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Preface to the Third Edition

In this third edition, we completely revised the book. Whenever necessary,
additional comments were made to deepen the subject. Also, connecting
remarks between the chapters are made to homogenize the book. As far as possi-
ble, we eliminated the obvious typos. The index is expanded according to the text.
N. A. thanks Dr. Markus Dauth for his valuable comments in the proofreading and
for his help in the typesetting of the manuscript.

Bad König, Germany Joseph H. Spurk
Bayreuth, Germany Nuri Aksel
Summer 2019

v



Preface to the Second English Edition

The first English edition was the translation of the fourth German edition. In the
meantime, the textbook has undergone several additions, mostly stimulated by
consulting activities of the first author. Since the textbook continues to receive
favorable reception in German-speaking countries and has been translated in other
languages as well, the publisher suggested a second English edition. The additions
were translated for the most part by Prof. L. Crane from Trinity College in Dublin,
who has accompanied this textbook from the very beginning. Since the retirement
of the first author, Prof. N. Aksel from the University of Bayreuth, Germany, the
second author, was actively engaged in the sixth and the seventh editions. The
additions were written by the first author who accepts the responsibility for any
mistakes or omissions in this book.
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Preface to the First English Edition

This textbook is the translation of the fourth edition of Strömungslehre, Einführung
in die Theorie der Strömungen. The German edition has met with a favorable
reception in German-speaking countries, showing that there was a demand for a
book that emphasizes the fundamentals. In the English literature, there are books
of the same nature, some excellent, and these have indeed influenced me to write
this book. However, they cover different ground and are not aimed primarily at
mechanical engineering students, which this book is. I have kept the original
concept throughout all editions, and there is little to say that has not been said in the
preface to the first German edition. There is now a companion volume Solved
Problems in Fluid Mechanics, which alleviates the drawback of the first German
edition, namely, the absence of problem exercises.

The book has been translated by Katherine Mayes during her stay in Darmstadt,
and I had the opportunity to work with her daily. It is for this reason that I am solely
responsible for this edition, too. My thanks also go to Prof. L. Crane from Trinity
College in Dublin for his assistance with this book. Many people have helped, all of
whom I cannot name, but I would like to express my sincere thanks to Ralf
Münzing, whose dependable and unselfish attitude has been a constant encour-
agement during this work.

Darmstadt
January 1997

J. H. Spurk
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Chapter 1
The Concept of the Continuum
and Kinematics

1.1 Properties of Fluids, Continuum Hypothesis

Fluid mechanics is concerned with the behavior of materials which deform without
limit under the influence of shearing forces. Even a very small shearing force will
deform a fluid body, but the velocity of the deformation will be correspondingly
small. This property serves as the definition of a fluid: the shearing forces necessary
to deform a fluid body go to zero as the velocity of deformation tends to zero. On
the contrary, the behavior of a solid body is such that the deformation itself, not the
velocity of deformation, goes to zero when the forces necessary to deform it tend to
zero. To illustrate this contrasting behavior, consider a material between two par-
allel plates and adhering to them acted on by a shearing force F (Fig. 1.1).

If the extent of the material in the direction normal to the plane of Fig. 1.1 and in
the x-direction is much larger than that in the y-direction, experience shows that for
many solids (Hooke’s solids), the force per unit area s = F/A is proportional to the
displacement a and inversely proportional to the distance between the plates h. At
least one dimensional quantity typical for the material must enter this relation, and
here this is the shear modulus G. The relationship

s ¼ Gc c � 1ð Þ ð1:1Þ

between the shearing angle c = a/h and s satisfies the definition of a solid: the force
per unit area s tends to zero only when the deformation c itself goes to zero. Often
the relation for a solid body is of a more general form, e.g., s = f (c), with f (0) = 0.

If the material is a fluid, the displacement of the plate increases continually with
time under a constant shearing force. This means there is no relationship between
the displacement, or deformation, and the force. Experience shows here that with
many fluids the force is proportional to the rate of change of the displacement, that
is, to the velocity of the deformation. Again the force is inversely proportional to
the distance between the plates. (We assume that the plate is being dragged at
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constant speed, so that the inertia of the material does not come into play.)
The dimensional quantity required is the shear viscosity η, and the relationship with
U = da/dt now reads

s ¼ g
U
h
¼ g _c ; ð1:2Þ

or, if the shear rate _c is set equal to du/dy,

s yð Þ ¼ g
du
dy

: ð1:3Þ

s(y) is the shear stress on a surface element parallel to the plates at point y. In
so-called simple shearing flow (rectilinear shearing flow) only the x-component of
the velocity is nonzero, and is a linear function of y.

The above relationship was known to Newton, and it is sometimes incorrectly
used as the definition of a Newtonian fluid: there are also non-Newtonian fluids
which show a linear relationship between the shear stress s and the shear rate _c in
this simple state of stress. In general, the relationship for a fluid reads s ¼ f _cð Þ, with
f (0) = 0.

While there are many substances for which this classification criterion suffices,
there are some which show dual character. These include the glasslike materials
which do not have a crystal structure and are structurally liquids. Under prolonged
loads these substances begin to flow, that is to deform without limit. Under
short-term loads, they exhibit the behavior of a solid body. Asphalt is an oftquoted
example: you can walk on asphalt without leaving footprints (short-term load), but
if you remain standing on it for a long time, you will finally sink in. Under very
short-term loads, e.g., a blow with a hammer, asphalt splinters, revealing its
structural relationship to glass. Other materials behave like solids even in the
long-term, provided they are kept below a certain shear stress, and then above this
stress they will behave like liquids. A typical example of these substances
(Bingham materials) is paint: it is this behavior which enables a coat of paint to
stick to surfaces parallel to the force of gravity.

Fig. 1.1 Shearing between two parallel plates
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The above definition of a fluid comprises both liquids and gases, since neither
show any resistance to change of shape when the velocity of this change tends to
zero. Now liquids develop a free surface through condensation, and in general do
not fill up the whole space they have available to them, say a vessel, whereas gases
completely fill the space available. Nevertheless, the behavior of liquids and gases
is dynamically the same as long as their volume does not change during the course
of the flow.

The essential difference between them lies in the greater compressibility of
gases. When heated over the critical temperature Tc, liquid loses its ability to
condense and it is then in the same thermodynamical state as a gas compressed to
the same density. In this state even gas can no longer be “easily” compressed. The
feature we have to take note of for the dynamic behavior, therefore, is not the state
of the fluid (gaseous or liquid) but the resistance it shows to change in volume.
Insight into the expected volume or temperature changes for a given change in
pressure can be obtained from a graphical representation of the equation of state for
a pure substance F( p, T, t) = 0 in the wellknown form of a p-t-diagram with T as
the parameter (Fig. 1.2).

This graph shows that during dynamic processes where large changes of pres-
sure and temperature occur, the change of volume has to be taken into account. The
branch of fluid mechanics which evolved from the necessity to take the volume
changes into account is called gas dynamics. It describes the dynamics of flows with
large pressure changes as a result of large changes in velocity. There are also other
branches of fluid mechanics where the change in volume may not be ignored,
among these meteorology; there the density changes as a result of the pressure
change in the atmosphere due to the force of gravity.

Fig. 1.2 p-t-diagram
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The behavior of solids, liquids and gases described up to now can be explained
by the molecular structure, by the thermal motion of the molecules, and by the
interactions between the molecules. Microscopically the main difference between
gases on the one hand, and liquids and solids on the other is the mean distance
between the molecules.

With gases, the spacing at standard temperature and pressure (273.2 K;
1.013 bar) is about ten effective molecular diameters. Apart from occasional col-
lisions, the molecules move along a straight path. Only during the collision of, as a
rule, two molecules, does an interaction take place. The molecules first attract each
other weakly, and then as the interval between them becomes noticeably smaller
than the effective diameter, they repel strongly. The mean free path is in general
larger than the mean distance, and can occasionally be considerably larger.

With liquids and solids the mean distance is about one effective molecular
diameter. In this case there is always an interaction between the molecules. The
large resistance which liquids and solids show to volume changes is explained by
the repulsive force between molecules when the spacing becomes noticeably
smaller than their effective diameter. Even gases have a resistance to change in
volume, although at standard temperature and pressure it is much smaller and is
proportional to the kinetic energy of the molecules. When the gas is compressed so
far that the spacing is comparable to that in a liquid, the resistance to volume
change becomes large, for the same reason as referred to above.

Real solids show a crystal structure: the molecules are arranged in a lattice and
vibrate about their equilibrium position. Above the melting point, this lattice dis-
integrates and the material becomes liquid. Now the molecules are still more or less
ordered, and continue to carry out their oscillatory motions although they often
exchange places. The high mobility of the molecules explains why it is easy to
deform liquids with shearing forces.

It would appear obvious to describe the motion of the material by integrating the
equations of motion for the molecules of which it consists: for computational
reasons this procedure is impossible since in general the number of molecules in the
material is very large. But it is impossible in principle anyway, since the position
and momentum of a molecule cannot be simultaneously known (Heisenberg’s
Uncertainty Principle) and thus the initial conditions for the integration do not exist.
In addition, detailed information about the molecular motion is not readily usable
and therefore it would be necessary to average the molecular properties of the
motion in some suitable way. It is therefore far more appropriate to consider the
average properties of a cluster of molecules right from the start. For example the
macroscopic, or continuum, velocity

~u ¼ 1
n

Xn
1

~ci; ð1:4Þ

where~ci are the velocities of the molecules and n is the number of molecules in the
cluster. This cluster will be the smallest part of the material that we will consider,
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and we call it a fluid particle. To justify this name, the volume which this cluster of
molecules occupies must be small compared to the volume occupied by the whole
part of the fluid under consideration. On the other hand, the number of molecules in
the cluster must be large enough so that the averaging makes sense, i.e., so that it
becomes independent of the number of molecules. Considering that the number of
molecules in one cubic centimeter of gas at standard temperature and pressure is
2.7 � 1019 (Loschmidt’s number), it is obvious that this condition is satisfied in
most cases.

Now we can introduce the most important property of a continuum, its mass
density q. This is defined as the ratio of the sum of the molecular masses in the
cluster to the occupied volume, with the understanding that the volume, or its linear
measure, must be large enough for the density of the fluid particle to be independent
of its volume. In other words, the mass of a fluid particle is a smooth function of the
volume.

On the other hand the linear measure of the volume must be small compared to
the macroscopic length of interest. It is appropriate to assume that the volume of the
fluid particle is infinitely small compared to the whole volume occupied by the
fluid. This assumption forms the basis of the continuum hypothesis. Under this
hypothesis we consider the fluid particle to be a material point and the density (or
other properties) of the fluid to be continuous functions of place and time.
Occasionally we will have to relax this assumption on certain curves or surfaces,
since discontinuities in the density or temperature, say, may occur in the context of
some idealizations. The part of the fluid under observation consists then of infinitely
many material points, and we expect that the motion of this continuum will be
described by partial differential equations. However the assumptions which have
led us from the material to the idealized model of the continuum are not always
fulfilled. One example is the flow past a space craft at very high altitudes, where the
air density is very low. The number of molecules required to do any useful aver-
aging then takes up such a large volume that it is comparable to the volume of the
craft itself.

Continuum theory is also inadequate to describe the structure of a shock (see
Chap. 9), a frequent occurrence in compressible flow. Shocks have thicknesses of
the same order of magnitude as the mean free path, so that the linear measures of
the volumes required for averaging are comparable to the thickness of the shock.

We have not yet considered the role the thermal motion of molecules plays in the
continuum model. This thermal motion is reflected in the macroscopic properties of
the material and is the single source of viscosity in gases. Even if the macroscopic
velocity given by (1.4) is zero, the molecular velocities~ci are clearly not necessarily
zero. The consequence of this is that the molecules migrate out of the fluid particle
and are replaced by molecules drifting in. This exchange process gives rise to the
macroscopic fluid properties called transport properties. Obviously, molecules with
other molecular properties (e.g. mass) are brought into the fluid particle. Take as an
example a gas which consists of two types of molecule, say O2 and N2. Let the
number of O2 molecules per unit volume in the fluid particle be larger than that of
the surroundings. The number of O2 molecules which migrate out is proportional to
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the number density inside the fluid particle, while the number which drift in is
proportional to that of the surroundings. The net effect is that more O2 molecules
drift in than drift out and so the O2 number density adjusts itself to the surround-
ings. From the standpoint of continuum theory the process described above rep-
resents the diffusion.

If the continuum velocity ~u in the fluid particle as given by (1.4) is larger than
that of the surroundings, the molecules which drift out bring their molecular
velocities which give rise to ~u with them. Their replacements have molecular
velocities with a smaller part of the continuum velocity ~u. This results in
momentum exchange through the surface of the fluid particle which manifests itself
as a force on this surface. In the simple shearing flow (Fig. 1.1) the force per unit
area on a surface element parallel to the plates is given by (1.3). The sign of this
shear stress is such as to even out the velocity. However nonuniformity of the
velocity is maintained by the force on the upper plate, and thus the momentum
transport is also maintained. From the point of view of continuum theory, this
momentum transport is the source of the internal friction, i.e., the viscosity. The
molecular transport of momentum accounts for internal friction only in the case of
gases. In liquids, where the molecules are packed as closely together as the
repulsive forces will allow, each molecule is in the range of attraction of several
others. The exchange of sites among molecules, responsible for the deformability, is
impeded by the force of attraction from neighboring molecules. The contribution
from these intermolecular forces to the force on surface elements of fluid particles
having different macroscopic velocities is greater than the contribution from the
molecular momentum transfer. Therefore the viscosity of liquids decreases with
increasing temperature, since change of place among molecules is favored by more
vigorous molecular motion. Yet the viscosity of gases, where the momentum
transfer is basically its only source, increases with temperature, since increasing the
temperature increases the thermal velocity of the molecules, and thus the
momentum exchange is favored.

The above exchange model for diffusion and viscosity can also explain the third
transport process: conduction. In gases, the molecules which drift out of the fluid
particle bring with them their kinetic energy, and exchange it with the surrounding
molecules through collisions. The molecules which migrate into the particle
exchange their kinetic energy through collisions with the molecules in the fluid
particle, thus equalizing the average kinetic energy (i.e. the temperature) in the
fluid.

Thus, as well as the already mentioned differential equations for describing the
motion of the continuum, the relationships which describe the exchange of mass
(diffusion), of momentum (viscosity) and of kinetic energy (conduction) must be
known. In the most general sense, these relationships establish the connection
between concentration and diffusion flux, between forces and motion, and between
temperature and heat flux. However these relations only reflect the primary reasons
for “cause” and “effect”. We know from the kinetic theory of gases, that an effect
can have several causes. Thus, for example, the diffusion flux (effect) depends on
the inhomogeneity of the concentration, the temperature and the pressure field
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(causes), as well as on other external forces. The above relationships must therefore
occasionally permit the dependency of the effect on several causes. Relationships
describing the connections between the causes and effects in a body are called
constitutive relations. They reflect macroscopically the behavior of matter that is
determined microscopically through the molecular properties. Continuum theory is
however of a phenomenological nature: in order to look at the macroscopic
behavior of the material, mathematical and therefore idealized models are devel-
oped. Yet this is necessary, since the real properties of matter can never be
described exactly. But even if this possibility did exist, it would be wasteful to
include all the material properties not relevant in a given technical problem. Thus
the continuum theory works not with real materials, but with models which describe
the behavior for the given application sufficiently accurately. The model of an ideal
gas, for example, is evidently useful for many applications, although ideal gas is
never encountered in reality.

In principle, models could be constructed solely from experiments and experi-
ences, without consideration for the molecular structure. Yet consideration of the
microscopic structure gives us insight into the formulation and limitations of the
constitutive equations.

1.2 Kinematics

1.2.1 Material and Spatial Descriptions

Kinematics is the study of the motion of a fluid, without considering the forces
which cause this motion, that is without considering the equations of motion. It is
natural to try to carry over the kinematics of a mass-point directly to the kinematics
of a fluid particle. Its motion is given by the time dependent position vector ~x tð Þ
relative to a chosen origin.

In general we are interested in the motion of a finitely large part of the fluid (or
the whole fluid) and this is made up of infinitely many fluid particles. Thus the
single particles must remain identifiable. The shape of the particle is no use as an
identification, since, because of its ability to deform without limit, it continually
changes during the course of the motion. Naturally the linear measure must remain
small in spite of the deformation during the motion, something that we guarantee by
idealizing the fluid particle as a material point.

For identification, we associate with each material point a characteristic vector~n.

The position vector ~x at a certain time t0 could be chosen, giving ~x t0ð Þ ¼~n. The
motion of the whole fluid can then be described by

~x ¼~x ~n; t
� �

or xi ¼ xi nj; t
� � ð1:5Þ
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(We use the same symbol for the vector function on the right side as we use for its

value on the left.) For a fixed ~n, (1.5) gives the path in space of the material point

labeled by ~n (Fig. 1.3). For a different ~n, (1.5) is the equation of the pathline of a
different particle.

While ~n is only the particle’s label we shall often speak simply of the “~nth”
particle. The velocity

~u ¼ d~x=dt

and the acceleration

~a ¼ d2~x=dt2

of a point in the material ~n can also be written in the form

~u ~n; t
� �

¼ @~x
@t

� �
~n

or ui nj; t
� � ¼ @xi

@t

� �
nj

; ð1:6Þ

~a ~n; t
� �

¼ @~u
@t

� �
~n

or ai nj; t
� � ¼ @ui

@t

� �
nj

; ð1:7Þ

where “differentiation at fixed ~n” indicates that the derivative should be taken for

the “~nth” point in the material. Confusion relating to differentiation with respect to

t does not arise since~n does not change with time. Mathematically, (1.5) describes a
mapping from the reference configuration to the actual configuration.

For reasons of tradition we call the use of the independent variables~n and t the
material or Lagrangian description, but the above interpretation of (1.5) suggests a

more accurate name is referential description. ~n is called the material coordinate.

Although the choice of~n and t as independent variables is obvious and is used in
many branches of continuum mechanics; the material description is impractical in

Fig. 1.3 Material description
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fluid mechanics (apart from a few exceptions). In most problems attention is
focused on what happens at a specific place or in a specific region of space as time
passes. The independent variables are then the place ~x and the time t. Solving

Eq. (1.5) for ~n we get

~n ¼~n ~x; tð Þ ð1:8Þ

This is the label of the material point which is at the place~x at time t. Using (1.8)~n
can be eliminated from (1.6)

~u ~n; t
� �

¼~u ~n ~x; tð Þ; t
h i

¼~u ~x; tð Þ: ð1:9Þ

For a given~x, (1.9) expresses the velocity at the place~x as a function of time. For a
given t (1.9) gives the velocity field at time t.~x is called the field coordinate, and the
use of the independent variables~x and t is called the spatial or Eulerian description.

With the help of (1.8) every quantity expressed in material coordinates can be
expressed in field coordinates. Using (1.5) all quantities given in field coordinates
can be converted into material coordinates. This conversion must be well defined,

since there is only one material point~n at place~x at time t. The mapping (1.5) and
the inverse mapping (1.8) must be uniquely reversible, and this is of course true if
the Jacobian J ¼ detð@xi=@njÞ does not vanish.

If the velocity is given in field coordinates, the integration of the differential
equations

d~x
dt

¼~u ~x; tð Þ or
dxi
dt

¼ ui xj; t
� � ð1:10Þ

(with initial conditions~x t0ð Þ ¼~n) leads to the pathlines~x ¼~x ~n; t
� �

.

If the velocity field and all other dependent quantities (e.g. the density or the
temperature) are independent of time, the motion is called steady, otherwise it is
called unsteady.

The Eulerian description is preferable because the simpler kinematics are better
adapted to the problems of fluid mechanics. Consider a wind tunnel experiment to
investigate the flow past a body. Here one deals almost always with steady flow.
The paths of the fluid particles (where the particle has come from and where it is
going to) are of secondary importance. In addition the experimental determination
of the velocity as a function of the material coordinates (1.6) would be very dif-
ficult. But there are no difficulties in measuring the direction and magnitude of the
velocity at any place, say, and by doing this the velocity field ~u ¼~u ~xð Þ or the
pressure field p ¼ p ~xð Þ can be experimentally determined. In particular the pressure
distribution on the body can be found.
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1.2.2 Pathlines, Streamlines, Streaklines

The differential Eq. (1.10) shows that the path of a point in the material is always
tangential to its velocity. In this interpretation the pathline is the tangent curve to
the velocities of the same material point at different times. Time is the curve

parameter, and the material coordinate ~n is the family parameter.
Just as the pathline is natural to the material description, so the streamline is

natural to the Eulerian description. The velocity field assigns a velocity vector to
every place~x at time t and the streamlines are the curves whose tangent directions
are the same as the directions of the velocity vectors. The streamlines provide a
vivid description of the flow at time t.

If we interpret the streamlines as the tangent curves to the velocity vectors of
different particles in the material at the same instant in time we see that there is no
connection between pathlines and streamlines, apart from the fact that they may
sometimes lie on the same curve.

By the definition of streamlines, the unit vector~u=~uj j is equal to the unit tangent
vector of the streamline ~s ¼ d~x= d~xj j ¼ d~x=ds where d~x is a vector element of the
streamline in the direction of the velocity. The differential equation of the
streamline then reads

d~x
ds

¼~u ~x; tð Þ
~uj j ; t ¼ constð Þ ð1:11aÞ

or in index notation

dxi
ds

¼ ui xj; t
� �
ffiffiffiffiffiffiffiffiffi
ukuk

p ; t ¼ constð Þ: ð1:11bÞ

Integration of these equations with the “initial condition” that the streamline
emanates from a point in space ~x0 ~x s ¼ 0ð Þ ¼~x0ð Þ leads to the parametric repre-
sentation of the streamline~x ¼~x s;~x0ð Þ. The curve parameter here is the arc length
s measured from x0, and the family parameter is~x0.

The pathline of a material point ~n is tangent to the streamline at the place ~x,
where the material point is situated at time t. This is shown in Fig. 1.4. By defi-
nition the velocity vector is tangential to the streamline at time t and to its pathline.
At another time the streamline will in general be a different curve.

In steady flow, where the velocity field is time-independent ~u ¼~u ~xð Þð Þ, the
streamlines are always the same curves as the pathlines. The differential equations
for the pathlines are now given by d~x=dt ¼~u ~xð Þ, where time dependence is no
longer explicit as in (1.10). The element of the arc length along the pathline is
dr ¼ ~uj jdt, and the differential equations for the pathlines are the same as for
streamlines
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d~x
dr

¼~u ~xð Þ
~uj j ; ð1:12Þ

because how the curve parameter is named is irrelevant. Interpreting the integral
curves of (1.12) as streamlines means they are still the tangent curves of the velocity
vectors of different material particles at the same time t. Since the particles passing
through the point in space~x all have the same velocity there at all times, the tangent
curves remain unchanged. Interpreting the integral curves of (1.12) as pathlines
means that a material particle must move along the streamline as time passes, since
it does not encounter velocity components normal to this curve.

What has been said for steady velocity fields holds equally well for unsteady
fields where the direction of the velocity vector is time independent, that is for
velocity fields of the form

~u ~x; tð Þ ¼ f ~x; tð Þ~u0 ~xð Þ: ð1:13Þ

The streakline is also important, especially in experimental fluid mechanics. At a
given time t a streakline joins all material points which have passed through (or will
pass through) a given place ~y at any time t0. Filaments of color are often used to
make flow visible. Colored fluid introduced into the stream at place~y forms such a
filament and a snapshot of this filament is a streakline. Other examples of streak-
lines are smoke trails from chimneys or moving jets of water.

Let the field ~u ¼~u ~x; tð Þ be given, and calculate the pathlines from (1.10),

solving it for ~n. Setting ~x ¼~y and t ¼ t0 in (1.8) identifies the material points ~n
which were at place~y at time t0.

The path coordinates of these particles are found by introducing the label~n into
the path equations, thus giving

Fig. 1.4 Streamlines and pathlines
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~x ¼~x ~n ~y; t0ð Þ; t
h i

: ð1:14Þ

At a given time t, t′ is the curve parameter of a curve in space which goes through
the given point ~y, and thus this curve in space is a streakline. In steady flows,
streaklines, streamlines and pathlines all lie on the same curve (Fig. 1.5).

Surfaces can be associated with the lines introduced so far, formed by all the
lines passing through some given curve C. If this curve C is closed, the lines form a
tube (Fig. 1.6).

Streamtubes formed in this way are of particular technical importance. Since the
velocity vector is by definition tangential to the wall of a streamtube, no fluid can
pass through the wall. This means that pipes with solid walls are streamtubes.

Fig. 1.5 Streaklines and pathlines

Fig. 1.6 Streamsheet and streamtube
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Often the behavior of the whole flow can be described by the behavior of some
“average” representative streamline. If the properties of the flow are approximately
constant over the cross-section of the streamtube at the location where they are to be
determined, we are led to a simple method of calculation: so-called stream filament
theory. Since the streamtubes do not change with time when solid walls are present,
the flow fields are, almost trivially, those where the direction of the velocity vector
does not change. Consequently these flows may be calculated with relative ease.

Flows are often met in applications where the whole region of interest can be
thought of as one streamtube. Examples are flows in tubes of changing
cross-section, like in nozzles, in diffusers, and also in open channels. The space that
the fluid occupies in turbomachines can often be taken as a streamtube, and even the
flow between the blades of turbines and compressors can be treated approximately
in this manner (Fig. 1.7).

The use of this “quasi-one-dimensional” view of the whole flow means that
sometimes corrections for the higher dimensional character of the flow have to be
introduced.

Steady flows have the advantage over unsteady flows that their streamlines are
fixed in space, and the obvious convenience that the number of independent vari-
ables is reduced, which greatly simplifies the theoretical treatment. Therefore
whenever possible we choose a reference system where the flow is steady. For
example, consider a body moved through a fluid which is at rest at infinity. The
flow in a reference frame fixed in space is unsteady, whereas it is steady in a
reference frame moving with the body. Figure 1.8 demonstrates this fact in the
example of a (frictionless) flow caused by moving a cylinder right to left. The upper
half of the figure shows the unsteady flow relative to an observer at rest at time
t = t0 when the cylinder passes through the origin. The lower half shows the same
flow relative to an observer who moves with the cylinder. In this system the flow is

Fig. 1.7 Examples of streamtubes
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towards the cylinder from the left and it is steady. A good example of the first
reference system is the everyday experience of standing on a street and feeling the
unsteady flow when a vehicle passes. The second reference system is experienced
by an observer inside the vehicle who feels a steady flow when he holds his hand
out of the window.

1.2.3 Differentiation with Respect to Time

In theEulerian description our attention is directed towards events at the place~x at time
t. However the rate of change of the velocity~u at~x is not generally the acceleration
which the point in the material passing through~x at time t experiences. This is obvious
in the case of steady flows where the rate of change at a given place is zero. Yet a
material point experiences a change in velocity (an acceleration)when it moves from~x
to~xþ d~x. Here d~x is the vector element of the pathline. The changes felt by a point of
thematerial or by some larger part of thefluid and not the time changes at a given place
or region of space are of fundamental importance in the dynamics. If the velocity (or
some other quantity) is given in material coordinates, then thematerial or substantial
derivative is provided by (1.6). But if the velocity is given in field coordinates, the
place~x in~u ~x; tð Þ is replaced by the path coordinates of the particle that occupies~x at

time t, and the derivative with respect to time at fixed~n can be formed from

d~u
dt

¼
@~u ~x ~n; t

� �
; t

n o
@t

8<
:

9=
;

~n

; ð1:15aÞ

Fig. 1.8 Unsteady flow for a motionless observer; steady flow for an observer moving with the
body
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or

dui
dt

¼ @ui xj nk; tð Þ; t	 

@t

� �
nk

: ð1:15bÞ

The material derivative in field coordinates can also be found without direct ref-
erence to the material coordinates. Take the temperature field T ~x; tð Þ as an example:
we take the total differential to be the expression

dT ¼ @T
@t

dtþ @T
@x1

dx1 þ @T
@x2

dx2 þ @T
@x3

dx3: ð1:16Þ

The first term on the right-hand side is the rate of change of the temperature at a
fixed place: the local change. The other three terms give the change in temperature
by advancing from~x to~xþ d~x. This is the convective change. The last three terms
can be combined to give d~x � rT or equivalently dxi @T=@xi. If d~x is the vector
element of the fluid particle’s path at~x, then (1.10) holds and the rate of change of
the temperature of the particle passing~x (the material change of the temperature) is

dT
dt

¼ @T
@t

þ~u � rT ð1:17aÞ

or

dT
dt

¼ @T
@t

þ ui
@T
@xi

¼ @T
@t

þ u1
@T
@x1

þ u2
@T
@x2

þ u3
@T
@x3

: ð1:17bÞ

This is quite a complicated expression for the material change in field coordinates,
which leads to difficulties in the mathematical treatment. This is made clearer when
we likewise write down the acceleration of the particle (the material change of its
velocity)

d~u
dt

¼ @~u
@t

þ ~u � rð Þ~u ¼ @~u
@t

þ ~u � gradð Þ~u; ð1:18aÞ

or

dui
dt

¼ @ui
@t

þ uj
@ui
@xj

: ð1:18bÞ

(Although the operator d=dt ¼ @=@tþ ~u � rð Þ is written in vector notation, it is here
only explained in Cartesian coordinates. Now by appropriate definition of the Nabla
operator, the operator d/dt is also valid for curvilinear coordinate systems, its
application to vectors is difficult since the basis vectors can change. Later we will

1.2 Kinematics 15



see a form for the material derivative of velocity which is more useful for
orthogonal curvilinear coordinates since, apart from partial differentiation with
respect to time, it is only composed of known quantities like the rotation of the
velocity field and the gradient of the kinetic energy.)

It is easy to convince yourself that the material derivative (1.18) results from
differentiating (1.15) with the chain rule and using (1.6).

The last three terms in the ith component of (1.18b) are nonlinear (quasilinear),
since the products of the function uj x; tð Þ with its first derivatives @ui ~x; tð Þ=@xj
appear. Because of these terms, the equations of motion in field coordinates are
nonlinear, making the mathematical treatment difficult. (The equations of motion in
material coordinates are also nonlinear, but we will not go into details now.)

The view which has led us to (1.17) also gives rise to the general time derivative.
Consider the rate of change of the temperature felt by a swimmer moving at
velocity ~w relative to a fluid velocity of~u, i.e., at velocity~uþ~w relative to a fixed
reference frame. The vector element d~x of his path is d~x ¼ ~uþ~wð Þ dt and the rate of
change of the temperature felt by the swimmer is

dT
dt

¼ @T
@t

þ ~uþ~wð Þ � rT; ð1:19Þ

where the operator @=@tþ ~uþ~wð Þ � r, or @=@tþ ui þwið Þ@=@xi applied to other
field quantities gives the rate of change of these quantities as experienced by the
swimmer.

To distinguish between the general time derivative (1.19) and the material
derivative we introduce the following symbol

D
Dt

¼ @

@t
þ ui

@

@xi
¼ @

@t
þ ~u � rð Þ ð1:20Þ

for the material derivative. (Mathematically, of course there is no difference
between d/dt and D/Dt.)

Using the unit tangent vector to the pathline

~t ¼ d~x
d~xj j ¼

d~x
dr

ð1:21Þ

the convective part of the operator D/Dt can also be written

~u � r ¼ ~uj j~t � r ¼ ~uj j @
@r

; ð1:22Þ
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so that the derivative @=@r is in the direction of~t and that the expression

D
Dt

¼ @

@t
þ ~uj j @

@r
ð1:23Þ

holds. This form is used to state the acceleration vector in natural coordinates, that
is in the coordinate system where the unit vectors of the accompanying triad of the
pathline are used as basis vectors. r is the coordinate in the direction of~t; n is the
coordinate in the direction of the principal normal vector ~nr ¼ Rd~t=dr, and b the
coordinate in the direction of the binormal vector ~br ¼~t �~nr. R is the radius of
curvature of the pathline in the osculating plane spanned by the vectors~t and ~nr.
Denoting the component of~u in the~t-direction as u; u ¼ ~uj jð Þ, (1.23) then leads to
the expression

D
Dt

u~tð Þ ¼ @u
@t

þ u
@u
@r

� �
~tþ u2

R
~nr: ð1:24Þ

Resolving along the triad ð~s;~ns;~bsÞ of the streamline at time t, the convective
acceleration is the same as in expression (1.24), since at the place~x the streamline is
tangent to the pathline of the particle found there. However the local change
contains terms normal to the streamline, and although the components of the
velocity ub and un are zero here, their local changes do not vanish

@~u
@t

¼ @u
@t

~sþ @un
@t

~ns þ @ub
@t

~bs: ð1:25Þ

Resolving the acceleration vector into the natural directions of the streamline then
gives us

D~u
Dt

¼ @u
@t

þ u
@u
@s

� �
~sþ @un

@t
þ u2

R

� �
~ns þ @ub

@t
~bs: ð1:26Þ

When the streamline is fixed in space, (1.26) reduces to (1.24).

1.2.4 State of Motion, Rate of Change of Line, Surface
and Volume Elements

Knowing the velocity at the place ~x we can use the Taylor expansion to find the
velocity at a neighboring place~xþ d~x :
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ui ~xþ d~x; tð Þ ¼ ui ~x; tð Þþ @ui
@xj

dxj: ð1:27aÞ

For each of the three velocity components ui there are three derivatives in the
Cartesian coordinate system, so that the velocity field in the neighborhood of~x is
fully defined by these nine spatial derivatives. Together they form a second order
tensor, the velocity gradient @ui=@xj. The symbols r~u or grad~u (defined by (A.40)
in Appendix A) are used, and (1.27a) can also be written in the form

~u ~xþ d~x; tð Þ ¼~u ~x; tð Þþ d~x � r~u: ð1:27bÞ

Using the identity

@ui
@xj

¼ 1
2

@ui
@xj

þ @uj
@xi

� �
þ 1

2
@ui
@xj

� @uj
@xi

� �
ð1:28Þ

we expand the tensor @ui=@xj into a symmetric tensor

eij ¼ 1
2

@ui
@xj

þ @uj
@xi

� �
; ð1:29aÞ

where this can be symbolically written, using (A.40), as

E ¼ eij~ei~ej ¼ 1
2

r~uð Þþ r~uð ÞT
h i

; ð1:29bÞ

and an antisymmetric tensor

Xij ¼ 1
2

@ui
@xj

� @uj
@xi

� �
; ð1:30aÞ

where this is symbolically (see A.40)

X ¼ Xji~ei~ej ¼ 1
2

r~uð Þ � r~uð ÞT
h i

: ð1:30bÞ

Doing this we get from (1.27)

ui ~xþ d~x; tð Þ ¼ ui ~x; tð Þþ eijdxj þXijdxj; ð1:31aÞ
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or

~u ~xþ d~x; tð Þ ¼~u ~x; tð Þþ d~x � Eþ d~x �X: ð1:31bÞ

The first term in (1.31) arises from the translation of the fluid at place ~x with
velocity ui. The second represents the velocity with which the fluid in the neigh-
borhood of ~x is deformed, while the third can be interpreted as an instantaneous
local rigid body rotation. There is a very important meaning attached to the tensors
eij and Xij, which each describe entirely different contributions to the state of the
motion. By definition the frictional stresses in the fluid make their appearance in the
presence of deformation velocities, so that they cannot be dependent on the tensor
Xij which describes a local rigid body rotation. To interpret the tensors eij and Xij

we calculate the rate of change of a material line element dxi. This is a vector
element which always consists of a line distribution of the same material points.
The material change is found, using

D
Dt

d~xð Þ ¼ d
D~x
Dt

� �
¼ d~u; ð1:32Þ

as the velocity difference between the endpoints of the element. The vector com-
ponent d~uE in the direction of the element is obviously the velocity with which the
element is lengthened or shortened during the motion (Fig. 1.9). With the unit
vector d~x=ds in the direction of the element, the magnitude of this component is

d~u � d~x
ds

¼ dui
dxi
ds

¼ eij þXij
� �

dxj
dxi
ds

; ð1:33Þ

and since Xijdxjdxi is equal to zero (easily seen by expanding and interchanging the
dummy indices), the extension of the element can only be caused by the symmetric
tensor eij. eij is called the rate of deformation tensor. Other names are: stretching,
rate of strain, or velocity strain tensor. We note that the stretching, for example, at

Fig. 1.9 The physical significance of the diagonal components of the deformation tensor
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place~x is the stretching that the particle experiences which occupies the place~x. For
the rate of extension per instantaneous length ds we have from (1.33)

dui
ds

dxi
ds

¼ ds�1 D dxið Þ
Dt

dxi
ds

¼ 1
2
ds�2 D ds2ð Þ

Dt
ð1:34Þ

and using (1.33), we get

dui
ds

dxi
ds

¼ ds�1 D dsð Þ
Dt

¼ eij
dxi
ds

dxj
ds

: ð1:35Þ

Since dxi=ds ¼ li is the ith component and dxj=ds ¼ lj is the jth component of the
unit vector in the direction of the element, we finally arrive at the following
expression for the rate of extension or the stretching of the material element

ds�1 D dsð Þ
Dt

¼ eijlilj: ð1:36Þ

(1.36) gives the physical interpretation of the diagonal elements of the tensor eij.
Instead of the general orientation, let the material element d~x be viewed when
orientated parallel to the x1-axis, so that the unit vector in the direction of the
element has the components (1,0,0) and, of the nine terms in (1.36), only one is
nonzero. In this case, with ds = dx1, (1.36) reads

dx�1
1

D dx1ð Þ
Dt

¼ e11: ð1:37Þ

The diagonal terms are now identified as the stretching of the material element
parallel to the axes. In order to understand the significance of the remaining ele-
ments of the rate of deformation tensor, we imagine two perpendicular material line
elements of the material d~x and d~x0 (Fig. 1.10). The magnitude of the component
d~uR perpendicular to d~x (thus in the direction of the unit vector~l0 ¼ d~x=ds0 and in
the plane spanned by d~x and d~x0) is d~u � d~x0=ds0. After division by ds we get the

Fig. 1.10 The physical significance of the nondiagonal elements of the rate of deformation tensor
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angular velocity with which the material line element rotates in the mathematically
positive sense

Du
Dt

¼ � d~u
ds

� d~x
0

ds0
¼ � dui

ds
dx0i
ds0

: ð1:38Þ

Similarly we get the angular velocity with which d~x0 rotates

Du0

Dt
¼ � d~u0

ds0
� � d~x

ds

 �
¼ � du0i

ds0
dxi
ds

: ð1:39Þ

The difference between these gives the rate of change of the angle between the
material elements d~x and d~x0 (currently ninety degrees), and it gives a measure of
the shear rate. Since

dui
ds

¼ @ui
@xj

dxj
ds

and
du0i
ds0

¼ @ui
@xj

dx0j
ds0

ð1:40Þ

we get, for the difference between the angular velocities

D u� u0ð Þ
Dt

¼ � @ui
@xj

þ @uj
@xi

� �
dxi
ds

dx0j
ds0

¼ �2eijlil0j: ð1:41Þ

To do this, the dummy indices were relabeled twice. Choosing d~x parallel to the
x2-axis, d~x0 parallel to the x1-axis, so that ~l ¼ 0; 1; 0ð Þ and ~l0 ¼ 1; 0; 0ð Þ, and
denoting the enclosed angle by a12, (1.41) gives the element e12 as half of the
velocity with which a12 changes in time

Da12
Dt

¼ �2e12: ð1:42Þ

The physical interpretation of all the other nondiagonal elements of eij is now
obvious. The average of the angular velocities of the two material line elements
gives the angular velocity with which the plane spanned by them rotates

1
2
D
Dt

uþu0ð Þ ¼ � 1
2

@ui
@xj

� @uj
@xi

� �
dxj
ds

dx0i
ds0

¼ Xjil
0
ilj: ð1:43Þ

Here again the dummy index has been relabeled twice and the property of the
antisymmetric tensor Xij ¼ �Xji has been used. The Eq. (1.43) also yields the
modulus of the component of the angular velocity ~x perpendicular to the plane
spanned by d~x and d~x0. The unit vector perpendicular to this plane
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d~x0

ds0
� d~x

ds
¼~l0 �~l ð1:44Þ

can be written in index notation with the help of the epsilon tensor as l0ilj�ijk , so that
the right-hand side of (1.43) can be rewritten as follows

Xjil
0
ilj ¼ xkl

0
ilj�ijk: ð1:45Þ

This equation assigns a vector to the antisymmetric tensor Xij

xk�ijk ¼ Xji: ð1:46Þ

Equation (1.46) expresses the well known fact that an antisymmetric tensor can be
represented by an axial vector. Thus the contribution Xijdxj to the velocity field
about the place~x is the same as the ith component �kjixkdxj of the circumferential
velocity ~x� d~x produced at the vector radius d~x by a rigid body at ~x rotating at
angular velocity ~x. For example, the tensor element X12 is then numerically equal
to the component of the angular velocity perpendicular to the x1-x2-plane in the
negative x3-direction. Xij is called the spin tensor. From (1.46) we can get the
explicit representation of the vector component of ~x, using the identity

�ijk�ijn ¼ 2dkn ð1:47Þ

(where dkn is the Kronecker delta) and multiplying by eijn to get

xk�ijk�ijn ¼ 2xn ¼ Xji�ijn: ð1:48Þ

Since eij is a symmetric tensor, then �ijneij ¼ 0; and in general the following holds

xn ¼ 1
2
@uj
@xi

�ijn: ð1:49aÞ

The corresponding expression in vector notation

~x ¼ 1
2
r�~u ¼ 1

2
curl~u ð1:49bÞ

introduces the vorticity vector curl~u, which is equal to twice the angular velocity ~x.
If this vorticity vector vanishes in the whole flow field in which we are interested,
we speak of an irrotational flow field. The absence of vorticity in a field simplifies
the mathematics greatly because we can now introduce a velocity potential U. The
generally unknown functions ui result then from the gradient of only one unknown
scalar function U
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ui ¼ @U
@xi

or ~u ¼ rU: ð1:50Þ

This is the reason why irrotational flows are also called potential flows. The three
component equations obtained from (1.50) are equivalent to the existence of a total
differential

dU ¼ @U
@xi

dxi ¼ uidxi: ð1:51Þ

The necessary and sufficient conditions for its existence are that the following
equations for the mixed derivatives should hold throughout the field

@u1
@x2

¼ @u2
@x1

;
@u2
@x3

¼ @u3
@x2

;
@u3
@x1

¼ @u1
@x3

: ð1:52Þ

Because of (1.50) these relationships are equivalent to the vanishing of the vorticity
vector curl ~u.

As with streamlines, in rotational flow vortex lines are introduced as tangent
curves to the vorticity vector field, and similarly these can form vortex sheets and
vortex tubes.

As is well known, symmetric matrices can be diagonalized. The same can be
said for symmetric tensors, since tensors and matrices only differ in the ways that
their measures transform, but otherwise they follow the same calculation rules. The
reduction of a symmetric tensor eij to diagonal form is physically equivalent to
finding a coordinate system where there is no shearing, only stretching. This is a
so-called principal axis system. Since eij is a tensor field, the principal axis system is
in general dependent on the place~x. If~l (or li) is the unit vector relative to a given
coordinate system in which eij is nondiagonal, the above problem amounts to
determining this vector so that it is proportional to that part of the change in velocity
given by eij, namely eij dxj. We divide these changes by ds and since

dui
ds

¼ eij
dxj
ds

¼ eijlj ð1:53Þ

we are led to the eigenvalue problem

eijlj ¼ e li: ð1:54Þ

A solution of (1.54) only exists when the arbitrary constant of proportionality
e takes on specific values, called the eigenvalues of the tensor eij. Using the
Kronecker Delta symbol we can write the right-hand side of (1.54) as e lj dij and we
are led to the homogeneous system of equations
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eij � e dij
� �

lj ¼ 0: ð1:55Þ

This has nontrivial solutions for the unit vector we are searching for only when the
determinant of the matrix of coefficients vanishes

det eij � e dij
� � ¼ 0: ð1:56Þ

This is an equation of the third degree, and is called the characteristic equation. It
can be written as

�e3 þ I1ee
2 � I2eeþ I3e ¼ 0; ð1:57Þ

where I1e, I2e, I3e are the first, second and third invariants of the rate of deformation
tensor, given by the following formulae

I1e ¼ eii; I2e ¼ 1
2

eii ejj � eij eij
� �

; I3e ¼ det eij
� �

: ð1:58Þ

These quantities are invariants because they do not change their numerical values
under change of coordinate system. They are called the basic invariants of the
tensor eij. The roots of (1.57) do not change, and so neither do the eigenvalues of
the tensor eij. The eigenvalues of a symmetric matrix are all real, and if they are all
distinct, (1.54) gives three systems of equations, one for each of the components of
the vector~l. With the condition that~l is to be a unit vector, the solution of the
homogeneous system of equations is unique. The three unit vectors of a real
symmetric matrix are mutually orthogonal, and they form the principal axis system
in which eij is diagonal. The statement of Eq. (1.31) in words is thus:

The instantaneous velocity field about a place ~x is caused by the superposition of the
translational velocity of the fluid there with stretching in the directions of the principal axes
and a rigid rotation of these axes. (fundamental theorem of kinematics)

By expanding the first invariant I1e, and using Eq. (1.37) and corresponding
expressions, we arrive at the equation

eii ¼ dx�1
1

D dx1ð Þ
Dt

þ dx�1
2

D dx2ð Þ
Dt

þ dx�1
3

D dx3ð Þ
Dt

: ð1:59Þ

On the right is the rate of change of the material volume dV, divided by dV: it is the
material change of this infinitesimal volume of the fluid particle. We can also write
(1.59) in the form

eii ¼ r �~u ¼ dV�1 D dVð Þ
Dt

: ð1:60Þ
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Now, in flows where D(dV)/Dt is zero, the volume of a fluid particle does not change,
although its shape can. Such flows are called volume preserving, and the velocity
fields of suchflows are called divergence free or source free. The divergencer �~u and
the curl r�~u are quantities of fundamental importance, since they can tell us a lot
about the velocity field. If they are known in a simply connected space (where all
closed curves may be shrunk to a single point), and if the normal component of~u is
given on the bounding surface, then, by a well known principle of vector analysis, the
vector~u ~xð Þ is uniquely defined at all~x. We also note the rate of change of a directional
material surface element, nidS, which always consists of a surface distribution of the
same fluid particles. With dV ¼ nidSdxi we get from (1.60)

D
Dt

nidSdxið Þ ¼ nidSdxiejj; ð1:61Þ

or

D
Dt

nidSð Þdxi þ duinidS ¼ nidSdxiejj ð1:62Þ

finally leading to

D
Dt

nidSð Þ ¼ @uj
@xj

nidS� @uj
@xi

njdS: ð1:63Þ

After multiplying by ni and noting that D(nini)/Dt = 0 we obtain the specific rate of
extension of the material surface element dS

1
dS

D dSð Þ
Dt

¼ @uj
@xj

� eijninj: ð1:64Þ

Divided by the Euclidean norm of the rate of deformation tensor elkelkð Þ1=2, this can
be used as a local measure for the “mixing”

D ln dSð Þ
Dt

= elkelkð Þ1=2¼ @uj
@xj

� eijninj

� �
= elkelkð Þ1=2: ð1:65Þ

The higher material derivatives also play a role in the theory of the constitutive
equations of non-Newtonian fluids. They lead to kinematic tensors which can be
easily represented using our earlier results. From (1.35) we can read off the material
derivative of the square of the line element ds as

D ds2ð Þ
Dt

¼ 2eijdxidxj ð1:66Þ
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and by further material differentiation this leads to the expression

D2 ds2ð Þ
Dt2

¼ D 2eij
� �
Dt

þ 2ekj
@uk
@xi

þ 2eik
@uk
@xj

� �
dxidxj: ð1:67Þ

Denoting the tensor in the brackets as A(2)ij and 2eij as A(1)ij, (symbolically A(2) and
A(1)), we find the operational rule for higher differentiation

Dn ds2ð Þ
Dtn

¼ A nð Þijdxidxj; ð1:68Þ

where

A nð Þij ¼
DA n�1ð Þij

Dt
þA n�1ð Þkj

@uk
@xi

þA n�1ð Þik
@uk
@xj

ð1:69Þ

gives the rule by which the tensor A(n) can be found from the tensor A(n–1)

(Oldroyd’s derivative). The importance of the tensors A(n), also called the Rivlin-
Ericksen tensors, lies in the fact that in very general non-Newtonian fluids, as long
as the deformation history is smooth enough, the friction stress can only depend on
these tensors. The occurrence of the above higher time derivatives can be dis-
turbing, since in practice it is not known if the required derivatives actually exist.
For kinematically simple flows, so called viscometric flows (the shearing flow in
Fig. 1.1 is an example of these), the tensors A(n) vanish in steady flows for n > 2. In
many technically relevant cases, non-Newtonian flows can be directly treated as
viscometric flows, or at least as related flows.

We will now calculate the kinematic quantities discussed up to now with an
example of simple shearing flow (Fig. 1.11), whose velocity field is given by

u1 ¼ _cx2;

u2 ¼ 0;

u3 ¼ 0:

ð1:70Þ

Fig. 1.11 Kinematics of simple shear flow
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The material line element d~x is rotated about du ¼ � du1=dx2ð Þdt in time dt, giving
Du=Dt ¼ � _c.

The material line element d~x0 remains parallel to the x1-axis. The rate of change
of the angle originally at ninety degrees is thus � _c. The agreement with (1.41) can
be seen immediately since e12 ¼ e21 ¼ _c=2. Of the components of the tensor eij,
these are the only ones which are nonzero. The average of the angular velocities of
both material lines is � _c=2, in agreement with (1.43). In order to work out the
rotation of the element due to the shearing, we subtract the rigid body rotation � _c=2
from the entire rotation calculated above (� _c dt and 0), and thus obtain �ð _c=2Þdt
for the rotation of the element d~x arising from shearing, and similarly þð _c=2Þdt for
the rotation of the element d~x0 due to shearing.

Now we can fully describe this flow: it consists of a translation of the point in
common to both material lines along the distance u1 dt, a rigid body rotation of both
line elements about an angle � _c=2ð Þdt and a shearing which rotates the element d~x0

about the angle þ _c=2ð Þdt (so that its total rotation is zero) and the element d~x about
the angle � _c=2ð Þdt (so that its total rotation is � _cdt). Since A(1)ij = 2eij, the first
Rivlin-Ericksen tensor has only two nonzero components: A 1ð Þ12 ¼ A 1ð Þ21 ¼ _c. The
matrix representation for A 1ð Þij thus reads

A 1ð Þ
� � ¼ 0 _c 0

_c 0 0
0 0 0

2
4

3
5: ð1:71Þ

Putting the components of A(1)ij in (1.71) we find there is only one nonvanishing
component of the second Rivlin-Ericksen tensor A 2ð Þ22 ¼ 2 _c2

� �
, so that it can be

expressed in matrix form as

A 2ð Þ
� � ¼

0 0 0
0 2_c2 0
0 0 0

2
4

3
5: ð1:72Þ

All higher Rivlin-Ericksen tensors vanish.
An element d~x whose unit tangent vector d~x=ds has the components

(cos #, sin #, 0), thus making an angle # with the x1-axis (l3 = 0), experiences, by
(1.36), the stretching

1
ds

D dsð Þ
Dt

¼ eijlilj ¼ e11l1l1 þ 2e12l1l2 þ e22l2l2: ð1:73Þ

Since e11 ¼ e22 ¼ 0 the final expression for the stretching is

1
ds

D dsð Þ
Dt

¼ 2
_c
2
cos# sin# ¼ _c

2
sin 2#: ð1:74Þ
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The stretching reaches a maximum at # ¼ 45�, 225° and a minimum at # ¼ 135�,
315°. These directions correspond with the positive and negative directions of the
principal axes in the x1-x2-plane.

The eigenvalues of the tensor eij can be calculated using (1.57), where the basic
invariants are given by I1e = 0, I2e ¼ � _c2=4 and I3e = 0. Since I1e ¼ eii ¼ div ~u ¼ 0
we see that this is a volume preserving flow. (The vanishing of the invariants I1e and
I3e of the tensor eij is a necessary condition for viscometric flows, that is for
flows which are locally simple shearing flows.) The characteristic Eq. (1.55) then
reads e e2 � _c2=4ð Þ ¼ 0 and it has roots e 1ð Þ ¼ �e 3ð Þ ¼ _c=2; e 2ð Þ ¼ 0. The eigen-
vectors belonging to these roots, ~n 1ð Þ ¼ 1

� ffiffiffi
2

p
; 1
� ffiffiffi

2
p

; 0
� �

;~n 2ð Þ ¼ 0; 0; 1ð Þ and

~n 3ð Þ ¼ 1
� ffiffiffi

2
p

;�1
� ffiffiffi

2
p

; 0
� �

, give the principal rate of strain directions, up to
the sign. (The otherwise arbitrary indexing of the eigenvalues is chosen so that
e(1)> e(2)> e(3).) The second principal rate of strain direction is the direction of the
x3-axis, and the principal rate of strain e(2) is zero, since the velocity field is
two-dimensional. The distortion and extension of a square shaped fluid particle is
sketched in Fig. 1.12. In this special case the eigenvalues and eigenvectors are
independent of place~x. The principal axis system is the same for all fluid particles,
and as such Fig. 1.12 also holds for a larger square shaped part of the fluid.

We return now to the representation of the acceleration (1.18) as the sum of the
local and convective accelerations. Transforming (1.20) into index notation and
using the identity

Dui
Dt

¼ @ui
@t

þ uj
@ui
@xj

¼ @ui
@t

þ uj
@ui
@xj

� @uj
@xi

� �
þ uj

@uj
@xi

; ð1:75Þ

and the definition (1.30), we are led to

Dui
Dt

¼ @ui
@t

þ 2Xijuj þ @

@xi

ujuj
2

n o
: ð1:76Þ

Fig. 1.12 Deformation of a square of fluid in simple shearing flow
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With (1.46), we finally obtain

Dui
Dt

¼ @ui
@t

� 2�ijkxkuj þ @

@xi

ujuj
2

n o
; ð1:77Þ

which written symbolically using (1.49b), is

D~u
Dt

¼ @~u
@t

�~u� r�~uð Þþr ~u �~u
2

� �
: ð1:78Þ

This form shows explicitly the contribution of the rotation r�~u to the acceleration
field. In steady irrotational flow, the acceleration can be represented as the gradient
of the kinetic energy (per unit mass).

We will often also use orthogonal curvilinear coordinate systems (e.g. cylin-
drical and spherical coordinates). In these cases the material derivative of the
velocity in the form (1.78) is more useful than in (1.18), since the components of
the acceleration in these coordinate systems are readily obtainable through the
definition of the Nabla operator and by using the rules for calculation of the scalar
and vector product. From (1.78) we can also get a dimensionless measure for the
contribution of the rotation to the acceleration

WD ¼ ~u� r�~uð Þj j
@~u
@t

þr ~u �~u
2

� �����
����
: ð1:79Þ

The ratio is called the dynamic vortex number. In general, it is zero for irrotational
flows, while for nonaccelerating steady flows it takes the value 1. We can get a
measure called the kinematic vortex number by dividing the Euclidean norm (the
magnitude) of the rotation r�~uj j by the Euclidean norm of the rate of deformation
tensor

WK ¼ r�~uj jffiffiffiffiffiffiffiffiffi
eijeij

p : ð1:80Þ

The kinematic vortex number is zero for irrotational flows and infinite for a rigid
body rotation if we exclude the pure translation for which indeed both norms are
zero.

Let us also compare the local acceleration with the convective acceleration using
the relationship

S ¼
@~u
@t

����
����

�~u� r�~uð Þþr ~u �~u
2

� �����
����
: ð1:81Þ
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For steady flows we have S = 0, unless the convective acceleration is also equal to
zero. S = ∞ is an important special case in unsteady flows, because the convective
acceleration is then zero. This condition is the fundamental simplification used in
acoustics and it is also used in the treatment of unsteady shearing flows.

1.2.5 Rate of Change of Material Integrals

From now on we shall always consider the same piece of fluid which is separated
from the rest of the fluid by a closed surface. The enclosed part of the fluid is called
a “body” and always consists of the same fluid particles (material points); its
volume is therefore a material volume, and its surface is a material surface. During
the motion, the shape of the material volume changes and successively takes up
new regions in space. We will denote by (V(t)) the region which is occupied by our
part of the fluid at time t. The mass m of the bounded piece of fluid is the sum of the
mass elements dm over the set (M) of the material points of the body

m ¼
Z
Mð Þ

dm: ð1:82Þ

Since in continuum theory, we consider the density to be a continuous function of
position, we can also write the mass as the integral of the density over the region in
space (V(t)) occupied by the body

m ¼
Z
Mð Þ

dm ¼
ZZZ
V tð Þð Þ

q ~x; tð Þ dV : ð1:83Þ

Equivalently, the same holds for any continuous function /, whether it is a scalar or
a tensor function of any order

Z
Mð Þ

u dm ¼
ZZZ
V tð Þð Þ

uq dV : ð1:84Þ

In the left integral we can think of u as a function of the material coordinates~n and
t, and on the right we can think of it as a function of the field coordinates ~x and

t. (Note that u is not a property of the label~n, but a property of the material point

labeled ~n.) We are most interested in the rate of change of these material integrals
and are led to a particularly simple derivation of the correct expression if we use the
law of conservation of mass at this stage: the mass of the bounded part of the fluid
must remain constant in time
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Dm
Dt

¼ 0: ð1:85Þ

This conservation law must also hold for the mass of the material point

D
Dt

dmð Þ ¼ 0; ð1:86Þ

since by (1.82) the mass is additive and the part of the fluid we are looking at must
always consist of the same material points. Now taking the rate of change of the
integral on the left side of (1.84) the region of integration is constant, and we have
to differentiate the integral by the parameter t. Since u and Du/Dt are continuous,
the differentiation can be executed “under” the integral sign (Leibniz’s rule), so that
the equation now becomes

D
Dt

Z
Mð Þ

u dm ¼
Z
Mð Þ

Du
Dt

dm: ð1:87Þ

The right-hand side can be expressed by an integration over the region in space
(V(t)) and we get using (1.84)

D
Dt

Z
Mð Þ

u dm ¼ D
Dt

ZZZ
V tð Þð Þ

uqdV ¼
ZZZ
V tð Þð Þ

Du
Dt

qdV : ð1:88Þ

The result of the integration in the last integral does not change when, instead of a
region varying in time (V(t)), we choose a fixed region (V), which coincides with
the varying region at time t. We are really replacing the rate of change of the
integral of u over a deforming and moving body by the integral over a fixed region.

Although we got this result by the explicit use of the conservation of mass, the
reduction of the material derivative of a volume integral to a fixed volume integral
is purely kinematical. We recognize this when we apply the conservation of mass
again and construct a formula equivalent to (1.88) where the density q does not
appear. To this end we will consider the rate of change of a material integral over a
fluid property related to volume, which we again call u

D
Dt

ZZZ
V tð Þð Þ

u dV ¼ D
Dt

Z
Mð Þ

ut dm ¼
Z
Mð Þ

D
Dt

utð Þdm: ð1:89Þ

Here t = 1/q is the specific volume. Carrying out the differentiation in the integrand,
and replacing Dt/Dt dm by D(dV)/Dt (as follows from (1.86)) we get the equation
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D
Dt

ZZZ
V tð Þð Þ

udV ¼
ZZZ
Vð Þ

Du
Dt

dV þ
ZZZ
Vð Þ

u
D dVð Þ
Dt

: ð1:90Þ

Without loss of generality we have replaced the time varying region on the
right-hand side (V(t)) with a fixed region (V) which coincides with it at time t. This
formula shows that the derivative of material integrals can be calculated by inter-
changing the order of integration and differentiation. From this general rule,
Eq. (1.88) emerges immediately taking into account that, by (1.86), D(q dV)/Dt = 0
holds.

Another approach to (1.90), which also makes its pure kinematic nature clear is
gained by using (1.5) and thereby introducing the new integration variables ni
instead of xi. This corresponds to a mapping of the current domain of integration
(V(t)) to the region (V0) occupied by the fluid at the reference time t0. Using the
Jacobian J of the mapping (1.5) we have

dV ¼ J dV0;

and obtain

D dVð Þ
Dt

¼ DJ
Dt

dV0 ð1:91aÞ

since V0 is independent of time, from which follows, using (1.60), the material
derivative of the Jacobian

DJ
Dt

¼ eiiJ ¼ @ui
@xi

J; ð1:91bÞ

a formula known as Euler’s expansion formula. From the last two equations we
then have

D
Dt

ZZZ
V tð Þð Þ

udV ¼
ZZZ
V0ð Þ

D
Dt

uJð ÞdV0 ¼
ZZZ
V0ð Þ

Du
Dt

Jþu
DJ
Dt

� �
dV0;

which under the inverse mapping leads directly to (1.90). Using (1.91b) and the
inverse mapping the forms

D
Dt

ZZZ
V tð Þð Þ

u dV ¼
ZZZ
Vð Þ

Du
Dt

þu
@ui
@xi

� �
dV ð1:92Þ

and

32 1 The Concept of the Continuum and Kinematics



D
Dt

ZZZ
V tð Þð Þ

u dV ¼
ZZZ
Vð Þ

@u
@t

þ @

@xi
u uið Þ

� �
dV ð1:93Þ

follow. If u is a tensor field of any degree, which together with its partial deriva-
tives is continuous in (V), then Gauss’ theorem holds

ZZZ
Vð Þ

@u
@xi

dV ¼
ZZ
Sð Þ

u ni dS: ð1:94Þ

S is the directional surface bounding V, and the normal vector ni is outwardly
positive. Gauss’ theorem relates a volume integral to the integral over a bounded,
directional surface, provided that the integrand can be written as the “divergence”
(in the most general sense) of the field u. We will often make use of this important
law. It is a generalization of the well known relationship

Zb

a

df xð Þ
dx

dx ¼ f bð Þ � f að Þ: ð1:95Þ

The application of Gauss’ law to the last integral in (1.93) furnishes a relationship
known as Reynolds’ transport theorem

D
Dt

ZZZ
V tð Þð Þ

u dV ¼
ZZZ
Vð Þ

@u
@t

dV þ
ZZ
Sð Þ

uuinidS: ð1:96Þ

This relates the rate of change of the material volume integral to the rate of change
of the quantity u integrated over a fixed region (V), which coincides with the
varying region (V(t)) at time t, and to the flux of the quantity u through the
bounding surfaces.

We note here that Leibniz’s rule holds for a domain fixed in space: this means
that differentiation can take place “under” the integral sign

@

@t

ZZZ
Vð Þ

u dV ¼
ZZZ
Vð Þ

@u
@t

dV : ð1:97Þ

To calculate the expression for the rate of change of a directional material surface
integral we change the order of integration and differentiation. If (S(t)) is a time
varying surface region which is occupied by the material surface during the motion,
in analogy to (1.90) we can write
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D
Dt

ZZZ
S tð Þð Þ

u ni dS ¼
ZZ
Sð Þ

Du
Dt

ni dSþ
ZZ
Sð Þ

u
D
Dt

ni dSð Þ: ð1:98Þ

For the integrals on the right-hand side, we can think of the region of integration
(S(t)) as replaced by a fixed region (S) which coincides with the varying region at
time t. After transforming the last integral with the help of (1.63) we get the formula

D
Dt

ZZZ
S tð Þð Þ

uni dS ¼
ZZ
Sð Þ

Du
Dt

ni dSþ
ZZ
Sð Þ

@uj
@xi

niudS�
ZZ
Sð Þ

@uj
@xi

njudS: ð1:99Þ

Let (C(t)) be a time varying one-dimensional region which is occupied by a material
curve during the motion, and let u be a (tensorial) field quantity. The rate of change
of the material curve integral of u can then be written as

D
Dt

Z
C tð Þð Þ

u dxi ¼
Z
Cð Þ

Du
Dt

dxi þ
Z
Cð Þ

u d
Dxi
Dt

� �
ð1:100Þ

from which we get using (1.10)

D
Dt

Z
C tð Þð Þ

u dxi ¼
Z
Cð Þ

Du
Dt

dxi þ
Z
Cð Þ

u dui: ð1:101Þ

This formula has important applications when u = ui; in this case then

u dui ¼ ui dui ¼ d
uiui
2

h i
ð1:102Þ

is a total differential, and the last curve integral on the right-hand side of (1.101) is
independent of the “path”: it is only determined by the initial point I and the
endpoint E. This obviously also holds for the first curve integral on the right-hand
side, when the acceleration Du=Dt ¼ Dui=Dt can be written as the gradient of a
scalar function

Dui
Dt

¼ @I
@xi

: ð1:103Þ

Then (and only then) is the first curve integral path independent

Z
Cð Þ

Du
Dt

dxi ¼
Z
Cð Þ

@I
@xi

dxi ¼
Z
Cð Þ

dI ¼ IE � I1: ð1:104Þ
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The curve integral of ui round a closed material curve (in the mathematically
positive sense of direction)

C ¼
I

uidxi ð1:105Þ

is called the circulation. Later we will discuss the conditions under which the
acceleration may be written as the gradient of a scalar function, but now we will
infer from (1.101) that then the rate of change of the circulation is zero. This
follows directly from the fact that the initial and final points of a closed curve
coincide and from our implicit assumption that I and ui are continuous functions.
The fact that the circulation is a conserved quantity, so that its rate of change is
zero, often leads to an explanation for the strange and unexpected behavior of
vortices and vortex motion.
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Chapter 2
Fundamental Laws of Continuum
Mechanics

2.1 Conservation of Mass, Equation of Continuity

Conservation of mass has already been postulated in the last chapter, and now we
will make use of our earlier results and employ (1.83) and (1.93) to change the
conservation law (1.85) to the form

D
Dt

ZZZ
V tð Þð Þ

. dV ¼
ZZZ
Vð Þ

@.
@t

þ @

@xi
. uið Þ

� �
dV ¼ 0: ð2:1Þ

This equation holds for every volume that could be occupied by the fluid, that is, for
arbitrary choice of the integration region (V ). We could therefore shrink the inte-
gration region to a point, and we conclude that the continuous integrand must itself
vanish at every ~x. Thus we are led to the local or differential form of the law of
conservation of mass

@.
@t

þ @

@xi
.uið Þ ¼ 0: ð2:2Þ

This is the continuity equation. If we use the material derivative (1.20) we obtain

D.
Dt

þ .
@ui
@xi

¼ 0; ð2:3aÞ

or written symbolically

D.
Dt

þ .r �~u ¼ 0: ð2:3bÞ
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This also follows directly by using (1.86) together with (1.60). If

D.
Dt

¼ @.
@t

þ ui
@.
@xi

¼ 0 ð2:4Þ

holds, then the density of a single material particle does not vary during its motion.
By (2.3a), (2.4) is equivalent to

div~u ¼ r �~u ¼ @ui
@xi

¼ 0; ð2:5Þ

i.e., the flow is volume preserving. This is also often called incompressible flow, by
which is meant that the fluid, whether it is gas or liquid, can be viewed as in-
compressible. If (2.4) is satisfied, the continuity equation takes on the simpler form
(2.5) where no derivative with respect to time appears, but which nevertheless holds
for unsteady flows.

The conditions under which the assumption D.=Dt ¼ 0 is justified can only be
properly discussed in the fourth chapter; it is enough to say here that in many
technically important cases even gas flows may be regarded as incompressible.

As a rule the condition D.=Dt ¼ 0 is satisfied by liquids, but there are flows
where even the change in volume in liquids is significant. This is the case in the
unsteady flows which occur when valves on conduits are quickly opened or closed,
or in supply pipes of hydraulic turbines when the gate settings are suddenly
changed, but also in fuel injection systems when the injectors are opened or closed.

Incompressible flow does not mean that the density is the same for every par-
ticle. Consider the flow in the ocean which is incompressible (D.=Dt ¼ 0 holds),
but where the density of particles differ from one to another as a result of different
salt concentrations.

If the density is spatially constant, so r. ¼ 0, we talk of a homogeneous density
field. In incompressible flow, not only do the four terms in (2.4) sum to zero, but
each term itself is now identically equal to zero.

Transforming the conservation of mass (1.85) with the help of Reynolds’
transport theorem, we arrive at the integral form of the continuity equation

Dm
Dt

¼ D
Dt

ZZZ
V tð Þð Þ

. dV ¼
ZZZ
Vð Þ

@.
@t

dV þ
ZZ
Sð Þ

. ui ni dS ¼ 0 ð2:6Þ

or

ZZZ
Vð Þ

@.
@t
dV ¼ @

@t

ZZZ
Vð Þ

.dV ¼ �
ZZ
Sð Þ

.ui ni dS: ð2:7Þ
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In this equation we consider a fixed domain of integration, a so-called control
volume, and we interpret this equation as follows: the rate of change of the mass in
the control volume is equal to the difference between the mass entering and the
mass leaving through the surface of the control volume per unit time. This very
obvious interpretation often serves as a starting point for the elucidation of the mass
conservation. In steady flow, @.=@t ¼ 0, and the integral form of the continuity
equation reads

ZZ
Sð Þ

. ui ni dS ¼ 0; ð2:8Þ

i.e., just as much mass enters as leaves the control volume per unit time.

2.2 Balance of Momentum

As the first law (axiom) of classical mechanics, accepted to be true without proof
but embracing our experience, we state the momentum balance: in an inertial frame
the rate of change of the momentum of a body is balanced by the force applied on
this body

D~P
Dt

¼ ~F: ð2:9Þ

What follows now only amounts to rearranging this axiom explicitly. The body is
still a part of the fluid which always consists of the same material points. Analogous
to (1.83), we calculate the momentum of the body as the integral over the region
occupied by the body

~P ¼
ZZZ
V tð Þð Þ

.~u dV : ð2:10Þ

The forces affecting the body basically fall into two classes, body forces, and
surface or contact forces. Body forces are forces with a long range of influence
which act on all the material particles in the body and which, as a rule, have their
source in fields of force. The most important example we come across is the earth’s
gravity field. The gravitational field strength ~g acts on every molecule in the fluid
particle, and the sum of all the forces acting on the particle represents the actual
gravitational force
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D~F ¼~g
X
i

mi ¼~gDm: ð2:11Þ

The force of gravity is therefore proportional to the mass of the fluid particle. As
before, in the framework of the continuum hypothesis, we consider the body force
as a continuous function of mass or volume and call

~k ¼ lim
Dm!0

D~F
Dm

ð2:12Þ

the mass body force; in the special case of the earth’s gravitational field~k ¼~g, we
call it the gravitational force. The volume body force is the force referred to the
volume, thus

~f ¼ lim
DV!0

D~F
DV

; ð2:13Þ

(cf. Fig. 2.1), and in the special case of the gravitational force we get

~f ¼ lim
DV!0

~g
Dm
DV

¼~g.: ð2:14Þ

Other technically important body forces appear because of electromagnetic fields,
or are so-called apparent forces (like the centrifugal force), when the motion is
referred to an accelerating reference frame.

The contact or surface forces are exerted from the surrounding fluid or more
generally from other bodies on the surface of the fluid body under observation. If
D~F is an element of the surface force, and DS is the surface element at~x where the
force is acting, we call the quantity

~t ¼ lim
DS!0

D~F
DS

ð2:15Þ

Fig. 2.1 Depiction of the volume and surface forces
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the stress or traction vector at ~x (cf. Fig. 2.1). The stress vector is not only
dependent on~x and the time t, but also on the orientation of the surface element at~x,
that is on the surface element’s normal vector ~n, and it is in general not directed
parallel to the normal vector. More often we call the projection of~t in the direction
parallel to the normal the normal stress and the projection in the plane perpendicular
to ~n the tangential stress.

We assume that the applied force is the sum of the two kinds of force and work
out the whole force acting on the part of the fluid under observation by integration
over the volume occupied by the fluid and over its surface to get

~F ¼
ZZZ
V tð Þð Þ

.~k dV þ
ZZ
S tð Þð Þ

~t dS ð2:16Þ

so that the balance of momentum takes the form

D
Dt

ZZZ
V tð Þð Þ

.~u dV ¼
ZZZ
Vð Þ

.~k dV þ
ZZ
Sð Þ

~t dS: ð2:17Þ

As before, without loss of generality, we can replace the time varying domains of
integration on the right with fixed domains. Then applying (1.88) to the left-hand
side leads us to the form

ZZZ
Vð Þ

D~u
Dt

. dV ¼
ZZZ
Vð Þ

~k. dV þ
ZZ
Sð Þ

~t dS; ð2:18Þ

from which we reach an important conclusion: if we divide this equation by l2,
where l is a typical dimension of the domain of integration, say l�V1=3, and take
the limit l ! 0, the volume integrals vanish and we are left with

lim
l! 0

l�2
ZZ
Sð Þ

~t dS

2
64

3
75 ¼ 0: ð2:19Þ

Equation (2.19) means that the surface forces are locally balanced. Obviously
(2.19) holds for nonvanishing~t, because~t does not represent a field in the usual
sense, but one which is dependent on~n as well as~x. We will use this result to show
the way that the stress vector is dependent on the normal vector~n at the fixed place
~x. Looking at the tetrahedron of Fig. 2.2, the normal vector to the inclined surface is
~n, and the other surfaces are parallel to the coordinate planes; their normal vectors
are then �~e1;�~e2 and �~e3. If DS is the area of the inclined surface, then the other
surface areas are DS n1, DS n2 and DS n3, respectively. For the stress vector
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belonging to the inclined surface we will write~t ~nð Þ, and for the others~t �~e1ð Þ;~t �~e2ð Þ

and~t �~e3ð Þ. Applying the local stress equilibrium (2.19) we arrive at

lim
l ! 0

l�2
ZZ
Sð Þ

~t dS

2
64

3
75 ¼ lim

l ! 0

DS
l2

~t �~e1ð Þn1 þ~t �~e2ð Þn2 þ~t �~e3ð Þn3 þ~t ~nð Þ
h i� �

¼ 0;

ð2:20Þ

or

~t ~nð Þ ¼ �~t �~e1ð Þn1 �~t �~e2ð Þn2 �~t �~e3ð Þn3; ð2:21Þ

since vanishes as l2. In (2.21) all the stress vectors are to be taken at the same point,
namely the origin of the coordinate system of Fig. 2.2. If we put ~n ¼~e1 we have
n1 ¼ 1; n2 ¼ n3 ¼ 0; and (2.21) leads to

~t ~e1ð Þ ¼ �~t �~e1ð Þ; ð2:22Þ

or more generally

~t ~nð Þ ¼ �~t �~nð Þ: ð2:23Þ

This means that the stress vectors on the opposite sides of the same surface ele-
ments have the same magnitudes and opposite signs. Then instead of (2.21) we
write

Fig. 2.2 The relationship between the normal vector and the stress vector
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~t ~nð Þ ¼~t ~e1ð Þn1 þ~t ~e2ð Þn2 þ~t ~e3ð Þn3: ð2:24Þ

Therefore, the stress vector is a linear function of the normal vector. The stress
vector belonging to the surface with normal vector~e1 can now be resolved into its
components

~t ~e1ð Þ ¼ s11~e1 þ s12~e2 þ s13~e3; ð2:25Þ

and we designate the first index as giving the direction of the normal vector, and the
second as fixing the direction of the component. Similarly we can resolve the stress
vectors of the other coordinate planes and of the inclined surfaces into their com-
ponents, and insert them into Eq. (2.24). From the resulting equation

~t1~e1 þ n1 s11~e1 þ s12~e2 þ s13~e3ð Þþ
~t ~nð Þ ¼~t2~e2 þ ¼ n2 s21~e1 þ s22~e2 þ s23~e3ð Þþ

~t3~e3 n3 s31~e1 þ s32~e2 þ s33~e3ð Þ
ð2:26Þ

we can read off the component equation in the first direction

t1 ¼ s11n1 þ s21n2 þ s31n3; ð2:27Þ

where the superscript~n has been and will continue to be dropped. The result for the
ith direction is

ti ¼ s1i n1 þ s2i n2 þ s3i n3: ð2:28Þ

We can shorten (2.28) using Einstein’s summation convention

tið~x;~n; tÞ ¼ sji ~x; tð Þnj ði; j ¼ 1; 2; 3Þ; ð2:29aÞ

here we have indicated the dependency of ~t on ~x; ~n and t explicitly. The nine
quantities necessary to specify the stress vector on a surface element with some
normal vector ~n at ~x form a second order tensor. The physical meaning of the
general component sji is given by (2.26): sji is the magnitude of the ith component
of the stress vector at the element of the coordinate plane with normal vector in the
jth direction.

Although ti is not a vector field in the usual sense, since it is linearly dependent
on the vector~n at~x; sji ~x; tð Þ is a field, or to be more precise, a tensor field. Expressed
mathematically, (2.29a) is a linear homogeneous mapping of the normal vector ~n
onto the vector~t. Symbolically we can write (2.29a) as

2.2 Balance of Momentum 43



~t ¼~n � T; ð2:29bÞ

where the matrix representation of the stress tensor T is given below

½T� ¼
s11 s12 s13
s21 s22 s23
s31 s32 s33

2
4

3
5: ð2:30Þ

The main diagonal elements are the normal stresses and the nondiagonal elements
are the shearing stresses. We will show later that the stress tensor is a symmetric
tensor of the second order and it is therefore diagonalizable. At every ~x we can
specify three mutually orthogonal surface elements on which only normal stresses
act. These surface elements are parallel to the coordinate surfaces of the principal
axis system. Just as we did in connection with the rate of deformation tensor, we
find the normal vectors to these surface elements by looking for vectors which are
parallel to the stress vectors, that is, those which satisfy the equation

ti ¼ sjinj ¼ r ni ¼ r njdji: ð2:31Þ

The characteristic equation of this homogeneous system of equations is

�r3 þ I1sr
2 � I2srþ I3s ¼ 0; ð2:32Þ

where the invariants can be calculated in the same way as in (1.58). If this char-
acteristic equation has three distinct roots (eigenvalues), there is only one principal
axis system. In a fluid at rest, all the friction stresses vanish, by definition, and all
three eigenvalues are equal: r 1ð Þ ¼ rð2Þ ¼ r 3ð Þ ¼ �p: Now every orthogonal sys-
tem of axes is a principal axis system and (2.31) holds for any~n. The state of stress
is now spherical, i.e.,

sji ¼ �pdji ð2:33Þ

and is called hydrostatic. The stress vector is, from (2.31)

ti ¼ sjinj ¼ �pdjinj ¼ �p ni; ð2:34aÞ

or, written symbolically

~t ¼ �p~n: ð2:34bÞ
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The magnitude of this stress vector is the pressure p, which is a scalar quantity,
independent of~n. Occasionally, although it is always possible, an arbitrary state of
stress is decomposed as

sij ¼ �pdij þPij; ð2:35Þ

and Pij is called the friction stress tensor. It has the same principal axes as the tensor
sij. The mean normal stress �p is defined by

�p ¼ 1
3
sii; ð2:36Þ

which in general is not equal to the negative pressure. However if this is the case,
then Pij is a deviator.

If we put the expression (2.29a, 2.29b) for the stress vector into the momentum
law (2.18), and transform the surface integral into a volume integral using Gauss’
theorem, we get

ZZZ
Vð Þ

.
Dui
Dt

� .ki � @sji
@xj

� �
dV ¼ 0: ð2:37Þ

Because of the assumed continuity of the integrand and the arbitrary domain of
integration (V), (2.37) is equivalent to the differential form of the balance of
momentum

.
Dui
Dt

¼ .ki þ @sji
@xj

; ð2:38aÞ

or written symbolically

.
D~u
Dt

¼ .~kþr � T: ð2:38bÞ

This relationship is known as Cauchy’s first law of motion. We can reach another
form of it when we transform the left-hand side of (2.17) using Reynolds’ transport
theorem (1.93), and then conclude that

@

@t
. uið Þþ @

@xj
. uiuj
� 	 ¼ . ki þ @

@xj
sji
� 	

: ð2:39Þ

Cauchy’s law of motion holds for every continuum, so it holds for every fluid,
whatever its particular material properties are. It is the starting point for the
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calculation of fluid mechanical problems. Using the constitutive equation, that is,
the relationship between the stress tensor and the motion (for example, the rate of
deformation tensor), Cauchy’s equation of motion is changed to a specific equation
of motion for the material under observation.

If we are able to write the integrals as surface integrals, the integral form of the
balance of momentum attains a considerable importance in technical applications.
In order to do this, we first transform the balance of momentum (2.17) with
Reynolds’ transport theorem in the form of (1.96), and we obtain

ZZZ
Vð Þ

@ .~uð Þ
@t

dV þ
ZZ
Sð Þ

.~u ~u �~nð ÞdS ¼
ZZZ
Vð Þ

.~k dV þ
ZZ
Sð Þ

~t dS: ð2:40Þ

The first integral on the left-hand side cannot be transformed into a surface integral.
Therefore the balance of momentum in its integral form attains the afore mentioned
importance only if this integral vanishes. This is the case in steady flows, or in
unsteady flows whose time averaged values are steady, as happens in turbulent
steady flows. (In steady turbulent flows, the time averaged momentum flux, which
is different from the momentum flux formed with the average velocity, must be used
in (2.40). We refer in this connection to Chap. 7.)

The first integral on the right-hand side can be written as a surface integral when
the volume body force can be calculated as the gradient of a scalar function, that is,
when the volume body force has a potential. We will write the potential of the
volume body force as Xð~f ¼ .~k ¼ �rXÞ; and the potential of the mass body force
as wð~k ¼ �rwÞ: (To illustrate this, think of the most important potential: the
gravitational potential X ¼ �. gixi;w ¼ �gixið ÞÞ: Analogous to our remarks about
the velocity potential, r� ð.~kÞ ¼ 0 is a necessary and sufficient condition for the
existence of the potential of the volume body force. The most important case here is
the one where q is constant and the mass body force ~k has a potential. Then the
volume integral can be written as a surface integral

ZZZ
Vð Þ

.~k dV ¼ �
ZZZ
Vð Þ

rX dV ¼ �
ZZ
Sð Þ

X~n dS; ð2:41Þ

and the balance of momentum (2.40) now reads

ZZ
Sð Þ

.~u ~u �~nð Þ dS ¼ �
ZZ
Sð Þ

X~n dSþ
ZZ
Sð Þ

~t dS: ð2:42Þ

We can get insight into the meaning of the balance of momentum when we consider
that by knowing the momentum flux and the potential X we know the force on the
surface of the control volume. Often we will only want to know the force which
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comes from the momentum flux. Then we take the balance of momentum in its
most frequently used form ZZ

Sð Þ

.~u ~u �~nð Þ dS ¼
ZZ
Sð Þ

~t dS: ð2:43Þ

Conversely, the momentum flux is known from (2.43) if the force has been given.
The often unknown, and sometimes incalculable, events right inside the control
volume do not appear in the balance of momentum (2.43), and only the quantities
on the surface are of importance. Since we can choose the control volume whatever
way we want, we usually fix the surface so that the integrals are as easy as possible
to evaluate. Often we can fix the surface so that the stress vector takes the same
form as that in a fluid at rest, that is,~t ¼ �p~n: Then it is possible to draw con-
clusions from (2.43) without having to refer to a particular constitutive law.

2.3 Balance of Angular Momentum

As the second general axiom of classical mechanics we shall discuss the angular
momentum balance. This is independent of the balance of linear momentum. In an
inertial frame, the rate of change of the angular momentum is equal to the moment
of the external forces acting on the body

D
Dt

~L
� 	 ¼ ~M: ð2:44Þ

We calculate the angular momentum ~L as the integral over the region occupied by
the fluid body

~L ¼
ZZZ
V tð Þð Þ

~x� .~uð Þ dV : ð2:45Þ

The angular momentum in (2.45) is taken about the origin such that the position
vector is~x, and so we must use the same reference point to calculate the moment of
the applied forces

~M ¼
ZZZ
V tð Þð Þ

~x� .~k

 �

dV þ
ZZ
S tð Þð Þ

~x�~t dS; ð2:46Þ
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recalling, however, that the choice of reference point is up to us. Therefore the law
of angular momentum takes the form

D
Dt

ZZZ
V tð Þð Þ

~x� .~uð Þ dV ¼
ZZZ
V tð Þð Þ

~x� .~k

 �

dV þ
ZZ
Sð Þ

~x�~t dS ð2:47Þ

where, for the same reasons as before, we have replaced the time varying domain of
integration on the right with a fixed domain. Now we wish to show that the
differential form of the balance of angular momentum implies the symmetry of the
stress tensor. We introduce the expression (2.29a, 2.29b) into the surface integral,
which can then be written as a volume integral. In index notation this becomes

ZZ
Sð Þ

�ijkxj slknl dS ¼
ZZZ
Vð Þ

�ijk
@

@xl
xjslk
� 	

dV ; ð2:48Þ

and after applying (1.88) to the left-hand side of (2.47) we get first

ZZZ
Vð Þ

�ijk .
D
Dt

xjuk
� 	� @

@xl
xjslk
� 	� xj.kk

� �
dV ¼ 0; ð2:49Þ

and after differentiation and combining terms

ZZZ
Vð Þ

�ijkxj .
Duk
Dt

� @slk
@xl

� . kk

� �
þ . �ijkuj uk � �ijksjk

� �
dV ¼ 0: ð2:50Þ

If the balance of momentum (2.38a, 2.38b) is satisfied, the expression in the middle
brackets vanishes, thus eliminating position vector, ~xj which then shows that the
balance of angular momentum is indeed invariant with respect to reference point.
The outer product �ijkujuk vanishes also, since~u is naturally parallel to itself, so the
balance of angular momentum is reduced toZZZ

Vð Þ

�ijksjkdV ¼ 0: ð2:51Þ

Since the tensor field sjk is continuous, (2.51) is equivalent to

�ijksjk ¼ 0; ð2:52Þ
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proving that sjk is a symmetric tensor

sjk ¼ skj: ð2:53Þ

Just as in the case of the integral form of the balance of momentum, so the integral
form of the balance of angular momentum achieves special significance in technical
applications. We are only interested in the moment which is due to the angular
momentum flux through the control surface, and we restrict ourselves to steady
flows, or unsteady flows which are steady in the manner discussed earlier. Using
Reynolds’ transport theorem (1.96), (2.47) yields the balance of angular momentum
in a form where only surface integrals appear

ZZ
Sð Þ

�ijkxjuk. ulnl dS ¼
ZZ
Sð Þ

�ijkxjtk dS; ð2:54aÞ

or symbolically

ZZ
Sð Þ

~x�~u .~u �~n dS ¼
ZZ
Sð Þ

~x�~t dS: ð2:54bÞ

There is a particular form of the balance of angular momentum (2.54a, 2.54b) called
Euler’s turbine equation (see Sect. 2.5) which forms the most important law in the
theory of turbomachines.

2.4 Momentum and Angular Momentum
in an Accelerating Frame

The balance of momentum and angular momentum that we have discussed so far
are only valid in inertial reference frames. An inertial reference frame in classical
mechanics could be a Cartesian coordinate system whose axes are fixed in space
(relative, for example, to the fixed stars), and which uses the average solar day as a
unit of time, the basis of all our chronology. All reference frames which move
uniformly, i.e., not accelerating in this system, are equivalent and thus are inertial
frames.

The above balances do not hold in frames which are accelerating relative to an
inertial frame. But the forces of inertia which arise from nonuniform motion of the
frame are often so small that reference frames can by regarded as being approxi-
mately inertial frames. On the other hand, we often have to use reference frames
where such forces of inertia cannot be neglected.
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To illustrate this we will look at a horizontal table which is rotating with angular
velocity X. On the table and rotating with it is an observer, who is holding a string
at the end of which is a stone, lying a distance R from the fulcrum of the table. The
observer experiences a force (the centrifugal force) in the string. Since the stone is
at rest in his frame, and therefore the acceleration in his reference frame is zero, the
rate of change of momentum must also be zero, and thus, by the balance of
momentum (2.9), the force in the string should vanish. The observer then correctly
concludes that the balance of momentum does not hold in his reference frame. The
rotating table must be treated as an noninertial reference frame. The source of the
force in the string is obvious to an observer who is standing beside the rotating
table. He sees that the stone is moving on a circular path and so it experiences an
acceleration toward the center of the circle, and that according to the balance of
momentum, there must be an external force acting on the stone. The acceleration is
the centripetal acceleration, which is given here by X2R. The force acting inwards
is the centripetal force which is exactly the same size as the centrifugal force
experienced by the rotating observer.

In this example the reference frame of the observer at rest, that is the earth, can
be taken as an inertial reference frame. Yet in other cases deviations from what is
expected from the balance of momentum appear. This is because the earth is
rotating and therefore the balance of momentum strictly does not hold in a reference
frame moving with the earth. With respect to a frame fixed relative to the earth we
observe, for example, the deflection of a free falling body to the east, or the way that
the plane of oscillation of Foucault’s pendulum rotates. These examples, and many
others, are not compatible with the validity of the balance of momentum in the
reference frame chosen to be the earth. For most terrestrial events, however, a
coordinate system whose origin is at the center of the earth, and whose axes are
directed towards the fixed stars, is valid as an inertial reference frame. The easterly
deflection mentioned above can then be explained by the fact that the body, in its
initial position, has a somewhat higher circumferential speed because of the rotation
of the earth than at the impact point nearer the center of the earth. To explain
Foucault’s pendulum, we notice that, in agreement with (2.9), the pendulum
maintains its plane of oscillation relative to the inertial frame. The reference frame
attached to the earth rotates about this plane, and an observer in the laboratory
experiences a rotation of the plane of oscillation relative to his system with a period
of twenty-four hours.

The description of the motion in the inertial reference frame is of little interest
for the observer; it is far more important for him to be able to describe the motion in
his own reference frame, since this is the only system where he can make mea-
surements. In many applications the use of an accelerating reference frame is
unavoidable, for example in meteorology we always want to know the motion of
the wind relative to the earth, that is, in a rotating reference frame. It is often useful,
and sometimes essential for the solution of technical problems, to use an acceler-
ating frame.

If we want to calculate the motion of a spinning top, the earth is a good enough
inertial reference frame. But in this system the tensor of the moments of inertia is
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time dependent, so it is better to choose a reference frame attached to the top,
where, even though this is an accelerating reference frame, this tensor is constant in
time. In problems in fluid mechanics it is a good idea to use an accelerating
reference frame if the boundary of the flow region is at rest relative to this frame.
Consider for example, the flow in the passages of a turbomachine. In a frame fixed
to the rotor, and therefore rotating, not only are the blades forming the passages at
rest, but the flow itself is more or less steady, making the analytical treatment of the
problem much easier.

In what follows we shall formulate the balances for momentum and angular
momentum so that they only contain quantities which can be determined in an
accelerating system. We shall use the basic assumption that forces and moments are
the same for all observers, whether they are in accelerating or inertial reference
frames. The rate of change of the momentum or angular momentum, or the rate of
change of the velocity is dependent on the reference frame, as is the change of any
vector (with an exception, as we shall see).

First we shall turn towards the differential form of the balances of momentum
and angular momentum in an accelerating system. Let us look at a system fixed in
space (inertial reference frame) and a system accelerating with respect to it, which is
carrying out a translation with velocity ~t tð Þ and a rotation with angular velocity
~X tð Þ (Fig. 2.3). We shall denote the rate of change of the position vector ~x of a
material particle in the moving reference frame with

D~x
Dt

� �
A
¼ ~w ð2:55Þ

and we shall call ~w the relative velocity.
In the inertial reference frame the position vector of the particle under obser-

vation is~xþ~r and its rate of change is called the absolute velocity

D
Dt

~xþ~rð Þ
� �

I
¼~c: ð2:56Þ

Fig. 2.3 Moving reference frame
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Following the usual notation used in turbomachinery we shall denote the absolute
velocity with ~c. The absolute velocity results from the vector sum of the relative
velocity ~w, the velocity of the origin of the moving frame

~t ¼ D~r
Dt

� �
I

ð2:57Þ

and the circumferential velocity ~X�~x arising from the rotation of the moving frame
at the position~x, to give

~c ¼ ~wþ~X�~xþ~t: ð2:58Þ

From (2.55) to (2.58) we get the basic formula for the rate of change of the vector
x in the two reference frames

D~x
Dt

� �
I
¼ D~x

Dt

� �
A
þ~X�~x: ð2:59Þ

Obviously this formula does not only hold for the vector~x, but it holds in general.
Consider the general vector~b which has relative to the accelerating reference frame
the Cartesian resolution

~b ¼ b1~e1 þ b2~e2 þ b3~e3 ¼ bi~ei: ð2:60Þ

Its observed change in the inertial reference frame is

D~b
Dt

" #
I

¼ Dbi
Dt

~ei þ bi
D~ei
Dt

: ð2:61Þ

The first three terms represent the change of the vector ~b in the moving reference
frame. In this system the basis vectors ~ei are fixed. Yet in the inertial reference
frame these unit vectors are translated parallel, which does not change them, but
they are also rotated. For the time being we interpret D~ei=Dt as the velocity of a
material particle with position vector~ei. But since~ei is a unit vector its velocity can
only be the circumferential velocity ~X�~ei; so that we extract the equation

D~ei
Dt

¼ ~X�~ei: ð2:62Þ

Using this we get from (2.61) the Eq. (2.59)
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D~b
Dt

" #
I

¼ D~b
Dt

" #
A

þ~X�~b: ð2:63Þ

If ~b ¼ ~X the changes in the inertial reference frame and in the frame moving
relative to it are equal

D~X
Dt

" #
I

¼ D~X
Dt

" #
A

¼ d~X
dt

: ð2:64Þ

This obviously holds only for the angular velocity ~X or for vectors which are
always parallel to ~X.

We will need the rate of change of the absolute velocity D~c=Dt½ �I in
Cauchy’s Eq. (2.38a, 2.38b). As we have already noted, the right-hand side is
frame invariant. If we use (2.58) we are led to the equation

D~c
Dt

� �
I
¼ D~w

Dt

� �
I
þ

D ~X�~x

 �
Dt

2
4

3
5
I

þ D~t
Dt

� �
I
; ð2:65Þ

to which we apply (2.63) and (2.64) to get

D~c
Dt

� �
I
¼ D~w

Dt

� �
A
þ~X�~wþ~X� D~x

Dt

� �
A
þ~X� ~x

� �
þ D~X

Dt

" #
A

�~xþ D~t
Dt

� �
I
:

ð2:66Þ

If we write D~t=Dtð ÞI¼~a for the translational acceleration of the frame and replace
D~x=Dtð ÞB by ~w using (2.55), the acceleration in the inertial reference frame can be
expressed in quantities of the accelerating frame

D~c
Dt

� �
I
¼ D~w

Dt

� �
A
þ 2~X�~wþ~X� ~X�~x


 �
þ d~X

dt
�~xþ~a: ð2:67Þ

Only the acceleration as seen from the inertial frame can enter Cauchy’s equation,
since it is only valid in this frame. But by using (2.67) this acceleration can be
expressed in quantities seen from the accelerating system, so that we finally reach
the equation
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.
D~w
Dt

� �
A
¼ .~kþr � T� .~aþ 2.~X�~wþ .~X� ~X�~x


 �
þ .

d~X
dt

�~x

 !
: ð2:68Þ

(Note here that (2.68) is a vector equation where ~k and r � T have meanings
independent of frame, i.e., they are the same arrows in all frames. Where written as
a matrix equation or in index notation the components must transform into the
moving coordinate system, using the relationships in Appendix A.) Apart from the
terms in the curved brackets, Eq. (2.68) has the same form as Cauchy’s equation in
the inertial reference frame. In the moving reference frame, these terms act as
additional volume forces, which are added to the external forces. They are pure
inertial forces which stem from the motion of the system relative to the inertial
reference frame, and are therefore only “apparent” external forces hence their name
apparent or fictitious forces.

The term �.~a is the apparent force due to the translational acceleration (per unit
volume) and it vanishes when the origin of the relative system is at rest or is moving
with constant velocity. The term �2.~X�~w is the Coriolis force, and it vanishes
when the material point is at rest in the moving reference frame. The centrifugal
force is represented by the term �.~X� ð~X�~wÞ; and is also present when the
material point is at rest in the moving reference frame. The fourth expression has no
special name.

Equation (2.68) furnishes the differential form of the balance of momentum in a
moving reference frame. If this law is satisfied, no rate of change of velocity
appears in the differential form of the balance of angular momentum (cf. (2.50)),
and this law remains valid in all reference frames, something that is expressed by
the symmetry of the stress tensor in all reference frames. Thus the apparent forces
appear only in the differential form of the balance of momentum and not in that of
angular momentum.

The apparent forces that arise from the rotation of the earth can only influence
events if the spatial extent of the motion under consideration is the order of the
earth’s radius, or if its duration is the order of hours. That means that their influence
is barely noticed in rapid flow events of small extent, and can, in general, be
ignored. However their influence is noticeable in the motion of the sea, and it is
even larger in atmospheric flows. The earth rotates about 2p in one sidereal day
(which with 861,64 s is somewhat shorter than a solar day of 86,400 s), so it moves
with an angular velocity of X ¼ 2p=86164 � 7:29 � 10�5s�1: Since the angular
velocity is constant, the last term of (2.68) vanishes. In addition, the effect of the
rotation about the sun can be ignored, so that only the Coriolis and centrifugal
forces act as apparent forces. The centrifugal force at the equator amounts to 0.3%
of the earth’s attraction. In measurements it is hardly possible to separate the two
forces and it is actually the resultant of both forces that we call the gravity force~g.
The vector~g is normal to the geoid, and is not directed exactly at the center of the
earth.
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Now let us consider an air particle which moves in a north-south direction
(Fig. 2.4). In the northern hemisphere the vector ~X points out of the earth. The
Coriolis force �2.~X�~w is perpendicular to ~X and to ~w, and forces the particle in
the direction of its motion to the right. The same holds for a particle which is
moving in a south-north direction: it is forced to the right seen in the direction of
motion. As a rule, irrespective of the velocity direction, particles in the northern
hemisphere are forced to the right and those in the southern hemisphere are forced
to the left. Without allowing for the Coriolis force in Cauchy’s equation, we would
conclude that the air flows in the direction of the pressure gradient, and therefore
normal to the isobars. If we ignore the friction, we get from (2.35)

sij ¼ �p dij: ð2:69Þ

If in addition, we only consider motion parallel to the geoid, so that the force of
gravity .~g has no component in the direction of motion, (2.68) reads in index
notation

.
Dwi

Dt
¼ @ �p dij

� 	
@xj

¼ � @p
@xi

; ð2:70Þ

which means that the air is only accelerated in the direction of the pressure gradient,
and so it flows radially into a low. Yet because of the Coriolis force, the air in the
northern hemisphere is turned to the right, and it flows anticlockwise, almost tan-
gential to the isobars, into the low (Fig. 2.5). Since the acceleration in the relative
system is small compared to the Coriolis acceleration, the pressure gradient and the
Coriolis force almost balance (Buys-Ballot’s rule). A consequence of the Coriolis

Fig. 2.4 The influence of the Coriolis force on the particle path
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force is the slightly higher water level in the right bank of rivers in the northern
hemisphere and a tendency to deviate to the right. This phenomenon, called Baer’s
law, can also be observed in lakes into and out of which rivers flow. Definite
erosion can even be seen on the right bank of some rivers. However, other influ-
ences, like the mutable resistance of the river bed, are morphologically more
important.

Although on the earth the Coriolis force is very small, these examples show that
is cannot always be ignored. Even with velocities of u = 1000 m/s, typical of
artillery shells, the maximum Coriolis acceleration is only 2Xu � 2 � 7:29 � 10�5

� 	 �
1000ms�2ð Þ � 0:015 g: In spite of this its influence on the trajectory is quite
noticeable.

In technical applications, the balances of momentum and of angular momentum
in their integral form must often be used in reference frames attached to rotating
machine parts. As already noted, the flow is then almost always steady. A starting
point is the balance of momentum (2.17). The velocity appearing here is of course
the absolute velocity~c

D
Dt

ZZZ
V tð Þð Þ

.~c dV

2
64

3
75
I

¼
ZZZ
Vð Þ

.~k dV þ
ZZ
Sð Þ

~t dS: ð2:71Þ

We will apply the basic formula (2.63) to the rate of change of momentum in order
to express this in quantities relative to the rotating reference frame. This leads to

Fig. 2.5 Low in the northern hemisphere
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D
Dt

ZZZ
V tð Þð Þ

.~c dV

2
64

3
75
I

þ~X�
ZZZ
Vð Þ

.~c dV ¼
ZZZ
Vð Þ

.~k dV þ
ZZ
Sð Þ

~t dS; ð2:72Þ

where, in the second integral on the left-hand side, we have replaced a time
dependent domain with a fixed integration domain. Immediately we can apply
Reynolds’ transport theorem to the first term, since this theorem is purely kinematical,
and therefore holds in all reference frames. Equation (2.72) now takes the form

@

@t

ZZZ
V tð Þð Þ

.~c dV

2
64

3
75
A

þ
ZZ
Sð Þ

.~c ~w �~nð Þ dSþ~X�
ZZZ
Vð Þ

.~c dV ¼
ZZZ
Vð Þ

.~k dV þ
ZZ
Sð Þ

~t dS:

ð2:73Þ

In this equation, both the absolute velocity~c and the relative velocity ~w enter. The
latter appears because the momentum in the relative system is transported through
the surface of the control volume with the relative velocity ~w. As mentioned, in
applications the flow in the relative system is often steady, and the rotational
velocity ~X is constant, so that in many technically important cases the first term on
the left-hand side drops out. If we restrict ourselves to the statement of the balance
of momentum without volume body forces, we get from (2.73)ZZ

Sð Þ

.~c ~w �~nð Þ dSþ
ZZZ
V tð Þð Þ

.~X�~c dV ¼
ZZ
Sð Þ

~t dS; ð2:74Þ

where we have brought the constant vector ~X into the volume integral. For
incompressible flow, the volume integral can be transformed into a surface integral.
We shall not do this because in applications we are often only interested in the
component of the momentum in the ~X direction. If we take the inner product with
the unit vector ~e~X ¼ ~X=j~Xj the volume integral vanishes, since ~X�~c is always

perpendicular to~eX: Therefore the component equation in the ~X direction reads

ZZ
Sð Þ

.~eX �~c ~w �~nð Þ dS ¼
ZZ
Sð Þ

~eX �~t dS: ð2:75Þ

We note the appearance of both the relative and the absolute velocities. In appli-
cations this does not cause confusion and we refrain from replacing~c using (2.58).

Now we shall apply the same considerations to the balance of angular
momentum: using the formula (2.63) the rate of change in the inertial reference
frame is expressed through the change in the relative system, and then Reynolds’
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transport theorem is applied to this. Let the flow in the relative system be steady.
Neglecting the moment of the volume forces, the integral form of the balance of
angular momentum then becomesZZ

Sð Þ

. ~x�~cð Þ ~w �~nð Þ dSþ~X�
ZZZ
Vð Þ

. ~x�~cð Þ dV ¼
ZZ
Sð Þ

~x�~t dS: ð2:76Þ

The middle term contains a volume integral, but it is zero if the angular momentum
vector~L has the same direction as ~X. Turbomachines are designed so that this is the
case. Only in very extreme operating conditions, near shutoff, is it possible that the
flow is no longer rotationally symmetric to the axis of rotation. Then the angular
momentum ~L is no longer in the direction of ~X. This corresponds to a dynamic
imbalance of the rotor. If we consider only the component equation of angular
momentum in the direction of ~X (from which the torque on the rotor can be
calculated) we always get an equation where the volume integral no longer appears

~eX �
ZZ
Sð Þ

. ~x�~cð Þ ~w �~nð Þ dS ¼~eX �
ZZ
Sð Þ

~x�~t dS: ð2:77Þ

Here too both the absolute velocity~c and the relative velocity ~w appear.

2.5 Applications to Turbomachines

Typical applications of the balances of momentum and of angular momentum can
be found in the theory of turbomachines. The essential element present in all
turbomachines is a rotor equipped with blades surrounding it, either in the axial or
radial direction.

When the fluid exerts a force on the moving blades, the fluid does work. In this
case we can also speak of turbo force machines (turbines, wind wheels, etc.). If the
moving blades exert a force on the fluid, and thus do work on it, increasing its
energy, we speak of turbo work machines (fans, compressors, pumps, propellers).

Often the rotor has an outer casing, called stator, which itself is lined with
blades. Since these blades are fixed, no work is done on them. Their task is to direct
the flow either towards or away from the moving blades attached to the rotor. These
blades are called guide blades or guide vanes. A row of fixed blades together with a
row of moving blades is called a stage. A turbomachine can be constructed with
one or more of these stages. If the cylindrical surface of Fig. 2.6 at radius r through
the stage is cut and straightened, the contours of the blade sections originally on the
cylindrical surface form two straight cascades. The set up shown consists of a
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turbine stage where the fixed cascade is placed before the moving cascade seen in
the direction of the flow.

Obviously the cascades are used to turn the flow. If the turning is such that the
magnitude of the velocity is not changed, the cascade is a pure turning or constant
pressure cascade, since then no change of pressure occurs through the cascade
(only in the case of frictionless flow). In general the magnitude of the velocity
changes with the turning and therefore also the pressure. If the magnitude of the
velocity is increased we have an acceleration cascade, typically found in turbines,
and if it is decreased we have a deceleration cascade, typically found in com-
pressors. We shall consider the cascade to be a strictly periodic ordering of blades,
that is, an infinitely long row of blades with exactly the same spacing s between
blades along the cascade. Because of this the flow is also strictly periodic.

In the following the object is to calculate the force acting on the cascade or on a
single blade for a given flow deflection and pressure drop through the cascade. We
shall assume that the flow is a plane two-dimensional flow, that is, that the same
flow is found in all sections parallel to the plane of Fig. 2.6. In reality the flow

Fig. 2.6 Axial turbine stage
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passages between blades become wider in the radial direction, so that the
assumption of plane cascade flow represents the limit r ! 1 with constant blade
height. For the moving blades this also means that for a given constant circum-
ferential velocity of j~X�~xj ¼ Xr; the angular velocity tends to zero as r tends to
infinity. Then the centrifugal acceleration j~X� ð~X�~xÞj ¼ X2r and the Coriolis
acceleration j2~X�~wj both tend to zero with X.

The assumption of a plane two-dimensional flow therefore means that the
moving cascade is an inertial reference frame. This is also evident from the fact that
in this approximation every point of the moving cascade moves with the same
constant velocity. The balance of momentum in an inertial reference frame can
therefore be applied both to the stationary and the moving cascade.

In dealing with the moving cascade, we observe that the approach flow to the
moving cascade is not equal to the flow leaving the stationary cascade. If the
moving cascade in Fig. 2.6 has a circumferential velocity of ~X�~x downwards, an
observer in the reference frame of the moving cascade experiences an air-stream of
the same magnitude blowing upwards �~X�~x: This velocity is to be added to the
velocity of the flow leaving the stationary cascade, that is, we have to subtract
~X�~x to calculate the velocity of the flow towards the moving cascade. Similarly in
order to calculate the flow leaving the moving blade relative to a system fixed in
space, we have to add ~X�~x to the exit velocity in the relative system.

The resulting velocity triangles are shown in Fig. 2.7. Here we have used the
notation often used in turbomachinery, and denoted the circumferential velocity
~X�~x by~u. (Apart from this section about turbomachines we shall continue to use
the notation ~X�~x for the circumferential velocity. If there is no need to differ-
entiate between the absolute and relative velocities, then u is the general velocity
vector.) In accordance with (2.58), in all velocity triangles, the velocity vectors~c;~w
and ~u satisfy the equation

~c ¼ ~wþ~u: ð2:78Þ

Fig. 2.7 Velocity triangle
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This allows the construction of the velocity triangle without having to consciously
change reference frames.

Now we shall consider a single cascade at rest Fig. 2.8. The equations which
follow also hold for a rotating cascade in an axial turbomachine, since by the earlier
arguments, every straight cascade of blades represents an inertial system. (The
absolute velocity~c is then only to be replaced by the relative velocity ~w measured in
the moving reference frame.) At a large distance from the cascade the inlet velocity
~ci and the outlet velocity ~co are constant in space, that is, homogeneous.
Homogeneous conditions, especially behind the cascade, are strictly only true at
infinite distances away from the cascade, although for practical purposes the flow
evens out only a short distance away. To apply the momentum balance in the form
(2.43) we use the control volume shown in Fig. 2.8. Inlet and outlet surface areas
(per unit length of the cascade) Ai and Ao correspond to the spacing s. As the upper
and lower boundaries we choose streamlines. The blade profile is excluded from the
control volume by using a narrow, but otherwise arbitrary, slit. Instead of using
streamlines as the upper and lower boundaries to the control volume we could have
used any other lines such that the upper boundary is mapped onto the lower by a
translation through the spacing s. Since the flow is periodic, we can be sure that at
corresponding points on the upper and lower boundaries exactly the same flow
conditions prevail. Since the normal vectors at these corresponding points are
directed opposite to each other, and the same holds for the stress vectors (cf.
Eq. (2.23)), all integrals along the upper and lower boundaries cancel each other

Fig. 2.8 Control volume for applying the momentum balance
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out. Exactly the same holds for the slit, where both the normal and the stress vectors
on the upper side are opposite to the corresponding vectors on the lower bank.
Since both sides are located infinitely close together, all integrals here also cancel
out. Therefore we only need to integrate along the inlet and outlet surfaces (Ai, Ao)
as well as over the part of the control surface enclosing the blade (Af). Putting into
(2.43) our notation for the absolute velocity, we get

ZZ
Aið Þ

.~c ~c �~nð Þ dSþ
ZZ
Aoð Þ

.~c ~c �~nð Þ dSþ
ZZ
Afð Þ

.~c ~c �~nð Þ dS

¼
ZZ
Aið Þ

~t dSþ
ZZ
Aoð Þ

~t dSþ
ZZ
Afð Þ

~t dS:
ð2:79Þ

This equation is further simplified because~c �~n at the entrance surface is given by
�c1i and by þ c1o at the exit surface. At the blade itself,~c �~n vanishes. Since there
is no flow through the blade, the normal component of the velocity is in any case
zero. By assumption, the flow at the inlet and outlet surfaces is homogeneous, and
in Newtonian fluids with which we are often concerned (like water and gases) this
means that the friction stresses vanish. This is also the case for general constitutive
relations, when the flow is homogeneous over a larger area. Then the stress vector
can be written as~t ¼ �p~n: Finally, the last integral represents the force which the
blade exerts on the flow (or the negative of the force applied to the blade by the
flow). If we solve for the force (per unit height of the cascade), noting that the flow
properties are constant over Ai and Ao, we get first

~F ¼ �~ci.ic1isþ~co.oc1osþ pi~nisþ po~nos: ð2:80Þ

Resolving to get the components in the~e1 and~e2 directions, with~ni ¼ �~e1;~no ¼~e1
we extract the equations

~F �~e1 ¼ F1 ¼ �.ic
2
1isþ .oc

2
1os� pisþ pos; ð2:81Þ

~F �~e2 ¼ F2 ¼ �.ic1ic2isþ .oc1oc2os: ð2:82Þ

The continuity equation for steady flow in integral form (2.8) leads toZZ
Aið Þ

.~c �~n dSþ
ZZ
Aoð Þ

.~c �~n dS ¼ 0; ð2:83Þ

62 2 Fundamental Laws of Continuum Mechanics



or, using the concept of mass flux, to

_m ¼
ZZ
Aoð Þ

.~c �~n dS ¼ �
ZZ
Aið Þ

.~c �~n dS: ð2:84Þ

The notation _m used in the literature is not very well chosen: it has nothing to do
with the rate of change of the mass, which is of course zero, but with the flux of the
mass through a surface, according to the definition in (2.84). An expression for the
mass flux per unit height of the cascade follows from this definition

_m ¼ .ic1is ¼ .oc1os: ð2:85Þ

In incompressible flow, and with the assumed homogeneity of the approach flow,
the density is always constant .i ¼ .o ¼ .ð Þ; and from (2.85), with _V ¼ _m=.;

_V ¼ c1is ¼ c1os: ð2:86Þ

_V is the volume flux (per unit height of the cascade), and this is often used instead of
the mass flux in incompressible flow. Finally, we get the expression below for the
force components

F1 ¼ _m c1o � c1ið Þþ s po � pið Þ; ð2:87Þ

F2 ¼ _m c2o � c2ið Þ; ð2:88Þ

where, for our assumed incompressible flow, the first term on the right-hand side of
(2.87) drops out.

If the integration path along the blade is omitted in Fig. 2.8, the control surface
is again a closed line, which surrounds the blade profile, so that we can form the
curve integral

C ¼
I

~c � d~x; ð2:89Þ

which has mathematically positive sense. We have already met this integral in
(1.105). Even when this curve is fixed in space, and so is not a material curve, we
call this curve integral the circulation, and again use the symbol C for it. To
evaluate this integral, we note that at corresponding points on the upper and lower
boundaries in Fig. 2.8,~c has the same value, while the line element of the curve d~x
has opposite signs at corresponding points. Thus the contribution from the upper
and lower boundaries to the curve integral cancels out. The straight sections yield
the values �c2is and c2os, so we get
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C ¼ c2o � c2ið Þs; ð2:90Þ

and therefore the following holds

F2 ¼ .ic1iC ¼ .oc1oC: ð2:91Þ

Clearly one wishes to design cascades so that losses are as small as possible. Since
losses originate through the friction stresses (ignoring the losses from heat con-
duction), one tries to build cascades so that they are as close as possible to being
theoretically frictionless. Assuming frictionless flow, and to go only a small step
further, potential flow, the component F1 of the force can also be expressed by the
circulation. We then arrive at the result that the whole force is proportional to the
circulation. We shall not use this assumption here, because here we stress the
general validity of the expressions for the momentum balance (2.87 and 2.91). Yet
we point to the important fact that if the cascade spacing is given, the action of
losses are restricted to the component F1 of the force.

