tion of the pitch-up problem is to limit that aircraft to angles of attack below the critical
angle of attack; however, this also limits the performance of the aircraft. An aircraft that
is subject to pitch-up will generally fly at these higher angles of attack; thus an automatic
control system that makes the aircraft flyable at angles of attack greater than the critical
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Figure 13.9 Pitch orientational control system.

Amplifier
and

Integrator

+ +

– –

A/C

Accelerometer

Scg

eo ea

eacc

azcomm az

ecg

δeeδe

θ

10

s+10

Figure 13.10 Block diagram of an acceleration control system. Sacc = 1 V g−1.

angle of attack increases the performance capabilities of the aircraft. The pitch orienta-
tional control system, shown in Figure 13.9, if properly designed, provides this control.

13.3.3 Acceleration Control System

Acceleration control systems are generally needed for fighter type aircraft. Figure 13.10
is a block diagram for an acceleration control system.
The required transfer function can be derived from the Z force equation given below.

az = �̇� −U0�̇� (13.3)

Taking az as the output variable, we can accordingly get the corresponding C and D
matrices and get the appropriate transfer function between az and 𝛿e. We could either
use simply the short period approximation equations or the entire longitudinal linear
model equations to get the needed transfer function.
For a typical fighter-type high performance aircraft, a representative transfer function

for a specific aircraft at a flight condition with a relatively high angle of attack looks as
follows:

az(s)
𝛿e(s)

= −77.7(s2 − 60)
s2 + 0.9s + 8

. (13.4)

Factoring,
az(s)
𝛿e(s)

= −77.7(s + 7.75)(s − 7.75)
s2 + 0.9s + 8

ft s−2

rad
. (13.5)

However, the units for the transfer function of the elevator servo are degree/volt, and
for the accelerometer they are volt/gram. The units of Equation 13.5 can be changed
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to gram/degree by dividing by 32.2 (ft s−2) g−1 and 57.3 deg rad−1. Thus Equation 13.5
becomes

az(s)
𝛿e(s)

= −0.042(s + 7.75)(s − 7.75)
s2 + 0.9s + 8

g
deg

. (13.6)

An examination of Equation 13.6 indicates that there is a zero in the right half plane,
thus indicating a non-minimum phase transfer function. This type of occurrence of a
non-minimum phase transfer function is common for a high angle of attack flight con-
dition. This means that for a positive step input of 𝛿e the steady state sign of az will be
positive, which is consistent with the sign convention already established.Thus the sign
at the summer for the acceleration feedbackmust be negative for negative feedback.The
sign for the elevator servo remains positive, so that a positive az(comm) yields a positive
az output.
The closed-loop transfer function for the inner loop of the acceleration control system

(see Figure 13.11) for S(cg) = 0.23 is

�̇�(s)
ea(s)

= −150(s + 0.4)
(s + 3)(s2 + 7s + 24)

deg s−1

V
. (13.7)

The block diagram for the outer loop is shown in Figure 13.12 for S(cg) = 0.23.
The az

�̇�
block is required to change the output of the inner loop �̇� to the required output

for the outer loop az. The transfer function for this block can be obtained by taking the
ratio of az(s)

𝛿e(s)
and �̇�(s)

𝛿e(s)
transfer functions; thus

az(s)
�̇�(s)

= −0.042(s + 7.75)(s − 7.75)
−15(s + 0.4)

g
deg s−1

(13.8)

Then the az(s)∕ea(s) transfer function is the product of Equations 13.7 and 13.8
az(s)
ea(s)

= −0.42(s + 7.75)(s − 7.75)
(s + 3)(s2 + 7s + 24)

g
V
. (13.9)
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Figure 13.11 Block diagram for the inner loop of the acceleration control system.
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Figure 13.12 Block diagram for the outer loop for the acceleration control system.
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This operation changes only the numerator of the forward transfer function by replacing
the zero of the �̇�(s)

𝛿e(s)
transfer function with the zeros of the az(s)

𝛿e(s)
transfer function. The

denominator remains the same. The closed loop transfer function is
az(s)

az(comm)(s)
= −0.93(s + 7.75)(s − 7.75)

(s2 + 2.2s + 2.4)(s2 + 7.8s + 24)
. (13.10)

Although the accelerometer control system provides good operation, there are some
practical problems. One of these is that the accelerometer cannot distinguish between
the acceleration due to gravity and accelerations caused by aircraft motion.The acceler-
ation of gravity can be balanced out so that in straight and level flight at normal cruise
air speed and altitude the output of the accelerometer is zero. However, at different
angles of attack the accelerometer output is not zero. For example, if the angle of attack
changed by 10∘ from the value at which the accelerometer was nulled, the output would
correspond to +/−0.5 ft/sec2. The accelerometer can be adjusted so that it is insensi-
tive to accelerations that are less than 1 ft s−2, thus eliminating this problem. Another
problem that would probably be harder to overcome is the unwanted accelerations aris-
ing from turbulence. This shows up as noise and has to be filtered out. As a result of
these problems, and because there are not many requirements that call for an aircraft
maneuvering at constant acceleration, the acceleration autopilot is not often employed.
However, there are some requirements that make the acceleration autopilot ideal. An
example is the necessity to perform a maximum performance pull-up in connection
with a particular tactical maneuver.

13.4 Control Theory Application to Automatic Landing
Control System Design

One of themost interesting and useful applications of control theory in the aircraft flight
control field belongs to the design of an automatic landing control system. The goal of
the automatic landing control system is to be able to land the aircraft in all weather con-
ditions. To achieve this, we need a way to land the aircraft without any visual reference
to the runway.This in turn can be accomplished by an automatic landing control system,
which would guide the aircraft down a predetermined glide slope and then at a prese-
lected altitude to reduce the rate of descent and cause the aircraft to flare out and touch
down with an acceptably low rate of descent. Thus there are four important phases, (i)
glide path stabilization and simultaneous (ii) speed control, then (iii) altitude hold and
finally (iv) the flare control.
A pictorial representation of the geometry of the landing phase of an aircraft is given

in Figure 13.13.

13.4.1 Glide Path Coupling Phase: Glide Path Stabilization by elevator
and Speed Control by Engine Throttle

In the glide path coupling phase, the aircraft’s pitch attitude angle 𝜃 and simultaneously
the speed usp (among the longitudinal state variables) need to be controlled.Thatmeans
we need one control system to achieve the glide slope stabilization and another control
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Figure 13.13 Automatic landing geometry.

system to simultaneously control the landing speed.Thus there are two control variables
needed during this phase. The pitch angle control for guide slope coupling is done with
the elevator angle as the control variable while the speed is controlled by the engine
throttle as the control variable. For controlling the pitch angle, as described before, we
use the elevator angle 𝛿e as the control variable with 𝜃 as the output variable. Thus in
this part of the control system, we essentially work with the transfer function between
pitch angle and the elevator angle. As usual, the elevator servo ismodeled by a first order
transfer function with a 0.1 s lag. Typically we assume that sensors are fast enough that
their lags could be neglected to make the control system design more tractable. The
control system design of this pitch attitude control would then be in the same lines as
the pitch attitude control system discussed before.
So let us now discuss the speed control system aspect. For this, we obtain the transfer

function between the forward speed change usp and the throttle servo angle 𝛿th. Typi-
cally the throttle servo and engine response transfer function is modeled by first order
transfer function with a single 5 s lag. Depending on the complexity of the dynamics, a
higher order transfer function may be warranted for some aircraft.
After making sure that there are no close pole zero pairs (so as to avoid any pole

zero cancellation), a typical, representative transfer function between speed and throttle
servo could be given by

usp

𝛿th
≈

K(s + 0.2736 ± j0.1116)(s + 0.001484)
(s + 0.2674 ± j0.1552)(s + 0.0002005)(s + 0.06449)

.

Note that the oscillatory poles are shown as simple poles with complex conjugate roots
in the above denominator. This transfer function can be used to perform frequency
domain design of a speed loop compensator, the details of which are omitted. Please
see books such as [7] and [36] for more details on the control system design steps.

13.4.2 Glide Slope Coupling Phase

Thegeometry associatedwith the glide slope coupling problem is shown in Figures 13.14
and 13.15.
LetU be the constant steady state forward speed, and d be the perpendicular distance

between the glide slope line and the aircraft’s cg location (where we now assume the
aircraft to be a pointmass) and 𝛾 be the angle between the forward velocity direction and
the horizontal (flight path angle). We also assume the constant angle between ground
(runway horizontal) and the glide slope line, a typical value of 2.5∘. Then the rate of
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change of distance d is given, from the geometry of the problem, as

ḋ = U sin (𝛾 + 2.5)∘ (13.11)

which can be approximated as

ḋ = U∕57.3(𝛾 + 2.5). (13.12)

Then the glide slope error angle, Γ, in degrees (from the figure), can be approximately
written as

Γ = 57.3d∕R (13.13)

where R is the range distance as shown in the diagram. Then the objective behind a
control system (to be designed) is to reduce or bring the angle Γ to zero.Thus an appro-
priate block diagram for this glide slope coupling control system can be built as shown
in Figure 13.16, with Γ as the output and Γref = 0 as the reference input. The coupler
controller block’s transfer function could be taken as a lead/lag compensator of the type
K(1 + 0.1∕s)(s + 0.5)∕(s + 5).
A representative overall open loop transfer function of the glide slope coupling control

system can be seen to be

Γ(s)
eΓ(s)

=
KT(s + 0.1)(s + 4.85)(s − 4.35)

(s2(s + 5)(s + 5.5)(s2 + 5.4s + 11.4)
where the total gain KT of the above open loop transfer function is taken as KT = K∕R.
The block diagram for the above control system is given in Figure 13.17.
The important point to note is that the physical rangeR distance is serving as a variable

control gain within the control system. Thus the idea is to use the root locus technique
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to design a gain KT for stable operation of the closed loop system and then infer the
range R from this control system gain. See [7] for details of a particular design exercise.
A simulation of this particular design is shown in Figure 13.18.
From this simulation it is seen that typically a range of about 1500 ft provides a stable

operation for a glide slope coupling control system.
Once the glide slope coupling control system is designed, then the next step is to

design the flare controller.

13.4.3 Flare Control

At an altitude between 20 and 40 ft above the end of the runway, an automatic flare
control system needs to be engaged. This height at which the flare maneuver starts is
called the decision height. This trajectory is called the landing flare. Its geometry is as
shown in Figure 13.19.
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The principal sensor during this phase is a radar altimeter, and satisfactory perfor-
mance requires tight control of the aircraft altitude and its rate of descent.

13.4.4 Determination Flare Control Parameters

During the flare maneuver, the glide path angle has to be changed from roughly−3∘ to a
positive value for a smooth, belly-first touchdown. The automated flare control system
must control the rate of descent of the aircraft’s center of gravity to match the idealized
exponential path described by

h = hoe−t∕𝜏 (13.14)

while at the same time managing the pitch of the aircraft in preparation for touchdown.
Modern digital computer based flight control systems allow functions such as throttle

to be programmed as a function of altitude.
The flare requires a very tight control loop and this design has considerable influence

on the nature of landing such as hard or soft landing.Thus selecting appropriate param-
eters for this flare controller is of extreme importance. In what follows, we present a
brief account of the guidelines for determining these parameters.
The equations and constraints for the exponential model that generates the flare com-

mand are as follows:

h(t) = h0e
−t
𝜏 ; therefore, ḣ = −h

𝜏

where h0 = h(0), the decision height.

h(0) = −𝜏ḣ(0) = 𝜏VT sin 𝛾 (constraint).

Here VT is the constant velocity of the aircraft cg during this phase and gamma is the
flight path angle, which is assumed to be small.
Since 𝛾 is very shallow throughout the flare, so the horizontal component of the air-

craft’s velocity, VT cos 𝛾 is approximately equal to VT and also will be assumed constant.

4𝜏VT = (h0∕ tan 𝛾) + D = 𝜏VT cos 𝛾 + D

whereD is the total horizontal distance of the runway to be used until the aircraft comes
to a complete stop. Thus this distance includes the horizontal distance R at the touch-
down point from the start of the flare maneuver plus the additional distance on the
runway to come to a complete stop after the touch down. Thus the total distance D
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Figure 13.20 Late touchdown forced airbrake to be used. (Illustration: Wikimedia).

depends on the specific situation with the runway conditions. Since 𝛾 is a small angle,
cos 𝛾 ≈ 1.0, this equation leads to

𝜏 = D∕3VT.

The interesting point here is that the time constant parameter tau is related to the
runway distances, making both of them design variables, which in turn affects the flare
maneuver parameters. These parameters then decide the nature of the landing (hard or
soft landing); an example is shown in Figure 13.20.
As an example, with D = 2000 ft and VT = 250 ft s−1, they become 𝜏 = 2.667 s and

h0 = 29.1 ft.
A control system block diagram then has the rate of descent ḣ as the output variable

with the desired rate of descent ḣr as the reference signal. Note that this reference signal,
which is a function of the time constant parameter 𝜏 , comes as a guidance command
from the guidance system.

13.4.5 Altitude Hold andMach Hold Autopilots

With the knowledge we gained from the above examples, it is relatively straightforward
to write the appropriate block diagrams and design a control logic for Mach hold and
altitude hold autopilots. For an altitude hold autopilot, we need to get the transfer func-
tion between the longitudinal state variable, height h and whatever control variable is
assumed, typically a control surface deflection such as the elevator angle. Similarly for
the Mach hold autopilot, we need to get the transfer function between the longitudinal
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state variable, the forward speed change usp and whatever control variable is assumed,
typically a control surface deflection such as the elevator angle.

13.4.6 Conceptual Control System Design Steps

To summarize, the major task in the control system design is to clearly understand and
identify what the output (controlled) variable is, what the control (input) variable is, and
then write an appropriate block diagram with all rest of the actuator, sensor, summer
junction, and controller components, and then gather all the transfer functions needed
in each of those component blocks and start analyzing the open loop system character-
istics. Finally the controller transfer function parameters can be designed using the root
locus and Bode plot based design algorithms so that the finalized closed loop transfer
function meets all the design specifications.

13.5 Lateral/Directional Autopilots

As mentioned earlier, keeping the objective of this book in mind, we limit our discus-
sion on this topic to the very essential conceptual level.This is justified because as far as
the application of classical control theory to the lateral/directional aircraft flight control
problems is concerned,what is needed is to essentially replace the longitudinal dynamics
transfer functions we considered before to lateral/directional dynamics transfer func-
tions by appropriate labeling of the outputs and inputs involved in the lateral/directional
aircraft dynamics. One of the standard autopilots in this topic is the washout circuit
designed in the yaw damping control system. Another interesting application pertains
to the steady coordinated turn problem. This control system is heavily dependent on
the specificity of the lateral/directional dynamics and is worth looking into and getting
familiar with by reading dedicated books on aircraft flight control systems, the refer-
ences for which are given at the end of this chapter. We cover this topic at a conceptual
level, without any detailed discussion of the actual control systemdesign steps, forwhich
the reader is encouraged to consult other textbooks dedicated to aircraft control.

13.5.1 Steady Coordinated Turn Control System

There are four design philosophies used in attempting to achieve steady coordinated
turn, which are very much based on the nature of lateral/directional motion equations
that bring out the features of a steady coordinated turn. For this recall that the later-
al/directional state variables are (i) side slip angle 𝛽, (ii) roll rate p, (iii) yaw rate r, and
finally (iv) bank angle 𝜙. The heading angle 𝜓 is typically omitted as a controlled vari-
able, because it is mostly a constant. The control variables are (i) the aileron deflection
𝛿A and (ii) the rudder deflection 𝛿R. So the problem of achieving a steady coordinated
turn is predicated by the definition of the output variable we wish to select. We now list
the four design philosophies.
Design philosophy I. Here we attempt to achieve steady coordinated turn by regu-

lating the side slip angle 𝛽 to zero.Thus the needed transfer functions are the 𝛽(s)∕𝛿A(s)
and 𝛽(s)∕𝛿R(s).
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To improve performance, we can even employ an inner loop controlling the rate of
change of 𝛽, i.e. �̇�, as well.
Designphilosophy II. Herewe attempt to achieve steady coordinated turn by regulat-

ing the lateral acceleration ay to zero.Thus the needed transfer functions are ay(s)∕𝛿A(s)
and ay(s)∕𝛿R(s).
To improve the performance, we can even employ an inner loop controlling the yaw

rate, i.e. r, as well.
Design philosophy III. Here we attempt to achieve steady coordinated turn by con-

trolling the yaw rate r to a very specific desired value, i.e rcommand. This is labeled as
the computed yaw rate method. Thus the required transfer functions are r(s)∕𝛿A(s) and
r(s)∕𝛿R(s). The commanded (desired and computed) yaw rate rcommand is given by the
equation

rcommand = (g∕VT) sin𝜙 (13.15)

where g is the acceleration due to gravity, VT is the true airspeed along the lateral y axis,
and 𝜙 is the bank angle. We assume that the right hand side information is known and
is available through measurements of those variables.
Design philosophy IV. This method is labeled as the rudder coordination computer

in which the rudder angle required is computed for a given amount of aileron angle to
achieve a steady coordinated turn.
For this method to work, we need to assume that the transfer functions for aileron and

rudder servos are the same and thus equal to each other. This may pose some problems
in some practical situations but is sufficiently robust that it can also be employedwithout
that much concern in the majority of situations where the above assumption is satisfied.

13.5.2 Inertial Cross Coupling

This is an important phenomenon specific to aircraft linear dynamics. As we have seen
from the discussion in previous sections, the linear control designmethodswere applied
by invoking the decoupling between longitudinal dynamics and the lateral/directional
dynamics of the aircraft dynamics for small motions in the linear range. Thus in some
sense, the control systems were designed in a modular way, separately for each con-
trol objective at hand. However, as the aircraft geometries evolved over time based on
aerodynamic considerations over the large flight envelope, slowly it turned out that
for some high performance aircraft with slender wing bodies, the weight distribution
started to change in such a way that more weight became concentrated in the fuselage
as the aircraft’s wings became thinner and shorter. This in turn changed the moments
of inertia distribution along the 3 axis, wherein the moment of inertia about the lon-
gitudinal x axis decreased while the those along the roll/yaw axes started increasing.
This unevenmoment of inertia distribution no longer allowed the assumption of decou-
pling of dynamics between the longitudinal motion and the roll/yaw motion. This cou-
pling between the longitudinal and lateral/directional motion of these types of aircraft
is labeled as the inertial cross coupling phenomenon. This phenomenon results in the
need to make modifications to the traditional modular design practice. The intent was
then to see how far we can stretch these modular linear control systems (i.e linear con-
trol systems designed separately for longitudinal dynamics and for lateral/directional
dynamics) to handle this cross coupling between these two types of dynamics in an
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integrated way. Accordingly, an integrated control system that accounts for this inertial
cross coupling was designed.

13.6 Chapter Summary

In this chapter, we have covered the application of the classical control theory tools to
the specific area of aircraft flight control systems. In line with the objective of this book,
our emphasis was to first master the theoretical techniques of classical control theory
and then apply them to flight vehicle control systems field. Again, keeping the overall
(deliberate) scope of the book, we limited our coverage to a reasonable level on aircraft
longitudinal control systems and then treating the lateral/directional control systems
in a peripheral way as the essential skill remains the same whether it is a longitudinal
dynamics related transfer function or lateral/directional related transfer function. This
philosophy of conceptual coverage of this application area simplymeans that the student
who is interested in pursuing deeper knowledge of aircraft control systems is expected
to consult many praiseworthy books that deal specifically with aircraft flight dynamics
and control, which are listed at the end of this chapter in the reference section.
With this understanding, it is now time to move on to learn few basics of spacecraft

flight control systems in the next chapter.
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14

Application of Classical Control Methods to Spacecraft Control

14.1 Chapter Highlights

In this chapter, we focus on the application of classical control theory to space-
craft/satellite attitude control systems. There are excellent books that deal specifically
with spacecraft/satellite control systems, which are given in the references section of
this chapter. With the intention of not repeating that coverage here in this book, in this
chapter, we cover the control design exercise that this author was personally involved in
his early higher education phase. The specific satellite control problem this author was
involved in was the attitude control system for a satellite with near resemblance to the
first satellite the Indian Space Research Organization launched, named the Aryabhata
satellite.We first cover the pitch axis attitude control system and then cover the roll/yaw
coupled control system. The emphasis is on the conceptual formulation of the problem
in the classical control theory framework. The essential material is taken from [6].

14.2 Control of an Earth Observation Satellite Using a
MomentumWheel and Offset Thrusters: Case Study

14.2.1 Overview

Satellites for remote sensing of Earth resources need to be Earth oriented. The pres-
ence of various disturbances, both internal and environmental, necessitates an effective
attitude control system. For attitude stabilization and control a variety of systems have
evolved in the past few decades. Among them is the use of a fixed momentum biased
reaction wheel and gas jets.Thewheel provides roll/yaw stiffness and controls pitch axis
motion [1]. For removing undesirable momentum (for momentum dumping) a pair of
gas jets are employed. A second pair of thrusters offset from the yaw axis are used for
roll/yaw control and active nutation damping [4].The geostationary Canadian Telecom-
munication System CTS used such a system with success [5]. A similar system has also
been suggested for use by India for a geostationary communication satellite [7]. This
section extends the applicability of the above concept to a near Earth, Sun synchronous
satellite that is subjected to larger environmental torques and needs continuous control
of the satellite axis to compensate for orbital precession [2]. The system is attractive as
it avoids yaw sensing and requires a lower number of moving parts for high accuracy
three axis control. Some assumed parameters:

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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• Weight of satellite = 300–400 kg
• Power = 40–60W
• Lifetime = 1 yr
• Nearly spherical, with radius = 0.5m
• Moment of inertia = 100, 80, 80 kg m2

• Distance between center of pressure and center of mass = 10 cm
• Pointing accuracy = 0.5∘
• Power limitation (continuous) on control system = 2–4W
• Weight limitation = 20–30 kg
• Horizon sensor accuracy = 0.1∘.

14.2.2 Formulations of Equations

Twobody-centered orthogonal coordinate systems are used formodeling the problem in
Figure 14.1: (a) a body-centered orbital coordinate frame x0y0z0 with x0 along the local
vertical and z0 normal to the orbital plane, and (b) the satellite’s principal coordinate
frame xyz, which is related to the former by three Eulerian rotations denoting the pitch
(𝜓), roll (𝜙), and yaw (𝜆) sequence. For a satellite with a rotor about the pitch axis the
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equations of motion are:

Ix�̇�x − (Iy − Iz)𝜔y𝜔z + 𝜔yHr = Tx

Iy�̇�y − (Iz − Ix)𝜔x𝜔z + 𝜔xHr = Ty

Iz�̇�z − (Iy − Ix)𝜔x𝜔y +Hr = Tz.

The body rates can be expressed in terms of orbital and Eulerian angle rates (ignoring
orbital perturbations) as

𝜔x = �̇� − (�̇� + �̇�) sin𝜙
𝜔y = �̇� cos 𝜆 + (�̇� + �̇�) sin 𝜆 cos𝜙
𝜔z = (�̇� + �̇�) cos 𝜆 cos𝜙 − �̇� sin 𝜆.

On linearization the equations of motion for an axi-symmetric satellite (Ix = Iy = I)
transform into

I�̈� + �̇�𝜆[Hr − �̇�(I − Iz)] + �̇�[Hr − �̇�(2I − Iz)] = Tx

I�̈� + �̇�𝜙[Hr − �̇�(I − Iz)] − �̇�[Hr − �̇�(2I − Iz)] = Ty

Iz�̈� +Hr = Tz.

For small perturbations, therefore, pitch dynamics is decoupled from roll/yaw
dynamics.The environmental torques disturbing the satellite attitude arise mainly from
the Earth’s magnetic field and atmosphere [2]. Table 14.1 gives their magnitude and
nature.

Table 14.1 Disturbance torque on the satellite.

Axis Source Magnitude Nature

Principal axes:

Sx Magnetic 0.735 × 10−5 Periodic at

Sy Magnetic 1.47 × 10−5 orbital frequency

Sz Magnetic 1.65 × 10−5

z Atmospheric 1 × 10−5 Secular

All Others < 1 × 10−6

Nodal frames:

OXn Magnetic 0.35 × 10−5 Secular

1.1 × 10−5 Periodic at

OYn Magnetic 1.1 × 10−5 twice the orbital frequency

OZn Magnetic 1.65 × 10−5 Periodic at orbital frequency

Atmospheric 1 × 10−5 Secular

All Others 1 × 10−6
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14.2.3 Design of Attitude Controllers

Equipment proportioning
A preliminary choice of the values for some of the design parameters like rotor momen-
tum, jet thrust level, gas requirements, etc. can be made from static considerations as
follows:
1. A cyclic torque of 1.1 × 10−5 N m having twice the orbital frequency and a secular

torque of 0.35 × 10−5 N m acts on the satellite perpendicular to the rotor spin axis.
Under the action of cyclic disturbance the spin axis oscillates about a mean position,
while a secular disturbance causes a constant drift of the spin axis from the orbit
normal. The drift Δ at any instant can be estimated as

Δ =
∫

t
0 Tdt
Hr

, q = x or y. (14.1)

From the mission roll/yaw pointing accuracy requirements, this drift should not be
more than±0.5∘. Accounting for the sensor inaccuracies of 0.1∘, only 0.4∘may be per-
mitted. From the considerations of efficient fuel utilization, the availability of ground
command (in case of any failure of onboard logic), and orbital precession (0.985∘/day)
a total drift of more than 0.8∘ (± side to ∓ side) may not be permitted in 12 h. Then,
the necessary angular momentum to be imparted to the wheel to overcome the sec-
ular disturbances is 10N m s. With this angular momentum, the drift/orbit due to
secular disturbances is estimated to be 0.115∘. The amplitude of the oscillations due
to cyclic disturbances will be approximately 0.1∘.

2. Under the action of disturbances the reaction wheel acts as a momentum storage
device. The angular momentum, acquired due to secular torques, has to be damped
occasionally using reaction jets. If the change in angular momentum of the wheel
from the base value is denoted by ΔH and this is damped by the operation of jets for
time tc, then the jet torque required for momentum dumping is given by

Tj =
ΔH
tc

=
∫

t
0 Tzdt
tc

(14.2)

where td is the time between two successive momentum dumping operations.
3. Under ideal conditions, the output torque from the pitch control motor should equal

the jet torque.Hence the output power required of themotor to cater to this jet torque
is given by

Pout = Tj𝜔r (14.3)
4. The change in speedΔ𝜔r (due to change in angular momentumΔH) in td is generally

limited to ±3 to 10% of the base speed. Choosing a jet torque of 0.02N m, td∕tc is
found to equal 2000. The corresponding values of other parameters found using the
above relations are given in Table 14.2.

5. The minimum weight of the gas required for dumping operation over the specified
useful lifetime of the satellite is given by

Wgas =
ΔH∗

g0rIsp

=
∫

t∗

0 Tzdt
g0rIsp

(14.4)
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Table 14.2 Choice of design parameters.

Pout Base speed J1 𝚫𝝎
𝝉
= ±3% 𝚫𝝎

𝝉
= ±5% 𝚫𝝎

𝝉
= ±10%

W N rpm kg m2 tc td tc td tc td
1 500 0.192
2 1000 0.095 14 s 8.4 h 25 s 14 h 50 s 28 h
3 1500 0.064

where t∗ is the mission lifetime. Using dry compressed air (Isp = 70 s) and moment
arm of 0.5m, the yearly gas requirement is found to be 0.9 kg for momentum dump-
ing and 0.32 kg for axis control. In addition, 0.224 kg of gas per year is required to
overcome changes due to orbital precession. Thus the total minimum requirement
is 1.5 kg. The actual amount, of course, depends upon the control logic, efficiency of
the total system, leakage, etc.

Pitch control logic
Laplace transformation of pitch dynamics gives

s2Iz𝜓(s) = Tz(s) + L(s) (14.5)

where the control torque L = −Ḣr. The control block diagram of the pitch control loop
is shown in Figure 14.2. Proportional plus integral cascade compensation is chosen for
simplicity and accuracy. For the rotor motor unit, L depends upon the input voltage Em
to its control winding as in [3]

Ls(s)
Em(s)

=
KmJ1s

𝜏m(s + 1∕𝜏m)
. (14.6)

With this, the transfer functions of the system are
𝜓(s)
𝜓e(s)

=
K(s + Kt)

s2(s + 1∕𝜏m)
where K =

KaKmJ1
𝜏mIz

=
K(s + K1)

s2(s + 1∕𝜏m) + K(s + K1)

=
K(s + K1)

(s2 + 2𝜉𝜔ns + 𝜔2
n)(s + 𝛿)

= − L(s)
T(s)

(14.7)

and
𝜓e(s)
T(s)

=
−(s + 1∕𝜏m)

Iz(s2 + 2𝜉𝜔ns + 𝜔2
n)(s + 𝛿)

. (14.8)

From these relations,

𝜔2
n =

2𝜉𝛿K1

𝛿 − K1
(14.9)
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Figure 14.2 Block diagram for pitch control.

1
𝜏m

= 𝛿 + 2𝜉𝜔n (14.10)

𝜔2
n𝛿 = KK1 (14.11)

Also from the Routh–Hurwitz criterion,K1 < 1∕𝜏m. Here we chooseK1 = 0.1∕𝜏m. Since
𝛿 is the dominant pole in the error-torque transfer, a reasonable value of 𝜉 = 0.5 is taken.
With these choices, all the parameters of the transfer functions are given in terms of the
motor unit time constant only. This single parameter can be obtained from the overall
error budget and motor power limitations.
In the steady state (nominal operation mode), the satellite is subjected to small sec-

ular and periodic environmental torques (Table 14.1). Taking into account the sensor
inaccuracy and giving allowance to modeling errors one may aim at a steady-state error
limitation of 0.3∘. For this, from Equation 14.8, the motor time constant 𝜏m ≈ 190 s.
During momentum dumping operation a jet torque of 0.02N m acts for tc. Though

the steady state error due to this pulse is zero,the transient error builds up to too large
a value to be tolerated for the motor rotor unit time constant found above. The time
constant should, therefore, be selected on the basis of the transient error during the
momentum dumping mode. For finding the time t when the transient error reaches the
maximum and for obtaining 𝜏m to limit it to a desired value, one needs to solve a rather
involved transcendental equation [8]. What is attempted, alternatively, is to complete
the design by root locus, determine 𝜓e,max, and tabulate the results for different values
of time constant 𝜏m. A typical root locus plot for a particular time constant (𝜏m = 7.7 s)
is shown in Figure 14.3.The results obtained for tc = 14s andTj = 0.02Nm are tabulated
in Table 14.3.
To have less error, a fast acting motor should be chosen. However, there is limitation

on the available power.The former requirement is in conflict with the latter. From power

Table 14.3 Salient error response features for different motor-rotor unit time
constants.

𝝉m s
Total steady
state error

Maximum error
during dumping
mode

Time taken to
reach maximum
errors

Time elapsed
from the start
to converge
to 0.5∘, s

190 0.3∘ Very large - -

18 0.023∘ 4∘ 50 250

7.7 0.00374∘ 1.6∘ 26 91

4.6 0.00147∘ 0.91∘ 20 34
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Figure 14.3 Root locus for the case 𝜏m = 7.7s.

consideration it is advisable to use a wheel with low base speed. FromTable 14.2, a wheel
with base speed of 500 rpm and inertia of 0.192 kg m2 is selected. For a rated no load
speed 𝜔m = 550 rpm, the power ratings for different time constants are tabulated in
Table 14.4. In this case, the actual output power for dumping is 1W and assuming (to be
conservative) the efficiency of the motor to be only about 16–20% during the dumping
operation, the input power required is 6W. It may be noted from Tables 14.3 and 14.4
that in meeting the power limitation, the error during dumping mode is to be allowed
to a large value.
A tolerable error, meeting the power limitation, can be attained if the dumping is done

by intermittent torque pulses, instead of a single torque pulse of duration tc. The time
between two consecutive torque pulses should be so chosen as to minimize the error as
well as the total dumping operation time. A null-point firing scheme can be applied to
advantage [7].

Pitch Response
Typical response plots of the system are obtained for 𝜏m = 7.7 s. For other time con-
stants, the responses are qualitatively similar. Figure 14.4(a) shows the error response to
a secular (step) disturbance.The near exponential build up of the error to its steady state
value of around 0.004∘ may be noted. The response of the system to a step input com-
mand in pitch attitude is shown in Figure 14.4(b).The same plot represents the response
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Table 14.4 Power rating requirements for different pitch controller parameters.

[Base speed= 500 rpm; no load speed at 21V (dc)= 550 rpm; J1 = 0.192 kgm2]

𝝉m s

L∗s rated
stall
torque, Nm

P∗
out

ratingW
P∗
in

ratingW
kn V
rad−1 k1 s

−1
km rad,
s−1 V−1

18.0 0.61 6.6 20 8.55 0.0056 2.74

7.7 1.43 15.5 46 22.2 0.013 2.74

4.6 2.4 26 78 35.2 0.0216 2.74
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of the control torque for a step change in disturbance torque. The rise time is about
15 s and the settling time is approximately 54 s, with a percentage overshoot of 22%.
Figure 14.5 shows the jet torque, motor control torque error response, and the motor
speed response during the dumping phase (with tc = 14 s). The maximum pitch error
developed is 1.6∘ and occurs 26 s after the initiation of dumping. The error reduces to
0.5∘ and the speed becomes nominal in about 90 s. The peak error and power demand
during the dumping mode exceeds the specified limit. However, the overall dumping
phase lasts only for minutes and only two or three times per day; this may not pose a
serious problem.

Spin Axis Control and Nutation Damping
The spin axis correction involves changing the direction of total angular momentum
of the satellite and then removal of any undesired motion of the spin axis. The change
in the direction of angular momentum can be brought about only by external torquing
either using magnetic coils or reaction jets. In the present case reaction jets have been
considered for axis correction.
Nutation induced by jet torquing can be removed either by passive nutation damping

or by active devices. For the given inertia ratio and estimated momentum the nutation
frequency (≈ Hr∕I) is found to be very small (≈ 0.125 rad s−2). As such, conventional
passive nutation dampers may not be effective. Active nutation attenuation using reac-
tion jets is considered here [4]. In this system, the axis correction jets offset from the roll
axis (Figure 14.1) are actuated by the roll sensors.The small yaw torque component gen-
erated due to the offset provides yaw damping. Figure 14.6, extracted from reference [4]
shows the block diagram of the roll/yaw controller. The derived rate modulator, which
sets the on time of the jets, employs two one-shot multi-vibrators set to the nominal
on-time so as to reduce the effects of modulator hysteresis variations on the size of the
minimum impulse bit.The dashed box contains an active nutation scheme.The scheme
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Figure 14.6 Block diagram of spin-axis controller.

prevents the system from getting into a hard two sided limit cycle. As detailed in [4], the
system works as follows:
After a dead band actuated control pulse, a dead beat pulse of the same polarity is

fired, approximately 5
8
TN later (whereTN is the nutation period), provided no additional

dead band actuated pulse of the same polarity has been fired in this interval.The various
control parameters of the roll/yaw controller, offset angle and the size of the minimum
impulse bit are found using the following relations:

1. In order to avoid unnecessary offset thruster firings and to forestall noise induced
limit cycling across the roll dead zone, the noise filter time constant 𝜏n is selected such
that maximum noise attenuation is obtained without affecting the control dynamics
adversely. It is suggested to select the filter corner frequency as 1∕𝜏n = 10𝜔p. To ade-
quately damp the dynamic mode corresponding to the orbital frequency, one can
choose the thruster offset angle as

𝛼 = tan−1

(
2
√
𝜃Iz
Hr

)
(14.12)

2. The modulator parameters Kf and 𝜏 are selected such that the closed loop nutation
pole pair, which are the dominant roots, lie within a suitable region in the s plane. Let
the closed loop nutation pole pair be given by

𝛿1 = −a ± jb. (14.13)

The following criterion may be used to locate the pole pair:

1.2𝜔p ≤ 2.5𝜔p and 0.3 < 𝜉 < 0.7 (14.14)

where 𝜉 is the damping ratio associated with 𝛿1, given by

𝜉𝛿 = cos
[
tan−1

(
b
a

)]
. (14.15)

It can be shown

𝜏 = 2a
b2 + a2 − 𝜔2

p
(14.16)
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Kf =
Tj cos 𝛼

I(b2 + a2 − 𝜔2
p)
. (14.17)

3. One of the most critical design parameters of a roll/yaw controller is the minimum
impulse bitΔH ; if it is too large, the sensor noise will cause severe and rapid multiple
pulse firings since the vehicle is not turned away from the roll boundary sufficiently
quickly. Hence, from these considerations, as a conservative estimate [4]

1.2 tan 𝛼
cos 𝛼

≤
ΔH
𝜙DHr

≤
2

1 + sin 𝛼 + 2 sin(45∘ + 𝛼∕2)
. (14.18)

One can choose the value of ΔH corresponding to the optimum design locus given
in [4].

4. The effective hysteresis of themodulator corresponding to theminimum pulse width
tmin is given by

h =
Kf tmin

𝜙D𝜏
. (14.19)

To make the modulator as noise rejectant as possible, the hysteresis should be such
that h𝜙D ≥ 2.5𝜎𝜓 , where 𝜎𝜓 is the noise variance at the output of the filter.
Table 14.5 shows the values of the various roll/yaw control parameters thus chosen
as initial estimates.

Roll/yaw Response
Using the design parameters the equations of motion are solved numerically under var-
ious modes of operation. Figure 14.7(a) shows the motion of the tip of the spin axis over
three orbits. It can be observed that the spin axis moves in a diverging spiral to reach
the dead bands (±𝜙D). In the absence of nutation, the spin axis will go into a limit cycle
behavior along the dashed lines shown in Figure 14.7(a). Hence the maximum positive
yaw error can only be ±0.54∘. The maximum negative yaw error is found to be −0.49∘.
For axis correction, a jet torque of 0.02N m is considered to act for 0.4 s. Figure 14.7(b)

Table 14.5 Roll/yaw controller parameters.

Reaction wheel momentum bias, H
𝜏

10Nms

Roll dead band, 𝜓D ±0.4 deg
Thruster offset angle, 𝛼 3 deg
Minimum impulse bit, ΔH 0.008N ms
Dead beat pulse 0.008N ms
Minimum thruster on-time, tmin 0.4 s
Modulator feedback gain, Kt 0.0547 rad
Modulator feedback time constant, 𝜏 12.5 s
Modulator hysteresis, h 0.25
Mutation attenuation delay time 30 s
Nutation period, TN 50 s
Offset thruster force 0.04N
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Figure 14.7 Depicted in (a) is the motion of the tip of the spin axis over three orbits, and in (b) typical
corrected trace of the spin axis in the roll/yaw plane.

shows a typical trace of the spin axis in roll and yaw plane in the correction mode. Here
the spin axis is assumed to reach the dead bandwith �̇� = 0.0001 rad s−1 and 𝛾 = −0.0001
rad s−1. It can also be observed that after the firing of the nutation attenuation pulse, the
nutation amplitude is reduced to 0.032∘. Further, because of the orbital mode, the spin
axis is carried towards the other dead band limit.

14.2.4 Summary of Results of Case Study

A design of a system for three axis attitude control of an Earth observation satellite is
presented. The system consists of a momentum biased pitch reaction wheel operation
on proportional plus integral scheme, a set of reaction jets for momentum dumping, a
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Table 14.6 Estimation of weight requirement, based on some
existing systems (Arybhata, SEO, APPLe).

Item Approximate weight, kg

Momentum wheel 6
Compressed air 2
Gas bottles, pipelines, control valves, etc 10
Control electronics 1
Reserve 1

Total 20

pair of offset thrusters for roll/yaw control and nutation damping, horizon sensor, timer,
and a speedometer. The system uses continuous power of about 1W (peak power 6W
for the momentum wheel during momentum dumping, and some power for operating
valves of the jet system two or three times per day). The total weight requirement is less
than 2 kg for one year life (Table 14.6). The accuracy achieved is better than 0.5∘.

14.3 Chapter Summary

In this chapter, we have covered the application of classical control theory (such as the
root locus technique and a PI controller) for pitch axis control of an axi-symmetric
satellite in near Earth orbit. The control system uses a pair of reaction jet thrusters for
momentum dumping and another pair of offset thrusters for roll/yaw control and nuta-
tion damping.The data considered is quite realistic as the satellite parameters are those
of a real world satellite launched by the Indian Space Research Organization in the early
phases of Indian space program, in which this author was involved.
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Flight Vehicle Control via Modern State Space Based Methods
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Roadmap to Part III

“If you think Education is expensive, try Ignorance”
– Derek Bok, Former President of MIT

Part III covers Fundamentals of Flight Vehicle Control via Modern State Space Based
methods and consists of Chapters 15 through 23. The basics of matrix theory and lin-
ear algebra needed for understanding this part of the subject are presented in Appendix
C and form the background needed for the material in this part. Chapter 15 gives an
overview of the state space representation of linear systems in continuous as well as
discrete time and sampled data formulations. Examples are given both from aircraft
models as well as spacecraft models, taken from the previous Part I of mathematical
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modeling. Chapter 16 covers the state space dynamic system response via the state
transition matrix approach, including the cases of continuous time, discrete time and
sampled data systems.The application of thesemethods for aircraft and spacecraftmod-
els is highlighted. Chapter 17 covers the first of the three structural properties of a linear
state space system, namely stability. A thorough discussion of the stability of dynamic
systems is presented starting with nonlinear systems, equilibrium states and the basics
of the Lyapunov stability theory.Then techniques for testing the Hurwitz stability of real
matrix are presented including the seldomcovered Fuller’s conditions alongwith its rela-
tionship to the Routh-Hurwitz criterion and the Lyapunov matrix equation approach.
ThenChapter 18 covers the other two structural properties of a linear state space system,
namely Controllability (stabilizability)/Observability (detectability). Examples are given
highlighting the state space models encountered in aircraft dynamics as well as space-
craft dynamics, keeping track of the similarities as well differences between aircraft and
spacecraft situations. Chapters 19 and 20 present two popular design techniques namely
Pole Placement and LQR techniques respectively. Chapter 21 covers Observer based
feedback control along with variable order Dynamic Compensator design and ‘strong
stability’ concept. Finally the aspect ‘spillover instability’ is introduced, possibly for the
first time in an Undergraduate textbook. Then Chapter 22 illustrates the application
of these design methods to aircraft control problems. Finally Chapter 23 illustrates the
application of these design methods to spacecrafts by using satellite formation flying
problem as an example.
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15

Time Domain, State Space Control Theory

15.1 Chapter Highlights

In this chapter, we briefly cover the fundamentals of state space control theory by first
reviewing the techniques of representing a set of simultaneous, ordinary differential
(continuous time) equations in a state space representation, along with the formal defi-
nition of state variables, control (input) variables, controlled (output) variables andmea-
surement (sensor) variables.Then we also review the discrete time, difference equations
in a state space form. We then discuss the importance of linear transformations of state
space systems. Finally we present a method to obtain a linearized state space model
about a nominal (or equilibrium) state from a nonlinear state space model using the
Jacobian linearization process.

15.2 Introduction to State Space Control Theory

State space based control theory is a significantly different viewpoint compared to the
frequency domain, Laplace transformation based (and transfer function based) control
theory we covered in Part II of this book. In state space control theory, we do not rely
on Laplace transformations at all to solve the differential equations of motion. Instead,
we try to solve them directly in time domain, using the concept of a state transition
matrix. State space based control theory is relatively new in comparison to the frequency
domain, transfer function based control theory. For that reason, the literature some-
times refers to transfer function based control theory as classical control theory and the
time domain, state space control theory as modern control theory. It can be said that
state space based control theory revolutionized themindset of control theorists because
of its significant advantages over the classical control theory.The concept of a state vari-
able in the dynamics of a physical system in itself is a profound concept, discovering the
importance of internal dynamics. Recall that in the transfer function based control the-
ory, the ratio of of output function over the input function (which indeed forms the
transfer function) is of importance with no explicit concern for the internal dynam-
ics, whereas in state space control theory, the state variables which embody the critical
internal dynamics of the system take the center stage and the output function and input
function take relatively subordinate roles. To better appreciate the importance of differ-
ent roles of state variables, output variables and input variables in a state space based
control theory, it is important for us to delve deep into the state space representation of

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.



288 15 Time Domain, State Space Control Theory
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Figure 15.1 Classes of models.

dynamic systems. In this connection, it also helps to make a distinction between single
input, single output (SISO) andmultiple input,multiple output (MIMO) systems. Before
that task, it is important to get an overview of the classes of models we focus on in
obtaining the state space models. This overview is depicted pictorially in Figure 15.1.
The models we focus on in this book are indicated by bold letters.

15.2.1 State Space Representation of Dynamic Systems

The state of a dynamic system is the smallest set of linearly independent variables (called
state variables) such that the knowledge of these variables at t = t0 together with the
input at t ≥ t0 completely determines the behavior of the system for any time t ≥ t0.
When a dynamic system is modeled by ordinary differential equations, it is relatively

easy to identify the set of state variables. For example, if we have a differential equation

d2𝜃
dt2

+ 5d𝜃
dt

+ 6𝜃 = et (15.1)

We can re-write it as
d2𝜃
dt2

= et − 6𝜃 − 5d𝜃
dt

(15.2)
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then it is easy to observe that we need 𝜃(t0) and
d𝜃
dt
(t0) to completely determine the

behavior of 𝜃(t) for all t ≥ t0. Thus 𝜃(t) and d𝜃
dt
(t) become the two state variables.

One main feature of the state space representation is that an nth order system (n = 2
in the above case) can be expressed in first order form with n state variables. Thus the
state space representation of the above second order differential equation is obtained by
first defining

𝜃(t) = x1(t)

and
d𝜃(t)
dt

= x2(t)

and then rewriting the above equation as two first order equations in the state variables
x1(t) and x2(t).

ẋ1(t) = x2(t)

and

ẋ2(t) =
d2𝜃
dt2

(t) = −5x2(t) − 6x1(t) + et

i.e. [
ẋ1(t)
ẋ2(t)

]
=
[

0 1
−6 −5

] [
x1(t)
x2(t)

]
+
[
0
1

]
et.

This is in the form
̇⃗x = Ax⃗ + Bu⃗

and this is the state space representation of the dynamic system represented by the
equation 15.1.
In the above example, the equation considered is a linear differential equation and thus

the resulting state space description is a linear state space description, but it does not
have to be linear. We can have a nonlinear set of differential equations that can be put
into state space form. So in general, the state space description of any dynamic system
described by ordinary differential equations is given by

̇⃗x = f⃗ (x⃗, u⃗, t)

where x⃗ is the state vector, u⃗ is the control vector and f⃗ is a vector of nonlinear functions
in xi and ui. Typically, we write

x⃗ ∈ IRn, i.e. x⃗ =
⎡⎢⎢⎢⎣
x1
x2
⋮
xn

⎤⎥⎥⎥⎦
u⃗ ∈ IRm, i.e. u⃗ =

⎡⎢⎢⎢⎣
u1
u2
⋮
um

⎤⎥⎥⎥⎦
.
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Figure 15.2 Typical block diagram for a
dynamic system.

In such cases, the nonlinear differential equations are linearized about an equilibrium to
get a linear state space representation in small motions around the equilibrium.We have
already discussed the linearization of nonlinear systems about a nominal or equilibrium
state in Part I of this book. Hence, going forward, in this part of the book, we focus on
the resulting linear models.

15.2.2 Linear State Space Systems

Once we focus on linear state space system dynamics, we can view the development of
linear state space control theory in a very systematic manner.Themain idea behind this
control theory is to make use of these linear state space based mathematical models to
predict the behavior of physical systems, and then use these mathematical predictions
to synthesize decisions (control logic) to modify the behavior of the physical system to
behave in a desired way. For that we need actuators and sensors in a feedback fashion
to compare the actual behavior of the output to the desired behavior continuously with
the help of sensors and then apply actuation based on a control law to make the output
evolve in such away that it reduces the error between the actual behavior and the desired
behavior. A typical feedback control system is pictorially shown in Figure 15.2.
The three basic steps of control theory are modeling, analysis, and design.
The variables in any generic control system can be classified into the following

categories.
• Inputs, or control variables: these are variables available in the system that one can use

or manipulate to effect the system’s dynamic behavior.The vector of control variables
is denoted by u⃗, which belongs to a real vector space of dimensionm × 1.

• Outputs, or controlled variables are those variables within the system’s dynamics that
we wish to control. Thus there is considerable difference between control variables
and controlled variables. The vector of output (controlled) variables is denoted by y⃗,
which also belongs to a real vector space of dimension k × 1. We denote the output
vector as

y⃗ ∈ IRk i.e. y⃗ =
⎡⎢⎢⎢⎣
y1
y2
⋮
yk

⎤⎥⎥⎥⎦
.

• Measurements or sensed variables are those variables within the system’s dynamics
that we can sense or measure so that we can supply that information to the actuation
variables.The vector of measurement variables is denoted by z⃗, which also belongs to
a real vector space of dimension l × 1. We denote the measurement vector as

z⃗ ∈ IRl i.e. z⃗ =
⎡⎢⎢⎢⎣
z1
z2
⋮
zl

⎤⎥⎥⎥⎦
.
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Table 15.1 Comparison of classical and modern control theory
features.

Classical (transfer functions) modern (state space)

SISO MIMO
Linear Possibly nonlinear
Time invariant Possibly time-varying
Frequency domain Time domain
Trial and error Systematic, optimal
Initial conditions neglected Not neglected

In some books, outputs and measurements are treated as synonymous, but in this
book, we distinguish between output variables and measurement variables.Thus in our
viewpoint, the number of outputs we wish to control could be quite different from the
number of measurements (or sensors) we use.

15.2.3 Comparison of Features of Classical and Modern (State Space Based)
Control Theory

As mentioned earlier, the very premise of state space based control theory using the
concept of state variables is quite different from the input/output based classical con-
trol theory. Let us now elaborate on the features of this new state space based control
theory that offers many significant advantages over the classical control theory. How-
ever, it needs to be kept inmind that the classical control theory, in spite of some glaring
shortcomings, has its own advantages and thus should not be undermined or discarded.
In fact, contrary to the Modern state space methods, they have stood the test of time
and are so powerful that there is reluctance on the part of industries to try out these
new modern state space methods despite their advantages. So a prudent control engi-
neer needs to master both classical as well as modern control theory concepts and then
use them based on the nature of the application problem in a judicious way. With that
understanding, we now briefly summarize the comparison of these two viewpoints in
Table 15.1. Recall that SISO stands for single input, single output while MIMO stands
for multiple input, multiple output systems.
Having understood the importance of state space based control theory, in what fol-

lows, we quickly review a few basic approaches to represent the given system (linear)
dynamics in a state variable representation.

15.3 State Space Representation in Companion Form:
Continuous Time Systems

A class of single-input, single-output systems can be described by an nth order linear
ordinary differential equation:

dny
dtn

+ an−1
dn−1y
dtn−1

+ · · · + a2
d2y
dt2

+ a1
dy
dt

+ a0y = u(t). (15.3)
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Theclass of systems can be reduced to the formof n first order state equations as follows.
Define the state variables as

x1 = y, x2 =
dy
dt

, x3 =
d2y
dt2

, · · · xn =
dn−1y
dtn−1

. (15.4)

These particular state variables are often called phase variables. As a direct result of this
definition. n − 1 first order differential equations are ẋ1 = x2, ẋ2 = x3, · · · ẋn−1 = xn. The
nth equation is ẋn = dny∕dtn. Using the original differential equation and the preceding
definitions gives

ẋn = −a0x1 − a1x2 − · · · − an−1xn + u(t) (15.5)

so that

ẋ(t) =

⎡⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
⋮ ⋮
0 0 0 0 · · · 1

−a0 −a1 −a2 −a3 · · · −an−1

⎤⎥⎥⎥⎥⎦
x(t) +

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎦
u(t)

= Ax(t) + Bu(t).

(15.6)

The output is y(t) = x1(t) = [1 0 0 · · · 0]x⃗(t) = Cx⃗(t). In this case the coefficient matrix
A is said to be in the phase variable canonical form.

15.4 State Space Representation of Discrete Time
(Difference) Equations

We can also represent a set of difference equations, which typically describe the dynam-
ics of a linear discrete time systems in a state variable form. In the following difference
equations, we use the notation k to refer to a general discrete time tk ∈ 𝜏 .

x(k + 1) = A(k)x(k) + B(k)u(k) (15.7)
y(k) = C(k)x(k) + D(k)u(k). (15.8)

The matrices A, B, C, D have the same dimensions as in the continuous time case,
but their meanings are different.The block diagram representation of equation 15.7 and
equation 15.8 is show in Figure 15.3.

Delay
++

+

+

u(k) B(k)

A(k)

D(k)

C(k) y(k)

Figure 15.3 Typical block diagram for a discrete time dynamic system.
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15.4.1 Companion Form for Discrete Time Systems

A comparable class of discrete time systems is described by an nth order difference
equation

y(k + n) + an−1y(k + n − 1) + · · · + a2y(k + 2) + a1y(k + 1) + a0y(k)) = u(k).
(15.9)

Phase variable type states can be defined as

x1(k) = y(k), x2(k) = y(k + 1), x3(k) = y(k + 2), · · · xn(k) = y(k + n − 1)
(15.10)

where the discrete time points tk are simply referred to as k. With these definitions, the
first n − 1 state equations are of the form

xi(k + 1) = xi+1(k) (15.11)

and so on. The original difference equation becomes

y(k + n) = xn(k + 1) = −a0x1(k) − a1x2(k) − · · · − an−1xn(k) + u(k). (15.12)

Thuswe can get a companion formdescription for discrete time systems aswell given by:

x(k + 1) =

⎡⎢⎢⎢⎢⎣

0 1 0 0 · · · 0
0 0 1 0 · · · 0
⋮ ⋮
0 0 0 0 · · · 1

−a0 −a1 −a2 −a3 · · · −an−1

⎤⎥⎥⎥⎥⎦
x(k) +

⎡⎢⎢⎢⎢⎢⎢⎣

0
0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎦
u(k)

= Ax(k) + Bu(k).

(15.13)

A special case of discrete time system is the sampled data system, which is obtained by
discretizing a continuous time systemwith sampling.While there aremultiple variations
to these sampled data systems based on the sampling rate, for simplicity, we focus on
the case of a constant sampling periodT . Using this sampling phenomenon, we can con-
vert an original continuous time differential equation into an equivalent discrete time
difference equation. Conceptually we are approximating the derivative of continuous
function as a discrete function using either a forward difference approximation or a
backward difference approximation for the derivative.The following example illustrates
this procedure.

Example 15.1 A continuous time system is described by

ÿ + 4ẏ + y = u(t)

so that a0 = 1 and a1 = 4. Use the forward difference approximation for derivatives

ẏ(tk) ≅
y(tk−1) − y(tk)

T
and

ÿ ≅
ẏ(tk−1) − ẏ(tk)

T
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where T = tk−1 − tk is the constant sampling period. Find the approximate difference
equation that describes the resulting sampled data system.

Solution:
It follows that

ÿ = [y(k + 2) − 2y(k + 1) + y(k)]∕T2

so that substitution into the difference equation and regrouping terms gives

y(k + 2) + (4T − 2)y(k + 1) + (T2 − 4T + 1)y(k) = T2u(k).

Thus the discrete coefficients are

a0 = T2 − 4T + 1

and

a1 = 4T − 2.

Theresulting sampled data system state space description in companion form is given by

x((k + 1) =
[

0 1
−(T2 − 4T + 1) −(4T − 2)

]
x(k) +

[
0
T2

]
u(k)

= Ax(k) + Bu(k).
(15.14)

Note that in a sampled data system, the state space plant matrices A and B are functions
of the constant sampling period T .
If a backward difference approximation to the derivatives is used, a very different set

of coefficients will be found. Also, the time argument on the u input term will change.

15.5 State Space Representation of Simultaneous
Differential Equations

The samemethod of defining the state variables can be applied to multiple input, multi-
ple output systems described by several coupled differential equations if the inputs are
not differentiated.

Example 15.2 A system has three inputs u1,u2,u3 and three outputs y1, y2, y3. The
input output equations are

...y1 + a1ÿ1 + a2(ẏ1 + ẏ2) + a3(y1 − y3) = u1(t)
ÿ2 + a4(ẏ2 − ẏ1 + 2ẏ3) + a5(y2 − y1) = u2(t)

ẏ3 + a6(y3 − y1) = u3(t).

Solution:
Notice that in the second equation ẏ3 can be eliminated by using the third equation. State
variables are selected as the outputs and their derivatives up to the (n − 1)th, where n is
the order of the highest derivative of a given output. Select

x1 = y1, x2 = ẏ1, x3 = ÿ1, x4 = y2, x5 = ẏ2, x6 = y3.Then
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ẋ1 = x2, ẋ2 = x3, ẋ4 = x5
ẋ1 = −a1x3 − a2(x2 + x5) − a3(x1 − x6) + u1

ẋ5 = −a4(x5 − x2 + 2x6) − a5(x4 − x1) + u2

ẋ6 = −a6(x6 − x1) + u3.

Eliminating ẋ6 from the ẋ equations leads to

⎡⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ5
ẋ6

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0

−a3 −a2 −a1 0 −a2 a3
0 0 0 0 1 0

a5 − 2a4a6 a4 0 −a5 −a4 2a4a6
a6 0 0 0 0 −a6

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x5
x6

⎤⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 0 0
0 1 −2a4
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣
u1
u2
u3

⎤⎥⎥⎦ .

The output equation is

⎡⎢⎢⎣
y1
y2
y3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 0 0 0 0
0 0 0 1 0 0
1 0 0 0 0 1

⎤⎥⎥⎦ x.
When derivatives of the input appear in the system differential equation, the previous

method of state variable selectionmust bemodified in such away that the interpretation
of some of the state variables change. The new state variables are defined in such a way
that they include the appropriate derivatives of the input invariables in them. A simple
example illustrates this procedure. Consider

ÿ + c1ẏ + c2y = u(t) + c3u̇.

