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Preface

This book introduces fundamental concepts and principles of 2D and 3D 
graphics and is written for under- and postgraduate students studying graphics- and/

or multimedia-related subjects. Most of the books on graphics use C programming envi-
ronments to illustrate practical implementations. This book deviates from this common 
practice and illustrates the use of MATLAB® for the purpose. MATLAB by MathWorks, 
Inc. is a data analysis and visualization tool suitable for algorithmic development and sim-
ulation  applications. One of the advantages of MATLAB is that it contains large libraries 
of in-built functions which can be utilized to reduce program-development time as com-
pared to other contemporary programming environments. It is assumed that the student 
has basic knowledge of MATLAB, especially various matrix operations and plotting func-
tions. The MATLAB codes have been provided as answers to specific examples, and the 
reader can simply copy and paste the codes to execute them. In general, the codes display 
answers to expected results like equation of curves, blending functions, and transforma-
tion matrices as well as plot the final results to provide a visual representation of the solu-
tion. The objectives of this book are, first, to demonstrate how MATLAB can be used to 
solve problems in graphics and, second, to help the student gain an in-depth knowledge 
about the subject matter through visual representations and practical examples.

This book is roughly divided into two parts: 2D graphics and 3D graphics, although in 
some places both of these concepts overlap mainly to highlight the differences between 
them or for using simpler concepts to prepare the reader for more complex ones.

The first part of this book mainly deals with concepts and problems related to 2D 
 graphics, and spans over five chapters: (1) Interpolating Splines, (2) Blending Functions 
and Hybrid Splines, (3) Approximating Splines, (4) 2D Transformations, and (5)  Spline 
Properties.

Chapter 1 provides an introduction regarding the various types of interpolating splines 
and their representations using polynomials. The theoretical concepts about how spline 
equations are derived and the matrix algebra involved are discussed in detail followed by 
numerical examples and MATLAB codes to illustrate the processes. Most of the  examples 
are followed by graphical plots to enable the reader visualize how the equations get 
 translated into corresponding curves given their start points, end points, and other related 
parameters. The chapter also highlights the differences in these procedures for both stan-
dard or spatial form and parametric form of the spline equations using linear, quadratic, 
and cubic variants.
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Chapter 2 introduces the concept of blending functions and how these functions are 
used to derive equations for hybrid splines which pass through only a subset of their control 
points or where conditions other than control points are used for deriving their equations. 
Specifically, the chapter deals with the Hermite spline, Cardinal spline, Catmull–Rom 
spline, and Bezier spline. For Bezier splines, both the quadratic and cubic variants are dis-
cussed along with Bernstein polynomials used to formulate their blending functions. As 
in other chapters, the theoretical concepts are followed by numerical examples, MATLAB 
codes and graphical plots for visualization. The chapter ends with a discussion about how 
one spline type can be converted to another.

Chapter 3 discusses how polynomial equations are derived for approximating splines 
that do not pass through any of their control points and how their blending functions 
are computed. Specifically, the chapter provides detailed discussions about the Cox de 
Boor algorithm and how it can used to derive equations for linear, quadratic, and cubic 
B-splines. Essentially, B-splines consist of multiple curve segments with continuity at join 
points. Values of the parametric variable at the join points are stored in a vector called 
the knot vector. If the knot values are equally spaced, then the resulting spline is called 
uniform B-spline; otherwise, it is referred to as non-uniform. B-splines are called open-
uniform when knot vector values are repeated. The chapter provides representations of the 
knot vector and illustrates how the spacing in the vector generates the above- mentioned 
variants. As before, the theoretical concepts are followed by numerical examples, MATLAB 
codes, and graphical plots for visualization.

Chapter 4 formally introduces a 2D coordinate system and then lays the foundations of 
a homogeneous coordinate system using which all the transformations can be represented 
in a uniform manner. Two-dimensional transformations are used to change the location, 
 orientation, and shapes of splines in 2D plane. These transformations are  translation,  rotation, 
scaling, reflection, and shear applied individually or in combination of two or more; hence, they 
are known as composite transformations. Given known coordinates of a point, each of these 
transformations is represented by a matrix which when multiplied to the original coordinates 
produces a new set of transformed coordinates. The transformation matrices are first derived, 
and then their applications are illustrated using examples, MATLAB codes, and graphical 
plots. Both affine and perspective transformation types are discussed. The chapter ends with a 
discussion on viewing transformations used for mapping a window to a viewport, and coordi-
nate system  transformation used for mapping between multiple coordinate systems.

Chapter 5 enumerates some of the common properties of splines and how these can be 
calculated from spline equations. First, it discusses the critical points namely minimum 
and maximum of spline curves. Additionally for splines of degree 3 or more, the point of 
inflection (POI) is of interest. Next, it discusses how the tangent and normal to a spline 
curve can be calculated. The tangent to a curve is the derivative of the curve equation, 
while the normal is the line perpendicular to the tangent. The third property is calculation 
of length of a spline curve between any two given points, both for spatial and parametric 
equations. The fourth property is to calculate the area under a curve, which is bounded 
by a primary axis and two horizontal or vertical lines. An extension to this is calculation 
of area bounded by two curves. The fifth property is calculation of centroid of an area, 
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the point of the center of gravity for plates of uniform density. The chapter ends with a 
discussion on interpolation and curve fitting for data points and a list of some commonly 
used built-in MATLAB functions for plotting 2D graphs and plots.

The second part of this book focuses on concepts and problems related to 3D graphics 
and spans over the remaining four chapters namely (6) Vectors, (7) 3D Transformations, 
(8) Surfaces, and (9) Projections.

Chapter 6 introduces the concept of vectors and their mathematical representations in 
2D and 3D spaces. Vectors involve both magnitude and direction. They are represented 
in terms of orthogonal reference components of unit magnitudes along the primary axes 
together with a set of scaling factors. The chapter discusses how vectors can be added and 
multiplied together. Vector products can either be scalar, called a dot product, or vector, 
called a cross product. Using these concepts, the chapter then provides details of how vec-
tor equations of lines and planes can be derived. Next, the chapter discusses how vectors 
can be aligned to specific directions and finally how vector equations can be represented 
using homogeneous coordinates. The chapter ends with a section on how the tangent  vector 
and the normal vector can be calculated for a curve. As before, the theoretical concepts are 
followed by numerical examples, MATLAB codes, and graphical plots for visualization.

Chapter 7 demonstrates how 3D transformations can be treated as extensions of 2D 
transformations. These are used to change the location, orientation, and shapes of splines 
in 3D space. These transformations are translation, rotation, scaling, reflection, shear 
applied individually or in combination of two or more, known as composite transforma-
tion. This chapter formally introduces a 3D coordinate system and then uses homogeneous 
coordinates to derive transformation matrices for the above operations. Their applications 
are then illustrated using examples, MATLAB codes and graphical plots for  visualization. 
The  latter part of the chapter deals with vector alignment in 3D space and uses these 
 concepts to derive rotation matrices in 3D space around vectors and arbitrary lines.

Chapter 8 takes a look at how surfaces can be created and represented using parametric 
and implicit equations, and how the nature of the surface depends on the parameters of 
the equations. Depending on creation process, surfaces can be categorized as extruded 
and surfaces of revolution, both of which are discussed with examples and graphical plots. 
The chapter then takes a look at how tangent planes of surfaces can be computed and 
 provides methods for computing area and volume of surfaces. The latter part of the  chapter 
deals with surface appearances namely how textures can be mapped on surfaces and how 
 illumination models can be used to determine brightness intensities at a point on the 
 surface. The chapter ends with a discussion on some commonly used built-in MATLAB 
functions for plotting 3D graphs.

Chapter 9 studies various types of projections and derives matrices for each. Projection 
is used to map a higher-dimensional object to a lower-dimensional view. Projection can be 
of two types: parallel and perspective. In parallel projection, projection lines are  parallel to 
each other, while in perspective projection, projection lines appear to converge to a  reference 
point. Parallel projection can again be of two types: orthographic and oblique. In parallel 
orthographic projection, the projection lines are perpendicular to the view plane, while 
in parallel oblique projection, the projection lines can be oriented at any arbitrary angle 
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to the view plane. Usually for 3D projection, parallel orthographic projection can also be 
sub-divided into two types: multi-view and axonometric. In multi-view projection, the 
projection occurs on the primary planes i.e. XY-, YZ-, or XZ-planes, while in axonometric 
projection, the projection occurs on any arbitrary plane. The chapter illustrates each type 
of projection using examples, MATLAB codes, and graphical plots for visualization.

Each chapter is followed by a summarized list of salient points discussed in the chapter. 
A set of review questions and a list of practice problems are provided at the end of each 
chapter for self-evaluation. This book contains more than 90 solved numerical examples 
with their corresponding MATLAB codes and an additional 90 problems given for prac-
tice. Readers are encouraged to execute the codes given in the examples and also write 
their own codes to solve the practice problems. Most of the MATLAB codes given in this 
book will require MATLAB version 2015 or later to execute properly. Some of the func-
tions mentioned have been specifically introduced from version 2016 and these have been 
mentioned at the appropriate places. The usage of about 70 different MATLAB functions 
related to graphics and plotting have been demonstrated in this book and a list of these 
functions with a short description is provided at Appendix I. Readers are asked to use 
MATLAB help utilities to get further information on these. The MATLAB codes are writ-
ten in a verbose manner for a better understanding of the readers who are new to the 
subject matter. Some of the codes could have been written in a more compact manner but 
that might have reduced their comprehensibility. Around 170 figures have been included in 
this book to help the readers get proper visualization cues of the problems especially for 3D 
environments. Answers to the practice problems are provided in Appendix II.

All  readers are encouraged to provide feedback about the content matter of the book as 
well as any omissions or typing errors. The author can be contacted at ranjan_parekh@
yahoo.com.

Ranjan Parekh
Jadavpur University

Calcutta 700032, India
2019

MATLAB® is a registered trademark of The MathWorks, Inc. For product information, 
please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1

C h a p t e r  1

Interpolating Splines

1.1 INTRODUCTION
Splines are irregular curve segments with known mathematical properties. Splines are fre-
quently encountered in vector graphics when graphic objects are required to have a defined 
shape in 2D planes (Figure 1.1a) or 3D space (Figure 1.1b) or moved along a specified path 
(Figure 1.1c). Based on the coordinates of some of the points on the curves, or slopes of 
lines along the curves, the graphics system needs to calculate a mathematical representa-
tion of the curve before storing them onto a disk. This representation usually takes the 
form of “vectors” or a series of values stored in matrices. The values are calculated using 
an orthogonal 2D coordinate system consisting of the origin, X-axis, and Y-axis. These 
coordinate axes are often called the primary or principal axes.

The term “spline” has been derived from the ship building industry where it is used to 
refer to wooden planks bent between wooden posts for building the curved hull of ships 
(O’Rourke, 2003). The location of the fixed posts controlled the shape of the plank. In 
graphics, we use specific points along the spline curve to control the shape of the spline 
and hence they are aptly referred to as “control points,” shortened as CPs. Depending on 
the relationship between the CPs and the actual curves, the splines can be broadly cat-
egorized into three types: (1) interpolating splines, where the spline actually goes through 
the CPs; (2) approximating splines, where the spline goes near the CPs but not actually 
through them; and (3) hybrid splines, where the spline goes through some of the CPs but 
not through all (Hearn and Baker, 1996) (see Figure 1.2).

Splines are mathematically modeled using polynomials. Polynomials are expressions 
constructed from variables and constants, and involve addition, subtraction,  multiplication, 
and non-negative integer exponents. A polynomial can be 0 (zero) or a sum of non-zero 
terms. Each term consists of a constant, called coefficient, multiplied by a variable. The 
exponent of the variable is called its degree. The first example is a valid polynomial, but 
the second example is not, because the variable is associated with a division operation and 
also because of the fractional exponent. The general nth degree polynomial is shown in the 
third example.
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A polynomial equation is written when one polynomial is set equal to another. It can 
either be in explicit form e.g. = ( )y f x  when either side of the equation contains variables of 
explicit type, or it can be in implicit form e.g. =( , ) 0f x y  where multiple types of variables 
can be on the same side. Examples are shown below:
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Polynomial equations can also be represented in parametric form where the variables are 
expressed as functions of another variable t e.g. = =( ), ( )x f t y g t . The advantage of para-
metric equations is that the variables x and y do not need to be constrained by a single 
equation and can be changed independently of each other, which offers more flexibility for 
representing complex curves. As a convention, the value of t is usually taken to lie between 
0 and 1 unless otherwise specified. The value of t = 0 corresponds to the start point and 
t = 1 to the end point of the spline curve. Examples are shown below:

 
= =

= ⋅ = ⋅
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cos , sin
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A polynomial equation is frequently represented using graphs, which are useful in  visually 
depicting how one variable changes with another. The graph of a zero polynomial i.e. =( ) 0f x  
is the X-axis. The graph of a zero degree polynomial represented by =( )f x a, where a is a 
constant, is a line parallel to the X-axis at a distance a from it. The graph of a degree 1 polyno-
mial, represented by = +( )f x a bx , is a straight line with a slope b and intercept a. The graph 
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FIGURE 1.2 Types of splines.
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of a degree 2 polynomial, represented by = + +( ) 2f x a bx cx , is a parabolic curve and can be 
specified if at least three points are known on the curve. The graph of a degree 3 polynomial, 
represented by = + + +( ) 2 3f x a bx cx dx , is a cubic curve and can be specified if at least four 
points are known on the curve. Instead of explicit equations, implicit equations =( , ) 0f x y  
can also be plotted by varying the independent variable by fixed intervals and computing 
the corresponding values of the dependent variables. Plots of parametric equations consist of 
three different graphs: the first is the t vs. x graph generated from the function = ( )x f t , the 
second is the t vs. y graph generated from the function = ( )y g t , while the third graph is x vs. y 
generated by plotting the x and y values from the same values of t obtained from the previous 
plots. Thus, even if we always do not generate an equation between x and y by eliminating t, 
we can always plot a graph of x vs. y. Figure 1.3 shows graphs of various polynomial equations.

In the following sections, we take a look at few types of interpolating splines and how 
their equations are derived.

1.2  LINEAR SPLINE (STANDARD FORMS)
A linear spline is a straight line represented by a first-degree polynomial and can be gen-
erated given two points are known along it. Standard form of a linear spline implies the 
spline equation is computed in the spatial domain i.e. the x-y plane. Let the given points 
be P1(x1, y1) and P2(x2, y2). Choose a starting linear equation that is written in matrix form

 = + = 













1y a bx x a

b
 (1.1)

Substitute the given points in the starting equation to generate two equations. Two equa-
tions are sufficient to solve for the two unknown coefficients a and b
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FIGURE 1.3 Graphs of polynomial equations.
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The two equations are written in matrix form Y = C·A, where C is the constraint matrix and 
A is the coefficient matrix:
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The equations are solved to find the values of the unknown coefficients. Thus, we have 
A = inv(C)·Y
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The values of the coefficients are substituted in the starting equation to arrive at the 
 equation of the spline.
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Example 1.1

Find the equation of a line through points P1(3, 2) and P2(8, −4).
Choose a starting equation

 = + = 













1y a bx x a

b
 

Substitute given points in the equation
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Write in matrix form Y = C·A
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Solve the matrix equation A = C−1·Y
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2
4

5.6
1.2

a
b

 

Substitute the coefficient values in the starting equation

 = −5.6 1.2y x  

Verification: In most graphics problems, it is usually possible to verify the results 
obtained by substituting the given data in it. Putting x = 3, we get y = 2, and  putting 
x  = 8, we get y = −4. Hence, the line does indeed pass through the given points 
(Figure 1.4).

MATLAB® Code 1.1

clear all; clc;
syms x;
x1 = 3; y1 = 2;
x2 = 8; y2 = -4;
X = [x1 x2]; Y = [y1 y2];
C = [1 x1; 1 x2];
A = inv(C)*Y';
a = A(1);

0 2 4 6 8 10

x

-5

-4

-3

-2

-1

0

1

2

3

y

P1

P2

FIGURE 1.4 Plot for Example 1.1.
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b = A(2);
fprintf('Required equation : \n');
y = a + b*x;
y = vpa(y)
 
%plotting
xx = linspace(x1, x2);
yy = subs(y, x, xx);
plot(xx, yy, 'b-'); hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
grid; axis square;
axis([0 10 -5 3]);
d = 0.5;
text(x1+d, y1, 'P_1');
text(x2+d, y2, 'P_2');
hold off;

An alternate form of the standard line equation can be formed where, instead of two 
given points, only one point and the slope of the line are given. This aspect is discussed 
below.

Let the given points be P1(x1, y1) and s be the slope of the line. Choose a starting linear 
equation that is written in matrix form as before in Equation (1.1).

 = + = 













1y a bx x a

b
 

NOTE

%: signifies a comment line
axis: controls appearance of the axes of the plot, specifies ordered range of values to display
clc: clears workspace of previous text
clear: clears memory of all stored variables
fprintf: prints out strings and values using formatting options
grid: turns on display of grid lines in a plot
hold: holds the current graph state so that subsequent commands can add to the same graph
inv: computes inverse of a matrix
linspace: creates 100 linearly spaced values between the two end-points specified
plot: creates a graphical plot from a set of values
scatter: type of plot where the data is represented by colored circles
subs: substitutes symbolic variable with a matrix of values for generating a plot
syms: declares the arguments following as symbolic variables
text: inserts textual strings at specified locations in the graph
title: displays a title on top of the graph
vpa: displays symbolic values as variable precision floating point values
xlabel, ylabel: puts text labels along the corresponding primary axes
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Calculate derivative of the starting equation

 ′ = =y dy
dx

b (1.6)

Substitute the given values in the starting equation to generate two equations

 
= +

=

1 1y a bx

s b
 (1.7)

The two equations are written in matrix form Y = C·A as before

 












=



















1
0 1

1 1y
s

x a
b

 (1.8)

The equations are solved to find the values of the coefficients: A = C−1·Y

 








 =























−
1
0 1

1
1

1a
b

x y
s

 (1.9)

The values of the coefficients are substituted in the starting equation to arrive at the 
 equation of the spline.

 = 


























−

1 1
0 1

1
1

1y x x y
s

 (1.10)

Example 1.2

Find the equation of a line through the point P(−1, 1) and having slope 2.
Choose a starting equation

 = + = 













1y a bx x a

b
 

Calculate derivative of the starting equation

 ′ = =y dy
dx

b 

Substitute given values in the equation

 
= + −

=

1 ( 1)

2

a b

b
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Write in matrix form Y = C·A

 








 = −


















1
2

1 1
0 1

a
b

 

Solve the matrix equation A = C−1·Y

 








 =


















 =











1 1
0 1

1
2

3
2

a
b

 

Substitute the coefficient values in the starting equation

 = +2 3y x  

Verification: Putting = −1x  in the above equation, we get =1y . Also, slope = 2dy
dx

 

(Figure 1.5).

MATLAB Code 1.2

clear all; clc;
syms x;
x1 = -1; y1 = 1; s = 2;
Y = [y1 s];
C = [1 x1; 0 1];

-4 -3 -2 -1 0 1 2

x

-4

-2

0

2

4

6

y

P

FIGURE 1.5 Plot for Example 1.2.
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A = inv(C)*Y';
a = A(1);
b = A(2);
fprintf('Required equation:\n');
y = a + b*x;
y = vpa(y)
 
%plotting
xx = linspace(x1-3, x1+3);
yy = subs(y, x, xx);
plot(xx, yy, 'b-', x1, y1, 'bo'); hold on;
scatter(x1, y1, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
grid; axis square; axis tight;
text(x1+0.5, y1, 'P');
hold off;

1.3  LINEAR SPLINE (PARAMETRIC FORM)
A linear spline can also be represented by parametric equations. Let the given points 
through which the spline passes be P0 and P1. As per the convention mentioned before 

≡ (0)0P P  i.e. the first point corresponds to the point where t = 0. Similarly, ≡ (1)1P P  i.e. the 
second point corresponds to the point where t = 1. Note that in some cases, the first point 
may not always correspond to t = 0 or the last point may not always correspond to t = 1. 
We will discuss these issues subsequently.