As a second example, consider the calculation of the torque about the radial
cascade of a single stage radial machine, using the balance of angular momentum in
its integral form. Both force and work turbomachines have a similar design to that
shown in Fig. 2.9. The flow in radial force turbomachines (Francis turbines, exhaust
driven turbines) is predominantly radial and as a rule inward, i.e., towards the axis
of rotation, whereas in work machines (pumps, compressors) it is always outward.
Therefore, in work machines, the stationary cascade is placed behind the moving
cascade in the direction of the flow. The sketched radial cascade is the cascade of a
work machine. The cascade is fixed, and the reference system is an inertial refer-
ence frame, so that the balance of angular momentum can be used in the form
(2.54a, 2.54b). The control volume is chosen as shown in Fig. 2.9: it starts at the
outlet surface Ao, goes along the side of a narrow slit to a vane, and around the other
side and back along the side of the slit to the outlet surface, and then on to the next
vane. The outlet surface is connected to the inlet surface via the lateral surfaces of
the guide vane ring, and so the control volume is closed. The wetted surfaces (vane
and sides of the ring) are denoted as Aw. Because of the reasons given when we
applied the balance of momentum earlier, integrating around the sides of the slit
gives no contribution, and, replacing ~u with~c we extract from (2.54a, 2.54b)ZZ

Ai;Ao;Awð Þ

. ~x�~cð Þ ~c �~nð ÞdS ¼
ZZ

Ai;Ao;Awð Þ

~x�~t dS: ð2:92Þ

On the left there is no contribution to the integral from Aw, since there is no flow
through the wetted surfaces. At the inlet and outlet surfaces, the velocity is
homogeneous, so that the stress vector is given by~t ¼ �p~n. However, this is not
exactly true for radial cascades, because, among other things, the flow area
increases with increasing r. The integration over the inlet and outlet surfaces on the
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right-hand side do not provide any contribution to the moment, since on these
surfaces~n is always parallel to~x. This can be directly understood: the stress vector
�p~n on these surfaces is directed towards the center of the cascade, so that there is
no torque about the center. The term remaining on the right-hand side is the torque
~T , which the wetted surface exerts on the flow. Therefore �~T is the torque which
the fluid exerts on the cascade. Thus we are led toZZ

Ai;Aoð Þ

. ~x�~cð Þ ~c �~nð ÞdS ¼ ~T ; ð2:93Þ

and we note that the vector~x�~c is constant over the inlet and outlet surfaces, and
thus can be brought in front of the integral. Using the continuity equation in the
form (2.84), we obtain the torque in the form of the famous Euler’s turbine
equation

~T ¼ _m ~xo �~co �~xi �~cið Þ: ð2:94Þ

Fig. 2.9 Radial machine with control volume in the guiding cascade flow
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In this rotationally symmetric problem, Euler’s turbine equation has only one
component in the direction of the axis of symmetry. After scalar multiplication of
(2.94) with the unit vector ~eX in this direction, we obtain the component form
usually given in the literature

T ¼ _m rocuo � ricuið Þ; ð2:95Þ

in which the torque T that the vane ring exerts on the fluid, as well as the tangential
velocity components cuo and cui are to be taken as positive in an agreed sense. The
surprisingly simple (2.95) will also be found for the axial component of the torque
on a rotor. It is the core of the theory of turbomachinery. If the fluid experiences no
torque (for example, if there are no vanes on the ring, and the friction moment can
be ignored on the lateral surfaces of the vane ring), then

rocuo � ricui ¼ 0; ð2:96Þ

or

rcu ¼ const: ð2:97Þ

As a consequence of the balance of angular momentum, this means that in a rotating
fluid on which no external moments are acting, the tangential velocity component
falls off as 1=r.

In order to calculate the torque on the rotor, we use the balance of angular
momentum relative to a rotating reference frame. In this system the flow is steady.
We assume that at the inlet and outlet surfaces, and only there, the friction stresses
can be ignored, for the reasons explained earlier. From (2.77) we obtain the
component of the torque in the direction of the axis of rotation, asZZ

Ai;Aoð Þ

.~eX � ~x�~cð Þ ~w �~nð ÞdSþ
ZZ
Ai;Aoð Þ

p~eX � ~x�~nð Þ dS ¼ T: ð2:98Þ

T is the torque exerted on the fluid by the rotor; –T is the torque exerted on the rotor
by the fluid. The inlet and outlet surfaces are surfaces of rotation (Fig. 2.10), so that
the vector ~x�~n is perpendicular to ~eX, and the pressure integrals, clearly, do not
contribute to the torque. To continue we resolve the position vector and the velocity
vector into components along the radial, circumferential and axis of rotation
directions, thus

~x ¼ r~er þ xX~eX; ð2:99Þ

66 2 Fundamental Laws of Continuum Mechanics



~c ¼ cr~er þ cu~eu þ cX~eX; ð2:100Þ

and so the cross product~x�~c becomes

~x�~c ¼ �xXcu~er � rcX � xXcrð Þ~eu þ rcu~eX; ð2:101Þ

from which the following expression for the component in the direction of the axis
of rotation results

~eX � ~x�~cð Þ ¼ rcu; ð2:102Þ

since the unit vectors~er;~eu and~eX are orthogonal. Therefore (2.98) simplifies to

ZZ
Ai;Aoð Þ

. rcu ~w �~nð Þ dS ¼ T: ð2:103Þ

If rcu at Ai and Ao are constant, or if their variations are so small that they can be
ignored, then, using the continuity equation in the reference frame fixed to the rotor

_m ¼
ZZ
Aoð Þ

.~w �~n dS ¼ �
ZZ
Aið Þ

.~w �~n dS ð2:104Þ

Fig. 2.10 Half axial rotor
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we write the torque in the direction of the axis of rotation in the form of Euler’s
turbine equation

T ¼ _m rocuo � ricuið Þ: ð2:105Þ

The mass flux through the rotor is to be calculated using the component of the
relative velocity normal to the surface through which the fluid flows ~w �~n. Often the
normal components of the relative and absolute velocities are equal. For example,
this occurs if the surfaces as in the above case are surfaces of rotation. The second
term on the right-hand side of

~c �~n ¼ ~w �~nþ~u �~n ð2:106Þ

is then zero, because the circumferential velocity is orthogonal to ~n. We interpret
the component of the torque along the axis of rotation as the work per unit angle of
rotation. The work done by the torque is therefore the moment times the angle of
rotation, and the power P is this moment times the angular velocity. If we take into
account the vectorial character of these quantities, we write the power as

P ¼ ~T � ~X ¼ X _m rocuo � ricuið Þ: ð2:107Þ

If the vectors of the torque and of the angular velocity form an acute angle, the
power of the rotor is delivered on the fluid and we have a work machine. Finally we
calculate the force in the axial direction which is transferred to the fluid from the
rotor, or to the rotor from the fluid. This force is usually supported by special thrust
bearings. It is desirable to keep this axial force as small as possible. For this reason
the sides of the rotor are often fully or partially acted on by the fluid. By properly
choosing these wetted areas the axial force can be influenced as desired.

The control volume is then so shaped that these surfaces become components of
the control surface. We shall take the control volume down along the rotor sides to
some desired radius, and, forming a slit, back up to either the inlet or outlet surface
(Fig. 2.11). Then, in an already familiar way the control volume is formed so that
the wetted surfaces (blades and casings) are parts of the control surface. Starting
from the momentum balance in the accelerating reference frame, we need to inte-
grate the left-hand side of this equation only over the inlet and outlet surfaces, since
there is no flow through the wetted surfaces including the wetted side surfaces and
the surfaces As opposite to these. Assuming that the friction stresses can be ignored
on Ai, Ao and As, we reach

ZZ
Ai;Aoð Þ

.~eX �~c ~w �~nð Þ dS ¼ �
ZZ

Ai;Ao;Asð Þ

p~eX �~n dSþFa; ð2:108Þ
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where Fa is the axial force exerted on the fluid by the rotor. Further simplifications
are possible when the integrand is constant over the given surfaces, and often
because in practical cases the momentum flux through the surfaces Ai and Ao is
much smaller than the pressure forces.

2.6 Balance of Energy

The fact that mechanical energy can be changed into heat and heat can be changed
into mechanical energy shows that the balance laws of mechanics we have dis-
cussed up to now are not enough for a complete description of the motion of a fluid.
As well as the two laws we have already treated, therefore a third basic empirical
law, the balance of energy, appears:

The rate of change of the total energy of a body is equal to the power of the external forces
plus the rate at which heat is transferred to the body.

This law can be “deduced” from the well known first law of thermodynamics together
with a mechanical energy equation which follows from Cauchy’s Eq. (2.38a, 2.38b).
However here we prefer to postulate the balance of the total energy, and to infer from
it the more restrictive statement of the first law of thermodynamics.

We shall assume the fundamentals of classical thermodynamics as known.
Thermodynamics is concerned with processes where the material is at rest and
where all quantities appearing are independent of position (homogeneous), and
therefore are only dependent on time. An important step to the thermodynamics of
irreversible processes as they appear in the motion of fluids, consists of simply
applying the classical laws to a material particle. If e is the internal energy per unit

Fig. 2.11 Control volume for calculating the axial thrust
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mass, then the internal energy of a material particle is given by e dm, and we can
calculate the internal energy E of a body, that is, the energy of a bounded part of the
fluid, as the integral over the region occupied by the body

E ¼
ZZZ
V tð Þð Þ

e . dV : ð2:109Þ

In order to obtain the total energy of the fluid body under consideration, the kinetic
energy which does not appear in the classical theory must be added to (2.109). The
kinetic energy of the material particle is u2=2ð Þ dm, and the kinetic energy K of the
body is correspondingly

K ¼
ZZZ
V tð Þð Þ

ui ui
2

. dV : ð2:110Þ

The applied forces which appear are the surface and body forces which were
discussed in the context of the balance of momentum. The power of the surface
force~t dS is ~u �~t dS, while that of the body force .~k dV is ~u �~k. dV . The power of
the applied forces is then

P ¼
ZZZ
V tð Þð Þ

. ui ki dV þ
ZZ
S tð Þð Þ

ui ti dS: ð2:111Þ

In analogy to the volume flow ~u �~n dS through an element of the surface, we
introduce the heat flux through an element of the surface with �~q �~n dS and denote
~q as the heat flux vector. The minus sign is chosen so that inflowing energy (~q and~n
forming an obtuse angle) is counted as positive. From now we shall limit ourselves
to the transfer of heat by conduction, although~q can also contain other kinds of heat
transfer, for example, heat transfer by radiation, via Poynting’s vector.

The relationship between the heat flux vector ~q and the temperature field (or
other quantities) depends on the material under consideration. Therefore it is a
constitutive relation, which we leave open to be specified later. Using the amount of
heat flowing into the body per unit time

_Q ¼ �
ZZ
S tð Þð Þ

qi ni dS; ð2:112Þ

we can write for the energy balance
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D
Dt

K þEð Þ ¼ Pþ _Q; ð2:113Þ

or, more explicitly

D
Dt

ZZZ
V yð Þð Þ

uiui
2

þ e
h i

. dV ¼
ZZZ
Vð Þ

ui ki . dV þ
ZZ
Sð Þ

ui ti dS�
ZZ
Sð Þ

qi ni dS: ð2:114Þ

On the right-hand side, we have already replaced the time varying domains with the
fixed domains V and S. By applying (1.88), this is also possible on the left. If we
express the stress vector in the first surface integral using the stress tensor, both
surface integral can be transformed into volume integrals using Gauss’ theorem.
Thus Eq. (2.114) becomes

ZZZ
Vð Þ

.
D
Dt

uiui
2

þ e
h i

� . ki ui � @

@xj
sjiui
� 	þ @qi

@xi

� �
dV ¼ 0: ð2:115Þ

Since the integrand is assumed to be continuous, and the domain of integration is
arbitrary, the integrand must vanish, and, after differentiating, we obtain the dif-
ferential form of the energy balance

. ui
Dui
Dt

þ .
De
Dt

¼ . ki ui þ ui
@sji
@xj

þ sji
@ui
@xj

� @qi
@xi

: ð2:116Þ

Using the expansion of the stress tensor (2.35), the definition of enthalpy

h ¼ eþ p
.

ð2:117Þ

and the continuity Eq. (2.3a, 2.3b), the energy equation can be recast in the often
used form

.
D
Dt

uiui
2

þ h
h i

¼ @p
@t

þ . ki ui þ @

@xj
Pji ui
� 	� @qi

@xi
: ð2:118Þ

If Eq. (2.38a, 2.38b) is satisfied, the terms in (2.116) which are multiplied with ui,
drop out, and we are led to the following equation for the rate of change of the
internal energy of a material particle
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De
Dt

¼ sji
.
@ui
@xj

� 1
.
@qi
@xi

; ð2:119Þ

which is the continuum mechanical analogue to the first law of classical thermo-
dynamics. In the first law,

de ¼ dwþ dq; ð2:120Þ

de is the change in the internal energy in the time dt; dw is the work done in this
time, and dq is the gain of heat in this time (each per unit mass). In applying the
classical law to a material particle, we replace the operator “d” by “D=Dt”, and
therefore we must replace dw on the right-hand side with the work done per unit
time, which we shall denote by d _w. Similarly we replace dq with d _q, so that the first
law of thermodynamics must be written in the form

De
Dt

¼ d _wþ d _q: ð2:121Þ

Just like (2.120), this equation holds without restrictions both for reversible and
irreversible processes. In particular, for reversible processes we have the classical
thermodynamic relations

dw ¼ �pdt ð2:122Þ

and

dq ¼ Tds; ð2:123Þ

or

d _w ¼ �p
Dt
Dt

; ð2:124Þ

d _q ¼ T
Ds
Dt

: ð2:125Þ

Here, t ¼ 1=. is the specific volume, and s is the specific entropy. By comparing
(2.121) with (2.119), we can extract two formulas which are valid without
restriction to calculate the work done

d _w ¼ sji
.
@ui
@xj

ð2:126Þ
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and the heat added

d _q ¼ � 1
.
@qi
@xi

; ð2:127Þ

where each are per unit time and mass. The work per unit time and mass can be split up
into the reversible work as in (2.124), and the irreversible work. The latter contribution
is irreversibly changed into heat by the action of the friction stresses. Replacing the
stress tensor by its decomposition according to (2.35), we extract the following

d _w ¼ � p
.
@ui
@xi

þ 1
.
Pij eij; ð2:128Þ

where the last term results from Pji @ui=@xj, because the friction stress tensor Pij is,
like sij, a symmetric tensor. This term represents the deformation work converted
irreversibly into heat. In general, the deformation work per unit time and volume
Pijeij is written as a dissipation function U, where

U ¼ Pijeij: ð2:129Þ

The dissipation function depends on the relationship between the friction stresses and
the motion, that is, on the constitutive relation, and therefore we defer calculating this
explicitly until we know the constitutive relation. However this term is zero for
frictionless flow, or for fluids at rest. We identify the first term, using the continuity
Eq. (2.3a, 2.3b), as the reversible contribution to the work, known from (2.124)

� p
.
@ui
@xi

¼ p
.2

D.
Dt

¼ �p
Dt
Dt

; ð2:130Þ

so that we finally attain the expression for the work per unit time and mass

d _w ¼ �p
Dt
Dt

þ U
.
: ð2:131Þ

2.7 Balance of Entropy

We begin with the equation

Tds ¼ deþ pdt; ð2:132Þ

which is known as Gibbs’ relation. It is given here for the special case of single
component material, in which there is no phase change and where no chemical
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reactions take place. It is to this that we wish to restrict our discussion. Apart from
this, this equation holds without restriction for both reversible and irreversible
processes. Its validity for reversible processes can be found from the first law of
thermodynamics, in connection with (2.122) and (2.123). Its acceptance for irre-
versible processes is the fundamental assumption for the thermodynamics of these
processes. We shall not justify this assumption further, except to say that its con-
sequences agree with our experience. Gibbs’ relation can also be obtained from
kinetic theory, where the results of the kinetic theory of gases remain restricted to
small deviations from thermodynamic equilibrium, and to a monatomic dilute gas.
Therefore these results can neither be used as a “proof” of Gibbs’ relation, nor do
they have the general validity in which we shall apply this relation. Gibbs’ relation
for a material particle leads to the equation

T
Ds
Dt

¼ De
Dt

þ p
Dt
Dt

; ð2:133Þ

in which we replace the material change of the internal energy using the energy
equation (2.121), and (2.127) and (2.131), so that the following equation emerges

.
Ds
Dt

¼ U
T
� 1
T
@qi
@xi

: ð2:134Þ

Transforming the last term on the right-hand side using the identity

@

@xi

qi
T

h i
¼ 1

T
@qi
@xi

� qi
T2

@T
@xi

ð2:135Þ

furnishes the balance of entropy

.
Ds
Dt

¼ U
T
� qi
T2

@T
@xi

� @

@xi

qi
T

h i
: ð2:136Þ

In this equation the rate of change of the entropy of a material particle is split up
into two contributions: A rate of entropy production with the value

.
D
Dt

s irrð Þ ¼ U
T
� qi
T2

@T
@xi

; ð2:137Þ

which is always greater or equal to zero, and a divergence of an entropy flux vector
qi=T , which can be greater than, equal to, or less than zero

.
D
Dt

s revð Þ ¼ � @

@xi

qi
T

h i
: ð2:138Þ
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The first part arises via the irreversible actions of friction and heat conduction in the
fluid particle. Sufficient for the inequality

D
Dt

s irrð Þ � 0 ð2:139Þ

are the conditions

U� 0 ð2:140Þ

and

qi
@T
@xi

	 0: ð2:141Þ

The first inequality expresses the experience that during deformation mechanical
energy is dissipated into heat by the action of friction, but that heat cannot be
changed into mechanical energy by the action of friction during deformation. The
second inequality states that the heat flux vector must form an obtuse angle with the
temperature gradient, and reflects the fact that heat flows in the direction of falling
temperature. Equation (2.138) represents the change in entropy which the particle
experiences from its neighborhood, since the divergence of the entropy flux is the
difference between the inflowing and outflowing entropy flux. This difference can
clearly be positive, negative or zero.

Elimination of U=T between Eqs. (2.137) and (2.134) leads to a form of (2.139)
known as Clausius-Duhem’s inequality

q
DsðirrÞ
Dt

¼ q
Ds
Dt

þ 1
T
@qi
@xi

� qi
T2

@T
@xi

� 0:

We can obtain the change of entropy of a bounded part of the fluid by integrating
(2.136) over the domain occupied by the fluid. We shall apply Reynolds’ transport
theorem to the left-hand side, and transform the integral on the right-hand side using
Gauss’ theorem. Doing this, we extract the following equation for the balance of
entropy of the fluid body

D
Dt

ZZZ
V tð Þð Þ

s . dV ¼ DS
Dt

¼
ZZZ
Vð Þ

U
T
� qi
T2

@T
@xi

� �
dV �

ZZ
Sð Þ

qini
T

dS: ð2:142Þ

As stated, the volume integral on the right-hand side is never negative, and
therefore we can read off the second law of thermodynamics
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The equality sign only holds when the process in the body is reversible. However
all real processes in nature are irreversible, so the inequality sign must hold for
these. If heat is neither added to nor taken away from the body, the surface integral
on the right-hand side vanishes. The process taking place in the body is then
adiabatic, and Eq. (2.142) expresses the following fact:

The entropy cannot decrease in an adiabatic process.

The second law of thermodynamics is of course, like the first law, a law of
experience. In our discussion, the second law arises as a consequence of the
assumptions in (2.140) and (2.141), which are based on experience. Had we pos-
tulated the second law we would have had to conclude that the integrand of the
volume integral on the right-hand side of (2.142) is never negative.
Equations (2.140) and (2.141) are sufficient for this.

2.8 Thermodynamic Equations of State

The principles we have discussed so far in Chap. 2 form the basis of continuum
mechanics. These principles represent a summary of our experience of the behavior
common to all bodies. All solids and fluids, whether Newtonian or non-Newtonian
fluids, are subject to these universal laws. The distinguishing properties of solids
and fluids are determined by the materials from which they consist. These prop-
erties are abstracted by constitutive relations. They define ideal materials, and
therefore are models of the material’s real behavior. Besides these constitutive
relations in a narrow sense, i.e., those which establish the relationship between
stress state and motion, or between heat flux vector and temperature, there are also
the thermodynamic equations of state. We shall introduce the constitutive relations
in the next chapter, but here we discuss how the equations of state known from
classical thermodynamics are carried over to the moving continuum, and their
application to determining the thermodynamic state of a material particle.

It is a fact of experience of classical thermodynamics that a thermodynamic state
is uniquely defined by a certain number of independent variables of state. For the
single component material to which we shall restrict ourselves, two independent
variables of state are required. These two independent variables, which otherwise
are of arbitrary choice, fix the value of every other variable of state. An equation of
state, which can also be given in the form of a diagram or graph, is a relationship by
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which two variables of state, as independent variables, determine a third as a
dependent variable. For a small class of materials, in particular for gases, equations
of state can be found on the basis of specific molecular models from statistical
mechanics and quantum mechanics. Here, however, we do not wish to go into the
origin of the equations of state, and we shall consider them as given.

We call an equation of state between p, . and T a thermal equation of state, and
so we have

p ¼ p .; Tð Þ: ð2:144Þ

The equation of state

p ¼ .RT ð2:145Þ

defines, for example, the thermally perfect gas. If the so-called caloric variables of
state, such as internal energy e, enthalpy h or entropy s, appear as dependent
variable, we denote equations like, for example

e ¼ e .; Tð Þ ð2:146Þ

as caloric equations of state. For a thermally perfect gas, the caloric equation of
state takes the simple form

e ¼ e Tð Þ ð2:147Þ

or

h ¼ h Tð Þ: ð2:148Þ

The equation of state e ¼ ctT (or h ¼ cpT) with constant specific heat ct (or cp)
therefore also defines the calorically perfect gas.

In general, however, one equation of state does not necessarily determine the
other. There exist “reciprocity relations” between the thermal and caloric equations
of state. Yet these are relations between partial differentials, so that the determi-
nation of the other equation of state requires an integration, where unknown
functions appear as “constants” of integration. An equation of state, from which the
other can be found by the processes differentiation and elimination alone, is called a
canonical or fundamental equation of state. If we compare the differential of the
canonical equation of state e = e(s, t)
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with Gibbs’ relation (2.132), we read off
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The right-hand sides of (2.150) and (2.151) are functions of s and t. If we consider
both relationships to be solved for s, the equations s ¼ sðt; TÞ and s ¼ sðp; tÞ arise.
Elimination of s gives a relation between T, p and t, and thus the thermal equation
of state.

The Mollier diagram known from applications is the graphical representation of
the canonical equation of state h = h(s, p), where h is plotted as a function of s, with
p as family parameter. Specific volume and temperature may then be ascertained by
comparing the differential of the canonical equation of state h = h(s, p)
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with Gibbs’ relation in the form

T ds ¼ dh� t dp; ð2:153Þ

which yields
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and
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Now to obtain t, for example, note the values of h and p along an isentrope
s = const, and numerically or graphically determine the slope of h = h(p). For
thermally and calorically perfect gas the canonical form of the enthalpy is easily
explicitly given

h ¼ const � cp exp s=cp
� 	

pðR=cpÞ: ð2:156Þ

The essential step which leads from the classical thermodynamics of reversible
homogeneous processes to the thermodynamics of irreversible processes of con-
tinuum mechanics is the assumption that exactly the same equations of state as hold
for the material at rest also hold for a moving material point of the continuum. This
means, for example, that the internal energy e of a material particle can be calcu-
lated from the values of s and t, irrespective of where the particle is or what its
motion is. This assumption is equivalent to the assumption that Gibbs’ relation is
valid for irreversible processes. For from the material derivative of the relation
e ¼ eðs; tÞ we have
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If this relationship always holds, and if we regard (2.150) and (2.151) as definitions
of temperature and pressure, Gibbs’ relation (2.133) follows immediately. This
means then too, that the internal energy is given at every place and time if s and t
are known at this place and time. Although the thermodynamic state changes from
place to place, it is not dependent on the gradients of the variables of state.
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Chapter 3
Constitutive Relations for Fluids

As already explained in the previous chapter on the fundamental laws of continuum
mechanics, bodies behave in such a way that the universal balances of mass,
momentum, energy and entropy are satisfied. Yet only in very few cases, like, for
example, the idealizations of a point mass or of a rigid body without heat con-
duction, are these laws enough to describe a body’s behavior. In these special cases,
the characteristics of “mass” and “mass distribution” belonging to each body are the
only important features. In order to describe a deformable medium, the material
from which it is made must be characterized, because clearly, the deformation or the
rate of deformation under a given load is dependent on the material. Because the
balance laws yield more unknowns than independent equations, we can already
conclude that a specification of the material through relationships describing the
way in which the stress and heat flux vectors depend on the other field quantities is
generally required. Thus the balance laws yield more unknowns than independent
equations. The summarizing list of the balance laws of mass (2.2)
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of momentum (2.38)
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;

of angular momentum (2.53)

sij ¼ sji
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and of energy (2.119)

.
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¼ sij
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@xj

� @qi
@xi

yield 17 unknown functions .; ui; sij; qi; e
� �

in only eight independently available
equations. Instead of the energy balance, we could also use the entropy balance
(2.134) here, which would introduce the unknown function s instead of e, but by
doing this the number of equations and unknown functions would not change. Of
course we could solve this system of equations by specifying nine of the unknown
functions arbitrarily, but the solution found is then not a solution to a particular
technical problem.

It may happen that the “mechanical” balance laws for mass, momentum and
angular momentum are decoupled from the energy equation. Then six constitutive
relations are enough to complete the reduced system for ., ui and sij. If the internal
energy field is not required, it can be assumed arbitrarily without changing, for
example, the velocity field. In these cases the internal energy is not counted as an
unknown function, and the energy equation is superfluous.

Even if no proof for the uniqueness of the solution is available, we still expect
that the solution of a physical problem is unique if the number of unknown
functions is the same as the number of equations and the properly posed initial and
boundary values are present. Further, we take as self evident that all equations are
given by the problem itself, and that therefore only constitutive relations as they
arise from the specification of the flowing material, appear along with the universal
balance laws.

In principle, constitutive relations could be gotten from the molecular theory of
gases and liquids. For structurally simple molecules, and in particular for gases, this
theory provides constitutive relations which agree very well with experimental
results. This has not been successful to the same extent for Newtonian liquids; even
less so for non-Newtonian fluids. Yet the results found from the molecular theory
do not contradict the phenomenological model of continuum theory. In fact, they
show that this model provides a suitable framework for describing the material
behavior of even non-Newtonian fluids. Indeed continuum theory has become for
the most part a theory of the constitutive relations. It develops mathematical models
from specific experimental observations which idealize the behavior of the actual
material but which in more general circumstances do describe it as accurately as
possible.

Let us adopt the viewpoint of an engineer who forecasts the flow of a given fluid
from the balance laws on the basis of the constitutive relations. As with the ther-
modynamic constitutive relations (equations of state), we shall not go any further
into the derivations, but will only note that certain axioms are of fundamental
importance for the formulation of the constitutive relations. Some of these axioms
have arisen during more recent developments of continuum mechanics, and are not
satisfied by older constitutive relations, which were proposed to explain particular
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features of the behavior of materials. Constitutive relations which these axioms
satisfy must, among other things

(a) be consistent with the balance laws and with the second law of thermodynamics
(but they are not consequences of these laws),

(b) be valid in all coordinate systems (thus they must be formulated as tensor
equations),

(c) be deterministic (the history of the motion and of the temperature of the body up
to time t determines, for example, the stresses on the material particle at time t),

(d) hold locally (thus, for example, the stress at a material particle depends only on
the motion of material particles in its immediate neighborhood),

(e) reflect the symmetry properties of the material, and
(f) be valid in all reference frames, i.e., be objective or frame independent.

The final condition is here of particular importance, since, as we know from
Sect. 2.4, the equations of motion (momentum balance) are not frame independent
in this sense. In accelerating reference frames, the apparent forces are introduced,
and only the axiom of objectivity ensures that this remains the only difference for
the transition from an inertial system to a relative system. However, it is clear that
an observer in an accelerating reference frame detects the same material properties
as an observer in an inertial system. To illustrate this, for a given deflection of a
massless spring, an observer in a rotating reference frame would detect exactly the
same force as in an inertial frame.

In so-called simple fluids, the stress on a material point at time t is determined by
the history of the deformation involving only gradients of the first order or more
exactly, by the relative deformation tensor (relative Cauchy-Green-tensor) as every
fluid is isotropic. Essentially all non-Newtonian fluids belong to this group.

The most simple constitutive relation for the stress tensor of a viscous fluid is a
linear relationship between the components of the stress tensor sij and those of the
rate of deformation tensor eij. Almost trivially, this constitutive relation satisfies all
the above axioms. The material theory shows that the most general linear rela-
tionship of this kind must be of the form

sij ¼ �pdij þ k�ekkdij þ 2g eij; ð3:1aÞ

or, using the unit tensor I

T ¼ �pþ k�r �~uð ÞIþ 2gE ð3:1bÞ

(Cauchy-Poisson law), so that noting the decomposition (2.35), the tensor of the
friction stresses is given by

Pij ¼ k�ekkdij þ 2g eij; ð3:2aÞ
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or

P ¼ k�r �~u Iþ 2gE: ð3:2bÞ

We next note that the friction stresses at the position ~x are given by the rate of
deformation tensor eij at ~x, and are not explicitly dependent on ~x itself. Since the
friction stress tensor Pij at~x determines the stress acting on the material particle at~x,
we conclude that the stress on the particle only depends on the instantaneous value
of the rate of deformation tensor and is not influenced by the history of the
deformation. We remind ourselves that for a fluid at rest or for a fluid undergoing
rigid body motion, eij ¼ 0, and (3.1a) reduces to (2.33). The quantities k* and η are
scalar functions of the thermodynamic state, typical to the material. Thus (3.1a,
3.1b) is the generalization of s ¼ g _c; which we have already met in connection
with simple shearing flow and defines the Newtonian fluid.

The extraordinary importance of the linear relationship (3.1a, 3.1b) lies in the fact
that it describes the actual material behavior of most technically important fluids
very well. This includes practically all gases, in particular air and steam, gas mix-
tures and all liquids of low molecular weight, like water, and also all mineral oils.

As already noted, eij ¼ 0 describes the stress state of a fluid at rest or in rigid
body motion. The pressure p of compressible fluids is then determined by the
thermal equation of state p ¼ pð.; TÞ. The same equation of state also holds for the
moving material particle, thus the pressure is fixed for every position of the particle
and for every instant by . and T. In incompressible fluids, the pressure is not a
function of the thermodynamic state, but is a fundamentally dependent variable. As
is already clear from Cauchy’s Eq. (2.38) in connection with (3.1a, 3.1b), and as
we shall show explicitly later, only the gradient of the pressure appears in Cauchy’s
equation. In incompressible flow, an arbitrary constant may be added to the pressure
without affecting the equations of motion. If the pressure is not fixed by a boundary
condition it can only be determined up to this additive constant. Expressed other-
wise, only pressure differences can be calculated from the theory of incompressible
flow.

Using (2.36) and (3.1a), we extract the following equation for the sum of the
mean normal stress and the pressure

�pþ p ¼ 1
3
sii þ p ¼ eii k� þ 2

3
g

� �
: ð3:3Þ

By (2.5), eii ¼ 0 holds for incompressible flow, thus the mean normal stress is equal
to the negative pressure. This only holds in compressible flow if the bulk viscosity

gB ¼ k� þ 2
3
g ð3:4Þ
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vanishes. Kinetic gas theory shows that the bulk viscosity arises because the kinetic
energy of the molecules is transferred to the internal degrees of freedom. Therefore,
the bulk viscosity of monatomic gases, which have no internal degrees of freedom,
is zero. The bulk viscosity is proportional to the characteristic time in which the
transfer of energy takes place. This effect can be important for the structure of shock
waves, but is otherwise of lesser importance, and therefore, even for polyatomic
gases, use is most often made of Stokes’ hypothesis

gB ¼ 0: ð3:5Þ

The assumption of the constitutive relation now also allows the explicit calculation
of the dissipation function U. Following (2.129) we obtain

U ¼ Pijeij ¼ k�ekkeii þ 2g eij eij; ð3:6aÞ

or, written symbolically

U ¼ k� spEð Þ2 þ 2g spE2; ð3:6bÞ

and we see, by expansion and relabelling the dummy indices, that the inequality
(2.140) is satisfied, if the inequalities

g� 0; gB � 0 ð3:7Þ

hold for the shear viscosity η and the bulk viscosity ηB.
As already noted, the viscosity depends on the thermodynamic state, so

g ¼ gðp; TÞ, where the dependency on pressure is small. The kinetic gas theory
states that for dilute gases the only dependency is on the temperature: for the model
of hard sphere molecules we have g� ffiffiffiffi

T
p

. In the phenomenological model, the
dependency on p and T remains free and must be determined by experiment. The
shear viscosity η often appears in the combination g=. ¼ m; which is known as the
kinematic viscosity, and clearly depends strongly on the density or the pressure.

From kinetic gas theory, the viscosity η can be predicted quantitatively very well
if a realistic molecular potential is used. The less developed kinetic theory for
liquids can not yet furnish comparable viscosity data. In this case the temperature
dependency of the viscosity is given by η * exp(const/T), that is, it decreases
exponentially with temperature. This behavior has been experimentally confirmed
qualitatively for most liquids, and so we see that liquids show a contrasting vis-
cosity behavior to gases. The reason for this lies in the differing molecular structure,
and has already been discussed in Sect. 1.1.

With the linear constitutive Eq. (3.1a, 3.1b) for the stress goes a linear consti-
tutive relation for the heat flux vector. This linear relationship is known as
Fourier’s law, and for isotropic materials reads
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or ~q ¼ �krT : ð3:8Þ

Here k is a positive function of the thermodynamic state, and is called the thermal
conductivity. The minus sign here is in agreement with the inequality (2.141).
Experiments show that this linear law describes the actual behavior of materials
very well. The dependency of the thermal conductivity on p and T remains open in
(3.8), and has to be determined experimentally. For gases the kinetic theory leads to
the result k * η, so that the thermal conductivity shows the same temperature
dependence as the shear viscosity. (For liquids, one discovers theoretically that the
thermal conductivity is proportional to the velocity of sound in the fluid.)

In the limiting case g; k� ¼ 0, we extract from the Cauchy-Poisson law the
constitutive relation for inviscid fluids

sij ¼ �p dij: ð3:9Þ

Thus, as with a fluid at rest, the stress tensor is only determined by the pressure
p. As far as the stress state is concerned, the limiting case g; k� ¼ 0 leads to the
same result as eij ¼ 0. Also consistent with g; k� ¼ 0 is the case k ¼ 0; ignoring the
friction stresses implies that we should in general also ignore the heat conduction.

It would now appear that there is no technical importance attached to the con-
dition g; k�; k ¼ 0. Yet the opposite is actually the case. Many technically impor-
tant, real flows are described very well using this assumption. This has already been
stressed in connection with the flow through turbomachines. Indeed the flow past a
flying object can often be predicted using the assumption of inviscid flow. The
reason for this can be clearly seen when we note that fluids which occur in
applications (mostly air or water) only have “small” viscosities. However, the
viscosity is a dimensional quantity, and the expression “small viscosity” is vague,
since the numerical value of the physical quantity “viscosity” may be arbitrarily
changed by suitable choice of the units in the dimensional formula. The question of
whether the viscosity is small or not can only be settled in connection with the
specific problem, however this is already possible using simple dimensional
arguments. For incompressible fluids, or by using Stokes’ relation (3.5), only the
shear viscosity appears in the constitutive relation (3.1a, 3.1b). If, in addition, the
temperature field is homogeneous, no thermodynamic quantities enter the problem,
and the incident flow is determined by the velocity U, the density . and the shear
viscosity η. We characterize the body past which the fluid flows by its typical length
L, and we form the dimensionless quantity

Re ¼ UL.
g

¼ UL
v

ð3:10Þ

which is called the Reynolds’ number. This is the most important dimensionless
group of fluid mechanics, and is a suitable measure for the action of the viscosity. If
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η tends to zero, then the Reynolds’ number becomes infinite. The assumption of
inviscid flow is thus only justified if the Reynolds’ number is very large. If we have,
for example, a cascade flow in a water turbine with the blade chord L = 1 m, inflow
velocity U = 10 m/s, and kinematic viscosity of water of m ¼ 10�6 m2/s, the
Reynolds’ number is already Re = 107, and so is indeed very large. It therefore can
make sense to perform the calculation on the basis of an inviscid flow.

A further fact, which is important in connection with viscous flow, follows from
simple dimensional analysis: let us consider, for example, the drag D on a body in a
flow field. This drag may be made dimensionless using the data of the above
problem, forming the drag coefficient

cD ¼ D
.
2U

2L2
: ð3:11Þ

The drag coefficient as a dimensionless number can only be dependent on other
dimensionless variables, and the only one which can be formed using the above
data is the Reynolds’ number. Thus we are led inevitably to the relation

cD ¼ cDðReÞ: ð3:12Þ

This relation has been confirmed in countless experiments. It represents perhaps the
most convincing argument for the applicability of the constitutive relation (3.1a,
3.1b) to pure, low molecular fluids.

The constitutive relations for the linear viscous fluid (3.1a, 3.1b) and for the
inviscid fluid (3.9) apply to most technical applications. In what follows, we shall
deal almost exclusively with the flows of these fluids. Yet there is a series of
technical applications where non-Newtonian fluids play a role, among these the
manufacture of plastics, lubrication technology, food processing and paint pro-
duction. Typical representatives of non-Newtonian fluids are liquids which are
formed either partly or wholly of macromolecules (polymers), and two phase
materials like, for example, high concentration suspensions of solid particles in a
liquid carrier solution. For most of these fluids, the shear viscosity decreases with
increasing shearrate, and we call them shear-thinning fluids. Here the shear vis-
cosity can decrease by many orders of magnitude. This is a phenomenon which is
very important in the plastics industry, since the aim is to process plastics at high
shearrates in order to keep the dissipated energy small. If the shear viscosity
increases with increasing shearrate, we speak of shear-thickening fluids. Note that
this notation is not unique, and shear-thinning fluids are often called “pseudo-
plastic”, and shear-thickening fluids are called “dilatant”.

In the simple shearing flow of incompressible fluids (Fig. 1.1), which conforms
with the linear law (3.1a, 3.1b), the normal stresses (terms on the main diagonal of
the matrix representation of the tensor T) are all equal. Expansion of the Eq. (3.1a,
3.1b) leads to
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s11 ¼ �pþ 2g@u1=@x1;

s22 ¼ �pþ 2g@u2=@x2;

s33 ¼ �pþ 2g@u3=@x3:

Since the velocity field is u1 ¼ _cx2; u2 ¼ u3 ¼ 0;

s11 ¼ s22 ¼ s33 ¼ �p

follows. Obviously this also holds for more general flows with u1 ¼ u1ðx2Þ;
u2 ¼ u3 ¼ 0. Indeed, the normal stress differences vanish in all steady unidirec-
tional flows which follow the linear law (3.1a, 3.1b).

In general this is not the case in non-Newtonian flows. They show normal stress
effects, of which the best known is the Weissenberg effect. Contrary to what a
Newtonian fluid does, some non-Newtonian fluids climb up a rotating rod which is
inserted perpendicular to the free surface. This effect, which only takes place with a
small enough rod radius, can be seen by stirring paint or cream. It is caused by the
nonvanishing difference between the normal stresses. Another normal stress effect
is the extrudate swell: as the liquid emerges from a capillary tube the diameter
increases. This phenomenon is important in the extrusion of melted plastics,
because, depending on the extrusion pressure, the diameter can be more than twice
the diameter of the tube. (At smaller Reynolds’ numbers, we see, even for
Newtonian fluids, a small jet swell which has its origin in the rearrangement of the
velocity profile at the exit.) The normal stress effects are an expression of a “fluid
elasticity”, which manifests itself in an elastic recovery when the load on the liquid
is suddenly removed. These phenomena can be qualitatively explained by the
structure of the polymeric fluid. Polymers are macromolecules consisting of long
chains, whose single members have arisen from monomers and still show a similar
structure. Silicon oil (polydimethylsiloxane), for example, consists of chain mole-
cules of the form

which arise, through polymerization, from monomers with the formula

88 3 Constitutive Relations for Fluids



These long chains can, in some cases, contain many thousand molecules, so that the
molecular weight, that is, the weight of 6.0222 � 1023 molecules (Avogadro’s
number) is correspondingly large, and reaches values of up to 106 g/mol. Typical
non-Newtonian effects are seen at molecular weights of over 103 g/mol. Polymeric
fluids can have quite different physical properties from those of the corresponding
monomeric fluid. This also comes from the fact that the chains themselves (which
indeed are not all the same length) can easily become tangled. Because of the
thermal motion, they continually undo and reform new tangles. Under shearing
loads, the chains are straightened out, and this can serve as a rough model to explain
the decreasing viscosity with increasing shearrate. The remaining viscosity when
the shearrate vanishes is the so-called null viscosity, which is almost proportional to
the molecular weight of the fluid. The aligned molecules try to retangle themselves
and if this is hindered additional normal stresses arise. In the extrusion process the
molecules in the tube are aligned. Following this highly ordered state, the molecules
retangle themselves after exiting the tube, and thus cause an increase of the
extrudate diameter. In accordance with the second law of thermodynamics, they try
to reach a state of maximum disorder, that is, of maximum entropy. The elastic
recovery mentioned above can be viewed similarly. We stress that this form of
elasticity has a completely different character from the elasticity of a solid. By
stretching a solid, the atoms are pulled away from each other. The work done by
stretching is then retained by the solid as potential energy. On release, the solid
immediately springs back into shape, if we ignore the inertia of the material. The
elasticity of a polymer fluid is a consequence of the thermal motion (retangling) and
therefore it needs a certain time, which is the reason why the extrudate swell does
not necessarily begin directly after the material exits the tube.

As well as the phenomena we have already mentioned, non-Newtonian fluids
exhibit a number of further, sometimes very surprising, effects, and therefore we do
not expect that a single constitutive relation is enough to describe all these different
phenomena. From a technical standpoint, shearthinning is particularly important,
because many flows in applications are shear flows, or closely related flows. Thus
the strong dependency of the viscosity on the shearrate can have a great influence.
For example, this is the case in hydrodynamic lubrication flows and pipe flow of
non-Newtonian fluids, as well as in the processing of plastics.

We have already described the constitutive relation s ¼ s _cð Þ for the simple
shearing flow of non-Newtonian fluids, and we shall write this as

s ¼ g _cð Þ _c: ð3:13Þ

We obtain an extension of this relation for the general stress state if we allow a
dependency of the shear viscosity on the rate of deformation tensor in (3.1a, 3.1b).
Since η is a scalar, it can only be dependent on the invariants of this tensor. For
incompressible flow, the first invariant (cf. (1.58)) I1e ¼ eii is zero, the third
invariant I3e ¼ detðeijÞ vanishes for simple shearing flow, and for incompressible
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flow, the second invariant becomes 2 I2e ¼ �eijeij. Using these we introduce a
generalized shearrate

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�4I2e

p
; ð3:14Þ

so that, in agreement with (1.3), we have for simple shearing flow

_c ¼ du=dy: ð3:15Þ

The constitutive relation of the generalized Newtonian fluid then follows from the
Cauchy-Poisson law (3.1a, 3.1b)

sij ¼ �p dij þ 2g _cð Þeij: ð3:16Þ

In the literature, we find numerous empirical or semi-empirical models for the
function g _cð Þ; of which we shall only mention the often used power law

g _cð Þ ¼ m _cj jn�1; ð3:17Þ

(where the parameters m and n are determined experimentally), because in simple
cases, this allows closed form solutions. Obviously m is a parameter whose
dimension depends on the dimensionless parameter n. For n > 1 shear-thickening
behavior is described, and for n < 1 we have shear-thinning behavior. For _c ! 0;
the yield function in the first case tends to zero, and in the second case it becomes
infinite, so that then (3.17) is of no use if _c ¼ 0 is reached in the flow field. This
difficulty can be overcome with a modification of the model (3.17) with three free
parameters

g ¼ g0 for _c� _c0
g0 _c= _c0j jn�1 for _c[ _c0

�
: ð3:18Þ

Here _c0 is the shearrate up to which Newtonian behavior with the null viscosity η0
is found. The generalized Newtonian fluid shows no normal stress effects. These are
only found in a more comprehensive model for steady shearing flow, which we
shall not go into now, but which contains the generalized Newtonian fluid as a
special case.

For unsteady flows, where fluid elasticity is particularly noticeable, linear vis-
coelastic models, whose origin goes back to Maxwell, are often used. The
mechanical analogue to the linear viscoelastic model is the series arrangement of a
spring and a damper (Fig. 3.1). We identify the deflection of the spring with the
shearing cS, that of the damper with cD, and the force with s21, and so we obtain
from the balance of forces
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s21 ¼ GcS ¼ g _cD: ð3:19Þ

We write the complete deflection cS þ cD as c, so that, from (3.19), the equation

s21 ¼ g _c� g
G
_s21 ð3:20Þ

arises. Using g=G ¼ k0; _c ¼ du=dy ¼ 2e12 for the simple shearing flow, (3.20) can
also be written in the form

s21 þ k0 _s21 ¼ 2 g e12: ð3:21Þ

The tensorial generalization of this equation is the constitutive relation of the linear
viscoelastic fluid

Pij þ k0
@Pij

@t
¼ 2g eij: ð3:22Þ

We can call the characteristic time k 0 the “memory span” of the fluid. As k0 ! 0;
we obtain from (3.22) the constitutive relation valid for Newtonian fluids (3.2a,
3.2b), if we set there ekk = 0 (incompressible flow).

In this sense the Newtonian fluid is a fluid without memory. But Eq. (3.22) is
neither frame independent, nor describes the phenomena of shear-thinning or
shear-thickening. However, the constitutive relation can be brought to a frame

Fig. 3.1 Maxwell’s model of a linear elastic fluid
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independent form if the partial time derivative is replaced by an objective time
derivative, like that given by Oldroyd’s derivative in (1.69), or by Jaumann’s
derivative, of which (2.63) is a special case, and in general it then describes also
shear-thinning behavior.

This is so, because constitutive relations describe properties of the material
point, and therefore should be formulated in a reference frame which moves and
rotates with the material particle (or deforms with it). By doing this we ensure that
the material behavior is independent of the rotation and translation of the particle,
which indeed represent local rigid body motion.

If the stress on the material particle only depends on the instantaneous value of
the rate of deformation tensor, as is the case, for example, in Cauchy-Poisson’s law,
then an observer-fixed reference frame, for the time being considered as fixed in
space, is adequate. Because then the constitutive relation takes exactly the same
form as in the frame co-rotating with the particle. We can immediately convince
ourselves of this if we transform from one system into the other by the rules of
Appendix A. If the deformation history enters the stress state, for example if the
constitutive relations take the form of differential equations, then the frame fixed in
space is not allowed, since the rates of change of tensors do not in general comply
with the transformation rules in Appendix A: they are thus not frame independent or
objective tensors. This is the name for tensors which comply with usual transfor-
mation rules even when the transformation matrix is time dependent. This is of
course necessary for the constitutive relations to have the same form in all systems.
Thus a constitutive relation of the form (3.22) only holds in systems which rotate
and translate with the particle, where the translation is taken into account if the
partial derivative in (3.22) is the material derivative. It would appear obvious at first
to transform the equations of motion into the reference frame rotating with the
material particle. There are many reasons why this is not practicable: apart from the
fact that in general the angular velocities of different material particles are different,
and the boundary conditions of a given problem would continually have to be
transformed, it is also almost impossible to make measurements in the different
rotating systems. As a rule, measurements and calculations are performed in a frame
fixed in space, in which as a rule the boundary of the flow field is at rest. In fact it is
this point which decides which reference frame we use. Therefore we attempt to
express the constitutive relations which are only valid in the system rotating and
translating with the material particle through quantities referred to the fixed frame.
To do this, it is enough to interpret the partial time derivative in (3.22) as a material
derivative of the components in the rotating system, and to represent this derivative
in quantities and components of the frame fixed in space, since the other tensors are
already in the fixed frame. We reach the required formula for the derivative if,
starting with the transformation (A.29)

Pij ¼ aikajlP
0
kl; ð3:23Þ
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where the P0
kl are the components in the rotating system, we form the material

derivative

DPij

Dt
¼ Daik

Dt
ajl þ aik

Dajl
Dt

� �
P0
kl þ aikajl

DP0
kl

Dt
: ð3:24Þ

It is the expression in parentheses which prevents the objectivity of the rate of
change of the tensor. The time derivative of the orthogonal transformation matrix
aij ¼~ei �~e0jðtÞ is found from (2.62), in which the angular velocity ~X is now to be
replaced by the angular velocity ~x of the particle, leading to

Daij
Dt

¼~ei � ~x�~e0j
� 	

¼~ei � ~x�~emð Þamj; ð3:25Þ

where the final expression follows from (A.23) and contains only terms in the
system fixed in space. Writing the scalar triple product in index notation

~ei � ~x�~emð Þ ¼ ~eið Þkeklnxl ~emð Þn; ð3:26Þ

and noting that the kth component ~ei �~ek ¼ ~eið Þk of the ith basis vector is the
Kronecker-Delta, we extract from (1.46) the expression

Daij
Dt

¼ eilmxlamj ¼ �Xmiamj; ð3:27Þ

which brings (3.24) to the form

aikajl
DP0

kl

Dt
¼ DPij

Dt
þPmjXmi þPimXmj: ð3:28Þ

The right-hand side of (3.28) already is the required rate of change of the tensor P0
kl

in the system rotating with the material particle, given in components of the system
fixed in space. This derivative, Jaumann’s derivative mentioned above, will be
denoted with the symbol D=Dt

DPij

Dt
¼ DPij

Dt
þPmjXmi þPimXmj: ð3:29Þ

Jaumann’s derivative of an objective tensor is another objective tensor, as can be
read from (3.28) noting that the spin tensor vanishes in the co-rotating frame. Thus
the reference frame which was denoted as fixed in space above can also be a relative
system. The rate of change DP=Dtð ÞA in the relative system is the same as in the
inertial system DP=Dtð ÞI ; while the components transform according to (A.28).
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Constitutive relations in which only objective tensors appear are then valid in all
reference frames, and satisfy the axiom of frame independence. They have the same
form in relative and inertial systems. Closely related to Jaumann’s derivative is
Oldroyd’s derivative (1.67), which, when applied to the friction stress tensor, leads
to the expression

dPij

dt
¼ DPij

Dt
þPmj

@um
@xi

þPim
@um
@xj

: ð3:30Þ

This is also found when the objective symmetric tensor Pmj emi þPim emj is added to
the right-hand side of (3.29). Then, besides the spin tensor, the rate of deformation
tensor also appears. Indeed, Oldroyd’s derivative represents the rate of change of a
tensor in the “body fixed” frame, thus in a reference frame which translates, rotates
and deforms with the particle, again decomposed into components of the frame
fixed in space. Oldroyd’s derivative of an objective tensor is also objective, and
therefore the Rivlin-Ericksen tensors known from Sect. 1.2.4 are objective tensors.
A relation between the stress tensor and the Rivlin-Ericksen tensors always
expresses an objective constitutive relation.

The value of these objective derivatives (and indeed others) lies in the fact that
they generalize material behavior measured in the frame fixed in space to arbitrarily
large deformations. For sufficiently small deformation velocities, which in general
also means small rotational velocities, (3.29) and (3.30) reduce back to the partial
time derivatives, and therefore Eq. (3.22) serves to describe oscillatory fluid
motions of small amplitude very well.

Both of the models discussed are examples from the many non-Newtonian fluid
models, which are, as a rule, all of empirical nature. On the basis of a simple fluid, a
number of these constitutive relations can be systematically ordered. We refer here
to the more advanced literature, but shall mention two more models which have
found numerous technological applications, because the general functional depen-
dency of the friction stress tensor on the history of the relative deformation gradient
has an explicit form in these cases. The viscous stress tensor is a tensor valued
function of this history, with nine (or in the case of symmetry, six) components. The
history is a function of the time t′, which describes the course of the relative
deformation gradient tensor. t′ can lie between −∞ and the current time t. The
tensor of the friction stresses is therefore a tensor valued function, whose arguments
are also tensor valued functions. We speak of a function of a function, or of a
functional. The relative deformation gradient tensor Cijð~x; t; t0Þ describes the
deformation which the particle situated at ~x at time t has experienced at time t′.

Consider the fluid motion~x ¼~xð~n; tÞ and the position of the material point~n at time

t′ < t, i.e., ~x0 ¼~x ~n; t0
� 	

: If we replace ~n here by ~n ¼~n ~x; tð Þ to obtain

~x0 ¼~x ~x; t; t0ð Þ
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we are actually using the current configuration as the reference configuration. For
fixed current time t and the new parameter t – t′ � 0, the relative motion is the
history of the motion. The symmetric tensor

@x0l
@xi

@x0l
@xj

formed with the relative deformation gradient

@x0l
@xi

is the above relative deformation gradient tensor, also called the relative right
Cauchy-Green tensor (see also Eq. (3.45)).

We are considering the case in which the history Cijð~x; t; t0Þ can be expanded into
a Taylor series. The coefficients of the series are Rivlin-Ericksen tensors defined by
(1.68), so that the following holds for the expansion

Cij ~x; t; t
0ð Þ ¼ dij þ t0 � tð ÞA 1ð Þij þ 1

2
t0 � tð Þ2 A 2ð Þij þ . . . ð3:31Þ

(To see the equivalence

A nð Þij ¼
DnCij

Dt0n


 �
t0¼t

we differentiate the square of the line element ds′ with respect to t′

Dnds02

Dt0n
¼ Dn

Dt0n
@x0l
@xi

@x0l
@xj

� �
dxidxj ¼ DnCij

Dt0n
@xi
@x0k

@xj
@x0m

dx0kdx
0
m:

On the other hand by (1.68)

Dnds02

Dt0n
¼ A nð Þijdx0idx

0
j:

For t′ = t therefore

DnCij

Dt0n


 �
t0¼t

dikdjmdx0kdx
0
m ¼ A nð Þijdx0idx

0
j;

hence the above equivalence.)
If we truncate the series at the nth term (either because the higher

Rivlin-Ericksen tensors become very small, as according to (1.68) is the case if the
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change of the material line element occurs at a low enough rate, or if the kinematics
is so restricted that the higher tensors vanish identically, as is the case in steady
unidirectional or viscometric flow for n > 2), then the friction stress tensor is no
longer a function of a function, but is a function of n Rivlin-Ericksen tensors. Then
the constitutive relation reads

sij ¼ �pdij þuij A 1ð Þkl; . . .;A nð Þkl
� 

; ð3:32aÞ

or, symbolically

T ¼ �p Iþu A 1ð Þ; . . .;A nð Þ
� 

; ð3:32bÞ

where u is a tensor valued function of the n tensor variables A(1) to A(n). For
unidirectional flows in particular, the transition from the functional leads to the
equation

T ¼ �p Iþu A 1ð Þ;A 2ð Þ
� 

: ð3:33Þ

By unidirectional flows we understand flows in which in a certain (not necessarily
Cartesian) coordinate system, only one velocity component is nonzero, and this
varies only perpendicular to the direction of flow. Because of the particularly simple
kinematics, this class of flows often leads to closed solutions, and will be treated
further in Chap. 6.

If we denote the flow direction with the unit vector~e1, the direction of velocity
change with ~e2 and the direction orthogonal to these by ~e3, the first and second
Rivlin-Ericksen tensors take on the form known from Sect. 1.2 of the simple
shearing flow (1.71) and (1.72). Since the components of A(1) and A(2) are only
functions of _c, we extract from (3.33) the equation

sij ¼ �pdij þuij _cð Þ: ð3:34Þ

The stresses s13 = s31 and s23 = s32 are zero in all unidirectional flows, and the
matrix representation of (3.34) reads

½T	 ¼
u11 _cð Þ � p u12 _cð Þ 0
u12 _cð Þ u22 _cð Þ � p 0

0 0 u33 _cð Þ � p

2
4

3
5: ð3:35Þ

In order to eliminate the undefined pressure in incompressible flow, we form the
differences of the normal stresses
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s11 � s22 ¼ N1 _cð Þ
s22 � s33 ¼ N2 _cð Þ ; ð3:36Þ

which, together with the shear stress

s12 ¼ s _cð Þ ð3:37Þ

fully determine the behavior of the simple fluid in steady unidirectional flows.
N1ð _cÞ is called the primary normal stress function, N2ð _cÞ the secondary normal
stress function and s _cð Þ the shear stress function. N1 and N2 are even functions of _c,
and s is an odd function of _c. Of course all of these functions depend on the
material. However, two different fluids with the same normal and shearing stress
functions can show completely different behavior in flows which are not
unidirectional.

We consider now the case where the change of ds2 in (1.68) is sufficiently slow.
This occurs in slow and slowly varying motions, and we shall say that A(1) is of the
first order and A(2) is of the second order

A nð Þ �O �nð Þ: ð3:38Þ

If we restrict ourselves to terms of the first order in ε, (3.32a, 3.32b) can be written
in the form

T ¼ �pIþ gA 1ð Þ; ð3:39aÞ

or

sij ¼ �p dij þ gA 1ð Þij: ð3:39bÞ

Since A 1ð Þij ¼ 2eij, we recognize the Cauchy-Poisson law (3.1a, 3.1b) for incom-
pressible Newtonian fluids, which we have reached here for the limiting case of
very slow or slowly varying motions. However, “slow variations” implies a vari-
ation with a typical time scale large in comparison to the memory time of the fluid.
As we already found in connection with (3.22), the Newtonian fluid has no
memory, so that the time scale can be arbitrarily small in the sense of the
approximation (3.39a, 3.39b).

If we consider terms up to the second order in ε, (3.32b) furnishes the definition
of a second order fluid

T ¼ �p Iþ gA 1ð Þ þ bA2
1ð Þ þ cA 2ð Þ: ð3:40Þ
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The coefficients η, b and c here are material dependent constants (where, from
measurements, c turns out to be negative and should not be confused with the shear
angle). The validity of this constitutive relation is not kinematically restricted, and it
can be used in general also for unsteady, three-dimensional flows. The restriction is
the necessary “slowness” of the flow under consideration, where the meaning of
“slow” is to be clarified in the given problem.

The second order fluid is the simplest model which shows two different normal
stress functions in simple shearing flow, which increase with _c2 as they should. But
the shear-thinning always seen in experiments on polymeric fluids is not described.
In spite of this, this model is used in many applications, and it also predicts most
non-Newtonian effects qualitatively, if not always quantitatively. Finally, this
constitutive relation, which satisfies all the axioms stated at the beginning of this
chapter, can be seen, separate from its derivation, as an admissible fluid model,
whose agreement with actual material behavior is in any case to be checked
experimentally (as is also done with the Cauchy-Poisson law).

The materials mentioned until now have been pure fluids, that is materials where
the shearing forces vanish when the rate of deformation vanishes. As already said,
we often have to deal with substances which have a dual character. Of these
substances, we shall mention here the Bingham material, which can serve as a
model for the material behavior of paint, or more generally, for high concentration
suspensions of solid particles in Newtonian fluids. If the solid particles and the fluid
are dielectrics, that is do not conduct electrically, then these dispersions can take on
Bingham character under a strong electric field, even if they show only pure fluid
behavior without electric field. These electrorheological fluids, whose material
behavior can be changed very quickly and without much effort, can find applica-
tions, for example, in the damping of unwanted oscillations. Through appropriate
measures the material can be made to self-adjust to changing requirements and may
be formed into “intelligent” materials, which are found increasingly interesting.
Even the behavior of grease used as a means of lubricating ball bearings, can be
described with the Bingham model.

We can gain considerable insight into the behavior of Bingham materials
behavior looking at the simple shearing flow: if the material flows, we have for the
shear stress

s ¼ g1 _cþ#; s�#: ð3:41Þ

Otherwise the material behaves like an elastic solid, i.e., the shear stress is

s ¼ Gc; s\#; ð3:42Þ

where # is the yield stress and G is the shear modulus. In a general stress state, the
yield stress becomes tensorial, and in place of #; #ij appears, so that the criterion
for flow is not immediately obvious. In what follows, we introduce the generalized
Bingham constitutive relation, and first describe the elastic behavior. Our starting
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point is Eqs. (1.5) and (1.8), where we now consider~n as the particle position in a
stress free state, and~x as the position of the same particle in the deformed state. An
undeformed material vector element has the following relation with the deformed
element d~x (Fig. 3.2)

dxi ¼ @xi
@nj

dnj; ð3:43Þ

which follows directly from (1.5) and where @xi
�
@nj is the deformation gradient.

Thus we write for the square of the element of length d~xj j

dxidxi ¼ @xi
@nj

@xi
@nk

dnjdnk ð3:44Þ

as well as for the difference

d~xj j2� d~n
��� ���2¼ @xi

@nj

@xi
@nk

� djk

� �
dnjdnk ð3:45Þ

and we shall denote the half of the expression in parentheses as Lagrangian strain
tensor Ejk. The obviously symmetric tensor @xi=@nj

� �
@xi=@nkð Þ in (3.44) is called

Green’s deformation tensor or the right Cauchy-Green tensor. Using the inter-
mediate step

d~xj j2� d~n
��� ���2¼ @xi

@nj

@xi
@nk

� djk

� �
@nj
@xl

dxl
@nk
@xm

dxm ð3:46Þ

equation (1.5) allows the representation of (3.45) in field coordinates

d~xj j2� d~n
��� ���2¼ dlm � @nk

@xl

@nk
@xm

� �
dxldxm: ð3:47Þ

Fig. 3.2 Behavior of Bingham materials
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We call the half of the expression in parentheses in (3.47) Eulerian strain tensor
�lm; this is also known as Almansi’s strain tensor. The symmetric tensor
@nk=@xlð Þ @nk=@xmð Þ is Cauchy’s deformation tensor, and it is the Eulerian coun-
terpart to Green’s deformation tensor. We also express the deformation tensors
using the displacement vector

~y ¼~x�~n ð3:48Þ

and extract, with Green’s deformation tensor

@xi
@nj

@xi
@nk

¼ @yi
@nj

@yi
@nk

þ @yk
@nj

þ @yj
@nk

þ dkj ð3:49Þ

the following expression for the Lagrangian strain tensor

Ejk ¼ 1
2

@yi
@nj

@yi
@nk

þ @yj
@nk

þ @yk
@nj

� �
; ð3:50Þ

which, for small enough deformations (ignoring the quadratic terms), simplifies to

Ejk ¼ 1
2

@yj
@nk

þ @yk
@nj

� �
: ð3:51Þ

From (3.48) follows

@yj
@xk

¼ dkj �
@nj
@xk

ð3:52aÞ

and for small deformations, i.e., @yj=@xk 
 @nj=@xk; we find

@nj
@xk

� dkj: ð3:52bÞ

Comparison of (3.46) and (3.47) furnishes

Ejk
@nj
@xl

@nk
@xm

¼ �lm ð3:53Þ

and we are led to

Elm � �lm: ð3:54Þ
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In this case the difference between Lagrangian and Eulerian strain tensor vanishes.
In what follows we shall restrict ourselves to small deformations, and we find from
the substantial derivative of the deformation tensor �lm ¼ 1=2 @yl=@xm þ @ym=@xlð Þ
again the rate of deformation tensor (1.29a)

D�lm
Dt

¼ 1
2

@ul
@xm

þ @um
@xl

� �
¼ elm: ð3:55Þ

In rheology it is usual to denote the negative mean normal stress as the pressure,
and we shall follow this usage here, noting however that the mean normal stress in
general includes isotropic terms which are dependent on the motion. (See Eq. (3.3)
for the case of Newtonian fluid.) However, for incompressible materials, to which
we shall restrict ourselves, the pressure is an unknown function which follows from
the solution of the equations of motion only to within an additive constant, and the
absolute value of the pressure is not important. Therefore, for the constitutive
relation we shall write

sij ¼ �p dij þ s0ij; p ¼ � 1
3
skk: ð3:56Þ

The tensor s0ij is, as above, a deviator, that is the trace of the tensor vanishes. If e0ij
and �ij are the deviators of the rate of deformation and the strain tensors, the
following holds at the yield point

e0ij ¼ 0 and s0ij ¼ 2G�0ij ¼ #ij: ð3:57Þ

We shall assume that yield occurs according to the von Mises’ hypothesis, that is
when the energy stored in the material as a result of the deviatoric stresses reaches a
given value

1
2
�0ijs

0
ij ¼ const. ð3:58Þ

By (3.57), the potential energy at the yield point is then

1
4G

#ij#ij ¼ const =
1
2G

#2; ð3:59Þ

so that we obtain the constitutive relation of the Bingham material in the form

s0ij ¼ 2ge0ij if
1
2
s0ijs

0
ij �#2; ð3:60Þ
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and

s0ij ¼ 2G�0ij if
1
2
s0ijs

0
ij �#2; ð3:61Þ

where

g ¼ g1 þ#

�
2e0ije

0
ij

� 	1=2
: ð3:62Þ

The incompressible Bingham material is determined by the three material constants
G, # and η1. Wherever it flows it behaves as a fluid with variable viscosity η, which
depends on the second invariant of the rate of deformation deviator I′2e. Therefore
here it behaves as a generalized Newtonian fluid. The yield criterion in (3.60) and
(3.63) contains only the second invariant I′2e of the stress deviator, so this is
coordinate invariant. For simple shearing flow we have s0ijs

0
ij ¼ 2s2xy;

and Eqs. (3.60) and (3.61) reduce to Eqs. (3.41) and (3.42), since by (3.62)
e0xy ¼ 1

2 du=dy: Often, instead of the elastic solid body behavior in the region where
1
2 s

0
ijs

0
ij\#2; rigid body behavior is assumed. Then the constitutive relation takes on

the form

s0ij ¼ 2ge0ij if
1
2
s0ijs

0
ij �#2 ð3:63Þ

and

�0ij ¼ 0 if
1
2
s0ijs

0
ij �#2: ð3:64Þ

In numerical calculations, the Bingham constitutive relation is also approximated
with a two-viscosity model, which is more easily dealt with numerically, and which
also offers advantages in localizing the yield surfaces. In this model the rigid body
character (3.64) is replaced by a Newtonian flow behavior with very high viscosity
g0 g0 � g1ð Þ: Then instead of (3.64) we have the law

s0ij ¼ 2g0e
0
ij if

1
2
s0ijs

0
ij �#2; ð3:65Þ

which, for g0 ! 1; i.e., e0ij ! 0 becomes (3.64).
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Chapter 4
Equations of Motion for Particular
Fluids

We shall now specialize the universally valid equations, namely Cauchy’s equation
(2.38) and the energy equation (2.119) to the two most technically important cases:
Newtonian fluids and inviscid fluids. The continuity equation (2.2) (mass balance)
and the symmetry of the stress tensor (2.53) (angular momentum balance) remain
unaffected by the choice of the constitutive relation.

4.1 Newtonian Fluids

4.1.1 The Navier-Stokes Equations

We start with a Newtonian fluid which is defined by the constitutive relation (3.1)
and, by setting (3.1) and (1.29) into (2.38), we obtain the Navier-Stokes equations

.
Dui
Dt

¼ . ki þ @

@xi
�pþ k�

@uk
@xk

� �
þ @

@xj
g

@ui
@xj

þ @uj
@xi

� �� �
; ð4:1Þ

where we have used the exchange property of the Kronecker delta dij.
With the linear law for the friction stresses (3.2) and the linear law for the heat

flux vector (3.8), we specialize the energy equation to the case of Newtonian fluids

.
De
Dt

� p
.
D.
Dt

¼ Uþ @

@xi
k
@T
@xi

� �
; ð4:2Þ

where the dissipation function U is given by (3.6). In the same way we deal with the
forms (2.116) and (2.118) of the energy equation, which are often more appropriate.
Another useful form of the energy equation arises by inserting the enthalpy
h ¼ eþ p=. into (4.2). Because of
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.
Dh
Dt

¼ .
De
Dt

� p
.
D.
Dt

þ Dp
Dt

ð4:3Þ

(4.2) can also be written as

.
Dh
Dt

� Dp
Dt

¼ Uþ @

@xi
k
@T
@xi

� �
: ð4:4Þ

As a consequence of Gibbs’ relation (2.133), the entropy equation for Newtonian
fluids can also appear in place of (4.2)

. T
Ds
Dt

¼ Uþ @

@xi
k
@T
@xi

� �
: ð4:5Þ

If we choose the energy equation (4.2), together with the continuity equation and
the Navier-Stokes equations we have five partial differential equations with seven
unknown functions. But both the thermal equation of state p ¼ p .; Tð Þ and the
caloric equation of state e ¼ e .; Tð Þ appear also. This set of equations forms the
starting point for the calculation of frictional compressible flow.

By (4.1) the Navier-Stokes equations are given in Cartesian coordinates.
However in many technical applications the geometry of the flow boundary sug-
gests a curvilinear coordinate system (If we consider, for example, the unidirec-
tional flow between rotating cylinders (Fig. 6.5), there is only one nonzero velocity
component to consider in cylindrical coordinates, while in Cartesian coordinates
there would be two components). It is then advisable to use the symbolic notation
valid in all coordinate systems. In order to do this, we introduce the constitutive
relation (3.1b) into Cauchy’s equation (2.38b)

.
D~u
Dt

¼ .~k �r pþr k�r �~uð Þþr � 2 gEð Þ; ð4:6Þ

where now the use of the material derivative (1.78) is more expedient. In Eqs. (4.2)–
(4.5), the operator @=@xi, is to be replaced by the Nabla operator r, and the dissi-
pation function is to be inserted in symbolic notation (3.6b). The most important
curvilinear coordinate systems are orthogonal, and knowing the appropriate defi-
nition of the Nabla operator we can directly calculate the component equations of
(4.6) in the chosen coordinate system. The method of calculation is explained in
Appendix B, where the component forms of the Navier-Stokes equations (for
incompressible flow) in the most often used coordinate systems can be found.

For isothermal fields, or by ignoring the temperature dependence of η and k*, the
final term on the right-hand side of (4.1) can be put in a different form. In Cartesian
index notation we have then
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@

@xj
g

@ui
@xj

þ @uj
@xi

� �� �
¼ g

@2ui
@xj@xj

þ @

@xi

@uk
@xk

� �� �
; ð4:7Þ

where we have interchanged the order of differentiation in an intermediate step, so
that from (4.1) the form cited by Navier and Stokes is obtained

.
Dui
Dt

¼ . ki � @p
@xi

þ k� þ gð Þ @

@xi

@uk
@xk

� �
þ g

@2ui
@xj@xj

� �
: ð4:8aÞ

In symbolic notation, this equation reads

.
D~u
Dt

¼ .~k �rpþ k� þ gð Þr r �~uð Þþ gD~u: ð4:8bÞ

In this D ¼ r � r is the Laplace operator, whose explicit form in various coordinate
systems may be found in Appendix B. In incompressible flow
@uk=@xk ¼ r �~u ¼ 0ð Þ (4.8a, 4.8b) is reduced to

.
Dui
Dt

¼ . ki � @p
@xi

þ g
@2ui

@xk@xk
; ð4:9aÞ

or

.
D~u
Dt

¼ .~k �rpþ gD~u: ð4:9bÞ

Often the density distribution . is homogeneous when the incompressible fluid is
set in motion. Because D.=Dt ¼ 0, this homogeneity remains for all time, so that
the condition “incompressible flow” can be replaced by the condition “constant
density”. In what follows, we shall always assume this unless the opposite is
explicitly stated (see also the discussion in Sect. 2.1). With (4.9a, 4.9b) and the
continuity equation (@ui=@xi ¼ 0), we have four differential equations for the four
unknown functions ui and p, where p is now a dependent variable of the problem.

We interpret Eq. (4.9a, 4.9b) as follows: on the left is the product of the mass of
the material particle (per unit volume) and its acceleration; on the right is the sum of
the volume body force .~k, the net pressure force per unit volume �rp (the dif-
ference between the pressure forces on the material particle, i.e., the divergence of
the pressure stress tensor �r� (pI), and the net viscous force per unit volume gD~u
(the difference between the viscous forces on the particle, i.e., the divergence of the
viscous stress tensor in incompressible flow 2gr � E).

We next use the vector identity

D~u ¼ r r �~uð Þ � r � r�~uð Þ; ð4:10Þ
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which is easily verified in index notation, and which reduces the application of the
Laplace operator to operations with r even in curvilinear coordinates. Because
r �~u ¼ 0, we then have

gD~u ¼ �2gr� ~x: ð4:11Þ
This equation makes it clear that in incompressible and irrotational flow
(r�~u ¼ 2~x ¼ 0), the divergence of the viscous stress tensor vanishes. The vis-
cous stresses themselves are not zero, it is only that they provide no contribution to
the acceleration of the particle. From the fact that the angular velocity appears on
the right-hand side, we may not conclude that the viscous stresses depend on ~x
(which is of course impossible), but that D~u can be expressed by �2r� ~x in
incompressible flow.

4.1.2 Vorticity Equation

Since a viscous incompressible fluid behaves like an inviscid fluid in regions where
~x ¼ 0, the question arises of what the differential equation for the distribution of ~x
is. Of course this question does not arise if we consider the velocity field as given,
because then ~x can be calculated directly from the velocity field using Eq. (1.49).
To obtain the desired relation, we take the curl of the Eq. (4.9b). For reasons of
clarity, we shall use symbolic notation here. We assume further that ~k has a
potential (~k ¼ �rw), and use the identity (4.11) in Eq. (4.9b). In addition, we
make use of (1.78) to obtain the Navier-Stokes equations in the form

1
2
@~u
@t

�~u� ~x ¼ � 1
2
r wþ p

.
þ ~u �~u

2

� �
� �r� ~x: ð4:12Þ

The operation r� applied to (4.12), along with the identity (easily verified in index
notation)

r� ~u� ~xð Þ ¼ ~x � r~u�~u � r~x� ~xr �~uþ~ur � ~x ð4:13Þ

furnishes the new left-hand side @~x=@t � ~x � r~uþ~u � r~x, where we have already
noted that the flow is incompressible r �~u ¼ 0ð Þ and that the divergence of the curl
always vanishes

2r � ~x ¼ r � r �~uð Þ ¼ 0: ð4:14Þ

This can be shown in index notation or simply explained by the fact that the
symbolic vector r is orthogonal to r�~u. On the right-hand side of (4.12), the
term in parantheses vanishes, since the symbolic vector r is parallel to the gradient.
The remaining term on the right-hand side ��r� r� ~xð Þ is recast using the
identity (4.10), and because r � ~x ¼ 0 from (4.14) we extract the new right-hand
side � D~x. In this manner we arrive at the vorticity equation
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@~x
@t

þ~u � r~x ¼ ~x � r~uþ � D~x: ð4:15Þ

Because @=@tþ~u � r ¼ D=Dt we can shorten this to

D~x
Dt

¼ ~x � r~uþ � D~x: ð4:16Þ

This equation takes the place of the Navier-Stokes equation, and is often used as a
starting point for, in particular, numerical calculations. Because 2~x ¼ curl~u, (4.16)
represents a differential equation only in~u; the pressure term contained in (4.12) no
longer appears. In two-dimensional flow ~x � r~u is zero, so that (4.16) can be
written as

D~x
Dt

¼ � D~x: ð4:17Þ

For the time being we shall only treat the case of the inviscid fluid � ¼ 0ð Þ, for
which (4.16) takes the form

D~x
Dt

¼ ~x � r~u ð4:18aÞ

or in index notation

Dxi

Dt
¼ xk

@ui
@xk

: ð4:18bÞ

After expanding the material derivative, we can consider (4.18a, 4.18b) as a dif-
ferential equation for the field ~x ~x; tð Þ, but also immediately as a differential equation

for the angular velocity ~x ~n; t
� �

of the material particle~n. If we view (4.18a, 4.18b)

in this way it has a simple solution: instead of the unknown vector ~x ~n; t
� �

, we

introduce with (1.5) xi ¼ xi nj; t
� 	� 	

the unknown vector~c ~n; t
� �

with the mapping

xi ¼ cj
@xi
@nj

: ð4:19Þ

The tensor @xi


@nj is known from (3.43), where it provided the relation

dxi ¼ @xi
@nj

dnj ð4:20Þ
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between the deformed element d~x and d~n. This tensor is nonsingular since the
Jacobian J ¼ det @xi



@nj

� 	
is not equal to zero, a fact which was used in Sect. 1.2

and in the discussion of the Bingham material in Chap. 3. The material derivative of
(4.19) leads to the relation

Dxi

Dt
¼ Dcj

Dt
@xi
@nj

þ cj
D
Dt

@xi
@nj

� �
; ð4:21Þ

whose final term we transform by interchanging the order of differentiation

cj
D
Dt

@xi
@nj

� �
¼ cj

@ui
@nj

: ð4:22Þ

Here @ui


@nj is the velocity gradient in the material description ~u ¼~u ~n; t

� �
. We

take the velocity in material coordinates as given by (1.9), thus~u ¼~u ~x ~n; t
� �

; t
n o

,

so that after using the chain rule on (4.22), we obtain the equation

cj
D
Dt

@xi
@nj

� �
¼ cj

@ui
@xk

@xk
@nj

; ð4:23Þ

or, with (4.19) also

cj
D
Dt

@xi
@nj

� �
¼ xk

@ui
@xk

: ð4:24Þ

Then by (4.21), instead of (4.18a, 4.18b) we can finally write

Dcj
Dt

¼ 0; or cj ¼ cj ~n
� �

: ð4:25Þ

This means that for a material particle ~n ¼ const
� �

the vector cj does not change.

We fix this still unknown vector from the initial condition for ~x

xi t ¼ 0ð Þ ¼ x0i ¼ cj
@xi
@nj

����
t¼0

¼ cjdij ¼ ci ð4:26Þ

since~xi t ¼ 0ð Þ ¼~ni and thus also obtain from (4.19) the desired solution

xi ¼ x0j
@xi
@nj

; ð4:27Þ
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which, compared to (4.20), shows us that the vector ~x obeys the same mapping as

d~x. If we choose the vector d~n to be tangential to ~x, so that d~n is simultaneously a
vector element on the vorticity line, this comparison shows that the same material
elements at the time t, denoted d~x, are still tangential to the vector of the angular
velocity ~x, and thus vorticity lines are material lines. Since the vector of the angular
velocity ~x changes in exactly the same manner as the material line element d~x, the
magnitude of the angular velocity must get larger when d~xj j increases, i.e., when the
material line element is stretched. Thus we deduce the following conclusion which
is also important for the behavior of turbulent flows:

The angular velocity of a vortex filament increases when it is stretched and decreases when
it is compressed.

We shall go into this aspect of inviscid flow in more detail in connection with
Helmholtz’s vortex theorems, and shall infer from (4.27) the important fact that the
angular velocity of a material particle remains zero for all times if it is zero at time
t = 0. An inviscid flow thus remains (if~k has a potential) irrotational for all times if
it is irrotational at the reference time. We could also reach this conclusion from
(4.18a, 4.18b) together with the initial condition, but (4.27) shows us clearly that
the deformation gradient @xi



@nj also must remain finite. A flow which develops

discontinuities is in general no longer irrotational.

4.1.3 Effect of Reynolds’ Number

In viscous flow, the term, � D~x in (4.16) represents the change in the angular
velocity of a material particle which is due to its neighboring particles. Clearly, the
particle is set into rotation by its neighbors via viscous torques, and it itself exerts
torques on other neighboring particles, thus setting these into rotation. The particle
only passes on the vector of angular velocity ~x on to the next one, just as tem-
perature is passed on by heat conduction, or concentration by diffusion. Thus we
speak of the “diffusion” of the angular velocity vector ~x or of the vorticity vector
curl ~u ¼ r�~u ¼ 2~x. From what we have said before, we conclude that angular
velocity cannot be produced within the interior of an incompressible fluid, but gets
there by diffusion from the boundaries of the fluid region. Flow regions where the
diffusion of the vorticity vector is negligible can be treated according to the rules of
inviscid and irrotational fluids.

As we know, equations which express physical relationships and which are
dimensionally homogeneous (only these are of interest in engineering) must be
reducible to relations between dimensionless quantities. Using the typical velocity
U of the problem, the typical length L and the density ., constant in incompressible
flow, we introduce the dimensionless dependent variables
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uþ
i ¼ ui

U
ð4:28Þ

pþ ¼ p
.U2 ð4:29Þ

and the independent variables

xþi ¼ xi
L

ð4:30Þ

tþ ¼ t
U
L

ð4:31Þ

into the Navier-Stokes equations, and obtain (neglecting body forces)

@uþ
i

@tþ
þ uþ

j
@uþ

i

@xþj
¼ � @pþ

@xþi
þRe�1 @2uþ

i

@xþj @xþj
; ð4:32Þ

where Re is the already known Reynolds’ number

Re ¼ UL
�

:

Together with the dimensionless form of the continuity equation for incompressible
flow

@uþ
i

@xþi
¼ 0 ð4:33Þ

and the dimensionless quantities which determine the shape of the flow boundary
(for example, an airfoil), the problem is formulated in a mathematically proper way.
The solutions found, the dimensionless velocity field uþ

i and the dimensionless
pressure field p+ say, will then not be changed when the body exposed to the stream
is enlarged in a geometrically similar manner, and the kinematic viscosity � or the
velocity U are simultaneously changed so that the Reynolds’ number stays the
same. As long as the Reynolds’ number remains constant, nothing changes in the
mathematical formulation. Thus the quantities calculated from the solution (for
example the dimensionless drag cD), do not change either. The coefficient of drag
only changes if the Reynolds’ number is changed in accordance with the law (3.12)
obtained by dimensional considerations alone.

An important and largely unsolved problem of fluid mechanics is the depen-
dency of the solution of the Navier-Stokes equations (4.32) and the continuity
equation (4.33) on the Reynolds’ number which only appears as a parameter. This
difficulty is already evident in such simple flows as unidirectional flows to be
discussed in Chap. 6. The laminar flows given there are only realized below a
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certain critical Reynolds’ number. If this Reynolds’ number is exceeded, for
example by decreasing the viscosity, a completely different flow ensues. This flow
is always unsteady, three-dimensional and rotational. If we measure the velocity at a
fixed position, we observe that it varies irregularly about an average value: velocity
and pressure are random quantities. We refer to such flows as turbulent. The
calculation of turbulent flows has until now only been achieved using numerical
integration of geometrically simple flows. The results of these numerical simula-
tions allow important insights into the structure of turbulence. However for flows
appearing in applications, the methods are computationally too difficult, and
because of this we shall remain dependent on semi-empirical approximation
methods for the conceivable future. These furnish only average flow quantities
though these are the ones which are technically important.

We have introduced the Reynolds’ number by way of dimensional considera-
tion. But it can also be interpreted as the ratio of the typical inertial force to the
typical viscous force. The typical inertial force is the (negative) product of the mass
(per unit volume) and the acceleration, and so is the first term in the Navier-Stokes
equation (4.1). The typical inertial term . u1 @u1=@x1 is of the order of magnitude of
.U2



L; the characteristic viscosity term g @2u1



@ x21 has the order of magnitude of

gU


L2. The ratio of the two orders of magnitude is the Reynolds’ number

.U2
L� 	

gU



L2

� 	 ¼ .U L=g ¼ U L=� ¼ Re: ð4:34Þ

The Reynolds’ number may also be interpreted as the ratio of the characteristic length
L to the viscous length �=U; this is an interpretation which is particularly useful if
the inertia forces vanish identically, as is the case in steady unidirectional flow.

If the Reynolds’ number tends to infinity or to zero, simplifications arise in the
Navier-Stokes equations, and these are often the only way to make the solution of a
problem possible. However these limiting cases are never reached in reality but lead
to approximate solutions which are better the larger (or smaller) the Reynolds’
number becomes (asymptotic solutions).

First we shall discuss the limiting case Re ! 0, which is realized

(a) if U is very small,
(b) if . is very small (for example, flow of gases in evacuated tubes),
(c) if η is very large (thus generally in flows of very viscous fluids), or
(d) if the typical length is very small (flow past very small bodies, for example dust

or fog particles. Such flows appear also in two phase flows if one phase is
gaseous, and the other liquid or solid, but also if small solid particles are
suspended in liquid. Flows through porous media, for example ground water
flows, also fall into this category.)

From (4.34), Re ! 0 characterizes the dominance of the viscous forces over the
inertial forces. The limit Re ! 0 in (4.32) shows this formally: the whole left-hand
side of this equation can be ignored compared to the term Re�1 D~u. The pressure
gradientrp may not be neglected in general, because along with the velocity vector

4.1 Newtonian Fluids 111



~u, it is the other variable present in the differential equations (4.32) and (4.33). Only
the solution for given boundary conditions resolves the relative role of the pressure,
or more exactly the pressure difference because the pressure is determined by (4.32)
and (4.33) only up to an additive constant. We also see directly from (4.29) that the
pressure gradient tends to infinity as Re−1, if the limit Re ! 0 is realized by . ! 0.

Ignoring the inertia terms leads to an enormous simplification in the mathematical
treatment, since these are the nonlinear terms in the equations. The equation arising
from taking the limit in (4.32) is therefore linear, and reads in dimensional form

@p
@xi

¼ g
@2ui
@xj@xj

: ð4:35Þ

For the second limiting case Re ! ∞, the viscous terms in (4.32) vanish. The
resulting equation is known as Euler’s equation, and it describes the inviscid flow.
Later we shall discuss this equation in more detail (Sect. 4.2.1). If it were not for the
experimental fact that a Newtonian fluid adheres to a wall, inviscid flow and flow at
large Reynolds’ numbers would be identical. If we assume at the outset that the
flow be inviscid � ¼ 0ð Þ, then in general the flow will be different from a viscous
flow in the limit � ! 0. The reason for this singular behavior is that, mathemati-
cally, the highest derivative in Eq. (4.32) is lost for � ¼ 0. We shall not go into the
pure mathematical side of this problem here, but look at this condition through the
following example. In simple shearing flow (or another steady unidirectional flow),
the velocity field shown in Fig. 1.11 is entirely independent of the Reynolds’
number (assuming we hold U constant, and the laminar flow does not change into
turbulent flow). Theoretically this velocity distribution is maintained for Re ! ∞.
Had we set � ¼ 0, the shearing stress on the upper wall would be zero, and the flow
could not be set into motion at all, i.e., the velocity of the fluid would be identically
zero. Thus it remains to be clarified under which conditions a flow with large
Reynolds’ number corresponds to the flow calculated under the assumption of a
completely inviscid fluid. The answer to this question depends on the given
problem, and a generally valid answer cannot be given.

The influence of viscosity at large Reynolds’ numbers is made clear by another
simple example: a very thin plate coinciding with the positive x1-axis is exposed to
a steady uniform stream in the x1-direction with velocity U. The material particles in
the incident flow are taken as being irrotational, so that they remain so in inviscid
flow (cf. (4.27)). Under the condition of zero viscosity, the plate does not impede
the flow, although it does in viscous flow. The no-slip boundary condition leads to
large velocity gradients near the wall and we expect the material particles to be set
into rotation even if the viscosity is very small. From the discussion of the vorticity
transport equation (4.16), we know that in viscous flow this can occur only through
diffusion of the angular velocity ~x from the wall. The order of magnitude of the
typical time s for the diffusion of the angular velocity from the surface of the plate
to a point at distance d(x1) can be estimated from (4.17)

112 4 Equations of Motion for Particular Fluids



x
s
� �

x

d2 x1ð Þ ;

or, solving for s

s� d2 x1ð Þ
�

: ð4:36Þ

A particle not yet affected by the diffusion process that arrives exactly at the
position d(x1) after this time, has covered the distance U s = x1 (Fig. 4.1).

We extract the order of magnitude of the distance to which the diffusion can
advance for a given x1 from the equation

x1 ¼ U s�U
d2 x1ð Þ
�

; ð4:37Þ

or solving for d x1ð Þ=x1

d x1ð Þ=x1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�= U x1ð Þ

p
¼

ffiffiffiffiffiffiffiffiffiffi
1=Re

p
: ð4:38Þ

Thus the effect of diffusion remains limited to a region whose extent grows as
ffiffiffiffiffi
x1

p
,

but which becomes very narrow for large Reynolds’ numbers. Apart from within
this boundary layer, 2~x ¼ curl~u is zero, and thus by (4.11), the viscous forces
make no contribution to the acceleration, so that we might as well assume the flow
to be inviscid potential flow. If we calculate the external flow under this assumption
(leading us here to the trivial result u(x1, x2) = U = const), we incur a small error
which vanishes with increasing Reynolds’ number, because in reality the flow does
not “feel” an infinitesimally thin plate but senses the boundary layer as a very
slender obstacle by which it is somewhat deflected. In order to calculate the flow
inside this boundary layer the viscosity certainly has to be taken into account.

It is of course possible that the outer flow may already be rotational for another
reason, for example if the fluid particles in hypersonic flow are set into rotation by

Fig. 4.1 Explanation of the boundary layer thickness

4.1 Newtonian Fluids 113



passing through a “curved shock”. Also if the fluid has been set into rotation before
reaching the body, the assumption of inviscid flow can often be made, but the flow
is no longer a potential flow.

The statements made for the example of the flow over a plane plate hold
qualitatively for the flow past general bodies (and also in compressible flow),
although here only under the assumption that the flow does not become separated
from the body. If separation occurs, the effect of the viscosity does not in general
remain limited to a thin boundary layer. With separation an increase in the drag,
along with its associated losses ensues. One therefore strives to avoid separation by
suitable profiling. As already mentioned in Sect. 2.5, if this is properly done we
may calculate the viscous flow at large Reynolds’ numbers by assuming inviscid
flow, in particular inviscid potential flow.

We are now in a position to give a more exact explanation of why with simple
shearing flow (Fig. 1.11), even in the limiting case Re ! ∞, inviscid flow is not
realized: at a distance x2 from the lower plate the angular velocity of all the particles
is the same, since the field only depends on x2. The particle at the position (x1, x2) at
the given instant in time thus carries as much angular velocity with it downstream as
the particle which replaces it at this position has. The vorticity diffusing from the
upper moving plate to the line x2 is thus not carried (convected) downstream as in the
case of the boundary layer flow, but permeates cross-stream to the lower wall, so that
the flow in the whole gap is to be treated as a viscous flow, even for Re ! ∞.

Besides unidirectional flow, we could bring up many other examples which all
would show that inviscid flow does not always correspond with viscous flow at large
Reynolds’ numbers. In every situation it is therefore necessary to check carefully
whether a flow calculated under the assumption of zero viscosity is actually realized.
On the other hand, the discussion here has shown that the assumption of inviscid
flow often allows a realistic description of the flow field around a body.

4.2 Inviscid Fluids

4.2.1 Euler’s Equations

As we have already seen in Sect. 4.1.3, Euler’s equation emerges from the
Navier-Stokes equation (4.8a, 4.8b) for Re = ∞. However Euler’s equation is also
a special case of Cauchy’s equation (2.38) if we use the particular constitutive
relation for inviscid fluids (3.9). Euler’s equation then reads

.
Dui
Dt

¼ . ki þ @

@xj
�p dij
� 	 ð4:39Þ

or
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.
Dui
Dt

¼ . ki � @p
@xi

; ð4:40aÞ

and it holds without restriction for all inviscid flows. In symbolic notation we write

.
D~u
Dt

¼ .~k �r p: ð4:40bÞ

We derive Euler’s equations in natural coordinates from (4.40b) by inserting the
acceleration in the form (1.24). Relative to the basis vectors~t in the direction of the
pathline, ~nr in the principle normal direction and ~br in the binormal direction, the
vectors ∇p and ~k are

r p ¼ @p
@r

~tþ @p
@n

~nr þ @p
@b

~br; ð4:41Þ

~k ¼ kr~tþ kn~nr þ kb~br; ð4:42Þ

and the component form of Euler’s equation in natural coordinates, with u ¼ ~uj j,
becomes

@u
@t

þ u
@u
@r

¼ kr � 1
.
@p
@r

; ð4:43Þ

u2

R
¼ kn � 1

.
@p
@n

ð4:44Þ

0 ¼ kb � 1
.
@p
@b

: ð4:45Þ

As already noted, ignoring the viscosity is physically akin to ignoring the heat
conduction, so that we write the constitutive relation for the heat flux vector in the
form

qi ¼ 0: ð4:46Þ

By doing this we obtain from the energy equation (2.118) the energy equation of
inviscid flow

.
D
Dt

1
2
ui ui þ h

� �
¼ @p

@t
þ . ki ui: ð4:47Þ

If, instead of the energy equation, the entropy equation (2.134) is used, this now
reads
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Ds
Dt

¼ 0: ð4:48Þ

That is, the entropy of a material particle does not change in inviscid flow without
heat conduction. (Here, as before, we have excluded other nonequilibrium pro-
cesses which might arise through excitation of internal degrees of freedom of the
fluid molecules or through chemical reactions.) The Eq. (4.48) characterizes an
isentropic flow. If the entropy is homogeneous

r s ¼ 0; ð4:49Þ
we speak of homentropic flow. For the calorically perfect gas, (4.48) is replaced by

D
Dt

p .�cð Þ ¼ 0 ð4:50Þ

and (4.49) by

r p .�cð Þ ¼ 0: ð4:51Þ

4.2.2 Bernoulli’s Equation

Under mildly restricting assumptions it is possible to find so-called first integrals of
Euler’s equations, which then represent conservation laws. The most important first
integral of Euler’s equations is Bernoulli’s equation. We assume that the mass body

force has a potential ~k ¼ �rw
� �

, i.e., w ¼ �gi xi for the gravitational force. We

multiply Euler’s equation (4.40a) by ui, thus forming the inner product with~u, and
obtain the relation

ui
@ui
@t

þ ui uj
@ui
@xj

¼ � 1
.
ui
@p
@xi

� ui
@w
@xi

: ð4:52Þ

After transforming the second term on the left-hand side and relabelling the dummy
indices, this becomes

uj
@uj
@t

þ uj
@

@xj

ui ui
2

h i
¼ � 1

.
uj
@p
@xj

� uj
@w
@xj

: ð4:53Þ

We could, in principle, integrate this equation along an arbitrary smooth curve, but
we arrive at a particularly simple and important result if we integrate along a
streamline. With u ¼ ~uj j, from the differential equation for the streamline (1.11), we
have
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uj ¼ u dxj


ds; ð4:54Þ

so that

uj
@

@xj
¼ u

dxj
ds

@

@xj
¼ u

d
ds

ð4:55Þ

holds, and because uj @uj


@t ¼ u @u=@t we can write for (4.53)

@u
@t

þ d
ds

u2

2

� �
¼ � 1

.
dp
ds

� dw
ds

: ð4:56Þ

Integration along the arc length of the streamline leads us to Bernoulli’s equation in
the form Z

@u
@t

dsþ u2

2
þ

Z
dp
.
þw ¼ C; ð4:57Þ

or integrating from the initial point A to the final point B we get the definite integral

ZB
A

@u
@t

dsþ 1
2
u2B þ

ZB
A

1
.
dp
ds

dsþwB ¼ 1
2
u2A þwA: ð4:58Þ

In order to evaluate the integrals, the integrands must in general appear as functions
of the arc length s unless the integrand is a total differential. However, the first
integral cannot be written as the integral of a total differential. Obviously, in
incompressible flow of homogeneous density, dp=. is a total differential. But this is
also the case in barotropic flow, where the density is only a function of the pressure

. ¼ . pð Þ: ð4:59Þ

Then dP ¼ dp=. pð Þ is a total differential, and the pressure function

P pð Þ ¼
Z

dp
. pð Þ ð4:60Þ

can be calculated once and for all (if necessary, numerically). Clearly barotropic
flows occur if the equation of state is given in the form . ¼ . p; Tð Þ and the
temperature field is homogeneous, or if we have the technically important case
where the equation of state . ¼ . p; sð Þ is given and the flow is homentropic.

If gravity is the only mass body force appearing, Bernoulli’s equation for
incompressible flow of homogeneous density reads
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.
Z

@u
@t

dsþ .
u2

2
þ pþ . g x3 ¼ C; ð4:61Þ

where we have assumed that the x3-direction is antiparallel to the gravity vector~g.
For steady, incompressible flow Bernoulli’s equation reduces to

.
u2

2
þ pþ . g x3 ¼ C: ð4:62Þ

Since for steady flows, streamlines and pathlines coincide, . is constant along the
streamline, even for inhomogeneous density fields r . 6¼ 0ð Þ; this is because
D .=Dt ¼ 0. Equation (4.62) therefore also holds for steady, incompressible flows
when the density is inhomogeneous.

In compressible flows, the velocities are in general so large that the potential of
the gravity force w ¼ g x3 only has to be taken into account if very large differences
in altitude appear in the flow (meteorology). In technical applications, w in (4.57)
can normally be neglected, and for barotropic flow this equation takes the formZ

@u
@t

dsþ u2

2
þP ¼ C: ð4:63Þ

If, in addition, the flow is steady, (4.63) can be simplified further to

u2

2
þP ¼ C: ð4:64Þ

In general, the constant of integration C differs from streamline to streamline.
Therefore Bernoulli’s equation only represents a relation between the flow quan-
tities at position B on the streamline, and at position A on the same streamline. In
order to apply Bernoulli’s equation the streamline actually has to be known. Its
calculation requires in general the knowledge of the velocity field, and this problem
must be solved before Bernoulli’s equation can be applied. Of course this restricts
the application of Bernoulli’s equation drastically. However this restriction vanishes
in two technically very important cases:

The first case is the application of Bernoulli’s equation to stream filament theory
(see discussion in connection with Fig. 1.7). In this theory, the “representative”
streamline is fixed by the shape of the streamtube which does not change in time.
Therefore the streamline is known, and will be fixed in space even for unsteady
flow (cf. (1.13)).

The second case is the application of Bernoulli’s equation to potential flow.
From the discussion in connection with the vorticity equation we have seen that in
many practically important problems, inviscid flow is also irrotational. However in
inviscid potential flows Bernoulli’s constant has the same value on all streamlines:
Bernoulli’s equation (4.57) therefore holds between two arbitrary points A and B in
the flow field. For the irrotational field we have
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curl ~u ¼ 2~x ¼ 0; ð4:65Þ

or because of (1.46)

Xij ¼ 1
2

@ui
@xj

� @uj
@xi

� �
¼ 0; ð4:66Þ

and so

@ui
@xj

¼ @uj
@xi

; ð4:67Þ

it follows that Euler’s equation (4.40a) becomes

@ui
@t

þ @

@xi

uj uj
2

h i
þ 1

.
@p
@xi

þ @w
@xi

¼ 0: ð4:68Þ

After introducing the velocity potential U according to (1.50)

ui ¼ @U
@xi

;

Equation (4.68) yields

@2U
@xi @t

þ @

@xi

1
2
@U
@xj

@U
@xj

� �
þ 1

.
@p
@xi

þ @w
@xi

¼ 0: ð4:69Þ

In barotropic flow, the whole left-hand side of this equation can be represented as
the gradient of a scalar function

@

@xi

@U
@t

þ 1
2
@U
@xj

@U
@xj

þPþw

� �
¼ @f

@xi
; ð4:70Þ

and the expression

d f ¼ @f
@xi

dxi ð4:71Þ

is a total differential. Therefore the line integral

Z
@

@xi

@U
@t

þ 1
2
@U
@xj

@U
@xj

þPþw

� �
dxi ¼

Z
d f ð4:72Þ

is path independent, and we immediately obtain Bernoulli’s equation for potential
flow
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@U
@t

þ 1
2
@U
@xi

@U
@xi

þPþw ¼ C tð Þ: ð4:73Þ

Bernoulli’s “constant” can, as pointed out, be a function of time. However this is
unimportant since without loss of generality it can be incorporated into the potential

U� ¼ U�
Z t

0

C t0ð Þdt0: ð4:74Þ

Then ui ¼ @U�=@xi, holds and from (4.73) we obtain

@U�

@t
þ 1

2
@U�

@xi

@U�

@xi
þPþw ¼ 0: ð4:75Þ

Incidentally the Eq. (4.73) (or (4.75)) is also a first integral in viscous incom-
pressible potential flow, since then, because of (4.12), the equation to be integrated
corresponds with (4.68).

The progress achieved with Eq. (4.73) cannot be emphasized highly enough. In
the theory of potential flow Bernoulli’s equation takes the place of Euler’s three
nonlinear equations. Moreover in steady flow this even gives rise to a pure algebraic
relationship between the velocity, the potential of the mass body force and the
pressure function (in incompressible flow, the pressure). In order to apply
Bernoulli’s equation in potential theory, the streamlines do not need to be known.
The simplifications thus found in the mathematical treatment and the practical
significance of potential flows have made this an important area in fluid mechanics.

We have already seen that in technical applications, in particular in turboma-
chinery, reference frames rotating uniformly with ~X are often introduced. We reach
Euler’s equation for these reference frames by inserting the constitutive relation for
inviscid fluids (3.9) into Cauchy’s equation (2.68), and expressing the relative
acceleration using (1.78)

@~w
@t

�~w� r�~wð Þþr ~w �~w
2

� �� �
¼ � r p

.
�~kþ 2~X�~wþ~X� ~X�~x

� �� �
:

ð4:76Þ

Instead of following the derivation of Bernoulli’s equation as in (4.52), we
immediately form the line integral along a streamline. If d~x is a vectorial line
element along the streamline, ~w� r�~wð Þf g � d~x ¼ 0 holds, and

2~X�~w
n o

� d~x ¼ 0, since ~w� r�~wð Þ and ~X�~w are orthogonal to ~w and thus

orthogonal to d~x. Therefore, the Coriolis force in particular has no component in the
direction of the streamline. Using the relation
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~X� ~X�~x
� �

¼ �r 1
2

~X�~x
� �2

� �
; ð4:77Þ

(which may be proved using index notation), the centrifugal force can be written as

the gradient of the scalar function 1
2
~X�~x

� �2
and thus has a potential. If we assume,

as before, barotropy and a potential for the mass body force, the line integral of
Euler’s equation then reads

Z
@~x
@t

� d~xþ
Z

r ~w �~w
2

� 1
2

~X�~x
� �2

þw

� �
þ r p

.

� �
� d~x ¼ 0: ð4:78Þ

With d~xj j ¼ ds and ~wj j ¼ w we obtain Bernoulli’s equation for a uniformly rotating
reference frame Z

@w
@t

dsþ w2

2
þwþP� 1

2
~X�~x

� �2
¼ C: ð4:79Þ

A special form of this equation for incompressible flow arises if the mass body
force is the gravitational force, the unit vector~e3 is in the x3-direction antiparallel to
~g, and the reference frame rotates about the x3-axis with X ¼ const (Fig. 4.2). With
r2 ¼ x21 þ x22, the square of the cross product then reads

~X�~x
� �2

¼ X x1~e2 � X x2~e1ð Þ2¼ X2r2; ð4:80Þ

and (4.79) reduces toZ
@w
@t

dsþ w2

2
þ p

.
þ g x3 � 1

2
X2r2 ¼ C: ð4:81Þ

Additionally, we note that a flow which is a potential flow in the inertial reference
frame is no longer a potential flow in the rotating frame. The advantages connected
with treating the flow using potential theory may outweigh those connected with

Fig. 4.2 Bernoulli’s equation in a rotating reference frame
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choosing a rotating reference frame, and it can sometimes be more useful to retain
the inertial frame.

4.2.3 Vortex Theorems

We shall now consider the circulation of a closed material line as it was introduced
by (1.105)

C ¼
I
C tð Þð Þ

~u � d~x:

Its rate of change is calculated using (1.101) to give

DC
Dt

¼ D
Dt

I
C tð Þð Þ

~u � d~x ¼
I
Cð Þ

D~u
Dt

� d~xþ
I
Cð Þ

~u � d~u: ð4:82Þ

The last closed integral vanishes, since~u � d~u ¼ d ~u �~u=2ð Þ is a total differential of a
single valued function, and the starting point of integration coincides with the end
point.

We now follow on with the discussion in connection with Eq. (1.102), and seek
the conditions for the time derivative of the circulation to vanish. It has already been
shown that in these circumstances the acceleration D~u=Dt must have a potential I,
but this is not the central point of our current discussion.

Using Euler’s equation (4.40a, 4.40b) we acquire the rate of change of the line
integral over the velocity vector in the form

DC
Dt

¼
I
Cð Þ

~k � d~x�
I
Cð Þ

r p
.

� d~x ð4:83Þ

and conclude from this that DC=Dt vanishes if ~k � d~x and ðr p=.Þ � d~x can be
written as total differentials. If the mass body force~k has a potential the first closed
integral is zero because

~k � d~x ¼ �rw � d~x ¼ �dw: ð4:84Þ

In a homogeneous density field or in barotropic flow, because of

r p
.

� d~x ¼ dp
. pð Þ ¼ dP ð4:85Þ
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the second integral also vanishes. The last three equations form the content of
Thomson’s vortex theorem or Kelvin’s circulation theorem

DC
Dt

¼ 0: ð4:86Þ

In words:

In an inviscid and barotropic fluid, the circulation of a closed material line remains constant
for all times if the mass body force has a potential.

We use this theorem as a starting point for the explanation of the famous
Helmholtz’s vortex theorems which allow a vivid interpretation of vortex motions
and in addition are of fundamental importance in aerodynamics.

Before we do this, we shall consider the origin of the circulation about an airfoil
in two-dimensional inviscid potential flow, because Kelvin’s circulation theorem
seems to contradict the formation of this circulation.

In connection with Eq. (2.91) we have already referred to the fact that the force
on an airfoil in two-dimensional potential flow is proportional to the circulation. We
gain an insight into the relation between circulation and lift (force perpendicular to
the undisturbed incident flow direction) by comparing a symmetric airfoil with an
asymmetric airfoil (or a symmetric airfoil at an angle of attack) in plane
two-dimensional flow. In the first case the flow is likewise symmetric, and for this
reason we expect no force perpendicular to the incident flow direction. The con-
tribution of the line integral about the upper half of the airfoil to the circulation has
exactly the same size as the contribution about the lower half, but with opposite
sign, that is, the total circulation about the symmetric airfoil is zero.

For the asymmetric airfoil shown in Fig. 4.3 the flow is likewise asymmetric, the
contribution of the line integral about the upper half has an absolute value larger
than that of the contribution about the lower half and therefore the circulation is
nonzero. The velocity along a streamline which runs along the upper side of the
airfoil is then larger on the whole than the velocity on the lower side. According to
Bernoulli’s equation (4.62), the pressure on the upper side is on the whole smaller
than on the lower side (the term . g x3 is of no importance for the dynamic lift), so
that in total a force upwards results.

If we first consider an airfoil in a fluid at rest, the circulation of a closed curve
about the airfoil is clearly zero because the velocity is zero.

The circulation of this curve, which always consists of the same material par-
ticles, must remain zero by Kelvin’s circulation theorem, even if the inviscid fluid is
set into motion. Experience has shown us, however, that a lift acts on the airfoil.
How can the airfoil acquire lift without Kelvin’s law being contradicted? To answer
this question, consider the airfoil in Fig. 4.4, a series of closed curves layed down in
the fluid which is at rest.

The circulation is zero for all curves, and also for the surrounding line. We set
the fluid into motion and, since all the curves are material lines, we obtain the
configuration shown in Fig. 4.5. The airfoil “cuts through” the flow, and a dividing
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Fig. 4.3 Explanation of the circulation around an airfoil

Fig. 4.4 Material curves for an airfoil at rest

Fig. 4.5 Material curves after setting the airfoil into motion
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surface forms from the trailing edge as the fluid from the upper and lower sides
flow together. For asymmetric airfoils the velocity above and below this dividing
surface is different. A discontinuity appears, as sketched in Fig. 4.6.

The discontinuity surface is only possible in the limiting case of vanishing
viscosity (η = 0). Even if there is only a small amount of viscosity, this disconti-
nuity becomes evened out. In this region the rotation is nonzero. This does not
contradict Kelvin’s circulation theorem since the discontinuity surface or the wake
are not part of the closed material curves. The discontinuity surface is in principle
unstable: it rolls up into a vortex which keeps getting larger until the velocities at
the trailing edge are equal; then the process of start-up is finished.

The formation of the discontinuity surface hinders the flow around the sharp
edge which in real inviscid flow (η = 0) would produce infinitely large velocities.

In the first instant of start-up, the flow around the trailing edge is indeed at very
high velocities, but it becomes separated from the upper side. Later we shall see that
this is caused by the very large deceleration of the flow from the trailing edge (high
velocity) to the stagnation point (zero velocity) which will be formed on the upper
surface in the as yet circulation free flow. This flow separates from the upper
surface even with very little viscosity (η ! 0) and forms the wake, which becomes
the discontinuity surface in the limiting case η = 0. Apart from inside this wake, the
flow is irrotational. Figure 4.7 shows the different phases of start-up.

A closed curve which surrounds the airfoil and vortex (Fig. 4.8) still has, by
Kelvin’s circulation theorem, a circulation of zero. A closed line which only sur-
rounds the vortex has a certain circulation and must necessarily cross the discon-
tinuity surface.

Therefore Kelvin’s circulation theorem does not hold for this line. A curve
which only surrounds the airfoil has the same circulation as the vortex, only with
opposite sign, and therefore the airfoil experiences a lift. The vortex is called the
starting vortex, and we associate the circulation about the airfoil with a vortex lying
inside the airfoil, and call this vortex the bound vortex. (The seat of the circulation
is actually the boundary layer and in the limit η ! 0 the thickness tends to zero
while the vorticity in the layer tends to infinity.)

In addition we note that with every change in velocity the lift changes likewise,
and consequentially a free vortex must form. (In a fluid with viscosity, circulation

Fig. 4.6 Separation surfaces behind the airfoil
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and vortices can arise in many ways, for example through boundary layer separa-
tion, without a sharp edge being necessary.)

Incidentally in the above discussion we have also used the obvious law that the
circulation of a closed line is equal to the sum of the circulation of the meshed
network bounded by the curve (Fig. 4.9)

Cclosed ¼
X

Ci; ð4:87Þ

or else

C ¼
Z

dC: ð4:88Þ

Fig. 4.7 Start-up

Fig. 4.8 The circulation of the starting vortex and the bound vortex are of equal magnitude
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In order to discuss Helmholtz’s vortex theorems, we need to make use of Stokes’
integral theorem. Let S be a simply connected surface which is otherwise of
arbitrary shape (i.e. any arbitrary closed curve on the surface can be shrunk to a
single point), whose boundary is C, and let ~u be any arbitrary vector.

Stokes’ theorem then reads:
The line integral

R
~u � d~x about the closed curve C is equal to the surface integralRR r�~uð Þ �~n dS over any surface of arbitrary shape which has C as its boundary,

therefore I
Cð Þ

~u � d~x ¼
ZZ
Sð Þ

curl~uð Þ �~n dS: ð4:89Þ

Stokes’ theorem allows a line integral to be changed into a surface integral. The
direction of integration is positive anticlockwise as seen from the positive side of
the surface (Fig. 4.10).

Helmholtz’s first vortex theorem reads:

The circulation of a vortex tube is constant along this tube.

In complete analogy to streamtubes, we shall form vortex tubes from vortex lines,
which are tangential lines to the vorticity vector field curl~u (or ~x) (Fig. 4.11). The

Fig. 4.9 Circulation of a meshed network

Fig. 4.10 Assigning the direction of integration in Stokes’ integral theorem
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vortex lines which pass through a closed curve form a vortex tube. According to
Stokes’ theorem, the line integral over the closed curve in Fig. 4.12 vanishes,
because the integrand on the right-hand side of (4.89) is zero, since curl ~u is by
definition perpendicular to~n.

The contributions to the integral from the infinitely close pieces C3 and C4 of the
curve cancel each other and we are led to the equation

Z
C1

~u � d~xþ
Z
C2

~u � d~x ¼ 0: ð4:90Þ

Because of the infinitesimally small distance between the curves C3 and C4, we can
consider C1 and C2 to be closed curves. If we change the direction of integration
over C2, thus changing the sign of the second integral, we obtain Helmholtz’s first
vortex theorem

Fig. 4.11 Vortex tube

Fig. 4.12 Proof of Helmholtz’s first vortex theorem
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I
C1

~u � d~x ¼
I
C2

~u � d~x: ð4:91Þ

From this derivation the kinematic nature of this theorem is obvious. Another
approach to this important theorem starts from Eq. (4.14) which shows that the
divergence of the vorticity vector vanishes. We can therefore consider the vorticity
vector field curl~u as the velocity field of a new incompressible flow, i.e., the vortex
tube becomes the streamtube of the new field. We apply the equation of continuity
in its integral form (2.8) to a part of this streamtube, and at the same time replace~u
by curl ~u. Since the flow is incompressible, quite generallyZZ

Sð Þ

curl~uð Þ �~n dS ¼ 0; ð4:92Þ

i.e., for every closed surface S, the flux of the vorticity vector is zero. We apply
(4.92) to a part of the vortex tube whose closed surface consists of the surface of the
tube and two arbitrarily orientated cross-sections A1 and A2, and find

ZZ
A1ð Þ

curl ~uð Þ �~n dSþ
ZZ
A2ð Þ

curl~uð Þ �~n dS ¼ 0; ð4:93Þ

since the integral over the tube surface vanishes. The integral
RR

curl~uð Þ �~n dS is
often called the vortex strength. It is clearly identical to the circulation, and in
words the Eq. (4.93) reads:

The vortex strength of a vortex tube is constant.

Noting the sense of integration of the line integral, Stokes’ theorem transforms
equation (4.93) into Helmholtz’s first theorem (4.91). We conclude from this rep-
resentation that just like the streamtube, the vortex tube cannot come to an end
within the fluid, since the amount of fluid which flows through the tube in unit time
cannot simply vanish at the end of the tube. Either the tube must reach out to
infinity, or end at the boundaries of the fluid, or else close around into itself and, in
the case of a vortex tube, form a vortex ring.

Vortex filaments are of particular importance in aerodynamics. By a vortex
filament we understand a very thin vortex tube. For a vortex filament the integrand
of the surface integral in Stokes’ theorem (4.89)I

C

~u � d~x ¼
ZZ
D S

curl~uð Þ �~n dS ¼ C ð4:94Þ

can be taken in front of the integral and we get
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curl~uð Þ �~nDS ¼ C ð4:95Þ

or

2~x �~nDS ¼ 2xDS ¼ const, ð4:96Þ

from which we conclude that the angular velocity increases with decreasing
cross-section of the vortex filament.

We shall see later from Helmholtz’s second vortex theorem that vortex tubes are
material tubes. If we make use of this fact, then (4.96) leads to the same statement
as (4.27): if the vortex filament is stretched, its cross-section becomes smaller and
the angular velocity increases. The expression (4.27) was according to its derivation
restricted to incompressible flow, while the conclusion we have drawn here (by
using Helmholtz’s second vortex theorem) holds in general for barotropic flow.

A frequently used idealized picture of a vortex filament is a vortex tube with
infinitesimally small cross-section, whose angular velocity then, by (4.96), becomes
infinitely large

xDS ¼ const ð4:97Þ

for DS ! 0 and x ! 1:

Outside the vortex filament, the field is irrotational. Therefore if the position of a
vortex filament and its strength C are known, the spatial distribution of curl ~u is
fixed. In addition, if div~u is given (e.g. div~u ¼ 0 in incompressible flow), according
to the already mentioned fundamental theorem of vector analysis, the velocity field~u
(which may extend to infinity) is uniquely determined if we further require that the
normal component of the velocity vanishes asymptotically sufficiently fast at infinity
and no internal boundaries exist. (On internal boundaries conditions have to be
satisfied, and we will wait to Sect. 4.3 to introduce these.) (Fig. 4.13).