Rearranging these terms, we get

ÿ − c3u̇ = −c1ẏ − c2y + u.

We then define the two state variables as x1 = y, x2 = ẏ − c3u, where we assume c3 is a
constant.Thenwe have ẋ1 = ẏ = x2 + c3u and ẋ2 = −c1[x2 + c3u] − c2x1 + u, which then
has the following state space representation[

ẋ1
ẋ2

]
=
[

0 1
−c2 −c1

] [
x1
x2

]
+
[

c3
(1 − c1c3)

] [
u
]
.

The output equation is[
y
]
=
[
1 0

]
.x

Note that in the general case there are multiple ways to arrange the terms within a given
set of equations and thus the definition of state variables needs to be tailored to the given
set of equations. A more systematic method involves drawing elaborate state diagrams
to carefully identify the state variables, which is out of the scope of our present pur-
pose of focusing on the specific equations related to our aerospace vehicle equations of
motion. Thus we omit the discussion of state diagrams. The major conceptual point is
that, in the end, with appropriate definition of state variables, most of the linear ordinary
constant coefficient differential equations can be always described by a state variable
representation.
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15.6 State Space Equations from Transfer Functions

Y (s)
U(s)

= T(s) =
𝛽msm + 𝛽m−1sm−1 + · · · + 𝛽1s + 𝛽0

sn + an−1sn−1 + · · · + a1s + a0
or a Z transform transfer function

y(z)
u(z)

= T(z) =
𝛽mzm + 𝛽m−1zm−1 + · · · + 𝛽1Z + 𝛽0

zn + an−1zn−1 + · · · + a1z + a0
.

Example 15.3 Select a suitable set of state variables for system whose transfer func-
tion is

T(s) = s + 3
s3 + 9s2 + 24s + 20

= s + 3
(s + 2)2(s + 5)

=
2∕9

(s + 2)
+

1∕3
(s + 2)2

+
−2∕9
(s + 5)

.

Solution:
There are multiple state space realizations for this transfer function. One of them is⎡⎢⎢⎣

ẋ1
ẋ2
ẋ3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−9 1 0
−24 0 1
−20 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ +
⎡⎢⎢⎣
0
1
3

⎤⎥⎥⎦u
and

y =
[
1 0 0

]
x.

Another option is⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0 1 0
0 0 1

−20 −24 −9

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ +
⎡⎢⎢⎣
0
0
1

⎤⎥⎥⎦u
and

y =
[
3 1 0

]
x.

Using the factor form of T(s) another realization is possible⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−5 1 0
0 −2 1
0 0 −2

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ +
⎡⎢⎢⎣
0
1
3

⎤⎥⎥⎦u
and

y =
[
1 0 0

]
x.

Another realization can also be obtained from a partial fraction expansion⎡⎢⎢⎣
ẋ1
ẋ2
ẋ3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−5 0 0
0 −2 1
0 0 −2

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ +
⎡⎢⎢⎣
1
0
1

⎤⎥⎥⎦u
and

y =
[

−2
9

1
3

2
9

]
x.
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15.6.1 Obtaining a Transfer Function from State and Output Equations

Given
̇⃗x = Ax⃗ + Bu
y = Cx⃗ + Du

where y and u are of dimension 1 (single input and single output, SISO) but x⃗ is a vector
of dimension n, the transfer function between output Y (s) to input U(s) is given by

G(s) = Y (s)
U(s)

= C(sI − A)−1B + D

= N(s)
D(s)

where N(s) and D(s) are the numerator and denominator polynomials, respectively, of
each of the transfer functionG(s). Note that C is a 1 × nmatrix and B is an n × 1 matrix
and D is a scalar (1 × 1).
Then the denominator polynomial is an nth degree polynomial. With A, B, C, and D

as inputs, MATLAB has a command

[Num, Den] = ss2tf(A, B, C, D, 1)

to get the transfer function.
Note that we can get transfer matrices for MIMO systems, in which the elements

of this matrix would be transfer functions between a given output to a given input for
various combinations of those outputs and inputs. Then the last argument in the above
MATLAB command is no longer 1 and needs to be changed accordingly.
Note that the transformation from state space to transfer function is unique, but the

transformation from transfer function to state space is not unique. Also to get the state
space from the transfer function use

[A, B, C, D] = tf2ss(Num, Den)

Important Observation

While we observed that there could be multiple realizations of state space matrices
from a given transfer function, unfortunately MATLAB output to the above command
produces only one single realization of the state space A, B, C, D matrices. It turns out
that MATLAB gets this particular state space realization via the minimal realization
procedure. However, this author believes that there is interesting research that can be
carried out knowing all the possible multiple realizations and as such prefers not to be
constrained by this single realization that is obtained fromMATLAB output.

15.7 Linear Transformations of State Space Representations

Since state space representation of a linear time invariant system is not unique (in the
sense that the same set of differential equations can be described by various sets of state
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variables), it is clear that one can transform the state space representation from one set
of state variables to another set of state variables by linear matrix transformations. For
example, if we have a given set of state variable vector x⃗ for the state space representation
of a linear time invariant system as given by

̇⃗x = Ax⃗ + Bu⃗

then we can transform this system to another set of state variables x⃗n such that

x⃗n = Tx⃗

where T is any non-singular matrix, so that

x⃗ = T−1x⃗n.

Thus, we can get a new state space representation of the same system given by
̇⃗xn = Anx⃗n + Bnu⃗

whereAn = T−1AT and Bn = T−1B. While there is one-to-one correspondence between
state variables of vector x and of vector xn, the physical meaning could be lost in this new
set of state variables of vector xn. This type of linear matrix transformation with any
non-singular transformation matrix T is also called a similarity transformation because
the plant matrices A and An are similar matrices in the sense that the eigenvalues of A
and An are the same. Put another way, the eigenvalues are invariant under a similarity
transformation.
Theability to transfor one state space representation to another state space representa-

tion by a similarity transformation is a powerful concept with far reaching implications.
This means that if we select the appropriate transformation matrix T , we can trans-
form a given Amatrix to various forms for the new An matrix. Later in the chapter, we
observe that we can transform a given state space system to different forms like phase
variable canonical form, controllability canonical form, observability canonical form,
Jordan canonical form, and so on. Of these the Jordan canonical form ( alternatively
labeled the modal decomposition form) deserves special mention, which will be used
extensively in later sections/chapters of this Part III. For simplicity of concept, let us
assume the matrix A has distinct eigenvalues. Then the special similarity transforma-
tion matrix T , which transforms the matrix A into a pure diagonal matrix J (referred
to later as the Jordan matrix) whose diagonal entries are nothing but the n eigenvalues
of the matrix A, is denoted by  and is labeled as the modal matrix. It is important
to realize that this modal matrix is nothing but the matrix formed by the eigenvectors
(or normalized eigenvectors) of the matrix A. This means the modal matrix can be a
complex matrix (albeit with complex conjugate entries for a real matrix A) and the new
state variables in the new transformed version are called the modes of the linear system.
This is an instance where even though the original state variables in vector x belonging
to a real vector space are all real and have possibly some physical interpretation, the
modes of the system may belong to the complex vector space! Thus modes are simply
mathematical entities and that is what we mean by the new state variables losing their
physical significance under a similarity transformation. In other words, similarity trans-
formations may transform a real vector space into a complex vector space and as such
the transformation matrices are not restricted to be real matrices. At this point, let us
elaborate on the transformation tomodal coordinates. As explained before, we observed
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that given a real state variable vector x⃗ for the state space representation of a linear time
invariant system as given by

̇⃗x = Ax⃗ + Bu⃗
then we can transform this system to modal coordinates denoted by the vector another
set of state variables q⃗ such that

q⃗ = x⃗
where is the non-singular matrix, so that

x⃗ = −1q⃗.
Thus, the representation in modal coordinates is given by

̇⃗q = Jq⃗ + Bnu⃗
where J = −1A and Bn = −1B. Assuming distinct eigenvalues, we observe that
the matrix J is a pure diagonal matrix with those distinct eigenvalues as the diagonal
elements. However, we see that in this transformation process the Jordan matrix J and
themodalmatrix could be complexmatrices with the complex conjugate eigenvalues
as the diagonal elements of J and the corresponding complex conjugate eigenvectors as
columns of the modal matrix. However, it is still possible to keep the Jordan matrix as a
realmatrix and the correspondingModalmatrix also as a realmatrix by splitting the real
part and imaginary parts of the complex conjugate pair eigenvalues as a block diagonal
real matrix as follows. Let

J =
[
a + jb 0
0 a − jb

]
.

Let the corresponding complex conjugate eigenvector be

e⃗ =
[

⃗𝑣 + j𝑤 ⃗𝑣 − j𝑤
]
.

Then the corresponding real version of the Jordan matrix is given

Jr =
[

a b
−b a

]
.

Then we can obtain a real version of this complex eigenvector by separating out the real
and imaginary parts (which by themselves are real vectors) and form the real modal
matrix as follows:

r =
[
𝑣r11 𝑤r11
𝑣r21 𝑤r21

]
where 𝑣r11, 𝑣r21 are components of the real vector 𝑣, and 𝑤r11, 𝑤r11 are components of
the real vector �⃗�.
Thus Jr = −1

r Ar.
This real transformation matrix viewpoint is quite important in some applications.

The following simple example illustrates this observation.

Example 15.4 Obtain the real version of the modal decomposition for the following
matrix

A =
[

0 1
−2 −4

]
.
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Solution:
Obtaining the eigenvalues and eigenvectors of thismatrix (by usingMATLABcommand
[evec, eval] = eig(A)) we obtain the diagonal eigenvalues matrix J as

J =
[
−1 + j1.7321 0

0 −1 − j1.7321

]
and the modal matrix as

 =
[
0.2236 + j0.3873 0.2236 − j0.3873

−0.8944 −0.8944

]
.

Accordingly from the procedure described above, we obtain the real version of the
modal decomposition as

Jr =
[

−1 1.7321
−1.7321 −1

]
and

r =
[

0.2236 0.3873
−0.8944 0

]
.

Note that

r
−1 =

[
0 −1.1181

2.5820 0.6455

]
so that we get

r
−1Ar = Jr.

We further elaborate on this similarity transformation concept at the appropriate
juncture when we discuss the various other canonical forms mentioned before.

15.8 Linearization of Nonlinear State Space Systems

Until now, we have discussed the state space representation for systems that are
described by linear differential equations. However, the majority of times, the original
differential equations of motion for any dynamic system turn out to be nonlinear. In
that case, in general, the state space description of any dynamic system described by
nonlinear first order ordinary differential equations is given by

̇⃗x = f⃗ (x⃗, u⃗, t)

where x⃗ is the state vector, u⃗ is the control vector and f⃗ is a vector of nonlinear functions
in xi and ui. Typically, we write

x⃗ ∈ Rn, i.e. x⃗ =
⎡⎢⎢⎢⎣
x1
x2
⋮
xn

⎤⎥⎥⎥⎦
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u⃗ ∈ Rm, i.e. u⃗ =
⎡⎢⎢⎢⎣
u1
u2
⋮
um

⎤⎥⎥⎥⎦
.

Consider the following three classes of nonlinear systems:

1. ⃗̇x = f⃗ (x⃗, u⃗, t)
2. ⃗̇x = f⃗ (x⃗, t)
3. ⃗̇x = f⃗ (x⃗).

Out of these, consider the second class of systems

⃗̇x = f⃗ (x⃗, t), x⃗(t0) = x⃗0.

We assume that the above equation, has a unique solution starting at the given initial
condition, i.e. we have one single solution corresponding to each initial condition. Let
us denote this solution as

x⃗(t; x⃗0, t0) ≡ x⃗(t) for simplicity
x⃗(t0; x⃗0, t0) ≡ x⃗0.

15.8.1 Equilibrium State

In the above class of systems, a state x⃗e where f⃗ (x⃗e, t) = 0 for all t is called an equilibrium
state of the system, i.e. the equilibrium state corresponds to the constant solution of the
system. If the system is linear time invariant (i.e. f⃗ (x⃗, t) = Ax⃗), then there exists only one
equilibrium state if A is non-singular and many equilibrium states if A is singular. For
non-linear systems there may be one or more equilibrium states.
Any isolated equilibrium point can always be transferred to the origin of the coordi-

nates

i.e. f⃗ (0, t) = 0

by a proper coordinate transformation. So one can always take x⃗e = 0 without any loss
of generality. The origin of state space is always an equilibrium point for linear systems
and for linear systems all equilibrium states behave the same way (because if x⃗(t) is a
solution x⃗(t) is also a solution; then x⃗(t) → x⃗(t) is also a solution for the linear system).
In such cases, the nonlinear differential equations are linearized about an equilibrium

to get a linear state space representation in small motions around the equilibrium. One
such linearization process is labeled as the Jacobianmethod and the resulting linearized
state space matrix is called the Jacobian matrix.

15.8.2 Linearizing a Nonlinear State Space Model

Consider the general nonlinear state variable model

⃗̇x = f⃗ (x⃗, u⃗, t)
y⃗ = h⃗(x⃗, u⃗, t).

}
(15.15)
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The above set of nonlinear differential equations can be linearized about a constant,
equilibrium solution, which can also be called the steady state solution. This is the
most common type of linearization process, i.e. linearization about a given steady
state condition. In a slightly different viewpoint, the nonlinear system of equations
can also be linearized about a given nominal trajectory, where the nominal trajectory
satisfies the original nonlinear set of differential equations. It does not have to be
a constant solution. This linearization process can be referred to as the Jacobian
linearization. Of course, Jacobian linearization holds good for constant, steady state
equilibrium conditions. In Chapter 3 of Part I of this book, we have already covered the
straightforward method of linearization about a steady state. That simple, brute force
linearization process involves expanding the original nonlinear equations in terms
of the steady state plus some perturbation. Then assuming those perturbations to be
small, we neglect second and higher order terms, along with making a small angle
approximation whenever there are trigonometric functions involved. However, in this
chapter, we present the more general Jacobian linearization procedure.
In this linearization process about any given nominal trajectory, strictly speaking, the

nominal trajectory needs to be the solution of the original nonlinear equation. However,
the majority of the times, the given nominal trajectory is not checked to be the solution
per se of the original nonlinear equation at all times, because that process itself could
be very cumbersome in some nonlinear equations. Instead, the majority of the times,
an engineering judgment based nominal trajectory, which most of the times happens to
be the ideal or desired behavior of the system, discerned more from the physics of the
problem rather than in a mathematically rigorous way.

15.8.3 Linearization About a Given Nominal Condition: Jacobian Method

A more general viewpoint of linearization is to be able linearize the given nonlinear
equations about any given nominal condition, where the nominal condition need not
be a steady state, constant solution of the original nonlinear equation. In other words,
the nominal solution is only required to satisfy the original nonlinear differential
equation with no constraint that the nominal solution be a constant solution. Thus in
this viewpoint

𝛿x(t) = x⃗(t) − x⃗n(t)

𝛿u(t) = u⃗(t) − u⃗n(t)

𝛿y(t) = y⃗(t) − y⃗n(t)

where x⃗n(t), u⃗n(t), and y⃗n(t) are such that
⃗̇xn(t) = f⃗ (x⃗n(t), u⃗n(t), t).

Then Equation 15.15 can be written as
⃗̇xn(t) + ⃗̇𝛿x(t) = f⃗ (x⃗n(t) + 𝛿x(t), u⃗n(t) + 𝛿u(t), t)

= f⃗ (x⃗n, u⃗n, t) +

[
𝜕f⃗
𝜕x⃗

]
n

𝛿x +

[
𝜕f⃗
𝜕u⃗

]
n

𝛿u + higher order terms

y⃗n(t) + 𝛿y(t) = h⃗(x⃗n(t) + 𝛿x(t), u⃗n(t) + 𝛿u(t), t)
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= h⃗(x⃗n, u⃗n, t) +

[
𝜕h⃗
𝜕x⃗

]
n

𝛿x +

[
𝜕h⃗
𝜕u⃗

]
n

𝛿u + higher order terms

where [⋅]n means the derivatives are evaluated at the nominal solutions. Since the
nominal solutions satisfy Equation 15.15, the first terms in the preceding Taylor series
expansions cancel. For sufficiently small 𝛿x, 𝛿u, and 𝛿y perturbations, the higher order
terms can be neglected leaving the linear equations

𝛿ẋ =

[
𝜕f⃗
𝜕x⃗

]
n

𝛿x +

[
𝜕f⃗
𝜕u⃗

]
n

𝛿u

= A𝛿x + B𝛿u (15.16)

and

𝛿y =

[
𝜕h⃗
𝜕x⃗

]
n

𝛿x +

[
𝜕h⃗
𝜕u⃗

]
n

𝛿u

= C𝛿x + D𝛿u. (15.17)

Here

Aij =
𝜕fi
𝜕xj

|||||n Bij =
𝜕fi
𝜕uj

|||||n
Cij =

𝜕hi
𝜕xj

|||||n Dij =
𝜕hi
𝜕uj

|||||n.
(15.18)

Note that whenwhenever the nominal solutions x⃗n and u⃗n are time varying, thematrices
A, B,C, andD could be time varying. However, if x⃗n and u⃗n are constant, then the matri-
cesA, B,C, andD are constant.These derivative matrices are also called Jacobianmatri-
ces.When x⃗n and u⃗n are constant, these solutions are called equilibrium (or steady state)
solutions. In other words, for equilibrium solutions, we have f⃗ (x⃗n, u⃗n) = f⃗ (x⃗e, u⃗e) = 0. In
general there can be many equilibrium solutions. Also when the given nominal solution
does not exactly satisfy the original nonlinear equation, the inaccuracies encountered
in this situation are regarded as perturbations from the linearized system and its effect
can be reduced by a proper control design for the linearized system.

Example 15.5 Find the equilibrium points for the system described by ÿ + (1 + y)ẏ −
2y + 0.5y3 = 0 and get the linearized state spaced model.

Solution:
Letting x1 = y and x2 = ẏ gives the state variable model[

ẋ1
ẋ2

]
=
[

x2
2x1 − 0.5x31 − (1 + x1)x2

]
= f⃗ (x⃗) =

[
f1(x⃗)
f2(x⃗)

]
.

In other words

f1(x⃗) = x2
f2(x⃗) = 2x1 − 0.5x31 − (1 + x1)x2.
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Equilibrium points are solutions of f⃗ (x⃗) = 0, so eachmust have x2 = 0 and 2x1 − 0.5x31 =
0. There are three equilibrium solutions possible. They are

x⃗e1 =
[
0
0

]
; x⃗e2 =

[
2
0

]
; x⃗e3 =

[
−2
0

]
.

So corresponding to each equilibruim solution, there will be a linearized state space
model. The Jacobian matrix is

A =

⎡⎢⎢⎢⎢⎣

𝜕f1
𝜕x1

𝜕f1
𝜕x2

𝜕f2
𝜕x1

𝜕f2
𝜕x2

⎤⎥⎥⎥⎥⎦

||||||||||eq
=
⎡⎢⎢⎢⎣

0 1(
2 −

3x21
2

− x2
)

−(1 + x1)

⎤⎥⎥⎥⎦
a) Corresponding to

[
x1e
x2e

]
=
[
0
0

]
, the linearized state space matrix A is

A =
[
0 1
2 −1

]
i.e. 𝛿ẋ = A𝛿x.

b) Corresponding to
[
x1e
x2e

]
=
[
2
0

]
, the linearized state space matrix A is

A =
[

0 1
−4 −3

]
i.e. 𝛿ẋ = A𝛿x.

c) Corresponding to
[
x1e
x2e

]
=
[
2
0

]
, the linearized state space matrix A is

A =
[

0 1
−4 1

]
i.e. 𝛿ẋ = A𝛿x.
Once the linearized state space system is obtained about the equilibrium points, our

interest would then be understand the stability domain (the system’s behavior as t → ∞
in the neighborhood of those equilibrium points. Structural properties of linear state
space systems such as stability, controllability, and observability are discussed in subse-
quent chapters.

15.9 Chapter Summary

This chapter is an important chapter summarizing the basics of the state space repre-
sentation of a dynamic system with emphasis on linear systems. We discussed the cases
of continuous time systems (governed by differential equations), as well as discrete time
systems (governed by difference equations). In addition, the powerful concept of simi-
larity transformations is explained. Finally we presented the procedures for linearizing
a nonlinear set of differential equations about a nominal point to obtain linearized state
space models. These fundamental concepts form the foundation for discussing various
extensions in later sections/chapters of this part of the book. Fundamental concepts
discussed in this chapter are also available in many excellent textbooks such as [1–7]
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15.10 Exercises

Exercise 15.1. Consider the field controlled DC servomotor equations given by

Lf
̇if + Rf if = e
J �̈� + 𝛽�̇� = Tc

KTif = Tc

Here, e is the control voltage; if the field current; and Tc the control torque. Obtain
the state space representation of the above system for the following scenarios:
(a) if , 𝜃, and �̇� as the state variables; the voltage e as the control variable; 𝜃 and �̇� as

the two output variables; and �̇� as the measurement variable.
(b) Tc, 𝜃, and �̇� as the state variables; e as the control variable; 𝜃 as the output variable;

and �̇� and Tc as the measurement variable.
(c) 𝜃, �̇�, and �̈� as the state variables; e as the control variable, 𝜃 + �̇� and �̈� as the output

variables; and 𝜃 as the measurement variable.
Exercise 15.2. The equations of motion of an electromechanical system are given by

ẍ + k1ẋ + k2𝜃 = k3e
�̈� − b1𝜃 − b2ẋ = −b3e

where k1, k2, k3, b1, b2, and b3 are constants. Obtain the state space representationwith
e as the control variable; 𝜃 as the output variable; and ẋ and �̇� as the twomeasurement
variables.

Exercise 15.3. The attitude dynamics of a rigid satellite in space is governed by the fol-
lowing rotational motion equations:

Jx�̇�x + (Jz − Jy)𝜔y𝜔z = Tx

Jy�̇�y + (Jx − Jz)𝜔x𝜔z = Ty

Jz�̇�z + (Jy − Jx)𝜔x𝜔y = Tz

where Jx, Jy, and Jz are the principle moments of inertia about the principle axes x, y,
and z respectively. Likewise, 𝜔x, 𝜔y, and 𝜔z are the angular velocity components.
Given that the nominal (steady state) values are

𝜔x = 𝜔y = 0
𝜔z = Ω = constant

Tx = Ty = Tz = 0

linearize the above nonlinear equations about the given nominal values and obtain
the linearized state space model.

Exercise 15.4. The orbital motion of a satellite in earth orbit is given by the equations

r̈ − �̇�2r = − 𝜇

r2
+ ar

ai = r�̈� + 2ṙ�̇�

where ai and ar are the control accelerations, r and 𝜃 are the radial and transverse
components of the position vector and 𝜇 is a constant given by 𝜇 = 𝜔2

oR3 for a circular
orbit where 𝜔o is the angular velocity and R is the radius of the circular orbit and is
thus a constant. Taking the circular orbit as the nominal, obtain the linearized state
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space model about the nominal circular orbit with nominal accelerations being zero.
Note that

rnominal = R = constant
�̇�nominal = 𝜔o = constant.

Use the Jacobian method of linearization. After you get the state space matrices A
and B analytically, determine the entries of those matrices for a specific circular orbit,
namely for a geosynchronous equatorial orbit.

Exercise 15.5: Find the state space representation for the following set of equations

𝜃1 + 2(𝜃1 + 𝜃2) = u1

𝜃2 + 3𝜃2 + 4𝜃2 = u2.

Exercise 15.6: Find the state space representation for the following set of equations

𝜃1 + 3𝜃1 + 2(𝜃1 − 𝜃2) = u1 + u̇2

𝜃2 + 3(𝜃2 − 𝜃1) = u2 + 2u̇1.
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16

Dynamic Response of Linear State Space Systems (Including
Discrete Time Systems and Sampled Data Systems)

16.1 Chapter Highlights

In this chapter, we present the solution to the system of differential equations
represented by a state space description. That is, we present expressions for the state
variable trajectories as a function of time for both unforced and forced cases, using
the concept of the state transition matrix (STM). We cover the cases of both contin-
uous time STM as well as the discrete time STM and then introduce the state space
representation of a sampled data system, which is a special case of a general discrete
time system. Methods to determine the STMs using the Caley–Hamilton theorem are
presented and the important properties of these STMs are highlighted.

16.2 Introduction to Dynamic Response: Continuous
Time Systems

We have seen that in general, the state space representation of a dynamic system is
given by

̇⃗x = f⃗ (x⃗, u⃗) (16.1)

with a given initial condition x⃗(0) = x⃗0. Given this, our objective now is to solve this set
of differential equations, by which we mean that we need to get the state trajectories
(i.e. all state variables as an explicit function of time). When the control vector is zero,
we label that response as homogeneous response or uncontrolled response or unforced
response, all of these phrases being synonymous with each other. Similarly when the
control vector is non-zero (i.e. the forcing function is present) but given or known, then
we label the corresponding system response as a non-homogeneous response or con-
trolled response or forced response, all of these phrases again being synonymous with
each other corresponding to that particular input (control) function vector ⃗u(t). For a
nonlinear system, this dynamic response is highly dependent on various quantities such
as the initial time t0, initial state x⃗(t0) and, of course, in the case of forced response, even
on the control vector ⃗u(t). Because of the difficulty in obtaining analytical solutions for
a nonlinear system, typically, we resort to numerical techniques to obtain the dynamic
response for a nonlinear system.However, it turns out that even for a linear system,when

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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the plant matrices are time varying, as represented by the state space representation of
a linear time varying system, of the following form

ẋ = A(t)x + B(t)u (16.2)

it is still not a trivial task to obtain the dynamic response in an analytical form. It turns
out that we can get a nice, general analytical formof solution only for a linear time invari-
ant system, i.e for a state space system in which the plantmatrices are constantmatrices.
However, before we specialize the dynamic response situation for a linear time invaraint
(LTI) system, we can still consider the general case of linear time varying system and dis-
cuss the concept of the state transition matrix (STM) and the role it plays in getting the
state trajectories.

16.2.1 The State Transition Matrix and its Properties

Whether it is a time varying system or a time invariant system, once it is a linear system,
the evolution of the state trajectories froma given time instant 𝜏 to any other time instant
t, is captured by the special matrix labeled the STM. For the general linear time varying
system, we can write (temporarily ignoring the vector notation),

x(t) = Φ⃗(t, 𝜏)x(𝜏). (16.3)

The STM for a linear system satisfies the following properties.

• Φ⃗ (t,t) = identity matrix I, for any t
• x(t3) = Φ⃗(t3, t1)x(t1) for any t3 and t1
• x(t3) = Φ⃗(t3, t2)x(t2) for any t3 and t2
• x(t2) = Φ⃗(t2, t1)x(t1) for any t2 and t1
• Φ⃗(t3, t1) = Φ⃗(t3, t2)Φ⃗(t2, t1)
• Φ⃗(t, 𝜏) = [Φ⃗(𝜏, t)]−1 for any 𝜏 and t.

The above properties are quite simple to derive and play a very important role in the
understanding of the behavior of a linear system’s state trajectories. Note that for the
special case of a linear time invariant system, i.e. if the matrix A⃗ is constant, then we
observe that

Φ⃗(t, 𝜏) = e(t−𝜏)A⃗. (16.4)

Keep in mind that both sides of the above expression are matrices, not just scalars, for a
multi-variable state space system. We are highlighting this fact by denoting the matrix
A as A⃗.
There is no such simple expression for the STM of a linear time varying system. Its

determination very much depends on the specificity of the time varying matrix A⃗(t).
For some special, simple time varying matrices, it is sometimes possible to determine
the STM in a relatively easier fashion but in general it is not a simple task. It is also
important to realize that for a linear time varying system, the STM depends both on
the initial given time 𝜏 as well as the present time t, whereas for a linear time invariant
system, it is only the difference t − 𝜏 , that matters. Thus in a linear LTI system, there is
no loss of generality in taking the initial time 𝜏 or t0 to be zero. Hence, going forward,
we present the dynamic response expressions for LTI systems.
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16.3 Solutions of Linear Constant Coefficient Differential
Equations in State Space Form

Consider the linear state space system
̇⃗x = Ax⃗ + Bu⃗ (16.5)

x⃗(t0) = x⃗0.

16.3.1 Solution to the Homogeneous Case

The simplest form of the general constant coefficient differential equation is the
homogenous, i.e. uncontrolled function

̇⃗x = Ax⃗ (16.6)

where A is a constant n × nmatrix. Fortunately, the solution to this homogenous set of
equations mimics the scalar version and is thus given by

⃗x(t) = eAtc⃗ (16.7)

where c⃗ is the constant vector of integration that depends on the initial condition. For
simplicity, omitting the vector notation, we write

⃗x(t) = eA(t−t0) ⃗x(t0). (16.8)

Note that eA(t−t0) is an n × n matrix as well and is labeled the STM, since it helps
the transition of the state trajectories from t(0) to any other arbitrary time instant t.
It is important to keep in mind that this STM plays an extremely important role in
understandingmany structural properties of a linear state space system such as stability,
controllability, observability and others. In a later section, we discuss various methods
of determining this STM matrix in an analytical form so that considerable insight can
be gained on the evolution of the state trajectories as a function of time.

16.3.2 Solution to the Non-homogeneous (Forced) Case

Now adding the control variable (going forward, for simplicity and reducing clutter, we
omit the vector notation for x(t) and u(t) hoping that its context is fully understood and
not cause any confusion by now), we can get the forced response by the expression

x(t) = eA(t−t0)x(t0) + ∫

t

t0
eA(t−𝜆)Bu(𝜆) d𝜆. (16.9)

Note that in the above expression,we assume that the control functionu(t) is knownor
given for all time t, starting from the initial time t(0). Also, now that we are considering
multi-variable systems and keeping inmind that, inmatrix theory, the productAB is not
same as the product BA, it is important to pay attention to the order of multiplication in
all the terms inside the integral in the above expression. The dimensional compatibility
needs to be strictly adhered to. No mixing up of those terms is allowed. Keep in mind
that the STM is an n × n matrix and the B matrix is an n ×m matrix and the control
vector u(t) is anm × 1 vector.
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Thus it is reiterated that only in the case of a linear time invariant system can we get
a closed form analytical expression for the dynamic response of the state space system.
In order to gain better insight into the state trajectory evolution as a function of time,

it helps to determine the STM by analytical means. Since the exponential function is an
analytic function of the matrix A, we can get an analytical expression for the STM using
the powerful Caley–Hamilton theorem, which is elaborated next.

16.4 Determination of State Transition Matrices Using
the Cayley–Hamilton Theorem

Let f (x) be a function that is analytic in the complex plane and let A be an n × nmatrix
whose eigenvalues 𝜆i belong to the complex plane. Then f (x) has a power series repre-
sentation

f (x) =
∞∑
k=0

𝛼kxk . (16.10)

It is possible to regroup the infinite series for f (x) so that

f (x) = Δ(x)
∞∑
k=0

𝛽kxk + R(x). (16.11)

Here R is the remainder, Δ(x) is an nth degree polynomial in x, and Δ(x) = 0 at
x = 𝜆i, i = 1, 2,… , n. The remainder R(x) will have degree ≤ n − 1. The analytic
function of a square matrix A is defined by the same series as its scalar counterpart but
with A replacing x. Thus, when f (A) is any analytic function of A,

f (A) = Δ(A)
∑

(𝛽k)Ak + R(A). (16.12)

but using the Cayley–Hamilton theorem Δ(A) = 0. Therefore

f (A) = R(A) (16.13)

where R(A) is a polynomial in A of degree n − 1. In general, R(A) can be written as

R(A) = 𝛼0I + 𝛼1A + 𝛼2A2 + · · · + 𝛼n−1An−1. (16.14)

Note that in the scalar case when x = 𝜆i, we get

R(𝜆i) = 𝛼0 + 𝛼1𝜆i + 𝛼2𝜆
2
i + · · · + 𝛼n−1𝜆

n−1
i . (16.15)

Thus

f (𝜆i) = R(𝜆i) where i = 1, 2,… , n (16.16)

and

f (A) = R(A). (16.17)

Equations 16.16 and 16.17 can be used to find any analytic function of A. For example
for our purposes f (A) = eAt .
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Procedure

1. Find eigenvalues of A (assume they are distinct).
2. Form

eAt = 𝛼0I + 𝛼1A + 𝛼2A2 + · · · + 𝛼n−1An−1. (16.18)

3. Form the n equations

e𝜆it = 𝛼0 + 𝛼1𝜆i + 𝛼2𝜆
2
i +…+ 𝛼n−1𝜆

n−1
i where i = 1, 2,… , n. (16.19)

From these n equations, solve for 𝛼0, 𝛼1,… , 𝛼n−1.
4. Substitute these expressions for 𝛼i in Equation 16.18.

Example 16.1 Find eAt when

A =

[
−1 1

2
0 1

]
. (16.20)

Solution
Since the matrix A is triangular, we can immediately see its eigenvalues are

𝜆1 = −1
𝜆2 = 1

and are obviously distinct.

eAt = 𝛼0I + 𝛼1A(note n = 2)

= 𝛼0

[
1 0
0 1

]
+ 𝛼1

[
−1 1

2
0 1

]

=
[
𝛼0 0
0 𝛼0

]
+
[
−𝛼1

1
2
𝛼1

0 𝛼1

]

=
[
𝛼0 − 𝛼1

1
2
𝛼1

0 𝛼0 + 𝛼1

]
.

The first equation from the above system (i.e. the second row of the matrix equation)
can be written algebraically as

e𝜆1t = 𝛼0 + 𝛼1𝜆1

which, after substituting 𝜆1, becomes

e−t = 𝛼0 + 𝛼1(−1)
= 𝛼0 − 𝛼1.

The second equation from above is written:

e𝜆2t = 𝛼0 + 𝛼1𝜆2

which, after substituting 𝜆2 becomes

et = 𝛼0 + 𝛼1(1)
= 𝛼0 + 𝛼1.
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Then the two equations, with 𝜆1 and 𝜆2 substituted in, are

𝛼0 − 𝛼1 = e−t

𝛼0 + 𝛼1 = et

which can be solved to obtain

𝛼0 =
1
2
(et + e−t)

𝛼1 =
1
2
(et − e−t).

Substituting these values 𝛼i in the eAt expression, we obtain

eAt =
[
e−t 1

4
(et − e−t)

0 et

]
.

16.4.1 For Repeated Roots

If 𝜆i is repeatedmi times, then you can get additional independent equations as follows:

f (𝜆i) = R(𝜆i)
df (𝜆)
d𝜆

||||𝜆i =
dR(𝜆)
d𝜆

||||𝜆i
d2f (𝜆)
d𝜆2

|||||𝜆i =
d2R(𝜆)
d𝜆2

||||𝜆i
⋮

dmi−1f (𝜆)
d𝜆mi−1

|||||𝜆i =
dmi−1R(𝜆)
d𝜆mi−1

||||𝜆i .
Example 16.2 Find eAt when A =

[
−3 2
0 −3

]
.

Solution
The eigenvalues are

𝜆1 = 𝜆2 = −3 (repeated twice, i.e.m = 2).

Note that n = 2.

eAt = 𝛼0I + 𝛼1A

=
[
𝛼0 − 3𝛼1 2𝛼1

0 𝛼0 − 3𝛼1

]
.

Now

e𝜆1t = 𝛼0 + 𝛼1𝜆1

which, upon substitution of 𝜆1 = −3, can be written

e−3t = 𝛼0 − 3𝛼1.
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The second equation is obtained by

d
d𝜆

(e𝜆t)
||||𝜆=𝜆1=−3 =

[
d
d𝜆

(𝛼0 + 𝛼1𝜆)
]
𝜆=𝜆1=−3

te𝜆1t = te−3t = 𝛼1

i.e. 𝛼1 = te−3t.

∴The two equations to be solved are

𝛼0 − 3𝛼1 = e−3t

𝛼1 = te−3t.

Therefore

eAt =
[
e−3t 2te−3t
0 e−3t

]
.

Notice that when you have a repeated eigenvalue a t appears in the STM, which has
ramifications in the stability of that system.
It is left to the reader to make sure that all the properties of the the general STM

discussed before are valid for the special case of the matrix eA⃗t . However, care needs to
be exercised in noticing that in general

eA⃗teB⃗t ≠ e ⃗(A+B)t (16.21)

unless matrices A⃗ and B⃗ commute, i.e. A⃗B⃗ = B⃗A⃗, which seldom occurs.
Summarizing, the following methods are applicable for finding Φ⃗ for linear LTI sys-

tems.

1. Using the Laplace transform

Φ⃗(t, 𝜏) = [I⃗s − A⃗−1]

Φ⃗(t, 𝜏) is then found by replacing t by t − 𝜏 , since

Φ⃗(t, 𝜏) = Φ⃗(t − 𝜏, 0)

when A is constant.
2. Using the equation

Φ⃗(t, 𝜏) = 𝛼0 I⃗ + 𝛼1A⃗ + · · · + 𝛼n−1A⃗n−1

where

e𝜆i(t−𝜏) = 𝛼0 + 𝛼1𝜆i + · · · + 𝛼n−1𝜆
n−1
i

and, if some eigenvalues are repeated, derivatives of the above expression with
respect to 𝜆must be used.

3. Making use of the Jordan form,

Φ⃗(t, 𝜏) = M⃗eJ⃗(t−𝜏)M⃗−1

where J⃗ is the Jordan form (or the diagonal matrix Λ⃗), and M⃗ is the modal matrix.
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4. Using an infinite series

Φ⃗(t, 𝜏) ≅ I⃗ + A⃗(t − 𝜏) + 1
2
A⃗2(t − 𝜏)2 + 1

3!
A⃗3(t − 𝜏)3 +… .

This infinite series can be truncated after a finite number of terms to obtain an
approximation for the transition matrix.

16.5 Response of a Constant Coefficient (Time Invariant)
Discrete Time State Space System

Consider the homogeneous case

x(k + 1) = Ax(k) with x(0) = xo (16.22)

where the coefficient matrix A is a constant and initial conditions xo are known, i.e.

x(1) = Ax(0) (16.23)
x(1) = Ax(0) (16.24)
x(2) = Ax(1) (16.25)

= A2x(0) (16.26)
x(3) = Ax(2) (16.27)

= A3x(0). (16.28)

At an arbitrary time tk
x(k) = Akx(0) (16.29)

which can also be written as

x(k) = Akx(0). (16.30)

When the matrix A is constant the discrete transition matrix is

𝜙(k, j) = Ak−j. (16.31)

Hence the state transition matrix STM for the discrete time state space system is given
by

STM = Ak . (16.32)

Next, consider the non-homogeneous case

x(k + 1) = Ax(k) + B(k)u(k). (16.33)

In this case we are given the series of input vectors u(k) as well as the initial conditions
xo. Then

x(1) = Ax(0) + B(0)u(0) (16.34)
x(2) = Ax(1) + B(1)u(1) (16.35)

= A2x(0) + AB(0)u(0) + B(1)u(1) (16.36)
x(3) = Ax(2) + B(2)u(2) (16.37)
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= A3x(0) + A2B(0)u(0) + AB(1)u(1) + B(2)u(2). (16.38)

At an arbitrary time tk

x(k) = Akx(0) +
k−1∑
j=0

Ak−1−jB(j)u(j) (16.39)

which can also be written as

x(k) = Akx(0) +
k∑
j=1

Ak−jB(j − 1)u(j − 1). (16.40)

Notice that, in above analysis, we assumed A to be a constant matrix (independent of
k) but we allowed B to be time varying (i.e. B is a function of k). Also, in the discrete
time system, the convolution integration present in continuous systems is replaced by a
discrete summation.

Example 16.3 Given a matrix

A =
⎡⎢⎢⎣
0.368 0
0.632 1

⎤⎥⎥⎦
find Ak .

Solution
We know

𝜆1 = 1
𝜆2 = 0.368

and
Ak = 𝛼0I + 𝛼1A

=
⎡⎢⎢⎣
𝛼0 + 0.368𝛼1 0

0.632𝛼1 𝛼0 + 𝛼1

⎤⎥⎥⎦ .
The first equation from this system of equations is

(𝜆1)k = 𝛼0 + 𝛼1𝜆1

which, after substituting in 𝜆1 = 1, can be rearranged into an equation in two unknowns
𝛼0 and 𝛼1

1 = 𝛼0 + 𝛼1.

The second equation from the system of equations is

(𝜆2)k = 𝛼0 + 𝛼1𝜆2

which, after substituting in 𝜆2 = 0.368, can also be rearranged into an equation in two
unknowns 𝛼0 and 𝛼1 as such

0.368k = 𝛼0 + 0.368𝛼1.
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Now armed with two equations, we can solve for the two unknowns 𝛼0 and 𝛼1 to obtain

Ak =
[

(0.368)k 0
[1 − (0.368)k] 1

]
.

Example 16.4 Find Ak =
⎡⎢⎢⎣
1 −1 1
0 1 1
0 0 1

⎤⎥⎥⎦
k

.

Solution
It is easy to see that this is a repeated eigenvalue case, with

𝜆1, 𝜆2, 𝜆3 = 1

repeated three times. Then
Ak = 𝛼0I + 𝛼1A + 𝛼2A2

=
⎡⎢⎢⎣
𝛼0 + 𝛼1 + 𝛼2 −𝛼1 − 2𝛼2 𝛼1 + 𝛼2

0 𝛼0 + 𝛼1 + 𝛼2 𝛼1 + 2𝛼2
0 0 𝛼0 + 𝛼1 + 𝛼2

⎤⎥⎥⎦ .
For the first eigenvalue 𝜆1,

(𝜆1)k = 𝛼0 + 𝛼1𝜆1 + 𝛼2𝜆1

= 𝛼0 + 𝛼1(1) + 𝛼2(1)2

= 𝛼0 + 𝛼1 + 𝛼2.

However, because this is a repeated eigenvalue case,

d(𝜆k)
d𝜆

|||||𝜆=𝜆1 = k𝜆k−1|𝜆=𝜆1=1 = k = 𝛼1 + 2𝛼2 (16.41)

d2(𝜆k)
d𝜆2

|||||𝜆=𝜆1 = k(k − 1)𝜆k−2|𝜆=𝜆1=1 = k(k − 1) = 2𝛼2. (16.42)

Therefore,

Ak =
⎡⎢⎢⎢⎣
1 −k k(3 − k)

2
0 1 k
0 0 1

⎤⎥⎥⎥⎦
and so for k = 1000

A1000 =
⎡⎢⎢⎢⎣
1 −1000 1000(3 − 1000)

2
0 1 1000
0 0 1

⎤⎥⎥⎥⎦
.

The above example illustrates the power of the Cayley–Hamilton theorem. Observe
that the above expression for A1000 is obtained as a simple analytical expression rather
than getting the matrix Amultiplied a thousand times.
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16.6 Discretizing a Continuous Time System: Sampled Data
Systems

Consider the continuous time system

ẋ = Ax + Bu (16.43)

which we wish to solve using a computer. Say our computer samples the continuous
inputs u at time instants

t = kT where k = 0, 1, 2… . (16.44)

Then the discrete time representation of Equation 16.43 is

x((k + 1)T) = G(T)x(kT) +H(T)u(kT). (16.45)

Here, the matrices G and H depend upon the sampling period T ; obviously they are
constantmatrices if the sampling period is fixed. To determine thesematrices, first recall
the solution to Equation 16.43 is

x(t) = eAtx(0) + eAt
∫

𝜏

0
e−AtBu(𝜏)d𝜏 (16.46)

assuming the components of u(t) are constant over the interval between any two con-
secutive sampling instants, i.e. u(t) = u(kT) for the kth sampling period. Since

x((k + 1)T) = eA(k+1)Tx(0) + eA(k+1)T
∫

(k+1)T

0
e−AtBu(𝜏)d𝜏 (16.47)

and

x(kT) = eAkTx(0) + eAkT
∫

(k+1)𝜏

kT
e−A𝜏Bu(𝜏)d𝜏

= eAtx(kT) + eAT
∫

T

0
e−AtBu(kT)dt

= eATx(kT) +
∫

T

0
eA𝜆Bu(kT)d𝜆

(16.48)

where

𝜆 ≡ T − t. (16.49)

So then

G(T) = eAT (16.50)

H(T) =
(
∫

T

0
eAtdt

)
B. (16.51)

Note that we used the special letters G and H to denote the plant matrices for the
sampled data system, so that we can highlight the fact that these G and H matrices are
functions of the continuous time plant matrices A and B and are also functions of the
constant sampling period T . Thus, finally, a sampled data system is always denoted by
the state space representation

x((k + 1)T) = G(T)x(kT) +H(T)u(kT) (16.52)
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Example 16.5 Obtain a discrete time state space representation of the following con-
tinuous time system:[

ẋ1
ẋ2

]
=
[
0 1
0 −2

] [
x1
x2

]
+
[
0
1

]
[u]. (16.53)

Solution
The discrete time system representation will be in the form

x((k + 1)T) = G(T)x(kT) +H(T)u(kT) (16.54)

where
G(T) = eAT

=
[
1 1

2
(1 − e−2T )

0 e−2T

]
(16.55)

and

H(T) =
(
∫

T

0
eAtdt

)
B

=
{
∫

T

0

[
1 1

2
(1 − e−2T )

0 e−2T

]}[
0
1

]

=
⎡⎢⎢⎢⎣
1
2

(
T + e−2T − 1

2

)
1
2
(1 − e−2T )

⎤⎥⎥⎥⎦
.

(16.56)

Therefore[
x1((k + 1)T)
x2((k + 1)T)

]
=
[
1 1

2
(1 − e−2T )

0 e−2T

] [
x1(kT)
x2(kT)

]

+
⎡⎢⎢⎢⎣
1
2

(
T + e−2T − 1

2

)
1
2
(1 − e−2T )

⎤⎥⎥⎥⎦
u(kT). (16.57)

Then a given sampling period T can be substituted into the general Equation 16.58 to
obtain an equation describing the specific system.

For example, with T = 1 s, the sampled data state space system is given by[
x1((k + 1))
x2((k + 1))

]
=
[
1 0.432
0 0.135

] [
x1(k)
x2(k)

]
+
[
0.284
0.432

]
u(k). (16.58)

Example 16.6 Discretize the following system, assuming a sampling period
T = 0.1 s:

ẋ =
[
−3 1
0 −2

]
x +

[
1
1

]
u.
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Solution
To find the sampled data system plant matrix G, which is equal to eAT , we first
need to find the matrix eAt for the given A matrix of the continuous time system.
Following the procedure given in the discussion of eAt matrix determination using the
Cayley–Hamilton theorem we obtain

eAt =
[
e−3t −e−3t + e−2t
0 e−2t .

]
Then G(T) = eAT for T = 0.1 s is given by

G(T) = eAT

=
[
e−3T −e−3T + e−2T
0 e−2T

]

=
[
0.741 0.0779
0 0.819

]
.

Then to calculate the matrix H

H(T) =
(
∫

T

0
eAtdt

)
B

=
(
∫

T

0

[
e−3t −e−3t + e−2t
0 e−2t

]
dt
)[

1
1

]
= 1

2

[
1 − e−2T
1 − e−2T

]
=
[
0.0906
0.0906

]
.

And so the discretized approximation of the given continuous system is

x(k + 1) =
[
0.741 0.07779
0 0.819

]
x(k) +

[
0.0906
0.0906

]
u(k).

16.7 Chapter Summary

This chapter discussed the important concept of getting the dynamic response (state
trajectories) of linear state space systems using the concept of the STM. It is shown that
for the special case of linear continuous time LTI systems, this STM takes on a simple
form as the eA⃗t matrix, which can be determined analytically using the Caley–Hamilton
theorem. We then discussed the STM for linear discrete time LTI systems, which turns
out to be the Ak

d matrix where Ad is the plant matrix of the discrete time system. Finally
we covered the case sampled data systems, which are discrete time systems obtained by
sampling a continuous time systemwith a constant sampling periodT . For this case, it is
shown that the plantmatrix for the sampled data system isAd = eA⃗T where A⃗ is the plant
matrix for the continuous time system.The important properties of STMs are discussed.
Fundamental concepts such as those discussed in this chapter are also available in amore
consolidated way in many excellent textbooks dedicated to state space control systems
such as [1–8]
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16.8 Exercises

Exercise 16.1. Consider the continuous time system[
ẋ1
ẋ2

]
=
[
−1 0.5
0 1

] [
x1
x2

]
+
[
5
1

]
(16.59)

and the initial condition

x0 =
[
1
2

]
. (16.60)

Given that

eAt =
[
e−t 1

4
(et − e−t)

0 et

]
. (16.61)

Obtain the analytical expressions and state trajectories for x1(t) and x2(t) when
(a) u ≡ 0
(b) u ≡ e−t .

Exercise 16.2. The following matrices are the state space matrices for an aircraft longi-
tudinal dynamics at a given flight condition.

⎡⎢⎢⎢⎢⎣

u̇
�̇�

�̇�

q̇
ḣ

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

−0.0451 6.348 −32.2 0 0
−0.0021 −2.0244 0 1 0

0 0 0 1 0
0.0021 −6.958 0 −3.0757 0

0 −176 176 0 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

u
𝛼

𝜃

q
h

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0
−0.160

0
−11.029

0

⎤⎥⎥⎥⎥⎦
𝛿e (16.62)

where the control input 𝛿e is the perturbation elevator deflection (in radians). Use
MATLAB to plot the open loop system (u ≡ 0) trajectories for the outputs

y = x =

⎡⎢⎢⎢⎢⎣

u
𝛼

𝜃

q
h

⎤⎥⎥⎥⎥⎦
. (16.63)

Exercise 16.3. Given the continuous time system state space model

ẋ =
[
0 1
0 −1

]
x +

[
0
1

]
u (16.64)

obtain the corresponding discretized (sampled data) system state space matrices G
and H assuming a sampling interval T = 1 s.
Hint:
1. eAt =

[
1 1 − e−t
0 e−t

]
.

Exercise 16.4. Obtain the STM for the discrete time system state space model given by

x(k + 1) =
[
0 1
−3 −4

]
x(k). (16.65)
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Exercise 16.5. Obtain the STM for the continuous time system state space model
given by

ẋ =
[
0 1
−3 −4

]
x. (16.66)
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17

Stability of Dynamic Systems with State Space Representation
with Emphasis on Linear Systems

17.1 Chapter Highlights

In this chapter, we thoroughly discuss the various concepts related to the stability of
dynamic systems represented by state space models. We first consider the nonlinear
state space models and briefly discuss their stability using Lyapunov stability concepts.
Then we specialize these notions to linear state space models and in particular to linear
time invariant (LTI) state space systems. Within this linear systems stability discussion,
we first consider the continuous time system case, then the discrete time system case,
treating sampled data systems as part of discrete time systems.The distinction between
continuous time systems and discrete time systems is necessary and important because
the stability regions are different. For continuous time systems, the open left half of
the complex plane forms the stability region (i.e negative real part eigenvalue criterion)
whereas for discrete time systems, the unit circle within the complex plane with origin
as the center of that circle forms the stability region (i.e. magnitudes of the eigenvalues
being ≤ 1 as the criterion). Going forward, we refer to the continuous time system sta-
bility as the Hurwitz stability and the discrete time system stability as the Schur stability.

17.2 Stability of Dynamic Systems via Lyapunov Stability
Concepts

We have noticed that, in general, the state space description of any dynamic system
described by nonlinear first order ordinary differential equations is given by

̇⃗x = f⃗ (x⃗, u⃗, t)

where x⃗ is the state vector, u⃗ is the control vector and f⃗ is a vector of nonlinear functions
in xi and ui. Typically, we write

x⃗ ∈ Rn, i.e. x⃗ =
⎡⎢⎢⎢⎣
x1
x2
⋮
xn

⎤⎥⎥⎥⎦
u⃗ ∈ Rm, i.e. u⃗ =

⎡⎢⎢⎢⎣
u1
u2
⋮
um

⎤⎥⎥⎥⎦
.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Consider the following three classes of nonlinear systems:

1. ⃗̇x = f⃗ (x⃗, u⃗, t)
2. ⃗̇x = f⃗ (x⃗, t)
3. ⃗̇x = f⃗ (x⃗).

Out of these, consider the second class of systems.

⃗̇x = f⃗ (x⃗, t), x⃗(t0) = x⃗0.

We assume that the above equation, has a unique solution starting at the given initial
condition, i.e. we have one single solution corresponding to each initial condition. Let
us denote this solution as

x⃗(t; x⃗0, t0) ≡ x⃗(t) for simplicity
x⃗(t0; x⃗0, t0) ≡ x⃗0.

17.2.1 Equilibrium State

In the above class of systems, a state x⃗e where f⃗ (x⃗e, t) = 0 for all t is called an equilibrium
state of the system, i.e. the equilibrium state corresponds to the constant solution of the
system. If the system is linear time invariant (i.e. f⃗ (x⃗, t) = Ax⃗), then there exists only one
equilibrium state if A is non-singular and many equilibrium states if A is singular. For
nonlinear systems there may be one or more equilibrium states.
Any isolated equilibrium point can always be transferred to the origin of the coordi-

nates

i.e. f⃗ (0, t) = 0

by a proper coordinate transformation. So one can always take x⃗e = 0 without any loss
of generality. The origin of state space is always an equilibrium point for linear systems
and for linear systems all equilibrium states behave the same way (because if x⃗(t) is a
solution x⃗(t) is also a solution; then x⃗(t) → x⃗(t) is also a solution for the linear system).
For nonlinear systems, the stability of the system is defined in terms of the stabil-

ity of its equilibrium points via the Lyapunov stability notions. Let us elaborate on this
important concept (see Figure 17.1).
For a continuous time system with an equilibrium state x⃗e, the following definitions

of stability are widely used.

• Definition 1
Theequilibrium state x⃗e is said to be stable in the sense of Lyapunov if for any t0 and for
any 𝜖 > 0 there exists a 𝛿(𝜖, t0) > 0 such that if ||x⃗(t0) − x⃗e|| ≤ 𝛿, then ||x⃗(t0) − x⃗e|| ≤ 𝜖

for all t ≥ t0. Note that it is necessarily true that 𝛿 ≤ 𝜖.
• Definition 2

The equilibrium state x⃗e is said to be asymptotically stable if
(a) it is stable in the sense of Lyapunov
(b) for all t0, there exists a 𝜌(t0) > 0 such that ||x⃗(t0) − x⃗e|| < 𝜌 implies ||x⃗(t) −

x⃗e|| → 0 as t → ∞.
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asymptotically stable symptotically stable
in the large

StabilityStable in the sense of
Lyapunov

Domain of Attraction

Figure 17.1 Pictorial representation of stability of equilibrium states.

Asymptotic stability ensures that all solutions converge to the equilibrium state as
t → ∞ provided the initial deviation is less than 𝜌.

• Definition 3
The equilibrium state x⃗e is said to be globally asymptotically stable or asymptotically
stable in the large if
1. it is stable in the sense of Lyapunov
2. for any x⃗(t0) and any t0 ||x⃗(t) − x⃗e|| → 0 as t → ∞.

If, in the above definitions of stability, 𝛿 and P are independent of t0 then we say uni-
formly stable and uniformly asymptotically stable respectively.

Remark 1. Thus, these definitions of stability are basically concerned with whether
neighboring solutions remain neighboring or not.

Remark 2. Also, the concept of stability involves the behavior as t → ∞ and also on
the behavior of the trajectories (motions) perturbed from a fixed motion (equilibrium
state).

In Figure 17.2 points A, C, E, F , and G are equilibrium points (solutions), of which A,
E, F , and G are isolated equilibrium points. A and F are unstable equilbirium points. E
and G are stable equilibrium points. C is neutrally stable.

A

B C
D

E

F

G

Figure 17.2 Stability analogy.
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The amount of initial deviation of the ball is analogous to 𝛿 and 𝜌 in Definitions 1 and
2. If the initial deviation is small, then the ball at G would return to G. If it is too big it
may not return.Thus the stability definition involves the amount of initial perturbation.
The point C, loosely speaking, corresponds to stability in the sense of

Lyapunov.

17.2.2 Lyapunov Method to Determine Stability

The secondmethod of Lyapunov is based on the fact that if the system has an asymptot-
ically stable equilibrium state, then the stored energy of the system displaced within the
domain of attraction decays with increasing time until it finally assumes its minimum
value at the equilibrium state.
A Lyapunov function is constructed in terms of the state variables xi of the sys-

tem under consideration. It is a scalar which is positive (mathematical equivalent
of energy).

Theorem 17.1 Let us consider the autonomous (free and stationary; that is, not explic-
itly dependent on time) system

⃗̇x = f⃗ (x⃗)

where the origin is an equilibrium point, i.e. f⃗ (0) = 0 for all t. Then the origin is stable
in the sense of Lyapunov if there exists

1. a scalar Lyapunov function V (x⃗) > 0 having continuous first partial derivatives
2. V̇ (x⃗) is negative semi-definite (≤ 0).

Theorem 17.2 The origin is asymptotically stable if

1. V (x⃗) > 0
2. V̇ (x⃗) < 0.

Theorem 17.3 Theorigin is globally asymptotically stable (i.e. asymptotically stable in
the large) if

1. V (0) = 0
2. V (x⃗) > 0 for all x⃗ ≠ 0
3. V̇ (x⃗) < 0 for all x⃗ ≠ 0, and
4. V (x⃗) → ∞ as ||x⃗|| → ∞.

Remark 3. The Lyapunov function is not unique.

Remark 4. The Lyapunov stability theorems are sufficient conditions for stability.

Remark 5. The inability to find a satisfactory Lyapunov function does not mean the
system is unstable.
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17.2.3 Lyapunov Stability Analysis for Linear Time Invariant Systems

Consider
⃗̇x = Ax⃗(t)

x⃗(0) = x⃗0
x⃗ ∈ Rn

and let A be non-singular so that there is only one equilibrium state, which is the origin
(x⃗ ≡ 0).
Let us choose a Lyapunov function V (x⃗) as

V (x⃗) = x⃗TPx⃗ > 0 (17.1)

where P is a symmetric positive definite matrix. Then

V̇ (x⃗) = ⃗̇x
T
Px⃗ + x⃗TP⃗̇x

= (Ax⃗)TPx⃗ + x⃗TP(Ax⃗)
= x⃗T (ATP + PA)x⃗.