Choose a starting linear parametric equation written in matrix form

 = + = 













( ) 1P t a bt t a

b
 (1.11)

Substitute given points in the starting equation by choosing t = 0 at start and t = 1 at end.

 
= +

= +

(0)

(1)

0

1

P a b

P a b
 (1.12)

Write equations in matrix form G = C·A, where G is called the geometry matrix

 












=



















1 0
1 1

0

1

P
P

a
b

 (1.13)

Solve the equation for A i.e. A = C−1·G = B·G, where B is called the basis matrix

 








 =























−
1 0
1 1

1
0

1

a
b

P
P

 (1.14)
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Substitute the coefficient values in the starting equation

 = 


























−

( ) 1 1 0
1 1

1
0

1
P t t

P
P

 (1.15)

Example 1.3

Find the equation of a line through points P0(3, 2) and P1(8, −4) in parametric form.
Choose a starting equation.

 = + = 













( ) 1P t a bt t a

b
 

Write equations in matrix form G = C·A, where G is called the geometry matrix

 
−









 =




















3 2
8 4

1 0
1 1

a
b

 

Solve the equation for A i.e. A = C−1·G = B·G

 








 =









 −









 =

−










−
1 0
1 1

3 2
8 4

3 2
5 6

1
a
b

 

Substitute the coefficient values in the starting equation

 = 



 −









( ) 1 3 2

5 6
P t t  

The required parametric equations are obtained by separating out the x and y 
components

 
= +

= −

3 5

2 6

x t

y t
 

Verification: = = = = −(0) 3, (1) 8, (0) 2, (1) 4x x y y  (Figure 1.6).

NOTE

In reality, the parametric equations should be written separately for x and y i.e. 
= + ⋅( )x t a b tx x  and = + ⋅( )y t a b ty y . However, we use a compact notation here by  substituting 
= =   =  ( ) [ ( ), ( )], , , ,P t x t y t a a a b b bx y x y . After solving for a and b, we separate out the 

 individual components and substitute them in the respective equations for x and y.
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MATLAB Code 1.3

clear all; clc;
syms t;
x1 = 3; y1 = 2;
x2 = 8; y2 = -4;
X = [x1 x2]; Y = [y1 y2];
G = [X ; Y];
C = [1 0; 1 1];
A = inv(C)*G';
ax = A(1,1); ay = A(1,2);
bx = A(2,1); by = A(2,2);
 
fprintf('Required equations : \n');
x = ax + bx*t; x = vpa(x)
y = ay + by*t; y = vpa(y)
 
%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);
 
subplot(131), plot(tt, xx); grid; axis square;
xlabel('t'); ylabel('x'); title('t - x');
subplot(132), plot(tt, yy); grid; axis square;
xlabel('t'); ylabel('y'); title('t - y');
subplot(133), plot(xx, yy, 'b-', X, Y, 'bo');
grid; axis square; hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); title('x - y');
text(x1+1, y1-0.5, 'P_0');
text(x2-1, y2+0.5, 'P_1');
hold off;

0 0.5 1
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8
x

t - x

0 0.5 1
t
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1

2

y

t - y

2 4 6 8
x

-4

-3

-2

-1

0

1

2

y

x - y

P0

P1

FIGURE 1.6 Plots for Example 1.3.
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1.4  QUADRATIC SPLINE (STANDARD FORM)
A quadratic spline is a parabolic curve represented by a second-degree polynomial  equation 
and can be generated if at least three points are known along the curve. Standard form of a 
quadratic spline implies the spline equation is computed in the spatial domain i.e. the x-y 
plane. Let the given points be P1(x1, y1), P2(x2, y2), and P3(x3, y3). Choose a starting quadratic 
equation, which is written in matrix form

 = + + = 





















12 2y a bx cx x x
a
b
c

 (1.16)

Substitute the given points in the starting equation to generate three equations. They are 
sufficient to solve for the three unknown coefficients a, b, and c.

 

= + +

= + +

= + +

1 1
2

1

2 2
2

2

3 3
2

3

y a bx cx

y a bx cx

y a bx cx

 (1.17)

The three equations are written in matrix form Y = C·A as before

 

















=



































1
1
1

1

2

3

1
2

1

2
2

2

3
2

3

y
y
y

x x
x x
x x

a
b
c

 (1.18)

The equations are solved to find the values of the coefficients: A = C−1·Y

 
















=



































−
1
1
1

1
2

1

2
2

2

3
2

3

1

1

2

3

a
b
c

x x
x x
x x

y
y
y

 (1.19)

The values of the coefficients are substituted in the starting equation to arrive at the 
 equation of the spline

 = 







































−

1
1
1
1

2

1
2

1

2
2

2

3
2

3

1

1

2

3

y x x
x x
x x
x x

y
y
y

 (1.20)

NOTE

subplot: displays multiple plots within a single figure window



14   ◾   Fundamentals of Graphics Using MATLAB®

Example 1.4

Find the equation of a quadratic spline through points P1(3, 2), P2(6, 5), and P3(8, −4).
Choose starting equation

 = + + = 





















12 2y a bx cx x x
a
b
c

 

Write equations in matrix form Y = C·A

 −
















=
































2
4

5

1 3 9
1 8 64
1 6 36

a
b
c

 

Solve for A: A = C−1·Y

 
















=
−

−

















20.8
10.9

1.1

a
b
c

 

Substitute in the starting equation

 = − + −20.8 10.9 1.1 2y x x  

Verification: = = = −(3) 2, (6) 5, (8) 4y y y  (Figure 1.7).

1 2 3 4 5 6 7 8 9 10

x

-20

-15

-10

-5

0

5

y

P1

P2

P3

FIGURE 1.7 Plot for Example 1.4.
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MATLAB Code 1.4

clear all; clc;
syms x;
x1 = 3; y1 = 2;
x2 = 6; y2 = 5;
x3 = 8; y3 = -4;
X = [x1, x2, x3];
Y = [y1, y2, y3];
C = [1, x1, x1^2; 1, x2, x2^2; 1, x3, x3^2];
A = inv(C)*Y';
a = A(1); b = A(2); c = A(3);
fprintf('Required equation : \n');
y = a + b*x + c*x^2; y = vpa(y)
 
%plotting
d = 0.5;
xx = linspace(x1-2, x3+2);
yy = subs(y, x, xx);
plot(xx,yy, 'b-');
hold on; grid;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y');
axis square; axis tight;
text(x1+d, y1, 'P_1');
text(x2+d, y2, 'P_2');
text(x3+d, y3, 'P_3');
hold off;

1.5  QUADRATIC SPLINE (PARAMETRIC FORM)
A quadratic spline can also be represented by parametric equations. Let the given points be 
P0, P1, and P2. Here, P0 is the starting point i.e. ≡ (0)0P P  and P2 is the end point i.e. ≡ (1)2P P . 
To determine the curve uniquely an additional piece of information is required regarding 
the value of parameter t at the middle point P1. Let the value of t at P1 be k, where 0 ≤ k ≤ 1 
i.e. ≡ ( )1P P k . Different values of k referred to as the sub-division ratio, will give rise to 
curves with the same start and end points but having different shapes.

Choose a starting parametric quadratic equation written in matrix form

 = + + = 





















( ) 12 2P t a bt ct t t
a
b
c

 (1.21)

Substitute the given points in the starting equation by choosing t = 0 at start, t = k at the 
middle, and t = 1 at end.
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= + +

= + +

= + +

(0) (0)

( ) ( )

(1) (1)

0
2

1
2

2
2

P a b c

P a b k c k

P a b c

 (1.22)

Write equations in matrix form G = C·A

 
















=

































1 0 0
1
1 1 1

0

1

2

2
P
P
P

k k
a
b
c

 (1.23)

Solve the equation for A i.e. A = C−1·G = B·G

 
















=

































−
1 0 0
1
1 1 1

2

1

0

1

2

a
b
c

k k
P
P
P

 (1.24)

Substitute the coefficient values in the starting equation

 = 





































−

( ) 1
1 0 0
1
1 1 1

2 2

1

0

1

2

P t t t k k
P
P
P

 (1.25)

Example 1.5

Find the equation of a quadratic spline through points P0(3, 2), P1(8, −4), 
and P2(6, 5) in parametric form with sub-division ratio k = 0.8.

Choose starting equation

 = + + = 





















( ) 12 2P t a bt ct t t
a
b
c

 

Write equations in matrix form G = C·A

 −
















=
































3 2
8 4
6 5

1 0 0
1 0.8 0.64
1 1 1

a
b
c
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Solve the equation for A i.e. A = C−1·G = B·G

 
















= −
−

















3 2
19.25 49.5
16.25 52.5

a
b
c

 

Substitute the coefficient values in the starting equation

 
= + −

= − +

3 19.25 16.25

2 49.5 52.5

2

2

x t t

y t t
 

Verification: = = = = − = =(0) 3, (0) 2, (0.8) 8, (0.8) 0.4, (1) 6, (1) 5x y x y x y  (Figure 1.8).

MATLAB Code 1.5

clear all; clc;
syms t;
x0 = 3; y0 = 2;
x1 = 8; y1 = -4;
x2 = 6; y2 = 5;
k = 0.8;
G = [x0, y0 ; x1, y1 ; x2, y2];
X = [x0 ; x1 ; x2]; Y = [y0 ; y1 ; y2];
C = [1, 0, 0; 1, k, k^2; 1, 1, 1];
A = inv(C)*G;
ax = A(1,1); ay = A(1,2);
bx = A(2,1); by = A(2,2);
cx = A(3,1); cy = A(3,2);
fprintf('Required equations: \n');
x = ax + bx*t + cx*t^2 ; x = vpa(x)
y = ay + by*t + cy*t^2 ; y = vpa(y)
 
%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
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FIGURE 1.8 Plots for Example 1.5.
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yy = subs(y, t, tt);
subplot(131), plot(tt, xx);
xlabel('t'); ylabel('x'); title('t - x');
grid; axis square;
subplot(132), plot(tt, yy);
xlabel('t'); ylabel('y'); title('t - y');
grid; axis square;
subplot(133), plot(xx, yy, 'b-');
hold on; grid; axis square;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); title('x - y');
d = 0.5;
text(x0+d, y0, 'P_0');
text(x1+d, y1, 'P_1');
text(x2-1, y2-1, 'P_2');
hold off;

1.6  CUBIC SPLINE (STANDARD FORM)
A cubic spline is represented by a third-degree polynomial and can be generated if at 
least four points along the curve are known. Standard form of a cubic spline implies the 
spline equation is computed in the spatial domain i.e. the x-y plane. Let the given points 
be P1(x1, y1), P2(x2, y2), P3(x3, y3), and P4(x4, y4). Choose a starting cubic equation, which is 
written in matrix form

 = + + + = 























12 3 2 3y a bx cx dx x x x

a
b
c
d

 (1.26)

Substitute the given points in the starting equation to generate four equations. Four equa-
tions are sufficient to solve the four unknown coefficients a, b, c, and d

 

= + + +

= + + +

= + + +

= + + +

1 1
2

1
3

1

2 2
2

2
3

2

3 3
2

3
3

3

4 4
2

4
3

4

y a bx cx dx

y a bx cx dx

y a bx cx dx

y a bx cx dx

 (1.27)

The four equations are written in matrix form Y = C·A

 





















=







































1
1
1
1

1

2

3

4

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

y
y
y
y

x x x
x x x
x x x
x x x

a
b
c
d

 (1.28)
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The equations are solved to find the values of the coefficients: A = C−1·Y

 



















=









































−
1
1
1
1

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

1

1

2

3

4

a
b
c
d

x x x
x x x
x x x
x x x

y
y
y
y

 (1.29)

The values of the coefficients are substituted in the starting equation to arrive at the 
 equation of the spline.

 = 













































−

1

1
1
1
1

2 3

1
2

1
3

1

2
2

2
3

2

3
2

3
3

3

4
2

4
3

4

1

1

2

3

4

y x x x

x x x
x x x
x x x
x x x

y
y
y
y

 (1.30)

Example 1.6

Find the equation of a cubic spline through points P1(−1, 2), P2(0, 0), P3(1, −2), 
and P4(2, 0).

Choose starting equation

 = + + + = 























12 3 2 3y a bx cx dx x x x

a
b
c
d

 

Write equations in matrix form Y = C·A

 
−



















=

− −



































2
0
2

0

1 1 1 1
1 0 0 0
1 1 1 1
1 2 4 8

a
b
c
d

 

Solve for A: A = C−1·Y

 



















= −


















0
2.67
0

0.67

a
b
c
d
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Substitute in the starting equation

 = − +2.67 0.67 3y x x  

Verification: − = = = − =( 1) 2, (0) 0, (1) 2, (2) 0y y y y  (Figure 1.9).
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FIGURE 1.9 Plot for Example 1.6.
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1.7  CUBIC SPLINE (PARAMETRIC FORM)
A cubic spline can also be represented by parametric equations. Let the given points be P0, 
P1, P2, and P3. Here, P0 is the starting point i.e. ≡ (0)0P P  and P3 is the end point of the curve 
i.e. ≡ (1)3P P . To determine the curve uniquely two additional pieces of information are 
required regarding the value of parameter t at the middle points P1 and P2. Let these values 
of t be m and n, where ≤ ≤0 , 1m n  i.e. ≡ ( )1P P m  and ≡ ( )2P P n . Different values of m and n 
referred to as the sub-division ratios, will give rise to curves with the same start and end 
points but having different shapes.

Choose starting equation written in matrix form

 = + + + = 























( ) 12 3 2 3P t a bt ct dt t t t

a
b
c
d

 (1.31)

Substitute the given points in the starting equation by choosing t = 0 at start, t = m, n at the 
middle points, and t = 1 at end.

 

P a b c

P a b m c m

P a b n c n

P a b c

= + +

= + +

= + +

= + +

(0) (0)

( ) ( )

( ) ( )

(1) (1)

0
2

1
2

2
2

3
2

 (1.32)

Write equations in matrix form G = C·A

 

P
P
P
P

m m m
n n n

a
b
c
d





















=





































1 0 0 0
1
1
1 1 1 1

0

1

2

3

2 3

2 3
 (1.33)

Solve the equation for A: A = C−1·G = B·G

 

a
b
c
d

m m m
n n n

P
P
P
P



















=







































−
1 0 0 0
1
1
1 1 1 1

2 3

2 3

1
0

1

2

3

 (1.34)

Substitute the coefficient values in the starting equation
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 P t t t t m m m
n n n

P
P
P
P

= 











































−

( ) 1

1 0 0 0
1
1
1 1 1 1

2 3
2 3

2 3

1
0

1

2

3

 (1.35)

Example 1.7

Find the equation of a cubic spline through points (−1, 2), (0, 0), (1, −2), and 
(2, 0) in parametric form with sub-division ratios m = 0.1 and n = 0.9.

Choose starting equation written in matrix form

 = + + + = 























( ) 12 3 2 3P t a bt ct dt t t t

a
b
c
d

 

Write equations in matrix form G = C·A

 

−

−



















=





































1 2
0 0
1 2
2 0

1 0 0 0
1 0.1 0.01 0.001
1 0.9 0.81 0.729
1 1 1 1

a
b
c
d

 

Solve the equation for A i.e. A = C−1·G = B·G

 



















=

−
−

−



















1 2
12.7222 21.4444
29.1667 13.8889

19.4444 5.5556

a
b
c
d

 

Substitute the coefficient values in the starting equation

 
= − + − +

= − + +

1 12.7222 29.1667 19.4444

2 21.4444 13.8889 5.5556

2 3

2 3

x t t t

y t t t
 

Verification: = − = = = = = = −(0) 1, (0.1) 0, (0.9) 1, (1) 2, (0) 2, (0.1) 0, (0.9) 2,x x x x y y y  
=(1) 0y

The actual values might differ slightly due to round-off errors (Figure 1.10).
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MATLAB Code 1.7

clear all; clc;
syms t;
x0 = -1; y0 = 2;
x1 = 0; y1 = 0;
x2 = 1; y2 = -2;
x3 = 2; y3 = 0;
m = 0.1; n = 0.9;
P = [x0 y0 ; x1 y1 ; x2 y2 ; x3 y3];
X = [x0 ; x1 ; x2 ; x3]; Y = [y0 ; y1 ; y2 ; y3];
C = [1, 0, 0, 0; 1, m, m^2, m^3; 1, n, n^2, n^3; 1, 1, 1, 1];
A = inv(C)*P;
ax = A(1,1); ay = A(1,2); bx = A(2,1); by = A(2,2);
cx = A(3,1); cy = A(3,2); dx = A(4,1); dy = A(4,2);
fprintf('Required equations : \n');
x = ax + bx*t + cx*t^2 + dx*t^3; x = vpa(x, 3)
y = ay + by*t + cy*t^2 + dy*t^3; y = vpa(y, 3)
 
%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);
subplot(131), plot(tt,xx); grid;
xlabel('t'); ylabel('x'); title('t - x'); axis square;
subplot(132), plot(tt,yy); grid;
xlabel('t'); ylabel('y'); title('t - y'); axis square;
subplot(133), plot(xx,yy,'b-'); grid;
xlabel('x'); ylabel('y'); title('x - y'); axis square;
hold on;
scatter(X, Y, 20, 'r', 'filled');
axis([-2 3 -5 3]);
e = 0.5;
text(x0+e, y0, 'P_0');
text(x1+e, y1, 'P_1');
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FIGURE 1.10 Plots for Example 1.7.
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text(x2+e, y2, 'P_2');
text(x3+e, y3, 'P_3');
hold off;

1.8  PIECEWISE SPLINES (STANDARD FORM)
Complex curves cannot be appropriately modeled using cubic splines. They are typically 
S-shaped curves while complex curves may contain a number of twists and turns. One 
option is to model the curves using higher order splines; however, they need higher degree 
equations to be solved, which increases the computational overhead and time delay of the 
system. Moreover, higher degree splines are too sensitive to slight changes in CPs, which 
is typically not desirable since we generally want slight changes of the splines to be made 
by small adjustments of their CPs and do not favor drastic changes in shape. Such curves 
are best modeled by using multiple cubic splines joined end to end. These are known as 
piecewise splines.

Consider four given points P1, P2, P3, and P4 and it is required to find equations of piece-
wise splines through them. Essentially, this means that instead of a single cubic spline 
passing through the four points it is required to find three separate splines passing through 
each pair of points as shown in Figure 1.11.

Let the coordinates of the given points be P1(x1, y1), P2(x2, y2), P3(x3, y3), and P4(x4, y4). 
Let the three cubic curve segments be designated as A, B, and C between points P1 and P2, 
P2 and P3, and P3 and P4, respectively. As before, let starting cubic equations be of the form 

= + + +2 3y a bx cx dx . Since now there are three curve segments, there needs to be three 
 different sets of coefficients as follows:
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FIGURE 1.11 Piecewise splines.
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= + + +

= + + +

= + + +

:

:

:

1 1 1
2

1
3

2 2 2
2

2
3

3 3 3
2

3
3

A y a b x c x d x

B y a b x c x d x

C y a b x c x d x

 (1.36)

So altogether there are 12 different unknowns and at least 12 different equations are needed 
to solve them.