Fig. 4.13 Vortex filament
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The assertion of the fundamental theorem of vector analysis is also purely
kinematic in nature, and is therefore not restricted to inviscid fluids.

We split the vector ~u up into two parts

~u ¼~uD þ~uR; ð4:98Þ

of which the first is an irrotational field, i.e.,

curl ~uD ¼ r�~uD ¼ 0; ð4:99Þ

and the second is a solenoidal field, thus

div~uR ¼ r �~uR ¼ 0: ð4:100Þ

The combined field is therefore in general neither irrotational nor solenoidal. The field
~uD is a potential flow, and thus by (1.50) we have~uD ¼ rU. We form the divergence
of~u and consider it to be a given function q ~xð Þ. Because of (4.100), we obtain

div~u ¼ r �~uD ¼ q ~xð Þ ð4:101Þ

or else

r � rU ¼ @2U
@xi@xi

¼ q ~xð Þ: ð4:102Þ

(4.102) is an inhomogeneous Laplace’s equation also called Poisson’s equation.
The theory of both these partial differential equations is the subject of potential
theory which is as important in many branches of physics as in fluid mechanics. If
we refer back to the results of this theory, the solution of (4.102) is given by

U ~xð Þ ¼ � 1
4p

ZZZ
1ð Þ

q ~x0ð Þ
~x�~x0j j dV

0; ð4:103Þ

where~x is the place where the potential U is calculated, and~x0 is the abbreviation
for the integration variables x01, x

0
2 and x03 dV 0 ¼ dx01 dx

0
2 dx

0
3

� 	
. The domain (∞)

implies that the integration is to be carried out over all space. We shall briefly
sketch the manner of solution at the end of our consideration, but here we shall take
the solution as given.

In order to calculate~uR we note that (4.100) is certainly satisfied if we represent
~uR as the curl of a new, yet unknown, vector field ~a

~uR ¼ curl ~a ¼ r�~a; ð4:104Þ

because, from Eq. (4.14), we have
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r � r �~að Þ ¼ r �~uR ¼ 0: ð4:105Þ

We form the curl of ~u and, from (4.99), extract the equation

r�~u ¼ r� r�~að Þ; ð4:106Þ

which by (4.10) is rewritten as

r�~u ¼ r r �~að Þ � D~a: ð4:107Þ

Up to now we have only required that the vector ~a satisfy (4.104). However this
does not uniquely determine this vector, because we could always add the gradient
of some other function f to~a without changing (4.104) (since r�r f � 0). If, in
addition, we require that the divergence of~a vanishes r �~a ¼ 0ð Þ, we obtain from
(4.107) the simpler equation

r�~u ¼ �D~a: ð4:108Þ

In (4.108) we consider r�~u as a given vector function~b ~xð Þ, which is determined
by the choice of the vortex filament and its strength (circulation). Thus the Cartesian
component form of the vector equation (4.108) leads to three Poisson’s equations,
namely

Dai ¼ �bi: ð4:109Þ

For each of the component equations, we can apply the solution (4.103) of
Poisson’s equation. We combine the results again vectorially, and write the solution
from (4.108) in short form as

~a ¼ þ 1
4p

ZZZ
1ð Þ

~b ~x0ð Þ
~x�~x0j j dV

0: ð4:110Þ

By doing this, the calculation of the velocity field ~u ~xð Þ for a given distribution
q ~xð Þ ¼ div~u and~b ~xð Þ ¼ curl~u is reduced to integration processes, which may have
to be done numerically

~u ~xð Þ ¼ �r 1
4p

ZZZ
1ð Þ

div~u ~x0ð Þ
~x�~x0j j dV 0

8><
>:

9>=
>;þr� 1

4p

ZZZ
1ð Þ

curl~u ~x0ð Þ
~x�~x0j j dV 0

8><
>:

9>=
>;: ð4:111Þ

For completeness, we shall sketch the path of solution for Eq. (4.103). Starting
from Gauss’ theorem (1.94)
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ZZZ
Vð Þ

@u
@xi

dV ¼
ZZ
Sð Þ

u ni dS ð4:112Þ

we write, for the general function u

u ¼ U
@V
@xi

� V
@U
@xi

; ð4:113Þ

where U and V are arbitrary functions which we only assume to be continuous to
the degree which is necessary for the application of Gauss’ theorem. Gauss’ the-
orem then leads to the relation known as Green’s second formula

ZZ
Sð Þ

U
@V
@xi

� V
@U
@xi

� �
nidS ¼

ZZZ
Vð Þ

U
@2V
@xi@xi

� V
@2U
@xi@xi

� �
dV : ð4:114Þ

For U we now choose the potential function U, and for V

V ¼ 1
~x�~x0j j ¼

1
r
: ð4:115Þ

The function 1/r is a fundamental solution of Laplace’s equation. It is so called
because, as already shown by (4.103), with its help we can form general solutions
through integration processes. The fundamental solution is also known as the
singular solution, since it satisfies Laplace’s equation everywhere except at a sin-
gularity, here for example at r = 0, where 1/r is discontinuous. Later we shall give
the function 1/r an obvious meaning, and shall proceed to show by formal calcu-
lation that Laplace’s equation is satisfied everywhere except at ~x ¼~x0, (r = 0).
Because 1/r is not continuous for r = 0, we have to exclude this point from the
domain (V), as Gauss’ theorem is only valid for continuous integrands.

As shown in Fig. 4.14, we surround the singular point with a small sphere
(radius a) so that the surface domain of integration (S) consists of a very large
sphere (radius ! ∞) and a very small sphere which surrounds the singularity. Now
the integrand on the right-hand side of (4.114) is regular, and the first term vanishes
everywhere in the domain of integration, since V ¼ 1=r satisfies Laplace’s equa-
tion. In the second term, we replace DU ¼ DU by q ~xð Þ (because of (4.102)), so that
the right-hand side now consists of the integral

�
ZZZ
1ð Þ

q ~xð Þ
~x�~x0j j dV :

On the left-hand side we shall first perform the integration over the large sphere and
note that @V=@xið Þni is the derivative of V in the direction of the normal vector ni of
the sphere. Therefore we have
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@V
@xi

ni

� �
r!1

¼ @V
@r

� �
1
¼ @

@r
r�1
� 	� �

1
¼ �r�2

 �
1; ð4:116Þ

and this vanishes as 1=r2. However the surface of integration increases as r2, so that
the dependency on r drops out. By assumption, U = U vanishes at infinity, and
therefore there is no contribution from the first term on the left-hand side. The
second term vanishes too because @U=@xið Þni (the component of the vector ~u
normal to the surface) die away fast enough for the second term to vanishes also.
Therefore all that remains is the integral over the small sphere. However the normal
vector of the small sphere points in the negative radial direction, giving us

@V
@xi

ni

� �
r¼a

¼ � @V
@r

� �
a
¼ þ a�2; ð4:117Þ

and

@U
@xi

ni

� �
r¼a

¼ � @U
@r

� �
a
: ð4:118Þ

We write a2 dX for the surface element, where dX is the surface element of the unit
sphere. Then the left-hand side of (4.114) isZZ

sphereð Þ

Ua�2a2dXþ
ZZ

sphereð Þ

a�1 @U
@r

a2dX: ð4:119Þ

The second integral vanishes for a ! 0, the first yields 4pU ~x0ð Þ, and then from
(4.114), we extract

U ~x0ð Þ ¼ � 1
4p

ZZZ
Vð Þ

q ~xð Þ
~x�~x0j j dV : ð4:120Þ

Fig. 4.14 Domain of integration
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If we further replace~x by~x0 which does not change the function

G ~x;~x0ð Þ ¼ � 1
4p

1
~x�~x0j j ; ð4:121Þ

we obtain the solution (4.103). We call G ~x; ~x0ð Þ the Green’s function, which
appears here in the special form for infinite, unbounded space. In two-dimensional
problems, the free space Green’s function reads

G ~x;~x0ð Þ ¼ 1
2p

ln~x�~x0j j: ð4:122Þ

We now return to Eq. (4.111), and calculate the solenoidal term of the velocity~uR.
This is the only term in incompressible flow without internal boundaries. Since we
are considering a field which is irrotational outside the vortex filament (Fig. 4.15),
the velocity field outside the filament is given by

~uR ~xð Þ ¼ r � 1
4p

ZZZ
filamentð Þ

curl ~u ~x0ð Þ
~x�~x0j j dV 0

2
64

3
75: ð4:123Þ

By assumption, the integration is only carried out over the volume of the vortex
filament, whose volume element is

dV 0 ¼ dS~n � dx0; ð4:124Þ

with d~x0 ¼~n ds0 as the vectorial element of the vortex filament.
By simple manipulation and using

~n ¼ curl~u= curl~uj j

we obtain

Fig. 4.15 On the Biot-Savart law
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dV 0 ¼ dS
curl~u
curl~uj j �~n ds

0; ð4:125Þ

therefore also

dV 0 ¼ curl~uð Þ �~n dS
ds0

curl~uj j ð4:126Þ

and this leads to the expression for (4.123)

~uR ~xð Þ ¼ r � 1
4p

ZZZ
filamentð Þ

curl~uð Þ �~n dS
~x�~x0j j d~x0

2
64

3
75: ð4:127Þ

Here we have set

curl~u ds0

curl~uj j ¼~n ds0 ¼ d~x0: ð4:128Þ

First we integrate over the small cross-sectional surface DS and, for DS ! 0, ignore
the change of the vector ~x0 over this surface thus taking 1=~x�~x0j j in front of the
surface integral to obtain

~uR ~xð Þ ¼ r � 1
4p

Z
1

~x�~x0j j
ZZ

curl~uð Þ �~n dS
� �

d~x0
� �

: ð4:129Þ

From Stokes’ theorem, the surface integral is equal to the circulation C, and from
Helmholtz’s first vortex theorem this is constant along the vortex filament, and is
therefore independent of~x0. From (4.129) we then find

~uR ~xð Þ ¼ C
4p

r�
Z

d~x0

~x�~x0j j : ð4:130Þ

The following calculation is more simply done in index notation, in which the
right-hand side of (4.130) is written as

C
4p

εijk
@

@xj

Z
1
r
dx0k:

We now see directly that the operator εijk@


@xj can be taken into the integral.

The term @ r�1ð Þ
@xj (with ri ¼ xi � x0i and r ¼ ~rj j) becomes

@ r�1ð Þ
@xj

¼ � 1
r2

@r
@xj

¼ � 1
r2

xj � x0j
� � 1

r
¼ �rjr

�3: ð4:131Þ
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If we replace (4.131) by the above expression in vector form, (4.130) finally leads
to the famous Biot-Savart law

~uR ~xð Þ ¼ C
4p

Z
filamentð Þ

d~x0 �~r
r3

; ð4:132Þ

with~r ¼~x�~x0, which finds applications particularly in aerodynamics.
The Biot-Savart law is a pure kinematic law, which was originally discovered

through experiments in electrodynamics. The vortex filament corresponds there to a
conducting wire, the vortex strength to the current, and the velocity field to the
magnetic field. The origin of this law also explains the terminology used in aero-
dynamics, that the vortex filament “induces” a velocity ~u. As an illustration, we
shall calculate the induced velocity from a straight infinitely long vortex filament, at
a distance a from the vortex filament. The velocity ~uR is always orthogonal to the
plane spanned by d~x0 and~r, and is therefore tangential to the circle with radius a in
the plane orthogonal to the vortex filament. The magnitude of the induced velocity
is found from (4.132), using the notation in Fig. 4.16 as being

~uRj j ¼ C
4p

Zþ1

�1

sinu
r2

ds0: ð4:133Þ

From Fig. 4.16 we deduce the relation

Fig. 4.16 Velocity induced by a straight vortex filament
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s0 ¼ �a cotu; ð4:134Þ

so that s0 ¼ �1 correspond to u ¼ 0 and s0 ¼ þ1 to u ¼ p, and ds′ becomes

ds0 ¼ þ a

sin2 u
du: ð4:135Þ

With r ¼ a=sinu follows

~uRj j ¼ C
4pa

Zp
0

sinu du ¼ � C
4pa

cosu

����
p

0
¼ C

2pa
: ð4:136Þ

This result holds in all planes perpendicular to the vortex filament. The
two-dimensional flow with this velocity field is called a potential vortex, and we
shall discuss this more fully later. Clearly (4.136) corresponds with (2.97) which is
a consequence of the angular momentum balance. We could have found the same
result using the plausible assumption of constant velocity at radius a, and by
calculating the circulation

C ¼
I
a

~uR � d~x ¼~u �~eua
Z2p
0

du ¼ ~uRj ja 2p: ð4:137Þ

We shall now calculate the contribution of a straight vortex filament of finite length
to the induced velocity at the point P whose position is determined by the dis-
placement a and the angles u1 and u2 (Fig. 4.17). After integrating from u1 to u2

we find from (4.136)

Fig. 4.17 Vortex filament of finite length
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~uRj j ¼ C
4pa

cosu1 � cosu2ð Þ: ð4:138Þ

For u1 ¼ 0 and u2 ¼ p=2 (semi-infinite vortex filament) the induced velocity in the
orthogonal plane is given by

~uRj j ¼ C
4pa

; ð4:139Þ

and it amounts to precisely half of the value for the infinitely long vortex filament,
as we would expect for reasons of symmetry.

Such finite or semi-infinitely long pieces of a vortex filament cannot, by
Helmholtz’s first vortex theorem, exist alone, but must be parts of a vortex filament
which is closed into itself, or which reaches to infinity on both sides. We saw in the
discussion of Fig. 4.8 that the circulation about an airfoil in two-dimensional flow
can be represented by using a bound vortex. We can imagine these bound vortices
as straight, infinitely-long vortex filaments (potential vortices). As far as the lift is
concerned we can think of the whole airfoil as being replaced by the straight vortex
filament. The velocity field close to the airfoil is of course different from the field
about a vortex filament in cross flow, but both fields become more similar the larger
the distance from the airfoil.

In the same way, the starting vortex can be idealized as a straight vortex filament
which is attached to the bound vortex at plus and minus infinity. The circulation of
the vortex determines the lift, and the lift formula which gives the relation between
circulation and lift per unit width in inviscid potential flow is the Kutta-Joukowski
theorem

A ¼ �.CU1; ð4:140Þ

where U∞ is the so-called “undisturbed” approach velocity, i.e., the velocity which
would appear if the body were removed. (By width or span of a wing we mean the
extension normal to the plane drawn in Fig. 4.3, while the depth of the wing section
is the chord of the wing section. The negative sign in all lift formulae arises since
circulation is here defined as positive as in the mathematical sense.) The
Kutta-Joukowski theorem can be derived from the momentum balance and
Bernoulli’s equation, in the same manner as was used to calculate the force on a
blade in a cascade. Here we refrain from doing this since we wish to derive the
Kutta-Joukowski formula by different means later (Fig. 4.18).

In this connection we expressly mention that the force on a single wing section
in inviscid potential flow is perpendicular to the direction of the undisturbed stream
and thus the airfoil experiences only lift and no drag. This result is of course
contrary to our experience, and is due to ignoring the viscosity. The
Kutta-Joukowski theorem in the form (4.140) with constant C only holds for wing
sections in two-dimensional plane flow. All real wings are of finite span, but as long
as the span is much larger than the chord of the wing section, the lift can be
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estimated using the assumption of constant circulation along the span.
Approximately the lift of the whole wing with width b is given by

A ¼ �.CU1 b: ð4:141Þ

In reality however there is flow past the tips of the wing, because the pressure on the
lower side of the wing is larger than that on the upper side, so that by Euler’s
equation the fluid flows under the influence of the pressure gradient from the lower
to the upper side to even out the pressure difference. In this way the value of the
circulation on the wing tips tends to zero, the circulation therefore varies over the
span of the wing, and the lift is calculated by

A ¼ �.U1
Zþ b=2

�b=2

C xð Þdx; ð4:142Þ

if the origin is in the middle of the wing and x is measured along the span. Yet even
when we assume that C is constant over the span of the wing, difficulties soon arise,
because as far as the lift is concerned a wing cannot be replaced by a finite piece of
a vortex filament.

According to Helmholtz’s first vortex theorem, which being purely kinematic
and therefore also holding for the bound vortex, isolated pieces of a vortex filament
cannot exist. Neither can it be continued straight along into infinity, where the wing
has not cut through the fluid and thus no discontinuity surface has been generated as
is necessary for the formation of circulation. Therefore free vortices which are
carried away by the flow must be attached at the wing tips. Together with the bound
vortex and the starting vortex, these free vortices form a closed vortex ring which
frame the fluid region cut by the wing. If a long time has passed since start-up, the
starting vortex is at infinity, and the bound vortex and the tip vortices together form
a horseshoe vortex, which, although it only represents a very rough model of a finite
wing, can already provide a qualitative explanation for how a wing experiences a
drag in inviscid flow, as already mentioned. The velocity w (induced downwash)
induced in the middle of the wing by the two tip vortices amounts to double the

Fig. 4.18 Simplified vortex system of a finite airfoil
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velocity induced by a semi-infinite vortex filament at distance b/2. Therefore by
(4.139) we have

w ¼ 2
C

4p b=2ð Þ ¼
1
b
C
p

ð4:143Þ

and w is directed downwards. Thus the middle of the wing “experiences” not only
the undisturbed velocity U∞, but a velocity which arises from the superposition U∞

and w (Fig. 4.19). In inviscid flow, the force vector is perpendicular to the actual
approach direction of the stream, and therefore has a component parallel to the
undisturbed flow, which manifests itself as the induced drag Dind

Dind ¼ A
w
U1

: ð4:144Þ

But (4.144) only holds if the induced downwash from both vortices is constant over
the span of the wing. However the downwash does change, because, at a distance
x from the wing center, one vortex induces a downwash

C
4p b=2þ xð Þ ;

the other

C
4p b=2� xð Þ ;

and together

w ¼ C
4p

b

b=2ð Þ2�x2
;

from which we conclude that the downwash is smallest in the center of the wing (so
we underestimate the drag with (4.144)) and tends to infinity at the wing tips. The
unrealistic value there does not appear if the circulation distribution decreases

Fig. 4.19 Explanation of induced drag
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towards the ends, as indeed it has to. For a semi-elliptical circulation distribution
over the span of the wing, one finds a constant down-wash distribution, and (4.144)
is applicable. Helmholtz’s first vortex theorem further demands that, for an
infinitesimal change in the circulation in the x-direction

dC ¼ dC
dx

dx;

a free vortex of the same infinitesimal strength must leave the trailing edge. In this
way we are led to the improved vortex system of Fig. 4.20. The free vortices form a
discontinuity surface in the velocity components parallel to the trailing edge, which
rolls them into the vortices sketched in Fig. 4.21.

These vortices must be continually renewed as the wing moves forward, so that
the kinetic energy in the vortices continually has to be newly delivered to them. The
power needed to do this is the work done per unit time by the induced drag.

We can often see manifestations of Helmholtz’s first vortex theorem in daily life.
Recall the dimples seen on the free surface of coffee when the coffee spoon is
suddenly moved forwards and then taken out (Fig. 4.22).

Fig. 4.20 Simplified vortex system of an airfoil

Fig. 4.21 The discontinuity surface rolls itself into vortices
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As the fluid flows together from the front and back, a surface of discontinuity
forms along the rim of the spoon. The discontinuity surface rolls itself into a bow
shaped vortex whose endpoints form the dimples on the free surface. Since the flow
outside the vortex filament is a potential flow, Bernoulli’s equation holds (4.62)

1
2
. u2 þ pþ . g x3 ¼ C:

This is valid not just along a streamline, but between any two points in the field.
Everywhere on the free surface the pressure is equal to the ambient pressure p0. At
some distance from the vortex the velocity is zero and the free surface is not yet
depressed and corresponds to x3 = 0, say. Then Bernoulli’s constant is equal to the
ambient pressure (C = p0), and we obtain

1
2
. u2 þ . g x3 ¼ 0:

Near the endpoints of the vortex the velocity increases by the formula (4.139), and
therefore x3 must become negative, i.e., a depression of the free surface. The
cross-sectional surface of the vortex filament is in reality not infinitesimally small,
so that we cannot take the limit a ! 0 in (4.139), for which the velocity becomes
infinite. However the induced velocity from the vortex filament is so large that it
leads to the noticeable formation of dimples.

In this connection we note that an infinitesimally thin vortex filament cannot
appear in actual flow because the velocity gradient of the potential vortex tends to
infinity for a ! 0, so that the viscous stresses cannot be ignored any longer, even
for very small viscosity. As we know from (4.11), viscous stresses make no con-
tribution to particle acceleration in incompressible potential flow, but they do
deformation work and thus provide a contribution to the dissipation. The energy
dissipated in heat stems from the kinetic energy of the vortex. The idealization of a
real vortex filament as a filament with an infinitesimally small cross-section is of
course still useful.

Fig. 4.22 Vortex on a coffee spoon
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We shall now consider Helmholtz’s second vortex theorem:

A vortex tube is always made up of the same fluid particles.

A vortex tube is therefore a material tube. This has already been proved for
material coordinates by Eq. (4.27), but here we wish to represent it as a direct
consequence of Kelvin’s circulation theorem. We consider a vortex tube and an
arbitrary closed curve on its surface at time t0 (Fig. 4.23). By Stokes’ integral
theorem, the circulation of the closed curve is zero. The circulation of the curve,
which is made up of the same material particles, still has the same value of zero at a
later instant in time, by Kelvin’s circulation theorem (DC/Dt = 0). By inverting the
above reasoning it follows from Stokes’ theorem that these material particles must
be on the outer surface of the vortex tube.

If we consider smoke rings, the fact that vortex tubes are material tubes becomes
obvious: the smoke clearly remains in the vortex ring and is transported with it, so
that it is the smoke itself which carries the vorticity. This statement only holds
under the restrictions of barotropy and zero viscosity. The slow disintegration seen
in smoke rings is due to friction and diffusion. A vortex ring which consists of an
infinitesimally thin vortex filament induces an infinitely large velocity on itself
(similar to the horseshoe vortex already seen), so that the ring would move forward
with infinitely large velocity. The induced velocity in the center of the ring remains
finite (just as with the horseshoe vortex), and it is found from the Biot-Savart law
(4.132) as

~uj j ¼ C
4p

Z2p
0

a2du
a3

¼ C
2a

:

Fig. 4.23 Helmholtz’s second vortex theorem
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It is the assumption of an infinitesimally small cross-section that leads to the
unrealistic infinitely large velocity on the vortex. If we assume a finite cross-section,
then the velocity induced on itself, i.e., the velocity with which the ring moves
forwards, remains finite. However the actual cross-section of the ring is not known,
and probably depends on how the ring was formed.

In practice we notice that the ring moves forward with a velocity which is slower
than the induced velocity in the center. It is well known that two rings moving in
the same direction continually overtake each other whereby one slips through the
one in front. This behavior, sketched in Fig. 4.24, is explained by the mutually
induced velocities on the rings and the formula given above for the velocity in the
center of the ring.

In the same manner it can be explained why a vortex ring moving towards a wall
gets larger in diameter and at the same time reduces its velocity, while one moving
away from the wall contracts and increases its velocity (Fig. 4.25).

The motion cannot be worked out without knowing the vortex cross-section, and
the calculation for infinitesimally thin rings fails, because rings, like all curved
vortex filaments, induce infinitely large velocities on themselves. For straight vortex
filaments, i.e., for two-dimensional flow, a simple description of the “vortex dy-
namics” for infinitesimally thin filaments is possible, since here the self induced
translation velocity vanishes. Because vortex filaments are material lines, it is
sufficient to calculate the paths of the fluid particles which carry the rotation in the
x-y-plane perpendicular to the filaments using (1.10); that is, to determine the paths
of the vortex centers.

The magnitude of the velocity which a straight vortex filament at position ~x ið Þ
induces at position ~x is known from (4.136). As explained there, the induced
velocity is perpendicular to the vector~a ið Þ ¼~x�~x ið Þ, and therefore has the direction
~ez �~a ið Þ



~a ið Þ
�� ��, so that the vectorial form of (4.136) reads

Fig. 4.24 Two vortex rings passing through one another
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~uR ¼ C
2p

~ez �
~x�~x ið Þ
~x�~x ið Þ
�� ��2 :

For~x !~x ið Þ the velocity tends to infinity, but for reasons of symmetry the vortex
cannot be moved by its own velocity field; the induced translational velocity is, as
mentioned, zero. The induced velocity of n vortices with the circulation
C ið Þ i ¼ 1. . .nð Þ is

~uR ¼ 1
2p

X
i

C ið Þ~ez �
~x�~x ið Þ
~x�~x ið Þ
�� ��2 :

If there are no internal boundaries, or if the boundary conditions are satisfied by
reflection, as in Fig. 4.25, the last equation describes the entire velocity field, and
using (1.10), the “equation of motion” of the kth vortex reads

d~x kð Þ
dt

¼ 1
2p

X
i

i 6¼k

C ið Þ~ez �
~x kð Þ �~x ið Þ
~x kð Þ �~x ið Þ
�� ��2 : ð4:145Þ

For the reasons given above, the vortex i = k is excluded from the summation. With
(4.145) the 2n equations for the path coordinates are given.

The dynamics of the vortex motion has invariants which are analogous to the
invariants of a point mass system on which no external forces act. To start with, the
conservation of the strengths of the vortices by Helmholtz’s laws

P
C kð Þ ¼ const

� 	
corresponds to the conservation of the total mass of the point mass system. If we
multiply the equation of motion (4.145) by C(k), sum over k and expand, we obtain

Fig. 4.25 Vortex ring at a wall
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X
k

C kð Þ
d~x kð Þ
dt

¼ C 1ð Þ
d~x 1ð Þ
dt

þC 2ð Þ
d~x 2ð Þ
dt

þC 3ð Þ
d~x 3ð Þ
dt

þ . . . ¼

~ez � 1
2 p

C 1ð ÞC 2ð Þ
~x 1ð Þ �~x 2ð Þ
~x 1ð Þ �~x 2ð Þ
�� ��2 þC 1ð ÞC 3ð Þ

~x 1ð Þ �~x 3ð Þ
~x 1ð Þ �~x 3ð Þ
�� ��2 þ . . .þ

(

þ C 2ð ÞC 1ð Þ
~x 2ð Þ �~x 1ð Þ
~x 2ð Þ �~x 1ð Þ
�� ��2 þC 2ð ÞC 3ð Þ

~x 2ð Þ �~x 3ð Þ
~x 2ð Þ �~x 3ð Þ
�� ��2 þ . . .þ

þ C 3ð ÞC 1ð Þ
~x 3ð Þ �~x 1ð Þ
~x 3ð Þ �~x 1ð Þ
�� ��2 þC 3ð ÞC 2ð Þ

~x 3ð Þ �~x 2ð Þ
~x 3ð Þ �~x 2ð Þ
�� ��2 þ . . .

)
:

We can see directly that the terms on the right-hand side cancel out in pairs, so that
the equation X

k

C kð Þ
d~x kð Þ
dt

¼ 0

remains, which, when integrated, leads to

X
k

C kð Þ~x kð Þ ¼~xg
X
k

C kð Þ: ð4:146Þ

For dimensional reasons, we have written the integration constants like a “center of
gravity coordinate”~xg. We interpret this result as

The center of gravity of the strengths of the vortices is conserved.

The corresponding law (conservation of momentum) for a system of mass points
leads to the statement that the velocity of the center of gravity is a conserved
quantity in the absence of external forces. For

P
C kð Þ ¼ 0 the center of gravity lies

at infinity, so that, for example, two vortices with C 1ð Þ ¼ �C 2ð Þ must move along
straight parallel paths (i.e. they turn about an infinitely distant point). If
C 1ð Þ þC 2ð Þ 6¼ 0, the vortices turn about a center of gravity which is at a finite
distance (Fig. 4.26).

Here the overtaking process of two straight vortex pairs is similar to the over-
taking process of two vortex rings explained in Fig. 4.24. The paths of the vortex
pairs are determined by numerical integration of (4.145) and are shown in Fig. 4.27.

The analogy of (4.146) is continued in the “balance of angular momentum of
vortex systems” and can be carried over to a continuous vortex distribution.
However we do not wish to go into this, but shall note the difference from the
mechanics of mass points: (1.10) is the equation for the motion of a vortex under
the influence of the remaining vortices of the system. The motion of a mass point
under the influence of the rest of the system, that is, under the influence of the
internal forces, is instead described by Newton’s second law.
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Helmholtz’s third vortex theorem reads:

The circulation of a vortex tube remains constant in time.

This follows immediately from Helmholtz’s second law together with Kelvin’s
circulation theorem: a closed line generating the vortex tube (Fig. 4.11) is, by
Helmholtz’s second law, a material line whose circulation, by Kelvin’s law,
remains constant.

Helmholtz’s second and third laws hold only for barotropic and inviscid fluids.
The statements of these laws are also in Eq. (4.27), but there under the more
restricting assumption of incompressible flow.

Fig. 4.26 Possible pathlines of a pair of straight vortices

Fig. 4.27 Pathlines of two straight vortex pairs
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4.2.4 Integration of the Energy Equation

In steady and inviscid flow, when heat conduction can be ignored, an integral of the
energy equation which is very useful may be found. We assume that ki has a time
independent potential, for example the mass body force of gravity. Then, since

Dw
Dt

¼ ui
@w
@xi

¼ �ui ki ð4:147Þ

the work of the mass body force (per unit time) can also be written as the material
derivative of the potential and, using u ¼ ~uj j, we obtain the energy equation (4.47)
in the form

.
D
Dt

u2

2
þ hþw

� �
¼ 0: ð4:148Þ

From this we conclude that the sum of the terms in brackets is a conserved quantity
for a material particle, and therefore

u2

2
þ hþw ¼ C ð4:149Þ

along a pathline. Because of our restriction to steady flows this also holds along a
streamline. The constant of integration which appears differs in general from
streamline to streamline. The value of this constant depends on how this flow arose,
and is clearly the same for all streamlines if the energy is homogeneous at infinity.
In most technically interesting flows this constant is equal for all streamlines, and
these flows are thus called homenergic. In particular, homenergic flows do not have
to be irrotational, and therefore they are kinematically not as restricted. On the other
hand, as already mentioned, Bernoulli’s constant is the same on every streamline
only in irrotational fields (and also in fields where ~x�~u ¼ 0, but these do not have
the same technical importance as irrotational flows).

Equation (4.149) is mainly used in gas dynamics where the potential of the mass
body force can often be ignored, and the energy equation assumes the form

u2

2
þ h ¼ ht: ð4:150Þ

This establishes an algebraic relation between velocity and enthalpy which always,
independent of the specific problem, holds in steady and inviscid flow, and
therefore in flows with chemical reactions where we have Ds=Dt 6¼ 0. If the
enthalpy field is known the magnitude of the velocity in the field follows directly,
and vice versa.
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To find another form of the energy equation in which the dependency of the
enthalpy does not expressly appear, the assumption of isentropic flow must be made
explicitly. From Gibbs’ relation (2.133) we find

De
Dt

� p
.2

D.
Dt

¼ 0 ð4:151Þ

or, using (4.3), also

Dh
Dt

� 1
.
Dp
Dt

¼ 0: ð4:152Þ

Equations (4.152) and (4.148) then yield the energy equation in the form

D
Dt

u2

2
þw

� �
þ 1

.
Dp
Dt

¼ 0: ð4:153Þ

In steady flow, we can replace the operator D/Dt by ~uj j@=@r or ~uj j@=@s (because of
(1.23)). Integrating (4.153) along the pathline or streamline leads us again to
Bernoulli’s equation (4.57) in the form valid for steady flow

u2

2
þwþ

Z
dp
.

¼ C: ð4:154Þ

In doing this we see that Bernoulli’s equation is an energy equation. Indeed in the
derivation of Bernoulli’s equation (4.57) the inner product of the velocity~u with the
equation of motion was formed, thus making it a “mechanical energy equation”.
(The integral is to be taken along the streamline or pathline; if it is path independent
(4.154) is called the “strong form” of Bernoulli’s equation.) Incidentally, using the
same assumptions, the “entropy equations” (4.151) and (4.152) are often used
instead of the energy equation, although the kinetic energy does not appear
explicitly in these formulae.

In order to clarify the relation between homenergic and irrotational flow men-
tioned above we shall need to use Crocco’s relation, which only holds in steady
flow. We can reach it by forming from the canonical equation of state h = h(s, p)
the gradient

@h
@xi

¼ @h
@s

� �
p

@s
@xi

þ @h
@p

� �
s

@p
@xi

; ð4:155Þ

and using Eqs. (2.154) and (2.155) to get

� 1
.
@p
@xi

¼ T
@s
@xi

� @h
@xi

: ð4:156Þ
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We introduce the formula into Euler’s equation (4.40a), express the acceleration
term there by (1.77), and extract the equation for steady flow known as Crocco’s
relation

�2 εijk ujxk þ @

@xi

uj uj
2

þ hþw
h i

¼ T
@s
@xi

: ð4:157Þ

Here we have assumed that the mass body force has a potential. In homenergic flow
the constant of integration C appearing in (4.149) has the same value on all
streamlines, thus the gradient of C vanishes, and for this class of flows the following
holds

@C
@xi

¼ @

@xi

u2

2
þ hþw

� �
¼ 0: ð4:158Þ

Then for these flows it follows from Crocco’s relation that irrotational flows must
be homentropic. On the other hand we see that flows which are not homentropic but
are homenergic must be rotational.

This case has already been discussed in 4.1.3 (curved shock) and is interesting
because vorticity arises inside the flow field and not, as in incompressible flow, by
diffusion from the boundaries inwards. By passing through a curved shock
(Fig. 4.28), as in hypersonic flow, the entropy increases by a different amount on
different streamlines. Therefore behind the shock surface the entropy is no longer
homogeneous, and because of Crocco’s relation, the flow can no longer be
irrotational.

We also conclude from Crocco’s relation that a two-dimensional homentropic
(and homenergic) flow must necessarily be irrotational, because in two-dimensional
flow ~x is always perpendicular to~u. Then the first term in (4.157) cannot vanish as
it would if ~x and ~u were parallel vectors.

Fig. 4.28 Curved shock
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4.3 Initial and Boundary Conditions

Up until now in Chap. 4 we have made general statements as they apply for every
flow problem of Newtonian or inviscid fluids. Further progress in a given problem
now demands that we make assertions about the shape of the flow boundary and
about the conditions which the flow must satisfy at this boundary. Mathematically
we shall deal here with the boundary conditions. In addition in unsteady flow
problems the initial conditions are needed, i.e., the field quantities at the start of the
time period of interest.

We shall first consider flow boundaries for the case of the impermeable wall
(which we can generalize if necessary to permeable walls) and for the case of the
free surface. Boundaries which are surfaces of discontinuity are also important. The
best known example for this are shock surfaces, which we can only go into fully
when the concept of a “shock” has itself been clarified.

We know from experience that Newtonian fluids adhere to walls. For an
impermeable wall this means that both the tangential and the normal velocities of
the fluid and of the wall must correspond at every point on the wall. The velocity
vector~u of the fluid at the wall must be equal to the vector of the wall velocity~uw

~u ¼~uw at the wallð Þ: ð4:159Þ

The boundary condition when the wall is at rest ~uw ¼ 0ð Þ is

~u ¼ 0 ð4:160Þ

at the wall, or alternatively

un ¼ ut ¼ 0 ð4:161Þ

at the wall. Here the index n denotes the normal component and the index t denotes
the tangential components of the velocity.

In inviscid flow it is in general no longer possible to prescribe both the normal and
the tangential velocity at the wall. Since at an impermeable wall the normal com-
ponent of wall and fluid velocities must always correspond (otherwise the wall would
be permeable), we retain this boundary condition and have then for inviscid flow

~u �~n ¼~uw �~n ð4:162aÞ

at the wall, or

~u�~uwð Þ �~n ¼ 0; ð4:162bÞ

in index notation
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ui � ui wð Þ
� 	

ni ¼ 0 ð4:162cÞ

at the wall. We call this condition the kinematic boundary condition, while (4.159)
is called the dynamic or physical boundary condition. In inviscid flow we relax the
dynamic boundary condition, since the derivatives in Euler’s equation are of a
lower order than in the Navier-Stokes equations. In Euler’s equation the second
order terms (gD~u in the incompressible case) are missing. It is known from the
theory of ordinary differential equations that the order of the differential equation
determines the number of boundary conditions which can be satisfied. In exactly the
same way the order of a partial differential equation fixes how many functions can
be satisfied on the boundary. Since only the boundary condition of the normal
component of the velocity can be assigned in inviscid flow, in general different
tangential components of the wall and fluid velocities arise: the dynamic boundary
condition is therefore violated. Now we also understand why the viscous flow for
� ! 0 does not turn into the solution with � � 0: both flows satisfy different
boundary conditions in which the viscosity � does not appear explicitly and
therefore are not affected by taking the limit � ! 0. In this connection we mention
again that even in cases where the inviscid solution is a good approximation for the
viscous flow at large Reynolds’ numbers, this solution breaks down right next to the
wall (in the boundary layer).

If the flow field around a finite sized body extends to infinity, the disturbances
which originate from the body must die away at infinity. The degree to which the
disturbances vanish depends on the given problem, and will be discussed only in
connection with the specific problem (see Sect. 10.3).

The normal component of the wall velocity is required in the kinematic
boundary condition. To find it consider the surface of the body given in implicit
form by

F ~x; tð Þ ¼ 0; ð4:163Þ

where~x is the position vector of a general point of the surface. The normal vector to
the surface is (up to the sign)

~n ¼ rF
rFj j ; ð4:164Þ

so that we can write the kinematic boundary condition in the form

~u � rF ¼~uw � rF at F ~x; tð Þ ¼ 0ð Þ: ð4:165Þ

By definition a point on the surface with position vector~x satisfies the Eq. (4.163)
for all times. For an observer on the surface whose position vector is~x (4.163) does
not change, so it follows that
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dF
dt

¼ 0: ð4:166Þ

This time derivative is the general time derivative introduced with Eq. (1.19), since
the observer on the surface moves with velocity ~uw which is not equal to the
velocity of a material particle at the same place. By (4.162a) only the normal
components are equal. From

dF
dt

¼ @F
@t

þ~uw � rF ¼ 0 ð4:167Þ

we first extract, by division with rFj j, a convenient formula for the calculation of
the normal velocity of a body

~uw � rF
rFj j ¼~uw �~n ¼ � 1

rFj j
@F
@t

: ð4:168aÞ

In index notation this is

ui wð Þni ¼ �@F=@t

@F


@xj @F



@xj

� 	1=2 : ð4:168bÞ

We are led to a particularly revealing form of the kinematic boundary condition if
we insert (4.167) into (4.165)

~u � rF ¼ � @F
@t

at F ~x; tð Þ ¼ 0ð Þ: ð4:169Þ

Using the definition of the material derivative (1.20) we then obtain

@F
@t

þ~u � rF ¼ DF
Dt

¼ 0 at F ~x; tð Þ ¼ 0ð Þ: ð4:170Þ

This final equation yields the following interpretation: the position vector ~x of a
fluid particle on the surface of a body satisfies the Eq. (4.163) for the surface at all
times, thus the material particle always remains on the surface.

This is Lagrange’s theorem:

The surface is always made up of the same fluid particles.

This at first surprising statement is the logical consequence of the condition that the
normal components of the surface velocity and the fluid velocity at the surface be
the same.

The kinematic boundary condition also holds at the free surface and at interfaces
between two fluids or more generally on material discontinuity surfaces.
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Since the shape of the free surface is unknown beforehand, problems with free
surfaces are mostly difficult to solve. Apart from the kinematic boundary condition,
a dynamic boundary condition which expresses the continuity of the stress vector
must be satisfied.

The stress vectors~t 1ð Þ and~t 2ð Þ at the same point of the interface with the normals
~n 1ð Þ ¼~n in fluid (1) and ~n 2ð Þ ¼ �~n in fluid (2) must satisfy (2.23) (Fig. 4.29)

~t ~nð Þ
1ð Þ ¼ �~t �~nð Þ

2ð Þ : ð4:171Þ

Because of ~n 1ð Þ ¼~n ¼ �~n 2ð Þ and using (2.29b) we also have

~n � T 1ð Þ ¼~n � T 2ð Þ at F ~x; tð Þ ¼ 0ð Þ: ð4:172Þ

In inviscid fluid (T = –p I) we extract from (4.172) a condition for the pressure on
the interface

p 1ð Þ ¼ p 2ð Þ at F ~x; tð Þ ¼ 0ð Þ: ð4:173Þ

Since we cannot fix a boundary condition for the tangential component of the
velocity in inviscid flow, a jump in the tangential velocity generally arises at an
interface and we speak of a “tangential discontinuity surface”. The discontinuity
surface behind an airfoil which we discussed earlier is of this kind.

4.4 Simplification of the Equations of Motion

Previously in this chapter we have stated the equations and boundary conditions with
which the flow of a Newtonian fluid can, in principle, be calculated for general
geometries of the flow boundary. Equations (4.1), (4.2) and (2.3) represent a system
of coupled partial differential equations whose solution in general turns out to be a
very difficult problem. The difficulties in the integration are based, firstly, on the fact
that these equations, unlike most partial differential equations in physics, are non-
linear. This means that solutions which have been found cannot be “superimposed”
to form a new solution, as is possible with linear systems and as we have already
seen in the example of Poisson’s equation. Secondly the system is of a very high

Fig. 4.29 Stress vector at an interface
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order, arising from the coupling of the equations and from the high derivatives which
appear in the viscous terms. Therefore it is desirable to simplify a given problem so
that a solution is possible and at the same time so that the essential aspect of the
problem is preserved. This is possible to a greater or lesser extent in most technical
fluid mechanics problems. If, for example, the assumption of incompressible and
isothermal flow is approximately justified, the coupling of the Navier-Stokes
equations and the energy equation is lifted. In this case (equation system (4.9a, 4.9b)
and (2.5)) a class of exact solutions is known, and some of these are of fundamental
importance in technical applications. Exact solutions arise either if the nonlinear
terms identically vanish for kinematic reasons, as happens in unidirectional flow or if
because of symmetry in the problem, the independent variables always appear in one
combination which can then be written as a new independent variable, allowing the
system of partial differential equations to become a system of ordinary differential
equations (similarity solution). However the number of exact solutions is small, and
we should not anticipate that future developments will increase the number of exact
solutions significantly.

An essentially different situation appears when we consider numerical methods.
Here we can expect that through the rapidly progressive developments very efficient
methods of solution will appear, often making restrictive simplifications of the
problem unnecessary. Indeed this development also justifies the detailed account of
the general principles in the previous chapters.

We do not wish to go any further into numerical methods but shall note that the
numerical solution of these equations also gives rise to substantial difficulties and
certainly does not represent a “solved problem”, even if all the complications
involved with turbulent flows are excluded. Even if stable algorithms for numerical
calculations do exist, for time and financial reasons all the simplifications which the
problem allows should be exploited. Finally, the processes of simplification,
abstraction and concentration on essential aspects of a problem are prerequisites for
the understanding of every physical process.

In the following chapters flows will be considered which have all been idealized
or specialized in certain ways, and we shall only consider the most important
aspects of the flow in the given circumstances. The idealizations arise from the
simplifying assumptions from the Eqs. (4.1), (4.2) and (2.3) for Newtonian fluids,
or also from the more general Eqs. (2.38), (2.119), (2.3) and the corresponding
constitutive relations in the case of non-Newtonian fluids.

The “theories” of fluid mechanics emerge from such simplifying assumptions. In
this way, ignoring the viscosity and the heat conduction leads to the “theory of
inviscid flows” which is described by Euler’s equations (Sect. 4.2). Further sim-
plifications divide this theory into incompressible and compressible inviscid flows.
Finally, depending on the ratio of the typical flow velocity U to the speed of sound
a, flows can be classified as subsonic, transonic and supersonic flows.

It is desirable to fit possible simplifications into some order, which both allows a
classification of the given problem as well as giving an indication of the allowable
and suitable simplifications for the problem. Such a scheme can follow from
simplifications in
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(a) the constitutive relation,
(b) the dynamics, or
(c) the kinematics.

Included in class (a) is ignoring the viscosity and the heat conduction as discussed
already, as well as the assumptions of incompressible flow (which obeys the par-
ticular equations of state D.=Dt ¼ 0), barotropy and isentropy.

To (b) belong the simplifications which arise from the assumption of steady flow
and the limiting cases of Re ! ∞ or Re ! 0. In addition the assumptions leading
to subsonic, transonic, supersonic and hypersonic flows all fit in here.

In (c) we have, for example, irrotationality curl ~u ¼ 0. Additional kinematic
simplifications arise from symmetry properties: in rotational symmetry the number of
necessary spatial coordinates can be reduced using the cylindrical coordinate system

to two r ¼ x21 þ x22
� 	1=2

; x3
� �

, so that it can be treated as a two-dimensional problem.

Steady spherically symmetric problems are one-dimensional, since in a spherical

coordinate system we only have one independent coordinate r ¼ xj xj
� 	1=2� �

.

Flows which are independent of one coordinate in a Cartesian coordinate system
and whose velocity component in this direction vanishes are particularly important
in applications. In the above sense they are two-dimensional flows but they are
additionally plane flows. In a suitable coordinate system the same flow quantities
are met in all planes, say x3 = const. Although two-dimensional flows never appear
in nature, they are often good approximations to physical problems.

Belonging to (c) are also the simplifying assumptions of stream filament theory,
which leads to a quasi-one-dimensional description, as well as the theory of thin
bodies, in which the ratio of typical lengths (for example, the thickness ratio D=L of
a body, or the inclination a of the streamlines) is very small. Of course combina-
tions of these various criteria also appear: the Mach number M ¼ U=a[ 1 char-
acterizes for example a supersonic flow, D=L � 1 a thin body, and MD=L � 1 a
linear supersonic flow. The limiting value a Re ! 0 denotes the simplification
which leads to hydrodynamic lubrication theory.

Now this is not a comprehensive list of examples, nor is the classification into
these three groups unique. For instance the case of incompressible flow with the
equation of state D.=Dt ¼ 0 can be classified under (a), but because of the kine-
matic restrictions given by div ~u ¼ 0, also under (c). In the same manner the
incompressibility can be grouped under (b), because the limiting case U=a ! 0 in
steady flow corresponds with, as we shall see, the case of incompressible flow.

Many of the possible simplifications are immediately obvious, while others, for
example the assumption of inviscid fluid, need careful justification. Apart from the
assumption that the flow be inviscid the most incisive simplification is the
assumption of incompressibility, because even for liquids, this assumption is not
justified in certain circumstances; the examples in connection with Eq. (2.5) show
this. We are lead to criteria for the admissibility of this simplification if we first
form from the equation of state p = p(., s) the expression
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Dp
Dt

¼ a2
D.
Dt

þ @p
@s

� �
.

Ds
Dt

; ð4:174Þ

where it is known from thermodynamics that the state variable @p=@.ð Þs is equal to
the square of the speed of sound a

@p
@.

� �
s
¼ a2: ð4:175Þ

We bring (4.174) to a dimensionless form by multiplying with the typical con-
vection time L=U and then dividing by . to get

1
.
L
U
D.
Dt

¼ L
U

1
. a2

Dp
Dt

� L
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1
. a2
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@s

� �
.

Ds
Dt

: ð4:176Þ

We see that the relative change in the density of a fluid particle can be ignored if the
right-hand side vanishes. Unless by some chance both terms cancel out, in general
each term on the right-hand side must vanish by itself. First we note that in the case
of strong external heating, the internal irreversible production of entropy according
to (2.137) is unimportant, and the change in entropy here is given by (2.138). This
term alone is then so large that the relative change in density can not be ignored.

If the heating is by dissipation the irreversible production of entropy (2.137)
becomes significant, and we estimate the final term in (4.176) using the assumption
of the calorically perfect gas. By simple calculation, the relation

@p
@s

� �
.

¼ R
ct
T . ð4:177Þ

follows. For gases the dimensionless number

Pr ¼ cpg
k

ð4:178Þ

(the Prandtl’s number) is approximately equal to one. For Pr 	 1 the terms U=T
and T�2qi@T=@xi in (2.137) are of the same order of magnitude, and we look at the
term U=T : (In liquids which are not liquid metals Pr 
 1, and the second term on
the right-hand side of (2.137) is correspondingly small compared to the first one.)
Using (4.177) we extract the equation

L
U

1
. a2

@p
@s
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.
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Dt

¼ L
U

R
ct

U
. a2

: ð4:179Þ
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If L is the characteristic length of the problem then from O Uð Þ ¼ O gU2


L2

� 	
we

estimate

L
U

R
ct

U
. a2

� L
U

�U2

L2 a2
¼ M2

Re
; ð4:180Þ

where M is the Mach number M = U/a formed with the typical flow velocity and
the speed of sound. In real flows M2/Re is usually very small, and this term can be
neglected. (If the typical length in the dissipation function U is the boundary layer
thickness d, the term in question in this equation is of the order M2, as shall be
shown later in Chap. 12.)

Since Dp=Dt is the change in pressure experienced by the material particle, the
remaining term on the right-hand side can in general only vanish if a2 becomes
suitably large. To estimate this term qualitatively, we do not need to take the
viscosity into account. We then assume irrotational flow and calculate
.�1 Dp



Dt ¼ DP=Dt from Bernoulli’s equation in the form (4.75). First the term

Dw=Dt arises, which we estimate for the most important case of the mass body
force of gravity. The change in the quantity w ¼ �gi xi experienced by a material
particle only originates from the convection of the particle, since the gravity field is
time independent. Therefore the typical time of the change is the convection time
L=U. Accounting for the factor L=U in Eq. (4.176) we are led to the following
relation between orders of magnitude

L
U

1
a2

Dw
Dt

� L
U
U
L
gL
a2

¼ g L
a2

: ð4:181Þ

Therefore a necessary condition for this contribution to vanish is

g L
a2

� 1: ð4:182Þ

This condition is satisfied if the typical length L in the problem is much smaller than
a2=g. For air under standard atmospheric conditions we have a2=g = 11,500 m,
and (4.182) is satisfied for all flows in technical applications, but not for problems
which might arise in meteorology.

The next contribution to .−1 Dp=Dt from Bernoulli’s equation is the term

1
2
D
Dt

@U�

@xi

� �2
¼ 1

2
Du2

Dt
:

In steady flow the typical time of the change is again the convection time L=U, so
that we estimate the contribution of this term to the first term on the right-hand side
of (4.176) as having the order of magnitude
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U2 ¼ U2

a2
: ð4:183Þ

From this the second necessary condition for ignoring compressibility follows

U2

a2
¼ M2 � 1: ð4:184Þ

In unsteady flow, besides the convection time L=U a further typical time generally
appears as a measure of the rate of change, for example f−1 if f is the typical
frequency of the motion. The restrictions arising from this are dealt with by the third
contribution to .−1 Dp=Dt from Bernoulli’s equation, that is D @U�=@tð Þ=Dt. From

U� ¼
Z

rU� � d~x ¼
Z

~u � d~x ð4:185Þ

U* has an order of magnitude U L, and if the typical time is given by the convection
time L=U, using the estimation
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a2
; ð4:186Þ

the same restrictions arise as from (4.184). However if the typical time is f −1, using
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D @U�=@tð Þ
Dt

� L
U
f 2
U L
a2

� L2 f 2

a2
ð4:187Þ

a third necessary condition arises

L2 f 2

a2
� 1: ð4:188Þ

In general all three necessary conditions must be satisfied if the assumption of
incompressible flow is to be justified. Most important is the condition (4.184),
which for steady flows, encountered in technical applications, is also sufficient.
After this the Mach number of the flow must be small enough so that the com-
pressibility effects can be ignored. We note that the condition (4.188) is not satisfied
in acoustics. In sound waves the typical length L is equal to the wavelength k and
we have

k f
a

¼ 1: ð4:189Þ

Therefore acoustics belongs to the area of compressible flow.
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Chapter 5
Hydrostatics

5.1 Hydrostatic Pressure Distribution

Hydrostatics is concerned with the behavior of fluids at rest. The state of rest is
kinematically the most restricted state and problems in hydrostatics are among the
simplest in fluid mechanics. We can obtain the laws of hydrostatics by setting

~u � 0 ð5:1Þ

into the balance laws. From mass conservation it then follows directly that

@.
@t

¼ 0; ð5:2Þ

that is, the density must be constant in time, as is made particularly clear if we
consider the integral form of mass conservation (2.7). Instead of using the balance
laws we could go directly to the first integrals of Chap. 4. The velocity field in
hydrostatics in trivially irrotational, so that Bernoulli’s constant has the same value
everywhere in the field, and directly from (4.79) we infer the fundamental general
relation between pressure function and potential of the mass body force in a rotating
reference frame in which the fluid is at rest

wþP� 1
2

~X�~x
� �2

¼ C: ð5:3Þ

This relation can easily be generalized for the case in which the origin of the
reference frame moves with acceleration~a: To do this consider the potential~a �~x of
the mass body force�~a (an apparent force which has a potential because curl~a ¼ 0Þ
added to w. We note that (5.3) is only valid under the assumptions which also led to
(4.79): the total mass body force has a potential, and the pressure p is a unique
function of the density p = p(.) (barotropy). This means that lines of equal pressure
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are also lines of constant density, or expressed differently, that pressure and density
gradients are parallel. As a consequence of the thermal equation of state (e.g.
p = .RT for a thermally perfect gas), lines of equal pressure are then also lines of
equal temperature. It is only under these conditions that hydrostatic equilibrium can
exist. If these conditions are not satisfied then the fluid is necessarily set in motion.

We deduce this important statement from the corresponding differential form of
(5.3), which results from Cauchy’s equation (2.38) together with the spherically
symmetric stress state (2.33), or straight from the Navier-Stokes equations (4.1) or
Euler’s equations (4.40) when we set ~u � 0

rp ¼ .~k: ð5:4Þ

If we take the curl of (5.4) the left-hand side vanishes and we are led to the
condition

r� .~k
� �

¼ r.�~kþ .r�~k ¼ 0: ð5:5Þ

As noted in connection with (2.42), this is a necessary and sufficient condition for
the existence of a potential X of the volume body force ð~f ¼ .~k ¼ �rXÞ: Clearly
(5.5) is satisfied if the mass body force~k has a potential ð~k ¼ �rwÞ and if r. is
parallel to ~k (or is zero). Because of (5.4) r. is then parallel to rp and we have
again reached the above statement.

An example of this is the natural convection from a radiator. The air close to the
vertical surface of the radiator is warmed by heat conduction. Temperature and
density gradients are then perpendicular to the radiator surface, and therefore per-
pendicular to the force of gravity. The hydrostatic equilibrium condition is then
violated, and the air is set into motion. (The motion of the air improves heat transfer,
and it is only because of this that rooms can be heated at all in this manner.)

In applying Eq. (5.3) to the pressure distribution in the atmosphere, we first note
that the centrifugal force is already included in the gravity force (cf. Sect. 2.4). We
choose a Cartesian coordinate system (thus ignoring the curvature of the earth)
whose x3-axis is directed away from the surface of the earth. We shall often denote
the Cartesian coordinates xi (i = 1, 2, 3) as x, y and z, so that the potential of the
force of gravity is w = g z. Equation (5.3) then reads

z2 � z1 ¼ � 1
g

Zp2
p1

dp
.
: ð5:6Þ

Let us consider the case where the barotropy is a consequence of a homogeneous
temperature distribution, so for thermally perfect gases we have
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z2 � z1 ¼ RT
g

Zp1
p2

dp
p

¼ RT
g

ln
p1
p2

; ð5:7Þ

or

p2 ¼ p1 exp � 1
RT

h g

� �
; ð5:8Þ

where the altitude difference z2 – z1 is denoted by h. Equation (5.8) is known as the
barometric altitude formula. If the barotropy is a consequence of the homentropy
(4.49), then since

p1
p
¼ .1

.

� �c
ð5:9Þ

the formula corresponding to (5.7) reads

z2 � z1 ¼ RT1
g

p
� c�1

cð Þ
1

Zp1
p2

p�1=c dp ð5:10Þ

or

z2 � z1 ¼ c
c� 1

RT1
g

1� p2
p1

� � c�1
cð Þ( )

; ð5:11Þ

where we have also made use of the thermal equation of state. With

p2
p1

� � c�1
cð Þ
¼ T2

T1
ð5:12Þ

we can also express (5.11) with the temperature difference made explicit

z2 � z1 ¼ � c
c� 1

R
g

T2 � T1ð Þ: ð5:13Þ

Not all density distributions in the atmosphere which are statically possible are also
stable. A necessary condition for stability is that the density decrease with
increasing height. However this condition is not sufficient: the density must also
decrease at least as strongly as in homentropic density stratification. This constitutes
a neutral stratification: if, by some disturbance, a parcel of air is raised (friction and
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heat conduction being negligible), this air expands to the new pressure, its density
decreases at constant entropy just so that the density and the temperature corre-
spond to the new ambient pressure. If the density in the new position is lower, then
the air parcel moves up further and the stratification is unstable. If, however, the
density is higher the air parcel sinks down again and the stratification is stable.
From (5.13) we calculate the temperature gradient of the neutral stratification to be

dT
dz

¼ � c� 1
c

g
R
¼ �9:95 � 10�3K=m ð5:14Þ

(for air with R � 287 J/ kgKð Þ; c � 1:4Þ, that is, the temperature decreases about
1 K per 100 m. The stratification is unstable if the temperature decreases faster and
is stable if it decreases slower. If the temperature increases with increasing height,
as happens for example if a warm mass of air moves over colder ground air, we
have inversion. This represents a particularly stable atmospheric stratification and
has the consequence that polluted air remains close to the ground.

In what follows we restrict ourselves to homogeneous density fields and in
particular to liquids. In the coordinate system of Fig. 4.2 Bernoulli’s equation is
applicable in the form (4.81), from which we conclude that for w = 0 the hydro-
static pressure distribution in a fluid of homogeneous density is

p
.
þ g z� 1

2
X2 r2 ¼ C: ð5:15Þ

In the inertial system here (X = 0) the pressure distribution therefore reads

p ¼ p0 � . g z ; ð5:16Þ

where p0 is the pressure at height z = 0. We see that the pressure linearly increases
with increasing depth (z < 0).

At points of equal height the pressure is the same. From this follows the law of
communicating tubes: in communicating tubes (Fig. 5.1) the level of the fluid is the
same everywhere because the pressure is equal to the ambient pressure p0 every-
where on the surface of the fluid.

Pascal’s paradox is a further consequence of (5.16). The bases of the vessels
shown in Fig. 5.2 are at equal pressure. If the bases are of equal size, then so are the
forces, independent of the total weight of the fluid in the vessels. Equation (5.16)
also explains how the often used U-tube manometer works (Fig. 5.3). The pressure
pC in the container is found by first determining the intermediate pressure pZ in the
manometer fluid at depth Dh from p0

pZ ¼ p0 þ .M gDh: ð5:17Þ
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Fig. 5.1 Communicating tubes

Fig. 5.3 U-tube manometer

Fig. 5.2 Pascal’s paradox
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Then the pressure directly under the left-hand level is also known, because the
pressure in the same fluid at the same heights is equal. From here on the pressure in
the fluid decreases to the pressure pC, giving us

pC ¼ pZ � .C gH: ð5:18Þ

By (5.17) the pressure can be calculated from the lengths Dh and H as

pC ¼ p0 þ .M gDh 1� .C
.M

H
Dh

� �
: ð5:19Þ

Often the density of the manometer fluid .M (e.g. mercury) is much larger than the
density of the fluid in the container .C (e.g. air). If H is then not much larger than
Dh, we ignore the second term in the brackets in (5.19), and read the pressure
difference directly from the deflection of the manometer Dh

pC � p0 ¼ .M gDh ð5:20Þ

This also explains why millimeters of water (1 mm H2O = 9.81 Pa = 9.81 N/m2)
or millimeters of mercury (1 mm Hg = 1 Torr = 133.3 Pa) are often used as units
of pressure.

We shall now consider the pressure distribution relative to a reference frame
rotating about the z-axis (e.g. the container in Fig. 5.4 which rotates about the z-axis
but which does not have to be rotationally symmetrical).

Equation (5.15) shows that at constant distance from the axis of rotation, the
pressure increases linearly with depth, and that at constant height it increases
quadratically with increasing radius r. We dispose of the constant of integration in
(5.15), by putting the pressure p = p0 at z = 0, r = 0, and then write

p ¼ p0 � . g z þ 1
2
.X2r2: ð5:21Þ

The surfaces of constant pressure (p = C) are paraboloids of rotation

z ¼ 1
. g

p0 � Cþ 1
2
.X2r2

� �
; ð5:22Þ

and since they are always surfaces of equal pressure, the free surface also forms a
paraboloid of revolution where C = p0

z ¼ 1
2g

X2 r2: ð5:23Þ
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5.2 Hydrostatic Lift, Force on Walls

In liquids, in particular in water, the density is so high that the loads on container
walls, dams, etc. from the hydrostatic pressure distribution become important.
Using the pressure distribution (5.15), the force on a surface S can be calculated
from

~F ¼ �
ZZ
Sð Þ

p~n dS; ð5:24Þ

if necessary numerically, by adding the vectors �p~n dS until the whole surface is
exhausted. However using Gauss’ theorem, the calculation of forces on surfaces
(particularly on curved surfaces) can be reduced to finding the buoyancy force,
which is given by Archimedes’ principle:

A body in a fluid experiences an apparent reduction in weight (lift) equal to the weight of
the displaced fluid.

This important law follows directly from Gauss’ theorem and the Eq. (5.4): if the
body is fully immersed then S is a closed surface and the total hydrostatic force is
given by (5.24). Instead of calculating the surface integral directly, we transform it
to a volume integral using Gauss’ theorem. Now we consider the immersed body to
be replaced by fluid which is of course in balance with its surroundings. Then, using

Fig. 5.4 Free surface on a rotating container
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(5.4) we replace the pressure gradients in the volume integral by the volume body
force of gravity, and extract

~F ¼ �
ZZ
Sð Þ

p~n dS ¼ �
ZZZ
Vð Þ

rp dV ¼ �
ZZZ
Vð Þ

.~g dV ¼ �.~gV : ð5:25Þ

The term on the far right is the weight of the displaced fluid. The minus sign shows
that this force is directed upwardly and is therefore a lift force. Since the weight acts
through the center of gravity, the buoyancy force also acts through the center of
gravity of the displaced fluid.

If the surface S on which the force is to be calculated is not the entire surface of
the body, this surface can be made part of the surface of a replacement body by
using other, arbitrary, surfaces. From knowing the lift of this replacement body and
the forces on the supplementary surfaces, the force on the surface S can be cal-
culated. We choose flat surfaces as supplementary surfaces and calculate the forces
on the flat surfaces before beginning the general problem.

To do this we consider an arbitrarily bounded and arbitrarily orientated plane
surface A which is fully wetted (Fig. 5.5). We choose a coordinate system x′, y′, z′
originating at the centroid of the surface, whose z′-axis is normal to the surface,
whose y′-axis lying in the surface runs parallel to the free surface (and is therefore
perpendicular to the mass body force), and whose x′-axis is chosen so that x′, y′ and
z′ form a right-handed coordinate system. In this primed coordinate system the
potential of the mass body force reads

w ¼ �~g �~x ¼ � g0x x
0 þ g0z z

0� 	
; ð5:26Þ

since ~g has no component in the y′-direction. As earlier, we obtain the hydrostatic
pressure distribution from Bernoulli’s equation where we set the velocity to zero.
Beginning from (4.57), for an incompressible fluid, we obtain

pþ .w ¼ C; ð5:27Þ

Fig. 5.5 The force on a plane surface
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or

p� . g0x x
0 þ g0z z

0� 	 ¼ pCG ; ð5:28Þ

where pCG is the pressure at the centroid of the plane (x′ = y′ = z′ = 0), which, by
(5.16) is

pCG ¼ p0 þ . g hCG : ð5:29Þ

The component of~g in the x′-direction is g0x ¼ g sinu and the pressure on the plane
A (z′ = 0) is then

p ¼ pCG � . g sinu x0; ð5:30Þ

therefore the force is

~F ¼ �
ZZ
Sð Þ

p~n dS ¼ �~n
ZZ
Að Þ

pCG � . g sinu x0ð Þ dA ð5:31Þ

or

~F ¼ �~n pCGA� . g sinu
ZZ
Að Þ

x0 dA

2
64

3
75 : ð5:32Þ

Since the origin of the coordinate system lies on the centroid of the plane surface
x0CG ¼ y0CG ¼ 0
� 	

and the centroid coordinates are, by definition, given by

Ax0CG ¼
ZZ
Að Þ

x0 dA; ð5:33Þ

Ay0CG ¼
ZZ
Að Þ

y0 dA; ð5:34Þ

the integral in (5.32) vanishes and for the force we extract

~F ¼ �n pCGA ; i:e: ð5:35Þ

The magnitude of force on a plane surface is the product of the pressure at the centroid of
the surface and its area.
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We shall also calculate the moment of the pressure distribution relative to an

arbitrary point P ~x0p ¼ x0p~e
0
x þ y0p~e

0
y

� �
on the surface A

~Mp ¼ �
ZZ
Að Þ

~x0 �~x0p
� �

�~n p dA : ð5:36Þ

Evaluating the cross product and with ~n ¼~e0z we obtain

~Mp ¼
ZZ
Að Þ

x0 � x0p
� �

~e0y � y0 � y0p
� �

~e0x
h i

p x0ð Þ dA: ð5:37Þ

Introducing the pressure distribution from (5.30), and noting the definitions of the
centroid (5.33), (5.34) and x0CG ¼ y0CG ¼ 0 furnishes the equation

~Mp ¼ . g sinu
ZZ
Að Þ

x0 y0 dAþ y0ppCG A

2
64

3
75~e0x þ

� . g sinu
ZZ
Að Þ

x02 dAþ x0p pCG A

2
64

3
75~e0y:

ð5:38Þ

The area moments of the second order appearing in (5.38) are

(i) the area moment of inertia relative to the y′-axis

Iy0 ¼
ZZ
Að Þ

x02 dA; ð5:39Þ

(ii) the mixed moment of inertia

Ix0y0 ¼
ZZ
Að Þ

x0 y0 dA : ð5:40Þ

These correspond to the quantities known as polar moment of inertia and product of
inertia from the theory of bending and torsion. Using these definitions we also write
(5.38) as

~Mp ¼ . g sinu Ix0y0 þ y0p pCGA
� �

~e0x � . g sinu Iy0 þ x0p pCG A
� �

~e0y : ð5:41Þ
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The moment ~Mp vanishes relative to a particular point called the pressure point CP
(Fig. 5.6), which is the point through which the force F acts. By setting the moment
to zero we calculate the pressure point’s coordinates as

x0CP ¼ � . g sinu Iy0

pCG A
ð5:42aÞ

and

y0CP ¼ � . g sinu Ix0y0

pCG A
: ð5:42bÞ

In order to now calculate the force on a general curved surface S, we complete S to a
closed surface, by dropping perpendicular lines from every point on the boundary
C of S to the fluid surface (Fig. 5.7). We now use the result (5.25); there
S corresponds to the entire surface which here is made up of the general curved
surface and the supplementary surfaces M and Az. M is the surface generated by
dropping the perpendicular, and Az on the free surface closes the replacement
volume. From (5.25) we have then

�
ZZ

SþMþAzð Þ

p~n dS ¼ �
ZZ
Sð Þ

p~n dS�
ZZ
Azð Þ

p~n dA�
ZZ
Mð Þ

p~n dS ¼ �.~g V : ð5:43Þ

From (5.43) we obtain the component of the force on S in the positive z-direction as

Fz ¼ �
ZZ
Sð Þ

p~n � ~ez dS ¼
ZZ
Azð Þ

p~n �~ez dAþ
ZZ
Mð Þ

p~n � ~ez dS� .~g �~ezV : ð5:44Þ

On Az,~n ¼~ez and p = p0; on M,~n �~ez ¼ 0; since~n is perpendicular to~ez. We also
have�~g �~ez ¼ g; and are led directly to the component of the force in the z-direction

Fig. 5.6 Centroid and pressure point
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Fz ¼ p0 Az þ . g V : ð5:45Þ

For the component of the force in the x-direction we obtain

Fx ¼ �
ZZ

p~n �~ex dS ¼ �sgn ~n �~exð Þ
ZZ
Axð Þ

p dA ; ð5:46Þ

where Ax is the projection of the surface S in the x-direction and the signum function
determines the sign of the force. (If the sign of ~ex �~n changes on the surface, the
surface is to be cut along the line ~ex �~n ¼ 0 in two surfaces, which are treated
separately.)

But the problem to calculate the force on a plane surface has already been done
through Eqs. (5.35) and (5.42a, 5.42b). Analogously the component of the force in
the y-direction follows

Fy ¼ �
ZZ
Sð Þ

p~n �~ey dS ¼ �sgn ~n �~ey
� 	 ZZ

Ayð Þ
p dA : ð5:47Þ

The force components Fx and Fy do not appear in the second law of equilibrium (that
the sum of the moments is zero) on the replacement body, since they are balanced by
the corresponding force components on the surfaceM. The weight . g V, the force p0
Az and Fz all lie in a vertical plane since they must balance separately.

Fig. 5.7 The force on a curved surface

172 5 Hydrostatics



The line of action of the buoyancy force (through the center of gravity of the
displaced fluid) and the force p0 Az (through the centroid of the surface Az) deter-
mines this plane. Taking moments, for example about the center of gravity, we
obtain the line of action of Fz. The lines of action of the two horizontal components
Fx and Fy are to be calculated using the corresponding projections Ax and Ay from
(5.42). These three lines of action do not in general meet at the same point.

5.3 Free Surfaces

Liquids form free surfaces, and these exhibit the phenomenon of surface or cap-
illary tension. This surface tension can be important in technical problems under
circumstances to be described presently.

From a microscopic standpoint this phenomenon is due to the fact that molecules
on the free surface, or on an interface between two different fluids are in a different
environment than those molecules within a fluid. The forces between the molecules
are attractive forces at the average distances we are dealing with (cf. Sect. 1.1), (but
can in certain circumstances be repulsive). A molecule within the fluid experiences
the same attraction on all sides from its neighboring molecules. On the free surface,
a molecule is pulled inwards in the same manner by its neighbors because the forces
of attraction on the free side are missing, or at least are different. Therefore there are
only as many molecules on the free surface as are absolutely necessary for its
formation, and the free surface is always trying to contract.

Macroscopically, this manifests itself as if a tension were acting in the free
surface, very much like the stress in a soap bubble. The capillary force on a line
element is

D~F ¼~rD l; ð5:48Þ

where ~r is the stress vector of the surface tension, defined by

~r ¼ lim
Dl!0

D~F
Dl

¼ d~F
dl

: ð5:49Þ

Fig. 5.8 Explanation of surface tension

5.2 Hydrostatic Lift, Force on Walls 173



In general, the stress vector lying in the surface has components both normal and
tangential to the line element (Fig. 5.8). If the fluid particles which form the free
surface are at rest, the tangential component vanishes and we have

~r ¼ C~m ; ð5:50Þ

where ~m is the vector normal to the line element dl lying in the free surface. The
magnitude of the surface tension vector, the capillary constant C is independent of
~m; but dependent on the pairing liquid-gas, or in the case of an interface,
liquid-liquid.

The best known manifestation of surface tension is the spherical shape of small
drops. If we consider the surface of the drop to be a soap bubble under internal
pressure pi, then on one hand we have the force due to the pressure difference
pi – p0 acting on one half of the surface and on the other hand the force due to the
surface tension acting on the circumferential cut (Fig. 5.9). The force due to the
surface tension is 2p r C~m and the equilibrium condition furnishes

2p r C~m�
ZZ
Sð Þ

p0 � pið Þ~n dS ¼ 0 : ð5:51Þ

If we form the component equation in the direction of ~m (for symmetry reasons this
is the only nonzero component), with ~m �~n dS ¼ �dA we obtain

2p r C þ p0 � pið Þ p r2 ¼ 0 ð5:52Þ

or

Dp ¼ pi � p0 ¼ 2C=r: ð5:53Þ

Fig. 5.9 Balance on the free surface of a drop
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For very small drops the pressure drop over the surface can be quite considerable.
For a general surface it is readily shown that the pressure drop is given by

Dp ¼ C
1
R1

þ 1
R2

� �
; ð5:54Þ

where R1 and R2 are the principal radii of curvature, i.e., the extrema of the radii
curvature at a point on the surface. The quantity 1=R1 þ 1=R2ð Þ is called the mean
curvature and is a scalar, contrary to the curvature itself. For a plane surface,
R1 ¼ R2 ! 1ð Þ the pressure drop vanishes. Therefore capillarity effects appear
only if the surfaces are curved.

Curvature of the free surface often appears on boundaries if three different fluids
meet, or if two fluids and a solid wall meet, as in Fig. 5.10, where the interface
between fluids (1) and (2) touches a wall. We write

z ¼ z x; yð Þ ð5:55Þ

for the explicit representation of the interface, and for the pressure drop across the
surface we obtain

p2 � p1 ¼ .1 � .2ð Þg z x; yð Þ : ð5:56Þ

Using (5.54) we also write this as

C
1
R1

þ 1
R2

� �
¼ .1 � .2ð Þg z x; yð Þ : ð5:57Þ

Fig. 5.10 Surface of a heavy fluid
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We shall restrict ourselves to the plane case, that is z ¼ z yð Þ; R1 ! 1; R2 ¼ R and
we further assume that fluid (2) is a gas, i.e., . ¼ .1 � .2. Then (5.57) simplifies to

C=R ¼ . g z yð Þ : ð5:58Þ

From this equation we extract a quantity a with the dimension of length

a ¼
ffiffiffiffiffiffi
C
. g

s
: ð5:59Þ

Therefore we can expect that the capillarity effects are particularly noticeable when
the typical size of the flow region is of the order of this length. The quantity a,
called capillary length or Laplace’s length, has a value for water of about 0.3 cm.
This explains why water flows straight out of a garden hose held high, while it
cannot flow freely under the influence of gravity if the diameter of the hose is
comparable to Laplace’s length. The water then remains in the tube in the form of
plugs. With the known expression

R�1 ¼ z02 þ 1
� 	�3=2

z00; ð5:60Þ

for the curvature R−1 of a curve z (y), where the dash above z means the derivative
with respect to y, we obtain from (5.58) an ordinary differential equation of the
second order for the unknown shape z (y) of the surface

z02 þ 1
� 	�3=2

z00 � a�2z ¼ 0: ð5:61Þ

The particular integral of this equation requires two boundary conditions.
Integrating once brings us to the equation

z02 þ 1
� 	�1=2 þ 1

2
a�2z2 ¼ 1; ð5:62Þ

where we have set the constant of integration on the right-hand side to 1 using the
boundary condition z 1ð Þ ¼ 0: Integrating again requires knowledge of the angle of
contact a as the boundary condition. This is determined from the equilibrium of the
capillary stresses on the boundary. As well as the surface tension of the liquid-gas
pair C12, two further surface tensions appear due to the pairing liquid-wall (C13) and
gas-wall (C23). Equilibrium normal to the wall is not of interest since the wall can
take up arbitrary stresses. Equilibrium in the direction of the wall (cf. Fig. 5.11)
leads to
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C23 ¼ C13 þC12 cos a ð5:63aÞ

or

cos a ¼ C23 � C13

C12
: ð5:63bÞ

The fluid climbs or slides down the wall until the condition (5.63a) is satisfied.
However if C23 − C13 is larger than C12, equilibrium cannot be satisfied, and the
fluid coats the whole wall (e.g. petrol and silicon oil in containers). With the
boundary condition z0 y ¼ 0ð Þ ¼ � cot a the solution of (5.62) then reads in implicit
form

y=a ¼ arccosh 2a=zð Þ � arccosh 2a=hð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� h=að Þ2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� z=að Þ2

q
; ð5:64Þ

where the square of the height climbed h = z(y = 0) is to be taken from (5.62) as
h2 ¼ 2a2 1� sin að Þ:

Another phenomenon often seen is the capillary rise in small tubes (Fig. 5.12).
Obviously the pressure drop Dp over the surface must be equal to . g h. If we take
the shape of the surface to be spherical, because of R1 = R2 = R we have from
(5.54)

2
C
R
¼ . g h : ð5:65Þ

Fig. 5.11 Angle of contact
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For a known angle of contact a, the radius of curvature R can be replaced by
r= cosa, so that for the height climbed we obtain

h ¼ 2C cos a
r . g

: ð5:66Þ

For very small r the height climbed can become very large and this explains why
moisture rises so high in a porous wall. If we have a[ p=2; the capillary rise
becomes negative, so that the fluid slides downwards. The best known example of
this action is mercury.

Fig. 5.12 Capillary rise in a small tube
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Chapter 6
Laminar Unidirectional Flows

Quite important simplifications in the equations of motion arise for the class of
unidirectional flows and these allow closed form solutions even for non-Newtonian
fluids. As has already been discussed in Sect. 4.4, this solvability rests on the
particularly simple kinematics of these flows.

Here we shall restrict ourselves to incompressible flows for which only pressure
differences can be calculated unless there is a boundary condition on the pressure,
e.g., the presence of a free surface. On a free surface the absolute value of the
pressure enters the problem through the boundary condition (4.171) for the stress
vector. Without free surfaces the influence of the mass body force can be removed
from the problem if we limit ourselves to calculating pressure differences relative to
the hydrostatic pressure distribution. We shall demonstrate this by way of the
Navier-Stokes equations, and shall set the pressure as

p ¼ pst þ pdyn; ð6:1Þ

where the hydrostatic pressure pst satisfies the hydrostatic relation (5.4). By (4.9b)
we then have

.
D~u
Dt

¼ .~k �rpst �rpdyn þ gD~u; ð6:2Þ

which, because of (5.4), becomes

.
D~u
Dt

¼ �rpdyn þ gD~u: ð6:3Þ

The mass body force no longer appears in this equation. pdyn is the pressure dif-
ference p − pst and originates only from the motion of the fluid. From here on we
shall write p in place of pdyn, and shall understand that in all problems without free
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surfaces, p means the pressure difference p − pst. If the problem being dealt with
does contain free surfaces, we shall, without further explanation, make use of the
equations of motion in which the mass body force, if present, appears explicitly.

6.1 Steady Unidirectional Flow

6.1.1 Couette Flow

Simple shearing flow or Couette flow is a two-dimensional flow whose velocity field
has already been commented on several times. The velocity components u, t, w in a
Cartesian coordinate system with axes x, y, z read (cf. Fig. 6.1a)

u ¼ U
h
y; t ¼ 0; w ¼ 0: ð6:4Þ

Therefore the flow field is identical in all planes (z = const). The property common
to all unidirectional flows, that the only nonvanishing velocity component (in this
case u) only varies perpendicular to the flow direction, is a consequence of the
continuity Eq. (2.5)

r �~u ¼ @u
@x

þ @t
@y

þ @w
@z

¼ 0: ð6:5Þ

From this, because t = w = 0, we obtain

@u
@x

¼ 0 or u ¼ f ðyÞ; ð6:6Þ

Fig. 6.1 Plane unidirectional flow
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of which (6.4) is a special case. The x-component of the Navier-Stokes equations
reads

u
@u
@x

þ t
@u
@y

þw
@u
@z

¼ � 1
.
@p
@x

þ �
@2u
@x2

þ @2u
@y2

þ @2u
@z2

� �
: ð6:7Þ

Because of (6.4), all the convective (nonlinear) terms on the left-hand side vanish.
This is the case in all unidirectional flows. Of course since we are dealing with a
two-dimensional flow we could have set all derivatives with respect to z equal to
zero, and indeed we shall want to do this in the future.

Since in this special case of Couette flow u is a linear function of y, all the terms
in the brackets on the right-hand side of (6.7) vanish and we are led to the equation

@p
@x

¼ 0 or p ¼ f ðyÞ: ð6:8Þ

The component of the Navier-Stokes equations in the y-direction

u
@t
@x

þ t
@t
@y

¼ � 1
.
@p
@y

þ �
@2t
@x2

þ @2t
@y2

� �
ð6:9Þ

directly leads us to

@p
@y

¼ 0; ð6:10Þ

which, together with (6.8), furnishes the final result

p ¼ const: ð6:11Þ

The field (6.4) satisfies the boundary condition (4.159), and therefore we have
found the most simple nontrivial exact solution of the Navier-Stokes equations.

6.1.2 Couette-Poiseuille Flow

A generalization of simple shearing flow is suggested by (6.6): we consider the
velocity field
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u ¼ f ðyÞ; t ¼ w ¼ 0: ð6:12Þ

The x-component of the Navier-Stokes equations then reduces to

@p
@x

¼ g
@2u
@y2

; ð6:13Þ

and the y-component reads

0 ¼ � 1
.
@p
@y

: ð6:14Þ

A consequence of the last equation is that p can only be a function of x. However
since by assumption the right-hand side of (6.13) is not a function of x, neither is the
left-hand side, i.e., @p=@x is not a function of x. Therefore @p=@x is a constant
which we shall call –K. From (6.13) we then extract a differential equation of the
second order for the desired function u(y)

g
d2u
dy2

¼ �K: ð6:15Þ

Integrating (6.15) twice leads us to the general solution

uðyÞ ¼ � K
2g

y2 þC1yþC2: ð6:16Þ

We specialize the general solution to flow through a plane channel whose upper
wall moves with velocity U in the positive x–direction. The function we are looking
for, u(y), must by (4.159), satisfy the two boundary conditions

uð0Þ ¼ 0; ð6:17aÞ

and

uðhÞ ¼ U; ð6:17bÞ

so that we determine the constants of integration as

C1 ¼ U
h
þ K

2g
h; C2 ¼ 0: ð6:18Þ
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Thus the solution of the boundary value problem is

uðyÞ
U

¼ y
h
þ K h2

2gU
1� y

h

h i y
h
: ð6:19Þ

For K = 0 we get the simple shearing flow again; for U = 0 and K 6¼ 0 we obtain a
parabolic velocity distribution (two-dimensional Poiseuille flow); the general case
(U 6¼ 0, K 6¼ 0) yields the Couette-Poiseuille flow (Fig. 6.1).

As is directly obvious from (6.19), the general case is a superposition of Couette
flow and Poiseuille flow. Since the unidirectional flows are described by linear
differential equations, the superposition of other unidirectional flows is also
possible.

The volume flux per unit depth is

_V ¼
Zh
0

uðyÞ dy; ð6:20Þ

so that the average velocity defined by the equation

U ¼
_V
h

ð6:21Þ

for the Couette-Poiseuille flow is

U ¼ U
2
þ K h2

12 g
: ð6:22Þ

The maximum velocity for pure pressure driven flow is calculated from (6.19) as

Umax ¼ K h2

8g
¼ 3

2
U:

Since these flows extend to infinity in the x-direction and are two-dimensional, they
are never actually realized in applications, but they can often be used as good
approximations. Thus we encounter simple shearing flow in the flow between two
“infinitely” long cylinders as we take the limit h/R ! 0. Although the flow in
Fig. 6.2 may be determined without taking the limit h/R ! 0 since it is also a
unidirectional flow, the shearing flow is considerably easier to calculate.
Incidentally this flow is approximately realized in journal bearings where the
condition h/R ! 0 is well satisfied. The friction torque and the friction power per
unit bearing depth can then be immediately estimated
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Tfriction � 2pR2g
du
dy

¼ 2pR2g
U
h
¼ 2pR3g

X
h
; ð6:23Þ

Pfriction � 2pR3 gX2=h: ð6:24Þ

However Fig. 6.2 is not the correct depiction of a bearing. Since the journal here
rotates concentrically, for symmetry reasons it can support no load. Equation (6.8)
states that the pressure in the x-direction (circumferential direction) is constant, and
so no net force can act on the journal. Under a load the journal takes on an eccentric
position in the bush (Fig. 6.3). The flow in the “lubricant film” is locally a
Couette-Poiseuille flow, as we shall show in Chap. 8. The pressure distribution in
this case gives rise to a net force which is in balance with the load on the bearing.

6.1.3 Flow Down an Inclined Plane

Closely related to Couette-Poiseuille flow is flow down an inclined plane, although
in this case we deal with a free surface (Fig. 6.4). Here the volume body force plays
the same role as the pressure gradient @p=@x in Couette-Poiseuille flow, which as
we shall see is here zero. The flow is not driven by the pressure gradient but by the
volume body force of gravity, whose components are

Fig. 6.2 Concentrically rotating journal

Fig. 6.3 Eccentrically rotating journal
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fx ¼ . kx ¼ . g sinb; ð6:25aÞ

fy ¼ . ky ¼ �. g cos b: ð6:25bÞ

Because of (6.6) and v = 0 the Navier-Stokes equations (4.9b) are simplified to

@p
@x

� . g sin b ¼ g
@2u
@y2

ð6:26Þ

and

@p
@y

¼ �. g cos b: ð6:27Þ

Therefore we obtain two differential equations for the unknown functions u and
p. The no slip condition

uð0Þ ¼ 0 ð6:28Þ

is to be satisfied at the wall (y = 0), while the condition (4.172) is to be satisfied at
the free surface, which we write in index notation as

njsjið1Þ ¼ njsjið2Þ: ð6:29Þ

From (3.1) with nj = (0, 1, 0) the boundary condition follows in the form

Fig. 6.4 Flow down an inclined plane
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�p d2i þ 2g e2i½ � 1ð Þ¼ �p d2i þ 2g e2i½ � 2ð Þ; ð6:30Þ

where the index (2) stands for the fluid and the index (1) for the air. The component
of the Navier-Stokes equations in the y-direction leads us to the boundary condition

p 1ð Þ ¼ p 2ð Þ ¼ p0; ð6:31Þ

and the component equation in the x-direction furnishes

g
@u
@y

� �
1ð Þ
¼ g

@u
@y

� �
2ð Þ
: ð6:32Þ

If we ignore the effect of the friction in the air, the left-hand side of (6.32) vanishes
and this boundary condition reads

0 ¼ g
@u
@y

����
y¼h

: ð6:33Þ

From integrating (6.27) we obtain

p ¼ �. g y cos bþCðxÞ; ð6:34Þ

and with the boundary condition (6.31) p(2) = p(y = h) = p0 also

p ¼ p0 þ . g cos b h� yð Þ: ð6:35Þ

Therefore p is not a function of x, and Eq. (6.26) simplifies to

�. g sin b ¼ g
@2u
@y2

: ð6:36Þ

This is the same differential equation as (6.13), if we replace @p=@x by −. g sin b.
Therefore we read the general solution off from (6.16) (with K = . g sin b)

u ¼ � . g sinb
2g

y2 þC1yþC2 ð6:37Þ

and determine the constants from the boundary conditions (6.28) and (6.33) as
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C2 ¼ 0; C1 ¼ . g sin b
g

h: ð6:38Þ

The solution of the boundary value problem is therefore

uðyÞ ¼ . g sin b
2g

h2 2� y
h

h i y
h
: ð6:39Þ

In the literature the Nusselt film flow became the common name for gravity-driven
films down a flat incline.

6.1.4 Flow Between Rotating Concentric Cylinders

A cylindrical coordinate system r, u, z with the velocity components ur, uu, uz is
most suitable for this flow because the boundaries of the flow field are then given by
the coordinate surfaces r = Ri and r = RO. In the axial direction the flow extends to
infinity. Changes in flow quantities in the axial direction must therefore vanish or be
periodic so that these quantities do not take on infinite values at infinity. We shall
exclude the case of periodicity here, and shall set @=@z ¼ 0 and uz = 0. At all
planes z = const the flow is identical. Since the normal component of the velocity
(i.e. ur at r = Ri and r = RO) must vanish because of the kinematic boundary
condition, we set ur = 0 everywhere. Also the change in the circumferential
direction must either vanish or be periodic: again we shall restrict ourselves to the
first case. Because of @=@z ¼ @=@u ¼ 0 and ur = uz = 0 we obtain from the
Navier-Stokes equations in cylindrical coordinates (see Appendix B) the following
for the r-component

.
u2u
r
¼ @p

@r
; ð6:40Þ

and for the u-component

0 ¼ g
@2uu
@r2

þ 1
r
@uu
@r

� uu
r2

� �
; ð6:41Þ

while the z-component vanishes identically. The term u2u=r in (6.40) arises from the
material change of the component uu and corresponds to the centripetal accelera-
tion. Clearly the pressure distribution p(r) develops so that the centripetal force is
balanced. Equation (6.40) is coupled with (6.41): if the velocity distribution is
given by (6.41), then the pressure distribution corresponding to it follows from
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(6.40). Equation (6.41) is a linear ordinary differential equation with variable
coefficients of the Eulerian type. It is solved by the substitution

uu ¼ rn:

From (6.41) we then have n = ±1, so that the general solution reads

uu ¼ C1rþ C2

r
: ð6:42Þ

The inner cylinder rotates with angular velocity XI, the outer with XO (Fig. 6.5).
Then, from the no slip condition

uu RIð Þ ¼ XIRI ; uu ROð Þ ¼ XORO ð6:43Þ

the constants are determined as

C1 ¼ XOR2
O � XIR2

I

R2
O � R2

I
; C2 ¼ XI � XOð ÞR2

I R
2
O

R2
O � R2

I
: ð6:44Þ

For the special case C1 = 0, i.e.

XO=XI ¼ RI=ROð Þ2; ð6:45Þ

the velocity distribution from (6.42) is that of a potential vortex. Thus the angular
velocities of the inner and outer cylinders must have a particular relation to one
another in order that the flow in the gap be irrotational.

Another important special case for applications, namely the problem of the
rotating cylinder with infinite gap height, arises if we allow RO to go to infinity in
(6.45); XO then tends to zero. In these cases the potential vortex satisfies not only
the Navier-Stokes equations (this is so for all incompressible potential flows), but
also the no slip condition at the wall. Therefore we are dealing with an exact
solution of the flow problem: boundary layers where the velocity distribution differs

Fig. 6.5 Flow between rotating concentric cylinders
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from the value given by potential theory do not arise. For XI = 0, r = RI + y and
y/RI ! 0 we obtain, from (6.42) and (6.44) the Couette flow (6.4).

6.1.5 Hagen-Poiseuille Flow

The flow through a straight circular pipe or Hagen-Poiseuille flow is the most
important of all unidirectional flows and it is the rotationally symmetric counterpart
to channel flow. Again cylindrical coordinates are suited to this problem where they
describe the wall of the circular pipe by the coordinate surface r = R (Fig. 6.6). At
the wall ur = uu = 0, and we set ur and uu identically to zero in the whole flow
field; moreover the flow is rotationally symmetric ð@=@u ¼ 0Þ: The continuity
equation in cylindrical coordinates (see Appendix B) then gives

@uz
@z

¼ 0 or uz ¼ uzðrÞ: ð6:46Þ

The r-component of the Navier-Stokes equations leads us to

0 ¼ @p
@r

or p ¼ pðzÞ: ð6:47Þ

All terms of the Navier-Stokes equation in the u-direction vanish identically, while
the z-component equation becomes

0 ¼ � @p
@z

þ g
@2uz
@r2

þ 1
r
@uz
@r

� �
: ð6:48Þ

Fig. 6.6 Flow in a straight circular pipe
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We see directly from (6.48) that @p=@z does not depend on z and therefore the
pressure p is a linear function of z. As before we set @p=@z ¼ �K and write (6.48)
in the form

�K
g
¼ 1

r
d
dr

r
duz
dr

� �
; ð6:49Þ

which, integrated twice, gives

uz rð Þ ¼ �K r2

4g
þC1 ln rþC2: ð6:50Þ

Since uz (0) is finite, C1 = 0 immediately follows. The no slip condition implies

uz Rð Þ ¼ 0; ð6:51Þ

thus

C2 ¼ K R2

4g
: ð6:52Þ

Dropping the index z, the solution reads

u rð Þ ¼ K
4g

R2 � r2
� �

: ð6:53Þ

The maximum velocity is reached at r = 0, and therefore we write

u rð Þ ¼ Umax 1� ðr=RÞ2
n o

: ð6:54Þ

With the volume flux _V through the pipe we introduce the average velocity through
the pipe

U ¼
_V
A
¼

_V
pR2 ; ð6:55Þ

and because

_V ¼
Z2p
0

ZR
0

u rð Þr dr du ¼ 2p Umax
R2

4
ð6:56Þ
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we also find that

U ¼ 1
2
Umax; ð6:57Þ

i.e.,

U ¼ K R2

8g
: ð6:58Þ

Since the pressure gradient is constant, we may write

K ¼ Dp
l
¼ p1 � p2

l
ð6:59Þ

and mean by Dp the pressure drop in the pipe over the length l. The pressure drop is
positive if the pressure gradient @p=@z is negative. It is appropriate to represent this
pressure drop in a dimensionless form

f ¼ Dp
.
2U

2 : ð6:60Þ

Using (6.58), the so-called loss factor f, can also be written in the form

f ¼ 16 lg
R2.U

¼ 64
l
d

g

. dU
; ð6:61Þ

where d = 2R and we have set the dimensional quantities into two dimensionless
groups l=d and . d U=g ¼ Re: In particular, in pipe flows the friction factor k is
often introduced

k ¼ f
d
l
;

so that the dimensionless form of the resistance law of a straight circular pipe arises

f ¼ l
d
64
Re

or k ¼ 64
Re

: ð6:62Þ

The Hagen-Poiseuille equation follows from (6.55), (6.58) and (6.59)
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_V ¼ pR4

8g
Dp
l
: ð6:63Þ

The proportionality of the volume flux to the fourth power of the radius has been
experimentally confirmed to a high degree of accuracy which serves as a confir-
mation of the no slip condition (4.160). The Hagen-Poiseuille equation (6.63) is
also the basis for measuring the shear viscosity η.

We are led to a generalized Hagen-Poiseuille flow if we subject the general
solution (6.50) to the boundary conditions (Fig. 6.7)

u ROð Þ ¼ 0; ð6:64aÞ

and

u RIð Þ ¼ U: ð6:64bÞ

The resulting flow is clearly the Couette-Poiseuille flow in a ring gap, and is given
by

uðrÞ ¼ K
4 g

R2
O � r2 � R2

O � R2
I �

4gU
K

� �
ln r=ROð Þ
ln RI=ROð Þ

� �
: ð6:65Þ

This can be superimposed with the velocity field (6.42) and then describes the case
in which the cylinder is also rotating.

We could convince ourselves that with RO − RI = h and RO − r = y and in the
limit h=RO ! 0, two-dimensional Couette-Poiseuille flow (6.19) results. For pure
pressure driven flow (U = 0), by (6.55) we find the average velocity

Fig. 6.7 Generalized Hagen-Poiseuille flow
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U ¼ K
8 g

R2
O þR2

I þ R2
O � R2

I

� � 1
ln RI=ROð Þ

� �
; ð6:66Þ

which, for RI ! 0 agrees with the known result (6.58).
For conduits which do not have a circular cross-section, we introduce the

equivalent or hydraulic diameter dh,

dh ¼ 4A
s
; ð6:67Þ

where A is the cross-sectional area and s is the wetted circumference of the
cross-section. dh = d for the circular cross-section, and for the ring cross-section we
have

dh ¼
4p R2

O � R2
I

� �
2p RO þRIð Þ ¼ dO � dI : ð6:68Þ

We first write the loss factor f in the form

f ¼ Dp dO � dIð Þ2
.
2
U

2
d2h

; ð6:69Þ

into which we replace one U by (6.66) (from (6.59)) and extract

f ¼ 64
.U

g
dh

l
dh

1� dI
dO

� �2
ln

dI
dO

� �

1� dI
dO

� �2
þ ln

dI
dO

� �
1þ dI

dO

� �2( ) : ð6:70Þ

Using the Reynolds’ number Re ¼ .U dh=g this becomes

f ¼ 64
Re

l
dh

f dI=dOð Þ: ð6:71Þ

The dimensionless factor f ðdI=dOÞ is a measure of the deviation of the loss factor of
a noncircular conduit from the friction factor of the circular pipe, if the hydraulic
diameter is used as the reference length. For dI=dO ¼ 0 we have f ðdI=dOÞ ¼ 1, and
for dI=dO ¼ 1, corresponding to channel flow, we extract f ðdI=dOÞ ¼ 1:5 after
repeated application of l’Hôpital’s rule. This result can be easily confirmed if,
starting with (6.22) we construct the formula (6.71).
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As can be seen, the pressure drop for the circular tube is very different from the
pressure drop for the ring gap, even when the hydraulic diameter is used as the
reference length. This is not the case for turbulent flows: the loss factor of the ring gap
is practically identical to that of the circular pipe. This also holds for conduits with
rectangular cross-sections and for most other technically interesting cross-sectional
shapes, such as triangular crosssections, if the angles are not too small.

6.1.6 Flow Through Noncircular Conduits

In the treatment of laminar flows in infinitely long straight conduits with noncir-
cular cross-sections, the same kinematic simplifications as in Hagen-Poiseuille
flows arise. The only nonvanishing velocity component is the one in the axial
direction. This component is independent of the coordinate in this direction, so that
the nonlinear terms drop out in the equations of motion. Since a locally valid
coordinate system where the stress tensor has the form (3.35) can be given for every
point in the cross-section, we find ourselves dealing with a unidirectional flow. In a
coordinate system whose z-axis runs parallel to the axis of the conduit, Poisson’s
equation

Du ¼ �K
g
; ð6:72Þ

follows from (6.3) for the only nonvanishing velocity component (which we shall
denote by u) in steady flow. Since K ¼ �@p=@z ¼ const; the inhomogeneous term
here is again a constant. This form of Poisson’s equation appears in many technical
problems, among these in the torsion of straight rods and in loaded membranes.
Thus we can directly transfer results known from the theory of elasticity. Solutions
of this equation in the form of polynomials describe, among others the torsion of
rods with triangular cross-sections, and these correspond therefore to flows through
pipes with triangular cross-sections. Using elementary integration methods,
cross-sections whose boundaries are coordinate surfaces can be dealt with if
Poisson’s equation is separable in these coordinate systems.

As a typical example, we shall sketch the path of a solution for the technically
important case of a conduit with a rectangular cross-section (Fig. 6.8). With
uz(x, y) = u(x, y) we get from (6.72) the differential equation

@2u
@x2

þ @2u
@y2

¼ �K
g
; ð6:73Þ

with the boundary conditions
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u � b
2
; y

	 

¼ 0; ð6:74aÞ

and

u x;� c
2

� �
¼ 0: ð6:74bÞ

To solve the linear Eq. (6.73) we set

u ¼ uP þ uH ; ð6:75Þ

where uH satisfies the homogeneous equation and uP is a particular solution. If we
set, for example u = uP(y), the solution follows directly from (6.73)

uP ¼ � K
2 g

y2 þC1yþC2; ð6:76Þ

into which we introduce the boundary condition (6.74b), so that

uP ¼ K
2 g

1
4
c2 � y2

� �
ð6:77Þ

arises. Using a separation of variables solution of the form

Fig. 6.8 Channels with rectangular and triangular cross-section
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uH ¼ X xð ÞYðyÞ ð6:78Þ

yields the solution

uH ¼ Dn emx þ e�mxð Þ cos myð Þ ¼ 2Dn cosh mxð Þ cos myð Þ; ð6:79Þ

with

m ¼ p
c

2n� 1ð Þ; ð6:80Þ

where the symmetry properties of the problem have been exploited and which
satisfies the boundary condition (6.74b) for n = 1, 2, 3, …. Because (6.73) is linear,
the general solution is

u ¼
X1
n¼1

2Dn cosh mxð Þ cos myð Þþ uPðyÞ: ð6:81Þ

The boundary conditions (6.74a) lead to the equation

X1
n¼1

2Dn cosh mb=2ð Þ cos myð Þþ uPðyÞ ¼ 0: ð6:82Þ

In order to determine the coefficients Dn, uP must also be represented as a Fourier
series, whose coefficients are given by

an ¼ 2
c

Zc=2
�c=2

K
2 g

1
4
c2 � y2

� �
cos myð Þ dy: ð6:83Þ

Integrating leads to the Fourier expansion

uP ¼ � 2K
g c

X1
n¼1

c
m2 cos mc=2ð Þ � 2

m3 sin mc=2ð Þ
� �

cos myð Þ: ð6:84Þ

Because
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mc
2

¼ 2n� 1ð Þ p
2
; ð6:85Þ

the first term in brackets in (6.84) vanishes, and the second reads

�2m�3 sin mc=2ð Þ ¼ 2m�3 �1ð Þn: ð6:86Þ

A comparison between (6.84) and (6.82) furnishes

Dn ¼ 2K
g

�1ð Þn
cm3 cosh mb=2ð Þ ; ð6:87Þ

and therefore the solution is

u ¼ K
2 g

c2

4
� y2 þ 8

c

X1
n¼1

�1ð Þn
m3

cosh mxð Þ
cosh mb=2ð Þ cos myð Þ

( )
; ð6:88Þ

from which we find the average velocity, according to (6.55), as

U ¼ K c2

4 g
1
3
� c
b
64
p5
X1
n¼1

tanh mb=2ð Þ
2n� 1ð Þ5

( )
: ð6:89Þ

The loss factor based on the hydraulic diameter

dh ¼ 2 b c
bþ c

ð6:90Þ

is

f ¼ 64
Re

l
dh

f c=bð Þ; ð6:91Þ

with

f c=bð Þ ¼ 2
c
b
þ 1

h i2 1
3
� c
b
64
p5
X1
n¼1

tanh mb=2ð Þ
2n� 1ð Þ5

" #( )�1

: ð6:92Þ
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Two-dimensional channel flow corresponds to c=b ¼ 0, and we have f ðc=bÞ ¼ 3=2.
For c=b ¼ 1 we obtain f ðc=bÞ ¼ 0:89.

For an equilateral triangle of height h (Fig. 6.8), the velocity distribution is

u ¼ K
g

1
4 h

y� hð Þ 3x2 � y2
� � ð6:93Þ

and the average velocity

U ¼ 1
60

K h2

g
: ð6:94Þ

Using the hydraulic diameter

dh ¼ 2
3
h ð6:95Þ

we obtain the loss factor

f ¼ 64
Re

l
dh

5
6
: ð6:96Þ

The velocity distribution in an elliptic pipe whose cross-section is given by the
equation of the ellipse

x
a

h i2
þ y

b

h i2
¼ 1 ð6:97Þ

reads

u ¼ K
2 g

a2b2

a2 þ b2
1� x2

a2
� y2

b2

� �
: ð6:98Þ

From this equation we can see directly that the no slip condition is satisfied at the
wall. The average velocity here is

U ¼ K
4 g

a2b2

a2 þ b2
: ð6:99Þ

Since the perimeter of the ellipse cannot be represented in a closed form (elliptic
integral) we do not introduce the hydraulic diameter. Instead it is recommended that
the pressure drop be calculated directly from (6.99).
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6.2 Unsteady Unidirectional Flows

6.2.1 Flow Due to a Wall Which Oscillates in Its Own Plane

The solutions so far can be extended to the unsteady case. First of all we shall
consider harmonic time functions. From these we can build general time functions
using a Fourier representation. The simple shear flow then corresponds to the flow
between two plane infinitely extending plates (with separation distance h), one of
which (the lower) is set into oscillation in its plane. The wall velocity is given by

uw ¼ U tð Þ ¼ Û cos xtð Þ: ð6:100Þ

Using complex notation the wall velocity reads

uw ¼ U tð Þ ¼ Û eixt; ð6:101Þ

where only the real part <(eixt) has physical meaning. Instead of (6.12) we now
have

u ¼ f y; tð Þ; t ¼ 0 ð6:102Þ

and instead of (6.13)

@u
@t

¼ � 1
.
@p
@x

þ �
@2u
@y2

: ð6:103Þ

We set @p=@x ¼ 0; i.e., the flow is only kept in motion by the wall velocity through
the no slip condition

u 0; tð Þ ¼ uw ¼ Û eixt: ð6:104aÞ

On the upper wall the no slip condition reads

u h; tð Þ ¼ 0: ð6:104bÞ

We shall only be interested in the steady state oscillation after the initial transients
have died away, so that the initial condition u(y, 0) is superfluous. The boundary
condition (6.104a) suggests that the solution is of the form

u y; tð Þ ¼ Û eixtgðyÞ; ð6:105Þ
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where g(y) satisfies the boundary conditions

gð0Þ ¼ 1; and ð6:106aÞ

g hð Þ ¼ 0: ð6:106bÞ

Using the form (6.105), the partial differential Eq. (6.103) reduces to an ordinary
differential equation with constant (complex) coefficients

g00 � ix
�
g ¼ 0; ð6:107Þ

where g00 ¼ d2g=dy2. From the solution g = eky we obtain the characteristic
polynomial

k2 � ix
�

¼ 0; ð6:108Þ

with the roots

k ¼
ffiffi
i

p ffiffiffiffiffiffiffiffiffi
x=�

p
¼ � 1þ ið Þ

ffiffiffiffiffiffiffiffi
x
2 �

:

r
ð6:109Þ

The general solution can then be written in the form

gðyÞ ¼ A sinh 1þ ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
x=2 �

p
y

n o
þB cosh 1þ ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
x=2 �

p
y

n o
; ð6:110Þ

from which, using the boundary condition (6.106a, 6.106b), we find the special
solution

gðyÞ ¼
sinh 1þ ið Þ ffiffiffiffiffiffiffiffiffiffiffiffi

x=2 �
p

h� yð Þ
n o
sinh 1þ ið Þ ffiffiffiffiffiffiffiffiffiffiffiffi

x=2 �
p

h
n o ; ð6:111Þ

and finally by (6.105) the velocity distribution

u y; tð Þ ¼ Û< eixt
sinh 1þ ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh2=2�

p
1� y=hð Þ

n o
sinh 1þ ið Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xh2=2�

pn o
8<
:

9=
;: ð6:112Þ
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We discuss the two limiting cases

x h2=� � 1; ð6:113Þ

x h2=� � 1; ð6:114Þ

and note that h2=� is the typical time for the diffusion of the rotation across the
channel height h. In the first case this time is much smaller than the typical
oscillation time 1=x, i.e., the diffusion process adjusts at every instant the velocity
field to the steady shearing flow with the instantaneous wall velocity uw (t). This is
what is called quasi-steady flow.

Using the first term of the expansion of the hyperbolic sine function for small
arguments we have

u ¼ Û< eixt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x h2=2�

p
1þ ið Þ 1� y=hð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xh2=2�
p

1þ ið Þ

( )
; ð6:115Þ

and deduce that

u ¼ Û cos xtð Þ 1� y=hð Þ ¼ U 1� y=hð Þ: ð6:116Þ

Equation (6.116) corresponds to (6.4) where the upper plate represents the moving
wall. We also obtain this limiting case if the kinematic viscosity � tends to infinity. As
is clear from (6.103), the unsteady term then vanishes. This limiting case
v ! ∞ forfixed η also corresponds to taking the limit . ! 0, thus ignoring the inertia
terms, and therefore falls into group b) of the classification discussed in Sect. 4.4.

In the limit x h2=� � 1 we use the asymptotic form of the hyperbolic sine
function and write (6.112) in the form

u ¼ Û< e�
ffiffiffiffiffiffiffiffiffi
x=2�

p
yei xt�

ffiffiffiffiffiffiffiffi
x=2�

p
y

� �� �
; ð6:117Þ

or

u ¼ Û e�
ffiffiffiffiffiffiffiffi
x=2�

p
y cos xt �

ffiffiffiffiffiffiffiffiffiffiffi
x=2�

p
y

� �
: ð6:118Þ

The separation h no longer appears in (6.118). Measured in units k ¼ ffiffiffiffiffiffiffiffiffiffiffi
2�=x

p
the

upper wall is at infinity. Relative to the variable y the solutions also have a wave
form; we call these shearing or transversal waves of wavelength k (Fig. 6.9). The
wavelength k also describes a penetration depth of the waves. The penetration depth
increases with decreasing x (low-frequencies) and higher viscosities. In the liter-
ature this phenomenon is called the Skin-effect.
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6.2.2 Flow Due to a Wall Which Is Suddenly Set in Motion

Using (6.118), we could in principle form the solution for the wall which is sud-
denly accelerated to velocity U. However it is more instructive to take a different
path which starts directly with the partial differential equation

@u
@t

¼ �
@2u
@y2

: ð6:119Þ

This differential equation also describes the unsteady one-dimensional heat con-
duction (where � is then replaced by the coefficient of heat conduction a), and so
the desired solution also appears in heat conduction problems. The no slip condition
at the wall furnishes

u 0; tð Þ ¼ U for t[ 0: ð6:120Þ

The second boundary condition is replaced by the condition

u y; tð Þ ¼ 0 for y ! 1: ð6:121Þ

Fig. 6.9 Velocity distribution above the oscillating wall
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In addition we have the initial condition

u y; tð Þ ¼ 0 for t	 0: ð6:122Þ

Equation (6.119) is a linear equation and since U enters the problem only linearly
from the boundary condition (6.120), the field u(y, t) must be proportional to U, so
that the solution has to be of the form

u=U ¼ f y; t; �ð Þ: ð6:123Þ

Since the function on the left-hand side is dimensionless, f must also be dimen-
sionless, which is only possible if the argument of the function is dimensionless.
However the only linearly independent dimensionless quantity is the combination
y2/(�t). We set

g ¼ 1
2

yffiffiffiffi
�t

p ð6:124Þ

and are now dealing with a similarity variable η, because the solution cannot
change if y and t are changed such that η remains constant. We note that

ffiffiffiffi
�t

p
represents a penetration length (a boundary layer thickness) which grows with time.
We will discuss boundary layers later in Chap. 12. Instead of (6.123) we now write

u=U ¼ f gð Þ; ð6:125Þ

and from (6.119) we obtain the ordinary differential equation

�2gf 0 ¼ f 00 ð6:126Þ

with f 0 ¼ df =dg. Integrating twice gives the general solution

f ¼ C1

Zg
0

e�g2dgþC2: ð6:127Þ

For y = 0 we have η = 0, and the boundary condition (6.120) becomes

f ð0Þ ¼ 1; ð6:128Þ

and therefore it follows that C2 = 1. If we subject (6.127) with C2 = 1 to the
“boundary condition” (6.121),
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1=C1 ¼ �
Z1
0

e�g2dg ð6:129Þ

must hold. The improper integral has the value 1
2

ffiffiffi
p

p
, and therefore

C1 ¼ �2=
ffiffiffi
p

p
; ð6:130Þ

thus the solution reads

u=U ¼ 1� 2=
ffiffiffi
p

p Zg
0

e�g2dg for t
 0: ð6:131Þ

The integral

erf gð Þ ¼ 2=
ffiffiffi
p

p Zg
0

e�g2dg ð6:132Þ

is the error function. For t = 0 we have g ! 1 and u=U ¼ 0; thus the initial
condition is satisfied.

6.3 Unidirectional Flows of Non-Newtonian Fluids

6.3.1 Steady Flow Through a Circular Pipe

In order to calculate the flow of non-Newtonian fluids we shall return to Cauchy’s
equations. As with the flow of Newtonian fluids, for kinematic reasons the only
nonvanishing velocity component is that in the axial direction and this only depends
on r. Therefore we are dealing with a unidirectional flow, and the stress tensor has
the form (3.35) in cylindrical coordinates, where the index 1 corresponds to the
z-direction, the index 2 to the r-direction and the index 3 to the u-direction. Since
the tensor valued function uij in (3.35) corresponds to the friction stress tensor Pij

(which only depends on _c ¼ du=dr; that is, on r), we write the stress tensor in the
following matrix form

T½ � ¼
Pzz � p Prz 0
Pzr Prr � p 0
0 0 Puu � p

2
4

3
5: ð6:133Þ
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The material derivative Du/Dt vanishes and if by p we mean only the pressure
relative to the hydrostatic pressure distribution, we extract from (2.38b)

0 ¼ r � T: ð6:134Þ

In component representation (see Appendix B) and noting Pij (r) we find for the
r-component

@p
@r

¼ 1
r

@

@r
r Prrð Þ � Puu

� �
; ð6:135Þ

for the u-component

@p
@u

¼ 0; ð6:136Þ

and for the z-component

@p
@z

¼ 1
r
@

@r
r Przð Þ: ð6:137Þ

The right-hand sides of (6.135) and (6.137) are functions of r only. From (6.136)
and (6.137) we conclude p = z g(r) + h(r) and from (6.135) then g′(r) = 0. This
means that because of the arbitrary function h(r), p is not necessarily independent of
r, although @p=@z ¼ �K ¼ Dp=l is a constant. From integration of the Eq. (6.137)
we obtain the distribution

srz ¼ Prz ¼ �Kr
2

þ C
r
; ð6:138Þ

where we set C = 0, since the friction stresses in the center of the pipe cannot
become infinite. Using

srz Rð Þ ¼ �sw ¼ �K R
2

ð6:139Þ

instead of K we introduce the shear stress at the pipe wall, and write (6.138) in the
form

srz ¼ �sw
r
R
; ð6:140Þ
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from which we find the statement valid for all constitutive relations that the shear
stress srz is a linear function of r. Now we could have obtained this statement more
easily from the balance of momentum in integral form, but it has arisen here from
the exemplary application of Cauchy’s equation.

We shall now specifically use the power law (3.17), and assume that _c ¼ du=dr
is everywhere less than zero. This is not exactly true since, for symmetry reasons, _c
is equal to zero in the center of the tube. Using (3.13) we extract from (6.140) the
equation

srz ¼ m � du
dr

� �n�1du
dr

¼ �sw
r
R
: ð6:141Þ

We find the velocity distribution to be

u ¼ R
Z1
r=R

sw=mð Þ1=n r=Rð Þ1=nd r=Rð Þ; ð6:142Þ

or, after integrating

u ¼ sw
m

h i1
n n
nþ 1

R 1� r
R

h inþ 1
n

� �
: ð6:143Þ

The volume flux is

_V ¼ n
3nþ 1

sw=mð Þ1=npR3 ð6:144Þ

and therefore the average velocity

U ¼ _V= pR2� � ¼ n
3nþ 1

sw=mð Þ1=nR: ð6:145Þ

Finally, from (6.144) and (6.139) the pressure drop follows

Dp ¼ p1 � p2 ¼ 2m
l
R

_V
pR3

3nþ 1
n

� �n
: ð6:146Þ
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6.3.2 Steady Flow Between a Rotating Disk and a Fixed
Wall

We consider the flow with the velocity field

uu ¼ rX zð Þ; uz ¼ ur ¼ 0; ð6:147Þ

of Fig. 6.10 whose form is suggested by the no slip condition on the rotating plate

uu hð Þ ¼ rXR: ð6:148Þ

We shall first ask under which conditions the field satisfies Cauchy’s equations. The
flow shown in Fig. 6.10 occurs in some forms of viscometers which is why these
flows are named viscometric flows. The calculation of the rate of deformation tensor
(see Appendix B) leads to the matrix representation

E½ � ¼
euu euz eur
ezu ezz ezr
eru erz err

2
4

3
5 ¼ 1

2
A 1ð Þ

� �
¼ 1

2

0 _c 0
_c 0 0
0 0 0

2
4

3
5; ð6:149Þ

with _c ¼ 2 euz ¼ r dX=dz; so that the first Rivlin-Ericksen tensor indeed has the
same form as in a unidirectional flow.