Since V (x⃗) is chosen positive, we require for asymptotic stability that V̇ (x⃗) be negative
definite, i.e.

V̇ = −x⃗TQx⃗

where

ATP + PA = −Q (17.2)

withQ being any positive definitematrix.Thus if we start with aP as in Equation 17.1, we
require Q given by Equation 17.2 to be positive definite for asymptotic stability. Instead
of starting with P, we can specify a positive definiteQ and solve Equation 17.2 for P and
check whether it is positive definite or not.
The equation can also be written as

ATP + PA + Q = 0 (17.3)

and is called the matrix Lyapunov equation. Note that it is the linear matrix equation
that can be solved for P given A and Q.

Theorem 17.4 For a given positive definite Q and an A such that 𝜆j + 𝜆k ≠ 0 for all
j, k = 1, 2,… n the solution to Equation 17.2 is unique and is a symmetric matrix.

Theorem 17.5 Thereal parts of the eigenvalues of a constantmatrixA are negative (i.e.
the matrix A is an asymptotically stable matrix) if and only if for any given symmetric
positive definite matrix Q there exists a symmetric positive definite matrix P that is the
unique solution of the Lyapunov equation (Equation 17.3).

This important theorem tells us that for a LTI system, we have two ways of checking
the stability, either by solving the matrix Lyapunov equation and checking the positive
definiteness of that solution matrix or by simply computing the eigenvalues of the state
space matrix A of the linear system. Thus both of these methods are equivalent to each
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other and both serve as a necessary and sufficient condition for the stability of a linear
time invariant system.

Example 17.1 Determine the stability of the following system by the Lyapunov
method.[

ẋ1
ẋ2

]
=
[

0 1
−1 −1

] [
x1
x2

]
.

Solution
Since A is non-singular, solve the Lyapunov equation with say Q = I2, i.e.[

0 −1
1 −1

] [
P11 P12
P12 P22

]
+
[
P11 P12
P12 P22

] [
0 1
−1 −1

]
=
[
−1 0
0 −1

]
which is simply the set of three equations in three unknowns

−2P12 = −1 (17.4)
P11 − P12 − P22 = 0 (17.5)
P12 − 2P22 = −1. (17.6)

Solving, we find the matrix P as

P =

[ 3
2

1
2

1
2
1

]
.

Then check the definiteness of this matrix. Using the principal minor (Sylvester’s crite-
rion) test

Δ1 =
3
2
> 0

Δ2 =
||||||
3
2

1
2

1
2
1

|||||| > 0.

Therefore P is positive definite and hence A is asymptotically stable.

17.3 Stability Conditions for Linear Time Invariant Systems
with State Space Representation

Going forward, we now focus our attention on stability conditions for general LTI sys-
tems with state space representation. We have noted that within this LTI framework,
the discussion of stability revolves around the stability of the plant matrix A of that LTI
system. Within these LTI systems, we have continuous time systems, discrete time sys-
tems, and sampled data systems that are considered as a special case of discrete time
systems. Accordingly, we address the stability analysis of continuous time LTI systems
separately from the discrete time LTI systems. Recall that the stability region of con-
tinuous time LTI systems is the left half of the complex plane (labeled as the Hurwitz
stability) whereas that of the discrete time system is the unit circle in the complex plane
with origin as the center of that unit circle (labeled as the Schur stability).
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17.3.1 Continuous Time Systems: Methods for Checking the Hurwitz
Stability of a Real matrix

We have learned from Appendix C, as well as the previous chapter on the dynamic
response of linear time invariant state space systems, that the state trajectories asymp-
totically converge to zero when the state space plant matrix A has negative real part
eigenvalues. Thus the necessary and sufficient condition for the (Hurwitz) stability
of linear state space matrix A is that it has negative real part eigenvalues. However,
computing the eigenvalues of a real matrix, especially for large order matrices, is a
computationally (or numerically) intensive task. Hence, even several decades back,
there were efforts to determine the stability of a matrix without actually computing the
eigenvalues of the matrix. One such criterion is the popular Routh–Hurwitz criterion.
Recall that we alluded to the Routh–Hurwitz criterion for stability in Part II of this book
when dealing with transfer function techniques in which we needed to check whether
a given nth degree polynomial with real coefficients has all its roots with negative real
parts or not. As proposed originally, the Routh–Hurwitz criterion is thus a polynomial
stability test.

17.3.1.1 Method 1. Checking Stability via the Routh–Hurwitz Criterion
It is clear that we can easily apply the original Routh–Hurwitz polynomial stability test
to determine the stability of a real matrix because it turns out that roots of the nth
degree polynomial obtained by the operation Det(𝜆I − A) = 0 of an n × n real matrix
A are nothing but the eigenvalues of that matrix A. This special polynomial obtained via
this operation is called the characteristic polynomial of the Amatrix. Thus by applying
the Routh–Hurwitz criterion to the characteristic polynomial of a real matrix A, we can
determine the stability of that matrix.
Recall that the Routh–Hurwitz criterion states that a necessary condition for the roots

of the characteristic polynomial

aosn + a1sn−1 +… an−1s + an = 0 (17.7)

to have negative real parts is that all the coefficients must be non-zero and be of the
same sign. Since we covered the Routh–Hurwitz criterion in Part II of this book, we do
not intend to repeat it here. However, it is worth mentioning here that an alternative
way of stating the Routh- Hurwitz criterion is that the following Hurwitz determinants
all be positive. Note that the square matrices whose determinants we are calculating
are formed in a specific pattern with the coefficients in the characteristic polynomial as
follows. Thus the equivalent necessary and sufficient condition for the stability of a real
Amatrix whose characteristic polynomial is given by

aosn + a1sn−1 +… an−1s + an = 0 (17.8)

is that all the Hurwitz Determinants Δi be positive, where Δi are given by

Δ1 = a1 > 0 (17.9)

Δ2 =
||||a1 ao
a3 a2

|||| > 0 Δ3 =
||||||
a1 ao 0
a3 a2 a1
a5 a4 a3

|||||| > 0 (17.10)
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Δ4 =

||||||||
a1 ao 0 0
a3 a2 a1 ao
a5 a4 a3 a2
a7 a6 a5 a4

||||||||
> 0 (17.11)

Δ5 =

|||||||||||||

a1 ao 0 0 0
a3 a2 a1 ao 0
a5 a4 a3 a2 a1
a7 a6 a5 a4 a3
a9 a8 a7 a6 a5

|||||||||||||
(17.12)

Δi =

||||||||||

a1 ao 0 0 …
a3 a2 a1 ao …
a5 a4 a3 a2 …
⋮ ⋮ ⋮ ⋮ …

asi−1 a2i−2 … … … ai

||||||||||
. (17.13)

17.3.1.2 Method 2. Via the Positive Definiteness of the Lyapunov Equation
Solution Matrix
We covered this test in the previous section as part of the general Lyapunov stability
analysis for nonlinear systems. However, now, we restate the Lyapunov stability con-
dition for completeness sake, treating it as another available method for testing the
Hurwitz stability of a real matrix A.

Theorem 17.6 The given real matrix A is (Hurwitz) stable if and only if, for a given
symmetric, positive definite matrix Q, there exists a symmetric, positive definite matrix
P as solution to the Lyapunov Matrix Equation PA + ATP + Q = 0.

Important Observation.Note thatMATLAB has a Lyapunovmatrix equation solver
routine called Lyap with a command X = Lyap(A,C), which solves a general Lyapunov
matrix equation (with possibly a complex Amatrix) of the form A∗X + XAT = −C. This
is slightly different from the above Lyapunovmatrix equation we discussed with a realA
matrix. So care needs to be exercised in using this MATLAB routine for the above case.
We need to replace the Amatrix in the MATLAB command with the AT matrix of our
real matrixA so that theMATLAB routine actually solves the above intended Lyapunov
matrix equation with a real Amatrix.
Inspired by the Routh–Hurwitz criterion as well as the Lyapunov equation criterion,

Fuller [7] gave another interesting set of conditions for the stability of a real matrix A.
The concept behind Fuller’s conditions is to realize that every real (constant) matrix has
eigenvalues, and, if complex, happen to occur in complex conjugate pairs. Hence, Fuller
converted the Hurwitz stability testing problem into a non-singularity testing problem
for a new, higher dimensionalmatrix, derived from the originalAmatrix (whose stability
we are after) that has the property that its eigenvalues are the pairwise summations of
the eigenvalues of the Amatrix. These new, higher dimensional matrices are formed by
the so-called Kronecker operations on the original matrix A. This is done using three
classes of Kronecker based matrices of various dimensions, namely (i) the Kronecker
sum matrix  = K[A] of dimension n2 where n is the dimension of the original state
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space matrix A, (ii) the Lyapunov matrix,  = L[A]m which is of dimension n(n + 1)∕2
and finally (iii) the bi-alternate summatrix  = G[A], which is of dimension n(n − 1)∕2.
We now present the results of Fuller [7].

17.3.1.3 Methods 3 to 5. Via Fuller’s Conditions of Non-singularity
First we present Fuller’s method of building higher order matrices based on Kronecker
operations.
Fuller’s Kronecker Operation based matrices, We now briefly review the method

of building few higher order matrices via Kronecker based operations, which have some
special properties in terms their eigenvalues. Most of the following material is adopted
from Fuller[7].

Definition 17.1 LetA be an n dimensionalmatrix [aij] and B anm dimensionalmatrix
[bij]. Themn dimensional matrix C defined by

⎡⎢⎢⎢⎣
a11B … a1nB
a21B … a2nB
⋮ ⋮ ⋮

am1B … amnB

⎤⎥⎥⎥⎦
(17.14)

is called the Kronecker product of A and B and is written

A × B = C. (17.15)

Corollary 17.1 Let the characteristic roots of matrices A and B be 𝜆1, 𝜆2,… 𝜆n, and
𝜇1, 𝜇2,…𝜇m, respectively. Then the characteristic roots of the matrix∑

p,q
hpqAp × Bq (17.16)

are themn values
∑

p,qhpq𝜆
p
i × 𝜇

q
j , i = 1, 2,… , n and j = 1, 2,… ,m.

Corollary 17.2 The characteristic roots of the matrix A⊕ B where

A⊕ B = A × Im + In × B (17.17)

are themn values 𝜆i + 𝜇j, i = 1, 2,… , n and j = 1, 2,… ,m.

The matrix A⊕ B is called the Kronecker sum of A and B.
Now we specialize the above operation to build another special matrix labeled as the

Kronecker sum matrix  = K[A], which is nothing but the Kronecker sum matrix A
with itself.
Case I: Kronecker sum matrix  = K[A]: Kronecker Sum of A with itself: let  be

the matrix of dimension k = n2, defined by

 = A × In + In × A. (17.18)

Corollary 17.3 The characteristic roots of  are 𝜆i + 𝜆j, i = 1, 2,… , n and
j = 1, 2,… , n. Henceforth, we use an operator notation to denote . We write
 = K[A].
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Example 17.2 For

A =
[
a11 a12
a21 a22

]
with 𝜆1, and 𝜆2 as eigenvalues, the previousmatrix is given by

 =
⎡⎢⎢⎢⎣
2a11 a12 a12 0
a21 a11 + a22 0 a12
a21 0 a22 + a11 a12
0 a21 a21 2a22

⎤⎥⎥⎥⎦
with eigenvalues 2𝜆1, 𝜆1 + 𝜆2, 𝜆2 + 𝜆1, and 2𝜆2.
MATLAB has a computer routine to build the matrix from the given matrix A.

17.3.1.4 Method 3. Stability Condition I (for the AMatrix to be Hurwitz Stable)
in Terms of the Kronecker SumMatrix = K[A])

Theorem 17.7 For the characteristic roots of A to have all of their real parts negative
(i.e., for A to be asymptotically stable), it is necessary and sufficient that in the charac-
teristic polynomial

(−1)k|K[A] − 𝜆Ik| (17.19)

the coefficients of 𝜆, i = 0, 1, 2,… , k − 1 should all be positive.

Fuller’s stability condition II for the Hurwitz stability of a real matrix A via Lya-
punov matrix  = L[A]. We now define another Kronecker related matrix  called
the Lyapunov matrix and state a stability theorem in terms of this matrix.

Definition 17.2 Lyapunovmatrix: the elements of the Lyapunovmatrix of dimen-
sion l = 1

2
[n(n + 1)] in terms of the elements of the matrix A are given as follows. For

p > q:

pq,rs =

|||||||||||||

aps if r − q and s < q
apr if r ≥ q, r ≠ p, s = q

app + aqq if r = p and s = q
aqs if r = p and s ≤ p, s ≠ q
aqr if r > p and s = p
0 otherwise

|||||||||||||
(17.20)

and for p = q:

pq,rs =

|||||||||
2aps if r = p and s < p
2app if r = p ≥ q, and s = p
2apr if r = p and s = q
0 otherwise

|||||||||
. (17.21)

Corollary 17.4 The characteristic roots of  are 𝜆1 + 𝜆2, i = 1, 2,… , n and
j = 1, 2,… , i.
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Example 17.3 If

A =
[
a11 a12
a21 a22

]
(17.22)

with eigenvalues 𝜆1 and 𝜆2, then the Lyapunov matrix is given by

 =
⎡⎢⎢⎣
2a11 2a12 0
a21 a11 + a22 a12
0 2a21 2a22

⎤⎥⎥⎦
with eigenvalues 2𝜆1,𝜆1 + 𝜆2, and 2𝜆2. We observe that, when compared with the eigen-
values of the Kronecker summatrix, the eigenvalues of omit the repetition of eigen-
values 𝜆1 + 𝜆2. Again, for simplicity, we use operator notation to denote . We write
 = L[A]. A method to form the matrix from the matrix is given by Jury in [3]. We
include a MATLAB code for building this matrix in Appendix C.

17.3.1.5 Method 4. Stability Condition II for A in Terms of the Lyapunov Matrix
 = L[A]

Theorem 17.8 For the characteristic roots of A to have all of their real parts negative
(i.e. for A to be an asymptotically stable matrix), it is necessary and sufficient that in the
characteristic polynomial

(−1)l|L[A] − 𝜆Il| (17.23)

the coefficients of 𝜆i i = 1, 2,… , l − 1 should all be positive.

Clearly, Theorem 17.8 is an improvement over Theorem 17.7, since the dimensions
of  are less than that of.

Fuller’s Stability Condition III for a Real Matrix A via Bialternate Summatrix  = G[A]
Finally, there is anothermatrix, called the bi-alternate summatrix, of reduced dimension
m = 1

2
[n(n − 1)] in terms ofwhich a stability theorem like that given earlier can be stated.

Definition 17.3 Bi-alternate summatrix : the elements of the bialternate summatrix
 of dimension m = 1

2
[n(n − 1)] in terms of the elements of the matrix A are given as

follows:

 =

|||||||||||||

−aps if r = q and s < q
apr if r ≠ p, s = q

app + aqq if s = p and s = q
aqs if r = p and s ≠ q
−aqr if s = p
0 otherwise

|||||||||||||
. (17.24)

Note that  can be written as  = A ⋅ In + In ⋅ Awhere ⋅ denotes the bi-alternate prod-
uct (see [3] for details on the bi-alternate product). Again, we use operator notation to
denote . We write  = G[A].

Corollary 17.5 The characteristic roots of  are 𝜆i + 𝜆j, for i = 2, 3,… , n and
j = 1, 2,… , i − 1.
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In [3] a simple computer amenable methodology is given to form the  matrix from
the given matrix A.

Example 17.4 For

A =
[
a11 a12
a21 a22

]
with 𝜆1 and 𝜆2 as eigenvalues, the bialternate sum matrix  is given by the scalar

 = [a22 + a11]

where the characteristic root of  is 𝜆1 + 𝜆2 = a11 + a22.

Example 17.5 When n = 3, for the matrix

A =
⎡⎢⎢⎣
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦
with 𝜆1,𝜆2, and 𝜆3 as eigenvalues, the bialternate sum matrix  is given by

 =
⎡⎢⎢⎣
a22 + a11 a23 −a13

a12 a33 + a11 a12
−a31 a21 a33 + a22

⎤⎥⎥⎦
with eigenvalues 𝜆1 + 𝜆2, 𝜆2 + 𝜆3 𝜆3 + 𝜆1.
Note that, when compared with the eigenvalues of and , the eigenvalues of  omit

the eigenvalues of the type 2𝜆i.

17.3.1.6 Method 5. Stability Condition III for a real Matrix A in Terms of the Bialternate
SumMatrix [])

Theorem 17.9 For the characteristic roots ofA to have all of their real parts negative, it
is necessary and sufficient that in (−1)n times the characteristic polynomial ofA, namely,

(−1)n|[A] − 𝜆In| (17.25)

and in (−1)m times the characteristic polynomial of  namely,

(−1)m|G[A] − 𝜇Im| (17.26)

the coefficients of 𝜆 (i = 0,… , n − 1) and 𝜇(j = 1, 2,… ,m − 1) should all be positive.
This theorem improves somewhat on Theorems 17.2 and 17.3, since the dimensions

of  are less than the dimensions of and , respectively.
One important consequence of the fact that the eigenvalues of , , and  include

the sumof the eigenvalues ofA is the following fact, which is stated as a lemma to empha-
size its importance.

Lemma 17.1
det K[A] = 0
det L[A] = 0
det G[A] = 0
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if at least one complex pair of the eigenvalues of A is on the imaginary axis and

det A = 0

if and only if at least one of the eigenvalues of A is at the origin of the complex plane. It
is important to note that det K[A], det L[A], and det G[A] represent the constant coef-
ficients in the corresponding characteristic polynomials mentioned earlier. It may also
be noted that the previous lemma explicitly takes into account the fact that the matrix
A is a real matrix and hence has eigenvalues in complex conjugate pairs.

17.3.2 Connection between the Lyapunov Matrix Equation Condition
and Fuller’s Condition II

It is interesting and somewhat not surprising that the Lyapunov matrix equation PA +
ATP + Q = 0 and the Kronecker operation based Lyapunov matrix L[A] are related. Let
p⃗ and q⃗ be the vectors formed from the (symmetric) matrices P and Q of the Lyapunov
matrix equation as follows: they are the elements on and below the leading diagonals of
the symmetric matrices P and Q respectively. Thus p⃗ and q⃗ are given by

p⃗ =

⎡⎢⎢⎢⎢⎣

p11
p12
p22
p13 ⋮
pnn

⎤⎥⎥⎥⎥⎦

q⃗ =

⎡⎢⎢⎢⎢⎣

q11
q12
q22
q13 ⋮
qnn

⎤⎥⎥⎥⎥⎦
.

Then Fuller’s Lyapunovmatrix L[A] is nothing but the coefficient matrix in the algebraic
set of simultaneous equation

Hp = q (17.27)

where H = L[A], i.e. L[A]p = q. The most interesting thing is the revelation that the
matrix L[A] has eigenvalues that are pairwise summations of the eigenvalues ofA, avoid-
ing specific redundancy (in indices i ≠ j).
Important Remark. It is the belief of this author that Fuller’s conditions have not

received the attention and admiration they deserve. It is the author’s opinion that this is
the first time in a textbook that all these various conditions for stability testing of a real
matrix are put together at one place and presented in a unifying framework showing
the connection between these seemingly different (yet equivalent) conditions. It is not
surprising that they are all connected since, in the end, all of them serve as necessary
and sufficient conditions for the (Hurwitz) stability of a real matrix.

17.3.3 Alternate Stability Conditions for Second Order (Possibly Nonlinear)
Systems [1]

This discussion is borrowed from [1].
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An alternative criterion for the equilibrium of second order differential equations
of the form

ẍ = f (x) (17.28)

results when f (xo) = 0 where xo is the equilibrium condition. A small variation 𝛿 from
equilibrium

x = xo + 𝛿 (17.29)

results in
ẍ = 𝛿

= f (xo + 𝛿)
= f (xo) + 𝛿f ′(xo) +

1
2
𝛿f ′′(xo) +…

(17.30)

by Taylor expansion about the equilibrium where dots denote differentiation
with respect to time t and primes with respect to space x. For example,

f ′(xo) =
df (x)
dx

||||x=xo . (17.31)

For small perturbations 𝛿 the perturbation equation becomes

𝛿 − f ′(xo)𝛿 = 0 (17.32)

where the stability of 𝛿 (and therefore equilibrium) is assured when f ′(xo) < 0 and insta-
bility when f ′(xo) > 0. For example, consider a pendulum equation of the form

�̈� +
g
l
sin 𝜃 = 0 (17.33)

where 𝜃 is the deviation from the bottom rest, l is the pendulum length, and g is the grav-
itational acceleration. Therefore,

�̈� = g
l
sin 𝜃

= f (𝜃) (17.34)

and

f ′(𝜃) = −
g
l
cos 𝜃. (17.35)

From the position of the bottom rest:

𝜃(0) = 0f ′(0) = −
g
l
< 0. (17.36)

This corresponds to a small displacement or velocity perturbation with a small oscil-
lation about bottom rest, which will continue indefinitely in the absence of damping.
The oscillation can be made as small as desired by keeping the perturbation sufficiently
small.Theposition of bottom rest (equilibrium) is therefore Lyapunov and also Lagrange
stable since it is bounded.The addition of damping results in asymptotic stability of the
solution. For the position of the top rest:

𝜃(𝜋) = 0 (17.37)

f ′(𝜋) =
g
l
> 0. (17.38)
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Liapunov unstable, Lagrange stable oscillatory
motion about bottom rest

Liapunov and Lagrange stable origin

Liapunov and Lagrange unstable origin
(θ
·
 perturbation results in unbounded response)

θ
·

θ

–π 0 π 2π

Figure 17.3 Pendulum phase plane diagram.

The position of the top rest is Lyapunov unstable because a non-zero deviation in atti-
tude (𝜃) or attitude rate (�̇�) produces a dramatic change in 𝜃 nomatter how small the ini-
tial perturbation. Since 𝜃 is unbounded for any initial value of �̇� (from the position of the
top rest), the top rest position is also Lagrange unstable. A phase diagram of the pendu-
lum is available in Figure 17.3.

17.4 Stability Conditions for Quasi-linear (Periodic) Systems

Systems described by equations with periodic coefficients (quasi-linear systems) may be
described by a matrix equation of the type

dx
dt

(𝜏) = A(𝜏)x(𝜏) (17.39)

where x(𝜏) is a n × 1 column vector and A(𝜏) is an n × nmatrix of known periodic coef-
ficients with period T . Here 𝜏 is a time dependent variable (e.g. 𝜏 = 𝜔t). A numerical
procedure (Floquet theory) can be used to determine the stability of the zero (trivial)
solution of Equation 17.39 for the special case A(𝜏) = A(𝜏 + T) when each element of
A(𝜏) is either periodic (with period T) or constant. Second order differential equations
of the type

d2x
d𝜏2

+ q(𝜏)dx
d𝜏

+ r(𝜏)x = 0 (17.40)

where q(𝜏 + T) = q(𝜏) and r(𝜏 + T) = r(t) can be transformed using

x(𝜏) = y(𝜏)e−
1
2
∫

𝜏

0 q(𝛼)d𝛼 (17.41)

to yield Hill’s equation

d2y
d𝜏2

+ p(𝜏)y = 0 (17.42)
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Figure 17.4 Solution stability for Mathieu’s equation.

where
p(𝜏) = [r(𝜏) − 1

2
dq(𝜏)
d𝜏

− 1
4
q2(𝜏)]

= p(𝜏 + T).
(17.43)

A special case of Hill’s equation is the Mathieu equation
d2y
d𝜏2

+ (a + 16q cos 2𝜏)y = 0 (17.44)

where a and q are real. Solutions of the Mathieu equation are known as Mathieu func-
tions. Consider the solution to Equation 17.44

y = e𝜋𝜏𝜙(𝜏) (17.45)

where 𝜙(𝜏) is periodic in 𝜏 with a period 𝜋 or 2𝜋. Since this solution is unchanged if −𝜏
is written for 𝜏 ,

y = e−𝜇𝜏𝜙(−𝜏) (17.46)

is another independent solution. Therefore, the general solution is

y = c1e𝜇t𝜙(𝜏) + c2e−𝜇t𝜙(𝜏) (17.47)

where c1 and c2 are arbitrary constants.The solution is stable if 𝜇 is imaginary and unsta-
ble if 𝜇 is real. The stability of solutions is shown in Figure 17.4

17.5 Stability of Linear, Possibly Time Varying, Systems

Given a generic linear system with time varying coefficients and the initial conditions
⃗̇x(t) = A(t)x⃗(t) + B(t)u⃗(t) (17.48)
x⃗(t0) = x⃗0.
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Let us consider the uncontrolled system (i.e. u⃗ ≡ 0). Then

⃗̇x(t) = A(t)x⃗(t) (17.49)
x⃗(t0) = x⃗0.

Corresponding to each initial condition x⃗0, there is a unique solution x⃗(t, x⃗0, t0).

17.5.1 Equilibrium State or Point

In Equation 17.49 a state x⃗e where

A(t)x⃗e = 0 for all t (17.50)

is called an equilibrium state of the system, i.e. the equilibrium state corresponds to the
constant solution of the system in Equation 17.49.
There may be more than one equilibrium state for linear systems. For example, if A(t)

is constant and non-singular there is only one equilibrium state whereas if A is singular
there are more than one equilibrium states. Note that x⃗e ≡ 0, i.e. the origin of the state
space is always an equilibrium state for a linear system.The concept of stability involves
the behavior of the state x⃗(t) as t → ∞ when perturbed from the equilibrium state at
t = t0, i.e.

(a) Stability is a concept involving asymptotic behavior (t → ∞).
(b) It involves the concept of neighborhood, i.e. when perturbed by some amount at

t = t0 from the equilibrium state, whether the state x⃗(t) remains in the neighborhood
of the equilibrium state x⃗e (Figure 17.5).

The origin of the state space is always an equilibrium point for linear systems. We can
talk about the stability of the origin without any loss of generality. For linear systems
all equilibrium states (other than zero) also behave in the same way as the zero solu-
tion because if x⃗e1 ≠ 0 is an equilibrium state and x⃗e2 is also an equilibrium state, then
x⃗e1 − x⃗e2 is also an equilibrium state because

A(t)x⃗e1 = 0
A(t)x⃗e2 = 0.

Figure 17.5 Lyapunov neighborhood.

x(t)

E
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Therefore

A(t)(x⃗e1 − x⃗e2 ) = 0

so x⃗e1 is also an equilibrium state. Since all equilibrium states behave the same way (this
holds only for linear systems) we can therefore study the behavior of the null solution
(or origin).

Definition 17.4 The origin of the state space is stable in the sense of Lyapunov if for
any t0 and any 𝜖 > 0, there exists a 𝛿(t, t0) > 0 such that

||x⃗(t0)|| ≤ 𝛿 → ||x⃗(t)|| ≤ 𝜖 for all t ≥ t0.

Definition 17.5 The origin of the state space is said to be asymptotically stable if

(a) it is stable in the sense of Lyapunov, and
(b) for all t0, there exists a 𝛿(t0) > 0 such that ||x⃗(t0)|| < 𝛿 implies that ||x⃗(t)|| → 0 as

t → ∞.

Definition 17.6 Theorigin of the state space is said to be globally asymptotically stable
or asymptotically stable in the large if

(a) it is stable in the sense of Lyapunov or
(b) for any x⃗(t0) and any t0, ||x⃗(t)|| → 0 as t → ∞.

Consider

⃗̇x(t) = A(t)x⃗(t)
x⃗(t0) = x⃗0x⃗(t) = Φ(t, t0)x(t0)||x⃗(t)|| = ||Φ(t, t0)x(t0)|| ≤ ||Φ(t, t0)|| ||x(t0)||.

The system is stable in the sense of Lyapunov iff

||Φ(t, t0)|| < N(t0).

The system is asymptotically stable iff

||Φ(t, t0)|| < N(t0)
and ||Φ(t, t0)|| → 0 as t → ∞.

Thus, for linear systems, asymptotic stability does not depend on x⃗(t0).

Note that for linear systems, the origin is asymptotically stable if it is asymptotically
stable in the large, i.e. the two previous definitions collapse into one and thus can be
combined into one concept. Hence, for linear systems, we simply talk about either

(a) stability in the sense of Lyapunov or
(b) asymptotic stability.
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Remark 6. For linear systems (because the origin is always an equilibrium state and
all equilibrium states behave the same way, and the behavior of the origin of the state
space implies the behavior of ||x⃗(t)||), we can simply talk about stability of the system,
rather than the stability of the origin or equilibrium state.

Important remark about the stability of linear time varying systems
Note that determination of stability, even in the case of linear systems, can be difficult

if it happens to be a time varying system, i.e. when the state space matrix A has time
varying elements, i.e. when A is A(t).
It is important to keep in mind that the stability of linear time varying systems cannot

be inferred from the ad hoc logic that it can be approximated as a linear time invariant
system at each time instant and thus that the given linear time varying system is sta-
ble when it is known to be stable at each time instant. This logic is erroneous and is a
common misconception as can be seen by the example below.
The matrix

A(t) =
[

−1 + 1.5 cos2 t 1 − 1.5 cos t sin t
−1 − 1.5 cos t sin t −1 + sin2 t

]
with initial conditions of x1(t0) = 1 and x2(t0) = 0 is seen to be stable when the above
matrix is frozen for each time instant (and thereby treating it as a time invariant matrix
at that instant) but it can be easily seen that the actual time trajectory of the state variable
x1 has on unbounded oscillatory (unstable) response. It can be shown that the STM for
this system is given by [4]

Φ(t, 0) =
[
et∕2 cos t e−t sin t
−et∕2 sin t e−t cos t.

]
Thus the actual time varying system is unstable.
Another useful result [2, 10] with regard to stability of linear time varying systems is

that if the eigenvalues satisfy

Re𝜆i(t) ≤ −k < 0 (17.51)

for all t (i.e eigenvalues of the system frozen at each time instant have a relative stability
degree of k) and if the time variation ofA(t) is sufficiently slow, then the system is stable.

17.5.2 Review of the Stability of Linear Time Invariant Systems in Terms
of Eigenvalues

17.5.2.1 Continuous Time Systems: Hurwitz Stability
In this case

x⃗(t) = eA(t−t0)x⃗(t0).

If A has an eigenvalue 𝜆i, then by the Frobenius theorem eA(t−t0) has eigenvalues e𝜆i(t−t0).
Thus ||x⃗(t)|| behavior depends on the matrix e𝜆i(t−t0), which in turn depends on 𝜆i.

For continuous time systems, the stability of the system is thus given by the following
criterion: let 𝜆i = 𝛽i + j𝜔i.

(a) The system is unstable if 𝛽i (real part of 𝜆i) > 0 for any distinct root or 𝛽i ≥ 0 for any
repeated root (Figure 17.6).
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Figure 17.6 Unstable eigenvalues.

(b) The system is stable in the sense of Lyapunov if 𝛽i ≤ 0 for all distinct roots and 𝛽i < 0
for all repeated roots, i.e. there are no multiple poles on the imaginary axis and all
distinct poles are in the left half of the complex plane (Figure 17.7).

(c) The system is asypmtotically stable if 𝛽i < 0 for all roots (Figure 17.8).

Continuous Time Systems

⃗̇x(t) = Ax⃗(t)
x⃗(t) = eA(t−t0)x⃗(t0)

Eigenvalues of A ∶ 𝜆i = 𝛽i ± j𝜔i

Table 17.1 summarizes the Hurwitz stability conditions.

Table 17.1 Hurwitz stability criteria for continuous time systems.

Unstable If 𝛽i > 0 for any single (or distinct) root
or 𝛽i ≥ 0 for any repeated root

Stable in the sense of Lyapunov If 𝛽i ≤ 0 for all distinct roots
or neutrally stable and 𝛽i < 0 for all repeated roots
Asymptotically stable If 𝛽i < 0 for all roots
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Figure 17.7 Eigenvalues stable in the sense of Lyapunov.

Figure 17.8 Asymptotically stable. Domain of Attraction

17.5.2.2 Discrete Time Systems (Schur Stability)

x⃗(k + 1) = Ax⃗(k)
x⃗(k) = Akx⃗(0)

Eigenvalues of A ∶ 𝜆i

For discrete time systems, it is the unit circle in the complex plane that determines
stability (Schur Stability). If all the eigenvaluemagnitudes lie inside the unit circle then
the discrete time system is stable (Figure 17.9).
Table 17.2 summarizes the Schur stability conditions.
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Figure 17.9 Eigenvalues of a discrete time
system.

Table 17.2 Schur stability criteria for discrete time systems.

Unstable If |𝜆i| > 1 for any distinct root
or |𝜆i| ≥ 1 for any repeated root

Stable in the sense of Lyapunov If |𝜆i| ≤ 1 for all distinct roots
or neutrally stable and |𝜆i| < 1 for all repeated roots
Asymptotically stable If |𝜆|i < 1 for all roots

17.6 Bounded Input–Bounded State Stability (BIBS)
and Bounded Input–Bounded Output Stability (BIBO)

Once we have an input forcing function, the stability discussion involves the bounded-
ness issue of the input function, leading to the concept of the bounded input–bounded
state (BIBS) stability, or bounded input–bounded output (BIBO) stability. Consider

⃗̇x = Ax⃗ + Bu⃗
y⃗ = Cx⃗

x⃗(t0) = x⃗0.

Definition 17.7 If there is a fixed, finite constant K such that ||u⃗|| ≤ K for every t,
then the input is said to be bounded. If for every bounded input and for arbitrary initial
conditions x⃗(t0), there exists a scalar 𝛿 > 0 such that ||x⃗|| ≤ 𝛿, then the system is BIBS
stable.

Definition 17.8 If ||u⃗|| ≤ K , then if ||y⃗|| ≤ 𝛼Km𝛿, then the system is BIBO stable.

Note that BIBS stability requires the open loop system matrix A to be asymptotically
stable. However, it is possible to achieve BIBO stability even if the open loop system
matrix A is not asymptotically stable, because the outputs may not be linked to the
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unstable part of the states. This brings in the issues of controllability and observability
of state space systems, which is the topic of the next chapter.

17.6.1 Lagrange Stability

Lagrange stability is a boundedness concept applicable to linear systems. If a small devi-
ation from some equilibrium point remains bounded, then the motion is said to be
Lagrange (or infinitesimal) stable. There is a subtle difference between Lagrange sta-
bility and stability in the sense of Lyapunov. Note that stability in the sense of Lyapunov
requires the solution of the differential equation, beginning sufficiently close to the equi-
librium (origin), and that the resulting trajectory must remain arbitrarily close to itself
after perturbation.This concept is applicable to the solutions of both linear and nonlin-
ear differential equations.
However, Lagrange stability requires only the solution (trajectory) to remain within a

finite distance from equilibriumwhile Lyapunov stability requires arbitrarily small devi-
ations (perturbation) from equilibrium.Therefore, Lyapunov stability implies Lagrange
stability, but the opposite is not true. A linear time invariant system is said to be stable if
and only if the roots of its characteristic equation have negative real parts. If any root has
a real part that is positive, the system is unstable. For an asymptotically stable system,
the state variables are not only expected to remain in the neighborhood of equilibrium
but eventually even return to the equilibrium state when the system is given an initial
small perturbation. If any root has a real part that is zero, the system is unstable.

17.7 Chapter Summary

This long chapter presents a thorough treatment on themost important structural prop-
erty of a state space system, namely stability. In particular, we thoroughly covered the
various methods to assess the Hurwitz stability of a real matrix, which is treated as the
plant matrix of linear time invariant state space system. Stability, controllability and
observability are designated as the three important structural properties one should be
thoroughly familiar with to master the subject of linear state space systems. We cov-
ered the stability conditions for both continuous time systems (Hurwitz stability) as well
as discrete time systems (Schur stability). In the next chapter we cover the other two
structural properties, namely controllability and observability, and related issues. Fun-
damental concepts such as those discussed in this chapter are also available in a more
consolidated way in many excellent textbooks dedicated to state space control systems
such as [4–6, 8, 9, 11–13]

17.8 Exercises

Exercise 17.1. Find the Hurwitz stability nature of the following matrix using the Lya-
punov matrix equation method.

A =
[
−1 −1.5
0.8 −0.9

]
For the same matrix above, determine its Schur stability nature.
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Exercise 17.2. Find the Hurwitz stability nature of the following matrix

A =
⎡⎢⎢⎢⎣

0 0 −1 2
−16 0 1 0
4 −1 −6 0
0 1 0 −1

⎤⎥⎥⎥⎦
using the Routh–Hurwitz criterion, Fuller’s method, and the Lyapunov matrix
equation method.

Exercise 17.3. Find the Hurwitz stability nature of the following matrix

A =
⎡⎢⎢⎢⎣
−3 1 2 4
−1 −3 −1 −2
−2 1 −3 −4
−4 2 4 −3

⎤⎥⎥⎥⎦
using the Routh–Hurwitz criterion, Fuller’s method, and the Lyapunov matrix
equation method.

Exercise 17.4. Find the Hurwitz stability nature of the following matrix

A =
⎡⎢⎢⎢⎣
−1 0 −1 2
−16 −6 1 0
4 −1 −1 0
0 1 0 0

⎤⎥⎥⎥⎦
using the Routh–Hurwitz criterion, Fuller’s method, and the Lyapunov matrix
equation method.

Exercise 17.5. Find the Hurwitz stability nature of the following matrix

A =
⎡⎢⎢⎣

4.3881 −2015.1 −62.986
0.0049482 −2.2724 0.92897
2.4217 −425.91 −34.761

⎤⎥⎥⎦
using the Routh–Hurwitz criterion, Fuller’s method, and the Lyapunov matrix
equation method.
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18

Controllability, Stabilizability, Observability, and Detectability

18.1 Chapter Highlights

In this chapter, the two other structural properties of linear state space systems, namely
controllability and observability concepts are discussed. As the name implies, the ability
to control the dynamic system is termed controllability. Thus it answers the question
as to whether there exists a control vector u(t), consisting of m control variables, that
can take the state vector, consisting of n variables (at a given initial time) to any other
arbitrary value of the state vector in a finite amount of time. If such a control (forcing)
function exists, then we say the system is (state) controllable. Obviously, before we
try to design a control system, it is important to make sure that the system is indeed
controllable. In this chapter, we develop conditions of controllability for a linear state
space system. Not surprisingly, controllability conditions involve the nature of matrix
pair (A,B), where A is the n × n plant matrix and B is the n ×m control distribution
matrix. In other words, the controllability question explores the relationship between
the control (or actuation) variables and the state variables. After getting conditions
of controllability, we also discuss the related issue of stabilizability for uncontrollable
systems. The observability concept is very similar and is thus dual to the concept of
controllability. In this, we ask the question of whether the entire state vector, consisting
of n variables (at a given time), can be observed or not from only a set of l output
(or measurement or sensor) variables. If it does, then we say the system is completely
observable. Accordingly, the observability concept explores the relationship between
sensor (measurement) variables and state variables and thus involves the matrix pair
(A,M), where A is the n × n plant matrix andM is the l × nmeasurement matrix. After
getting conditions of observability, we also discuss the related issue of detectability,
for unobservable systems. Note that this observability concept can be used in the
context of a set of k output variables and their relationship to the state variables, in
which case, we use the matrix pair (A,C) in the conditions, where C is the k × n output
matrix.

18.2 Controllability of Linear State Space Systems

A linear, possibly time varying, system

ẋ = A(t)x + B(t)u (18.1)

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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y = C(t)x (18.2)

is said to be output controllable over the interval t𝜖[to, t1] if the output y(t) can be taken
to an arbitrary value y(t1) from an arbitrary initial condition y(to).Mathematically speak-
ing, a linear system is output controllable over the interval t𝜖[to, t1] if there exists u(t) in
the same interval such that

y(t1) = C(t1)∫

t1

to
𝜙(t1, 𝜎)B(𝜎)u(𝜎)d𝜎 where y𝜖Rk . (18.3)

Accordingly, a possibly time varying, linear system

ẋ = A(t)x + B(t)u (18.4)
(18.5)

is said to be state controllable over the interval t𝜖[to, t1] if the state vector x(t) can be
taken to an arbitrary value x(t1) from an arbitrary initial condition x(to). Mathematically
speaking, a linear system is state controllable over the interval t𝜖[to, t1] if there exists u(t)
in the same interval such that

x(t1) − x(t0) = ∫

t1

to
𝜙(t1, 𝜎)B(𝜎)u(𝜎)d𝜎 where x𝜖Rn. (18.6)

For general, linear time varying systems, there is an additional notion of reachability
wherein there is a difference between going from the origin to some given state x(t1) in
some finite time interval, which could be different from going from a given state x(t1) to
the origin. In other words, controllable subspace could be different from reachable sub-
space. However, for continuous time, linear time invariant systems (LTI systems), these
two notions coincide, and thus we can simply discuss only the controllability notion, not
worrying about the reachability notion. Going forward, we focus on the conditions for
controllability for continuous time LTI systems.
For time invariant systems (i.e. systems with constant coefficient matrices)

𝜙(t, 𝜎) = eA(t−𝜎)
= 𝛼o(t − 𝜎)I + 𝛼1(t − 𝜎)A +… 𝛼n−1An−1 . (18.7)

Substituting Equation 18.7 into the general case Equation 18.6 and integrating, (we
are omitting vector notation, but realize that x and u are vectors of dimension n andm
respectively) we have

x̃ =
∫

t1

to
[𝛼oI + 𝛼1A +… 𝛼n−1An−1]Bu(𝜎)d𝜎

= [B,AB,A2B,…An−1B]

⎧⎪⎪⎨⎪⎪⎩
∫

t1

to
𝛼o(t1 − 𝜎)u(𝜎)d𝜎

⋮

∫

t1

to
𝛼n−1(t1 − 𝜎)u(𝜎)d𝜎

⎫⎪⎪⎬⎪⎪⎭
.

(18.8)

Then

x̃ = Bu1 + ABu2 + A2Bu3,…An−1Bum (18.9)
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and so an arbitrary x̃𝜖Rn can be written as a linear combination of hi only if the set of hi
spans Rn. Thus, it can be proved that a time invariant system is state controllable if and
only if the matrix

[B AB … An−1B] ≡ Hc (18.10)

has rank n.The columns ofmatrix 18.10 are those subspaces along which the state xmay
be moved by our control input u.
Hence, in summary, the condition for (state) controllability for linear time invariant

state space systems, is that the controllability matrix denoted by Hc,

Hc =
[
B AB · · · An−1B

]
has rank n.
Note that the controllability matrix Hc is a rectangular matrix of dimensions n ×mn.

Thus controllability requires that out of the mn columns there should exist at least n
columns that are linearly independent. If this condition is satisfied, then we say the sys-
tem is completely (state) controllable.
Conceptually speaking, this controllability condition is exploring the way the control

variables are linked to the state variables and thus the connection between them. Since
controllability is also a structural property of a linear state space system, just like the sta-
bility property, it is also invariant under similarity transformation.Hence, themajority of
times, it is much easier to investigate the controllability condition inmodal coordinates,
rather than in the original state variables, because (barring special cases) modal coor-
dinates are completely decoupled from each other (like in the distinct eigenvalue case),
and thus controllability investigation simply involves whether eachmode is directly con-
nected to the control variables or not. Hence in the next section, we provide conditions
of controllability via modal decomposition.

18.3 State Controllability Test via Modal Decomposition

Consider ⃗̇x = Ax⃗ + Bu⃗. Transform this system to modal coordinates q⃗, i.e. ⃗̇q = Jq + Bnu⃗.
Note that when there are repeated eigenvalues J may not be completely diagonal. So let
us consider two cases.

18.3.1 Distinct Eigenvalues Case

J is completely diagonal. The condition for controllability then is that the elements of
each row of Bn (that correspond to each distinct eigenvalue) are not all zero.

Example 18.1 Assess the controllability of the system[
q̇1
q̇2

]
=
[
−1 0
0 −2

] [
q1
q2

]
+
[
2
0

]
u⃗.

Solution
The above system is not completely controllable, because every element in the last row
of Bn is zero. If we change the Bn matrix to, say,
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Bn =
[
2
1

]
then it is completely controllable.

18.3.2 Repeated Eigenvalue Case

Then J has Jordan blocks Ji, i.e. J =
⎡⎢⎢⎢⎣
J1 0

J2
⋱

0 Jp

⎤⎥⎥⎥⎦
.The corresponding Bn matrix can be

written as

Bn =

⎡⎢⎢⎢⎢⎢⎣

← BT
n1

→

← BT
n2

→
⋮

← BT
np

→

⎤⎥⎥⎥⎥⎥⎦
.

Let BT
ni l denote the last row of BT

ni
. Then the system is completely controllable if:

(a) The elements of BT
ni l (corresponding to the Jordan block Ji) are not all zero.

(b) The last rows BT
ni l of the r Jordan blocks associated with the same eigenvalue form a

linearly independent set.

Example 18.2 Assess the controllability of the following system

⎡⎢⎢⎣
q̇1
q̇2
q̇3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−1 1 0
0 −1 0
0 0 −2

⎤⎥⎥⎦
⎡⎢⎢⎣
q1
q2
q3

⎤⎥⎥⎦ +
⎡⎢⎢⎣
4 2
0 0
3 0

⎤⎥⎥⎦
[
u1
u2

]
.

Solution
The system is not completely controllable because of zero entries in the last row of the
Bn matrix corresponding to the J1 matrix.

⎡⎢⎢⎣
q̇1
q̇2
q̇3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−1 1 0
0 −1 0
0 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎣
q1
q2
q3

⎤⎥⎥⎦ +
⎡⎢⎢⎣
4 2
2 3
4 6

⎤⎥⎥⎦
[
u1
u2

]

is not completely controllable because the eigenvalue −1 has two Jordan blocks and the
last rows ofBn corresponding to these Jordan blocks associatedwith the same eigenvalue
[2 3] and [4 6] form a linearly dependent set.

18.4 Normality or Normal Linear Systems

Consider ⃗̇x = Ax⃗ + Bu⃗, given u⃗ ∈ ℝm, x⃗ ∈ ℝn, where B = [b1b2b3 · · · bm] and bi ∈ ℝn×1

is a column. We say the system is normal if each of the systems
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⃗̇x(t) = Ax⃗(t) + b1u1(t)
⃗̇x(t) = Ax⃗(t) + b2u2(t)

⋮

⃗̇x(t) = Ax⃗(t) + bmum(t)

is completely controllable, i.e. normality involves controllability from each component
of u⃗. Clearly a normal system is always completely controllable.

Caution: A completely controllable system is not necessarily normal.
Now, we switch our attention to systems that are not completely controllable. Once

the system is known to be uncontrollable, the question then is to worry about what
the nature of the uncontrollable states is. So the moment the system is known to be
uncontrollable, the first task is to separate out the controllable subspace from the uncon-
trollable subspace. This is done by employing an appropriate similarity transformation
matrix. These details are discussed next.

18.5 Stabilizability of Uncontrollable Linear State Space
Systems

The controllable subspace of the linear time invariant system

⃗̇x(t) = Ax⃗(t) + Bu⃗(t)

is the linear subspace consisting of the states that can be reached from the zero state
within a finite time.

Theorem 18.1 The controllable subspace of the n dimensional linear time invariant
system

⃗̇x(t) = Ax⃗(t) + Bu⃗(t) (18.11)

is the linear subspace spanned by the columns of the controllability matrix

Hc =
[
B AB · · · An−1B

]
.

Let the dimension of the controllable subspace be nc < n. (Note that if the system is
completely controllable, i.e. when nc = n, there is no need to go any further.)
Thenwith a similarity transformation, one can transform Equation 18.11 into control-

lability canonical form given by

⃗̇xc(t) =
[
A11c A12c
0 A22c

]
x⃗c(t) +

[
B11c
0

]
u⃗(t) (18.12)

where A11c is an nc × nc matrix and the pair {A11c,B11c} is completely controllable.

Note: x⃗c = T−1x⃗(t) or x⃗c = Tx⃗(t).
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Definition 18.1 The system of Equations 18.11 or 18.12 is stabilizable if and only if
the uncontrollable subspace is stable (or the unstable subspace is controllable), i.e. if
and only if A22c is an asymptotically stable matrix.

Remarks:

1) Note that stability and stabilizability are two entirely different concepts. Of course
stabilizability involves the concept of stability (and uncontrollability).

2) If a system is unstabilizable, then obviously the engineer has to go back to the drawing
board (i.e. the open loop plant) and reorient the actuators and plant in such a way
that either the system is controllable or at least stabilizable.

18.5.1 Determining the Transformation Matrix T for Controllability
Canonical Form

Consider Hc =
[
B AB · · · An−1B

]
. Determine the rank of Hc; let it be nc. Obviously

nc < n. (As mentioned earlier if nc = n, there is no interest in going to controllability
canonical form anyway.) So consider nc < n. Let the nc columns of Hc that are linearly
independent be also the columns of T . Then make up the rest of the n − nc columns of
T such that T is non-singular, i.e.

T =
⎡⎢⎢⎣

↑ ↑ ↑ ↑ ↑
hc1 hc2 · · · hcnc

d1 · · · dn−nc

↓ ↓ ↓ ↓ ↓

⎤⎥⎥⎦
where the arbitrary columns di are such that T is non-singular.

Example 18.3 Determine the controllability and stabilizability of the system

{A,B} =
{[

−3 1
−2 3

2

]
,

[
1
4

]}
.

Note that the eigenvalues of A are 1 and −2.5.

Solution

Hc =
[
1 1
4 4

]
nc = 1.

This system is not completely controllable, so we need to go to the controllability
canonical form. The transformation matrix

T =
[
1 ⊗1
4 ⊗2

]
where⊗1 and⊗2 are such that T is non-singular. So let

T =
[
1 1
4 2

]



18.6 Observability of Linear State Space Systems 355

so that

T−1 =

[
−1 1

2
2 − 1

2

]
.

Then

Bc = T−1B
Ac = T−1AT

and so

{Ac,Bc} =

{[
1 1

2

0 −5
2

]
,

[
1
0

]}
.

Since the uncontrollable subspace (i.e. theA22c matrix, which in this example is simply
the scalar −2.5), is stable, the above system is stabilizable.

Remark 2. Notice that without going to the controllability canonical form we could
not have ascertained which of those eigenvalues corresponds to the controllable sub-
space and which to the uncontrollable subspace. Thus the beautiful property of the
controllability canonical form is that it clearly separates out all the controllable subspace
states into one set and all the uncontrollable subspace states into a distinctly separate
set.

Remark 3. It is also important to realize that when a system is uncontrollable, it
implies that a linear combination of the original (physically meaningful) state variables
is uncontrollable, not necessarily each individual state variable.

Remark 4. Notice that, for linear time invariant systems, since time does not enter
into the conditions of controllability/stabilizability, these conditions and concepts are
valid for both continuous time as well as discrete time linear state space systems.

Next we switch our attention to another structural property of a linear state space
system, namely a property dual to the property of controllability, labeled observability.
While the controllability property focuses on the connection between the state vari-
ables and control variables (i.e the property of the pair (A,B)), the observability property
concerns the connection between the state variables and either the output variables
(involving the pair (A,C) matrices) or the measurement variables (involving the pair
(A,M)matrices). Let us elaborate on this next.

18.6 Observability of Linear State Space Systems

Again, take a generic linear state space system

ẋ = A(t)x + B(t)u
y = C(t)x + D(t)u. (18.13)
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We ask now: is every motion of the state visible in the output? If not, there may exist
some internal instabilities in the system not visible in the output. An observability prob-
lem relates to the problem of determining the initial value of the state vector knowing
only its output y over some interval of time.The output of the system in Equation 18.13
can be expressed as

y(t) = C(t)𝜙(t, to)x(to) + ∫

t1

to
[𝜙(t, 𝜎)B(𝜎) + D𝛿(t − 𝜎)]u(𝜎)d𝜎. (18.14)

Keep in mind the second term on the right hand side of Equation 18.14 is a known
quantity.
We may study the homogeneous system

ẋ = A(t)x
y = C(t)x. (18.15)

Now
y(t) = G(t, to)xo

= C(t)𝜙(t1to)xo
= G(t, to)xo.

(18.16)

Observability requires the right hand side of Eq. 18.16

G(t, t1)xo ≡ 0 (18.17)

over the interval t𝜖[to, t1] only if

xo = 0. (18.18)

Now premultiply Equation 18.16 by [C(t)𝜙(t, to)]T to get

𝜙T (t, to)CT (t)y(t) = 𝜙T (t, to)CT (t)C(t)𝜙(t, to)xo. (18.19)

Integrating,

∫

t1

to
𝜙T (t, to)CT (t)y(t)dt = W (t1, to)xo (18.20)

and therefore

xo = W (t1, to)−1 ∫

t1

to
𝜙T (t, to)CT (t)y(t)dt. (18.21)

Therefore the initial state vector can be obtained uniquely if

W (t1, to) ≡ ∫

t1

to
GT (t, to)G(t, to)dt (18.22)

is a non-singular matrix.
For general, linear time varying systems, there is an additional notion of constructibil-

ity (also referred to as reconstructibility in some books) wherein there is a difference
between constructing the state from some given future outputs y(t1) in some finite time
interval, which could be different fromconstructing the state from some given given past
outputs y(t1). In other words, observable subspace could be different from constructible
(or reconstuctible) subspace. However, for continuous time, linear time invariant sys-
tems (LTI systems), these two notions coincide, and thus we can simply discuss only
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the observability notion, not worrying about the constructibility (or reconstructibility)
notion. Going forward, we focus on the conditions for observability for continuous time
LTI systems. Following the same logic employed for the controllability case, it can be
proven that a time invariant linear system is observable if and only if the matrix with the
rows

⎡⎢⎢⎢⎢⎣

C
CA
CA2

⋮
CAn−1

⎤⎥⎥⎥⎥⎦
(18.23)

has rank n.

18.7 State Observability Test via Modal Decomposition

Consider
⃗̇x = Ax⃗ (18.24)
y⃗ = Cx⃗. (18.25)

Note Equation 18.25 could just as well have been replaced by an equation relating
measurement variables

z⃗ = Mx⃗ (18.26)

but we will proceed here with the output equation as written in Equation 18.14. Trans-
form this to modal coordinates q⃗, x⃗ = q⃗, i.e.

⃗̇q = Jq⃗
y⃗ = Cnq⃗.

Note that when these are repeated eigenvalues J may not be completely diagonal. So let
us consider two cases.

18.7.1 The Distinct Eigenvalue Case

J is completely diagonal.The condition for observability is that the elements of each col-
umn of each column of Cn (that corrsponds to each distinct eigenvalue) are not all zero.

Example 18.4 Assess the observability of the system[
q̇1
q̇2

]
=
[
−1 0
0 −2

] [
q1
q2

]

y =
[
2 0

] [ q1
q2

]
.

Solution
The system is not completely observable because of the presence of 0 (i.e. the C12 ele-
ment). If we change the Cn matrix to say [2 1], then it is completely observable.
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18.7.2 Repeated Eigenvalue Case

Then J has Jordan blocks Ji, i.e. J =
⎡⎢⎢⎢⎣
J1 0

J2
⋱

0 Jp

⎤⎥⎥⎥⎦
. The corresponding Cn matrix can

be written as

Cn =
⎡⎢⎢⎣

↑ ↑ ↑
Cn1 Cn2 · · · Cnp
↓ ↓ ↓

⎤⎥⎥⎦ .
Let Bni1 denote the first column of Bni. Then the system is completely observable if:

(a) The elements of Cni1 (corresponding to the Jordan block Ji) are not all zero.
(b) The first columns Cni1 of the r Jordan blocks associated with the same eigenvalue

form a linearly independent set.

Example 18.5 Consider the system

⎡⎢⎢⎣
q̇1
q̇2
q̇3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−1 1 0
0 −1 0
0 0 −2

⎤⎥⎥⎦
⎡⎢⎢⎣
q1
q2
q3

⎤⎥⎥⎦[
ẏ1
ẏ2

]
=
[
4 0 3
2 0 0

] ⎡⎢⎢⎣
q1
q2
q3

⎤⎥⎥⎦ .
Solution
The system is completely observable. However, if Cn =

[
0 4 3
0 2 0

]
then the system is not

completely observable because the first column is all zeroes. Similarly the system

⎡⎢⎢⎣
q̇1
q̇2
q̇3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−1 1 0
0 −1 0
0 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎣
q1
q2
q3

⎤⎥⎥⎦[
ẏ1
ẏ2

]
=
[
2 4 4
3 2 6

] ⎡⎢⎢⎣
q1
q2
q3

⎤⎥⎥⎦
is not completely observable because the eigenvalue −1 has two Jordan blocks and the

first columns of Cni corresponding to these two Jordan blocks
[
2
3

]
and

[
4
6

]
form a lin-

early dependent set.

18.8 Detectability of Unobservable Linear State
Space Systems

Definition 18.2 The unobservable (or unreconstructible) subspace of the linear time
invariant system
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⃗̇x(t) = Ax⃗ + Bu⃗
y⃗(t) = Cx⃗ (18.27)

is the linear subspace consisting of the state x⃗(t0) = x⃗0 for which

y⃗(t; x⃗0, t0, 0) = 0
t ⩾ t0.

Theorem 18.2 Theobservable subspace of the n dimensional linear time invariant sys-
tem

⃗̇x(t) = Ax⃗(t) + Bu⃗(t)

has the dimensions equal to the rank of the observability matrix

H𝜙 =
[
CT ATCT A2TCT · · · An−1TCT

]
.

Let the dimensions of the controllable subspace be n𝜙 < n. Then with a similarity trans-
formation, one can transform Equation 18.27 into observability canonical form

⃗̇x𝜙(t) =
[
A11𝜙 0
A21𝜙 A22𝜙

]
x⃗𝜙(t) +

[
B1𝜙
B2𝜙

]
u⃗(t)

y⃗(t) =
[
C11𝜙 0

]
x⃗𝜙(t0) =

[
0

x110

] (18.28)

where A11𝜙 is an n𝜙 × n𝜙 matrix and the pair {A11𝜙,C11𝜙} is completely observable.