In order to formulate these 12 equations, various constraints are used to ensure that three 
separate spline segments join together to form a single smooth curve. The first  constraint 
is known as C0 continuity condition, which states that in order to form a smooth curve the 
three splines should physically meet at their joining points (Hearn and Baker, 1996). In 
other words, spline A should pass through points P1 and P2, spline B should pass through 
points P2 and P3, and spline C should pass through points P3 and P4. Substituting the point 
coordinates in the respective starting equations the  following six equations are obtained. 
If S(Pk) denotes segment S passing through point Pk, we can write:

 

( )

( )

( )

( )

( )

( )

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

:

:

:

:

:

:

1 1 1 1 1 1
2

1 1
3

1

2 2 1 1 2 1
2

2 1
3

2

2 2 2 2 2 2
2

2 2
3

2

3 3 2 2 3 2
2

3 2
3

3

3 3 3 3 3 3
2

3 3
3

3

4 4 3 3 4 3
2

4 3
3

4

A P y a b x c x d x

A P y a b x c x d x

B P y a b x c x d x

B P y a b x c x d x

C P y a b x c x d x

C P y a b x c x d x

 (1.37)

The second constraint to be obeyed is known as C1 continuity condition, which states that 
to form a smooth curve the slopes of the individual spline segments should be equal at 
their meeting points (Hearn and Baker, 1996). Taking the derivative of the spline equations 
the following are obtained:

 

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

: 2 3

: 2 3

: 2 3

1 1 1
2

2 2 2
2

3 3 3
2

A y b c x d x

B y b c x d x

C y b c x d x

 (1.38)

In this case: slope of A at P2 = slope of B at P2. If S′(Pk) denotes slope of segment S at point 
Pk we have:

 A P B P b c x d x b c x d x( ) ( )′ = ′ + ⋅ + ⋅ = + ⋅ + ⋅: 2 3 2 32 2 1 1 2 1
2

2 2 2 2 2
2

2  

Rearranging:

 = − − ⋅ − ⋅ + + ⋅ + ⋅0 2 3 2 31 1 2 1
2

2 2 2 2 2
2

2b c x d x b c x d x  (1.39)
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Also, slope of B at P3 = slope of C at P3

 B P C P b c x d x b c x d x( ) ( )′ = ′ + ⋅ + ⋅ = + ⋅ + ⋅: 2 3 2 33 3 2 2 3 2
2

3 3 3 3 3
2

3  

Rearranging:

 = − − ⋅ − ⋅ + + ⋅ + ⋅0 2 3 2 32 2 3 2
2

3 3 3 3 3
2

3b c x d x b c x d x  (1.40)

The third constraint to be obeyed is known as C2 continuity condition, which states that to 
form a smooth curve the curvatures of the individual spline segments should be equal at 
their meeting points (Hearn and Baker, 1996). Taking the double derivative of the spline 
equations the following are obtained:

 

′′ ′′ = + ⋅

′′ ′′ = + ⋅

′′ ′′ = + ⋅

: 2 6

: 2 6

: 2 6

1 1

2 2

3 3

A y c d x

B y c d x

C y c d x

 (1.41)

In this case, curvature of A at P2 = curvature of B at P2. If S″(Pk) denotes curvature of 
 segment S at point Pk, we have:

 A P B P c d x c d x( ) ( )′′ = ′′ + ⋅ = + ⋅: 2 6 2 62 2 1 1 2 2 2 2 

Rearranging:

 = − − ⋅ + + ⋅0 2 6 2 61 1 2 2 2 2c d x c d x  (1.42)

Also, curvature of B at P3 = curvature of C at P3

 B P C P c d x c d x( ) ( )′′ = ′′ + ⋅ = + ⋅: 2 6 2 63 3 2 2 3 3 3 3 

Rearranging:

 = − − ⋅ + + ⋅0 2 6 2 62 2 3 3 3 3c d x c d x  (1.43)

The last constraint to be taken into consideration pertains to end-point conditions. The 
starting slope of spline A and the ending slope of spline C should also be known in order 
to specify the splines unambiguously. Let the start and end-point slopes be s1 and s2, 
 respectively. Thus in this case, s1 = A′(P1) and s2 = C′(P4). Inserting the slope values in the 
derivative equations, the following are obtained:

 
= + ⋅ + ⋅

= + ⋅ + ⋅

2 3

2 3

1 1 1 1 1
2

1

2 3 3 4 3
2

4

s b c x d x

s b c x d x
 (1.44)
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To find a solution to this system, all the 12 equations are plugged into the matrix form 
Y = C · A:











































=
− − −

− − −
− −

− −

























































































0
0
0
0

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 1 2 3 0 1 2 3 0 0 0 0
0 0 0 0 0 1 2 3 0 1 2 3
0 0 2 6 0 0 2 6 0 0 0 0
0 0 0 0 0 0 2 6 0 0 2 6
0 1 2 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 2 3

1

2

2

3

3

4

1

2

1
2

1
3

1

2
2

2
3

2

2
2

2
3

2

3
2

3
3

3

3
2

3
3

3

4
2

4
3

4

2
2

2 2
2

2

3
2

3 3
2

3

2 2

3 3

1
2

1

4
2

4

1

1

1

1

2

2

2

2

3

3

3

3

y
y
y
y
y
y

s
s

x x x
x x x

x x x
x x x

x x x
x x x

x x x x
x x x x

x x
x x

x x
x x

a
b
c
d
a
b
c
d
a
b
c
d

 (1.45)

The solution of this is: A = inv(C)·Y

Example 1.8

Find piecewise cubic equation of a curve passing through P1(0, 1), P2(2, 2), 
P3(5, 0), and P4(8, 0). Slopes at first and last points are 4 and −2, respectively

Plugging the given values into the solution matrix

 

−





































= − − −
− − −

− −
− −











































































1
2
2
0
0
0
0
0
0
0
4
2

1 0 0 0 0 0 0 0 0 0 0 0
1 2 4 8 0 0 0 0 0 0 0 0
0 0 0 0 1 2 4 8 0 0 0 0
0 0 0 0 1 5 25 125 0 0 0 0
0 0 0 0 0 0 0 0 1 5 25 125
0 0 0 0 0 0 0 0 1 8 64 512
0 1 4 12 0 1 4 12 0 0 0 0
0 0 0 0 0 1 10 75 0 1 10 75
0 0 2 12 0 0 2 12 0 0 0 0
0 0 0 0 0 0 2 30 0 0 2 30
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 16 192

1

1

1

1

2

2

2

2

3

3

3

3

a
b
c
d
a
b
c
d
a
b
c
d

 

Solving the coefficients and substituting into the starting equations, the required 
solution is
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= + ⋅ + − ⋅ + ⋅

= + − ⋅ + − ⋅ + ⋅

= + − ⋅ + ⋅ + − ⋅

: (1) (4) ( 2.64) (0.45)

: (4.20) ( 0.8) ( 0.24) (0.05)

: (33.68) ( 18.49) (3.29) ( 0.19)

2 3

2 3

2 3

A y x x x

B y x x x

C y x x x

 

Verification: = = =: (0) 1, : (2) 2, : (5) 0A y B y C y  (Figure 1.12).

MATLAB Code 1.8

clear all; format compact; clc;
syms x;
x1 = 0; y1 = 1;
x2 = 2; y2 = 2;
x3 = 5; y3 = 0;
x4 = 8; y4 = 0;
s1 = 4; s2 = -2;
X1 = [x1, x2, x3, x4];
Y1 = [y1, y2, y3, y4];
Y = [y1; y2; y2; y3; y3; y4; 0; 0; 0; 0; s1; s2];
C = [1, x1, x1^2, x1^3, 0, 0, 0, 0, 0, 0, 0, 0;
    1, x2, x2^2, x2^3, 0, 0, 0, 0, 0, 0, 0, 0;
    0, 0, 0, 0, 1, x2, x2^2, x2^3, 0, 0, 0, 0;
    0, 0, 0, 0, 1, x3, x3^2, x3^3, 0, 0, 0, 0;
    0, 0, 0, 0, 0, 0, 0, 0, 1, x3, x3^2, x3^3;
    0, 0, 0, 0, 0, 0, 0, 0, 1, x4, x4^2, x4^3;

0 1 2 3 4 5 6 7 8

x

-5

0

5

10

y

P1

P2

P3 P4

A
B
C

FIGURE 1.12 Plot for Example 1.8.
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    0, -1, -2*x2, -3*x2^2, 0, 1, 2*x2, 3*x2^2, 0, 0, 0, 0;
    0, 0, 0, 0, 0, -1, -2*x3, -3*x3^2, 0, 1, 2*x3, 3*x3^2;
    0, 0, -2, -6*x2, 0, 0, 2, 6*x2, 0, 0, 0, 0;
    0, 0, 0, 0, 0, 0, -2, -6*x3, 0, 0, 2, 6*x3;
    0, 1, 2*x1, 3*x1^2, 0, 0, 0, 0, 0, 0, 0, 0;
    0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2*x4, 3*x4^2];
 
A = inv(C)*Y ;
a1=A(1); b1=A(2); c1=A(3); d1=A(4);
a2=A(5); b2=A(6); c2=A(7); d2=A(8);
a3=A(9); b3=A(10); c3=A(11); d3=A(12);
fprintf('Equations for segments : \n');
yA = a1 + b1*x + c1*x^2 + d1*x^3; yA = vpa(yA, 3)
yB = a2 + b2*x + c2*x^2 + d2*x^3; yB = vpa(yB, 3)
yC = a3 + b3*x + c3*x^2 + d3*x^3; yC = vpa(yC, 3)
 
%plotting
xx = 0:0.1:9;
yp1 = subs(yA, x, xx);
yp2 = subs(yB, x, xx);
yp3 = subs(yC, x, xx);
plot(xx, yp1, 'k-', xx, yp2, 'k--', xx, yp3, 'k-.');
axis([0, 8, -5, 10]); grid on; hold on;
plot(X1, Y1, 'ko');
scatter(X1, Y1, 20, 'r', 'filled');
text(0.5,1,'P_1');
text(2.5,2,'P_2');
text(5.5,-0.5,'P_3');
text(7.5,0,'P_4');
legend('A', 'B', 'C'); xlabel('x'); ylabel('y');
hold off;
%verification
vrf1 = eval(subs(yA, x, x1)) %should return y1
vrf2 = eval(subs(yB, x, x2)) %should return y2

vrf3 = eval(subs(yC, x, x3)) %should return y3

NOTE

From Figure 1.12, it can be observed that A, B, and C are three different splines having differ-
ent shapes, which is expected since they have different equations. However, the continuity 
conditions have constrained them in such a way that they have formed a single smooth curve 
only within the interval P1 to P4. Beyond their respective intervals they have diverged out into 
different trajectories.

eval: evaluates an expression
legend: designates different color or line types in a graph using textual strings
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1.9  PIECEWISE SPLINES (PARAMETRIC FORM)
To end this chapter and to explain a very important concept of domain conversion a more 
complicated form of piecewise spline is discussed, which involves parametric equations. 
Since now each spline segment needs to be represented by two equations (x vs. t and y vs. t) 
the number of unknowns is effectively doubled to 24. However, the essential idea of form-
ing the equations by using constraint conditions remains the same and can be visualized as 
an extended version of the ideas explained in the last section. To bring down the complex-
ity of the situation a simplified assumption is used here: that the x vs. t relations are linear 
instead of cubic. This will reduce the total number of unknowns so that the situation can 
be more readily comprehended. However, the main reason for discussing this section is to 
make the reader aware that when given conditions are specified in the spatial domain and 
the required equations need to obtained in the parametric domain (or vice versa) then the 
values cannot simply be substituted in the constraint equations (as done in the previous 
case) but needs conversion from one domain to another (as will be illustrated below).

As before, let the coordinates of the given points be P1(x1, y1), P2(x2, y2), P3(x3, y3), and 
P4(x4, y4). Let the three cubic curve segments be designated as A, B, and C. This time we 
assume that the x − t relations are linear so the starting equations are of the form: = +x m nt .

The equations for the separate splines therefore become:

 

= +

= +

= +

:

:

:

1 1

2 2

3 3

A x m n t

B x m n t

C x m n t

 (1.46)

For spline A, at the starting point t = 0 and x = x1 and at the ending point t = 1 and x = x2.
This provides the solution:

 
=

= −
1 1

1 2 1

m x

n x x
 (1.47)

For spline B, at the starting point t = 0 and x = x2 and at the ending point t = 1 and x = x3.
This provides the solution:

 
=

= −
2 2

2 3 2

m x

n x x
 (1.48)

For spline C, at the starting point t = 0 and x = x3 and at the ending point t = 1 and x = x4.
This provides the solution:

 
=

= −
3 3

3 3 4

m x

n x x
 (1.49)

That was quite easily done and so the attention is now turned toward a more harder 
 problem of dealing with the cubic y vs. t relations. Here, as expected, the starting relation 
is of the form: = + + +2 3y a bt ct dt
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Equations for the separate splines become:

 

= + + +

= + + +

= + + +

:

:

:

1 1 1
2

1
3

2 2 2
2

2
3

3 3 3
2

3
3

A y a b t c t d t

B y a b t c t d t

C y a b t c t d t

 (1.50)

The first derivatives of the equations are given in the following:

 

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

′ ′ = + ⋅ + ⋅

: 2 3

: 2 3

: 2 3

1 1 1
2

2 2 2
2

3 3 3
2

A y b c t d t

B y b c t d t

C y b c t d t

 (1.51)

The second derivatives of the equations are also as follows:

 
′′ = + ⋅

′′ = + ⋅

′′ = + ⋅

: 2 6

: 2 6

: 2 6

1 1

2 2

3 3

A y c d t

B y c d t

C y c d t

 (1.52)

For the first constraint pertaining to C0 continuity condition to be applied, it should be 
noted that for spline A at the starting point t = 0 and y = y1 and at the ending point t = 1 
and y = y2. This provides the solution:

 
=

− = + +
1 1

2 1 1 1 1

y a

y y b c d
 (1.53)

For spline B at the starting point t = 0 and y = y2 and at the ending point t = 1 and y = y3. 
This provides the solution:

 
=

− = + +

2 2

3 2 2 2 2

y a

y y b c d
 (1.54)

For spline C at the starting point t = 0 and y = y3 and at the ending point t = 1 and y = y4. 
This provides the solution:

 
=

− = + +

3 3

4 3 3 3 3

y a

y y b c d
 (1.55)

The second constraint to be obeyed is the C1 continuity condition, which states that to 
form a smooth curve the slopes of the individual spline segments should be equal at their 
meeting points. In this case slope of A at point P2 should be equal to the slope of B at point 
P2 i.e. A′ (at t = 1) = B′ (at t = 0). But the slopes are equal in spatial domain (physical slopes 
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in space) and the derivative equations (as shown above) are calculated in the parametric 
domain (y vs. t) so they cannot simply be equated, rather some kind of conversion from 
one domain to another is first needed. For arriving at the conversion factor the chain rule 
of differentiation is utilized.

By chain rule of differentiation:
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 = ′ ⋅ ∆

∆
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∆
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 = 
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∆
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d
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d
dt

dy
dt
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d
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y
x

 (1.56)

This specifies the required conversion factor: that the derivative in spatial domain is equal 
to the derivative in parametric domain multiplied by a scaling factor of (1/Δx) for a specific 
curve segment. Similarly the double derivative in spatial domain is equal to the double 
derivative in parametric domain multiplied by the scaling factor (1/Δx)2.

Plugging these multipliers into the C1 constraint equations:
Slope of A at P2 = slope of B at P2

A′(t = 1) = B′(t = 0) [in spatial domain]

 + +
−

=
−

2 31 1 1

2 1

2

3 2

b c d
x x

b
x x

 

Rearranging:

 ( ) ( ) ( ) ( )− ⋅ + − ⋅ + − ⋅ − − ⋅ =2 3 03 2 1 3 2 1 3 2 1 2 1 2x x b x x c x x d x x b  (1.57)

Slope of B at P3 = slope of C at P3

B′(t = 1) = C′(t = 0) [in spatial domain]

 + +
−

=
−

2 32 2 2

3 2

3

4 3

b c d
x x

b
x x

 

Rearranging:

 ( ) ( ) ( ) ( )− ⋅ + − ⋅ + − ⋅ − − ⋅ =2 3 04 3 2 4 3 2 4 3 2 3 2 3x x b x x c x x d x x b  (1.58)

In a similar way using the domain conversion multipliers for the C2 constraint equations:
Curvature of A at P2 = curvature of B at P2

A″(t = 1) = B″(t = 0) [in spatial domain]

 
( ) ( )

+
−

=
−

2 6 21 1

2 1
2

2

3 2
2

c d
x x

c
x x
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Rearranging and dividing both sides by 2:

 ( ) ( ) ( )− ⋅ + − ⋅ − − ⋅ =3 03 2
2

1 3 2
2

1 2 1
2

2x x c x x d x x c  (1.59)

Curvature of B at P3 = curvature of C at P3

B″(t = 1) = C″(t = 0) [in spatial domain]

 
( ) ( )

+
−

=
−

2 6 22 2

3 2
2

3

4 3
2

c d
x x

c
x x

 

Rearranging and dividing both sides by 2:

 ( ) ( ) ( )− ⋅ + − ⋅ − − ⋅ =3 04 3
2

2 4 3
2

2 3 2
2

3x x c x x d x x c  (1.60)

The domain conversion factors are also required for the end-point conditions.
Let s1 be the slope at start point of segment A and s2 be the end-point slope of segment 

C. Then:

 s A t s b
x x( )= ′ = =

−
( 0):1 1

1

2 1
 

 ( )= ⋅ −1 1 2 1b s x x  (1.61)

 s C t s b c d
x x( )= ′ = = + +

−
( 1): 2 3

2 2
3 3 3

4 3
 

 ( )+ + = ⋅ −2 33 3 3 2 4 3b c d s x x  (1.62)

Write all nine equations in the form G = C·A

 ( )+ + = ⋅ −2 33 3 3 2 4 3b c d s x x  (1.63)
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Example 1.9

Find piecewise parametric cubic equation of a curve passing through 
P1(0, 1), P2(2, 2), P3(5, 0), and P4(8, 0). Slopes at first and last points 
are 2 and 1, respectively. Assume linear relation between t and x.

Since x − t relations are linear, let the starting equations are of the form: = +x m nt .
Equations for the separate spines:

 

= +

= +

= +

:

:

:

1 1

2 2

3 3

A x m n t

B x m n t

C x m n t

 

Substituting given points into the above equations and solving for the unknown 
coefficients:

 = = = − = = = = − = = = = − =0, 2, 2, 3, 5, 31 1 1 2 1 2 2 2 3 2 3 3 3 4 3m x n x x m x n x x m x n x x  

The required x − t relations are:

 

=

= +

= +

: 2

: 2 3

: 5 3

A x t

B x t

C x t

 

Since y − t relations are cubic, let the starting equations are of the form: 
= + ⋅ + ⋅ + ⋅2 3y a b t c t d t .
Equations for the separate splines:

 

= + + +

= + + +

= + + +

:

:

:

1 1 1
2

1
3

2 2 2
2

2
3

3 3 3
2

3
3

A y a b t c t d t

B y a b t c t d t

C y a b t c t d t

 

Plugging the given values into the constraint matrix:
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0 0 0 0 9 27 0 9 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 9 1 2 3

1

1

1

2

2

2

3

3

3

b
c
d
b
c
d
b
c
d

 



Interpolating Splines   ◾   37

Solving and substituting into the starting equations:

 

= + ⋅ + − ⋅ + ⋅

= + − ⋅ + − ⋅ + ⋅

= − ⋅ + ⋅ + ⋅

: (1) (4) ( 4.158) (1.158)

: (2) ( 1.263) ( 1.539) (0.803)

: ( 1.934) (0.868) (1.066)

2 3

2 3

2 3

A y t t t

B y t t t

C y t t t

 

Verification: For A: t = 0 produces y = 1, t = 1 produces y = 2, for B: t = 0 produces y = 2, 
t = 1 produces y = 0, and for C: t = 0 produces y = 0, t = 1 produces y = 0 (Figure 1.13).