Therefore the stress tensor has the form (3.35), where here ~e1 points in the
u-direction,~e2 in the z-direction and~e3 in the r-direction. Using this stress tensor
and the symmetry condition @=@u ¼ 0; the components of Cauchy’s equations in
cylindrical coordinates are

Fig. 6.10 Shearing flow between a rotating disk and a fixed wall
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r: � .X2 zð Þ ¼ � 1
r
@p
@r

þ 1
r
@Prr

@r
þ 1

r2
Prr � Puu
� �

; ð6:150Þ

u: 0 ¼ @Pzu

@z
; and ð6:151Þ

z: 0 ¼ � @p
@z

þ @Pzz

@z
: ð6:152Þ

From (3.35) the friction stresses only depend on _c: But from (6.151) we see that
Pzu = szu is not a function of z and for symmetry reasons not a function of u either.
Therefore the shear stress szu is only a function of r, as is _c ¼ r dX=dz

r
dX
dz

¼ g rð Þ; ð6:153Þ

integration of (6.153) gives

uu ¼ rX zð Þ ¼ z g rð ÞþC: ð6:154Þ

The no slip condition on the fixed wall implies

uuð0Þ ¼ rXð0Þ ¼ 0; ð6:155Þ

therefore C = 0. From (6.148) it follows that

uu hð Þ ¼ rXR ¼ h g rð Þ; ð6:156Þ

and therefore g rð Þ ¼ XR r=h; so that the solution is

uu ¼ rXR z=h: ð6:157Þ

By comparing this solution with that of simple shearing flow (6.4) we see that at
radius r with wall velocity U ¼ rXR the simple shearing flow appears. Integration
of (6.152) leads us to

p ¼ Pzz þC rð Þ; ð6:158Þ

where the arbitrary function is, for symmetry reasons, not a function of u. Therefore
the pressure is only a function of r and thus the whole right-hand side of the
Eq. (6.150) is only a function of r. On the left-hand side however there is a function
of z. This means that the calculated velocity field can only exist in the limit . ! 0,
that is, by ignoring the inertia terms.
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If the inertia of the fluid cannot be ignored, secondary flows form and the form
of solution (6.147) is not permissible. As well as the kinematic restriction (class c)
in Sect. 4.4), a dynamic restriction also arises (class b) in Sect. 4.4), while no
restrictions of any kind were necessary as far as the constitutive relation is con-
cerned. If we introduce (6.158) into (6.150), then C(r) can be expressed through the
normal stress differences. Incidentally, by measuring the force on the plate with
radius R and the pressure at r = 0, the normal stresses of a fluid can be determined
by a viscometer which is built according to the principles in Fig. 6.10.

6.3.3 Unsteady Unidirectional Flows of a Second Order
Fluid

We extend the velocity field given in (6.147) to the case where the disk carries out a
rotational oscillation

uR ¼ ûR e
ixt; ð6:159Þ

and instead of (6.147) we now write

uu ¼ r X̂ zð Þeixt: ð6:160Þ

(As in (6.101) we shall use complex notation and allot physical meaning to the real
part only.) The component of Cauchy’s equations (6.151) in the u-direction, with
the unsteady flow now considered additionally, contains the inertia term . @uu=@t
on the left-hand side. Since we are ignoring inertia terms, this term also vanishes in
the limiting case . ! 0. The Eqs. (6.150) to (6.157) are therefore still valid since
no restriction has been made relative to the constitutive relation. Since the inertia
terms have been ignored, the problem is unsteady only because of the boundary
condition. With

XR ¼ _uR ¼ ix ûR e
ixt ð6:161Þ

we extract directly from (6.157) the unsteady (more exactly the quasi-steady)
velocity field as

uu ¼ r i x ûR
z
h
eixt: ð6:162Þ
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By comparing this with (6.160) we get

X̂ zð Þ ¼ ix ûR
z
h
: ð6:163Þ

We now calculate the torque acting on the oscillating disk with radius R due to the
shear stress szu

M ¼ 2p
ZR
0

szur
2dr: ð6:164Þ

Since the flow is a simple shearing flow at fixed r (cf. (6.4)), where the z-direction
corresponds to the x2-direction and the u-direction to the x1-direction, to calculate
szu it is enough to determine s12 in simple shearing flow of a second order fluid;
from (3.40) this is

s12 ¼ gA 1ð Þ12 þ bA 1ð Þ1j A 1ð Þ2j þ cA 2ð Þ12: ð6:165Þ

We already have the first Rivlin-Ericksen tensor from Sect. 1.2.4 as

A 1ð Þ12 ¼ 2e12 ¼ @u1 x2ð Þ
@x2

: ð6:166Þ

In unsteady unidirectional flow A(2)12 is not equal to zero and is calculated from
(1.69)

A 2ð Þ12 ¼ D
Dt

@u1 x2ð Þ
@x2

� �
þA 1ð Þj2

@uj
@x1

þA 1ð Þ1j
@uj
@x2

: ð6:167Þ

Since u2 = u3 = 0 and u1 is only a function of x2, A(2)12 reduces to

A 2ð Þ12 ¼ @2u1
@x2@t

: ð6:168Þ

With (6.162) and (6.165) we therefore obtain the shear stress

szu ¼ s12 ¼ ix ûR
r
h

gþ ixcð Þeixt; ð6:169Þ
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and finally the torque as

M ¼ ix ûR gþ ixcð Þeixt2p
ZR
0

r3

h
dr ¼ ix ûR gþ ixcð Þeixt pR

4

2 h
: ð6:170Þ

This equation can be applied in the damping of rotational oscillations of crank-
shafts. Now the damper consists of a casing attached to the crankshaft with a
fulcrumed disk on the inside (shown in Fig. 6.11). When the crankshaft carries out
rotational oscillations

uG ¼ ûGe
ixt ð6:171Þ

the disk inside the casing lags the motion of the casing because of its rotational
inertia H. The viscoelastic fluid inside the case, which we idealize as a second order
fluid, is sheared by the relative motion between the case and the disk. If uD
describes the rotational oscillation of the disk, the relative motion is

Fig. 6.11 Torsional vibration damper
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uR ¼ ûR e
ixt ¼ ûG � ûDð Þeixt: ð6:172Þ

If we neglect the torque on the peripheral surface for reasons of simplicity, the
torque from (6.170) acts on each side of the disk

M ¼ 1
2
v ix ûR gþ ixcð Þeixt; ð6:173Þ

where

v ¼ pR4

h
ð6:174Þ

is a geometric factor. Then we have

H €uD ¼ 2M ð6:175Þ

or

�x2HûD ¼ ix ûR gþ ixcð Þv: ð6:176Þ

It follows from (6.176) that

ûD ¼ v c
H

� i
v g
Hx

h i
ûR: ð6:177Þ

Without loss of generality we assume ûR to be real. Then the phase angle of ûD is
given by

tan a ¼ � v g
Hx

h i v c
H

h i�1
¼ � g

x c
: ð6:178Þ

Since c < 0, a varies between 3p/2 and p. It follows from (6.177) that

ûDj j= ûRj j ¼ v g
Hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xc=gð Þ2

q
; ð6:179Þ

or using (6.178)

ûDj j= ûRj j ¼ v g
Hx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 aþ 1

p

tan a
¼ v g

Hx
1

sin aj j : ð6:180Þ
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Using (6.172) we further extract the relation

ûG=ûR ¼ 1þ ûD=ûR; ð6:181Þ

and by using (6.177) again we find the equation

ûG=ûRj j2¼ 1þ v c
H

h i2
þ v g

Hx

h i2
; ð6:182Þ

which we shall make use of later. We first calculate the work W done by the torque
2 M per period of oscillation T ¼ 2p=x, where we note that only the real part of the
quantities has any physical meaning. We obtain the integral

W ¼
ZT
0

< 2Mð Þ< _uRð Þdt; ð6:183Þ

whose integrand we transform using (6.175) to

< 2Mð Þ< _uRð Þ ¼ �x2 H< ûDe
ixt� �< ix ûRe

ixt� �
: ð6:184Þ

Because of (6.178) we shall write the complex angle ûD as

ûD ¼ ûDj jeia; ð6:185Þ

and since ûR is purely real

ûR ¼ ûRj j; ð6:186Þ

the following expression arises from (6.184)

< 2Mð Þ < _uRð Þ ¼ Hx3 ûDj j ûRj j cos a cosxt sinxtþ sin aj j sin2 xt� �
: ð6:187Þ

After carrying out the integration, (6.183) furnishes the result

W ¼ pHx2 ûRj j ûDj j sin aj j; ð6:188Þ

which we bring to dimensionless form using the reference work p
2Hx2 ûGj j2

W þ ¼ 2W

pHx2 ûGj j2 ¼
2 v g
Hx

v g
Hx

� �2 þ 1þ v c
H

� �2 ; ð6:189Þ
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where we have also made use of (6.180) and (6.182). W+ is a function of the two
dimensionless groups v gð Þ= Hxð Þ and v c=H, and therefore represents a surface, as
is shown in Fig. 6.12 together with the projection in the v gð Þ= Hxð Þ �W þ plane
for negative v c=H values.

Fig. 6.12 Torsional vibration damper with a second order fluid
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The operation points of all possible dampers which use fluid as the dissipating
medium lie on the surface W +. Of particular interest are the two sketched curves
c = 0, which corresponds to a Newtonian fluid, and v c=H ¼ �1; which is clearly
optimal in the following sense: for a given v gð Þ= Hxð Þ the greatest possible
damping is achieved on this curve. If v gð Þ= Hxð Þ ¼ 1 this curve takes on double
the value of the maximum damping possible with a Newtonian fluid.

For second order fluids the “tuning” v c=H ¼ �1; which can always be reached
for a given material constant c by suitable choice of H or v, is even frequency
independent, i.e., the damper achieves the highest damping in the entire frequency
domain. Real fluids only obey this law for small enough frequencies (where the
memory time of the fluid is small compared to the period), so that c is more or less
strongly dependent on X, and so the damper can only be used at optimal tuning
within a restricted range of frequencies.

6.4 Unidirectional Flows of a Bingham Material

6.4.1 Channel Flow of a Bingham Material

We shall consider the steady, fully developed flow of a Bingham material through a
two-dimensional channel of height h and shall assume that the pressure gradient
@p=@x ¼ �K is negative, that the upper wall (y = h) is moved in the positive
x-direction with velocity U and that the wall shear stress on the lower wall (y = 0) is
larger than the yield stress. All other cases can be referred back to this case. The
x- and y-components of Cauchy’s equation simplify to

@p
@x

¼ @s0xy
@y

ð6:190Þ

and

@p
@y

¼ @s0yy
@y

; ð6:191Þ

since in established channel flow the components of the stress deviator are not
functions of x. From (6.191) we conclude

p ¼ s0yy þ f xð Þ ð6:192Þ

and, using (6.190) we see that f 0 xð Þ ¼ const ¼ �K; so that

s0xy ¼ �Kyþ sw; ð6:193Þ
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where sw is the shear stress on the lower wall (y = 0). Since sw > #, the material
flows near to the wall until the stress falls below the yield stress # at a height

y ¼ j1h ¼ sw � #ð Þ=K ð6:194Þ

and the material becomes solid. As y becomes larger the shear stress finally
becomes negative, until at

y ¼ j2h ¼ sw þ#ð Þ=K ð6:195Þ

the negative shear stress �s0xy is equal to the yield stress, after which the material
flows again. Clearly du/dy is positive in the first flow zone as we conclude from the
constitutive relation (3.60) and (3.62). For the unidirectional flow at hand the
constitutive relation has the form

s0xy ¼ g1
du
dy

þ# sgn
du
dy

	 

ð6:196aÞ

s0yy ¼ 0: ð6:196bÞ

From (6.193) and (6.196a, 6.196b) and using the boundary condition u(0) = 0 we
obtain the velocity distribution in the first flow zone as

u
U

¼ � K h2

2g1U
y
h

� �2
�2j1

y
h

	 

; ð6:197Þ

which for j1 
 1 is already the distribution in the whole channel. In the second flow
zone du/dy is negative and the velocity distribution is

u
U

¼ 1þ K h2

2g1U
1� y

h

� �2
�2j2 1� y

h

� �	 

; ð6:198Þ

where the boundary condition u(h) = U has been used. As expected du/dy vanishes
at the yield surfaces. The velocity at the yield surfaces y ¼ j1h and y ¼ j2h is equal
to the solid body velocity which, from (6.197) is

US ¼ K h2j21
2g1

ð6:199Þ

and from (6.198) is
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US ¼ Uþ K h2

2g1
1� j2ð Þ2: ð6:200Þ

It follows from (6.199) and (6.200) that

j21 � 1� j2ð Þ2¼ 2Ug1
K h2

; ð6:201Þ

together with (6.194) and (6.195), (6.201) uniquely determines the flow at a given
pressure gradient −K, plate velocity U and material properties η1 and #.

First we shall consider the case where no solid is formed, therefore (6.197) rep-
resents the entire velocity distribution, which with the condition u(y = h) = U
gives for the shear stress sw

sw ¼ #þ Ug1
h

þ K h
2

: ð6:202Þ

We can easily convince ourselves that for nonvanishing K the velocity distribution
is that of Couette-Poiseuille flow (6.19). From (6.194) and (6.202) we conclude that
no solid is formed if 2g1U= K h2ð Þ[ 1:

If the second flow zone in the channel is not formed but a solid does arise this
then, by previous assumptions, adheres to the upper wall, and from (6.200) we have
j2 ¼ 1: Equation (6.201) furnishes the value j1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ug1= K h2ð Þp

, which, with
(6.194) determines the shear stress at the wall. With (6.197) it also gives the
velocity distribution for this case (Fig. 6.13).

As already explained above, in general a solid forms between the two flow
zones. With the dimensionless numbers 2Ug1= K h2ð Þ and 2#= K hð Þ; abbreviated to
A and B respectively, and using (6.194), (6.195) and (6.201), we determine the
position of the yield surfaces as

Fig. 6.13 Channel flow of a Bingham material
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j1 ¼ Aþ 1� Bð Þ2
2 1� Bð Þ ð6:203Þ

and

j2 ¼ Aþ 1� B2ð Þ
2 1� Bð Þ : ð6:204Þ

Since 0 < j1 < j2 < 1, we infer the inequalities

1[
2#
K h

[ 0 ð6:205Þ

and

1� 2#
K h

	 
2

[
2Ug1
K h2

: ð6:206Þ

For pure pressure driven flows (U = 0) and 2#= K hð Þ
 1 the solid occupies the
whole channel.

Using the quantities A and B the volume flux (per unit depth) is represented by
the equation

12 _Vg1
K h3

¼ 1þ 3A� 3
2
Bþ 1

2
B3 þ 3A2

2 1� Bð Þ2 �
3A2

2 1� Bð Þ ; ð6:207Þ

which for pure pressure driven flow (A = 0) reduces to

12 _Vg1
K h3

¼ 1� 3
2
Bþ 1

2
B3

	 

: ð6:208Þ

For B = 0, (6.207) gives the volume flux of the Newtonian Couette-Poiseuille flow

12 _Vg1
K h3

¼ 3Aþ 1; ð6:209Þ

or written explicitly

_V ¼ Uh
2

þ K h3

12g1
: ð6:210Þ
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Finally we note that the Eqs. (6.197) to (6.201) and (6.203) to (6.210) are valid for
any sign of U and K, as long as the absolute value of B is taken.

We apply the results to shock absorber using electro-rheological (or
magneto-rheological) fluids, which under the influence of a strong electric (mag-
netic) field behave as Bingham media, even if they exhibit Newtonian behavior
without field. For the control volume of Fig. 6.14, we have (2.8) in the form

ZZ
A�R;R;A

~u �~n dS ¼ 0; ð6:211Þ

where A is the cross-sectional area of the inner cylinder, R the cross-sectional ring
shaped channel between piston and cylinder and A − R the piston area. We assume
A=R � 1 and therefore A� R � A and obtain from (6.211)

�A uP þ _V þ dVG

dp
dp
dt

¼ 0: ð6:212Þ

–AuP is the volume displaced by the piston per unit time, _V the volume flux
through the channel and the third term represents the change of Volume per unit
time by the displacement of the intermediate (mass and frictionless) divider, which
forms a separate gas chamber acting as a gas spring. dVP/dp is the volume com-
pliance and the inverse the volume stiffness. We find an expression for the volume
compliance by noting that the mass in the chamber is constant

Fig. 6.14 Sketch of shock absorber using electro-rheological fluid
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VG dqþ q dVG ¼ 0: ð6:213Þ

The changes of state in the gas spring are practically isentropic and since the
velocity is small, even homentropic, so from (4.174)

dp ¼ a2dq ð6:214Þ

which have for the volume compliance

dVG

dp
¼ VG

qa2
: ð6:215Þ

For small volume changes (6.125) is evaluated using the undisturbed state.
The velocity of the piston may be neglected in the computation of the volume

flow through the ring channel, since this velocity is much smaller than the flow
velocity on account of R=A � 1: For the same reason the channel height is much
smaller than the mean radius and the flow in channel is essentially plane. Then
(6.207) provides the expression for the volume flow per unit length of the channel,
so here we have

_V ¼ 2p rmDp
h3

12g1L
1� 3

2
Bþ 1

2
B3

	 

;

for B\1 and _V ¼ 0; for B
 1;

where Dp ¼ K L is the pressure difference p − p0 across the piston and
B ¼ 2#L= Dp hð Þ: Since p0 is time independent we obtain from (6.212) a nonlinear
differential equation for Dp

d Dpð Þ
dt

¼
AuP tð Þ � 2p rmDp

h3

12g1 L
1� 3

2
2# L
Dp h

þ 1
2

2# L
Dp h

	 
3
 !

dVG=dp
;

for B\1 and
d Dpð Þ
dt

¼ AuP tð Þ
dVG=dp

; for B
 1:

ð6:216Þ

For a given piston motion xP = x0 sin(xt); _xP ¼ uP tð Þ say, the equation is integrated
numerically giving the force acting on the piston. It is customary to describe the
damper characteristic by graphing F (uP) since the circumscribed area is a measure
of the dissipated energy. This graph is displayed in Fig. 6.15 for a Bingham
Material with yield stress # = 5000 N/m2 and # = 0 (Newtonian Fluid).

However the comparison is in so far misleading as damper using Newtonian
Fluids are not designed according to the principles outlined in Fig. 6.14. These
shocks absorbers have pressure dependent throttle openings. The work done by the
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piston is here first converted into kinetic energy which is subsequently dissipated.
This damper characteristic is nearly independent of viscosity and therefore inde-
pendent of ambient temperature. (The dissipation itself is of course due to
viscosity).

6.4.2 Pipe Flow of a Bingham Material

Because of the kinematic restriction the steady flow of a Bingham material through
a circular pipe with radius R is also a unidirectional flow. As explained in
Sect. 6.3.1, for any material behavior we obtain a shear stress distribution in the
pipe linearly dependent on the distance from the center r

Fig. 6.16 Pipe flow of a Bingham material

Fig. 6.15 Damper characteristic
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srz ¼ �sw
r
R
; ð6:217Þ

where here again sw ¼ K R=2[ 0 and K ¼ �@p=@z: Wherever the material flows,
srz or szr are the only nonzero components of the shearing stress deviator, whose
second invariant we obtain as (Fig. 6.16).

1
2
s0ijs

0
ij ¼ s2rz: ð6:218Þ

Using (6.217) and (6.218) we conclude that the fluid in the whole pipe will not flow
as long as the wall shear stress (3.61) is smaller than the yield stress, i.e., sw\#. For
sw [# a part of the fluid flows, and the stress –srz reaches the value of the yield
stress at the radius r = a

a
R
¼ #

sw
: ð6:219Þ

In the region r > a the material therefore flows and it follows from the constitutive
relation (3.60) that

srz ¼ g1
du
dr

� #; ð6:220Þ

where the negative sign appears because du/dr < 0. From (6.217) we find an
equation for du/dr, which when integrated with u(r = R) = 0 furnishes the velocity
distribution

u rð Þ ¼ swR
2g1

1� r
R

� �2	 

� #R

g1
1� r

R

� �� �
: ð6:221Þ

For # = 0 we recover the well known form for Newtonian fluids. In the region
r < a (6.221) yields the constant velocity in the center of the pipe as

umax ¼ swR
2g1

1� a
R

� �2
¼ swR

2g1
1� #

sw

	 
2

; ð6:222Þ

and finally we obtain the volume flux as

_V ¼ p swR3

4g1
1� 4

3
#

sw
þ 1

3
#

sw

	 
4
 !

: ð6:223Þ
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Chapter 7
Fundamentals of Turbulent Flow

7.1 Stability and the Onset of Turbulence

We shall now follow on from the discussion of laminar pipe flow. There we
determined that the pressure drop is proportional to the volume flux, a result which
agrees with experiment only for Reynolds’ numbers smaller than a critical
Reynolds’ number. If this critical Reynolds’ number is exceeded the pressure drop
increases sharply and finally becomes proportional to the square of the flux through
the tube. At the same time there is a striking change in the behavior of the flow.

Below the critical Reynolds’ number straight particle paths parallel to the pipe
wall with a unidirectional or laminar flow motion are seen, so that this flow form
has the name laminar flow. The particle paths can be observed by using a glass
tube, where color is introduced into the fluid at one point, and so a streakline
appears, which, for steady flow, coincides with the pathline. In laminar flow a fine
thread appears which will only spread out from the very small effect of the
molecular diffusion.

If the Reynolds’ number is increased sufficiently, the flow becomes very clearly
unsteady: the thread waves back and forth and spreads out much faster than would
be expected from molecular diffusion. At only a small distance from where the
color is introduced, the thread has mixed with the fluid. This form of flow is called
turbulent flow. A characteristic sign of turbulent flow is the strongly increased
diffusion which expresses itself in the rapid spreading out of the color thread. We
have already mentioned other characteristics: three-dimensionality and unsteadiness
of the always rotational flow, and stochastic behavior of the flow quantities.

Of course the transition to turbulence does not only occur in pipe flows but in all
laminar flows, particularly laminar boundary layers. In as much as the laminar flows
discussed up to now have been exact solutions of the Navier-Stokes equations,
these solutions hold in principle for arbitrarily large Reynolds’ numbers. For these
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solutions to be realized in nature however, not only must the Navier-Stokes
equations be satisfied, but the flows must also be stable with respect to small
disturbances. However this is no longer the case above the critical Reynolds’
number, where even a vanishingly small disturbance is enough to induce the
transition to the turbulent flow form.

In most of the laminar flows mentioned, the Reynolds’ number below which all
small disturbances die away can be theoretically calculated. In others, in particular
in Hagen-Poiseuille flows, no critical Reynolds’ number has been found: it appears
as if this flow is theoretically stable at all Reynolds’ numbers. However in nature
turbulent flow forms do appear here, as has just been shown in the example above
of pipe flow. Historically the investigation into turbulent flows began with pipe
flows (Reynolds 1883). It is probable that the instability of pipe flow develops from
a disturbance in the pipe entrance where a pipe flow with parabolic velocity profile
has not yet developed. The experimentally determined critical Reynolds’ number
strongly depends on the conditions of the approach flow at the entrance. Critical
Reynolds’ numbers up to 40,000 have been measured for approach flows which are
especially free from disturbances, whereas for the disturbed approach flows typical
in technical applications, the critical Reynolds’ number drops to 2300. Even if the
approach flow is highly disturbed, pipe flow remains laminar when the Reynolds’
number is lower than 2000. A valid measure for the critical Reynolds’ number
under the conditions found in technical applications is

Recrit ¼ �Ud=�ð Þcrit ¼ 2300: ð7:1Þ

For Reynolds’ numbers Re < Recrit it is recommended to compute the pressure drop
from the laws of laminar pipe flow, while if Re > Recrit the pressure drop follows
from the corresponding laws of turbulent pipe flow.

However, what happens in pipe flow makes it clear that the Reynolds’ number at
which the flow becomes turbulent is generally different from the Reynolds’ number
at which the flow becomes unstable for the first time. Both Reynolds’ numbers are
often called the critical Reynolds’ number, but the difference between them is
important, because the instability of a flow relative to small disturbances does not
necessarily and directly imply the transition to turbulent flow. In general a new,
more complicated but still laminar flow evolves, which, as the Reynolds’ number
increases, becomes unstable and possibly develops into a new laminar flow, but
could also make the transition to turbulence. The transition from unstable to fully
turbulent flow has until now only been accessible by direct numerical simulation.

Experimental investigations are very difficult because the flow is particularly
sensitive to unavoidable and often unknown disturbing influences which can still
decisively change the transition behavior. Frequently the Reynolds’ numbers of
stability and that of transition to turbulence lie close to one another, especially if
there is a high degree of disturbance in the approach flow.
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The laminar flow between two rotating cylinders offers an example of the large
difference between the two Reynolds’ numbers. In this case the first instability is
interesting because it is closely related to the instability of the density stratification:
a small parcel of fluid moved up from radius r to radius r1 > r by a small distur-
bance brings the angular momentum L = ruu with it in the absence of friction
forces. The velocity of the small quantity of fluid on its new path r1 is L=r1 and its
centripetal acceleration is L2=r31. There it is acted on by the surrounding pressure
gradient which, from (6.40) is given by

.
u2u1
r1

¼ .
L21
r31

¼ @p
@r

����
r1

: ð7:2Þ

If the quantity of fluid is shifted back to the initial radius r by this pressure gradient
then the flow is stable. We are led therefore to the necessary condition for stability

@p
@r

����
r1

¼ .
L21
r31

[ .
L2

r31
; ð7:3Þ

i.e.,

r1 uu1 [ r uu: ð7:4Þ

The potential vortex with r uu = const is apparently just the “neutral” velocity
distribution. However the velocity distribution is unstable if r uu is larger at the
smaller radius than it is at the bigger one, as for example if the outer cylinder does
not move and only the inner cylinder is rotated.

So far these considerations only hold for frictionless fluids. If we take the friction
into account we find the critical Reynolds’ number to be

XIRI
h
�
¼ 41:3

ffiffiffiffiffi
RI

h

r
; ð7:5Þ

where h denotes the gap width. A new laminar flow forms above this Reynolds’
number; vortices turning alternately to the left and to the right appear regularly and
their axis of symmetry is in the direction of the axis of the cylinder (Taylor vor-
tices). The transition to turbulence only takes place at much higher Reynolds’
numbers, about 50 times greater than the Reynolds’ number at which stability is
lost. This flow phenomenon is also of technical interest since it can appear wherever
a shaft rotates in a bore, for example in radial bearings.
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7.2 Reynolds’ Equations

In fully developed turbulent flow, i.e., after the transition has been completed, the
flow quantities are random quantities. The flow may be considered to be the
superposition of a basic or main flow with irregular stochastic fluctuations in the
velocity or in other fluid mechanical quantities. The velocity field is therefore
represented as follows

ui xj; t
� � ¼ �ui xj; t

� �þ u0i xj; t
� �

: ð7:6Þ

This decomposition is particularly appropriate if the fluctuation velocity u0i is much
smaller than the basic velocity �ui. The basic velocity corresponds to the mean value
of the velocity. In even the most general case we can form the mean value of the
velocity �ui xj; t

� �
, as well as other mean quantities, using

�ui xj; t
� � ¼ lim

n!1
1
n

Xn
k¼1

u kð Þ
i xj; t
� �

; ð7:7Þ

where the flow is realized n times and each time the velocity ui (xj, t) is determined
at the same place xj at the same instant t. In flows where these mean values are
independent of time, that is in statistically steady processes, we have, instead of the
ensemble-mean value calculated from (7.7), the time-mean value calculated from
the formula

�ui xj
� � ¼ lim

T!1
1
T

ZtþT=2

t�T=2

ui xj; t
� �

dt; ð7:8Þ

which would require only one experimental realization. In what follows we shall
restrict ourselves to incompressible flows which are steady in the mean. We shall
now insert (7.6) and the corresponding form for the pressure

p ¼ �pþ p0 ð7:9Þ

in the continuity Eq. (2.5) as well as into the Navier-Stokes equations in the form
(4.9a) and shall subject the resulting equation to the averaging according to (7.8).
From (7.8) and (7.6) we have the following rules for the calculation of the mean
values of two arbitrary random quantities g and f
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��g ¼ �g; ð7:10aÞ

gþ f ¼ �gþ�f ; ð7:10bÞ

�g f ¼ �g�f ; ð7:10cÞ

@g=@s ¼ @�g
@s

; and ð7:10dÞ
Z

f ds ¼
Z

�f ds; ð7:10eÞ

where s is any one of the independent variables xi or t, and we obtain from the
continuity equation

@�ui
@xi

¼ 0; ð7:11Þ

since u0i vanishes as a consequence of (7.8) and therefore so does @u0i=@xi from
(7.10d). It thus follows that for the fluctuating velocities we have

@u0i
@xi

¼ 0: ð7:12Þ

For the same reason, all terms linear in the fluctuating quantities vanish from the
Navier-Stokes equations

@u0i
@t

¼ @2u0i
@xi@xj

¼ @p0

@xi
¼ u0j

@�ui
@xj

¼ 0; ð7:13Þ

and we obtain the equation

.�uj
@�ui
@xj

þ .u0j
@u0i
@xj

¼ . ki � @�p
@xi

þ g
@2�ui
@xj@xj

: ð7:14Þ

Along with the following relation from the continuity equation

@

@xj
u0i u

0
j

� �
¼ u0j

@

@xj
u0i
� � ð7:15Þ
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Equation (7.14) can be rewritten in the form first cited by Reynolds

. �uj
@�ui
@xj

¼ . ki � @�p
@xi

þ g
@2�ui
@xj@xj

�
@ . u0iu

0
j

� �
@xj

: ð7:16Þ

The vanishing of the mean linear terms means physically that their contributions to
the integral (7.8) cancel. In other words: in the mean the fluctuating quantities are
just as often positive as negative. This is not the case for the nonlinear terms (e.g.
u0i u

0
j), as is obvious for the main diagonal components of the tensor u0i u

0
j, that is

u01 u
0
1, u

0
2 u

0
2, u

0
3 u

0
3. But even the terms u01 u

0
2, etc., which are the velocity components

in two different directions are in general nonzero. They would only be zero if we
were dealing with statistically independent quantities. However the components of
the velocity are correlated. As a measure of the correlation between two fluctuating
quantities g0 and f 0 we use the expression

R ¼ g0 f 0ffiffiffiffiffiffiffiffiffiffiffi
g02 f 02

q
;

ð7:17Þ

here

Rij xk; tð Þ ¼ u0i u
0
jffiffiffiffiffiffiffiffiffiffiffiffi

u02i u02j
q ; ð7:18Þ

or, more generally, for the correlation between two velocity components u0i xk; tð Þ
and u0j xk þ rk; tþ sð Þ

Rij xk; t; rk; sð Þ ¼ u0i xk; tð Þu0j xk þ rk; tþ sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02i xk; tð Þu02j xk þ rk; tþ sð Þ

q : ð7:19Þ

(In Eqs. (7.18) and (7.19) we do not sum over the indices i and j.)
The special forms for the spatial and temporal correlation (autocorrelation) arise

from (7.19) for s = 0 and rk = 0 respectively. If the distance r!�� �� between ~x and
~xþ~r, at which the velocity components in (7.19) are to be taken, tends to infinity
the velocity components become statistically independent and the correlation dis-
appears. A measure of the range of correlation between two velocity components in
the x1-direction, taken at a distance r along the x1-axis and at the same time (s = 0),
is the integral length scale
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L ~x; tð Þ ¼
Z1
0

R11 ~x; t; r; 0ð Þdr; ð7:20Þ

which represents the spatial extent of turbulent fluctuation. For s ! 1 the corre-
lation goes to zero as well. An integral time scale analogous to (7.20) can also be
introduced.

Of course the steady basic flow �ui can be kinematically restricted, for example
unidirectional flows or two-dimensional rotationally symmetric flows. However the
superimposed fluctuating motion u0i is always three-dimensional, and of course,
unsteady.

The steady basic flow must satisfy the Reynolds’ equation (7.16) and the con-
tinuity Eq. (7.11). However these equations are not enough to determine the basic
flow because the terms –. u0i u

0
j introduced by the averaging appear as unknowns.

These terms represent averaged momentum fluxes (per unit area) and give rise to a
force in the j-direction on a surface whose normal is in the i-direction. They are
known as Reynolds’ stresses. The tensor of these stresses is clearly symmetric since
the order of the indices results from the arbitrary order of the factors. We summarize
the whole stress tensor in the form

Tij ¼ �sij � . u0i u
0
j; ð7:21Þ

or for the assumed incompressible flow ð@uk=@xk ¼ 0Þ because of (3.1a), also in the
form

Tij ¼ ��p dij þ 2g eij � . u0i u
0
j: ð7:22Þ

We then write the Reynolds’ equations without volume body forces in the form

. �uj
@�ui
@xj

¼ @Tji
@xj

: ð7:23Þ

The divergence of the Reynolds’ stresses (final term on the right-hand side of
(7.16)) acts on the basic flow as an additional but unknown force (per unit volume).
In turbulent flow this force is in general much larger than the divergence of the
viscous stresses, which in the incompressible flow assumed here corresponds to the
term g @2ui= @xj@xj

� �
. Only in the immediate neighborhood of solid walls do the

fluctuation velocities and with them the Reynolds’ stresses decrease to zero. This is
because the fluctuation velocities, just like the average velocities, have to obey the
no slip condition so that the viscous stresses predominate right at the wall, in a
region called the viscous sublayer.

It would now appear obvious to construct differential equations for the unknown
Reynolds’ stresses in a systematic manner, which, along with the Reynolds’
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Eq. (7.16) and the continuity Eq. (7.11), would form a complete system of differ-
ential equations. In order to find the appropriate equations we introduce (7.6) and
(7.9) into the Navier-Stokes Eq. (4.9a) and subtract the Reynolds’ Eq. (7.16). In
this way we are led to the equation for the fluctuating velocity field

.
@u0i
@t

þ �uk
@u0i
@xk

þ u0k
@u0i
@xk

þ u0k
@�ui
@xk

� 	
¼ � @p0

@xi
þ @

@xk
. u0i u

0
k

� �þ g
@2u0i

@xk@xk
: ð7:24Þ

We can multiply this equation by u0j and find a further equation by interchanging
i and j. After averaging, we can add these equations to furnish equations for the
Reynolds’ stresses. We shall not perform this calculation because it is clear that
multiplying (7.24) by u0j introduces terms of the form u0j u

0
k u

0
i into the problem as

new unknowns.
On the other hand if we find new differential equations for these triple corre-

lations they will contain quadruple correlations, and so on. Therefore this process
fails to complete the system of equations. The problem of closing this system of
equations represents the fundamental problem of fully developed turbulent flow,
and until now remains unresolved.

All attempts so far to make the system of equations determinate have been partly
based on considerable simplifications and hypotheses. At the lowest level, the
closure of the system of equations is accomplished by using relationships between
the Reynolds’ stresses and the mean velocity field. These semi-empirical relation-
ships represent turbulence models, which can take on the form of algebraic rela-
tionships or of differential equations, and which are classified according to the
number of differential equations. As the name “semi-empirical” implies, they all
contain quantities which have to be determined experimentally.

As a consequence of the turbulent fluctuating motion, not only is the momentum
flux increased (expressed through the Reynolds’ stresses), but so also are the heat
and diffusion fluxes. In order to discuss the turbulent heat flux we shall start with
the energy Eq. (4.2), where we may not set the material change of the density
D.=Dt to zero if external heating of the fluid takes place as is the case in heat
transfer problems. While the change in density can be ignored for liquids, this is not
so for gases. If we ignore the change in density for liquids from (4.2) and since
de = cdT, we obtain directly an equation for the temperature field

. c
DT
Dt

¼ Uþ @

@xi
k
@T
@xi

� 	
: ð7:25Þ

The remaining simplifications for gases arise from (4.176) if we ignore the density
changes which result from changes in the pressure, since the equations necessary
for this ((4.182), (4.184) and (4.188)) are satisfied. If there is external heating the
entropy change in (4.176) may not be ignored, and gives rise to a change in the
density. For the calorically perfect gas, Eq. (4.176) leads, by (4.177), to the
expression
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1
.
D.
Dt

¼ � 1
cp

Ds
Dt

; ð7:26Þ

from which, using Gibbs’ relation (2.133) the expression

1
.
D.
Dt

¼ � 1
T
DT
Dt

ð7:27Þ

follows.We can also extract this directly from the thermal equation of state . = .(p, T)
if we consider that the change in state of a material particle is isobaric if the change
in density as a result of pressure change is ignored. Using (7.27) the energy Eq. (4.2)
for gases at low flow velocities (M ! 0) takes the form

. cp
DT
Dt

¼ Uþ @

@xi
k
@T
@xi

� 	
: ð7:28Þ

In accordance with (4.180), the dissipation can be neglected under the assumptions
made, or in other words: the work of deformation (per unit time and volume)
transformed irreversibly to heat, hardly produces any raise in temperature. We note
however that the dissipation plays a decisive role as a loss in the balance of the
mechanical energy in turbulent flow, and may on no account be ignored there. (The
corresponding balance equation for the kinetic energy of the fluctuating motion is
obtained from (7.24) if we multiply this equation by u0i and then perform the
averaging process.)

We shall now insert (7.6) and the corresponding form for the temperature

T ¼ T þ T 0 ð7:29Þ

into (7.25) (or for gases into (7.28)), where as explained the dissipation function is
ignored and in addition k is taken to be constant

. c
@ T þ T 0� �

@t
þ �ui þ u0i
� � @ T þ T 0� �

@xi

� 	
¼ k

@2 T þ T 0� �
@xi@xi

: ð7:30Þ

Noting the rules (7.10), averaging leads us to the equation for the mean temperature

. c �ui
@T
@xi

¼ �. c u0i
@T 0

@xi
þ k

@2T
@xi@xi

; ð7:31Þ
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which, because of (7.12), can also be expressed in the form

. c �ui
@T
@xi

¼ �. c
@

@xi
u0i T 0� �þ k

@2T
@xi @xi

: ð7:32Þ

By analogy to the Reynolds’ stresses, a “turbulent heat flux vector” appears here

qi ¼ . c u0i T 0; ð7:33Þ

which is unknown, just like the Reynolds’ stresses, and which prevents the solution
of Eq. (7.32). What has been said in connection with the Reynolds’ equation is also
valid here: the closure of the system of equations takes place by a semi-empirical
relation between the turbulent heat flux vector and the average velocity and tem-
perature fields.

7.3 Turbulent Shear Flow Near a Wall

Turbulent shear flows play an important role in technical applications because they
are met in channel and pipe flows as well as in turbulent boundary layer flows. The
emphasis here is on the profiles of the mean velocity and on the resistance laws. We
can already obtain important insights into the behavior of turbulent shear flows if
we consider the simplest case of a unidirectional flow with a vanishing pressure
gradient along a smooth flat wall.

In laminar flow with a vanishing pressure gradient and with the basic assump-
tions of unidirectional flow (u1 = f (x2), u2 = u3 = 0) the Navier-Stokes equations
simplify to

0 ¼ g
d2u1
dx22

; ð7:34Þ

from which we infer the constant shear stress s21 = P21 ¼ g du1=dx2 and the
known linear velocity distribution of the simple shearing flow. Using the same
assumption that the mean quantities, i.e., the nonvanishing velocity components �u1
and the Reynolds’ stresses only dependent on x2, we still obtain quite generally
from the Reynolds’ Eqs. (7.23)

0 ¼ @Tji
@xj

: ð7:35Þ
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Using the Cartesian coordinate notation x, y, z and Cartesian velocity components u,
t and w, we extract from the first of these equations under the assumption of
vanishing x component of the pressure gradient, the equation

0 ¼ d
dy

g
d�u
dy

� . u0 t0
� 	

; ð7:36Þ

we shall not be interested in the other two component equations just now.
Integrating (7.36)

const ¼ sw ¼ g
d�u
dy

� . u0 t0 ð7:37Þ

furnishes the statement that the total shear stress T21, i.e., the sum of the viscous
stress P21 ¼ s21 ¼ g d�u=dy and the Reynolds’ stress –. u0 t0, is constant and
therefore independent of y. We have already identified the constant of integration as
the shear stress sw at the wall, since for y = 0 the Reynolds’ stress vanishes as a
consequence of the no slip condition. Because of the (unknown) Reynolds’ stress
appearing in (7.36), the distribution of the mean velocity �u ¼ f ðyÞ is now no longer
a linear function.

In recalling technical applications, in particular those of established turbulent
channel and pipe flows, the question of the practical importance of the result (7.37)
arises. In these flows (as well as in most boundary layer flows) the pressure gradient
does not vanish, but in channel and pipe flow is the only source of motion. Just as
with laminar flows, the shear stress is then not constant, but is a linear function of
y (channel flow) or r (pipe flow). For a nonvanishing pressure gradient, it follows
from the first component of Eq. (7.35) that

0 ¼ � @�p
@x

þ d
dy

g
d�u
dy

� . u0 t0
� 	

; ð7:38Þ

and from the second component of Eq. (7.35)

0 ¼ � @�p
@y

þ d
dy

�. t02
� �

; ð7:39Þ

while the third leads us to @�p=@z ¼ 0. We conclude from (7.39) that the sum of �p
and . t02 is only a function of x, and therefore that @�p=@x is only a function of
x since the Reynolds’ stress –. t02 by assumption only depends on y. Since the
second term in (7.38) does not depend on x, it also follows that @�p=@x is a constant.
The entire shear stress, which we now abbreviate to
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s ¼ g
d�u
dy

� . u0 t0 ð7:40Þ

is therefore (as in the laminar case) a linear function of y

s ¼ d�p
dx

yþ const: ð7:41Þ

We determine the constant of integration by noting that in the middle of the channel
(y = h) the shear stress vanishes because for symmetry reasons d�u=dy and u0 t0 are
zero there. Therefore we write (7.41) in the form

s ¼ � @�p
@x

h 1� y
h

� �
¼ sw 1� y

h

� �
; ð7:42Þ

where we have denoted the shear stress on the lower wall as sw.
For turbulent pipe flow a linear shear stress distribution also arises, as can be

shown by considerations analogous to the laminar case (6.138) or (6.140). (Since
the results of this section are not only valid for pipe flows, we depart from (6.140)
and denote the coordinate in the axial direction as x.) We infer from (7.42) that
close to the wall y=h � 1ð Þ the entire shear stress is virtually constant and so a layer
exists there in which the effect of the pressure gradients can be neglected; the simple
Eq. (7.37) is here applicable. This does not only hold for the channel and pipe flows
already mentioned, but also for turbulent boundary layer flows. In all these flows, a
layer close to the wall exists where the outer boundaries of the flow, e.g., the height
of the channel or the thickness of the boundary layer, have no effect, and in which
layer the flow is independent of these quantities. We recognize the consequences if
we bring (7.37) to the form

sw
.

¼ �
d�u
dy

� u0 t0; ð7:43Þ

from which we see directly that sw . has the dimension of the square of a velocity.
Thus we introduce the friction velocity as a reference velocity

u� ¼
ffiffiffiffiffi
sw
.

r
; ð7:44Þ

which is also physically significant since it provides a measure for the turbulent
fluctuation velocity. Equation (7.43) may now be written in the form

1 ¼ d �u=u�ð Þ
d y u�=�ð Þ �

u0 t0

u2�
: ð7:45Þ
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Thus the mean velocity �u when referred to u� is only a function of the dimen-
sionless coordinate y u�=�, in which the friction length �=u� appears as reference
length. (If h were also introduced as a reference length, �u=u� would have to depend
additionally on the dimensionless quantity h u�=�; in other words, the processes
taking place in the layer near the wall would depend on the distance to the opposite
wall.) From (7.45) we infer the so-called law of the wall

�u
u�

¼ f y
u�
�

� �
; ð7:46Þ

and the corresponding equation

u0t0

u2�
¼ g y

u�
�

� �
: ð7:47Þ

The law of the wall was formulated by Prandtl (1925) and is one of the most
important results from turbulence theory. It is clear from what was said earlier that
the functions f y u�=�ð Þ and g y u�=�ð Þ are universal functions, and so are the same
for all turbulent flows. Equation (7.45) on its own is not enough to find the form of
the universal function f, since this function contains the unknown Reynolds’
stresses. As already noted many times, the Reynolds’ stresses tend to zero directly
at the wall, and close to the wall we can express the universal function f in a Taylor
expansion about y = 0. For simplicity we introduce

y� ¼ y
u�
�
; ð7:48Þ

and since �u 0ð Þ ¼ 0 write

�u y�ð Þ
u�

¼ d �u=u�ð Þ
dy�

����
0
y� þ d2 �u=u�ð Þ

dy2�

����
0

1
2
y2� þ � � � : ð7:49Þ

From (7.45) the first coefficient follows as

d �u=u�ð Þ
dy�

����
0
¼ 1; ð7:50Þ

since u0 t0
��
0¼ 0. We find the other coefficients through repeated differentiation of

the Eq. (7.45) and evaluation at y = 0 and get
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d2 �u=u�ð Þ
dy2�

����
0
¼ 1

u2�

d u0 t0
� �
dy

dy
dy�

¼ 1
u2�

�

u�

@u0

@y
t0 þ @t0

@y
u0


 �
0
¼ 0; ð7:51Þ

where the zero arises on the right-hand side because u′ and t0 always vanish at
y = 0. The third derivative follows as

d3 �u=u�ð Þ
dy3�

����
0
¼ 1

u2�

�

u�

� 	2
@2u0

@y2
t0 þ 2

@u0

@y
@t0

@y
þ @2t0

@y2
u0

" #
0

¼ 0: ð7:52Þ

The first and the last terms in the brackets vanish because the fluctuation velocities
at the wall are zero. Since then their derivatives in the x- and z-directions are also
zero, it follows from the continuity Eq. (7.12) that @t0=@y vanishes at the wall. If
we differentiate (7.52) again using the same line of reasoning we find for the fourth
derivative

d4 �u=u�ð Þ
dy4�

����
0
¼ 1

u2�

�

u�

� 	3

3
@u0

@y
@2t0

@y2

" #
0

: ð7:53Þ

In order to evaluate this expression we would need to know the field of the fluc-
tuation velocities. Since the expression does not have to vanish from pure kinematic
reasons, we assume that it is in general nonzero. Thus we conclude from the Taylor
expansion (7.49) that

�u
u�

¼ y� þO y4�
� �

: ð7:54Þ

Therefore the fluctuating motion influences the velocity profile only in the terms of
order y4�. Accordingly there exists a layer in which, although the fluctuating motion
itself is not zero, the distribution of the average velocity is mainly influenced by the
viscous shear stresses. Thus the name viscous sublayer is justified. For dimensional
reasons the thickness of this layer must be of the order of magnitude of the friction
length �=u�. Since there is no other typical length available, we set dv ¼ b�=u� for
the thickness of the viscous sublayer, where b is a pure number to be determined by
experiment.

Of course there is no sudden transition from the viscous layer to the region
where the Reynolds’ stress –. u0 t0 is important. As the distance from the wall
increases, the effect of the viscosity eventually completely disappears (as far as
momentum transfer is concerned) and the velocity distribution is fully determined
by the Reynolds’ stresses.

It is this fact which allows us to state the universal function f in this region.
Firstly it follows from (7.40) that the shear stress in this region is
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sw ¼ st ¼ �. u0 t0; ð7:55Þ

where we write st to express that we are only dealing with the turbulent shear stress.
The velocity distribution cannot be calculated from (7.55) since there is no relation
between the Reynolds’ stress and the mean velocity. It is clear that we should find
this relation using some turbulence model. One such model is the Boussinesq
formulation of the Reynolds’ stresses

�. u0 t0 ¼ A
@�u
@y

; ð7:56Þ

where A is the turbulent transport coefficient, or �t ¼ A=. is the so-called eddy
viscosity. Clearly the Boussinesq formulation follows the formulation of the viscous
shear stress s ¼ g @�u=@y and only shifts the problem of the unknown Reynolds’
stresses to the problem of the unknown eddy viscosity. The most simple assumption
we can make is that A is constant; however we cannot do so in wall bounded flows
since the Reynolds’ stresses must vanish near the wall. For so-called “free turbulent
shear flow”, i.e., for turbulent flows not bounded by walls, as typically encountered
in jets and wakes, the assumption of constant eddy viscosity can be useful.

Using the concept known as the “mixing length”, Prandtl found a relationship
between the eddy viscosity �t and the mean velocity field. The basic idea is that the
turbulent stresses arise through macroscopic momentum exchange in the same
manner as the viscous stresses arise from molecular exchange of momentum.
Molecular momentum exchange occurs when a molecule at position y with a
velocity u in the x-direction moves to position y – l under thermal motion where its
velocity is u – du. Therefore the molecule carries over the velocity difference
du ¼ l du=dy , where l is the distance in the y-direction between two molecular
collisions. These motions proceed in both directions, and therefore momentum is
carried over from the faster layer to the slower and vice versa. The number of
molecules (per unit volume) moving parallel to the y-axis in the ± y-direction is
one third of the total number, and one third also moves parallel to the x and z axes,
respectively. The molecules move with thermal velocity t and the mass flux per unit
volume is thus (1/3) .t. The molecular momentum flux which manifests itself as the
viscous shear stress s21 ¼ g du=dy is therefore proportional to (1/3) . t du=dy.
Although in this extremely simplified derivation, where all molecules have the same
thermal velocity t, they do not affect each other except during collisions and should
only move parallel to the coordinate axes. This formula leads to a very good value
for the viscosity (η = (1/3) l . t) of dilute gases.

In carrying these ideas over to turbulent exchange motion it is assumed that
turbulent fluid parcels, i.e., fluid masses which move more or less as a whole,
behave like molecules, thus moving over the distance l unaffected by their sur-
roundings, “mixing” with their new surroundings and so losing their identity. The
fluctuation u′ in the velocity is, from the above point of view, proportional to
l d�u=dy. The “mixing” of two turbulent fluid parcels goes along with a displacement
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of the fluid, which gives rise to the transverse velocity t0 whose magnitude is
therefore proportional to l d�u=dy. (This is in contrast to the molecular momentum
exchange where the thermal velocity is independent of du=dy.) Thus, if we absorb
the proportionality factor into the unknown mixing length l, the turbulent shear
stress st becomes

st ¼ �. u0 t0 ¼ . l2
d�u
dy

� 	2

: ð7:57Þ

The change of sign in (7.57) comes from the fact that a parcel of fluid coming from
above (t0 negative) generally carries a positive u′ with it. If we also take account of
the fact that the sign of st is the same as that of d�u=dy, we can write down Prandtl’s
mixing length formula

st ¼ . l2
d�u
dy

����
���� d�udy ; ð7:58Þ

and the eddy viscosity

�t ¼ l2
d�u
dy

����
����; ð7:59Þ

which, from Prandtl’s mixing length model, therefore depends on the velocity
gradient.

At first sight the unknown eddy viscosity in (7.59) has only been replaced by the
unknown mixing length. However the latter is more accessible to physical insight,
so that “rational” assumptions for the mixing length are likely to be more easy to
make. Yet no generally valid representation for the mixing length has been found so
far. The mixing length concept is based on the unrealistic assumption that turbulent
fluid parcels whose typical diameters are of the order of magnitude of the mixing
length l, traverse this distance l without influence from the surrounding fluid. The
mixing length formula serves only as a very rough description of shear turbulence.
Like all algebraic turbulence models it has the disadvantage that the Reynolds’
stresses only depend on the local mean velocity field, while in general the
Reynolds’ stresses depend on the history of the velocity field and require a for-
mulation more in line with the constitutive relations of non-Newtonian, viscoelastic
fluids.

Although there are typical experiments which clearly contradict the mixing
length idea, it is certainly a model which is very useful and simple to apply, and the
predictions of this model compare favorably to models which take the history of the
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velocity field into account. The model can also be tensorially generalized; we shall
not go into this but shall now turn towards the application of the law of the wall.

Since the Reynolds’ stresses must vanish at the wall, we choose l to be pro-
portional to y

l ¼ jy: ð7:60Þ

This choice is also inspired by dimensional reasons, since close to the wall where
the law of the wall holds, but outside the viscous sublayer, there is no typical length
we can use and all physically relevant lengths must be proportional to y. Since the
shear stress is constant and thus equal to the wall shear stress
ðs ¼ const ¼ sw ¼ . u2�Þ, we find the following relation from the mixing length
formula

u� ¼ jy
d�u
dy

; ð7:61Þ

whose integration leads to the desired universal velocity distribution, the so-called
logarithmic law of the wall

�u
u�

¼ 1
j
ln yþC: ð7:62Þ

We may reach this important result purely from dimensional considerations without
having to refer to Prandtl’s mixing length formula. Since viscosity has no effect in
the region in which we are interested, the fluid properties are only described by the
density .. In the relation between the constant shear stress and the velocity dis-
tribution �u ¼ f ðyÞ, aside from the density, only the change in �u with y may appear,
since the momentum flux connected with the shear stress is only present if the
velocity changes in the y-direction. Thus �u itself may not appear in the relation
we are looking for. The only quantities which occur are therefore the shear stress
st = sW, . and the derivatives dn�u=dyn of the velocity distribution, among which the
functional relation

f st; .;
dn�u
dyn

� 	
¼ 0 ð7:63Þ

exists. This relation must be reducible to a relation between dimensionless quan-
tities. If we assume that the first two derivatives d�u=dy and d2�u=dy2 characterize the
velocity distribution, we can form only one dimensionless quantity, namely
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P1 ¼
d2�u=dy2
� �2
d�u=dyð Þ4

st
.
: ð7:64Þ

Restricting ourselves to the first two derivatives, the relation we require is

f P1ð Þ ¼ 0; or P1 ¼ const: ð7:65Þ

We denote the absolute constant P1 as j2 and find from (7.64)

st ¼ . j2
d�u=dy

d2�u=dy2

� 	2 d�u
dy

� 	2

: ð7:66Þ

Comparing this with the mixing length formula (7.57), we deduce a formula for the
mixing length from dimensional analysis

l ¼ j
d�u=dy

d2�u=dy2

����
����: ð7:67Þ

We make no further use of this here. Using st ¼ sw ¼ . u2� in (7.66) we obtain a
differential equation for the distribution of the mean velocity

d2�u
dy2

þ j
u�

d�u
dy

� 	2

¼ 0; ð7:68Þ

where the sign of the second term has been chosen positive since the curvature of
the velocity profile is negative for flow in the positive x-direction. The solution of
(7.68) is the logarithmic law of the wall (7.62)

�u
u�

¼ 1
j
ln yþC:

This velocity profile does not hold for y ! 0, but only to the edge of a layer near
the wall which we divide up into the already mentioned viscous sublayer and an
intermediate or buffer layer where the Reynolds’ stresses decrease as the wall is
approached, while the viscous stresses increase. The velocity at the edge of this
layer therefore depends on the viscosity. The constant in (7.62) serves to fit the
velocity in the logarithmic part of the law of the wall to this velocity and so depends
on the viscosity too. The second constant of integration which appears when we
solve (7.68) is fixed so that d�u=dy tends to infinity when y tends to zero. Now (7.62)
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does not hold in this region (as just stated), but taking the limit y ! 0 in (7.62)
corresponds to a very thin viscous sublayer where d�u=dy must become corre-
spondingly large. We then set the constant C to

C ¼ Bþ 1
j
ln
u�
�

ð7:69Þ

and obtain (7.62) in the dimensionally homogeneous form of the logarithmic law of
the wall

�u
u�

¼ 1
j
ln y

u�
�

� �
þB: ð7:70Þ

This important velocity distribution is met in every turbulent flow near a smooth
wall, in channel and pipe flows, as well as in all turbulent boundary layer flows.
Equation (7.70) is valid in a domain described by the inequality

�

u�
� y � d; ð7:71Þ

where d stands for either the boundary layer thickness, or else half the channel
height or the pipe radius. The constants j and B are independent of the viscosity
and therefore also independent of the Reynolds’ number ðu�d=�Þ. They are absolute
constants for flow bounded by a smooth wall and are found experimentally.
Different measurements show a certain amount of scatter in these values, which is
in part explained by the fact that fully turbulent flow was not realized in the
experiments, or that the shear stresses were not constant because of very large
pressure gradients (see (7.41)). In the region

30� y
u�
�

� 1000 ð7:72Þ

we find reasonably good agreement for j � 0.4 and B � 5. (The values given in
the literature for j vary between 0.36 and 0.41, and for B between 4.4 and 5.85. In
applications it is sufficient to round j off to 0.4 (1/j = 2.5) and B to 5.)

From measurements, the entire law of the wall may be divided into three regions,
where of course there is no sudden transition from one region to the next:

viscous sublayer (linear region) 0 < y u� /� < 5

buffer layer 5 < y u� /� < 30

logarithmic layer y u� /� > 30
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The velocity profile in the viscous sublayer and the logarithmic layer are sket-
ched in Fig. 7.1 on the logarithmic scale. Figure 7.2 shows the same profiles on the
linear scale.

A series of analytic expressions has been given for the buffer layer, which have
the character of interpolation formulae between the linear and logarithmic laws, but
there are also closed form expressions which describe the entire wall region. We
shall not go any further into these, because the resistance laws which we will
discuss shortly do not require the exact distribution of the mean velocity in the
buffer layer. The exact distribution can however be important in heat transfer
problems.

Fig. 7.1 Universal velocity distribution on the logarithmic scale

Fig. 7.2 Universal velocity distribution on the linear scale
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7.4 Turbulent Flow in Smooth Pipes and Channels

In the last section it was shown that the universal law of the wall holds for all
turbulent flows, but is restricted to a distance which is small in comparison to half
of the channel height h or to the pipe radius. At large distances from the wall the
effect of the opposite wall becomes noticeable, and as already mentioned, the
velocity distribution then also depends on the Reynolds’ number u�R=�, where
R stands for one of the above typical lengths, so that the corresponding distribution
for the law of the wall takes on the form

�u
u�

¼ F u�
R
�
; u�

y
�

� 	
; ð7:73Þ

where y is measured from the wall and so in a circular cross-sectionwe have y = R – r.
If, for fixed u�=�, we consider the limit u�R=� ! 1, then with u�R=�, R itself
vanishes from the relation (7.73), and we return to the law of the wall. Now if we take
the limit u�R=� ! 1 for fixed R it also means that y would no longer appear in the
relation. In order not to lose relevant information in these limits, we form the entirely
equivalent form

�u
u�

¼ F u�
R
�
;
y
R

� 	
: ð7:74Þ

Now taking the limit u�=� ! 1 at fixed R, the effect of the Reynolds’ number
vanishes because u�R=� ! 1 and therefore so does the effect of the viscosity on
the distribution of the mean velocity outside the wall region

�u
u�

¼ F
y
R

� �
: ð7:75Þ

In this equation the viscosity appears only indirectly through u�, i.e., through the
shear stress on the wall and through the condition that (7.75) must be fitted to the
value of the velocity which is given by the law of the wall. In order to find the
unknown function F the same considerations hold as those which led to (7.70),
except that the shear stress st now depends on y. Instead of following the reasoning
which led to the logarithmic law of the wall, we shall determine the function
F y=Rð Þ so that it agrees with the law of the wall f ðu�y=�Þ in that region where both
distributions must coincide with one another, i.e., for y=R � 1 and simultaneously
u�y=� � 1. Since the magnitude of the velocity, in contrast to the velocity distri-
bution, is directly dependent on the Reynolds’ number we require that the
derivatives of the velocity distributions agree in the overlap region y� � 1,
y=R � 1
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d�u
dy

¼ u�
R
dF
dg

¼ u2�
�

df
dy�

; ð7:76Þ

where y� ¼ y u�=� and g ¼ y=R. These variables are entirely independent of each
other, since changing R will for example leave y* unaffected. Multiplying by y=u�
leads to

g
dF
dg

¼ y�
df
dy�

¼ const, ð7:77Þ

since the equation can only hold if both sides are equal to a constant. By integrating
(7.77) as before, we obtain in a completely different manner the logarithmic law of
the wall (7.70)

f ¼ �u
u�

¼ 1
j
ln
y u�
�

þB;

and equally find a logarithmic law for the region where the influence of R is felt

F ¼ �u
u�

¼ 1
j
ln

y
R
þ const: ð7:78Þ

If in (7.78) we set y = R, with �uðRÞ ¼ Umax it follows that

�u� Umax

u�
¼ 1

j
ln

y
R
; ð7:79Þ

where we note that (7.78) is really being applied outside the region in which it is
valid, which from the derivation is restricted to y=R � 1. The more general form of
(7.79)

�u� Umax

u�
¼ f

y
R

� �
ð7:80Þ

is known as the velocity defect law. By subtracting (7.79) from the law of the wall,
we acquire the expression

Umax

u�
¼ 1

j
ln u�

R
�

� 	
þB; ð7:81Þ

which shows explicitly how the maximum velocity depends on the Reynolds’
number u�R=�. For given Umax and R, (7.81) is an implicit function for u� or for the
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shear stress and therefore for the pressure gradient K K ¼ �@p=@xð Þ. Therefore
(7.81) is already a resistance law. We express it in the form (6.60) and use the
velocity averaged over the cross-section of the pipe, denoted by �U, as a reference
velocity

pR2 �U ¼ 2p
ZR
0

�u R� yð Þdy: ð7:82Þ

Using the distribution of the mean velocity �u given by (7.79) (which already
represents a good description of the whole velocity distribution over the entire pipe
cross-section), we find

�U ¼ Umax � 3:75u�; ð7:83Þ

and thus with (7.81)

�U
u�

¼ 1
j
ln
u�R
�

þB� 3:75; ð7:84Þ

which relates the velocity �U and the wall shear stress. With

sw ¼ . u2� ¼
K R
2

ð7:85Þ

we find

f ¼ l
d
k ¼ p1 � p2

�U2.=2
¼ K l

�U2 .=2
¼ 4

u2�l
�U2R

; ð7:86Þ

or

k ¼ 8
u2�
�U2 ; ð7:87Þ

where d = 2R. Using these we write the Eq. (7.84) in the form

2

ffiffiffi
2
k

r
¼ 1

j
ln

1
4

�U d
�

ffiffiffi
k
2

r !
þB� 3:75: ð7:88Þ
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If instead of the natural logarithm we use the logarithm to the base ten (Brigg’s
logarithm), we finally obtain

1ffiffiffi
k

p ¼ 2:03 lg Re
ffiffiffi
k

p� �
� 0:8 ð7:89Þ

with the Reynolds’ number Re ¼ �U d=�. The constant –0.8 does not exactly cor-
respond to the calculated value � ln 4

ffiffiffi
2

p� �
=j� Bþ 3:75

� 
= 2

ffiffiffi
2

p� �
, but is adjusted

to fit experimental results.
We can easily see that for a plane channel of height 2 h we reach the same form

as in (7.89), by writing the Reynolds’ number using the hydraulic diameter intro-
duced in (6.67) (here dh = 4 h). However the constant in the relation corresponding
to (7.83) has a somewhat different value

�U ¼ Umax � 2:5u� ð7:90Þ

Experiments show that the formula for the circular pipe also describes the resistance
for noncircular cross-sections if the Reynolds’ number is formed with the hydraulic
diameter, as we have already remarked. In reality only the turbulent flow in circular
pipes and in annular conduits is unidirectional. Contrary to the laminar flow of
Newtonian fluids, a fully formed turbulent flow through a pipe with general
cross-sectional shape is no longer unidirectional. It forms a secondary flow with a
velocity component perpendicular to the axial direction.

This secondary flow transports momentum into the “corners” (Fig. 7.3), which
also gives rise to large velocities there. The result is that the shear stress along the

Fig. 7.3 Secondary flow in a pipe with triangular cross-section
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entire wetted surface is almost constant, which is to be considered as the assumption
needed to apply the concept of hydraulic diameter. Therefore we do not expect that
the formula for the circular pipe still applies if, for example, the angles of a
triangular cross-section are too small to allow an effective secondary flow.

7.5 Turbulent Flow in Rough Pipes

Pipes used in applications are always more or less “rough”. While in laminar flow
the wall roughness hardly affects the resistance, its influence in the turbulent case is
quite considerable if the mean protrusion height k is greater than the thickness of
the viscous sublayer. (Here we assume that the roughness is fully characterized by
k or k/R, as is the case in closely spaced protrusions.) An essential parameter is the
ratio of the protrusion height k to the viscous length �=u�. If the protrusion height
lies in the linear region of the velocity profile, that is

u�
k
�
� 5; ð7:91Þ

the effect on the resistance is negligible; in this case we speak of hydraulically
smooth surfaces. If the protrusion height is considerably greater than the thickness
of the buffer region we speak of a dynamically completely rough surface, which is
characterized by the inequality

u�
k
�
	 70: ð7:92Þ

Experiments show that the viscosity, that is the Reynolds’ number, then no longer
has an effect on the friction factor. As we have seen in connection with (7.69) and
(7.70), the friction influence appears in the logarithmic law only through the con-
stant of integration C. In the case of a completely rough wall the viscous sublayer
no longer exists. The constant C is then to be fixed so that a dimensionally
homogeneous form of the velocity distribution arises in which the viscosity no
longer appears. Therefore we set

C ¼ B� 1
j
ln k ð7:93Þ

and are led to the logarithmic law of the wall for completely rough walls

�u
u�

¼ 1
j
ln
y
k
þB: ð7:94Þ
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From measurements the constant B is found to be

B ¼ 8:5: ð7:95Þ

The velocity defect law (7.79) is not affected by the wall roughness; this equation
continues to be valid, as is Eq. (7.83). Thus we find the equation corresponding to
(7.84) is

�U
u�

¼ 1
j
ln
R
k
þ 8:5� 3:75: ð7:96Þ

Using (7.87) we obtain the resistance law of the completely rough pipe as

k ¼ 8 2:5 ln
R
k
þ 4:75

� 	�2

; ð7:97Þ

Fig. 7.4 Friction factor for circular pipes
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or using the logarithm to the base ten as before

k ¼ 2 lg
R
k
þ 1:74

� 	�2

; ð7:98Þ

where the constant found from calculations (1.68) is replaced with the value 1.74,
which is in better agreement with the experiments.

Finally we note Colebrook’s formula

1ffiffiffi
k

p ¼ 1:74� 2 lg
k
R
þ 18:7

Re
ffiffiffi
k

p
� 	

; ð7:99Þ

which interpolates the entire spectrum from “hydraulically smooth” to “completely
rough” very well. We see that for Re ! ∞ (vanishing viscosity effects) this
becomes Eq. (7.98), and for k=R ! 0 the resistance formula for the smooth pipe
appears. For practical purposes Colebrook’s formula is graphed in Fig. 7.4.

With increasing Reynolds’ number the viscous length �=u� and therefore the
protrusion height become continuously smaller from where the pipe may be con-
sidered as being completely rough (i.e. (7.89) is valid). If we set (7.92) with the

equality sign into (7.98), and then using (7.87) to replace u� with �U k=8ð Þ1=2, we
obtain the limit curve kl ¼ f ðReÞ (dashed line in Fig. 7.4).
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Chapter 8
Hydrodynamic Lubrication

8.1 Reynolds’ Equation of Lubrication Theory

The geometric characteristics of the unidirectional flows discussed in Chap. 6 are
their infinite extension in the flow direction and the fact that the flow cross-section
does not change in the flow direction. Because of these kinematic restrictions the
nonlinear terms in the equations of motion vanish, simplifying the mathematical
treatment considerably. Now unidirectional flows do not really occur in nature, but
they are suitable models for the flows often met in applications whose extension in
the flow direction is much larger than their lateral extension. Frequently the
cross-section is not constant, but varies, even if only weakly, in the flow direction.
As well as the channel and pipe flows with slowly varying cross-section, a typical
example is the flow in a journal bearing (Fig. 6.3), where a flow channel with
slightly varying cross-section is formed due to the displacement of the journal.

We now search for a criterion to neglect the convective terms in the Navier–
Stokes equations and consider the lubrication gap shown in Fig. 8.1. This arises
from the flow channel of a simple shearing flow if the upper wall is inclined to the
x-axis at an angle a. Since the fluid adheres to the wall it is pulled into the narrowing
gap so that a pressure builds up in the gap; this pressure is quite substantial for
h=L � 1 and can, for example, support a load which acts on the upper wall.

Further basic considerations regarding neglecting the convective terms are based
on plane two-dimensional and steady flow. On the lower wall the normal velocity
component (here the y component) vanishes as a consequence of the kinematic
boundary condition. Exactly the same holds at the upper wall; because of the no slip
condition the component of velocity in the y-direction is t ¼ �aU and is at most
O(a U) anywhere in the fluid film. Then, from the continuity equation

@u
@x

þ @t
@y

¼ 0
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we find the following estimate for plane two-dimensional incompressible flow

@u
@x

� a
U
�h
; ð8:1Þ

so that the first component of the Navier–Stokes Eq. (4.9a), ignoring the volume
body force, leads to the order of magnitude equation

. a
U2

�h
þ a

U2

�h

� �
� � @p

@x
þ g a2

U
�h2

þ U
�h2

� �
: ð8:2Þ

Here �h is a mean distance between the upper and lower walls, which in bearings is
typically of the order

�h� aL: ð8:3Þ

For a � 1 we ignore the first term in brackets on the right-hand side and for the
ratio of the convective terms to the remaining friction term we obtain the expression

. aU2
�
�h

gU
�
�h2

¼ aRe; ð8:4Þ

where

Re ¼ .U �h
g

ð8:5Þ

is the Reynolds’ number formed with mean wall distance and wall velocity.
Consequently we can ignore the convective terms, and in steady flow therefore all
the inertia terms, if

Fig. 8.1 Lubrication gap
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aRe � 1 ð8:6Þ

holds. We emphasize that a small Reynolds’ number is sufficient but not necessary
for (8.6) to be true. In reality, such high Reynolds’ numbers can be reached in
bearings that the flow becomes turbulent. However in this chapter we shall restrict
ourselves to laminar flow. The criterion (8.6) is also valid for unsteady flows if the
typical time s is of the order L=U or �h

�
aUð Þ, since then the local acceleration is of

the same order of magnitude as the convective.
Under the condition (8.6), the terms in (8.2) which do not contain a must all

balance, and the x component of the Navier–Stokes equations reduces to

@p
@x

¼ g
@2u
@y2

: ð8:7Þ

Using (8.1) and since t� aU, the component of the Navier–Stokes equations in the
y-direction leads to the order of magnitude equation

. a2
U2

�h
þ a2

U2

�h

� �
� � @p

@y
þ g a3

U
�h2

þ a
U
�h2

� �
; ð8:8Þ

from which we infer the equation

0 ¼ @p
@y

: ð8:9Þ

However (8.7) and (8.9) correspond exactly to the differential equations of the
Couette-Poiseuille flow (6.13) and (6.14). Therefore we can immediately state the
solution (where, because a � 1, the x component of the wall velocity is equal to U)

u
U

¼ y
h xð Þ �

@p
@x

h2 xð Þ
2gU

1� y
h xð Þ

� �
y

h xð Þ : ð8:10Þ

Since the gap height h depends on the coordinate x, the flow is only “locally” a
Couette-Poiseuille flow.

We now calculate the volume flux in the x-direction per unit depth (that is, per
unit length in the z-direction)

_Vx ¼
Zh xð Þ

0

~u �~ex dy ¼
Zh xð Þ

0

u dy; ð8:11Þ
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which must be independent of x for the plane two-dimensional flow considered
here. From (8.11) it follows as in the case of channel flow that

_Vx ¼ 1
2
U h xð Þ � @p

@x
h3 xð Þ
12g

; ð8:12Þ

and differentiating with respect to x leads to a differential equation for the pressure
distribution in the fluid film

@

@x
h3

g
@p
@x

� �
¼ 6U

@h
@x

: ð8:13Þ

This equation is the two-dimensional form of a general equation which we shall
now develop, and which is called the Reynolds’ equation, but is obviously not to be
confused with Eq. (7.16) of the same name.

If there also exists a flow in the z-direction, as well as (8.7) we have the equation

@p
@z

¼ g
@2w
@y2

; ð8:14Þ

which has the same form as (8.7). In order to calculate the volume flux per unit
depth _Vz in the z-direction, it suffices to replace @p=@x by @p=@z in (8.12), and to
write the wall velocity in the z-direction (W) thus

_Vz ¼ 1
2
W h x; zð Þ � @p

@z
h3 x; zð Þ
12g

; ð8:15Þ

where we have allowed for the fact that the gap height may also depend on z.
In the general case we also allow h to depend on z as well as x in (8.12). We

combine both the volume fluxes _Vx and _Vz vectorially as

~_V ¼ _Vx~ex þ _Vz~ez: ð8:16Þ

Now this plane two-dimensional field must satisfy the continuity equation

@ _Vx

@x
þ @ _Vz

@z
¼ 0; ð8:17Þ

a result which is easily seen if we apply the continuity equation in the integral form
(2.8) to a cylindrical control volume of base area dx dz. Using (8.12) and (8.15) the
Reynolds’ equation arises directly from Eq. (8.17)
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@

@x
h3

g
@p
@x

� �
þ @

@z
h3

g
@p
@z

� �
¼ 6

@ hUð Þ
@x

þ @ hWð Þ
@z

� �
: ð8:18Þ

If the plates are rigid bodies the derivatives @U=@x and @W=@z on the right-hand
side vanish. Further the plate velocity W in the z-direction is often zero.

8.2 Statically Loaded Bearing

8.2.1 Infinitely Long Journal Bearing

To discuss the journal bearing extending to infinity in the z-direction in Fig. 8.2, we
use (8.12). The radius of the bearing shell is

RS ¼ Rþ �h ¼ R 1þ
�h
R

� �
; ð8:19Þ

if �h is the average height of the lubrication gap (radial clearance) and R is the radius
of the journal. Typical values of the relative bearing clearance

w ¼ RS � R
R

¼
�h
R

ð8:20Þ

lie in the region of 10−3. If the center of the journal is displaced by distance e on the
line u = 0, the distance to the surface of the journal measured from the center of the
bearing shell is

Fig. 8.2 Geometry of the journal bearing
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r ¼ Rþ e cos u ¼ R 1þ e
R
cos u

� �
ð8:21Þ

for e=R � 1, and because w � 1, we have for the distance between the surface of
the journal and the surface of the bearing shell

h uð Þ ¼ RS � r ¼ �h 1� � cos uð Þ; ð8:22Þ

where

� ¼ e
�h

ð8:23Þ

is the relative eccentricity. Since w is very small the fact that the lubrication gap or
the fluid film is curved is not important; let us consider the fluid film to be
unwrapped (Fig. 8.3) and set dx = Rdu.

With the notation we have introduced, we write (8.12) in the form

_Vx

h3 uð Þ ¼
XR

2h2 uð Þ �
1

12gR
@p
@u

: ð8:24Þ

We integrate this equation from 0 to 2p and because of course p(0) = p(2p), we find
the (constant) volume flux _Vx to be

_Vx ¼ XR�h
2

Z2p
0

�h
h uð Þ
� �2

du
Z2p
0

�h
h uð Þ
� �3

du

0
@

1
A

�1

: ð8:25Þ

The integrals appearing here can be evaluated in an elementary manner using the
substitution

h uð Þ
�h

¼ 1� � cosu ¼ 1� �2

1þ � cos v
; ð8:26Þ

Fig. 8.3 Unwrapped fluid film of the journal bearing
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but for the time being we shall abbreviate them as I2 and I3

_Vx ¼ 1
2
XR2w

I2
I3
: ð8:27Þ

Thus the pressure gradient follows from (8.12) as

@p
@x

¼ 1
R
@p
@u

¼ 6
gXR
h2 uð Þ 1�

�h
h uð Þ

I2
I3

� �
: ð8:28Þ

Of particular technical interest is the force exerted on the journal by the fluid, or the
“load-bearing capacity” of the bearing, which corresponds to the negative of this
force per unit length

~F ¼
Z2p
0

~tR du; ð8:29Þ

where~t is the stress vector with the components tX and tY in the X-Y coordinate
system of Fig. 8.2. In order to calculate this stress vector we first consider the
component of the stress tensor in the x-y system of the lubrication gap. Here the
flow is locally a unidirectional flow and therefore the stress tensor has the com-
ponents sxx ¼ syy ¼ �p and sxy ¼ syx ¼ g@u=@y, and because of (8.28), we write
the order of magnitude equation for their ratio

sxx
sxy

� gU R
�
�h2

gU
�
�h

¼ R
�h
¼ 1

w
: ð8:30Þ

Therefore it is sufficient to consider only the normal stress –p, and so the stress
vector at the journal has the form~t ¼ �p~n, where~n has the components nX = cos u
and nY = sin u. Thus we have

FX ¼ �
Z2p
0

p cosuR du ð8:31Þ

and

FY ¼ �
Z2p
0

p sin uR du: ð8:32Þ

Since cos u is an even function, so too are h(u) and all powers of h(u). From
(8.28), @p=@u is then also an even function, and the pressure itself must be an odd
function of u. The X component of the force then vanishes. The Y component
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balances the load acting on the journal and the journal shifts perpendicular to the
direction in which the force acts. Partial integration of Eq. (8.32) leads to

FY ¼ Rp cosuj2p0 �R
Z2p
0

@p
@u

cosu du: ð8:33Þ

The first term on the right-hand side vanishes, and we obtain

FY ¼ �6
gXR

w2

Z2p
0

�h
h uð Þ
� �2

� I2
I3

�h
h uð Þ
� �3

 !
cosu du: ð8:34Þ

We denote the first part of the integral with I4 and the second with I5 and bring
(8.34) to the form

So ¼ FY
w2

gXR
¼ 6

I2I5 � I3I4
I3

: ð8:35Þ

On the left is now a dimensionless force which is called the Sommerfeld number.
Often 2R is used in the definition instead of R and so So ¼ FYw

2� 2gXRð Þ; using
this definition, the Sommerfeld number S frequently found in American literature is
given by the relation S ¼ 1= 2pSoð Þ.

Finally we shall consider the friction torque exerted on the journal through the
shear stress. Let us take the shear stress from (8.10) as

sxy ¼ g
@u
@y

����
h

¼ gU
1
h
þ @p

@x
h

2gU

� �
; ð8:36Þ

and then with (8.28)

sxy ¼ g
X
w

4
�h
h
� 3

I2
I3

�h2

h2

� �
; ð8:37Þ

and using this the friction torque becomes

T ¼ R2
Z2p
0

sxydu ¼ gXR2

w
4I1 � 3

I22
I3

� �
; ð8:38Þ

that is

T
w

gXR2 ¼
4I1I3 � 3I22

I3
: ð8:39Þ
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Here we state the integrals used

I1 ¼
Z2p
0

1� � cosuð Þ�1du ¼ 2p

1� �2ð Þ1=2
; ð8:40Þ

I2 ¼
Z2p
0

1� � cosuð Þ�2du ¼ 2p

1� �2ð Þ3=2
; ð8:41Þ

I3 ¼
Z2p
0

1� � cosuð Þ�3du ¼ p 2þ �2ð Þ
1� �2ð Þ5=2

; ð8:42Þ

I4 ¼
Z2p
0

cosu 1� � cosuð Þ�2du ¼ I2 � I1
�

; and ð8:43Þ

I5 ¼
Z2p
0

cosu 1� � cosuð Þ�3du ¼ I3 � I2
�

: ð8:44Þ

Equations (8.27), (8.35) and (8.39) can now also be expressed explicitly as func-
tions of the relative eccentricity �

_Vx XR2w
� 	�1¼ 1� �2

2þ �2
; ð8:45Þ

So ¼ FYw
2 gXRð Þ�1¼ 12p�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

2þ �2ð Þ ; and ð8:46Þ

Tw gXR2� 	�1¼ 4p 1þ 2�2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
2þ �2ð Þ : ð8:47Þ

We conclude from (8.46) that the eccentricity becomes very small � ! 0ð Þ either if
the bearing is lightly loaded or else if the number of revolutions �Xð Þ is very
large, and we then speak of “fast running bearings”. In the limit � ! 0 we have for
the friction torque

T ¼ 2p gX
R2

w
; ð8:48Þ
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a result already obtained and known as Petroff’s formula (cf. Sect. 6.1.2). We
further infer from these equations that if the viscosity η becomes smaller, both the
load-bearing capacity and the friction torque decrease.

The pressure distribution can be determined from (8.28) with the substitution
(8.26), and we finally obtain

p ¼ C � 6
gX

w2 �
sinu 2� � cosuð Þ
2þ �2ð Þ 1� � cosuð Þ2 : ð8:49Þ

Since up until now we have only applied boundary conditions to the velocity, the
pressure can only be determined up to a constant (as is always the case in
incompressible flow). This constant can be ascertained physically if the pressure pA
is given at some position u = uA (usually uA = p) using an axial oil groove, in
which the pressure is maintained, for example, by an oil pump pressure, or into
which oil is introduced at ambient pressure.

If this pressure is too low, the pressure in the bearing becomes theoretically
negative (Fig. 8.4). However fluids in thermodynamic equilibrium cannot maintain
negative pressure. The fluid begins to vaporize if the pressure drops below the
vapor pressure pt(T), and we say that the fluid “cavitates”, i.e., bubbles filled with
vapor (or air) form. (Of course this does not only occur in bearings, but whenever
the pressure in a liquid drops below the vapor pressure.) The ensuing two-phase-
flow is so difficult that a solution for this cavitation region is still unknown. It is
seen experimentally that when the cavitation limit is reached, the fluid film ruptures
and “fluid filaments” form, while the hollow space is filled with vapor, or with air
which was either dissolved in the lubricant or has penetrated if the ends of the
bearing are exposed to the atmosphere. In any case it is to be stressed that the fluid
no longer fills up the diverging region of the gap and therefore the continuity

Fig. 8.4 Pressure distribution in the fluid film
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equation in the form (8.17) is not satisfied in this region. It follows that all our
conclusions which were based on the continuity equation are no longer valid, in
particular the asymmetry of the pressure distribution and the vanishing of the
X-component of the force. As experiments show, the pressure in this region is
essentially constant, and for bearings which are “ventilated” it is equal to the
atmospheric pressure. Because of this experimental fact it is recommended to set
the pressure equal to the ambient pressure, that is, to set the pressure difference to
the surroundings to zero. (It is only this pressure difference that determines the load
bearing capacity.) However the extent of the cavitation region is still unknown and
has to be calculated simultaneously with the pressure distribution.

We are led to a somewhat simpler problem if we lay down the so-called
Reynolds’ boundary condition. To do this we assume that the cavitation region
always ends at the widest part of the lubricating film (u = p), so that the pressure
build up begins there and the appropriate boundary condition reads

p pð Þ ¼ 0 : ð8:50Þ

In general we shall only satisfy this boundary condition if pressureless oil (i.e. at
ambient pressure) is supplied to this position by an oil groove. The end of the
pressure distribution, and therefore the start of the cavitation region, is determined
by simultaneously satisfying the two boundary conditions

p uEð Þ ¼ 0;
dp
du

����
uE

¼ 0 : ð8:51Þ

Measured pressure distributions agree well with calculations based on these
boundary conditions, which also show that the position of the start of the pressure is
not critical.

8.2.2 Infinitely Short Journal Bearing

The other limiting case of considerable interest is the infinitely short journal
bearing, whose width B is much smaller that the diameter of the journal. In this
bearing the volume flux as a consequence of the pressure gradient in the x-direction
can be neglected but not the Couette flow as a consequence of the wall velocity.
This means that the term @p=@x in (8.18) drops out and integrating over z leads us
to the equation
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p ¼ 6
gXR
h3

dh
dx

z2

2
þC1zþC2 : ð8:52Þ

The constants of integration are determined from the boundary condition

p z ¼ þ B
2

� �
¼ p z ¼ �B

2

� �
¼ 0 ; ð8:53Þ

so that the pressure distribution becomes

p ¼ �3
gX

R2w2

B2

4
� z2

� �
� sinu

1� � cosuð Þ3 : ð8:54Þ

Again this is antisymmetric, and is negative for 0 < u < p. In practice the pressure
in this region is often set to zero. This step of eliminating the negative pressure,
called the half Sommerfeld boundary condition is occasionally applied to infinitely
long journal bearings, but there it leads to results which do not agree with exper-
imental results as well as the theoretical results based on the Reynolds’ boundary
conditions.

If we also integrate over the width of the bearing, we use the substitution (8.26)
to determine the force components explicitly from (8.31) and (8.32)

FX ¼ � gXB3

w2R

�2

1� �2ð Þ2 ; ð8:55Þ

FY ¼ gXB3

4w2R

p�

1� �2ð Þ3=2
: ð8:56Þ

8.2.3 Journal Bearing of Finite Length

It is worth noting that an analytic solution can be found for a finite journal bearing,
based on the Sommerfeld boundary condition, but it leads to an antisymmetric
pressure distribution with negative pressures, which are not realized in the bearing.
The calculation of the bearing under the realistic Reynolds’ boundary conditions
demands that we use numerical methods, since the outflow boundary, that is the
curve where p ¼ dp=du ¼ 0 is met, is unknown.

If no oil groove is available at the position u = p to fix the pressure there, the
start of the pressure distribution follows first along an unknown curve, which is
determined by the boundary conditions on the pressure (p = 0) and on the pressure
gradient @p=@n ¼ 0ð Þ. However experimental results show that these boundary
conditions do not predict the start or end of the pressure very precisely (although for
some applications the prediction is precise enough). The actual boundary conditions
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demand that we deal with the “pressureless” region, where the flow is very com-
plicated and where the surface tension also plays a considerable role.

8.3 Dynamically Loaded Bearings

A dynamic bearing load occurs if the center of the journal carries out motion. The
resulting forces can, in certain circumstances, increase the motion of the journal.
We then talk about hydrodynamic instability, which typically occurs with a fre-
quency corresponding to half the rotational frequency of the shaft. The assumptions
discussed earlier s�X�1 �R=U

� 	
for neglecting the acceleration @u=@t are then

valid. The effect of the journal motion needs only be considered in the continuity
Eq. (8.17). The motion of the journal gives rise to a volume flux (per unit area) in
the y-direction, given by~u �~n, where~u is the flow velocity at the journal, i.e., at the
upper wall of the lubrication gap. The gap height h is now a function of time, given
in the most general case by the equation

y ¼ h x; z; tð Þ; ð8:57Þ

or else implicitly

F x; y; z; tð Þ ¼ y� h x; z; tð Þ ¼ 0: ð8:58Þ

The kinematic boundary condition (4.170) DF/Dt = 0 directly furnishes

~u �~n ¼ � @F=@t
rFj j ; ð8:59Þ

or since

rFj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @h

@x

� �2

þ @h
@z

� �2
s

� 1;

also

~u �~n ¼ @h
@t

: ð8:60Þ

This term is to be added to the left-hand side of Eq. (8.17), so that we now have the
Reynolds’ equation in the form
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@

@x
h3

g
@p
@x

� �
þ @

@z
h3

g
@p
@z

� �
¼ 6

@ hUð Þ
@x

þ @ hWð Þ
@z

þ 2
@h
@t

� �
: ð8:61Þ

8.3.1 Infinitely Long Journal Bearing

We use (8.61) for the infinitely long bearing, but shall now only calculate the
contribution of the pressure field stemming from the journal motion along the
X-axis. The film thickness (8.22) now assumes the form

h u; tð Þ ¼ �h 1� � tð Þ cosu½ � ð8:62Þ

(see Fig. 8.2), from which we see that the change in the film thickness is

@h
@t

¼ ��h_� cosu; ð8:63Þ

with _� ¼ d�=dt. As before, we set dx = R du and by integrating (8.61) obtain

h3

gR
@p
@u

¼ �12
Zu
0

�h_� cosuR du ¼ �12R �h_� sinu; ð8:64Þ

since, for symmetry reasons

@p
@u

����
u¼0

¼ 0:

Integrating again first leads us to

p ¼ �12g �h_�R2
Z

sinu
h3

duþ const; ð8:65Þ

and with dh ¼ �h� sin u du then immediately to

p ¼ 12
g _�R2

�h2
1

2� 1� � cosuð Þ2 þC

 !
: ð8:66Þ

We note that p is an even function of u here, so that (8.32) implies that the
Y-component of the force vanishes. Equation (8.31) combined with (8.43) furnishes
the X-component of the force (per unit depth) exerted by the fluid on the journal as
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FX ¼ �
Z2p
0

p cos uRdu ¼ �12p gR3 _�

�h2 1� �2ð Þ3=2
: ð8:67Þ

8.3.2 Dynamically Loaded Slider Bearing

In applying (8.61) to the plane “slider bearing” shown in Fig. 8.5, we obtain from
integrating twice over x

p x; tð Þ ¼ 6gU
Zx
0

1
h2

dxþ 2
U

Zx
0

1
h3

Zx
0

@h
@t

dx

0
@

1
Adxþ C

6U

Zx
0

1
h3

dx

2
4

3
5: ð8:68Þ

One of the constants of integration appearing has already been determined by the
boundary condition

p x ¼ 0ð Þ ¼ p h1ð Þ ¼ 0; ð8:69Þ

while we fix the constant C by the second boundary condition

p x ¼ Lð Þ ¼ p h2ð Þ ¼ 0 : ð8:70Þ

If we wish to make further progress we need to know the film thickness. If the walls
forming the gap are straight and rigid, that is

h x; tð Þ ¼ h1 tð Þ � a x ¼ h1 tð Þ � h1 tð Þ � h2 tð Þ
L

x; ð8:71Þ

Fig. 8.5 Geometry of the slider bearing
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the integration over h can be carried out. After determining the constants of inte-
gration, and using the abbreviation

_h ¼ @h
@t

Equation (8.68) assumes the form

p x; tð Þ ¼ 3
gU
a h0

1� 2 _h
aU

� �
h0
h1

� 1
� �2

� h0
h x; tð Þ � 1
� �2

 !
: ð8:72Þ

Note that the pressure remains zero for positive squeeze motion _h ¼ ð1=2Þ aU.
At the film thickness

h0 ¼ 2
h1h2

h1 þ h2
ð8:73Þ

the extremum of the pressure distribution is met. The velocity distribution is linear
over the gap height at h = h0. For _h ¼ 0 we obtain the pressure distribution of the
plain “slider” (Fig. 8.6), while for U = 0 the formula for pure squeeze flow arises
(Fig. 8.7), which, for the special case a = 0, that is h = h(t) reduces to

p x; tð Þ ¼ �6
g _h L2

h3
1� x

L

� � x
L
: ð8:74Þ

Integrating the pressure distribution (8.72) leads to the load-bearing capacity of the
slider bearing (per unit depth)

Fig. 8.6 Pressure distribution in the lubrication gap fluid film _h ¼ 0
� 	

, for various angles of
inclination a
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Fy ¼ 6
gU
a2

1� 2 _h
aU

� �
ln
h1
h2

þ 2
1� h1=h2
1þ h1=h2

� �
: ð8:75Þ

From (8.75), for U = 0 and in the limit a ! 0 we obtain the formula

Fy ¼ � g _h L3

h3
; ð8:76Þ

which also follows from direct integration of (8.74). In the limit h tð Þ ! 0, (8.76)
renders an infinitely large force. For a given force, (8.76) represents a differential
equation for the motion h(t) of the slider, whose solution is

t ¼ gL3

2Fy

1
h2

þ const: ð8:77Þ

We dispose of the constant of integration using the initial condition

h t ¼ 0ð Þ ¼ hA ð8:78Þ

and obtain

t ¼ gL3

2Fy

1
h2

� 1
h2A

� �
; ð8:79Þ

this means that under a finite force, the slider cannot reach the wall within a finite
time.

Fig. 8.7 Pressure distribution in the squeeze gap fluid film (U = 0) for various angles of
inclination a
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If the slider is moved in the positive y-direction @h=@t[ 0ð Þ, then a pressure
below atmospheric pressure occurs in the gap and the fluid begins to vaporize. This
limits the force necessary to displace the slider from the wall. But the vaporization
is a dynamic process which requires time. First, bubbles form from “cavitation
nuclei” (often in the form of small solid particles) and these grow in the attempt to
produce thermodynamic equilibrium. However the growth of the bubbles is affected
by the inertia of the surrounding fluid and the conduction of heat to the bubble
necessary for vaporization. Therefore under very short-term loads quite substantial
forces can be required to separate the slider from the wall.

If the slider is then brought closer to the wall again and the pressure increases,
the bubbles collapse. The pressure field surrounding the bubbles can be easily
determined using the assumption of incompressible flow: the pressure increases
from the value p∞ far away from the bubble to a maximum value close to the
bubble boundary, and then drops off to the pressure in the bubble. A very high peak
pressure can be reached in this manner.

All the described processes of bubble formation and collapse are summarized
within the concept of cavitation. As already mentioned, this phenomenon does not
only occur in the fluid film, but in fact anywhere that the pressure drops below
vapor pressure, for example in the flow past a body where the pressure drops below
atmospheric pressure close to the thickest part of the body (see Fig. 10.14), and can
therefore reach values below vapor pressure. Bubbles can then form in the low
pressure region, and be carried into the higher pressure region where they collapse,
so that the surface of the body is acted on by pulsating pressure loads, eventually
leading to the destruction of the surface. The collapse of the bubble goes hand in
hand with a cracking noise, giving the first indication of cavitation in, for example,
hydraulic machines. Cavitation in the fluid film of the finger joints is probably the
origin of “knuckle cracking”: by tugging a finger, low pressure is produced in the
fluid in the joint and a bubble forms. The collapse of this bubble causes a pressure
wave which is perceived as the cracking noise. The squeeze flow mentioned also
forms in valve seats, and this can lead to the phenomenon of cavitation if the valve
is opened too quickly.

We also wish to point out the mathematical relationship between the pure
squeeze flow between parallel walls and the steady pressure driven unidirectional
flow. Since for a = 0 the gap height is not a function of position, the Reynolds’
equation appears in the form of Poisson’s equation for the pressure

r � rp ¼ Dp ¼ 12g
h3

@h
@t

; ð8:80Þ

where the right-hand side is to be taken as a constant, since time only appears
parametrically. Equation (8.80) is of the same form as (6.72)

Du ¼ �K
g
;
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and we can take its solution directly from Sect. 6.1, replacing u by p, and �K=g by
12g _h

�
h3. (With regard to the results we note that the coordinates y, x perpendicular

to the flow direction in Sect. 6.1 are to be replaced by the coordinates x, z here, and
so the channel height h corresponds to the length of the slider L here.) In this
analogy, the volume flux _V clearly corresponds to the force and the average
velocity �U to the pressure averaged over the cross-section of the slider. In this
manner we carry over the velocity distribution originating from the pressure gra-
dient in (6.19) to the pressure distribution (8.74), and the volume flux in (6.21) to
the load-bearing capacity (8.76).

In the fluid film of a cylindrical slider with circular cross-section A = p R2 we
find from the analogy with (6.53) the pressure distribution

p r; tð Þ ¼ � 3g _h
h3

R2 � r2
� 	

; ð8:81Þ

and with (6.55) and (6.58) the load-bearing capacity

Fy ¼ � 3 p g _h
2h3

R4: ð8:82Þ

Similarly, from the pressure driven part of the velocity distribution (6.65), we
obtain the pressure distribution for a slider with circular ring cross-section
A ¼ p R2

O � R2
I

� 	

p r; tð Þ ¼ � 3 g _h
h3

R2
O � r2 � R2

O � R2
I

� 	 ln r=RO

lnRI=RO

� �
; ð8:83Þ

and finally from (6.66) the load-bearing capacity

Fy ¼ � 3p g _h
2h3

R4
O � R4

I þ
R2
O � R2

I

� 	2
ln RI=RO

 !
: ð8:84Þ

We refrain from carrying over the results for channel flow through rectangular,
triangular and elliptical cross-sections to the pressure distribution and load-bearing
capacity of sliders with corresponding cross-sections, but do note that solutions
known from the theory of elasticity can be used here too.

8.3.3 Squeeze Flow of a Bingham Material

As we have already shown, the assumptions of lubrication theory imply that
squeeze flows can be locally considered as unidirectional flows. Therefore the
equations of motion are valid in the form (6.190) and (6.191), which reduce to (8.7)
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and (8.9) wherever the material flows, since the material then behaves like a gen-
eralized Newtonian fluid. However the wall shear stress sw now depends para-
metrically on x, and, because of (6.192) and (6.193), necessarily the pressure
gradient –K too, as well as the dimensionless positions j1 and j2 of the yield
surfaces in the velocity distributions (6.197) and (6.198). As was explained in
connection with the Eqs. (8.17) and (8.61), the continuity equation in the integral
form for plane two-dimensional unsteady squeeze flow reads

@ _V
@x

þ @h
@t

¼ 0: ð8:85Þ

The volume flux vanishes at the position x ¼ L=2 of the gap for symmetry reasons,
so that integrating (8.85) leads to the relation

_V ¼ � _h x� L
2

� �
: ð8:86Þ

Since the local volume flux _V xð Þ is equal to the volume flux (6.208) of pure
pressure driven flow, if –K is replaced by the local pressure gradient, a nonlinear
equation for the pressure gradient arises directly from (8.86)

h3

12g1

@p
@x

1þ 3
#

h
@p
@x

� ��1

�4
#

h
@p
@x

� ��1
 !3

8<
:

9=
; ¼ _h x� L

2

� �
; ð8:87Þ

or

h
#

@p
@x

� �3

þ 3� 12g1 _hL
#h2

x
L
� 1
2

� �� �
h
#

@p
@x

� �2

�4 ¼ 0; ð8:88Þ

where, because of the symmetry already mentioned, we have restricted ourselves to
the region L=2� x� L.

To calculate the pressure distribution from this differential equation we would
first be required to solve the cubic equation for the pressure gradient and then
decide which of the three roots makes physical sense. The solution may not be
found analytically for arbitrary values of the squeeze velocity and the channel
dimensions, and in these cases we are directed towards a numerical solution for a
given x. We gain an overview by looking for approximate solutions for large and
small values of

A :¼ � 12g1 _hL
#h2

with A[ 0: ð8:89Þ

It is directly obvious that h=#ð Þ@p=@x ¼ �2 is a root of the Eq. (8.88) for A = 0.
The material does not yet flow for this value, that is, the load given by this value

270 8 Hydrodynamic Lubrication



does not yet lower the plate. For small values of A we obtain an asymptotic
expansion for the pressure gradient, by setting

h
#

@p
@x

¼ �2þ e ð8:90Þ

and insert this into (8.88). Comparing terms of the same order of magnitude leads
us to the equation

e ¼ 	 2ffiffiffi
3

p A1=2 x
L
� 1
2

� �1=2

; ð8:91Þ

and then with this to

h
#

@p
@x

¼ �2 1þ A
3

� �1=2 x
L
� 1
2

� �1=2
 !

for A ! 0; ð8:92Þ

where we choose the sign in (8.91) so that the load, or the magnitude of the pressure
gradient, increases as A becomes larger. For very large A we directly infer from
(8.88) the pressure gradient

h
#

@p
@x

¼ �A
x
L
� 1
2

� �
; ð8:93Þ

which corresponds to the Newtonian limiting case from (8.74). As before we look
for an asymptotic expansion and set

h
#

@p
@x

¼ �A
x
L
� 1
2

� �
þ e: ð8:94Þ

From (8.88) we use the assumption A x=L� 1=2ð Þ 
 e and thus obtain the equation

h
#

@p
@x

¼ � 3þA
x
L
� 1
2

� �� �
; ð8:95Þ

which, however, does not hold near x ¼ L=2. Integrating Eqs. (8.92) and (8.95)
with the boundary condition p x ¼ Lð Þ ¼ 0 leads to the pressure distribution (rela-
tive to the ambient pressure)

p ¼ 2#L
h

1� x
L
þ 1

3
A
6

� �1=2

1� x
L
� 1
2

� �3=2

2
ffiffiffi
2

p ! !
for A ! 0; ð8:96Þ
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or

p ¼ 3#L
h

1� x
L
� A

6
x
L

� �2
� x
L

� �� �
for A ! 1; ð8:97Þ

and thus to the load-bearing capacity (per unit depth)

F ¼ 2
ZL
L=2

p dx ¼ #L2

2h
1þ 4

5

ffiffiffi
A
6

r !
for A ! 0; ð8:98Þ

and

F ¼ 3#L2

4h
1þ A

9

� �
for A ! 1: ð8:99Þ

To conclude, we refer to a kinematic contradiction in this solution: since the
pressure gradient and thus the positions of the yield surfaces depend parametrically
on x, the velocities at the yield surfaces are functions of x. The contradiction
becomes clear if we use the Bingham constitutive relation (3.63) and (3.64). Since
the rigid solid body here only carries out a translation, the velocity at the solid body
side of the yield surfaces is independent of x and thus the no slip condition (4.159)
is violated. Numerical calculations (for the rotationally symmetric case) show that
although the pressure distribution, the load-bearing capacity and the velocity dis-
tributions are essentially correctly predicted by lubrication theory, the yield surfaces
are indeed not predicted correctly. However the yield surfaces from lubrication
theory do resemble surfaces of constant value of the stress invariants, if these

assume a value slightly different from # : s0ijs
0
ij

.
2

� �1=2
� 1:05#. Because of this,

the solution on the basis of lubrication theory is of sufficient accuracy for most
engineering applications.

8.4 Thin-Film Flow on a Semi-Infinite Wall

The assumptions which underlie hydrodynamic lubrication theory are frequently
found to be valid bases of other technically important flows which on a superficial
glance have nothing in common with lubrication theory. A typical feature of these
flows is the gradual thinning of the film flow, which creates a locally-valid film of
constant thickness. As an example of this type of film flow we now consider the
steady plane flow on a semi-infinite wall and tie it up with the corresponding film
flow on an infinitely long wall (see Sect. 6.1.3). We retain the notation of the cited
section, and place the origin of coordinates, whose position is arbitrary on an
infinite wall, at the leading edge with the negative x-direction along the surface. For
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the sake of simplicity we assume the plate to be horizontal, so that b (in the notation
of Sect. 6.1.3) is zero.

A prescribed volume flux is maintained. The flow must go over the leading edge,
and we expect that as it does so the surface of the moving film will drop. The form
of the surface of the film is unknown and must be determined as part of the solution.
The differential equations which the solution must satisfy can be taken directly from
Sect. 6.1.3 (see (6.26) and (6.27)), and involve putting b = 0 (Fig. 8.8)

@p
@x

¼ g
@2u
@y2

; ð8:100Þ

@p
@y

¼ �q g: ð8:101Þ

Using the no-slip condition (6.28) and the continuity of the stress vector on the free
surface (6.29) we obtain

u 0ð Þ ¼ 0; ð8:102Þ

njsji 1ð Þ ¼ njsji 2ð Þ: ð8:103Þ

Using formula (4.164) we find the normal vector to the free surface, y ¼ h xð Þ, i.e.,
nj ¼ �h0 xð Þ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02 xð Þp

; 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h02 xð Þp
; 0

� �
.

Where lubrication theory is valid the variation of h′(x) is very small, so we write
the normal vector as nj = (0, 1, 0), which is exactly the same as in Sect. 6.1.3
Accordingly the boundary conditions (6.31), (6.33) hold on y = h(x), i.e.,

p1 ¼ p2 ¼ p0; ð8:104Þ

@u
@y

¼ 0: ð8:105Þ

The pressure term, given by (6.35), can be substituted here

p x; yð Þ ¼ p0 þ q g h xð Þ � yð Þ; ð8:106Þ

where (unlike the film flow on an infinite plate) the film height is an as yet unknown
function of x. Integrating (8.100) and taking into account the boundary conditions
(8.102) and (8.105), we obtain the result

Fig. 8.8 Film flow over a horizontal plate
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u x; yð Þ ¼ � 1
2g

@p
@x

h2 xð Þ 2� y
h xð Þ

� �
y

h xð Þ ; ð8:107Þ

which becomes, using (8.106)

u x; yð Þ ¼ � g
2�

h0 xð Þh2 xð Þ 2� y
h xð Þ

� �
y

h xð Þ : ð8:108Þ

To calculate the film height, we use the kinematic free surface boundary condition
(4.170), which becomes in steady flow

~u � rF ¼ 0 ¼ �t x; yð Þþ h0 xð Þu x; yð Þ; ð8:109Þ

and on y = h(x) this reduces to

h0 xð Þ ¼ t x; yð Þ
u x; yð Þ : ð8:110Þ

We can obtain the t-component of velocity on the free surface using the
two-dimensional continuity equation @u=@xþ @t=@y ¼ 0, which yields

t x; h xð Þð Þ ¼ �
Zh xð Þ

0

@u
@x

dy ¼ g
2�

h2 xð Þh02 xð Þþ g
3�

h3h00 xð Þ ð8:111Þ

and it follows, using u(x, h(x)) from (8.107), either that

h0 xð Þ ¼ � h xð Þh00 xð Þ
3h0 xð Þ ; ð8:112Þ

or that

d
dx

h0 xð Þh3 xð Þ � ¼ 0 : ð8:113Þ

It is important to notice also that the differential equation for the film thickness can
be immediately derived from the Reynolds’ lubrication equation. We first obtain
from (8.106) the value q g h0 xð Þ for @p=@x; then when this value is substituted in
(8.13), using U = 0 and constant η, we obtain (8.113) as before.

The starting-point for the derivation of the Reynolds’ lubrication equation is the
expression for constant volume flux. For film flows this takes the form

_Vx ¼
Zh xð Þ

0

u dy ¼ � g
3�

h3 xð Þh0 xð Þ; ð8:114Þ
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which is clearly the first integral of (8.113). The expression _Vx3�
�
g has dimension

(length)3, so that a characteristic length L for this problem can be defined as

L ¼ � _Vx

g

� �1
3

:

Integrating (8.113) once again, we get

h4

L4
¼ 12 � x

L
þ c

� �
; ð8:115Þ

which, for a given value of L does not depend on special values of volume flux, density,
viscosity or indeed gravitational force. The integration constant c cannot be determined
from the present theory. This shows once more that the flow as we approach the edge is
not known, the reason for which is that the rate of fall in the free surface, namely h′(x), is
no longer small. Obviously one could construct a solution in the neighborhood of the
edge, but this would in general be dependent on the Reynolds’ number. It is clear from
the form of the solution that the thickness of the film far from the edge does not depend
on the thickness at the edge, which obviously increases rapidly as we move inwards, and
so the constant c may be set to zero, which corresponds to the assumption h(0) = 0.
Even though the solution is not correct at the edge, far from the edge relatively small
errors in height arise from this, as has been confirmed by experiment. If greater accuracy
is required, the constant c may be found from measured values.

When the local Reynolds’ number is defined by

Re ¼ u x; hð Þ h
�
;

we find that

aRe ¼ h0 xð ÞRe ¼ 9
2

_V2
x

h3g
;

which is independent of viscosity.

8.5 Flow Through Particle Filters

Particle filters are installed to remove soot particles from the exhausts of diesel
engines, since such particles may present a health hazard. Often the filters are made
out of long rectangular tubes bounded by ceramic walls: each entry tube has four
sidewalls, each of which adjoins an exit tube, and in the same way each exit tube is
bounded by four entry tubes. A cross-section of the filter would thus resemble a
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chess-board, the black squares representing the cross-sections of (say) the entry
tubes, the white those of the exit tubes. The entry and exit tubes are closed at the
outer and inner ends of the filter respectively.

Exhaust gas, laden with soot particles, flows into an entry tube, and its gaseous
phase then flows into the adjoining exit tubes through the pores in the walls.
Particles which are too large to penetrate the walls remain inside the entry tube and
are deposited on its walls. Such deposits naturally increase the thickness of the wall,
so that an increased pressure difference is required to maintain the same volume flux
through the wall. The filter must be renewed when this pressure loss impairs engine
performance. The renewal is brought about by burning the soot particles at a high
temperature, and (after a relatively long time interval) removing the accumulated
ash from the sites of the deposits.

Typical ratios of tube thickness to length are about c=L � 4 � 10�3. The volume
flux entering the tube, namely �U c2, must flow out through the four side walls, so that
�U c2 ¼ 4�V Lc. From this it follows that the streamlines are inclined to the axis of the
tube at an angle roughly �V=�U � 10�3. We can therefore assume that the flow is
locally parallel. The topic of parallel flow in a square tube (or tube of triangular
cross-section, which also is used in filters) has already been discussed in Sect. 6.1.6,
where (6.89) gives the mean velocity in the form of a rapidly-convergent series,
summation of which yields

�U ¼ � @p xð Þ
@x

c2

4g
� 0:4217 ; ð8:116Þ

where the pressure gradient is an as yet undetermined function of x. The outflow
through the side walls of the entry tube is, over a distance dx; �4�V cdx; this equals
the change in volume flux in the entry tube, which is d�Uin c2, and it follows that

d�Uin

dx
¼ � 4�V

c
: ð8:117Þ

Similarly the change in mean velocity at the corresponding position in the exit
tube is

d�Uout

dx
¼ þ 4�V

c
: ð8:118Þ

The local volume flux across unit surface area, namely �V , through the wall at x is
related to the pressure difference pin xð Þ � pout xð Þ by

�V ¼ k
g
pin � pout

s
; ð8:119Þ

where s is the thickness of the porous layer.
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The formula (8.119) was originally derived on the basis of experimental evi-
dence by Darcy in 1856. We will discuss this eponymous law at a later stage. Here
we content ourselves with observing that the permeability constant k is an empirical
constant, which is characterised by the number, size and shape of the pores.

Inserting (8.116) into (8.117) and (8.118) and using Darcy’s law from (8.119)
results in two second-order coupled linear differential equations in the variables
pin (x) and pout (x)

@2pin
@x2

¼ 16k
pin � pout
0:4217s c3

;

@2pout
@x2

¼ �16k
pin � pout
0:4217s c3

:

ð8:120Þ

It follows immediately that the sum of the pressures in the entry and exit tubes is a
linear function of x. The system is in fact a fourth-order boundary value problem,
with prescribed boundary conditions at x = 0 and x = L. As the volume flux _t on
entry to an entry tube may be found by dividing the total entry flux by the number
of entry tubes, with (8.116) we have the boundary condition

@pin 0ð Þ
@x

¼ 4g_t
0:4217c4

: ð8:121Þ

All the gas flowing through an entry tube will have drained through the side walls
on reaching the end x = L, and accordingly

@pin Lð Þ
@x

¼ 0 : ð8:122Þ

Since the exit tubes are closed at x = 0, it follows that the mean velocity is zero at
this position, so that

@pout 0ð Þ
@x

¼ 0 ; ð8:123Þ

whilst at x = L we have

pout Lð Þ ¼ p0 ; ð8:124Þ

where p0 is atmospheric pressure omitting pressure losses in the exhaust pipe.
Obviously the linear system of equations may be solved using the well-known
change of variables pin; out ¼ Ain; out ekx. This leads to a boundary value problem
with a complicated analytical solution, details of which are omitted here; numerical
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values may be readily obtained with the aid of widely-available computer program.
(Special algorithms are required for purely numerical integration.)

Figure 8.9 shows a typical example of such a solution. Obviously there is a
length of filter for which the pressure loss is a minimum for some given filter
geometry and mass flux: a longer filter will naturally lead to a smaller velocity �V
and thus to a reduced pressure drop across the wall, while on the other hand the
overall pressure loss from filter entry to exit will increase because of the greater
length of tube over which the shear stress will now operate. In Fig. 8.9, the length is
so chosen as to minimise the overall pressure loss.

Because of the finite (though small) thickness of the tube walls, the
cross-sectional area of the oncoming stream is reduced. This leads to pressure
losses, which will be discussed in Sect. 9.1.4. The fact, however, that the velocity is
suddenly increased on entry even reduces those pressure losses necessary for the
flow to attain its fully-formed velocity profile.

8.6 Flow Through a Porous Medium

The individual stream tubes in the porous medium are made up of more or less
rapidly varying channels, so that the typical angle of declination of the streamlines
is appreciable. Thus the neglect of the convective terms in the equations of motion
on the basis of sufficiently small aRe cannot be justified. Therefore we require that
the Reynolds’ number itself (in a sense to be defined later) is sufficiently small. The
limiting case Re ! 0, whose technical meaning is given in Sect. 4.1.3, leads to
Eq. (4.35), which, together with the continuity equation, defines the creeping flow
equations to be dealt with in Chap. 13.

For reasons to be discussed, the calculation of flow in a porous medium cannot
take place on the basis of (4.35) and the continuity equation. The equations of
motion applicable in this instance are, however, closely related to those of

Fig. 8.9 Pressure distribution in a particle filter
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rectilinear flow or, more precisely those of lubrication flow. The discussion will
proceed on this basis although the flow is formally a creeping flow.

A porous medium is a structure which is often made up of granular or fibrous
materials. The cross sections of the pores are as a rule so small, that the Reynolds’
number which is formed with typical length d and typical velocity u of the fluid
phase, is small in the pores: thus u d q=g � 1. The precise geometry of the pores is
of course unknown; however even for a given geometry a calculation of the
velocity field or the pressure field is not justified, owing to the complex geometry of
the numerous pores. We must therefore restrict ourselves to treating mean values
over numerous pores. Thus, volume flux over an element of area is interpreted as
the local velocity in a porous medium. The corresponding velocity components in
the coordinate directions are given by volume fluxes through surface elements
whose normals are in the coordinate directions. The linear dimensions of the surface
elements are large compared to d, however they must be small compared to the
linear dimensions of the greater region of interest, so that the mean value is valid as
the local velocity. In the same way we can also treat the mean value of the pressure
�p in a volume element whose height is large compared to d and has as its base a
surface element considered above. As a consequence of the small Reynolds’
number and the linearity of Eq. (4.35) the inertia force is small and one can expect
that the pressure gradient is proportional to the mean velocity, as is the case for
unidirectional flows. It may be remarked that inertia forces do not come into play in
some other flows; thus: for laminar rectilinear flows the inertia terms vanish on
kinematic grounds irrespective of the Reynolds’ number; for locally rectilinear
flows inertia terms may be neglected because the product of Reynolds’ number
times the deviation angle of the streamlines is small; in the present case inertia
terms can be ignored because the Reynolds’ number itself is small. Viscosity must
enter into the relation between pressure gradient and mean velocity. This is because
the only forces remaining available to balance the pressure gradients are due to
viscosity. Furthermore, a quantity whose dimension is the square of a length must
enter into this relation. In rectilinear flows, for example, this quantity is the square
of the transverse thickness; say the square of the channel thickness. We now
proceed to consider this relationship from a more general point of view.