Definition 18.3 The system of Equations 18.27 or 18.28 is detectable if and only
if the unobservable subspace is stable (or the unstable subspace is observable), i.e. if
and only if A22𝜙 is an asymptotically stable matrix.

Remarks:

1) Note that detectability involves the concept of stability. When the measurement
matrixM is involved, this concept is referred to as reconstructibility.

2) If a system is undetectable (or unreconstructible), then obviously the engineer has
to go back to the open loop system and rearrange or reorient the sensors (and the def-
initions of outputs) in such a way that either the system is completely observable or
at least detectable.

18.8.1 Determining the Transformation Matrix T for Observability
Canonical Form

Let
⃗̇x = Ax⃗
y⃗ = Cx⃗.
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Let us transform this to observability canonical form by the transformation matrix T
given by x⃗𝜙 = Tx⃗ so that x⃗ = T−1x⃗𝜙. Then

⃗̇x𝜙 = TAT−1x⃗𝜙 = A𝜙x⃗𝜙
and y⃗ = CT−1x⃗𝜙 = C𝜙x⃗𝜙.

When the system is not completely observable n𝜙 < n. Then the transformation matrix
T is built as follows. Consider

HT
𝜙
=
⎡⎢⎢⎢⎣

C
CA
⋮

CAn−1

⎤⎥⎥⎥⎦
. (18.29)

Let the n𝜙 rows of Hc, which are linearly independent, be the n𝜙 columns of T . Then
make up the rest of n − n𝜙 rows of T such that T is non-singular, i.e.

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

← h𝜙
T
1 →

← h𝜙
T
2 →
⋮

← h𝜙
T
n𝜙

→

← dT
1 →

← dT
2 →
⋮

← dT
n−n𝜙

→

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where dT

i are the rows of T such that T is non-singular.

Example 18.6 Express the system

A =
[
−3 −2
1 3

2

]
C =

[
1 4

]
in observability canonical form.

Solution

H𝜙 = [CTATCT ]

=
[
1 1
4 4

]
so, since the the rank of H𝜙 is less than 2, the system is not observable. The rank

n𝜙 = 1. So let T =
[
1 4
⊗1 ⊗2

]
where ⊗1 and ⊗2 are any two elements which make T

non-singular. So let the second row of T be say [12] so that

T =
[
1 4
1 2

]
(18.30)
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and

T−1 =
[
1 4
1
2

− 1
2

]
. (18.31)

Then it can be seen that
A𝜙 = TAT−1

=
[

1 0
− 1

2
− 5

2

]
C𝜙 = CT−1

=
[
1 0

]
.

Since the unobservable subspace is stable, this system is detectable.

Remark 6. Notice that without going to the observability canonical form we could
not have ascertained as to which of those eigenvalues corresponds to the observable
subspace and which to the unobservable subspace. Thus the beautiful property of the
observability canonical form is that it clearly separates out all the observable subspace
states into one set and all the unobservable subspace states into a distinctly separate set.

Remark 7. It is also important to realize that when a system is unobservable, it implies
that a linear combination of the original (physically meaningful) state variables is unob-
servable, not necessarily each individual state variable.

Remark 8. Notice that, for linear time invariant systems, since time does not enter into
the conditions of observability/detectability, these conditions and concepts are valid for
both continuous time as well as discrete time linear state space systems.

Now that we understand the important concepts of both controllability (stabiliz-
ability) as well as of observability (detectability), it is clear that both of these concepts
together play an extremely important role in the feedback control systems design
for linear state space systems. It is interesting and important to keep in mind that
both of these concepts are dual to each other. Hence in what follows, we examine the
implications and importance of these two concepts together.

18.9 Implications and Importance of Controllability
and Observability

(1) They serve as sufficient conditions for designing controllers for regulating the out-
puts.

(2) Quite often, whenever a system is not completely controllable and observable, it
means that the state space model has more state variables than necessary. This
means there is an avenue available for reducing the number of state variables in the
model, which is a model reduction problem!
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u(t) y(t)

+
+

+

+

∫K1

x·1 x1

∫K2

x·2 x2

∫
∑

K3

x·3 x3

∫K4

x·4 x4

Figure 18.1 Model reduction.

(3) Also, whenever a system is uncontrollable and unobservable, it may mean that the
actuators (Bmatrix elements) and sensors (M or C matrix elements) are not placed
at the appropriate locations. In other words, these concepts together prompt the
engineer to look into the aspect of optimization of actuator and sensor locations.

(4) Notice that the norm of the controllability matrix, Hc, relates to the degree of con-
trollability and the norm of the observability matrix, H𝜙, relates to the degree of
observability. Hence, these measures can be used to estimate the amount of control
effort needed to accomplish a control task and similarly to estimate the amount of
richness of the measurement data to assess the quality of measurements.
For example, consider the following situation: the system in Figure 18.1 has the state
variable description

⃗̇x = 0⃗x⃗(t) +
⎡⎢⎢⎢⎣
k1
k2
k3
k4

⎤⎥⎥⎥⎦
u(t)

where

0⃗ =
⎡⎢⎢⎢⎣
0 0

0
0

0 0

⎤⎥⎥⎥⎦
x⃗ =

⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦
y =

[
1 1 1 1

] ⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦
.
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Obviously this system is neither controllable nor observable. However if we define
�̇� = ku⃗(t)when= k =

∑
ki, where 𝜉 is a scalar and k is assumed to be non-zero, then

the scalar system

�̇� = ku(t)
y(t) = 𝜉(t) i.e.

�̇� = 0𝜉 + ku(t)
y(t) = 𝜉(t)

is both controllable and observable (even though the A matrix, which in this case
is a scalar, is zero!). This means that we do not need four state variables x1, x2, x3, x4
but instead need only one state variable 𝜉 to describe the system dynamics!

(5) Also, finally, whenever a system is uncontrollable (or unobservable), it means that
there is some pole-zero cancellation in the corresponding transfer function.

Example 18.7 The lateral/directional dynamics of an aircraft at a particular flight con-
dition (Figure 18.2) is described by the approximate linear model

⎡⎢⎢⎢⎣
ṗ
ṙ
�̇�

�̇�

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
−10 0 −10 0
0 −0.7 9 0
0 −1 −0.7 0
1 0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
p
r
𝛽

𝜙

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
20 2.8
0 −3.13
0 0
0 0

⎤⎥⎥⎥⎦
[
𝛿A
𝛿R

]
. (18.32)

(a) Verify if the system is controllable with both inputs operable.
(b) Now suppose amalfunction prevents manipulation of the rudder, i.e. input 𝛿R. Is the

system controllable using only ailerons (i.e. 𝛿A alone)?
(c) If we outfit the aircraft with only a rate gyro, which senses the roll rate p, are the

dynamics of the system observable?
(d) If we instead install a bank angle indicator that measures 𝜙, is the system now

observable?

Deflected

aileron

Deflected

rudder

Front view Top view

Velocity

Aileron

Rudder

ϕ
·
 = P

δr

β

ϕ

Figure 18.2 Aircraft lateral dynamics.
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Solution

(a) To verify the system is indeed controllable with both controllers working, we form
the concatenated matrix with the columns:[

B AB A2B A3B
]
=

⎡⎢⎢⎢⎣
20 2.8 −200 −28 2000 248.7 −20000 2443.2
0 −3.13 0 2.191 0 26.63 0 −58.08
0 0 0 3.13 0 −4.382 0 −23.569
0 0 20 2.8 −200 −28 2000 248.7

⎤⎥⎥⎥⎦
.

Note here the B matrix is the full 4 × 2 matrix defined in the problem statement
because both the aileron and rudder are working.The rank of this matrix is 4 and so
the airplane is indeed controllable when both rudder and ailerons are working.

(b) Now with the rudder malfunctioning, we again form the concatenated matrix with
the columns

[
B AB A2B A3B

]
=
⎡⎢⎢⎢⎣
20 −200 2000 20000
0 0 0 0
0 0 0 0
0 20 −200 2000

⎤⎥⎥⎥⎦
noting that this time theBmatrix is only the first columnof the 4 × 2matrix specified
in the lateral/direction state space equation. This matrix has rank 2, which is less
than n = 4 and so we conclude that the system is not completely controllable using
only ailerons.

(c) If we aremeasuring only first state variable p, with a roll rate gyro, the corresponding
M matrix as such

M =
[
1 0 0 0

]
(18.33)

and then form the concatenated matrix with the columns

[
MT ATMT (A2)TMT (A3)TMT] = ⎡⎢⎢⎢⎣

1 −10 100 −1000
0 0 10 −114
0 −10 107 −984.9
0 0 0 0

⎤⎥⎥⎥⎦
(18.34)

the rank of which is 3, less than n = 4, and so we conclude that the system is not
completely observable using just a rate gyro.

(d) If the fourth state variable 𝜙 is the only measurement, we buildM as follows

M =
[
0 0 0 1

]
(18.35)

which leads to the matrix with the following concatenated columns:

[
MT ATMT (A2)TMT (A3)TMT] = ⎡⎢⎢⎢⎣

0 1 −10 100
0 0 0 10
0 0 −10 107
1 0 0 0

⎤⎥⎥⎥⎦
(18.36)

the rank of which is 4 = n, and so we can conclude that the entire system is observ-
able with a bank angle indicator as the only sensor used.
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18.10 A Display of all Three Structural Properties via Modal
Decomposition

For conceptual ease, we consider only the distinct eigenvalue case.
It is clear that every linear state space system

⃗̇x = Ax⃗ + Bu⃗
y⃗ = Cx⃗

can be visualized as consisting of some controllable as well as observable set of state
variables, some controllable but unobservable set of state variables, some observable
but uncontrollable set of state variables, and finally neither controllable nor observable
set of state variables. This division or distribution of state variables is more visible or
transparent in the modal coordinates, especially in the distinct eigenvalue case. This is
illustrated below. The Jordan canonical form is given by

⃗̇q = Jq⃗ +−1Bu⃗
= Jq⃗ + Bnu⃗

y⃗ = Cq⃗
= Cnq⃗.

We can rearrange the modal vector q⃗(t) such that

q⃗(t) =
⎡⎢⎢⎢⎣
qco(t)
qc(t)
qo(t)
q̃(t)

⎤⎥⎥⎥⎦
where ⎡⎢⎢⎢⎣

̇qco
q̇c
q̇o
̇̃q

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
Jco

Jc
Jo

J ∼

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
qco
qc
qo
q̃

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
Bco
Bc
0
0

⎤⎥⎥⎥⎦
u⃗

y⃗ =
[
Cco 0 Co 0

] ⎡⎢⎢⎢⎣
qco
qc
qo
q̃

⎤⎥⎥⎥⎦
where the modes in each of the four categories discussed before are easily understood
and visible, by carefully looking at the Jordanmatrix, the control distributionmatrix and
the corresponding output matrix.

18.11 Chapter Summary

In this chapter, we considered the other two structural properties of a linear state space
system, namely controllability and observability. We have learned that for time varying
systems, there are additional concepts such as reachability and constructibility. How-
ever, we focused on continuous time LTI systems for which it suffices to discuss only
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controllability and observability, which turn out to be dual to each other. Then within
systems which are uncontrollable, we have learnt how to decompose that uncontrollable
system into a controllable subspace and an uncontrollable subspace. If the uncontrol-
lable subspace is stable, we called that system a stabilizable system. Similarly we have
seen that an unobservable system can be decomposed into an observable subspace and
an unobservable subspace. If the unobservable subspace is stable, we called that system
a detectable system. These notions of controllability (stabilizabilty) and observability
(detectability) are extremely important to check before we embark on designing con-
trollers for linear state space systems. Fundamental concepts such as those discussed in
this chapter are also available in a more consolidated way in many excellent textbooks
dedicated to state space control systems such as [1–9]

18.12 Exercises

Exercise 18.1. Given the state space system

⎡⎢⎢⎢⎣
ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
−2 1 0 0
0 −2 0 0
0 0 3 0
0 0 0 −4

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
2 6
0 6
1 1
5 3

⎤⎥⎥⎥⎦
[
u1
u2

]
(18.37)

and that only u1 or u2 is available for implementation, which control would you pick
and why?

Exercise 18.2. Test the controllability of the following systems. For the systems which
are uncontrollable test the stabilizability.

(a) A =
[
−1 0
0 −2

]
;B =

[
2
0

]

(b) A =
[
−1 0
0 4

]
;B =

[
5
0

]

(c) A =
[
−1 0
0 −6

]
;B =

[
0
5

]

(d) A =
[
−5 0
0 −7

]
;B =

[
4
6

]

(e) A =
[
−1 1
0 −2

]
;B =

[
2
3

]

(f ) A =
[
−5 0
0 −5

]
;B =

[
2
3

]
.

Exercise 18.3.Ascertain if the following systems are already in the controllability canon-
ical form and if they are, investigate the stabilizability.

(a) A =
⎡⎢⎢⎣
−5 1 1
0 4 2
0 0 5

⎤⎥⎥⎦ ;B =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦
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(b) A =
⎡⎢⎢⎣
−5 1 0
0 4 0
0 0 −3

⎤⎥⎥⎦ ;B =
⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦
(c) A =

⎡⎢⎢⎣
−2 1 5
0 −2 4
0 0 −6

⎤⎥⎥⎦ ;B =
⎡⎢⎢⎣
3
0
0

⎤⎥⎥⎦
(d) A =

⎡⎢⎢⎢⎣
−5 1 0 1
0 4 0 2
0 0 −2 0
0 0 0 −3

⎤⎥⎥⎥⎦
;B =

⎡⎢⎢⎢⎣
1
1
0
0

⎤⎥⎥⎥⎦
.

Exercise 18.4. Test the observability of the following systems. For the systems which
are unobservable test the detectability.

(a) A =
[
−1 0
0 −2

]
;CT =

[
2
0

]

(b) A =
[
−1 0
0 4

]
;CT =

[
5
0

]

(c) A =
[
−1 0
0 −6

]
;CT =

[
0
5

]

(d) A =
[
−5 0
0 −7

]
;CT =

[
4
6

]

(e) A =
[
−1 0
1 −2

]
;Ct =

[
2
3

]

(f ) A =
[
−5 0
0 −5

]
;CT =

[
2
3

]
.

Exercise 18.5.Ascertain if the following systems are already in the observability canon-
ical form and if they are, investigate the detectability.

(a) A =
⎡⎢⎢⎣
−5 0 0
1 4 0
1 2 5

⎤⎥⎥⎦ ;C
T =

⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦
(b) A =

⎡⎢⎢⎣
−5 0 0
1 4 0
0 0 −3

⎤⎥⎥⎦ ;C
T =

⎡⎢⎢⎣
1
1
0

⎤⎥⎥⎦
(c) A =

⎡⎢⎢⎣
−2 0 0
1 −2 0
5 4 −6

⎤⎥⎥⎦ ;C
T =

⎡⎢⎢⎣
3
0
0

⎤⎥⎥⎦
(d) A =

⎡⎢⎢⎢⎣
−5 0 0 0
1 4 0 0
0 0 −2 0
1 2 0 −3

⎤⎥⎥⎥⎦
;CT =

⎡⎢⎢⎢⎣
1
1
0
0

⎤⎥⎥⎥⎦
.
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19

Shaping of Dynamic Response by Control Design:
Pole (Eigenvalue) Placement Technique

19.1 Chapter Highlights

In this first chapter on control design for linear state space systems, we present a very
important and popular control design method, widely known as the pole placement
method. Notice the rather casual name pole placement inspired by a transfer function
based viewpoint. Strictly speaking in our discussion on linear state space systems, we
need to label it as the eigenvalue placement method. However, because of our familiar-
ity with frequency domain, transfer function based methods as well the need for us to
be conversant with both classical control theory as well as modern control theory, we do
not mind calling this method the pole placement method. However, when we combine
the objective of placing the eigenvalues at some desired locations in the complex plane
as well as placing a subset of eigenvectors also with some desired directions, then we
label that design method as the eigenstructure assignment method. Note that eigenvec-
tors in time domain based methods are equivalent to zeroes of the transfer function in
the classical control theory. In this chapter, we also note that various trade-offs between
different controller structures as full state feedback, measurement (or output) feedback
and finally the observer (or estimator) based feedback.

19.2 Shaping of Dynamic Response of State Space Systems
using Control Design

Finally, we are at a stage where we are ready to design a controller u⃗(t) such that the
output y⃗(t) behaves the way we want. This is the control design phase. Recall that when
the state space system

⃗̇x = Ax⃗ + Bu⃗ x⃗(0) = x⃗0
y⃗ = Cx⃗ + Du⃗ (19.1)

z⃗ = Mx⃗ +���N 0u⃗

is completely controllable and completely observable (both from outputs as well as
measurements), we are in a position to design a controller u⃗(t) as a function of the
measurements z⃗(t) to make the output y⃗(t) behave the way we want.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Now let us write u⃗(t) = f⃗ (z⃗(t)) in general, i.e. we can build a general nonlinear
controller if we have to. However, for simplicity, we first attempt to design linear
controllers, i.e.

u⃗(t) = K(t) z⃗(t)
m × 1 m × l l × 1.

(19.2)

The control law in Equation 19.2 is called a measurement feedback control law. Here
the control gain K is simply a matrix of dimension m × l whose entries are yet to bet
determined.These gains can be time varying. However, again for simplicity, we attempt
to design a linear constant control gain K , i.e.

u⃗(t) = Kz⃗(t). (19.3)

Now, the next question we ask is: how do we want our y⃗(t) to behave? That is, what
is the expected desired behavior of the output? Typically the outputs y⃗(t) (and x⃗(t)) are
always modeled as some errors from steady state and therefore very frequently we want
y⃗(t) as well as x⃗(t) to go to zero so that the system when perturbed from the steady
state is required to go back to the steady state and we use feedback control to achieve
this objective. Desiring y⃗(t) and x⃗(t) to go to zero is called the regulation problem. If
instead y⃗(t) and x⃗(t) are required to reach some desired output y⃗d(t) and x⃗d(t) then we
call it a tracking problem. So in a way the regulation problem is a special case of the
tracking problem because in that case y⃗d(t) and x⃗d(t) are simply zero. Let us assume we
are designing a controller for regulation.
Nowwhen the controller u⃗(t) = Kz⃗(t) is controlling the system, the closed loop system

is given by

⃗̇x = (A + BKM) x⃗(0) = x⃗0
y⃗ = (C + DKM)x⃗.

(19.4)

Obviously, if we want x⃗(t) and then eventually y⃗(t) to go to zero, we require the closed
loop system matrix

Ac = (A + BKM)

to be an asymptotically stable matrix, i.e. it should have eigenvalues with negative real
parts. Unfortunately designing a measurement feedback control gain K such that the
closed loop system matrix Ac is asymptotically stable is quite difficult and there may
not even exist a gain K that can do this. Thus while measurement feedback is the most
practical and simple situation, it is also most inadequate, i.e.

u⃗(t) = Kz⃗(t)
⎧⎪⎨⎪⎩
simple and practical
but
inadequate or unacceptable performance

.

So we look for the other extreme. We assume that all state variables are available for
measurement! That is, we assume z⃗(t) = x⃗(t) ⇒ M = In. In this case we have

u⃗(t) = Kx⃗(t) (19.5)
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and here K is an m × n control gain matrix and this is called a full state feedback con-
troller. Then the closed loop system is given by

⃗̇x = (A + BK) x⃗(0) = x⃗0
y⃗ = (C + DK)x⃗.

Fortunately for this full state feedback case, assuming complete controllability and
observability, it is always possible to design a control gain K such that Ac = (A + BK) is
an asymptotically stable matrix.
Thus the full state feedback control

u⃗(t) = Kx⃗(t)
⎧⎪⎨⎪⎩
idealistic and may be impractical
but
is the best we can have from a performance point of view

.

Of course, there is a compromise, a via media way of designing a controller that is
practical and yet yields a reasonably good performance, and that is given by an observer
based controller, i.e. in this case, we build an estimator or observer of the entire state
x⃗, called ⃗̂x still using only the available measurements z⃗(t) and then use these estimated
states ⃗̂x in the controller, i.e.

u⃗ = f⃗ (⃗̂x)

where
⃗̂x = g⃗(z⃗(t)).

In what follows, we attempt to examine all these cases one by one.
In that connection, we first present a control design algorithm for full state feedback

controller u⃗ = Kx⃗, because it is known to yield the best performance. Even though it
could be impractical, knowing what this controller can achieve in terms of performance
would allow us to know the reference or benchmark the performance and then use this
knowledge to assess how close any other controller we design is to this best performance
we aspire.
Typically, the performance of the closed loop system can be measured from two

perspectives, namely from desired time response/relative stability point of view or from
regulation/tracking measure point of view. Out of which, the desired time response
point of view can be accomplished by our ability to place the eigenvalues in some
desired locations in the complex plane as well as our ability to place the eigenvectors
in some desired directions as well. This is because, as we have seen from the previous
discussions, eigenvalues dictate the nature of the time response and eigenvectors
dictate the amplitude of the time response. Hence to get some desired time response in
the closed loop system, we need to specify the desired eigenvalues as well as the desired
eigenvectors together. A control design method that accomplishes this is labeled as
the eigenstructure assignment method. However, complete independent assignment
of eigenvalues as well as eigenvectors is not always possible because of the inherent
constrained relationship between the eigenvalues and the corresponding eigenvectors.
So practical eigenstructure assignment is necessarily constrained and cannot be
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arbitrary. Since an eigenstructure assignment (even the constrained one) control design
is an advanced subject requiring detail beyond the scope of an undergraduate course,
what we attempt in this book is a simplified version of this ambitious task, and that is
simple, arbitrary desired eigenvalue assignment problem. When we specify the stable
eigenvalues of the closed loop system matrix Ac = A + BK as desired closed loop
eigenvalues that are supposedly known or given to us, then it is easy to determine the
gain K such that (A + BK) has those desired eigenvalues.This process of designing gain
K such that (A + BK) has the known desired eigenvalues 𝜆di is called control design
by pole placement or control design by eigenvalue placement or control design by
pole (or eigenvalue) assignment. In what follows, we present control design methods
for arbitrary eigenvalue placement. The algorithms for this objective differ based on
the number of control inputs, m. When m = 1 (i.e. a single input case), the resulting
control gain is unique, whereas when we have multiple inputs (m ⩾ 2) we could have
multiple (non-unique) gains to achieve that objective. So we consider both of these

Real

Minimum
damping ratio

line

Minimum

Max

From saturation consideration

ξωn

ξωn

Im

Figure 19.1 Pole placement region in the complex plane.
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cases. First, we present the control design method for the single input case. The typical
pole placement region in the complex plane is shown in Figure 19.1.

19.3 Single Input Full State Feedback Case: Ackermann’s
Formula for Gain

Given
⃗̇x = Ax⃗ + Bu⃗ A is n × n

B is n × 1
u⃗ = Kx⃗ K is 1 × n

⎫⎪⎬⎪⎭
. (19.6)

Our aim is to design the full state feedback control gainK such that the closed loop sys-
temmatrixA + BK has eigenvalues places at the given desired locations. Let the desired
eigenvalues 𝜆d1, 𝜆d2, · · · , 𝜆dn (with the assumption that complex ones are specified in
complex conjugate pairs).

Steps for Full State Feedback Control Gain Determination:

Step 1. From these desired eigenvalues, first compute the characteristic polynomial of
the desired closed loop system and let this polynomial be

𝛼d(s) = sn + 𝛼1sn−1 + 𝛼2sn−2 + · · · + 𝛼n−1s + 𝛼n. (19.7)
Step 2. Form the matrix

𝛼d(A) = An + 𝛼1An−1 + 𝛼2An−2 + · · · + 𝛼n−1A + 𝛼nI. (19.8)
Step 3. Form the matrix

Cx(A) =
[
B AB A2B · · · An−1B

]
. (19.9)

Note that Cx will be an n × nmatrix (so is 𝛼d(A)).
Step 4. Finally

K = −eTn C−1
x 𝛼d(A) (19.10)

where
eTn =

[
0 0 … 0 1

]
. (19.11)

Step 5. Compute the eigenvalues of Ac = A + BK and make sure the eigevvalues of Ac
are indeed 𝜆d1, 𝜆d2, · · · , 𝜆dn.

Example 19.1 Given the state space system

ẋ =
[
−4 0
2 −2

]
+
[
4
0

]
u (19.12)

find a gain matrix K such that the closed loop eigenvalues are
𝜆d1 = −5 (19.13)
𝜆d2 = −12 (19.14)
𝜆d1 = −5; 𝜆d2 = −12.



374 19 Shaping of Dynamic Response by Control Design: Pole (Eigenvalue) Placement Technique

Solution:
Step 1. So 𝛼d(s) = (s + 5)(s + 12) = s2 + 17s + 60.
Step 2. Now

𝛼d(A) = A2 + 𝛼1A + 𝛼2I2
= A2 + 17A + 60I2

=
[

16 0
−12 4

]
+
[
−68 0
34 −34

]
+
[
60 0
0 60

]

=
[

8 0
22 30

]
.

Step 3.

Cx(A) =
[
B AB

]
=
[
4 −16
0 8

]
.

Step 4.

K = −
[
0 1

] [ 4 −16
0 8

]−1 [ 8 0
22 30

]

= −
[
0 1

] [ 1
4

1
2

0 1
8

][
8 0
22 30

]
= −

[
22
8

30
8

]
=
[
− 11

4
− 15

4

]
.

Step 5.

A + BK = −
[
−4 0
2 −2

]
+
[
4
0

] [
− 11

4
− 15

4

]
=
[
−15 −15
2 −2

]
which has 𝜆1 = −5 and 𝜆2 = −12.

Recall that in a single input case, the control gain is unique.

Typically, the locations of all the n desired eigenvalues within the complex plane,
needed for the control gain determination, are determined based on the speed of
response specifications such as the desired damping ratios and natural frequencies
of all the complex conjugate pairs based on the desired rise time, settling time, and
time constant characteristics in comparison to the open loop situation. Thus the n
desired eigenvalues are selected to reside in a bounded region in the left half of the
complex plane, where the dominant eigenvalue pair has a real part with sufficient
stability degree. The upper bound on the real part of the eigenvalues farthest from the
imaginary axis are selected to avoid saturation of the actuators. Note that the further
the real parts from imaginary axis, the larger the control gains. Thus the desired pole
locations need to be selected judiciously considering the trade-off between acceptable
speed of response specifications as well as the limits on the control effort.
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19.4 Pole (Eigenvalue) Assignment using Full State
Feedback: MIMO Case

In this section, we consider the MIMO case. Accordingly the full state feedback control
gain K is an m × n matrix where this time m > 1. We present a technique with which
we can construct a matrix K that places the eigenvalues of the closed loop matrix

(A + BK) (where u⃗ = Kx⃗)

in any desired set of locations specified a priori

𝜆i ∈ Ω, Ω = {𝜆d1, 𝜆d2, · · · , 𝜆dn}

(where 𝜆di denotes the desired closed loop eigenvalues with the complex eigenvalues
being specified in pairs). The eigenvalues of A + BK are the roots of

Δ′(𝜆) = |𝜆In − (A + BK)| = |𝜆In − A − BK | = 0

= |[𝜆In − A][In − (𝜆In − A)−1BK]| = 0

= |𝜆In − A||In − (𝜆In − A)−1BK | = 0

where the characteristic polynomial for the open loop is

Δ(𝜆) = |𝜆In − A|.
Define

Φ(𝜆) ≡ (𝜆In − A)−1

Δ′(𝜆) = Δ(𝜆)|In − Φ(𝜆)BK |.
However,

|In − Φ(𝜆)BK | = |Im − KΦ(𝜆)B|
from the identity |In +MN| = |Im + NM| whereM is n ×m and N ism × n.
The matrix K must be selected so that Δ′(𝜆di) = 0 for each specified 𝜆di. This will be

accomplished by forcing

|Im − KΦ(𝜆)B| = 0 for all 𝜆di ∈ Ω

where

Δ′(𝜆) = Δ(𝜆)|Im − KΦ(𝜆)B|.
Thedeterminant will be zero if a column of the abovematrix is zero.Thuswewill choose
K to force a column of Im − KΦ(𝜆)B to zero. Let the ith column of Im be ei∈m and let the
ith column of Im − KΦ(𝜆)B ≡ Ψ(𝜆) be Ψi. Thus 𝜆𝛼 ∈ Ω is a root of Δ′(𝜆) if

ei − KΨi(𝜆𝛼) = 0

or KΨi(𝜆𝛼) = ei
(19.15)

for i = 1, 2, · · · n and 𝛼 = 1, 2, · · · n.
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If an independent equation like Equation (19.15) can be found for every 𝜆𝛼 ∈ Ω, then
G can be obtained by combining the independent equations as follows.

⎡⎢⎢⎢⎢⎣

KΨi(𝜆1) = ei

KΨj(𝜆2) = ej

⋱
KΨr(𝜆n) = · · ·

⎤⎥⎥⎥⎥⎦
into one, i.e.⎡⎢⎢⎢⎣

K
[
Ψi(𝜆1) Ψj(𝜆2) · · · Ψr(𝜆n)

]
=
[
ei ej · · · er

]
↓ Ψ E

m × n n × n m × n

⎤⎥⎥⎥⎦
yielding

K = EΨ
−1

.

If all the desired 𝜆𝛼 are distinct, it will always be possible to find n linearly independent
columns of the n ×mnmatrix

[
Ψ(𝜆1) Ψ(𝜆2) · · · Ψ(𝜆n)

]
if the rank of each Ψ(𝜆i) ism.

Note: Controllability of the pair (A,B) is a necessary and sufficient condition for
arbitrary eigenvalue placement. Recall that in the MIMO case, the control gain K is
not unique for a given set of desired eigenvalues. That non-uniqueness comes from the
choice we have in selecting the linearly independent columns from the columns of Ψ
matrix in the procedure described earlier. It may be noted that some choices may yield
complex gains (especially when the desired eigenvalues include complex conjugate
pairs) and we discard those complex gains.
Let us illustrate the concept of the existence of multiple gains in the multiple input

case that can all place the closed loop eigenvalues at the given desired locations by a
simple example below.

Example 19.2 Let A =
[
0 2
0 3

]
, B =

[
0
1

]
. The open loop system is unstable. Controllabil-

ity is easily verified. Then

Φ =

[
𝜆 − 3 2
0 𝜆

]
𝜆(𝜆 − 3)

,Ψ(𝜆) = Ψ1(𝜆) =

[
2
𝜆

]
𝜆(𝜆 − 3)

.

If the desired poles are 𝜆d1 = −3, 𝜆d2 = −4, then Ψ1(𝜆1) =
[
−1∕9 −1∕6

]T and

Ψ1(𝜆2) =
[
1∕14 −1∕7

]T are linearly independent. We get K = −
[
1 1

] [ 36 1
−42 −28

]
=[

6 10
]
. This feedback gain matrix gives closed-loop eigenvalues at 𝜆 = −3 and 𝜆 = −4

Example 19.3 A system is described as A =
⎡⎢⎢⎣
−2 1 0
0 −2 0
0 0 4

⎤⎥⎥⎦, b =
⎡⎢⎢⎣
0 0
0 1
1 0

⎤⎥⎥⎦. Find a constant

state feedback matrix K that yields closed-loop pole Γ = −2,−3,−4. Inverting 𝜆I − A
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leads to

Φ =
⎡⎢⎢⎢⎣

0 1∕(𝜆 + 2)2

0 1∕(𝜆 + 2)
1∕(𝛾 − 4) 0

⎤⎥⎥⎥⎦
. (19.16)

A non-singular Gmatrix can be obtained as

Ψ = [Ψ1(−2)Ψ1(−3)Ψ1(−4)] =
⎡⎢⎢⎢⎣

0 1 1∕4
0 −1 −1∕2

−1∕6 0 0

⎤⎥⎥⎥⎦
. (19.17)

Corresponding to this choice, x = [e1e2e2] =
[
1 0 0
0 1 1

]
.

Example 19.4 A system is described as A =
⎡⎢⎢⎣
−2 1 0
0 −2 0
0 0 4

⎤⎥⎥⎦, b =
⎡⎢⎢⎣
0 0
0 1
1 0

⎤⎥⎥⎦. Find a constant

state feedback matrix K that yields closed-loop pole Γ = −2,−3,−4. Inverting 𝜆I − A
leads to

Φ =
⎡⎢⎢⎢⎣

0 1∕(𝜆 + 2)2

0 1∕(𝜆 + 2)
1∕(𝛾 − 4) 0

⎤⎥⎥⎥⎦
. (19.18)

A non-singular Gmatrix can be obtained as

Ψ = [Ψ1(−2)Ψ1(−3)Ψ1(−4)] =
⎡⎢⎢⎣

0 1 1∕4
0 −1 −1∕2

−1∕6 0 0

⎤⎥⎥⎦ . (19.19)

Corresponding to this choice, x = [e1e2e2] =
[
1 0 0
0 1 1

]
.

Example 19.5

ẋ =

[
−0.01 0
0 −0.02

]
x(t) +

[
1 1

−0.25 0.75

]
u(t).

Here we have two inputs. Let the controller be given by the full state feedback controller
of the type,

u(t) =

[
K11 K12

K21 K22

]
x(t).

Let us now build this gain K such that the desired closed loop characteristic polynomial
given by s2 + 0.2050s + 0.01295 with the desired eigenvalues being −0.1025 ± j0.04944.
In this simple case, we can analytically form the closed-loop characteristic equation
as a function of the control gains and, by equating that with the desired characteristic
equation given above, we can determine all the possible gains that place the closed-loop
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Figure 19.2 Closed-loop responses corresponding to different initial conditions and gain matrices.

eigenvalues at the given locations. It turns out three gains exist that can do that job.They
are given by

Ka =

[
1.1 3.7
0 0

]
,Kb =

[
0 0
1.1 −1.2333

]
,Kc =

[
0.1 0
0 0.1

]
.

The state trajectories for each of closed loop systems formed by these gains are shown
in the Figure 19.2. It can be seen that those state trajectories lookmarkedly different from
each other even though all closed loop systemmatrices have the same set of closed loop
eigenvalues. Could you explain why? (See Exercise 19.3).

Important observation: While we noted that there could be multiple gains existing
in the MIMO pole placement design that all place the closed loop eigenvalues at the
specified desired locations, unfortunatelyMATLAB’s in-built place command for deter-
mining the gain for the pole placement problem in the MIMO case still produces only
one single gain and gives it as the output. It turns out that MATLAB gets this particular
single gain by a different method than the one we discussed in this chapter. However,
this author believes that there is interesting research that can be carried out knowing
all the possible multiple gains and as such prefers not to be constrained by this single
realization that is obtained from MATLAB output. Steps need to be taken to produce
all the possible choices for this MIMO pole placement problem.
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This non-uniqueness of the control gains for the MIMO case allows us to look for
alternative performance measures that demand the control gain that achieves the per-
formance objective in the best possible way, i.e in an optimal way where a performance
index defines what that optimal way is.This leads to the subject of the optimal quadratic
regulation problem which forms the topic of the next chapter.

19.5 Chapter Summary

In this chapter, we addressed the issue of designing controllers that can make the
output behave the way we want. We examined the different controller structures, such
as measurement feedback, full state feedback, and observer based feedback, along
with the trade-offs between them. Then we defined what we mean by the desired
behavior for an output in terms of desired time response or desired relative stability
or desired regulation/tracking points of view. Finally, we examined the control design
aspect for achieving the desired relative stability requirements via arbitrary eigenvalue
placement capability and discussed control design methods for the same, one for
the single input case and the other for multiple input case. In the next chapter, we
attempt to do the same for regulation/tracking as the desired behavior. Fundamental
concepts such as those discussed in this chapter are also available in a more consoli-
dated way in many excellent textbooks dedicated to state space control systems such
as [1–8]

19.6 Exercises

Exercise 19.1. An airplane is found to have poor short-period flying qualities in a par-
ticular flight regime. To improve the flying qualities, a stability augmentation system
using state feedback is to be employed. Determine the feedback gains so that the air-
plane’s short-period characteristics are

𝜆sp = −2.1 ± 2.14i. (19.20)

Assume the original short-period dynamics are given by[
Δ�̇�

Δq̇

]
=

[
−0.334 1.0
−2.52 −0.387

][
Δ𝛼

Δq

]
+

[
−0.027
−2.6

] [
Δ𝛿e

]
. (19.21)

For this problem, use both Ackermann’s formula as well as the MIMO gain informa-
tion and check if they give the same answer or not.

Exercise 19.2. In the satellite attitude control problem, where the dynamics are given by[
�̇�1

�̇�2

]
=

[
0 −10
10 0

][
𝜔1

𝜔2

]
+

[
1 0
0 1

][
T1

T2

]
(19.22)

design a full state feedback control gain such that the closed loop system has a natural
frequency 𝜔n = 10 rad s−1 and a damping ratio of 𝜉 = 0.7.
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Exercise 19.3. Consider a linear multi-variable system with multiple inputs, i.e.

ẋ = Ax + Bu u𝜖IRm, m > 1
x𝜖IR4 . (19.23)

It is desired to place the eigenvalues of the closed loop systemwith a full state feedback
gain K at

𝜆d1,d2 = −0.3 ± 1.2i
𝜆d3,d4 = −1.2 + 2.5i,

(19.24)

Three engineers come up with three different gains Ka, Kb, and Kc such that all three
achieve closed loop systems with the desired eigenvalues.
(a) Is it possible for the engineers to come upwith different gains such that all achieve

desired closed loop eigenvalues?
(b) Then let us take each of these gains and plot the time responses of xi(t) for some

given initial conditions. It turns out that the time histories look completely differ-
ent for each of the three gains even though all the time histories asymptotically go
to zero. Can you explain why the time histories were different even though they
supposedly have the same closed loop eigenvalues?

Exercise 19.4. The linearized longitudinal motion of a helicopter near hover (see
Figure 19.3) can be modeled by the normalized third order system

⎡⎢⎢⎣
q̇
�̇�

u̇

⎤⎥⎥⎦ =
⎡⎢⎢⎣
−0.4 0 −0.01
1 0 0
1.4 9.8 −0.02

⎤⎥⎥⎦
⎡⎢⎢⎣
q
𝜃

u

⎤⎥⎥⎦ +
⎡⎢⎢⎣
6.3
0
9.8

⎤⎥⎥⎦ 𝛿
where
q = pitch rate
𝜃 = pitch angle of fuselage
u = horizontal velocity
𝛿 = rotor tilt angle (control variable).
Suppose our sensor measures the horizontal velocity u as the output; that is, y = u.
(a) Find the open-loop pole locations.
(b) Is the system controllable?

Rotor

u

Rotor
thrust

Fuselage
reference
axis

Vertical
θ

δ

Figure 19.3 Helicopter problem.
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(c) Find the feedback gain that places the poles of the system at s = −1 ± 1j and s =
−2. Note that this is a measurement feedback.

(d) Now assume full state feedback and find all the possible control gains that take
place the clopsed loop eigenvalues at the above mentioned locations.

Notes: In all these problems, plot all the state trajectories and output trajectories,
assuming a non-zero initial condition in the state. Be sensible in selecting the initial
conditions x(0). Plot the open loop trajectories first and then plot the closed loop
trajectories larger and defend the final control design you suggest to the customer.
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20

Linear Quadratic Regulator (LQR) Optimal Control

20.1 Chapter Highlights

Wehave seen in the previous chapter that for a standardmultiple input/multiple-output
system, the pole placement control design technique described producesmultiple gains,
which all achieve the desired closed loop locations but with possibly different closed
loop state and output time response trajectories. This is because in that technique, we
focused only on eigenvalue placement with no attention paid to the resulting eigen-
vectors, which are different for different gains, thereby yielding various time response
trajectories. This indicates that there is an avenue available to demand more than just
desired eigenvalue placement, which is a measure of relative stability, with emphasis on
achieving a desired damping ratio and natural frequencies in the closed loop trajectories.
Instead of relative stability, the other measure of performance, as mentioned earlier, is
the regulation/tracking behavior. Just as full eigenstructure assignment control design
requires knowledge of an advanced nature, so does tracking control design. However,
regulation is a special case of the tracking problem and hence, commensurate with the
scope of this book aimed at an undergraduate student body, in this chapter, we present
a highly useful and well received control design method for regulation as the control
objective. This design method is popularly known as the LQR (linear quadratic regu-
lator) technique. This technique is labeled as an optimal control method because the
problem formulation involves minimizing a quadratic performance index that reflects
our desire to take the output as closely to zero (regulate) as possiblewithminimal control
effort. Hence the label optimal control.

20.2 Formulation of the Optimum Control Problem

Thedynamic process considered here, as elsewhere in this text, is, as usual, characterized
by the vector matrix differential equation

ẋ = Ax + Buy = Cx (20.1)

where x is the process state, u is the control input, y is the output and matrices A, B and
C are known (given) matrices. Again, as before, we seek a linear control law

u(t) = −Kx(t) (20.2)

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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where K is a suitable gain matrix. Here, however, instead of seeking a gain matrix to
achieve specified closed-loop pole locations, we now seek a gain to minimize a specified
performance criterion V (or cost function) expressed as the integral of a quadratic form
in the state x plus a second quadratic form in in the control u

V =
∫

T

t
[y′(𝜏)Q(𝜏)y(𝜏) + u′(𝜏)Ru(𝜏)]d𝜏 (20.3)

where Q and R are symmetric positive definite matrices. They represent the weight-
ings we impose on the various output and control variables in the regulation problem.
The above performance index can then be rewritten as

V =
∫

T

t
[x′(𝜏)Q(𝜏)x(𝜏) + u′(𝜏)Ru(𝜏)]d𝜏 (20.4)

where Q is a symmetric, possibly positive semi-definite matrix and R is always a sym-
metric, positive definite matrix.
Some explanatory remarks about this performance criterion are in order before we

attempt to find the optimum gain matrix K .
First, we note that minimization of V also minimizes 𝜌V where 𝜌 is any positive con-

stant.
Second, regarding the limits on the integral, the lower limit t is identified as the

present time, and the upper limit T is the terminal time, or final time.The time difference
T − t is the control interval, or time-to-go. If the terminal time T is finite and fixed,
the time-to-go keeps decreasing to zero, at which time the control process ends. This
situation is characteristic of missile guidance problems, as will be discussed in an
example below. The more customary case, however, is that in which the terminal time
is infinite. In this case we are interested in the behavior of the process “from now on”,
including the steady state. This is precisely the case addressed by pole placement, and
is the case that will receive the major portion of our attention subsequently.
Finally, consider the weighting matrices Q and R. These are often called the state

weighting matrix and control weighting matrix, respectively. We are about to derive
a recipe for finding the control gain matrix G in terms of these weighting matrices. In
other words, we can plug the matrices Q and R, along with the matrices A and B that
define the dynamic process, into a computer program and direct it to find K .
The weighting matrix Q specifies the importance of the various components of the

state vector relative to each other. For example, suppose that x1 represents the system
error, and that x2,… , xk represent successive derivatives, i.e.

ẋ2 = ẋ
ẋ3 = ẍ

…
ẋk = x(k−1).

If only the error and none of its derivatives are of concern, then we might select a state
weighting matrix

Q =

⎡⎢⎢⎢⎢⎣

1 0 … 0
0 0 … 0
… … … …
0 0 … 0

⎤⎥⎥⎥⎥⎦
(20.5)
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which will yield the quadratic form
x′Qx = x21. (20.6)

However, the choice of (20.6) as a state weighting matrix may lead to a control system
in which the velocity x2 = i is larger than desired. To limit the velocity, the performance
integral might include a velocity penalty, i.e.

x′Qx = x21 + c2x22 (20.7)
which would result from a state weighting matrix

Q =

⎡⎢⎢⎢⎢⎢⎣

1 0 … 0
0 c2 … 0
… … … …

0 0 … 0

⎤⎥⎥⎥⎥⎥⎦
. (20.8)

Another possible situation is one in which we are interested in the state, only through
its influence on the system output

y = Cx. (20.9)
In other words, we are interested in regulating the output y(t), not just the state x(t).
For example, for a system with a single output

y = c′x (20.10)
a suitable performance criterion might be

y2 = x′cc′x. (20.11)
So in this case

Q = cc′a (20.12)
where a is any positive scalar. It should, by now, be obvious that the choice of the state
weighting matrix Q depends on what the system designer is trying to achieve.

20.3 Quadratic Integrals and Matrix Differential Equations

When the control law Equation 20.14 is used to control the dynamic process in
Equataion 20.13, the closed-loop dynamic behavior is given by

ẋ = Ax − BKx = Acx (20.13)
where

Ac = A − BK (20.14)
is the closed-loop dynamics matrix. In most cases considered in this text, we are inter-
ested in the case in which A,B, and K are constant matrices, but there is really no need
to restrict them to be constant; in fact, the theoretical development is much easier if
we do not assume that they are constant. Thus, we permit the closed-loop matrix A, to
vary with time. Since A, may be time varying we cannot write the solution to Equation
20.13 as a matrix exponential. However, the solution to Equation 20.13 can be written
in terms of the general state transition matrix

x(𝜏) = Φc(𝜏, t)x(t) (20.15)
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where Φc is the state transition matrix corresponding to Ac. Using Equaton (20.15), the
performance index can be expressed as a quadratic form in the initial state x(t). In par-
ticular

V =
∫

T

t
[x′(𝜏)Qx(𝜏) + x′(𝜏)K ′RKx(𝜏)]d𝜏

=
∫

T

t
x′(t)Φc(𝜏, t)Q + K ′RKΦ(𝜏, t)x(t)d𝜏.

The initial state x(t) can be moved outside the integral to yield

V = x′(t)P(t,T)x(t) (20.16)

where

P(t,T) =
∫

T

t
Φ′

c(𝜏, t){Q + K ′RK}Φc(𝜏, t)d𝜏. (20.17)

For purposes of determining the optimum gain, i.e. the matrix K that results in the
closed-loop dynamics matrix Ac = A − BK , which minimizes the resulting integral, it
is convenient to find a differential equation satisfied. For this purpose, we note that V is
a function of the initial time t. Thus we can write (20.16) as

V (t) =
∫

T

t
x′(𝜏)L(𝜏)x(𝜏)d𝜏 (20.18)

where

L = Q + K ′RK . (20.19)

(Note that L is not restricted to be constant.) Thus, by the definition of an integral
dV
dt

= −x′(𝜏)Lx(𝜏)|𝜏=1 = −x′(t)Lx(t) (20.20)

However,
dV
dt

= ẋ′(t)P(t,T)x(t) + x′(t)Ṗ(t,T)x(t) + x′(t)P(t,T)ẋ(t). (20.21)

(The dot over P denotes differentiation with respect to t, that is,

Ṗ(t,T) = 𝜕P(t,T)∕𝜕t).

We obtain
dV
dt

= x′(t)[A′
c(t)P(t,T) + Ṗ(t,T) + P(t,T)Ac(t)]x(t). (20.22)

We thus have two expressions for dV
dt
. Both are quadratic forms in the initial state x(t),

which is arbitrary.The only way two quadratic forms in x can be equal for any (arbitrary)
x is if the matrices underlying the forms are equal. Thus we have found that the matrix
P satisfies the differential equation

−L = A′
cP + Ṗ + PAc. (20.23)

One should not forget that

P = P(t,T) Ac = Ac(t) L = L(t). (20.24)
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We have already determined

P(t,T) =
∫

T

t
Φ′

c(𝜏, t)L(t)Φc(𝜏, t)d𝜏 (20.25)

where

P(t,T) = 0 (20.26)

is the required condition.

20.4 The Optimum Gain Matrix

When any gain matrix K is chosen to close the loop, the corresponding closed-loop
performance has been shown to be given by

V (t) = x′(t)P(t,T)x(t). (20.27)

In terms of the matrices A,B, and K , Q, and R become

−Ṗ = P(A − BK) + (A′ − K ′B′)P + Q + K ′RK . (20.28)

Our task now is to find thematrixK that makes the solution to Equation (20.28) as small
as possible. What does it mean for one matrix to be smaller than another? We are really
interested in the quadratic forms resulting from these matrices, and thus we are seeking
the matrix P for which the quadratic form

V̂ = x′P̂x < x′Px (20.29)

for any arbitrary initial state x(t) and any matrix P ≠ P̂. The problem of finding an opti-
mum gain matrix can be approached by a number of avenues.
Now the minimizing matrix P that results from the minimizing gain K ,

− ̇̂P = P̂(A − BK̂) + (A′ − K̂ ′B′)P̂ + Q + K̂ ′K̂ . (20.30)

Any non-optimum gain matrix K and the corresponding matrix P can be expressed in
terms of these matrices:

P = K̂ + N
K = K̂ + Z

−( ̇̂P + Ṅ) = (P̂ + N)[A − B(K̂ + Z)] + (A′ − (K̂ ′ + Z′)B′](P̂ + N)
+ Q + (K̂ ′ + Z′)R(K̂ + Z). (20.31)

On subtracting (20.30) from (20.31) we obtain the following differential equation for N

−Ṅ = NAc + Ac′N + (K̂ ′R − P̂B)Z + Z′(RK̂ − B′P̂) + Z′RZ (20.32)

where Ac = A − BK = A − B(K̂ + Z). The differential equation (20.32) is exactly in the
form of (9.16) with L in the latter being given by

L = (K̂ ′R − P̂B)Z + Z′(K̂ ′R − P̂B)′ + Z′RZ. (20.33)
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Using (20.25) we see that the solution to (20.32) is of the form

N(t,T) =
∫

T

t
Φ′

c(T , t)LΦc(T , t)d𝜏. (20.34)

Now if V̂ is minimum, then we must have

x′P̂x ≦ x′(P̂ + N)x = x′P̂x + x′Nx (20.35)

which implies that the quadratic form x′Nxmust be positive-definite, or at least positive
semi-definite. Now look at L as given by (20.33). If Z is sufficiently small the linear terms
dominate the quadratic term Z′RZ.
We conclude that for the control law K̂ to be optimum, we must have

RK̂ − B′P = 0 (20.36)

or, since the control weighting matrix R is always non-singular,

K̂ = R−1B′P̂. (20.37)

This gives the optimum gain matrix in terms of the solution to the differential equation
(20.30) that determines P̂. When (20.37) is substituted into Equation (20.30) the follow-
ing differential equation results for P̂:

− ̇̂P = P̂A + A′P̂ − P̂BR−1B′P̂ + Q. (20.38)

One obvious method of solving is the numerical integration of (20.38). Since P is sym-
metric, there are k(k + 1)∕2 coupled, scalar equations to be integrated. It should be
noted that these equations are integrated backward in time, because the condition that
must be satisfied is

P̂(T ,T) = 0 (20.39)

and we are interested in P̂(T ,T) for t < T .

20.5 The Steady State Solution

In an application inwhich the control interval is finite, the gainmatrixK will generally be
time varying evenwhen thematricesA,B,Q, andR are all constant, because the solution
matrix P(t,T) of the matrix Riccati equation will not be constant. However, suppose the
control interval is infinite. We want a control gain K that minimizes the performance
integral

V∞ =
∫

∞

t
(x′Qx + u′Ru)d𝜏. (20.40)

In this case the terminal time T is infinite, so the integration (backward in time) will
converge to a constant matrix P.
For an infinite terminal time

V∞ = x′Px (20.41)

here P satisfies the algebraic Riccati equation (ARE)

0 = PA + A′P − PBR−1B′P + Q (20.42)
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and the optimum gain in the steady state is given by

P = R−1B′P. (20.43)

Formost design applications the following facts about the solution of (20.42) will suffice:

1. if the system is asymptotically stable, or
2. if the system defined by the matrices (A,B) is controllable, and the system defined by

(A,C) where C′C = Q, is observable,

then the ARE has a unique, positive definite solution P.

20.6 Disturbances and Reference Inputs

When there are exogenous input functions (such as disturbances or even some reference
inputs) in the system, we need to consider a more general model for the state space
system, as given by

ẋ = Ax + Bu + E𝑤 (20.44)

where𝑤(t) is the exogenous (disturbance or reference variable) vector. Assume that𝑤(t)
satisfies a differential equation

̇𝑤(t) = A0𝑤(t). (20.45)

Hence the entire (meta)state satisfies the differential equation

�̇� = Ameta𝜉 + Bmetau. (20.46)

Here

𝜉 =
[
x
𝑤

]
(20.47)

Ameta =
[
A E
0 A0

]
(20.48)

and

Bmeta =
[
B
0

]
, (20.49)

The exogenous state 𝑤(t) is not controllable. Hence we need to assume that the meta
state is stabilizable. Then an appropriate performance integral would be

V =
∫

T

t
(𝜉′Qmeta𝜉 + u′Ru)d𝜏. (20.50)

The weighting matrix for the metastate is of the form

Qmeta =
[
Q 0
0 0

]
. (20.51)

For x = ẋ = 0, the required steady state control u and the steady state exogenous input
𝑤must satisfy

Bu + E𝑤 = 0. (20.52)
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Express the total control u as the sum of the steady state control and a corrective control
𝑣:

u(t) = u + 𝑣(t). (20.53)

Then

�̇� = Ameta𝜉 + Bmeta𝑣. (20.54)

The corrective control 𝑣 does tend to zero and minimizes to

V =
∫

∞

t
(𝜉′Qmeta𝜉 + 𝑣′R𝑣)d𝜏 (20.55)

thereby, finally, minimizing the quadratic form

V =
∫

∞

t
(x′Qx + 𝑣′R𝑣)d𝜏. (20.56)

Thus eventually the optimal controller is 𝑣(t) where

𝑣(t) = u(t) − u (20.57)

where u(t) is the LQR optimal control for the system without the exogenous input.
However, there are some issues with this approach and the assumptions we made. Even
if themeta system is stabilizable, the steady state control umay not exist. Even if it exists,
it may not be unique. Also minimizing the index V with control 𝑣 in it is not same as
minimizing V with control u in it because of the presence of cross terms appearing in
the index V with u in it (because u = u + 𝑣). For issues related to these, as well as for
unstabilizable meta systems, the reader is encouraged to consult books such as [3].

Example 20.1 Let us illustrate the LQR design method by the following simple
example:[

ẋ1
ẋ2

]
=
[
−1.1969 2.0
2.4763 −0.8581

] [
x1
x2

]
+
[
−0.1149
−14.1249

]
u.

The weighting matrices are chosen as follows:

Q =
[
1 0
0 10

]
R = 5.

(a) Find the optimal gain K that minimizes the quadratic cost function.
(b) Plot the state trajectory of all two state variables to the following initial conditions:

xo =
[
1 1

]T
. (20.58)

This problem can be solved using MATLAB.

(a) After defining thematricesA, B, Q, andRwe simply call upon the in-built command

K=lqr(A,B,Q,R)
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which yields the optimal gain

K =
[
−0.2779 −1.3814

]
. (20.59)

(b) Then, we define state space system and follow its trajectory for the first 5 s after
perturbation

sys=ss(A-B*K,[],eye(2),[])
initial(sys,x0,5)

Note here C is simply a 2 × 2 identity matrix.The output of this command (the state
trajectories) is pictured in Figure 20.1

In the above example, we specified a given set of weighting matrices Q and R and
obtained an optimal LQR gain corresponding to those weighting matrices and analyzed
the closed loop system state trajectories. However, if the closed loop system state tra-
jectories are not satisfactory, we need to change those weighting matrices and redo the
optimal control problem for the new set of weightingmatrices. Instead of going through
this process in an iterativewaywithmultiple runs, it ismore prudent to select theweight-
ings also in an optimal way in the sense that the closed loop system delivers acceptable
performance with these optimal weightings. Conceptually, we know that in this LQR
problem, a smaller state regulation cost is achieved at the expense of larger control reg-
ulation cost because we areminimizing the sum of these two costs. So if we can generate
a trade-off curve between the state regulation cost and the control effort (reflected via
the control gain elements) as a function of a scalar weighting parameter, then we can

1.2
Response to Initial Conditions
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Figure 20.1 The solution to the system of two equations in two unknowns.



392 20 Linear Quadratic Regulator (LQR) Optimal Control

select that optimal weighting parameter based on the trade-off between the two costs.
Since the weightingmatricesQ and R appear in the Riccati equation as a ratio, we can fix
one of the weighting matrices, either Q or R and vary the other. Since as a matrix, each
of these matrices have too many design variables, we propose to fix the state weighting
matrixQ and select a scalar design parameter 𝜌 within the weighting matrix R. Thus we
take the overall control weighting matrix R as R = 𝜌Ro, where we now fix the weighting
matrix Ro, so that 𝜌 then becomes our single design variable, in the sense that for each
𝜌 we get an optimal LQR gain. Thus the objective of this optimal LQR problem is to
select the best value of 𝜌, which in turn allows us to select the best LQR gain based on
the trade-off information between the state regulation cost, and the control effort. The
steps involved in getting this trade-off curve are explained next.

20.7 Trade-Off Curve Between State Regulation Cost
and Control Effort

We observed that in the LQR problem formulation, we are minimizing the total regula-
tion cost comprising the sum of state regulation cost and the control regulation cost as
given by

V =
∫

∞

t
(x′Qx + u′Ru)d𝜏. (20.60)

Intuitively, it is clear that the more control effort we expend, the less the state regulation
cost will be. In other words, we do not obtain any insight into the trade-off between the
state regulation cost and the control effort just by looking at the total minimized cost.
So, we need to quantify control effort, which is not exactly same as the total control reg-
ulation cost. For this, let us take out one of the design variables out of the total regulation
cost. Let the control weighting matrix R be written as R = 𝜌Ro where Ro is, as usual, a
symmetric positive definite matrix and the scalar design variable 𝜌 is positive which we
vary during the LQR optimization procedure.Thus we write the total performance cost
index as

V =
∫

∞

t
(x′Qx + 𝜌u′Rou)d𝜏. (20.61)

We then write

Vx = ∫

∞

t
(x′Qx)d𝜏 (20.62)

and

Vu = ∫

∞

t
(u′Rou)d𝜏. (20.63)

Thus we have,

V = Vx + 𝜌Vu. (20.64)

We now label the costVx as the state regulation cost and the costVu as the control effort.
Once we compute these two costs separately for a given value of the design variable 𝜌,
we can note the state regulation cost for a given control effort. Then we could draw the
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trade-off curve between the state regulation cost and the corresponding control effort
as a function of the design variable 𝜌. This requires us to know a technique that allows
us to compute these individual regulation costs separately. In what follows, we present a
generic method to compute the quadratic cost of any linear asymptotically stable linear
state space system.