MATLAB Code 1.9

clear all; clc;
syms t;
x1 = 0; y1 = 1;
x2 = 2; y2 = 2;
x3 = 5; y3 = 0;
x4 = 8; y4 = 0;
s1 = 2; s2 = 1;
 
C=[ 1, 1, 1, 0, 0, 0, 0, 0, 0;
    0, 0, 0, 1, 1, 1, 0, 0, 0;
    0, 0, 0, 0, 0, 0, 1, 1, 1;
    (x3-x2), 2*(x3-x2), 3*(x3-x2), -(x2-x1), 0, 0, 0, 0, 0;
    0, 0, 0, (x4-x3), 2*(x4-x3), 3*(x4-x3), -(x3-x2), 0, 0;
    0, (x3-x2)^2, 3*(x3-x2)^2, 0, -(x2-x1)^2, 0, 0, 0, 0;
    0, 0, 0, 0, (x4-x3)^2, 3*(x4-x3)^2, 0, -(x3-x2)^2, 0;
    1, 0, 0, 0, 0, 0, 0, 0, 0;
    0, 0, 0, 0, 0, 0, 1, 2, 3
];
 
G = [y2-y1, y3-y2, y4-y3, 0, 0, 0, 0, s1*(x2-x1), s2*(x4-x3)];
 
A = inv(C)*G';
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FIGURE 1.13 Plots for Example 1.9.
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aA = y1; bA = A(1); cA = A(2); dA = A(3);
aB = y2; bB = A(4); cB = A(5); dB = A(6);
aC = y3; bC = A(7); cC = A(8); dC = A(9);
 
fprintf('Equations of segments :\n')
 
xA = x1 + (x2-x1)*t; xA = vpa(xA)
yA = aA + bA*t + cA*t^2 + dA*t^3; yA = vpa(yA, 3)
xB = x2 + (x3-x2)*t; xB = vpa(xB)
yB = aB + bB*t + cB*t^2 + dB*t^3; yB = vpa(yB, 3)
xC = x3 + (x4-x3)*t; xC = vpa(xC)
yC = aC + bC*t + cC*t^2 + dC*t^3; yC = vpa(yC, 3)
 
%plotting
tt = linspace(0,1);
xa = subs(xA, t, tt);
ya = subs(yA, t, tt);
xb = subs(xB, t, tt);
yb = subs(yB, t, tt);
xc = subs(xC, t, tt);
yc = subs(yC, t, tt);
 
subplot(131); plot(tt,xa, 'k-', tt, xb, 'k--', tt, xc, 'k-.');
xlabel('t'); ylabel('x'); title('t - x'); axis square;
subplot(132); plot(tt,ya, 'k-', tt, yb, 'k--', tt, yc, 'k-.');
xlabel('t'); ylabel('y'); title('t - y'); axis square;
subplot(133); X = [x1 x2 x3 x4]; Y = [y1 y2 y3 y4];
plot(xa,ya,'k-', xb,yb, 'k--',xc,yc,'k-.', X, Y, 'ko'); hold on;
scatter(X, Y, 20, 'r', 'filled'); grid;
 
text(0.5,1,'P_1');
text(2.5,2,'P_2');
text(5.5,0,'P_3');
text(7,0,'P_4');
legend('A', 'B', 'C');
xlabel('x'); ylabel('y'); title('x - y'); axis square;

hold off;

NOTE

The importance of the end-point conditions can be observed here. Compare Examples 1.8 
and 1.9. Even though the CPs remain the same in both cases, the shape of the piecewise 
curve has changed, as shown in Figures 1.12 and 1.13, due to changes in end-point slopes 
only.



Interpolating Splines   ◾   39

1.10  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Splines are irregular curve segments with known mathematical properties.

• The shape of the spline is determined by “CPs.”

• Interpolating splines actually go through all of its CPs.

• Hybrid splines go through some of its CPs but not through others.

• Approximating splines in general does not go through any of its CPs.

• Splines are mathematically modeled using polynomials equations in the form 
= ( )y f x .

• Polynomial equations can also be represented in parametric form = =( ), ( )x f t y g t .

• A linear spline is represented by a first-degree polynomial equation = +y a bx.

• A quadratic spline is represented by a second-degree polynomial equation 
= + + 2y a bx cx .

• A cubic spline is represented by a third-degree polynomial equation 
= + + +2 3y a bx cx dx .

• Spatial set of equations can be expressed in the matrix form Y = C·A, whose solution 
is A = inv(C)·Y.

• Parametric set of equations can be expressed in the matrix form G = C·A, whose 
 solution is A = inv(C)·G.

• Complex curves are modeled by multiple cubic splines joined end to end, known as 
piecewise splines.

• Conversion between the spatial and parametric domains can be done using chain 
rules of differentiation.

1.11  REVIEW QUESTIONS
 1. What is meant by “spline”? From where has the word originated?

 2. What are the different types of splines possible?

 3. What is meant by polynomial equation?

 4. Differentiate between the standard form and parametric form of representation.

 5. What is a constraint matrix, coefficient matrix, geometry matrix, and basis matrix?

 6. Explain the difference between the notations P0 and P(0).

 7. What is a linear spline and how is it represented using a polynomial?
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 8. What is a quadratic spline and how is it represented using a polynomial?

 9. What is a cubic spline and how is it represented using a polynomial?

 10. What are sub-division ratios used in parametric forms of quadratic and cubic splines?

 11. Why is a parametric form of a spline represented using three different plots?

 12. What are piecewise splines and why are they necessary?

 13. What are the C0, C1, and C2 continuity conditions?

 14. What is meant by end-point condition?

 15. How is it possible to convert values between spatial and parametric domains?

1.12  PRACTICE PROBLEMS
 1. Find the equation of a linear spline passing through (−3, −3) and having slope −3.

 2. Find equation of a quadratic curve passing through (0, 0), (π/2, 1), and (π, 0).

 3. Find the equation of a quadratic curve through (0, 2), (−2, 0), and (2, −2) in  parametric 
form with k = 0.4.

 4. Derive parametric equations of a quadratic curve, which goes through three points 
(−2, 1), (−1, 2), and (2, −1) in such a way that the middle point divides the curve in the 
ratio 1:2.

 5. Find the equation of a cubic interpolating spline through the points (3, 2), (8, −4), 
(6, 5), and (1, 0).

 6. Find the equation of a cubic spline passing through four points (3, 2), (8, −4), (6, 5), 
and (1, 0), in parametric form, with sub-division ratios m = 0.1 and n = 0.7.

 7. Find piecewise cubic equation of a curve passing through (−5, −2), (−1, −1), (5, 0), and 
(7, −2). Slopes at first and last points are 1 and 1, respectively.

 8. Find the equation of a quadratic curve in the form = ( )y f x , which passes through the 
three points − −( , ), (0, ), and ( , 0)k k k k , where k is a constant.

 9. For what value(s) of k will two curve segments having equations = + ⋅ − ⋅2 3 2y k k x k x  
and = − ⋅ + ⋅3 2 2y k k x k x  satisfy the C1 continuity condition at point P(k, −k), where k 
is a constant?

 10. Find piecewise parametric cubic equation of a curve passing through (1, −2), (2, −3), 
(3, −4), and (4, −5). Slopes at first and last points are 5 and −6, respectively. Assume 
x vs. t relations to be linear.
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C h a p t e r  2

Blending Functions 
and Hybrid Splines

2.1  INTRODUCTION
In the previous chapter, we have discussed how equations of interpolating splines can be 
derived by substituting the coordinate information into the starting equatisons. Apart from 
interpolating splines, there are other types of splines, which do not always pass through 
the CPs or all the CPs may not be known or conditions other than CPs need to be used for 
deriving their equations. For such splines, the techniques previously discussed would not 
be applicable and a new set of techniques need to be devised. The newer techniques are 
designed in such a way so that spline equations can be made independent of the coordi-
nates of the CPs. Such techniques are applicable to hybrid splines, which only pass through 
a subset of the CPs, and approximating splines, which in general do not pass through any 
of its CPs. This has led to the concept of blending functions (BFs), which provides us with 
ways of determining where a spline is located in the neighborhood of a CP. In the following 
sections, the concept of BFs is explained and then applied to both interpolating and non-
interpolating splines. The latter part of this chapter lays the foundation of hybrid splines. 
Hybrid splines are those which pass through few CPs but not through others or boundary 
conditions other than CPs are used to derive their equations. To fully define hybrid splines 
therefore, some additional constraints are often specified, for example slope of the curve 
at a point. Four types of hybrid splines are discussed, namely, Hermite spline, Cardinal 
spline, Catmull–Rom (C–R) spline, and Bezier spline. In each case, we discuss mostly the 
cubic curves in parametric form, as they are most often used in graphics and moreover, the 
ideas discussed can be extended to other degree of curves also.

2.2  BLENDING FUNCTIONS
The concept of “BFs” was proposed as a means for calculating equations of curves, which 
are non-interpolating i.e. they do not pass through some or all of the CPs (Hearn and 
Baker, 1996). For interpolating curves, the coordinates of the CPs are substituted in the 
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starting equations to solve for the unknown coefficients. However, if the curve does not 
pass through the CPs then this method does not work and a new approach is required to 
determine the trajectory of a point on the curve with respect to the CPs.

Consider a spline curve whose CPs are at locations P0, P1, P2, and P3. In general, none of 
the CPs are actually located on the curve but would be around it somewhere in the neigh-
borhood (see Figure 2.1). Let us assume that four masses L0, L1, L2, and L3 are located on the 
CPs P0, P1, P2, and P3, which exert gravitational pull on the spline. Then the center of mass 
is located at P given by

 = + + +
+ + +

0 0 1 1 2 2 3 3

0 1 2 3
P L P L P L P L P

L L L L
 (2.1)

Now, consider that the masses are not constant but change their values as a function of the 
parametric variable t(0 ≤ t ≤ 1) i.e. Li = f(t). Then, the center of mass P will also shift to dif-
ferent points. If all these points are joined together as t takes on various values from 0 to 
1, then the locus of P would indicate the actual spline we are interested in. The functions 
Li = f(t) are known as BFs. It is obvious that the total number of BFs would be equal to the 
total number of masses which in turn would be equal to the total number of CPs. Thus for 
a cubic curve there are in general four BFs.

To reduce complexity of computations, an additional constraint is applied: ΣLi = 1 
i.e. L0 + L1 + L2 + L3 = 1. This reduces the denominator of the above equation to 1 and gives us

 = + + +0 0 1 1 2 2 3 3P L P L P L P L P  (2.2)
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FIGURE 2.1 Concept of blending functions.
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It might be obvious to reflect that larger the mass at a CP, more will be its gravitational pull 
on the spline and nearer will the spline be drawn towards that point. Writing the above in 
matrix form:

 = + + + = 

























= ⋅0 0 1 1 2 2 3 3 0 1 2 3

0

1

2

3

P L P L P L P L P L L L L

P
P
P
P

L G (2.3)

The matrix L provides us with a characterization of any point P on the spline independent 
of the CPs located in matrix G. Matrix L is referred to as the “BF matrix” while the individ-
ual elements L0, L1, L2, and L3 are the BFs (sometimes also referred to as “basis functions”). 
The matrix G is the geometry matrix as it defines the locations of the CPs, which determine 
the geometry of the curve.

From the previous chapter, we know that in general for a parametric cubic curve:

 = + + + = 























= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅( ) 1 ( ) ( )  2 3 2 3P t a bt ct dt t t t

a
b
c
d

T A T B G T B G L G

 (2.4)

where A is the coefficient matrix, B is the basis matrix, T is the parametric matrix, G is 
the geometry matrix, and L is the BF matrix. The above expression shows us that L = T·B 
i.e. the BF matrix L is nothing but the product of the parametric matrix T and the basis 
matrix B.

Below we summarize all the relevant relations, which will be required for solving 
numerical problems:

 

= ⋅

=

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅ ⋅

inv ( )

G C A

B C

A B G

P L G

L T B

P T A

P T B G

 (2.5)
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Example 2.1

A cubic curve has the following BFs, where a, b, and c are constants: 
= − = = = −L at , L at , L bt , L c40 1

3
2

2
3 . Find its basis matrix.

From Equation (2.4), L = T·B

For a cubic curve, L = 

 = 




⋅10 1 2 3

2 3L L L L t t t B

Let =





















11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

B

x x x x
x x x x
x x x x
x x x x

From inspection, = = − = =0, 4 , 0, 011 21 31 41x x a x x
Similarly, the other terms are obtained in a likewise manner and compiled together 

to form the basis matrix:

 =

−
−



















0 0 0
4 0 0 0
0 0 0
0 0 0

B

c
a

b
a

 

Verification: The correctness of the basis matrix could be verified by computing the 
product T·B, which would give us the given L matrix back.
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2.3  BLENDING FUNCTIONS OF INTERPOLATING SPLINES
Even though the concept of BFs has been derived for non-interpolating curves, we can 
readily apply it to interpolating curves too. In fact that is what we are going to do now 
since we are already familiar with interpolating curves and this will help us assimilate the 
concept of BFs more easily.

For linear interpolating splines, we have seen in Section 1.3 that

 =








 =

−










−
1 0
1 1

1 0
1 1

1

B  

This gives us:

 = ⋅ = 



 −









 = −



( ) 1 1 0

1 1
1 ,L t T B t t t  (2.6)

Separating out the components, individual BFs are:

 
=

=

   1 – 

   

0

1

L t

L t
 (2.7)

By varying t over all possible values from 0 to 1, we can plot the above BFs as shown in 
Figure 2.2.
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FIGURE 2.2 Blending functions of linear interpolating splines.
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One observation which can immediately be made from the graph is that the constraint 

∑ =1Li  holds good i.e. for any value of t the sum of the values of L0 and L1 always equals 1. 
That is expected since L0 + L1 = = (1 − t) + t = 1

The following important points can now be inferred from the above discussion:

• The BFs depict how the masses at the CPs change with varying values of t

• For each value of t, sum of the BF values is always equal to 1

• Although BFs are functions of t, at each CP t has a specific value and so all BFs become 
scalar constants

For quadratic interpolating splines, we have seen in Section 1.5 the following, where k is 
the sub-division ratio
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1 0 0
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B k k  

This gives us:

 = ⋅ = 
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( ) 1
1 0 0
1
1 1 1

2 2

1

L t T B t t k k  (2.8)

Example 2.2

Find the BFs of a quadratic spline having sub-division ratio k = 0.8.
From Equation (2.8)
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1 0 0
1 0.8 0.64
1 1 1
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Simplifying:

 L t t t t t t t= − + − − + ( ) 1 2.25 1.25 , 6.25 6.25 , 4 52 2 2  

Separating out the component BFs (Figure 2.3)
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MATLAB Code 2.2

clear all; clc;
syms t; k = 0.8;
C = [1 0 0; 1 k k^2; 1 1 1];
B = inv(C);
L = [1 t t^2]*B;
fprintf('Blending functions are :\n');
disp(L(1)), disp(L(2)), disp(L(3));

%plotting

%Method-1
figure,
subplot(221), ezplot(L(1), [0,1]);
subplot(222), ezplot(L(2), [0,1]);
subplot(223), ezplot(L(3), [0,1]);

%Method-2
figure,
tt = 0:.01:1;
L0 = subs(L(1), t, tt);
L1 = subs(L(2), t, tt);
L2 = subs(L(3), t, tt);
plot(tt, L0, 'k-', tt, L1, 'k--', tt, L2, 'k-.');
grid;
xlabel('t');
ylabel('L');
legend('L0','L1','L2');

For cubic interpolating splines, we have seen in Section 1.7 the following, where m and 
n are the sub-division ratios

 =



















−
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1
1
1 1 1 1

2 3

2 3

1

B m m m
n n n

 

NOTE

Two methods for plotting the BFs are shown in the code above. In the first method shown in 
Figure 2.3a each BF is plotted individually. In the second method shown in Figure 2.3b, all 
the three BFs are plotted together. The second plot indicates how the BFs are related to each 
other. For example, it shows that only one BF is non-zero at each of the CPs i.e. at t = 0, at 
t = 0.8 and at t = 1.

disp: displays the symbolic expressions without additional line gaps.
ezplot: Plots symbolic variables directly without converting to matrix values
figure: Generates a new window to display figures.
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This gives us:

 = ⋅ = 
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FIGURE 2.3 (a and b) Plots for Example 2.2.
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Example 2.3

Find the BFs of a cubic spline having sub-division ratios m = 0.1 and n = 0.7. 
Hence, show that at each CP only one component of the BFs is non-zero.

From Equation (2.9)
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Simplifying and separating out the component BFs
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At CP 1: Putting t = 0, = = = =1, 00 1 2 3L L L L
At CP 2: Putting t = 0.1, = = = =1, 01 0 2 3L L L L
At CP 3: Putting t = 0.7, = = = =1, 02 0 1 3L L L L
At CP 4: Putting t = 1, = = = =1, 03 0 1 2L L L L  (Figure 2.4)

MATLAB Code 2.3

clear all; clc;
syms t;
m = 0.1; n = 0.7;
C = [1 0 0 0; 1 m m^2 m^3; 1 n n^2 n^3; 1 1 1 1];
B = inv(C);
T = [1 t t^2 t^3];
L = T*B;
fprintf('Blending functions are :\n');
disp(L(1)), disp(L(2)), disp(L(3)), disp(L(4));
 
%plotting
 
%Method-1
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FIGURE 2.4 (a and b) Plots for Example 2.3.
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figure, 
subplot(221), ezplot(L(1), [0,1]);
subplot(222), ezplot(L(2), [0,1]);
subplot(223), ezplot(L(3), [0,1]);
subplot(224), ezplot(L(4), [0,1]);
 
%Method-2
figure,
tt = 0:.01:1;
L0 = subs(L(1), t, tt);
L1 = subs(L(2), t, tt);
L2 = subs(L(3), t, tt);
L3 = subs(L(4), t, tt);
 
plot(tt, L0, 'k-', tt, L1, 'k--', tt, L2, 'k-.', tt, L3, 'k:');
grid;
xlabel('t');
ylabel('L');
legend('L0', 'L1', 'L2', 'L3');
 
fprintf('\nL(0) :'), disp(subs(L, t, 0));
fprintf('L(0.1) :'), disp(subs(L, t, 0.1));
fprintf('L(0.7) :'), disp(subs(L, t, 0.7));
fprintf('L(1) :'), disp(subs(L, t, 1));

The above discussions pave the way for an important conclusion. In general, an approxi-
mating spline will not go through any of its CPs, so the location of any point on the curve 
with respect to the position of the CPs, is determined by the net gravitational pull of all 
masses together (i.e. the center of mass). However, for interpolating splines the curve 
 actually goes through all of its CPs one after another. Analyzing this behavior from the 
viewpoint of BFs, leads us to conclude that at each point where the curve actually goes 
through a CP, the mass at that point must be so great as to nullify the effects of all other 
masses and force the center of mass to shift to that particular CP. We can therefore say 
that an interpolating spline can be considered as a special case of an approximating spline 
where each mass is large enough to nullify the effects of other masses and force the locus of 
the spline to go through a particular CP. This fact is also evident from the plots of the BFs 
above. At each CP only a specific BF has value equal to 1 while all the others are reduced 
to 0. This tells us where the CPs are located by noting where the BF graph has a single 1 and 
all other zeros. For example for the cubic curve above, the first CP is at t = 0, the second CP 
is at t = 0.1, the third CP is at t = 0.7 and the fourth CP is at t = 1.