One can easily show on dimensional grounds, that

�Ui ¼ � kij
g
@�p
@xj

: ð8:125Þ

The tensor kij is constant, provided the properties of the porous medium are
homogenous, i.e., independent of position. For an isotropic medium it takes the
form

kij ¼ kdij ; ð8:126Þ
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then it follows that

�Ui ¼ k
g
@�p
@xi

ð8:127Þ

and so

~�U ¼ � k
g
r�p : ð8:128Þ

It is therefore the same relationship between mean pressure gradient and mean
velocity, which also arises in lubrication theory (8.12) and in rectilinear flow (6.58).
In sedimentary solids it is often a tensor; in consequence the resistance depends on
the direction of flow and is in general greater in the direction normal to the sedi-
mentation. This appears to be the case in the deposition of soot in particle filters
which we have already discussed. In this instance a thin layer of soot markedly
increases the pressure loss. The ceramic material of the filter is of course isotropic.
For a clean filter therefore, Eq. (8.127) comes into play, and integration of
Eq. (8.119) can be carried out with p x2 ¼ 0ð Þ ¼ pin; p x2 ¼ sð Þ ¼ pout, where as
usual �p, �U2, are replaced by p, �V , respectively and from symmetry �V ¼ �W .

There is a number of models for the structure of a porous medium from which
the permeability can be calculated. The simplest example is that of a solid through
which a bundle of cylindrical holes is bored. Then the mean velocity over a surface
F (in the above sense) is

�U ¼
_Vtot

F
¼ pR4

8g
N
F
@�p
@x

; ð8:129Þ

where N is the number of holes crossing the surface F and in which (6.63) gives the
volume flux through a single hole. The ratio N=F is at the same time the ratio of the
voids in the material NpR2 L to the entire volume, namely FL where L is the length
of the hole. This ratio is called the porosity, namely n of the medium.

Therefore we can also write (8.127) in the form

�U ¼ n
R2

8g
@�p
@x

¼ n
d2

32g
@�p
@x

ð8:130Þ

and identify the permeability as

k ¼ n d2

32
: ð8:131Þ
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The factor 1/32 is valid only for bundles of straight holes and this model is
somewhat unrealistic. When we replace it by a form factor f (s) and the porosity by
a function of n we obtain a more general expression

k ¼ f sð Þf nð Þ d2 ; ð8:132Þ

where d then is a typical transverse measure of the hole, or grain size in the case of
granular solids; the form factor and the porosity factor may then be found
experimentally.

Measurements show that Darcy’s law is valid for Reynolds’ numbers Re ¼ �U d q=g
up to about 10. This may appear surprising since we have applied the law under the
express proviso that inertia forces are very small. This condition (just as with the
condition aRe � 1, which is the basis of locally parallel flow) was based solely on
the equations of motion without taking into account either the complex flow paths
or the boundary conditions.

For those cross sections, which are relatively small compared to path lengths, the
spread of vorticity, into the centre of the channel, takes place by diffusion and is
practically uninfluenced by convection. (The vorticity is produced at the wall where
the no-slip condition is enforced by the viscosity on the adhering fluid). The for-
mula (4.11), for the viscous force per unit volume, show that it is of great
importance whenever the vorticity is large.

In spatially restricted regions of flow, diffusion produces the vorticity field, and
this explains why we see viscous influences still operating at Reynolds’ numbers
greater than anticipated. It is known from the discussion in Sect. 4.1.3, that in the
absence of convection the flow is determined only by friction, and is completely
independent of Reynolds’ number. The results calculated on the assumptions that
Re � 1; or a Re � 1 are then valid even when these characteristic quantities are
markedly greater than unity. The precise limits of validity vary from case to case.
However, in spatially restricted regions discrepancy between theory and experiment
is still acceptable up to a Reynolds’ number of about 10. As the influence of the
inertia terms increases, the question of the stability of the flow arises and the flow
enters the transition phase to turbulence. As a rule in technical applications one
seeks a sufficient distance from turbulence so as to keep pressure losses low.

From a mathematical point of view we now remark that for homogenous and
isotropic permeability, that is when (8.127) is valid, these equations lead to an
important and far reaching conclusion, namely that the mean velocity field is a
potential flow. As has been explained in Sect. 1.2.4 when the velocity field is

irrotational then curl ~�U ¼ 0. The continuity equation for incompressible flows
remains unchanged for the mean flow

@ �Ui

@xi
¼ 0 : ð8:133Þ
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The Laplace equation for the mean pressure follows then from (8.127)

@2�p
@xi@xi

¼ 0 : ð8:134Þ

It should be emphasised, that only the mean velocity ~�U ~xð Þ is irrotational. The actual
velocity field ~u ~xð Þ is of course not irrotational, on the contrary: the diffusion of
vorticity inside the holes or cracks gives rise to the precise character of these flows.
Potential flows, where the velocity field is universally irrotational, will be discussed
in Chap. 10, where a detailed account of potential theory is provided as it lies at the
foundation of classical fluid mechanics. Suffice it to say that the methods of potential
theory are applicable here in so far as the assumptions of permeability are fulfilled.
Flows through porous media occur frequently in nature, for example ground water
flows or flows of oil or gas through sand or rock, such as sandstone or limestone.

8.7 Hele-Shaw Flows

A flow which is closely related to the solutions discussed already, is that between
two parallel plates, separated by a narrow gap h; between the plates a section of a
cylinder is inserted, whose characteristic cross section is d. The undisturbed flow
consists of a Poiseuille flow (Sect. 6.1.2) with mean velocity components �U; �W in
the x- and z-directions respectively. The x-component follows from (6.22); thus

�U ¼ � h2

12g
@p
@x

; ð8:135Þ

while the z-component is obtained by replacing @p=@x; �U by @p=@z, �W respec-
tively; thus

�W ¼ � h2

12g
@p
@z

: ð8:136Þ

It is well known that the pressure gradient in the undisturbed flow is constant. In the
presence of a cylinder, however, this is no longer the case.

The connection between pressure gradient and mean velocity is locally valid
provided h=dð ÞRe; Re ¼ �Uh=�ð Þ is sufficiently small; it should be noted that h=dð Þ
plays the role of the inclination angle a here. It then follows from the continuity
equation, namely

@ �U
@x

þ @ �W
@z

¼ 0 ; ð8:137Þ
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that the pressure satisfies the Laplace equation

@2p
@x2

þ @2p
@z2

¼ 0 : ð8:138Þ

The boundary conditions for the pressure on the contour of the body, namely

F x; zð Þ ¼ 0 ¼ �zþ f xð Þ ¼ 0 ;

may be obtained by substitution (8.135), (8.136) into (4.169), thus

~�U � rF ¼ rp � rF ¼ 0 : ð8:139Þ

From ~�U � rF ¼ 0, it follows that

f 0 xð Þ ¼ �W=�U on z ¼ f xð Þ ; ð8:140Þ

which essentially shows that the body contour is a streamline. Equation (8.140) also
provides the streamlines of the flow when the velocity field is given. These
streamlines may also be found by eliminating the curve parameter s in Eq. (1.11a).
Since the mean velocity field is irrotational the streamlines are those of a potential
flow. The same differential equations remain valid for all streamlines of the local
velocity field~u x; y; zð Þ in the plane y = const. This becomes evident when the ratio
w=u is formed by means of Eq. (6.19) and the corresponding equation for w (where
the wall velocity is taken to be zero) and is then substituted in (8.140). It follows
that the streamlines in all planes y = const. are congruent to one another.

An experimental setup, based on the above theory, was used by Hele-Shaw in
1889 to visualise the streamlines of potential flows around a variety of cylindrical
bodies, especially bluff bodies. (Potential flows at greater Reynolds’ numbers
around bluff bodies are not realised otherwise because of flow separation).
Obviously the kinematic boundary condition on the body is satisfied, whereas this
is not the case for the no-slip condition. Since the fluid must adhere to the cylinder,
Eqs. (8.139) and (8.140) are no longer valid in that region next to the cylinder
whose thickness is of order h. This error may be reduced by making the gap
between the plates arbitrarily small. But this leads to even smaller Reynolds’
numbers, so that due to the neglect of the no-slip condition the validity of the
solution is restricted to Reynolds’ numbers less than unity. In fact noticeable
deviations from the theoretical predictions become evident when h=dð ÞRe � 4.
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Chapter 9
Stream Filament Theory

9.1 Incompressible Flow

We shall now follow on with our earlier statement that in many technically inter-
esting problems the entire flow region can by represented as a single streamtube,
and the behavior of the flow is then characterized by its behavior at a median
streamline. Within the framework of this assumption, the flow quantities are only
functions of the arc length s along the streamline, and possibly of the time t. Thus
the flow quantities are assumed constant over the cross-section of the streamtube.
Now this assumption does not have to be satisfied for the entire streamtube (at least
not in steady flow), but only in those sections of the streamtube where we wish to
calculate the flow in this quasi-one-dimensional approximation. Therefore the flow
must be at least piecewise uniform, i.e., essentially constant over the cross-section,
and also may not change too strongly in the flow direction: this assumes that the
cross-section is a slowly varying function of the arc length s. In between these
uniform regions the flow can exhibit a three-dimensional character, but cannot be
computed there using stream filament methods.

The assumption of constant flow variables over the cross-section requires that
the friction effect is negligible, because we know from Chap. 6 that the flow
quantities vary considerably over the cross-section of streamtubes bounded by walls
if the flow is dominated by frictional effects, as is the case in fully developed pipe
flow. Even in these flows, the concept of stream filament theory can be applied if
the distribution of the flow quantities over the cross-section is known, or else it
must be possible to make reasonable assumptions about these distributions. In
particular attention must be paid in the calculation of quantities averaged over the
cross-section: the averaged velocity calculated from the continuity equation, which
we used as the typical velocity in the resistance laws cannot be used in the balances

of energy and momentum. This is because, for example, the momentum flux .U
2
A

in a circular pipe formed with this averaged velocity constitutes only 75% of the
actual momentum flux through the circular cross-section in laminar flow.
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In turbulent flow the velocity distributions are flatter and the difference between
the maximum and the average velocities is therefore much smaller. The assumption
of constant velocity over the cross-section is therefore a much better approximation
in turbulent flow than it is in laminar.

9.1.1 Continuity Equation

We first bring the continuity equation to a form useful in the context of stream
filament theory. For this we assume that the cross-sectional area of the streamtube is
given in the form A ¼ Aðs; tÞ and that all flow quantities only depend on the arc
length s and the time t. For the section of the streamtube in Fig. 9.1 the continuity
equation is

ZL
0

@.
@t

A ds� .1u1A1 þ .2u2A2 þ
ZZ
ðSwÞ

.~u �~n dS ¼ 0: ð9:1Þ

If the cross-section of the tube does not change in time the integral over the wall Sw
vanishes. Otherwise we take the surface Sw as given by the equation

r ¼ Rðt;u; sÞ; ð9:2Þ

or in its implicit form

Fðt;u; s; rÞ ¼ r � Rðt;u; sÞ ¼ 0: ð9:3Þ

Fig. 9.1 The continuity equation in stream filament theory
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From the kinematic boundary condition (4.170) we get the normal component of
the flow velocity at the moving wall as

~u �~n ¼~u � rF
rFj j ¼

1
rFj j

@R
@t

; ð9:4Þ

and we note that 1= rFj j is the component nr of the normal to the surface in the
r-direction. Using this we write the integral over Sw in the form

ZZ
ðSwÞ

.~u �~n dS ¼
ZZ
ðSwÞ

.
@R
@t

nr dS ¼
ZL
0

Z2p
0

.
@R
@t

R du ds; ð9:5Þ

since nrdS ¼ R du ds is the projection of the surface element dS in the radial
direction. From

A ¼
Z2p
0

ZR
0

r dr du; ð9:6Þ

it follows that

@A
@t

¼
Z2p
0

R
@R
@t

du; ð9:7Þ

and finally the continuity equation is

ZL
0

@.
@t

A dsþ
ZL
0

.
@A
@t

ds� .1u1A1 þ .2u2A2 ¼ 0: ð9:8Þ

In stream filament theory this equation holds quite generally. However in most
technical applications the streamtube cross-section does not change in time, so that
the second integral is equal to zero.

In incompressible flow the first integral vanishes if we again assume that
incompressibility implies constant density (see discussion in Sect. 4.1.1).
Therefore, for incompressible steady or unsteady flow, if A does not vary in time,
the relation
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u1A1 ¼ u2A2 ð9:9Þ

holds. In compressible flow, the first integral in (9.8) only vanishes if the flow is
steady.

9.1.2 Inviscid Flow

Incompressible inviscid flows can already be dealt with using Bernoulli’s equation
(4.61) or (4.62) and the continuity equation. We show how these are applied in an
example of the steady discharge from a vessel (Fig. 9.2) and consider the entire
flow space as a streamtube. Figure 9.2 shows clearly that the only region where the
assumptions of stream filament theory are not satisfied is in the transition between
the large cross-section A1 and the smaller cross-section A2. We assume that the
depth h does not vary with time: this occurs if the ratio A1=A2 is large enough or if
there is an appropriate influx into the vessel.

The flow is then steady and it follows from Bernoulli’s equation (4.62) that

u21
2

þ g h ¼ u22
2
; ð9:10Þ

where we have already made use of the fact that p1 ¼ p2 ¼ p0. Using the continuity
equation (9.9) to solve for u2 furnishes the discharge velocity

Fig. 9.2 Discharge from a vessel
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u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g h

1� A2=A1ð Þ2
s

: ð9:11Þ

For A2=A1 ! 0 we obtain the famous Torricelli’s formula

u2 ¼
ffiffiffiffiffiffiffiffi
2g h

p
: ð9:12Þ

For the limit A2=A1 ! 1 we find u2 ! 1, which, from (9.9) and also (9.10) would
imply u1 ! 1. This unrealistic result comes from the fact that for A2=A1 ! 1, u1
and u2 cannot satisfy the Eqs. (9.9) and (9.10) simultaneously. In this case the fluid
cannot completely fill the cross-section A2, so that the assumptions which led to
(9.9) break down. For given u1, (9.10) leads to

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ 2g h

q
ð9:13Þ

and thus, from the continuity equation, furnishes the largest possible cross-section
A2 which will produce a uniform flow

A2 ¼ A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g h=u21

p : ð9:14Þ

If the exit cross-section is any larger, the fluid separates from the wall, and we see
an unsteady and asymmetric exit flow. What has already been said furnishes the
explanation of why the exit tube in funnels is of conical shape. If we consider A2 as
a function of z, the cross-sectional shape at which separation is just prevented along
the whole tube is

A2ðzÞ ¼ A1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gðh� zÞ=u21

p : ð9:15Þ

For this cross-sectional shape the pressure p in the fluid as a function of z is equal to
the ambient pressure p0. A jet issuing from a circular tube at the height h takes on
this cross-sectional distribution, since its velocity increases with increasing
(h – z) under the effect of gravity.

We shall now consider unsteady discharge and for simplicity assume the ratio
A1=A2 ! 1. For t < 0 the cross-section of (2) is closed; it is suddenly opened at
t = 0. At every time t, Bernoulli’s equation for unsteady flow (4.61) holds
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.
Z

@u
@t

dsþ .
u2

2
þ pþ . g z ¼ C: ð9:16Þ

Here the integral along the streamline (which is fixed in space) is to be taken from the
height h to the exit area. However in the transition region the flow is three-dimensional
and cannot be described by stream filament theory. For A1=A2 ! 1 the section of
the tube contributes the greatest amount to the integral and we shall only take this
into account. The contribution of the integration path in the container is negligible,
since there u � 0 for all times, and therefore @u=@t � 0. Then it follows from
(9.16), since again we have p1 = p2 = p0, that

Z l

0

@u
@t

dsþ u22
2
¼ g hþ u21

2
; ð9:17Þ

and also, since u in the pipe is not a function of s (u = u2), that

l
du2
dt

¼ g h� u22
2
; ð9:18Þ

where we have neglected the term u21=2 because A1=A2 ! 1. Integrating (9.18)
with the initial condition u2(0) = 0 leads to the solution

u2ðtÞ ¼
ffiffiffiffiffiffiffiffi
2g h

p
tanh

ffiffiffiffiffiffiffiffi
2g h

p
2l

t

� �
; ð9:19Þ

which shows that the maximum discharge velocity is reached for t ! ∞ and is
equal to the steady velocity of Torricelli’s formula. A more precise account of the
flow in the transition region between container and exit tube would have led to a
slightly different “effective” length l, and there only the time constant

s ¼ 2lffiffiffiffiffiffiffiffi
2g h

p ð9:20Þ

would have been affected. For t = 3s the steady velocity is effectively reached, but
during this time, for a large but finite A1=A2, the height of the water has barely
dropped. The discharge after this is quasi-steady: the exit velocity can be calculated
from (9.12) using the water height h(t) at the time t. With this assumption, we
determine the time required for the height to drop from h0 to the actual height h(t).
From the continuity equation and Torricelli’s formula for A1=A2 ! 1, we obtain
the differential equation for the water height
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u1 ¼ � dh
dt

¼ A2

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g hðtÞ

p
; ð9:21Þ

whose solution with h(0) = h0 reads

t ¼ A1

A2

ffiffiffi
2
g

s ffiffiffiffiffi
h0

p
�

ffiffiffiffiffiffiffiffi
hðtÞ

p� �
: ð9:22Þ

The other limiting case A1=A2 ! 1, i.e., l ! h in (9.17) leads to the result
du=dt ¼ g (free fall), which is as expected since the bounding walls of the container
exerts no force on the fluid.

9.1.3 Viscous Flow

While friction is negligible for pipe lengths l which are not too large, compared to
the diameter, say, friction losses are noticeable for long pipes. Within the frame-
work of stream filament theory, these losses can only be discussed phenomeno-
logically and are introduced as additional pressure drops according to Eq. (6.60)

Dpl ¼ .
u2

2
k
l
dh

; ð9:23aÞ

or

Dpl ¼ f .
u2

2
; with f ¼ k

l
dh

: ð9:23bÞ

The formulae (9.23a, 9.23b) correspond to the pressure loss in pipes of constant
cross-section. If the cross-section is not constant we can consider these formulae to
apply locally

dðDplÞ ¼ .
u2ðsÞ
2

kðsÞ
dhðsÞ ds; ð9:24Þ

so that the equation

Dpl ¼ .
u21
2

Z2
1

A1

AðsÞ
� �2 kðsÞ

dhðsÞ ds ð9:25Þ
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holds for the pressure loss between positions (1) and (2). We rewrite this equation
using the loss factor f

Dpl ¼ .
u21
2
f; ð9:26Þ

where

f ¼
Z2
1

A1

AðsÞ
� �2 kðsÞ

dhðsÞ ds: ð9:27Þ

In doing this we always refer the loss coefficient to the dynamic pressure .u21=2 at
position before the loss has occurred. (In literature f is often referred to the dynamic
pressure behind the position of loss.)

For long enough pipes, the pipe flow friction coefficients (cf. Chaps. 6 and 7)
can be used. However we must recall that fully developed pipe flow only begins at a
certain distance after the pipe entrance. A boundary layer forms at the pipe entrance.
Its thickness increases with increasing distance from the entrance, until the
boundary layer finally grows together and fills the whole cross-section. Only
somewhat after this position do we perceive fully developed pipe flow, whose
velocity profile no longer changes as the flow progresses down the pipe (cf.
Fig. 9.3). Since the volume flux _V is independent of s, the fluid not yet affected by
the friction is accelerated. In steady flow the pressure drop over the entrance length
lE may be calculated from Bernoulli’s equation for loss free flow, since the
streamline in the center of the pipe is not yet affected by the friction

p1 � p2 ¼ .
2

4U
2 � U

2
� �

¼ 3
.
2
U

2
: ð9:28Þ

Fig. 9.3 Laminar entrance flow
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Even if we assume that the contribution to the pressure drop as a consequence of the
friction stresses on the pipe wall at the entrance section is the same as in fully
developed pipe flow, we obtain a larger pressure drop, because the flux of the
kinetic energy at the entrance is smaller than in the region of fully developed pipe
flow. We estimate this additional work from the energy equation, where we neglect
the dissipated energy. In incompressible and adiabatic flow we then have
De=Dt ¼ 0, and it follows that

�pR2.
U

3

2
þ .p

ZR
0

u3ðrÞ r dr ¼ pR2ðp1 � p2ÞkinU: ð9:29Þ

After carrying out the integration we obtain the pressure drop due to the increase in
kinetic energy

ðp1 � p2Þkin ¼
.
2
U

2
: ð9:30Þ

The pressure drop which results from the wall shear stresses has to be added on to
this. We estimate this pressure drop as if the formula for fully developed pipe flow
were also to hold in the entrance section, so that the total pressure drop becomes

Dptot ¼ ðp1 � p2Þkin þ f
.
2
U

2
; ð9:31Þ

or else, using (6.61)

Dptot ¼ .
2
U

2
1þ lE

d
64
Re

� �
: ð9:32Þ

The total pressure drop corresponds to the pressure drop along the streamline in
(9.28). Using Eqs. (9.28) and (9.32) we obtain an estimate for the entrance length in
the laminar case

lEðlaminarÞ ¼
Re
32

d: ð9:33Þ

Here we are only dealing with a rough estimate. In reality the transition proceeds
asymptotically: numerical solutions of the Navier-Stokes equations, in agreement
with measurements, show that the velocity in the center of the pipe has reached
about 90% of its maximum value at the entrance length given above (99% of the
maximum velocity is finally reached when l=d ¼ 0:056Re). In turbulent flow the
velocity profile is flatter and the maximum velocity is only about 20% greater than
the average velocity (cf. (7.83), (7.87), and (7.89) for Re � 105). Therefore the

9.1 Incompressible Flow 293



work required to increase the kinetic energy is almost negligible and the drag
formula (7.89) for fully developed pipe flow can also be applied in the entrance
region. The entrance length can be obtained from

lEðturbulentÞ ¼ 0:39Re1=4d; ð9:34Þ

which is much smaller than that of the laminar flow.
We shall now extend Bernoulli’s equation (4.62) phenomenologically to include

the pressure losses

.
u21
2

þ p1 þ . g z1 � Dpl ¼ .
u22
2

þ p2 þ . g z2; ð9:35Þ

where instead of U we write u, since in stream filament theory it is always the
average velocity that is meant. The pressure loss in unsteady flow is only known for
a few special cases, and in general it is not allowed to apply (9.35) to unsteady
flows as well, while retaining the steady loss coefficients. It follows from (9.35) that
the discharge velocity in the example in Fig. 9.2 is not (9.11) but rather

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð. gh� DplÞ

. 1� ðA2=A1Þ2
� �

vuut : ð9:36Þ

However, since the loss occurs essentially only in the pipe with the cross-sectional
area A2 where the entrance velocity is also u2, we write

Dpl ¼ f .
u22
2
; ð9:37Þ

and with this

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2g h

1þ f� ðA2=A1Þ2
s

: ð9:38Þ

Here we recall that f in general depends on the Reynolds number and hence on u2,
so that (9.38) still does not give the exit velocity explicitly. If we assume, for
example, that fully developed laminar pipe flow occurs over the entire length, i.e.,
that

f ¼ 64
Re

l
d
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holds, and neglect ðA2=A1Þ2, the explicit formula follows

u2 ¼ 8
gl
R2.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2g h

ð8glÞ=ðR2 .Þ½ �2
s

� 1

 !
: ð9:39Þ

If the effect of the losses in the pipe is large, i.e., for large f, we also get by
expanding the square root

u2 ¼ . gh
8g l

R2; ð9:40Þ

this result can also be obtained directly from (9.38).
In order to calculate the force exerted on the fluid by the vessel, we use the

balance of momentum in the integral form (2.40) and apply it to the section of the
streamline in Fig. 9.1. If~s is the unit tangent vector of the average streamline fixed
in space, using the assumptions of stream filament theory we get the equation

ZL
0

@ . uð Þ
@t

~sA ds� .1u
2
1A1~s1 þ .2u

2
2A2~s2 þ

ZZ
ðSwÞ

. u~s ~u �~nð Þ dS

¼ p1A1~s1 � p2A2~s2 þ
ZZ
ðSwÞ

~t dS:

ð9:41Þ

We assume the flow to be uniform only at positions (1) and (2) so that the friction
stresses vanish only there. The last integral represents the force exerted on the flow
by the walls. Therefore the force exerted on the walls by the flow is exactly the
negative of this integral. The surface integral on the left-hand side of (9.41) van-
ishes if the cross-section A does not vary in time. Otherwise we calculate the normal
components ~u �~n on Sw by (9.4) and, by a consideration completely analogous to
(9.5) and (9.6) obtain the equation

ZZ
ðSwÞ

. u~sð~u �~nÞdS ¼
ZL
0

. u~s
@A
@t

ds; ð9:42Þ

so that the balance of momentum appears in the form

ZL
0

@ . uð Þ
@t

~sA dsþ
ZL
0

. u~s
@A
@t

ds� .1u
2
1A1~s1 þ .2u

2
2A2~s2

¼ p1A1~s1 � p2A2~s2 �~F;

ð9:43Þ
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which is generally valid within the framework of stream filament theory.
In applying (9.43) to the discharge vessel for unsteady flow, we again come up

against the known difficulty that in order to work out the integral we need to know
the flow quantities along the streamline. However, in the transition region between
the large cross-section A1 and the smaller one A2 the quantities are unknown. For
A1=A2 ! 1 the section of the pipe again gives the greatest contribution. The
second integral drops out since the cross-section is not a function of time. Further,
both u and~s are constant along the pipe, and because .1 ¼ .2 ¼ ., we finally obtain

~F ¼~s �.A2l
du2
dt

þ . u21A1 � . u22A2 þ p1A1 � p2A2

� �
; ð9:44Þ

where we have not yet used p1 ¼ p2 ¼ p0. In steady flow the first term in the
brackets also drops out. Because A2=A1 ! 0, the momentum flux

. u21A1 ¼ . u22A1
A2
2

A2
1

can be neglected. (If the velocities over the cross-section are not constant, as in fully
developed laminar flow, the momentum fluxes are to be determined by integrating
over the actual distribution.)

9.1.4 Application to Flows with Variable Cross-Section

The results are generally applicable to flow through pipes whose cross-sections
narrow in the s-direction, such as often appear in applications in the form of nozzles.
Nozzles serve to transform the pressure energy into kinetic energy, e.g., the blade
rows in turbomachines often act as nozzles. Now the pressure decreases in the flow
direction in a nozzle, and in addition they are almost always very short, so that fully
developed flow cannot form. Both of these facts mean that the effect of friction is
reduced. If necessary the effect of friction can be accounted for through a separate
boundary layer calculation. No free surface appears in these applications and if we
take the pressure relative to the hydrostatic pressure, Bernoulli’s equation in steady
flow reads

.
u21
2

þ p1 ¼ .
u22
2

þ p2: ð9:45Þ
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Instead of (9.11) we then obtain

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dp=.

1� ðA2=A1Þ2
s

ð9:46Þ

for the velocity at position (2), which shows that the “driving force” of the flow is
the pressure difference Dp ¼ p1 � p2. The magnitude of the force on the nozzle in
Fig. 9.4 can be expressed in quantities at the position (1) using (9.44) and (9.45)

F ¼ . u21A1 � . u21
A1

A2

� �2

A2 þ p1A1 � A2 .
u21
2

1� A1

A2

� �2
" #

þ p1

( )
: ð9:47Þ

The flow processes within widening pipes are considerably more complicated.
These find uses as diffusers and serve to transform kinetic energy into pressure
energy. Since u2 becomes smaller, the pressure here increases in the flow direction
and even if the section of pipe is short (in fact, especially if it is short) boundary
layer separation can occur at the wall, thus affecting the entire flow if the surface
ratio A2=A1 is very large. In a diffuser the fluid particles must advance into regions
of higher pressure, which they are only able to do because of their kinetic energy. If
the Reynolds number is large a boundary layer forms close to the wall, where the
particle velocity is smaller than the average velocity. The particles in the boundary
layer have lost some of their kinetic energy through dissipation. Now the remaining
kinetic energy is no longer enough to overcome the increasing pressure and the
particles come to a standstill and finally, under the influence of the pressure gra-
dient, are driven back opposite to their original direction of motion. All these events
constitute the phenomenon of boundary layer separation, which we will discuss in
detail in Sect. 12.1.4. Vortices form in the separated region and are kept in motion
by the friction stresses and by turbulent stresses exerted by the unseparated flow.
The separated flow is usually unsteady. A typical flow form is sketched in Fig. 9.5.

Because of the displacement action of the separated boundary layer the still
unaffected core of the flow experiences a smaller cross-section increase than that
which corresponds to the actual channel geometry. As a result the pressure build up

Fig. 9.4 Nozzle flow
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is smaller than expected. Usually the flow is evened out again downstream from the
separation point by the transfer of momentum from the core flow to the separated
flow. However, the work dissipated by the friction stresses leads to an additional
pressure loss. The ratio of the actual pressure increase reached in the diffuser to that
theoretically obtainable (i.e. according to the loss free Bernoulli equation) is called
the diffuser efficiency

gD ¼ ðp2 � p1Þreal
ðp2 � p1Þideal

¼ .=2ðu21 � u22Þ � Dpl
.=2ðu21 � u22Þ

; ð9:48Þ

where here too we set Dpl for the pressure loss in the diffuser

Dpl ¼ f .
u21
2
;

so that we obtain the equation

gD ¼ 1� f
1

1� ðA1=A2Þ2
: ð9:49Þ

Here we have also made use of the continuity Eq. (9.9). The efficiency depends
on the opening angle d of the diffuser (Fig. 9.6). The highest efficiencies are
reached for opening angles of

5�\d\10� ð9:50Þ

Fig. 9.5 Boundary layer separation in a diffuser

Fig. 9.6 Diffuser opening angle
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and then amount to about 85%. If, for a given area ratio, the opening angles are
smaller, the diffuser becomes so long that the friction losses from the walls become
important, while for larger opening angles boundary layer separation occurs.

An abrupt change of cross-section can serve as an “ideally poor” diffuser
(Fig. 9.7). Here the separation position is at the point where the cross-section
changes.

The pressure over the cross-section is practically constant at the position (1),
since the streamline curvature is very small (cf. (4.44) @p=@n � 0). In the subsonic
flow considered here, the pressure in the jet is then generally equal to the sur-
rounding pressure. (We shall see later that in compressible flow, waves can occur in
the jet and as a consequence the pressure in the jet can be different from the
surrounding pressure.) Thus the same pressure as in the jet also acts on the face of
the cross-section widening. At position (2), the flow is uniform again and the
pressure is p2. Applying the balance of momentum to the control volume sketched,
we find from (9.44) that

F ¼ . u21A1 � . u22A2 þ p1A1 � p2A2: ð9:51Þ

In doing this we have not made any of the simplifications beyond those associated
with stream filament theory. If we neglect the contribution of the shear stress at the
pipe wall to the force F, it then is simply the product �p1ðA2 � A1Þ of the pressure
and the face area, and we have for the pressure difference

ðp2 � p1Þreal ¼ . u21
A1

A2
1� A1

A2

� �
: ð9:52Þ

The pressure difference in loss free flow is found from Bernoulli’s equation (9.45) as

ðp2 � p1Þideal ¼ .
u21
2

1� A2
1

A2
2

� �
; ð9:53Þ

and thus the pressure loss reads

Fig. 9.7 Step expansion of the cross-section
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DplC ¼ ðp2 � p1Þideal � ðp2 � p1Þreal ¼ .
u21
2

1� A1

A2

� �2

¼ .
2
ðu1 � u2Þ2; ð9:54Þ

a relation known as Carnot’s shock loss formula. However we should note that an
increase in pressure also takes place here. For A1=A2 ! 0, i.e., for discharge into an
infinitely large space no increase takes place (cf. (9.52)) and from (9.54) we obtain
the exit loss

Dpl E ¼ .
u21
2
: ð9:55Þ

This is precisely the kinetic energy necessary to maintain the flow through the pipe.
This exit loss can be reduced with a diffuser at the exit.

A similar loss to that of sudden area expansion also occurs for abrupt area
contraction (Fig. 9.8). The reason for this can be seen in the separation of the flow
at the sharp convex edge of the channel narrowing which the flow cannot follow.
The separated stream then contracts to the cross-section A3 ¼ aA2, where a is
dependent on the cross-section ratio A1=A2, and is called the contraction coefficient.
The losses mainly arise during jet spreadingand can therefore by estimated using
Carnot’s shock loss formula

DplC ¼ .
u23
2

1� A3

A2

� �2

¼ .
u22
2

1� a
a

� �2

: ð9:56Þ

The contraction coefficient a can be determined theoretically for A1=A2 ! 1. For a
plane two-dimensional orifice, the methods of function theory (Sect. 10.4.7) lead to
a = 0.61. For a circular aperture we find a = 0.58 by numerical methods. Jet
contraction and the losses associated with it can be minimized by rounding off the
corner at the transition in cross-section. In bends or elbows, flow separation occurs
usually at the inner side of the bend, and with it contraction of the main jet. The
flow is smoothed out sufficiently far from the bend and we again have uniform flow.
Contraction also occurs in pipe branches and valves and losses are associated with

Fig. 9.8 Step contraction of the cross-section

300 9 Stream Filament Theory



the subsequent smoothing out of the velocity. The flow patterns are usually so
complicated that the losses cannot be estimated and we are nearly always referred to
empirical data. Because of the large number of geometrical shapes, we refer to
manufacturers’ data and handbooks for the corresponding loss coefficients.

Associated with the sudden cross-section expansion is the mixing process of
Fig. 9.9. Applying the balance of momentum in integral form and neglecting the
shear stresses at the wall we obtain the increase in pressure due to the mixing
process as

p2 � p1 ¼ . u21ð1� nÞþ . u21ð1� �Þ2n� . u22: ð9:57Þ

From the continuity equation it follows that

u2 ¼ u1ð1� n �Þ; ð9:58Þ

and therefore the pressure increase is

p2 � p1 ¼ nð1� nÞ�2. u21; ð9:59Þ

which is always positive because n � 1. For � ¼ 1 we obtain the result (9.52) by
replacing A1 by (1 – n) A2.

9.1.5 Viscous Jet

The discussion of viscosity effects in flow filament theory was so far restricted to
flows in pipes and ducts, were the no-slip condition gives rise to shear stresses. We
now turn to the effect normal viscous stresses have on the flow. Normal viscous
stresses are important in free jets of highly viscous liquids as they occur, e.g., in the
discharge from a vessel under the influence of gravity. For inviscid fluids this case
has been treated in Sect. 9.1.2. However it would in general be quite wrong to
compute the normal stresses a posteriori from this solution.

In case of viscous jets we neglect air friction at the free surface, as was already
done in (6.33) so that only normal stresses occur in the jet. We know from

Fig. 9.9 Mixing
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Sect. 9.1.2, Fig. 9.2, that the jet contracts and is strained not only in the (negative)
z-direction but also in r- and u-directions. In the framework of one-dimensional
filament theory, where all quantities are functions of z only, we introduce the
normal stress in the jet by way of

r ¼ gT
du
dz

; ð9:60Þ

where the phenomenological viscosity ηT is called the Trouton viscosity.
We determine the Trouton viscosity by requiring that the energy dissipated per

unit time and volume r du=dz be equal to the energy Pzzezz þPrrerr þPuueuu
dissipated by the actual stretchings in z-, r-, u-directions. From Appendix B 2 we
have

ezz ¼ duz
dz

¼ du
dz

ð9:61Þ

and find from the continuity equation AðzÞ ¼ p r2ðzÞ ¼ const

du
dz

¼ � u
A
dA
dz

¼ � 2
r
u
dr
dz

¼ � 2
r
ur; ð9:62Þ

where ur is the material derivative of r(z). From (9.62) and Appendix B 2 follows

euu ¼ 1
r
ur ¼ � 1

2
du
dz

; and ð9:63Þ

err ¼ @ur
@r

¼ � 1
2
du
dz

: ð9:64Þ

Since the stretchings are the same, so are the normal friction stresses irrespective of
constitutive relations

Prr ¼ Puu: ð9:65Þ

Using this the above claim leads to

gT ¼ Pzz � Prr

du=dz
; ð9:66Þ

which is occasionally cited as a “definition” of the Trouton viscosity. With
Pzz ¼ 2g du=dz and Prr ¼ �g du=dz the Trouton viscosity is three times the shear
viscosity for Newtonian fluids

gT ¼ 2g du=dzþ g du=dz
du=dz

¼ 3 g: ð9:67Þ
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Starting point for the equation of motion of the jet is (2.18). Choosing Adz as the
infinitesimal integration domain for the volume integrals, where A is the
cross-sectional area of the jet, the integrand may be considered constant in the
domain, so that the right side of (2.18) becomes qðD~u=DtÞAdz and the first integral
on the left side q~k Adz. The stress vector ð�pþ rÞ~n varies over the surface and the
integration for the surface force in (2.18) must be carried out. The integration of the
pressure over the closed surface A + dA, A, dM vanishes as the pressure on the
outer covering dM is the same as on the cross sections A + dA and A. According to
Fig. 9.2 z-direction is anti-parallel to the body force~g, so on A + dA,~n ¼~ez and the
viscous normal stress there is rþ dr. On A~n ¼ �~ez and the viscous normal stress
is r. Viscous normal stresses are obviously not present on dM. The surface force is
therefore ððAþ dAÞðrþ drÞ � ArÞ~ez which brings (2.18) to the form

q
D~u
Dt

A dz ¼ dðArÞ~ez þ q~kA dz: ð9:68Þ

Since~u ¼ �u~ez and~k ¼ �g~ez, and using (9.60) and (9.61) this can be rewritten as

d2u
dz2

� 1
u

du
dz

� �2

þ q
gT

u
du
dz

� g

� �
¼ 0: ð9:69Þ

Contrary to the corresponding equation for the inviscid flow, which follows from
(9.69) in the limit η ! 0, (9.69) is a second order differential equation requiring
two boundary (or initial) conditions. The nonlinear equation is best integrated
numerically as an initial value problem and (9.69) is now integrated from the jet exit
to the jet length L. It is then expedient to choose the positive z-direction parallel to
the flow direction, i.e., replace ~ez by �~ez in the above equations. (This does not
change (9.69)). One initial condition is the exit velocity of the jet from the mouth,
and a second initial condition (for du/dz) may be found from the momentum
equation in the form (2.40). For a jet of length L exiting at x = 0 and a control
volume consisting of the areas A(0) and A(L), and the outer covering M we find the
momentum equation in the form

�q uð0ÞAð0Þ~uð0Þþ q uðLÞAðLÞ~uðLÞ ¼ �rð0ÞAð0Þ~ez þ rðLÞAðLÞ~ez þ q~gV ;

ð9:70Þ

where V ¼ R L0 AðfÞ df is the jet volume and~ez now points in flow direction. With
the mass flow _m ¼ q uð0ÞAð0Þ we also have the scalar form

_m uð0Þ � uðLÞð Þ � gT u0ð0ÞAð0Þ � u0ðLÞAðLÞð Þþ q g V ¼ 0; ð9:71Þ

where the prime indicates differentiation with respect to z. Integration proceeds
using the known value u(0) = U say and an estimated value of u′(0). If the
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momentum Eq. (9.71) is not satisfied by the values found at x = L, u′(0) is varied
until it is. Figure 9.10 shows the diameter and velocity distribution so computed for
an inviscid jet and a viscous jet having a shear viscosity of 100 Pas, a value
typically for molten glass.

Simpler forms of (9.70) emerge if the weight and the momentum are neglected
and find application in fiber spinning.

Fig. 9.10 Diameter and velocity distribution
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9.2 Steady Compressible Flow

9.2.1 Flow Through Pipes and Ducts with Varying
Cross-Section

We shall first restrict ourselves to those steady flows where, from the estimate
(4.184), compressibility effects are to be expected, and therefore the inequality
M2 � 1 is no longer satisfied. A number of flow attributes then arise which do not
occur in incompressible flow.

In steady, homentropic flow, which is barotropic, we can still calculate the flow
quantities at the position (2) from Bernoulli’s equation (4.64) and the continuity
equation

.1u1A1 ¼ .2u2A2; ð9:72Þ

which follows from (9.8), given the quantities at the position (1). Instead of
Bernoulli’s equation, the energy equation together with the condition that the
entropy is constant along the streamline, can be used. While the energy which is
dissipated into heat is lost in the case of incompressible flow and can therefore no
longer be transformed into mechanical energy, the energy transformed into heat is
still usable in compressible flow. We see from the energy Eq. (4.2) for adiabatic
incompressible flow,

De
Dt

¼ U
.
; ð9:73Þ

that all the dissipated energy flows into the increase of the internal energy, which
incidentally does not depend on the density, since density is a constant rather than a
state variable in incompressible flow. The corresponding equation for compressible
flow reads

De
Dt

þ p
Dt
Dt

¼ U
.
; ð9:74Þ

showing that part of the dissipated energy can be converted to work of expansion.
However the irreversible process of dissipation increases the entropy, so that
Bernoulli’s equation is no longer applicable. Its place is taken by the energy
Eq. (2.114), which we shall first bring it to a form suitable for stream filament
theory. We further assume that the flow at positions (1) and (2) is uniform, and so
the friction stresses and temperature gradients vanish here, but as before we allow
friction and heat conduction processes between these positions. We take the
streamtube wall to be at rest, but allow moving surfaces Sf within the streamtube
(e.g., moving blades of turbomachines). Further, for reasons already explained, we

9.2 Steady Compressible Flow 305



neglect the work of the volume body force, and for the section of the streamtube in
Fig. 9.1 we obtain

ZL
0

@

@t
.
u2

2
þ . e

� �
A ds� u21

2
þ e1

� �
.1u1A1 þ u22

2
þ e2

� �
.2u2A2 þ

� p1u1A1 þ p2u2A2 ¼
ZZ
ðSf Þ

uiti dS�
ZZ
ðSwÞ

qini dS:

ð9:75Þ

We write _Q for the heat supplied through the wall and P for the power supplied
from the moving surfaces. We specialize the equation to steady flow and use the
continuity equation (9.72)

u22
2

þ e2 þ p2
.2

¼ u21
2

þ e1 þ p1
.1

þ
_QþP
.1u1A1

: ð9:76Þ

With the definition of enthalpy (2.117) we write

u22
2

þ h2 ¼ u21
2

þ h1 þ qþw; ð9:77Þ

where for short we have set

q ¼
_Q

.1u1A1
ð9:78Þ

and

w ¼ P
.1u1A1

: ð9:79Þ

For adiabatic flow (q = 0) where no work is supplied (w = 0), the energy equation
assumes that same form as the Eq. (4.150) for inviscid flow

u21
2

þ h1 ¼ u22
2

þ h2 ¼ ht: ð9:80Þ

However we should note that (9.80) only holds between two positions which are in
equilibrium states, i.e., where there are no temperature and velocity gradients. On
the other hand the energy equation for isentropic flow holds for every point on the
streamline. Since every point on the streamline is in equilibrium in isentropic flow,
(9.80) reduces to (4.150). The result (9.80) also becomes obvious if we recall that,
although the viscous stresses perform work within the control volume, this is
dissipated into heat and therefore implies no net change in the energy.
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The influence of the Mach number gives rise to further differences between
compressible and incompressible flow. We shall see that surfaces of discontinuity,
over which flow quantities change discontinuously, are possible also for steady
supersonic flow (M > 1). The most important of these surfaces has already been
discussed in connection with Fig. 4.28. We shall first however examine the effect
that the Mach number has on the relation between the cross-sectional area A and the
velocity u in isentropic flow. In incompressible flow this relation is directly obvious
from the continuity equation

u A ¼ const ð9:81Þ

as A becomes large u must decrease, and vice versa. However the continuity
equation for compressible flow

. u A ¼ const ð9:82Þ

contains the additional variable ., so that we should expect differing behavior. If we
call the arc-length along the streamline x (to distinguish it from the entropy s), by
logarithmic differentiation of (9.82) with respect to x we obtain the expression

1
u
du
dx

þ 1
A
dA
dx

þ 1
.
d.
dx

¼ 0: ð9:83Þ

For isentropic flow, thus p = p(.), we have from the definition of the speed of
sound

a2 ¼ @p
@.

� �
s
; ð9:84Þ

in particular dp=d. ¼ a2 and therefore from (9.83)

1
u
du
dx

þ 1
A
dA
dx

þ 1
a2.

dp
dx

¼ 0: ð9:85Þ

Using the component of Euler’s equation in the direction of the streamline,

. u
@u
@x

¼ � @p
@x

; ð9:86Þ

we then obtain the equation

1
u
du
dx

þ 1
A
dA
dx

¼ u
a2

du
dx

; ð9:87Þ
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which we reduce to

1
u
du
dx

ð1�M2Þ ¼ � 1
A
dA
dx

: ð9:88Þ

For M < 1 we obtain qualitatively the same behavior as in incompressible flow:
increasing cross-sectional area ðdA=dx[ 0Þ corresponds to decreasing velocity
ðdu=dx\0Þ and vice versa. However, for M > 1 (9.88) shows that if the
cross-sectional area ðdA=dx[ 0Þ increases the velocity must also increase
ðdu=dx[ 0Þ, or if the area decreases so does the velocity. If dA=dx vanishes, i.e., if
the cross-sectional area has an extremum, then either M = 1 or u(x) also has an
extremum. Since du/dx must remain finite, the Mach number M = 1 is only reached
at the position where the cross-sectional area has an extremum, that being a
minimum.

If the Mach number at this section of minimum area, also called the throat, is not
one, the velocity has an extremum there. The possible flows in converging-diverging
channels are sketched in Fig. 9.11. These flow forms are only realized if the pressure
ratio across the entire converging-diverging channel is properly adjusted.

For the nozzle flows occurring in applications, say, in turbomachines or in jet
engines, one of the following questions mostly arises: either the cross-section
A(x) of the nozzle is given, and the flow quantities are required as a function of

Fig. 9.11 Possible flow forms in converging-diverging channels
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x (direct problems), or else the velocity u(x) is known, and it is the associated
cross-section that is required (indirect problems). Closed formulae can be given in
the case of the calorically perfect gas and isentropic flow.

However, to begin with we shall discuss the more general solution for real gases,
and shall assume that the equations of state are given in the well-known form of the
Mollier diagram. We characterize the thermodynamic state of the gas by the
reservoir values or total values: if the gas discharges from a large reservoir, the gas
is in its state of rest inside the reservoir, and it is therefore said to be in its reservoir
state or total state. In particular in the case of the calorically perfect gas, this state is
used as a convenient reference state which can be defined at every point in the flow
field as the state which would be attained were the gas brought to rest isentropically.

We infer from the energy equation (9.80) that the reservoir enthalpy ht has the
same value in adiabatic flow whether the gas has been brought to rest isentropically
or not. We call ht a conserved quantity. In the calorically perfect gas, because
h = cpT, the same also holds for the reservoir or total temperature Tt. On the other
hand, the pressure depends on how the gas has been brought to rest, i.e., on the
particular change of state. The reservoir or total pressure is only reached again if
this change of state is isentropic. Therefore in this sense the total pressure is not a
conserved quantity. It changes when the entropy changes, for example, if the gas
passes through a shock wave.

As the governing equation for the design of the nozzle, besides the continuity
equation

. u A ¼ _m; ð9:89Þ

we use the energy equation which holds for every point along the streamline in
isentropic flow

u2

2
þ h ¼ ht: ð9:90Þ

Besides ht and pt, the pressure drop across the nozzle p1 – p2 and the mass flux _m
must be given in the problem. For the direct problem we first form the variable

. u ¼ _m
AðxÞ ; ð9:91Þ

whose right-hand side is a given function of x. We then note the values of h and .
along the isentrope st which is fixed by ht and pt, and insert (9.91) as well as the
relation found for h(.) into the energy equation and obtain an equation for .(x)

hð.Þþ 1
2.2

_m
AðxÞ
� �2

¼ ht: ð9:92Þ
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We then solve this equation graphically or numerically for a given A(x). Using the
known .(x), we find the remaining variables of state h(x), T(x) and p(x) along the
isentrope st. In this manner the entire flow process can be found. The speed of
sound a is determined by noting the values of p and . along the isentrope st and
forming the derivative dp=d. ¼ a2, graphically if necessary. Now the Mach number
distribution M(x) can be found.

In indirect problems, we first calculate h(x) from the given distribution u(x) and
find all the associated variables of state along the isentrope st. With .(x) now
known, the distribution of the cross-section A(x) follows from the continuity
Eq. (9.89). For calorically perfect gas, closed form solutions can be given for the
flow quantities. To do this we proceed by first giving the flow quantities as func-
tions of the Mach number and then the cross-sectional area of the nozzle as a
function of the Mach number. However first we introduce Bernoulli’s equation for
calorically perfect gas. From the isentropic relation for calorically perfect gas

p ¼ C .c; ð9:93Þ

we calculate the pressure function P as

P ¼
Z

dp
.

¼ C1=c c
c� 1

pðc�1Þ=c: ð9:94Þ

Replacing C by (9.93) evaluated at the reference state, i.e.,

C ¼ p1 .
�c
1 ;

we extract

PðpÞ ¼ c
c� 1

p1
.1

p
p1

� �ðc�1Þ=c
; ð9:95Þ

or by directly applying the isentropic relation (9.93),

Pðp; qÞ ¼ c
c� 1

p
.
: ð9:96Þ

By doing this, Bernoulli’s equation assumes the same form as the energy equation

u2

2
þ c

c� 1
p
.
¼ const; ð9:97Þ
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while (9.95) leads to

u2

2
þ c

c� 1
p1
.1

p
p1

� �ðc�1Þ=c
¼ const ð9:98Þ

or

u21
2

þ c
c� 1

p1
.1

¼ u22
2

þ c
c� 1

p1
.1

p2
p1

� �ðc�1Þ=c
: ð9:99Þ

In particular we refer to the last form as Bernoulli’s equation for compressible flow
of a calorically perfect gas.

We now obtain the discharge velocity from a large reservoir as

u2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

c
c� 1

p1
.1

1� p2
p1

� �ðc�1Þ=c !vuut : ð9:100Þ

Equation (9.100) corresponds to Torricelli’s formula for incompressible flow and is
called the Saint-Venant-Wantzel formula. The greatest velocity in steady flow is
reached for p2 = 0, i.e., for expansion into a vacuum

umax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

c
c� 1

p1
.1

r
: ð9:101Þ

If air under normal conditions expands into a vacuum, we obtain a maximum
velocity of about

umax � 735m=s: ð9:102Þ

In order to represent the thermodynamic variables as functions of the Mach number,
we rewrite Bernoulli’s equation (9.97) with the expression from (9.93),

a2 ¼ c
p
.
; ð9:103Þ

and obtain

u2

2
þ 1

c� 1
a2 ¼ 1

c� 1
a2t ; ð9:104Þ
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or for the ratio of the total to the local temperature,

Tt
T

¼ at
a

� �2
¼ c� 1

2
M2 þ 1: ð9:105Þ

Using the isentropic relation (9.93) and the equation of state for the thermally
perfect gas p = .RT we then obtain

pt
p
¼ Tt

T

� �c=ðc�1Þ
¼ c� 1

2
M2 þ 1

� �c=ðc�1Þ
ð9:106Þ

and

.t
.

¼ Tt
T

� �1=ðc�1Þ
¼ c� 1

2
M2 þ 1

� �1=ðc�1Þ
: ð9:107Þ

We call the flow variables encountered at M = 1 critical or sonic and denote them
with the superscript 	. These values differ from the total values only by constant
factors and are therefore often used as reference values. In particular for diatomic
gases (c = 1.4), we find

a	

at
¼ 2

cþ 1

� �1=2

¼ 0:913; ð9:108Þ

p	

pt
¼ 2

cþ 1

� �c=ðc�1Þ
¼ 0:528; and ð9:109Þ

.	

.t
¼ 2

cþ 1

� �1=ðc�1Þ
¼ 0:634: ð9:110Þ

We shall now obtain the relation between the Mach number and the cross-sectional
area. It follows from the continuity equation that

_m ¼ . u A ¼ .	 u	 A	 ¼ .	 a	 A	; ð9:111Þ

in which A* is the cross-section where M = 1 is reached. We also use this
cross-section as the reference cross-section, even if the Mach number M = 1 is not
reached in the nozzle, and define it with the given mass flux _m as

A	 ¼ _m
.	 a	

: ð9:112Þ
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In

A
A	 ¼

.	 .ta	

.t.u
; ð9:113Þ

we replace a	=u using the energy Eq. (9.104)

u2 þ 2
c� 1

a2 ¼ u	 2 þ 2
c� 1

a	 2 ¼ cþ 1
c� 1

a	 2; ð9:114Þ

then replace .t=. and .	=.t using (9.107) and (9.110), respectively, and in this
manner finally obtain the desired relation

A
A	

� �2

¼ 1
M2

2
cþ 1

1þ c� 1
2

M2
� �� �ðcþ 1Þ=ðc�1Þ

: ð9:115Þ

If the mass flux, total state and cross-section are given, the Mach number distri-
bution in the nozzle is known from (9.115). Using (9.105), (9.106) and (9.107) we
then know the distribution of the temperature, pressure and density in the nozzle.
The velocity then follows from (9.113). The relations mentioned are tabulated for
c = 1.4 in Appendix C and depicted in Fig. 9.12. In agreement with the qualitative
considerations, Fig. 9.12 shows that in order to reach supersonic velocities the
cross-section must increase again. Converging-diverging nozzles were first used in
steam turbines and are known as Laval nozzles, but they find many other appli-
cations in, for example, rocket engines, nozzles in supersonic wind tunnels, etc.

Fig. 9.12 Area ratio and variables of state as functions of the Mach number for steady flow of a
perfect diatomic gas (c = 1.4)
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However, in order to produce supersonic velocities a large enough pressure drop is
required over the nozzle. We shall discuss the possible operational states of the
Laval nozzle, starting with the normal case where the ambient pressure pa is so
chosen that it is the same as the pressure pe at the nozzle exit given by the area ratio
A	=Ae (Fig. 9.13).

If the ambient pressure is increased, we then talk of an over expanded jet, because
the gas in the nozzle expands to a lower than the ambient pressure: pe < Pa. Atfirst the
flow in the nozzle does not change (curve 1 in Fig. 9.15).Outside the nozzle theflow is
no longer quasi-one-dimensional and therefore cannot be discussed within the
framework of stream filament theory. We shall restrict ourselves to a qualitative
description of theflow. In doing sowemake use of the concept of the shock, whichwill
be treated in detail in Sect. 9.2.3. For the discussion here, all we need to know is that
the shock represents a discontinuity surface of pressure and temperature. Such a shock
surface emanates from the rim of the nozzle, raising the lower nozzle discharge
pressure discontinuously to the ambient pressure. The shock surfaces intersect and are
reflected at the jet boundary as steady expansion waves (Fig. 9.14).

Fig. 9.13 Correctly expanding nozzle

Fig. 9.14 Overexpanded jet
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A rhombic pattern characteristic of supersonic jets arises and this is sometimes
visible to the naked eye in exhaust jets of rocket engines, because the temperature
of the fluid particles is raised by passing through the shock and then lowered again
by passing through the expansion waves, where the intrinsic luminosity of the
exhaust is altered in a corresponding manner.

If the ambient pressure is further raised, the shock moves into the nozzle and
forms a normal shock wave in the nozzle. This discontinuous pressure increase
positions itself in the nozzle just so that the required ambient pressure is reached.
Behind the shock the flow is subsonic, as we will show later. The section of the
nozzle behind the shock then works as a subsonic diffuser which theoretically raises
the pressure behind the shock to the ambient pressure. However, in practice a flow
separation occurs and the actual gain in pressure is so small that the pressure behind
the shock is actually about the same as the ambient pressure. The subsonic jet
cannot sustain steady waves, and for (almost) parallel discharge, the pressure in the
jet must be the same as the ambient pressure (curve 2 in Fig. 9.15).

If the ambient pressure is raised even further, the shock migrates further into the
nozzle and it becomes weaker, since the Mach number in front of the shock
becomes smaller. If the ambient pressure is so increased that the shock finally
reaches the throat of the nozzle, the shock strength drops to zero and the whole
nozzle contains subsonic flow (curve 3 in Fig. 9.15). If we increase pa even further,
the Mach number has a maximum at the throat, but M = 1 is no longer reached

Fig. 9.15 Overexpanding nozzle
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(curve 4 in Fig. 9.15); the value of the Mach number at the throat can be determined
from the area relation (9.115) if we set A = Amin. A	 is then only a reference area
which is never realized within the nozzle.

In underexpanded jets the pressure at the nozzle exit pe is larger than the ambient
pressure pa (Fig. 9.16). The pressure is reduced to the ambient pressure through
stationary expansion waves. The flow in the nozzle remains unaffected by this. The
expansion waves penetrate into themselves and are then reflected at the boundary of
the jet as “compression waves” and these often reform themselves into a shock. In
this manner a rhombic pattern is set up in the jet again, very much the same as for
over-expanded jets.

In a purely convergent nozzle, no steady supersonic flow can be formed in the
above stated manner. As long as the ambient pressure pa is larger than the critical
pressure p	, the pressure in the jet pe is the same as the ambient pressure pa (Fig. 9.17).

If the Mach number M = 1 is reached at the smallest cross-section, then pe = p	

and the ambient pressure can be decreased below this pressure (pa < pe). Then an
after-expansion takes place in the free jet: the pressure at the nozzle exit is expanded
to the ambient pressure pa again through stationary expansion waves (Fig. 9.18).

Fig. 9.16 Under expanded jet

Fig. 9.17 Subsonic nozzle and subsonic jet
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9.2.2 Constant Area Flow

As a further application of stream filament theory we shall consider the flow in a
duct where the cross-sectional area remains the same, without moving internal
surfaces or friction, but with heat transfer through the pipe wall. Then (9.77) holds

u22
2

þ h2 ¼ u21
2

þ h1 þ q: ð9:116Þ

In the application of the balance of momentum, we assume here that there is no

friction at the wall. Because of F
!¼ 0 and A1 ¼ A2 we obtain from (9.43)

.2u
2
2 þ p2 ¼ .1u

2
1 þ p1: ð9:117Þ

With the continuity equation

.2u2 ¼ .1u1; ð9:118Þ

and the equation of state h = h(p, .), e.g., for the calorically perfect gas

h ¼ c
c� 1

p
.
; ð9:119Þ

four equations with four unknowns are available. For a real gas this system of
equations can be solved iteratively, but for the perfect gas the solution can be stated
explicitly. However, here we only want to demonstrate an important property of this
flow. From the balance of momentum

. u2 þ p ¼ C1; ð9:120Þ

Fig. 9.18 Subsonic nozzle with after expansion in the jet
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and the continuity equation

. u ¼ C2; ð9:121Þ

we extract the relation

C2
2

.
þ p ¼ C1: ð9:122Þ

Equation (9.122) holds in inviscid flow, independent of whether heat is added or
removed. The graphical representation of this equation p = p(.) is called the
Rayleigh curve. In general we can state the equations of state for the enthalpy and
entropy of a substance, h = h(p, .) and s = s(p, .), often in the form of a diagram.
For the perfect gas these are the Eqs. (9.119) and

s ¼ s0 þ ct ln
p
p0

.
.0

� ��c� �
: ð9:123Þ

Using these two equations of state the Rayleigh curve can be transformed into an
h-s-diagram (Fig. 9.19). If we heat the gas we raise its entropy and move along the
curve from left to right. We obtain the velocity in the pipe by differentiating (9.122)
and inserting (9.121) to get

u2d. ¼ dp ð9:124Þ

Fig. 9.19 Rayleigh curve for the perfect diatomic gas (c = 1.4)
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or

u2 ¼ dp
d.

� �
R
; ð9:125Þ

where the index Rmeans that the change of pressure with density is to be taken along
the Rayleigh curve. If the heating is sufficiently high, we reach a point where
(ds/dh)R = 0 and which lies on the isentrope s = const. Therefore for this point we have

u2 ¼ dp
d.

� �
R
¼ @p

@.

� �
s
¼ a2; ð9:126Þ

and we see that this point corresponds to M = 1. If we cool the gas we decrease its
entropy and we move along the curve from right to left. On the upper part of the
curve (the subsonic branch) the Mach number is increased by heating as a conse-
quence of the increase in entropy, and we see that there is a region where the
enthalpy decreases with increasing entropy.

For a perfect gas this means that the temperature decreases there while the
entropy increases. Clearly we cannot move through the point M = 1 from either the
subsonic or the supersonic branch by heating, since the entropy would then have to
decrease under heating. Of course, starting for example from the subsonic branch,
we can apply heat until M = 1 is reached, and then remove heat to move back along
the supersonic branch. If the Mach number M = 1 is reached at the exit (2) in the
duct flow in Fig. 9.20, the greatest possible heat is thus added for a given mass flux.

If, in spite of this, we increase the heating further, the flow conditions change at
position (1): the mass flux and with this the Mach number are reduced, so that
increased heating again leads to M = 1 at the position (2).

We shall now consider the case where no heat is supplied in a duct of constant
cross-section, but where friction may occur. From the continuity Eq. (9.121) and
the energy equation

u2

2
þ h ¼ C3; ð9:127Þ

which we derive from (2.114) in the same manner that led to (9.77), we obtain the
Fanno curve h = h(.)

Fig. 9.20 Pipe flow with addition of heat
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1
2

C2

.

� �2

þ h ¼ C3: ð9:128Þ

This can also be transformed into an h-s-diagram using the equation of state
s = s(., h) (Fig. 9.21). The Fanno curve is valid for a duct flow without heating,
independent of the size of the wall friction. On this curve there is again a point
where ðds=dhÞF ¼ 0 and through which the isentrope goes. From Gibbs’ relation

T ds ¼ dh� dp
.
; ð9:129Þ

it follows that for this point

dp
dh

� �
F
¼ . ¼ @p

@h

� �
s
: ð9:130Þ

Using (9.128) and (9.121) we further have

u2

.
d. ¼ dh ð9:131Þ

Fig. 9.21 Fanno curve for the perfect diatomic gas (c = 1.4)
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or

dh
d.

� �
F
¼ u2

.
¼ @h

@.

� �
s

ð9:132Þ

and, because of . ¼ ð@p=@hÞs finally

u2 ¼ @p
@h

� �
s

@h
@.

� �
s
¼ @p

@.

� �
s
¼ a2: ð9:133Þ

The velocity associated with the point is again the velocity of sound. The upper
part of the curve is the subsonic branch and the lower is the supersonic branch.
Since in a flow where there is friction the entropy can only increase, the Mach
number always increases in the subsonic branch until M = 1, but always decreases
in the supersonic branch until the Mach number M = 1 is reached. Again the
velocity of sound is reached at the end of the pipe. If we increase the effect of
friction, for example by lengthening the pipe in the subsonic region, then the mass
flux must decrease. In the supersonic region, if the length of the duct is greater than
that where M = 1 is reached at the exit, a shock wave occurs and this brings the
flow to subsonic velocity.

9.2.3 The Normal Shock Wave Relations

The shock wave mentioned in connection with the nozzle flow, i.e., the discon-
tinuous transition from supersonic to subsonic velocity, occurs very often in
supersonic flows. Here we shall discuss the normal shock wave, in which the shock
surface is perpendicular to the velocity. However the more general relations of the
oblique shock wave can be obtained from the results.

For most purposes it is enough to consider the shock wave as a surface of
discontinuity across which the flow variables suddenly change. In what follows we
shall derive relations from the conservation laws from which the quantities behind
the shock can be determined knowing the corresponding ones in front of the shock.
Strictly speaking the shock is not a surface of discontinuity. The quantities actually
change continuously over a distance which is of the order of magnitude of the mean
free path, and thus can be taken as infinitesimally small in almost all technical
problems. Inside the shock the heat conduction and friction effects play a decisive
role and the structure can be determined from, among other things, the
Navier-Stokes equations. The theoretical and experimental results agree well for
small supersonic Mach numbers. However we shall not go into the calculation of
the shock structure here since in practice it is usually enough to know the change in
flow quantities across the shock.

We assume that changes in velocity and temperature in front of and behind the
actual shock vanish, or are at least much smaller than the changes within the shock
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itself. Since the thickness of the shock is very small, we neglect all volume integrals
in the application of the conservation laws to the shock. (In particular, this is also
the case for the unsteady flow to be discussed later.) In addition we neglect the
external heating, since the surface of integration Sw in the balance of energy (9.75)
tends to zero. From the continuity Eq. (9.8), the balance of momentum (9.41) and
the balance of energy (9.75), we then obtain

.1 u1 ¼ .2 u2; ð9:134Þ

.1 u
2
1 þ p1 ¼ .2 u

2
2 þ p2; and ð9:135Þ

u21
2

þ h1 ¼ u22
2

þ h2; ð9:136Þ

where the index 1 denotes the position just in front of the shock and the index 2 the
position just behind (Fig. 9.22).

Since the thickness of the shock is assumed to be infinitesimally small, the areas
A1 and A2 are the same, even if the cross-section of the duct varies. The balance
laws provide three equations for the four unknowns u2, .2, p2 and h2. The system is
made determinate by the addition of the equation of state

p ¼ pð.; hÞ ð9:137Þ

in the form of a Mollier chart, or else for the perfect gas

p ¼ . h
c� 1
c

: ð9:138Þ

With these, knowing the state in front of the shock, the state behind the shock can
be determined, and the shock structure itself does not need to be known.

In general, only compression shock waves occur where .2 [ .1, but expansion
shock waves are also possible, according to the second law of thermodynamics if the
inequality ð@2p=@t2Þs\0 holds, as is possible, for example, near the critical point.

In what follows we shall only deal with compression shocks and first shall
discuss the application of the conservation laws for a real gas whose Mollier chart is

Fig. 9.22 Normal shock wave
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given. If we insert the continuity Eq. (9.134) into the balances of momentum
(9.135) and of energy (9.136) we obtain

p2 � p1 ¼ .1 u
2
1 1� .1

.2

� �
ð9:139Þ

and

h2 � h1 ¼ u21
2

1� .1
.2

� �2
" #

: ð9:140Þ

The following calculation proceeds best if, for a given state in front of the shock, we
estimate the density ratio .1=.2 across the shock, since it, contrary to the pressure
and temperature ratios, remains finite even for a very strong shock. From (9.139)
and (9.140) we directly obtain the pair of values (h2, p2), and using these find a new
.2 from the Mollier diagram, from which a more precise estimate of the density
ratio .1=.2 is obtained. Usually a few iterations are enough to determine the state
behind the shock to the required precision.

Again for the calorically perfect gas closed relations can be given. We first of all
eliminate the velocity u1 from (9.139), (9.140), and obtain a relation solely between
thermodynamic quantities, the so-called Hugoniot relation

h2 � h1 ¼ 1
2
ðp2 � p1Þ 1

.1
þ 1

.2

� �
; ð9:141Þ

which still holds in general. Using (9.138) we find for the perfect gas the relation

p2
p1

¼ ðcþ 1Þ.2=.1 � ðc� 1Þ
ðcþ 1Þ � ðc� 1Þ.2=.1

; ð9:142Þ

between the pressure and the density ratios, from which we infer, for p2=p1 ! 1,
the maximum density ratio

.2

.1

� �
max

¼ cþ 1
c� 1

: ð9:143Þ

Contrary to this Hugoniot change of state (Fig. 9.23), we have for the isentropic
change of state

p2
p1

¼ .2
.1

� �c

; ð9:144Þ

and in the limit p2=p1 ! 1 we obtain an infinitely large density ratio .2=.1. The
maximum density ratio across a shock for diatomic gases with c ¼ cp=ct ¼ 7=5 is
then .2=.1 ¼ 6, for fully excited internal degrees of freedom of the molecular
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vibration ðc ¼ 9=7Þ we find .2=.1 ¼ 8, and for monatomic gases ðc ¼ 5=3Þ then
.2=.1 ¼ 4.

We note that because p = . RT,

p2
p1

¼ .2
.1

T2
T1

ð9:145Þ

holds, and so for the limit p2=p1 ! 1; T2=T1 also tends to infinity. If we solve
(9.139) for the velocity, it follows that

u21 ¼
p1
.1

p2
p1

� 1
� �

1� .1
.2

� ��1

; ð9:146Þ

and with a2 ¼ c p=. for the calorically perfect gas also

u1
a1

� �2

¼ M2
1 ¼ 1

c
p2
p1

� 1
� �

1� .1
.2

� ��1

; ð9:147Þ

from which we can eliminate .1=.2 using the Hugoniot relation (9.30).
In this manner we obtain an equation for the pressure ratio

Fig. 9.23 Hugoniot curve for the perfect diatomic gas (c = 1.4)
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p2
p1

� 1
� �2

�2
c

cþ 1
ðM2

1 � 1Þ p2
p1

� 1
� �

¼ 0; ð9:148Þ

which, besides the trivial solution p2=p1 ¼ 1 (no shock), also has the solution

p2
p1

¼ 1þ 2
c

cþ 1
ðM2

1 � 1Þ: ð9:149Þ

This is an explicit relation between the pressure ratio across the shock and the Mach
number M1 in front of the shock. For M1 = 1 both solutions merge into one another
and the shock becomes a sound wave. Equation (9.149) shows that, for a shock
wave ðp2=p1 [ 1Þ the Mach number M1 must be greater than one, and that for a
very strong shock ðM1 ! 1Þ the pressure ratio tends to infinity. If we replace
p2=p1 in (9.149) using the Hugoniot relation (9.142), we acquire the equation for
the jump in density

.2

.1
¼ ðcþ 1ÞM2

1

2þðc� 1ÞM2
1
; ð9:150Þ

which leads us again to the result (9.143) for M1 ! 1. Because of (9.145) we can
now use (9.149) and (9.150) to obtain the jump in temperature as

T2
T1

¼ p2
p1

.1

.2
¼ 2cM2

1 � ðc� 1Þ	 

2þðc� 1ÞM2

1

	 

ðcþ 1Þ2M2

1

: ð9:151Þ

To find the Mach number behind the shock, we use the continuity Eq. (9.134) and
a2 ¼ c p=. to get

M2
2 ¼ u2

a2

� �2

¼ u21
.1
.2

� �2 .2
cp2

¼ M2
1
p1.1
p2.2

; ð9:152Þ

from which, using (9.149) and (9.150), we finally find

M2
2 ¼ cþ 1þðc� 1ÞðM2

1 � 1Þ
cþ 1þ 2cðM2

1 � 1Þ : ð9:153Þ

We infer from this equation that in a normal shock wave, becauseM1 > 1, the Mach
number behind the shock is always lower than 1. In the case of a very strong shock
ðM1 ! 1Þ;M2 takes on the limiting value

M2 ðM1!1Þ
�� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
c� 1
c

s
: ð9:154Þ
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The shock relations are tabulated in Appendix C for c = 1.4 and are graphed in
Fig. 9.24.

Because of the irreversible processes (friction, heat conduction), the entropy
increases through the shock. We apply Reynolds’ transport theorem (1.96) to (2.143)
and it follows that for an infinitesimally thin shock,ZZ

ðSÞ

. sð~u �~nÞ dS[ 0; ð9:155Þ

or using the continuity equation (9.134),

s2 � s1 [ 0: ð9:156Þ

We can confirm this explicitly for the calorically perfect gas if we use the equation
arising from (9.123)

s2 � s1 ¼ ct ln
p2
p1

.2

.1

� ��c� �
ð9:157Þ

and eliminate the density ratio using the Hugoniot relation (9.142)

s2 � s1 ¼ ct ln
p2
p1

ðc� 1Þp2=p1 þ cþ 1
ðcþ 1Þp2=p1 þ c� 1

� �c� �
: ð9:158Þ

Fig. 9.24 Mach number and variables of state behind a shock as functions of the Mach number in
front of the shock
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For p2=p1 ! 1 the entropy difference tends logarithmically to infinity. For a weak
shock we set p2=p1 ¼ 1þ a and write out the following relation by expanding the
right-hand side for small a

s2 � s1
ct

¼ c2 � 1
12c2

p2 � p1
p1

� �3

: ð9:159Þ

This shows directly that for calorically perfect gases, p2 – p1 must always be greater
than zero so that only compression shock waves can occur, since otherwise the
entropy would have to decrease across the shock.

9.3 Unsteady Compressible Flow

Just as in steady compressible flow, shocks also occur in unsteady compressible
flow as surfaces separating different flow regions across which the shock relations
must be satisfied. The shock relations therefore play the role of boundary condi-
tions. First we shall discuss the shock relations for a shock wave which is in motion.
As we have already noted, the volume integrals drop out of the balance laws even
for unsteady shocks (shocks moving with varying velocity) as long as the shock
thickness is taken to be infinitesimally thin. Therefore the balance Eqs. (9.134) to
(9.136) and all the relations derived from these are still valid; we only have to pay
attention to choose the correct velocities in front of and behind the shock.

To do this we shall consider a shock moving with velocity us (t) in a duct (not
necessarily with constant cross-section) (Fig. 9.25).

Let the flow in front of the shock have the velocity u01 and the thermodynamic
quantities p1, .1 and h1. We characterize the gas velocity in this system with a dash
and call the reference system in which the duct is at rest and the shock is moving the
laboratory frame, because this is the system in which experimental measurements
are often made.

We distinguish this reference system from the moving reference frame in which
the shock is at rest and so the steady shock relations (9.149), (9.150), (9.151) and
(9.153) are valid. The moving reference frame is obtained by superimposing the
shock velocity to all velocities in such a way that the shock itself is at rest
(Fig. 9.26). Doing this we obtain the transformation equations

Fig. 9.25 Shock in the laboratory frame
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u1 ¼ us � u01 ; ð9:160Þ

and

u2 ¼ us � u02; ð9:161Þ

where we take the velocities to be positive if they are opposite to~s, as denoted by
the arrows in Fig. 9.26. The results from the steady shock relations can thus be
carried over to the laboratory frame. Often the velocity in front of the shock is zero
in the laboratory system, therefore,

u01 ¼ 0; since u1 ¼ us; ð9:162Þ

it is sufficient to replace M1 in the shock relations for perfect gas by the shock Mach
number

Ms ¼ us
a1

ð9:163Þ

in order to obtain the shock relations of the moving shock. Then for the velocity u2
in the moving frame we use (9.161) and the continuity equation in this frame

.1 us ¼ .2u2 ð9:164Þ

to obtain the relation

u02 ¼ us 1� .1
.2

� �
: ð9:165Þ

In this equation we can again replace .1=.2 using the shock relation (9.150), so that

u02 ¼
2

cþ 1
a1 Ms � 1

Ms

� �
: ð9:166Þ

Fig. 9.26 Shock in the moving reference frame
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For very high shock Mach numbers we find that

u02
��
ðM2!1Þ¼

2
cþ 1

us; ð9:167Þ

and we see that gas flows with high velocities can be produced behind the shock.
However, further consideration shows that while the gas reaches supersonic
velocity, the Mach number M0

2 remains bounded as a consequence of the strong
heating of the gas. From (9.161) we have for the Mach number

M0
2 ¼

u02
a2

¼ Ms
a1
a2

�M2; ð9:168Þ

where we replace a1=a2 by
ffiffiffiffiffiffiffiffiffiffiffiffi
T1=T2

p
and introduce the resulting expression in the

shock relation (9.151). We then extract the limit

M0
2

��
ðMs!1Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

cðc� 1Þ

s
� 1:89 ðfor c ¼ 1:4Þ ð9:169Þ

for Ms ! 1. (At high Mach numbers, air shows real gas effects and consequently
higher values of M0

2 are reached.)
To calculate the unsteady flow in the framework of stream filament theory we

begin with the differential form of the balance equations. We obtain the differential
form of the continuity equation from its integral form (9.8) if we integrate there
only over the differential length dx and replace the quantities at position (2) by a
Taylor expansion about the position (1). This leads to the equation

A
@.
@t

dxþ .
@A
@t

dx� . u Aþ .þ @.
@x

dx
� �

uþ @u
@x

dx
� �

Aþ @A
@x

dx
� �

¼ 0;

ð9:170Þ

which reduces to

@ð.AÞ
@t

þ @ð. u AÞ
@x

¼ 0 ; ð9:171Þ

where the terms quadratic in dx drop out in the limit dx ! 0. For the differential
form of the equations of motion we begin directly with (4.56) and neglect the
volume body forces

@u
@t

þ u
@u
@x

¼ � 1
.
@p
@x

: ð9:172Þ
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In (9.172) the friction effects can also be accounted for phenomenologically, by
adding the additional pressure gradients according to (9.26). As already noted,
however, the friction coefficients are mostly unknown for unsteady flow. Therefore
in what follows we shall restrict ourselves to loss free adiabatic flow, which is then
isentropic. From the general equation of state . ¼ .ðp; sÞ, and using Ds=Dt ¼ 0 it
follows that

D.
Dt

¼ @.
@p

� �
s

Dp
Dt

¼ a�2 Dp
Dt

: ð9:173Þ

In addition we restrict ourselves to flows through ducts of constant cross-section.
Then the continuity Eq. (9.171) takes on the form (2.3a), which reads here

D.
Dt

þ .
@u
@x

¼ 0: ð9:174Þ

If we also insert (9.173), after multiplying with a/. we obtain

1
. a

@p
@t

þ u
. a

@p
@x

þ a
@u
@x

¼ 0: ð9:175Þ

Adding this equation to the equation of motion (9.172) we extract the interesting
relation

@u
@t

þðuþ aÞ @u
@x

þ 1
. a

@p
@t

þðuþ aÞ @p
@x

� �
¼ 0: ð9:176Þ

If we view this equation in connection with the general time derivative (1.19) (there
applied to the temperature) we come to the following interpretation: along the path
of an observer described by dx=dt ¼ uþ a, the change du=dt is equal to the change
dp=dt multiplied by �ð. aÞ�1. Instead of the partial differential equation (9.176)
two coupled ordinary differential equations then appear

duþ 1
. a

dp ¼ 0 along dx ¼ ðuþ aÞdt: ð9:177Þ

If we subtract (9.175) from (9.172) we extract the equation

@u
@t

þðu� aÞ @u
@x

� 1
. a

@p
@t

þðu� aÞ @p
@x

� �
¼ 0; ð9:178Þ

from which follow the two ordinary differential equations

du� 1
. a

dp ¼ 0 along dx ¼ ðu� aÞdt: ð9:179Þ
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Ds=Dt ¼ 0 (cf. (4.48)) clearly implies that the change in the entropy of a material
particle vanishes; expressed otherwise, the change in entropy along a particle path is
zero

ds ¼ 0 along dx ¼ u dt: ð9:180Þ

The rearrangement and interpretation described have allowed us to reduce the three
nonlinear partial differential equations (9.172), (9.174), and (4.48) to a system of
six ordinary differential equations. From a mathematical point of view, we note that
this equivalence represents the fundamental content of the theory of characteristics,
which is a theory for the solution of systems of hyperbolic differential equations.
The system of Eqs. (9.172), (9.174), and (4.48) is of this hyperbolic kind. The
method of solution can also be carried over to steady supersonic flow because the
differential equations describing supersonic flow are hyperbolic. We call the
solution curves of the differential equations

dx
dt

¼ u
 a and
dx
dt

¼ u ð9:181Þ

in the x-t-plane characteristics; the path of a particle is therefore also a charac-
teristic. The differential equations which are valid along these characteristics are
called characteristic or sometimes compatibility relations.

As an example of their application we shall consider homentropic flow, for
which

@s
@x

¼ 0 ð9:182Þ

is valid and because of Ds/Dt = 0 also

@s
@t

¼ 0: ð9:183Þ

Therefore, the entropy is constant in the entire x-t-plane, in particular along the
characteristic lines. The Eq. (9.180) which determine the distribution of the entropy
thus drop out. From (9.93),

p ¼ C .c;

where C is an absolute constant due to the constancy of the entropy, it follows that

dp
d.

¼ a2 ¼ C c .c�1 : ð9:184Þ

Using this, the compatibility relations (9.177) and (9.179),
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du
 1
. a

dp ¼ du
 a
.
d. ¼ du


ffiffiffiffiffiffi
cC

p
.ðc�1Þ=2 d.

.
¼ 0 ð9:185Þ

can be directly integrated

uþ
ffiffiffiffiffiffi
cC

p 2
c� 1

.ðc�1Þ=2 ¼ uþ 2
c� 1

a ¼ 2r; ð9:186Þ

u�
ffiffiffiffiffiffi
cC

p 2
c� 1

.ðc�1Þ=2 ¼ u� 2
c� 1

a ¼ �2s; ð9:187Þ

The constant of integration 2r is constant along the characteristic described by
dx=dt ¼ uþ a;�2s is constant along the characteristic dx=dt ¼ u� a. We call
these constants of integration Riemann invariants.

We now use these equations to calculate the flow in an infinitely long duct. Since
the duct has no ends we are dealing with a pure initial value problem. At time t = 0
the initial condition in the duct is given by u(x, 0) and a(x, 0) (Fig. 9.27). We are
looking for the state of the flow at a later instant in time t0 at the place x0, which is
denoted in the x-t-plane as the point P0 ¼ Pðx0; t0Þ (Fig. 9.28). The quantities
2r and –2s are constant along the characteristics and are given by the initial con-
ditions. Therefore, we must have

2r ¼ uðxA; 0Þþ 2
c� 1

aðxA; 0Þ ¼ uðx0; t0Þþ 2
c� 1

aðx0; t0Þ; ð9:188Þ

and

�2s ¼ uðxB; 0Þ � 2
c� 1

aðxB; 0Þ ¼ uðx0; t0Þ � 2
c� 1

aðx0; t0Þ; ð9:189Þ

Fig. 9.27 Initial distributions
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where xA and xB are points through which the characteristics pass. With these we
now know u and a at the point P0

uðx0; t0Þ ¼ r � s; ð9:190Þ

aðx0; t0Þ ¼ c� 1
2

ðrþ sÞ: ð9:191Þ

The characteristics which run through the point P0 and points xA and xB are not
yet known. They can be determined by approximation: we fix a series of points
along the x-axis, and at these we know the directions of the characteristics from the
initial values. We approximate the characteristics by their tangents at these points.
At the point where the tangents cross we can determine the values of u and a by the
above method; but by doing this we again know the directions of the characteristics
in these points and can approximate again. This process must be carried out until we
reach the point P0 that we want. The state of the flow at the point P0 only depends
on the initial data in the interval between xA and xB. We call this interval the domain
of dependence of the point P0 (Fig. 9.29). On the other hand the initial conditions at
a point PI only act in a bounded region, the range of influence of the point PI.

Another example is the so-called piston problem, an initial-boundary value
problem: in an infinitely long tube at position x = 0 there is a piston which is accel-
erated suddenly to a constant velocity� up

�� �� at time t = 0. The state in the tube before
the piston is set inmotion is given byu = 0,a = a4.Therefore, the initial conditions are

uðx[ 0; t ¼ 0Þ ¼ 0; aðx[ 0; t ¼ 0Þ ¼ a4 ð9:192Þ

Fig. 9.28 Characteristics in the x–t plane
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and

� up
�� ��� uðx ¼ 0; t ¼ 0Þ� 0: ð9:193Þ

The initial condition (9.193) comes from the fact that as the piston is set suddenly in
motion at the position x = 0 at time t = 0 (thus in an infinitesimally short time), the
gas must pass through the whole velocity interval, from the undisturbed velocity
u = 0 up to the velocity given by the kinematic boundary condition

uðx ¼ xp; tÞ ¼ � up
�� �� ð9:194Þ

at the piston (piston path xp ¼ � up
�� ��t). Therefore, the point Ps = P(0, 0) is a

singular point in the x-t-plane. To solve the problem we have available the equa-
tions for the characteristics

dx
dt

¼ u
 a ð9:195Þ

as well as the Eqs. (9.190) and (9.191), which read in general

u ¼ r � s ð9:196Þ

and

a ¼ c� 1
2

ðrþ sÞ; ð9:197Þ

Fig. 9.29 Domain of dependence and range of influence in the x–t plane
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where the Riemann constants r and s are given by (9.186) and (9.187). As before
we determine their values from the initial conditions. First it follows from (9.192)
that

2r ¼ 2
c� 1

a4 and � 2s ¼ � 2
c� 1

a4; ð9:198Þ

and then we find from (9.196) u = 0 and from (9.197) a = a4 in a solution domain
outside the range of influence of the singular point Ps, where the initial condition
(9.193) holds. From

dx
dt

¼ þ a4 it follows that x ¼ þ a4tþ const ð9:199Þ

and from

dx
dt

¼ �a4 it follows that x ¼ �a4tþ const: ð9:200Þ

The characteristics with the positive sign on “a” point to the right and are therefore
called forward-facing characteristics for short, although in general they could point
to the left also; we shall denote them less ambiguously as C+ characteristics. The
characteristics with the negative sign on “a” are called backward-facing or C–

characteristics. The constants of integration are determined by the x value, the
characteristics take at t = 0.

The range of influence of the singular point Ps is bounded on the right by the C+

characteristic through Ps, for which u = 0 still holds. Between this characteristic
x = a4t and the x-axis the flow velocity is u = 0 and the velocity of sound is a = a4.
Physically this characteristic can be interpreted as a wave which reports the first
effect of the piston motion to the gas at rest in the tube. In compressible media such
a report can only propagate at a finite velocity, namely the velocity of
sound. However a whole bundle of forward-facing characteristics whose slopes
dx=dt ¼ uþ a take on all the values between a4 and � up

�� ��þ a3 run through the
singular point Ps. These characteristics are already drawn as straight lines in
Fig. 9.30, since we shall presently show that both u and a are constant along these
C+ characteristics.

We calculate u at the point P1 in Fig. 9.30 and using (9.186) and (9.187) obtain
from (9.196)

u ¼ 1
2

uþ 2
c� 1

a

� �
� 1
2

2
c� 1

a4

� �
; ð9:201Þ

where –2s is fixed by the initial condition (9.192) and 2r follows from the initial
condition (9.193).
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If we now calculate the velocity u at the point P0
1 on the same C+ characteristic,

we are led to exactly the same equation, because the value of the Riemann invariant
2r is the same along the same characteristic, and the value of –2s is also the same on
all C– characteristics, since they come from a region of homogeneous flow con-
ditions. The velocity of sound a at the point P1 follows from (9.197) as

a ¼ c� 1
2

1
2

uþ 2
c� 1

a

� �
þ 1

2
2

c� 1
a4

� �� �
; ð9:202Þ

and just as before we show that a has the same value at the point P0
1 as at the point

P1. Thus u and a are constant on forward-facing characteristics, and the equation of
the characteristics through the origin Ps reads

x ¼ ðuþ aÞt; � up
�� ��� u� 0: ð9:203Þ

We insert this equation into (9.201), solve for u and in this way obtain u explicitly
as a function of x and t

u ¼ 2
cþ 1

x
t
� a4

� �
: ð9:204Þ

We insert this u into (9.203) and obtain

Fig. 9.30 x-t diagram of the piston problem
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a ¼ c� 1
cþ 1

x
t
þ 2

cþ 1
a4 : ð9:205Þ

We could have reached exactly the same results using (9.202). We obtain the last
characteristic belonging to the “fan” from (9.203) if we set u ¼ up

�� �� there. We call
the velocity of sound met on this characteristic a3, and calculate it from (9.205) by
inserting x ¼ � up

�� ��þ a3
� 

t

a3 ¼ � c� 1
2

up
�� ��þ a4: ð9:206Þ

In order to calculate the velocity of sound at the piston (point P2) we can use
Eq. (9.202) by setting u ¼ � up

�� �� and a = ap,

ap ¼ � c� 1
2

up
�� ��þ a4; ð9:207Þ

and comparing this with (9.206) shows

ap ¼ a3: ð9:208Þ

Since the same result is found for every point P2 on the path of the piston we
conclude that the velocity of sound a = a3 and the velocity u ¼ � up

�� �� prevail in the
region between the piston path xp ¼ � up

�� ��t and the last C+ characteristic
x ¼ � up

�� ��þ a3
� 

t.
Therefore, we find three different solution regions. The first region, labeled (4) in

Fig. 9.30, is between the positive x-axis and the initial characteristic x ¼ a4t of the
fan. The flow velocity is u = 0 and the velocity of sound is a4 there. All charac-
teristics in this region are parallel lines, Next to this is the solution region between
the initial characteristic x = a4t and the end characteristic x ¼ � up

�� ��þ a3
� 

t, where
u and a are given by (9.204) and (9.205). This region represents the so-called
expansion wave which widens as it moves into the positive x-direction. The C+

characteristics there are straight lines, spacing out to form a fan; the
C–characteristics in this region are no longer straight lines. We call this region the
expansion fan. Next to this is the region labeled (3) between the end characteristic
and the path of the piston, in which all the characteristics are again straight lines.
The flow is homentropic, i.e., (9.93) or else

p
p4

¼ .
.4

� �c

ð9:209Þ
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is valid everywhere; therefore

p3
p4

¼ T3
T4

� �c=ðc�1Þ
¼ a3

a4

� �2c=ðc�1Þ
¼ 1� c� 1

2

up
�� ��
a4

� �2c=ðc�1Þ
: ð9:210Þ

A vacuum is produced at the piston base if

up
�� �� ¼ 2

c� 1
a4: ð9:211Þ

Since up is equal to the gas velocity at the bottom of the piston, Eq. (9.211)
represents the maximum possible velocity which can be reached in unsteady
expansion of a calorically perfect gas. This is considerably larger than the maxi-
mum velocity in steady flow (cf. (9.101)). Of course the result (9.211) does not
contradict the energy equation. If the piston is moved even faster, a region in which
vacuum prevails is generated between the piston and the gas.

Just as in (9.201) we obtain the pressure distribution in the expansion fan as

p
p4

¼ 1þ c� 1
2

u
a4

� �2c=ðc�1Þ
ð9:212Þ

or written explicitly in x and t

p
p4

¼ c� 1
cþ 1

x
a4t

þ 2
cþ 1

� �2c=ðc�1Þ
ð9:213Þ

The density distribution in the expansion fan is calculated from

.
.4

¼ p
p4

� �1=c

: ð9:214Þ

In Fig. 9.31 we see the distribution of velocity u and pressure p for fixed t. It is clear
from the figure that the flow quantities may have discontinuities in their derivatives.
This is typical for the solution of hyperbolic equations. (Discontinuities in the
derivatives also propagate along the characteristic lines.) To complete the picture
we state the particle path in the expansion fan

x ¼ � 2
c� 1

a4tþ cþ 1
c� 1

a4t0
t
t0

� �2=ðcþ 1Þ
; ð9:215Þ

which is obtained as a solution of the linear differential equation
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dx
dt

¼ u ¼ 2
cþ 1

x
t
� a4

� �
ð9:216Þ

with the initial condition x(t0) = a4t0 using standard methods. The equation of the
C–characteristic is found from the solution of the differential equation

dx
dt

¼ u� a ¼ 3� c
cþ 1

x
t
� 4
cþ 1

a4 ð9:217Þ

to be

x ¼ � 2
c� 1

a4tþ cþ 1
c� 1

a4t0
t
t0

� �ð3�cÞ=ðcþ 1Þ
: ð9:218Þ

The solution of the initial-boundary value problem we have discussed is one of
the very few exact and closed solutions for the nonlinear system (9.172), (9.174)
and (4.48). Basically this is due to the fact that no typical lengths enter into the
problem. Since no typical time occurs, the independent variables can also only
appear in combinations of x/t. Therefore the problem only depends on one simi-
larity variable x/t.

Fig. 9.31 Distribution of the velocity and the pressure inside an expansion fan
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If the piston is moved to the left with a finite acceleration fp(t) it still holds that
the gas velocity u and the velocity of sound a are constant along every C+ char-
acteristic. Our problem is now to calculate for a general point P(x, t), the inter-
section P* (x*, t) of the forward-facing characteristic with the path of the piston
(Fig. 9.32). With t* = t*(x, t) we find the desired velocity to be uðx; tÞ ¼ � upðt	Þ

�� ��
and the velocity of sound to be aðx; tÞ ¼ ap upðt	Þ

�� ��� 
according to (9.207). If the

piston acceleration fp is constant, an explicit solution can be given

uðx; tÞ ¼ � a4
c

þ cþ 1
2c

fpt �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4
c

þ cþ 1
2c

fpt

� �2

� 2fp
c
ða4t � xÞ

s2
4

3
5; ð9:219Þ

aðx; tÞ ¼ a4 þ c� 1
2

uðx; tÞ; ð9:220Þ

which is valid for x� a4t. To the right of the first C+ characteristic, thus for
x > a4t, we again have u = 0 and a = a4.

If the piston moves with finite acceleration in the positive x-direction, then
compression waves occur, which satisfy exactly the same equations as the expan-
sion waves. However now the characteristics of the same family (C+) can intersect
each other. Yet at the point of intersection of the characteristics, the solution is no
longer unique since different values of the Riemann invariants r hold along the
different characteristics. Since, for example, the velocity is u = r – s, different
velocities occur at the same point, something that is, of course, physically impos-
sible. The characteristics form an envelope, and in the region enclosed within the
envelope the solutions are no longer unique. Experiments show that in these cases a
shock wave forms (Fig. 9.33).

The shock begins at the cusp P of the envelope, that is, at the position where the
solution ceases to be unique. The appearance of the shock is to be expected
physically because in the region where the characteristics crowd together (just
before they cross) the flow quantities change rapidly and the changes in the velocity
and temperature in the x-direction become so large that friction and heat conduction
can no longer be neglected. The equation for the envelope can be stated in a closed
form under certain assumptions (i.e. for certain piston paths). However we can

Fig. 9.32 Piston with finite acceleration (expansion)
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determine the starting point of the envelope (and thus the position xP in the tube at
which the shock wave appears at time tP) generally if the acceleration of the piston
is at no time larger than the initial acceleration. Then it is enough to consider a
constantly accelerated piston. Under this assumption we obtain the velocity field
immediately from (9.219) if we replace fp there by –fp

uðx; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4
c
� cþ 1

2c
fpt

� �2

þ 2fp
c
ða4t � xÞ

s
� a4

c
� cþ 1

2c
fpt

� �
ð9:221Þ

and thus determine @u=@x to be

@u
@x

¼ � a4
c
� cþ 1

2c
fpt

� �2

þ 2fp
c
ða4t � xÞ

" #�1=2
fp
c
: ð9:222Þ

Since @u=@x tends to infinity at the cusp of the envelope, we obtain this point by
setting the expression in brackets in (9.222) to zero. Because of x� a4t the bracket
only vanishes for

xP ¼ a4tP; ð9:223Þ

Fig. 9.33 Piston with finite acceleration (compression)
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i.e., the point lies on the initial characteristic. In addition it must hold that

a4
c
¼ cþ 1

2c
fptP; ð9:224Þ

from which we determine the t-coordinate to be

tP ¼ 2
cþ 1

a4
fp
: ð9:225Þ

For fpð0Þ ! 1 the starting point lies at the origin. If the piston is set in motion
suddenly with constant velocity, the shock forms at the origin of the x-t-plane
(Fig. 9.34), i.e., the shock immediately forms which moves ahead of the piston at
constant velocity.

If we apply the Eqs. (9.177) and (9.179) to liquids, the velocity u is often much
smaller than the velocity of sound a. Then the density and the velocity of sound in
the flow change very little from their undisturbed values a4 and .4, so that instead of
(9.177) and (9.179) we can write

duþ 1
.4a4

dp ¼ 0 for Cþ : x ¼ þ a4tþ const ð9:226Þ

and

du� 1
.4a4

dp ¼ 0 for C� : x ¼ �a4tþ const: ð9:227Þ

Here then the characteristics are always straight lines in the x–t diagram. These
equations are the starting point for the numerical calculation of pressure waves
(hydraulic shock or also called water hammer) in hydraulic pipes (hydroelectric
power stations, fuel injection systems, water mains, etc.), as they may occur if
valves are suddenly opened or closed. Since in liquids the sound speed and the
density is comparatively high, the pressure changes can become so large, even for
small changes in velocity, that conduits may be damaged structurally.

Fig. 9.34 Piston suddenly set in motion (compression)
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If valves are shut suddenly, the pressure downstream can drop below the vapor
pressure, so that the fluid cavitates. As the cavity is refilled, a very high pressure
occurs again. A velocity change of, for example, Du ¼ 2m=s originating with a
closure of valve leads to a pressure wave which propagates with the velocity of
sound a4 = 1400 m/s (for water) upstream, with

Dp ¼ 2m=s � 1400m=s � 1000 kg=m3 ¼ 28 bar:

However, the effective velocity of sound is often smaller, on the one hand because
the elasticity of the pipe wall lowers the propagation velocity, and on the other hand
because small air bubbles are often found in the fluid and these also lower the
effective speed of sound.
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Chapter 10
Potential Flows

As the discussions in Sects. 4.1 and 4.3 have already shown, solid walls and
discontinuities in the tangential velocity represent surfaces from which angular
velocity ~x ¼ curl~u=2ð Þ diffuses into the flow field. Since the widths of the
developing regions (boundary layers) tend to zero in the limit Re ! ∞, the flow
can be treated within the framework of potential theory. Because of the kinematic
restriction of irrotationality, only the kinematic boundary condition, but not the no
slip condition, can be satisfied. Therefore potential flows, although they are exact
solutions of the Navier–Stokes solutions in the incompressible case, can in general
only describe the flow field of an inviscid fluid (with exceptions, like the potential
vortex for the flow around a rotating cylinder). However, the results of a calculation
for inviscid fluid can be carried over to real flows as long as the flow does not
separate. If separation does occur, the boundaries of the separation region are
generally not known. In cases where these boundaries are known or can be rea-
sonably estimated, a theory based on inviscid flow can also be useful.

Besides ignoring the viscosity, the overriding simplifications of the theory of
potential flows stem from the introduction of a velocity potential and the use of
Bernoulli’s equation (with Bernoulli’s constant the same value everywhere in the
flow field). Therefore the flow is described by the continuity equation (2.3) and
Bernoulli’s equation (4.73). We introduce the velocity potential from (1.50)

ui ¼ @U
@xi

into the continuity equation. To do this we use the assumption of barotropy, which
is already within Bernoulli’s equation

dP ¼ 1
.
dp; ð10:1Þ
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or, by (9.184)

dp ¼ a2d.; ð10:2Þ

also

dP ¼ a2

.
d.; ð10:3Þ

and express @.=@t and @.=@xi by . a�2@P
�
@t and . a�2@P

�
@xi, respectively. Thus

we obtain (2.3a) in the form

a�2 @P
@t

þ a�2 @U
@xi

@P
@xi

þ @2U
@xi@xi

¼ 0; ð10:4Þ

which together with Bernoulli’s equation (4.73)

@U
@t

þ 1
2
@U
@xi

@U
@xi

þPþw ¼ C tð Þ

furnishes two coupled equations for the two unknowns P and U. In applying
potential theory to compressible flow, w can usually be ignored. However it is
seldom necessary to solve these nonlinear equations, which almost always require
numerical methods.

10.1 One-Dimensional Propagation of Sound

We shall consider the case where ui ¼ @U=@xi and @P=@xi are so small that all the
nonlinear terms can be neglected, and . and a can be approximated by the
unperturbed quantities .0 and a0. Within the scheme of Sect. 4.4, besides the
simplifications of type (a) in the constitutive relation (zero viscosity) and of type
(c) in the kinematics (potential flow), another simplification of type (b) in the
dynamics (neglecting the convective terms) appears. In spite of this it is clear from
the derivation that we are still dealing with compressible flows (D. / Dt 6¼ 0.).
Under this assumption, the continuity equation reads

@P
@t

þ a20
@2U
@xi@xi

¼ 0; ð10:5Þ

while Bernoulli’s equation assumes the form
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@U
@t

þP ¼ 0; ð10:6Þ

where the constant has been absorbed into the potential. Equation (10.6) corre-
sponds to the linearized form of Euler’s equation .@ui=@t ¼ �@p=@xi. If we dif-
ferentiate (10.6) with respect to t and subtract (10.5), we obtain

@2U
@t2

� a20
@2U
@xi@xi

¼ 0: ð10:7Þ

This is the wave equation: it is the most important special case of a hyperbolic
partial differential equation. In (10.7) it describes the velocity potential U of sound,
in electrodynamics it describes the propagation of electromagnetic waves and in the
theory of oscillations, the transverse oscillations of strings and membranes, or the
longitudinal oscillations in elastic bodies.

For the one-dimensional propagation of sound, for example in tubes, we obtain
(10.7) in the form

@2U
@t2

¼ a20
@2U
@x2

; ð10:8Þ

whose general solution is known as d’Alembert’s solution

U ¼ h x� a0tð Þþ g xþ a0tð Þ: ð10:9Þ

This solution can be directly verified by insertion. The unknown functions h and
g are determined by the initial and boundary conditions of a specific problem. From
(10.9) we obtain the velocity u as

u ¼ @U
@x

¼ h0 x� a0tð Þþ g0 xþ a0tð Þ; ð10:10Þ

where the dash denotes the derivatives of the functions with respect to their
arguments. Then from (10.6) we extract the pressure function as

P ¼ � @U
@t

¼ a0h
0 x� a0tð Þ � a0g

0 xþ a0tð Þ: ð10:11Þ

For x = a0t + const, that is, along the C+ characteristics introduced in Chap. 9,
(10.10) furnishes
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u ¼ g0 xþ a0tð Þþ const, ð10:12Þ

and (10.11)

P ¼ �a0g
0 xþ a0tð Þþ const: ð10:13Þ

Within the framework of the assumptions being used, in (10.1) we replace . by .0,
and compare (10.12) and (10.13) to obtain

dpþ .0a0du ¼ 0 along x ¼ a0tþ const: ð10:14Þ

In the same manner we find

dp� .0a0du ¼ 0 along x ¼ �a0tþ const: ð10:15Þ

These are again the Eqs. (9.226) and (9.227). In Chap. 9 we dealt with the nonlinear
propagation of waves, but the assumptions which led to the Eqs. (9.226) and (9.227)
reduced the general problem of nonlinear waves to the problem of acoustics. We note
that d’Alembert’s solution is a special application of the theory of characteristics
described in Chap. 9.

We shall first consider the application of d’Alembert’s solution to the initial
value problem, where the distributions of u and P ¼ p� p0ð Þ=.0 are given for the
time t = 0

u x; 0ð Þ ¼ uI xð Þ; P x; 0ð Þ ¼ PI xð Þ: ð10:16Þ

Using this it follows from (10.10) that

uI xð Þ ¼ h0 xð Þþ g0 xð Þ; ð10:17Þ

and from (10.11)

PI xð Þ ¼ a0h0 xð Þ � a0g0 xð Þ: ð10:18Þ

With these we express the unknown functions h′(x) and g′(x) in terms of the initial
distributions

h0 xð Þ ¼ 1
2

uI xð Þþ a�1
0 PI xð Þ� �

; and ð10:19Þ

g0 xð Þ ¼ 1
2

uI xð Þ � a�1
0 PI xð Þ� �

: ð10:20Þ
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We insert these now known functions into, for example, the formula for velocity
(10.10)

u x; tð Þ ¼ 1
2
uI x� a0tð Þþ uI xþ a0tð Þ½ � þ 1

2
a�1
0 PI x� a0tð Þ � PI xþ a0tð Þ½ �:

ð10:21Þ

For simplicity let us take PI xð Þ � 0 in the following example: for u we set the initial
condition

u x; 0ð Þ ¼ uI xð Þ ¼
0 for x[ b
1 for xj j � b
0 for x\� b

8<
: ; ð10:22Þ

and we infer from (10.21) that the initial rectangular distribution (10.22) resolves
into two rectangular waves each of half the initial amplitude, of which one moves to
the right and the other to the left. From

u x; tð Þ ¼ 1
2
uI x� a0tð Þþ 1

2
uI xþ a0tð Þ; ð10:23Þ

the initial distribution

uI xð Þ ¼ 1
2
uI xð Þþ 1

2
uI xð Þ ð10:24Þ

is generated for t = 0. For t = t1, we obtain for the first wave 1=2uI x� a0t1ð Þ, that
is, the same rectangular function, now displaced a0t1 to the right. For the second
wave we find 1=2uI xþ a0t1ð Þ, i.e., again the same rectangle but now displaced by
–a0t1 (therefore to the left), as is also clear in Fig. 10.1. Along the characteristics
x = a0t + const and x = –a0t + const the value of the amplitudes remains the
same.

We now consider the initial-boundary value problem with a rigid wall at the
position x = 0, and so the kinematic boundary initial condition implies that the
velocity u vanishes there. The initial condition uI is the function shown in
Fig. 10.2a, where again we set PI � 0. We look for a solution in the semi-infinitely
long tube (x � 0) with the initial condition

u x; 0ð Þ ¼ uI xð Þ; x� 0; ð10:25Þ
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Fig. 10.1 Propagation of a rectangular disturbance

Fig. 10.2 Initial distributions of a the initial-boundary value problem, and b the equivalent initial
value problem
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and the boundary condition

u 0; tð Þ ¼ 0; t� 0: ð10:26Þ

This initial-boundary value problem is equivalent to the pure initial value
problem of the pipe extending to infinity in both directions, with the initial distri-
bution sketched in Fig. 10.2b

u x; 0ð Þ ¼ þ uI þ xð Þ for x� 0
� uI �xð Þ for x\0

�
: ð10:27Þ

With (10.21) the solution for u reads

u x; tð Þ ¼ 1
2
uI x� a0tð Þþ uI xþ a0tð Þ½ �: ð10:28Þ

For x� a0t the argument is x� a0t� 0, and with (10.27) we write

u x; tð Þ ¼ 1
2
uI x� a0tð Þþ uI xþ a0tð Þ½ �; x� a0t: ð10:29Þ

For x\a0t the argument is x� a0t\0, and from (10.28) and (10.27) we then obtain

u x; tð Þ ¼ 1
2
�uI �xþ a0tð Þþ uI xþ a0tð Þ½ �; x\a0t: ð10:30Þ

Because of the properties of the function uI given in (10.27), u(x, t) satisfies the
initial condition (10.25) and the boundary condition (10.26), so that (10.29) and
(10.30) together represent the solution of the initial-boundary value problem.
However it is more perceptive to view the graphical solution of the equivalent
initial value problem. The initial distribution shown in Fig. 10.2b is again resolved
into two waves, one moving to the right and one to the left, each with the initial
velocity a0. At the position x = 0 the superimposed waves cancel each other out, so
that the boundary condition u(0, t) is always satisfied. The graphical solution is
shown in Fig. 10.3. The solution has physical meaning only for x � 0.

In addition to d’Alembert’s solution, the method of separation is also applicable
to the linear wave equation (10.8). We start out directly with the differential
equation for the velocity u, which also satisfies the wave equation

@2u
@t2

¼ a20
@2u
@x2

: ð10:31Þ

Now we shall treat the problem where there are rigid walls at the positions x = 0
and x = l, and so the boundary conditions read
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u 0; tð Þ ¼ u l; tð Þ ¼ 0: ð10:32Þ

As initial conditions we take

u x; 0ð Þ ¼ uI xð Þ; ð10:33Þ

and again

P x; 0ð Þ ¼ PI xð Þ ¼ 0: ð10:34Þ

From (10.34) we obtain a second initial condition for u

@u
@t

����
t¼0

¼ 0; ð10:35Þ

which is a consequence of the linearized Euler’s equation .@u=@t ¼ �@p=@x. The
separation form

u x; tð Þ ¼ T tð ÞX xð Þ ð10:36Þ

Fig. 10.3 Propagation of a wave in the semi-infinite pipe
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leads to

T 00

T
¼ a20

X 00

X
¼ const ¼ �x2; ð10:37Þ

with the solutions

T ¼ C1 cos xtð ÞþC2 sin xtð Þ; and ð10:38aÞ

X ¼ C3 cos
xx
a0

� �
þC4 sin

xx
a0

� �
: ð10:38bÞ

The initial condition (10.35) requires that C2 = 0; C3 vanishes because of the
boundary condition u(0, t) = 0, so that for the velocity we obtain

u x; tð Þ ¼ A cos xtð Þ sin xx
a0

� �
; ð10:39Þ

where A = C1C4. For

xk ¼ k a0
p
l
; k ¼ 1; 2; 3; . . . ð10:40Þ

Eq. (10.39) now also satisfies the boundary condition u l; tð Þ ¼ 0: The xk=2p are
the eigenfrequencies of the column of fluid in the tube of length l. (Note the
following, if one of these eigenfrequencies xk=2p lies close to the eigenfrequency
of an elastic element (such as a valve) which comes into contact with the fluid, self
excited oscillations can occur.)

With (10.40) we obtain the solutions

uk ¼ Ak cos
k p a0t

l

� �
sin

k p x
l

� �
; ð10:41Þ

whose sum, because of the linearity of (10.31) is also a solution. Therefore the
general solution reads

u ¼
X1
k¼1

Ak cos
k p a0t

l

� �
sin

k p x
l

� �
: ð10:42Þ

The initial condition (10.33) leads to the equation
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u x; 0ð Þ ¼ uI xð Þ ¼
X1
k¼1

Ak sin
k p x
l

� �
; 0� x� l: ð10:43Þ

This is an instruction to expand the initial distribution uI(x) into a sine series, whose
coefficients are determined from

Ak ¼ 2
l

Z l

0

uI xð Þ sin k p x
l

� �
dx: ð10:44Þ

With this the velocity field is known. We calculate the pressure field from (10.5)

@P
@t

¼ �a20
@2U
@x2

¼ �a20
@u
@x

¼ �a20
X1
k¼1

k p
l
Ak cos

k p a0t
l

� �
cos

k p x
l

� �
ð10:45Þ

as

P ¼ �a0
X1
k¼1

Ak sin
k p a0t

l

� �
cos

k p x
l

� �
; ð10:46Þ

where the constants of integration appearing are set to zero because of the initial
condition (10.34).

10.2 Steady Compressible Potential Flow

As a further case of compressible potential flow which emerges from the simpli-
fications in the general equations (10.4) and (4.73), we shall consider steady flow.
From the continuity equation (10.4) we then extract

a�2 @U
@xi

@P
@xi

þ @2U
@xi@xi

¼ 0; ð10:47Þ

and from Bernoulli’s equation (4.73) neglecting the volume body forces,

1
2
@U
@xj

@U
@xj

þP ¼ C: ð10:48Þ
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With the help of (10.48) we eliminate P from (10.47) and bring the resulting
equation to the form

a�2 @U
@xi

@

@xi

1
2
@U
@xj

@U
@xj

� �
¼ @2U

@xi@xi
; ð10:49Þ

from which a nonlinear partial differential equation for the velocity potential U
follows

a�2 @U
@xi

@U
@xj

@2U
@xi@xj

¼ @2U
@xi@xi

: ð10:50Þ

This equation holds without restrictions for steady subsonic (M < 1), transonic
(M � 1), and supersonic flows (M > 1). The steady homenergic hypersonic flow
(M � 1) is generally not a potential flow, as Crocco’s law (4.157) implies, so that
(10.50) is not used in that case.

Equation (10.50) is the starting point of classical aerodynamics. The analytic
method of the solution of (10.50) exploits simplifications which arise from the
Mach number range, and/or from “linearizations”. An example of this is the flow
past slender bodies, although in practice numerical methods are more often called
into play. With the known potential U the velocity field is then also known:
~u ¼ rU. From Bernoulli’s equation (10.48) the pressure function P then follows,
from this the pressure, and finally the density. From (9.95) we can compute the
pressure of the calorically prefect gas

p
p0

¼ c� 1
c

.0
p0

P

� �c= c�1ð Þ
; ð10:51Þ

and with (9.93) then the density

.
.0

¼ c� 1
c

.0
p0

P

� �1= c�1ð Þ
: ð10:52Þ

10.3 Incompressible Potential Flow

The simplifications arising from the assumption of incompressibility have already
been explained: incompressibility can be seen as a particular form of the consti-
tutive relation (D./Dt = 0) or as a kinematic restriction div~u ¼ 0ð Þ: Besides this
kinematic restriction of divergence free flow (solenoidal flow), irrotationality
curl~u ¼ 0ð Þ appears in addition in incompressible potential flow. From (2.5)

10.2 Steady Compressible Potential Flow 355



@ui
@xi

¼ 0

together with (1.50)

ui ¼ @U
@xi

the already known linear potential equation (Laplace’s equation) follows

@2U
@xi@xi

¼ 0: ð10:53Þ

Laplace’s equation is the most important form of a partial differential equation of
the elliptic type, which occurs here as the differential equation for the velocity
potential of volume preserving fluid motion. (As already mentioned, Laplace’s
equation is, together with Poisson’s equation, the subject of potential theory. It
occurs in many branches of physics, and describes, for example, the gravitational
potential, from which we can calculate the mass body force of gravity~k ¼ �rw .
In electrostatics it determines the potential of the electric field, and in magneto-
statics the potential of the magnetic field. The temperature distribution in a solid
body with steady heat conduction also obeys this differential equation.)

From the derivation, it is clear that (10.53) holds both for steady and unsteady
flows. The unsteadiness of the incompressible potential flow exhibits itself only in
Bernoulli’s equation (4.61) or (4.73), in which now P = p/.. We also obtain
Laplace’s equation (10.53) from the potential equation (10.50), or directly from
(10.4) by taking the limit a2 ! ∞ there. Taking this limit actually corresponds to
D./Dt = 0, because it follows from dp/d. = a2 that then

D.
Dt

¼ a�2 Dp
Dt

! 0: ð10:54Þ

The treatment of incompressible flow is not exhausted by solving Laplace’s
equation for given boundary conditions and then computing the pressure distri-
bution from Bernoulli’s equation. As we have seen, associated with the lift is a
circulation around a body. The changes in time and space of the circulation are
subject to Thomson’s and Helmholtz’s vortex theorems, which also must be sat-
isfied in the solution of the flow past a body. The changes in circulation give rise to
surfaces of discontinuity and vortex filaments where the vorticity does not vanish,
as sketched in Figs. 4.6, 4.18, 4.20 and 4.21. In incompressible flow the solenoidal
term ~uR from (4.111) or (4.123), whose calculation requires knowledge of the
vorticity distribution, is added to the velocity field ∇U. For these reasons, com-
puting the flow past a body turns out to be more difficult than just the classical
solution of Laplace’s equation.
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In problems of flow past a body where there is no lift, discontinuity surfaces and
vortex filaments do not occur. Then the flow field only depends on the instanta-
neous boundary conditions, i.e., on the instantaneous position and velocity of the
body. Physically this is explained by the infinitely large velocity of sound which
imposes the time varying boundary conditions on the entire flow field instanta-
neously. In lift problems, the discontinuity surface develops behind the body, and
its position and extension, and with this the lift itself, depend on the history of the
motion of the body. Now this problem is easier in steady flow, but even there it is
necessary to make some assumptions about the position of the discontinuity sur-
face. Here we shall only deal with flow without lift, and with steady flow where lift
occurs but where no discontinuities appear in the velocity.