20.7.1 Method to Evaluate a Quadratic Cost Subject to a Linear (Stable) State
Space System

Consider ẋ = Ax, x(0) = x0,A ∈ Rnxn, where A is assumed to be an n × n asymptotically
stable matrix. Also consider the cost function,

J =
∫

∞

0
xTQxdt Q is symmetric, PD > 0. (20.65)

Then the value of the cost function J can be easily calculated as follows:

J = xT0 Px0 (20.66)

where P is the solution of the Lyapunov equation,

PA + ATP + Q = 0. (20.67)

Note that P is a symmetric, positive definite matrix. Note that a Lyapunov equation
solution exists only when A is an asymptotically stable matrix.
Now we can apply this technique in our LQR problem to evaluate the state reputation

cost and control effort separately as follows:
Consider the LQR problem with the index,

J =
∫

∞

0
(yTQy + uTRu)dt =

∫

∞

0
(xTQx + uTRu)dt. (20.68)

Let Q (= CTQC) be fixed and R = 𝜌Im so that

J =
∫

∞

0
(xTQx + 𝜌uTu)dt

=
∫

∞

0
(xTQxdt) + 𝜌

∫

∞

0
(uTu)dt (20.69)

= Jx + 𝜌Ju.

We call Jx the state reputation cost, Ju the control effort cost (or simply control effort).
Remember that we have,

u = Kx K = −R−1BTP (20.70)

where P is the symmetric positive definite solution of the algebraic Riccati equation,

PA + ATP − PBR−1BTP + Q = 0. (20.71)

The closed loop system is,

ẋ = (A − BR−1BTP) x = AClx, x(0) = x0 (20.72)

where ACl is asymptotically stable. Obviously we can easily find,

Jx = ∫

∞

0
(xTQxdt) = xT0 Pxx0 (20.73)
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where Px comes from the solution to the Lyapunov equation,

PxACl + AT
ClPx + Q = 0. (20.74)

Similarly we can find,

Ju = ∫

∞

0
(uTu)dt

=
∫

∞

0
xTKTKxdt (20.75)

= xT0 Pux0
where Pu comes from the solution of the Lyapunov equation,

PuACl + AT
ClPu + KTK = 0. (20.76)

Note that the optimal cost, J , is given by,

J = xT0 Px0
= Jx + 𝜌Ju.

(20.77)

Obviously Ju can also be found out by knowing J , Jx, and 𝜌, because for a given 𝜌, we see
that,

Ju =
(J − Jx)

𝜌
. (20.78)

So the procedure to find the most practical, optimal control gain, K∗, is to vary 𝜌 in
increments and for each 𝜌 solve the LQR problem and find the costs Jx and Ju and plot
them, which will look as in Figure 20.2.
Then knowing the limits of Jx and Ju, we can zero in the most desirable 𝜌∗ and in

turn the optimal control gain K∗ (corresponding to that 𝜌∗). In other words, there is a
mini-optimizationwithin the overall LQRoptimization problem.Thus, finally, the utility
of the LQR optimal control problem is completely realized only after we obtain this
trade-off curve.Without this trade-off curve, there is notmuchwe accomplish by simply
solving the original LQR control design problem. In otherwords, obtaining this trade-off
curve gives closure to the LQR optimal control design procedure.

Jx

Ju

ρ increasing

Figure 20.2 Desirable region for 𝜌, and thus for K*.
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Note that the eigenvalues of the closed loop system matrix ACl are determined by the
optimal control gain, K , and we can get some control over them by treating the entire
matrix elements of Q and R as design variables, which could be unwieldy in a practical
situation, but the point is to know that we do have many design variables at our disposal
to come up with a meaningful and useful control gain that meets the closed loop system
specifications at the end of the design exercise.

20.8 Chapter Summary

In this chapter, we have covered a very important and popular control design method
called the LQR (linear quadratic regulator) technique. In this method, the control objec-
tive is formulated in an optimal control framework in which a quadratic performance
index is minimized with respect to the control function subject to a linear dynamic sys-
tem description serving as an equality constraint. This optimization method yields the
optimal control function as a full state feedback controller. Hence this method belongs
to the class of functional optimization methods rather than the parameter optimization
methods in which the controller structure is pre-supposed and the optimization is done
on the pre-supposed controller gains as parameters. Of course, parameter optimization
methods allow flexibility in specifying the controller structure but it is difficult to obtain
a solution to the optimization problem, whereas functional optimization methods (to
which LQR formulation belongs) offer no control over the structure of the optimal con-
troller but it is easier to find the solution to the posed optimization problem. It is also
important to realize that the optimality requirement begets stability of the closed loop
system as a nice by-product. In other words, the LQRmethod, which produces the opti-
mal control gain via a Riccati equation solution, automatically guarantees the stability
of the closed loop system. Of course, the difference from pole placement design is that
in the pole placement design case, we have control over the locations of the closed loop
eigenvalues, whereas in an LQR method, while guaranteeing a stable closed loop sys-
tem, does not give us any a priori knowledge about the locations of those closed loop
eigenvalues. However, it is known and proved that the closed loop eigenvalues of an LQR
designed closed loop system follow a pattern called the Butterworth pattern.
Fundamental concepts such as those discussed in this chapter are also available in

a more consolidated way in many excellent textbooks dedicated to state space control
systems such as [1–8]

20.9 Exercises

Exercise 20.1. An airplane is found to have poor short-period flying qualities in a par-
ticular flight regime. To improve the flying qualities, a stability augmentation system
using state feedback is to be employed. Assume the original short-period dynamics
are given by[

Δ�̇�
Δq̇

]
=
[
−0.334 1.0
−2.52 −0.387

] [
Δ𝛼
Δq

]
+
[
−0.027
−2.6

] [
Δ𝛿e

]
. (20.79)
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For this problem, use the LQR method to design a full state feedback control. Select
the state weighting matrix Q to be an identity matrix and the control weighting to be
a positive scalar 𝜌. Plot the trade-off curve, and finally select an appropriate scalar 𝜌
and the corresponding optimal control gain. Analyze the resulting closed loop eigen-
value scenario and compare it with the pole placement design that was done for this
problem in the previous chapter.

Exercise 20.2. In the satellite attitude control problem, the dynamics are given by[
�̇�1
�̇�2

]
=
[
0 −10
10 0

] [
𝜔1
𝜔2

]
+
[
1 0
0 1

] [
T1
T2

]
. (20.80)

For this problem, use the LQR method to design a full state feedback control. Select
the state weightingmatrixQ to be an Identitymatrix and the control weightingmatrix
to be a positive scalar 𝜌 times the identity matrix. Plot the trade-off curve, and finally
select an appropriate scalar 𝜌 and the corresponding optimal control gain. Analyze
the resulting closed loop eigenvalue scenario and compare it with the pole placement
design that was done for this problem in the previous chapter.
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21

Control Design Using Observers

21.1 Chapter Highlights

In this chapter, we present a design method, which, in some sense, combines the best
features of the two control design methodologies, namely it achieves reasonably good
performance but is more practical in control law implementation in that the control law
still uses only the available measurements without requiring all the state variables be
measured for feedback purposes. In this method, we use themeasurements information
to construct an estimate of the entire state, and feed those estimated state variables to
the actuator. Hence the name observer based feedback. Finally we also look at few other
possible controller structures labeled dynamic compensators of reduced order. Finally,
the possibility of spillover instability that may occur whenwe drive higher order systems
with lower order controllers is presented.

21.2 Observers or Estimators and Their Use in Feedback
Control Systems

Wehave learnt that puremeasurement feedback, while it is simple and practical, cannot
guarantee the stability of the closed loop system. In the other extreme, full state feed-
back can guarantee arbitrary pole (i.e. eigenvalue) placement (under the assumption of
complete controllability) but it is impractical because it is expensive to measure all the
state variables. So we need a compromise. That compromise is offered by observer or
estimator based controllers. In these, we take the measurements and build an estimator
or observer for the entire state as a function of these measurements and then we use
these estimated states in the full state feedback control scheme. Consider

⃗̇x = Ax⃗ + Bu⃗ −−−→ state x⃗ ∈n (21.1)
z⃗ = Mx⃗ −−−→measurements z⃗ ∈l. (21.2)

Let ⃗̂x be the state estimate. Obviously we want ⃗̂x to be as close to the actual state x⃗ as
possible. So let us build a model to generate ⃗̂x. So let us write

⃗̂̇x = A⃗̂x + Bu⃗ + F ⃗̃z (21.3)

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.



398 21 Control Design Using Observers

where F ⃗̃z is the forcing function term for the estimator. Here ⃗̃z is called themeasurement
residual because we want to drive the estimator with known measurements z⃗ and we
have yet to determine what ⃗̃z is and what F is.
F is the filter or estimator or observer gainmatrix and it is of dimensions n × l, because

⃗̃z is of the same dimensions as z⃗. Now, to determine F and ⃗̃z, let us calculate them from
Equation 21.1.

⃗̇x − ⃗̂̇x = A(x⃗ − ⃗̂x) − F ⃗̃z.

To make the right-hand side contain (x⃗ − ⃗̂x), let us write

⃗̃z = z⃗ − ⃗̂z = Mx⃗ −M⃗̂x = M(x⃗ − ⃗̂x). (21.4)

Then

(⃗̇x − ⃗̂̇x) = A(x⃗ − ⃗̂x) − FM(x⃗ − ⃗̂x)

= (A − FM)(x⃗ − ⃗̂x).

If we define (x⃗ − ⃗̂x) to be the estimation error e⃗, then you see that
⃗̇e = (A − FM)e⃗

e⃗(0) = x⃗(0) − ⃗̂x(0)
= x⃗(0) − 0

where we deliberately take ⃗̂x(0) = 0. Obviously the estimation error e⃗ can be made
asymptotically zero if we choose the F matrix such that (A − FM) is an asymptotically
stable matrix. Then with ⃗̃z given by Equation 21.4, the final form of the estimator
dynamics is given by

⃗̂̇x = A⃗̂x + Bu⃗ + FM(x⃗ − ⃗̂x)

⃗̂̇x = (A − FM)⃗̂x + Bu⃗ + F z⃗. (21.5)

In other words, the estimator or observer is given by Equation 21.5, and as promised,
the estimator is driven by the measurements z⃗ and has a plant matrix (A − FM). So as
long as we make sure that the estimator plant matrix (A − FM) is asymptotically stable,
then the estimated states ⃗̂x generated by Equation 21.5 are such that the estimation error
e⃗ → 0 asymptotically.
Thus themain task now is to build the estimator gainmatrix F . For the present assume

thatwe can build an estimator or observer gainmatrix F such that (A − FM) is an asymp-
totically stable matrix.
Then the controller, i.e. the observer-based controller, can be given by

u⃗ = K ⃗̂x (21.6)

where K is them × n controller gain matrix. If we now use this controller in the system,
then the closed loop system is given by

⃗̇x = Ax⃗ + BK ⃗̂x

⃗̂̇x = FMx⃗ + (A − BK − FM)⃗̂x
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i.e.

[
⃗̇x
⃗̂̇x

]
=
[

A BK
FM A + BK − FM

][ x⃗
⃗̂x

]
[
x⃗(0)
⃗̂x(0)

]
=
[
x⃗0
0

]
.

Thus the closed loop system with an observer based controller is a 2nth order system
with the closed loop system matrix of order 2n × 2n.
Quite interestingly, it can be shown that the eigenvalues of the overall closed loop

system Equation 21.6 are the union of the eigenvalues of (A + BK) and (A − FM), i.e.
the eigenvalues of the closed-loop system as though the whole state is measured and the
eigenvalues of the observer!
Then if we can build a controller gain matrix K such that (A + BK) is asymptotically

stable and a filter gain matrix (A − FM) is asymptotically stable, then we can see that
the overall estimation based controller closed loop system can be made asymptotically
stable.

Caution: Even though the matrices (A + BK) and (A − FM) can be individually asymp-
totically stable, the matrix (A + BK − FM) need not be stable! The matrix (A + BK −
FM) is called the controller closed loop system matrix and if K and F are such that
(A + BK − FM) is also asymptotically stable, then we say the closed loop system is
strongly stable and this concept is called strong stability. Figure 21.1 shows the typical
regions of placement of eigenvalues for the controller and estimator.

Example 21.1 A broom balancer is a control system that balances a broom on an arbi-
trary object, such as amoving cart. Such a system is pictured in Figure 21.2.This problem
was considered in [2]. Note the uncontrolled system here is fundamentally unstable, as
the broom would fall down if left uncontrolled. The governing equation describing this
system is:

(M +m)z̈ +ml�̈� cos 𝜃 −ml�̇�2 sin 𝜃 = u (21.7)

where

• M = 8kg is the mass of the cart
• m = 2kg is the mass of the broom
• l = 2m is the length of the broomstick
• g ≈ 10m/s2 for convenience.

(a) Linearize the above system with nominal values of

zn(t) = 0
żn(t) = 0
𝜃n(t) = 0
�̇�n(t) = 0
un(t) = 0

and obtain a linear state space model with horizontal distance z(t) as the
output(controlled) variable as well as the measurement variable.
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Estimator
eigenvalues

Controller
eigenvalues

Re

Im

Figure 21.1 Desired eigenvalue regions for estimator and controller.

distance z(t) angle
θ(t)

length l = 1m

mass m = 0.1kg

mass M = 1kg
force u(t)

Figure 21.2 An image of a broom balancer.
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(b) Using the A, B, C, andM matrices found from part (a), investigate the following
(i) open loop stability
(ii) controllability
(iii) observability.

(c) Design a full state feedback controller such that the controlled variable z(t) is
regulated reasonably well. Use the LQR method and select the output and control
weightings such that the dominant eigenvalue (that eigenvalue closest to the
imaginary axis) has a real part of at least −1.

(d) Now design an observer by determining the observer gain matrix F such that the
observer closed loop matrix A − FM has closed loop eigenvalues at

𝜆e1 = −2
𝜆e2 = −3
𝜆e3,4 = −2 ± i.

Hint:Theeigenvalues of a genericmatrixZ are the same as those of its transposeZT .
(e) After obtaining the controller gain matrix K and the filter gain matrix F , form the

overall observer based controller driven closed loop system and investigate if the
system is strongly stable.

(f ) Plot the output variable trajectory and the control trajectory for an initial condition
of 𝜃(0) = 5∘ and all others zero. Keep in mind the control is a feedback function of
the state estimate x̂.

Solution
(a) The linearized state space model is as follows:

⎡⎢⎢⎢⎢⎣

ż
z̈
�̇�

�̈�

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 1 0 0
0 0 −1 0
0 0 0 1
0 0 11 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

z
ż
𝜃

�̇�

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0
1
0
−1

⎤⎥⎥⎥⎥⎦
u

y = z =
[
1 0 0 0

] ⎡⎢⎢⎢⎢⎣

z
ż
𝜃

�̇�

⎤⎥⎥⎥⎥⎦
.

Since we are measuring the controlled variable, we may say y = z.
(b) (i) Three of the four eigenvalues of the open loop system matrix A have non-

negative real parts and therefore the open-loop system is unstable.The physical
interpretation of this is that we do not expect a broom to balance itself without
any forcing function supplied.

(ii) Using the given A and Bmatrices we form the matrix with the columns

[
B AB A2B A3B

]
=
⎡⎢⎢⎢⎣
0 1 0 1
1 0 1 0
0 −1 0 −11
−1 0 −11 0

⎤⎥⎥⎥⎦
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the rank of which is 4, equal to the order of theAmatrix.We therefore conclude
the system is controllable.

(iii) To comment on the observability of the system we form the concatenated
matrix with the rows⎡⎢⎢⎢⎣

C
CA
CA2

CA3

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤⎥⎥⎥⎦
the rank of which is 4, equal to the order of theAmatrix.We therefore conclude
the system is observable.

(c) We will form a gain K using the lqr command in MATLAB. To do this, first we
must choose the weighting matrix Q and control effort R. Since z is the only state
variable of interest to us, we will weight the matrix Q as follows:

Q =
⎡⎢⎢⎢⎣
25 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
.

We choose the control effort

R = 5

which achieves the requirement on the dominant eigenvalue. which outputs the gain

K =
[
−2.236 −3.584 −39.734 −12.245

]
.

The closed loop matrix Acl = A − BK formed using the gain K found above has the
eigenvalues

𝜆1,2 = −3.3112 ± 0.0298i
𝜆3,4 = −1.0188 ± 1.0006i

which meet the requirement that the dominant eigenvalue has a real part greater in
magnitude than unity.

(d) Recognize the matrix property given in the hint:

(A − FM)T = AT −MTFT (21.8)

where

M =
[
1 0 0 0

]
(21.9)

because the horizontal distance z is the only state variable we wish to observe.Then,
the right-hand side of Equation 21.8 is in the formA − BK andwe can therefore trick
the place command into finding a filter gain with the desired poles p as follows:

transp_F = place(A’,M’,p)
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Realize the output of this command is in fact the transpose of the filter matrix. So
we can transpose the output to obtain the filter gain:

F =
⎡⎢⎢⎢⎣

9
42

−148
−492

⎤⎥⎥⎥⎦
. (21.10)

You may confirm the eigenvalues of A − FM are indeed the desired eigenvalues

𝜆1,2 = −2 ± i
𝜆3 = −2
𝜆4 = −3.

(e) Keep in mind the state variables in the observer based system are
[
x x̂

]T . Then the
overall closed-loop observer based controller is given by

u = Kx̂
=
[
0 0 0 0 −2.236 −3.585 −39.734 −12.245

] (21.11)

where the first four 0 entries correspond to the x part of the state variables and the
last four (non-zero) entries correspond to the observer based controller x̂ as defined
in Equation 21.11, and the closed loop 4 × 8 concatenated matrix matrix Aobv as
follows

Aobv =
[ A −BK
FM A − BK − FM

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 −1 0 2.236 3.585 39.734 12.245
0 0 0 1 0 0 0 0
0 0 11 0 −2.236 −3.585 −39.734 −12.245
9 0 0 0 −9 1 0 0
42 0 0 0 −39.764 3.585 38.734 12.245

−148 0 0 0 148 0 0 1
−492 0 0 0 489.764 −3.585 −28.734 −12.245

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
the eigenvalues of which are

𝜆1,2 = −2 ± i
𝜆3 = −2
𝜆4 = −3

𝜆5,6 = −3.3112 ± 0.0298i
𝜆7,8 = −1.0188 ± 1.0006i.
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Notice these are the eigenvalues of A − BK and A − FM. Though these eigenvalues
are stable, those of thematrixA − BK − FM are not, andwemust therefore conclude
this is not a strongly stable system.

(f ) The output variable trajectory is found using the 4 × 8 state coefficient matrix Aobv
and we build the C matrix as follows

Cobv =
[
1 0 0 0 0 0 0 0

]
(21.12)

because the output variable z is the first state variable as defined in the state space
system given. Keep inmind here that the first four entries of theCobv matrix relate to
the four state variables, and the last four entries to the estimates of those four state
variables. Then

out = ss(Aobv,[],Cobv,[])
initial(out,x0)

where x0 is the initial conditions as described in the problem:

x0 =
[
0 0 5 0 0 0 0 0

]T (21.13)

which outputs the output trajectory shown in Figure 21.3
We are also interested in observing the time response of the angle 𝜃 to confirm our
designed controller actually balances the broomstick (Figure 21.4).
To output this trajectory we choose the C𝜃 matrix as follows

C𝜃 =
[
0 0 1 0 0 0 0 0

]
(21.14)

because 𝜃 is the third state variable.
To obtain the control trajectory, we use the

C = u = Kx̂ (21.15)
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Figure 21.3 Output variable trajectory for the observer based controller example.
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matrix as specified in Equation 21.11. Then we use the following lines of code

cntrl = ss(Aobv,[],u,[])
initial(cntrl,x0)

to output the control trajectory, displayed in Figure 21.5.

While the above mentioned observer based feedback control is a good way to build a
practical controller, it is clear that the feedback control law and the resulting closed loop
system order becomes large when the number of state variables (and thus the number of
state estimate variables needed in the control law) is large. Hence attempts weremade to
examine if we can build reduced order controllers to still achieve reasonably satisfactory
stability and performance characteristics. This leads us to the concept of dynamic com-
pensators of given order as alternative controller structures. We expand on that notion
in the next section.

21.3 Other Controller Structures: Dynamic Compensators
of Varying Dimensions

In the previous section we presented a method for designing an estimator based feed-
back controller. In that method, the estimator is a full state estimator with the same
dimensions as the original state it is trying to estimate.The closed loop system was seen
to be of order 2n, which could be deemed high in some application problems. So there
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is some incentive to look for reduced order controllers. This leads us to the concept of
dynamic compensators of varying dimensions. Let us elaborate on this.
As before let us consider the standard linear state space system given by

ẋ = Ax + Bu (21.16)
y = Cx → measurements or outputs. (21.17)

Let us revisit the various types of feedback controllers we have attempted to design until
now.

1. Full state feedback:

u = Kx → with closed loop system matrix given by (21.18)
Ac = (A + BK). (21.19)

2. Output feedback:

u = Ky → with closed loop system matrix given by (21.20)
Ac = (A + BKC). (21.21)

3. Observer based feedback:

u = Kx̂ (21.22)

x̂. = (A − FC)x̂ + Fy + Bu = (A − FC)x̂ + FCx + BKx̂
= (A − BK − FC)x̂ + FCx.
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Closed loop system:[
A BK
FC A + BK − FC .

]
(21.23)

Now, we introduce the dynamic compensator of varying dimensions as follows. Let s
be the dimension of the dynamic compensator state 𝜌. We want the control u to be a
function of the measurements y and the dynamic compensator state 𝜌. Accordingly we
write dynamic compensator of order, s as:

u = Ky +H𝜌 (21.24)
�̇� = J𝜌 + Fy = Fy + J𝜌 (21.25)
𝜌 ∈ Rs s → dynamic compensator state dimension. (21.26)

We label the vector 𝜌 as the dynamic compensator state because it is generated by
another state spacemodel with themeasurement vector y as its input.Thenwe augment
the original state with dynamic compensator state to get the following closed loop
system,

ẋ = Ax + BKy +H𝜌 = (A + BKC)x +H𝜌 (21.27)

�̇� = J𝜌 + Fy = FCx + J𝜌. (21.28)

Thus we have,[
ẋ
�̇�

]
=
[
A + BKC H

FC J

] [
x
𝜌

]

=
{[

A 0
0 0

]
+
[
B 0
0 I

] [
K H
F J

] [
C 0
0 I

]}[
x
𝜌

]
�̇� = (Â + B̂K̂ Ĉ)𝜁. (21.29)

Thus the new gain matrix is,

K̂ =
[
K H
F J

]
. (21.30)

We can then pose an LQR problem with output feedback formulation where the new
augmented state is 𝜁 , and the closed loop system matrix is,

Acl = (Â + B̂K̂ Ĉ). (21.31)

This closed loop system matrix is similar in structure to the standard output feedback
closed loop control system matrix. Thus we can follow the LQR output feedback prob-
lem formulation to design the gain matrix K̂ via parameter optimization methods. Note
that Â, B̂, and Ĉ are known and K̂ is the only unknown matrix. Also notice that we
now have control over the dimensions of the controller. Thus in practice, depending
on the physics of the application, we could try out dynamic compensators of various
dimensions starting from s = 1 and keep increasing them until we arrive at a dynamic
compensator gainmatrix that achieves satisfactory stability and performance character-
istics in the overall closed loop system matrix. The detailed control design of dynamic
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compensators is clearly out of the scope of an undergraduate controls course but is dis-
cussed here to convey the basic concept for completeness purposes.
Finally, we conclude this chapter with yet another interesting conceptual topic in con-

trol design, namely spillover instability in linear state space dynamic systems.

21.4 Spillover Instabilities in Linear State Space Dynamic
Systems

Inmany applications, especially in the state spacemodeling of the dynamics of large flex-
ible space structures [1,3–9], we end up with a very high dimensional linear state space
system in the open loop, i.e. the state variable vector x⃗ is of very high dimensions (possi-
bly running into tens or even hundreds). Since on-board computers (on a large flexible
structure space vehicle) have constraints on their memory requirements, it is imprac-
tical to design a controller of such high dimensions. Hence, for practicality, the control
designer, is forced to consider a much lower order model for control design purposes.
Thus we have a two model scenario, a very large order open loop model, which we label
as the evaluation model (because that model is supposed to represent the real model of
the flexible space structure), and a low order control design model. Let us denote the
following as the evaluation model for simulation purposes.

̇⃗x = Ax⃗ + Bu⃗ A ∈ RN×N B ∈ RN×m (21.32)

where N is very large and m <<< N.
For practical purposes we have to reduce this model for control design purposes. Let

us write,

̇⃗x =
[
̇⃗xR
̇⃗xT

]
=
[

AR ART
ATR AT

] [
x⃗R
x⃗T

]
+
[
BR
BT

]
u⃗ (21.33)

where we simply take the reduced model (which is the top half of the above model) for
control design purposes, i.e.,

̇⃗xR = ARx⃗R + BRu⃗ → control design model. (21.34)

Here,

x⃗R ∈ RnR nR ≪ N . (21.35)

Let us now design a full state feedback controller for this reduced order model. Then
u⃗ = GRx⃗R and the closed loop system for the reduced order control design model is,

̇⃗xR = (AR + BRGR)x⃗R. (21.36)

From a previous chapter discussion, we know that under the assumption of complete
controllability, we can always design a full state feedback gainGR such that (AR + BRGR)
is a stable matrix. However, when we now drive the real evaluation model with a con-
troller designed for a reduced order model, we get the closed loop system as[

̇⃗xR
̇⃗xT

]
=

[
AR + BRGR ART

ATR + BRGR AT

][
x⃗R
x⃗T

]
. (21.37)
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Even if (AR + BRGR) is stable (by design) and AT is stable, it turns out that the overall
closed loop system matrix of the above system could be unstable because of the
interaction of the unmodeled dynamics with the controller, reflected by the submatrix,
ATR + BRGR. This phenomenon, i.e. instability due to the unmodeled dynamics
interacting with the controller, is called spillover instability.
This is especially critical in low damped flexible space structure control design.
This simply means that the controller is exciting the higher order modes (flexible)

and pumping energies into the higher order modes which are neglected in the control
design. For this reason selecting the right type of reduced order control design model is
very critical (to avoid spillover instability, see Figure 21.6). Suppose now that the reduced
order controller is an observer based controller (we omit vector notation for now, in this
discussion), i.e.

u = GRx̂R (21.38)

where

̇̂xR = ARx̂R + BRu + FR(z −MRx̂R) (21.39)

and

z = Mx =
[
MR MT

] [ xR
xT

]
(21.40)

is the actual measurement but the estimator, out of necessity, feeds only the measure-
ment residual (z −MRx̂R). Then the resulting closed loop system is,

⎡⎢⎢⎢⎣
ẋR
x̂.R
ẋT

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

AR BRGR ART

FRMR AR + BRGR − FRMR FRMT

ATR BTGR AT

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
xR
x̂R
xT

⎤⎥⎥⎥⎦
. (21.41)

Figure 21.6 Spillover instability.
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So again the above closed loop system can become unstable even ifART andATR are zero
and AT is stable because of the terms BTGR and FRMT in the off-diagonal entries. This
possible instability is caused by the terms BTGR and/or FRMT . We designate:

the effect due to BTGR → control spillover
the effect due to FRMT → observation spillover.

So in a realistic control design, there is a chance of control and observation spillover
instabilities. Formore on this exciting topic, literature in the area of dynamic and control
of flexible space structures, such as [3, 4] is recommended as further reading. Clearly, the
details of this research area are beyond the scope of an undergraduate book like this, but
the concept of spillover instabilities is clearly very easy to understand, important, and
interesting.

21.5 Chapter Summary

This chapter has covered more important and useful material on a practical method
of designing controllers for linear state space dynamic systems, via the concept of a
observer based feedback controller that combines the features of measurement feed-
back as well as the full state feedback in an interesting way, making use of the concept of
a state estimator (or state observer). In addition, we introduced an additional controller
structure, namely dynamic compensators of varying dimensions. Finally, the interesting
and important concept of spillover instabilities in a two model framework is explained.

21.6 Exercises

Exercise 21.1. Consider again the spacecraft attitude control problem where the model
is given by[

�̇�x
�̇�y

]
=
[
0 −1
1 0

] [
𝜔x
𝜔y

]
+
[
1
0

]
Tx (21.42)

and suppose only 𝜔x is measured. Then the measurement state space equation z(t) is

z =
[
1 0

] [𝜔x
𝜔y

]
. (21.43)

(a) Determine the observer gain matrix such that the eigenvalues of (A − FM) are
located a little left of the open loop system.

(b) Then form an optimal closed loop system matrix and investigate the stability of
the compensator matrix. Is the system strongly stable?
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22

State Space Control Design: Applications to Aircraft Control

22.1 Chapter Highlights

In this chapter, we apply the state space control designmethodswe learnt in the previous
chapters to problems in the control of atmospheric (aero) vehicles.

22.2 LQR Controller Design for Aircraft Control Application

Example 22.1 The aircraft BRAVO at a particular flight condition has the following
equations of longitudinal motion:

⎡⎢⎢⎢⎢⎣

u̇
�̇�

q̇
�̇�

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

−0.007 0.012 0 −9.81
−0.128 −0.54 1 0
0.064 0.96 −0.99 0
0 0 1 0

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

u
𝛼

q
𝜃

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

0
−0.036
−12.61

0

⎤⎥⎥⎥⎥⎦
u.

The weighting matrices are chosen as follows:

Q =

⎡⎢⎢⎢⎢⎣

1 0 0 0
0 10 0 0
0 0 50 0
0 0 0 1

⎤⎥⎥⎥⎥⎦
R = 5.

This choice means q22 and q23 penalize any persistent transient motion motion of the
angle of attack and pitch rate, and the weighting factor of 5 on the control ensures only
moderate deflection of the elevator results.

(a) Find the optimal gain K that minimizes the quadratic cost function.
(b) Plot the state trajectory of all four state variables to the following initial conditions:

xo =
[
0 1 0 0

]T
. (22.1)

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.



414 22 State Space Control Design: Applications to Aircraft Control

0.4
To

: O
ut

(1
)

To
: O

ut
(2

)
To

: O
ut

(3
)

A
m

p
lit

u
d

e

To
: O

ut
(4

)

0.2

0
1

0.5

0
0.1

0

0

–0.1

–0.05
0 2 4

Time (seconds)

Response to Initial Conditions

6 8 10

0.05

Figure 22.1 Longitudinal state variable trajectories (i.e. the solution to the system of four equations in
four unknowns).

Solution
This problem can be solved using MATLAB.

(a) After defining thematricesA, B, Q, andRwe simply call upon the in-built command

K=lqr(A,B,Q,R)

which yields the optimal gain

K =
[
0.475 −0.3869 −3.2253 −5.35

]
. (22.2)

(b) Then, we define state space system and follow its trajectory for the first 25 s after
perturbation

sys=ss(A−B*K,[],eye(4),[])
initial(sys,x0,25)

Note here C is simply a 4 × 4 identity matrix.The output of this command (the state
trajectories) is pictured in Figure 22.1.

22.3 Pole Placement Design for Aircraft Control Application

The state space description of the lateral/directional mode of an aircraft is

ẋ =
⎡⎢⎢⎢⎣
−0.2543 0.1830 0 −1

0 0 1 0
−15.982 0 −8.402 2.193
4.495 0 −0.3498 −0.7605

⎤⎥⎥⎥⎦
x +

⎡⎢⎢⎢⎣
0 0.0708
0 0

28.984 2.548
−0.2218 −4.597

⎤⎥⎥⎥⎦
u (22.3)
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Figure 22.2 State variable response to MATLAB gain.

and we would like the closed loop system to have the following eigenvalues:[
𝜆d1 … 𝜆d4

]
=
[
−8.5 −0.1 −1.25 + 2.5i −1.25 − 2.5i

]
. (22.4)

Given the state space description and the desired eigenvalues, we can use MATLAB’s
in-built place command, which outputs the gain:

KMATLAB =
[
−0.5033 0.2791 −0.2254 0.2017
−1.0233 −0.1950 0.2667 −1.6649

]
. (22.5)

The state response to the MATLAB gain is depicted in Figure 22.2. Alternatively, we
can use MATLAB’s symbolic math toolbox to implement Brogan’s algorithm and find
the other possible gains K that allow us to achieve the desired closed-loop poles. Recall
Brogan’s algorithm for a general n × n Amatrix andm × n Bmatrix,

𝜙 = (𝜆In×n − A)−1 (22.6)
𝜓 = 𝜙B (22.7)
𝜓 = [𝜓𝟏(𝜆1) … 𝜓m(𝜆n)] (22.8)
K = −E 𝜓

−1 (22.9)
Acl = A − BK. (22.10)

In MATLAB, we start by defining the matrices A and B and the symbol x, which we
will use for ease of coding in place of 𝜆 in the above equations, as follows:

A = [-0.2543 0.183 0 -1;0 0 1 0;-15.982 0 -8.402 2.193;
… 4.495 0 -0.3498 -0.7605];

B = [0 0.0708;0 0;28.984 2.548;-0.2218 -4.597];
syms x
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Then, from Equation (22.6),

phi = (x*eye(length(A))-A) ̂ -1;

and from Equation (22.7),

psi = phi*B;

The above part of the code will remain the same for all gains K that we find. It is
the different possibilities for 𝝍 and therefore E that result in multiple gains K that still
achieve the desired closed loop output. For instance, if we build 𝝍 using the columns
[𝝍𝟏(𝜆1) 𝝍𝟏(𝜆2) 𝝍𝟐(𝜆3) 𝝍𝟐(𝜆4)], i.e.

psibar = horzcat(subs(psi(:,1),x,despol(1))
subs(psi(:,1),x,… despol(2)),subs(psi(:,2),
x,despol(3)),subs(psi(:,2),x,… despol(4)));

then we have to define E as the 2 × 4 matrix

E =
[
1 1 0 0
0 0 1 1

]
(22.11)

and from Equation (22.9)

K = -E*psibar ̂ -1;

which turns out to be

K =
[
−0.0039 0.0301 0.0055 0.0081
0.4221 0.0493 0.0154 −0.3138

]
. (22.12)

Using the gain K calculated above and substituting into Equation (22.10),

Acl = A-B*K;

which is

Acl =
⎡⎢⎢⎢⎣
−0.2842 0.1795 −0.0011 −0.9778

0 0 1 0
−16.9455 −0.9985 −8.6020 2.7589
6.4361 0.22 −0.28 −2.2138

⎤⎥⎥⎥⎦
. (22.13)

The state response using this gain is given in Figure 22.3. This is not the only
possible gain K we can use. If instead we build 𝝍 using the columns [𝝍𝟏(𝜆1) 𝝍𝟐(𝜆2)
𝝍𝟐(𝜆3) 𝝍𝟐(𝜆4)], i.e.

psibar =horzcat(subs(psi(:,1),x,despol(1)),
subs(psi(:,2),x,… despol(2)),subs(psi(:,2),x,
despol(3)),subs(psi(:,2),x,… despol(4)));
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Figure 22.3 State response to first possible gain, as given by Brogan’s algorithm.

then we define E as

E =
[
1 0 0 0
0 1 1 1

]
(22.14)

and this time, the gain is found to be

K =
[
0.005 −0.0002 0.0023 0.0003
0.45 −0.0459 0.0051 −0.3402

]
(22.15)

with its corresponding closed loop matrix

Acl =
⎡⎢⎢⎢⎣
−0.2862 0.1863 −.0004 −0.9759

0 0 1 0
−17.274 0.1214 −8.4805 3.0694
6.5626 −0.2111 −0.3268 −2.3334

⎤⎥⎥⎥⎦
. (22.16)

The state response for this gain is given in Figure 22.4. These are still not the only
possible gains K we can use. If instead we build 𝝍 using the columns [𝝍𝟐(𝜆1) 𝝍𝟏(𝜆2)
𝝍𝟐(𝜆3) 𝝍𝟐(𝜆4)], i.e.

psibar = horzcat(subs(psi(:,2),x,despol(1)),
subs(psi(:,1),x,… despol(2)),subs(psi(:,2),x,
despol(3)),subs(psi(:,2),x,… despol(4)));

then E is defined in MATLAB as

E =
[
0 1 0 0
1 0 1 1

]
(22.17)
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Figure 22.4 State response to second possible gain, as given by Brogan’s algorithm.

and the gain in this case is found to be

K =
[
−0.0086 0.0299 0.0033 0.0083
0.4649 0.0508 0.0354 −0.3159

]
(22.18)

with its corresponding closed loop system

Acl =
⎡⎢⎢⎢⎣
−0.2872 0.1794 −0.0025 −0.9776

0 0 1 0
−16.9181 −0.9975 −8.5893 2.7575
6.6342 0.2269 −0.1877 −2.2235

⎤⎥⎥⎥⎦
. (22.19)

The state response to this gain is given in Figure 22.5. Still other possible gains K
such that the desired closed loop poles are achievable. If we build 𝝍 using the columns
[𝝍𝟐(𝜆1) 𝝍𝟐(𝜆2) 𝝍𝟏(𝜆3) 𝝍𝟏(𝜆4)], i.e.

psibar = horzcat(subs(psi(:,2),x,despol(1)),
subs(psi(:,2),x,… despol(2)),subs(psi(:,1),x,
despol(3)),subs(psi(:,1),x,… despol(4)));

then we define E as

E =
[
0 0 1 1
1 1 0 0

]
. (22.20)

This yields the gain

K =
[
0.1027 0.1610 0.0445 −0.9487
−0.009 −0.0434 0.0218 −0.1173

]
(22.21)
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Figure 22.5 State response to third possible gain, as given by Brogan’s algorithm.

and its corresponding closed loop system

Acl =
⎡⎢⎢⎢⎣
−0.2537 0.1861 −0.0015 −0.9917

0 0 1 0
−18.9366 −4.5556 −9.7481 29.9881
4.431 −0.2353 −0.2596 −1.0982

⎤⎥⎥⎥⎦
. (22.22)

The state response to this gain is given in Figure 22.6. Yet other possible gains K are
available. For example, we can build 𝝍 using the columns [𝝍𝟐(𝜆1) 𝝍𝟏(𝜆2) 𝝍𝟏(𝜆3)
𝝍𝟏(𝜆4)], i.e.

psibar = horzcat(subs(psi(:,2),x,despol(1)),
subs(psi(:,1),x,… despol(2)),subs(psi(:,1),x,
despol(3)),subs(psi(:,1),x,… despol(4)));

for which E is defined

E =
[
0 1 1 1
1 0 0 0

]
(22.23)

and the gain K is

K =
[
0.1897 0.1992 0.048 −0.9308
0.1266 0.0162 0.0272 −0.0895

]
(22.24)

with its corresponding closed loop system

Acl =
⎡⎢⎢⎢⎣
−0.2633 0.1819 −0.0019 −0.9937

0 0 1 0
−21.8021 −5.8158 −9.8625 29.4001
5.035 0.0303 −0.2355 −0.9743

⎤⎥⎥⎥⎦
(22.25)
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Figure 22.6 State response to fourth possible gain, as given by Brogan’s algorithm.
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Figure 22.7 State response to fifth possible gain, as given by Brogan’s algorithm.



Bibliography 421

and the state response to this gain is given in Figure 22.7. You can easily verify the eigen-
values of all of the above closed loop matrices are indeed the desired eigenvalues.

22.4 Chapter Summary

In this chapter, we learnt how to apply the LQR and pole placement control designmeth-
ods to aircraft control problems.

22.5 Exercises

Exercise 22.1. In the example problem of using the LQRmethod for designing the opti-
mal control gain K , we used a fixed state weighting matrix Q and a fixed control
weighting matrix (which in this single input case was a scalar, which was taken as 5).
In this exercise, treat the control weighting scalar as a design variable 𝜌 (which is then
a positive scalar) keeping the state weighting matrix fixed as it was in the worked
out example. With 𝜌 as a design variable, now obtain the trade-off curve discussed in
this chapter for this problem and select the best 𝜌 that achieves the most reasonable
trade-off (which will be the 𝜌 on the curved part of the trade-off curve) and obtain the
optimal control gain K for that finalized optimal 𝜌 [1].Then plot the state trajectories
and the control trajectory as well. Analyze the resulting closed loop system in terms
of its closed loop eigenvalue locations.

Exercise 22.2. In the example problem of using the pole placement method for design-
ing the control gain K , for desired pole locations, we had six different closed loop
system matrices, all of them having the same desired closed loop locations. These six
different gains include MATALB gain and five other gains that we labeled as Brogan
gains 1, 2, 3, 4, and 5 [2]. Analyze the closed loop state trajectories very thoroughly
for each of these gains and explain why these state trajectories look markedly dif-
ferent from each other. In this exercise, also plot the control variable trajectories and
explain the behavior of these control trajectories. After observing the control trajecto-
ries, which are nothing but the control surface deflections of the aileron angle and the
rudder angle, do you recommend a particular control gain among these six gains as
more desirable gain than any other with the logic explained for your selection? Once
youmake your recommendation, analyze the eigenvector situation for that particular
closed loop system with the gain you selected.
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23

State Space Control Design: Applications to Spacecraft Control

23.1 Chapter Highlights

In this chapter, we apply LQR control design method to the satellite formation control
problem, which highlights the importance of all the concepts we have learned in the the-
ory.This application problemwas the result of a sponsored project in satellite formation
control, with interesting conclusions of practical interest.

23.2 Control Design for Multiple Satellite Formation Flying

Here we consider the problem of several satellites residing in a given orbit to main-
tain their formation pattern relative to each other (see Figure 23.1). Thus the dynamics
of relative motion in orbital mechanics are considered as a starting point. Naturally,
because of various external perturbation torques experienced by the member satellites,
their relative positions within the formation get disturbed. Thus the control objective
is to control each satellite’s position within the formation by using control torques so
that the desired formation pattern is maintained. To keep the problem formulation sim-
ple and easily understandable, we simply assume one leader satellite and one follower
satellite, and consider the relative position equations corresponding to the two satellites.
These relative motion equations in orbital mechanics area are known as Clohessy and
Wiltshire relative motion equations.

Definition of the Relative Coordinate Frame

The motion of a single member satellite relative to the leader (or formation origin) is
described by a nonlinear system of differential equations in x, y, z, r, and 𝜔, where x, y
and z are the relative frame coordinates, r is the time-dependent orbital radius, and 𝜔 is
the time dependent angular rate of the leader. If the inertial orbit of the leader is circular,
then the orbital radius and angular rate become time invariant. Clohessy and Wiltshire
noted that for this special case, the dynamical equations for the follower satellite have
only very weak nonlinear couplings so long as the distance between the follower and
the leader is much less than the orbital radius [4]. Therefore the nonlinear dynamics of
a formation, which is by definition limited in spatial extent, is often well represented by

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Figure 23.1 An example of satellite formation. Courtesy of NASA.

a linearization about the formation origin. The linearized system of equations is
ẍ = 2𝜔ẏ + Fx (23.1)
ÿ = −2𝜔ẋ + 3𝜔2x + Fy (23.2)
z̈ = −𝜔2z + Fz (23.3)

where +x is anti-parallel to the leader’s velocity, +y is parallel to the outward directed
orbital radius vector, +z is parallel to the angular momentum direction, and Fx, Fy,
and Fz are, respectively, the x, y, and z accelerations due to external forces. It has been
noted that the motion parallel to the orbital plane, x(t) and y(t), is decoupled from the
out-of-plane motion z(t) and that the out-of-plane motion is a bounded input, bounded
output (BIBO) stable, simple harmonic oscillator. Based on these observations, we will
treat only the in-plane dynamics, i.e. Equations 23.1 and 23.2 in this section.

State Space Representation

The state space representation of the linear range dynamics of the relativemotion of two
satellites in a circular orbit formation flying with a constant angular velocity 𝜔 is given
by the state space equation

⎡⎢⎢⎢⎣
ẋ
ẍ
ẏ
ÿ

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 2𝜔
0 3𝜔2 −2𝜔 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x
ẋ
y
ẏ

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣
0 0
0 0
1 0
0 1

⎤⎥⎥⎥⎦
[
Tx
Ty

]
. (23.4)

Notice we have control authority in the x and y directions. In other words, we can
physically apply control torques on this system in the x and y directions. To separate
these control directions, it is useful to define the columns of the input coefficient matrix
above as

Bx =
[
0 0 1 0

]T (23.5)

By =
[
0 0 0 1

]T
. (23.6)
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The pair (A,B) is completely controllable for all possible values of𝜔 and some authors
have used it to design LQR controllers for this problem [2].The pair (A,Bx) is also com-
pletely controllable but the pair (A,By) is uncontrollable and unstabilizable.

Design Concept: Elimination of the Radial Control Axis

The controllability characteristics for the linearized satellite formation suggest that the
radial y axis of control may be eliminated altogether. One control design has used a
bang–bang algorithm tomaintain the formation using differential drag as its onlymeans
of actuation; this design necessarily precluded the possibility of using control forces par-
allel to the radial axis.
There are several benefits to be obtained from a control design that employs thrust in

only one of the two orthogonal directions in the orbital plane. Such an algorithm could
be used to simplify the propulsive apparatus or to reduce the need for redundancy by
acting as a failure mode. Also, any target orbit may be achieved from a coplanar start-
ing orbit by applying thrusts only in the orbit tangent, and sometimes this is the most
fuel efficient method of changing orbit, as in Hohmann transfers [1]. So by limiting con-
trol thrust inputs to the x direction the controller may better use orbital dynamics to
advantage.
In designing a controller that excludes radial thrust, we non-dimensionalize the state

and time variables to reduce errors in calculation and to make the result more broadly
applicable. Substituting typical values of 𝜔 < 10−3 into the above state matrix yields
a state matrix too ill-conditioned to use in readily available linear algebra tools. So
to improve the accuracy of calculations, the angular rate was normalized to unity [2].
Non-dimensionalizing the orbital radius makes these results applicable to all circular,
Keplerian orbits. Note that after these conversions are performed, the orbital velocity
𝑣 = 𝜔r is also unity. Thus all lengths and times throughout the simulations were
non-dimensionalized in the same manner.
Then, with Q = I4×4 and R = 100 we obtain a reduced input LQR gain of

Kred =
[
−0.100 −2.597 1.347 −0.501

]
(23.7)

and the eigenvalues of the closed loop system

Acl = A − BxKlqr (23.8)

are

𝜆1,2 = −0.26 ± 1.08i (23.9)
𝜆3,4 = −0.42 + 0.26i. (23.10)

Simulations

The simulation of single, large scale maneuvers is a suitable first step in testing the effi-
cacy of this design, since such maneuvers might be used in establishing and modifying
formations. Most of the results presented here correspond to a maneuver in which the
follower satellite was initialized at a point on the x axis and then regulated to the origin.
The non-dimensionalized initial state of the satellite is

xo =
[
−1.5 × 10−5 0 0 0

]T
. (23.11)
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Then the LQR derived gain matrix Kred was employed in a feedback loop to calculate
a thrust trajectory that would move the follower satellite to the origin. This maneuver
was simulated on several non-dimensionalized initial positions on the x axis. As would
be expected from a linear system, the state and control trajectories resulting from these
different initial separationswere similar in the geometric sense.This observations allows
the results to be condensed for all the initial positions simulated:

5 × 10−6 ≤
xo
r

≤ 5 × 10−4. (23.12)

The simulations were performed entirely within the relative coordinate frame using
a proprietary fourth/fifth order Runge–Kutta ODE solver to propagate both the full
nonlinear equations and the linearized equations modeling the continuous time rela-
tive dynamics of the lead–follow pair. When compared, the results using the nonlinear
pair were virtually indistinguishable from those using the linearized version for the for-
mation sizes tested. Therefore the results are only applicable to formations in the linear
regime defined by

x, y, z ≪ r. (23.13)

Results

Wewill now consider somemeasures not directly addressed by the cost function J . Com-
pare the proposed reduced input controller Kred to a controller with control authority
along both the x and y axes. For this full input system, the weighting matrix is

R = 𝜌

[
1 0
0 1

]
(23.14)

where 𝜌 is a scalar and a measure of control effort. It is a good exercise for the reader to
acquire the corresponding gain and closed-loop system. Here, we skip these steps and
instead present the closed-loop trajectories for both the reduced and full input systems
in Figure 23.2. Clearly, the reduced input trajectory is very similar to the full input tra-
jectory. Overall, the performance of the two is very similar. In essence, the reduced input
controller uses 20% less fuel, though it requires 10% more time to maneuver the same
distance [3].

Figure 23.2 Trajectories of two follower spacecraft, one excluding radial thrust (solid), and the other
including radial thrust (dashed). The spacecraft were simulated maneuvering from a point on the
relative frame x axis to the origin.
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Interpretation of Results

So which controller should we use? The answer depends on the mission at hand. In
maintaining and changing orbits, fuel efficiency is often best obtained by limiting thrust
to either parallel to the orbital velocity (x axis) or perpendicular to the orbital plane
(z axis). However, there certainly are cases where fuel efficiency is not the highest pri-
ority, as in rendezvous encounters. Therefore the seeming inefficiency of thrust in the
radial direction as compared to the along orbit direction should not be construed as an
overwhelming reason to eliminate the radial axis of control. It does imply that, in order
to get the best performance from the thrust applied in the radial direction, radial thrust
should be applied judiciously.
Mathematically, we may achieve a nice balance between the two controllers discussed

above by using a full input B matrix, but weighting the R matrix more heavily towards
Ty, as such

R = 𝜌

[
1 0
0 4

]
. (23.15)

Here we chose R22 = 4R11 after some experimentation because it seems to give the
tightest trajectories and best fuel efficiency.While assessing fuel efficiency is beyond the
scope of this book, it is a good exercise for the reader to experiment with the weighting
of the Rmatrix and its effect on the closed-loop trajectory in MATLAB.

23.2.1 Pole Placement Design for the above problem

We could also design a full state feedback controller of the form

u(t) = Kpx(t) (23.16)

where the gain matrix Kp can be obtained using the pole placement algorithm. Using
MATLAB’s in-built command place with the following closed-loop eigenvalues:

𝜆1,2 = −1.2265 ± 2.9053i (23.17)
𝜆3,4 = −0.02736 ± 0.04638i (23.18)

we obtain the corresponding gain matrix Kp

Kp =
[
−0.29 0 −0.5473 −2
0 −12.9445 2 −2.4527

]
. (23.19)

In the exercise given below, the reader is asked to compare the pole placement con-
troller behavior with the LQR controller where the LQR design weighting matrices are
adjusted such that the pole placement design control effort (Ju) is as close to the LQR
controller so that the state regulation cost (Jx) can then be compared for both of these
designs.

23.3 Chapter Summary

In this chapter, we presented the application of LQR and pole placement control
design methods to spacecraft control problems. We illustrated the use of the LQR
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method to the innovative application problem of satellite formation control, which
uses the relative motion equations from orbital mechanics field known as Clohessy and
Wiltshire equations. The conclusions drawn for this application are quite useful and
insightful. Then the pole placement technique is also illustrated for the same problem.

23.4 Exercises

Exercise 23.1. Consider the pole placement design controller discussed above. Now
compute the individual performance costs Jx and Ju for this pole placement controller.
Then consider the LQR designmethod for the same system. Vary the weightings (pos-
sibly the control weighting, to keep the iterations as simple as possible) and design an
LQR controller such that its control effort is as close to the control effort value you got
for the pole placement controller. That is Jupole is almost equal to Julqr. Then compare
the corresponding state regulation cost Jx for both of these designs.

Bibliography

1 R.R. Bate, D.D. Mueller, and J.E. White. Fundamentals of astrodynamics. Dover, 1971.
2 R.H. Vassar and R.B. Sherwood. Formationkeeping for a pair of satellites in a circular
orbit. AIAA Journal of Guidance,Control and Dynamics, 8:235, 1985.

3 S. Starin, R.K. Yedavalli, and A. Sparks. Design of a lqr controller of reduced inputs
for multiple spacecraft formation flying. Proceedings of the American Control Confer-
ence, page 1327, June 2001.

4 W.H. Clohessy and R.S. Wiltshire. Terminal guidance system for satellite rendezvous.
Journal of Aerospace Sciences, 27:653, 1960.



429

Part IV

Other Related Flight Vehicles
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Roadmap to Part IV

“If you want the Rainbow, you have to put up with the Rain”
– Anonymous

In this part IV of the book, our objective is to present some fundamental material on
flight vehicles other than the standard fixed wing aircraft and the satellites as repre-
senting an aero and a space flight vehicle respectively. It is important for the reader to
realize that there are few related flight vehicles whose dynamics and control problems
are possibly quite different from the two traditional flight vehicles we have discussed
so far in the previous parts of the book. Few of those non-traditional flight vehicles
are (i) rotor-craft vehicles such as helicopters and quad-copters (ii) missiles, and (iii)
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hypersonic vehicles, amongmany other such vehicles. To keep the book content concise,
we focus our attention on only the vehicles mentioned above. We treat this subject
matter again from a conceptual viewpoint, emphasizing the possible similarities and
differences between dynamics and control specific features of these vehicles and the
traditional vehicles (fixed wing aircraft and satellites).
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24

Tutorial on Aircraft Flight Control by Boeing

24.1 Tutorial Highlights

This tutorial on aircraft flight control systems is based on Boeing’s Model 777 flight
control system [1]. The Model 777 is Boeing’s first commercial airplane, and employs
complete electronic control of the primary flight control system. However, the system
design is such that the airplane looks and feels similar to other Boeing jet transports,
and at the same time, employs the latest technology to ease the pilot’s workload and the
long termmaintenance of the system. Before the first flight of the Model 777 on 12 June
1994, the primary flight control system had undergone many hours of testing over an
eight month period. Individual components were tested, and continue to be tested, in
stand-alone laboratories. The system as a whole was tested in the flight control test rig
(FCTR), where all electrical and mechanical components were installed in a simulated
airplane environment and operated in concert. The primary flight control system was
also tested in conjunction with other airplane systems in the new systems integration
laboratory (SIL). As a result of these tests, there was a high level of confidence before
the system was installed in the first airplane. The initial flight testing of the airplane has
shown few unexpected characteristics.

24.2 System Overview

Conventional primary flight controls systems employ hydraulic actuators and control
valves controlled by cables that are driven by the pilot controls. These cables run the
length of the airframe from the cockpit area to the surfaces to be controlled. This type
of system, while providing desirable airplane handling characteristics, does have some
very distinct drawbacks. The cable controlled system comes with a weight penalty due
to the long cable runs, pulleys, brackets, and supports needed.The system requires peri-
odic maintenance, such as lubrication and adjustments due to cable stretch. In addition,
systems such as the yaw damper, which provide enhanced control of surfaces, require
dedicated actuators, wiring, and controllers. This adds to the overall system weight and
increases the number of components in the system.
In the Model 777, the cable control of the primary flight control surfaces has been

removed. Rather, the actuators are controlled electronically. At the heart of the Model
777 primary flight control system are electronic computers. These computers convert

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
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electrical signal sent from transducers attached to the pilot controls into commands that
are sent to the actuators. Because of these changes to the system, the following design
features have been made possible:

1. Full time surface control employs advanced control laws. The aerodynamic surfaces
are sized to afford the required airplane response during critical flight conditions.The
reaction time of the control laws is much faster than that of an alert pilot. Therefore
the size of the flight control surfaces could be made smaller than those needed for a
conventionally controlled airplane. This results in a reduction in the overall weight
of the system.

2. Retention of the desirable flight characteristics of a conventional system and the
removal of the undesirable ones. This is discussed later in Section 24.4.

3. Integration of functions such as the yaw damper into the basic surface control. This
allows that separate components normally used for these functions to be removed.

4. Improved system reliability and maintainability.

24.2.1 Design Philosophy

The design philosophy of the Model 777 primary flight control system maintains sys-
tem operation that is consistent with a pilot’s past training and experience. What is
meant by this is that however different the actual system architecture is from previ-
ous Boeing airplanes, the presentation to the pilot is that of a conventional mechanical
system.TheModel 777 retains the conventional control column, wheel, and rudder ped-
als, whose operation is identical to the controls employed on other Boeing transport
airplanes. The flight deck controls of the Model 777 are very similar to those of the
Model 747-400.
Because the system is controlled electronically, there is an opportunity to include

system control augmentation and envelope protection features that would have been
difficult to provide in a conventional mechanical system. The Model 777 primary flight
control system hasmade full use of the capabilities of this architecture by including such
features as:

1. bank angle protection
2. turn compensation
3. stall and overspeed protection
4. pitch control and stability augmentation
5. thrust asymmetry compensation.

More will be said of these specific features later. What should be noted, however, is
that none of these features limit the actions of the pilot. The Model 777 design utilizes
envelope protection rather than envelope limiting as a deterrent. Protection deters pilot
inputs. For example, the bank angle protection feature will significantly increase the
wheel force a pilot encounters when attempting to roll the airplane past a predefined
bank angle. However, if necessary, the pilot may override this protection by exerting a
greater force on the wheel than is being exerted by the backdrive actuator. The intent
is to inform the pilot that the command being given would put the airplane outside of
its normal operating envelope, but the ability to do so is not precluded. This concept is
central to the design of the Model 777 primary flight control system.
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24.2.2 System Architecture and Redundancy

TheModel 777 primary flight control system incorporates several layers of redundancy.
To fully understand the amount of redundancy in the system and how it is managed, it
is necessary to explore the types of components in the system and how they are used.

24.2.3 Flight Deck Controls

The 777 is equipped with standard flight deck controls. Instead of the control columns,
wheel, and pedals driving quadrants and cables, they are attached to electrical transduc-
ers that convert mechanical displacement into electrical signals. Multiple transducers
installed on each pilot controller ensure that the functionality of that control remains
intact in the event of a single transducer failure.
A gradient control actuator is attached to the two control column feel units. These

units prove the tactile feel of the control column by proportionally increasing the
amount of column force a pilot experiences during a maneuver with an increase in
airspeed. In addition, pilot controller backdrive actuators move the control column,
wheel, and pedal in response to autopilot commands when the autopilot is engaged.
This provides visual feedback to the pilot during autopilot operations.