2.4  HERMITE SPLINE
A hybrid spline differs from an interpolating spline in that it passes through only a subset 
of its CPs and hence requires some additional information for its unique characterization. 
The first hybrid spline that we are going to study is the Hermite spline, named after French 
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mathematician Charles Hermite (Hearn and Baker, 1996). For a cubic Hermite spline only 
the start point P(0) i.e. P(t) at t = 0, and the end point P(1) i.e. P(t) at t = 1, is known. To be 
uniquely specified two additional pieces of information are also given: the tangent slopes at 
the start point and end points i.e. = ′(0) (0)T P  and = ′(1) (1)T P  (see Figure 2.5).

To find the equation of a cubic Hermite spline, we start with the general equation of a 
cubic spline:

 = + + + = 























( ) 12 3 2 3P t a bt ct dt t t t

a
b
c
d

 

The derivative of the starting equation is:

 ′ = + +( ) 2 3 2P t b ct dt  (2.10)

Substituting the given conditions in both the starting equation and derivative equation:

 

(0) (say)

(1) (say)

(0)

(1) 2 3

0

1

= =
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′ = + +

P a P

P a b c d P

P b

P b c d

 (2.11)
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FIGURE 2.5 Hermite spline.
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Rearranging and rewriting the above equations:

 

P a

P a b c d

P b

P b c d

( )

( )
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′ =

′ = + +
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1 2 3
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1  (2.12)

Writing equations in matrix form G = C·A:
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Solving for A:
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 (2.14)

Substituting in starting equation:

 = ⋅ ⋅ = 



 − − −

−



















′
′





















( ) 1

1 0 0 0
0 0 1 0
3 3 2 1

2 2 1 1
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 (2.15)

The BFs of a cubic Hermite spline are given by:

 = ⋅ = 
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2 3L t T B t t t  (2.16)

Separating out the matrix components:
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Figure 2.6 shows the plot of the four BFs. One difference with the BFs of a cubic interpolat-
ing spline shown in Figure 2.4 can be observed. While for an interpolating spline, the BFs 
have four points for which only one is non-zero, Figure 2.6 shows that in this case there are 
only two such points (start and end points) for which this condition is true. This is a reflec-
tion of the fact that a hybrid spline passes through a subset of its CPs viz. only the first and 
last points and not through the intermediate points.

Example 2.4

Find the parametric equation of a cubic Hermite spline through points (1, 1) 
and (4, 3) and having parametric slopes (3, 6) and (1, −1) at these points.

Here, P0 = (1, 1), P1 = (4, 3), ′ =(0) (3, 6)P , ′ = −(1) (1, 1)P .
From Equation (2.14)
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Required parametric equations:
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FIGURE 2.6 Blending functions of cubic Hermite spline.
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Verification (Figure 2.7):

 
= = = =

′ = ′ = ′ = ′ = −

(0) 1, (0) 1, (1) 4, (1) 3

(0) 3, (0) 6, (1) 1, (1) 1

x y x y

x y x y
 

MATLAB Code 2.4

clear all; clc
syms t;
 
P0 = [1, 1];
P1 = [4, 3];
T0 = [3, 6];
T1 = [1, -1];
C = [1 0 0 0; 1 1 1 1; 0 1 0 0; 0 1 2 3];
B = inv(C);
X = [P0(1), P1(1)];
Y = [P0(2), P1(2)];
G = [P0; P1; T0; T1];
A = B*G;
T = [1 t t^2 t^3];
P = T*A;
fprintf('Required equations :\n');
x = P(1)
y = P(2)
 
%plotting
tt = 0:.01:1;
xx = subs(P(1), t, tt);
yy = subs(P(2), t, tt);
subplot(131), plot(tt, xx);  
xlabel('t'); ylabel('x'); axis square; title('t - x');
subplot(132), plot(tt, yy); 
xlabel('t'); ylabel('y'); axis square; title('t - y');
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FIGURE 2.7 Plots for Example 2.4.
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subplot(133), plot(xx, yy, 'b-'); hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); axis square; 
axis([0 5 0 4]); grid;
ezplot('(y-1) = 2*(x-1)'); colormap winter;
ezplot('(y-3) = -1*(x-4)');
title('x - y');
text(P0(1), P0(2)-0.5, 'P_0');
text(P1(1), P1(2)-0.5, 'P_1');
hold off;

2.5  CARDINAL SPLINE
A Cardinal spline is similar to a Hermite spline in that it actually passes through two 
given points P1 and P2, and has known gradients at these points, but unlike a Hermite 
spline, these gradients are not explicitly given. Rather two additional points are given, a 
 previous point P0 and a subsequent point P3, and the gradients at P1 and P2 are expressed as 
scalar multiples of the gradients of the line joining P0 with P2, and P1 with P3, respectively 
(Hearn and Baker, 1996) (see Figure 2.8).

The line vector connecting P0 and P2 is given by the differences of their position vectors i.e. 
( )−2 0P P . The gradient at P1 is a scalar multiple of this line vector i.e. ( )′ = −2 01P s P P , where s is 
referred to as the “shape parameter.” Likewise, the line vector connecting P1 and P3 is given 
by the differences of their position vectors i.e. ( )−3 1P P . The gradient at P2 is a scalar multiple 

NOTE

colormap: specifies a color scheme using predefined color look-up tables
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FIGURE 2.8 Cardinal spline.
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of this line vector i.e. ( )′ = −3 12P s P P . The value of s typically ranges from 0 to 1. Smaller values 
of s produce shorter and tighter curves, larger values of s produce longer and looser curves. 
If s > 1, the curve crosses over to the other size of the tangent line (see Figure 2.9).

To derive equation of a cubic Cardinal spline, we start with a general third-degree 
 parametric equation

 = + + + = 























( ) 12 3 2 3P t a bt ct dt t t t

a
b
c
d

 

Calculate derivative of the starting equation

 ′ = + +( ) 2 3 2P t b ct dt  

Substituting the starting conditions in the above equations
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P b c d P s P P

 (2.18)

Substituting P1 and P2 and rearranging:

 

= + −



 + +

= + 



 + 



 + 





1 1

1 2 3

0

3

P a
s

b c d

P a
s

b
s

c
s

d

 

-3

-2

-1

0

1

2

3

4

5
s = 0.1

P0 P0 P0

P1 P1
P1

P2 P2 P2

P3 P3 P3-3

-2

-1

0

1

2

3

4

5
s = 0.9

0 2 4 6 0 2 4 6 0 2 4 6
-3

-2

-1

0

1

2

3

4

5
s = 1.5

FIGURE 2.9 Effects of varying the shape parameter.
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Rewriting all four equations in matrix form G = CA
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1 1 1 1

1 0 0 0
1 1 1 1

1 1 2 3

0
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3

P
P
P
P
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s s s
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 (2.19)

Solving for A:
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− − −

− − −







































0 1 0 0
0 0

2 3 3 2
2 2

0
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3

a
b
c
d
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s s s s
s s s s

P
P
P
P

 (2.20)

Substituting in starting equation:

 = ⋅ ⋅ = 





−
− − −
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( ) 1

0 1 0 0
0 0

2 3 3 2
2 2

2 3

0

1

2

3

P t T B G t t t s s
s s s s
s s s s

P
P
P
P

 (2.21)

The BFs of a cubic Cardinal spline are given by:

 = ⋅ = 
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− − −



















( ) 1

0 1 0 0
0 0

2 3 3 2
2 2

2 3L t T B t t t s s
s s s s
s s s s

 (2.22)

Separating out the matrix components:

 

= − ⋅ + ⋅ − ⋅

= + − ⋅ + − ⋅

= ⋅ + − ⋅ + − ⋅

= − ⋅ + ⋅

2

1 ( 3) (2 )

(3 2 ) ( 2)

0
2 3

1
2 3

2
2 3

3
2 3

L s t s t s t

L s t s t

L s t s t s t

L s t s t

 (2.23)

Example 2.5

Find the BFs of a cubic Cardinal spline with shape parameter s = 1.5 and generate a 
plot to visualize them.
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From Equation (2.23), substituting s = 1.5 (Figure 2.10)

 

( )
( )

( ) ( )

= − + −

= − +

= − +

= −

3 2 3 (3 )/2

2 3 2 1

2 (3 )/2

3 2 3 2

0
3 2

1
3 2

2
3

3
3 2

L t t t

L t t

L t t

L t t

 

MATLAB Code 2.5

clear all; clc;
syms t;
s = 1.5;
B = [0 1 0 0 ; -s 0 s 0 ; 2*s s-3 3-2*s -s ; -s 2-s s-2 s];
T = [1 t t^2 t^3];
L = T*B;
fprintf('Blending functions are :\n');
disp(L(1)), disp(L(2)), disp(L(3)), disp(L(4));
 
%plotting
tt = 0:.01:1;
L0 = subs(L(1), t, tt);
L1 = subs(L(2), t, tt);
L2 = subs(L(3), t, tt);
L3 = subs(L(4), t, tt);
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FIGURE 2.10 Plot for Example 2.5.
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plot(tt, L0, 'k-', tt, L1, 'k--', tt,  L2, 'k-.', tt, L3, 'k:'); 
xlabel('t'); ylabel('L'); grid;
legend('L0', 'L1', 'L2', 'L3');

2.6  CATMULL–ROM SPLINE
A Cardinal spline with value of the shape parameter s = 0.5 is referred to as C–R spline 
named after the American  scientist Edwin Catmull and Israeli scientist Raphael Rom. 
The BFs and basis matrix are computed by substituting s = 0.5 in Equation (2.22) to obtain 
the following:

 = −
− −

− −



















0 1 0 0
0.5 0 0.5 0
1 2.5 2 0.5
0.5 1.5 1.5 0.5

B  (2.24)

 

= − + −

= − +

= + −

= − +

0.5 0.5
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0.5 2 1.5

0.5 0.5

0
2 3

1
2 3

2
2 3

3
2 3

L t t t

L t t

L t t t

L t t

 (2.25)

A plot of the BFs is shown in Figure 2.11.
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FIGURE 2.11 Blending functions of a C–R spline.
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Example 2.6

Find the parametric equation of a cubic C–R spline associated with the CPs (0, −1), 
(1, 1), (4, 3), and (5, −2).

From Equations (2.21) and (2.24), substituting the given values

 = 





−
− −

− −



















−

−



















( ) 1

0 1 0 0
0.5 0 0.5 0
1 2.5 2 0.5
0.5 1.5 1.5 0.5

0 1
1 1
4 3
5 2

2 3P t t t t  

Simplifying and separating out the components

 
= − + + +

= − + + +

( ) 2 3 2 1

( ) 3.5 3.5 2 1

3 2

3 2

x t t t t

y t t t t
 

Verification: = = = =(0) 1, (0) 1, (1) 4, (1) 3x y x y  (Figure 2.12).

MATLAB Code 2.6

clear all; clc;
syms t;
P0 = [0, -1]; P1 = [1, 1]; P2 = [4, 3]; P3 = [5, -2]; s = 0.5;
X = [P0(1) P1(1) P2(1) P3(1)]; Y = [P0(2) P1(2) P2(2) P3(2)];
T = [1 t t^2 t^3];
B = [0 1 0 0 ; -s 0 s 0 ; 2*s s-3 3-2*s -s ; -s 2-s s-2 s];
G = [P0; P1; P2; P3];
P = T*B*G;
x = P(1); y = P(2);
fprintf('Required equations are : \n');
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FIGURE 2.12 Plots for Example 2.6.
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%plotting
tt = linspace(0, 1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);
subplot(131), plot(tt,xx); title('t - x');
xlabel('t'); ylabel('x'); axis square;
subplot(132), plot(tt,yy);  title('t - y');
xlabel('t'); ylabel('y'); axis square;  
subplot(133), plot(xx, yy, 'b-', 'LineWidth', 1.5); 
xlabel('x'); ylabel('y'); axis square; title('x - y');
grid; hold on;
scatter(X, Y, 20, 'r', 'filled');
axis([-1 6 -3 4]);
text(P0(1), P0(2)-1, 'P_0');
text(P1(1), P1(2)-1, 'P_1');
text(P2(1), P2(2)-1, 'P_2');
text(P3(1), P3(2)+1, 'P_3');
hold off;

2.7  BEZIER SPLINE
Bezier spline, named after French engineer Pierre Bezier, is a popular type of hybrid splines, 
which satisfies the following characteristics: (a) it passes through the first and last CPs, 
(b) line joining the first CP and the second CP is tangential to the curve, (c) line joining 
the last CP and the previous CP is tangential to the curve, and (d) the curve is contained 
entirely within the convex hull formed by joining all the CPs in sequence (see Figure 2.13).

To satisfy the above conditions the BFs of a Bezier spline is generated by Bernstein 
 polynomials (Hearn and Baker, 1996), named after the Russian mathematician Sergei 
Bernstein. Bernstein polynomials of degree n is shown below, where Cn

k denotes the 
 combination of k items out of n and 0 ≤ t ≤ 1.
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FIGURE 2.13 Bezier splines.
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= ⋅ − ⋅

=
−

−(1 )

!
!( )!

L C t t

C n
k n k

k
n

k
n k k

n
k

 (2.26)

Equation of the curve is P = L.G. Here, Pk denote the CPs.

 ∑ ∑= = ⋅ − ⋅ ⋅
= =

−( ) (1 )
0 0

P t L P C t t P
k

n

k k

k

n
n

k
n k k

k  (2.27)

A quadratic Bezier curve is of degree 2 and associated with three CPs P0, P1, and P2. 
Equation of the curve is derived by putting n = 2 in the Bernstein polynomial

 ∑ ∑= = ⋅ − ⋅ ⋅
= =

−( ) (1 )
0

2

0

2
2 2P t L P C t t P

k

k k

k

k
k k

k (2.28)

Expanding:

 = − ⋅ + − ⋅ ⋅ + ⋅( ) (1 ) 2(1 )2
0 1

2
2P t t P t t P t P  (2.29)

Separating out the component BFs:

 

= − = − +

= − ⋅ = −

=

(1 ) 1 2

2(1 ) 2 2

0
2 2

1
2

2
2

L t t t

L t t t t

L t

 (2.30)

A plot of the blending functions is shown below in Figure 2.14.
Since L = T.B the basis matrix can also be computed trivially:

 = −
−

















1 0 0
2 2 0

1 2 1
B  (2.31)

Equation of the curve can be expressed in P = T.B.G form

 = 





−
−

































( ) 1
1 0 0
2 2 0

1 2 1

2
0

1

2

P t t t
P
P
P

 (2.32)
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Example 2.7

Find parametric equations of a quadratic Bezier spline with three CPs P0(1, −1), 
P1(4, 3), and P2(5, −2).

From Equation (2.32), substituting given conditions

 = 





−
−

















−

−

















( ) 1
1 0 0
2 2 0

1 2 1

1 1
4 3
5 2

2P t t t  

Separating out the components:

 
= +

= − +

( ) 1 6 – 2

( ) 1 8 –9

2

2

x t t t

y t t t
 

Verification: = = = − = −(0) 1, (1) 5, (0) 1, (1) 2x x y y  (Figure 2.15).

MATLAB Code 2.7

clear all; clc;
syms t;
P0 = [1, -1]; P1 = [4, 3]; P2 = [5, -2]; 
X = [P0(1) P1(1) P2(1) ]; 
Y = [P0(2) P1(2) P2(2) ];
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FIGURE 2.14 BFs of a quadratic Bezier spline.
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T = [1 t t^2 ];
B = [1 0 0 ; -2 2 0 ; 1 -2 1];
G = [P0; P1; P2];
P = T*B*G;
fprintf('Required equations :\n');
x = P(1)
y = P(2)
 
%plotting
tt = linspace(0,1);
xx = subs(x, t, tt);
yy = subs(y, t, tt);
subplot(131), plot(tt, xx); title('t - x');
xlabel('t'); ylabel('x'); axis square;
subplot(132), plot(tt, yy);  title('t - y');
xlabel('t'); ylabel('y'); axis square;
subplot(133), plot(xx, yy, 'b-', 'LineWidth', 1.5); 
title('x - y');
hold on;
scatter(X, Y, 20, 'r', 'filled');
xlabel('x'); ylabel('y'); axis square;
grid on; d = 0.5;
text(P0(1), P0(2)-d, 'P_0');
text(P1(1)+d, P1(2), 'P_1');
text(P2(1), P2(2)-d, 'P_2');
axis([-1 6 -3 4]);
hold off;

A cubic Bezier curve is of degree 3 and associated with four CPs P0, P1, P2, and P3. Equation 
of the curve is derived by putting n = 3 in the Bernstein polynomial (Foley et al., 1995; 
Shirley, 2002)

 ∑ ∑= = ⋅ − ⋅ ⋅
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k (2.33)
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FIGURE 2.15 Plots for Example 2.7.
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Expanding:

 = − ⋅ + ⋅ − ⋅ ⋅ + ⋅ − ⋅ ⋅ + ⋅( ) (1 ) 3 (1 ) 3 (1 )3
0

2
1

2
2

3
3P t t P t t P t t P t P  (2.34)

Separating out the components BFs:

 

= − = − + −

= − ⋅ = − +
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=

(1 ) 1 3 3
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3(1 ) 3 3

0
3 2 3
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2
2 2 3

3
3

L t t t t

L t t t t t

L t t t t

L t

 (2.35)

A plot of the BFs is shown below in Figure 2.16.
Since L = T·B, the basis matrix can also be computed trivially:

 = −
−

− −



















1 0 0 0
3 3 0 0

3 6 3 0
1 3 3 1

B  (2.36)

Equation of the curve can be expressed in P = T·B·G form

 = 





−
−

− −







































( ) 1
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1 3 3 1
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0
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 (2.37)
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FIGURE 2.16 BFs of cubic Bezier spline.
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Example 2.8

Find parametric equations of a cubic Bezier spline associated with four CPs.
P0(1, −1), P1(1, 1), P2(4, 3), P3(5, −2).

From Equation (2.37) substituting given conditions

 = 





−
−

− −



















−

−



















( ) 1

1 0 0 0
3 3 0 0

3 6 3 0
1 3 3 1

1 1
1 1
4 3
5 2

2 3t t t t  

Separating out the components:

 
= + −

= − + −

( ) 1 9 5

( ) 1 6 7

2 3

3

x t t t

y t t t
 

Verification: = = = − = −(0) 1, (1) 5, (0) 1, (1) 2x x y y  (Figure 2.17).