In problems involving flow past a body, the domain of flow reaches to infinity.
As well as the boundary conditions at the body already mentioned, conditions at
infinity must then also be given (we have already made use of these in Sect. 4.2).
We only state these conditions, which are based on the existence of the integrals
occurring in Green’s formulae (e.g. (4.114)), from potential theory.

If U1i is the velocity at infinity, we then have

(a) for a three-dimensional rigid body

ui 	U1i þO r�3	 

for r ! 1; ð10:55Þ

or

U	U1ixi þO r�2	 

for r ! 1; ð10:56Þ

i.e., the perturbation in the velocity originating from the body must die away as r –3;

(b) for a plane rigid body without circulation

ui 	U1i þO r�2	 

for r ! 1; or ð10:57Þ

(c) for a plane rigid body with circulation

ui 	U1i þO r�1
	 


for r ! 1: ð10:58Þ

If the body experiences a change in volume, we then have in the three-dimensional
case
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ui 	U1i þO r�2
	 


for r ! 1;

and for the plane two-dimensional case

ui 	U1i þO r�1	 

for r ! 1:

The “direct problem” of potential theory is mathematically represented as fol-
lows: the surface of the body (Fig. 10.4) is given in the most general case as
F ~x; tð Þ ¼ 0: Then Laplace’s equation is to be solved under the boundary condition
(4.170) and the condition at infinity (10.56). With U known, we determine the
velocity field from ui ¼ @U=@xi and the pressure from Bernoulli’s equation

@U
@t

þ 1
2
@U
@xi

@U
@xi

þ p
.
¼ C; ð10:59Þ

where we have assumed that the pressure is constant at infinity and only the
pressure differences caused by the motion are of interest, so that the mass body
force does not appear explicitly in (10.59). The direct problem can, with reasonable
effort, only be solved in a closed form for a few bodies which are geometrically
very simple, like rectangles, spheres, cylinders and, ellipsoids. For the body shapes
met in practice we are reduced to using numerical methods.

Therefore in what follows we shall deal with the indirect problem, where we
examine known solutions of Laplace’s equation to see if they represent flows of
practical interest. In doing this, solutions from electrostatics, in particular, can be
carried over to fluid mechanics.

10.3.1 Simple Examples of Potential Flows

In these indirect problems we shall first examine solutions in the form of polyno-
mials. In this manner we are led to three solutions of particular importance:
translation flows, plane two-dimensional, and rotationally symmetric stagnation
point flows.

Fig. 10.4 Flow past a body
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The potential of the translational flow is given by

U ¼ U1ixi ¼ U1xþV1yþW1z; ð10:60Þ

we have already used this in (10.56). Equation (10.60) clearly satisfies Laplace’s
equation. The potential of the translational flow is part of every flow past a finite
body. The particular form, for which the velocity vector

~u ¼ rU ¼ U1~ex þV1~ey þW1~ez

is parallel to the x-axis, is

U ¼ U1x; ð10:61Þ

and is called parallel flow.
The polynomial

U ¼ 1
2

ax2 þ by2 þ c z2
	 
 ð10:62Þ

satisfies Laplace’s equation

@2U
@x2

þ @2U
@y2

þ @2U
@z2

¼ 0; ð10:63Þ

assuming the coefficients satisfy the condition

aþ bþ c ¼ 0: ð10:64Þ

The choice c = 0, that is a = –b, leads to steady plane stagnation point flow

U ¼ a
2

x2 � y2
	 


; ð10:65Þ

with the velocity components

u ¼ ax;

t ¼ �ay;

w ¼ 0:

ð10:66Þ

This represents the inviscid flow against a flat wall (Fig. 10.5). From (1.11) we
obtain the equation of the streamlines as
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dy
dx

¼ � y
x
; ð10:67Þ

and integrating this leads to hyperbolae

x y ¼ x0y0; ð10:68Þ

where x0, y0 is the position through which the streamline runs. From
Bernoulli’s equation (10.59) and with (10.65) it follows that the pressure distri-
bution is

a2

2
x2 þ y2
	 
þ p

.
¼ pg

.
; ð10:69Þ

where Bernoulli’s constant C is determined by the pressure at the stagnation point.
The stagnation point is the point on the body at which the velocity vanishes
~u ¼ 0ð Þ; the pressure there is pg, and, from Bernoulli’s equation, this is the highest
pressure occurring at the body. The lines of equal pressure (isobars) are circles. The
pressure at the wall decreases in the direction of flow, so that no boundary layer
separation occurs even for viscous flow. Contrary to a flow where the pressure
increases in the direction of flow, fluid particles in the boundary layer here do not
come to a standstill. As we shall show in Sect. 12.1, the boundary layer in the
present case has constant thickness, which tends to zero as � ! 0:

Plane stagnation point flow is met close to the stagnation point (or more exactly,
the stagnation line) of a plane body (Fig. 10.6), but it is only realized locally there,
as we see from the fact that the incident flow velocity tends to infinity as y ! 1.

Fig. 10.5 Plane stagnation point flow
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Within the framework of the inviscid theory, each streamline can be viewed as a
wall, in particular the streamline x = 0, i.e., the y-axis, but we see here that this
potential flow would not occur in a real (viscous) fluid.

Now along the y-axis the pressure in the direction of flow increases. In the
boundary layer formed along the y-axis the fluid particles have lost kinetic energy,
and their remaining kinetic energy is not enough to advance them into the region of
increasing pressure. The motion comes to a standstill and thus to boundary layer
separation, as sketched in Fig. 10.7. We examine the boundary layer separation
and the eddy creation in creeping flows in Chaps. 12 and 13.

If we consider now the flow in all four quadrants, no solid wall appears on which
the no slip boundary conditions would be enforced physically and so the potential
flow satisfies all boundary conditions. By (4.11) it is then an exact solution of
Navier–Stokes equations.

The choice b = a, that is c = –2a, in (10.62) leads to the potential of rotationally
symmetric stagnation point flow (Fig. 10.8)

Fig. 10.6 Flow past a plane airfoil close to the forward stagnation point

Fig. 10.7 Flow in a right-angled corner
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U ¼ a
2

x2 þ y2 � 2z2
	 


; ð10:70Þ

whose velocity components are

u ¼ ax; t ¼ ay; w ¼ �2az: ð10:71Þ

The equations for the streamlines can be brought to the form

dx
dy

¼ u
t
¼ x

y
;

dx
dz

¼ u
w
¼ � x

2z
;

dy
dz

¼ t
w
¼ � y

2z
: ð10:72Þ

The integral curves of the first equation in (10.72) represent the projection of the
streamlines into the x-y-plane. These are the straight lines

x ¼ C1y ð10:73Þ

through the origin. The integral curves of the two other differential equations are the
projections into the x-z-plane

x2z ¼ C2; ð10:74Þ

Fig. 10.8 Rotationally symmetric stagnation point flow
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and into the y-z-plane

y2z ¼ C3: ð10:75Þ

From Bernoulli’s equation we extract the pressure field as

a2

2
x2 þ y2 þ 4z2
	 
þ p

.
¼ pg

.
; ð10:76Þ

where pg is again the pressure in the stagnation point.
We are led to unsteady stagnation point flow if the coefficient a depends on the

time: a = a(t). The directions of the associated velocity fields (10.66) and (10.71)
are clearly steady, and so they are of the form (1.13). The streamlines are fixed in
space for unsteady stagnation point flow too, as we see directly from the fact that
a does not arise in the equations for the streamlines. In order to determine the
pressure field we now have to apply Bernoulli’s equation for unsteady flow, leading
to

1
2
da
dt

x2 þ y2 � 2z2
	 
þ a2

2
x2 þ y2 þ 4z2
	 
þ p

.
¼ pg

.
: ð10:77Þ

Of particular importance in potential theory are singular or fundamental solutions.
With the help of these fundamental solutions, solutions to the direct problem can
also be formed using, for example, integration processes. As a typical example we
consider the potential of a point source

U ¼ A
r
; ð10:78Þ

which we met in Eq. (4.115) as a Green’s function. Just as was the case there, r is
the distance from the position~x0 of the source to the position~x where the potential U
is given by (10.78). Therefore in Cartesian coordinates

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2 þ z� z0ð Þ2

q
; ð10:79Þ

and for the source at the origin~x0 ¼ 0 then

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
¼ ffiffiffiffiffiffiffi

xjxj
p

: ð10:80Þ
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Equation (4.111) shows the importance of this singular solution in potential theory.
Here the intuitive interpretation should stand in the foreground, but first we show
that (10.78) satisfies Laplace’s equation. In index notation it follows that

@U
@xi

¼ � A
r2

@r
@xi

¼ � A
r3
xi; ð10:81Þ

and further

@2U
@xi@xi

¼ � A
r3
@xi
@xi

þ 3
A
r4
xixi
r

¼ A
r3

�3þ 3ð Þ ¼ 0: ð10:82Þ

Therefore Laplace’s equation is satisfied where r 6¼ 0. In order to evaluate the
behavior at the singular point we calculate the volume flux (for simplicity) through
the surface of a sphere with radius r, which we call the strength m of the source

m ¼
ZZ
Ssphð Þ

~u 
~n dS ¼
ZZ
Ssphð Þ

@U
@xi

ni dS ¼
ZZ
Ssphð Þ

@U
@r

dS: ð10:83Þ

With the surface element dX of the unit sphere we find

m ¼
ZZ
Ssphð Þ

�A dX ¼ �4pA: ð10:84Þ

The strength is independent of the radius of the sphere, and we write for the
potential of the source

U ¼ � m
4p

1
r
: ð10:85Þ

We take a source to be the fundamental solution (10.85) with positive strength
m > 0, and a sink to be the same solution with negative strength m < 0. The sink
flow is realized physically when the volume flux m is withdrawn by suction almost
at a point, for example by a very thin tube (Fig. 10.9), but note that the source flow
cannot be realized in this manner.

The volume flux m violates the continuity equation at the singularity r = 0,
where div~u ¼ DU tends to infinity. This fact can be described with the help of the
Dirac delta function d ~x�~x0ð Þ: The delta function is a generalized function with the
properties
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d ~x�~x0ð Þ ¼ 0 for ~x 6¼~x0 ð10:86Þ

and ZZZ
V0ð Þ

f ~x0ð Þd ~x�~x0ð ÞdV 0 ¼ f ~x0ð Þ; ð10:87Þ

if~x lies in the domain of integration (V 0), otherwise the integral vanishes. Using this
we write

div ~u ¼ @2U
@xi@xi

¼ m d ~x�~x0ð Þ ð10:88Þ

and we see that the continuity equation is satisfied everywhere with the exception of
the singular point~x ¼~x0: With f ~x0ð Þ ¼ m, (10.87) readsZZZ

V0ð Þ

m d ~x�~x0ð ÞdV 0 ¼ m: ð10:89Þ

If we now consider (10.88) as Poisson’s equation (4.102), from its solution
(4.103) it follows that the potential of the source is

U ¼ � m
4p

ZZZ
1ð Þ

d ~x00 �~x0ð Þ
~x�~x00j j dV 00 ¼ � m

4p
1

~x�~x0j j ; ð10:90Þ

from which with~x0 ¼ 0 we again obtain (10.85). The breakdown of the continuity
equation at the singular point is not troublesome if this point is excluded from the

Fig. 10.9 Realizing a point sink and a point source

10.3 Incompressible Potential Flow 365



region of interest. We calculate the pressure distribution as before from
Bernoulli’s equation (10.59) as

1
2
uiui þ p

.
¼ 1

2
A2r�4 þ p

.
¼ C; ð10:91Þ

and see that the isobaric surfaces are those with r = const, and that the pressure falls
off as r–4.

Often flow fields of technical interest are obtained if we superimpose the
potential of the singularities with the potential of the translational or parallel flow.
Because of the linearity of Laplace’s equation the sum of the potentials will also
satisfy it. From the superposition of the parallel flow with the potential of the point
source at the origin, for example, we obtain the potential

U ¼ U1x� m
4p

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p ; ð10:92Þ

which, in spherical coordinates r, #, u, (Appendix B) reads

U ¼ U1r cos#� m
4p

1
r
: ð10:93Þ

We first determine whether this flow has a stagnation point, that is, we look for the
place where ui = 0. Using (10.81), we get the velocity in index notation as

ui ¼ U11d1i þ m
4p

1
r3
xi; ð10:94Þ

since U∞i has only one component in the x1-direction. From the requirement that
u2 = u3 = 0 we conclude that the stagnation point must lie on the x1-axis. There
x2 = x3 = 0, and r = |x1|, therefore

u1 ¼ U1 þ m
4p

x1
x1j j3 : ð10:95Þ

The equation u1 = 0 only has a real solution on the negative x-axis (x1 = x = –|x|),
and therefore the stagnation point lies at

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

4pU1
:

r
ð10:96Þ

At this place the velocity from the source is exactly equal to the incident flow
velocity at infinity. The streamline through the stagnation point divides the fluid of
the outer flow from the source fluid (Fig. 10.10). This streamline can be viewed as
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the wall of a semi-infinite rotationally symmetric body, so that the outer flow
represents the flow past such a body. For r ! ∞ we again obtain U∞ for the
velocity of the outer flow, just as for the source flow. The fluid coming out of the
source flows through the cross-section p R2, so that

m ¼ U1pR2; ð10:97Þ

from which we calculate the radius of the body as

R ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

pU1

r
: ð10:98Þ

Since we are dealing with a flow which is rotationally symmetric about the x-axis,
we use spherical coordinates. With the vector element d~x in spherical coordinates
(Appendix B) we obtain the equation of the streamline as

dr
d#

¼ r
ur
u#

; ð10:99Þ

and bring this equation into the form

r urd#� u#dr ¼ 0: ð10:100Þ

If the left-hand side of (10.100) is a total differential of a function W(r, #), then

Fig. 10.10 Flow past a semi-infinite, rotationally symmetric body from the superposition of the
source potential with the potential of the parallel flow

10.3 Incompressible Potential Flow 367



W r; #ð Þ ¼ const ð10:101Þ

is the solution of (10.99). The integrating factor which turns (10.100) into an exact
differential equation is r sin #; thus we find the total differential

r2ur sin# d#� r u# sin# dr ¼ dW; ð10:102Þ

for which the necessary and sufficient condition is provided by the continuity
equation in spherical coordinates

r 
~u ¼ @

@r
r2ur sin#
	 
þ @

@#
r u# sin#ð Þ ¼ 0: ð10:103Þ

We call W the stream function, and in this case of rotationally symmetric flow,
Stokes’ stream function, and we note that this result is independent of the
requirement that curl ~u ¼ 0, and so it also holds for rotational and viscous flows.
From (10.102) we now infer the equations

�r u# sin# ¼ @W
@r

ð10:104Þ

and

r2ur sin# ¼ @W
@#

; ð10:105Þ

from which we see that in rotationally symmetric flow the velocity components can
be calculated also from the stream function W. From the condition curl ~u ¼ 0, we
obtain, with (10.104) and (10.105), the following differential equation for rota-
tionally symmetric flows

@

@#

1
r2 sin#

@W
@#

� �
þ @

@r
1

sin#
@W
@r

� �
¼ 0; ð10:106Þ

to be satisfied by W. We note that, contrary to plane two-dimensional flow, W here
does not satisfy Laplace’s equation. (A stream function can be introduced in the
same manner in cylindrical coordinates for rotationally symmetric flow. The same
also holds for plane two-dimensional flows.)

From (10.104) and (10.105) we now calculate the stream function of the point
source and parallel flow: with ur ¼ @U=@r it follows that
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ur ¼ U1 cos#þ m
4p

1
r2

¼ 1
r2 sin#

@W
@#

; ð10:107Þ

and therefore for the stream function

W ¼ U1
r2

2
sin2 #� m

4p
cos#þ f rð Þ: ð10:108Þ

By inserting this result into (10.104) and using

u# ¼ 1
r
@U
@#

¼ �U1 sin#

we obtain the condition df/dr = 0, i.e., f(r) = const. Up to a constant the stream
function then reads

W ¼ U1
r2

2
sin2 #� m

4p
cos#; ð10:109Þ

from which we read off the stream function of a source in the origin

W ¼ � m
4p

x
r
; ð10:110Þ

or of a source at position (x′, y′, z′)

W ¼ � m
4p

x� x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y� y0ð Þ2 þ z� z0ð Þ2

q : ð10:111Þ

With this we extract the equation of the streamlines from (10.101)

W ¼ const ¼ U1
r2

2
sin2 #� m

4p
cos#: ð10:112Þ

According to (10.96) we have at the stagnation point # = p and therefore

const ¼ m
4p

; ð10:113Þ

from which, with (10.98) we finally obtain the equation of the stagnation streamline
as
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r ¼ R
sin#

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos#

2

r
: ð10:114Þ

From Bernoulli’s equation

.
2
U2

1 þ p1 ¼ pþ .
2
ui ui ð10:115Þ

we calculate the pressure at the stagnation point as

pg ¼ .
2
U2

1 þ p1; ð10:116Þ

where the pressure pg is the stagnation pressure, and .U2
1
�
2 the dynamic pressure.

If we were to place a pressure tap at the stagnation point of the body in Fig. 10.10,
we would measure the stagnation pressure, as in (10.116). At a pressure tap on the
(almost) cylindrical part of the body some distance behind the stagnation point,
we would measure the static pressure prevailing there. For the dynamic pressure
. ui ui / 2, which can be defined at every point in the flow field, we find, from
(10.94) and (10.98) the asymptotic behavior

.
2
ui ui 	 .

2
U2

1 1þ 1
2

R=rð Þ2 þO R=rð Þ4
� �

; ð10:117Þ

which, together with Bernoulli’s equation, shows that at a point on the surface of
the body whose distance from the stagnation point is large compared with R, the
static pressure p is practically equal to the static pressure p∞ at infinity. This fact is
exploited by the Prandtl tube, with which the dynamic pressure and therefore the
velocity can be measured (Fig. 10.11). In doing this it is not necessary that the form
(10.114) be realized, but a well rounded nose of the Prandtl tube is sufficient.

In the same manner, sources and sinks can be arranged on the x-axis to generate
the flow past a spindle shaped body, as sketched in Fig. 10.12. The contours of the
body are calculated using the same methods which led to (10.114). For closed
bodies the sum of the strengths of sources and sinks must vanish (closure condition)X

mi ¼ 0: ð10:118Þ

In an obvious manner we shall generalize the methods discussed to a continuous
distribution of sources, and shall consider as the simplest case a source distribution
on a line l along the x-axis (Fig. 10.13). Let q(x′) be the source intensity (strength
per unit length), which can be positive (source) or negative (sink), then the closure
condition reads
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Fig. 10.12 Body generated by sources and sinks

Fig. 10.11 Prandtl tube
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Z l

0

q x0ð Þdx0 ¼ 0: ð10:119Þ

The potential of a source at position x′, with the infinitesimal strength dm = q(x′)dx′
is

dU ¼ � q x0ð Þdx0

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y2 þ z2

q : ð10:120Þ

Integration over the source distribution and superposition with the potential of the
parallel flow leads to the total potential of

U ¼ U1x� 1
4p

Z l

0

q x0ð Þdx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y2 þ z2

q : ð10:121Þ

Since the flow is rotationally symmetric it is sufficient to view it in the x-y-plane,
thus to set z = 0. By suitable distribution of q(x′), different forms of spindle-shaped
bodies can be generated. In order to calculate the contour we require the stream
function of a source distribution, which, in analogy to (10.121), we find by inte-
grating the stream function (10.111) for an infinitesimal source at the position x′ and
the superposition of a parallel flow

W ¼ U1
y2

2
� 1
4p

Z l

0

q x0ð Þ x� x0ð Þdx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y2

q : ð10:122Þ

Fig. 10.13 Source distribution
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Figure 10.14 shows a body generated in the above manner, and a comparison of the
theoretical with the measured pressure coefficient. This comparison is also inter-
esting for historical reasons, because it was one of the first systematic pieces of
work in the field of aerodynamics. The theoretical pressure coefficient follows from
Bernoulli’s equation as

cp ¼ p� p1
.=2ð ÞU21

¼ 1� u2 þ t2

U21
; ð10:123Þ

where the Cartesian velocity components u and t are found from the gradient of the
potential (10.121).

The direct problem can also be computed with the help of the singularity dis-
tribution. Here the source distribution is to be determined for a given body contour,
which leads to an integral equation. We are also led to an integral equation if the
function U ~xð Þ in (10.121) is given and we are now looking for the source intensity
q(x′). Incidentally not all rotationally symmetric bodies can be represented by a
source distribution on the x-axis. For example, no body, blunter than the body
found from the superposition of a translational flow and a point source can be

Fig. 10.14 Spindle-shaped airfoil with theoretical and measured pressure coefficient (after
Prandtl)
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generated in this manner, and we must turn from a line distribution to a surface
distribution of sources for an arbitrarily shaped body.

Apart from the indirect problems just discussed, and the direct problems, which
we shall treat in Sect. 10.4.9, there is a third class of problems of considerable
interest, namely to determine a body shape, which on the surface generates a
constant pressure (except near the fore and aft stagnation points, where this is
obviously not possible). This question arises for example if it is desirable to keep
the surplus speed on the surface of the body as small as possible, or in connection
with cavitation problems. As already mentioned in Sect. 8.3.2 cavitation occurs in
the flow of liquids past bodies when the pressure drops below vapor pressure. At
sufficiently high velocity, the vapor bubble stays attached to the body and we speak
of supercavition typically encountered behind circular disks with axis normal to the
flow direction. In the interior of the cavity the vapor is practically at rest and the
pressure is constant and equal to the vapor pressure. The surface of the cavity is a
free surface and if we neglect surface tension, justified on account of the small
curvatures, the pressure difference across the free surface vanishes (6.31). For the
outer flow, the cavity acts as a body and the determination of the shape of the free
surface amounts to finding a body shape, which generates a constant pressure on its
surface and therefore a constant velocity. Such cavities occur quite often e.g. on
highly loaded blades of hydraulic machinery or propellers and are undesirable since
they can adversely affect the efficiency. But under special circumstances one tries
purposely to achieve supercavitation, for example if one wishes to move a vehicle
through the liquid with the smallest possible drag. Such vehicles are equipped with
a cavitator at the bow, which generates the cavity that encloses the remaining body.
This part of the body has practically no drag quite independent of its shape (The
cavitator of course experiences a drag, but it is much smaller than the drag which
the fully wetted body would have).

Using the methods of the theory of functions, two-dimensional plane flow
problems with free surfaces can still be handled with relative ease (see
Sect. 10.4.7), but in general these problems are difficult, even in rotationally
symmetric flows that we are treating here. The difficulty is in part due to the fact,
that the boundary conditions (4.169) and (4.173) must be satisfied on a not yet
known boundary. The determination of the cavity shape is a difficult numerical
problem, which we cannot go into here. But the constant pressure body is already a
very good description of the actual cavity.

In fact the first computations of the cavity shape use this idea (Reichardt 1944)
and his most convenient approximate formula for the shape is still in use.

We start from (10.122) and render the coordinates in the x, y-plane of the
rotationally symmetric flow dimensionless, using half of the source distribution
length l / 2 Fig. 10.13. We introduce with U∞(l / 2) q(x′) the dimensionless source
distribution and refer the stream function to U∞ l 2 / 4 which brings (10.122) to the
form
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w ¼ y2

2
� 1
4p

Z 2

0

q x0ð Þ x� x0ð Þdx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y2

q : ð10:124Þ

It will be shown, that the superposition of only three source distribution leads to
an almost constant pressure distribution. These are: a linear source distribution
q1 = –2 (x′ – 1), a cubic distribution q2 = –4 (x′ – 1)3, a source of strength +m at
x = 0 together with a source of strength –m (sink) at x = 2. Each of these distri-
butions satisfy the closure condition

Z 2

0

q x0ð Þdx0 ¼ 0 ð10:125Þ

so the body will be closed. For the whole source distribution we set q(x′) =
A(q1 + bq2 + cq3), with still unknown constants A, b, c, and write for the stream
function

w ¼ y2

2
� A
4p

Z 2

0

q1 x0ð Þ x� x0ð Þdx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y2

q þ b
Z 2

0

q2 x0ð Þ x� x0ð Þdx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y2

q
0
B@

þ c
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p � x� 2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� 2ð Þ2 þ y2
q

0
B@

1
CA
1
CA;

ð10:126Þ

where the stream function of the source-sink has been taken directly from (10.111).
The other integrals can be solved in closed form, but we prefer a numerical inte-
gration and label them w1 and w2. The body contour is given by w = 0 which
provides an implicit relation for the contour y = yB(x). At first, estimated values for
the constants b, c should be used. Then we determine the constant A by choosing
the dimensionless radius R. This radius appears at x = 1 (from symmetry) and fixes
the aspect ratio of the cavity. Evaluating (10.126) with the estimated values we find

A ¼ 2 pR2

w1 1;Rð Þþ bw2 1;Rð Þþ 2c
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ 1
p : ð10:127Þ

For a list of x-coordinates the equations w = 0 are then solved numerically for the
y-coordinates. These are of course the coordinates of the contour y = yB(x).
Introducing the body contour into (10.123) leads to cp(x, yB(x)) = cp(x). The
constants b, c are now found by trial and error. However if after each trial the
function cp(x) is plotted, the correct choice may be found rather quickly. For the
choice R = 0.16 the values b = 0.145 and c = 0.214 are thus found. The resulting
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contour is shown in Fig. 10.15 and the (negative) pressure coefficient –cp(x) in
Fig. 10.16. (Note that Fig. 10.16 is only a section of the whole graph –cp(x), thus
the coefficient at the stagnation points is out of bounds.) The evaluation of (10.123)
requires the velocity components u, v. For the rotationally symmetric flow here,
these may be determined using the stream function, thus avoiding the use of the
potential function as was done using spherical coordinates with (10.104) and
(10.105). The continuity equation r 
~u ¼ 0 in cylindrical coordinates (from B2)
with @=@u ¼ 0 is

@ urrð Þ
@r

þ @ uzrð Þ
@z

¼ 0; ð10:128Þ

where we have temporarily reverted to dimensional coordinates. Equation (10.128)
is necessary and sufficient for the differential

dw ¼ uzr dr � ur r dz ð10:129Þ

Fig. 10.16 Pressure coefficient of constant pressure body

Fig. 10.15 Constant pressure body
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to be a total differential. Thus

uz ¼ 1
r
@ w
@r

; ur ¼ � 1
r
@w
@z

: ð10:130Þ

Since Cartesian coordinates in the plane z = 0 correspond to z, r and the velocity
components u, t to uz, ur we write for (10.130)

u ¼ 1
y
@w
@y

; t ¼ � 1
y
@w
@x

ð10:131Þ

and in dimensionless form

u
U1

¼ 1
y
@w
@y

;
t

U1
¼ � 1

y
@w
@x

; ð10:132Þ

which may also be used in computing the pressure coefficient.
That part of the body where the pressure is very nearly constant may be con-

sidered as the cavity contour. The part of the body near the front stagnation point is
taken up by the cavitator so the change in pressure there is of no consequence in this
application. The rear stagnation point cannot be part of a bubble since the pressure
there would have to be equal to the vapor pressure, while on the other hand it
should be the stagnation pressure. There are closure models to circumvent this
problem, but they are not free of contradictions. It is very doubtful, if the rear part
of the cavity can be properly handled within potential theory. Experimentally one
observes unsteady flow at rear part of the cavity with intermittent ejection of vapor
from the cavity.

In connection with cavitation we point out that the negative pressure coefficient
is here called Cavitation Number r

r ¼ p1 � pt
.=2ð ÞU21

; ð10:133Þ

and is the most important characteristic number in cavitation problems. It is note-
worthy, that only the difference between the pressure at infinity and the pressure in
the bubble is important. The pressure in the bubble can be increased (within limits)
be bleeding foreign gas into the cavity and thereby control the cavitation number.
This fact increases the usable range of supercavitating vehicles considerably. We
also mention that an approximate solution for the cavity shape may be found for
r � 1.

We shall now consider the potential of a source (strength +m) and a sink
(strength –m) on the x-axis at distance Dx (Fig. 10.17)
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U ¼ m
4p

Dx
x� Dxð Þ2 þ y2 þ z2

h i�1=2
� x2 þ y2 þ z2ð Þ�1=2

Dx
: ð10:134Þ

We now let the distance Dx shrink to zero and simultaneously raise the strength, so
that

lim
Dx!0;m!1

mDx ¼ M: ð10:135Þ

Because of

lim
Dx!0

x� Dxð Þ2 þ y2 þ z2
h i�1=2

� x2 þ y2 þ z2ð Þ�1=2

Dx
¼ @ �r�1ð Þ

@x
¼ x

r3
ð10:136Þ

the potential

U ¼ M
4p

x
r3

ð10:137Þ

of a dipole at the origin results, which in spherical coordinates reads

U ¼ M
4p

cos#
r2

: ð10:138Þ

The direction from the sink to the source is the direction of the dipole, and we call
M the magnitude of the dipole moment. For this reason the dipole moment is a
vector; for the orientation chosen here we have

Fig. 10.17 Source-sink pair
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~M ¼ �M~ex; ð10:139Þ

and in general we obtain the potential of a dipole at the coordinate origin to be
(Fig. 10.18)

U ¼ �
~M 
~x
4p~xj j3 : ð10:140Þ

For the velocity in the radial direction we find

ur ¼ @U
@r

¼ � M
2p

cos#
r3

; ð10:141Þ

and therefore for r = r0

ur r ¼ r0ð Þ ¼ � cos# 
 const: ð10:142Þ

If we now consider a sphere which moves with velocity

~U ¼ �U~ex ð10:143Þ

(Fig. 10.19), then of course every point on its surface moves with the velocity –U in
the x-direction. The component of the velocity normal to the surface of the sphere is

Fig. 10.18 Streamlines and equipotential lines of a three-dimensional dipole
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~U 
~n ¼ �U~ex 
~er ¼ �U cos#: ð10:144Þ

For

~U ¼ M
!
2pr30

; ð10:145Þ

the normal component of the velocity of the dipole on a spherical surface r = r0 is
then equal to the normal component of the sphere velocity. But then the value of the
velocity is uniquely determined everywhere because the solution of Laplace’s
equation is unique.

Therefore the dipole field is identical to the velocity field caused by a sphere
instantaneously at the origin moving with the velocity according to (10.145). In this
instant the flow has the potential

U¼ � r30
2

~U 
~x
~xj j3 : ð10:146Þ

At another instant, when the sphere is at the position~a (Fig. 10.20) we obtain the
potential

U¼ � r30
2

~U 
 ~x�~að Þ
~x�~aj j3 ¼ � r30

2

~U 
~r
r3

: ð10:147Þ

If we superimpose the potential (10.146) with the potential of the parallel flow,
whose velocity corresponds to the negative velocity of the sphere

Fig. 10.19 The normal component of the velocity on the surface
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�~U ¼ U1~ex;

we bring the sphere to rest and obtain the potential of steady flow past a sphere at
the origin. In Cartesian coordinates it reads

U = U1xþ r30
2
U1

x
r3
; ð10:148Þ

and in spherical coordinates

U = U1 rþ r30
2r2

� �
cos #: ð10:149Þ

We shall now compute the velocity on the surface of the sphere r = r0: for the radial
component we obtain

ur ¼ @U
@r

����r¼r0
¼ U1 1� r30

r3

� �
r¼r0

cos # ¼ 0; ð10:150Þ

as indeed has to be the case in order to satisfy the kinematic boundary condition for
a sphere at rest. The velocity component in the #-direction is

u# ¼ 1
r
@U
@#

����r¼r0
¼ �U1 1þ r30

2r3

� �
r¼r0

sin # ¼ � 3
2
U1 sin #: ð10:151Þ

The magnitude of this velocity component reaches a maximum at # ¼ p=2 and at
# ¼ 3p=2: We obtain the pressure coefficient from Bernoulli’s equation as

cp ¼ p� p1
.=2ð ÞU21

¼ 1� 9
4
sin2 #: ð10:152Þ

Fig. 10.20 Potential of the sphere
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It is obvious from symmetry reasons that the force on the sphere has no com-
ponent perpendicular to the incident flow. Since the pressure distribution is an even
function of 0, and therefore symmetric about the line # ¼ p=2; # ¼ 3p=2; the force
in the x-direction also vanishes (as can easily be demonstrated by direct compu-
tation). However this result holds more generally:

A body with no lift in steady, incompressible, inviscid potential flow experiences no drag.

This statement is contrary to experimental results and is called d’Alembert’s
paradox.

In potential flow the kinetic energy of the fluid particles increases starting from
the forward stagnation point (0 = p) on the body to reach a maximum at # ¼ p=2:
This kinetic energy is just enough to carry the fluid particles against the increasing
pressure to the rear stagnation point (0 = 0). A force towards the front is produced
on the rear half of the sphere which is exactly canceled out by the force on the front
half of the sphere. In viscous flow the particles have lost kinetic energy in the
boundary layer. Their “impetus” is not enough to bring them to the rear stagnation
point against the increasing pressure. The fluid particles come to a standstill, and the
flow separates from the body. With this any further increase in pressure is inhibited,
with the result that the force on the back hemisphere is smaller than that on the
front. Thus a drag is produced even if we disregard the friction drag due to the shear
stress at the wall. We call this contribution to the drag the pressure drag. (This drag
can be reduced by replacing the rear hemisphere with a streamlined body shape to
prevent separation and again we are led to the spindle-shaped bodies discussed
earlier.)

If we consider the flow past a body at small Reynolds’ numbers, where the
inertia forces (and therefore the kinetic energy) are small compared to the friction
forces, then the fluid particles close to the wall are pulled along by the surrounding
fluid and carried to the rear stagnation point by the then strong friction forces.
Separation then does not occur, and we see a streamline pattern resembling
superficially the streamline pattern of a potential flow.

As the Reynolds’ number increases, a separation with a steady vortex-ring is
formed behind the sphere. The streamlines still close behind the sphere and the
vortex. As the Reynolds’ number increases even further the vortex becomes larger
until it finally becomes unstable and an unsteady wake forms. Periodic vortices then
separate from the body and are carried away in the wake. The flow past a cylinder in
a cross-flow is similar, and is easier to observe. The vortices arrange themselves
into a vortex street behind the body, since this is again a stable configuration.

At even higher Reynolds’ numbers the flow in the wake becomes turbulent, but
even then large, ordered vortex-like structures are visible. It is clear that the drag
changes greatly with the different flow forms, but however complicated the flow
may be, in incompressible flow the drag coefficient cD is only a function of the
Reynolds’ number. The function cD = cD (Re) for the sphere is shown in Fig. 10.21,
together with sketches of the flow configurations at the corresponding Reynolds’
numbers Re = U d / �.
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The sharp drop off of the drag coefficient at Re � 3 � 105 is due to the transition
of the previous laminar boundary layer on the sphere to a turbulent boundary layer.
The shear stresses in the turbulent boundary layer are larger, and the outer fluid is
able to drag the fluid close to the wall towards the axis. The flow then separates later
and the wake becomes narrower. The flow which has not separated acts on a larger
part of the back of the sphere, so that a larger force in the forward direction arises
and the drag thus becomes smaller. The transition point can be shifted towards
smaller Reynolds’ numbers by roughness protrusions on the surface (as we know
from our discussion of turbulent transition in pipe flow) and then the lower drag can
be realized at lower Reynolds’ numbers (dashed line in Fig. 10.21). An example of
this can be found with golf balls, whose surfaces are artificially “roughened”
dimples by indentations.

10.3.2 Virtual Masses

The previous discussion has shown that steady potential flow past a sphere or other
blunt body is not found in nature because of the boundary layer separation.
However if we suddenly accelerate a body from rest, the flow is described well by
potential theory within a certain period of time s	Oðd=uÞ. If the acceleration is
large, the inertial forces are larger than the viscous forces and the flow behaves

Fig. 10.21 Drag coefficient of the sphere
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almost as if it were inviscid. On the other hand, the accelerated body must set the
surrounding fluid into motion and therefore perform work, which must again be
found in the kinetic energy of the fluid. However this means that even a body with
no lift experiences a drag if it is accelerated. This drag manifests itself in many
technical applications, for example in oscillations of machine parts immersed in
high density fluid, as in the oscillation of blades in hydraulic machines. The drag
acts like an apparent increase in the oscillating mass (added or virtual mass). These
virtual masses can be estimated within the framework of potential theory. We shall
demonstrate this in an example of a sphere moving through a fluid at rest with a
velocity which varies in time. We choose a coordinate system fixed in space, for
which the potential takes from (10.147) the form

U ¼ � 1
2
r30Ui tð Þ rir3 ; ð10:153Þ

with~r ¼~x�~a and r ¼ ~rj j ¼ ffiffiffiffiffiffi
rjrj

p
: We note that ~a depends on t and therefore so

does~r, and thus the potential itself varies in time, even if the sphere moves with
constant velocity.

We shall calculate the force on the sphere by integration of the pressure dis-
tribution. Let the pressure at infinity be p∞, according to (10.153) U there is zero,
and Bernoulli’s equation reads

@U
@t

þ 1
2
ujuj þ p

.
¼ p1

.
: ð10:154Þ

As we already know, the terms 1
2ujuj, which also occur in the steady case, must

cancel out in the integration for the force; therefore we shall ignore them right
away. With (10.153) we obtain for @U=@t

@U
@t

¼ � 1
2

r0
r

� 3
rj
dUj

dt
� UjUj þ 3

r2
UiUjrirj

� �
: ð10:155Þ

According to d’Alembert’s paradox, only the term with dUj
�
dt can provide a

contribution to the force, as we can convince ourselves by explicit calculation.
The other term results from the fact that U is time dependent even for constant

sphere velocity. The pressure on the surface r = r0 arising from this term, because
of rj / r0 = nj is

p� p1
.

¼ 1
2
r0nj

dUj

dt
: ð10:156Þ

Since incompressible flow without circulation react immediately to the instan-
taneous boundary conditions, it is sufficient to compute the force at the instant in
which the center of the sphere passes the coordinate origin. For the sphere moving
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with U in the positive x-direction, we compute the non-vanishing x-component of
the force as

Fx ¼ �
ZZ
Sð Þ

p cos # dS;

with dS ¼ r20 sin# d# du :

Fx ¼ � .
2
dU
dt

r30

Z2p
0

Zp

0

cos2 # sin# d# du ¼ � 2
3
pr30.

dU
dt

: ð10:157Þ

Therefore the sphere experiences a force acting against the acceleration. This
statement is valid independent of the chosen coordinate system. If an external force
Xx acts on the sphere of mass M, then, taking the drag force Fx into account, it
follows from Newton’s second law that

M
dU
dt

¼ Xx þFx; ð10:158Þ

or

Xx ¼ Mþ 2
3
pr30.

� �
dU
dt

: ð10:159Þ

Therefore if we wish to calculate the acceleration of a sphere in fluid due to an
external force, to the actual mass of the sphereM must be added the added or virtual
mass

M0 ¼ 2
3
pr30.: ð10:160Þ

This mass is due to the fact that both the sphere and the surrounding fluid must be
accelerated.

The virtual mass of the sphere is precisely half of the fluid mass displaced by the
sphere. The additional work per unit time which is performed during acceleration as
a consequence of the virtual mass must then be equal to the change in the kinetic
energy of the fluid. The kinetic energy in the volume V of fluid is given by

K ¼
ZZZ
Vð Þ

.
2
uiui dV ¼ .

2

ZZZ
Vð Þ

@U
@xi

@U
@xi

dV : ð10:161Þ

10.3 Incompressible Potential Flow 385



With

@

@xi
U
@U
@xi

� �
¼ @U

@xi

@U
@xi

þU
@2U
@xi@xi

ð10:162Þ

and

@2U
@xi@xi

¼ 0;

it follows that

K ¼ .
2

ZZZ
Vð Þ

@

@xi
U
@U
@xi

� �
dV ; ð10:163Þ

and further from Gauss’ theorem

K ¼ .
2

ZZ
Sð Þ

U
@U
@xi

ni dS ¼ .
2

ZZ
Sð Þ

U
@U
@n

dS: ð10:164Þ

The total kinetic energy of the fluid contained between the surface of the sphere Ss
and a surface S∞ surrounding the whole fluid and extending to infinity (r ! 1,
Fig. 10.22) is

Fig. 10.22 Integration domain
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K ¼ � .
2

ZZ
Ssð Þ

U
@U
@r

dSþ .
2

ZZ
S1ð Þ

U
@U
@r

dS: ð10:165Þ

For a sphere instantaneously at the origin, the potential in spherical coordinates is

U ¼ � r30
2r2

U cos #: ð10:166Þ

From this we calculate

@U
@r

¼ U
r30
r3
cos #; ð10:167Þ

and obtain from (10.165)

K ¼ � 1
4
r60U

2. �
ZZ
Ssð Þ

r�5 cos2 # dSþ
ZZ
S1ð Þ

r�5 cos2# dS

0
B@

1
CA: ð10:168Þ

The second integral vanishes in the limit r ! ∞, and therefore the kinetic energy
in the fluid is

K ¼ 2
3
pr30.

U2

2
: ð10:169Þ

The change in the kinetic energy is

dK
dt

¼ 2
3
pr30.U

dU
dt

; ð10:170Þ

and equal to the work per unit time of the virtual mass

M0 dU
dt

U ¼ 2
3
pr30.

dU
dt

U: ð10:171Þ

As an example we shall consider a sphere of mass M under the influence of gravity
in an infinitely extending fluid. The force of gravity M g acts on the sphere. In
addition the sphere experiences a hydrostatic lift which is equal to the weight of the
displaced fluid (with (10.160) then 2M0g). The drag due to the virtual mass acts
against the acceleration. Therefore the equation of motion reads

10.3 Incompressible Potential Flow 387



MþM0ð Þ dU
dt

¼ M g� 2M0g; ð10:172Þ

or

dU
dt

¼ M � 2M0

MþM0 g: ð10:173Þ

with M ¼ .sV and M0 ¼ 1
2 .V we also write the acceleration as

dU
dt

¼ g
.s � .
.s þ .=2

¼ g
.s=.� 1
.s=.þ 1=2

: ð10:174Þ

If the density of the sphere is much larger than that of the fluid then the acceleration
is essentially equal to the gravitational acceleration (as, for example, for a heavy
body falling through the atmosphere). If, on the contrary, the density of the fluid is
much larger than the density of the sphere, then the sphere moves upwards with an
acceleration of 2g (as, for example, a gas bubble in a liquid).

We shall now sketch the manner of computation for the virtual mass of a general
body which carries out a pure translational motion: we obtain the velocity field from
the solution of Laplace’s equation under the boundary conditions

U ¼ const for r ! 1 ð10:175Þ

and

uini ¼ @U
@xi

ni ¼ @U
@n

¼ Uini for F xi; tð Þ ¼ 0: ð10:176Þ

Since both the differential equation and the boundary conditions are linear, and the
velocity of the body Ui also only appears linearly, Ui can only appear linearly in the
solution, which must therefore have the form

U ¼ Uiui: ð10:177Þ

From (10.176) it follows that

@ui

@n
¼ ni for F xi; tð Þ ¼ 0; ð10:178Þ
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where the vector function ui thus only depends on the shape of the body. By
(10.177) and (10.176) the kinetic energy is

K ¼ � 1
2
UiUj

ZZ
Ssð Þ

.uinjdS; ð10:179Þ

where the negative sign appears since now nj is taken relative to the surface of the
body Ss. The integral is a symmetric second order tensor whose six independent
components are required in the general case to compute the kinetic energy of the
flow generated by the translational motion of the body. (If the body carries out a
rotation in addition to a translation, three of these tensors are required.) The
components of the tensor have the dimension of mass, and the tensor is called the
virtual or added mass tensor

mij ¼ �
ZZ
Ssð Þ

.uinjdS: ð10:180Þ

With it we can write down the kinetic energy of the fluid

K ¼ 1
2
UiUjmij: ð10:181Þ

If the vector function ui is known, then the mij can be calculated. For the case of the
sphere at the origin we have

ui ¼ � r30
2r3

xi; ð10:182Þ

and, because of nj ¼ xj
�
r0, the virtual mass tensor is computed from

mij ¼ .
2r0

ZZ
Ssð Þ

xixj dS: ð10:183Þ

It is easily shown that the tensor mj in this case is spherically symmetric

m11 ¼ m22 ¼ m33 ¼ M0: ð10:184Þ

Taking into account the virtual mass tensor, the equation of motion for a body of
mass M acted on by an external force Xi is
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M
dUi

dt
þmij

dUj

dt
¼ Xi: ð10:185Þ

From this equation in the form

Mdij þmij
	 
 dUj

dt
¼ Xi ð10:186Þ

we see that in general the direction of the acceleration is not the same as the
direction of the force. This becomes evident if one tries to accelerate a submerged,
asymmetric body in a certain direction.

10.4 Plane Potential Flow

For plane flows a Cartesian coordinate system can always be found where the flow
in all planes z = const is the same and the velocity component in the z-direction
vanishes. It is often useful, instead of the Cartesian coordinates x, y, to use the polar
coordinates r;u, which we obtain from cylindrical coordinates (Appendix B) by
setting z = const there.

10.4.1 Examples of Incompressible, Plane Potential Flows

Here we first have the potential of a source available as a fundamental solution (line
source, Fig. 10.23), which we met in (4.122) as Green’s function

Fig. 10.23 Plane source in the origin
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U ¼ m
2p

ln r; ð10:187Þ

with r2 ¼ ðx � x0Þ2 þðy � y0Þ2 or r2 ¼ x2 þ y2 for a source at the origin. The
velocity components in polar coordinates are then

ur ¼ @U
@r

¼ m
2p

1
r
; and ð10:188Þ

uu ¼ 1
r
@U
@u

¼ 0: ð10:189Þ

In Cartesian coordinates, the components read

u ¼ @U
@x

¼ m
2p

x
x2 þ y2

; and ð10:190Þ

t ¼ @U
@y

¼ m
2p

y
x2 þ y2

: ð10:191Þ

By superimposing a source with the parallel flow in the same manner as before, the
flow past a semi-infinite body is generated (Fig. 10.24)

U ¼ U1xþ m
2p

ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ U1r cosuþ m

2p
ln r: ð10:192Þ

As in the rotationally symmetric case, the superposition of parallel flow with line
distributions of sources and sinks gives rise to flows past cylindrical bodies of
various shapes. By differentiation of the source potential we obtain the fundamental

Fig. 10.24 Plane semi-infinite body
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solution of the dipole in the plane. The potential of a dipole at the origin orientated
in the negative x-direction reads

U ¼ M
2p

x
x2 þ y2

¼ M
2p

cosu
r

: ð10:193Þ

The velocity potential (10.193) also describes the flow past a circular cylinder with
axis in the z-direction moving to the left with velocity

U1 ¼ M
2p

1
r20
:

The superposition of a dipole with a parallel flow generates the flow past a circular
cylinder at rest. The associated potential is

U ¼ U1xþ M
2p

x
x2 þ y2

¼ U1 rþ r20
r

� �
cosu: ð10:194Þ

Another important singular solution of Laplace’s equation is the potential vortex or
straight vortex filament which we have already met. The potential of the vortex
filament coinciding with the z-axis is given by

U ¼ C
2p

u ¼ C
2p

arctan
y
x
: ð10:195Þ

For the velocity components in the r- and u-directions we find (Fig. 10.25)

ur ¼ @U
@r

¼ 0; and ð10:196Þ

Fig. 10.25 Potential vortex
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uu ¼ 1
r
@U
@u

¼ C
2p

1
r
: ð10:197Þ

The origin is a singular point: the velocity becomes infinite there. The streamlines
are circles. The flow is irrotational with the exception of the singular point. In
Sect. 6.1 we also met the velocity field (10.197) as an exact solution of the Navier–
Stokes equations, and we showed there that this potential flow arises as a limiting
case of viscous fluid between two circular cylinders, if the inner one (radius RI)
rotates and the radius of the outer one becomes infinitely large. The rotating
cylinder exerts a friction torque (per unit length) on the fluid, which, because of

sw ¼ �sur
RI

¼ �g
@uu
@r

� uu
r

�����
�

RI

¼ gC
p

1
R2
I

���� ð10:198Þ

(see Appendix B) is found to be

T ¼ sw2pR2
I ¼ 2Cg: ð10:199Þ

Therefore the torque is independent of the radius, and as a consequence every
cylinder of fluid with radius r � RI transmits the same torque. The ring of fluid
between RI and r is not accelerated, in accordance with the fact that the divergence
of the friction stresses in incompressible potential flow vanishes. However the
power of the friction torque on the cylinder r = RI is

PI ¼ T
uu
r

� 
RI

¼ 2C
gC
2p

1
R2
I

���� ð10:200Þ

and at the position r

P ¼ gC2

pr2
: ð10:201Þ

The difference

DP ¼ gC2

p
1
R2
I
� 1
r2

� �
ð10:202Þ

is dissipated into heat. This result also shows that an isolated potential vortex
without a supply of energy cannot maintain the velocity distribution (10.197). In
addition we note that the kinetic energy of this distribution is infinitely large, and
therefore physically there is no vortex whose distribution behaves as 1/r and which
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reaches to infinity. If we have the velocity distribution (10.197) at the time t = 0, at
a later time it then reads

uu ¼ C
2p

1
r

1� exp � r2

4�t

� �� �
: ð10:203Þ

We obtain this solution from the u component of the Navier–Stokes equations since
no typical length appears in the problem, so r is to be made dimensionless with
(vt)–1/2, and the solution must be a relation between the dimensionless groups

P1 ¼ uur
C

; P2 ¼ rffiffiffiffi
vt

p

(Fig. 10.26). This flow is no longer irrotational.

The superposition of a potential vortex with a sink (or source) generates a flow
whose streamlines are logarithmic spirals (spiral vortex, Fig. 10.27). The solution
of the differential equation for the streamline in polar coordinates

1
r
dr
du

¼ ur
uu

¼ m
C

ð10:204Þ

Fig. 10.26 Velocity distribution of a decaying vortex
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is

r ¼ K exp
mu
C

� 
: ð10:205Þ

This flow is known as “bathtub drainage” and has a technically important appli-
cation in the potential flow through radial cascades (see Fig. 2.9). In the bladeless
ring space, far in front of or behind the cascade, the streamlines are logarithmic
spirals, but with different values of C in front of and behind the cascade. (If the
circulation in front of the cascade is Ci, then behind the cascade it is

Co ¼ Ci þ nCb;

where Cb is the circulation of a single blade and n is the number of blades in the
cascade.)

10.4.2 Complex Potential for Plane Flows

Plane flows differ from other two-dimensional flows (with two independent vari-
ables) because the two independent variables x and y can be combined into one
complex variable

Fig. 10.27 Superposition of sink and potential vortex (logarithmic spiral)
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z ¼ xþ i y; i ¼
ffiffiffiffiffiffiffi
�1

p
: ð10:206Þ

Since every analytic function of the complex coordinate z satisfies Laplace’s
equation, the computation of both the direct and indirect problems becomes con-
siderably easier. If we know the flow past a cylindrical body whose cross-sectional
surface is simply connected (e.g. circular cylinder), then according to the Riemann
mapping theorem, we can obtain the flow past any other cylinder using a conformal
mapping. By this theorem every simply connected region in the complex plane can
by mapped into the inside of the unit circle. By doing this we have in principle
solved the problem of flow past a body, and we only need to find a suitable mapping
function.

The complex function F(z) is said to be analytic (holomorphic) in an open set G,
if it is complex differentiable at every point z there, that is the limit

lim
Dz ! 0

F zþDzð Þ � F zð Þ
Dz

¼ dF
dz

ð10:207Þ

exists and is independent of the path from z to z + Dz. If this requirement is not
satisfied, the point is a singular point.

First we note that along a path parallel to the x-axis

dF
dz

¼ @F
@x

ð10:208Þ

holds, and along a path parallel to the y-axis

dF
dz

¼ @F
@ i yð Þ : ð10:209Þ

Since every complex function F(z) is of the form

FðzÞ ¼ Uðx; yÞþ iwðx; yÞ; ð10:210Þ

we therefore have

@F
@x

¼ @U
@x

þ i
@w
@x

¼ 1
i
@U
@y

þ @w
@y

¼ 1
i
@F
@y

: ð10:211Þ

Clearly for the derivative to exist it is necessary that
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@U
@x

¼ @w
@y

and
@U
@y

¼ � @w
@x

ð10:212Þ

hold. The Cauchy-Riemann differential equations (10.212) are also sufficient for the
existence of the derivative of F(z). We can also show easily that both the real part
<ðFÞ ¼ Uðx; yÞ and the imaginary part =ðFÞ ¼ wðx; yÞ satisfy Laplace’s equation.
To do this, we differentiate the first differential equation in (10.212) by x and the
second by y and add the results. We then see that U satisfies Laplace’s equation. If
we differentiate the first by y and the second by x and subtract the results, we see
that the same also holds for w. Both functions can therefore serve as the velocity
potential of a plane flow. We choose U as the velocity potential and shall now
consider the physical meaning of w. With

~u ¼ rU ¼ @U
@x

~exþ @U
@y

~ey ¼ u~ex þ t~ey ð10:213Þ

because of (10.212) we also have

rw ¼ @w
@x

~ex þ @w
@y

~ey ¼ �t~ex þ u~ey: ð10:214Þ

From rU 
 rw ¼ 0 we conclude that rw is perpendicular to the velocity vector~u,
and therefore w = const are streamlines. We have thus identified w as a stream
function. (As already mentioned in connection with (10.104) and (10.105), the
introduction of a stream function is not restricted to potential flows.) Since an
additive constant clearly plays no role in a stream function, we can always adjust it
so that

w ¼ 0 ð10:215Þ

is the equation of the body contour. With w known, we obtain the velocity vector
directly from the formula

~u ¼ rw�~ez or ui ¼ �ij3
@w
@xj

; ð10:216Þ

therefore

u ¼ @w
@y

; t ¼ � @w
@x

; ð10:217Þ
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so that the continuity equation

@u
@x

þ @t
@y

¼ 0

is identically satisfied.
We now calculate the volume flux (per unit depth) between the points A and

B (Fig. 10.28)

_V ¼
ZA
B

uini ds ð10:218Þ

and to evaluate the integral we write ni ¼ �ik3sk, where sk ¼ dxk=ds is the unit
vector along the path of integration ds in the direction of increasing w (Fig. 10.28).

With (10.216) we then obtain

_V ¼
ZA
B

�ij3
@w
@xj

�ik3
dxk
ds

� �
ds ð10:219Þ

or with �ij3�ik3 ¼ djk also

_V ¼
ZA
B

@w
@xj

dxj ¼
ZA
B

dw ¼ wA � wB: ð10:220Þ

Fig. 10.28 Meaning of the stream function in plane flow
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This result confirms that the volume flux is independent of the path between A and
B and is equal to the difference of the values of the stream function at these points.
The velocity components can be most easily calculated using

dF
dz

¼ @F
@x

¼ @U
@x

þ i
@w
@x

¼ u� it; ð10:221Þ

where the sign of t is to be noted: dF / dz furnishes the complex conjugate velocity

dF
dz

¼ �w ¼ u� it;

that is, the reflection of the complex velocity w = u + it at the real axis.
We shall now look at some examples of complex potentials:

(a) Translational flow:

FðzÞ ¼ U1 � iV1ð Þz; ð10:222Þ

or

FðzÞ ¼ U1xþV1yð Þþ i U1y�V1xð Þ; ð10:223Þ

because of (10.210) therefore

U ¼ U1xþV1y; ð10:224Þ

w ¼ U1y�V1x: ð10:225Þ

The streamlines follow from w = const to y ¼ xV1=U1 þC and the complex
conjugate velocity is

dF
dz

¼ U1�iV1: ð10:226Þ

(b) Source flow:

F zð Þ ¼ m
2p

ln z ð10:227Þ

or because of z ¼ reiu also
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F ¼ m
2p

ln rþ iuð Þ: ð10:228Þ

With (10.210) we obtain the velocity potential and the stream function as

U ¼ m
2p

ln r; ð10:229Þ

w ¼ m
2p

u: ð10:230Þ

The streamlines w = const are straight lines through the origin.

(c) Potential vortex:

F zð Þ ¼ �i
C
2p

ln z; ð10:231Þ

where the negative sign is needed because we count C anticlockwise positive. In
polar coordinates we obtain

F ¼ �i
C
2p

ln rþ iuð Þ; ð10:232Þ

therefore

U ¼ þ C
2p

u; and ð10:233Þ

w ¼ � C
2p

ln r: ð10:234Þ

The streamlines w = const are circles (r = const).

(d) Dipole:

F zð Þ ¼ M
2p

1
z
; ð10:235Þ

or

F ¼ M
2p

1
r

cosu� i sinuð Þ ¼ M
2p

1
r2

x� iyð Þ; ð10:236Þ
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from which we read off directly

U ¼ þ M
2p

cosu
r

¼ M
2p

1
r2
x; and ð10:237Þ

w ¼ � M
2p

sinu
r

¼ � M
2p

1
r2
y: ð10:238Þ

For w = const we obtain with sin u ¼ y=r

r2 ¼ x2 þ y2 ¼ �M
C
y; ð10:239Þ

that is, the streamlines are circles which are tangent to the x-axis in the origin
(Fig. 10.29).

(e) Corner flow:

F zð Þ ¼ a
n
zn; ð10:240Þ

with z ¼ reiu it follows that

F zð Þ ¼ a
n
rn cos nuþ i sin nuð Þ; ð10:241Þ

and therefore

Fig. 10.29 Streamlines and equipotential lines of the plane dipole
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U ¼ a
n
rn cos nu; and ð10:242Þ

w ¼ a
n
rn sin nu: ð10:243Þ

For the magnitude of the velocity we obtain

~uj j ¼ dF
dz

����
���� ¼ a zn�1

�� �� ¼ aj jrn�1: ð10:244Þ

The streamlines are generally found from w = const. In particular for w = 0,
therefore sin nu ¼ 0 or u ¼ kp=n k ¼ 0; 1; 2; . . .ð Þ; these are straight lines through
the origin which can represent walls in the flow field. Figure 10.30 shows the
streamline plot for different values of the exponent n.

(f) Flow past a circular cylinder (Fig. 10.31):

F zð Þ ¼ U1 zþ r20
z

� �
ð10:245Þ

or again with z ¼ reiu

F ¼ U1 rþ r20
r

� �
cosuþ iU1 r � r20

r

� �
sinu; ð10:246Þ

and therefore

U ¼ U1 rþ r20
r

� �
cosu; and ð10:247Þ

w ¼ U1 r � r20
r

� �
sinu: ð10:248Þ

We obtain w = 0 for r = r0 and u = 0, p, …. From the complex conjugate velocity

dF
dz

¼ U1 1� r20
z2

� �
ð10:249Þ

by dF / dz = 0 we find the location of the stagnation points at z = ± r0 and deduce
the velocity components
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Fig. 10.30 Corner flow for different values of the exponent n
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u� it ¼ U1 1� e�i2u r
2
0

r2

� �
ð10:250Þ

or

u ¼ U1 1� r20
r2
cos 2u

� �
; ð10:251Þ

and

t ¼ �U1
r20
r2
sin 2u: ð10:252Þ

The maximum velocity is reached for r = r0, i.e., on the body at
u ¼ p=2; 3p=2; . . . :

Umax ¼ 2U1: ð10:253Þ

(g) Flow past a circular cylinder with potential vortex:

This superposition is possible since a potential vortex at the axis satisfies the
kinematic boundary condition at the circular cylinder. The complex potential of this
flow is

F zð Þ ¼ U1 zþ r20
z

� �
� i

C
2p

ln z=r0ð Þ; ð10:254Þ

from which we read off the velocity potential and the stream function as

U ¼ U1 rþ r20
r

� �
cosuþ C

2p
u; and ð10:255Þ

Fig. 10.31 Flow past a circular cylinder without circulation
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w ¼ U1 r � r20
z

� �
sinu� C

2p
ln r=r0ð Þ: ð10:256Þ

Since F(z) represents the flow past a circular cylinder for all values of C, it is not
unique. We obtain a survey of the different flows, by computing the stagnation
points on the body contour. From

uu ¼ 1
r
@U
@u r¼r0

¼ �2U1 sinuþ C
2p

1
r0

���� ð10:257Þ

the equation for the stagnation points follows

sinu ¼ C
4p

1
U1 r0

: ð10:258Þ

Figure 10.32 shows the flow forms for different values of the circulation C. The
force (per unit depth) on the cylinder in the x-direction vanishes for symmetry
reasons, and that in the y-direction is

Fy ¼ �.U1C; C\0ð Þ: ð10:259Þ

The flow field in Fig. 10.32d can be experimentally realized if a rotating cylinder is
exposed to a cross-flow with undisturbed U∞ sufficiently small compared to the
circumferential velocity Xr0, corresponding to the condition Cj j[ 4pr0U1: As we
know a rotating cylinder without an external stream in viscous fluid produces a
potential vortex, and it is clear that a small enough cross-flow will not lead to
separation at the cylinder. As experiments show, the lift calculated from potential
theory is already reached at Xr0=U1 [ 4: We call the phenomenon where rotating
cylinder in a cross-flow experiences a lift, the Magnus effect. It can generally be
seen with rotating bodies, as for example, a sliced tennis ball. However this effect is
very important in ballistics (spinning missiles). There have been attempts to use
rotating cylinders instead of sails on ships (Flettner rotor).

10.4.3 Blasius’ Theorem

We shall restrict ourselves to steady flows and shall consider a simply connected
domain, say the cross-section of a cylinder in a flow (Fig. 10.33). From

Fi ¼ �
I
Cð Þ

pni ds ð10:260Þ
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we compute the components of the force per unit depth with ni ¼ �ik3dxk=ds (cf.
(10.219)) as

F1 ¼ Fx ¼ �
I
Cð Þ

p dy ð10:261Þ

Fig. 10.32 Flow past a circular cylinder with clockwise circulation C ¼ �4pr0U1cC
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and

F2 ¼ Fy ¼
I
Cð Þ

p dx: ð10:262Þ

In complex notation

z ¼ xþ iy; �z ¼ x�iy

we combine the force components as

Fx � iFy ¼
I
Cð Þ

�i pð Þd�z: ð10:263Þ

The moment on the cylinder about the origin only has a component in the
z-direction

~M 
~ez ¼ M ¼ �
I
Cð Þ

�ij3xinjp ds ¼ �
I
Cð Þ

�ij3xi�jk3p dxk ¼
I
Cð Þ

xidikpdxk ð10:264Þ

or

M ¼
I
Cð Þ

x p dxþ y p dyð Þ ð10:265Þ

Fig. 10.33 Blasius’ theorem
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We write the line integral using complex notation as

M ¼
I
Cð Þ

p < z d�zð Þ: ð10:266Þ

In steady flow, from Bernoulli’s equation

pþ .
2

u2 þ t2
	 
 ¼ p0; ð10:267Þ

and from the square of the magnitude of the complex conjugate velocity

dF
dz

����
����
2

¼ dF
dz

d�F
d�z

¼ u2 þ t2 ð10:268Þ

it follows that the pressure is

p ¼ p0 � .
2
dF
dz

d�F
d�z

: ð10:269Þ

Therefore we write for the force

Fx � i Fy ¼ i
.
2

I
Cð Þ

dF
dz

d�F; ð10:270Þ

because the closed integral over the constant pressure p0 vanishes. Since the contour
of the body is a curve w = const, we have

d�F ¼ dU ¼ dF; ð10:271Þ

and from (10.270) emerges the first Blasius’ theorem

Fx � iFy ¼ i
.
2

I
Cð Þ

dF
dz

� �2

dz: ð10:272Þ

In an analogous manner we obtain from (10.266) the second Blasius’ theorem
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M ¼ � .
2
<

I
Cð Þ

dF
dz

� �2

zdz

0
B@

1
CA: ð10:273Þ

According to the derivation the integration is to be carried out along the contour of
the body. As a consequence of Cauchy’s theoremI

Cð Þ

f zð Þ dz ¼ 0 if f ðzÞ is holomorphic onC and in the domain enclosed byCf

ð10:274Þ

the integration can also be carried out along any arbitrary closed curve enclosing the
body, as long as there are no singularities between the contour of the body and the
integration curve. Using the sense of integration in Fig. 10.34 it follows from
(10.274) that

I
C1ð Þ

f zð Þdzþ
I
C2ð Þ

f zð Þdz ¼ 0 ð10:275Þ

or, if C1 and C2 are followed in the same sense,I
C1ð Þ

f zð Þdz ¼
I
C2ð Þ

f zð Þdz: ð10:276Þ

Fig. 10.34 Application of Cauchy’s theorem
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10.4.4 Kutta-Joukowski Theorem

Using the first Blasius’ theorem, we calculate the force on a cylinder of arbitrary
contour in steady flow. Let the stream velocity at infinity be U∞ + iV∞, and let
there be no singularities outside the body, although there will be inside, in order to
represent the body and to produce the lift. Outside the singularities we can represent
the velocity field by a Laurent series of the form

dF
dz

¼ u� it ¼ A0 þA1z
�1 þA2z

�2 þA3z
�3 þ . . . ¼

X1
n ¼ 0

Anz
�n; ð10:277Þ

which yields the complex potential

F zð Þ ¼ A0zþA1 ln z�
X1
n ¼ 2

1
n� 1

Anz
� n�1ð Þ þ const: ð10:278Þ

From the condition at infinity

dF
dz

����1 ¼ U1 � iV1 ð10:279Þ

it follows that

A0 ¼ U1 � iV1: ð10:280Þ

In order to calculate the coefficient A1 we form the integral of (u – it) around the
contour of the body I

Cð Þ

ðu�itÞdz ¼
I
Cð Þ

ðu�itÞ dxþ idyð Þ ð10:281Þ

or I
Cð Þ

ðu�itÞdz ¼
I
Cð Þ

~u 
 d~xþ i
I
Cð Þ

dw; ð10:282Þ
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where the second integral vanishes since dw is zero along the contour of the body.
With the definition of the circulation (1.105) we therefore writeI

Cð Þ

ðu�itÞdz ¼ C: ð10:283Þ

Since the Laurent series (10.277) has only one essential singularity (z = 0), then
from the residue theorem we haveI

Cð Þ

ðu�itÞdz ¼ 2p iA1 ¼ C: ð10:284Þ

From this we obtain the complex conjugate velocity in the form

u� it ¼ U1 � iV1 � i
C
2p

z�1 þ
X1
n ¼ 2

An z
�n: ð10:285Þ

We now calculate the force on the cylinder using Blasius’ theorem (10.272).
Because of

dF
dz

� �2

¼ U1 � iV1ð Þ2�i
C
pz

U1 � iV1ð Þ � C2

4p2z2
þ 2A2

z2
U1 � iV1ð Þþ . . .

ð10:286Þ

and by applying the residue theorem we first obtain

I
Cð Þ

dF
dz

� �2

dz ¼ � 2p ið ÞiCU1 � iV1
p

ð10:287Þ

and then from (10.272) the Kutta-Joukowski theorem

Fx � iFy ¼ i.C U1 � iV1ð Þ: ð10:288Þ

From this equation we firstly conclude that the lift is perpendicular to the undis-
turbed stream at infinity, that is, the body experiences no drag, and secondly for a
given circulation C the lift is independent of the contour of the body.
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In a similar manner we obtain for the moment

M ¼ �2p .U1< iA2 1� i
V1
U1

� �� �
; ð10:289Þ

the moment then depends on the complex coefficient A2 and therefore on the
contour of the body.

10.4.5 Conformal Mapping

We know that it is possible to transform the flow past a circular cylinder to the flow
past a cylinder of arbitrary contour with the help of conformal mapping. As long as
no separation of the boundary layer occurs in the real flow, potential theory will
describe the actual flow behavior very well. For this reason the potential flow past a
circular cylinder has great technical importance.

The complex analytic mapping function

f ¼ f ðzÞ; ð10:290Þ

defined at all points z at which f′ (z) has a finite nonzero value, maps the z-plane
onto the f-plane such that the mapping is “similar in the smallest parts”. In other
words, infinitesimal configurations remain conformal, that is, they remain the same.
The transformation has the following properties which are easy to prove:

(a) The angle between any two curve elements and its sense of rotation remains the
same.

(b) The ratio of two small lengths remains the same, therefore

Dzj j
Dz0j j ¼

Dfj j
Df0j j

(c) A small element Dz is transformed into the element Df according to

Df ¼ Dz
df
dz

:

As an example we shall consider the mapping function (Fig. 10.35).

f ¼ z2 ¼ ðxþ iyÞ2 ð10:291Þ
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It follows that

f ¼ nþ ig ¼ x2 � y2
	 
þ 2i xy ð10:292Þ

therefore

n ¼ x2�y2; g ¼ 2xy: ð10:293Þ

Lines x = C in the z-plane are mapped onto parabolae open to the left, as we see if
we eliminate y from the two last equations

n ¼ C2 � g2

4C2 : ð10:294Þ

For C = 0 (y-axis) the parabola coincides with the negative n-axis. Lines y = C are
mapped onto parabolae open to the right

n ¼ g2

4C2 � C2; ð10:295Þ

where for C = 0 (x-axis) the parabola lies along the positive n-axis. The origin is a
singular point of this mapping. There f 0 ¼ df=dz has a simple zero, and the map-
ping is no longer conformal at this point. At a simple zero the angle between two
line elements, such as the x- and y-axes (p / 2), is doubled in the f-plane (p). In
general we have: at a zero of order n of f′(z), the angle is altered by a factor (n + 1)
(branch point of order n).

Fig. 10.35 Conformal mapping
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We now consider the mapping of a circular cylinder from the z-plane to the
f-plane. By the mapping function the region outside the cylinder in the z-plane is
mapped onto the region outside another cylinder in the f-plane (Fig. 10.36).

Let P and Q be corresponding points in the z- and f-planes respectively. The
potential at the point P is

F zð Þ ¼ Uþ iw: ð10:296Þ
The point Q has the same potential, and we obtain it by insertion of the mapping
function

F zð Þ ¼ F z fð Þ½ � ¼ F fð Þ: ð10:297Þ

We then compute the complex conjugate velocity �wf in the f-plane from

�wf fð Þ ¼ dF
df

: ð10:298Þ

The following procedure is often more useful: we consider z to be a parameter and
calculate the value of the potential at the point z. With the help of the mapping
function f = f (z) we determine the complex coordinate of z which corresponds to
z. At this point f, the potential then has the same value as at the point z. In order to
determine the velocity in the f-plane, we form

dF
df

¼ dF
dz

dz
df

¼ dF
dz

df
dz

� ��1

; ð10:299Þ

Fig. 10.36 Conformal mapping of a circular cylinder onto an airfoil
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or

�wf fð Þ ¼ �wz zð Þ df
dz

� ��1

: ð10:300Þ

Therefore to compute the velocity at a point in the f-plane we divide the velocity
at the corresponding point in the z-plane by df / dz. The derivative dF / df exists at
all points with df=dz 6¼ 0: At singular points with df=dz ¼ 0, the complex conju-
gate velocity in the f-plane �wf fð Þ ¼ dF=df becomes infinite, if it is not equal to
zero at the corresponding point in the z-plane.

10.4.6 Schwarz-Christoffel Transformation

The properties of conformal mappings at singular points mentioned in connection
with the mapping function f = z2 can also be used to map the x-axis onto a
polygon. We shall consider the mapping given by

df
dz

¼ f 0 zð Þ ¼ K z� x1ð Þa1=p�1 z� x2ð Þa2=p�1. . . z� xnð Þan=p�1; ð10:301Þ

which is known as the Schwarz-Christoffel transformation. If we denote the polar
angle of a complex number z = r exp (i u) with arg(z), because of

ln z ¼ ln rþ i arg zð Þ; ð10:302Þ

we read off the logarithm of (10.301)

arg dfð Þ ¼ arg dzð Þþ arg Kð Þþ a1
p
� 1

� 
arg z�x1ð Þþ

þ a2
p
� 1

� 
arg z�x2ð Þþ . . .þ an

p
� 1

� 
arg z�xnð Þ:

ð10:303Þ

If we move from a point on the x-axis to the left of x1 (Fig. 10.37) in the direction of
increasing x, then the polar angle is arg(dz) = 0. For x < x1 all ðz�xiÞ in (10.303)
are less than zero and real, i.e., argðz�xiÞ ¼ p. Therefore arg(df) is constant, until
the first singularity x1 is reached. As we move past x1 the sign of the term (z – x1)
changes, and therefore arg(z – x1) decreases abruptly from the value p to 0. Since all
the other terms in (10.303) remain unchanged, arg(df) changes by the amount
ða1=p�1Þ 
 ð�pÞ ¼ p�a1 and then again remains constant until x2 is reached.
Therefore at the position f1 = f (x1) in the transformed plane, the line corresponding
to A�x1 �x ðx\x2Þ is turned by p�a1. At z = x2, arg(z – x2) jumps by –p, arg(df)
therefore by the amount p�a2, etc. Between the singular points xi the corresponding
images of the x-axis are straight lines (arg(df) = const), and the angle between each
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of the straight lines is ai. The upper half of the z-plane is mapped onto the inside of
the polygon in the f-plane, where the constant K in (10.301) allows a constant
stretching and rotation of the polygon.

As an example we shall treat the transformation

df
dz

¼ K zþ 1ð Þ 1=2�1ð Þ z� 1ð Þ 3=2�1ð Þ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z� 1
zþ 1

:

r
ð10:304Þ

The singular points are x1 = –1, x2 = 1, and the associated angles are a1 = p/2,
a2 = 3p/2. The line element on the x-axis to the left of x1 has, from (10.303), in the
f-plane a polar angle of

arg dfð Þ ¼ arg dzð Þþ arg Kð Þþ � 1
2

� �
pþ 1

2
p ¼ arg Kð Þ: ð10:305Þ

If we choose K to be a real number, the mapping of the x-axis begins with a straight
line parallel to the n-axis. For x1\x\x2 the polar angle is argðdfÞ ¼ p�a1 ¼ p=2,
i.e., the second straight piece is parallel to the iη-axis. For x > x2,
arg(df) = p/2 + (p – a2) = 0, i.e., the line is again parallel to the n-axis. The
mapping function for this example can be stated in closed form. From the inte-
gration of (10.304) it follows that

f ¼ f zð Þ ¼ K
Z ffiffiffiffiffiffiffiffiffiffiffi

z� 1
zþ 1

r
dz ¼ K

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p
� ln zþ

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1

p� � 
þC; ð10:306Þ

Fig. 10.37 Schwarz-Christoffel transformation

416 10 Potential Flows



where C occurs as a constant of integration. The image point of the singular point
x1 = –1 is f1 ¼ �K ln �1ð ÞþC ¼ �iKpþC, and that of the point x2 = 1 is f2 = C.
For C = iKp, f1 = 0, f2 = iKp, and we obtain the configuration shown in Fig. 10.38.
Every flow field in the z-plane for which the x-axis is a streamline gives a flow field
in the f-plane over a step of height Kp. In particular for parallel flow in the plane
F(z) = U∞z, we have F(f) = U∞ z(f) the complex potential of the flow over a step
represented in Fig. 10.38.

10.4.7 Free Jets

In the discussion of the abrupt contraction of a cross-section (Fig. 9.8) we inferred
that the fluid separates at the sharp edge, and then no longer follows the wall, but
forms a free jet which contracts. The free surface of the jet is unstable and if the
surrounding fluid has the same density as the jet (as discussed in the case of
cross-section contraction), this instability causes rapid mixing of the jet with the
surrounding fluid, as is indicated in Fig. 9.8.

Fig. 10.38 Step in parallel flow
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However if the jet exits into a fluid of considerably lower density even for
distances large in comparison with the linear measure of the opening, no mixing
takes place and thus no jet disintegration. (If the diameter of the jet is small and its
velocity is high, disintegration of the jet can occur directly behind the exit. We shall
not discuss this process where the surface tension and the viscosity play a role.)

In free jets the shape of the jet is of technical importance, since, for example, the
contraction coefficient can be deduced from it. However the computation of the jet
flow is in general a difficult problem, since the dynamic boundary condition (4.171)
has to be satisfied on the as yet unknown jet boundaries. Only in plane potential
flow can problems with free jet boundaries be solved rather simply by conformal
mapping.

As the first example we shall compute the jet contraction coefficient of a plane
free jet, and to this end shall consider the discharge from a large vessel (Fig. 10.39).
The emerging jet contracts from the cross-section B – B′ to the cross-section C – C′.
There the pressure inside the jet is equal to the ambient pressure since the curvature
of the streamlines vanishes. The pressure is constant on the free surface of the jet,
and the constancy of the velocity then follows from Bernoulli’s equation

U1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
.

p1 � p0ð Þ
s

; ð10:307Þ

from which the volume flux (per unit depth) follows as

Fig. 10.39 Plane free jet
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_V ¼ ahU1: ð10:308Þ

We conclude from the curvature of the free surface that the pressure increases as we
move towards the center of the jet, and therefore the velocity decreases from its
value U∞ on the edge of the jet towards the middle.

In order to determine the shape of the free jet we use the mapping which results
from the definition of the complex conjugate velocity

f ¼ f zð Þ ¼ dF
dz

¼ �w ¼ u� it: ð10:309Þ

Therefore this function maps the z-plane onto the velocity plane, which is also
called the hodograph plane.

We shall first examine the course of the streamline from the point A (x = 0,
y ! ∞) to the point B (edge of the container outlet) and then to the point
C (Fig. 10.39). From the equality of the potentials at corresponding points in the z-
and f-planes, it follows directly that streamlines remain streamlines under confor-
mal mapping (W = W(z) = W [z(f)] = const). Therefore the line under consid-
eration is also a streamline in the hodograph plane. On the section of the line
A – B we have u � 0, and –t increases from zero to the value U∞; thus its image
coincides with the g-axis from g ¼ 0 to g = –t = U∞. On the contour of the free jet
from B �w ¼ iU1ð Þ to C �w ¼ U1ð Þ, �wj j is, from (10.307), constant equal to U∞, and
so the image of this section of the streamline is the quarter circle sketched in
Fig. 10.40. The image of the lower streamline A′ – B′ – C′, on which the velocities
are everywhere the complex conjugates of those above, corresponds to a reflection

Fig. 10.40 Free jet in the hodograph plane
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of the image of A – B – C through the n-axis. The upper and lower free surfaces of
the jet then form the semicircle

f ¼ �w ¼ U1ei#; ð10:310Þ

with �p=2�#� p=2. The streamlines inside the container and the jet fall into the
inside of this semicircle in the right half plane.

The flow field in the hodograph plane can be generated from the superposition of
a source at the origin and two sinks at f = ± U∞, but then of course it also occupies
the n-η-plane outside the region of interest. Since only half of the strengths of the
source (m > 0) and of the right-hand sink (m < 0) flow into or out of the semicircle,
the strengths are chosen to be mj j ¼ 2 _V ¼ 2ahU1, respectively. From (10.227) the
complex potential now reads

F fð Þ ¼ a
p
U1h ln f� ln f� U1ð Þ � ln fþU1ð Þ½ �: ð10:311Þ

We can easily convince ourselves that the free surface of the jet (10.310) really is a
streamline.

Our next step is to determine the mapping function z = z(f), and thus to obtain
the free surface in the z-plane. From (10.309) it follows that

z ¼
Z

dF
f

¼
Z

dF
df

df
f
; ð10:312Þ

and with (10.311) then

z ¼ a
p
U1h

Z
1

f2
þ 1

f U1 � fð Þ �
1

f U1 þ fð Þ
� �

df: ð10:313Þ

The integral is easily evaluated after decomposing the integrand into partial frac-
tions, and leads to the relation

z ¼ a
p
h �U1

f
þ ln 1þ f

U1

� �
� ln 1� f

U1

� �� �
þ const, ð10:314Þ

which is the desired mapping of the velocity plane onto the z-plane. The inverse function
f ¼ �w ¼ u� it ¼ f zð Þ describes the velocity field in the jet and container. We now
introduce the equation of the upper free streamline (10.310) with 0�#� p/2 into
Eq. (10.314), and by applying the identity

ln 1þ ei#
	 
� ln 1� ei#

	 
 ¼ ln
1þ ei#

1� ei#

� �
¼ i

p
2
þ ln

sin#
1� cos#

� �
ð10:315Þ
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obtain the shape of the jet in the z-plane as

z #ð Þ ¼ a
p
h �e�i# þ ln

sin#
1� cos#

� �� �
þK; 0�#� p

2
: ð10:316Þ

We determine the constant of integration K from the condition that at the point B

z # ¼ p=2ð Þ ¼ i
h
2

ð10:317Þ

to

K ¼ i
h
2

1� 2a
p

� �
: ð10:318Þ

Taking the limit # ! 0 in (10.316) furnishes an equation for the contraction
coefficient a. For # ! 0 the real part of z tends to infinity, i.e., the point C in the
z-plane lies at infinity. The imaginary part =½zð0Þ� must, from Fig. 10.39, satisfy the
condition

lim
#!0

= z #ð Þ½ � ¼ ia
h
2
; ð10:319Þ

so that from (10.316), iah=2 ¼ K, and thus with (10.318) the contraction coefficient
follows

a ¼ p
pþ 2

� 0:61: ð10:320Þ

The impact of a plane free jet on an infinite plane wall can also be computed with
the method discussed, where here an explicit equation for the free streamline can be
given. The flow in the z-plane (Fig. 10.41) has the hodograph of Fig. 10.42.
Analogous to the previous example, this field can be represented by two sources at
the positions f ¼ U1 and two sinks at the positions f ¼ iU1. The strength in
each case is

mj j ¼ 2 _V ¼ 4U1h: ð10:321Þ

The complex potential in the f-plane therefore, according to (10.227) is

F fð Þ ¼ 2
p
U1h ln f� U1ð Þþ ln fþU1ð Þ � ln f� iU1ð Þ � ln fþ iU1ð Þ½ �:

ð10:322Þ
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Fig. 10.42 Free jet impact in the hodograph plane

Fig. 10.41 Free jet impact perpendicular to a wall
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As before we obtain from (10.312)

z ¼ 2h
p

ln
1� f=U1
1þ f=U1

� �� �
� i ln

1� if=U1
1þ if=U1

� �
; ð10:323Þ

where the integration constant is found, from the condition at the stagnation point

z f ¼ 0ð Þ ¼ 0; ð10:324Þ

to be zero. On the lower free streamline we again have

f ¼ U1ei#; 0�#� p
2

ð10:325Þ

so that by applying the identities

ln
1� ei#

1þ ei#

� �
¼ �i

p
2
þ ln

1� cos#
sin#

� �
¼ �i

p
2
þ ln tan

#

2

� �
; ð10:326Þ

and

ln
1� i ei#

1þ i ei#

� �
¼ ln

1� ei #þ p=2ð Þ

1þ ei #þp=2ð Þ

� �
¼ �i

p
2
þ ln tan

#

2
þ p

4

� �� �
ð10:327Þ

the equation of the free streamline appears in the form

z #ð Þ ¼ xþ iy ¼ �h 1� 2
p
ln tan

#

2

� �� �
� i h 1þ 2

p
ln tan

#

2
þ p

4

� �� �� �
ð10:328Þ

From the real part the relation

tan
#

2
¼ exp

p
2

1þ x
h

� h i
ð10:329Þ

follows, and with

ln tan
#

2
þ p

4

� �� �
¼ ln

1þ tan #=2ð Þ
1� tan #=2ð Þ

� �
¼ 2arctanh tan

#

2

� �
ð10:330Þ
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we obtain, from the imaginary part, the explicit equation of the lower free
streamline

� y
h
¼ 1þ 4

p
arctanh exp

p
2

1þ x
h

� h in o
; x\� h: ð10:331Þ

The upper free streamline is symmetric to this.

10.4.8 Flow Around Airfoils

The main purpose of the conformal mapping lies in the possibility to map the
unknown flow past an airfoil to the known flow past a circular cylinder. In this
manner we can obtain the direct solution of the flow past a cylinder of arbitrary
contour. Although numerical methods of solution of the direct problem have now
superseded the method of conformal mapping, it has still retained its fundamental
importance. We shall discuss these methods using as an example the Joukowski
mapping

f ¼ f zð Þ ¼ zþ a2

z
: ð10:332Þ

The function f (z) maps a circle with radius a in the z-plane onto a “slit” in the
f-plane. With the complex coordinate of the circle

z ¼ a eiu ð10:333Þ

we obtain

f ¼ 2acosu ð10:334Þ

purely real, i.e., the circle is mapped onto a section of the n-axis reaching from
–2a to 2a (Fig. 10.43). With the complex potential (10.245) of the cylinder flow
(r0 = a)

F zð Þ ¼ U1 zþ a2

z

� �
ð10:335Þ

the Joukowski mapping function directly furnishes the potential in the f-plane as

F fð Þ ¼ U1f; ð10:336Þ

as was indeed expected. Now if we map a circle with radius b which is smaller or
larger than the mapping constant a, we obtain an ellipse (Fig. 10.43). If we map a
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circle whose midpoint coordinates (x0, y0) are not zero, we obtain typical airfoils
(Fig. 10.44).

The Joukowski mapping has a singular point at each of the positions z = ± a, as
can be seen

df
dz

¼ 1� a2

z2
: ð10:337Þ

The point z = –a is generally mapped into the interior of the airfoil and is thus of
no interest to us. The angle between the two line elements emerging from z = a, dz1
and dz2 in Fig. 10.45 is p. Since we are dealing with a simple zero, the angle
between the corresponding line elements df1 and df2 is doubled, and thus is 2p.
Therefore the trailing edge angle is zero, a typical property of the Joukowski
mapping, which is already evident from the mapping of the circle of radius a to a
slit.

At the singular point B, the velocity in the f-plane becomes infinite if we do not
ensure that it is zero at the point B in the z-plane. We accomplish this by choosing
the circulation of the cylinder flow such that B lies at a stagnation point. This
requirement determines the value of the circulation and prevents a flow past the
trailing edge in the f-plane, which we already excluded in our discussion of the
generation of circulation (Fig. 4.6). If the angle of attack is not too large, the real
circulation adjusts itself according to this condition known as Joukowski’s
hypothesis or Kutta condition. It enables us to fix the value of the circulation about
the cylinder. The circulation about the airfoil is then exactly the same size, because

Fig. 10.43 Mapping of a circle onto a slit and ellipse
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C¼
I
Cf

�wf fð Þ df ¼
I
Cf

�wz zð Þ dz
df

df ¼
I
Cz

�wz zð Þdz: ð10:338Þ

For a coordinate system z′ = x′ + iy′, whose origin lies in the center of the
circle and whose x′-axis denotes the direction of the undisturbed velocity, the
complex potential, from (10.254), reads

Fig. 10.45 Trailing edge angle of a Joukowski airfoil

Fig. 10.44 Joukowski mapping
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F z0ð Þ ¼ U1 z0 þ r20
z0

� �
� i

C
2p

ln
z0

r0
: ð10:339Þ

In order to obtain the potential of the flow past a circular cylinder with center at z0
in a uniform stream at an angle of attack a to the x-axis, we use the transformation

z ¼ z0 þ z0j jei u0 þ að Þ ¼ z0 þ z0eia; ð10:340Þ

which can be read off Fig. 10.46. We insert the transformation

z0 ¼ z� z0ð Þe�ia; ð10:341Þ

into (10.339) to get

F zð Þ ¼ U1 z� z0ð Þe�ia þU1
r20

z� z0
eia � i

C
2p

ln
z� z0
r0

e�ia
� �

: ð10:342Þ

The complex conjugate velocity is then

�w ¼ u� it ¼ U1e�ia � U1eia
r20

z� z0ð Þ2 � i
C
2p

1
z� z0

: ð10:343Þ

At the point B, i.e., for z� z0 ¼ r0e�ib, Joukowski’s hypothesis requires that
u – it = 0 holds, so that (10.343) becomes an equation for the circulation C with the
solution

Fig. 10.46 Coordinate transformation
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C ¼ �4pr0U1 sin aþ bð Þ: ð10:344Þ

The value of C depends on the airfoil parameters r0 and b, on the angle of attack a
and on the undisturbed velocity U∞. The mapping function itself need not be
known to determine C, because as we have already shown, the circulation in the
f-plane is exactly the same as in the z-plane.

The force per unit depth on the airfoil is calculated from the Kutta-Joukowski
theorem (10.288), where we note that the complex conjugate velocity U∞ – iV∞ is
now to be replaced by U∞ exp(–ia). We obtain the complex conjugate force as

Fx � iFy ¼ �i 4pr0.U2
1e�ia sin aþ bð Þ: ð10:345Þ

The magnitude of the force is

Fj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
x þF2

y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fx � iFy
	 


Fx þ iFy
	 
q

; ð10:346Þ

and therefore

Fj j ¼ 4p r0.U2
1 sin aþ bð Þ: ð10:347Þ

We denote the dimensionless quantity

cl ¼ Fj j
.=2ð ÞU21l

¼ 8p
r0
l
sin aþ bð Þ ð10:348Þ

as the lift coefficient, where l is the length, or the chord, of the airfoil (Fig. 10.47)
which can be calculated from the mapping function.

For b = 0 and r0 = a the circle in the z-plane again is at the origin, and the
Joukowski mapping takes this circle over to a plate of length l = 4a (Fig. 10.48).
We then have a lift coefficient of

cl ¼ 2psin a: ð10:349Þ

Fig. 10.47 Airfoil length

428 10 Potential Flows



A suction force in the negative x-direction arises from the flow past the leading
edge, and together with the pressure force perpendicular to the plate gives rise to a
lift force, which (in agreement with the Kutta-Joukowski theorem) is perpendicular
to the undisturbed flow direction, so that the drag force vanishes (d’Alembert’s
paradox).

The angle a = –b is called the no lift direction (cl = 0) of the airfoil. In
Fig. 10.49 a typical comparison between theoretical and experimental results is

Fig. 10.48 Flow past an infinitesimally thin plate

Fig. 10.49 Lift and drag coefficients
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shown. Also sketched is the drag coefficient cd. The experimental results found in
Fig. 10.49 are often given in the form of a polar diagram (Fig. 10.50), with cl as
the ordinate and cd as the abscissa, where the angle of attack a is the curve
parameter. The tangent of the angle r shown is the drag-to-lift ratio �

tan r ¼ � ¼ cd
cl
: ð10:350Þ

The smallest drag-to-lift ratio is given by the tangent to the polar curve at the origin.
Beyond a certain angle of attack, the lift decreases and the drag rises. This is due to
boundary layer separation on the suction (upper) side of the airfoil. The airfoil is
then said to be stalled.

Fig. 10.50 Polar representation of lift and drag
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10.4.9 Approximate Solution for Slender Airfoils
in Incompressible Flow

In aerodynamics, airfoils where the length is much larger than the thickness are
invariably used, in order to avoid separation. We can generate these airfoils by a
symmetric thickness distribution about a mean camber line (Fig. 10.51). For a
slender airfoil, i.e.,

d
l
¼ � � 1;

the flow past the airfoil can be determined by first computing the solution for the
symmetric airfoil of the same thickness distribution, then the solution for an
infinitesimally thin mean camber line, and finally superimposing both solutions to
obtain the flow past the real airfoil. In doing this, of course, an error is involved, but
this is only of the order of magnitude O(�2), which is negligible for a very slender
airfoil. This method leads to an explicit solution of the direct problem, although it
has now been superseded by numerical methods. In spite of this we shall discuss the
method, since it can serve as an introduction to perturbation theory, and some
numerical methods are only generalizations of this method.

We first consider the symmetric airfoil (Fig. 10.52) with a contour given by

Fig. 10.51 Construction of an airfoil from the mean camber line and symmetric thickness
distribution

Fig. 10.52 Symmetric airfoil
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y ¼ f xð Þ ð10:351Þ

and envisage an airfoil generated by a source distribution along the x-axis, so that
the potential is

U ¼ U1xþ 1
2p

Z l

0

q x0ð Þ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x0ð Þ2 þ y2

q
dx0 ð10:352Þ

The velocity components generated by the source distribution are denoted by u and
t. Since the body is very slender the perturbation velocities u and t are small
compared to U∞ and we have

u
U1

	 t
U1

	 �: ð10:353Þ

With F(x, y) = –y ± f (x) = 0 the kinematic boundary condition (4.170) reads

 U1 þ uð Þ df
dx

� t ¼ 0 at thewallð Þ; ð10:354Þ

or

t ¼  U1 þ uð Þ df
dx

at y¼ f xð Þ: ð10:355Þ

Now f = O(d) holds and thus df =dx = O(�); because of (10.353) we therefore also
write

t
U1

¼  df
dx

þO �2
	 


at y ¼ f xð Þ: ð10:356Þ

In what follows we shall ignore terms of the order O(�2). There are still difficulties
involved in satisfying the boundary condition (10.356) on the body, since then
f (x) occurs as an argument in the unknown function t(x, y). We therefore expand
t(x, y) in a Taylor series about y = 0

t x; yð Þ
U1

¼ t x; 0ð Þ
U1

þ y
U1

@t
@y

� �
y¼0

þ 
 
 
 ; ð10:357Þ

and estimate the order of magnitude of the second term from the continuity equation
as
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@u
@x

¼ � @t
@y

	 u
l
; and ð10:358Þ

y
U1

@t
@y

	 d
U1

u
l
¼ u

U1

d
l
	 �2: ð10:359Þ

Since we are neglecting terms of the order O(�2), it follows that

t x; yð Þ
U1

¼ t x; 0ð Þ
U1

¼  df
dx

at y ¼ 0; ð10:360Þ

therefore we can satisfy the boundary condition on the x-axis instead of on the body
y = ±f(x). If we denote the upper side of the airfoil with O+ and the lower side with
O–, we then write (10.356) in the form

t x; 0þð Þ
U1

¼ df
dx

;
t x; 0�ð Þ
U1

¼ � df
dx

: ð10:361Þ

The velocity t(x, y) is found from the potential (10.352)

t x; yð Þ ¼ @U
@y

¼ 1
2p

Z l

0

q x0ð Þy
x� x0ð Þ2 þ y2

dx0: ð10:362Þ

If we insert (10.362) into (10.361), an integral equation is obtained for the
unknown source distribution q(x), which can, in fact, be easily solved; we obtain the
velocity t(x, 0) by taking the limit y ! 0. The integral has a singularity at x = x′
and only there is the integrand nonzero for y ! 0. Using the transformation

g ¼ x� x0

y
; x0 ¼ x� gy;

dx0

y
¼ �dg ð10:363Þ

we get a regular integral

t x; yð Þ ¼ � 1
2p

Z� l�xð Þ=y

x=y

q x� gyð Þ
1þ g2

dg; ð10:364Þ

thus for 0 < x < l

t x; 0þð Þ ¼ lim
y!0þ

t x; yð Þ½ � ¼ q xð Þ
2p

Zþ1

�1

dg
1þ g2

¼ q xð Þ
2

: ð10:365Þ
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The desired source distribution then follows from the boundary condition

q xð Þ ¼ 2
df
dx

U1: ð10:366Þ

For t(x, 0–) we correspondingly obtain

t x; 0�ð Þ ¼ � q xð Þ
2

ð10:367Þ

or again

q xð Þ ¼ 2
df
dx

U1: ð10:368Þ

It is easy to show that the closure condition (10.119) is satisfied, and thus the
problem is solved. With the known source distribution q(x) the potential is now
known, and the velocity and pressure fields follow in the manner already discussed.
We note that the solution is in general not uniformly valid in the entire flow field.
For airfoils with blunt noses, df / dx is infinite at x = 0. From Eq. (10.361) it then
follows that t / U∞ ! ∞, so that the assumptions of perturbation theory break
down locally. The solution there is no longer valid, and we have to deal with a
singular perturbation problem.

In order to calculate flow past the mean camber line, we cover it with a con-
tinuous vortex distribution, thus replacing the mean camber line with a bound
vortex sheet. This represents a surface of discontinuity in the tangential velocity.
Since the sheet is fixed in space, the jump in the tangential velocity leads to a
pressure difference between the upper and lower sides, which gives rise to a force
on the mean camber line. (A free vortex sheet, such as appears in unsteady motion
of an airfoil, will deform such that the dynamic boundary condition of pressure
equality (4.173) is satisfied.) Let the mean camber line be given by

y ¼ f xð Þ: ð10:369Þ

With fmax=l ¼ � the order of magnitude equation

df
dx

¼ O �ð Þ ð10:370Þ

is valid, as is (10.353). Let the angle of attack a be of the order O(�). Within our
approximation we can place the vortex distribution along the x-axis instead of along
the mean camber line. For a vortex intensity c opposite to the mathematically
positive sense, the infinitesimal vortex strength is
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dC ¼ �c xð Þdx; ð10:371Þ

so that with (10.195) and in analogy to the source distribution we obtain the
potential

U ¼ U1xþV1y� 1
2p

Z l

0

c x0ð Þ arctan y
x� x0

dx0; ð10:372Þ

with the still unknown vortex intensity c(x′). We then obtain the velocity compo-
nents from (10.372) as before, by taking the differentiation with respect to x and
y into the integral. For the perturbation velocities we thus obtain the expressions

u x; yð Þ ¼ þ 1
2p

Z l

0

c x0ð Þ y

x� x0ð Þ2 þ y2
dx0 ð10:373Þ

and

t x; yð Þ ¼ � 1
2p

Z l

0

c x0ð Þ x� x0

x� x0ð Þ2 þ y2
dx0: ð10:374Þ

Because of the formal equality of the expression for u with that for t in the source
distribution (10.362), we can directly obtain the velocity on the x-axis

u x; 0
	 
 ¼  1

2
c xð Þ; ð10:375Þ

which is equal to the velocity on the mean camber line, up to terms of the order
O(�2). Therefore the jump in velocity through the vortex sheet is

Du ¼ uþ � u� ¼ c xð Þ: ð10:376Þ

From this, the pressure jump could be computed directly from Bernoulli’s equation
and then integrated to find the force (per unit depth). However we shall prefer to
determine the lift from the Kutta-Joukowski theorem (10.288)

Fa ¼ �.CU1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V1

U1

� �2
s

; ð10:377Þ
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with C (positive in the anticlockwise sense) from (10.371)

C¼
Z l

0

�c x0ð Þdx0: ð10:378Þ

Since V∞ / U∞ � a * �, we have

Fa ¼ .U1
Z l

0

c x0ð Þdx0 þO �2
	 


: ð10:379Þ

The implicit form of the mean camber line is F(x, y) = –y + f (x) = 0, and we obtain
the kinematic boundary condition from (4.170) as

U1 þ uð Þ df
dx

� V1 þ tð Þ ¼ 0 at y ¼ f xð Þ; ð10:380Þ

or

aþ t
U1

¼ df
dx

1þ u
U1

� �
at y ¼ f xð Þ: ð10:381Þ

By neglecting terms of the order O(�2), we can again satisfy the boundary condition
on the x-axis instead of on y = f(x), and with (10.374) we extract the equation

U1
df
dx

� aU1 ¼ � 1
2p

Z l

0

c x0ð Þ
x� x0

dx0; ð10:382Þ

which is a singular integral equation of the first kind for the unknown distribution
c(x). The integral equation has no unique solution. Here we do not wish to go into
the mathematical aspects, but shall only note that the flow past a circular cylinder
with circulation (cf. (10.254)) is not unique either. Since this solution can be
mapped onto the flow past airfoils, these are also not unique. It is necessary in
addition to specify the value of the circulation, i.e., invoke Joukowski’s hypothesis.
In steady flow this is equivalent to requiring that the velocities on the upper and
lower sides be equal at the trailing edge x = l

Du x ¼ lð Þ ¼ c lð Þ ¼ 0: ð10:383Þ

436 10 Potential Flows



In general then there is a flow around the leading edge of the mean camber line.
This leads to infinitely large velocities, and to an infinitely large c(0). Only if the
local flow direction towards the airfoil (not the undisturbed stream at infinity) is
there tangential to the mean camber line, does no flow around this edge occur. We
call this the shock-free incidence. For the flow past an infinitely thin edge, we find
the potential from (10.242) with n = 1/2

U ¼ 2a
ffiffi
r

p
cos

u
2
: ð10:384Þ

From this we extract the velocity on the upper side (u = 0) of the edge as

uþ ¼ dU
dr

����
u¼0

¼ affiffi
r

p ¼ affiffiffi
x

p ; ð10:385Þ

and on the lower side (u = 2p) as

u� ¼ � affiffiffi
x

p : ð10:386Þ

Therefore the jump in the tangential velocity is

lim
x!0

Du xð Þ ¼ lim
x!0

2
affiffiffi
x

p : ð10:387Þ

The function

c0 xð Þ ¼ 2a

ffiffiffiffiffiffiffiffiffiffi
l� x
x

r
ð10:388Þ

satisfies the required conditions at the leading and trailing edges, because of
(10.376), but is not yet the desired function in the domain 0 < x < l. We subtract
the distribution c0(x) from the desired distribution c(x). The remaining part of the
distribution can be expanded into a Fourier series in the coordinate u, given by

x ¼ l
2

1þ cosuð Þ: ð10:389Þ

Because x = 0 for u = p and x = l for u = 0, the cosine terms in the series
expansion must vanish, since these are not zero for x = 0 and x = l. We set the
constant a = U∞ A0 and expand (c – c0) in a Fourier series
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c uð Þ � 2U1A0 tan
u
2
¼ 2U1

X1
n¼1

An sin nu: ð10:390Þ

We insert this into the integral Eq. (10.382), use the transformation (10.389) for
x′ and obtain the integral equation in the form

a� df
dx

¼ 1
p
A0

Zp
0

1� cosu0

cosu� cosu0du
0 þ 1

p

X1
n¼1

An

Zp
0

sin nu0 sinu0

cosu� cosu0du
0: ð10:391Þ

The integrals can be evaluated with

sin nu0 sinu0 ¼ 1
2
cos n� 1ð Þu0 � cos nþ 1ð Þu0½ �

from the formula

1
p

Zp
0

cos nu0

cosu� cosu0du
0 ¼ � sin nu

sinu
; ð10:392Þ

and in this manner we see that the left-hand side should be expanded in a cosine
series

a� df
dx

¼ A0 þ
X1
n¼1

An cos nu: ð10:393Þ

As is known, the coefficients are

A0 ¼ a� 1
p

Zp

0

df
dx

uð Þdu; ð10:394Þ

and

An ¼ � 2
p

Zp
0

df
dx

uð Þ cos nu du: ð10:395Þ

From (10.379) we determine the lift coefficient cl to be

438 10 Potential Flows



cl ¼ p 2A0 þA1ð Þ: ð10:396Þ

With (10.266) the moment about the leading edge can be determined. It is taken as
positive if it tends to increase the angle of attack. Without performing the calcu-
lation we shall simply state the moment coefficient

cm ¼ M
.=2ð ÞU21l2

¼ � p
4

2A0 þ 2A1 þA2ð Þ: ð10:397Þ

In shock-free incidence, we have A0 = 0, and since c(p) remains finite, we have for
this case

cl ¼ pA1: ð10:398Þ

As an example we shall compute the coefficients for a flat plate, for which
df /dx = 0, and therefore A0 = a, An = 0 hold. If follows immediately that

cl ¼ 2pa ð10:399Þ

(in agreement with (10.349) for small a) and

cm ¼ � p
2
a ¼ � 1

4
cl; ð10:400Þ

from which we conclude that the point at which the lift force acts is x = l / 4 (cf.
Fig. 10.48).

10.4.10 Slender Airfoils in Compressible Flow

As in Sect. 10.4.9 we shall consider slender airfoils d=l ¼ � � 1ð Þ. The perturba-
tion velocities u and v are then of the order Oð�U1Þ, and for the potential we
assume the form

U ¼ U1xþu; ð10:401Þ

where u is the perturbation potential, and u = du/dx and t = du/dy are the
perturbation velocities. We shall start out with the potential Eq. (10.50), in which
we replace a2 from the energy equation
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a2 ¼ a21 þ c� 1
2

U2
1 � @U

@xi

@U
@xi

� �
: ð10:402Þ

If we insert (10.401) into the resulting equation and neglect all terms of the order
O(�2), then after some manipulation we obtain a differential equation for the per-
turbation potential

1�M2
1

	 
 @2u
@x2

þ @2u
@y2

¼ cþ 1ð ÞM2
1

u
U1

@2u
@x2

þ c� 1ð ÞM2
1

u
U1

@2u
@y2

þ 2M2
1

t
U1

@2u
@x@y

;

ð10:403Þ

in which M∞ = U∞ / a∞. In many practical cases this equation or the original
Eq. (10.50) is solved numerically. However here we shall discuss the simplifica-
tions arising in the limit �! 0, since in this case the solution can be found using the
methods already known. In the limit � ! 0 the right-hand side vanishes, since each
term contains a factor of order O(�). We obtain the equation

1�M2
1

	 
 @2u
@x2

þ @2u
@y2

¼ 0; ð10:404Þ

which is valid in both the subsonic and supersonic flows. The sign of 1�M2
1

	 

determines the type of this partial differential equation. For M∞ < 1 the equation is
elliptic; for M∞ > 1 it is hyperbolic. For M∞ � 1 the sign of @2u

�
@x2 is also

affected by the first term on the right-hand side of (10.403), which can then no
longer be neglected; for this case we obtain the transonic perturbation equation

1�M2
1

	 
 @2u
@x2

þ @2u
@y2

¼ cþ 1ð ÞM
2
1

U1

@u
@x

@2u
@x2

: ð10:405Þ

This equation is nonlinear, and apart from some specific solutions, numerical
methods are used to integrate it.

We shall first consider the subsonic flow past a slender airfoil given by y = f (x).
Then (10.404) is to be solved subject to the boundary condition (10.356), that is

1
U1

@u
@y

¼ df
dx

for y ¼ 0: ð10:406Þ

It is clear that (10.404) can be brought to the form of Laplace’s equation by a
suitable coordinate transformation. We could, for example, transform x (i.e. change
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the length of the airfoil) and leave y unchanged, or else retain x and transform y (i.e.
change the thickness of the airfoil). We choose

�y ¼ y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M21

q
; �x ¼ x ð10:407Þ

and for

�u ¼ u 1�M2
1

	 
 ð10:408Þ

obtain from (10.404) Laplace’s equation

@2�u
@�x2

þ @2�u
@�y2

¼ 0: ð10:409Þ

The equation of the upper surface in the transformed coordinates reads

�y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M21

q
f �xð Þ ¼ �f �xð Þ; ð10:410Þ

and with this the boundary condition

1
U1

@�u
@�y

¼ d�f
d�x

: ð10:411Þ

With (10.409) and (10.411) the solution of compressible flow past an airfoil
y = f(x) in the x-y-plane in a stream with undisturbed velocity U∞ and Mach number
M∞ is reduced to the incompressible flow past a (thinner) airfoil �y ¼ �f �xð Þ in the
�x� �y-plane with the undisturbed velocity U∞. At corresponding points the per-
turbation velocities u and t are to be calculated from the perturbation velocities
�u and �t of the incompressible flow, according to

u ¼ @u
@x

¼ 1
1�M21

@�u
@�x

¼ �u
1�M21

; ð10:412Þ

and

t ¼ @u
@y

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M21

p @�u
@�y

¼ �tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M21

p : ð10:413Þ

Within our approximation we can neglect the change in density in the field, and
Bernoulli’s equation holds in the form valid for incompressible flow. Neglecting the
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quadratic terms in the perturbation velocities, the pressure coefficient (10.123) then
reads

cp ¼ � 2u
U1

; ð10:414Þ

where with (10.412) the transformation

cp ¼ � 1
1�M21

2�u
U1

¼ 1
1�M21

�cp ð10:415Þ

follows, called Goethert’s rule. Now in practice we often want to know the change
in the pressure coefficient as a function of the Mach number for a given airfoil,
which is approximately described by the Prandtl-Glauert rule

cp M1ð Þ ¼ cp 0ð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M21

p : ð10:416Þ

Here cp(M∞) is the pressure coefficient at the Mach number M∞, for an airfoil,
which in incompressible flow has the coefficient cp(0).

For supersonic flow M2
1 � 1

	 

[ 0, (10.404) corresponds to the wave equation

@2u
@y2

¼ M2
1 � 1

	 
 @2u
@x2

: ð10:417Þ

The solution can therefore proceed in analogy to the one-dimensional sound
propagation of Sect. 10.1. There is, however, a difference, in so far as there the
perturbation is also felt upstream, while this is not possible in supersonic flows. The
reason for this is that a perturbation can only propagate with the speed of sound. We
shall explain this fact in Chap. 11, and in Sect. 11.4 we shall return to the
Eq. (10.417).
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Chapter 11
Supersonic Flow

In a supersonic flow, the disturbance caused by a body is perceived only within a
bounded range of influence. This is completely analogous to unsteady compressible
flow, which also is described by hyperbolic differential equations, but there the
resulting state of affairs is independent of whether the Mach number is greater than
or less than one.

For example, consider a steady flow with a stationary sound source, which sends
out a signal at t = 0. This signal imparts a small pressure disturbance to the fluid. In
a reference frame moving with the flow velocity u, the disturbance spreads out
spherically with the velocity of sound a. With respect to a reference frame fixed in
space, the sound wave has the position shown in Fig. 11.1 after time t and for u < a
(subsonic).

As t ! ∞ the sound wave will fill the entire space. If u > a (supersonic) the
sound wave has the positions shown in Fig. 11.2 in the fixed frame at successive
points in time. We can see from this figure that the sound wave will not reach the
entire space as t ! ∞. We call the envelope of the waves the Mach cone whose
angle l is calculated from

sin l ¼ a
u
¼ 1

M
ð11:1Þ

and is called the Mach angle. We can also imagine, for example, a very slender
body as a source of the disturbance. A thick body, however, will cause a distur-
bance which is no longer small and then the Mach cone becomes a shock front. The
disturbance which originates from the body remains restricted to the region behind
the shock surface even in this case.
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11.1 Oblique Shock Wave

As the first step in the treatment of supersonic flow we want to derive the relations of
an oblique shock wave in two-dimensional flow from those of a one-dimensional,
normal shock wave. To do this we decompose the velocity~u1 in front of the shock
into its components u1n normal to and u1t tangential to the shock front (Fig. 11.3)

u1n ¼ u1 sinH; ð11:2Þ

u1t ¼ u1 cosH: ð11:3Þ

For an observer who moves with velocity u1t along the shock, the flow velocity in
front of the shock is now normal to the shock. Therefore in his reference frame the

Fig. 11.1 Propagation of a disturbance in subsonic flow

Fig. 11.2 Propagation of a disturbance in supersonic flow

Fig. 11.3 Oblique shock wave
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relations of the normal shock wave are valid, where the Mach number in front of the
shock is then

M1n ¼ u1n
a1

M1 sinH: ð11:4Þ

The shock relations (9.149), (9.150), and (9.151) can then be carried over to the
oblique shock wave, if M1 there is replaced by M1n from (11.4)

p2
p1

¼ 1þ 2
c

cþ 1
M2

1 sin
2 H� 1

� �
; ð11:5Þ

.2

.1
¼ cþ 1ð ÞM2

1 sin
2 H

2þ c� 1ð ÞM2
1 sin

2 H
; ð11:6Þ

T2
T1

¼ 2cM2
1 sin

2 H� c� 1ð Þ� �
2þ c� 1ð ÞM2

1 sin
2 H

� �
cþ 1ð Þ2M2

1 sin
2 H

: ð11:7Þ

Behind the oblique shock, the Mach number is formed with u2, therefore
M2 = u2/a2. Since u2n = u2 sin (H − d) holds, it follows that

M2n ¼ u2n
a2

¼ M2 sin H� dð Þ: ð11:8Þ

Although M2n is smaller than 1, M2 can be larger than 1. If we again replace M1 and
M2 by M1n and M2n (using (11.4) and (11.8), respectively), in the relation (9.153)
valid for a normal shock, we extract the equation

M2
2 sin

2 H� dð Þ ¼ cþ 1þ c� 1ð Þ M2
1 sin

2 H� 1
� �

cþ 1þ 2c M2
1 sin

2 H� 1
� � : ð11:9Þ

Using the continuity equation, we can transform this into a relation between the
wave angle H and the deflection angle d (Fig. 11.4)

tan d ¼ 2 cotH M2
1 sin

2 H� 1
� �

2þM2
1 cþ 1� 2 sin2 H
� � : ð11:10Þ

The lower of the two dividing lines sketched in Fig. 11.4 separates the regions
where the Mach number M2 is larger and smaller than one, and the upper line
connects the points of maximum deflections. (A diagram of the relation between
wave angle H and deflection angle d with the family parameter M1 is also found in
Appendix C.) A shock is called a strong shock if the wave angle H for a given
Mach number M1 is larger than the angle Hmax associated with the maximum
deflection dmax; otherwise we talk of a weak shock.
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In a weak shock the fluid velocity behind the shock can lie in either the subsonic
or the supersonic range, but behind a strong shock the flow is always subsonic. If
the deflection angle d is smaller than dmax, there are then two possible solutions for
the shock angle H. Which solution actually arises depends on the boundary con-
ditions far behind the shock.

Knowing about the oblique shock wave, we can immediately consider super-
sonic flow in a corner and around a wedge, providing d < dmax (Fig. 11.5). It is
observed that in flows past “slender wedges” d < dmax, weak shocks are always
attached to the nose. On the one side, the wave angle H is limited by the value p/2
(normal shock) and on the other by the condition M1 sin H� 1 (velocity normal to
the shock supersonic). Using (11.1) we then have

sinH� 1
M1

¼ sin l1: ð11:11Þ

Fig. 11.4 Relation between wave angle and deflection angle

Fig. 11.5 Supersonic flow in a corner and past a wedge
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Therefore H must be equal or larger than l, and thus move in the range

l�H� p
2
: ð11:12Þ

For H = l the shock deteriorates into a Mach wave. From M2 = M2 (H, d, M1) and
d = d(M1,H) we can eliminate the wave angleH to obtainM2 (d, M1). This relation
is given in the form of a diagram in Appendix C.