24.2.4 System Electronics

There are two types of electronic computers used in the Model 777 primary flight con-
trol system; the actuator control electronics (ACE), which is primarily an analog device,
and the primary flight computer (PFC), which utilizes digital technology.There are four
ACEs and three PFCs employed in the system. The function of the ACE is to interface
with the pilot control transducers and to control the actuators with analog servo loops.
The role of the PFC is the calculation of control laws that convert the pilot controller
position into surface commands, which are then transmitted back to the ACEs.The PFC
also contains ancillary functions, such as systemmonitoring, crew announcements, and
all the system on-board maintenance capabilities.
Four identical ACEs are used in the system, referred to as L1, L2, C, and R. These

designations correspond roughly to the left, center, and right hydraulic systems on the
airplane. The flight control functions are distributed among the four ACEs, such that a
total failure of a single ACEwill leave themajor functionality of the flight control system
intact. An ACE failure of this nature will have much of the same impact to the primary
flight control system as that of a hydraulic system failure.
The ACEs decode the signals received from the transducers used in the pilot con-

trols and the primary actuation.The ACEs convert the transducer position into a digital
value and then transmit that value over the ARINC 629 busses for use by the PFCs.The
PFCs use these pilot control positions and surfaces positions to calculate the surface
commands. The PFCs then transmit the surface commands over the same ARINC 629
busses back to the ACEs, which converts them into analog commands for each actua-
tor. There are three PFCs in the system, called L, C, and R. Where the redundancy of
the ACEs lies in functional distribution, the redundancy of the PFCs is in the number
of calculating elements. Each of the three PFCs, referred to as channels, are identical in
design and perform identical calculations.
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Internal to each PFC are three independent sets of microprocessors, ARINC 629
interfaces, and power supplies, which are referred to as lanes. All lanes perform identical
calculations. Failure of a single lane internal to a PFC will cause only that lane to be shut
down.That channelwill continue to operate normally on two laneswith no loss of system
functionality. Any subsequent failure of a channel that is already operating on two lanes,
however, will cause that channel to be shut down, as a channel is not allowed to operate
on a single lane. The airplane is designed to be operated indefinitely with one lane of
nine failed.The proposed master minimum equipment list (MMEL) allows the airplane
to be dispatched with two lanes failed out of the nine (as long as they are not within the
same channel) for ten days and for a single day with one PFC channel inoperative.

24.2.5 ARINC 629 Data Bus

The ACEs and PFCs communicate with each other, as well as with other systems on
the airplane, via triplex, bi-directional ARINC 629 flight control data busses, referred to
as L, C, and R. The connection from the electronics unit to the data bus is an ARINC
629 coupler. Each coupler can be removed from that data bus and replaced individually
without disturbing the integrity of the data bus itself.

24.2.6 Interfaces to Other Airplane Systems

The primary flight control system receives data from other airplane systems by two dif-
ferent methods. The air data inertial reference unit (ADIRU), standby attitude and air
data reference unit (SAARU), and the autopilot flight director computers (AFDC) trans-
mit on the ARINC 629 flight control data busses where the PFCs are able to read their
data directly. Other systems, such as the flap slat electronics units (FSEU), proximity
switch electronics unit (PSEU), and engine data interface unit (EDIU), among others,
transmit their data on ARINC 629 systems data busses. The PFCs receive data from
these systems through the airplane information management system (AIMS) data con-
version gateway (DCG) function. The DCG supplies data from the systems data busses
onto the flight controls data busses. This gateway between the two main set of ARINC
629 busses maintains separation between the critical flight control bus and the essential
systems bus but still allows data to be passed back and forth.

24.3 System Electrical Power

There are three power sources dedicated to the primary flight control system, which are
referred to as the flight controls direct current (FCDC) power system. Each of the three
power systems is driven by an FCDC power supply assembly (PSA). The FCDC system
is supplied by two dedicated permanentmagnet generators (PMG) on each engine. Each
PSA converts the PMG alternating current into 28VDC for use by the electronics mod-
ules in the primary flight control system. Alternative power sources for the PSAs include
the airplane ram air turbine (RAT), the 28V DC airplane busses, the airplane hot bat-
tery bus, and dedicated five ampere-hour FCDC batteries. During flight, the PSAs draw
power from the PMGs. For on-ground engines off operations or for in-flight failures of
the PMGs, the PSAs draw from any available source.
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24.3.1 Control Surface Actuation

The control surfaces of the system are controlled by hydraulically powered actuators.
The elevators, ailerons, and flaperons are controlled by two actuators on each sur-
face, the rudder is controlled by three. Each spoiler panel is powered by a single
actuator. The horizontal stabilizer is positioned by two hydraulic motors driving the
stabilizer jackscrew. On the Model 777, the primary flight control surfaces are actuated
through the ACE sources which in turn command the hydraulic actuators.
The actuators on the elevators, ailerons, flaperons, and rudder have several operational

modes. These modes, and the surfaces that each are applicable to, are defined below:

1. Active: normally all actuators on the elevators, ailerons, flaperons, and rudder receive
commands from their respective ACEs and position the surfaces accordingly. The
actuators will remain in the active mode until commanded into another mode by the
ACEs.

2. Bypassed: in this mode, the actuator does not respond to commands from the ACE.
The actuator is allowed to move freely, so that the redundant actuators on a given
surface may drive the surface without any loss of authority. This mode is present on
aileron, flaperons, and rudder actuators.

3. Damped: in this mode, the actuator does not respond to commands from the ACE.
The actuator is allowed to move, but at a restricted rate which provides flutter damp-
ing. This mode allows the other actuator or actuators on the surface to continue to
operate the surface at a rate sufficient for airplane control. This mode is present on
elevator and rudder actuators.

4. Blocked: in this mode, the actuator does not respond to commands from the ACE,
and is not allowed to move. When both actuators on a surface controlled by two
actuators have failed, they both enter the blocked mode to provide a hydraulic lock
on the surface. This mode is present on the elevator and aileron actuators.

An example using the elevator surface illustrates how these modes are used. If the
inboard actuator on an elevator fails, the ACE controlling that actuator will place the
actuator in the damped mode. This allows the surface to move at a limited rate under
the control of the outboard actuator. Concurrent with this action, the ACE also arms
the blocking mode on the outboard actuator on the same surface. If a subsequent fail-
ure occurs, which will cause the outboard actuator to be placed in the damped mode
by its ACE, both actuators will then be in the damped mode and have their block-
ing modes armed. An elevator actuator in this configuration enters the blocking mode,
which hydraulically locks the surface in place for flutter protection.
TheModel 777 primary flight control test rig facility allowed complete integrated test-

ing of all the components of the flight control systemprior to being installed in the actual
airplane.

24.3.2 Mechanical Control

Spoiler panels and the alternate stabilizer pitch trim system are controlledmechanically,
rather than electronically. Spoilers are driven directly from control wheel deflections via
a control cable. The alternate horizontal stabilizer control is accomplished by using the
pitch trim levers on the aisle stand. Electrical switches actuated by the trim levers allow
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the PFCs to determine when alternate trim is being commanded so that appropriate
commands can be given to the pitch control laws.
Spoiler panels are also used as speed brakes.The speed brake function for this spoiler

pair has two positions: retracted and fully extended. The speed brake commands for
spoilers are electrical in nature, with an ACE giving an extend or retract command
via a solenoid operated valve in each of the actuators. Once that spoiler pair has been
deployed by a speed brake command, there is no control wheel to speed brake command
mixing.

24.3.3 System Operating Modes

The primary flight control system has three operating modes: normal, secondary, and
direct. These modes are defined below:

1. Normal: in normal mode, the PFCs supply all commands to the ACEs. Full function-
ality is provided including all enhanced performance, envelope protection, and ride
quality features.

2. Secondary: in this mode the PFCs supply all commands to the ACEs, just as in the
normal mode. However, functionality of the system is reduced. For example, the
envelope protection functions may not be active in the secondary mode. The PFCs
enter this mode automatically from the normal mode when there are sufficient fail-
ures in the system or interfacing systems such that normal mode is not supported.
An example of a set of failures that will automatically drop the system into secondary
is total loss of airplane air data from the ADIRU and SAARU. The airplane is quite
capable of being flown for a long period in secondary mode if required.

3. Direct: in the Direct mode, the ACEs do not process commands from the PFCs.
Instead, each ACE decodes pilot commands directly from the pilot controller trans-
ducers and uses them for the closed loop control of the actuators. This mode will be
entered automatically due to total failures of the PFCs, failures internal to the ACEs,
loss of the flight control ARINC 629 data busses, or some combination of these. It
may also be selected manually via the PFC disconnect Switch on the overhead panel
in the flight deck. The airplane handling characteristics in the direct mode closely
match those of the secondary mode.

24.4 Control Laws and System Functionality

Thedesign philosophy employed on theModel 777 primary flight control system control
laws stresses aircraft operations consistent with a pilot’s past training and experience.
The combination of electronic control of the system and this philosophy provides the
feel of a conventional airplane, but with improved handling characteristics.

24.4.1 Pitch Control

Pitch control is accomplished through a maneuver demand control law. It is referred
to as a C*U control law. C* (pronounced C-star) is a term that is used to describe the
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blending of the airplane pitch rate and load factor (the amount of acceleration felt by
an occupant of the airplane during a maneuver). At low air speeds, the pitch rate of the
airplane is the controlling factor. At high air speeds, the load factor predominates.TheU
term refers to the change in the airspeed away from a referenced trim speed.This intro-
duces an element of speed stability into the airplane pitch control. The result is that the
airplane is trimmed to a particular airspeed, and any deviation from that airspeed will
cause a pitch change in order to return to that referenced airspeed. However, airplane
configuration changes, such as a change in trailing edge flap settings, will not cause air-
plane trim change. Thus, the major advantage of using a maneuver demand control law
is that nuisance handling characteristics found in a conventional system that increase
pilot workload are minimized, while the desirable characteristics are maintained.
While in flight, the pitch trim switches on the pilot’s and first officer’s control wheels

do not directly control the horizontal stabilizer. When the trim switches are used in
flight, the pilot is actually requesting a new referenced trim speed. The airplane will
pitch nose-up or nose-down in response to that change in order to achieve that new
airspeed.The stabilizer will automatically trim to offload the elevator surface when nec-
essary. When the airplane is on the ground, the pitch trim switches are used to trim the
horizontal stabilizer directly.While the alternate trim leversmove the stabilizer directly,
even in flight, the act of doing so will also change the C*U referenced trim speed such
that the net effect is the same as would have been achieved if the pitch trim switches had
been used. As on a conventional airplane, trimming is required to reduce any column
forces that are being held by the pilot.
The pitch control law incorporates several additional features. One is called landing

flare compensation. This function provides handling characteristics during flare and
landing consistent with that of a conventional airplane, which would have otherwise
been altered significantly by the C*U control law.The pitch control law also incorporates
stall and overspeed protection.These functions will not allow the referenced trim speed
to be set below a predefined minimum value or above the maximum operating speed.
They also significantly increase the column force that the pilot must hold in order to fly
above or below these speeds. An additional feature incorporated into the pitch control
law is turn compensation, which enables the pilot to maintain a constant altitude with
minimal column input during a banked turn.
The unique Model 777 implementation of maneuver demand and speed stability in

the pitch control law means that:

1. An established flight path remains unchanged unless the pilot changes it through a
column input or the airspeed changes and the speed stability function takes effect.

2. Trimming is required only for airspeed changes.

24.4.2 Yaw Control

The yaw control law contains the standard functions used on other Boeing jet liners,
such as the yaw damper and the rudder ratio changer functions. However, there are no
separate actuators and linkages in theModel 777 for these functions as were used in pre-
vious Boeing airplanes. Rather, the commands for these functions are calculated in the
PFCs and included as part of the normal rudder command to themain rudder actuators.
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This reduces weight, complexity, maintenance, and spares required to be stocked. The
yaw control law also incorporates several additional features. The gust suppression sys-
tem reduces airplane tail wag by sensing wind gusts on the vertical fin and applying a
rudder command to oppose the movement that would have been generated by the gust.
Another feature is the wheel-rudder crosstie function, which reduces sideslip by using
small amounts of rudder during banked turns.
One important feature in the yaw control is thrust asymmetry compensation, or TAC.

This function automatically applies a rudder input for any thrust asymmetry between the
two engines exceeding approximately 10% of the rate thrust. This is intended to cancel
the yawing moment associated with an engine failure. TAC operates at all airspeeds
above 80 knots; even on the ground during the take-off phase. It will not operate when
thrust reversers are deployed.

24.4.3 Roll Control

The roll control law in the Model 777 is fairly conventional. The outboard ailerons and
spoiler panels 5 and 10 are locked out in the faired position when the airspeed exceeds
a value that is dependent upon speed and altitude. It roughly corresponds to flaps up.
As with the yaw damper function, this function does not have a separate actuator, but
is part of the normal aileron commands. The bank angle protection feature in the roll
control law has been discussed previously.

24.4.4 757 Test Bed

The control laws and features discussed here were incorporated into a modified Model
757 and flown in the summer of 1992. The captain’s controls remained connected to
the normal Model 757 flight controls system. The Model 777 control laws were flown
through the FirstOfficer’s controls. After the initial checkout and validation phase, pilots
from several airlines and regulatory agencies were invited to fly themodifiedModel 757.
The feedback from the pilots was very positive and enthusiastic.The initial flights of the
Model 777 indicate that the flight characteristics of the Model 757 demonstrator were
very close to those of the Model 777.

24.4.5 Primary Flight Control System Displays and Announcements

The primary displays for the primary flight control system are the engine indication
and crew altering system (EICAS) display and the multi-function display (MFD). The
EICAS display is very similar to that used in the Model 747-400. It displays the engine
parameters, as well as the warning, caution, and advisory messages used by the flight
crew.TheMFD displays the status level message, which is used to determine the health
of the various systems, and whether the airplane is able to be dispatched.TheMFD also
can display, when requested, the flight control synoptic page that shows the position of
all the flight control surfaces.
This tutorial on aircraft flight control systems is based on a publicly available internal

report by Boeing, which is gratefully acknowledged and referenced.
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24.4.6 Glossary

ACE - actuator control electronics
ADIRU - air data inertial reference unit
ADM - air data module (static and total pressure)
AFDC - autopilot flight director computer
AIMS - airplane information management system
ARINC - Aeronautical Radio Inc. (industry standard)
C - center
C*U - pitch control law utilized in the primary flight computer
CMC - central maintenance computer function of AIMS
DCGF - data conversion gateway function of AIMS
EDIU - engine data interface unit
EICAS - engine indication and crew alerting system
ELMS - electrical load management system
FCDC - flight control direct current (power system)
FCTR - flight control test rig
FSEU - flap slat electronics unit
L - left
L1 - left 1
L2 - left 2
LRRA - low range radio altimeter
LRU - line replaceable unit
MAT - maintenance access terminal
MEL - minimum equipment list
MFD - multi-function display
MOV - motor operated valve
PCU - power control unites, actuators
PFC - primary flight computer
PMG - permanent magnet generator
PSA - power supply assembly
PSEU - proximity switch electronics unit
R - right
RAT - ram air turbine
SAARU - standby attitude and air data unit
SIL - systems integration laboratory
TAC - thrust asymmetry compensation
WEU - warning electronics unit

24.5 Tutorial Summary

The Model 777 primary flight control system utilizes new technology to provide
significant benefits over a conventional primary flight control system. These benefits
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include a reduction in overall weight of the airplane, superior handling characteristics,
and improved maintainability of the system. At the same time, the control of the
airplane is accomplished using traditional cockpit controls thereby allowing the pilot to
fly the airplane without any specialized training. The technology utilized by the Model
777 primary flight control system has earned its way onto the airplane, and is not just
technology for technology’s sake.
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25

Tutorial on Satellite Control Systems

25.1 Tutorial Highlights

In this chapter, we summarize the essential features of satellite attitude control systems
in a tutorial fashion. Most of the material is necessarily borrowed from the existing lit-
erature [1, 2] for the benefit of the reader so that this basic fundamental material on
satellite control systems can be juxtaposed with the aircraft control systems tutorial pre-
sented in the previous chapter. This means the reader can easily compare and contrast
the similarities and differences in the various features between aircraft and spacecraft
control systems analysis and design.

25.2 Spacecraft/Satellite Building Blocks

A spacecraft typically consists of a payload and a number of subsystems. Partitioning
the entire spacecraft in terms of these subsystems (building blocks) is helpful from
an overview point of view. These building blocks could be generically classified as
(i) structural subsystem, (ii) power subsystem, (iii) attitude and orbit control subsystem,
(iv) telemetry, tracking, command, and communications subsystem, (v) thermal
subsystem, (vi) propulsion/reaction jet control subsystem, (vii) payload, (viii) sensors
and actuators, and such. In this tutorial our emphasis is on attitude and orbit control
subsystems along with the propulsion/reaction jet control subsystem and the needed
sensors and actuators for designing a feedback control system.

25.2.1 Attitude and Orbit Control

If a satellite orbit is a low Earth orbit (LEO) and if it is launched directly into this orbit,
then the satellite will possess a low spin rate, which is imparted by the launch vehicle.
So for this case, the overall objective of our control system is for the satellite to achieve
its final desired attitude. Thus it is an attitude control system. However, if the satellite
orbit is a geosynchronous Earth orbit (GEO) then we need few orbit control tasks to
be performed. In this case, the initial low Earth elliptical orbit needs to be circularized
using propulsion/reaction jet thrusters, then the satellite is put into a highly elliptical
orbit with its apogee altitude equal to its final circular orbit altitude.Then again by firing
the apogee kick motor at apogee, the orbit is circularized. Then once the satellite is in
the desired orbit, the remaining attitude control actions need to be taken to achieve the

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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desired attitude in its final orbit. Thus for GEO satellites we need both the attitude and
orbit control actions done together.
With this backdrop, let us briefly review the sensors and actuators needed to accom-

plish all these tasks.

25.2.2 Attitude Control Sensors

Naturally, the attitude sensors needed for attitude control depend on the overall mission
of the satellite and the accuracy requirements of the satellitemission. Earth/horizon sen-
sors, sun sensors, star sensors, magnetometers, and gyroscopes are some of the typical
sensors used for these purposes.

25.2.2.1 Earth/Horizon Senors
These are used to scan across the Earth, measuring rotation angles to define the
spacecraft’s attitude relative to the Earth from satellite’s altitude. A few of the sensors
are labeled (i) horizon crossing indicator (HCI), (ii) steerable horizon crossing indicator
(SHCI), (iii) conical Earth sensor, (iv) boresight limb sensor, and such. For a more
detailed account of the operation of these sensors, the reader is encouraged to consult
the references given at the end of this tutorial.

25.2.2.2 Sun Sensors and Star Sensors
For most applications, the Sun can be treated as a point source. A simple Sun sensor can
be used to detect a Sun reference as the Sun is relatively very bright. The basic sensing
element in these sensors is the silicon solar cell. Some of these Sun sensors are labeled as
Sun presence sensors, analog Sun sensors and digital Sun sensors. Sun sensors have been
developed with fields of view ranging from several square arcminutes to 128 × 128∘ and
resolutions of less than an arc-second to several degrees.
In the same vein, various star sensors are labeled as (i) star scanner, (ii) gimbaled star

tracker, (iii) fixed head star tracker, and such. A star tracker tracks starswithin a designed
field of view (FOV) and over a visual spectral magnitude range.

25.2.2.3 Magnetometers
These measure the magnetic field to milligauss accuracy. They can be used to obtain
both the magnitude and direction of the magnetic field. Since Earth’s magnetic field
estimation (prediction) is subject to considerable uncertainty, in general, magnetometer
measurements are not that accurate and their use is typically restricted to spacecraft
below 1000 km s−1. Earth’s magnetic field strength in LEO is about 0.5 G.

25.2.2.4 Gyroscopes
A gyroscope is an instrument that uses a rapidly spinning mass to sense the inertial
orientation of its spin axis. Rate gyros and rate integrating gyros are attitude sensors
used to measure changes in the spacecraft orientation. As the names imply, rate gyros
measure satellite angular rates whereas rate integrating gyrosmeasure angular displace-
ments directly.
For amore detailed account of the operation of these sensors, the reader is encouraged

to consult the references given at the end of this tutorial.
Next we switch our attention to attitude actuators.
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25.3 Attitude Actuators

Attitude actuators are employed to control the attitude of the spacecraft. Several attitude
actuators are available that can be regarded as passive or active based on their functions.
Momentum exchange devices such as momentum wheels [labeled as control moment
gyros (CMGs) in some literature], and reaction wheels, reaction control jets (thrusters)
and nutation dampers (passive) are some of the standard actuators.

25.3.1 MomentumWheels (CMGs) and ReactionWheels

25.3.1.1 MomentumWheel
This is a flywheel designed to operate at a biased non-zero momentum. It provides a
variable momentum storage capability about its rotation axis and is usually fixed in the
spacecraft. It is especially common for dual-spin stabilized spacecraft.

25.3.1.2 ReactionWheel
This is a flywheel designed to operate at zero bias. It consists of a two phase alternat-
ing current (AC) servomotor. It exhibits a relatively constant torque versus speed curve.
It also contains a tachometer to measure its speed. momentum. It provides a variable
momentum storage capability about its rotation axis and is usually fixed in the space-
craft. It is especially common for dual-spin stabilized spacecraft.
However, there does not seem to be a strict, rigorous adherence to the above defini-

tions in the existing literature where in some accounts of some books asserting reaction
wheels also have some nominal, non-zero biased angular momentum.
Finally, magnetic torques and nutation Dampers are also used as actuators for passive

or active control of the satellite.

25.4 Considerations in Using Momentum Exchange Devices
and Reaction Jet Thrusters for Active Control

The above mentioned sensors and actuators are used for active and passive control of
spacecraft. As discussed in Part I of this book, some passive control means are the spin
stabilization, dual spin stabilization, gravity gradient stabilization,Magnetic torque, etc.
The standard active control means is the three axis control using reaction jet thrusters
and momentum exchange devices.
A pictorial representation of a three axis stabilized satellite is shown Figure 25.1.
The basic advantages of a three axis active control system are: fast response, good

pointing accuracy, possibility of using Sun oriented arrays (solar cells), and non-inertial
pointing capability.The disadvantages are: limited life due to fuel expenditure, scanning
sensors, and no graceful performance degradation in the event of gas jet failure.
The addition of momentum exchange devices prolongs the life of the system at the

expense of increased complexity.
For economy of operation, the jet thrust should be as small as possible. This is not

always possible, however, especially if large initial angular velocities are imparted to the
satellite. The larger the inertia of the satellite, the larger the required jet size as can be
seen by equating initial angular momentum to impulse available.
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Figure 25.1 Three-axis satellite control.

Similarly, the limit cycle gas consumption is directly proportional to the vehicle inertia
for the case of the zero or very small external disturbance. In this case the time average
propellant consumption rate is obtained by finding the ratio of propellant expended
during one limit cycle to the limit cycle period.

25.4.1 On-Orbit Operation via Pure Jet Control Systems

Control torques in active attitude control systems are generally obtained from cold
or hot gas and/or electric propulsion. The simplest cold gas systems use an inert
gas stored in a high-pressure vessel with initial pressures up to 400 atmospheres
(Figure 25.2). Normally the gas is passed through one or more pressure regulators so
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Figure 25.2 Cold gas (GN2) propulsion subsystem.
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Figure 25.4 An example of a low-level thruster assembly.

that the thrusters operate at nearly constant pressure. Thrust range is typically between
0.05 to 22N (see Figure 25.3). Efficient operation can be achieved with pulse durations
of less than 10ms to several seconds. The specific impulse Isp can vary from 60 to 290
s or more, depending on the type of gas used. An example of a low-level thruster
assembly is shown in Figure 25.4. An example three axis (or body) stabilized spacecraft
is shown in Figure 25.5.
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Figure 25.5 An example three axis (or body) stabilized spacecraft.

25.4.2 Recommended Practice for Active Control Systems

The following recommendations apply to the design of active attitude control systems.
Specific recommendations with regard to the thrusting maneuvers and spacecraft with
structural flexibility are included.

25.4.2.1 General Considerations

1. Ensure that all closed loop control systems exhibit acceptable transient response.
2. Control system torque capability must be sufficiently large to correct initial condi-

tions errors and maintain.
3. The control logic must be consistent with the minimum impulse size and lifetime

specification of the thrusters.
4. Evaluate system performance incorporating as many hardware elements in a simula-

tion as possible.
5. Combine the normal tolerances statistically with the beginning and end-of-life center

of mass location and moment of inertia characteristics.
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25.4.2.2 Thrusting Maneuvers

1. Maximize the distance between the center of mass and the point of application for
the control force.

2. Determine that propellant expenditure is consistent with system constraints and per-
formance. Determine performance in the event of thruster failure.

3. Design limit cycling characteristics to avoid excessive error, excitation of the space-
craft flexible modes, excessive propellant expenditure, and excessive thruster wear.

4. Consider the effect of thrust impingement on thermal design and thrust degradation.
5. Keep the residual conditions at end of maneuver within the control capability of the

control system to prevent excessive expenditure of propellants.
6. Provide capability to verify control system operation before thrust initiation.
7. Maintain current and accurate mass properties of the spacecraft and alternate con-

figurations.
8. Consider all sources of thrust misalignment, including:

(a) Thrust vector to thruster misalignment.
(b) Thruster mechanical misalignment.
(c) Thruster support structure compliance.

25.4.2.3 Structural Flexibility

1. Provide adequate separation of the rigid body and flexible mode frequencies.
2. Choose the control band pass so that it excludes the structural resonant frequencies

by stiffening of the structure. Consider the use of special inner control loops, or the
use of a notch filter.

3. Make the damping ratio of each flexible appendage as large as possible. Artificial
stiffening or damping by means of separate control loops should be considered.

4. Under saturation, all loops should degrade gracefully.

25.5 Tutorial Summary

In this chapter, we provided a brief overview of satellite attitude control systems in
a tutorial fashion to complement the aircraft control systems tutorial in the previous
chapter. Most of the material in this tutorial is taken from the existing literature, which
are gratefully acknowledged and referenced.
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26

Tutorial on Other Flight Vehicles

26.1 Tutorial on Helicopter (Rotorcraft) Flight Control
Systems

26.1.1 Highlights of the Tutorial on Helicopter Flight Vehicles

In this chapter, we briefly introduce and analyze another popular atmospheric flight
vehicle, namely the helicopter. Interestingly, even at the detailedmathematicalmodeling
level, the methodology that was followed for aircraft dynamics and control holds good
for these vehicles also. However, at the specificity of the vehicle, conceptually there are
significant differences from the aircraft principles warranting a separate discussion of
this important type of atmospheric flight vehicle. The fundamental difference is that
these are rotorcraft vehicles as opposed to the fixed wing aircraft we considered before.
Thus in this chapter we give a tutorial tour focused on these vehicles, highlighting both
the similarities and differences with the fixedwing aircraft type along theway. A detailed
account of helicopter dynamics and control is available in excellent textbooks dedicated
to this subject such as [5, 6].

26.1.2 Introduction

Helicopters are a type of aircraft known as rotorcraft, for they produce the lift needed to
sustain flight bymeans of a rotating wing, the rotor. Because rotors are powered directly,
helicopters can fly at zero forward speed: they hover. They can also fly backwards, of
course. Since they do not need long runways to get the needed lift, they are essentially
vertical take off and landing (VTOL) vehicles. At present, there are two main kinds of
helicopter: those which use a single main rotor and a small tail rotor, and those which
have two main rotors in tandem.
In the single main rotor type, the rotor produces vertical thrust. By inclining this lift

vector, a helicopter can be accelerated in both the fore and aft, and the lateral directions.
This main rotor is usually shaft-driven and, as a result, its torque has to be countered,
usually by a small tail rotor mounted at the end of the tail boom. Yaw control is achieved
by varying the thrust developed by this tail rotor.
In the USA and UK the main rotor rotates counterclockwise (viewed from above); in

France, they use clockwise rotation. This has some significance in relation to the use
of the tail rotor. To approach some point at which to hover, the pilot of a helicopter

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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must make his aircraft flare stop. Since it is customary for helicopter pilots to sit in the
right-hand seat in the cockpit, the external view can be restricted in this flare maneuver,
and, thus, often a sidewards flare is executed, which requires the pilot to apply more
pressure to the left pedal in order to sideslip to the right, but this increased left pedal
deflection demands a greater trimming moment from the tail rotor, which has to be
achieved by an increase in the thrust of that rotor. Pilots flying French helicopters do
not have so great a problem in carrying out this maneuver.
The two rotors of the tandemhelicopters are normally arranged to be at the top and the

front and rear of the fuselage. These rotors rotate in opposite directions, thereby ensur-
ing that the torque is self-balancing.There is normally a significant overlap between the
rotor the rotor discs, however, the hub of the rear rotor being raised above the hub of
the rotor at the front.The resulting aerodynamic interference causes a loss of power, but
the amount lost, being about 8–10 %, is almost the same as that lost in driving a single
tail rotor.
Every rotor has blades of high aspect ratio that are very flexible.These rotors are either

articulated, in which case they use hinges at the root of the blades to allow free motion
of the blades in directions normal to, and in the plane of, the rotor disc. At the blade
hinge, the bending moment is zero; no moment is transmitted, therefore, through the
root of the blade to the fuselage of the helicopter. Recent designs have eliminated hinges;
these are referred to as hingeless, or rigid, rotors.
The out-of-plane motion of the blade, perpendicular to its radial direction, is referred

to as its flapping motion. Motion about the vertical hinge causes the blade to deflect
in the plane of the disc and such motion is referred to as lagging motion. In hingeless
rotors, flapping and lagging motion are defined as the out-of-phase and the in-phase
bending, respectively.
To control a rotor means that the pitch angles of its blades can be altered to cause a

change in the blade’s angle of attack, thereby controlling the corresponding aerodynamic
forces. On a hinged blade, the pitch bearing is usually outboard of both the flapping and
lagging hinges, but on a hingeless rotor the bearing may be found either in or outboard
of the major bending moment at the blade root.
While the state variables in helicopter flight are still similar to the aircraft state vari-

ables, the major difference in helicopter control is with the definition of control vari-
ables available within the helicopter dynamics. With any type of rotor, there will be an
azimuthal variation of lift as the rotor rotates. Such variation affects the degree of flap-
ping motion and, consequently, the direction of the average thrust vector of the rotor.
A cyclic variation of lift can be effected, therefore, by changing a rotor blade’s pitch as
the blade is being rotated.This altering of blade pitch is termed the cyclic pitch control;
when it causes a pitchingmoment to be applied to the helicopter it is called longitudinal
cyclic, usually denoted by 𝛿B. If the applied moment is about the roll axis, the control
is called the lateral cyclic, denoted by 𝛿A. Yaw is controlled by changing, by the same
amount, the pitch angle of all the blades of the tail rotor; such a collective deflection of
the blades of the tail rotor is denoted by 𝛿T . When the pitch angles of all the blades of
the main rotor are changed by an identical amount at every point in azimuth, a change
is caused in the total lift being provided by the rotor. This type of control is called col-
lective pitch control, denoted by 𝛿𝜃0. Direct control of translational motion is done by
means of the collective control, since it is the means by which the direction of the thrust
vector can be controlled.
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Thus as can be seen from this discussion, the control variables in helicopter dynamics
are significantly different from the aircraft control variables.
The importance of the collective to helicopter flight cannot be overemphasized; it is

the direct lift control that allows the helicopter’s vertical motion to be controlled quickly
and precisely. Since there is considerable energy stored when the rotor rotates (as a
result of its angular momentum) only small changes in the collective setting are needed
to change vertical motion without any accompanying exchange of height for airspeed.
Moreover, for small collective inputs, the ability of the helicopter’s engine (or engines) to
change speed is not of great concern. However, this simple means of controlling height
makes it a little more difficult to control a helicopter’s horizontal speed; to slow down, it
is necessary to pitch a helicopter nose-up. Thus, a pilot achieves deceleration by means
of pitch attitude, while maintaining his helicopter’s height with the collective, which
requires the pilot to demonstrate greater control coordination. It is characteristic of
helicopters during the approach to hover, and at hover, that any changes in the vehicle’s
speed require some adjustment of the collective, which, in turn, causes a change in the
helicopter’s yawing motion, thereby resulting in the development of significant sideslip.
These coupled motions subsequently result (in the absence of immediate and effective
pilot action) in the helicopter rolling and pitching. This complex dynamic response is
of particular concern when considering a helicopter’s approach on the glide slope, for it
can lead to deviation from the desired flight path.
Hence another major difference from fixed wing aircraft is the ever-present multitude

of cross couplings between all degrees of freedom along the longitudinal, lateral, and
directional axes.
With tandem rotors, matters are different. If both rotors are tilted, a change is caused

in both the forward force and the pitching moment. If differential collective pitch
between the rotors is used, it is possible only to produce pitching motion; yaw control
is provided by tilting the rotors in opposite directions. If the cg of the helicopter is not
located exactly midway between the rotors, then use of the lateral cycle will inevitably
produce a yawing moment.
If such a tandem helicopter is rolled towards starboard (to the right), yawing motion

towards port (to the left) will be induced. This characteristic is opposite, unfortunately,
to that needed to produce a coordinated turn.
The helicopter gives rise to a number of very distinctive control problems, includ-

ing the following: its uncontrolled motion is unstable; its control is effected through its
major lift generator; it is capable of hovering motion; the pilot has to directly control on
its lift force, as well as controlling the motion about its three axes; and its speed range
is narrow, the speeds involved not being very high (the upper limit is about 240 knots,
i.e. 120m s−1).
Only the problems involving stability and control of the helicopter are dealt with in this

book, and then only briefly. However, for helicopters, more acutely than for fixed wing
aircraft, the control and stability characteristics depend very heavily upon the vehicle’s
distinctive flight dynamics and aerodynamics.

26.1.3 Equations of Motion

Any study of the dynamic response of a helicopter is complicated because each blade of
the rotor has its own degrees of freedom, which are in addition to those of the fuselage.
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Yet, for small perturbations in the helicopter’smotion, a knowledge of themotion of each
blade is not required; only the rotor’s motion as a physical entity needs to be considered.
It is usual to assume that the rotor speed,Ω, is constant. Because such analyses are invari-
ably carried out in a body-fixed axes system and it is assumed that all perturbations are
small, the inertia terms can be linearized and the lateral and longitudinal motions may
be considered as being essentially uncoupled. It should be remembered, however, that
because of the rotation of the rotors, a helicopter does not have lateral symmetry (except
for coaxial or side-by-side rotor configurations). There is, consequently, considerable
coupling of lateral and longitudinal motions.
For example, consider the roll coupling that can result from yawing motion. However

the pedals in the cockpit are moved, a rolling acceleration is experienced because the
tail rotor is generally above the roll axis. This can be easily seen from an examination of
the equations governing rolling and yawing motion:

L = Ixx�̈� − Ixz�̈� (26.1)

N = Ixx�̈� − Ixz�̈�. (26.2)

For a helicopter, if Ttr represents the thrust produced by the tail rotor, h represents
the height of the hub of the tail rotor above the helicopter’s cg and l is the distance aft
of the cg at which the tail rotor is located, then:

L = hTtr (26.3)
N = −lTtr. (26.4)

It is simple to show that the ratio of rolling to yawing acceleration can be expressed as:
�̈�

�̈�
=

hIzz − lIxz
hIxz − lIxx

. (26.5)

Since Ixz < Ixx in general, then:
�̈�

�̈�
=̌ − h

l
Izz
Ixx

+
Ixz
Ixx

. (26.6)

Ixz
Ixx

can take a value in the range 0.1–0.25.

26.1.4 Longitudinal Motion

In wind axes the linearized equations of motion are:
mu̇ = −mg𝜃F cos 𝛾 + ΔX (26.7)
m�̇� = mV �̇�F −mg𝜃F sin 𝛾 + ΔZ (26.8)
Iyy�̈�F = ΔM (26.9)

whereΔX andΔZ are increments in the aerodynamic forces rising fromdisturbed flight,
ΔM the corresponding increment in pitching moment, 𝛾 the angle of climb, and 𝜃F the
pitch attitude of the fuselage. Because it is assumed that the perturbations in u,𝑤 and 𝜃F
are small, the increments in the forces and the moment can be written as the first terms
of a Taylor Series expansion, i.e.:

ΔX = 𝜕X
𝜕usp

usp +
𝜕X
𝜕𝑤

𝑤 + 𝜕X
𝜕q

q + 𝜕X
𝜕𝛿B

𝛿B +
𝜕X
𝜕𝛿𝜃0

𝛿𝜃0 (26.10)
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where 𝛿B is the cyclic pitch control term, and 𝛿𝜃0 the collective pitch control term. The
coefficients 𝜕X

𝜕usp
, 𝜕X
𝜕𝑤
, etc. (or in the shorthand Xu, X𝑤, etc.) are the stability derivatives.

Thus:

m ̇usp = Xuusp + X𝑤𝑤 + Xqq +mg𝜃F cos 𝛾 + X𝛿B
𝛿B + X𝛿𝜃0

𝛿𝜃0 (26.11)

m�̇� = Zuusp + Z𝑤𝑤 + Zqq +mV �̇�F −mg𝜃F sin 𝛾 + Z𝛿B
𝛿B + Z𝛿𝜃0

𝛿𝜃0 (26.12)

Iyy�̈�F = Muusp +M𝑤𝑤 +Mqq +M�̇��̇� +M𝛿B
𝛿B +M𝛿𝜃0

𝛿𝜃0 . (26.13)

The term M�̇��̇� is usually included to account for the effect of downwash upon any
tailplane that may be fitted.
Because lift is generated by the rotating blades whose tilt angles are considered as

the control inputs, it proves to be helpful to employ a non-dimensional form of those
equations.The stability derivatives concept is basically similar to the stability derivatives
we discussed in the fixed wing aircraft case, with minor care in interpreting them. Let
the radius of the rotor blades be denoted by R. The tip speed of any blade is therefore
given by ΩR. The blade area is s𝜋R2 where the solidity factor, s, of the rotor is given by:

s = bc
𝜋R

(26.14)

where b represents the number of blades used in the rotor and c represents the chord of
these blades (assuming, of course, that they are all identical).
The reference area, Aref, is given by:

Aref ≜ 𝜋R2. (26.15)

Following similar logic explained in the fixed wing aircraft case, the non-dimensional
stability derivatives, conceptually, can be defined as:

xu =
Xu

𝜌sArefΩR
(26.16)

x𝑤 =
X𝑤

𝜌sArefΩR
(26.17)

x′q =
Xq

𝜌sArefΩR2 (26.18)

zu =
Zu

𝜌sArefΩR
(26.19)

z𝑤 =
Z𝑤

𝜌sArefΩR
(26.20)

z′q =
Zq

𝜌sArefΩR2 (26.21)

m′
u =

Mu

𝜌sArefΩR2 (26.22)

m′
�̇� =

M�̇�

𝜌sArefΩR2 (26.23)

m′
q =

Mq

𝜌sArefΩR2 (26.24)
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x𝛿B =
X𝛿B

𝜌sArefΩ2R2 (26.25)

z𝛿B =
Z𝛿B

𝜌sArefΩ2R2 (26.26)

m′
𝛿B
=

M𝛿B

𝜌sArefΩ2R3 (26.27)

x𝛿𝜃0 =
X𝛿𝜃0

𝜌sArefΩ2R2 (26.28)

z𝛿𝜃0 =
Z𝛿𝜃0

𝜌sArefΩ2R2 (26.29)

m′
𝛿𝜃 0

=
M𝛿𝜃 0

𝜌sArefΩ2R3 . (26.30)

26.1.5 Lateral Motion

To control lateralmotion the following inputs are used: the deflection angle of the lateral
cyclic, 𝛿A and the collective pitch angle of the tail rotor, 𝛿T.The corresponding equations
of motion are:

m�̇� = Y𝑣𝑣 + Ypp −mVr + Yrr +mg𝜑 cos 𝛾 +mg𝜓F sin 𝛾
+ Y𝛿A

𝛿A + Y𝛿T
𝛿T (26.31)

Ixxṗ − Ixzṙ = L𝑣𝑣 + Lpp + Lrr + L𝛿A
𝛿A + L𝛿T

𝛿T (26.32)
−Ixzṗ + Izzṙ = N𝑣𝑣 + Npp + Nrr + N𝛿A

𝛿A + N𝛿T
𝛿T. (26.33)

Ixx, Ixz, and Izz are themoments of inertia.The derivativesYp andYr are usually negligible
in helicopter studies. Using the same procedure to non-dimensionalize these equations
as that employed with the longitudinal motion produces:

ixx =
Ixx
mR2 (26.34)

izz =
Izz
mR2 (26.35)

ixz =
Ixz
mR2 (26.36)

d𝑣
d𝜏

= y𝑣𝑣 +mg𝜑 cos 𝛾 −
Vd𝜓F

d𝜏
+mg𝜓F sin 𝛾 + y𝛿A𝛿A + y𝛿T𝛿T (26.37)

dp
d𝜏

= l𝑣𝑣 + lpp + lrr +
ixz
ixx

ṙ + l𝛿A𝛿A + l𝛿T𝛿T (26.38)

dr
d𝜏

= n𝑣𝑣 + npp + nrr +
ixz
ixx

ṗ + n𝛿A𝛿A + n𝛿T𝛿T. (26.39)

26.1.6 Static Stability

Static stability is of cardinal importance in the study of helicopter motion since the sev-
eral equilibrium modes affect each other considerably. For example, any disruption of
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directional equilibrium will lead to a change in the thrust delivered from the tail rotor,
resulting in a corresponding change of the moment of this force (relative to the longitu-
dinal axis,OX) which causes a disruption in the transverse equilibrium of the helicopter.
But how does any disruption of directional equilibrium occur in the first place? Suppose
the helicopter rotates about the transverse axis, OY , i.e. its longitudinal equilibrium is
disrupted.The angle of attack of the main rotor will then change; such a change causes a
change in thrust and, consequently, a change in the reactive moment of the main rotor.
That change disrupts the directional equilibrium.
The practical significance of this interplay between the balancing forces mean that a

helicopter pilot must constantly try to restore the disrupted equilibrium so that control-
ling (i.e. flying) a helicopter is more complicated and therefore more difficult than flying
a fixedwing aircraft.That iswhy the simple question:Dohelicopters possess static stabil-
ity? requires the examination of a number of factors before an answer can be attempted.
Three factors are involved: (1) the static stability properties, if any, of the main rotor; (2)
the static stability properties, if any, of the fuselage, and (3) the effect of the tail rotor
and any tailplane on any static stability properties.

26.1.7 Static Stability of the Main Rotor

26.1.7.1 Speed
It is assumed that the helicopter is flying straight and level at a speed V . Suppose, in the
perturbed flight, the speed is increased by a small amount, ΔV . The flapping motion
of the blades therefore increases. As a result, the axis of the cone of the main rotor is
deflected aft, from its previous position, by an angle denoted by 𝜀. Such a tilt of the
coning axis leads to the development of a force Fx that is in an opposite sense to the
direction of flight. As a result of this force, the velocity of the main rotor falls, and hence
the helicopter reduces its forward speed.
If it had been assumed that, when the helicopter was flying straight level, the speed has

been reduced by an amountΔV , the cone axis would then have been deflected forward,
and the force, Fx, would have developed in the same sense as the direction of flight,
thereby causing an increase in the forward speed.
Thus, it can be concluded that with respect to changes in speed, the main rotor is

statically stable.

26.1.7.2 Angle of Attack
The helicopter is once more assumed to be flying straight and level with its main rotor
at an angle of attack of 𝛼MRA

. The thrust delivered by the main rotor passed through the
helicopter’s cg and hence anymoment of the thrust must be zero. Under the influence of
a vertical air current, say, the helicopter lowers its nose and, therefore, the angle of attack
of the main rotor is reduced by an amount Δ𝛼A. The vector of thrust is now deflected
forward.
Amoment,MT, is established which causes the value of the angle of attack of themain

rotor to decrease:

MT = Tl. (26.40)

This moment is destabilizing.



458 26 Tutorial on Other Flight Vehicles

If the angle of attack of the main rotor is increased, however, the thrust vector will
tilt aft and a nose-up moment,MT, will be established causing the angle of attack of the
main rotor to increase further.
Themain rotor is statically unstable, therefore, with respect to fuselage angle of attack.

Provided that no translation occurs, a helicopter in hoveringmotion has neutral stability
with respect to any change in attitude.

26.1.7.3 Fuselage Stability
The greatest influence upon the static stability of a helicopter is that of the rotor; the
contribution of the fuselage to static stability is not negligible, however. For a single rotor
helicopter, for example, the fuselage is statically unstable in all three axes of motion. A
small tailplane is sometimes installed at the aft end of the fuselage to improve the static
stability of longitudinalmotion in straight and level flight. Its influence is practically zero
at low speeds and at hover. However, the degree of instability in longitudinal motion can
be reduced from the value at hover by increasing forward speed and by reducing the
angle of attack until, at negative angles of attack, the fuselage plus tailplane possesses
some static stability.
If a helicopter is fitted with a tail rotor it has a profound effect on the fuselage’s static

stability as if the directional equilibrium is disrupted and the helicopter turns to the
right, say, the angle of attack of the blade elements of the tail rotor will increase and, con-
sequently, the thrust from the tail rotor increases by some amount, ΔT . Therefore, the
moment of this thrust must also increase thereby restoring equilibrium. In this manner
the tail rotor gives the fuselage directional static stability.
If the hub of the main rotor has offset horizontal (lagging) hinges, the hinge moment

associated with that offset have a considerable effect on both longitudinal and trans-
verse static stability of that helicopter. The greater the offset of the hinge and the
rotational speed of the rotor, the greater the static stability possessed by the helicopter.
These same factors also contribute to the increase in damping moment contributed by
the main rotor.

26.1.8 Dynamic Stability

Since the flying qualities of a helicopter are markedly different in forward flight and in
hovering motion, these two flight regimes are dealt with separately.

26.1.9 Longitudinal Motion

26.1.9.1 Stick-fixed Forward Flight
The pilot’s stick being assumed fixed, there are no control inputs 𝛿B, 𝛿𝜃,0 , 𝛿A or 𝛿T : the
dynamic stability properties are determined solely from the coefficient matrix.
For straight and level flight,

𝛾 ≜ 0 (26.41)
V ≥ zq. (26.42)
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Hence, the corresponding coefficient matrix, A∗
long, can be expressed as:

A∗
long =

⎡⎢⎢⎢⎣
xu x𝑤 xq −mg
zu z𝑤 V 0
m̃u m̃𝑤 m̃q 0
0 0 1 0

⎤⎥⎥⎥⎦
. (26.43)

26.1.9.2 Hovering Motion
When a helicopter hovers, V is zero and, usually, x𝑤, xq, mm and m𝑤 are negligible, i.e.
the equations of motion now become:

̇usp = xuusp −mg𝜃F + x𝛿B𝛿B + x𝛿𝜃0 𝛿𝜃0 (26.44)

�̇� = zuu − z𝑤𝑤 + z𝛿B𝛿B + z𝛿𝜃0 𝛿𝜃0 (26.45)

q̇ = muu −mqq +m𝛿B
𝛿B +m𝛿𝜃0

𝛿𝜃0 . (26.46)

Hence, the characteristic polynomial can be shown to be:

Δhover = 𝜆3 − (xu +mq)𝜆2 + xumq𝜆 +mgmu (26.47)

Δhover = (𝜆 + p1)(𝜆2 + 2𝜁𝜔𝜆 + 𝜔2). (26.48)

The factor (𝜆 + p1) corresponds to a stable, subsidence mode, whereas the quadratic
factor corresponds to an unstable, oscillatory mode since 𝜁 invariably lies in the range 0
to −1.0. Consequently, the longitudinal dynamics of a helicopter at hover separate into
two distinct motions: vertical and longitudinal. It is easy to show that:

𝑤(s)
𝛿𝜃0(s)

=
z𝛿𝜃0

(s − z𝑤)
= sh(s)

𝛿𝜃0(s)
(26.49)

i.e. the vertical motion of a helicopter at hover is described by a first order linear differ-
ential equation, with a time constant given by:

T𝑣 = − 1
z𝑤

. (26.50)

The time-to-half amplitude is typically about 2 s since the value of z𝑤 is typically within
the range −0.01 to −0.02.
In many ways, the simplified representation of the vertical motion in response to col-

lective inputs is misleading.The vertical damping, z𝑤, is not a simple aerodynamic term
but is composed of contributions from the fuselage and from the inflow created by the
rotor. In hoveringmotion, the inflow contribution is predominant.The value of z𝑤, how-
ever, which is speed dependent, does have a marked effect on the thrust-to-weight ratio
required for helicopter flight. Furthermore, the value of vertical damping required for a
particular height response is considerably affected by the response time of the engine(s)
driving the rotor. Of considerable importance to any control in helicopters is the nature
of the engine response.
The instability of the longitudinal dynamics is a result of coupling of themotion via the

pitching moments, which comes about as a result of the change in longitudinal velocity,
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i.e. Mu (known as speed stability), and the longitudinal component of the gravitational
force. For static stability, the requirement is that the constant term of the characteristic
polynomial shall be positive, i.e.

mgmu > 0. (26.51)

The inequality can be satisfied with a positive value ofmu.
In summary, for a hovering helicopter, the longitudinal dynamics are described by a

stable, subsidence mode (a large negative real root due to pitch damping) and a mildly
unstable, oscillatory mode (due to the speed stabilityMu). A pilot will have good control
over the angular acceleration of the helicopter, but poor direct control over translation.
Because of the low damping, in hover the control sensitivity is high. This combination
of high sensitivity and only indirect control of the translational velocity makes a hov-
ering helicopter prone to pilot-induced oscillations thereby increasing the difficulty of
the pilot’s task. To aggravatematters, the lateral and longitudinalmotions are not decou-
pled, as supposed, and, formany types of helicopter, a longitudinal cyclic input can result
in large corresponding lateral motion. Furthermore, because of the speed stability of its
rotor, a helicopter is susceptible to gusts whenever it is hovering and, as a result, its posi-
tion relative to the ground drifts considerably; this makes the task of station keeping, for
which helicopters are universally employed, particularly taxing.

26.1.10 Lateral Motion

26.1.10.1 Hovering Motion
In hovering motion the forward speed is zero. When longitudinal motion in hover is
considerable it is found that a number of stability derivatives are either zero or negli-
gible, which leads to a substantial simplification of the equations of motion. However,
such simplifications do not occur in lateral motion studies, because the yawing (r) and
rolling (p) motions are coupled by virtue of the stability derivatives, lr and np, which
have significant values owing to the tail rotor. If, however, it is assumed that the shaft of
the tail rotor is on the roll axis, lr can be considered negligible. Then the characteristic
polynomial becomes:

(𝜆 − nr)(𝜆3 − [y𝑣 + lp]𝜆2 + y𝑣lp𝜆 − l𝑣mg). (26.52)

The root (𝜆 = nr)means that the yawingmotion is stable (since nr is invariably negative)
and independent of sideways and rolling motion. The cubic can be factored into:

(𝜆 + p2)(𝜆2 + 2𝜁1𝜔1𝜆 + 𝜔2
1). (26.53)

The first factor corresponds to stable rolling, subsidencemode; the quadratic represents
an unstable, oscillatory mode. Typically, for the rolling subsidence mode, ta is less than
0.5 s; the period of the oscillation is about 15–20 s, whereas the time-to-double ampli-
tude is about 20–30 s. The time constant of the yawing mode is about 5 s.

26.1.11 Overview of the Similarities and Differences with Respect to the
FixedWing Aircraft

In this section, we summarize the similarities and differences of fixed wing aircraft anal-
ysis in a conceptual way.
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26.1.11.1 Similarities
• Theequations ofmotion development is quite similar to the fixedwing case, as we still

use the Newton’s laws of motion to develop the equations with the appropriate defi-
nitions for the state variables and the control variables. Note that the state variables
have similarities with the fixed wing, but the control variables do have considerable
conceptual differences.

• Similarly, the notions of static stability and dynamic stability, the development of sta-
bility derivatives needed in the equations of motion, the linearization concept and
stability in small motions, etc. carry over to this case as well.

26.1.11.2 Differences
• There is significant coupling between all the three degrees of freedom, which does

not allow us to do the traditional decoupled analysis we have done for aircraft by con-
sidering the longitudinal (pitch) motion separately from the roll/yaw motion. Thus
there is no clear cut mode identification such as pure short period and pure phugoid
modes. They are all coupled, because speed variations may cause significant pitch-
ing moments and so on. Similarly pitching motion may cause significant rolling and
yawing moments causing the decoupling between longitudinal motion to lateral/di-
rectional motion to be unacceptable.

• Similarly there is not that much stability margin available via the static margin con-
cept. Most helicopters are statically unstable, requiring continuous dependence on
the automatic flight control system to keep it stable in both static as well as dynamic
situations, especially in the hover mode.

• Thepitch bandwidth requirements are significantly different for helicopters and fixed
wing aircraft. Let 𝜏p denote the phase delay parameter. It relates to the rate of change
of phase with frequency above the crossover frequency and is a measure of the equiv-
alent time delay between attitude response and pilot control input. The bandwidth,
denoted by 𝜔bw is that frequency beyond which closed loop stability is threatened.
Thus if we plot the parameter 𝜏p versus the parameter 𝜔bw, in a planar diagram, for
both fixed wing and helicopters, then the range of these parameters for mid-term
stability is significantly different with very limited range of 𝜔bw and a corresponding
large range in 𝜏p for helicopters compared to the fixed wing aircraft, pointing to the
fact that controlling helicopters is a much tougher and critical task than for a fixed
wing aircraft.

• Helicopters have two distinct flight regimes: (i) the hover/low speed regime, (ii) the
mid/high speed regime. The hover/low speed regime is unique to a helicopter; no
other flight vehicle can so efficiently maneuver in this regime, close to the ground and
obstacles, with the pilot having direct control of thrust with quick response times.

• Interestingly, a fixed wing aircraft leaves its tip vortices behind whereas the helicopter
rotor blades are forced to operate under the presence of these tip vortices shed by
all rotor blades, which in turn translates to considerable demand on control energy
expended as well as the complexity in the control logic to account for this.

• Propeller aircraft have axial symmetry but helicopter blades lose that axial symmetry
under perturbed conditions.

• In the excellent book by [5], the author presents an interesting and enlightening dis-
cussion on Flying Qualities. He categorizes them into two distinct categories, namely
(i) handling qualities, reflecting the vehicle’s behavior in response to pilot controls
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and (ii) ride qualities, reflecting response to the response to external disturbances.
In summary, the author concludes that for acceptable flying qualities, in a helicopter,
the automatic flight control system plays an extremely crucial role in the sense that,
without it, it is almost impossible to achieve acceptable flying qualities.
This in turn prompts the reader (likely the student) to appreciate the importance of
learning the art of designing a good automatic flight control system by mastering the
contents of both classical, transfer function based control theory as well as the time
domain state space based control theory, presented in this book.

26.1.12 Helicopter Tutorial Summary

In this tutorial, we have discussed the dynamics and control issues for a rotor-craft vehi-
cle such as a helicopter in contrast to the fixed wing aircraft in the major part of this
book. In this brief tutorial type discussion we attempted to make the reader understand
the similarities and differences between rotor-craft vehicle dynamics and control and
fixed wing vehicle dynamics and control.

26.2 Tutorial on Quadcopter Dynamics and Control

26.2.1 Quadcopter Tutorial Highlights

In this tutorial, we present a brief overview of another popular flight vehicle that has gar-
nered immense attention in recent years under the umbrella of unmanned aerial vehicles
(UAV)s, namely the simple and agile quadcopters.While quadcopters (Figure 26.1) have

Figure 26.1 Quadcopter.
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many similarities with the helicopter dynamics and control we discussed in the previous
tutorial, a brief overview of the dynamics and control issues specific to quadcopters
would be worthwhile and this chapter attempts to do the same in a tutorial fashion.

26.2.2 Unmanned Aerial Systems (UAS) and the role of Quadcopters

Unmanned aerial systems (UASs) with various types of UAVs has emerged as a
promising arena for improving mobility and efficiency in aviation in recent times.
Among those UAVs, small size quadrotor helicopters (also referred to as drones, in
a loose sense) have become extremely popular because of their simplicity, agility,
and maneuverability to accomplish various tasks such as inspection, surveillance,
package delivery, etc. The Federal Aviation Administration (FAA) approved oil and gas
companies (like BP) to inspect oil pipelines for structural damage and leaks [1, 4], the
German firm DHL and Amazon have attempted a package delivery system with drones
(or quadrotor helicopters) [1, 4], and an Israeli company Bladeworx is attempting to
use a drone surveillance system to protect the Jerusalem light rail system from riots
and vandalism [1, 4], and there are many other such tasks of societal impact. It is not
too far fetched to think of a scenario where the FAA introduces policies to legislate the
civil and commercial use of UAS airspace as these types of applications are expected to
greatly expand in the very near future.

26.2.3 Dynamics and Control Issues of Quadrotors

A quadrotor schematic is shown in Figure 26.2.They are equipped with four rotors typi-
cally arranged either in an X configuration, or in a+ configuration, each pair of opposite
rotors rotating in clockwise fashion, while the other pair rotate counterclockwise to bal-
ance the torque. Control is achieved by varying the motor (rotor) speeds.