MATLAB Code 2.8

clear all; clc;
syms t;
P0 = [1, -1]; P1 = [1, 1]; P2 = [4, 3]; P3 = [5, -2]; 
X = [P0(1) P1(1) P2(1) P3(1)]; 
Y = [P0(2) P1(2) P2(2) P3(2)];
T = [1 t t^2 t^3];
B = [1 0 0 0; -3 3 0 0; 3 -6 3 0; -1 3 -3 1];
G = [P0; P1; P2; P3];
P = T*B*G;
fprintf('Required equations :\n');
x = P(1)
y = P(2)
 
%plotting
tt = linspace(0,1);
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FIGURE 2.17 Plots for Example 2.8.
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xx = subs(x, t, tt);
yy = subs(y, t, tt);
 
subplot(131), plot(tt, xx); title('t - x');
xlabel('t'); ylabel('x'); axis square;
subplot(132), plot(tt, yy);  title('t - y');
xlabel('t'); ylabel('y'); axis square;
subplot(133), plot(xx, yy, 'b-', 'LineWidth', 1.5); 
xlabel('x'); ylabel('y'); axis square; hold on; grid;
scatter(X, Y, 20, 'r', 'filled');  title('x - y');
axis([0 6 -3 4]);
d = 0.5;
text(P0(1), P0(2)-d, 'P_0');
text(P1(1), P1(2)+d, 'P_1');
text(P2(1), P2(2)-d, 'P_2');
text(P3(1), P3(2)-d, 'P_3');
hold off;

2.8  SPLINE CONVERSIONS
Before ending this chapter, we take a look at conversions of one spline form to another. 
A spline of one type can be expressed as a spline of another type. Since the spline physically 
remains the same, its equation is unaltered. However, the basis matrix and CPs change 
(Hearn and Baker, 1996).

Suppose a spline of type 1 specified by its basis matrix B1 and CPs in geometry matrix G1 
needs to be converted to a spline of type 2 with basis matrix B2 and geometry matrix G1. Then 
equation of the first spline is P1(t) = T·B1·G1 and equation of the second spline is P2(t) = T·B2·G2. 
Note, however, that the actual spline physically remains the same and it is only represented 
in two different manners. The two equations are therefore equivalent, and can be equated:

 = ⋅ ⋅ = ⋅ ⋅( ) 1 1 2 2P t T B G T B G  (2.38)

Basis matrices of both splines are known as they are characteristic of the spline type. CPs 
of the first spline should also be known. CPs of the second spline are found out by solving 
the following:

 = ⋅ ⋅−
2 2

1
1 1G B B G  (2.39)

Even if for the first curve the CPs are not specifically known but the curve is expressed in 
the parametric form { }( ) ( )= + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅{ ( ), ( )} , ,0 1 2

2
3

3
0 1 2

2
3

3x t y t a a t a t a t b b t b t b t  then 
we can represent it as:
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= ⋅ ⋅{ ( ), ( )} 1 ( )2 3

0 0

1 1

2 2

3 3

x t y t t t t

a b
a b
a b
a b

T B G  (2.40)
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The second matrix gives the product of B and G and can be directly plugged into 
Equation (2.39) to calculate G2.

Example 2.9

Consider a C–R spline through P0(1, −1), P1(1, 4), P2(4, 4), and P3(5, −2). Convert it 
to a Bezier spline and find its new CPs. Also compare equations of both the curves.
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1 1
1 4
4 4
5 2

GCR , = −
− −

− −



















0 1 0 0
0.5 0 0.5 0
1 2.5 2 0.5
0.5 1.5 1.5 0.5
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−
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1 0 0 0
3 3 0 0

3 6 3 0
1 3 3 1

BBZ

From Equation (2.39)

 = ⋅ ⋅ =



















−

1 4
1.5 4.83
3.33 5

4 4

1G B B GBZ BZ CR CR  

Thus CPs of the Bezier curve are (1,4), (1.5,4.83), (3.33,5),and (4,4)0 1 2 3Q Q Q Q .
To verify that both of these represent the same physical spline.
Equation of CR spline:

 

( ) ( )

= ⋅ ⋅ = 





−
− −

− −



















−

−



















= + + − + − − 

1

0 1 0 0
0.5 0 0.5 0
1 2.5 2 0.5
0.5 1.5 1.5 0.5

1 1
1 4
4 4
5 2

1 1.5 4 2.5 , 4 2.5 2 0.5

2 3

2 3 2 3

P T B G t t t

t t t t t t

CR CR CR

 

Equation of Bezier spline:
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As can be seen both of these equations point to the same physical spline, only the 
basis matrix and CPs are different in each case (Figure 2.18).
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FIGURE 2.18 Plots for Example 2.9.
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;
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;
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2.9  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• BFs are functions of the parametric variable t used to derive equations of non- 
interpolating splines.

• BFs are derived by assuming variable masses kept on the CPs, which exert gravita-
tional influence on the spline.

• The actual spline is the locus of the center of mass of these variable masses.

• Equation of a spline can be represented as product of BFs and CP locations.

• A Hermite spline is specified by two CPs and slopes of the curve at these points.

• A Cardinal spline is similar to Hermite spline but slopes are not directly specified.

• Slopes of Cardinal splines are determined by lines joining these points with two 
 additional points.

• A Cardinal spline is also associated with a shape parameter “s,” which determine the 
shape of the curve.

• A C–R spline is a special case of a Cardinal spline with s = 0.5.

• A Bezier curve passes through the first and last CPs and is entirely contained within 
its convex hull.

• BFs of Bezier splines can be derived from Bernstein polynomials of the same degree.

• A spline of one type can be converted to a spline of another type having a different 
set of CPs.

2.10  REVIEW QUESTIONS
 1. What are meant by BFs?

 2. How are BFs related to basis matrix?

 3. For an interpolating spline, under what conditions are BFs 0 and 1?

 4. Justify that interpolating splines are a special case of non-interpolating splines.

 5. What are the boundary conditions for specifying Hermite splines?

 6. How are Cardinal splines different from a Hermite spline?

 7. What does the shape parameter of Cardinal splines determine?

 8. Why is a C–R spline a special case of Cardinal spline?

 9. Why are BFs of Bezier splines derived from Bernstein polynomials?

 10. How is a spline of one type converted to a spline of another type?
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2.11  PRACTICE PROBLEMS
 1. For a cubic Hermite spline = +( ) 1 – 2 –2 3P t bt at bt  having equal slopes at start and end 

points, find a relation between constants a and b.

 2. Find equations of a Cardinal spline through (1, −1), (1, 1), (4, 3), and (5, −2) with shape 
parameter (1) s = 0.1 and (2) s = 0.9.

 3. A cubic curve has the following BFs, where a, b, and c are the constants: 
L at bt ct L bt ct at L a t t L at ct= − + − = − + = − + = − − −1 2 , 2 , 2 3 , 30

2 3
1

2 3
2

2
3

2 3. Find its 
basis matrix.

 4. A cubic interpolating spline with CPs (3, −4), (2, 3), (−2, −3), and (1, 0) and sub- 
division ratios 0.3 and 0.5 are converted into a Cardinal spline with shape factor 0.7. 
Find its CPs and equation of the curves.

 5. A quadratic Bezier curve is associated with following CPs: (2, 2), (0, 0), and (−4, 4). 
Find its equation.

 6. Find parametric equations of a cubic Bezier spline having CPs (3, −4), (2, 3), (0, 0), and 
(−2, −3).

 7. Show that for a quadratic Bezier curve with CPs P0, P1, and P2, the following 
 expression holds true: ( )+ ′ = −(0) (1) 2 2 0P P P P .

 8. Show that for a cubic Bezier curve with CPs P0, P1, P2, and P3 the following 
 expressions are true: ( )′ = −(0) 3 1 0P P P  and ( )′ = −(1) 3 3 2P P P .

 9. Convert the parametric curve ( )+ + + +1 2 3 , 4 5 62 2t t t t  to a quadratic Bezier curve 
and find its CPs.

 10. Convert the cubic Bezier spline having CPs (3, −4), (2, 3), (0, 0), and (−2, −3) to a cubic 
C–R spline and find its CPs.



http://www.taylorandfrancis.com
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C h a p t e r  3

Approximating Splines

3.1  INTRODUCTION
In the previous chapters, we have discussed how interpolating splines and hybrid splines 
are characterized using control points (CPs) and blending functions (BFs). Bezier 
splines in particular are quite popular and extensively used tools in graphics packages 
for modeling splines. However, Bezier splines have two major drawbacks, which have 
been the motivation for designing approximating splines. The first drawback is that the 
number of CPs is dependent on the degree of the curve i.e. it is not possible to increase 
the number of CPs for smoother control without increasing the degree of the poly-
nomial and hence computational complexity. The second drawback is that there is no 
provision of local control i.e. shifting the location of a single CP will change the shape 
of the entire spline instead of a local portion of the spline. In graphics local, control is 
usually desirable since it enables small adjustments in the spline to be made (Hearn and 
Baker, 1996).

To overcome, these drawbacks a new type of spline called B-spline has been proposed. 
B-spline stands for “basis spline” and these are truly approximating i.e. in general they do 
not go through any of the CPs but under special conditions they may be forced to do so. 
Essentially, B-splines consist of multiple curve segments with continuity at join points. 
This enables local control i.e. when a CP is moved only a set of local curve segments are 
changed instead of the entire curve. The BFs of B-splines are calculated using an algorithm 
known as Cox de Boor algorithm, named after the German mathematician Carl-Wilhelm 
Reinhold de Boor. Values of the parametric variable t at the join points are stored in a vec-
tor called the “knot vector (KV).” If the knot values are equally spaced, then the resulting 
spline is called uniform B-spline; otherwise, it is referred to as non-uniform. B-splines are 
called open uniform when KV values are repeated.

The BFs and equation of B-splines are not single entities but a collection of expres-
sions for each segment. For example, if there are four segments, designated as A, B, C, 
and D then each BF B has four sub-components BA, BB, BC, and BD and represented as 
B = {BA, BB, BC, BD}. If there are say three CPs P0, P1, and P2 then there would be three 
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BFs B0, B1, and B2 each with four sub-components i.e. B0A, … , B0D, B1A, … , B1D, and 
B2A, … , B2D. Usually the BFs are represented one per line as:

B0 = {B0A, B0B, B0C, B0D}

B1 = {B1A, B1B, B1C, B1D}

B2 = {B2A, B2B, B2C, B2D}

Similarly, the curve equation P also would have four sub-components P = {PA, PB, PC, 
PD}. We have seen before that equation of a curve can be expressed as products of CPs 
and BFs, hence the sub-components can be written as: PA = P0.B0A + P1.B1A + P2.B2A, 
PB = P0.B0B + P1.B1B + P2.B2B and so on. Note that the sub-components are valid for 
different ranges of t and hence cannot be added up but needs to be represented as a matrix 
of values. Typically segment A is valid over the range t t t0 1≤ < , B over t t t1 2≤ <  and so on. 
Since the curve expressions can be quite large, in most cases the equations are written 
vertically instead of horizontally, with the range of values mentioned for each segment, as 
shown below:

 P

P P P P t t t A

P P P P t t t B

P P P P t t t C

A B A B A B A

B B B B B B B

C B C B C B C

( )
( )
( )

=

= + + ≤ <

= + + ≤ <

= + + ≤ <










 [segment ]

 [segment ]

 [segment ]

0. 0 1. 1 2. 2 0 1

0. 0 1. 1 2. 2 1 2

0. 0 1. 1 2. 2 2 3

 

The details about computations of the B and P values are illustrated in the following 
sections.

3.2  LINEAR UNIFORM B-SPLINE
A B-spline has two defining parameters: d which is related to the degree of the spline and 
n which is related to the number of CPs. The degree of the spline is actually (d − 1) and the 
number of CPs is (n + 1). The other related parameters are derived as explained below.

For a linear B-spline, we start with d = 2 and n = 2

Then degree of the curve: d − 1 = 1

Number of CP: n + 1 = 3

Number of BF: n + 1 = 3

Number of curve segments: d + n = 4

Number of elements in the KV: d + n + 1 = 5

Let the curve segments be designated as A, B, C, and D and the CPs be P0, P1, and P2. Let 
the elements in the KV be designated as = {tk}, where k cycles over the values {0, 1, 2, 3, 4}. 
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In this case, the KV is ,  ,  ,  , 0 1 2 3 4T t t t t t[ ]= . Let the BFs be designated in the form Bk,d. Since 
there are three CPs, the BFs of the curve are given by B0,2, B1,2, and B2,2 and higher values of 
k are not relevant here. The equation of the curve is given by:

 P t P B P B P B( ) 0 0,2 1 1,2 2 2,2= ⋅ + ⋅ + ⋅  (3.1)

Figure 3.1 is a schematic diagram which indicates how the three CPs P0, P1, and P2 are 
associated with the three BFs B0,2, B1,2, and B2,2, the four segments A, B, C, and D and the 
five element KV [t0, t1, t2, t3, t4]. Irrespective of the actual locations of the CPs, their influ-
ences over specific segments remain the same. CP P0 exerts influence over segments A and 
B, P1 over segment B and C, and P2 over C and D. This provides the local control property 
characteristic of B-splines: changing the location of one CP changes only two segments of 
the spline while the remaining parts of the spline remains unchanged. The dashed lines in 
the figure indicate the range of influence. In the remaining part of this section, we provide 
verification of this fact.

The expressions of the BFs are calculated using an algorithm known as Cox de Boor 
algorithm, (Hearn and Baker, 1996) which is represented below:

 

B t t t

B t t
t t

B t t
t t

B

k k k

k d
k

k d k
k d

k d

k d k
k d

1, if , else 0,1 1

,
1

, 1
1

1, 1

= ≤ ≤

= −
−







⋅ + −
−







⋅

+

+ −
−

+

+ +
+ −

 (3.2)

The first line states that the first-order terms, with d = 1, of the BFs are equal to 1 if value of 
t for a particular segment lies within a specific range, else 0. The second line dictates how 
the higher order terms, with d > 1, are calculated based on first-order terms. The algorithm 
will be illustrated later. One point to be noted is that the algorithm is essentially recursive 
in nature as the higher order terms, pertaining to degree d, are calculated based on the 
lower order terms, pertaining to degree d − 1. Thus even though the equation of the curve 
requires only second-order terms Bk,2 as shown in Equation (3.1), the first-order terms Bk,1 
would need to be computed first.

t0 t1 t2 t3 t4
-1

1

P0

B02

P1

B12

P2

B22

A B C D

FIGURE 3.1 Linear uniform B-spline with three CPs.
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To find the BF and curve equation each segment has to be analyzed separately. But first, 
we need numerical values for the KV. Let us make a simplifying assumption that KV values 
are as follows: 0,  1,  2,  3,  40 1 2 3 4t t t t t= = = = = . Thus the KV becomes T = [0, 1, 2, 3, 4]. In 
due course, we will justify this assumption.

Segment A: t0 ≤ t < t1

 

= = = = =

= −
−







⋅ + −
−







⋅ =

= −
−







⋅ + −
−







⋅ =

= −
−







⋅ + −
−







⋅ =

1, 0, 0, 0, 0

0

0

0,1 1,1 2,1 3,1 4,1

0,2
0

1 0
0,1

2

2 1
1,1

1,2
1

2 1
1,1

3

3 2
2,1

2,2
2

3 2
2,1

4

4 3
3,1

B B B B B

B t t
t t

B t t
t t

B t

B t t
t t

B t t
t t

B

B t t
t t

B t t
t t

B

 

Segment B: t1 ≤ t < t2

 

0,  1, 0,  0,  0

2

1

0

0,1 1,1 2,1 3,1 4,1

0,2
0

1 0
0,1

2

2 1
1,1

1,2
1

2 1
1,1

3

3 2
2,1

2,2
2

3 2
2,1

4

4 3
3,1

B B B B B

B t t
t t

B t t
t t

B t

B t t
t t

B t t
t t

B t

B t t
t t

B t t
t t

B

= = = = =

= −
−
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−







⋅ = −
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−







⋅ + −
−







⋅ = −

= −
−







⋅ + −
−







⋅ =

 

Segment C: t2 ≤ t < t3

 

0,  0,  1,  0,  0

0

3

2

0,1 1,1 2,1 3,1 4,1

0,2
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1 0
0,1
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2 1
1,1

1,2
1

2 1
1,1

3

3 2
2,1

2,2
2

3 2
2,1

4

4 3
3,1

B B B B B

B t t
t t

B t t
t t

B

B t t
t t

B t t
t t

B t

B t t
t t

B t t
t t

B t
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⋅ = −
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Segment D: t3 ≤ t < t4

 

0,  0,  0,  1,  0

0

0

4

0,1 1,1 2,1 3,1 4,1

0,2
0

1 0
0,1
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2 1
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1,2
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B

B t t
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B t t
t t

B

B t t
t t

B t t
t t

B t

= = = = =
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Note that each segment has a specific value of k but we still cycle k over other possible val-
ues while calculating the BFs because we want to find out the influence of other CPs onto 
that segment. For example, for segment A, = 0, but we calculate B1,2 and B2,2 to find out what 
is the influence of the second and third CP on segment A. In this case, we see that both B1,2 
and B2,2 are zeros, which signifies that segment A is only controlled by the first CP P0 and is 
not influenced by the other CPs P1 and P2. See Equation (3.1). Similarly for segment B, k = 1 
but we see that both B0,2 and B1,2 are non-zeros, which implies that segment B is influenced 
by two CPs P0 and P1.

Now as per Equation (3.1), the BFs required to determine curve equation are B0,2, B1,2, 
and B3,2. These BFs, however, have different values for different segments. So all these  values 
need to be collected together specifying the segment for which they are valid. We use a 
separate subscript A, B, C, and D to denote the relevant segment.

 

,  ,  , 

,  ,  , 

,  ,  , 

0,2 0,2 0,2 0,2 0,2

1,2 1,2 1,2 1,2 1,2

2,2 2,2 2,2 2,2 2,2

B B B B B

B B B B B

B B B B B

A B C D

A B C D

A B C D

{ }
{ }
{ }

=

=

=

 (3.3)

Table 3.1 summarizes the segment-wise calculation of the BF values. As mentioned before 
a KV of T = [0, 1, 2, 3, 4] is assumed.

Substituting the above values in Equation (3.3) we get:

 

, 2 , 0, 0

0,  1, 3 , 0

0, 0,  2, 4

0,2

1,2

2,2

B t t

B t t

B t t

{ }

{ }

{ }

= −

= − −

= − −

 (3.4)

Equation (3.4) specifies the BFs of a linear uniform B-spline having three CPs (represented 
by three vertical rows) and four CPs (represented by four element vectors per row).
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An alternative way of representation of the BFs is shown in Equation (3.5) where only 
the non-zero values are indicated along with the segment name and range for t for which 
they are valid.

 

B
t t A

t t B

B
t t B

t t C

B
t t C

t t D

(0 1)
2 (1 2)

1 (1 2)
3 (2 3)

2 (2 3)
4 (3 4)

0,2

1,2

2,2

=
≤ <

− ≤ <







=
− ≤ <
− ≤ <







=
− ≤ <
− ≤ <







 (3.5)

Equation (3.5) shows that B0,2 and hence, P0 influences segments A and B, B1,2 and P1 
 influences segments B and C, and B2,2 and P2 influences segments C and D, a fact that has 
been indicated by the dashed lines in Figure 3.1.