11.2 Detached Shock Wave

We now consider deflection angles d > dmax; these lead to flows past “blunt
wedges”. If, for a given Mach number M1 a deflection angle d larger than dmax
arises, a detached shock is the only possibility. Both strong and weak shocks are
then realized in the shock configuration (Fig. 11.6a). Close to the stagnation
streamline the wave angle is around 90o (strong shock, subsonic flow behind the
shock), while at greater distances from the body the shock deteriorates into a Mach
wave (H = l, Fig. 11.6b). It is difficult to calculate the resulting flow behind the
shock, since subsonic flow, supersonic flow and flow close to the velocity of sound
all appear together (transonic flow). Behind a curved shock, the flow is no longer
homentropic, and from Crocco’s theorem (4.157) is no longer irrotational.

The shock behavior derived up to now also holds locally for curved shocks; we
recognize this from the fact that no derivatives appear in the shock relations. Then
H is the local inclination of the shock front.

Fig. 11.6 Detached shock wave
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11.3 Reflection of Oblique Shock Waves

If a shock meets a wall it is reflected. The strength of the reflected shock adjusts
itself so that the flow velocity after the shock is again directed parallel to the wall.
The reflected shock can be either a weak or strong shock. If the original shock is a
weak shock it is generally observed that the reflected shock is also a weak shock.
We can interpret this flow as the same as the intersection of two oblique shocks of
the same strength where the line of symmetry is replaced by a plane wall
(Fig. 11.7).

Downstream from the reflected shocks, the state of the gas is everywhere the
same and the flow direction is the same as the flow direction in front of the shock.

If two shocks of different strengths cross (Fig. 11.8), then the reflected shocks
must be such that the same pressure and the same flow direction are produced
behind each. However all other fluid mechanical and thermodynamical quantities,
particularly the magnitude of the flow velocity, can be different from each other in
the regions of constant gas state 1 and 2. These are separated from each other by the
dot-dashed contact discontinuity C which is a streamline.

The contact discontinuity has the property of a vortex layer, i.e., its tangential
velocity on this surface changes discontinuously. We conclude from Crocco’s
theorem that the entropy in regions 1 and 2 is different. We come to the same

Fig. 11.7 Reflection, or intersection of two equally strong shocks

Fig. 11.8 Intersection of two shocks of different strengths
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conclusion if we consider that gas particles on both sides of the contact disconti-
nuity have moved through shocks of different strengths where the change in entropy
is different for each particle.

Similar behavior is observed in a flow past a wall having two successive corners
(Fig. 11.9). At the point P two shocks merge into one. From the above arguments, it
is clear that a contact discontinuity (dot-dashed line) must emanate from the point
P. However another wave (here dashed) must also emerge from P, and it can be
either a weak shock wave or an expansion wave (see Sect. 11.5) for the following
reason: the shock strengths of S1, S2 and S3 are all determined by the slope of the
wall. Since the pressure must be the same on either side of the contact discontinuity
C (the dynamic boundary condition), this can in general only be accompanied by
another wave.

If the wedge angle of Fig. 11.7 is increased, the Mach number behind the shock
becomes smaller. If the wedge angle is large enough, the maximum deflection
associated with the Mach number behind the shock becomes smaller than is nec-
essary to satisfy the boundary condition (parallel flow to the wall) behind the
reflected shock. Then the so-called Mach reflection takes place (Fig. 11.10).

The theory of Mach reflection is difficult because the shocks S1, S2 and the
contact discontinuity are curved and the state of flow downstream from S1 and S2 is
no longer constant. In addition the flow behind the partly normal shock S2 must be
subsonic, and so the shock configuration also depends on the conditions far behind
the shock.

Fig. 11.9 Confluence of two shocks

Fig. 11.10 Mach reflection
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11.4 Supersonic Potential Flow Past Slender Airfoils

We now return to the flow past slender airfoils. Within the framework of pertur-
bation theory, the shock reduces to a Mach wave.

We compute the flow from the wave equation (10.417), whose general solution is

u ¼ h x� byð Þþ g xþ byð Þ ð11:13Þ

with

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M21 � 1

q
: ð11:14Þ

In supersonic flow from the left, disturbances can only spread out to the right and
we must have g � 0 above the airfoil and h � 0 below. We shall first consider only
the flow above the upper side of the airfoil (Fig. 11.11), where

f ðxÞ ¼ fuðxÞ:

Above the airfoil the perturbation potential is

u ¼ h x� byð Þ; ð11:15Þ

and the component of the perturbation velocity in the y-direction is therefore,

t ¼ @u
@y

¼ �bh0 x; yð Þ: ð11:16Þ

Fig. 11.11 Supersonic flow past a slender airfoil
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We introduce (11.16) into the boundary condition (10.406), resulting in

t x; 0ð Þ ¼ U1
dfu
dx

¼ �bh0 x; 0ð Þ: ð11:17Þ

From this it follows immediately that

hðxÞ ¼ �U1
fuðxÞ
b

ð11:18Þ

and therefore, for the potential at the position y = 0, we have

uðxÞ ¼ �U1
fuðxÞ
b

; ð11:19Þ

or more generally in the whole upper half plane

u x; yð Þ ¼ �U1
fu x� byð Þ

b
: ð11:20Þ

In the same manner we find the solution in the lower half plane to be

u x; yð Þ ¼ U1
fl xþ byð Þ

b
; ð11:21Þ

where we now know the solution everywhere.
The fundamental assumption of linear supersonic flow for slender airfoils

M1� � 1ð Þ allows us to use (10.414) here as well, and we obtain the pressure
coefficient on the upper side (in the approximation y = 0+) of the airfoil as

cpu ¼ � 2
U1

@u
@x

¼ 2
b
d fu
dx

; ð11:22Þ

and on the lower side (y = 0–) as

cpl ¼ � 2
b
d fl
dx

: ð11:23Þ

Using (10.262) we can also write the force in the y-direction per unit depth as

Fy ¼
I

p� p1ð Þdx; ð11:24Þ

since p∞ provides no contribution. From the definition of the lift coefficient, it then
follows that
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cl ¼ 2Fy

.1U21l
¼ 1

l

I
cpdx ¼ 1

l

Z l

0

cpl � cpu
� �

dx: ð11:25Þ

If we insert the expressions for cpu and cpl , the integration yields

cl ¼ 2
lb

�flðlÞþ flð0Þ � fuðlÞþ fuð0Þ½ �: ð11:26Þ

Since fu(l) = fl(l) = –al/2 and fu(0) = fl(0) = al/2 hold, we find a lift coefficient
which is independent of the shape of the airfoil

cl ¼ 4affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M21 � 1

p : ð11:27Þ

The analogous calculation furnishes the force Fx, or rather the drag coefficient cd as

cd ¼ 2
bl

Z l

0

d fl
dx

	 
2

þ d fu
dx

	 
2
" #

dx; ð11:28Þ

which depends on the shape of the airfoil. For the flat plate we find

cl ¼ 4affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M21 � 1

p ; and cd ¼ acl; ð11:29Þ

as can be seen from Fig. 11.12.

Fig. 11.12 Supersonic flow past an infinitesimally thin plate
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11.5 Prandtl-Meyer Flow

We have seen that supersonic flows at concave corners are turned by oblique shock
waves, and we now ask what the conditions at a convex corner are. To do this we
consider the supersonic flow in Fig. 11.13. Suppose that all flow quantities in the
flow to the corner are homogeneous in space, and so no characteristic length can be
formed from the data of the flow. Even using the independent and dependent
variables, no new dimensionless independent variable can be combined, aside from
the angle u. Since the flow boundary has no typical length either, the solution may
also not depend on a length, which means it cannot depend on r. From the conti-
nuity equation in polar coordinates (see Appendix B) we then have

uu
r
d.
du

þ .
r
duu
du

þ .
ur
r
¼ 0: ð11:30Þ

Euler’s equations in polar coordinates now simplify to

uu
r
dur
du

� u2u
r
¼ 0 or

dur
du

¼ uu; ð11:31Þ

and

uu
r
duu
du

þ uruu
r

þ 1
.r

dp
du

¼ 0: ð11:32Þ

Finally the entropy equation becomes

uu
r

ds
du

¼ 0: ð11:33Þ

Since uu 6¼ 0 it follows that ds=du ¼ 0. Therefore the flow is homentropic. By
Crocco’s relation it is then also irrotational. We could now introduce a velocity
potential but shall here refrain from doing this. Since the flow is homentropic,
dp=d. ¼ a2 holds. The continuity equation becomes

Fig. 11.13 Geometry of the Prandtl-Meyer flow
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1
r

u2u
a2

dp
du

þ .
r

uu
duu
du

þ uruu

	 

¼ 0: ð11:34Þ

Equation (11.32) yields

.
r

uu
duu
du

þ uruu

	 

þ 1

r
dp
du

¼ 0: ð11:35Þ

The difference of the last two equations gives us

1
r

u2u
a2

� 1

 !
dp
du

¼ 0: ð11:36Þ

Clearly dp/du cannot vanish in the entire field since then there would be no turning
of the flow. In the region where dp/du 6¼ 0 it follows that u2u ¼ a2, and since u is
measured anticlockwise,

uu ¼ �a: ð11:37Þ

With u ¼ ~uj j, we see from Fig. 11.14

�uu
u

¼ a
u
¼ 1

M
¼ sin l; ð11:38Þ

i.e.,~u just forms the Mach angle l with the r-direction. Therefore, the straight lines
u = const are Mach lines, or characteristics. Such a flow where the flow velocity
and thermodynamic state along a Mach line are constant is called a simple wave.
The velocity vector ~u uð Þ on such a characteristic is turned about the angle

v ¼ l� u ð11:39Þ

from the direction of the incident flow (M1 = 1).

Fig. 11.14 The connection between the Mach angle and the angle of inclination
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We shall now restrict ourselves to the calorically perfect gas and form, using
a2 ¼ cp=. and (11.37), the expression

d a2
� � ¼ c� 1ð Þ dp

.
¼ 2uuduu; ð11:40Þ

which we insert into (11.32)

cþ 1
c� 1

duu
du

¼ �ur: ð11:41Þ

From (11.31) we further replace uu by dur/du

d2ur
du2 þ c� 1

cþ 1
ur ¼ 0: ð11:42Þ

This equation is the equation of the simple harmonic oscillator, whose general
solution is

ur ¼ C sin

ffiffiffiffiffiffiffiffiffiffiffi
c� 1
cþ 1

s
uþu0

 !
; ð11:43Þ

which is here subject to the boundary conditions

ur u ¼ p=2ð Þ ¼ 0 ð11:44Þ

and

uu u ¼ p=2ð Þ ¼ d ur
du

�����p
2

¼ �a�: ð11:45Þ

With

a� ¼
ffiffiffiffiffiffiffiffiffiffi
2

cþ 1

s
at

we obtain the solution

ur ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

c� 1

s
at sin

ffiffiffiffiffiffiffiffiffiffiffi
c� 1
cþ 1

s
p=2� uð Þ

 !
ð11:46Þ
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for ur and from (11.31) we find that uu is

uu ¼ �
ffiffiffiffiffiffiffiffiffiffi
2

cþ 1

s
at cos

ffiffiffiffiffiffiffiffiffiffiffi
c� 1
cþ 1

s
p=2� uð Þ

 !
: ð11:47Þ

With these the velocity field is known. The domain in which Eqs. (11.46) and
(11.47) are valid is limited in after the end characteristic, whose slope u2 = l2 – v2
depends on the turning angle v2, the flow is homogeneous again (Fig. 11.15).
Equation (11.36) is satisfied here because dp/du = 0.

The characteristics between the start and end characteristics form an “expansion
fan”, similar to the one we have already met in the case of the suddenly accelerated
piston in Sect. 9.3. Since the flow is homentropic

p
pt

¼ a
at

	 
2c= c�1ð Þ
¼

ffiffiffiffiffiffiffiffiffiffi
2

cþ 1

s
cos

ffiffiffiffiffiffiffiffiffiffiffi
c� 1
cþ 1

s
p=2� uð Þ

 !" #2c= c�1ð Þ

ð11:48Þ

holds everywhere and we recognize that for a value of u

uV ¼ � p
2

ffiffiffiffiffiffiffiffiffiffiffi
cþ 1
c� 1

s
� 1

 !
ð11:49Þ

(	 – 130o for c = 1.4) vacuum is reached (Fig. 11.16).
For u = uV the Mach number becomes infinite, i.e., l = 0, and because of

(11.39) the associated turning angle is v2 = vV = –uV. Then a further increase of
the turning angle does not change the flow any more. A vacuum forms between the
wall and the line u = uV.

Fig. 11.15 Expansion fan of Prandtl-Meyer flow
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In order to calculate the flow for a given flow deflection, the relation between
v and the Mach number will first be found. With

M2 ¼ u2r þ u2u
a2

; ð11:50Þ

the function M(u) is given. Together with sin l ¼ sinðvþuÞ ¼ M�1; after some
easy computation, the relation known as the Prandtl-Meyer function appears

v ¼
ffiffiffiffiffiffiffiffiffiffiffi
cþ 1
c� 1

s
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c� 1
cþ 1

M2 � 1ð Þ
s

� arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1

p
; ð11:51Þ

which is tabulated in Appendix C.
We have derived the Prandtl-Meyer function for an incident flow with Mach

number M1 = 1, to which the value v1 = 0 belongs. If we wish to know the
downstream Mach number M2 (M2� M1) for any incident flow Mach number
M1 > 1, we first of all determine the angle v1 associated with M1 from the table in
Appendix C (Fig. 11.17).

If the flow is then turned about d it holds that

v2 ¼ v1 þ d; ð11:52Þ

Fig. 11.16 Expansion in a vacuum
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from which we determine the Mach number after the turning with the help of the
table. Take as an example M1 = 2: we read off the associated value of v1 as 26.38°.
If the flow around the corner is turned about d = 10°, then v2 = 36.38° and the
associated value M2 	 2.38 is the outflow Mach number.

Of course the same formulae hold if the turning is continuous and also for
compression waves (Fig. 11.18). If the Mach lines form an envelope in the case of
the concave wall, a shock wave forms at some distance from the wall (Fig. 11.19).
This is analogous to unsteady flow where a piston with finite acceleration forms
compression waves (see Fig. 9.33).

If y00wð0Þ� y00wðxÞ for all x > 0 (Fig. 11.19), the cusp of the envelope lies on the
first characteristic which emanates from the point where the turning of the wall
begins (the origin in Fig. 11.19), and its coordinates can be explicitly calculated in
the same way as before which led to Eqs. (9.223) and (9.225)

yP ¼ sin2 2l1ð Þ
2 cþ 1ð Þy00wð0Þ

; ð11:53Þ

Fig. 11.17 Prandtl-Meyer flow for arbitrary incident flow Mach number

Fig. 11.18 Gradual deviation
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xP ¼ yP cot l1: ð11:54Þ

We conclude from this result that for l1 = p/2, i.e., M1 = 1, the coordinates yP and
xP tend to zero. In this case a normal shock wave degenerates to a Mach wave
which forms at the origin.

For M1 ! ∞ the shock wave moves into the origin, and l1 tends to zero so that
the shock wave leans against the wall (Fig. 11.20). Between the shock and the wall,
the strongly compressed gas moves in a very thin layer along the surface of the
body. If y00wð0Þ tends to infinity (wall corner) we obtain a shock wave which starts at
the corner, that is the case shown in Fig. 11.5.

11.6 Shock Expansion Theory

With the help of the relations for the oblique shock wave and the Prandtl-Meyer
function, the supersonic flow past an airfoil may be calculated in a simple manner.

The flow past an inclined plate (Fig. 11.21) is on the upper side at the leading
edge first turned by a centered Prandtl-Meyer expansion wave and then at the
trailing edge by an oblique shock wave, whereas on the lower side the flow is first
turned by an oblique shock and then by an expansion wave. A contact discontinuity
starts out from the trailing edge which, at small angle of attack, is almost parallel to
the undisturbed flow. The wave system behind the plate does not affect the force on
the plate. Since the expansion waves reflected by the shocks never reach the plate
again, flow quantities along the surface, like Mach number and pressure are

Fig. 11.19 Formation of a shock wave

Fig. 11.20 For large incident flow Mach numbers the shock leans against the wall
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computed exactly within the framework of inviscid flow theory. In contrast to the
subsonic case (see Fig. 10.48) the lift force acts in the middle of the airfoil in
accordance with Sect. 11.4.

In the same way we find the solution for the supersonic flow past a diamond
airfoil (Fig. 11.22). Depending on the geometry and the conditions of the incident
flow, the reflected waves can reach the airfoil again. However in shock expansion
theory, these reflections are ignored in determining the flow quantities along the

Fig. 11.21 Exact solution for the supersonic flow past a plate

Fig. 11.22 Supersonic flow past a diamond airfoil

460 11 Supersonic Flow



surface of the airfoil. If the reflected waves do not meet the airfoil, then this solution
is again exact.

As we already know from perturbation theory, an airfoil in supersonic flow has a
drag, in spite of the assumption of no viscosity. The value of this per unit depth for
the symmetric diamond airfoil in Fig. 11.22 is

Fw ¼ p2 � p3ð Þd: ð11:55Þ

With an airfoil having continuous surface curvature (Fig. 11.23), the reflected
Mach waves will certainly meet the airfoil. Therefore the flow field between the
front and rear shocks is not a simple combination of shocks and Prandtl-Meyer
flow. On the upper side of the airfoil, besides the waves leaning to the right
(y = x tan l + const) of the Prandtl-Meyer flow, waves leaning to the left also
occur. Exact calculation of the flow field can be done by the method of charac-
teristics, however if only the data along the airfoil contour are of interest, the
following simplified view is sufficient: to determine the flow at the leading edge, we
approximate this edge by a wedge, so that the shock and the conditions behind the
shock are known. Using the now known initial data, we calculate the flow along the
curved surface as a simple Prandtl-Meyer expansion. The trailing edge is then also
approximated as a wedge again.

Fig. 11.23 Supersonic flow past an airfoil
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Chapter 12
Boundary Layer Theory

We have shown earlier that the flow past a body found under the assumption of zero
viscosity can serve as an approximate solution to viscous flow for large Reynolds’
numbers. However this solution is not uniformly valid in the entire field because it
breaks down completely near a solid wall to which a real fluid adheres, while the
theory of inviscid flow in general yields a nonzero tangential velocity.

The thickness of the boundary layer, i.e., the layer where friction effects cannot
be ignored, is proportional to Re−1/2. As previously stated, this is so in the laminar
case to which we restrict ourselves for the time being. But even in turbulent flow the
boundary layer thickness goes to zero in the limit Re ! ∞, so that the body “seen”
by the flow corresponds to the actual body. The inviscid solution then represents an
approximate solution of the Navier–Stokes equations for large Reynolds’ numbers,
with an error of order O(Re−1/2) in the laminar case. The breakdown of the solution
directly at the wall nevertheless remains, no matter how large the Reynolds’ number
is.

The complete approximate solution to the Navier–Stokes equations must be built
up from two part solutions valid in different regions. One of these is the solution of
the inviscid flow problem, the so-called outer solution, and the other is the inner
solution close to the wall. The inner solution describes the boundary layer flow and
must be such that the flow velocity from its value zero at the wall passes asymp-
totically into the velocity predicted by the outer (inviscid) solution directly at the
wall. Because of this nonuniformity, the approximate solution of the Navier–Stokes
equation represents an example of a singular perturbation problem, as they often
appear in applications. An example already mentioned is the approximate solution
for the potential flow past a slender airfoil (Sect. 10.4) which only breaks down at
the blunt nose of the airfoil and outside this region describes the flow quite accu-
rately. The outer, inviscid solution for large Reynolds’ numbers gives important
information about, for example, the pressure and velocity distributions, but is not
able to predict the drag and makes no statements about where the boundary layer
separates, or even if it does so at all. The answer to these questions is obviously
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important, and requires the solution of the inner problem, which is the subject of
boundary layer theory.

The differential equations required for the inner solution can be found system-
atically from the Navier–Stokes equations within the framework of singular per-
turbation theory. However, here we proceed along a more intuitive path. In what
follows we shall assume that the outer solution is known and so the pressure and
velocity distributions are at hand from this solution.

To begin with, we restrict ourselves to incompressible and plane two-
dimensional flow and introduce the so-called boundary layer coordinate system,
in which x is measured along the surface of the body and y perpendicular to it. If the
boundary layer thickness is very small compared to the radius of curvature R of the
wall contour d=R � 1ð Þ, the Navier–Stokes equations hold in the same form as in
Cartesian coordinates. In the calculation of the inner solution, i.e., of the boundary
layer flow, the curvature of the wall then plays no role. The boundary layer
developes as if the wall were flat. The wall curvature only manifests itself indirectly
through the pressure distribution given by the outer solution.

Since the boundary layer is very thin for large Reynolds’ numbers, the following
inequalities hold

@u
@x

� @u
@y

and
@2u
@x2

� @2u
@y2

: ð12:1Þ

A consequence of the last condition is that the x-component of the Navier–Stokes
equations reduces to

@u
@t

þ u
@u
@x

þ t
@u
@y

¼ � 1
.
@p
@x

þ �
@2u
@y2

: ð12:2Þ

In order to determine the order of magnitude of the term u@u=@x in comparison to
t@u=@y, we begin with the continuity equation for plane two-dimensional and
incompressible flow

@u
@x

þ @t
@y

¼ 0; ð12:3Þ

and together with (12.1) conclude that @t=@y � @u=@y, so that t � u holds.
Therefore the second and third terms on the left-hand side in (12.2) are of the same
order of magnitude.

While the viscous forces are completely ignored in the outer flow, they do play a
role in the boundary layer. The order of magnitude of the boundary layer thickness
can be determined by considering the thickness of the layer where the viscous
forces are of the same order of magnitude as the inertial forces, e.g., where
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u
�

@u=@x

@2u=@y2
� 1: ð12:4Þ

In the x-direction, let L be the typical length scale (cf. Fig. 12.1), and if U1 is the
incident flow velocity, we have the order of magnitude equation

u
@u
@x

� U2
1
L

: ð12:5Þ

The typical length scale in the y-direction is the average boundary layer thickness
d0, so that

�
@2u
@y2

� �
U1
d20

: ð12:6Þ

Using (12.5) we then have the estimate

U2
1
�
L

�U1
�
d20

� 1; ð12:7Þ

from which we obtain the result (4.38) again

d0
L

�Re�
1
2: ð12:8Þ

With this result, the individual terms in the equations of motion are reviewed in
order to systematically simplify the equations themselves. It follows from the
continuity equation that

t� d0
L
U1 and therefore t�U1Re�

1
2: ð12:9Þ

Fig. 12.1 Boundary layer coordinates
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To discuss this further we introduce dimensionless quantities, chosen so that they
are all of the same order of magnitude

uþ ¼ u
U1

; tþ ¼ t
U1

L
d0

¼ t
U1

Re
1
2; pþ ¼ p

U21.
ð12:10Þ

and

xþ ¼ x
L
; yþ ¼ y

d0
¼ y

L
Re

1
2; tþ ¼ t

U1
L

: ð12:11Þ

Using these variables the Navier–Stokes equations take on the form

@uþ

@tþ
þ uþ @uþ

@xþ
þ tþ

@uþ

@yþ
¼ � @pþ

@xþ
þ 1

Re
@2uþ

@xþ 2 þ @2uþ

@yþ 2 ; ð12:12Þ

and

1
Re

@tþ

@tþ
þ uþ @tþ

@xþ
þ tþ

@tþ

@yþ

� �
¼ � @pþ

@yþ
þ 1

Re2
@2tþ

@xþ 2 þ 1
Re

@2tþ

@yþ 2 ; ð12:13Þ

in which all differential expressions have the same order of magnitude, and the
order of magnitude of the whole term is controlled by the prefactor.

Since we are looking for an approximate solution for large Reynolds’ numbers,
we take the limit Re ! ∞ and obtain the boundary layer equations in dimen-
sionless form

@uþ

@tþ
þ uþ @uþ

@xþ
þ tþ

@uþ

@yþ
¼ � @pþ

@xþ
þ @2uþ

@yþ 2 ; ð12:14Þ

and

0 ¼ � @pþ

@yþ
: ð12:15Þ

In addition we have the continuity equation which remained unaffected by taking
the limit

@uþ

@xþ
þ @tþ

@yþ
¼ 0: ð12:16Þ

The dynamic boundary condition at the wall reads

yþ ¼ 0 : uþ ¼ tþ ¼ 0; ð12:17Þ
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and, since at the outer edge of the boundary layer the velocity u of the inner solution
should pass asymptotically into the velocity U(x, t) = U(x, y = 0, t) of the outer
solution,

yþ ! 1 : uþ ! U
U1

: ð12:18Þ

We shall address the initial conditions later on, but shall first show that Eqs. (12.14)
and (12.15) are much simpler than the Navier–Stokes equations. In the dimensionless
boundary layer equations and in the boundary conditions the viscosity does not
appear, and therefore the solution is valid for all Reynolds’ numbers, as long as they
are large enough (always assuming laminar flow) so that the simplifications are
justified. Of course in terms of dimensional quantities the solution does change with
the Reynolds’ number. We read off from (12.10) and (12.11) that u and x do not
change if u+ and x+ respectively do not change, and that for fixed t+ and y+ respec-
tively, t and y are proportional to Re−1/2. In the “physical” plane the quantities change
with the Reynolds’ number as follows: distances and velocities in the y-direction vary
proportionally to Re−1/2, while in the x-direction they remain constant.

We shall now rewrite the boundary layer equations in dimensional form and
shall restrict ourselves to steady flow. These were first stated in this form in 1904 by
Prandtl

u
@u
@x

þ t
@u
@y

¼ � 1
.
@p
@x

þ �
@2u
@y2

; ð12:19Þ

0 ¼ @p
@y

; and ð12:20Þ

@u
@x

þ @t
@y

¼ 0: ð12:21Þ

From the second equation of this system of partial differential equations of the
parabolic type we see that p = p(x). In the remaining equations u and v are the
independent variables, while p is no longer to be counted as an unknown. Because
of (12.20) the pressure in the boundary layer (inner solution) has the same value as
outside it, where it is known from the outer solution. We evaluate the Euler’s
equation (outer solution) (4.40) at the wall y ¼ 0 (region of the inner solution).
With vanishing perpendicular velocity at the wall we obtain

� 1
.
@p
@x

¼ U
@U
@x

: ð12:22Þ
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We note that for y ! ∞ only one condition is placed on the component u (cf.
12.18). Because of the parabolic character of the system of equations, an initial
distribution must be given

x ¼ x0 : u ¼ u0ðyÞ; ð12:23Þ

as well as the boundary condition (12.17) at the wall. The initial-boundary value
problem (12.19–12.22) is defined in a half-open domain ðx ¼ x0; y ¼ 0; y ! 1Þ
and the solution can be found by continuation of a given velocity profile in growing
x-direction.

The system of equations is nonlinear and must in general be solved numerically.
The methods of solution can be arranged into field and integral methods. Numerical
field methods arise from replacing the differential Eqs. (12.19) and (12.21) by their
finite difference forms. We shall go into the integral methods in Sect. 12.4.

Finally, we note that the flow over an oscillating wall (Sect. 6.2.1) and the flow
over a wall which is suddenly set in motion (Sect. 6.2.2) are exact solutions of the
Navier–Stokes equations of the boundary layer type.

12.1 Solutions of the Boundary Layer Equations

For certain pressure and velocity distributions, the partial differential Eqs. (12.19)
to (12.21) can be reduced to ordinary differential equations. The most important
cases are the power law distributions

UðxÞ ¼ C xm: ð12:24Þ

These correspond to the corner flows (10.240) with C = |a| and m = n – 1.
Stagnation point flow (m = 1, n = 2) and parallel flow (m = 0, n = 1) are of par-
ticular interest. However in this connection, flows with exponents in the range
1 < n < 2 are interesting, since they describe flow past wedges. First we shall
consider the particularly simple case m = 0, which describes the flow past a
semi-infinite plate.

12.1.1 Flat Plate

The outer flow is the unperturbed parallel flow U = U∞ (Fig. 12.2), and therefore
@p=@x ¼ 0 holds. From (12.19) and (12.21) it then follows that

u
@u
@x

þ t
@u
@y

¼ �
@2u
@y2

ð12:25Þ
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and

@u
@x

þ @t
@y

¼ 0; ð12:26Þ

which is to be solved subject to the boundary conditions

y ¼ 0; x[ 0 : u ¼ t ¼ 0; ð12:27Þ

y ! 1 : u ¼ U1; ð12:28Þ

and the initial condition

x ¼ 0 : u ¼ U1: ð12:29Þ

We note that the inequalities (12.1) do not hold at the leading edge of the plate
ðx ¼ 0Þ. Hence, it is a singular point within the frame of the boundary layer theory.

By introducing the stream function we satisfy the continuity equation identically
and from (12.25) obtain the differential equation

@W
@y

@2W
@x@y

� @W
@x

@2W
@y2

¼ �
@3W
@y3

: ð12:30Þ

The boundary conditions now become

W x; y ¼ 0ð Þ ¼ @W
@y

����
x;y¼0ð Þ

¼ 0 ð12:31Þ

Fig. 12.2 Boundary layer on the flat plate
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and

@W
@y

����
x;y!1ð Þ

¼ U1; ð12:32Þ

while the initial condition takes on the form

@W
@y

����
x¼0;yð Þ

¼ U1: ð12:33Þ

The stream function of the unperturbed incident flow is

W ¼ U1y;

and we expect that in the boundary layer W ¼ O U1d0ð Þ. Because of (12.8) we
therefore have

W� U1Lffiffiffiffiffiffi
Re

p : ð12:34Þ

We use this result to make the stream function dimensionless with (12.11). It must
hold then that

Wffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L �U1

p ¼ f xþ ; yþð Þ ¼ f
x
L
; y

ffiffiffiffiffiffiffiffi
U1
L �

r !
: ð12:35Þ

Since no geometrical length is introduced into this problem of the infinitely long
plate, L plays the role here of an artificial length. The requirement that this artificial
length vanish from the problem leads us to the similarity variables

g ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1= L �ð Þp
ffiffiffiffiffiffiffiffi
x=L

p ¼ y

ffiffiffiffiffiffiffiffi
U1
� x

r
; ð12:36Þ

and

W

ffiffiffiffiffiffiffiffi
L=x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LU1�

p ¼ Wffiffiffiffiffiffiffiffiffiffiffiffi
�U1x

p : ð12:37Þ

Therefore the solution must be of the form

W ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
�U1x

p
f gð Þ: ð12:38Þ
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If we insert this form of solution into (12.30), the differential equation

2f 000 þ ff 00 ¼ 0; ð12:39Þ

appears; this is known as the Blasius’ equation. The boundary conditions on f fol-
low from (12.31) and (12.32) as

f ð0Þ ¼ f 0ð0Þ ¼ 0 ð12:40Þ

and

f 0 1ð Þ ¼ 1: ð12:41Þ

Since

g y ! 1; xð Þ ¼ g y; x ¼ 0ð Þ ¼ 1; ð12:42Þ

the initial condition (12.33) also leads to (12.41). The solution of the Blasius’
equation with these boundary conditions is a boundary value problem, since con-
ditions are given on both boundaries η = 0 and η = ∞. The problem can also be
solved numerically as an initial value problem: besides the initial values (12.40) we
then lay down a further initial value for f 00, say f 00(0) = a, and try out different
values of a until the boundary condition for η = ∞ is satisfied (shooting method).
In this manner we find that

f 00ð0Þ ¼ 0:33206: ð12:43Þ

As well as showing the velocity f 0 gð Þ ¼ u=U1, Fig. 12.3 also shows the functions
f (η) and f 00(η). Using (12.43) the shear stress at the wall

sw ¼ g
@u
@y

����
y¼0

¼ g

ffiffiffiffiffiffiffiffi
U31
�x

r
f 00 0ð Þ ð12:44Þ

can be calculated, where η in Eq. (12.44) is the shear viscosity and not the simi-
larity variable of (12.36).

Theoretically the boundary layer reaches to infinity because the transition from
the boundary layer to outer flow is asymptotic, and so the geometric boundary layer
thickness can be arbitrarily defined. Often the boundary layer thickness is taken as
the distance from the wall where u/U∞ = 0.99. As the numerical calculation shows,
this value is reached for η � 5. The boundary layer thickness defined in this way is
therefore
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d ¼ 5
ffiffiffiffiffiffiffiffi
�x
U1

r
: ð12:45Þ

Instead of the geometric boundary layer thickness d, the uniquely defined dis-
placement thickness d1 is often preferred

d1 ¼
Z1
0

1� u
U

� �
dy; ð12:46Þ

which is a measure of the displacing action of the boundary layer. From the velocity
profile u/U∞, because of U � U∞, we obtain

d1 ¼ 1:7208
ffiffiffiffiffiffiffiffi
�x
U1

r
: ð12:47Þ

The outer, inviscid flow does not “see” the infinitesimally thin plate, but instead a
half body with the contour (12.47). A measure for the loss of momentum in the
boundary layer is the momentum thickness d2

d2 ¼
Z1
0

1� u
U

� � u
U
dy; ð12:48Þ

Fig. 12.3 Solution of the Blasius’ equation
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for which we here obtain the value

d2 ¼ 0:664
ffiffiffiffiffiffiffiffi
�x
U1

r
: ð12:49Þ

Of course the plate experiences a drag (per unit depth), which for the plate wetted
on one side and extending to x = L is found as

Fw ¼
ZL
0

swdx ¼ 0:664.U2
1L

U1L
�

� ��1=2

: ð12:50Þ

The formula for the coefficient of friction cf may be obtained from (12.50)

cf ¼ Fw

.=2ð ÞU21L
¼ 1; 33ffiffiffiffiffiffi

Re
p ; ð12:51Þ

a result which is called Blasius’ friction law.

12.1.2 Wedge Flows

We consider symmetric wedges as in Fig. 12.4 and shall first deal with the outer
inviscid potential flow, whose velocity distribution leads to asymptotic boundary
conditions for the inner flow calculation. The outer flow has already been given by
the corner flow in Fig. 10.30 in the exponent range 1 � n � 2. We turn the
coordinate system in Fig. 12.4 around p – p/n in the positive direction, to make it
comparable to Fig. 10.30. This means that the complex coordinate z is replaced by
z exp{–ip [(n – 1)/n]}. The stream function corresponding to (10.243) now reads

W ¼ a
n
rn sin nu� p n� 1ð Þ½ �; ð12:52Þ

and W = 0 is obtained for the angle

b ¼ p
n� 1
n

¼ p
m

mþ 1

as well as for the negative x-axis.
As we reflect the corner flow through the x-axis, it becomes a wedge flow whose

velocity distribution is given by (10.244). In the boundary layer coordinates where
we measure x along the upper surface of the body and y perpendicular to it, we
therefore obtain exactly the power law distribution (12.24).
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As is shown by Euler’s equation

� 1
.
@p
@x

¼ mC2x2m�1; ð12:53Þ

the pressure gradient here does not in general vanish; in spite of this no typical length
appears in wedge flows, and we should not be surprised that using the variables
(12.36) and (12.37) leads to a similarity solution here too. The similarity form

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�UðxÞx

p
f gð Þ ð12:54Þ

with

g ¼ y

ffiffiffiffiffiffiffiffiffiffi
UðxÞ
�x

r
ð12:55Þ

transforms the system (12.19) to (12.21) with (12.53) into the ordinary differential
equation

f 000 þ mþ 1
2

f f 00 þm 1� f 02
	 
 ¼ 0: ð12:56Þ

The solutions of this so-called Falkner-Skan equation, which must satisfy the
boundary conditions (12.40) and (12.41), are sketched in Fig. 12.5 for different
wedge angles which correspond to the exponent range m = 0 (i.e. b = 0°) to m = 1
(i.e. b = 90°). From the figure we take the boundary layer thickness corresponding
to f′ = 0.99 of the two-dimensional stagnation point flow as

Fig. 12.4 Wedge flow
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d ¼ 2:4
ffiffiffiffiffiffiffiffiffiffi
�x

UðxÞ
r

¼ 2:4

ffiffiffi
�

a

r
; ð12:57Þ

where for the stagnation point flow we follow the convention of setting C in (12.24)
to a.

The differential Eq. (12.56) with the boundary conditions (12.40) and (12.41)
also allows solutions for negative values of m which correspond to flows past
convex corners. As was mentioned in connection with Fig. 10.30 and as is directly
clear from (12.24), the velocity at x = 0 becomes infinite and the solution can only
have any physical meaning beyond a certain distance downstream from this posi-
tion. Since the solutions with negative m are not unique their physical meaning is
called into question. In fact there is an infinite number of solutions of the differential
Eq. (12.56) which satisfy the boundary conditions and have different values of
f 00ð0Þ, and therefore different values of the shear stress at the wall.

A “plausible” solution with m = –0.09043 is included in Fig. 12.5, because this
profile represents a separation profile as we shall show in Sect. 12.1.4. This small
negative value of m makes it clear that the boundary layer separates even for very
small positive pressure gradients. Turbulent boundary layers can suffer a consid-
erably higher increase in pressure; a fact which is very important for flow past an
airfoil and to which we have already referred in the discussion of the drag on a
sphere.

The importance of the solutions of the Falkner-Skan equation also rests in the
fact that they also provide the necessary initial distributions (cf. (12.23)) for the

Fig. 12.5 Velocity distribution in the boundary layer of a wedge flow
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numerical calculation of the boundary layer flow about general bodies, since they
may be approximated close to the front stagnation point by wedges. The case
b = 90°, i.e., the stagnation point flow, is of the greatest practical importance; it is
already interesting because at the same time it represents an exact solution of the
Navier–Stokes equations.

Finally, we note that the boundary layer equations are either singular as in the
case of the flat plate ðx ¼ 0Þ or they are exact solutions of the Navier–Stokes
equations as in the case of the stagnation point flow.

12.1.3 Unsteady Stagnation Point Flow

Now a similarity solution can be found even for the unsteady stagnation point
boundary layer flow. We have mentioned the inviscid potential flow for this case in
Sect. 10.3. Using U = a(t)x we obtain the pressure gradient along the wall from
Euler’s equations as

� 1
.
@p
@x

¼ @U
@t

þU
@U
@x

¼ a2x
_a
a2

þ 1
� �

; ð12:58Þ

where we have set da/dt = ȧ. Here the form of solution (12.54) with (12.55) is

W ¼
ffiffiffiffiffiffiffiffiffiffiffi
� aðtÞ

p
x f gð Þ; ð12:59Þ

with

g ¼ y

ffiffiffiffiffiffiffiffi
aðtÞ
�

r
ð12:60Þ

and transforms the boundary layer Eqs. (12.2), (12.20) and (12.21) using (12.58)
into the equation

_a
a2

f 0 þ g
2
f 00

� �
þ f 02 � f f 00 ¼ _a

a2
þ 1

� �
þ f 000: ð12:61Þ

This becomes an ordinary differential equations if ȧ/a2 is a constant

1
a2

daðtÞ
dt

¼ const,

where in particular const = 0 gives the steady stagnation point flow. Choosing
const = 1/2, and integrating ȧ/a2 = 1/2 leads to the relation a(t) = –2/t, if the
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constant of integration is set to zero. Therefore the velocity of the inviscid potential
flow at the edge of the boundary layer is

U ¼ � 2x
t
; ð12:62Þ

which is positive for t < 0 and which tends to infinity as t ! 0. We can imagine
this velocity in inviscid fluid as being produced when the upper wall (see Fig. 12.6)
is moved towards the lower wall with the velocity

_yw ¼ 2yw
t

;

thus carrying out the motion

yw ¼ C t2:

The velocity distribution in the boundary layer for this case is shown in Fig. 12.6.
We also note here that the similarity solution mentioned can be extended to

compressible flow.

Fig. 12.6 Velocity distribution in the boundary layer of the unsteady stagnation point flow
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12.1.4 Flow Past a Body

In general problems involving flow past a body we have @p=@x 6¼ 0; as is known
the pressure at the stagnation point is at its highest, and it decreases from there to
reach its lowest value @p=@x ¼ 0ð Þ near the thickest part of the body, thereafter
increasing again (Fig. 12.7). As has already been explained elsewhere, the fluid in
the boundary layer has lost energy thus preventing it from penetrating into the
region of higher pressure. Indeed the boundary layer fluid is pulled along by the
surrounding fluid through the shear stress forces, however if the pressure rise is too
large it comes to a standstill. Here the velocity gradient at the wall (@u=@y ¼ 0 for
y = 0) vanishes. In two-dimensional flow this point is accepted as the separation
point; the curvature of the velocity profile has to be positive here.

From (12.19) we find that at the wall

1
.
@p
@x

¼ �
@2u
@y2

for y ¼ 0; ð12:63Þ

and we conclude that separation is only possible for positive pressure gradients, i.e.,
the separation point (Fig. 12.8) lies in the region where the pressure is rising, as we
have already shown heuristically. From the mathematical point of view the topol-
ogy of the separation point region corresponds to an unstable saddle point.

As we have previously stated, only numerical methods can be used for the
general problem of flow past a body. For a given pressure distribution, the boundary
layer calculation cannot in general be carried further than the separation point. The
reason for this is to be found in the parabolic character of the boundary layer
equation. We can only count on the convergence of a numerical algorithm if the
velocity profile stays positive. However there remains a need to develop a com-
putational method which predicts the flow past the separation point. This can

Fig. 12.7 Pressure distribution at an airfoil
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successfully be done in the so-called inverse problem, where instead of the pressure
distribution the shear stress distribution is given.

12.2 Temperature Boundary Layer in Forced Convection

In calculating the temperature distribution within the boundary layer we start out
with the energy Eq. (4.4), where we first introduce the simplifications possible
within boundary layer theory. Because of (12.1), we find the same relation for the
dissipation function as for unidirectional flows

U ¼ g
@u
@y

� �2

; ð12:64Þ

and for the calorically perfect gas, (4.4) assumes the form

. cp
DT
Dt

� Dp
Dt

¼ g
@u
@y

� �2

þ k
@2T
@y2

; ð12:65Þ

where again @2
�
@x2 has been neglected compared to @2

�
@y2.

The heat transfer between a body and its surrounding fluid takes place in a layer
along the contour of the body, in which, besides convection, i.e., transport of heat
by fluid motion, heat conduction plays a role. While heat conduction can usually be
ignored in the outer flow, it is of the same order of magnitude as the convection
term in (12.65) in the inner layer, called the temperature boundary layer; that is

Fig. 12.8 Sketch of the separation region
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. cpu
@T
@x

� k
@2T
@y2

: ð12:66Þ

If we replace these terms by their typical magnitudes

. cpU1
DT
L

� k
DT

d20t
; ð12:67Þ

we obtain the following estimate for the thickness of the temperature boundary
layer

d0t
L

� �2

� k
cpg

1
Re

: ð12:68Þ

The dimensionless combination of the material properties k, cp, η in the first
brackets on the right-hand side is the inverse of the Prandtl’s number

Pr ¼ cpg
k

; ð12:69Þ

which we met in (4.178), and which, as is clear from (12.8) and (12.68), determines
the ratio of the thicknesses of the velocity boundary layer and the temperature
boundary layer

d0
d0t

�
ffiffiffiffiffi
Pr

p
ð12:70Þ

For monatomic gases the kinetic gas theory furnishes the relation between k and η

k ¼ 5
2
ctg; ð12:71Þ

so that for c ¼ cp
�
ct ¼ 5=3 the Prandtl’s number assumes the value Pr = 2/3. For

diatomic gases, the Prandtl’s number can be calculated from the formula of Eucken

Pr ¼ cp
cp þ 1:25R

: ð12:72Þ

From this we find for the ideal gas that Pr = 0.74. This formula does not produce
good results for polyatomic gases, and it is recommended to calculate the Prandtl’s
number from the measured values of η, k and cp.

The Prandtl’s number for gases is of the order of 1, so that the temperature and
velocity boundary layers are of about the same thickness. The Prandtl’s number for
liquids is considerable larger than 1 (water: Pr � 7 at a temperature of 20 °C and
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1 bar pressure), so the temperature boundary layer is usually smaller than the
velocity boundary layer. Compared to this, Pr for liquid metals is much smaller
than 1 (mercury: Pr � 0.026 at a temperature of 20 °C), so that the temperature
boundary layer is correspondingly large.

If instead of the thermal conductivity k we use the thermal diffusivity

a ¼ k
cp.

;

the Prandtl’s number can be written in the easily remembered form

Pr ¼ �

a
:

We can simplify the energy equation even further within the framework of the
boundary layer theory. For the dissipation function U from (12.64) and the work
(per unit volume) of the pressure forces Dp/Dt, we obtain the order of magnitude
equations

U� g
U1
d0

� �2

� .1
U3

1
L

ð12:73Þ

and

Dp
Dt

�U1
@p
@x

� .1
U3

1
L

: ð12:74Þ

The estimate shows that both terms are of the same order of magnitude. The ratio of
these terms to the convective heat transport

. cpu
@T
@x

� .1cpU1
Tw � T1

L
ð12:75Þ

is known as Eckert’s number Ec

Ec ¼ U2
1

cp Tw � T1ð Þ : ð12:76Þ

Eckert’s number is the ratio of (twice) the kinetic energy of the unperturbed flow to
the enthalpy difference between the wall and the fluid. The largest possible
self-heating of the fluid is found from the energy Eq. (4.150) for the calorically
perfect gas as
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cp Tt � T1ð Þ ¼ U2
1
2

; ð12:77Þ

or with a21 ¼ cRT1

Tt � T1
T1

¼ c� 1
2

M2
1: ð12:78Þ

As we have stated previously, the self-heating of incompressible fluids (M∞ ! 0)
is negligible. In heat transfer problems with small Mach numbers, Eckert’s number
is generally very small and the dissipation U as well as the work per unit volume
Dp/Dt are negligible, so that we obtain the energy Eq. (12.65) in the form

. cp u
@T
@x

þ t
@T
@y

� �
¼ k

@2T
@y2

: ð12:79Þ

In order to solve (12.79) we clearly require the velocity field in the boundary layer.
The assumption of incompressibility has the consequence that the equations of
motion are decoupled from the energy equation. Therefore we can first solve the
equations for the flow boundary layer and then with the velocity distribution
resulting from this solve the temperature boundary layer.

However in the case of strong external heating the change in density as a result
of the change in temperature must be taken into account. Then the flow is to be
treated as a compressible flow even for vanishing Mach numbers, and the decou-
pling mentioned above in general does not occur. In these circumstances the
temperature dependence of the material properties usually has to be taken into
account too. In what follows we shall start out from the idea that the temperature
differences in the boundary layer are so small that the above effects can be ignored.

We shall consider the heat transfer problem of a flat plate; the system of
equations and boundary conditions are summarised below

u
@u
@x

þ t
@u
@y

¼ �
@2u
@y2

; ð12:80Þ

@u
@x

þ @t
@y

¼ 0; ð12:81Þ

u
@T
@x

þ t
@T
@y

¼ �

Pr
@2T
@y2

; ð12:82Þ

y ¼ 0; x[ 0 : u ¼ t ¼ 0; T ¼ Tw; ð12:83Þ
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y ! 1 : u ¼ U1; T ¼ T1: ð12:84Þ

The velocity components u and v follow from (12.38) as

u ¼ U1 f 0; and ð12:85Þ

follows, with the boundary conditions

t ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffi
�U1
x

r
f � g f 0ð Þ: ð12:86Þ

We conclude from (12.80) to (12.82) that the dimensionless temperature too can
only be a function of the similarity variables (12.36). Therefore

Tw � T
Tw � T1

¼ H gð Þ; ð12:87Þ

and from (12.82) the equation

H00 þ 1
2
Pr fH0 ¼ 0 ð12:88Þ

follows, with the boundary conditions

g ¼ 0 : H ¼ 0; ð12:89aÞ

g ! 1 : H ¼ 1: ð12:89bÞ

If we first set H0 ¼ F as the solution to (12.88) then

F ¼ C1 exp � 1
2
Pr
Zg
0

f dg

0
@

1
A; ð12:90Þ

and further because of (12.89a)

H ¼
Zg
0

F dg ¼ C1

Zg
0

exp � 1
2
Pr
Zg
0

f dg

0
@

1
Adg: ð12:91Þ

Taking account of the boundary condition (12.89b) this finally becomes
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H ¼
Zg
0

exp � 1
2
Pr
Zn
0

f dg

0
@

1
Adg

2
4

3
5 Z1

0

exp � 1
2
Pr
Zn
0

f dg

0
@

1
Adg

2
4

3
5
�1

ð12:92Þ

Because of (12.39) we also have f ¼ �2f 000=f 00, so that we can write

� 1
2
Pr
Zg
0

f dg ¼ Pr
Zg
0

f 000

f 00
dg ¼ Pr ln

f 00 gð Þ
f 00 0ð Þ
� �

; ð12:93Þ

and (12.92) then becomes

H ¼
Zg
0

f 00Prdg

2
4

3
5 Z1

0

f 00Prdg

2
4

3
5
�1

: ð12:94Þ

The dimensionless temperature H is thus known, since f 00(η) is given from the
solution of the Blasius’ equation. The solution in the above form was first given by
Pohlhausen. H = H (η, Pr) for various values of Pr is shown in Fig. 12.9.

We shall now calculate the only nonzero component of the heat flux vector qy at
the wall

qyðxÞ ¼ qðxÞ ¼ �k
@T
@y

����
w

; ð12:95Þ

Fig. 12.9 Temperature profiles of the flat plate boundary layer
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or

qðxÞ ¼ k Tw � T1ð ÞdH
dg

����
w

ffiffiffiffiffiffiffiffi
U1
� x

r
: ð12:96Þ

From (12.94) is follows that

dH
dg

����
g¼0

¼ f 00ð0Þ½ �Pr
Z1
0

f 00Prdg

0
@

1
A

�1

¼ g Prð Þ; ð12:97Þ

so that the heat flux is obtained as

qðxÞ ¼ k Tw � T1ð Þg Prð Þ
ffiffiffiffiffiffiffiffi
U1
�x

r
: ð12:98Þ

From

_Q ¼ �
ZZ
ðSÞ

qini dS ¼
ZL
0

qðxÞdx ð12:99Þ

we finally find the total heat per unit time and unit width transferred from the plate
of length L (on one side of the plate) as

_Q ¼ 2k Tw � T1ð Þg Prð Þ
ffiffiffiffiffiffiffiffiffiffi
U1L
�

r
; ð12:100Þ

or

_Q ¼ 2k Tw � T1ð Þg Prð Þ
ffiffiffiffiffiffi
Re

p
: ð12:101Þ

The function g(Pr) is well approximated by

g Prð Þ ¼ 0:332Pr1=3: ð12:102Þ

Using this we obtain

_Q ¼ 0:664kPr1=3Re1=2 Tw � T1ð Þ; ð12:103Þ

or else, using the defining equation for Nusselt’s number
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_Q ¼ Nu kA
Tw � T1

L
; A¼̂L ð12:104Þ

we find Nusselt’s relation

Nu ¼ 0:664Pr1=3Re1=2: ð12:105Þ

This is a specific form of the general law valid for forced convection

Nu ¼ Nu Pr;Reð Þ: ð12:106Þ

12.3 Temperature Boundary Layer in Natural Convection

In the section Hydrostatic Pressure Distribution 5.1, we showed that static equilib-
rium is only possible if the density gradient is parallel to the vector of the mass body
force. If we again choose the coordinate system so that the z-direction is antiparallel
to the direction in which gravity acts, then in equilibrium the density can only be a
function of z. Close to a heated wall where the density is affected by heating, this
condition of static equilibrium in general breaks down, and the fluid is set in motion
so that a flow originates close to the wall. Under certain conditions which will be
defined more precisely later, this flow has the character of a boundary layer.

In order to derive the equations of motion we start out from the Navier–Stokes
equations and split the pressure and density up into their static and dynamic parts

p ¼ pst þ pdyn; . ¼ .st þ .dyn:

It follows that

.st þ .dyn
	 
Dui

Dt
¼ .stki �

@pst
@xi

þ .dynki �
@pdyn
@xi

þ g
@2ui
@xj@xj

; ð12:107Þ

or, since the hydrostatic equation is given by

@pst
@xi

¼ .stki;

we have

.st þ .dyn
	 
Dui

Dt
¼ .dynki �

@pdyn
@xi

þ g
@2ui
@xj@xj

: ð12:108Þ
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We assume that the change in density .dyn is very small .dyn � .st
	 


, so that, using
the mass body force of gravity ki = gi it follows first that

Dui
Dt

¼ .dyn
.st

gi � 1
.st

@pdyn
@xi

þ �
@2ui
@xj@xj

: ð12:109Þ

In the literature this approach is named Boussinesq approximation.

Now for the change in density we set

.dyn ¼ �.stb T � T1ð Þ; ð12:110Þ

where the thermal expansion coefficient is given by

b ¼ � 1
.

@.
@T

� �
p

" #
1
; ð12:111Þ

and therefore for the ideal gas

b ¼ 1
T1

: ð12:112Þ

Again we abbreviate pdyn with p and .st with .. In the boundary layer the con-
vective terms are again of the same order of magnitude as the viscosity terms, so
that we have

U2
�
L

�U
�
d20

� 1: ð12:113Þ

In this case where there is no velocity U∞, the typical velocity can only be given
indirectly by the data of the problem. The driving force of the flow is the term
.dyn g ¼ .stbDT g, where DT ¼ Tw � T1j j. Using the characteristic length L, the
typical velocity

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bDT gL

p
ð12:114Þ

can be formed. Then from (12.113) we extract

d0
L

� �2

gbDT L3

� �1=4

: ð12:115Þ
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For

Gr ¼ g bDTL3

�2
	 1 ð12:116Þ

d0=L � 1, i.e., the flow has the character of a boundary layer if the dimensionless
number Gr (Grashof’s number) is large. Under this condition, the boundary
layer simplifications are valid. Instead of Grashof’s number, Rayleigh’s number
Ra = Gr Pr is often used.

Let us consider the flow at a vertical semi-infinite, heated plate as an example.
The origin lies at the lower edge, x is measured along the plate and y normal to it.
Then the vector of the mass body force of gravity has the components gx = –g and
gy = 0. Introducing the dimensionless temperature

H ¼ T � T1
Tw � T1

; ð12:117Þ

the now coupled system of equations for the ideal gas reads

@u
@x

þ @t
@y

¼ 0; ð12:118Þ

u
@u
@x

þ t
@u
@y

¼ �
@2u
@y2

þ gH
Tw � T1

T1
; and ð12:119Þ

u
@H
@x

þ t
@H
@y

¼ k
.cp

@2H
@y2

: ð12:120Þ

This is to be solved subject to the boundary conditions

y ¼ 0 : u ¼ t ¼ 0; H ¼ 1; ð12:121Þ

y ! 1 : u ¼ 0 ; H ¼ 0: ð12:122Þ

Introducing a dimensionless stream function analogous to (12.38), and using

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gDT L
4T1

r
and DT ¼ Tw � T1j j ð12:123Þ

we obtain

W ¼ 4
�2DT g L3

4T1

� �1=4

f
x
L
; y

DT g
4T1 �2L

� �1=4
" #

: ð12:124Þ
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Since L may not appear in the solution, W must have the following form

W ¼ 4
�2DT g x3

4T1

� �1=4

f gð Þ; ð12:125Þ

where

g ¼ y
DT g

4T1�2x

� �1=4

ð12:126Þ

is the dimensionless similarity variable of the problem. Writing

C ¼ DT g
4T1�2

� �1=4

; ð12:127Þ

we find the following form for the stream function

W ¼ 4C � x3=4f gð Þ: ð12:128Þ

The dimensionless temperature can also only be a function of the dimensionless
variable η; therefore

H x; yð Þ ¼ H gð Þ: ð12:129Þ

Setting these into Eqs. (12.119) and (12.120) we obtain the coupled ordinary dif-
ferential equations

f000 þ 3ff00 � 2f0 þH ¼ 0; ð12:130Þ

H00 þ 3PrfH0 ¼ 0; ð12:131Þ

with the boundary conditions

g ¼ 0 : f ¼ f0 ¼ 0; H ¼ 1; ð12:132Þ

g ! 1 : f0 ¼ 0; H ¼ 0: ð12:133Þ

This system of equations must be solved numerically. For Pr = 0.733 this gives us
Nusselt’s number as

Nu ¼ 0:48Gr1=4: ð12:134Þ
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The following formula, which explicitly states the dependency on Prandtl’s num-
ber, is considered a good approximation

Nu ¼ Ra
2:43478þ 4:884Pr1=2 þ 4:95283Pr

� �1=4

: ð12:135Þ

This is a special form of the general law for the natural convection
Nu ¼ NuðPr;RaÞ. In the general case of a mixed convection, namely the super-
position of forced and natural convection, the relation holds Nu ¼ NuðRe;Pr;RaÞ.

12.4 Integral Methods of Boundary Layer Theory

In order to calculate boundary layers approximately, we often use methods where
the equations of motion are not satisfied everywhere in the field but only in integral
means across the thickness of the boundary layer. The starting point for these
integral methods is usually the momentum equation which can be derived by
applying the continuity Eq. (2.7) and the balance of momentum (2.43) in its integral
form to a section of the boundary layer of length dx (Fig. 12.10).

The infinitesimal mass flux d _m per unit depth which flows between (1) and
(2) into the control volume is

d _m ¼ _m xþ dxð Þ � _mðxÞ ¼ dx
d _m
dx

¼ dx
d
dx

ZdðxÞ
0

. u dy: ð12:136Þ

Fig. 12.10 Control volume in the boundary layer
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With this mass flux the momentum flux

U d _m ¼ U dx
d
dx

ZdðxÞ
0

. u dy ð12:137Þ

in the x-direction is associated so that the component of the balance of momentum
in this direction reads

�U
d
dx

ZdðxÞ
0

. u dyþ d
dx

ZdðxÞ
0

. u2dy ¼ � dp
dx

dðxÞ � sw: ð12:138Þ

Again we shall restrict ourselves to incompressible flows for which the integrals
appearing in (12.138) can be expressed using the displacement thickness (12.46)
and the momentum thickness (12.48)

ZdðxÞ
0

u dy ¼ U d� d1ð Þ; and ð12:139Þ

ZdðxÞ
0

u2dy ¼ U2 d� d1 � d2ð Þ: ð12:140Þ

With dp/dx = – . U dU/dx the momentum equation can be brought to the form

dd2
dx

þ 1
U
dU
dx

2d2 þ d1ð Þ ¼ sw
.U2 : ð12:141Þ

We can also obtain this directly by integrating the equation of motion (12.19) over
y (from 0 to ∞) and using the continuity equation. This holds for steady incom-
pressible laminar and turbulent boundary layers, but can also be extended to
unsteady and compressible flows. Equation (12.141) is an ordinary differential
equation for the unknowns d1, d2 and sW. In the laminar case the equations nec-
essary to complete the mathematical description are found by specifying the
velocity profile inside the boundary layer. In the turbulent case empirical relations
are necessary in addition; in this respect reference is made to Sect. 12.5.

As a simple example of the application of Eq. (12.141) we shall calculate the
boundary layer on a flat plate, whose exact solution has already been found in
Sect. 12.1.1. For the velocity distribution inside the boundary layer we assume the
profile
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u
y

dðxÞ
� �

¼ U sin
p
2

y
dðxÞ

� �
; ð12:142Þ

from which the ratios for the boundary layer thicknesses take on the values

d1
d
¼
Z1
0

1� u
U

� �
d y=dð Þ ¼ p� 2

p
ð12:143Þ

and

d2
d
¼
Z1
0

u
U

1� u
U

� �
d y=dð Þ ¼ 4� p

2p
: ð12:144Þ

Using (12.142) we find the wall shear stress to be

sw ¼ g
@u
@y

����
y¼0

¼ g
p
2
U
d
¼ g

4� p
4

U
d2

; ð12:145Þ

where we have made use of (12.144) to eliminate the boundary layer thickness d.
Inserting sw from (12.145) into the momentum Eq. (12.141), and recalling that
U � U∞, furnishes the ordinary differential equation

dd2
dx

¼ �

U1

4� p
4

1
d2

; ð12:146Þ

in which d2 is the only unknown appearing and whose general solution reads

d22
2
¼ 4� p

4
� x
U1

þC: ð12:147Þ

We obtain the constant of integration from the momentum thickness at the position
x = 0. This is zero for the flat plate, so that the solution is

d2 ¼ 0:655
ffiffiffiffiffiffiffiffi
� x
U1

r
: ð12:148Þ

Using (12.143) and (12.144) we obtain the displacement thickness as

d1 ¼ d1=d
d2=d

d2 ¼ 2p� 4
4� p

d2 ¼ 1:743
ffiffiffiffiffiffiffiffi
� x
U1

r
: ð12:149Þ
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Comparing with the exact values in (12.49) and (12.47) we see that these results
agree very well; the relative error for d1 and d2 is about 1.3%.

We use the same profile (12.142) to calculate the boundary layer of the
two-dimensional stagnation point flow (10.65) along the x-axis, where according to
(10.66), U = ax. While (12.143) to (12.145) are still valid, from (12.141) we obtain
the differential equation linear in d22

x
2
dd22
dx

þ 4
4� p

d22 ¼
4� p
4

�

a
: ð12:150Þ

The homogeneous solution of this reads

d2H ¼ C x�
4

4�p: ð12:151Þ

Since the boundary layer thickness must remain finite for x ! 0, we conclude that
the homogeneous solution vanishes (C = 0). Therefore the solution of (12.150)
only consists of the particular solution

d2 ¼ 4� p
4

ffiffiffi
�

a

r
¼ 0:215

ffiffiffiffiffi
�

a
;

r
ð12:152Þ

i.e., the momentum thickness and therefore also the boundary layer thickness of the
two-dimensional stagnation point flow are constant. Using (12.48) and f′ from
Fig. 12.5 (b = 90°) we obtain the exact solution for the momentum thickness

d2 ¼ 0:292

ffiffiffi
�

a

r
; ð12:153Þ

and comparison shows that the simple velocity profile in (12.142) indeed predicts
the constancy of the boundary layer thickness correctly, although it does not lead to
good quantitative results.

In flows with a pressure gradient, as in the previous case, fourth order poly-
nomials in y/d are better since they satisfy the condition (12.63) which has previ-
ously not been satisfied. As long as the flow does not separate, this method leads to
quite good results, but the separation point is generally not predicted precisely
enough by it. Finally, we note that the idea of integral boundary layer method was
also successfully applied to problems with free surfaces.

12.5 Turbulent Boundary Layers

Restricting ourselves to steady, plane two-dimensional, incompressible flows, the
relations for turbulent boundary layers can be obtained from the laminar boundary
layer equations by replacing the quantities there with the corresponding mean
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quantities and adding onto the right-hand side of (12.19) the only important term
from the divergence of the Reynolds’ stresses, namely �.@ u0t0

	 
�
@y. If we further

introduce the exchange coefficient A defined in Eq. (7.56), or the eddy viscosity
A/. = �t, the boundary layer equations read

�u
@�u
@x

þ�t
@�u
@y

¼ � 1
.
@�p
@x

þ @

@y
�þ �tð Þ @�u

@y

� �
; and ð12:154Þ

@�u
@x

þ @�t
@y

¼ 0: ð12:155Þ

In (12.154) we have ignored the term @ u02 � t02
� �.

@x so that the pressure gradient

inside the boundary layer is the same as outside.
These equations are formally the same as the boundary layer equations for

laminar flow and are subject to the same boundary conditions. If we use a turbulence
model, the numerical field method can also be applied here. If the eddy viscosity
according to (7.59) is used, then for example the distribution of the mixing length is
required. In the region where the law of the wall is valid (i.e. approximately in the
region y � 0.22 d) the formula (7.60) is often used, but from y/d � 0.22 onwards
the ratio l/d is set constant, approximately equal to 0.22 j = 0.09. Within the
intermediate layer, (7.60) is no longer valid and must be modified for very small
values, for example by multiplying by the factor [1 – exp(–y*/A)], where A � 26.

As well as this there are further modifications of the mixing length formula.
These algebraic semi-empirical methods still have the disadvantage that the eddy
viscosity vanishes, even for nonzero mixing lengths whenever @�u=@y is zero,
therefore at places where �u is at its maximum. The eddy viscosity model (7.59)
loses its meaning in such turbulent fields where the mean velocity is homogeneous.
In attempting to avoid this problem (and others), higher order methods are used. If
we set the typical fluctuation velocity u′ not proportional to l d�u=dyð Þ, but to the
root of the kinetic energy (per unit mass) of the fluctuating motion

k ¼ 1
2

u02 þ t02 þw02
� �

; ð12:156Þ

we obtain the following expression for the eddy viscosity

�t ¼ C k1=2L; ð12:157Þ

where now L is an integral length scale which essentially represents the mixing
length, while C is a dimensionless constant. For the turbulent kinetic energy, a
differential equation is then formed which (semi-empirically) accounts for the
processes that contribute to the material change of the turbulent energy. Through
the solution of the equation, the eddy viscosity at some position now depends on the
history of the turbulent kinetic energy of the particle passing this position, and the
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direct coupling of �t to the local field of the mean velocity is avoided. A distribution
must still be stated for the length L. Since one differential equation appears in this
turbulence model, it is called a one-equation model. If a differential equation is also
used for the length L, we are then dealing with models in which two differential
equations appear, hence they are called two-equation models. Models which retain
the concept of the eddy viscosity cannot be used if u0t0 vanishes at some position
other than @�u=@y. We can get around this difficulty if instead of Boussinesq’s
formula, differential equations for the Reynolds’ stresses themselves are introduced,
sometimes in addition to the equations already mentioned. With increasing number
of differential equations in the turbulence model, the number of assumptions
required to close the system of equations increases. In addition, the solution of the
differential equations demands boundary conditions for the unknown functions,
which in certain circumstances may themselves be unknown. However here we
shall not discuss the use of turbulence models in the field methods any further.

Apart from the field methods the integral methods mentioned in Sect. 12.4 are
also widely used in the description of turbulent boundary layers. As we already
know, the velocity distribution in laminar flows can be represented by polynomials
in y/d, something that clearly does not make sense in the turbulent case since the flat
profile can only be approximated very badly by polynomials. Instead the power law
is more useful in the form

�u
U

¼ y
d

� �1=n
; ð12:158Þ

where the exponent n � 7 but increases slowly with the Reynolds’ number. Using
this distribution, we calculate the displacement thickness defined in (12.46) and the
momentum thickness (12.48) as

d1 ¼ d
nþ 1

; and ð12:159Þ

d2 ¼ nd
nþ 1ð Þ nþ 2ð Þ ; ð12:160Þ

thus for n = 7

d1 ¼ 1
8
d and d2 ¼ 7

72
d: ð12:161Þ

From (12.141) we then obtain the differential equation for the boundary layer
thickness on the flat plate

sw
.U21

¼ 7
72

dd
dx

; ð12:162Þ
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which indeed cannot be solved since the wall shear stress is not known, and it is
necessary to refer back to empirical data. In the Reynolds’ number range in which
the 1/7–power law is valid, the following empirical relation (Blasius’ law) also
holds

sw
.U21

¼ 0:0225
�

U1d

� �1=4

; ð12:163Þ

with which the boundary layer thicknesses become

d
x� x0

¼ 0:37Re�1=5
x ; ð12:164Þ

d1
x� x0

¼ 0:046Re�1=5
x ; and ð12:165Þ

d2
x� x0

¼ 0:036Re�1=5
x ; ð12:166Þ

where Rex is the Reynolds’ number formed with the length x – x0

Rex ¼ U1
x� x0
�

ð12:167Þ

and x0 is the fictitious distance from the leading edge of the plate at which the
thickness of the turbulent boundary layer would be zero; this position does not
coincide with the leading edge of the plate. First a laminar boundary layer forms
from the leading edge of the plate. At a certain displacement thickness d1, more
precisely at the Reynolds’ number formed with this displacement thickness,
the boundary layer becomes unstable for the first time (indifference point
x = xI, U∞d1/v � 520). The fully turbulent boundary layer is established through a
transition region between the indifference point xI and the transition point (x = xtr).
The length of this transition region depends on the disturbances of the incident flow.
If we extrapolate the turbulent boundary layer forwards using the boundary layer
thickness found at xtr, we find the fictitious starting point x0 of the boundary layer
(see Fig. 12.11).

For very large plate lengths L, x0 can be ignored compared to L. In this case,
using (12.141), we find for the drag per unit depth for a plate wetted on one side

Fw ¼
ZL
0

swdx ¼ .U2
1d2ðLÞ: ð12:168Þ
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For the friction coefficient cf, the formula

cf ¼ Fw

ð.�2ÞU21L
¼ 0:072Re�1=5

L ð12:169Þ

follows, where ReL is the Reynolds’ number formed with the plate length
L (Re = U∞L/v). The local coefficient of friction c0f is then defined as

c0f ¼
sw

ð.�2ÞU21
; ð12:170Þ

which, with (12.141) furnishes the expression

c0f ¼ 2
dd2
dx

¼ 0:0576Re�1=5
x ð12:171Þ

directly. The formulae stated are restricted to the range where Blasius’ law is valid,
which, expressed in terms of ReL lies approximately in the interval

5 
 105\ReL\107: ð12:172Þ

In order to make more precise statements, we use the universal law of the wall (7.46),
which however is only valid close to the wall. For the whole boundary layer, the law
of the wall is to be supplemented by a distribution which is so chosen that it vanishes

Fig. 12.11 Definition of the fictitious starting point
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for y ! 0 and which, together with the law of the wall, passes over into the outer
flow for y ! ∞. We therefore write the entire profile as

�u
u�

¼ f yu�=�ð Þþ PðxÞ
j

W y=dð Þ; ð12:173Þ

where W(y/d) describes the deviation of the velocity distribution from the law of the
wall. This so-called wake function W(y/d) is known from empirical data and is well
approximated by the function

W y=dð Þ ¼ 2 sin2
p
2
y
d

� �
: ð12:174Þ

Sometimes other, algebraically simpler, formulae are used. The wake function
satisfies the normalization

Z1
0

W y=dð Þd y=dð Þ ¼ 1 ð12:175Þ

and the boundary conditions

Wð0Þ ¼ 0; Wð1Þ ¼ 2: ð12:176Þ

The change of the distribution �u=u� with x is now handled by the profile parameter
P (x), which is dependent on the pressure gradient. If we only use the logarithmic
wall law (7.70), from (12.173) we extract the equation for y = d

U
u�

¼ 1
j
ln du�=�ð ÞþBþ 2

P
j

ð12:177Þ

or

U � �u
u�

¼ � 1
j
ln y=dð Þþ P

j
2�W y=dð Þ½ �: ð12:178Þ

The last equation is called the velocity defect law. For constant P this is the same as
the defect law (7.79) of pipe flow. Equation (12.177) directly represents a relation
between the shear stress at the wall and the profile parameter P. With the definition
of the local friction coefficient and sw ¼ qu2� we write this equation in the form

ffiffiffiffi
2
c0f

s
¼ U

u�
¼ 1

j
ln

dU
�

ffiffiffiffi
c0f
2

s0
@

1
AþBþ 2

P
j
: ð12:179Þ
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If we ignore the effect of the viscous sublayer in integrating and use the definition of
the displacement thickness d1 from (12.173) we obtain the relation

d1
d
¼ 1þPð Þ u�

Uj
¼

ffiffiffiffi
c0f
2

s
1þP
j

; ð12:180Þ

and correspondingly for the momentum thickness

d2
d
¼

ffiffiffiffi
c0f
2

s
1þP
j

� 2þ 3:18Pþ 1:5P2

j2
c0f
2
: ð12:181Þ

In the last equations, the unknowns c0f , d, d1, d2 andP appear. Including the balance
of momentum (12.141) we then have four equations available for the five
unknowns, so that a further empirical relation is needed

P � 0:8 bþ 0:5ð Þ3=4; ð12:182Þ

in which b is the equilibrium parameter

b ¼ d1
sw

@p
@x

¼ � d1
d2

2
c0f

d2
U

dU
dx

: ð12:183Þ

With this we now have five equations for the five unknowns and for a given
velocity profile the turbulent boundary layer can by calculated by numerical
methods where the initial values of the quantities to be calculated must be given.

The integral methods of which the above exposition is a simple example are often
equivalent to the field methods for turbulent boundary layers (although this is not so
in the laminar case). This is probably due to the large amount of empirical data that
enters into the calculation. In the application to the turbulent boundary layer on a flat
plate (U � U∞), we setP � 0.55 (instead ofP = 0.476 from (12.182)) and rewrite
the momentum Eq. (12.141) with Red2 = U∞d2/v and Rex = U∞x/v

dd2
dx

¼ dRed2
dRex

¼ c0f
2
: ð12:184Þ

We now represent c0f as a function of the Reynolds’ number Red2 , where we replace
d in (12.179) by d2 using the relation (12.181). We can describe the result of the
numerical integration of (12.184) using the formula

Red2 ¼ 0:0142Re6=7x : ð12:185Þ

12.5 Turbulent Boundary Layers 499



If we insert this result into (12.184) the local coefficient of friction is found to be

c0f ¼ 0:024Re�1=7
x : ð12:186Þ

This formula is valid in the domain

105\Rex\109:

As is clear, the calculation of the coefficient of friction and the boundary layer
thicknesses is, even in the case of the flat plate, rather complicated. Therefore we
wish to derive simpler formulae for this case, based on dimensional considerations.
We assume that the logarithmic law of the wall is valid in the entire boundary layer.
Then we must insert P = 0 into (12.173) and instead of (12.177) we obtain

U1
u�

¼ 1
j
ln d u�=�ð ÞþB: ð12:187Þ

The boundary layer thickness d cannot yet be represented as a function of x from
this equation, since the shear stress sW and therefore u* depend on x, so that d must
satisfy a relation of the form

d ¼ d x; u�;U1ð Þ: ð12:188Þ

For dimensional reasons the relation takes on the form

d
x
¼ f u�=U1ð Þ: ð12:189Þ

The slope of the boundary layer is of the order t0=U1, and since t0 is of the order
u�, it follows that

dd
dx

� u�
U1

: ð12:190Þ

If u� only weakly depends on x then

d� x u�=U1 ð12:191Þ

is valid, in accordance with (12.189), and where we assumed that the turbulent
boundary layer begins at the position x = 0. Therefore the boundary layer grows
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proportionally to x while the more precise formula (12.185) gives a slightly weaker
growth proportional to x6/7. We insert the result (12.191) into (12.187) and obtain

U1
u�

¼ 1
j
ln U1x=�ð Þ u�=U1ð Þ2
h i

þB; ð12:192Þ

from which, with the universal constant B � 5, we extract the friction law

c0�1=2
f ¼ 1:77 ln Rexc

0
f

� �
þ 2:3: ð12:193Þ

The three different friction formulae (12.171), (12.186) and (12.193) are compared
in Fig. 12.12.

Fig. 12.12 Drag formulae
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Chapter 13
Creeping Flows

In this chapter, we investigate steady flows at low Reynolds’ number, restricting
ourselves to incompressible flows, which of course include gas flows at low Mach
number. The equations of motion are already known (see (4.35)), and may be
expressed in the form

rp ¼ gD~u: ð13:1Þ

To this we add the continuity equation (2.5)

r �~u ¼ 0: ð13:2Þ

The pressure dependence may be eliminated by taking the curl of Eq. (13.1), that is
to say operating on (13.1) byr�. Then if we use the vector identity (4.10) in which
~u is replaced by 2~x; we obtain, using (4.14), the relation

D r�~uð Þ ¼ 2D~x ¼ �2r� r� ~xð Þ ¼ 0: ð13:3Þ

Taking the divergence of Eq. (13.1) reduces it to the Laplace equation for the
pressure

Dp ¼ 0: ð13:4Þ

13.1 Plane and Axially-Symmetric Flows

It is well known that stream functions may be defined for plane and
axially-symmetric flows; the continuity equation (13.2) is then eliminated because
it is identically satisfied by the stream function. In the case of plane flows, taking
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the velocity components from (10.217) shows that the only non-vanishing com-
ponent of curl ~u; using Appendix B.1, is

2~x ¼ curl~u ¼ @t
@x

� @u
@y

� �
~ez ¼ � @2W

@x2
þ @2W

@y2

� �
~ez ¼ �DW~ez: ð13:5Þ

Using this, we obtain the stream-function equation

D Dwð Þ ¼ 0; ð13:6Þ

or alternatively

r4 W ¼ 0: ð13:7Þ

This equation is known as the biharmonic (bipotential) equation, the name being
indicated by the form of (13.6).

To obtain the corresponding equations for the axially-symmetric stream func-
tion, we start with (13.3) in the form

r� r� ~xð Þ ¼ 0; ð13:8Þ

the equation is then derived by repeated application of the operation r�, given in
Appendix B.3.

In Sect. 13.1.3 below, we seek to calculate a creeping flow past a sphere. In
order to satisfy the no-slip condition on the surface of the sphere, we express the
equation in spherical polar coordinates, for which the surface of the sphere is then a
coordinate surface. Next it follows from Appendix B.3 that

2~x ¼ curl~u ¼ 1
r

@ ru#ð Þ
@r

� @ur
@#

� �
~eu ð13:9Þ

and using (10.104) and (10.105), that

~x ¼ � 1
2r sin#

@2

@r2
þ sin#

r2
@

@#

1
sin#

@

@#

� �� �
W~eu ¼ � 1

2r sin#
E2W~eu;

ð13:10Þ

where the expression behind the last equality sign defines the operator E2. We note
that the unit vector ~eu in Eq. (13.9) is not constant with consequences for the
differential operator. We now calculate r� ~x by replacing ~u by ~x in the
expression for curl~u given in Appendix B.3. Observing that only wu 6¼ 0 and that
the derivative with respect to u of every component vanishes yields the equation
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r� ~x ¼ � 1
2r2 sin#

@

@#
E2W
� �

~er þ 1
2r sin#

@

@r
E2W
� �

~e#: ð13:11Þ

Proceeding with r� ~x in a similar way to that used above for ~x gives

r� r� ~xð Þ ¼ 1
2r sin#

@2

@r2
E2W
� �þ sin #

r2
@

@#

1
sin#

@

@#
ðE2WÞ

� �� �
~eu ¼ 0;

ð13:12Þ

and

E2 E2W
� � ¼ 0: ð13:13Þ

For the sake of completeness we state also the operator E2 in cylindrical coordinates
(Appendix B.2)

E2 ¼ @2

@z2
þ @2

@r2
� 1

r
@

@r
: ð13:14Þ

For axially-symmetric flows in the plane z = 0, we have

E2 ¼ @2

@x2
þ @2

@y2
� 1

y
@

@y
; ð13:15Þ

where x, y are Cartesian coordinates as in Sect. 10.3.1.

13.1.1 Examples of Plane Flows

We consider here creeping corner flows and include the corresponding potential
flows in and around corners already discussed in Chap. 10. As in the above cases,
we therefore consider those flows whose boundaries are given by the lines u =
constant and for which polar coordinates r, u can be used.

Each flow is described, as has been seen above, in terms of its stream function
W r;uð Þ; in which dimensional considerations require a dimensional constant to be
present. We start with

W ¼ Arn f uð Þ; ð13:16Þ

for which the biharmonic equation is separable. The constant A has the dimension
ðlength2�n=timeÞ. Just as in the corner flows of Chap. 10, these flows are only valid
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in the locality of the corner. The constant A depends on the “driving force” outside
the region of validity of the local solution; it can only be determined when the flow
in the entire region is known. We now restrict ourselves to those cases for which the
constant n is a whole-number. This is for example the case when the driving force is
produced by a boundary which moves with a given velocity. The interpretation of
the constant A is obvious when one or both boundaries of the flow are in motion.

We consider now the flow generated by a plane, inclined at an angle u0 to the
x-axis, moving at velocity U parallel to the x-axis and scraping fluid off a stationary
wall coincident with the x-axis. In a moving frame in which the scraper is at rest the
flow is stationary, with the lower wall moving under the scraper with velocity:
–U. When the polar form of the Laplace operator is twice repeated on the
expression

W ¼ �U r f uð Þ; ð13:17Þ

we obtain the ordinary differential equation

U
r3

f þ 2 f 00 þ f 0000ð Þð Þ ¼ 0; ð13:18Þ

whose general solution is

f ¼ C1 þuC2ð Þ cos uð Þþ C3 þuC4ð Þ sin uð Þ: ð13:19Þ

Now the polar form of Eq. (13.2), that is to say

@ ur rð Þ
@r

þ @uu
@u

¼ 0 ð13:20Þ

yields the necessary and sufficient condition for the total differential

dW ¼ �uudrþ ur rdu ; ð13:21Þ

from which follow the velocity components

ur ¼ 1
r
@W
@u

¼ �U f 0 uð Þ; uu ¼ � @W
@r

¼ U f uð Þ: ð13:22Þ

The no-slip conditions on the wall and scraper lead to the boundary conditions

f 0ð Þ ¼ 0; f 0 0ð Þ ¼ 1 and f u0ð Þ ¼ 0; f 0 u0ð Þ ¼ 0: ð13:23Þ

The particular solution which satisfies these boundary conditions is found from
(13.19) to be
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f uð Þ ¼ 2u sin u0 sin u0 � uð Þþ 2u0 u� u0ð Þ sin u

2u2
0 � 1þ cos 2u0ð Þ : ð13:24Þ

When u0 ¼ p=2 the stream function becomes

W ¼ U r
4u cosu� p2 sinuþ 2pu sinu

p2 � 4
; ð13:25Þ

the streamlines of the flow are shown in Fig. 13.1. The shear stress on the wall may
be evaluated by using Appendix B.2; it is

sru 0ð Þ ¼ g
1
r
@urð0Þ
@u

¼ g
1
r2
@2W 0ð Þ
@u2 ¼ g

U
r

4p
p2 � 4

: ð13:26Þ

This shows that the force necessary to move the scraper with velocity U, which is
obtained by integrating the shear force, is logarithmically infinite.

Of course this result arises from the infinitesimally small gap between scraper
and wall; in reality this gap must naturally be finite; however, it is clear that the
force driving the scraper increases with decreasing gap size.

A flow closely related to the above arises in the case of a heavy fluid with a free
surface that is bounded by a plane which is inclined at an angle –u0 to the horizontal and
moves with speed U as in Fig. 13.2. The general solution (13.19) for f (u), then holds.
The continuity of stress on the free surface requires that the shear stress vanish there, that
is f 00 0ð Þ ¼ 0: Since the free surface is a streamline it follows that f 0ð Þ ¼ 0; also,
because the fluid adheres to the moving wall, f �u0ð Þ ¼ 0; f 0 �u0ð Þ ¼ 1: Under
these conditions the particular solution takes the form

Fig. 13.1 Streamlines in the neighbourhood of the point of intersection of the scraper and wall,
u0 ¼ p=2
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f uð Þ ¼ 2 u0 cosu0 sinu� u cosu sinu0ð Þ
2u0 � sin 2u0ð Þ : ð13:27Þ

When u0 ¼ p=4; the stream function is

W ¼ U r p sinu� 4u cosuð Þ
21=2 p� 2ð Þ : ð13:28Þ

The streamlines of the flow are shown in Fig. 13.2.
As a further example of a flow corresponding to a whole-number value of the

exponent n, we consider the case n = 3, which leads to Stokes’ creeping stagnation
point flow, thus

W ¼ A r3 f uð Þ: ð13:29Þ

In contrast to the previous flows, the dimensional constant can be found only when
the entire flow is known, the reason being that the “driving force” acts at large
distances. Greater generality of related solutions is achieved if we include stagna-
tion point flows in which the dividing streamline (which passes through the stag-
nation point) is inclined at an angle u0 to the wall. The boundary conditions then
are as follows: The no-slip condition on the wall (x-axis) give f 0ð Þ ¼ f pð Þ ¼
f 0 0ð Þ ¼ f 0 pð Þ ¼ 0 and on the inclined dividing streamline f u0ð Þ ¼ 0: The boundary

Fig. 13.2 Streamlines in the neighbourhood of the point of intersection of a free surface and wall
u0 ¼ p=4
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conditions at u = p being obviously redundant, only three conditions stand. When
these are satisfied, we find from (13.19) that the stream function is

W ¼ �A r3 sin u� u0ð Þ sin2 u
sinu0

; ð13:30Þ

in which the undetermined constant has been absorbed into A. Figures 13.3 and
13.4 show the streamlines for u0 ¼ p=2; and u0 ¼ p=4; respectively, in both cases
A is positive. To compare the Stokes’ creeping stagnation point flow with that of the
corresponding incompressible potential flow (given in Sect. 10.3.1), and with that

Fig. 13.3 Creeping flow streamlines in the neighbourhood of a stagnation point, u0 ¼ p=2

Fig. 13.4 Creeping flow streamlines in the neighbourhood of a stagnation point, u0 ¼ p=4
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of the boundary layer, which is an exact solution of the Navier-Stokes equations,
we introduce Cartesian coordinates with x ¼ r cosu; y ¼ r sinu. By restricting
ourselves to the case u0 ¼ p=2; we obtain from (13.30)

W ¼ Axy2; ð13:31Þ

with Cartesian velocity components

u ¼ @W
@y

¼ 2Axy and t ¼ � @W
@x

¼ �Ay2: ð13:32Þ

The corresponding potential flow stream function (10.243) for the stagnation point
flow is

W ¼ axy:

It is obvious that the higher power relating to the y-coordinate in (13.31) is nec-
essary for the fulfilment of the no-slip condition. When the velocity field (13.32) is
inserted in Eq. (13.1), it follows that

@p
@x

¼ gDu ¼ 0 and
@p
@y

¼ gDt ¼ �2gA; ð13:33Þ

and therefore

p ¼ �2Ag yþ pw; ð13:34Þ

where the constant of integration may be identified with the pressure on the wall.
It was noted that the stagnation point boundary layer is an exact solution of the

Navier-Stokes equations; this is always the case when the boundary layer equations
remain regular for x ! 0; as pointed out in Sects. 12.1.1 and 12.1.2.

We match the above results for the creeping stagnation point flow (inner solu-
tion) (13.31) with the corresponding flow described by the Falkner-Skan equation
with m ¼ 1: Thereby, we evaluate the Falkner-Skan equation in the region of the
validity of the creeping flow. The nonlinear terms in the Falkner-Skan equation
become negligible in the close vicinity of the stagnation point. Furthermore, the
pressure gradient term in the Falkner-Skan equation is set to zero according to
(13.33). Only the highest order of the Falkner-Skan equation (12.56) remains, thus
we obtain the equation

f 000 gð Þ ¼ 0; ð13:35Þ
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in which η is now the similarity variable defined by (12.55). Integration of (13.35)
subject to the boundary conditions (12.40) leads to

f ¼ cg2 ¼ c
a
v
y2; ð13:36Þ

in which c ¼ f 00 0ð Þ=2 is a dimensionless constant whose value is known only when
the solution of the complete Falkner-Skan equation has been calculated. Using
(12.54) the stream function of (13.36) then becomes

W ¼ c a

ffiffiffi
a
v

r
x y2: ð13:37Þ

The combination of constants (13.37) corresponds and is dimensionally equivalent
to the constant A in (13.31). The component of pressure gradient @p=@y does not
vanish in the Navier-Stokes equation; when the solution of (12.56) has been found
it may be determined by using the y-component of the Navier-Stokes equation; with
the non-linear terms neglected, Eq. (13.1) is again appropriate for the calculation of
pressure and leads of course to the result (13.34).

The dimensional constant a of a local potential flow is fixed when the potential
flow around the body is known. For example, the potential flow around a circular
cylinder as given by (10.257) without circulation (C = 0), thus

uu ¼ �2U1 sinu ¼ �2U1 sin p� x
r0

� �
: ð13:38Þ

Here x is the circumferential distance along the cylinder measured clockwise from
the front stagnation point. The velocity –uu then corresponds to the velocity u in the
positive x-direction in the body coordinates, thus

u ¼ 2U1 sin
x
r0

¼ 2U1
x
r0

þO x=r0ð Þ2
	 


: ð13:39Þ

For small x=r0, the coefficient a is determined by comparison with the x-component
of the plane potential stagnation point flow (10.66), thus

a ¼ 2U1=r0: ð13:40Þ

Of course the theoretical value of the velocity is not attained experimentally. At
higher Reynolds’ numbers the flow separates and goes through a series of different
forms which have been described already in Sect. 10.3. Separation especially,
which is responsible for the form drag, influences the entire flow around the
cylinder so that in the region around the forward stagnation point Reynolds’-
number-dependent departures occur; measurements of these indicate a deviation of
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roughly 10% at a Reynolds’ number of about 20,000. There is, however, better
agreement between the theoretical predictions and the results of experiments when
the body is streamlined and separation therefore prevented; a small shape drag
nevertheless arises from the displacement thickness of the boundary layer. The flow
“sees” a body which is enlarged by the displacement thickness, and this gives rise to
an additional pressure term which may be determined using potential theory. The
altered pressure component gives rise to another force which no longer satisfies the
D’Alembert paradox and leads therefore to a shape drag; this is considerably
smaller than the frictional drag, from which it is difficult to distinguish, since both
resistances are proportional to Re�1=2 in the laminar flow, see (12.47) and (12.51)
respectively.

We now consider the flow in the neighbourhood of the intersection of fixed
walls; for example, around wedges or flows in corners. The no-slip condition then
holds on both walls, and there are therefore four homogeneous boundary conditions
to be satisfied. In general the exponent n in (13.16) is no longer a whole-number.
Substituting the relation (13.16) into the biharmonic equation gives

W ¼ A rn�4 n2 n� 2ð Þ2 f uð Þþ 2 n n� 2ð Þþ 2ð Þf 00 uð Þþ f 0000 uð Þ
	 


: ð13:41Þ

The general solution for f (u) is then

f uð Þ ¼ B1ei n�2ð Þu þB2e�i n�2ð Þu þC3 cos nuþC4 sin nu; ð13:42Þ

or

f uð Þ ¼ C1 cos n� 2ð ÞuþC2 sin n� 2ð ÞuþC3 cos nuþC4 sin nu; ð13:43Þ

where the constants are complex. When the four boundary conditions are imposed
on this solution, a system of four homogeneous equations with the unknown
coefficients Ci is obtained. A unique but trivial solution Ci = 0 is obtained when the
determinant D of the matrix of coefficients is non-zero. Non-trivial solutions arise
when D vanishes. Because of this additional condition only three of the four
equations are independent; thus only the ratios of the coefficients are determined.
The equation D = 0 is a transcendental equation for n which has more than one
solution. On physical grounds we are interested only in those solutions for which
the velocity at the point of intersection vanishes; this occurs when n > 1 or
< nð Þ[ 1; when n is complex. It is to be expected that the solution which corre-
sponds to the smallest real part is dominant in the corner. In determining the roots
of D an iterative process such as Newton’s method is recommended; for this
process a good starting value, if necessary complex, must be used. If simultane-
ously the streamlines of a known flow are plotted, then the correct exponent can be
found after some trials.
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Since the biharmonic equation is linear, it is convenient to discuss the symmetric
and antisymmetric parts of Eq. (13.41) separately. The general solution can then be
formed by superposition. The symmetric part of the equation, namely

f uð Þ ¼ C1 cos n� 2ð ÞuþC3 cos nu ð13:44Þ

leads to an antisymmetric velocity field. In this case applying the boundary con-
dition on the walls u ¼ �u0ð Þ yields f �u0ð Þ ¼ 0; f 0 �u0ð Þ ¼ 0; and thus

C1 cos n� 2ð Þu0 þC3 cos nu0 ¼ 0;

C1 n� 2ð Þ sin n� 2ð Þu0 þC3n sin nu0 ¼ 0;
ð13:45Þ

where n satisfies the equation

D ¼ � sin 2u0 þ n� 1ð Þ sin 2 n� 1ð Þu0ð Þ ¼ 0: ð13:46Þ

From (13.45) it follows that

C3 ¼ �C1 cos n� 2ð Þu0= cos nu0 ð13:47Þ

and hence

W ¼ Arn cos n� 2ð Þu� cos n� 2ð Þu0 cos nu= cos nu0ð Þð Þ; ð13:48Þ

where C1 has been absorbed into A.

Fig. 13.5 Creeping flow streamlines around the leading edge of a flat plate, u0 = p
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Equation (13.46) indicates that there are infinitely many solutions in the case
u0 = p, the smallest non-trivial value being, n = 1.5. The streamlines corresponding
to this value are shown in Fig. 13.5; this flow is in fact that around the leading edge
of an infinitely thin flat plate.

The antisymmetric part of the general solution (13.43) may be processed in the
same way. When u0 = p the exponent is again n = 3/2. The streamlines in Fig. 13.6
correspond to a symmetric flow. The velocity at the point r = 0 is zero, which is true
for all these flows; the shear stress at this point is finite.

Flows around a wedge are found when p=2\u0\p. The symmetric flow is the
creeping flow around a wedge; this is related to the wedge flows at large Reynolds’
numbers which have already been discussed in Sect. 12.1.2. On the other hand, the
antisymmetric flow occurs in the flow around a sharp leading edge.

It is surprising that there are no more real solutions in the case of a sharp corner
for which u0\�73�. The streamlines for this limiting value are shown in Fig. 13.7.
Apart from the trivial solution n = 1, there is only one solution, which is found to be
n � 2.76. One can think of the flow in the sharp corner being produced by a rotating
cylinder which is far from the intersection point of both walls and drives the flow
into the corner. The fluid velocity falls as the corner is approached, but is only zero
on the walls. Obviously, it is more difficult to push the flow into the corner as the
angle becomes smaller.

The volume flux simply cannot vanish in the flows, and streamlines must either
end on the wall bounding the flow or must form closed curves. Each closed
streamline encloses a region of circulating flow, similar to that of a rotating
cylinder, which tries to drive the underlying flow into the corner. There is in fact an

Fig. 13.6 Creeping flow streamlines around a plate, u0 = n
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infinite series of circulating flow cells (eddies), and by reason of the continuity of
the velocity field these must rotate in alternating senses. They are separated from
one another by null streamlines which end on the walls; moving through a null
streamline changes the sign of the stream function. Figure 10.7 has already sug-
gested the series of alternating vortices for the flow in a right angled corner.

The zeros of the stream function on the line of symmetry for one of the
complex-exponent solutions of (13.48), where n ¼ n0 þ in00; may be found from the
relation

W ¼ Arn
0 þ in00 a0 n;u0ð Þþ ia00 n;u0ð Þð Þ ¼ 0: ð13:49Þ

The meaning of the complex number a0 þ ia00 follows by comparing (13.48) with
(13.49). Using the relation

rn
0
rin

00 ¼ rn
0
eln r in00ð Þ ¼ rn

0
cos n00 ln rð Þþ i sin n00 ln rð Þ½ �; ð13:50Þ

we obtain

W ¼ A a0 þ ia00ð Þrn0 cos n00 ln rð Þþ i sin n00 ln rð Þð Þ ¼ 0: ð13:51Þ

The real part of W which has physical significance, is

Fig. 13.7 Creeping flow streamlines in a sharp corner, u0 = 73°
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< W½ � ¼ A rn
0
a0 cos n00 ln rð Þ � a00 sin n00 ln rð Þ½ � ¼ C rn

0
cos n00 ln rþ dð Þ ¼ 0;

ð13:52Þ
where d is a phase angle. When r (measured in arbitrary units) runs from r = 1 to
r = 0, the argument of the cosine in (13.52) goes from d to minus infinity, and thus
the stream function has zeros at

n00 ln rþ d ¼ � 1
2
þ k

� �
p; k ¼ 0; 1; 2; . . . ð13:53Þ

Let rk denote the distance measured along the axis of symmetry from the origin to
the kth zero, then, using (13.53)

ln rk � ln rkþ 1 ¼ p
n00

ð13:54Þ

and so the distance ratio between two neighboring zeros is

rk
rkþ 1

¼ ep=n
00
: ð13:55Þ

The difference rk � rkþ 1 may be used as a measure for the cell size. The stream
function has extrema at the points

n00 ln rþ d ¼ �pl; l ¼ 0; 1; 2; . . . ð13:56Þ

and the ratio of neighboring r-coordinates is

rl
rlþ 1

¼ ep=n
00
: ð13:57Þ

The value of the extremum of the stream function in a cell serves as a measure of
the “strength” of the cell. The ratio of two neighboring cell (eddy) strengths is
therefore

< Wl½ �
< Wlþ 1½ �
����

���� ¼ rn
0

l

rn0lþ 1
¼ epn

0=n00 : ð13:58Þ

As is evident from (13.46), the exponent n depends on the angle u0. The imaginary
part n″ is zero for the critical value u0 � 73�. One can interpret this as the distance
between cells becoming infinite.
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When u0\73�, the imaginary part increases and the distance between adjacent
cells becomes smaller as does the ratio of their strengths. Let the angle u0 tend to
zero so that a plane channel comes into being; a channel in which a point other than
the apex is fixed on both walls and the angle u0 is then allowed to tend to zero.
Then both cell sizes and strengths tend to constant values.

We now consider the corner flow sketched in Fig. 10.7 as a concrete example of
cell sizes and relative distances between cells. For the right-angled corner u0 ¼ p=4
the solution of (13.46) is found to be n = 3.7396 + 1.1191i. The streamlines of this
flow are displayed in Fig. 13.8 (see also Fig. 10.7).

In Fig. 13.8, two complete cells (eddies) and the boundary of a third cell may be
clearly identified. The ratio of the distances between successive zeros (or the ratio
of the distances between two extrema) is given by exp(p/n″) = 16.56 which one can
also gather from Fig. 13.8. The streamlines are shown for the following values of
the stream function: 0; 10�10; 10�9; �10�6; 8� 10�6; �3:6� 10�5; 10�5;

�
10�4Þ; the units being arbitrary. The ratio of cell strengths is exp p n0=n00ð Þ �
3:6� 105; these correspond roughly to the respective values of the stream function
at the centre of the cells.

We refrain from discussing further streamlines corresponding to small angles;
these can be readily solved using the results considered above. We confine our-
selves to the observation that cell (eddy) formation is nature’s quickest way of

Fig. 13.8 Creeping corner flow streamlines in a rectangular corner
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reducing the fluid flow in a sharp corner. If quantitative estimates of such flows are
lacking because the constant A is unknown, we can for most practical purposes
assume that the flow in such corners is essentially stagnant.

13.1.2 Plane Creeping Flow Around a Body (Stokes’
Paradox)

The flow around a body plays a very significant role in fluid dynamics. By plane
flow we mean here the flow about cylindrical bodies at very small Reynolds’
numbers. We confine ourselves to a flow around a circular cylinder, where clearly
the fundamental problem of creeping flow is evident.

The stream function for a corresponding potential flow around a cylinder is made
up of two parts, namely (1) the uniform flow, i.e., U1r sinu, and (2) the dipole
flow �U1r20=r sinu; part (2) is responsible for the displacement of fluid by the
cylinder. We expect these two parts to be present in the creeping flow as well as the
potential flow. We introduce dimensionless coordinates with �r ¼ r=r0, and write the
general form of the solution as

W ¼ U1r0f �rð Þ sin u: ð13:59Þ

In the analysis that follows, we neglect the bar above the coordinate r.
Substitution into the biharmonic equation gives for the function f (r) the solution

f rð Þ ¼ C4r
3 þC3r ln rþC2rþC1

1
r
: ð13:60Þ

Applying the no-slip condition (see (13.22)) on the surface of the cylinder gives
f 1ð Þ ¼ f 0 1ð Þ ¼ 0; and the condition at infinity leads to the result
W / U1r0 sinu as r ! 1. The last condition can only be satisfied if C4 = 0.
Inserting the no-slip condition into the general solution accordingly yields the new
form

W ¼ U1r0 sinuC3 r ln r � 1
2
rþ 1

2
1
r

� �
; ð13:61Þ

when C3 = –2 the second term corresponds to the uniform flow and the third term to
a dipole of importance to the displacement of the fluid. The first term is called a
Stokeslet, the example here being that of a two-dimensional Stokeslet. This term is
responsible for the vorticity in the flow. It is obvious that the conditions at infinity
are not satisfied by this choice of constants, since the stream function diverges
logarithmically there. In fact, the condition at infinity cannot be satisfied for any
choice of constants; thus no creeping-flow solution past a cylinder exists which
satisfies the condition at infinity. This fact is called Stokes’ Paradox.
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The divergence of the solution originates from the circumstance that the dis-
turbance due to the Stokeslet does not die away. In the case of the flow around a
sphere, there exists a solution which is made possible because the three-dimensional
disturbances involved die away faster. We now proceed to discuss this latter case.

13.1.3 Creeping Flow Around a Sphere

It is obviously helpful to express the boundary conditions of a sphere in terms of
spherical polar coordinates, since then r = r0 constitutes a coordinate surface.
Previously, we introduced the dimensionless coordinate �r ¼ r=r0; in the following
analysis we will omit the bar.

In spherical polar coordinates, the stream function takes the form

W ¼ U1
r20
2
sin2 # f rð Þ; ð13:62Þ

which, when substituted in (13.13), yields the equation for f (r)

r4f 0000 rð Þ � 4r2f 00 rð Þþ 8r f 0 rð Þ � 8f rð Þ ¼ 0: ð13:63Þ

Substituting f rð Þ ¼ rm in this equation and determining m, we get the general
solution in the form

f rð Þ ¼ C1

r
þC2rþC3r

2 þC4r
4: ð13:64Þ

The stream function at infinity entails the conditions C4 = 0 and C3 = 1. The
boundary conditions on the surface of the sphere, i.e., f(1) = 0 and f ′(1) = 0,
determine the constants C1 ¼ 1=2 and C2 ¼ �3=2 the solution is thus

W ¼ U1
r20
2
sin2 #

1
2
1
r
� 3
2
rþ r2

� �
: ð13:65Þ

The streamlines are shown in Fig. 13.9. It may be of interest to compare these with
the corresponding streamlines of a potential flow around a sphere. We can obtain
the relevant stream function from the general solution (13.64) by eliminating the
Stokeslet, i.e., setting C2 = 0 and setting the coefficients of the dipole singularity
and the uniform flow to C1 = –1, C3 = 1 respectively. Alternatively, one can obtain
the velocity components from the potential function (10.149) of the flow past a
sphere and with (10.105) obtain a differential equation which together with (10.104)
leads to the stream function
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Fig. 13.9 Creeping flow streamlines past a sphere

Fig. 13.10 Potential flow streamlines past a sphere
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W ¼ U1
r20
2
sin2 # r2 � 1

r

� �
: ð13:66Þ

The streamlines of this flow are shown in Fig. 13.10. As we have already remarked
(Sect. 10.3.1), the streamlines in both cases are symmetric but differ in detail. From
the list of examples of creeping flows in Sect. 13.1.1 it becomes evident that the drag
on a sphere in creeping flows has a special significance. (It is well known that with
the help of the resistance formula the charge of an electron was determined with
great accuracy.) To determine the force, we use the stress vector (2.29a) in the form

ti ¼ �pdij þ 2g eij
� �

nj ¼ �pdij þ g
@ui
@xj

þ @uj
@xi

� �� �
nj: ð13:67Þ

One can now find the components of the rate-of-deformation tensor and those of the
normal to the surface (Appendix B.3), which will enable the stress vector on the
surface of the sphere to be integrated. We prefer, however, to proceed with a
familiar result which we now explain. Consider a surface element to which fluid
adheres, an element which coincides with the coordinate surface of an orthogonal
coordinate system (not necessarily Cartesian, but an orthogonal system to which
(13.67) is applicable). The normal to the surface then has only one component, for
example n3 = 1, and accordingly the terms @uj=@xi

� �
nj reduce to @u3=@xi. Because

of the no-slip condition uj is zero over the whole element, as is the variation of the
velocity components with x1 and x2.

The only remaining term is @u3=@x3 which vanishes as a consequence of the
continuity equation. We can therefore replace (13.67) by

ti ¼ �pdij þ g
@ui
@xj

� @uj
@xi

� �� �
nj ¼ �pni � g2xkeijknj ð13:68Þ

or

~t ¼ �p~nþ g 2~x�~n: ð13:69Þ

Using the stream function (13.65) we now obtain form (13.10)

2~x ¼ � 3U1
2

sin#
r0r2

~eu; ð13:70Þ

in which r is still dimensionless. Still Eq. (13.1) may now be used to calculate the
pressure. We first calculater� ~x using Eq. (13.11), and then substitute into (4.11),
getting from (13.1)
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rp ¼ 3gU1 cos#
r0 r3

~er þ 3gU1 sin#
2r0 r3

~e# ð13:71Þ

which on integration gives

p ¼ � 3gU1 cos#
2r0 r2

þ p0; ð13:72Þ

where p r ! 1ð Þ ¼ p0.
The stress vector on the surface of the sphere ~n ¼~er; r ¼ 1ð Þ is thus

~t ¼ g
3U1 cos#

2r0
� p0

� �
~er � g

3U1 sin#
2r0

~eu �~er: ð13:73Þ

The component of the stress vector in the direction of flow, ~U1 ¼ U1~ex, is

~t �~ex ¼ g
3U1 cos2 #

2r0
þ 3U1 sin2 #

2r0

� �
� p0 cos#; ð13:74Þ

as follows from the identities~eu �~er �~ex ¼~e# �~ex ¼ � sin# and~er �~ex ¼ cos#.
The viscous term in (13.74) is obviously constant over the surface of the sphere.

The pressure term does not contribute to the force on the sphere, as can be verified
by direct integration, and it follows that the expression for the force, namely F, on
the sphere in the direction of flow is

F ¼ g
3U1
2 r0

� 4pr20 ¼ 6pgr0U1: ð13:75Þ

It is immediately evident that the force vanishes for the potential flow ~x ¼ 0ð Þ;
which is in agreement with the D’Alembert’s paradox. The force in (13.75) is
proportional to the first power of the velocity, and also to the body’s linear
dimensions. These properties hold equally when the body has a general form. Of
course the force is in general no longer in the direction of flow, so that (13.75) takes
the form

~F ¼ A � ~U1g d; ð13:76Þ

in which A is a tensor which depends on the body’s form and for complicated
shapes can be determined only numerically.
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When the sphere is itself a fluid, other boundary conditions come into play. If η′
is the viscosity of the fluid drop, then we state without derivation that

F ¼ 6pg r0U1
2gþ g0

3gþ g0
: ð13:77Þ

For drops of very large viscosity g0 	 gð Þ; such as droplets of water in air, (13.77)
reduces to (13.75).

It is astonishing that the streamlines around the sphere are symmetric with
respect to the plane # ¼ p=2 even though the sphere experiences a force. From the
balance of momentum we should expect a momentum deficit in the wake behind the
sphere. That this is not evident is a consequence of the fact that the creeping
solution is not valid for large r. The flow (13.65) is produced by the diffusion of
vorticity (see (13.3)). The vorticity diffuses throughout the fluid, and at large dis-
tances from the source (namely, the sphere) it is plausible that convection plays a
role and with it inertia effects. This is the case when the typical convective term
~u � rx in the vorticity transport equation (4.15) becomes comparable with the
diffusion term vDx: the former has order of magnitude O U1x=rð Þ and the latter
O vx=r2ð Þ: It follows that the ratio of these terms is

U1r
v

¼ U1r0
v

r
r0

¼ Re
r
r0
: ð13:78Þ

The convective terms accordingly become arbitrarily large at large distances from
the sphere, no matter how small the Reynolds’ number is. The creeping-flow
solution is thus no longer valid at large distances from the sphere, though it is an
approximate solution for small Reynolds’ numbers which is valid in the neigh-
bourhood of the sphere. This situation is closely related to the singular nature of
potential flow, which for large Reynolds’ numbers is a consistent approximation but
breaks down close to the wall, where it must be replaced by a boundary layer flow.
Creeping flow is in fact a singular perturbation problem and can be treated sys-
tematically by singular perturbation methods.

Long before these methods were known, Oseen, in 1910, discovered the outer
flow using a heuristic approach which provided a uniformly valid solution at small
Reynolds’ numbers. In the Oseen approximation, the convection terms were
replaced by U1~ex � r~u; thus linearising the equation, whose solution is still so
complicated that we will not discuss it here: suffice it to say that the method leads
also to the uniformly valid solution for the low-Reynolds’-number flow around a
circular cylinder.

In the breakdown of the Stokes solution at large distances we see the reason why
the solution’s region of validity is restricted at relatively small Reynolds’ numbers.
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Using the drag coefficient (3.11), we obtain with W = F and L ¼ r0
ffiffiffi
p

p
the

expression

cw
W

.
2U

21pr20
¼ 24

Re
; ð13:79Þ

where the convention is used that the Reynolds’ number is defined in terms of the
diameter of the sphere. Figure 10.21, which is in log-log form, indicates that the
experimentally measured values deviate from the straight line corresponding to
(13.79) when Re > 1. Actually, this is already the case when Re � 0.6.
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Appendix A
Introduction to Cartesian Tensors

In this text book a certain knowledge of tensors has been assumed. We restrict
ourselves to Cartesian tensors, since all equations in fluid mechanics can in prin-
ciple be developed in Cartesian coordinate systems. The most important elements of
Cartesian tensors are summarized in this chapter; otherwise the literature should be
consulted.

A.1 Summation Convention

When dealing with quantities in index notation we make use of Einstein’s summation
convention, which states that all indices which appear twice within an expression are to
be summed. In R3 the summation indices run from 1 to 3

P ¼ Fiui ¼
X3
i¼1

Fiui;

ti ¼ sjinj ¼
X3
j¼1

sjinj;

~x ¼ xi~ei ¼
X3
i¼1

xi~ei:

Indices which appear twice are called dummy indices. Since they vanish after
carrying out the summation, they may be arbitrarily named

Fiui ¼ Fkuk ¼ Fjuj;

xi~ei ¼ xl~el ¼ xm~em:
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As well as the dummy indices, single indices can also appear in equations. These
free indices must be identical in all terms of the same equation

ti ¼ sjinj;

~ei ¼ aij~gj;

aij ¼ bikckj þ dijlnl:

Otherwise they may be arbitrarily named

tm ¼ sjmnj;

tk ¼ smknm:

In order to by unambiguous, the summation convention requires that an index
appears no more than twice within an expression. A forbidden expression would be

ti ¼ aijbijnj ðwrong!),

but the following would be allowed

ti ¼ �pdijnj þ 2geijnj:

A.2 Cartesian Tensors

A tensor consists of tensor components and basis vectors. The number of linearly
independent basis vectors gives the dimension of the tensor space. In
three-dimensional space R3, from which, in what follows, we shall always start
from, there are three linearly independent vectors, which along with three linear
factors are in the position to determine a point in space uniquely. Such a set of three
vectors which span a (not necessarily orthogonal) coordinate system can be used as
a set of basis vectors. If these basis vectors are functions of position, the coordinate
system which they span is called a curvilinear coordinate system. (Think for
example of polar coordinates where the direction of the basis vectors is a function
of the polar angle.) As basis vectors we choose fixed, orthogonal unit vectors,
which we denote by~ei i ¼ 1; 2; 3ð Þ. The coordinate system spanned by these is the
Cartesian coordinate system with the coordinate axes xi (i = 1, 2, 3).

We differentiate between tensors of different orders. Tensors of order zero are
scalars. Since a scalar is completely independent of the choice of coordinate sys-
tem, no basis vector is needed to describe it. Tensors of order one are vectors. The
example of the position vector,
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~x ¼
X3
i¼1

xi~ei ¼ xi~ei; ðA:1Þ

shows that each component of a tensor of order one appears along with one basis
vector.

Tensors of order two (dyadics) can be thought of as being formed from two
vectors ~a and ~b multiplied together, so that each term ai~ei of the vector ~a is
multiplied with each term bj~ej of the vector ~b

T ¼~a~b ¼
X3
i¼1

X3
j¼1

aibj~ei~ej ¼ aibj~ei~ej: ðA:2Þ

This product is called the dyadic product, and is not to be confused with the inner
product~a �~b (whose result is a scalar), or the outer product~a�~b (whose result is a
vector). Since the dyadic product is not commutative, the basis vectors~ei~ej in (A.2)

may not be interchanged, since aibj~ej~ei would correspond to the tensor ~b~a. If we
denote the components of the tensor T with tij in (A.2) we obtain

T¼ tij~ei~ej: ðA:3Þ

Therefore to every component of a second order tensor there belong two basis
vectors~ei and~ej. In R3 nine of these basis vector pairs form the so called basis of
the tensor.

Completely analogously tensors of any order may be formed: the dyadic product
of a tensor of order n and one of order m forms a tensor of order (m + n). The basis
of an nth order tensor in R3 consists of 3n products each of n basis vectors.

Since the basis vectors for Cartesian tensors (unit vectors ~ei) are constant, it
suffices to give the components of a tensor if a Cartesian coordinate system has
already been layed down. Therefore, for a vector ~x it is enough to state the
components

xi i ¼ 1; 2; 3ð Þ;

and a second order tensor T is fully described by its components

tij i; j ¼ 1; 2; 3ð Þ:

Therefore, if we talk about the tensor tij, we shall tacitly mean the tensor given in
(A.3).

The notation in which the mathematical relations between tensors are expressed
solely by their components is the Cartesian index notation. Because we assume
fixed and orthonormal basis vectors ~ei, Cartesian index notation is only valid for
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Cartesian coordinate systems. It is possible to develop this to general curvilinear
coordinate systems, but we refer for this to the more advanced literature.

The components of tensors up to the second order may be written in the form of
matrices, so for example

T¼̂
t11 t12 t13
t21 t22 t23
t31 t32 t33

2
4

3
5: ðA:4Þ

Note however that not every matrix is a tensor.
In order to derive some rules we shall digress from the pure index notation and

carry the basis vectors along, using a mixed notation. First we shall deal with the
inner product (scalar product)

~a �~b ¼ ai~eið Þ � bj~ej
� � ¼ aibj ~ei �~ej

� �
: ðA:5Þ

Because of the orthogonality of the unit vectors, the product~ei �~ej is different from
zero only if i = j. If we expand (A.5) we can easily convince ourselves that it is
enough to carry out the summation

~a �~b ¼ aibi ¼ ajbj: ðA:6Þ

Clearly within a summation, the product ~ei �~ej will cause the index on one of the
two vector components to be exchanged. We can summarize all possible products
~ei �~ej into a second order tensor

dij ¼~ei �~ej ¼
1 for i ¼ j

0 for i 6¼ j

(
ðA:7Þ

This tensor is called the Kronecker delta, or because of its properties stated above,
the exchange symbol. Multiplying a tensor with the Kronecker delta brings about an
exchange of index in this tensor

aijdjk ¼ aik; ðA:8Þ

aibjdij ¼ aibi ¼ ajbj: ðA:9Þ

Applying the Kronecker delta in (A.5) therefore furnishes the inner product in
Cartesian index notation

~a �~b ¼ aibjdij ¼ aibi: ðA:10Þ

528 Appendix A: Introduction to Cartesian Tensors



We now consider the outer product (vector product) of two vectors

~c ¼~a�~b ¼ ai~eið Þ � bj~ej
� � ¼ aibj ~ei �~ej

� �
: ðA:11Þ

Now the outer product of two orthogonal unit vectors is zero if i = j, since this is
outer product of parallel vectors. If i 6¼ j, the outer product of the two unit vectors is
the third unit vector, possibly with negative sign. It easily follows that the relation

~ei �~ej ¼ �ijk~ek ðA:12Þ

holds if we define �ijk as a third order tensor having the following properties

�ijk ¼
þ 1 if ijk is an even permutation ði:e 123; 231; 312Þ
� 1 if ijk is an odd permutation ði:e 321; 213; 132Þ:
0 if atleast two indices are equal

8<
: ðA:13Þ

We call �ijk the epsilon tensor or the permutation symbol. Inserting (A.12) into
(A.11) leads to

~c ¼ aibj�ijk~ek: ðA:14Þ

We read off the components of~c from this equation as

ck ¼ �ijkaibj; ðA:15Þ

where we have used the fact that the order of the factors is arbitrary; we are dealing
with components, that is, just numbers.