26.2.3.1 Mathematical Model and Control Inputs
As far as the mathematical modeling is concerned, the fundamental steps in develop-
ing the equations of motion remain the same, conceptually, from those we have already

z
z

Body Frame Inertial Frame

x x

y y

Figure 26.2 Quadcopter body frame and inertial frame.
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discussed in this book. In view of the tutorial nature of the coverage of this topic, we thus
do not go into the detailed mathematical model development in this chapter. Instead we
focus on the issues that make this quadcopter case different from standard fixed wing
aircraft. From that point of view, we focus on the control logic part. Note that in a quad-
copter, control is achieved essentially by varying the rotor speeds. So let us elaborate on
the control inputs needed and how the control law is developed.
The quadrotor is an under-actuated mechanical system, in the sense that there are

fewer control variables than the number of degrees of freedom that need to be con-
trolled.The four independentmotor thrusts are conceptually themain control variables,
where we need to control three attitude rotational degrees of freedom and three transla-
tional degrees of freedom. In a quadcopter, its attitude is coupled with the position, i.e. a
pitch or roll angular displacement is needed to move it in the (x, y) plane, i.e to move in
a forward or backward direction. One of the proposed methods of determining the four
virtual control variables that are taken as Tf , the total thrust force, 𝜏𝜙, the roll torque,
𝜏𝜃 , the pitch torque, and 𝜏𝜓 , the yaw torque.The total thrust force is given by the sum of
the thrusts from four rotors, i.e.

Tf = f1 + f2 + f3 + f4. (26.54)

A positive roll torque (roll right) is generated by increasing the thrust in one pair of
motors (the left motors) and/or decreasing the thrust in the other pair of motors (right
motors). Thus, knowing the moment arms of the motors from the cg position, one can
determine the roll torque 𝜏𝜙. Thus we have

𝜏𝜙 = l1(−f1 + f2) + l2(f3 − f4) (26.55)

where l1 and l2 are the moment arm lengths of the front motors.
Similarly, a positive pitch torque (pitch up) is generated by increasing the thrust in

one pair of motors (the front motors) and/or decreasing the thrust in the other pair of
motors (back/rear motors). Thus, knowing the moment arms of the motors from the cg
position, one can determine the pitch torque 𝜏𝜃 . Thus we have

𝜏𝜃 = l3(f1 + f2) − l4(f3 + f4) (26.56)

where l3 and l4 are the moment arm lengths of the back motors.
Thedrag force on the rotors produces a yawing torque on the quadrotor in the opposite

direction of the rotor’s rotation. Thus, a positive yaw torque (clockwise from the top
view) is generated by increasing the first and third motor speeds and/or decreasing the
second and fourth motor speeds, i.e.

𝜏𝜓 = 𝜏1 + 𝜏2 + 𝜏3 + 𝜏4. (26.57)

Next, we need to analyze the relationship between thrust and the rotor’s angular veloc-
ity. This relationship varies based on the angle of attack and the free-stream properties
of the wind and on the blade flapping and blade geometry. This relationship is difficult
to model in an accurate way, but for the small motions such as small angles of attack and
low speeds, this relationship is typically approximated and simplified by assuming that
the thrust produced by the ith rotor is given by

fi = ktΩ2
i (26.58)

where kt is a thrust coefficient approximated as a constant.
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Similarly, the relationship between the rotor’s angular velocity and the counter-torque
due to drag on the propeller 𝜏i, which is also difficult to model, is also approximated and
simplified as

𝜏i = cdΩ2
i (26.59)

where cd is assumed to be a constant.
Finally, the relationship between the four virtual control variables and themotor angu-

lar velocities can be related by the following matrix relationship, namely

⎡⎢⎢⎢⎣
Tf
𝜏𝜙
𝜏𝜃
𝜏𝜓

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

kt kt kt kt
−l1kt l1kt l2kt −l2kt
l3kt l3kt −l4kt −l4kt
cd −cd cd −cd

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
Ω2

1
Ω2

2
Ω2

3
Ω2

4

⎤⎥⎥⎥⎦
. (26.60)

Once the controller logic computes the virtual control inputs Tf , 𝜏𝜙, 𝜏𝜃 𝜏𝜓 , these are
then transformed into the desired angular velocities of the rotors by inverting the above
above matrix. This process is labeled as motor mixing in some literature.
Once the above control variable interpretation is understood, the rest of the exercise

is to design the control logic and there is an abundance of literature on this depending
on the control objective and the performance specifications.

26.2.4 Quadcopter Tutorial Summary

In this section, we have briefly highlighted the important features related to the dynam-
ics and control of quadcopters in a brief, tutorial fashion.The interested reader is encour-
aged to expand the knowledge base in this area by consulting many recent research
papers emerging in this area, few of which are referenced here in this book.

26.3 Tutorial on Missile Dynamics and Control

26.3.1 Missile Tutorial Highlights

In this tutorial, we present a brief tutorial on issues related tomissile dynamics, guidance
and control [2].

26.3.2 Introduction

Missiles have been effectively used as weapons in many military missions (see
Figure 26.3). Typically, when we use the word missile it is understood that it is guided
missile. Thus the major discussion on missiles revolves around guidance and control
aspects, as they become extremely important. As per the dynamics part, we follow the
same mathematical development we outlined before for an aircraft. By using a body
axis system the product of inertia term Jxz is zero and Iz = Iy. Thus for P = 0 there is no
coupling between the longitudinal and lateral equations. The calculation of the missile
transfer functions, conceptually is more complicated than that of an aircraft because
of the assumptions we made about the physical properties (such as mass, moments of
inertia, cg location, etc) and the flight conditions (such as the Mach number, altitude,
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Figure 26.3 Boeing AGM-84L Harpoon Missile. Courtesy of media.defence.gov.
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Figure 26.4 An aerodynamic missile and axis system.

etc). Similarly in the computation of all the stability derivatives needed at a given flight
condition (i.e. at a given altitude andMach number (velocity)), in the case of aircraft, we
also assume them to be evaluated at constant values of the aerodynamic coefficients. So,
strictly speaking, in a missile, these physical properties as well as the flight conditions
change relatively rapidly with time, thereby violating some of the assumptions we made
in the aircraft case. However, we can still use the same equations of motion we derived
for an aircraft for missiles as well, since in majority of the situations the duration of
the missile motion is very short and hence we can still assume that the instantaneous
values of all these parameters are relatively constant.
In a guided missile (See Figures 26.4 and 26.5), the missile is controlled by commands

from the internal guidance system or by commands transmitted to the missile by radio
from the ground or a launching vehicle. These guidance commands serve as the desired
or reference inputs in a control system. Thus guidance and control are intertwined.
There are various types of guided missiles. Those that are flown in the same manner

as manned aircraft, that is missiles that are banked to turn, cruise missiles, and remotely
piloted vehicles, which are not of thatmuch interest in this tutorial.We aremore focused
on aerodynamic missiles, which use aerodynamic lift to control the direction of flight,
and ballistic missiles, which are guided during powered flight by deflecting the thrust
vector and become free-falling bodies after engine cut-off. One feature of these missiles
is that they are roll stabilized. Thus we can assume decoupling between longitudinal
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Figure 26.5 Ballistic missile and axis system.

modes and lateral modes. Only from a pure control system design point of view can
most of themethods we developed for aircraft case be carried over to themissile control
problem. However, as far as the guidance system for ballistic missiles is concerned, the
flat earth approximation we made (which amounts to taking the rotating earth as an
inertial reference frame) may not hold for computing the guidance commands.

26.3.2.1 Roll Stabilization
For aerodynamic missiles, roll stabilization is accomplished generating the required
rolling moment by differential movement of the control surfaces. For ballistic missiles,
it is achieved by differential swiveling of small rockets mounted on the side of the
missile (e.g. Atlas) or by the main rocket engines if more than one main engine is used.

26.3.2.2 Aerodynamic and Ballistic Missiles
For few types of aerodynamicmissiles, control is achieved either by conventional control
surfaces with stationary canards or even without canards or completely by canards with
no control surfaces on the main lifting surfaces. The typical cruciform missiles have Y
and Z axis symmetry, so that controlling pitch axis motion can be done by assuming
standard pitch axis short period equations of motion used for the aircraft case.
For ballistic missiles (such as Vanguard) the trajectory of the missile is planned such

a way as to make the missile maintain zero angle of attack (see Figure 26.5).
The trajectory of a ballistic-type missile is planned to maintain the missile at a zero

angle of attack. This is usually done by programming the pitch attitude or pitch rate to
yield a zero-g trajectory.



468 26 Tutorial on Other Flight Vehicles

While some of the assumptions we made in the aircraft case such as:

1. the X and Z axes lie in the place of symmetry, and the origin of the axis system is
located at the center of gravity of the missile

2. the perturbations from equilibrium are small

may carry over to the missile case, there are few assumptions we made for aircraft
such as:

1. the mass of the missile is constant
2. the missile is a rigid body
3. the Earth is an inertial reference

are not completely valid for the missile case, because the ballistic missile is consuming
fuel at a highly rapid rate. However, it is interesting to note that missile control systems
designed under the aircraft assumptions have successfully performed, mostly because
the duration of the flight times for these missiles are very short and thus the engineering
judgment was sufficiently accurate for all practical purposes.

26.3.3 Missile Tutorial Summary

This tutorial briefly covered the basic issues related to the guidance and control of aero-
dynamic and ballistic missiles.

26.4 Tutorial on Hypersonic Vehicle Dynamics and Control

26.4.1 Hypersonic Vehicle Tutorial Highlights

In this tutorial, we highlight the issues pertaining to dynamics and control of hypersonic
vehicles in a brief tutorial fashion [3], see Figure 26.6.

26.4.2 Special Nature of Hypersonic Flight:Hypersonic Flight Stability
and Control Issues

Hypersonic vehicles are those which fly at high speeds exceedingMach numbers of≥ 5.
Naturally, the aerodynamic characteristics of these hypersonic vehicles are significantly
different from those of subsonic, transonic and low supersonic vehicles. The major key
differences can be summarized as follows:

• Center of pressure (neutral point) position. Unlike subsonic and low supersonic vehi-
cles, for hypersonic vehicles, the center of pressure position (labeled as the neutral
point in our previous discussion on aircraft dynamics) does not change for changes
in Mach number, angle of attack and altitude. This in turn means that external active
control becomes necessary to maintain stability. In other words, essentially, the con-
cept of static stability is absent in this case.

• Robustness is a necessary feature, not simply a desirable feature. The estimation of
aerodynamic parameters and the resulting stability derivatives derived from ground
tests do not accurately reflect the actual in-flight values making the nominal models
themselves not that accurate. Thus robustness to parameters is a necessary feature,
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Figure 26.6 NASA X-43a. Pic. courtesy of NASA.

not simply a desirable feature in the design of active controllers for hypersonic vehi-
cles. Thus advanced robust control design methods need to be employed right at the
design stage. This aspect of robust control design for aerospace systems has been an
active topic of research carried out by this author [7] for a long time and is well doc-
umented in the literature. Thus hypersonic vehicle control serves as an incentive to
carry out advanced research in this robust control area.

• Importance of nonlinear nature. At hypersonic speeds, the drag and lift forces become
nonlinear functions of the angle of attack. At the same time, following a transition
phase during transonic and supersonic speeds, the drag and lift coefficients attain
constant values at hypersonic speeds. This in turn means that extreme care needs
to be taken in interpreting the validity and fidelity of any control design that uses
linear models and the need to possibly design inherently nonlinear controllers for
hypersonic vehicle models that incorporate the nonlinearities in the model.

• Low lift/drag ratio. Compared to subsonic and supersonic speeds, themaximumvalue
of the lift/drag ratio for hypersonic vehicles is significantly lower. For example, the
typical values of L∕D for supersonic vehicles is in the range 5–10, whereas it is in the
range 1–5 for hypersonic vehicles. How to increase this ratio has been an active topic
of research in recent times.

• Heating/thermal issues.Thermal gradients and temperature variations is always a sig-
nificant issue with hypersonic vehicles. Techniques such as rounding of the nose and
other leading edges may be needed to reduce these issues. A means of dissipating
heat is a challenging issue. This issue is directly related to the structural integrity
issue.Thus an integrated approach to design the airframe taking into account all these
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interrelated issues is needed. In particular, issues, such as control structure interac-
tions, vehicle thermal management and others, make the control system design for
hypersonic vehicles a truly challenging and exciting task.

26.4.3 Hypersonic Vehicle Tutorial Summary

In summary, it can be seen that a hypersonic vehicle’s dynamics and control issues are
much more complex and as such more sophisticated dynamic modeling as well as more
advanced robust control design techniques have to be used.
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Appendix A

Data for Flight Vehicles

A.1 Data for Several Aircraft

Aircraft

1. A-7A
2. A-4D

A.1.1 A-7A

MGC

Nominal cruise configuration
40,000

Flight envelope

20,000

h,(ft)

0
0 0.4 M 0.8 1.2

× ×

× ××

× ××

×

Clean airplane
60% fuel
W = 21,889 lbs
CG at 30% MGC
Ix = 13,635 slug − ft2

Iy = 58,966 slug − ft2

Iz = 67,560 slug − ft2

Ixz = 2,933 slug − ft2

Reference geometry

S = 375 ft2
c = 10.8 ft
b = 38.7 ft

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Basic Data Sources
Wind tunnel test and estimates
Some lateral-directional derivatives
Adjusted after flight test.

Table A.1 A-7A flight conditions.

Flight condition Flight condition

3 4 8 3 4 8

h, ft 0 15,000 35,000 𝛼0, deg 2.1 13.3 7.5
M∞ 0.9 0.3 0.6 U0, fps 1,004 309 579
a, fps 1,117 1,058 973.3 W0, fps 36.8 72.9 76.2
𝜌, slft−3 2.378 × 10−3 1.496 × 10−3 7.368 × 10−4 𝛿E0

, deg −3.8 −8.8 −5.4
VV , fps 1,005 317 584 𝛾0, deg 0 0 0
q∞, psf 1,200 75.3 126

Note: All data is given in fuselage reference axes. Clean, flexible airplane.

Table A.2 A-7A longitudinal dimensional derivatives.

Flight condition Flight condition

3 4 8 3 4 8

h, ft 0 15,000 35,000 Z
𝛿E

−318 −23.8 −43.2
M∞ 0.9 0.3 0.6 Mu +MPu 0.00118 0.00183 0.000873
Xu + XPu −0.0732 0.00501 0.00337 M

𝛼
−40.401 −2.463 −4.152

X
𝛼

−28.542 1.457 8.526 M
�̇�

−0.372 −0.056 −0.065
X
𝛿E

11.6 5.63 5.7 Mq −1.57 −0.340 −0.330
Zu + ZPu 0.0184 −0.0857 −0.0392 M

𝛿E
−58.6 −4.52 −8.19

Z
𝛼

−3,417 −172.77 −323.54



474 Appendix A Data for Flight Vehicles

Note: All data is given in fuselage reference axes. Clean, flexible airplane.
Table A.3 A-7A lateral directional derivatives.

Flight condition Flight condition

3 4 8 3 4 8

h, ft 0 15,000 35,000 L′
𝛿A

−25.2 3.75 7.96
M∞ 0.9 0.3 0.6 L′

𝛿R
13.2 1.82 3.09

Y
𝛽

−516.57 −38.674 −49.465 N ′
𝛽

17.2 0.948 1.38
Y
𝛿A

−8.613 −0.4755 −1.5593 N ′
p −0.319 −0.031 −0.0799

Y
𝛿R

62.913 9.732 15.593 N ′
r −1.54 −0.271 −0.247

L′
𝛽

−98.0 −8.79 −14.9 N ′
𝛿A

1.56 0.280 0.652
L′
p −9.75 −1.38 −1.4 N ′

𝛿r
−11.1 −1.56 −2.54

L′
r 1.38 0.857 0.599

Note: All data is given in fuselage reference axes. Clean, flexible airplane.

A.1.2 A-4D

Nominal cruise configuration
60,000

Flight envelope

Envelope for model A-4D-l

Transfer functions given for
these flight condition

20,000

40,000

h,(ft)

SL
0.2 0.4 M0.6 0.8 1.0

× ×

× ××

× ×

×

×

Clean airplane
60% fuel
W = 21,889 lbs
CG at 30% MGC
Ix = 13,635 slug − ft2

Iy = 58,966 slug − ft2

Iz = 67,560 slug − ft2

Ixz = 2,933 slug − ft2

Reference
Geometry

S = 375 ft2
c = 10.8 ft
b = 38.7 ft
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Basic Data Sources
Wind tunnel test and estimates
Some lateral-directional derivatives
Adjusted after flight test.

Table A.4 A-4D flight conditions.

Flight condition Flight condition

4 7 4 7

h, ft 15,000 35,000 q∞, psf 301 126
M∞ 0.6 0.6 𝛼0, deg 3.4 8.8
a, fps 1058 973.3 U0, fps 634 577
𝜌, sl ft−3 1.496 × 10−3 7.368 × 10−4 W0, fps 37.7 89.3
VV , fps 635 584 𝛾0, deg 0 0

Note: All data is given in fuselage reference axes. Clean, flexible airplane.

Table A.5 A-4D longitudinal dimensional derivatives.

Flight condition Flight condition

4 7 4 7

h, ft 15,000 35,000 Z
𝛿E

−56.68 −23.037
M∞ 0.6 0.6 Mu +MPu 0.00162 0.001824
Xu + XPu −0.00938 0.000806 M

𝛼
−12.954 −5.303

X
𝛼

26.797 13.257 M
�̇�

−0.3524 −0.1577
X
𝛿E

7.396 6.288 Mq −1.071 −0.484
Zu + ZPu −0.0533 −0.0525 M

𝛿E
−19.456 −8.096

Z
𝛼

−521.97 −226.242

Note: All data is given in fuselage reference axes. Clean, flexible airplane.



476 Appendix A Data for Flight Vehicles

Table A.6 A-4D lateral directional derivatives.

Flight condition Flight condition

4 8 4 8

h, ft 15,000 35,000 L′
𝛿A

21.203 8.170
M∞ 0.6 0.6 L′

𝛿R
10.398 4.168

Y
𝛽

−144.78 −60.386 N ′
𝛽

16.629 6.352
Y
𝛿A

−2.413 −0.4783 N ′
p −0.02173 −0.02513

Y
𝛿R

25.133 10.459 N ′
r −0.5144 −0.2468

L′
𝛽

−35.95 −17.557 N ′
𝛿A

1.769 0.5703
L′
p −1.566 −0.761 N ′

𝛿r
−7.78 −3.16

L′
r 0.812 0.475

Note: All data is given in fuselage reference axes. Clean, flexible airplane.

A.2 Data for Selected Satellites

Table A.7 lists representative satellite masses with and without propellant for various
types of spacecraft. Table A.8 further breaks down the dry mass by the percentage
devoted to each subsystem.

Table A.7 Actual mass for selected satellites. The propellant load depends on the satellite design life.

Spacecraft
name

Loaded
mass (kg)

Propellant
mass (kg)

Dry
mass (kg)

Propellant
mass (%)

Dry
mass (%)

Communication satellite
DSCS II 530.0 54.1 475.9 10.2% 89.8%
DSCS III 1095.9 228.6 867.3 20.9% 79.1%
NATO III 346.1 25.6 320.4 7.4% 92.6%
Intelsat IV 669.2 136.4 532.8 20.4% 79.6%
TDRSS 2150.9 585.3 1565.7 27.2% 72.8%
Average 981.7 166.2 815.6 16.9% 83.1%

Navigation satellite
GPS Block 1 508.6 29.5 479.1 5.8% 94.2%
GPS Block 2,1 741.4 42.3 699.1 5.7% 94.3%
GPS BLock 2,2 918.6 60.6 858.0 6.6% 93.4%
Average 722.9 44.1 678.7 6.1% 93.9%

Remote sensing satellite
P80-1 1740.9 36.6 1704.4 2.1% 97.9%
DSP-15 2277.3 162.4 2114.9 7.1% 92.9%
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Table A.7 (Continued)

Spacecraft
name

Loaded
mass (kg)

Propellant
mass (kg)

Dry
mass (kg)

Propellant
mass (%)

Dry
mass (%)

DMSP 5D-2 833.6 19.1 814.6 2.3% 97.7%
DMSP 5D-3 1045.5 33.1 1012.3 3.2% 96.8%
Average 1474.3 62.8 1411.6 4.3% 95.7%

LightSats
Orsted 60.8 No propulsion 60.8 n/a% 100.0%
Freja 255.9 41.9 214.0 16.4% 83.6%
SAMPEX 160.7 No propulsion 160.7 n/a 100.0%
HETE 125.0 No propulsion 125.0 n/a 100.0%
Clementine 463.0 231.0 232.0 49.9% 50.1%
Pluto Fast Flyby ’93 87.4 6.9 80.5 7.9% 92.1%

Table A.8 Mass distribution for selected spacecraft.

Percentage of spacecraft dry mass

Spacecraft
name Payload Structural Thermal Power TT&C ADCS Propulsion

Communication satellite
DSCS II 23% 23.5% 2.8% 29.3% 7.0% 11.5% 3.0%
DSCS III 32.3% 18.2% 5.6% 27.4% 7.2% 4.4% 4.1%
NATO III 22.1% 19.3% 6.5% 34.7% 7.5% 6.3% 2.4%
Intelsat IV 31.2% 22.3% 5.1% 26.5% 4.3% 7.4% 3.1%
TDRSS 24.6% 28.0% 2.8% 26.4% 4.1% 6.2% 6.9%
Average 27.4% 21.3% 3.6% 31.9% 4.8% 6.9% 3.8%

Navigation satellite
GPS Block 1 20.5% 19.9% 8.7% 35.8% 5.8% 6.2% 3.6%
GPS Block 2,1 20.2% 25.1% 9.9% 31.0% 5.2% 5.4% 3.3%
GPS BLock 2,2 23.0% 25.4% 11% 29.4% 3.1% 5.3% 2.7%
Average 21.2% 23.5% 9.9% 32.1% 4.7% 5.6% 3.2%

Remote sensing satellite
P80-1 41.1% 19.0% 2.4% 19.95% 5.2% 6.3% 6.1%
DSP-15 36.9% 22.5% 0.5% 26.9% 3.8% 5.5% 2.2%
DMSP 5D-2 29.9% 15.6% 2.8% 21.5% 2.5% 3.1% 7.4%
DMSP 5D-3 30.5% 18.4% 2.9% 29.0% 2.0% 2.9% 8.7%
Average 34.6% 18.9% 2.1% 24.3% 3.4% 4.5% 6.1%
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Table A.8 (Continued)

Percentage of spacecraft dry mass

Spacecraft
name Payload Structural Thermal Power TT&C ADCS Propulsion

LightSats
Orsted 21.5% 38.3% 0.8% 15.8% 16.7% 6.8% none%
Freja 34.1% 22.7% 2.4% 19.05% 8.7% 6.0% 7.0%
SAMPEX 32.5% 23.1% 2.5% 25.0% 10.6% 6.3% none%
HETE 35.3% 16.0% 1.8% 20.3% 8.5% 18.1% none%
Pluto Fast Flyby ’93 8.7% 18.1% 4.6% 24.1% 23.9% 8.3% 12.3%

This is data for the satellite moment of inertia.

Satellite Mass (kg) Moment of inertia (kgm2)
M Ix Iy Iz

LAGEOS 406.97 11.42 10.96 10.96
Firesat II 215 90 60 90
IntelSat IV 595 93 225 702

U.S. space shuttles.

Dimension Length System 56.1m
Orbiter 37.2m

Height System 23.3m
Orbiter 17.3m

Wingspan Orbiter 23.8m

Weight
Gross at lift off 1,995,840 kg
Orbiter at landing 84,800 kg

Thrust
Solid rocket boosters (2) 1,305,000 kg each at sea level
Orbiter main engines (3) 168,750 kg each at sea level

Cargo bay 18m long, 4.5m in diameter
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Appendix B

Brief Review of Laplace Transform Theory

B.1 Introduction

Laplace transform theory is very useful in solving linear constant coefficient ordinary
differential equations.This is accomplished by first converting the differential equations
(in the time domain) to algebraic equations in the Laplace variable (frequency) domain;
do all the required algebraic manipulations in the Laplace domain; and then finally con-
verting these Laplace domain equations back into time domain equations via the inverse
Laplace transformation technique. Hence in this appendix, we briefly review Laplace
transform theory and illustrate its use in solving constant coefficient ordinary differen-
tial equations. Elaborate versions of the Laplace transform theory are available in many
excellent linear control theory books such as those cited in the text, but in this appendix
we present only the very basic version needed and adequate for our purposes.

B.2 Basics of Laplace Transforms

The transformation of a function f (t) to the Laplace domain F(s) is given by the formula

F(s) = (f (t)) =
∫

∞

0−
f (t)e−stdt where s = 𝜎 + j⃗𝜔. (B.1)

The lower limit notation allows the integral to handle functions that are discontinues
at zero because it starts just before zero, which allows it to handle functions such as
impulse. To return F(s) from the Laplace domain to the time domain, we use

f (t)u(t) = 1
2𝜋 j⃗ ∫

𝜎+j⃗∞

𝜎−j⃗∞
F(s)est ds. (B.2)

It is important to note that all Laplace transforms start at zero, although sometimes u(t)
will be placed next to the function, which is a step function where

u(t) = 0 when t < 0
u(t) = 1 when t > 0.

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Example B.1 Suppose we want the Laplace transform of f (t) = u(t), i.e. of a unit step
function.

Solution
Then we would use Equation B.1

F(s) = ∫
∞
0− f (t)e−stdt

= ∫
∞
0 1e−stdt

= −e−st
s

||||
∞

0

= −e−s∞
s

− −e−s0
s

= 0 −
(−1

s

)
= 1

s
.

Obviously, considerable effort needs to be spent in carrying out this integration pro-
cess for getting the Laplace transforms for various given time functions. Fortunately,
this was done by our predecessors and thus many goodmathematics and control theory
textbooks contain tables of a given time function and its corresponding Laplace trans-
formed function.Out of themany time functions, for our present purposes in illustrating
the main concepts we consider only very few basic functions that have engineering rel-
evance. Hence Table B.1 shows the most important ones used in linear control system
theory. These transforms are very useful in the control theory that is developed in this
book and instant familiarity with this table is expected at the undergraduate level to the
extent of a suggestion that this table’s contents be memorized.
Note that the functions listed in Table B.1 have engineering relevance. They can be

thought of as representing frequently occurring input functions with a physical mean-
ing. For example, the unit impulse function 𝛿 and the unit step function u(t) are some-
what like the worst case inputs in that they act suddenly.The ramp function t represents
a function that grows linearly as a function of time, which is a frequent phenomenon

Table B.1 Laplace transform table for key time functions.

Type f (t), t > 0l F(s)

Unit impulse 𝛿 1

Unit step u(t) 1
s

Unit ramp tu(t) 1
s2

Parabolic tnu(t) factorialn
sn+1

Sine function sin𝜔tu(t)t 𝜔

𝜔2 + s2

Cosine function cos𝜔tu(t) s
𝜔2 + s2

Exponential function e−atu(t) 1
s + a



B.2 Basics of Laplace Transforms 481

Table B.2 Key Laplace transform theorems.

Name Theorem

Definition f (t) = F(s) = ∫
∞
0− f (t)e−stdt

Linearity theorem 1 kf (t) = kF(s)

Linearity theorem 2 f1(t) + f2(t) = F1(s) + F2(s)

Differential
df (t)
dt

= sF(s) − f (0−)

Differential
df (t)n

dtn
= snF(s) −

n∑
k=1

sn−k f k−1(0−)

Final value f (∞) = lim
s→0

sF(s)

Convolution f1(t) ∗ f2(t) = F1(s)F2(s)

of engineering significance. So are the other few functions covered in the table. The
trigonometric functions are very important due to the fact that many periodic, gen-
eral time functions can be expressed as summation of individual sine and cosine terms
and thus if a linear system’s response to these functions are known, by superposition
principle, it is possible to gain insight into the response to a general time function f (t).
The above relationships in the table can also be used to interpret the inverse Laplace
transforms. For example, the inverse Laplace transform of 1

s+a
is e−atu(t) and so on.

Along with the key Laplace transforms listed above, there are several Laplace trans-
form theorems that are very helpful in control theory, which are listed inTable B.2.These
theorems play an extremely important role in the utility of Laplace transform theory in
solving linear constant coefficient differential equations, as can be seen later.
One of the most important theorems is the differentiation theorem, which helps us

to convert a differential equation in the time domain into an algebraic equation in the
frequency domain.

Example B.2 Consider the following linear constant coefficient differential equation
(with all initial conditions equal to zero) where

d3y(t)
dt3

+ 5
d2y(t)
dt2

+ 8
dy(t)
dt

+ 2y(t) = sin 3t.

Solution
Using the differentiation theorem and the linearity theorems 1 and 2, we get

s3Y (s) + 5s2Y (s) + 8sY (s) + 2Y (s) = 3
s2 + 9

.

Hence the function Y (s) is now given by an algebraic expression

Y (s) = 3
(s2 + 9)(s3 + 5s2 + 8s + 2)

.
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Then we can get the time function y(t) by taking the inverse Laplace transformation
of the Laplace function on the right-hand side.

Hence, we now need to learn the process of inverse Laplace transformation, which is
briefly reviewed next.

B.3 Inverse Laplace Transformation using the Partial Fraction
Expansion Method

Note that, as demonstrated in the above example, a Laplace function Y (s), on the
left-hand side, which is the Laplace transform function of a yet to be known time
function y(t), is mostly known on the right-hand side, as a ratio of a numerator
polynomial in s and denominator polynomial in s i.e.

Y (s) = N(s)
D(s)

.

Theway to get the time function y(t) very much depends on the way the denominator
polynomialD(s) is factored. Let us consider the simple case ofD(s) consisting of simple,
distinct first order factors.

Partial Fraction Expansion with Roots that are Real and Distinct

F(s) = N(s)
(s + a)(s + b)

.

The inverse Laplace transformation procedure is best illustrated with the help of an
example.

Example B.3 Consider

Y (s) = 8
(s + 2)(s + 4)

.

Solution
First we will use partial fraction expansion to simplify the equation and the one of the
key Laplace transforms. So first we expand the equation.

Y (s) = 8
(s + 2)(s + 4)

= A
s + 2

+ B
s + 4

.

Next we have to find the coefficients,A andB. To findAwe have tomultiple the equation
by s + 2 on both sides to isolate A.

F(s) = 8
(s + 4)

= A + B(s + 2)
s + 4

.
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Now letting s = −2, which eliminates the B term, giving us A = 4. Likewise to find B we
multiply the expanded equation by s + 4 and we let s = −4 like we did with the first term
giving us B = −4. We thus have a simplified version of the original Laplace function,
namely

Y (s) = 4
s + 2

+ −4
s + 4

.

Now, we use the Laplace transform table content corresponding to 1∕(s + a) and linear-
ity theorem to obtain the needed time function.

y(t) = Laplace inverse of
[ 4
s + 2

+ −4
s + 4

]
= 4e−2t − 4e−4t.

There are many excellent textbooks such as those that elaborate on this inverse
Laplace transformation process for various other cases of the expansion of the denom-
inator polynomial D(s) and we refer the reader to that material. The purpose of this
brief appendix is to only very briefly convey the overall conceptual procedure of the use
of Laplace transform theory to solve linear constant coefficient differential equations.
It is expected that these basics in Laplace transform theory are covered elsewhere in
a prerequisite mathematics course in the undergraduate curriculum. The best way to
learn this process is to solve exercise problems such as those given next.

B.4 Exercises

B.4.1 Exercises on Laplace Transformation

Convert the following functions of time into the Laplace domain functions:

1. f (t) = te4t
2. f (t) = (t + 1)3
3. f (t) = 4t2 − 5 sin 3t
4. f (t) = t cos t
5. f (t) = 4t − 10
6. te10t
7. t3e−2t
8. t cos 2t
9. t sin 2t.

Solutions

1. te4t = 1
(s − 4)2

2. (t + 1)3 = 1
5
(cos t

√
5)

3. 4t2 − 5 sin 3t = 8
s3

− 15
s2 + 9

4. t cos t = s2 − 1
(s2 + 1)2
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5. 4t − 10 = 4
s2

− 10
s

6. te10t = 1
(s − 10)2

7. t3e−2t = 1
(s + 2)4

8. t cos 2t = s2 − 4
(s2 + 4)2

9. t sin 2t = 4s
(s2 + 4)2

.

B.4.2 Exercises on Inverse Laplace Transformation

Determine the inverse Laplace transforms for the given Laplace functions.

1. 1
s3

2. 1
s2

− 1
s
+ 1

s − 2

3. 4s
4s − 1

4. s
(s − 2)(s − 6)(s − 3)

5. 1
(s − 5)3

.

Solutions

1. 1
s3

= 1
2
t2

2. 1
s2

− 1
s
+ 1

s − 2
= t − 1 + e2t

3. 4s
4s − 1

= cos t
2

4. s
(s − 2)(s − 6)(s − 3)

= 1
2
e2t − e3t + 1

2
e6t

5. 1
(s − 5)3

= 1
2
t2e5t .

B.4.3 Other Exercises

1. Find the time function, for all positive times, for each of the following

(a) Y (s) = s
s + 2

(b) Y (s) = 3s − 5
s2 + 4s + 2
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(c) Y (s) = 10
s3 + 25s2 + 5s

(d) Y (s) = 4(s + 1)
(s + 2)(s + 3)2

.

2. Solve the following differential equations using Laplace transform methods.

(a)
dy
dt

+ 4y = 6e2t with the initial condition y(0−) = 3

(b)
dy
dt

+ y = 3 cos 2t with the initial condition y(0−) = 0

(c)
d3y
dt3

+ 5
d2y
dt2

+ 6
dy
dt

= 0 with the initial conditions:

y(0−) = 3
ẏ = (0−) = −2
ÿ = (0−) = 7.

3. Find the transfer function Y
R
(s) for the following equation

(a)
d3y
dt3

+ 6
d2y
dt2

+ 2
dy
dt

+ 4y = −5d
2r

dt2
+ 8dr

dt
(b) and the system of equations

dx1
dt

= −3x1 + x2 + 4r

dx2
dt

= −2x1 − r

y = x1 − 2x2.

4. Find the zero-state response (i.e. zero initial conditions) of the following systems.
Here, T(s) ≡ Y

R
(s)

(a) T(s) = 4
s + 3

with the input r(t) = u(t)

(b) T(s) = − 5s
s2 + 4s + 3

with the input r(t) = 6u(t)e−2t .

5. Find the complete response for the given initial conditions and input r(t)

(a) T(s) = 1
s + 4

with the input r(t) = 𝛿(t) and the initial function y(0−) = 0

(b) T(s) = s − 5
s2 + 3s + 2

with the input r(t) = u(t) and the initial conditions

y(0−) = −3
y(0−) = 4.

Solutions

1. .(a) y(t) = 𝛿(t) − 2e−2t
(b) y(t) = 5.39e−3.41t − 2.39e−0.59t
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(c) y(t) = 3(e−2t − e−3t) − [6e−2(t−2) − 6e−3(t−2)]u(t − 2)
(d) y(t) = −4e−2t + 4e−3t + 8te−3t .

2. .(a) y(t) = e2t + 2e−4t

(b) y(t) = −3
5
e−t + 3

5
cos 2t + 6

5
sin 2t

(c) y(t) = 13
6

+ e−3t − 1
2
e−2t .

3. The solution to the first equation:
Y
R
(s) = −5s2 + 8s

s3 + 6s2 + 2s + 4
and the solution to the second equation

Y
R
(s) = 6s + 21

s2 + 3s + 2
.

4. .(a) T(t) = 4
3
− 4

3
e−3t

(b) T(t) = 15e−t − 60e−2t + 45e−3t

5. .(a) T(t) = 10e−4t

(b) T(t) = −5
2
+ 4e−t − 9

2
e−2t
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Appendix C

A Brief Review of Matrix Theory and Linear Algebra

C.1 Matrix Operations, Properties, and Forms

In this appendix we include briefly some rudimentary material on matrix theory and
linear algebra needed for the material in the book. In particular we review some prop-
erties of matrices, eigenvalues, singular values, singular vectors and norms of vectors,
and matrices. We have used several texts and journal papers (given as references in
each chapter of this book) in preparing this material. Hence those references are not
repeated here.

Principal Diagonal: consists of themii elements of a square matrix M.

Diagonal Matrix: a square matrix in which all elements of the principal diagonal
are zero.

Trace: sum of all the elements on the principal diagonal of a square matrix.

trace M =
n∑
i=1

mii. (C.1)

Determinant: denoted by det[M] orM, definition given in any linear algebra book.

Singular matrix: a square matrix whose determinant is zero.

Minor: the minorMij of a square matrixM is the determinant formed after the ith row
and jth column are deleted fromM.

Principal minor: a minor whose diagonal elements are also diagonal elements of the
original matrix.

Cofactor: a signed minor given by

cij = (−1)i+jMij. (C.2)

Adjoint matrix: the adjoint of M, denoted by adj[M], is the transpose of the cofactor
matrix. The cofactor matrix is formed by replacing each element ofM by its cofactor.

Inverse matrix: inverse of M is denoted by M(−1), has the property MM−1 =
M−1M = I, and is given by

M−1 =
adj[M]|M| . (C.3)

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Rank of a matrix: the rank r of a matrix M (not necessarily square) is the order of the
largest square array contained inM that has a non-zero determinant.

Transpose of a matrix: denoted by MT , it is the original matrix with its rows and
columns interchanged, i.e.m′

ij = mji.

Symmetric matrix: a matrix containing only real elements that satisfiesM = MT .

Transpose of a product of matrices:

(AB)T = BTAT . (C.4)

Inverse of a product of matrices:

(AB)−1 = B−1A−1. (C.5)

(Complex) conjugate: the conjugate of a scalar a = 𝛼 + j𝛽 is a∗ = 𝛼 − j𝛽. The conju-
gate of a vector or matrix simply replaces each element of the vector or matrix with its
conjugate, denoted bym∗ orM∗.

Hermitian matrix: a matrix that satisfies

M = MH = (M)T (C.6)

where superscript H stands for Hermitian.The operation of a Hermitian is simply com-
plex conjugate transposition – usually, ∗ is used in place of H.

Unitary matrix: a complex matrix U is unitary if UH = U−1.

Orthogonal matrix: a real matrix R is orthogonal if RT = R−1.

C.1.1 Some Useful Matrix Identities

1. . [In + G2G1H2H1]−1G2G1 = G2[Im + G1H2H1G2]−1G1

= G2G1[Ir +H2H1G2G1]−1

= G2G1 − G2G1H2[Ip +H1G2G1H2]−1H1G2G1 (C.7)

where G1 is (m × r), G2 is (n ×m), H1 is (p × n), and H2 is (r × p).
For the following three identities, the dimensions of matrices P, K , and C are: P is
(n × n), K is (n × r), and C is (r × n).

2. . (P−1 + KC)−1 = P − PK(I + CPK)−1CP (C.8)

3. . (I + KCP)−1 = I − K(I + CPK)−1CP (C.9)

4. . (I + PKC)−1 = I − PK(I + CPK)−1C (C.10)

5. . det(In +MN) = det(Im + NM) (C.11)
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whereM and N are matrices of appropriate dimensions such that the productsMN
and NM are square matrices of dimension n andm respectively.

C.2 Linear Independence and Rank

A set of mathematical objects a1, a2, · · · , ar (specifically, in our case vectors or columns
of a matrix) is said to be linearly dependent, if and only if there exists a set of constants
c1, c2, · · · , cr , not all zero, such that

c1a1 + c2a2 + · · · + crar = 0.
If no such set of constants exists, the set of objects is said to be linearly independent.
Suppose a is a matrix (not necessarily square) with a1, a2, · · · , ar as its columns

A = [a1|a2| · · · |an].
The rank of A, sometimes written rank(A) or r(A) is the largest number of independent
columns (or rows) of A. The rank of A cannot be greater than the minimum of the num-
ber of columns or rows, but it can be smaller than that minimum. A matrix whose rank
is equal to that minimum is said to be of full rank.
A fundamental theorem regarding the rank of a matrix can be stated as follows:The

rank of A is the dimension of the largest square matrix with non-zero determinant than
can be formed by deleting rows and columns from A.
Thus we can say that the rank of amatrix is themaximumnumber of linearly indepen-

dent columns (rows) of the matrix, the test for which is to look for the largest dimension
square matrix with non-zero determinant found embedded in the matrix.
Numerical determination of the rank of a matrix is not a trivial problem: if the brute

force method of testing is used, a goodly number of determinants must be evaluated.
Moreover, some criterion is needed to establish how close to zero a numerically com-
puted determinant must be in order to be declared zero. The basic numerical problem
is that rank is not a continuous function of the elements of a matrix; a small change in
one of the elements of a matrix can result in a discontinuous change of its rank.
The rank if a product of two matrices cannot exceed the rank of either factor

rank (AB) ≦ min [rank (A), rank (B)]. (C.12)
However, if either factor is a non-singular (square) matrix the rank of the product is the
rank of the remaining factor:

rank (AB) = rank (A) if B−1 exists

rank (AB) = rank (B) if A−1 exists. (C.13)

C.2.1 Some Properties Related to Determinants

For square matrices A and B, det(AB) = det(A) det(B).
However, det(A + B) ≠ det(A) + det(B)

det[In +MN] = det[Im + NM]. (C.14)
For a square matrix A, with block diagonal partitioned matrices Ai (i=1,2,· · · r)

detA = det[A1] det[A2] · · · det[Ar]. (C.15)
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C.3 Eigenvalues and Eigenvectors

A is an (n × n) matrix, and 𝑣i is an (n × 1) vector. The eigenvalue problem is

[𝜆iI − A]𝑣i = 0. (C.16)

Solution:

det[𝜆iI − A] = 0 (C.17)

gives the eigenvalues 𝜆1, 𝜆2, , 𝜆n. Given 𝜆i, the non-trivial solution vector 𝑣i of (C.16) is
called the eigenvector corresponding to the eigenvalue 𝜆i. We also refer to 𝑣1, 𝑣2, , 𝑣n as
right eigenvectors. These are said to lie in the null space of the matrix [𝜆iI − A]. The
eigenvectors obtained from

𝑤T
i [𝜆iI − A] = 0 (C.18)

are referred to as left eigenvectors. Left and right eigenvectors are orthogonal to each
other, that is,

𝑤T
j 𝑣i =

{
1 for i = j
0 for i ≠ j.

The trace ofA, defined as the sum of its diagonal elements, is also the sum of all eigen-
values:

tr(A) =
n∑
i=1

Aii =
n∑
i=1

𝜆i = 𝜆1 + 𝜆2 + · · · + 𝜆n. (C.19)

The determinant of A is the product of all eigenvalues:

det(A) =
n∏
i=1

𝜆i = 𝜆1𝜆2 · · · 𝜆n. (C.20)

If the eigenvalues of A are distinct, then A can be written as

A = TΛT−1 (C.21)

where Λ is a diagonal matrix containing the eigenvalues. This is called an eigenvector
decomposition (EVD). T is called a modal matrix and the Λmatrix is called the Jordan
matrix.
The columns ofT are the right eigenvectors 𝑣i and the rows ofT−1 are left eigenvectors

𝑤T
i . Thus

T = [𝑣1𝑣2...𝑣n],T−1 = [𝑤T
1𝑤

T
2 ...𝑤

T
n ]T . (C.22)

Note that when the eigenvalues are repeated, whether that matrix can be fully diago-
nalizable or not (with the similarity transformation by modal matrix), depends on the
algebraicmultiplicity, denoted bymi and the geometricmultiplicity, denoted by qi of that
repeated eigenvalue. The geometric multiplicity qi is given by qi = n − rank(A − 𝜆iI). If
mi = qi, then pure diagonalization is still possible. If qi = 1, there will be one Jordan
block of dimension mi, with ones on the super diagonal. When 1 < qi < mi, then the
pure diagonal form for the Jordanmatrix is not possible as there will be qi Jordan blocks
within the overall large Jordan matrix.These details are clearly discussed in [1].Thus, in
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summary, the Jordan form for the repeated eigenvalue case needs to be carefully thought
about, because it is not always automatically a pure diagonal matrix.
Some properties of eigenvalues:

1. All the eigenvalues of a Hermitianmatrix (symmetric in the case of real matrices) are
real.

2. All the eigenvalues of a unitary matrix have unit magnitude.
3. If a matrix A is Hermitian (symmetric in the case of real matrices), then the modal

matrix T in (C.21) is unitary. The EVD is then

A = UΛUH (C.23)

since U−1 = UH.
4. If A is Hermitian (symmetric in the case of real matrices), then

min
x≠0

xHAx
xHx

= 𝜆min(A) (C.24)

max
x≠0

xHAx
xHx

= 𝜆max(A). (C.25)

The quantity xHAx
xHx

is called the Rayleigh quotient. Sometimes we are not interested in
the complete solution of the eigenvalue problem (i.e. all the eigenvalues and eigen-
vectors). We may want an estimate of the first mode. One of the nice properties of
Rayleigh’s quotient is that it is never smaller than 𝜆min(A). Also, the minimum of the
left-hand side of (C.24) is achieved when y is the eigenvector corresponding to 𝜆min.
Similarly, themaximum is achieved in (C.25)when x is the eigenvector corresponding
to 𝜆max(A). Equation (C.24) is particularly useful in the modal analysis of structures
represented by finite element models.

5. The eigenvalues of any diagonal matrix (real or complex) are simply the diagonal
entries themselves. Similarly the eigenvalues of upper or lower triangular matrices
(real or complex) are again simply the diagonal entries themselves.

Some more properties:

1. If A is (n ×m) and B is (m × n), then

AB is (n × n) and is singular if n > m. (C.26)

2. If A is (n ×m), E is (m × p), and C is (p × n), then

APC is (n × n) and is singular if n > m or n > p. (C.27)

3. . A is singular if f 𝜆i(A) = 0 for some i. (C.28)

4. . 𝜆(A) = 1
𝜆(A−1)

→ 𝜆(A)𝜆(A−1) = 1. (C.29)

5. . 𝜆(𝛼A) = 𝛼𝜆(A); 𝛼 is scalar. (C.30)

6. . 𝜆(I + A) = 1 + 𝜆(A) (C.31)
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C.4 Definiteness of Matrices

As =
A+AT

2
, is the symmetric part of A

Ask =
A−AT

2
, is the skew-symmetric part of A.

If all the (real) eigenvalues of matrix As are > 0, then A is said to be positive definite.
If all the (real) eigenvalues of matrix As are ≥ 0, then A is said to be positive

semi-definite.
If all the (real) eigenvalues of −As are > 0, then A is said to be negative definite (or if

the eigenvalues of As are negative).
If all the (real) eigenvalues of −As are ≥ 0, then A is said to be negative semi-definite.
If some of the (real) eigenvalues of As are positive and some negative, then A is said to

be indefinite.
Note that xTAx = xTAsx + xTAskx (i.e. A = As + Ask).
In real quadratic forms:

xTAx = xTAsx
(since xTAskx is always equal to 0).

Thus the definiteness of A is determined by the definiteness of its symmetric part As
where 𝜆i, i = 1 to n are the eigenvalues of As and Δi =determinant of the ith principal
minor

Δ1 = a11, Δ2 =
[
a11 a12
a12 a22

]
, Δ3 =

⎡⎢⎢⎣
a11 a12 a13
a12 a22 a23
a13 a23 a33

⎤⎥⎥⎦ , etc.
where

As =

⎡⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n
a12 a22 a23 ⋮
a13 a23 a33 ⋮
⋮ ⋱
a1n · · · · · · ann

⎤⎥⎥⎥⎥⎦
(since As is assumed symmetric, therefore

aij = aji).

Corollary: if As is ND, then A has negative real part eigenvalues. Similarly if As is PD,
then A has positive real part eigenvalues. Thus a negative definite matrix is a stable
matrix but a stable matrix need not be ND.
Also note that, even though

A = As + Ask

the eigenvalues of A do not satisfy the linearity property.

i.e. 𝜆i(A) ≠ 𝜆i(As) + 𝜆i(Ask).

However, it is known that 𝜆i(A) lie inside the field of values of A, i.e. in the region in the
complex plane, bounded by the real eigenvalues of As on the real axis and by the pure
imaginary eigenvalues of Ask.
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The Definiteness Test conditions are summarized in Table C.1.
Table C.1 Principal minor test for definiteness of matrix A given in terms of As (symmetric part of A).

By the definition the matrix As is if, or equivalently,

xTAx > 0 ∀ x ≠ 0 PD All 𝜆i > 0 All Δi > 0
xTAx ≥ 0 ∀ x ≠ 0 PSD All 𝜆i ≥ 0 All Δi ≥ 0
xTAx < 0 ∀ x ≠ 0 ND All 𝜆i < 0 Δ1 < 0, Δ2 > 0, Δ3 < 0, Δ4 > 0, etc.
xTAx ≤ 0 ∀ x ≠ 0 NSD All 𝜆i ≤ 0 Δ1 ≤ 0, Δ2 ≥ 0, Δ3 ≤ 0, Δ4 ≥ 0, etc.
xTAx > 0 for some x
xTAx < 0 for other
x ≠ 0

Indefinite Some 𝜆i > 0
Some 𝜆i < 0

None of the above

C.5 Singular Values

Let us first define inner product and norms of vectors.

Inner product: the inner product is also called a scalar (or dot) product since it yields
a scalar function. The inner product of complex vectors x and y is defined by:

< x, y >= (x∗)Ty = yTx∗ = x1 ∗ y1 + x2 ∗ y2 + ... + xn ∗ yn =
n∑
i=1

xi ∗ yi (C.32)

where (⋅)∗ indicates the complex conjugate of the vector in parenthesis. If x and y are
real, then

< x, y >=
n∑
i=1

xiyi = x1y1 + x2y2 + ... + xnyn. (C.33)

Note that the inner product of two real vectors of same dimension < x, y > can also
be written as

< x, y >= Trace [xyT ]. (C.34)
Note that when x and y are complex < x, y >= xTy∗. However, when x and y are real,

< x, y >= xTy = yTx =< y, x > . (C.35)

Norm or length of a vector: the length of a vector x is called the Euclidean norm and
is (also known as the l2 norm)

‖x‖E = ‖x‖2 = √
< x, x > =

√
x21 + x22 + ... + x2n. (C.36)

The definition of a spectral norm or l2 norm of a matrix is given by

‖A‖2 = max
x≠0

‖Ax‖2‖x‖2 where A ∈ Cm×n. (C.37)

It turns out that‖A‖2 = max
i

√
𝜆i(AHA), i = 1, 2, · · · , n

= max
i

√
𝜆i(AAH), i = 1, 2, · · · ,m. (C.38)
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Note thatAHA andAAH areHermitian and positive semi-definite and hence eigenvalues
of AHA and AAH are always real and non-negative. If A is non-singular, AHA is positive
definite, and the eigenvalues of AHA and AAH are all positive.
We now introduce the notion of singular values of complex matrices. These are

denoted by the symbol 𝜎. If A∈ Cn×n, then

𝜎i(A) =
√
𝜆i(AHA) =

√
𝜆i(AAH) ≥ 0, i = 1, 2, ..., n (C.39)

and they are all non-negative since AHA and AAH are Hermitian.
If A is non-square, i.e, A ∈ Cm×n, then

𝜎i(A) =
√
𝜆i(AHA) =

√
𝜆i(AAH) (C.40)

for 1 ≤ i ≤ k, where k = number of singular values = min(m, n) and 𝜎1(A) ≥ 𝜎2(A) ≥
... ≥ 𝜎k(A).

𝜎max(A) = max
x≠0

‖Ax‖2‖x‖2 = ‖A‖2 (C.41)

𝜎min(A) = min
x≠0

‖Ax‖2‖x‖2 = 1‖A−1‖2 (C.42)

provided A−1 exists. Thus the maximum singular value of A, 𝜎max(A) is simply the spec-
tral norm ofA.The spectral norm ofA−1 is the inverse of 𝜎min(A), the minimum singular
value of A. The spectral norm is also known as the l2 norm. Usually we write 𝜎(A) and
𝜎(A) to indicate 𝜎max(A) and 𝜎min(A).
It follows that

𝜎max(A−1) = ‖A−1‖2 = 1
𝜎min(A)

(C.43)

𝜎max(A−1) = 1‖A‖2 = 1
𝜎max(A)

(C.44)

𝜎min(A) = 0 if A is singular. (C.45)

Let us now introduce the singular value decomposition (SVD). Given any (n × n) com-
plex matrix A, there exist unitary matrices U and V such that

A = UΣVH =
n∑
i=1

𝜎i(A)ui𝑣
H
i (C.46)

whereΣ is a diagonalmatrix containing the singular values 𝜎i(A) arranged in descending
order, ui are the column vectors of U, i.e.

U = [u1,u2, ...,un] (C.47)

and 𝑣i are the column vectors of V, i.e.

V = [𝑣1, 𝑣2, ..., 𝑣n]. (C.48)

The 𝑣i are called the right singular vectors ofA or the right eigenvectors ofAHA because

AHA𝑣i = 𝜎2
i (A)𝑣i. (C.49)

The ui are called the left singular vectors of A or the left eigenvectors of AHA because

uH
i A

HA = 𝜎2
i (A)u

H
i . (C.50)
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For completeness let us also state the SVD for non-square matrices. If A is an (m × n)
complex matrix, then the SVD of A is given by:

A = UΣVH =
K∑
i=1

𝜎i(A)ui𝑣
H
i (C.51)

where

U = [u1,u2, ...,um] (C.52)
V = [𝑣1, 𝑣2, ..., 𝑣n] (C.53)

and Σ contains a diagonal non-negative definite matrix Σ1 of singular values arranged
in descending order in the form

Σ =
⎡⎢⎢⎣
Σ1
· · ·
0

⎤⎥⎥⎦ if m ≥ n

=
[
Σ1 ⋮ 0

]
if m ≤ n (C.54)

where

Σ1 =
⎡⎢⎢⎢⎣
𝜎1 0 · · · 0
0 𝜎2 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · 𝜎p

⎤⎥⎥⎥⎦
and

𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎p ≥ 0, p = min{m, n}.

Let us digress momentarily now and point out an important property of unitary matri-
ces. Recall that a complex matrix A is defined to be unitary if AH = A−1. Then AAH =
AA−1 = 1. Therefore, 𝜆i(AAH) = 1 for all i, and

‖A‖2 = 𝜎(A) = 𝜎(A) = 1. (C.55)

Therefore, the (l2) norm of a unitary matrix is unity. Thus, unitary matrices are norm
invariant (if we multiply any matrix by a unitary matrix, it will not change the norm of
that matrix).
Finally, the condition number of a matrix is given by

cond(A) =
𝜎(A)
𝜎(A)

. (C.56)

If the condition number of a matrix is close to zero, it indicates the ill-conditioning of
that matrix, which implies inversion of Amay produce erroneous results.

C.5.1 Some useful singular value properties

1. . If A,E ∈ Cm×m, and det(A + E) > 0, then 𝜎(E) < 𝜎(A). (C.57)

2. . 𝜎i(𝛼A) = |𝛼|𝜎i(A), 𝛼 ∈ C,A ∈ Cm×n. (C.58)
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3. . 𝜎(A + B) ≤ 𝜎(A) + 𝜎(B), A,B ∈ Cm×n. (C.59)

4. . 𝜎(AB) ≤ 𝜎(A)𝜎(B), A ∈ Cm×k , B ∈ Ck×n. (C.60)

5. . 𝜎(AB) ≥ 𝜎(A)𝜎(B), A ∈ Cm×k , B ∈ Ck×n. (C.61)

6. . |𝜎(A) − 𝜎(B)| ≤ 𝜎(A − B), A,B ∈ Cm×n. (C.62)

7. . 𝜎(A) − 1 ≤ 𝜎(I + A) ≤ 𝜎(A) + 1, A ∈ Cn×n. (C.63)

8. . 𝜎(A) ≤ |𝜆i(A)| ≤ 𝜎(A), A ∈ Cn×n. (C.64)

9. . 𝜎(A) − 𝜎(B) ≤ 𝜎(A + B) ≤ 𝜎(A) + 𝜎(B), A,B ∈ Cm×n. (C.65)

10. . |𝜎(A) − 𝜎(B)| ≤ 𝜎(A + B), A,B ∈ Cm×n. (C.66)

11. . 𝜎(A) − 𝜎(E) ≤ 𝜎(A − B) ≤ 𝜎(A) + 𝜎(B). (C.67)

12. . rank(A) = the number of non-zero singular values of A. (C.68)

13. . 𝜎i(AH) = 𝜎i(A),A ∈ Cm×n (C.69)

C.5.2 Some Useful Results in Singular Value and Eigenvalue Decompositions

Consider the matrix A ∈ Cm×n.

Property 1:

𝜎max(A) ≜ ‖A‖s = ‖A‖2
= [max

i
𝜆i (ATA)]1∕2 = [max

i
𝜆i (AAT )]1∕2. (C.70)

Property 2: if A is square and 𝜎min(A) > 0, then A−1 exists and

𝜎min(A) =
1

𝜎max(A−1)
. (C.71)

Property 3: the standard norm properties, namely

(a) . ‖A‖2 = 𝜎max(A) > 0 for A ≠ 0 and = 0 only show A ≡ 0. (C.72)
(b) . ‖kA‖2 = 𝜎max(kA) = |k|𝜎max(A). (C.73)
(c) . ‖A + B‖2 = 𝜎max(A + B) ≤ ‖A‖2 + ‖B‖2 = 𝜎max(A) + 𝜎max(B) (C.74)

(triangle inequality).
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Property 4: special to ‖A‖2 (Schwartz inequality)
i.e. ‖AB‖2 ≤ ‖A‖2‖B‖2 (C.75)

i.e. 𝜎max(AB) ≤ 𝜎max(A)𝜎max(B). (C.76)

Property 5: 𝜎min(A)𝜎min(B) ≤ 𝜎min(AB).
It is also known that:

𝜎min(A) ≤ |𝜆(A)|min ≤ |𝜆i(A)|max = 𝜌(A) ≤ 𝜎max(A). (C.77)

Note that: 𝜆(A + B) ≠ 𝜆(A) + 𝜆(B)
𝜆(AB) ≠ 𝜆(A)𝜆(B).

Result 1: given the matrix A is non-singular, then the matrix (A + E) is non-singular if

𝜎max(E) < 𝜎min(A).

Result 2: if A is stable and As is negative definite then As + Es is negative definite and
hence A + E is stable if

𝜎max(Es) ≤ 𝜎max(E) ≤ 𝜎min(As).