The plot of the BFs is shown in Figure 3.2. Each BF has the same shape but shifted 
toward the right by 1 with respect to the previous one. Thus each BF can be obtained from 
the previous one by substituting t with (t − 1) as is evident from Equation (3.5). Also as 
shown in Equation (3.4), each BF has four sub-divisions out of which two are non-zeros. 
The first curve for B0,2 has non-zero parts for segments A (0 ≤ t < 1) and B (1 ≤ t < 2), the 
second curve for B1,2 has non-zero parts for segments B (1 ≤ t < 2) and C (2 ≤ t < 3), the third 
curve for B2,2 has non-zero parts for segments C (2 ≤ t < 3) and D (3 ≤ t < 4). Since the BFs 
are associated with the CPs, this again provides an indication of the local control property 

TABLE 3.1 Computation of BFs of Linear Uniform B-Spline

Segment t Bk,1 Bk,2

A ≤ <0 1t t t =10,1B
= 01,1B
= 02,1B
= 03,1B

=0,2B t
= 01,2B
= 02,2B

B ≤ <1 2t t t = 00,1B
=11,1B
= 02,1B
= 03,1B

= −20,2B t
= −11,2B t
= 02,2B

C ≤ <2 3t t t = 00,1B
= 01,1B
=12,1B
= 03,1B

= 00,2B
= −31,2B t
= − 22,2B t

D ≤ <3 4t t t = 00,1B
= 01,1B
= 02,1B
=13,1B

= 00,2B
= 01,2B
= −42,2B t
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of the spline i.e. the first CP has influence over the first two segments A and B, the second 
CP has influence over B and C, and so on. This means that if the first CP is changed, it will 
affect only the two of the four segments while the rest of the spline will remain unchanged. 
This is in contrast with the interpolating and hybrid curves where each BF is valid over the 
entire range of t.

The equation of the spline is a collection of the equations of its four segments:

 P t

P t
P t
P t
P t

A

B

C

D

( )  

(0 1)
(1 2)
(2 3)
(3 4)

 

 

 

 

=

≤ <
≤ <
≤ <
≤ <











 (3.6)

where

 

P P B P B P B

P P B P B P B

P P B P B P B

P P B P B P B

A A A A

B B B B

C C C C

D D D D

0 0,2 1 1,2 2 2,2

0 0,2 1 1,2 2 2,2

0 0,2 1 1,2 2 2,2

0 0,2 1 1,2 2 2,2

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅

 (3.7)

0 0.5 1 1.5 2 2.5 3 3.5 4

t
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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B

B02 B12 B22
A
B
C
D

FIGURE 3.2 BFs of a linear uniform B-spline.
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Substituting values of the BFs from Table 3.1 into Equation (3.6) we get:

 P t

P t t
P t P t t
P t P t t

P t t

( )

(0 1)
(2 ) ( 1) (1 2)
(3 ) ( 2) (2 3)

(4 ) (3 4)

0

0 1

1 2

2

=

⋅ ≤ <
⋅ − + ⋅ − ≤ <
⋅ − + ⋅ − ≤ <

⋅ − ≤ <











 (3.8)

Equation (3.8) represents the equation of a linear uniform B-spline with three CPs and four 
segments. The four parts are the equations of the four segments.

Example 3.1

Find the equation of a linear uniform B-spline having CPs (2, −3), (5, 5), and (8, −1). 
Also write a program to plot the BFs.

From Equation (3.8) substituting the values of the given CPs:

 x t

t t
t t
t t
t t

( )  

2 (0 1)
3 1 (1 2)
3 1 (2 3)
8 32 (3 4)

=

≤ <
− ≤ <
− ≤ <

− + ≤ <
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t t
t t
t t

t t

( )  

3 (0 1)
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6 17 (2 3)

4 (3 4)

=

− ≤ <
− ≤ <

− + ≤ <
− ≤ <
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3.3  CHANGING NUMBER OF CONTROL POINTS
One of the objectives of designing B-splines is to have local control, a fact we have seen 
 justified in the previous section since various CPs affect only specific curve segments 
instead of the entire curve. The other objective was to make the number of CPs indepen-
dent of the degree of the curve. To investigate this point let us now increase the number of 
CPs by 1 while keeping the degree same as before and find out whether such a combination 
produces a valid curve equation.

For this case, we start with d = 2 and n = 3

Then degree of the curve: d − 1 = 1

Number of CPs: n + 1 = 4

Number of curve segments: d + n = 5

Let the curve segments be designated as A, B, C, D, and E (see Figure 3.3) and the CPs be 
P0, P1, P2, and P3.

Number of elements in the KV: d + n +1 = 6
Let the elements in the KV be designated as T = {tk}, where k cycles over the values 

{0, 1, 2, 3, 4, 5}. In this case, T = [t0, t1, t2, t3, t4, t5, t6].
Number of BFs is same as the number of CPs i.e. 4. Let the BFs be designated as Bk,d. 

In this case, the BFs are B0,2, B1,2, B2,2, and B3,2. Higher values of k are not relevant and hence 
need not be calculated. Equation of the curve is given by:

 P t P B P B P B P B( ) 0 0,2 1 1,2 2 2,2 3 3,2= ⋅ + ⋅ + ⋅ + ⋅  (3.9)

If the process outlined in the previous section is followed, the reader will be able to verify 
that this does indeed produce a valid B-spline. It is therefore left as an exercise. The final 
BFs and the equation of the curve are given below as a reference. Compare with Equations 
(3.5) and (3.8) to see the difference.

 B
t t

t t
(0 1)

2 (1 2)0,2 =
≤ <

− ≤ <






 

t0 t1 t2 t3 t4 t5
-1

1

P0

B02

P1

B12

P2

B22

P3

B32

A B C D E

FIGURE 3.3 Linear uniform B-spline with four CPs.
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t t
1 (1 2)

3 (2 3)1,2 =
− ≤ <
− ≤ <
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4 (3 4)2,2 =
− ≤ <
− ≤ <
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3 (3 4)

5 (4 5)3,2 =
− ≤ <
− ≤ <






 

 P t

P t t
P t P t t
P t P t t
P t P t t

P t t

( )

(0 1)
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2 3
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⋅ − + ⋅ − ≤ <
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⋅ − + ⋅ − ≤ <
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3.4  QUADRATIC UNIFORM B-SPLINE
For generating a quadratic B-spline, we need to start with d = 3 and n = 3

Then degree of the curve: d − 1 = 2

Number of CPs: n + 1 = 4

Number of BFs: n + 1 = 4

Number of curve segments: d + n = 6

Number of elements in the KV: d + n + 1 = 7

Let the curve segments be A, B, C, D, E, and F and CPs be P0, P1, P2, and P3 (see Figure 3.4).

t0 t1 t2 t3 t4 t5 t6
-1

1

P0

B03

P1

B13

P2

B23

P3

B33

A B C D E F

FIGURE 3.4 Quadratic uniform B-spline with four CPs.



90   ◾   Fundamentals of Graphics Using MATLAB®

Let the KV be T = {tk} for k = {0, 1, 2, 3, 4, 5, 6}. In this case, T = [t0, t1, t2, t3, t4, t5, t6].
Let the BFs be B0,3, B1,3, B2,3, and B3,3

Equation of the curve is:

 P t P B P B P B P B( ) 0 0,3 1 1,3 2 2,3 3 3,3= ⋅ + ⋅ + ⋅ + ⋅  (3.10)

As before, we assume the KV to be T = [0, 1, 2, 3, 4, 5, 6]. The first-order terms B0,3, B0,1, 
B1,1, B2,1, B3,1, and B4,1 will be either 0 or 1 as per the first condition of the Cox de Boor 
algorithm. According to the second condition of the algorithm, the second-order terms 
are computed as follows:

 

B t B t B

B t B t B

B t B t B

B t B t B

B t B t B

( 0) (2 )

( 1) (3 )

( 2) (4 )

( 3) (5 )

( 4) (6 )

0,2 0,1 1,1

1,2 1,1 2,1

2,2 2,1 3,1

3,2 3,1 4,1

4,2 4,1 5,1

= − ⋅ + − ⋅

= − ⋅ + − ⋅

= − ⋅ + − ⋅

= − ⋅ + − ⋅

= − ⋅ + − ⋅

 (3.11)

This time, there are also third-order terms, which are calculated from second-order terms:

 

B t B t B

B t B t B

B t B t B

B t B t B

1
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1
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( 1) 1
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( 3) 1
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0,3 0,2 1,2
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3,3 3,2 4,2

= 



 − ⋅ + 



 − ⋅

= 



 − ⋅ + 



 − ⋅

= 



 − ⋅ + 



 − ⋅

= 



 − ⋅ + 



 − ⋅

 (3.12)

Since there are six segments each BF consists of six sub-components:

 

,  ,  ,  ,  , 

,  ,  ,  ,  , 

,  ,  ,  ,  , 

,  ,  ,  ,  , 

0,3 0,3 0,3 0,3 0,3 0,3 0,3

1,3 1,3 1,3 1,3 1,3 1,3 1,3

2,3 2,3 2,3 2,3 2,3 2,3 2,3

3,3 3,3 3,3 3,3 3,3 3,3 3,3

B B B B B B B

B B B B B B B

B B B B B B B

B B B B B B B

A B C D E F

A B C D E F

A B C D E F

A B C D E F

{ }
{ }
{ }
{ }

=

=

=

=

 (3.13)

Table 3.2 summarizes the calculation of the BF values.
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TABLE 3.2 Computation of BFs of Quadratic Uniform B-Spline

Segment t Bk,1 Bk,2 Bk,3

A ≤ <0 1t =10,1B
= 01,1B
= 02,1B
= 03,1B
= 04,1B
= 05,1B

=0,2B t
= 01,2B
= 02,2B
= 03,2B
= 04,2B

= 





1
20,3

2B t

= 01,3B
= 02,3B
= 03,3B

B ≤ <1 2t = 00,1B
=11,1B
= 02,1B
= 03,1B
= 04,1B
= 05,1B

= −20,2B t
= −11,2B t
= 02,2B
= 03,2B
= 04,2B

= − + −3 3
20,3

2B t t

= 



 −1

2
( 1)1,3

2B t

= 02,3B
= 03,3B

C ≤ <2 3t = 00,1B
= 01,1B
=12,1B
= 03,1B
= 04,1B
= 05,1B

= 00,2B
= −31,2B t
= − 22,2B t
= 03,2B
= 04,2B

= 



 −1

2
( 3)0,3

2B t

= − + −5 11
21,3

2B t t

= 



 −1

2
( 2)2,3

2B t

= 03,3B

D ≤ <3 4t = 00,1B
= 01,1B
= 02,1B
=13,1B
= 04,1B
= 05,1B

= 00,2B
= 01,2B
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= − 33,2B t
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= 



 −1

2
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2B t
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2B t t

= 



 −1

2
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2B t
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= 03,1B
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= 01,2B
= 02,2B
= −53,2B t
= − 44,2B t
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= 01,3B

= 



 −1

2
( 5)2,3

2B t

= − + −9 39
23,3

2B t t

F ≤ <5 6t = 00,1B
= 01,1B
= 02,1B
= 03,1B
= 04,1B
=15,1B

= 00,2B
= 01,2B
= 02,2B
= 03,2B
= −64,2B t

= 00,3B
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Substituting the above values in Equation (3.13) we get:
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 (3.14)

Equation (3.14) represents the BFs of a quadratic uniform B-spline with four CPs and 
six segments. The plot of the BFs is shown in Figure 3.5. Each BF has the same shape 
but shifted towards the right by 1 with respect to the previous one. Thus each BF can be 
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obtained from the previous one by substituting t with (t − 1). Each BF has six sub-divisions 
out of which three are non-zeros. The first curve for B0,3 has non-zero parts for segments 

≤ < ≤ < ≤ <(0 1), (1 2), (2 3)A t B t C t , the second curve for B1,3 has non-zero parts for seg-
ments ≤ < ≤ < ≤ <(1 2), (2 3), (3 4)B t C t D t , the third curve for B2,3 has non-zero parts for 
segments ≤ < ≤ < ≤ <(2 3), (3 4), (4 5)C t D t E t , and the fourth curve for B3,3 has non-zero 
parts for segments ≤ < ≤ < ≤ <(3 4), (4 5), (5 6)D t E t F t .

The equation of the spline is a collection of the equations of its six segments:
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≤ <

≤ <

≤ <

≤ <

≤ <

















( )

(0 1)

(1 2)

(2 3)

(3 4)

(4 5)

(5 6)
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 (3.15)

0 1 2 3 4 5 6

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
B

B03 B13 B23 B33
A
B
C
D
E
F

FIGURE 3.5 BFs of quadratic uniform B-spline.
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where

 

= ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅

0 0,3 1 1,3 2 2,3 3 3,3

0 0,3 1 1,3 2 2,3 3 3,3

0 0,3 1 1,3 2 2,3 3 3,3

0 0,3 1 1,3 2 2,3 3 3,3

0 0,3 1 1,3 2 2,3 3 3,3

0 0,3 1 1,3 2 2,3 3 3,3

P P B P B P B P B

P P B P B P B P B

P P B P B P B P B

P P B P B P B P B

P P B P B P B P B

P P B P B P B P B

A A A A A

B B B B B

C C C C C

D D D D D

E E E E E

F F F F F

 (3.16)

Substituting values of the BFs from Table 3.2 into Equation (3.15) and specifying the range 
for which they are valid we get:
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 (3.17)

Equation (3.17) represents the equation of a quadratic uniform B-spline with four CPs and 
six segments. The six parts of the equation represent the six segments of the curve.

Example 3.2

Find the equation of a uniform quadratic B-spline having CPs P0(1, 2), P1(4, 1), 
P2(6, 5), and P3(8, −1). Also write a program to plot the BFs and the actual curve.
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From Equation (3.17), substituting the values of the given CPs (Figure 3.6):
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FIGURE 3.6 Plots for Example 3.2.
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-
 
t
1
)
;
 
B
0
3
 

= 
S
1

*B
0
2
 

+ 
S
2

*B
1
2
;
 
B
0
3
D
 

= 
B
0
3
;

S
1
 

= 
 (
t
 
-
 
t
1
)
/
(
t
3
 
-
 
t
1
)
;
 
S
2
 

= 
(
t
4
 
-
 
t
)
/
(
t
4
 
-
 
t
2
)
;
 
B
1
3
 

= 
S
1

*B
1
2
 

+ 
S
2

*B
2
2
;
 
B
1
3
D
 

= 
B
1
3
;

S
1
 

= 
 (
t
 
-
 
t
2
)
/
(
t
4
 
-
 
t
2
)
;
 
S
2
 

= 
(
t
5
 
-
 
t
)
/
(
t
5
 
-
 
t
3
)
;
 
B
2
3
 

= 
S
1

*B
2
2
 

+ 
S
2

*B
3
2
;
 
B
2
3
D
 

= 
B
2
3
;

S
1
 

= 
 (
t
 
-
 
t
3
)
/
(
t
5
 
-
 
t
3
)
;
 
S
2
 

= 
(
t
6
 
-
 
t
)
/
(
t
6
 
-
 
t
4
)
;
 
B
3
3
 

= 
S
1

*B
3
2
 

+ 
S
2

*B
4
2
;
 
B
3
3
D
 

= 
B
3
3
;

 %
S
e
g
m
e
n
t
 
E

B
0
1
 

= 
0
;
 
B
1
1
 

= 
0
;
 
B
2
1
 

= 
0
;
 
B
3
1
 

= 
0
;
 
B
4
1
 

= 
1
;
 
B
5
1
 

= 
0
;
 
B
6
1
 

= 
0
;

S
1
 

= 
 (
t
 
-
 
t
0
)
/
(
t
1
 
-
 
t
0
)
;
 
S
2
 

= 
(
t
2
 
-
 
t
)
/
(
t
2
 
-
 
t
1
)
;
 
B
0
2
 

= 
S
1

*B
0
1
 

+ 
S
2

*B
1
1
;
 
B
0
2
E
 

= 
B
0
2
;

S
1
 

= 
 (
t
 
-
 
t
1
)
/
(
t
2
 
-
 
t
1
)
;
 
S
2
 

= 
(
t
3
 
-
 
t
)
/
(
t
3
 
-
 
t
2
)
;
 
B
1
2
 

= 
S
1

*B
1
1
 

+ 
S
2

*B
2
1
;
 
B
1
2
E
 

= 
B
1
2
;

S
1
 

= 
 (
t
 
-
 
t
2
)
/
(
t
3
 
-
 
t
2
)
;
 
S
2
 

= 
(
t
4
 
-
 
t
)
/
(
t
4
 
-
 
t
3
)
;
 
B
2
2
 

= 
S
1

*B
2
1
 

+ 
S
2

*B
3
1
;
 
B
2
2
E
 

= 
B
2
2
;

S
1
 

= 
 (
t
 
-
 
t
3
)
/
(
t
4
 
-
 
t
3
)
;
 
S
2
 

= 
(
t
5
 
-
 
t
)
/
(
t
5
 
-
 
t
4
)
;
 
B
3
2
 

= 
S
1

*B
3
1
 

+ 
S
2

*B
4
1
;
 
B
3
2
E
 

= 
B
3
2
;

S
1
 

= 
 (
t
 
-
 
t
4
)
/
(
t
5
 
-
 
t
4
)
;
 
S
2
 

= 
(
t
6
 
-
 
t
)
/
(
t
6
 
-
 
t
5
)
;
 
B
4
2
 

= 
S
1

*B
4
1
 

+ 
S
2

*B
5
1
;
 
B
4
2
E
 

= 
B
4
2
;

S
1
 

= 
 (
t
 
-
 
t
0
)
/
(
t
2
 
-
 
t
0
)
;
 
S
2
 

= 
(
t
3
 
-
 
t
)
/
(
t
3
 
-
 
t
1
)
;
 
B
0
3
 

= 
S
1

*B
0
2
 

+ 
S
2

*B
1
2
;
 
B
0
3
E
 

= 
B
0
3
;
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S
1
 

= 
 (
t
 
-
 
t
1
)
/
(
t
3
 
-
 
t
1
)
;
 
S
2
 

= 
(
t
4
 
-
 
t
)
/
(
t
4
 
-
 
t
2
)
;
 
B
1
3
 

= 
S
1

*B
1
2
 

+ 
S
2

*B
2
2
;
 
B
1
3
E
 

= 
B
1
3
;

S
1
 

= 
 (
t
 
-
 
t
2
)
/
(
t
4
 
-
 
t
2
)
;
 
S
2
 

= 
(
t
5
 
-
 
t
)
/
(
t
5
 
-
 
t
3
)
;
 
B
2
3
 

= 
S
1

*B
2
2
 

+ 
S
2

*B
3
2
;
 
B
2
3
E
 

= 
B
2
3
;

S
1
 

= 
 (
t
 
-
 
t
3
)
/
(
t
5
 
-
 
t
3
)
;
 
S
2
 

= 
(
t
6
 
-
 
t
)
/
(
t
6
 
-
 
t
4
)
;
 
B
3
3
 

= 
S
1

*B
3
2
 

+ 
S
2

*B
4
2
;
 
B
3
3
E
 

= 
B
3
3
;

 %
S
e
g
m
e
n
t
 
F

B
0
1
 

= 
0
;
 
B
1
1
 

= 
0
;
 
B
2
1
 

= 
0
;
 
B
3
1
 

= 
0
;
 
B
4
1
 

= 
0
;
 
B
5
1
 

= 
1
;
 
B
6
1
 

= 
0
;

S
1
 

= 
 (
t
 
-
 
t
0
)
/
(
t
1
 
-
 
t
0
)
;
 
S
2
 

= 
(
t
2
 
-
 
t
)
/
(
t
2
 
-
 
t
1
)
;
 
B
0
2
 

= 
S
1

*B
0
1
 

+ 
S
2

*B
1
1
;
 
B
0
2
F
 

= 
B
0
2
;

S
1
 

= 
 (
t
 
-
 
t
1
)
/
(
t
2
 
-
 
t
1
)
;
 
S
2
 

= 
(
t
3
 
-
 
t
)
/
(
t
3
 
-
 
t
2
)
;
 