We shall now examine the behavior of a tensor if we move from a Cartesian
coordinate system with basis vectors ~ei to another with basis vectors ~e0i. The
“dashed” coordinate system arises from rotating (and possibly also from translating)
the original coordinate system. If we are dealing with a zeroth order tensor, that is a
scalar, it is clear that the value of this scalar (e.g. the density of a fluid particle)
cannot depend of the coordinate system. The same holds for tensors of all orders.
A tensor can only have a physical meaning if it is independent of the choice of
coordinate system. This is clear in the example of the position vector of a point. If~x
and ~x0 denote the same arrow (Fig. A.1) in the “dashed” and the “undashed”
coordinate systems, then

~x0 ¼~x; ðA:16Þ
that is,

x0i~e
0
i ¼ xi~ei: ðA:17Þ
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To decompose the vector ~x into its components relative to the dashed coordinate
system, we form the scalar product with~e0j and obtain

x0i~e
0
i �~e0j ¼ xi~ei �~e0j: ðA:18Þ

The scalar product of the unit vectors in the same (dashed) coordinate system~e0i �~e0j,
using (A.7), furnishes just dij. The scalar product of the unit vectors of the dashed
and undashed coordinate systems forms the matrix

aij ¼~ei �~e0j ðA:19aÞ

or

aij ¼ cos \xi; x0j
� �

: ðA:19bÞ

We call the matrix aij the rotation matrix. It is not associated with a basis and
therefore is not a tensor. Inserting (A.19a) into (A.18) leads to the desired trans-
formation law for the components of a vector

x0j ¼ aijxi: ðA:20Þ

If we take the scalar product of (A.17) with~ej we decompose the vector~x into its
components relative to the undashed system and thus we obtain the inverse

xj ¼ ajix
0
i: ðA:21Þ

The transformation and its inverse may look formally the same, but we note that in
(A.20) we sum over the first index and in (A.21) over the second.

Knowing the transformation law for the components we can easily derive that
for the basis vectors. To do this we relabel the dummy indices on the right-hand
side of (A.17) as j so that we can insert (A.21). We obtain the equation

Fig. A.1 Rotation of the coordinate system
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x0i~e
0
i ¼ x0iaji~ej; ðA:22Þ

from which, using the fact that x0i is arbitrary (independent variable), we can read off
the transformation as ~e0i ¼ aji~ej: In order to be able to compare this with the
components (A.20), we relabel the index i as j (and vice versa), and therefore write

~e0j ¼ aij~ei: ðA:23Þ

We see that for Cartesian coordinate systems both the components and the basis
vectors of a tensor obey the same transformation laws. Thus we take the inverse
directly from (A.21) as

~ej ¼ aji~e
0
i; ðA:24Þ

where we could also have obtained this formally be inserting (A.20) into (A.17).
Before we consider the transformation laws for tensors of a higher order we shall

take note of one well known property of the rotation matrix. To do this we
exchange the indices in the transformation (A.20) (e.g.: x0i ¼ akixk), insert this into
(A.21) and thus obtain

xj ¼ ajiakixk: ðA:25Þ

Since the vector components are independent variables we can read off the fol-
lowing identity from (A.25)

ajiaki ¼ djk; ðA:26aÞ

which reads

AAT ¼ I ðA:26bÞ

in matrix notation. Since AA−1 = I is the equation which determines the inverse of
A, we conclude from (A.26a) that the transpose of the rotation matrix is equal to its
inverse (orthogonal matrix).

The transformation for the components of a tensor of arbitrary order results from
the transformations for the unit vectors (A.23) and (A.24). For clarity we shall
restrict ourselves to a second order tensor whose basis we express in terms of the
basis of the dashed coordinate system using the transformation (A.24) as

T ¼ tij~ei~ej ¼ tijaikajl~e
0
k~e

0
l: ðA:27Þ

Because of T ¼ T0 ¼ t0kl~e
0
k~e

0
l we can read off the components in the rotated system

directly from (A.27) as
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t0kl ¼ aikajltij: ðA:28Þ

If in T′ we replace the basis vectors using (A.23), we obtain

tkl ¼ akialjt
0
ij: ðA:29Þ

The same procedure is carried out for tensors of any order. The transformation
behavior of tensor components is characteristic of them and therefore is used as the
definition of a tensor. If we drop the basis vectors and use pure Cartesian index
notation, the transformation behavior is the only criterion by which we can decide if
a given expression is a tensor. Let us take an example: we shall examine whether
the gradient of a scalar function is a tensor of order one. The equation ~u ¼ rU
reads in index notation

ui ¼ @U
@xi

; ðA:30Þ

or in the rotated coordinate system

u0j ¼
@U
@x0j

: ðA:31Þ

If~u is a first order tensor, using the transformation (A.20) should transform (A.30)
into (A.31)

u0j ¼ aijui ¼ aij
@U
@xi

; ðA:32Þ

or using the chain rule,

u0j ¼ aij
@U
@x0k

@x0k
@xi

: ðA:33Þ

By x0k ¼ ajkxj we have

@x0k
@xi

¼ ajk
@xj
@xi

; ðA:34Þ

and since xj and xi are independent variables for i 6¼ j, we write

@xj
@xi

¼ dij; ðA:35Þ
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so that we replace (A.34) with

@x0k
@xi

¼ aik: ðA:36Þ

We should note that the result of (A.35) is the Kronecker delta and it is therefore a
second order tensor, and should not be confused with (A.36), whose result is the
rotation matrix and is therefore not a tensor. If we insert (A.36) into (A.33), we
obtain

u0j ¼ aijaik
@U
@x0k

; ðA:37Þ

which, because of (A.26a), is identical to

u0j ¼ djk
@U
@x0k

¼ @U
@x0j

: ðA:38Þ

This result corresponds to (A.31), and so the gradient of a scalar function is a first
order tensor.

The gradient of a tensor of the nth order comes from forming the dyadic product
with the Nabla operator and is therefore a tensor of the (n + 1)th degree. An
important example of this in fluid mechanics is the velocity gradient

r~u ¼ ~ei
@

@xi

� �
uj~ej
� � ¼ @uj

@xi
~ei~ej: ðA:39Þ

This is a second order tensor with the components

r~u¼̂tij ¼ @uj
@xi

: ðA:40Þ

The coordinate with respect to which we differentiate is given by the first index of tij
(the row index in matrix representation) and the component of ~u is determined by
the second index (the column index). In index notation we usually write the velocity
gradient as @ui=@xj, that is in matrix representation as the transpose of (A.40).
Although the matrix representation is not needed in index notation, in going from
matrix equations to index notation (or vice versa), we should be aware of the
sequence of indices determined by (A.39).

The divergence of the velocity vector (or of another first order tensor) reads
@ui=@xi in index notation, and formally corresponds with the scalar product of the
Nabla operator with the vector ~u. Thus symbolically the divergence reads r �~u or
else div~u. The result is a scalar. In general, the divergence of an nth order tensor is
an (n – 1)th order tensor. Therefore the divergence of a scalar is not defined. An
important quantity in fluid mechanics is the divergence of the stress tensor @sji=@xj,
which is a vector.
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Every second order tensor can be decomposed into a symmetric and an
antisymmetric part. From the identity

tij ¼ 1
2

tij þ tji
� �þ 1

2
tij � tji
� � ðA:41Þ

we obtain the symmetric tensor

cij ¼ 1
2

tij þ tji
� �

; ðA:42Þ

and the antisymmetric tensor

bij ¼ 1
2

tij � tji
� �

: ðA:43Þ

We can see that the symmetric part satisfies cij = cji and the antisymmetric part
satisfies bji = –bji. It follows immediately for the antisymmetric tensor that its
diagonal elements (where i = j) must be zero. While a symmetric tensor has six
independent components, an antisymmetric tensor is fully described by three
components

bij
� 	 ¼ 0 b12 b13

�b12 0 b23
�b13 �b23 0

2
4

3
5: ðA:44Þ

In this connection we wish to refer to an important property of the � tensor. To do
this we multiply the decomposition of a second order tensor with the � tensor

pk ¼ �ijktij ¼ �ijkcij þ �ijkbij; ðA:45Þ

where cij and bij are again the symmetric and antisymmetric parts respectively of tij.
We rewrite this equation as follows

pk ¼ 1
2

�ijkcij þ �ijkcji
� �þ 1

2
�ijkbij � �ijkbji
� �

; ðA:46Þ

which is allowable because of the properties of cij and bij. We now exchange the
dummy indices in the second expression in brackets

pk ¼ 1
2

�ijkcij þ �jikcij
� �þ 1

2
�ijkbij � �jikbij
� �

: ðA:47Þ

From the definition of the � tensor (A.13) it follows that �ijk ¼ ��jik, so that the first
bracket vanishes. We obtain the equation
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pk ¼ �ijkbij; ðA:48aÞ

which written in matrix form reads

p1
p2
p3

2
4

3
5 ¼

b23 � b32
b31 � b13
b12 � b21

2
4

3
5 ¼ 2

b23
�b13
b12

2
4

3
5: ðA:48bÞ

Applying the � tensor to an arbitrary second order tensor using (A.45) therefore
leads to the three independent components of the antisymmetric part of the tensor
(compare (A.48b) with (A.44)). From this we conclude that application of the �
tensor to a symmetric tensor furnishes the null vector

�ijkcij ¼ 0; if cij ¼ cji: ðA:49Þ

Here follow four identities of the � tensor, given without proof

�ikm�jln ¼ det
dij dil din
dkj dkl dkn
dmj dml dmn

2
4

3
5: ðA:50Þ

Contraction by multiplication with dmn (setting m = n) leads to

�ikn�jln ¼ det
dij dil
dkj dkl


 �
: ðA:51Þ

Table A.1 Summary of the most important rules of calculation in vector and index notation

Operation Symbolic notation Cartesian index notation

Scalar product c ¼~a �~b c ¼ dijaibj ¼ aibi

~c ¼~a � T ck ¼ dijaitjk ¼ aitik
Vector product ~c ¼~a�~b ci ¼ �ijkajbk

Dyadic product T ¼~a~b tij ¼ aibj

Gradient of a scalar field ~c ¼ grad a ¼ ra ci ¼ @a
@xi

Gradient of a vector field T ¼ grad ~a ¼ r~a tij ¼ @aj
@xi

Divergence of a vector field c ¼ div ~a ¼ r �~a c ¼ @ai
@xi

Divergence of a tensor field ~c ¼ div T ¼ r � T ci ¼ @tji
@xj

Curl of a vector field ~c ¼ curl ~a ¼ r�~a ci ¼ �ijk
@ak
@xj

Laplace operator on a scalar c ¼ Du ¼ r � ru c ¼ @2u
@xi@xi
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Contracting again by multiplying with dkl furnishes (Table A.1)

�ikn�jkn ¼ 2dij; ðA:52Þ

and finally for i = j

�ikn�ikn ¼ 2dii ¼ 6: ðA:53Þ
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Appendix B
Curvilinear Coordinates

In applications it is often useful to use curvilinear coordinates. In order to derive the
component equation for curvilinear coordinates we can start from general tensor
calculus, which is valid in all coordinate systems. However, if we restrict ourselves
to curvilinear but orthogonal coordinates, we can move relatively easily from the
corresponding equations in symbolic notation to the desired component equations.
Since it is orthogonal coordinate systems which are needed in almost all applica-
tions, we shall indeed restrict ourselves to these.

We consider the curvilinear orthogonal coordinates q1, q2, q3, which can be
calculated from the Cartesian coordinates x1, x2 and x3

q1 ¼ q1 x1; x2; x3ð Þ;
q2 ¼ q2 x1; x2; x3ð Þ;
q3 ¼ q3 x1; x2; x3ð Þ;

or in short

qi ¼ qi xj
� � ðB:1Þ

We assume that (B.1) has a unique inverse

xi ¼ xi qj
� � ðB:2aÞ

or

~x ¼~x qj
� � ðB:2bÞ
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If q2 and q3 are kept constant, the vector~x ¼~x q1ð Þ describes a curve in space which
is the coordinate curve q1. @~x=@q1 is the tangent vector to this curve. The corre-
sponding unit vector in the direction of increasing q1 reads

~e1 ¼ @~x=@q1
@~x=@q1j j : ðB:3Þ

If we set @~x=@q1j j ¼ b1, we see that

@~x
@q1

¼~e1 b1 ; ðB:4Þ

and in the same way

@~x
@q2

¼~e2 b2 ; ðB:5Þ

@~x
@q3

¼~e3b3; ðB:6Þ

with b2 ¼ @~x=@q2j j and b3 ¼ @~x=@q3j j.
Because of~x ¼~x qj

� �
it follows that

d~x ¼ @~x
@q1

dq1 þ @~x
@q2

dq2 þ @~x
@q3

dq3 ¼ b1dq1~e1 þ b2dq2~e2 þ b3dq3~e3; ðB:7Þ

and, since the basis vectors are orthogonal to each other, the square of the line
element is

d~x � d~x ¼ b21dq
2
1 þ b22dq

2
2 þ b23dq

2
3: ðB:8Þ

For the volume element dV (Fig. B.1) we have

dV ¼ b1dq1~e1 � b2dq2~e2 � b3dq3~e3ð Þ ¼ b1b2b3dq1dq2dq3: ðB:9Þ

The q1 surface element of the volume element dV (i.e. the surface element normal to
the q1 direction) is then

dS1 ¼ b2dq2~e2 � b3dq3~e3j j ¼ b2b3dq2dq3: ðB:10Þ

In a similar manner we find for the remaining surface elements

dS2 ¼ b3b1dq3dq1; ðB:11Þ

dS3 ¼ b1b2dq1dq2: ðB:12Þ
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The continuity equation, Cauchy’s equation of motion and the entropy equation
read symbolically

@.
@t

þ~u � r.þ .r �~u ¼ 0;

.
D~u
Dt

¼ .~kþr � T; and

.T
@s
@t

þ~u � rs


 �
¼ Uþr � krTð Þ:

Fig. B1 Volume element in the curvilinear orthogonal coordinate system

Fig. B.2 Cartesian coordinates
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In Cauchy’s equation we write the material derivative in the form (1.78), as this is
more useful for getting the equations in curvilinear coordinates

.
@~u
@t

�~u� r�~uð Þþr ~u2=2
� �
 �

¼ .~kþr � T: ðB:13Þ

Now in order to reach the component form of these equation, the Nabla operations
r;r�, and ∇ � (gradient, divergence and curl) are given in curvilinear coordinates.
The components of the vector rU are

q1 : rUð Þ1¼
1
b1

@U
@q1

;

q2 : rUð Þ2¼
1
b2

@U
@q2

; and

q3 : rUð Þ3¼
1
b3

@U
@q3

:

ðB:14Þ

If u1, u2 and u3 are the components of the vector~u in the direction of increasing q1,
q2 and q3, we have

r �~u ¼ 1
b1b2b3

@

@q1
b2b3u1ð Þþ @

@q2
b3b1u2ð Þþ @

@q3
b1b2u3ð Þ


 �
: ðB:15Þ

Fig. B.3 Cylindrical coordinates
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Since the basis vectors are orthonormal, the Laplace operator D ¼ r � r ¼ r2 can
be easily calculated, if, in (B.15) we identify the components of ~u with the com-
ponents of r

D ¼ 1
b1b2b3

@

@q1

b2b3
b1

@

@q1


 �
þ @

@q2

b3b1
b2

@

@q2


 �
þ @

@q3

b1b2
b3

@

@q3


 �� 
: ðB16Þ

r �~u has the components

q1 : r�~uð Þ1¼
1

b2b3

@

@q2
b3u3ð Þ � @

@q3
b2u2ð Þ


 �
;

q2 : r�~uð Þ2¼
1

b3b1

@

@q3
b1u1ð Þ � @

@q1
b3u3ð Þ


 �
;

q3 : r�~uð Þ3¼
1

b1b2

@

@q1
b2u2ð Þ � @

@q2
b1u1ð Þ


 �
:

ðB:17Þ

The components of the divergence of the stress tensor are

q1 : r � Tð Þ1 ¼
1

b1b2b3

@

@q1
b2b3s11ð Þþ @

@q2
b3b1s21ð Þþ @

@q3
b1b2s31ð Þ


 �

þ s21
b1b2

@b1
@q2

þ s31
b1b3

@b1
@q3

� s22
b1b2

@b2
@q1

� s33
b1b3

@b3
@q1

;

q2 : r � Tð Þ2 ¼
1

b1b2b3

@

@q1
b2b3s12ð Þþ @

@q2
b3b1s22ð Þþ @

@q3
b1b2s32ð Þ


 �

þ s32
b2b3

@b2
@q3

þ s12
b2b1

@b2
@q1

� s33
b2b3

@b3
@q2

� s11
b1b2

@b1
@q2

;

q3 : r � Tð Þ3 ¼
1

b1b2b3

@

@q1
b2b3s13ð Þþ @

@q2
b3b1s23ð Þþ @

@q3
b1b2s33ð Þ


 �

þ s13
b3b1

@b3
@q1

þ s23
b3b2

@b3
@q2

� s11
b3b1

@b1
@q3

� s22
b3b2

@b2
@q3

:

ðB:18Þ

Here for example the stress component s13 is the component in the direction of
increasing q3 which acts on the surface whose normal is in the direction of
increasing q1.

The Cauchy-Poisson law in symbolic form holds for the components of the
stress

T ¼ �pþ k� r � uð ÞIþ 2gE:
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The components of the rate of deformation tensor are given by

e11 ¼ 1
b1

@u1
@q1

þ u2
b1b2

@b1
@q2

þ u3
b3b1

@b1
@q3

;

e22 ¼ 1
b2

@u2
@q2

þ u3
b2b3

@b2
@q3

þ u1
b1b2

@b2
@q1

;

e33 ¼ 1
b3

@u3
@q3

þ u1
b3b1

@b3
@q1

þ u2
b2b3

@b3
@q2

;

2e32 ¼ b3
b2

@ u3=b3ð Þ
@q2

þ b2
b3

@ u2=b2ð Þ
@q3

¼ 2e23;

2e13 ¼ b1
b3

@ u1=b1ð Þ
@q3

þ b3
b1

@ u3=b3ð Þ
@q1

¼ 2e31; and

2e21 ¼ b2
b1

@ u2=b2ð Þ
@q1

þ b1
b2

@ u1=b1ð Þ
@q2

¼ 2e12:

ðB:19Þ

As an example of how to apply this we consider spherical coordinates r, #, u with
the velocity components ur; u#; uu. The relation between Cartesian and spherical
coordinates is given by the transformation (cf. Fig. B.4)

x ¼ r cos#;

y ¼ r sin# cosu;

z ¼ r sin# sinu:

ðB:20Þ

Fig. B.4 Spherical coordinates
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The x-axis is the polar axis and # is the polar angle. With

q1 ¼ r; q2 ¼ #; and q3 ¼ u ðB:21Þ

it follows that

b1 ¼ cos2 #þ sin2 # sin2 uþ cos2 u
� �� �1=2¼ 1;

b2 ¼ r2 sin2 #þ r2 cos2 # cos2 uþ sin2 u
� �� �1=2¼ r;

b3 ¼ r2 sin2 # sin2 uþ cos2 u
� �� �1=2¼ r sin#:

ðB:22Þ

The line element reads

d~x ¼ dr~er þ rd#~e# þ r sin#du~eu; ðB:23Þ

and the volume element is

dV ¼ r2 sin#drd#du: ðB:24Þ

For the surface elements we obtain

dSr ¼ r2 sin#d#du;

dS# ¼ r sin#drdu;

dSu ¼ rdrd#:

ðB:25Þ

The components of gradU ¼ rU are

r : rUð Þr¼
@U
@r

;

# : rUð Þ#¼
1
r
@U
@#

;

u : rUð Þu¼
1

r sin#
@U
@u

:

ðB:26Þ

For div ~u ¼ r �~u it follows that

r �~u ¼ r2 sin#
� ��1 @

@r
r2 sin#ur
� �þ @

@#
r sin#u#ð Þþ @

@u
ruu
� �
 �

: ðB:27Þ

The components of curl ~u ¼ r�~u are
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r : r�~uð Þr¼ r2 sin#
� ��1 @

@#
r sin#uu
� �� @

@u
ru#ð Þ


 �
;

# : r�~uð Þ#¼ r sin#ð Þ�1 @

@u
urð Þ � @

@r
r sin#uu
� �
 �

;

u : r�~uð Þu¼ r�1 @

@r
ru#ð Þ � @

@#
urð Þ


 �
:

ðB:28Þ

We now wish to calculate the r-component of the Navier–Stokes equations. To do
this we require the r-component of ~u� r�~uð Þ and of r � T

~u� r�~uð Þf gr ¼
1
r
u#

@

@r
ru#ð Þ � @

@#
urð Þ


 �
� 1
r sin#

uu
@

@u
urð Þ � @

@r
r sin#uu
� �
 �

;

ðB:29Þ

r � Tð Þr ¼
1

r2 sin#
@

@r
r2 sin#srr
� �þ @

@#
r sin#s#rð Þþ @

@u
rsur
� �
 �

� 1
r

s## þ suu
� �

; ðB:30Þ

where, from (3.1b) for incompressible flow

srr ¼ �pþ 2gerr;

s## ¼ �pþ 2ge##;

suu ¼ �pþ 2geuu;

s#r ¼ 2ge#r;

sur ¼ 2geur; and

su# ¼ 2geu#:

ðB:31Þ

The components of the rate of deformation tensor are

err ¼ @ur=@r;

e## ¼ 1
r

@u#=@#þ urf g;

euu ¼ 1
r sin#

@uu=@u
� �þ 1

r
ur þ u# cot#ð Þ;

2eu# ¼ 2e#u ¼ sin#
@

@#

1
r sin#

uu


 �
þ 1

sin#
@

@u
1
r
u#


 �
;

2eru ¼ 2eur ¼ 1
r sin#

@ur=@uþ r sin#
@

@r
1

r sin#
uu


 �
; and

2e#r ¼ 2er# ¼ r
@

@r
1
r
u#


 �
þ 1

r
@ur=@#:

ðB:32Þ
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By inserting these equations into Cauchy’s equation, we obtain the r-component of
the Navier-Stokes equations for incompressible flow

.
@ur
@t

� u#
r

@ ru#ð Þ
@r

� @ur
@#


 ��

þ uu
r sin#

@ur
@u

� @ r sin#uu
� �

@r


 �
þ 1

2

@ u2r þ u2# þ u2u
� �

@r

9=
;

¼ .kr þ 1
r2 sin#

@

@r
r2 sin# �pþ g

@ur
@r

þ g
@ur
@r

( )" #(

þ @

@#
r2 sin#g

@ u#=rð Þ
@r

þ sin#g
@ur
@#

" #
þ @

@u
g

sin#
@ur
@u

"

þ r2 sin#g
@

@r
1

r sin#
uu

� �)
þ p

r
� 2g

r2
@u#
@#

þ ur

" #

þ p
r
� 2g
r2 sin#

@uu
@u

� 2g
r2

ur þ u# cot#ð Þ:

ðB:33Þ

All terms containing p together result in �@p=@r. In spherical coordinates the
Laplace operator reads

D ¼ 1
r2

@

@r
r2

@

@r


 �
þ 1

r2 sin#
@

@#
sin#

@

@#

� �
þ 1

sin#
@2

@u2


 �
: ðB:34Þ

We see that the doubly underlined terms can be written together as the differential
operator gDur. For the singly underlined terms we can write

g
@

@r
1

r2 sin#
@

@r
r2 sin# ur
� �þ @

@#
r sin#u#ð Þþ @

@u
ruu
� �
 �� 

;

we can convince ourselves of this by differentiating it out. The expression in curly
brackets is, by (B.27) equal to r �~u, and in incompressible flow is zero (Fig. B.2).

If we carry out all the differentiation on the left-hand side we find

.
@ur
@t

þ ur
@ur
@r

þ 1
r
u#

@ur
@#

þ 1
r sin#

uu
@ur
@u

� u2# þ u2u
r

( )

¼ .kr � @p
@r

þ g Dur � 2
r2

ur þ @u#
@#

þ u# cos#þ 1
sin#

@uu
@u


 ��  ðB:35Þ
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as the r-component of the Navier-Stokes equations. The remaining components are
obtained in the same manner. We shall now summarize the results for Cartesian,
cylindrical and spherical coordinates.

B.1 Cartesian Coordinates

(a) Unit vectors:

~ex;~ey;~ez

(b) Position vector~x:

~x ¼ x~ex þ y~ey þ z~ex

(c) Velocity vector u:

~u ¼ u~ex þ t~ey þw~ez

(d) Line element:

d~x ¼ dx~ex þ dy~ey þ dz~ez

(e) Surface elements:

dSx ¼ dydz

dSy ¼ dxdz

dSx ¼ dxdy

(f) Volume element:

dV ¼ dxdydz

(g) Gradient of the scalar U:

grad U ¼ rU ¼ @U
@x

~ex þ @U
@y

~ey þ @U
@z

~ez

(h) Laplace operator on the scalar U:

DU ¼ r � rU ¼ @2U
@x2

þ @2U
@y2

þ @2U
@z2
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(i) Divergence of the vector ~u:

div~u ¼ r �~u ¼ @u
@x

þ @t
@y

þ @w
@z

(j) Curl of the vector ~u:

curl~u ¼ r�~u ¼ @w
@y

� @t
@z


 �
~ex þ @u

@z
� @w

@x


 �
~ey þ @t

@x
� @u

@y


 �
~ez

(k) Laplace operator on the vector ~u:

D~u ¼ r � r~u ¼ Du~ex þDt~ey þDw~ez

(l) Divergence of the stress tensor T:

div T ¼ r � T ¼ @sxx=@xþ @syx=@yþ @szx=@z
� �

~ex
þ @sxy=@xþ @syy=@yþ @szy=@z
� �

~ey
þ @sxz=@xþ @syz=@yþ @szz=@z
� �

~ez

(m) Rate of deformation tensor E:

exx ¼ @u=@x

eyy ¼ @t=@y

ezz ¼ @w=@z

2exy ¼ 2eyx ¼ @u=@yþ @t=@x

2exz ¼ 2ezx ¼ @u=@zþ @w=@x

2eyz ¼ 2ezy ¼ @t=@zþ @w=@y

(n) Continuity equation:

@.
@t

þ @

@x
.uð Þþ @

@y
.tð Þþ @

@z
.wð Þ ¼ 0

(o) Navier–Stokes equations (with ., η = const):

x : . @u=@tþ u@u=@xþ t@u=@yþw@u=@zð Þ ¼ .kx � @p=@xþ gDu

y : . @t=@tþ u@t=@xþ t@t=@yþw@t=@zð Þ ¼ .ky � @p=@yþ gDt

z : . @w=@tþ u@w=@xþ t@w=@yþw@w=@zð Þ ¼ .kz � @p=@zþ gDw
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B.2 Cylindrical Coordinates

(a) Unit vectors:

~er ¼ þ cosu~ex þ sinu~ey
~eu ¼ � sinu~ex þ cosu~ey
~ez ¼~ez

(b) Position vector~x:

~x ¼ r~er þ z~ez

(c) Velocity vector ~u:

~u ¼ ur~er þ uu~eu þ uz~ez

(d) Line element:

d~x ¼ dr~er þ rdu~eu þ dz~ez

See Fig. B.3.

(e) Surface elements:

dSr ¼ rdudz

dSu ¼ drdz

dSz ¼ rdrdu

(f) Volume element:

dV ¼ rdrdudz

(g) Gradient of the scalar U:

grad U ¼ rU ¼ @U
@r

~er þ 1
r
@U
@u

~eu þ @U
@z

~ez

(h) Laplace operator on the scalar U:

DU ¼ r � rU ¼ @2U
@r2

þ 1
r
@U
@r

þ 1
r2
@2U
@u2 þ @2U

@z2
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(i) Divergence of the vector ~u:

div ~u ¼ r �~u ¼ 1
r

@ urrð Þ
@r

þ @uu
@u

þ @ uzrð Þ
@z

� 

(j) Curl of the vector ~u:

curl~u ¼ r�~u ¼ 1
r
@uz
@u

� @uu
@z

� 
~er þ @ur

@z
� @uz

@r

� 
~eu

þ 1
r

@ uu r
� �
@r

� @ur
@u

� 
~ez

(k) Laplace operator on the vector ~u:

D~u ¼ r � r~u ¼ Dur � 1
r2

ur þ 2
@uu
@u


 �� 
~er

þ Duu � 1
r2

uu � 2
@ur
@u


 �� 
~eu þDuz~ez

(l) Divergence of the stress tensor T:

divT ¼ r � T ¼ 1
r
@ srrrð Þ
@r

þ 1
r
@sur
@u

þ @szr
@z

� suu
r

� 
~er

þ 1
r

@ srur
� �
@r

þ 1
r
@suu
@u

þ @szu
@z

þ sru
r

� 
~eu

þ 1
r
@ srzrð Þ
@r

þ 1
r
@suz
@u

þ @szz
@z

� 
~ez

(m) Rate of deformation tensor E:

err ¼ @ur
@r

euu ¼ 1
r
@uu
@u

þ 1
r
ur

ezz ¼ @uz
@z

2eru ¼ 2eur ¼ r
@ r�1uu
� �
@r

þ 1
r
@ur
@u

2erz ¼ 2ezr ¼ @ur
@z

þ @uz
@r

2euz ¼ 2ezu ¼ 1
r
@uz
@u

þ @uu
@z
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(n) Continuity equation:

@.
@t

þ 1
r
@

@r
.urrð Þþ 1

r
@

@u
.uu
� �þ @

@z
.uzð Þ ¼ 0

(o) Navier-Stokes equations (with ., η = const)

r : .
@ur
@t

þ ur
@ur
@r

þ uz
@ur
@z

þ 1
r

uu
@ur
@u

� u2u


 �� 

¼ .kr � @p
@r

þ g Dur � 1
r2

ur þ 2
@uu
@u


 �� 

u : .
@uu
@t

þ ur
@uu
@r

þ uz
@uu
@z

þ 1
r

uu
@uu
@u

þ ur uu


 �� 

¼ .ku � 1
r
@p
@u

þ g Duu � 1
r2

uu � 2
@ur
@u


 �� 

z : .
@uz
@t

þ ur
@uz
@r

þ uz
@uz
@z

þ 1
r
uu

@uz
@u

� 
¼ .kz � @p

@z
þ gDuz

B.3 Spherical Coordinates

(a) Unit vectors:

~er ¼ cos#~ex þ sin# cosu~eyþ sin# sinu~ez
~e# ¼ � sin#~ex þ cos# cosu~ey þ cos# sinu~ez
~eu ¼ � sinu~ey þ cosu~ez

(b) Position vector~x:

~x ¼ r~er

(c) Velocity vector ~u:

~u ¼ ur~er þ u#~e# þ uu~eu

(d) Line element:

d~x ¼ dr~er þ rd#~e# þ r sin#du~eu
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(e) Surface elements:

dSr ¼ r2 sin#d#du

dS# ¼ r sin#drdu

dSu ¼ rdrd#

(f) Volume element:

dV ¼ r2 sin#drd#du

(g) Gradient of the scalar U:

grad U ¼ rU ¼ @U
@r

~er þ 1
r
@U
@#

~e# þ 1
r sin#

@U
@u

~eu

(h) Laplace operator on the scalar U:

DU ¼ r � rU ¼ 1
r2

@

@r
r2
@U
@r


 �
þ 1

r2 sin#
@

@#
sin#

@U
@#


 �
þ 1

r2 sin2 #

@2U
@u2

(i) Divergence of the vector ~u:

div ~u ¼ r �~u ¼ 1
r2 sin#

@ r2 sin#urð Þ
@r

þ @ r sin#u#ð Þ
@#

þ @ ruu
� �
@u

� 

(j) Curl of the vector ~u:

curl ~u ¼ 1
r2 sin#

@ r sin#uu
� �

@#
� @ ru#ð Þ

@u

� 
~er

þ 1
r sin#

@ur
@u

� @ r sin#uu
� �

@r

� 
~e#

þ 1
r

@ ru#ð Þ
@r

� @ur
@#

� 
~eu

(k) Laplace operator on the vector ~u:

D~u ¼ Dur � 2
r2

ur þ @u#
@#

þ u# cot#þ 1
sin#

@uu
@u


 �� 
~er

þ Du# þ 2
r2
@ur
@#

� 1

r2 sin2 #
u# þ 2 cos#

@uu
@u


 �� 
~e#

þ Duu � 1

r2 sin2 #
uu � 2 sin#

@ur
@u

� 2 cos#
@u#
@u


 �� 
~eu
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(l) Divergence of the stress tensor T:

r � T ¼ 1
r2 sin#

@ r2 sin#srrð Þ
@r

þ @ r sin#s#rð Þ
@#

þ @ rsur
� �
@u


 ��

� s## þ suu
r

o
~er

þ 1
r2 sin#

@ r2 sin#sr#ð Þ
@r

þ @ r sin#s##ð Þ
@#

þ @ rsu#
� �
@u


 ��

þ sr# � suu cot#
r


~e#

þ 1
r2 sin#

@ r2 sin#sru
� �

@r
þ @ r sin#s#u

� �
@#

þ @ rsuu
� �
@u


 ��

þ sr u þ s#u cot#
r


~eu

(m) Rate of deformation tensor E:

err ¼ @ur
@r

e## ¼ 1
r
@u#
@#

þ 1
r
ur

euu ¼ 1
r sin#

@uu
@u

þ 1
r

ur þ u# cos#ð Þ

2eu# ¼ 2e#u ¼ sin#
@

@#

1
r sin#

uu


 �
þ 1

sin#
@

@u
1
r
u#


 �

2eru ¼ 2eur ¼ 1
r sin#

@ur
@u

þ r sin#
@

@r
1

r sin#
uu


 �

2e#r ¼ 2er# ¼ r
@

@r
1
r
u#


 �
þ 1

r
@ur
@#

(n) Continuity equation:

@.
@t

þ 1
r2 sin#

@

@r
r2 sin#.ur
� �þ @

@#
r sin#.u#ð Þþ @

@u
r.uu
� �
 �

¼ 0
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(o) Navier-Stokes equations (with .; g ¼ const):

r : .
@ur
@t

þ ur
@ur
@r

þ 1
r
u#

@ur
@#

þ 1
r sin#

uu
@ur
@u

� u2# þ u2u
r

( )

¼ .kr � @p
@r

þ g Dur � 2
r2

ur þ @u#
@#

þ u# cot#þ 1
sin#

@uu
@u


 �� 

# : .
@u#
@t

þ ur
@u#
@r

þ 1
r
u#

@u#
@#

þ 1
r sin#

uu
@u#
@u

þ uru# � u2u cot#

r

( )

¼ .k# � 1
r
@p
@#

þ g Du# þ 2
r2
@ur
@#

� 1

r2 sin2 #
u# þ 2 cos#

@uu
@u


 �� 

u : .
@uu
@t

þ ur
@uu
@r

þ 1
r
u#

@uu
@#

þ 1
r sin#

uu
@uu
@u

þ uuur þ u#uu cot#
r

� 

¼ .ku � 1
r sin#

@p
@u

þ g Duu � 1

r2 sin2 #
uu � 2 cos#

@u#
@u

� 2 sin#
@ur
@u


 �� 

Appendix B: Curvilinear Coordinates 553



Appendix C
Tables and Diagrams for Compressible
Flow

See Table C.1.

Table C.1 Pressure, density, temperature and area ratio as dependent on the Mach number for
calorically perfect gas (c = 1.4)

M p/pt ./.t T/Tt a/at A*/A

0.000 1.000000 1.000000 1.000000 1.000000 0.000000

0.010 0.999930 0.999950 0.999980 0.999990 0.017279

0.020 0.999720 0.999800 0.999920 0.999960 0.034552

0.030 0.999370 0.999550 0.999820 0.999910 0.051812

0.040 0.998881 0.999200 0.999680 0.999840 0.069054

0.050 0.998252 0.998751 0.999500 0.999750 0.086271

0.060 0.997484 0.998202 0.999281 0.999640 0.103456

0.070 0.996577 0.997554 0.999021 0.999510 0.120605

0.080 0.995533 0.996807 0.998722 0.999361 0.137711

0.090 0.994351 0.995961 0.998383 0.999191 0.154767

0.100 0.993032 0.995018 0.998004 0.999002 0.171767

0.110 0.991576 0.993976 0.997586 0.998792 0.188707

0.120 0.989985 0.992836 0.997128 0.998563 0.205579

0.130 0.988259 0.991600 0.996631 0.998314 0.222378

0.140 0.986400 0.990267 0.996095 0.998046 0.239097

0.150 0.984408 0.988838 0.995520 0.997758 0.255732

0.160 0.982284 0.987314 0.994906 0.997450 0.272276

0.170 0.980030 0.985695 0.994253 0.997122 0.288725

0.180 0.977647 0.983982 0.993562 0.996776 0.305071

0.190 0.975135 0.982176 0.992832 0.996409 0.321310

0.200 0.972497 0.980277 0.992064 0.996024 0.337437
(continued)
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Table C.1 (continued)

M p/pt ./.t T/Tt a/at A*/A

0.210 0.969733 0.978286 0.991257 0.995619 0.353445

0.220 0.966845 0.976204 0.990413 0.995195 0.369330

0.230 0.963835 0.974032 0.989531 0.994752 0.385088

0.240 0.960703 0.971771 0.988611 0.994289 0.400711

0.250 0.957453 0.969421 0.987654 0.993808 0.416197

0.260 0.954085 0.966984 0.986660 0.993308 0.431539

0.270 0.950600 0.964460 0.985629 0.992789 0.446734

0.280 0.947002 0.961851 0.984562 0.992251 0.461776

0.290 0.943291 0.959157 0.983458 0.991695 0.476661

0.300 0.939470 0.956380 0.982318 0.991120 0.491385

0.310 0.935540 0.953521 0.981142 0.990526 0.505943

0.320 0.931503 0.950580 0.979931 0.989915 0.520332

0.330 0.927362 0.947559 0.978684 0.989285 0.534546

0.340 0.923117 0.944460 0.977402 0.988637 0.548584

0.350 0.918773 0.941283 0.976086 0.987971 0.562440

0.360 0.914330 0.938029 0.974735 0.987287 0.576110

0.370 0.909790 0.934700 0.973350 0.986585 0.589593

0.380 0.905156 0.931297 0.971931 0.985865 0.602883

0.390 0.900430 0.927821 0.970478 0.985128 0.615979

0.400 0.895614 0.924274 0.968992 0.984374 0.628876

0.410 0.890711 0.920657 0.967474 0.983602 0.641571

0.420 0.885722 0.916971 0.965922 0.982813 0.654063

0.430 0.880651 0.913217 0.964339 0.982008 0.666348

0.440 0.875498 0.909398 0.962723 0.981185 0.678424

0.450 0.870267 0.905513 0.961076 0.980345 0.690287

0.460 0.864960 0.901566 0.959398 0.979489 0.701937

0.470 0.859580 0.897556 0.957689 0.978616 0.713371

0.480 0.854128 0.893486 0.955950 0.977727 0.724587

0.490 0.848607 0.889357 0.954180 0.976821 0.735582

0.500 0.843019 0.885170 0.952381 0.975900 0.746356

0.510 0.837367 0.880927 0.950552 0.974963 0.756906

0.520 0.831654 0.876629 0.948695 0.974010 0.767231

0.530 0.825881 0.872279 0.946808 0.973041 0.777331

0.540 0.820050 0.867876 0.944894 0.972056 0.787202

0.550 0.814165 0.863422 0.942951 0.971057 0.796846

0.560 0.808228 0.858920 0.940982 0.970042 0.806260

0.570 0.802241 0.854371 0.938985 0.969012 0.815444

0.580 0.796206 0.849775 0.936961 0.967968 0.824398

0.590 0.790127 0.845135 0.934911 0.966908 0.833119

0.600 0.784004 0.840452 0.932836 0.965834 0.841609
(continued)
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Table C.1 (continued)

M p/pt ./.t T/Tt a/at A*/A

0.610 0.777841 0.835728 0.930735 0.964746 0.849868

0.620 0.771639 0.830963 0.928609 0.963643 0.857894

0.630 0.765402 0.826160 0.926458 0.962527 0.865688

0.640 0.759131 0.821320 0.924283 0.961396 0.873249

0.650 0.752829 0.816443 0.922084 0.960252 0.880579

0.660 0.746498 0.811533 0.919862 0.959094 0.887678

0.670 0.740140 0.806590 0.917616 0.957923 0.894545

0.680 0.733758 0.801616 0.915349 0.956739 0.901182

0.690 0.727353 0.796612 0.913059 0.955541 0.907588

0.700 0.720928 0.791579 0.910747 0.954331 0.913765

0.710 0.714485 0.786519 0.908414 0.953107 0.919715

0.720 0.708026 0.781434 0.906060 0.951872 0.925437

0.730 0.701552 0.776324 0.903685 0.950624 0.930932

0.740 0.695068 0.771191 0.901291 0.949363 0.936203

0.750 0.688573 0.766037 0.898876 0.948091 0.941250

0.760 0.682071 0.760863 0.896443 0.946807 0.946074

0.770 0.675562 0.755670 0.893991 0.945511 0.950678

0.780 0.669050 0.750460 0.891520 0.944203 0.955062

0.790 0.662536 0.745234 0.889031 0.942885 0.959228

0.800 0.656022 0.739992 0.886525 0.941554 0.963178

0.810 0.649509 0.734738 0.884001 0.940214 0.966913

0.820 0.643000 0.729471 0.881461 0.938862 0.970436

0.830 0.636496 0.724193 0.878905 0.937499 0.973749

0.840 0.630000 0.718905 0.876332 0.936126 0.976853

0.850 0.623512 0.713609 0.873744 0.934743 0.979750

0.860 0.617034 0.708306 0.871141 0.933349 0.982443

0.870 0.610569 0.702997 0.868523 0.931946 0.984934

0.880 0.604117 0.697683 0.865891 0.930533 0.987225

0.890 0.597680 0.692365 0.863245 0.929110 0.989317

0.900 0.591260 0.687044 0.860585 0.927677 0.991215

0.910 0.584858 0.681722 0.857913 0.926236 0.992920

0.920 0.578476 0.676400 0.855227 0.924785 0.994434

0.930 0.572114 0.671079 0.852529 0.923325 0.995761

0.940 0.565775 0.665759 0.849820 0.921857 0.996901

0.950 0.559460 0.660443 0.847099 0.920380 0.997859

0.960 0.553169 0.655130 0.844366 0.918894 0.998637

0.970 0.546905 0.649822 0.841623 0.917400 0.999238

0.980 0.540668 0.644520 0.838870 0.915898 0.999663

0.990 0.534460 0.639225 0.836106 0.914389 0.999916

1.000 0.528282 0.633938 0.833333 0.912871 1.000000
(continued)
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Table C.1 (continued)

M p/pt ./.t T/Tt a/at A*/A

1.000 0.528282 0.633938 0.833333 0.912871 1.000000

1.010 0.522134 0.628660 0.830551 0.911346 0.999917

1.020 0.516018 0.623391 0.827760 0.909813 0.999671

1.030 0.509935 0.618133 0.824960 0.908273 0.999263

1.040 0.503886 0.612887 0.822152 0.906726 0.998697

1.050 0.497872 0.607653 0.819336 0.905172 0.997975

1.060 0.491894 0.602432 0.816513 0.903611 0.997101

1.070 0.485952 0.597225 0.813683 0.902044 0.996077

1.080 0.480047 0.592033 0.810846 0.900470 0.994907

1.090 0.474181 0.586856 0.808002 0.898890 0.993593

1.100 0.468354 0.581696 0.805153 0.897303 0.992137

1.110 0.462567 0.576553 0.802298 0.895711 0.990543

1.120 0.456820 0.571427 0.799437 0.894113 0.988815

1.130 0.451114 0.566320 0.796572 0.892509 0.986953

1.140 0.445451 0.561232 0.793701 0.890899 0.984963

1.150 0.439829 0.556164 0.790826 0.889284 0.982845

1.160 0.434251 0.551116 0.787948 0.887664 0.980604

1.170 0.428716 0.546090 0.785065 0.886039 0.978242

1.180 0.423225 0.541085 0.782179 0.884409 0.975762

1.190 0.417778 0.536102 0.779290 0.882774 0.973167

1.200 0.412377 0.531142 0.776398 0.881134 0.970459

1.210 0.407021 0.526205 0.773503 0.879490 0.967643

1.220 0.401711 0.521292 0.770606 0.877842 0.964719

1.230 0.396446 0.516403 0.767707 0.876189 0.961691

1.240 0.391229 0.511539 0.764807 0.874532 0.958562

1.250 0.386058 0.506701 0.761905 0.872872 0.955335

1.260 0.380934 0.501888 0.759002 0.871207 0.952012

1.270 0.375858 0.497102 0.756098 0.869539 0.948597

1.280 0.370828 0.492342 0.753194 0.867867 0.945091

1.290 0.365847 0.487609 0.750289 0.866192 0.941497

1.300 0.360914 0.482903 0.747384 0.864514 0.937819

1.310 0.356029 0.478225 0.744480 0.862832 0.934057

1.320 0.351192 0.473575 0.741576 0.861148 0.930217

1.330 0.346403 0.468954 0.738672 0.859461 0.926299

1.340 0.341663 0.464361 0.735770 0.857771 0.922306

1.350 0.336971 0.459797 0.732869 0.856078 0.918242

1.360 0.332328 0.455263 0.729970 0.854383 0.914107

1.370 0.327733 0.450758 0.727072 0.852685 0.909905

1.380 0.323187 0.446283 0.724176 0.850985 0.905639

1.390 0.318690 0.441838 0.721282 0.849283 0.901310
(continued)
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Table C.1 (continued)

M p/pt ./.t T/Tt a/at A*/A

1.400 0.314241 0.437423 0.718391 0.847579 0.896921

1.410 0.309840 0.433039 0.715502 0.845874 0.892474

1.420 0.305489 0.428686 0.712616 0.844166 0.887972

1.430 0.301185 0.424363 0.709733 0.842457 0.883416

1.440 0.296929 0.420072 0.706854 0.840746 0.878810

1.450 0.292722 0.415812 0.703978 0.839034 0.874154

1.460 0.288563 0.411583 0.701105 0.837320 0.869452

1.470 0.284452 0.407386 0.698236 0.835605 0.864706

1.480 0.280388 0.403220 0.695372 0.833889 0.859917

1.490 0.276372 0.399086 0.692511 0.832173 0.855087

1.500 0.272403 0.394984 0.689655 0.830455 0.850219

1.510 0.268481 0.390914 0.686804 0.828736 0.845315

1.520 0.264607 0.386876 0.683957 0.827017 0.840377

1.530 0.260779 0.382870 0.681115 0.825297 0.835405

1.540 0.256997 0.378896 0.678279 0.823577 0.830404

1.550 0.253262 0.374955 0.675448 0.821856 0.825373

1.560 0.249573 0.371045 0.672622 0.820135 0.820315

1.570 0.245930 0.367168 0.669801 0.818414 0.815233

1.580 0.242332 0.363323 0.666987 0.816693 0.810126

1.590 0.238779 0.359511 0.664178 0.814971 0.804998

1.600 0.235271 0.355730 0.661376 0.813250 0.799850

1.610 0.231808 0.351982 0.658579 0.811529 0.794683

1.620 0.228389 0.348266 0.655789 0.809808 0.789499

1.630 0.225014 0.344582 0.653006 0.808088 0.784301

1.640 0.221683 0.340930 0.650229 0.806368 0.779088

1.650 0.218395 0.337311 0.647459 0.804648 0.773863

1.660 0.215150 0.333723 0.644695 0.802929 0.768627

1.670 0.211948 0.330168 0.641939 0.801211 0.763382

1.680 0.208788 0.326644 0.639190 0.799494 0.758129

1.690 0.205670 0.323152 0.636448 0.797777 0.752869

1.700 0.202594 0.319693 0.633714 0.796061 0.747604

1.710 0.199558 0.316264 0.630987 0.794347 0.742335

1.720 0.196564 0.312868 0.628267 0.792633 0.737064

1.730 0.193611 0.309502 0.625555 0.790920 0.731790

1.740 0.190698 0.306169 0.622851 0.789209 0.726517

1.750 0.187824 0.302866 0.620155 0.787499 0.721245

1.760 0.184990 0.299595 0.617467 0.785791 0.715974

1.770 0.182195 0.296354 0.614787 0.784083 0.710707

1.780 0.179438 0.293145 0.612115 0.782378 0.705444

1.790 0.176720 0.289966 0.609451 0.780674 0.700187
(continued)
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Table C.1 (continued)

M p/pt ./.t T/Tt a/at A*/A

1.800 0.174040 0.286818 0.606796 0.778971 0.694936

1.810 0.171398 0.283701 0.604149 0.777270 0.689692

1.820 0.168792 0.280614 0.601511 0.775571 0.684457

1.830 0.166224 0.277557 0.598881 0.773874 0.679230

1.840 0.163691 0.274530 0.596260 0.772179 0.674014

1.850 0.161195 0.271533 0.593648 0.770486 0.668810

1.860 0.158734 0.268566 0.591044 0.768794 0.663617

1.870 0.156309 0.265628 0.588450 0.767105 0.658436

1.880 0.153918 0.262720 0.585864 0.765418 0.653270

1.890 0.151562 0.259841 0.583288 0.763733 0.648118

1.900 0.149240 0.256991 0.580720 0.762050 0.642981

1.910 0.146951 0.254169 0.578162 0.760369 0.637859

1.920 0.144696 0.251377 0.575612 0.758691 0.632755

1.930 0.142473 0.248613 0.573072 0.757016 0.627668

1.940 0.140283 0.245877 0.570542 0.755342 0.622598

1.950 0.138126 0.243170 0.568020 0.753671 0.617547

1.960 0.135999 0.240490 0.565509 0.752003 0.612516

1.970 0.133905 0.237839 0.563006 0.750337 0.607504

1.980 0.131841 0.235215 0.560513 0.748674 0.602512

1.990 0.129808 0.232618 0.558030 0.747014 0.597542

2.000 0.127805 0.230048 0.555556 0.745356 0.592593

2.010 0.125831 0.227505 0.553091 0.743701 0.587665

2.020 0.123888 0.224990 0.550637 0.742049 0.582761

2.030 0.121973 0.222500 0.548192 0.740400 0.577879

2.040 0.120087 0.220037 0.545756 0.738753 0.573020

2.050 0.118229 0.217601 0.543331 0.737110 0.568186

2.060 0.116399 0.215190 0.540915 0.735469 0.563375

2.070 0.114597 0.212805 0.538509 0.733832 0.558589

2.080 0.112823 0.210446 0.536113 0.732197 0.553828

2.090 0.111075 0.208112 0.533726 0.730566 0.549093

2.100 0.109353 0.205803 0.531350 0.728937 0.544383

2.110 0.107658 0.203519 0.528983 0.727312 0.539699

2.120 0.105988 0.201259 0.526626 0.725690 0.535041

2.130 0.104345 0.199025 0.524279 0.724071 0.530410

2.140 0.102726 0.196814 0.521942 0.722456 0.525806

2.150 0.101132 0.194628 0.519616 0.720844 0.521229

2.160 0.099562 0.192466 0.517299 0.719235 0.516679

2.170 0.098017 0.190327 0.514991 0.717629 0.512157

2.180 0.096495 0.188212 0.512694 0.716027 0.507663

2.190 0.094997 0.186120 0.510407 0.714428 0.503197
(continued)
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Table C.1 (continued)

M p/pt ./.t T/Tt a/at A*/A

2.200 0.093522 0.184051 0.508130 0.712832 0.498759

2.210 0.092069 0.182004 0.505863 0.711240 0.494350

2.220 0.090640 0.179981 0.503606 0.709652 0.489969

2.230 0.089232 0.177980 0.501359 0.708067 0.485617

2.240 0.087846 0.176001 0.499122 0.706485 0.481294

2.250 0.086482 0.174044 0.496894 0.704907 0.477000

2.260 0.085139 0.172110 0.494677 0.703333 0.472735

2.270 0.083817 0.170196 0.492470 0.701762 0.468500

2.280 0.082515 0.168304 0.490273 0.700195 0.464293

2.290 0.081234 0.166433 0.488086 0.698631 0.460117

2.300 0.079973 0.164584 0.485909 0.697071 0.455969

2.310 0.078731 0.162755 0.483741 0.695515 0.451851

2.320 0.077509 0.160946 0.481584 0.693963 0.447763

2.330 0.076306 0.159158 0.479437 0.692414 0.443705

2.340 0.075122 0.157390 0.477300 0.690869 0.439676

2.350 0.073957 0.155642 0.475172 0.689327 0.435677

2.360 0.072810 0.153914 0.473055 0.687790 0.431708

2.370 0.071681 0.152206 0.470947 0.686256 0.427769

2.380 0.070570 0.150516 0.468850 0.684726 0.423859

2.390 0.069476 0.148846 0.466762 0.683200 0.419979

2.400 0.068399 0.147195 0.464684 0.681677 0.416129

2.410 0.067340 0.145563 0.462616 0.680159 0.412309

2.420 0.066297 0.143950 0.460558 0.678644 0.408518

2.430 0.065271 0.142354 0.458510 0.677133 0.404758

2.440 0.064261 0.140777 0.456471 0.675626 0.401026

2.450 0.063267 0.139218 0.454442 0.674123 0.397325

2.460 0.062288 0.137677 0.452423 0.672624 0.393653

2.470 0.061326 0.136154 0.450414 0.671129 0.390010

2.480 0.060378 0.134648 0.448414 0.669638 0.386397

2.490 0.059445 0.133159 0.446425 0.668150 0.382814

2.500 0.058528 0.131687 0.444444 0.666667 0.379259

2.510 0.057624 0.130232 0.442474 0.665187 0.375734

2.520 0.056736 0.128794 0.440513 0.663712 0.372238

2.530 0.055861 0.127373 0.438562 0.662240 0.368771

2.540 0.055000 0.125968 0.436620 0.660772 0.365333

2.550 0.054153 0.124579 0.434688 0.659309 0.361924

2.560 0.053319 0.123206 0.432766 0.657849 0.358543

2.570 0.052499 0.121849 0.430853 0.656394 0.355192

2.580 0.051692 0.120507 0.428949 0.654942 0.351868

2.590 0.050897 0.119182 0.427055 0.653494 0.348573
(continued)
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Table C.1 (continued)

M p/pt ./.t T/Tt a/at A*/A

2.600 0.050115 0.117871 0.425170 0.652051 0.345307

2.610 0.049346 0.116575 0.423295 0.650611 0.342068

2.620 0.048589 0.115295 0.421429 0.649176 0.338858

2.630 0.047844 0.114029 0.419572 0.647744 0.335675

2.640 0.047110 0.112778 0.417725 0.646316 0.332521

2.650 0.046389 0.111542 0.415887 0.644893 0.329394

2.660 0.045679 0.110320 0.414058 0.643474 0.326294

2.670 0.044980 0.109112 0.412239 0.642058 0.323222

2.680 0.044292 0.107918 0.410428 0.640647 0.320177

2.690 0.043616 0.106738 0.408627 0.639239 0.317159

2.700 0.042950 0.105571 0.406835 0.637836 0.314168

2.710 0.042295 0.104418 0.405052 0.636437 0.311204

2.720 0.041650 0.103279 0.403278 0.635042 0.308266

2.730 0.041016 0.102152 0.401513 0.633650 0.305355

2.740 0.040391 0.101039 0.399757 0.632263 0.302470

2.750 0.039777 0.099939 0.398010 0.630880 0.299611

2.760 0.039172 0.098851 0.396272 0.629501 0.296779

2.770 0.038577 0.097777 0.394543 0.628126 0.293972

2.780 0.037992 0.096714 0.392822 0.626755 0.291190

2.790 0.037415 0.095664 0.391111 0.625389 0.288435

2.800 0.036848 0.094626 0.389408 0.624026 0.285704

2.810 0.036290 0.093601 0.387714 0.622667 0.282999

2.820 0.035741 0.092587 0.386029 0.621312 0.280319

2.830 0.035201 0.091585 0.384352 0.619962 0.277663

2.840 0.034669 0.090594 0.382684 0.618615 0.275033

2.850 0.034146 0.089616 0.381025 0.617272 0.272426

2.860 0.033631 0.088648 0.379374 0.615934 0.269844

2.870 0.033124 0.087692 0.377732 0.614599 0.267286

2.880 0.032625 0.086747 0.376098 0.613268 0.264753

2.890 0.032134 0.085813 0.374473 0.611942 0.262242

2.900 0.031652 0.084889 0.372856 0.610619 0.259756

2.910 0.031176 0.083977 0.371248 0.609301 0.257293

2.920 0.030708 0.083075 0.369648 0.607986 0.254853

2.930 0.030248 0.082183 0.368056 0.606676 0.252436

2.940 0.029795 0.081302 0.366472 0.605370 0.250043

2.950 0.029349 0.080431 0.364897 0.604067 0.247672

2.960 0.028910 0.079571 0.363330 0.602768 0.245323

2.970 0.028479 0.078720 0.361771 0.601474 0.242997

2.980 0.028054 0.077879 0.360220 0.600183 0.240693

2.990 0.027635 0.077048 0.358678 0.598897 0.238412

3.000 0.027224 0.076226 0.357143 0.597614 0.236152



Table C.2 Pressure, density, temperature, total pressure and Mach number M2 behind a normal
shock as dependent on the Mach number M1 in front of the shock for calorically perfect gas
(c = 1.4)

M1 p2/p1 .2/.1 T2/T1 pt2/pt1 M2

1.000 1.000000 1.000000 1.000000 1.000000 1.000000

1.010 1.023450 1.016694 1.006645 0.999999 0.990132

1.020 1.047133 1.033442 1.013249 0.999990 0.980520

1.030 1.071050 1.050240 1.019814 0.999967 0.971154

1.040 1.095200 1.067088 1.026345 0.999923 0.962026

1.050 1.119583 1.083982 1.032843 0.999853 0.953125

1.060 1.144200 1.100921 1.039312 0.999751 0.944445

1.070 1.169050 1.117903 1.045753 0.999611 0.935977

1.080 1.194133 1.134925 1.052169 0.999431 0.927713

1.090 1.219450 1.151985 1.058564 0.999204 0.919647

1.100 1.245000 1.169082 1.064938 0.998928 0.911770

1.110 1.270783 1.186213 1.071294 0.998599 0.904078

1.120 1.296800 1.203377 1.077634 0.998213 0.896563

1.130 1.323050 1.220571 1.083960 0.997768 0.889219

1.140 1.349533 1.237793 1.090274 0.997261 0.882042

1.150 1.376250 1.255042 1.096577 0.996690 0.875024

1.160 1.403200 1.272315 1.102872 0.996052 0.868162

1.170 1.430383 1.289610 1.109159 0.995345 0.861451

1.180 1.457800 1.306927 1.115441 0.994569 0.854884

1.190 1.485450 1.324262 1.121719 0.993720 0.848459

1.200 1.513333 1.341615 1.127994 0.992798 0.842170

1.210 1.541450 1.358983 1.134267 0.991802 0.836014

1.220 1.569800 1.376364 1.140541 0.990731 0.829987

1.230 1.598383 1.393757 1.146816 0.989583 0.824083

1.240 1.627200 1.411160 1.153094 0.988359 0.818301

1.250 1.656250 1.428571 1.159375 0.987057 0.812636

1.260 1.685533 1.445989 1.165661 0.985677 0.807085

1.270 1.715050 1.463413 1.171952 0.984219 0.801645

1.280 1.744800 1.480839 1.178251 0.982682 0.796312

1.290 1.774783 1.498267 1.184557 0.981067 0.791084

1.300 1.805000 1.515695 1.190873 0.979374 0.785957

1.310 1.835450 1.533122 1.197198 0.977602 0.780929

1.320 1.866133 1.550546 1.203533 0.975752 0.775997

1.330 1.897050 1.567965 1.209880 0.973824 0.771159

1.340 1.928200 1.585379 1.216239 0.971819 0.766412

1.350 1.959583 1.602785 1.222611 0.969737 0.761753

1.360 1.991200 1.620182 1.228997 0.967579 0.757181

1.370 2.023050 1.637569 1.235398 0.965344 0.752692
(continued)
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Table C.2 (continued)

M1 p2/p1 .2/.1 T2/T1 pt2/pt1 M2

1.380 2.055133 1.654945 1.241814 0.963035 0.748286

1.390 2.087450 1.672307 1.248245 0.960652 0.743959

1.400 2.120000 1.689655 1.254694 0.958194 0.739709

1.410 2.152783 1.706988 1.261159 0.955665 0.735536

1.420 2.185800 1.724303 1.267642 0.953063 0.731436

1.430 2.219050 1.741600 1.274144 0.950390 0.727408

1.440 2.252533 1.758878 1.280665 0.947648 0.723451

1.450 2.286250 1.776135 1.287205 0.944837 0.719562

1.460 2.320200 1.793370 1.293765 0.941958 0.715740

1.470 2.354383 1.810583 1.300346 0.939012 0.711983

1.480 2.388800 1.827770 1.306947 0.936001 0.708290

1.490 2.423450 1.844933 1.313571 0.932925 0.704659

1.500 2.458333 1.862069 1.320216 0.929786 0.701089

1.510 2.493450 1.879178 1.326884 0.926586 0.697578

1.520 2.528800 1.896258 1.333574 0.923324 0.694125

1.530 2.564383 1.913308 1.340288 0.920003 0.690729

1.540 2.600200 1.930327 1.347025 0.916624 0.687388

1.550 2.636250 1.947315 1.353787 0.913188 0.684101

1.560 2.672533 1.964270 1.360573 0.909697 0.680867

1.570 2.709050 1.981192 1.367384 0.906151 0.677685

1.580 2.745800 1.998079 1.374220 0.902552 0.674553

1.590 2.782783 2.014931 1.381081 0.898901 0.671471

1.600 2.820000 2.031746 1.387969 0.895200 0.668437

1.610 2.857450 2.048524 1.394882 0.891450 0.665451

1.620 2.895133 2.065264 1.401822 0.887653 0.662511

1.630 2.933050 2.081965 1.408789 0.883809 0.659616

1.640 2.971200 2.098627 1.415783 0.879920 0.656765

1.650 3.009583 2.115248 1.422804 0.875988 0.653958

1.660 3.048200 2.131827 1.429853 0.872014 0.651194

1.670 3.087050 2.148365 1.436930 0.867999 0.648471

1.680 3.126133 2.164860 1.444035 0.863944 0.645789

1.690 3.165450 2.181311 1.451168 0.859851 0.643147

1.700 3.205000 2.197719 1.458330 0.855721 0.640544

1.710 3.244783 2.214081 1.465521 0.851556 0.637979

1.720 3.284800 2.230398 1.472741 0.847356 0.635452

1.730 3.325050 2.246669 1.479991 0.843124 0.632962

1.740 3.365533 2.262893 1.487270 0.838860 0.630508

1.750 3.406250 2.279070 1.494579 0.834565 0.628089

1.760 3.447200 2.295199 1.501918 0.830242 0.625705

1.770 3.488383 2.311279 1.509287 0.825891 0.623354
(continued)
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Table C.2 (continued)

M1 p2/p1 .2/.1 T2/T1 pt2/pt1 M2

1.780 3.529800 2.327310 1.516686 0.821513 0.621037

1.790 3.571450 2.343292 1.524117 0.817111 0.618753

1.800 3.613333 2.359223 1.531577 0.812684 0.616501

1.810 3.655450 2.375104 1.539069 0.808234 0.614281

1.820 3.697800 2.390934 1.546592 0.803763 0.612091

1.830 3.740383 2.406712 1.554146 0.799271 0.609931

1.840 3.783200 2.422439 1.561732 0.794761 0.607802

1.850 3.826250 2.438112 1.569349 0.790232 0.605701

1.860 3.869533 2.453733 1.576998 0.785686 0.603629

1.870 3.913050 2.469301 1.584679 0.781125 0.601585

1.880 3.956800 2.484815 1.592392 0.776548 0.599568

1.890 4.000783 2.500274 1.600138 0.771959 0.597579

1.900 4.045000 2.515680 1.607915 0.767357 0.595616

1.910 4.089450 2.531030 1.615725 0.762743 0.593680

1.920 4.134133 2.546325 1.623568 0.758119 0.591769

1.930 4.179049 2.561565 1.631444 0.753486 0.589883

1.940 4.224200 2.576749 1.639352 0.748844 0.588022

1.950 4.269583 2.591877 1.647294 0.744195 0.586185

1.960 4.315200 2.606949 1.655268 0.739540 0.584372

1.970 4.361050 2.621964 1.663276 0.734879 0.582582

1.980 4.407133 2.636922 1.671317 0.730214 0.580816

1.990 4.453450 2.651823 1.679392 0.725545 0.579072

2.000 4.500000 2.666667 1.687500 0.720874 0.577350

2.010 4.546783 2.681453 1.695642 0.716201 0.575650

2.020 4.593800 2.696181 1.703817 0.711527 0.573972

2.030 4.641049 2.710851 1.712027 0.706853 0.572315

2.040 4.688533 2.725463 1.720270 0.702180 0.570679

2.050 4.736249 2.740016 1.728548 0.697508 0.569063

2.060 4.784200 2.754511 1.736860 0.692839 0.567467

2.070 4.832383 2.768948 1.745206 0.688174 0.565890

2.080 4.880799 2.783325 1.753586 0.683512 0.564334

2.090 4.929450 2.797643 1.762001 0.678855 0.562796

2.100 4.978333 2.811902 1.770450 0.674203 0.561277

2.110 5.027450 2.826102 1.778934 0.669558 0.559776

2.120 5.076799 2.840243 1.787453 0.664919 0.558294

2.130 5.126383 2.854324 1.796006 0.660288 0.556830

2.140 5.176199 2.868345 1.804594 0.655666 0.555383

2.150 5.226249 2.882307 1.813217 0.651052 0.553953

2.160 5.276533 2.896209 1.821875 0.646447 0.552541

2.170 5.327050 2.910052 1.830569 0.641853 0.551145
(continued)
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Table C.2 (continued)

M1 p2/p1 .2/.1 T2/T1 pt2/pt1 M2

2.180 5.377800 2.923834 1.839297 0.637269 0.549766

2.190 5.428783 2.937557 1.848060 0.632697 0.548403

2.200 5.480000 2.951220 1.856859 0.628136 0.547056

2.210 5.531450 2.964823 1.865693 0.623588 0.545725

2.220 5.583133 2.978365 1.874563 0.619053 0.544409

2.230 5.635050 2.991848 1.883468 0.614531 0.543108

2.240 5.687200 3.005271 1.892408 0.610023 0.541822

2.250 5.739583 3.018634 1.901384 0.605530 0.540552

2.260 5.792200 3.031937 1.910396 0.601051 0.539295

2.270 5.845049 3.045179 1.919443 0.596588 0.538053

2.280 5.898133 3.058362 1.928527 0.592140 0.536825

2.290 5.951449 3.071485 1.937645 0.587709 0.535612

2.300 6.005000 3.084548 1.946800 0.583294 0.534411

2.310 6.058783 3.097551 1.955991 0.578897 0.533224

2.320 6.112799 3.110495 1.965218 0.574517 0.532051

2.330 6.167049 3.123379 1.974480 0.570154 0.530890

2.340 6.221533 3.136202 1.983779 0.565810 0.529743

2.350 6.276249 3.148967 1.993114 0.561484 0.528608

2.360 6.331199 3.161671 2.002485 0.557177 0.527486

2.370 6.386383 3.174316 2.011892 0.552889 0.526376

2.380 6.441799 3.186902 2.021336 0.548621 0.525278

2.390 6.497449 3.199429 2.030815 0.544372 0.524192

2.400 6.553332 3.211896 2.040332 0.540144 0.523118

2.410 6.609450 3.224304 2.049884 0.535936 0.522055

2.420 6.665800 3.236653 2.059473 0.531748 0.521004

2.430 6.722383 3.248944 2.069098 0.527581 0.519964

2.440 6.779200 3.261175 2.078760 0.523435 0.518936

2.450 6.836250 3.273347 2.088459 0.519311 0.517918

2.460 6.893533 3.285461 2.098193 0.515208 0.516911

2.470 6.951050 3.297517 2.107965 0.511126 0.515915

2.480 7.008800 3.309514 2.117773 0.507067 0.514929

2.490 7.066783 3.321453 2.127618 0.503030 0.513954

2.500 7.125000 3.333333 2.137500 0.499015 0.512989

2.510 7.183449 3.345156 2.147418 0.495022 0.512034

2.520 7.242133 3.356922 2.157373 0.491052 0.511089

2.530 7.301049 3.368629 2.167365 0.487105 0.510154

2.540 7.360199 3.380279 2.177394 0.483181 0.509228

2.550 7.419583 3.391871 2.187460 0.479280 0.508312

2.560 7.479199 3.403407 2.197562 0.475402 0.507406

2.570 7.539049 3.414885 2.207702 0.471547 0.506509
(continued)
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Table C.2 (continued)

M1 p2/p1 .2/.1 T2/T1 pt2/pt1 M2

2.580 7.599133 3.426307 2.217879 0.467715 0.505620

2.590 7.659449 3.437671 2.228092 0.463907 0.504741

2.600 7.719999 3.448980 2.238343 0.460123 0.503871

2.610 7.780783 3.460232 2.248631 0.456362 0.503010

2.620 7.841799 3.471427 2.258955 0.452625 0.502157

2.630 7.903049 3.482567 2.269317 0.448912 0.501313

2.640 7.964532 3.493651 2.279716 0.445223 0.500477

2.650 8.026249 3.504679 2.290153 0.441557 0.499649

2.660 8.088199 3.515651 2.300626 0.437916 0.498830

2.670 8.150383 3.526569 2.311137 0.434298 0.498019

2.680 8.212800 3.537431 2.321685 0.430705 0.497216

2.690 8.275450 3.548239 2.332270 0.427135 0.496421

2.700 8.338333 3.558991 2.342892 0.423590 0.495634

2.710 8.401449 3.569690 2.353552 0.420069 0.494854

2.720 8.464800 3.580333 2.364249 0.416572 0.494082

2.730 8.528383 3.590923 2.374984 0.413099 0.493317

2.740 8.592199 3.601459 2.385756 0.409650 0.492560

2.750 8.656249 3.611941 2.396565 0.406226 0.491810

2.760 8.720532 3.622369 2.407412 0.402825 0.491068

2.770 8.785049 3.632744 2.418296 0.399449 0.490332

2.780 8.849799 3.643066 2.429217 0.396096 0.489604

2.790 8.914783 3.653335 2.440176 0.392768 0.488882

2.800 8.980000 3.663552 2.451173 0.389464 0.488167

2.810 9.045449 3.673716 2.462207 0.386184 0.487459

2.820 9.111133 3.683827 2.473279 0.382927 0.486758

2.830 9.177049 3.693887 2.484388 0.379695 0.486064

2.840 9.243199 3.703894 2.495535 0.376486 0.485375

2.850 9.309583 3.713850 2.506720 0.373302 0.484694

2.860 9.376199 3.723755 2.517942 0.370140 0.484019

2.870 9.443048 3.733608 2.529202 0.367003 0.483350

2.880 9.510132 3.743411 2.540499 0.363890 0.482687

2.890 9.577449 3.753163 2.551834 0.360800 0.482030

2.900 9.644999 3.762864 2.563207 0.357733 0.481380

2.910 9.712782 3.772514 2.574618 0.354690 0.480735

2.920 9.780800 3.782115 2.586066 0.351670 0.480096

2.930 9.849050 3.791666 2.597552 0.348674 0.479463

2.940 9.917533 3.801167 2.609076 0.345701 0.478836

2.950 9.986250 3.810619 2.620637 0.342750 0.478215

2.960 10.055200 3.820021 2.632236 0.339823 0.477599

2.970 10.124383 3.829375 2.643874 0.336919 0.476989
(continued)
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Table C.3 Prandtl-Meyer function and Mach angle as dependent on the Mach number for
calorically perfect gas (stated for m and l in degrees)

M v l M N l

1.000 0.0000 90.0000 2.000 26.3798 30.0000

1.010 0.0447 81.9307 2.010 26.6550 29.8356

1.020 0.1257 78.6351 2.020 26.9295 29.6730

1.030 0.2294 76.1376 2.030 27.2033 29.5123

1.040 0.3510 74.0576 2.040 27.4762 29.3535

1.050 0.4874 72.2472 2.050 27.7484 29.1964

1.060 0.6367 70.6300 2.060 28.0197 29.0411

1.070 0.7973 69.1603 2.070 28.2903 28.8875

1.080 0.9680 67.8084 2.080 28.5600 28.7357

1.090 1.1479 66.5534 2.090 28.8290 28.5855

1.100 1.3362 65.3800 2.100 29.0971 28.4369

1.110 1.5321 64.2767 2.110 29.3644 28.2899

1.120 1.7350 63.2345 2.120 29.6309 28.1446

1.130 1.9445 62.2461 2.130 29.8965 28.0008

1.140 2.1600 61.3056 2.140 30.1613 27.8585

1.150 2.3810 60.4082 2.150 30.4253 27.7177

1.160 2.6073 59.5497 2.160 30.6884 27.5785

1.170 2.8385 58.7267 2.170 30.9507 27.4406

1.180 3.0743 57.9362 2.180 31.2121 27.3043

1.190 3.3142 57.1756 2.190 31.4727 27.1693

1.200 3.5582 56.4427 2.200 31.7325 27.0357

1.210 3.8060 55.7354 2.210 31.9914 26.9035

1.220 4.0572 55.0520 2.220 32.2494 26.7726

1.230 4.3117 54.3909 2.230 32.5066 26.6430

1.240 4.5694 53.7507 2.240 32.7629 26.5148

1.250 4.8299 53.1301 2.250 33.0184 26.3878

1.260 5.0931 52.5280 2.260 33.2730 26.2621

1.270 5.3590 51.9433 2.270 33.5268 26.1376

1.280 5.6272 51.3752 2.280 33.7796 26.0144

1.290 5.8977 50.8226 2.290 34.0316 25.8923

1.300 6.1703 50.2849 2.300 34.2828 25.7715

1.310 6.4449 49.7612 2.310 34.5331 25.6518
(continued)

Table C.2 (continued)

M1 p2/p1 .2/.1 T2/T1 pt2/pt1 M2

2.980 10.193799 3.838679 2.655549 0.334038 0.476384

2.990 10.263450 3.847935 2.667261 0.331180 0.475785

3.000 10.333333 3.857143 2.679012 0.328344 0.475191
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Table C.3 (continued)

M v l M N l

1.320 6.7213 49.2509 2.320 34.7825 25.5332

1.330 6.9995 48.7535 2.330 35.0310 25.4158

1.340 7.2794 48.2682 2.340 35.2787 25.2995

1.350 7.5607 47.7945 2.350 35.5255 25.1843

1.360 7.8435 47.3321 2.360 35.7715 25.0702

1.370 8.1276 46.8803 2.370 36.0165 24.9572

1.380 8.4130 46.4387 2.380 36.2607 24.8452

1.390 8.6995 46.0070 2.390 36.5041 24.7342

1.400 8.9870 45.5847 2.400 36.7465 24.6243

1.410 9.2756 45.1715 2.410 36.9881 24.5154

1.420 9.5650 44.7670 2.420 37.2289 24.4075

1.430 9.8553 44.3709 2.430 37.4687 24.3005

1.440 10.1464 43.9830 2.440 37.7077 24.1945

1.450 10.4381 43.6028 2.450 37.9458 24.0895

1.460 10.7305 43.2302 2.460 38.1831 23.9854

1.470 11.0235 42.8649 2.470 38.4195 23.8822

1.480 11.3169 42.5066 2.480 38.6551 23.7800

1.490 11.6109 42.1552 2.490 38.8897 23.6786

1.500 11.9052 41.8103 2.500 39.1236 23.5782

1.510 12.1999 41.4718 2.510 39.3565 23.4786

1.520 12.4949 41.1395 2.520 39.5886 23.3799

1.530 12.7901 40.8132 2.530 39.8199 23.2820

1.540 13.0856 40.4927 2.540 40.0503 23.1850

1.550 13.3812 40.1778 2.550 40.2798 23.0888

1.560 13.6770 39.8683 2.560 40.5085 22.9934

1.570 13.9728 39.5642 2.570 40.7363 22.8988

1.580 14.2686 39.2652 2.580 40.9633 22.8051

1.590 14.5645 38.9713 2.590 41.1894 22.7121

1.600 14.8604 38.6822 2.600 41.4147 22.6199

1.610 15.1561 38.3978 2.610 41.6392 22.5284

1.620 15.4518 38.1181 2.620 41.8628 22.4377

1.630 15.7473 37.8428 2.630 42.0855 22.3478

1.640 16.0427 37.5719 2.640 42.3074 22.2586

1.650 16.3379 37.3052 2.650 42.5285 22.1702

1.660 16.6328 37.0427 2.660 42.7488 22.0824

1.670 16.9276 36.7842 2.670 42.9682 21.9954

1.680 17.2220 36.5296 2.680 43.1868 21.9090

1.690 17.5161 36.2789 2.690 43.4045 21.8234

1.700 17.8099 36.0319 2.700 43.6215 21.7385

1.710 18.1034 35.7885 2.710 43.8376 21.6542

1.720 18.3964 35.5487 2.720 44.0529 21.5706
(continued)
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Table C.3 (continued)

M v l M N l

1.730 18.6891 35.3124 2.730 44.2673 21.4876

1.740 18.9814 35.0795 2.740 44.4810 21.4053

1.750 19.2732 34.8499 2.750 44.6938 21.3237

1.760 19.5646 34.6235 2.760 44.9059 21.2427

1.770 19.8554 34.4003 2.770 45.1171 21.1623

1.780 20.1458 34.1802 2.780 45.3275 21.0825

1.790 20.4357 33.9631 2.790 45.5371 21.0034

1.800 20.7251 33.7490 2.800 45.7459 20.9248

1.810 21.0139 33.5377 2.810 45.9539 20.8469

1.820 21.3021 33.3293 2.820 46.1611 20.7695

1.830 21.5898 33.1237 2.830 46.3675 20.6928

1.840 21.8768 32.9207 2.840 46.5731 20.6166

1.850 22.1633 32.7204 2.850 46.7779 20.5410

1.860 22.4492 32.5227 2.860 46.9820 20.4659

1.870 22.7344 32.3276 2.870 47.1852 20.3914

1.880 23.0190 32.1349 2.880 47.3877 20.3175

1.890 23.3029 31.9447 2.890 47.5894 20.2441

1.900 23.5861 31.7569 2.900 47.7903 20.1713

1.910 23.8687 31.5714 2.910 47.9905 20.0990

1.920 24.1506 31.3882 2.920 48.1898 20.0272

1.930 24.4318 31.2072 2.930 48.3884 19.9559

1.940 24.7123 31.0285 2.940 48.5863 19.8852

1.950 24.9920 30.8519 2.950 48.7833 19.8149

1.960 25.2711 30.6774 2.960 48.9796 19.7452

1.970 25.5494 30.5050 2.970 49.1752 19.6760

1.980 25.8269 30.3347 2.980 49.3700 19.6072

1.990 26.1037 30.1664 2.990 49.5640 19.5390

2.000 26.3798 30.0000 3.000 49.7574 19.4712



Diagram C.1 Relation between wave angle H and deflection angle d for an
oblique shock, and calorically perfect gas (c = 1.4)

Diagram C.2 Relation between Mach number M2 behind an oblique shock and
deflection angle d, for calorically perfect gas (c = 1.4)
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Appendix D
Physical Properties of Air and Water

See Tables D.1, D.2, D.3, D.4, D.5, D.6.

Table D.1 Dynamic viscosity η [in 10–6 kg/(m s)] of dry air

p (bar) t (°C)

−50 0 25 50 100 200 300 400 500

1 14.55 17.10 18.20 19.25 21.60 25.70 29.20 32.55 35.50

5 14.63 17.16 18.26 19.30 21.64 25.73 29.23 32.57 35.52

10 14.74 17.24 18.33 19.37 21.70 25.78 29.27 32.61 35.54

50 16.01 18.08 19.11 20.07 22.26 26.20 29.60 32.86 35.76

100 18.49 19.47 20.29 21.12 23.09 26.77 30.05 33.19 36.04

200 25.19 23.19 23.40 23.76 24.98 28.03 31.10 34.10 36.69

300 32.68 27.77 27.25 27.28 27.51 29.67 32.23 34.93 37.39

400 39.78 32.59 31.41 30.98 30.27 31.39 33.44 35.85 38.15

500 46.91 37.29 35.51 34.06 32.28 33.15 34.64 36.86 38.96
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Table D.2 Kinematic viscosity m [in 10–8 m2/s] of dry air

p
(bar)

t (°C)

−50 0 25 50 100 200 300 400 500

1 931.1 1341. 1558. 1786. 2315. 3494. 4809. 6295. 7886.

5 186.1 268.5 312.2 358.1 464.2 700.5 964.1 1262. 1580.

10 93.03 134.5 156.5 179.6 232.8 351.4 483.6 632.8 792.1

50 19.11 27.74 32.39 37.19 48.13 72.43 99.35 129.5 161.8

100 10.53 14.82 17.23 19.72 25.34 37.75 51.48 66.77 83.15

200 7.402 9.140 10.33 11.57 14.33 20.68 27.83 35.74 44.00

300 7.274 7.916 8.615 9.455 11.15 15.34 20.11 25.42 31.03

400 7.633 7.687 8.112 8.693 9.825 12.84 16.38 20.38 24.64

500 8.188 7.762 8.005 8.273 8.962 11.44 14.21 17.45 20.87

Table D.3 Thermal conductivity k [in 10–3 W/(m K)] of dry air

p
(bar)

t (°C)

−50 0 25 50 100 200 300 400 500

1 20.65 24.54 26.39 28.22 31.81 38.91 45.91 52.57 58.48

5 20.86 24.68 26.53 28.32 31.89 38.91 45.92 52.56 58.42

10 21.13 24.88 26.71 28.47 32.00 38.94 45.96 52.57 58.36

50 24.11 27.15 28.78 30.26 33.53 40.34 46.86 53.41 58.98

100 28.81 30.28 31.53 32.75 35.60 42.00 48.30 54.56 60.07

200 41.96 38.00 37.90 38.21 39.91 45.18 50.69 56.62 61.96

300 54.84 46.84 45.38 44.56 44.81 48.54 53.06 58.70 63.74

400 65.15 55.30 52.83 51.29 49.97 52.59 55.91 60.95 65.56

500 73.91 62.92 59.80 57.40 54.70 55.66 58.60 62.86 67.24

Table D.4 Dynamic viscosity η [in 10–6 kg/(m s)] of water

p
(bar)

t (°C)

0 20 50 100 150 200 300 400 500

1 1750. 1000. 544.0 12.11 14.15 16.18 20.25 24.30 28.40

10 1750. 1000. 544.0 279.0 181.0 15.85 20.22 24.40 28.50

50 1750. 1000. 545.0 280.0 182.0 135.0 20.06 25.00 28.90

100 1750. 1000. 545.0 281.0 183.0 136.0 90.50 25.80 29.50

150 1740. 1000. 546.0 282.0 184.0 137.0 91.70 26.90 30.30

200 1740. 999.0 546.0 283.0 185.0 138.0 93.00 28.60 31.10

300 1740. 998.0 547.0 285.0 188.0 141.0 95.50 45.70 32.70

400 1730. 997.0 548.0 287.0 190.0 143.0 98.10 62.80 36.90

500 1720. 996.0 549.0 289.0 192.0 145.0 101.0 69.30 42.20
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Table D.5 Kinematic viscosity m [in 10–6 m2/s] of water

p
(bar)

t (°C)

0 20 50 100 150 200 300 400 500

1 1.750 1.000 0.551 20.50 27.40 35.20 53.40 75.40 101.0

10 1.750 1.000 0.550 0.291 0.197 3.260 5.220 7.480 10.10

50 1.750 1.000 0.550 0.292 0.198 0.156 0.909 1.450 2.020

100 1.740 0.998 0.549 0.292 0.198 0.156 0.126 0.681 0.967

150 1.730 0.995 0.549 0.292 0.199 0.157 0.126 0.421 0.630

200 1.720 0.992 0.548 0.293 0.199 0.157 0.127 0.285 0.459

300 1.720 0.987 0.547 0.293 0.202 0.159 0.127 0.128 0.284

400 1.700 0.981 0.545 0.294 0.203 0.160 0.128 0.120 0.207

500 1.680 0.977 0.544 0.295 0.204 0.162 0.130 0.120 0.164

Table D.6 Thermal conductivity k [in 10–3 W/(m K)] of water

p (bar) t (°C)

0 20 50 100 150 200 300 400 500

1 569.0 604.0 643.0 24.80 28.60 33.10 43.30 54.50 66.60

10 570.0 604.0 644.0 681.0 687.0 35.00 44.20 55.20 67.20

50 573.0 608.0 647.0 684.0 690.0 668.0 52.10 59.30 70.50

100 577.0 612.0 651.0 688.0 693.0 672.0 545.0 67.40 75.70

150 581.0 616.0 655.0 691.0 696.0 676.0 559.0 81.80 82.50

200 585.0 620.0 659.0 695.0 700.0 681.0 571.0 106.0 91.50

300 592.0 627.0 666.0 701.0 706.0 689.0 592.0 263.0 117.0

400 599.0 634.0 672.0 707.0 713.0 697.0 609.0 388.0 153.0

500 606.0 640.0 678.0 713.0 720.0 704.0 622.0 437.0 202.0
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Index

A
Absolute velocity, 51–53
Acceleration cascade, 59
Acoustics, 160, 348
Adiabatic, 76
Aerodynamics, 355, 431
Airfoil, 431ff

–, slender, 431, 450
Almansi’s strain tensor, 100
Analytic, 396
Angle, Mach, 443
Angular momentum, 47–49, 225

–, integral form of balance of, 49
Angular momentum flux, 49
Apparent forces, 40, 54
Approximation

–, Oseen, 523
–, quasi-one-dimensional, 285

Archimedes’ principle, 167
Arc length, 10
Area contraction, 300
Area moment of inertia, 170
Area moments of the second order, 170
Autocorrelation, 228
Avogadro’s number, 89

B
Baer’s law, 56
Balance

– of angular momentum, 47
– of energy, 69
– of entropy, 73, 74
– of momentum, 39, 41, 295

Barometric altitude formula, 163
Barotropic flow, 117

Barotropy, 161
Basic invariants, 24
Basis, 527
Basis vector, 526
Bearing clearance, relative, 255
Bernoulli’s equation, 116ff, 150, 288, 311
Biharmonic equation, 504, 512, 513, 518
Bingham constitutive relation, 98
Bingham material, 2, 98, 215, 217, 221
Biot-Savart law, 137, 144
Bipotential equation, 504
Blasius’ equation, 471, 484
Blasius’ friction law, 473
Blasius’ law, 497
Blasius’ theorem, 405

–, first, 408
–, second, 408

Body forces, 39, 40
Boundary condition, 152

–, dynamic, 153, 155
–, half Sommerfeld, 262
–, kinematic, 153, 154, 263, 287
–, physical, 153
–, Reynolds’, 261

Boundary layer, 113, 292, 463ff
–, turbulent, 493

Boundary layer coordinate system, 464
Boundary layer equation, 466
Boundary layer flow, 241
Boundary layer separation, 297, 361, 475
Boundary layer theory, 464
Boundary layer thickness, 159, 463ff

–, geometric, 471
Boussinesq approximation, 487
Boussinesq formulation, 237
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Boussinesq’s formula, 495
Buffer layer, 240–242
Bulk viscosity, 84
Buoyancy force, 167
Buys-Ballot’s rule, 55

C
Calorically perfect, 77, 79
Capillary constant, 174
Capillary force, 173
Capillary length, 176
Capillary tension, 173
Carnot’s shock loss, 300
Cartesian coordinate system, 526
Cartesian index notation, 527
Cartesian tensor, 526
Cascade, straight, 58
Cauchy-Green tensor, 83, 99

–, right, 95
Cauchy-Poisson law, 83
Cauchy–Riemann differential equation, 397
Cauchy’s deformation tensor, 100
Cauchy’s law of motion, 45
Cauchy’s theorem, 409
Cavitation, 268
Cavitation nucleus, 268
Cavitation number, 377
Cavitation region, 260
Centrifugal force, 50, 54
Centripetal acceleration, 50, 187
Centripetal force, 50
Centroid, 168
Centroid coordinates, 169
Change

–, convective, 15, 17
–, local, 15, 17

Characteristics, 331ff, 347ff
–, backward-facing, 335
–, forward-facing, 335
– relations, 331
–, theory of, 331

Circulation, 63, 64, 122ff
– theorem, Kelvin’s, 123

Circumferential velocity, 52
Clausius-Duhem’s inequality, 75
Closure condition, 370, 434
Coefficient of friction, local, 500
Coefficient of heat conduction, 202
Colebrook’s formula, 249
Compatibility relations, 331
Completely rough, 247–249
Compression wave, 316, 340, 458
Condition, Kutta, 425

Conduction, 6
Cone, Mach, 443
Conformal, 412
Conformal mapping, 396, 412ff
Conservation of mass, 30, 31, 37, 38
Conserved quantity, 309
Constant pressure body, 374
Constant pressure cascade, 59
Constant, Riemann, 335
Constitutive equation, 46
Constitutive relation, 7, 82

–, Bingham, 98
Contact discontinuity, 448
Contact force, 39, 40
Continuity equation, 37–39, 286, 307

–, integral form of the, 38, 39
Continuum, 5

– hypothesis, 5
– theory, 5, 7, 30
– velocity, 6

Contraction
– coefficient, 300, 421

Control volume, 39
Convection

–, forced, 479
–, natural, 490

Convection time, 160
Converging-diverging nozzle, 313
Coordinates

–, Cartesian, 15, 18
–, curvilinear, 526ff
–, material, 8–10
–, natural, 17, 115

Coordinate system
–, Cartesian, 526
–, curvilinear, 526

Coordinate transformation, 440
Coriolis force, 54–56
Corner flow, 401, 468, 517
Correlation, 228, 229
Couette flow, 180, 181, 183
Couette-Poiseuille flow, 181, 183, 253
Crankshaft, 211
Critical variables, 312
Crocco’s relation, 150, 453
Cross-section increase, 297
Curl, 540
Curvature, 175

–, mean, 175
Curved shock, 151, 447
Curve parameter, 10–12
Curvilinear coordinate system, 526
Cylinder flow, 424, 425
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D
D’Alembert’s paradox, 382, 429
D’Alembert’s solution, 347
Deceleration cascade, 59
Deformation gradient, 99
Deformation history, 26
Delta function, Dirac, 364
Density field, homogeneous, 38
Dependence, domain of, 333
Derivative

–, Jaumann’s, 93, 94
–, material, 15, 16
–, Oldroyd’s, 26, 94
–, substantial, 14

Description
–, Eulerian, 9, 10
–, Lagrangian, 8
–, material, 10
–, referential, 8
–, spatial, 9

Detached shock, 447
Diameter

–, equivalent, 193
–, hydraulic, 193

Diamond airfoil, 460
Differential equation

–, Cauchy–Riemann, 397
–, exact, 368

Differential, total, 15
Diffuser, 297
Diffuser efficiency, 298
Diffusion, 6, 109
Diffusion flux, 230
Dilatant, 87
Dimensionally homogeneous, 109
Dimension of tensor space, 526
Dimples, 142, 143, 383
Dipole, 380, 392, 401
Dipole moment, 378
Dirac delta function, 364
Direct problem, 309
Discharge formula, Saint-Venant-Wantzel, 311
Discharge velocity, 288, 311
Discontinuity surface, 125, 155
Displacement thickness, 472, 492ff
Dissipation function, 73, 85, 104, 481
Distance, mean, 4
Divergence, 535, 540
Divergence free, 25
Drag

–, induced, 141
–, pressure, 382

Drag coefficient, 87, 383, 452

Drag-to-lift ratio, 430
Dummy index, 525
Dyadic product, 527
Dyadics, 527
Dynamic pressure, 370

E
Easterly deflection, 50
Eccentricity, relative, 256
Eckert’s number, 482
Eddy, 361, 515ff
Eddy viscosity, 237, 238, 495
Eigenfrequency, 353
Eigenvalue problem, 23
Eigenvalues, 23, 44
Einstein’s summation convention, 43, 525
Electrorheological fluid, 98
Elliptic, 356, 440
Energy

–, internal, 69–72, 74
–, kinetic, 6, 70

Energy balance, 70, 71
Energy equation, 71, 115, 150ff, 309

–, mechanical, 150
Enthalpy, 79
Entrance, 293
Entrance length, 292, 293
Entropy, 73, 74

–, specific, 72
Entropy equation, 115
Entropy flux vector, 74
Entropy production, 158
Envelope, 341, 443, 458
Epsilon tensor, 22, 529
Equation

–, Bernoulli’s, 116ff, 150, 288, 294
–, characteristic, 24
–, Euler’s, 112, 116, 119, 122
–, Laplace’s, 133, 356
–, Navier–Stokes, 103
–, Poisson’s, 131, 194, 268, 356
–, Reynolds’, 226ff, 229, 251ff, 254

Equation of state, 3, 76, 77
–, caloric, 77
–, canonical, 77
–, fundamental, 77
–, thermal, 78

Equilibrium, hydrostatic, 162
Equilibrium parameter, 499
Equivalent diameter, 193
Error function, 204
Eucken, formula of, 480
Eulerian description, 9, 10
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Eulerian strain tensor, 100
Euler’s

– equation, 114, 116, 119, 122
– expansion formula, 32
– turbine equation, 49, 65, 66, 68

Exact differential equation, 368
Exchange symbol, 528
Exit loss, 300
Expansion coefficient, thermal, 487
Expansion fan, 337, 456
Expansion wave, 314ff, 337
Extrudate swell, 88

F
Factor, integrating, 368
Falkner-Skan equation, 474, 475
Family parameter, 10
Fanno curve, 319
Fictitious forces, 54
Field coordinate, 9
Field methods, 468, 499
First Blasius’ theorem, 408
First integral, 116
Fixed cascade, 59
Flettner rotor, 405
Flow

–, barotropic, 117
–, homenergic, 151
–, homentropic, 116
–, incompressible, 38, 106
–, inviscid, 116
–, isentropic, 116
–, laminar, 112, 223, 224
–, plane, 157
–, Prandtl-Meyer, 453ff
–, quasi-steady, 201
–, subsonic, 355
–, supersonic, 355
–, transonic, 355, 447
–, turbulent, 223, 224
–, two-dimensional, 157
–, uniform, 289
–, viscometric, 28, 207

Flow down an inclined plane, 185ff
Fluctuating motion, 229, 230
Fluctuation velocity, 226
Fluid

–, electrorheological, 98
–, generalized Newtonian, 90
–, inviscid, 87, 109
–, Newtonian, 2, 84, 103
–, non-Newtonian, 2, 25, 26, 82, 83
–, second order, 98, 209–211, 214, 215

–, shear-thickening, 87
–, shear-thinning, 87
–, simple, 83
–, viscoelastic, 91
–, viscous, 83

Fluid particle, 5
Flux, 33
Force

–, buoyancy, 167
–, gravitational, 39, 40
–, intermolecular, 6

Formula
–, Colebrook’s, 249
–, Eucken’s, 480
–, Euler’s expansion, 32
–, Green’s second, 133
–, Petroff’s, 260
–, Torricelli’s, 289

Formulation, Boussinesq, 237
Foucault’s pendulum, 50
Fourier’s law, 85
Free index, 526
Free jet, 417
Free surface, 173ff, 185, 273
Friction

– coefficient, 497
– factor, 191
– formula, 501
–, internal, 6
– length, 235, 236
– loss, 291
– stress tensor, 84
– velocity, 234

Friction law, Blasius’, 473
Function

–, analytic, 396
–, Green’s, 135

Functional, 96
Fundamental solution, 133, 363
Fundamental theorem of kinematics, 24

G
Gas dynamics, 3
Gases, 3

–, calorically perfect, 77, 79
–, ideal, 7
–, kinetic theory of, 6
–, thermally perfect, 77

Gauss’ theorem, 33
Geoid, 54, 55
Gibbs’ relation, 73, 74, 78, 231, 320
Goethert’s rule, 442
Golf balls, 383
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Gradient, 532, 540
Grashof’s number, 488
Gravitational force, 39, 40
Gravity volume body force, 168
Green’s deformation tensor, 99
Green’s function, 135
Green’s second formula, 133
Group, dimensionless, 394
Guide blades, 58
Guide vanes, 58

H
Hagen-Poiseuille equation, 191, 192
Hagen-Poiseuille flow, 189

–, generalized, 192
Half Sommerfeld boundary condition, 262
Heat conduction, 162, 202
Heat flux, 70, 230
Heat flux vector, 70, 484

–, turbulent, 232
Heat, radiation, 70
Heat transfer, 70, 162, 230, 242, 317, 479, 482
Heisenberg’s Uncertainty Principle, 4
Hele-Shaw flows, 282
Helmholtz’s vortex theorem, 109, 123ff

–, first, 127, 129, 142
–, second, 144
–, third, 148

History, 95
Hodograph plane, 419
Holomorphic, 396
Homenergic, 149
Homentropic flow, 116
Horseshoe vortex, 140
Hugoniot

– change of state, 323
– relation, 323

Hydraulically smooth, 247, 249
Hydraulic diameter, 193, 194ff
Hydraulic shock, 342
Hydrodynamic

– instability, 263
– lubrication theory, 157

Hydrostatic equilibrium, 162
Hydrostatics, 161ff
Hyperbolic, 331, 347, 440, 443
Hypersonic flow, 113, 151, 355
Hypothesis

–, Joukowski’s, 425, 436
–, Stokes’, 85

I
Incidence, shock-free, 437, 439
Incompressible, 38, 106, 157

Index
–, dummy, 525
–, free, 526

Index notation, Cartesian, 527
Indifference point, 496
Indirect problem, 309
Induced downwash, 140
Inertia, force of, 49, 382
Inertial frame, 39
Influence, range of, 333
Initial-boundary value problem, 333, 339, 349,

351, 468
Initial condition, 152
Initial value problem, 303, 332, 348, 351, 471
Inner product, 527, 528
Inner solution, 463
Instability, 224, 225

–, hydrodynamic, 263
Integral

– boundary layer, 493
– equation, 373, 436
–, first, 116
– length scale, 228
– methods, 468, 490ff, 495
– theorem, Stokes’, 129
– time scale, 229

Integrating factor, 368
Intermediate layer, 240
Invariant, Riemann, 332, 336, 340
Inverse, 531
Inversion, 164
Irrotational, 22, 23
Isentropic flow, 116
Isentropic relation, 310

J
Jacobian, 9
Jaumann’s derivative, 92, 93
Jet contraction, 300

– coefficient, 418ff
Joukowski mapping, 428
Joukowski’s hypothesis, 425, 436
Journal bearing, 183, 251

K
Kelvin’s circulation theorem, 123
Kinematics, 7
Kronecker delta, 22, 23, 528
Kutta condition, 425
Kutta-Joukowski theorem, 139, 410ff

L
Laboratory frame, 327
Lagrange’s theorem, 154
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Lagrangian description, 8
Lagrangian strain tensor, 99
Laminar, 110, 223, 224
Laplace operator, 105, 541
Laplace’s

– equation, 133, 356
– length, 176

Laurent series, 410
Laval nozzle, 313
Law

–, Baer’s, 56
–, Biot-Savart, 137
–, Cauchy-Poisson, 83
–, Fourier’s, 85
– of communicating tubes, 164

Law of motion, Cauchy’s first, 45
Law of the wall, 235, 494

–, logarithmic, 239ff, 500
Layer, logarithmic, 241, 242
Leading edge, 459
Leibniz’s rule, 31, 33
Length

–, artificial, 470
–, capillary, 176
–, friction, 235, 236
–, Laplace’s, 176
–, viscous, 111

Lift, 123, 125, 140, 356, 411
– coefficient, 429, 438, 451
–, dynamic, 123
– force, 429

Limit curve, 249
Line element, 538

–, material, 19–21
Line source, 390
Load-bearing capacity, 257
Logarithmic law of the wall, 239ff, 500
Loschmidt’s number, 5
Loss factor, 191, 193, 194, 292

M
Mach

–, angle, 443
–, cone, 443
– line, 454
– number, 157, 159, 310
– reflection, 449
– wave, 459

Magnus effect, 405
Mapping, 9

–, conformal, 396, 415ff
–, Joukowski, 425

Mapping function, 396, 414
Mapping theorem, Riemann, 396
Mass

–, added, 384
–, virtual, 384

Mass body force, potential of the, 46, 168
Mass density, 5
Mass flux, 63, 68
Material description, 8, 10
Matrix, orthogonal, 531
Mean camber line, 434, 437
Mean free path, 4, 5
Mean value, 226
Memory span, 91
Meteorology, 3
Mixed notation, 528
Mixing length, 238–240, 494
Mixing length formula, Prandtl’s, 238
Mixing process, 301
Mollier diagram, 78, 309
Moment coefficient, 439
Momentum, 4, 39, 41

–, differential form of balance of, 45
–, exchange of, 6, 237
–, flux of, 229, 230
–, integral form of balance of, 46
–, thickness of, 472, 493

Moving blades, 58, 60
Moving cascade, 59, 60

N
Nabla operator, 15, 29, 533
Navier-Stokes equation, 103
Newtonian fluid, 84, 103
Newton’s second law, 147, 385
No lift direction, 429
Normal shock wave, 321, 322
Normal stress, 41
Normal stress effect, 90
Normal stress function

–, primary, 97
–, secondary, 97

Normal vector, 133, 153
Nozzle, 296

–, converging-diverging, 313
Null viscosity, 89
Number

–, Avogadro’s, 89
–, Eckert’s, 481
–, Grashof’s, 488
–, Loschmidt’s, 5
–, Mach, 157, 307
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–, Nusselt’s, 485
–, Prandtl’s, 158, 480, 490
–, Rayleigh’s, 488
–, Reynolds’, 86, 109, 518
–, Sommerfeld, 258

Nusselt film flow, 187
Nusselt’s number, 485
Nusselt’s relation, 486

O
Oblique shock wave, 321, 444ff
Oldroyd’s derivative, 26, 92
Opening angle, 298
Oseen approximation, 523
Osculating plane, 17
Outer product, 529
Outer solution, 463
Overlap region, 243

P
Parabolic type, 467
Paraboloids of rotation, 166
Paradox

–, d’Alembert’s, 382, 384
–, Pascal’s, 164

Parallel flow, 359
Parametric representation, 10
Pascal’s paradox, 164
Pathline, 8–11, 16, 17
Pendulum, Foucault’s, 50
Permutation symbol, 529
Petroff’s formula, 260
Perturbation equation, transonic, 440
Perturbation potential, 439, 450
Perturbation problem, singular, 434, 463
Perturbation theory, 431, 450
Perturbation velocity, 432
Piston problem, 333, 336
Plane stagnation point flow, 359
Pohlhausen, 484
Point

–, material, 5, 7, 30, 31
–, singular, 133, 334, 396
– source, 363

Poiseuille flow, 183
Poisson’s equation, 131, 194, 268, 365
Polar diagram, 430
Potential

–, complex, 395ff
– of the force of gravity, 162
– of the mass body force, 46, 168
– of the volume body force, 46, 162

Potential flow, 23, 118, 345ff
–, incompressible, 143, 355ff
–, plane, 390ff
–, steady compressible, 354

Potential theory, 120, 131, 356
Potential vortex, 138, 188, 225, 392, 400
Power law, 90, 206, 496
Power law distribution, 468
Poynting’s vector, 70
Prandtl-Glauert rule, 442
Prandtl-Meyer flow, 453ff, 458
Prandtl-Meyer function, 457, 459
Prandtl’s mixing length formula, 238
Prandtl’s number, 158, 480, 490
Prandtl tube, 370
Pressure

– coefficient, 373, 442, 451
– distribution, hydrostatic, 161ff
– drag, 382
– drop, 191ff, 194, 198, 206, 291, 292
–, dynamic, 370, 486
– function, 117
–, hydrostatic, 179
– increase, 301
– loss, 292, 299
– point, 171
–, stagnation, 370
–, static, 370, 486
– wave, 342

Principal axis system, 23, 24
Principal radius of curvature, 175
Principle, Archimedes’, 167
Problem

–, direct, 309, 358, 431
–, indirect, 309, 358
–, inverse, 479

Process
–, irreversible, 69, 72, 74
–, reversible, 72, 74
–, statistically steady, 226

Product, dyadic, 527
Profile parameter, 498
Protrusion height, 247, 249
Pseudoplastic, 87

Q
Quasi-one-dimensional, 285
Quasi-steady, 201, 209, 290

R
Radial cascade, 395
Random quantities, 226
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Rate of deformation tensor, 19, 20
Rate of strain tensor, 19
Rayleigh curve, 318
Rayleigh’s number, 488
Rectilinear shear flow, 2
Reference frame

–, accelerating, 40
–, inertial, 49
–, moving, 51, 327

Referential description, 8
Reflected shock, 448
Region, linear, 241
Relation

–, Crocco’s, 150, 453
–, Gibbs’, 73, 74, 231, 320

Relative bearing clearance, 255
Relative eccentricity, 256
Relative velocity, 51
Replacement body, 168
Replacement volume, 171
Reservoir

– enthalpy, 309
– pressure, 309
– state, 309
– temperature, 309
– value, 309

Residue theorem, 411
Resistance law, 191, 245, 248
Reynolds’

– boundary condition, 261
– equation, 226ff, 251ff, 254
– number, 86, 109ff, 223ff, 382
– number, critical, 111, 223ff
– stress, 229ff, 232ff
– transport theorem, 33

Riemann constant, 335
Riemann invariant, 332, 336, 340
Riemann mapping theorem, 396
Rivlin-Ericksen tensors, 26, 27, 207, 210
Rotational, 23

– oscillation damper, 211
– symmetry, 157, 166

Rotationally symmetric stagnation point flow,
361

Rotation matrix, 530ff
Rule

–, Buys-Ballot’s, 55
–, Goethert’s, 442
–, Leibniz’s, 31, 33
–, Prandtl-Glauert, 442

S
Saddle point, 478
Saint-Venant-Wantzel discharge formula, 311

Scalar, 526
Scalar product, 528
Schwarz-Christoffel transformation, 415ff
Secondary flow, 246, 247
Second Blasius’ theorem, 408
Separation, 351, 382

– of variables, 195
– point, 478
– profile, 475

Shear flow
–, simple, 2, 6, 28, 87, 180, 208, 210
–, turbulent, 232ff

Shear modulus, 1
Shear rate, 2, 21
Shear stress deviator, 222
Shear stress function, 97
Shear viscosity, 2, 86, 87, 192
Shear waves, 201
Shock, 5, 314

–, curved, 151, 447
–, detached, 447
–, reflected, 448
–, strong, 445
–, weak, 445

Shock expansion theory, 459ff
Shock-free incidence, 437, 439
Shock loss, Carnot’s, 300
Shock relations, 321ff
Shock wave

–, normal, 321, 325
–, oblique, 321

Shooting method, 471
Similarity solution, 156
Similarity variable, 203, 339
Simple wave, 454
Singular

– perturbation method, 523
– perturbation problem, 434, 463
– point, 133, 396, 469
– solution, 133, 363

Sink, 364
Skin-effect, the, 201
Slider bearing, 265ff
Solids, Hooke’s, 1
Solution

–, asymptotic, 111
–, d’Alembert’s, 347
–, fundamental, 133, 363
–, inner, 463
–, outer, 463
–, singular, 133, 363

Sommerfeld boundary condition, half, 262
Sommerfeld number, 258
Sonic variables, 312
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Sound
–, propagation of, 346ff, 442
–, velocity/speed of, 156, 158, 307
– wave, 160, 325

Source
– distribution, 370
– flow, 364, 367, 399
– free, 25
– intensity, 370
–, line, 390
–, point, 363

Spatial description, 9
Spherical, 44
Spherically symmetric, 157
Spin tensor, 22
Spiral

–, logarithmic, 394
– vortex, 394

Squeeze flow, 269ff
Steady, 9
Stability, 163, 223ff
Stagnation point, 361
Stagnation point boundary layer flow,

unsteady, 476
Stagnation point flow

–, creeping, 508
–, plane, 359
–, rotationally symmetric, 361
–, unsteady, 363

Stagnation pressure, 370
Standard temperature and pressure, 4, 5
Starting point, fictitious, 496
Starting vortex, 125
State, 2, 3
State of rest, 161, 309
Static pressure, 370
Step, flow over, 417
Stokes’

– hypothesis, 85
– integral theorem, 127
stream function, 368

Streakline, 10ff
Stream filament theory, 13, 118, 157
Stream function, 368, 397, 399

–, Stokes’, 368
Streamline, 10ff
Streamtubes, 12, 13
Strength of a source, 364
Stress

–, Reynolds’, 229ff, 232ff
– tensor, 44, 45
– vector, 41

Stretching tensor, 19
Strong shock, 445
Sublayer, viscous, 229, 236, 239–242
Subsonic, 355
Summation convention, Einstein’s, 43, 525
Supercavitation, 374
Supersonic, 355

– flow, 443
– flow, linear, 157, 451
– velocity, 313

Surface
–, completely rough, 247
– element, 538
– force, 39, 40
–, free, 173ff, 185, 273
–, hydraulically smooth, 247
–, material, 25
– tension, 173ff

T
Tangential stress, 41
Taylor

– expansion, 17
– vortex, 225

Temperature
–, critical, 3
–, local, 312
–, total, 309, 312

Temperature boundary layer, 479ff
Tensor, 18, 19

–, added mass, 389
–, Almansi’s strain, 100
–, antisymmetric, 18, 534
–, Cartesian, 525
–, Cauchy’s deformation, 100
–, Eulerian strain, 100
–, Green’s deformation, 99
–, Lagrangian strain, 99
–, objective, 92
–, stress, 44, 45
–, symmetric, 18, 534
–, virtual mass, 389
–, viscous stress, 94

Tensor components, 526
Tensor space, dimension of, 526
Theorem

–, Cauchy’s, 409
–, first Blasius’, 408
–, Gauss’, 33
–, Kutta-Joukowski, 139, 410ff
–, Lagrange’s, 154
–, second Blasius’, 408
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Theory of thin bodies, 157
Thermal conductivity, 86
Thermodynamics

–, first law of, 69, 72, 74
–, second law of, 75, 76

Thin-film flow, 272ff
Thomson’s vortex theorem, 123
Throat, 308
Time derivative, general, 16
Tip vortex, 140
Torricelli’s formula, 289
Total

– pressure, 309
– state, 309
– temperature, 309, 312
– value, 309

Traction vector, 41
Trailing edge, 125
Trailing edge angle, 425
Transformation law, 530
Transition, 223–226, 236, 293, 321, 383, 471
Transition point, 383, 496
Transition region, 496
Translational flow, 359, 399
Transonic, 355
Transonic flow, 447
Transport

– coefficient, turbulent, 237
– properties, 5
– theorem, Reynolds’, 33

Transversal wave, 201
Tube, Prandtl, 370
Tuning, 215
Turbine equation, Euler’s, 65, 66, 68
Turbo force machines, 58
Turbomachine, 58
Turbo work machines, 58
Turbulence models, 230, 494, 495
Turbulent, 111, 223ff

– fluctuation, 229
– fluid parcel, 237

Turning cascade, 59
Two-phase-flow, 260
Two-viscosity model, 102

U
Unidirectional flow, 97, 179ff

–, unsteady, 199ff
Unit tangent vector, 10, 295
Unit tensor, 83
Unit vector, 526
Unsteady, 9, 11

Unsteady stagnation point flow, 363
U-tube manometer, 164

V
Vacuum, 311, 456
Vapor pressure, 260, 268, 343
Variables

–, critical, 312
–, of state, 76
–, sonic, 312

Vector, 526
–, Poynting’s, 70

Vector product, 529
Velocity

–, average, 183
–, complex, 399
–, complex conjugate, 399
–, macroscopic, 4
–, mean, 226
– defect law, 244, 248, 498
– field, 9
– gradient, 18
–, induced, 137ff
– of sound, 156, 158, 307
– potential, 22, 345
– strain tensor, 19

Viscometer, 207
Viscometric, 26, 28
Viscometric flow, 28, 96, 207
Viscosity, 6

–, kinematic, 85
Viscous

– length, 111
– sublayer, 229, 236, 239–242

Viscous stress tensor, 94
Volume

– body force, 40
– body force, potential of the, 46, 162
– element, 538
– flux, 63, 399
–, material, 33
– preserving, 25, 28
–, specific, 31, 72

Von Mises’ hypothesis, 101
Vortex

–, bound, 125
– distribution, 434
– dynamics, 145
– filament, 109, 129ff
– filament, straight, 137, 392
– intensity, 434
– number, dynamic, 29
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– number, kinematic, 29
– sheet, 23, 434
– street, 382
– strength, 129
– theorem, Helmholtz’s, 109, 123ff
– theorem, Helmholtz’s first, 127, 129, 142
– theorem, Helmholtz’s second, 144
– theorem, Helmholtz’s third, 148
– theorem, Thomson’s, 123

Vortex line, 23, 127
Vortex tube, 23, 127, 144, 148
Vorticity equation, 106
Vorticity vector, 22, 23, 109

W
Wake, 125, 237, 382

Wake function, 498
Wall roughness, 247, 248
Water hammer, 342
Wave

–, Mach, 447
–, simple, 454
-, transversal, 201

Wave angle, 445, 447
Wave equation, 347, 450
Weak shock, 445
Wedge flow, 473
Weissenberg effect, 88

Z
Zero viscosity, 112, 114
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