Result 3: if As is negative definite, As + Es is negative definite if

𝜌[(Es(Fs)−1)s] < 1
or 𝜎max[(Es(Fs)−1)s] < 1

because for a symmetric matrix |𝜆(.)s|max = 𝜌[(.)s] = 𝜎max[(.)s].
Result 4: for any given square matrix A

𝜌(|A|) = 𝜌(Am) ≥ 𝜌(A)
𝜎max(Am) ≥ 𝜎max(A)∕

Result 5: for any two given square non-negativematricesA1 andA2 such thatA1ij ≥ A2ij
for all i, j then,

𝜌(A1) ≥ 𝜌(A2)
𝜎max(A1) ≥ 𝜎max(A2).

C.6 Vector Norms

A vector norm of x is a non-negative number denoted ‖x‖, associated with x, satisfying:

(a) ‖x‖ > 0 for x ≠ 0, and ‖x‖ = 0 precisely when x = 0.
(b) ‖kx‖ = |k|‖x‖ for any scalar k.
(c) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (the triangle inequality).



498 Appendix C A Brief Review of Matrix Theory and Linear Algebra

The third condition is called the triangle inequality because it is a generalization of the
fact that the length of any side of a triangle is less than or equal to the sum of the lengths
of the other two sides.
We state that each of the following quantities defines a vector norm.

‖x‖1 = |x1| + |x2| + ... + |xn| (C.78)‖x‖2 = (|x1|2 + |x2|2 + ... + |xn|2)1∕2 (C.79)‖x‖∞ = max
i

|xi|. (C.80)

The only difficult point in proving that these are actually norms lies in proving that ‖⋅‖2
satisfies the triangle inequality. To do this we use theHermitian transpose xH of a vector;
this arises naturally since ‖x‖2 = (xHx)1∕2.
We note that

‖x‖∞ ≤ ‖x‖1 ≤ ‖x‖∞‖x‖∞ ≤ ‖x‖2 ≤ √
n‖x‖∞.

From the Schwartz inequality applied to vectors with elements |xi| and 1 respectively,
we see that ‖x‖1 ≤ √

n‖x‖2. Also, by inspection, ‖x‖22 ≤ ‖x‖21. Hence

1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2
‖x‖2 ≤ ‖x‖1 ≤ √

n‖x‖2
1
n
‖x‖1 ≤ ‖x‖∞ ≤ ‖x‖1. (C.81)

LetA be anm × nmatrix, and letA be the linear transformationA(x) = Ax defined from
Cn to Cm by A. By the norms ‖A‖1, ‖A‖2, ‖A‖∞ we mean the corresponding norms of
A induced by using the appropriate vector norm in both the domain Cn and the range
Cm. That is

‖A‖1 = max
x≠0

{‖Ax‖1‖x‖1
}

(C.82)

‖A‖2 = max
x≠0

{‖Ax‖2‖x‖2
}

(C.83)

‖A‖∞ = max
x≠0

{‖Ax‖∞‖x‖∞
}

. (C.84)

Let A be anm × nmatrix. Then:

(i) . ‖A‖1 = max
j

m∑
i=1

|aij|. (C.85)

(ii) . ‖A‖∞ = max
i

n∑
j=1

|aij|. (C.86)

(iii) . ‖A‖2 = [maximum eigenvalue of AHA]1∕2

= maximum singular value of A. (C.87)
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Since we can compare vector norms we can easily deduce comparisons for operator
norms. For example, if A ism × n, using (C.81) find that

‖Ax‖1 ≤ m‖Ax‖∞ ≤ m‖A‖∞‖x‖∞ ≤ m‖A‖∞‖x‖1 (C.88)

so that ‖A‖1 ≤ m‖A‖∞. By similar arguments we obtain
1√
m
‖A‖2 ≤ ‖A‖∞ ≤

√
n‖A‖2

1√
n
‖A‖2 ≤ ‖A‖1 ≤ m1∕2‖A‖2

1
n
‖A‖∞ ≤ ‖A‖1 ≤ m‖A‖∞. (C.89)

C.7 Simultaneous Linear Equations

C.7.1 Introduction

Sets of simultaneous linear equations are ubiquitous in all fields of engineering. The
control systems engineer is particularly interested in these systems of equations because
many problems including, but not limited to, optimization, pole placement, and stability
are dependent upon the solution(s) to these systems. In this appendix we discuss the
basic theory to deal with systems of linear equations and briefly review the nature of the
solutions under various conditions.

C.7.2 Problem Statement and Conditions for Solutions

Consider the set of simultaneous linear algebraic equations
a11x1 + a12x2 + · · · + a1nxn = y1
a21x1 + a22x2 + · · · + a2nxn = y2

⋮

am1x1 + am2x2 + · · · + amnxn = ym.

(C.90)

Since programs such asMATLAB can easily handle large-ordermatrices, it is often con-
venient to place the system of equations in matrix matrix notation as such:

Ax = y. (C.91)

Note here thatA is of dimensionsm × n; x is of dimensions n × 1; and y is of dimensions
m × 1. Any vector, say x1, which satisfies all m of these equations is called a solution
to the system of linear equations. Note also that this system of equations can have one
(unique) solution, infinite solutions, or no solutions depending on the nature of the data
in the known or given quantities, namely the matrix A and the vector y.
Following the treatment given in [1], to determine the nature of the solution with-

out excessive computation, we form the augmented matrix W . The augmented matrix
is nothing more than the coefficient matrix A with the y vector tagged along as an addi-
tional column, i.e. W = [A|y]. Then, comparing the rank of the coefficient matrix A,
denoted by rA, with that of the augmented matrix W , denoted by rW we can shed con-
siderable light on the nature of the solution to the given system, as follows:
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1. If rW ≠ rA, no solution exist. The equations are inconsistent, i.e. the equations in the
system contradict one another.

2. If rW = rA, at least one solution exists.
(a) If rW = rA = n there is a unique solution for x.
(b) If rW = rA < n, then there is an infinite set of solution vectors.

Example C.1 Given the augmented matrix W =
⎡⎢⎢⎣
1 0 1 −32
0 1 0 −1
1 0 1 −12

⎤⎥⎥⎦, determine the

nature of the solution(s) to the system.

Solution
We count the number of linearly independent rows in the W matrix to obtain rW = 3.
Next we recognize that the coefficient matrix A is embedded inside the augmented
matrixW ; more specifically, it consists of the first three rows and columns ofW . Since
rows one and three are repeated (i.e. linearly dependent), rA = 2. Consulting the guide-
lines above, we can concur that no solutions exist (because rA ≠ rW ).

Example C.2 Given the augmented matrix W =
⎡⎢⎢⎣
1 1 1 −32
0 1 0 −1
1 0 1 −12

⎤⎥⎥⎦, determine the

nature of the solution(s) to the system.

Solution
Following the same steps as above, we obtain rW = 3. We then obtain the rank of the
A matrix: since row three is a linear combination of rows one and two (R3 = R1 − R2),
rA = 2. Again, we say there are no solutions to this system of equations because rW ≠ rA.

Example C.3 Given the augmented matrix W =
[
1 1 1 −32
0 1 0 −1

]
, determine the

nature of the solution(s) to the system.

Solution
Here, both W and A are composed of two linearly independent rows. Therefore,
rW = rA = n = 2. Following the guidelines given earlier in the section, we therefore
decide this system has one unique solution vector.

Example C.4 Given the augmented matrix W =
⎡⎢⎢⎢⎣
1 1 1 −32
0 1 0 −1
1 1 0 4
1 0 1 −31

⎤⎥⎥⎥⎦
, determine the

nature of the solution(s) to the system

Solution
Notice that in both W and A, row four is a linear combination of rows one and two
(R4 = R1 − R2). Therefore, rW = rA = 3 < n. Therefore we conclude that this system has
infinitely many solutions.
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C.8 Exercises

Exercise C.1. Given the set of simultaneous equations

⎡⎢⎢⎢⎣
1 3 2
2 5 3
3 7 4
4 9 5

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎢⎣
1
0
−1
1

⎤⎥⎥⎥⎦
investigate the nature of the solution.

Exercise C.2. Given the system of equations

⎡⎢⎢⎣
1 0 1
0 1 0
2 2 2

⎤⎥⎥⎦
⎡⎢⎢⎣
x1
x2
x3

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦
investigate the nature of the solutions.

Exercise C.3. Find the determinant, transpose, inverse, trace, rank, eigenvalues, and
normalized eigenvectors of the matrix

A =
[
1 1
1 2

]
Exercise C.4. Find the rank of the matrix

A =
⎡⎢⎢⎣
3 2 9
1 0 3
2 1 6

⎤⎥⎥⎦
and if appropriate find the inverse.

Exercise C.5. Find the eigenvalues and eigenvectors of

A =
⎡⎢⎢⎣
4 −2 0
1 2 0
0 0 6

⎤⎥⎥⎦
and the corresponding Jordan matrix and modal matrix.

Exercise C.6. Determine the definiteness of the following matrices

(a) A =
[
−6 2
2 −1

]
(b) A =

[
4 −3
3 −1

]

(c) A =
[
6 −2
2 1

]

(d) A =
⎡⎢⎢⎣
13 4 −13
4 22 −4

−13 −4 13

⎤⎥⎥⎦
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(e) A =
⎡⎢⎢⎢⎣
−1 3 0 0
3 −9 0 0
0 0 −6 2
0 0 2 −1

⎤⎥⎥⎥⎦
(f ) A =

⎡⎢⎢⎣
8 2 −5
2 11 −2
−5 −2 8

⎤⎥⎥⎦.
Exercise C.7. Find the eigenvalues and eigenvectors and then use a similarity transfor-
mation to diagonalize

A =
[
0 1
−3 −4

]
.

Exercise C.8. Consider the eigenvalue–eigenvector problem for

A =
[
1 2
−2 −3

]
.

Exercise C.9. Find the eigenvalues, eigenvectors, and the Jordan form for

A =
[
1 1
1 1

]
.

Exercise C.10. Find the eigenvalues and Jordan form of

A =
⎡⎢⎢⎢⎣

1 0 0 −3
0 1 −3 0

−0.5 −3 1 0.5
−3 0 0 1

⎤⎥⎥⎥⎦
given that the characteristic equation is

𝜆4 − 4𝜆3 − 12𝜆2 + 32𝜆 + 64 = 0

whose roots are found to be 𝜆t = −2,−2, 4, 4.
Exercise C.10. Let

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

3 1 0 0 0 0 0
0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 4 1 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 1
0 0 0 0 0 0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(a) What are the eigenvalues of A?
(b) How many linearly independent eigenvectors does A have?
(c) How many generalized eigenvectors?
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Exercise C.12. Find the eigenvalues and Jordan form of

A =
⎡⎢⎢⎣
4 2 1
0 6 1
0 −4 2

⎤⎥⎥⎦ .

Bibliography
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Appendix D

Useful MATLAB Commands

D.1 Author Supplied Matlab Routine for Formation
of Fuller Matrices

1 function [Aoutput,Sign_Aoutput]=TILLYP(A,MTHD)
2 Siz_A=size(A);
3

4 if (MTHD == 1) %Tilde
5 ci=1;ri=1;
6 for p=2:Siz_A(1)
7 for q=1:p-1
8 for r=2:Siz_A(2)
9 for s=1:r-1

10 if (r==q)
11 Aoutput(ri,ci)= -A(p,s);
12 elseif (r∼=p & s==q)
13 Aoutput(ri,ci)= A(p,r);
14 elseif (r==p & s==q)
15 Aoutput(ri,ci)= A(p,p)+A(q,q);
16 elseif (r==p & s∼=q)
17 Aoutput(ri,ci)= A(q,s);
18 elseif (s==p)
19 Aoutput(ri,ci)= -A(q,r);
20 else
21 At(ri,ci)= 0;
22 end
23 ci=ci+1;
24 if (r==Siz_A(2) & s==r-1)
25 ci=1;
26 end
27 end
28 end
29 ri=ri+1;
30 end
31 end
32 Ac=Aoutput;
33 As=Aoutput;
34 elseif (MTHD == 2) %Lyapunov
35 ci=1;ri=1;
36 for p=1:Siz_A(1)
37 for q=1:p
38 for r=1:Siz_A(2)

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
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39 for s=1:r
40 if (p > q)
41 if (r==q & s<q)
42 Aoutput(ri,ci)= A(p,s);
43 elseif (r>=q & r ∼=p & s==q)
44 Aoutput(ri,ci)= A(p,r);
45 elseif (r==p & s==q)
46 Aoutput(ri,ci)= A(p,p)+A(q,q);
47 elseif (r==p & s<=p & s∼=q)
48 Aoutput(ri,ci)= A(q,s);
49 elseif (r>p & s==p)
50 Aoutput(ri,ci)= A(q,r);
51 else
52 Aoutput(ri,ci)= 0;
53 end
54 elseif (p == q)
55 if (r == p & s < p)
56 Aoutput(ri,ci)=2*A(p,s);
57 elseif (r == p & s == p)
58 Aoutput(ri,ci)=2*A(p,p);
59 elseif (r > p & s == p)
60 Aoutput(ri,ci)=2*A(p,r);
61 else
62 Aoutput(ri,ci)= 0;
63 end
64 end
65 ci=ci+1;
66 if (r==Siz_A(2) & s==r)
67 ci=1;
68 end
69 end
70 end
71 ri=ri+1;
72 end
73 end
74 Ac=Aoutput;
75 As=Aoutput;
76 end
77 end
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D.2 Available Standard Matlab Commands

Table D.1 Useful Matlab Commands.

Matlab
commands Description

acker Pole placement design for single-input systems
c2d Convert model from continuous to discrete time
canon State space canonical realization
care Continuous time algebraic Riccati equation solution
compan Compute the companion matrix corresponding to the polynomial
cond Condition number with respect to inversion
cross Vector cross product
ctrb Form the controllability matrix
d2c Convert model from discrete to continuous time
dare Solve discrete time algebraic Riccati equations (DAREs)
det Determinants of matrix
dlqr Linear quadratic (LQ) state feedback regulator for discrete time state space

system
dlyap Solve discrete time Lyapunov equations
eig Eigenvalues and eigenvectors
expm Matrix exponential
eye Identity matrix
initial Initial condition response of state space model
inv Inverse matrix
kron Kronecker tensor product
lqr Linear quadratic regulator (LQR) design
lsim Simulate time response of dynamic system to arbitrary inputs
lyap Continuous Lyapunov equation solution
norm Norm of linear model
obsv Observability matrix
pinv Moore–Penrose pseudoinverse
place Pole placement design
poly Polynomial with specified roots or characteristic polynomial
rank Rank of matrix
reside Partial fraction expansion (partial fraction decomposition)
roots Polynomial roots
ss Create state space model, convert to state space model
ss2ss State coordinate transformation for state space model
ss2tf Convert state space representation to transfer function
svd Singular value decomposition
tf2ss Convert transfer function filter parameters to state space form
trace Sum of diagonal elements
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Index

a
Acceleration

absolute 20, 21
control system 257–259
due to gravity 26, 27, 58, 156, 259, 266
lateral 134, 266
normal 127, 139, 252
relative 6, 24

Ackermann’s gain formula 373–375
active control 104, 146, 155–158,

445–449, 468, 469
Active stabilization of satellites 143
Actuators

hydraulic 433, 437
limiting/saturation 434

Adjustable systems 209–210
Adverse yaw 107, 134
Aerodynamic

forces 6, 33, 36, 41, 54, 78, 99, 125, 138,
146, 452, 454

moments 32, 36, 125
Aerodynamic center 82, 86, 87, 91, 127
Aerodynamic data 89, 93, 112, 114, 128,

130, 138
Aerodynamic torques 144–146
Aileron

angle (definition) 105
effectiveness 134
rudder interconnect 107–111

Aircraft
altitude-speed (flight) envelope 124,

125, 128, 259, 440
dynamic stability and control 3, 77, 111,

117–140, 155–162
electromechanical controls 253

flight control systems (AFCS) 99, 138,
251, 252, 263, 265, 267, 433–442,
451–462

static stability and control 3, 77–114,
117–140, 143

transport aircraft model 111, 253
Airfoil 79, 80, 83, 85, 100
Algebraic equations 188, 479, 481, 499
Algebraic Riccati equation (ARE) 388,

389, 393
Altitude
-hold autopilot 264–265
vs.Mach number plot 162

Angle of attack
feedback 258
rate of change of 87, 91
sensor 252, 256, 257
trim value of 79, 80, 87, 89, 95

Angles of departure and arrival 221–223
Angular acceleration 460
Angular momentum 23, 24, 29–31, 33, 47,

48, 50, 51, 59, 60, 144, 149–151, 155,
160, 272, 277, 424, 445, 453

Angular velocity
components 10, 18, 30, 31, 32, 42, 47,

54, 58, 160, 305
vector 10, 18, 32, 36, 47, 48, 51, 54, 58,

160, 305
Approximations 5, 6, 8, 20, 25, 83, 117,

128, 130, 135, 138, 234, 248
in modeling dynamic systems 5–21

Arbitrary pole (eigenvalue) placement 397
Aryabhata satellite 269
Aspect ratio 91, 132, 256, 452
Asymptotic stability 325, 327, 336, 340

Flight Dynamics and Control of Aero and Space Vehicles, First Edition. Rama K. Yedavalli.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
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Atmospheric vehicles 32–43
Attitude

actuators 155, 157, 443–445
control 46, 57, 144, 146, 155, 156, 167,

260, 269, 272–280, 379, 396, 410,
443, 444, 446, 448, 449

hold autopilot, see Autopilots
sensors 155, 157, 444
stabilization of satellites 157

Automatic control systems 7, 256
Autopilots

altitude hold 252, 264
automatic landing 251, 259
bank-angle hold 252

Auxiliary polynomial 209
Axes

body-fixed 24, 48, 56, 59, 454
inertial 9, 24, 36, 42, 46, 77, 266, 468

Axi-symmetric satellite 50, 271, 281

b
Balanced flight 259
Ballistic missiles 466, 467, 468
Bandwidth 231, 232, 233, 248, 461
Bank angle 41, 118, 121, 252, 265, 266,

363, 364, 434, 440
Bi-alternate sum matrix 331, 333
Block diagram

algebra 167, 169, 170, 187–202
reduction 187

Bode gain-phase relationship 239
Bode plots 167, 231, 234, 235–240, 244,

246–248, 251, 265
for classical design 247

Body cone 51
Body-fixed moving frame 25
Bounded input bounded output (BIBO)

stability 344–345, 424
Bounded input bounded state stability

(BIBS) stability 344–345
Break away and reentry points 220–221
Broom-balancing problem 399, 400

c
Canard 92, 93, 467
Cape Caneveral 19

Cayley-Hamilton theorem 307, 310–314,
316, 319

Center of gravity 27, 79, 81–83, 86, 87, 89,
90, 92, 97–99, 101, 103, 104, 111,
112, 127, 139, 263, 468

Center of mass
-mass 23, 25, 27, 30–32, 36, 41, 46, 56,

58, 59, 74, 146, 270, 448, 449
-pressure 146, 270

Center of rotation 81, 98
Central force motion 26
CG travel limits 86
Characteristic

equation 67, 69–71, 74, 200, 209, 345,
377, 502

polynomial 67–69, 73, 185, 203,
204–207, 209, 210, 213, 215, 329,
332–335, 373, 375, 377, 459, 460, 507

Charle’s theorem 11, 20, 28
Chord 78, 89, 91, 111, 113, 125, 126, 455
Circular orbit 45–47, 52, 56, 155,

158–162, 183, 184, 185, 305, 306,
424, 428, 443

Classical control xxxi, xxxii, 249, 251–267,
269–281, 287, 291, 369

Clohessy-Wiltshire equations 428
Closed loop

system xxxii, 161, 192, 196, 198, 200,
210, 211, 214, 223, 224, 226, 233,
255, 262, 370–373, 378, 379, 380,
391, 393, 395, 397–399, 401,
405–410, 415, 418, 419, 421, 425, 426

transfer function 189–191, 198, 201,
209, 213, 214, 258, 259, 265

Companion matrix form 507
Compensation

-networks 246–248
-phase-lead/phase-lag 247

Compensators 196–197
cascade 228, 229, 249, 273

Complex conjugate pair
eigenvalues of a matrix 68, 69, 70, 73,

131, 175
poles of transfer function 175, 178
roots of a polynomial 68, 69, 73, 335,

373
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Continuous time systems 71, 72, 291, 304,
307, 323, 328, 329, 341, 342, 345

Control
-cost in regulator problem

392–395
-design by Bode plots 234, 235
-design by root locus 274
-surface actuation 437
-systems analysis and design xxx, xxxi,

xxxii, 167, 213–229, 443
-torques 56, 57, 146, 161, 423, 424, 446
-variables 45, 53, 54, 56, 58, 125, 132,

180, 181, 252, 260, 265, 290, 349,
351, 355, 384, 452, 453, 461, 464,
465

Control augmentation systems (CAS)
-lateral-directional 252
-normal-acceleration 252
-pitch-rate 252
-stability-axis-roll 252

Controllability 349–367
-canonical form 353, 354–355,

359–361, 365–367
Controllable subspace 350, 353, 354, 355,

359, 366
Controller structures 167, 187, 196–200,

369, 379, 395, 397, 405–408, 410
Control surface deflections 123, 252, 264,

265, 421
Convolution integral 174
Coordinated turn xxxii, 107, 133, 252,

265, 266, 453
Coordinate frames 8, 11, 15, 20, 24
Coordinate rotations, see Rotation matrices
Coordinate transformations xxix, 5, 8,

11–15, 19, 20
Coriolis acceleration 20
Cost function 384, 390, 393, 413, 426
Coupling: inertia 266–267
Cramer’s rule 172
Crossover frequency 240–243, 246, 247,

249, 461
Cross product 20, 26, 42, 119

of vectors 507
Cruise missiles 466
C*-U Control law 438, 439

d
Damped natural frequency 68, 69, 70, 73,

74, 162
Damping ratio
-dutch-roll 133
-phugoid 129, 130, 161, 252
-short-period 129–130, 161, 252, 253,

379
Data tables (aerodynamic) 89, 93, 112,

114, 128, 130, 138
Decoupling
in aircraft dynamics 266
in equations of motion 56, 183, 252,

271, 460, 461, 466
Definiteness of a matrix 327, 328, 330,

492, 493, 501
Delay time 195, 279
Denominator polynomial in a transfer

function 203
Derivative controller 167, 198, 224, 246
Derivatives
dimensional 473, 475
dimensionless (or non-dimensional)

125, 127, 425, 426, 455, 456
Desaturation 156
Desired poles (eigenvalues) 213, 374, 376,

402, 421
De-spun platform 144
Detectability 285, 349–367
Determinant of a matrix 12, 15, 375, 489,

501, 507
Deterministic control theory 288
Difference equations 287, 292–294, 304
Differential equations xxix, xxxi, xxxii, 3,

5–8, 35, 37, 45, 49, 52–54, 56, 60–67,
72–74, 111, 117, 125, 136, 166,
169–171, 176, 179, 184, 201,
287–295, 297, 300–302, 304, 307,
309–310, 323, 336, 337, 345, 383,
385–389, 423, 459, 479, 481, 483,
485

Dihedral angle 133
Dimensional derivative, see Derivatives,

dimensional
Directional stability 79, 104, 105–107,

111, 133, 136



512 Index

Direction cosine matrix (DCM) 12, 15, 38,
41, 59

Discrete time systems 292, 293, 304,
307–321, 323, 328, 343, 344, 345

Discretization of continuous controller by
sampling 317–319

Disk shaped body 51, 52
Distinct eigenvalues 298, 299, 351, 357,

365
Distributed parameter systems 6
Disturbance

-rejection 192
-torques 3, 56, 57, 145, 156, 161–162

Dominant poles 274
Dot product 493
Downwash angle 256
Drag coefficient 469
Duality 349, 361
Dual spin stabilization 144, 149,

445
Dutch-roll

-approximation 136–138
-frequency and damping formulae

129
Dynamic compensator 235, 285, 397,

405–408, 410
Dynamic pressure 78, 127
Dynamic response 66–73, 307–320, 329,

369–381, 453
Dynamic stability and control 77, 111,

117–140, 155–162
Dynamic systems xxix, xxxi, 5, 7, 53, 54,

61–63, 66–74, 285, 288–290,
323–346, 408–410

e
Earth

angular rotation rate of 12, 16
centered inertial reference frame 9, 13,

23, 24, 26, 467
Earth observation satellite 269–281
Eigen-structure assignment 369, 371, 372,

383
Eigenvalue decomposition 496
Eigenvalue placement design 327, 379, 383

Eigenvalues
complex conjugate pairs 69, 73, 74, 131,

330, 335, 373, 374, 376
of a matrix 203, 329
real 492
of rotation matrix 12, 74

Eigenvectors 33, 299, 300, 369, 371, 421,
490–491

-normalized 49, 59, 71, 298, 501
Elevator

angle of trim 95–98
effectiveness 127
-floating 101

Energy dissipation 148, 151
Energy methods for modeling of dynamic

systems 44–45
Engine-out situation 107, 108, 109
Envelope, see Aircraft, altitude-speed

(flight) envelope
Equations of motion

for aircrafts xxx, xxxi, xxxii, 2, 3, 6, 23,
32, 35, 36, 39, 40, 43, 52, 53, 57, 58,
60, 77, 117, 122–124, 132, 138, 139,
155, 179, 180, 251, 252, 466, 467

for a general rigid body 23–32, 58
linearized 77, 117, 122, 123, 138, 155,

183, 252, 454
nonlinear 23–60
for spacecrafts/satellites 143

Equilibrium point 63, 66, 73, 301, 303,
304, 324, 325, 326, 339, 345

Equilibrium state
stable 324, 325
unstable 325

Error transfer function 189, 191, 244
Estimate of state vector 21
Estimator based control design 397
Euler angles

definition 17, 46
differential equation for xxix, 37, 54, 56
in rotation matrix 16, 18, 33, 38, 46, 54
rotation sequence 16, 18

Evaluation model xxxii, 408
Exogenous input 389, 390
Expected value 134
Exponential matrix, -as state transition

matrix 385
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f
Feedback control system xxxii, 117, 188,

290, 361, 397–405, 443
Feedback path 188
Feedback transfer function 188, 190
Feedforward path 188
Final value theorem 178–179, 245
First order system response 66, 67, 136,

194
Fixed wing aircraft 430, 431, 451, 453, 455,

461, 462, 464, 560
Flare control 259, 262, 263
Flare controller 262

parameters 263
Flat Earth approximation 26, 27, 33, 41,

58, 467
Flexibility 146, 155, 395

structural 6, 7, 448, 449
Flexible structures 408
Flight envelope 98, 123, 125, 128, 266
Flight path

angle 41, 54, 139, 184, 260, 263
determination 39

Flying qualities 379, 395, 458, 461, 462,
473

Flying wing 87
Follower satellite 423, 425, 426
Force equations 24–26, 27, 28, 32, 33, 53,

122, 257
Forcing function 54, 56, 72, 77, 124, 183,

307, 344, 349, 398, 401
Formation flying of satellites xxxii, 285,

423–428
Frequency

damped natural 74
undamped natural 68, 70, 73, 162

Frequency response specifications 192,
232–234

Fuller’s stability conditions
332, 333

Full state feedback 369, 371, 373–374,
375–379, 380, 381, 395, 396, 397,
401, 406, 408, 410, 427

g
Gain

determination for stability 211

determination using root locus design
213–216

margin 231, 232, 233, 240, 241, 243,
244, 247, 248, 249

Gain crossover frequency 241, 242, 243,
246, 247, 249

Geosynchronous orbit 6
Glide slope coupling 260–262
Gravitational attraction 44
-Newton’s law of 44

Gravitational constant 26, 44, 45, 47
Gravitational force 33, 42, 43, 460
Gravity gradient stabilization 3, 146, 445
torque 144, 145

Gravity vector 26, 27
Guided missiles 465, 466
Gyros, see Rate gyro
Gyro-torquers 156

h
Heating and thermal issues 469
Helicopter 380, 430, 451–462
-dynamics and control 451, 463

Hinge moments 100, 458
Homogeneous solution 309
Horizontal tail volume ratio 84
Hovering motion 453, 458, 459, 460
Hurwitz determinants 329
Hurwitz stability xxxii, 71, 72, 285, 323,

328, 329, 330, 332, 335, 341, 342,
345, 346

Hydraulic actuator, see Actuators
Hypersonic aircraft 431, 468–470
Hypersonic vehicles 431, 468–470

i
Imaginary axis crossing 221
Imaginary axis roots 208–209
Imaginary parts of an eigenvalue

131, 299
Impulse response 174, 175, 184
Indian Space Research Organization xxxii,

167, 269, 281
Induced norm 498
Inertia coupling 266–267
Inertial cross coupling 266, 267
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Inertial frame 9, 10, 19, 28, 37, 38, 39, 41,
42, 46, 47, 58, 77, 463

Inertial reference frame 9, 13, 23, 24, 26,
467

Inertia matrix
definition 30, 48
inverse of 487

Initial value theorem 337, 356
Instrument landing system 259–265
Integral controllers 198–200, 223, 246
Interfaces 436
Intermediate moment of inertia 148
Inverse Laplace transformation 171, 173,

479, 482, 483, 484
Irreversible flight control systems 99

j
Jacobian matrix 63, 301, 304
Jacobian method of linearization 306
Jordan blocks 352, 358, 490
Jordan-form matrix 313, 491

k
Keplerian orbit 46, 47, 56, 425
Kinematic

coupling 156
equations 53, 119, 122

Kinetic energy 45, 59, 128, 149
Kronecker based operations 331
Kronecker sum matrix 330–333

l
Lead/lag network 167, 196, 197, 200,

246–248
compensator 197

m
Mach hold 252, 264–265
Mach number 78, 125, 127, 128, 465, 466,

468
Magnetic torque stabilization 445
Magnetometers 444
Mass expulsion devices 143, 146, 155,

156–157
Matrix Riccati equation 388
Matrix theory 67, 68, 284, 309, 487–502
Maximum moment of inertia 148

Mean aerodynamic chord 78, 125, 126
Measurement feedback 370, 379, 381, 397,

410
Minimum control speed 107–11, 114
Minimum moment of inertia 148
Minimum phase system 239
Minimum phase transfer function

176–178, 177, 239
Missiles 384, 430, 465–468
Modal coordinates 298, 299, 351, 357, 365
Modal decomposition 298, 299, 300,

351–352, 357–358, 365
Modal matrix 298, 299, 300, 313, 490, 491,

501
Mode

Dutch roll 133, 134, 135, 136–138, 139
phugoid (or long period) 128, 130, 131,

139, 161, 252, 461
short period 128, 129, 130, 131, 137,

139, 161, 252, 253, 461
Model reduction 361, 362
Modern control theory 287, 291, 369
Molinya orbits 19
Moment equations 26–27, 28, 30, 31, 33,

35, 53, 54, 108, 122, 128, 131, 132,
160

Moments of inertia 29, 34, 35, 48, 49, 50,
57, 59, 144, 148, 151, 226, 305, 456,
465

Momentum conservation 149, 150, 155
Momentum dumping phase 156
Momentum exchange devices 143, 146,

155–156, 445–449
Moving coordinate frame 20, 37
Multiple input multiple output (MIMO)

system 288, 291, 294, 297,
375–379, 383

Multiple satellite formation flying
423–127

n
Natural response 185
Neutral point

stick fixed 86–92, 98–99, 101, 111, 112
stick free 86–92, 99, 101, 104, 111, 113

Newton’s law of gravitation 43
Newton’s laws of motion xxx, 9, 23, 461
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Noise 7–8, 259, 278, 279
Nonlinear

equations of motion 23–60, 74, 117,
119, 160, 300, 305

systems 7, 45, 46, 53, 54, 57, 58, 61, 62,
63–64, 66, 285, 287, 289, 290,
300–304, 307, 323, 324, 330,
335–337, 345, 370, 423, 426, 469

Non-minimum-phase transfer function
176–178, 184, 239, 258

Non-unique gains for MIMO control
systems 376, 379

Non-unity feedback control system 188,
201

Normal acceleration, see Acceleration,
normal

Normality 352–353
Normal systems 353
Norms

-of matrices 487, 494, 495
-of vectors 487, 493, 494, 497–499

North-east-down frame, (NED frame) 9,
11, 16, 37

Numerator polynomial of a transfer
function 174

Numerical integration 388
Nutation

angle 150
damping 146, 269, 277–279, 281
motion 51, 277, 279

o
Observability 349–367

properties 285, 304, 309, 345, 349, 365
Observability canonical form 298,

359–361, 367
Observable subspace 356, 359, 361,

366
Observer xxxii, 130, 131, 285, 369, 371,

379–410
Observer based control design

397–410
Off-set thrusters 269–281
Open loop

system 161, 198, 199, 209, 215, 221, 223,
225, 228, 233, 241, 265, 320, 344,
359, 376, 401, 408, 410

transfer function 189, 190, 198, 199,
209, 211, 213, 214, 215, 216, 221,
223, 224, 225, 226, 228, 233, 240,
241, 247, 248, 249, 261

Optimal control xxxii, 383–396, 421
Orbit
circular 45, 46–50, 52, 56, 155,

158–160, 160–161, 162, 183, 184,
185, 305, 306, 423, 424, 443

normal 270, 272
Orbital mechanics 19, 44, 423, 428
Orbit control 443–444
Orbit equation 26, 43–44, 56, 58
Orthogonality, -of rotation matrices 15, 19
Orthogonal matrices 12, 15, 49, 488
Output
measured 187, 287
performance 192, 200, 259, 384

Output feedback 406
stabilization 407

Output variables xxxii, 53, 54, 55, 57, 58,
139, 170, 181, 183, 184, 189, 200,
203, 251, 257, 260, 264, 265, 287,
291, 305, 349, 355, 401, 404

Overshoot 195, 196, 200, 233, 277

p
Parameters
time invariant 7
time varying 7

Partial fraction expansion 173, 178, 232,
296, 482–483

Partitioned matrices 489
Passive stabilization schemes for satellites

143–146, 147, 148, 149–151, 152
Peak resonance 231, 233
Performance equations for aircraft

43, 60
Performance index
-LQR 383, 395
quadratic 379, 383, 384, 386, 395

Performance specifications
frequency domain 192
relative stability 192
steady state response 192
transient response 192
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Perturbations 7, 46, 49, 56, 57, 64–66, 74,
111, 117–121, 146, 147, 155, 271,
302, 303, 320, 326, 336, 337, 345,
391, 405, 414, 423, 454, 468

Perturbed flight 117–122, 457
Phase crossover frequency 240, 241, 242,

243
Phase lead/lag, see Compensation
Phase margin 231, 232, 233, 240–246, 247,

248, 249
Phugoid

approximation 128–129, 130
eigenvectors 129
frequency and damping 129
mode described 128

PID controller 187, 200
Pitch-attitude hold 252
Pitch axis control of a satellite 281
Pitch control of an aircraft 438–439
Pitch displacement auto-pilot 252,

253–257
Pitching moment 30, 35, 77, 79, 80, 81–86,

91, 95, 111, 112, 126, 127, 128, 452,
453, 454, 459

Pitching moment coefficient 85, 112, 126,
127

Pitch pointing 461
Pitch -rate feedback control system,

classical design 255–257
Pitch stability 81–86, 126–127
Point mass equations 45
Polar coordinates 44, 55–56
Pole placement

control design 383, 421, 427
design 378, 395, 396, 414–421, 427, 428
region in complex plane 372, 373

Poles of a transfer function 174–179, 218
Pole-zero cancellation 260, 363
Positive definite matrix 30, 48, 327, 330,

384, 392, 393
Potential energy 45, 128
Precession 269, 272, 273
Principal axes 35, 48, 49, 50, 56, 59, 146,

147, 160, 161, 183
Principal moments of inertia 35, 48, 49,

50, 57, 59
Products of inertia 29, 34, 35, 48, 57

Properties of
-root locus 214–217
-state transition matrix 308

Proportional controller 196, 198, 199

q
Quadcopter dynamics and control

462–465
Quadratic forms 384, 385, 386, 387, 388,

390
Quadratic performance index 383, 395
Quadratic stability 323
Quasi linear (periodic) systems 337–338

r
Radial thrusters in control of satellites

425–427
Rank of a matrix 488, 489
Rate gyro 255, 363, 364, 444
Reachability, see Controllability
Reaction jets 143, 146, 155, 156–157, 158,

272, 277, 280, 281, 443, 445–449
Reaction wheels 143, 146, 155, 156, 158,

269, 272, 280, 445
Real parts of eigenvalues 71, 74, 327
Reduced order controller 405, 406, 409
Reference frames 9, 11, 12, 13, 15, 23, 24,

25, 26, 36, 46, 49, 467
Regulation cost in the LQR problem 391,

392
Regulator, -linear quadratic 383–396
Relative motion equations for formation

flying problem 423, 424
Relaxed static stability (RSS) 104
Repeated

-eigenvalues 191, 313, 316, 351, 352,
357, 358, 490

-roots of a polynomial 204
Resonant frequency 232, 233
Reversible flight control systems 99–104
Riccati equation 388, 392, 393, 395
Right half plane roots (RHP) roots 204,

206, 209, 210, 239
Rigid body xxx, 23–32, 33, 43, 46, 47, 48,

57, 58, 59, 60, 74, 77, 449, 468
Rigid body equations of motion, see

Equations of motion
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Rise time 195, 200, 277, 374
Robust control 7, 469, 470
Robustness 57, 468
Rod shaped body 52
Roll

damper 252
stability-axis 467

Roll control 105, 440
Rolling moment coefficient 133, 134
Rolling moment equation 30, 35, 131, 180
Roll-rate feedback 58, 252
Roll stabilization 467
Roll-subsidence

mode 135, 136, 138, 139, 460
time constant 135, 459, 460

Roll-yaw coupling 78, 109, 269
Root locus

design method 213–229
rules of construction 217

Root locus design 167
Roots of a polynomial 204
Rotational kinetic energy 59
Rotational motion equations 43, 46, 47,

58, 74, 305
Rotation matrices 11, 15
Rotorcrafts xxxiii, 451–170
Routh-Hurwitz criterion xxxii, 203,

204–207, 210, 221, 274, 285, 329,
330, 346

Routh table 204, 208
Rudder

-in directional stability 105
power 107–111

s
Sampled data systems 285, 293, 294, 317,

319, 320, 328
Sampling

period 293, 294, 317–319
Satellite (spacecraft) attitude control 57,

156, 167, 379, 396
Satellite (spacecraft) attitude stabilization

143, 161
Satellite building blocks 443
Schur stability 323, 343, 344, 345
Schwartz’ inequality 497, 498
Second order system response 67, 73

Sensors 6, 37, 54, 155–157, 187, 188, 260,
263, 265, 272, 274, 277, 279, 281,
290, 362, 364, 443–445

Settling time 195, 200, 277, 374
Short-period
approximation 129–130, 253, 257
mode 128–131, 139, 161, 252

Short period mode
-damping ratio 130
-frequency 130

Side force coefficient 134
Sideslip
angle 105, 108, 132, 133, 138

Side velocity 121, 132
Similarity transformation 298, 300, 304,

351, 353, 359, 490, 502
Simulation 5, 262, 408, 425–426, 448
six degrees of freedom (6DOF) 23, 40

Simultaneous linear equations 499–500
Single input single output (SISO) systems

169–171, 183, 192, 196, 288, 291
Singularity of a matrix 15
Singular value decomposition

494, 507
Sinusoidal inputs 231
SISO, see Transfer function
Sketching of root locus 218–219
Slip stream 83, 107
Small angle approximation 21, 64–66, 83,

117, 160, 302
Solar radiation pressure 6, 146
Space cone 51
Speed stability 103, 104, 439, 460
Spherical coordinates 44
Spillover instabilities xxxii, 7, 285,

408–410
Spin axis control of a satellite 277
Spin stabilization 143, 144, 149, 150, 157,

445
Spiral convergence 135, 136, 139
Spiral divergence 135
Spiral mode
approximation 136, 137
time constant 136–137
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Square matrix 310, 487, 489, 497
Stability

axes 122, 123
conditions for a matrix 332–334
of dynamic systems 323
static/dynamic 79, 111, 117, 122, 128,

157, 456–458, 460, 461, 468
using LQR design 383

Stability augmentation systems (SAS)
lateral-directional 252
longitudinal 252
pitch axis 252

Stability conditions
for dual spin satellites 149–151
for single spin satellites 146–148

Stability derivatives
control related 127–128
dimensional 123, 125
dimensionless 125, 127
drag related 125
lift related 126
moment related 126–127
non-dimensional 125, 455

Stability determination of dynamic systems
323

Stability in the sense of Lyapunov 326,
340, 345

Stability of dynamic systems 323
Stability testing

of matrices 335
of polynomials 203

Stabilizability 353–355, 366
Stable poles 176

zeroes 176
State equations

-aircraft, linear 117
-decoupled, linear 128
-decoupled, nonlinear 56
-for aircraft translational motion 23

State feedback
-full 371, 373, 375, 377, 379–381,

395–397, 401, 406, 408, 427
-in LQR design 396

State space control theory 287, 290
State transition matrix (STM)

for continuous time systems 285, 308

determination by Cayley Hamilton
theorem 310–314

for discrete time systems 285, 314
properties of 308

State variable representation of dynamic
systems 54, 57, 125

State variables 53–57, 61–63, 65, 66,
123–125, 128, 130, 132, 135, 136,
138, 139, 147, 170, 171, 181, 184,
252, 264, 265, 287–289, 291, 292,
294–296, 298, 299, 301, 303, 305,
307, 326, 341, 345, 351, 355,
361–365, 370, 390, 397, 402–405,
408, 413–415, 452, 461

Static longitudinal control 92–99
Static longitudinal stability 79–86
Static margin 87, 90, 91, 92, 101, 112, 113,

127, 461
Static output feedback control 407
Static stability and control 77
Steady coordinated turn xxxii, 252, 265,

266
Steady-state error 197–199, 274
Steady state error response 198, 199
Steady-state flight

definition of 124
trim 111

Steady state response 192, 231
Steady state solution for the optimal gain

matrix 387
Stick force 99, 102–104, 113, 114
Stick force gradient 103
Stick free situation 101, 102
Stochastic control theory 8
Straight line approximations of Bode plots

(of frequency response) 234
Strong stability xxxii, 399
Structural flexibility 6, 7, 448, 449
Swept wing 106, 256
Symmetric matrix 31, 327, 488, 497

t
Tab

angle for trim 103
trim tabs 110



Index 519

Tail contribution to static longitudinal
stability 83

Tail efficiency factor 83
Tail volume ratio 84
Tangential thrust 425
Taylor series 303, 454
Three axis stabilization of satellites

155–158
Three dimensional space 2, 8, 11, 12,

23–60
Throttle 252, 259–260, 263
Thrust

-forces 33, 36, 41, 78, 118, 119, 464
-moments 114, 457
-velocity independent 114

Thrusting maneuvers 448, 449
Time constant 135, 178, 194, 196, 264,

274, 275, 278, 279, 374, 459, 460
Time domain control theory xxii, 287–306
Time invariant systems 3, 61–75, 169, 170,

203, 297–299, 308
Time-response specifications

-steady state response 194
-transient response 194

Time varying systems 7, 308, 338–343,
349, 350, 356, 365

Torque free motion of a satellite 50–51
Trace of a matrix 68, 487
Trade-off curve in LQR problem

392–395
Transfer function

in aircraft dynamics 179–182
as impulse response 174
in spacecraft (satellite) dynamics

183–184
from state space models 171

Transformations
coordinate 5, 8, 11–15, 19, 20, 63, 301,

324
linear 287, 297–300, 498
similarity 298, 300, 304, 351, 353, 359,

490, 502
state-space 297–300

Transition matrix
-for continuous-time systems 285, 308
-for discrete-time systems 285, 314

-state 285, 287, 307, 308, 310–314, 385,
386

Translational motion 23–28, 33, 42,
43–44, 53, 54, 56, 58, 155, 452

Trim angle of attack 87, 89, 95–98
Trim elevator deflection 95–98
Trim flight condition 77–79
Turn, steady coordinated 252, 265–266
Two-body problem in orbital mechanics

44
Type, of a feedback control system 88

u
Uncertainty 7, 8, 444
Uncontrollable subspace 353, 354, 355,

366
Uncontrolled motion 38, 117, 147, 161,

453
Undamped natural frequency 68, 70, 73,

162
Unit circle 323, 328, 343
Unit impulse response 174, 193
Unit step response 194–196
Unit vectors 9, 10, 12, 33, 36, 48, 51
Unity feedback control system 188, 201
Unmanned aerial system (UAS) 463
Unmanned aerial vehicles (UAVs) 462, 463
Unmodeled dynamics 409
Unobservable subspace 359, 361, 366

v
Vectors
norms 497–499
products 493

Vehicle carried frame 41, 42, 43, 60
Velocity
absolute 15, 18, 19, 20
radial component 56
relative 37
transverse component 305

Vertical take off and landing (VTOL)
vehicles 451

w
Wake region 83
Washout filter 265
Weathercock stability 133
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Weight 26, 27, 33–35, 95, 104, 145, 156,
157, 226, 270, 272, 281, 384

Weighting matrices in LQR problem (ch 22)
384, 385, 388–392, 396

Wind 41, 135, 136, 146, 440, 464
axes 42, 454

Wing contribution to static longitudinal
stability 81

y
Yaw

adverse 107, 134

angle 46, 56, 132
damper 252, 433, 434, 439, 440
stability 105

Yawing moment coefficient 105, 107, 133,
134

z
Zero-order hold 253
Zeros

of MIMO systems 375
non-minimum-phase systems 176–178
of a transfer function 169, 170, 174–179


	Contents
	Preface
	Perspective of the Book
	Part I Flight Vehicle Dynamics
	Roadmap to Part I
	1 An Overview of the Fundamental Concepts of Modeling of a Dynamic System
	1.1 Chapter Highlights
	1.2 Stages of a Dynamic SystemInvestigation and Approximations
	1.3 Concepts Needed to Derive Equations of Motion
	1.4 Illustrative Example
	1.5 Further Insight into Absolute Acceleration
	1.6 Chapter Summary
	1.7 Exercises
	Bibliography

	2 Basic Nonlinear Equations of Motion in Three Dimensional Space
	2.1 Chapter Highlights
	2.2 Derivation of Equations of Motion for a General Rigid Body
	2.3 Specialization of Equations of Motion to Aero (Atmospheric) Vehicles
	2.4 Specialization of Equations of Motion to Spacecraft
	2.5 Flight Vehicle Dynamic Models in State Space Representation
	2.6 Chapter Summary
	2.7 Exercises
	Bibliography

	3 Linearization and Stability of Linear Time Invariant Systems
	3.1 Chapter Highlights
	3.2 State Space Representation of Dynamic Systems
	3.3 Linearizing a Nonlinear State Space Model
	3.4 Uncontrolled, Natural Dynamic Response and Stability of First and Second Order Linear Dynamic Systems with State Space Repre
	3.5 Chapter Summary
	3.6 Exercises
	Bibliography

	4 Aircraft Static Stability and Control
	4.1 Chapter Highlights
	4.2 Analysis of Equilibrium (Trim) Flight for Aircraft: Static Stability and Control
	4.3 Static Longitudinal Stability
	4.4 Stick Fixed Neutral Point and CG Travel Limits
	4.5 Static Longitudinal Control with Elevator Deflection
	4.6 Reversible Flight Control Systems: Stick Free, Stick Force Considerations
	4.7 Static Directional Stability and Control
	4.8 Engine Out Rudder/Aileron Power Determination: Minimum Control Speed,
	4.9 Chapter Summary
	4.10 Exercises
	Bibliography

	5 Aircraft Dynamic Stability and Control via Linearized Models
	5.1 Chapter Highlights
	5.2 Analysis of Perturbed Flight from Trim: Aircraft Dynamic Stability and Control
	5.3 Linearized Equations of Motion in Terms of Stability Derivatives For the Steady, Level Equilibrium Condition
	5.4 State Space Representation for Longitudinal Motion and Modes of Approximation
	5.5 State Space Representation for Lateral/Directional Motion and Modes of Approximation
	5.6 Chapter Summary
	5.7 Exercises
	Bibliography

	6 Spacecraft Passive Stabilization and Control
	6.1 Chapter Highlights
	6.2 Passive Methods for Satellite Attitude Stabilization and Control
	6.3 Stability Conditions for Linearized Models of Single Spin Stabilized Satellites
	6.4 Stability Conditions for a Dual Spin Stabilized Satellite
	6.5 Chapter Summary
	6.6 Exercises
	Bibliography

	7 Spacecraft Dynamic Stability and Control via Linearized Models
	7.1 Chapter Highlights
	7.2 Active Control: Three Axis Stabilization and Control
	7.3 Linearized Translational Equations of Motion for a Satellite in a Nominal Circular Orbit for Control Design
	7.4 Linearized Rotational (Attitude) Equations of Motion for a Satellite in a Nominal Circular Orbit for Control Design
	7.5 Open Loop (Uncontrolled Motion) Behavior of Spacecraft Models
	7.6 External Torque Analysis: Control Torques Versus Disturbance Torques
	7.7 Chapter Summary
	7.8 Exercises
	Bibliography


	Part II Fight Vehicle Control via Classical Transfer Function Based Methods
	Roadmap to Part II
	8 Transfer Function Based Linear Control Systems
	8.1 Chapter Highlights
	8.2 Poles and Zeroes in Transfer Functions and Their Role in the Stability and Time Response of Systems
	8.3 Transfer Functions for Aircraft Dynamics Application
	8.4 Transfer Functions for Spacecraft Dynamics Application
	8.5 Chapter Summary
	8.6 Exercises
	Bibliography

	9 Block DiagramRepresentation of Control Systems
	9.1 Chapter Highlights
	9.2 Standard Block Diagramof a Typical Control System
	9.3 Time Domain Performance Specifications in Control Systems
	9.4 Typical Controller Structures in SISO Control Systems
	9.5 Chapter Summary
	9.6 Exercises
	Bibliography

	10 Stability Testing of Polynomials
	10.1 Chapter Highlights
	10.2 Coefficient Tests for Stability: Routh–Hurwitz Criterion
	10.3 Left Column Zeros of the Array
	10.4 Imaginary Axis Roots
	10.5 Adjustable Systems
	10.6 Chapter Summary
	10.7 Exercises
	Bibliography

	11 Root Locus Technique for Control Systems Analysis and Design
	11.1 Chapter Highlights
	11.2 Introduction
	11.3 Properties of the Root Locus
	11.4 Sketching the Root Locus
	11.5 Refining the Sketch
	11.6 Control Design using the Root Locus Technique
	11.7 Using MATLAB to Draw the Root Locus
	11.8 Chapter Summary
	11.9 Exercises
	Bibliography

	12 Frequency Response Analysis and Design
	12.1 Chapter Highlights
	12.2 Introduction
	12.3 Frequency Response Specifications
	12.4 Advantages ofWorking with the Frequency Response in Terms of Bode Plots
	12.5 Examples on Frequency Response
	12.6 Stability: Gain and Phase Margins
	12.7 Notes on Lead and Lag Compensation via Bode Plots
	12.8 Chapter Summary
	12.9 Exercises
	Bibliography

	13 Applications of Classical Control Methods to Aircraft Control
	13.1 Chapter Highlights
	13.2 Aircraft Flight Control Systems (AFCS)
	13.3 Longitudinal Control Systems
	13.4 Control Theory Application to Automatic Landing Control SystemDesign
	13.5 Lateral/Directional Autopilots
	13.6 Chapter Summary
	Bibliography

	14 Application of Classical Control Methods to Spacecraft Control
	14.1 Chapter Highlights
	14.2 Control of an Earth Observation Satellite Using a MomentumWheel and Offset Thrusters: Case Study
	14.3 Chapter Summary
	Bibliography


	Part III Flight Vehicle Control via Modern State Space Based Methods
	Roadmap to Part III
	15 Time Domain, State Space Control Theory
	15.1 Chapter Highlights
	15.2 Introduction to State Space Control Theory
	15.3 State Space Representation in Companion Form: Continuous Time Systems
	15.4 State Space Representation of Discrete Time (Difference) Equations
	15.5 State Space Representation of Simultaneous Differential Equations
	15.6 State Space Equations from Transfer Functions
	15.7 Linear Transformations of State Space Representations
	15.8 Linearization of Nonlinear State Space Systems
	15.9 Chapter Summary
	15.10 Exercises
	Bibliography

	16 Dynamic Response of Linear State Space Systems (Including Discrete Time Systems and Sampled Data Systems)
	16.1 Chapter Highlights
	16.2 Introduction to Dynamic Response: Continuous Time Systems
	16.3 Solutions of Linear Constant Coefficient Differential Equations in State Space Form
	16.4 Determination of State Transition Matrices Using the Cayley–Hamilton Theorem
	16.5 Response of a Constant Coefficient (Time Invariant) Discrete Time State Space System
	16.6 Discretizing a Continuous Time System: Sampled Data Systems
	16.7 Chapter Summary
	16.8 Exercises
	Bibliography

	17 Stability of Dynamic Systems with State Space Representation with Emphasis on Linear Systems
	17.1 Chapter Highlights
	17.2 Stability of Dynamic Systems via Lyapunov Stability Concepts
	17.3 Stability Conditions for Linear Time Invariant Systems with State Space Representation
	17.4 Stability Conditions for Quasi-linear (Periodic) Systems
	17.5 Stability of Linear, Possibly Time Varying, Systems
	17.6 Bounded Input–Bounded State Stability (BIBS) and Bounded Input–Bounded Output Stability (BIBO)
	17.7 Chapter Summary
	17.8 Exercises
	Bibliography

	18 Controllability, Stabilizability, Observability, and Detectability
	18.1 Chapter Highlights
	18.2 Controllability of Linear State Space Systems
	18.3 State Controllability Test via Modal Decomposition
	18.4 Normality or Normal Linear Systems
	18.5 Stabilizability of Uncontrollable Linear State Space Systems
	18.6 Observability of Linear State Space Systems
	18.7 State Observability Test viaModal Decomposition
	18.8 Detectability of Unobservable Linear State Space Systems
	18.9 Implications and Importance of Controllability and Observability
	18.10 A Display of all Three Structural Properties via Modal Decomposition
	18.11 Chapter Summary
	18.12 Exercises
	Bibliography

	19 Shaping of Dynamic Response by Control Design: Pole (Eigenvalue) Placement Technique
	19.1 Chapter Highlights
	19.2 Shaping of Dynamic Response of State Space Systems using Control Design
	19.3 Single Input Full State Feedback Case: Ackermann’s Formula for Gain
	19.4 Pole (Eigenvalue) Assignment using Full State Feedback: MIMO Case
	19.5 Chapter Summary
	19.6 Exercises
	Bibliography

	20 Linear Quadratic Regulator (LQR) Optimal Control
	20.1 Chapter Highlights
	20.2 Formulation of the Optimum Control Problem
	20.3 Quadratic Integrals and Matrix Differential Equations
	20.4 The Optimum Gain Matrix
	20.5 The Steady State Solution
	20.6 Disturbances and Reference Inputs
	20.7 Trade-Off Curve Between State Regulation Cost and Control Effort
	20.8 Chapter Summary
	20.9 Exercises
	Bibliography

	21 Control Design Using Observers
	21.1 Chapter Highlights
	21.2 Observers or Estimators and Their Use in Feedback Control Systems
	21.3 Other Controller Structures: Dynamic Compensators of Varying Dimensions
	21.4 Spillover Instabilities in Linear State Space Dynamic Systems
	21.5 Chapter Summary
	21.6 Exercises
	Bibliography

	22 State Space Control Design: Applications to Aircraft Control
	22.1 Chapter Highlights
	22.2 LQR Controller Design for Aircraft Control Application
	22.3 Pole Placement Design for Aircraft Control Application
	22.4 Chapter Summary
	22.5 Exercises
	Bibliography

	23 State Space Control Design: Applications to Spacecraft Control
	23.1 Chapter Highlights
	23.2 Control Design for Multiple Satellite Formation Flying
	23.3 Chapter Summary
	23.4 Exercises
	Bibliography


	Part IV Other Related Flight Vehicles
	Roadmap to Part IV
	24 Tutorial on Aircraft Flight Control by Boeing
	24.1 Tutorial Highlights
	24.2 SystemOverview
	24.3 SystemElectrical Power
	24.4 Control Laws and SystemFunctionality
	24.5 Tutorial Summary
	Bibliography

	25 Tutorial on Satellite Control Systems
	25.1 Tutorial Highlights
	25.2 Spacecraft/Satellite Building Blocks
	25.3 Attitude Actuators
	25.4 Considerations in Using Momentum Exchange Devices and Reaction Jet Thrusters for Active Control
	25.5 Tutorial Summary
	Bibliography

	26 Tutorial on Other Flight Vehicles
	26.1 Tutorial on Helicopter (Rotorcraft) Flight Control Systems
	26.2 Tutorial on Quadcopter Dynamics and Control
	26.3 Tutorial on Missile Dynamics and Control
	26.4 Tutorial on Hypersonic Vehicle Dynamics and Control
	Bibliography


	Appendices
	Appendix A Data for Flight Vehicles
	A.1 Data for Several Aircraft
	A.2 Data for Selected Satellites

	Appendix B Brief Review of Laplace Transform Theory
	B.1 Introduction
	B.2 Basics of Laplace Transforms
	B.3 Inverse Laplace Transformation using the Partial Fraction Expansion Method
	B.4 Exercises

	Appendix C A Brief Review of Matrix Theory and Linear Algebra
	C.1 Matrix Operations, Properties, and Forms
	C.2 Linear Independence and Rank
	C.3 Eigenvalues and Eigenvectors
	C.4 Definiteness of Matrices
	C.5 Singular Values
	C.6 Vector Norms
	C.7 Simultaneous Linear Equations
	C.8 Exercises
	Bibliography

	Appendix D Useful MATLAB Commands
	D.1 Author Supplied Matlab Routine for Formation of Fuller Matrices
	D.2 Available Standard Matlab Commands


	Index