B
1
2
 

= 
S
1

*B
1
1
 

+ 
S
2

*B
2
1
;
 
B
1
2
F
 

= 
B
1
2
;

S
1
 

= 
 (
t
 
-
 
t
2
)
/
(
t
3
 
-
 
t
2
)
;
 
S
2
 

= 
(
t
4
 
-
 
t
)
/
(
t
4
 
-
 
t
3
)
;
 
B
2
2
 

= 
S
1

*B
2
1
 

+ 
S
2

*B
3
1
;
 
B
2
2
F
 

= 
B
2
2
;

S
1
 

= 
 (
t
 
-
 
t
3
)
/
(
t
4
 
-
 
t
3
)
;
 
S
2
 

= 
(
t
5
 
-
 
t
)
/
(
t
5
 
-
 
t
4
)
;
 
B
3
2
 

= 
S
1

*B
3
1
 

+ 
S
2

*B
4
1
;
 
B
3
2
F
 

= 
B
3
2
;

S
1
 

= 
 (
t
 
-
 
t
4
)
/
(
t
5
 
-
 
t
4
)
;
 
S
2
 

= 
(
t
6
 
-
 
t
)
/
(
t
6
 
-
 
t
5
)
;
 
B
4
2
 

= 
S
1

*B
4
1
 

+ 
S
2

*B
5
1
;
 
B
4
2
F
 

= 
B
4
2
;

S
1
 

= 
 (
t
 
-
 
t
0
)
/
(
t
2
 
-
 
t
0
)
;
 
S
2
 

= 
(
t
3
 
-
 
t
)
/
(
t
3
 
-
 
t
1
)
;
 
B
0
3
 

= 
S
1

*B
0
2
 

+ 
S
2

*B
1
2
;
 
B
0
3
F
 

= 
B
0
3
;

S
1
 

= 
 (
t
 
-
 
t
1
)
/
(
t
3
 
-
 
t
1
)
;
 
S
2
 

= 
(
t
4
 
-
 
t
)
/
(
t
4
 
-
 
t
2
)
;
 
B
1
3
 

= 
S
1

*B
1
2
 

+ 
S
2

*B
2
2
;
 
B
1
3
F
 

= 
B
1
3
;

S
1
 

= 
 (
t
 
-
 
t
2
)
/
(
t
4
 
-
 
t
2
)
;
 
S
2
 

= 
(
t
5
 
-
 
t
)
/
(
t
5
 
-
 
t
3
)
;
 
B
2
3
 

= 
S
1

*B
2
2
 

+ 
S
2

*B
3
2
;
 
B
2
3
F
 

= 
B
2
3
;

S
1
 

= 
 (
t
 
-
 
t
3
)
/
(
t
5
 
-
 
t
3
)
;
 
S
2
 

= 
(
t
6
 
-
 
t
)
/
(
t
6
 
-
 
t
4
)
;
 
B
3
3
 

= 
S
1

*B
3
2
 

+ 
S
2

*B
4
2
;
 
B
3
3
F
 

= 
B
3
3
;

 f
p
r
i
n
t
f
(
'
B
l
e
n
d
i
n
g
 
f
u
n
c
t
i
o
n
s
 
:
\
n
'
)
;

 B
0
3
 

= 
[
B
0
3
A
,
 
B
0
3
B
,
 
B
0
3
C
,
 
B
0
3
D
,
 
B
0
3
E
,
 
B
0
3
F
]
;
 
B
0
3
 

= 
s
i
m
p
l
i
f
y
(
B
0
3
)

B
1
3
 

= 
[
B
1
3
A
,
 
B
1
3
B
,
 
B
1
3
C
,
 
B
1
3
D
,
 
B
1
3
E
,
 
B
1
3
F
]
;
 
B
1
3
 

= 
s
i
m
p
l
i
f
y
(
B
1
3
)

B
2
3
 

= 
[
B
2
3
A
,
 
B
2
3
B
,
 
B
2
3
C
,
 
B
2
3
D
,
 
B
2
3
E
,
 
B
2
3
F
]
;
 
B
2
3
 

= 
s
i
m
p
l
i
f
y
(
B
2
3
)

B
3
3
 

= 
[
B
3
3
A
,
 
B
3
3
B
,
 
B
3
3
C
,
 
B
3
3
D
,
 
B
3
3
E
,
 
B
3
3
F
]
;
 
B
3
3
 

= 
s
i
m
p
l
i
f
y
(
B
3
3
)

 f
p
r
i
n
t
f
(
'
\
n
'
)
;

 f
p
r
i
n
t
f
(
'
G
e
n
e
r
a
l
 
E
q
u
a
t
i
o
n
 
o
f
 
C
u
r
v
e
 
:
\
n
'
)
;

 P
 

= 
P
0

*B
0
3
 

+ 
P
1

*B
1
3
 

+ 
P
2

*B
2
3
 

+ 
P
3

*B
3
3

 f
p
r
i
n
t
f
(
'
\
n
'
)
;

 x
0
 

= 
1
;
 
x
1
 

= 
4
;
 
x
2
 

= 
6
;
 
x
3
 

= 
8
;

y
0
 

= 
2
;
 
y
1
 

= 
1
;
 
y
2
 

= 
5
;
 
y
3
 

= 
-
1
;

 f
p
r
i
n
t
f
(
'
A
c
t
u
a
l
 
E
q
u
a
t
i
o
n
 
 
:
\
n
'
)
;
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x
 

= 
 s
u
b
s
(
P
,
 
(
[
P
0
,
 
P
1
,
 
P
2
,
 
P
3
]
)
,
 
(
[
x
0
,
 
x
1
,
 
x
2
,
 
x
3
]
)
)
;
 
x
 

= 
s
i
m
p
l
i
f
y
(
x
)

y
 

= 
 s
u
b
s
(
P
,
 
(
[
P
0
,
 
P
1
,
 
P
2
,
 
P
3
]
)
,
 
(
[
y
0
,
 
y
1
,
 
y
2
,
 
y
3
]
)
)
;
 
y
 

= 
s
i
m
p
l
i
f
y
(
y
)

 %
p
l
o
t
t
i
n
g
 
B
F
s

 t
t
a
 

= 
l
i
n
s
p
a
c
e
(
t
0
,
 
t
1
)
;
 

t
t
b
 

= 
l
i
n
s
p
a
c
e
(
t
1
,
 
t
2
)
;
 

t
t
c
 

= 
l
i
n
s
p
a
c
e
(
t
2
,
 
t
3
)
;
 

t
t
d
 

= 
l
i
n
s
p
a
c
e
(
t
3
,
 
t
4
)
;
 

t
t
e
 

= 
l
i
n
s
p
a
c
e
(
t
4
,
 
t
5
)
;
 

t
t
f
 

= 
l
i
n
s
p
a
c
e
(
t
5
,
 
t
6
)
;
 

 B
0
3
a
a
 

= 
s
u
b
s
(
B
0
3
A
,
 
t
,
 
t
t
a
)
;

B
0
3
b
b
 

= 
s
u
b
s
(
B
0
3
B
,
 
t
,
 
t
t
b
)
;

B
0
3
c
c
 

= 
s
u
b
s
(
B
0
3
C
,
 
t
,
 
t
t
c
)
;

B
0
3
d
d
 

= 
s
u
b
s
(
B
0
3
D
,
 
t
,
 
t
t
d
)
;

B
0
3
e
e
 

= 
s
u
b
s
(
B
0
3
E
,
 
t
,
 
t
t
e
)
;

B
0
3
f
f
 

= 
s
u
b
s
(
B
0
3
F
,
 
t
,
 
t
t
f
)
;

 B
1
3
a
a
 

= 
s
u
b
s
(
B
1
3
A
,
 
t
,
 
t
t
a
)
;

B
1
3
b
b
 

= 
s
u
b
s
(
B
1
3
B
,
 
t
,
 
t
t
b
)
;

B
1
3
c
c
 

= 
s
u
b
s
(
B
1
3
C
,
 
t
,
 
t
t
c
)
;

B
1
3
d
d
 

= 
s
u
b
s
(
B
1
3
D
,
 
t
,
 
t
t
d
)
;

B
1
3
e
e
 

= 
s
u
b
s
(
B
1
3
E
,
 
t
,
 
t
t
e
)
;

B
1
3
f
f
 

= 
s
u
b
s
(
B
1
3
F
,
 
t
,
 
t
t
f
)
;

 B
2
3
a
a
 

= 
s
u
b
s
(
B
2
3
A
,
 
t
,
 
t
t
a
)
;

B
2
3
b
b
 

= 
s
u
b
s
(
B
2
3
B
,
 
t
,
 
t
t
b
)
;

B
2
3
c
c
 

= 
s
u
b
s
(
B
2
3
C
,
 
t
,
 
t
t
c
)
;

B
2
3
d
d
 

= 
s
u
b
s
(
B
2
3
D
,
 
t
,
 
t
t
d
)
;

B
2
3
e
e
 

= 
s
u
b
s
(
B
2
3
E
,
 
t
,
 
t
t
e
)
;

B
2
3
f
f
 

= 
s
u
b
s
(
B
2
3
F
,
 
t
,
 
t
t
f
)
;

 B
3
3
a
a
 

= 
s
u
b
s
(
B
3
3
A
,
 
t
,
 
t
t
a
)
;
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B
3
3
b
b
 

= 
s
u
b
s
(
B
3
3
B
,
 
t
,
 
t
t
b
)
;

B
3
3
c
c
 

= 
s
u
b
s
(
B
3
3
C
,
 
t
,
 
t
t
c
)
;

B
3
3
d
d
 

= 
s
u
b
s
(
B
3
3
D
,
 
t
,
 
t
t
d
)
;

B
3
3
e
e
 

= 
s
u
b
s
(
B
3
3
E
,
 
t
,
 
t
t
e
)
;

B
3
3
f
f
 

= 
s
u
b
s
(
B
3
3
F
,
 
t
,
 
t
t
f
)
;

 f
i
g
u
r
e
,

p
l
o
t
(
t
t
a
,
 
B
0
3
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
0
3
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
0
3
c
c
,
 
'
k
-
.
'
,
 
..
.

 
 
 
 
t
t
d
,
 
B
0
3
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
0
3
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
0
3
f
f
,
 
'
b
-
.
'
)
;
 

h
o
l
d
 
o
n
;
 

p
l
o
t
(
t
t
a
,
 
B
1
3
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
1
3
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
1
3
c
c
,
 
'
k
-
.
'
,
 
..
.

 
 
 
 
t
t
d
,
 
B
1
3
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
1
3
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
1
3
f
f
,
 
'
b
-
.
'
)
;
 

p
l
o
t
(
t
t
a
,
 
B
2
3
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
2
3
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
2
3
c
c
,
 
'
k
-
.
'
,
 
..
.

 
 
 
 
t
t
d
,
 
B
2
3
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
2
3
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
2
3
f
f
,
 
'
b
-
.
'
)
;
 

p
l
o
t
(
t
t
a
,
 
B
3
3
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
3
3
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
3
3
c
c
,
 
'
k
-
.
'
,
 
..
.

 
 
 
 
t
t
d
,
 
B
3
3
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
3
3
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
3
3
f
f
,
 
'
b
-
.
'
)
;
 

x
l
a
b
e
l
 
(
'
t
'
)
;
 
y
l
a
b
e
l
(
'
B
'
)
;
 
t
i
t
l
e
(
'
B
0
3
 
-
 
B
1
3
 
-
 
B
2
3
 
-
 
B
3
3
'
)
;

l
e
g
e
n
d
(
'
A
'
,
 
'
B
'
,
 
'
C
'
,
 
'
D
'
,
 
'
E
'
,
 
'
F
'
)
;

h
o
l
d
 
o
f
f
;

%
p
l
o
t
t
i
n
g
 
c
u
r
v
e

x
a
 

= 
x
(
1
)
;
 
y
a
 

= 
y
(
1
)
;

x
b
 

= 
x
(
2
)
;
 
y
b
 

= 
y
(
2
)
;

x
c
 

= 
x
(
3
)
;
 
y
c
 

= 
y
(
3
)
;

x
d
 

= 
x
(
4
)
;
 
y
d
 

= 
y
(
4
)
;

x
e
 

= 
x
(
5
)
;
 
y
e
 

= 
y
(
5
)
;

x
f
 

= 
x
(
6
)
;
 
y
f
 

= 
y
(
6
)
;

x
a
a
 

= 
s
u
b
s
(
x
a
,
 
t
,
 
t
t
a
)
;
 
y
a
a
 

= 
s
u
b
s
(
y
a
,
 
t
,
 
t
t
a
)
;

x
b
b
 

= 
s
u
b
s
(
x
b
,
 
t
,
 
t
t
b
)
;
 
y
b
b
 

= 
s
u
b
s
(
y
b
,
 
t
,
 
t
t
b
)
;

x
c
c
 

= 
s
u
b
s
(
x
c
,
 
t
,
 
t
t
c
)
;
 
y
c
c
 

= 
s
u
b
s
(
y
c
,
 
t
,
 
t
t
c
)
;

x
d
d
 

= 
s
u
b
s
(
x
d
,
 
t
,
 
t
t
d
)
;
 
y
d
d
 

= 
s
u
b
s
(
y
d
,
 
t
,
 
t
t
d
)
;
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x
e
e
 

= 
s
u
b
s
(
x
e
,
 
t
,
 
t
t
e
)
;
 
y
e
e
 

= 
s
u
b
s
(
y
e
,
 
t
,
 
t
t
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3.5  JUSTIFICATION FOR KNOT-VECTOR VALUES
Now, it is time to provide a justification for choosing KV values of [0, 1, 2, 3, …] that 
we have been using so far. Let us first choose some other set of values and observe the 
result we get. So let us assume that for a uniform quadratic B-spline the KV is changed 
to T = [0, 5, 10, 15, 20, 25, 30]. We can choose arbitrarily any set of values, the only 
 constraint being that gaps between the values should be uniform, as is the requirement 
for a uniform B-spline. So in this case we choose a KV with gaps 5 times the earlier 
 values. If we proceed along the same steps as in Section 3.4 and calculate the BFs we get 
the result shown below:
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Comparing with Equation (3.14) tells us that t has been replaced by t
5

 i.e. all t values have 

been scaled by a factor of 5. So now, to get the same B values require the t values to be 
5 times larger than earlier. This is reflected in the BF plot in Figure 3.7, which shows the 
t-axis to be expanded by 5 times. Compare with the BF plot in Figure 3.5.

On plugging the new KV into Example 3.2, we can observe the effects on the parametric 
curves. The x(t) and y(t) values shown below are seen to be affected similar to the BFs i.e. 
the values have been scaled by 5.
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FIGURE 3.7 Change in BFs with change in KV.
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On plotting the actual curves, the x − t and y − t graphs are seen to be similarly affected 
i.e. the t values have changed by 5 times. See Figure 3.8. The different line types indicate 
the segment intervals. However, since the x and y values have remained unchanged, the 
x − y plot remains exactly the same as before as it is unaffected by any change in t values 
so long as it affects the x and y values uniformly by the same amount. Compare with 
Figure 3.6. For example, from Figure 3.6 for = = =2, 2.5, 1.5t x y  and from Figure 3.8 for 
= = =10, 2.5, 1.5t x y , which implies that the x vs. y point remains unaffected. This is true 

for all the points and so the x − y plot of the curve remains same as before. Obviously, this 
is true for any scaling factor by which t is changed.

Readers are encouraged to generate the plots and verify the results by using different KV 
values. Then can easily do so by using MATLAB Code 3.2 and simply changing the KV in 
the second line of the program.

This leads us to conclude that the actual curve in the spatial domain is independent 
of the KV values since it does not depend on the scaling factor of the t values. Hence, 
it is  customary to choose the smallest t values viz. 0, 1, 2, … to reduce the complexity 
of the equations but in reality, we can choose any values for the KV and would get the 
same result.
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FIGURE 3.8 Change in curve equations with change in KV.
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3.6  QUADRATIC OPEN-UNIFORM B-SPLINE
In an open uniform spline, the KV is uniform except at the ends where it is repeated d 
times where (d − 1) is the degree of the curve. Repeated values are referred to as multiplic-
ity. Multiplicity implies that denominators of the Cox de Boor terms become zero in many 
cases. Hence, an important assumption needs to be made here: division by zero is treated 
as zero.

Consider an open-uniform quadratic B-spline with d = 3 and n = 3. Let the KV be 
chosen as T = {1, 1, 1, 2, 3, 3, 3}. As before, performing a segment-wise analysis the results 
obtained are tabulated in Table 3.3.

Substituting the above values in Equation (3.13) we get:
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 (3.19)

Equation (3.19) represents the BFs of a quadratic open-uniform B-spline with four CPs. The 
plot of the BFs is shown in Figure 3.9. Only the portion pertaining to segments C t(2 3)≤ <  
and D t(3 4)≤ <  are present.

The curve equation is obtained by substituting the BF values into Equation (3.15):
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A plot of the curve in Figure 3.10 shows the effect of multiplicity on the spline: it has 
forced the curve to actually go through the first and last CPs. This has created a spline with 
only two segments C and D, while the other segments A, B, E, and F are non-existent. We 
can, therefore, conclude that an approximating spline can behave like an interpolating or 
hybrid spline if the KV has repeated values.

TABLE 3.3 Computation of BFs of Quadratic Open-Uniform B-Spline

Segment t Bk,1 Bk,2 Bk,3

A ≤ <0 1t =10,1B
= 01,1B
= 02,1B
= 03,1B
= 04,1B
= 05,1B

= 00,2B
= 01,2B
= 02,2B
= 03,2B
= 04,2B

= 00,3B
= 01,3B
= 02,3B
= 03,3B

B ≤ <1 2t = 00,1B
=11,1B
= 02,1B
= 03,1B
= 04,1B
= 05,1B

= 00,2B
= 01,2B
= 02,2B
= 03,2B
= 04,2B

= 00,3B
= 01,3B
= 02,3B
= 03,3B

C ≤ <2 3t = 00,1B
= 01,1B
=12,1B
= 03,1B
= 04,1B
= 05,1B

= 00,2B
= −21,2B t
= −12,2B t
= 03,2B
= 04,2B

= −( 2)0,3
2B t

= − + −3
2

5 7
21,3

2B t t

= 



 −1

2
( 1)2,3

2B t

= 03,3B

D ≤ <3 4t = 00,1B
= 01,1B
= 02,1B
=13,1B
= 04,1B
= 05,1B

= 00,2B
= 01,2B
= −32,2B t
= − 23,2B t
= 04,2B

= 00,3B

= 



 −1

2
( 3)1,3

2B t

= − + −3
2

7 15
22,3

2B t t

= −( 2)3,3
2B t

E ≤ <4 5t = 00,1B
= 01,1B
= 02,1B
= 03,1B
=14,1B
= 05,1B

= 00,2B
= 01,2B
= 02,2B
= 03,2B
= 04,2B

= 00,3B
= 01,3B
= 02,3B
= 03,3B

F ≤ <5 6t = 00,1B
= 01,1B
= 02,1B
= 03,1B
= 04,1B
=15,1B

= 00,2B
= 01,2B
= 02,2B
= 03,2B
= 04,2B

= 00,3B
= 01,3B
= 02,3B
= 03,3B
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FIGURE 3.9 BFs of a quadratic open-uniform B-spline.
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FIGURE 3.10 Open-uniform quadratic B-spline curve.
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Example 3.3

Find the equation of an open-uniform quadratic B-spline having CPs (1, 2), 
(4, 1), (6, 5), and (8, −1) assuming a KV T = [1, 1, 1, 2, 3, 3, 3]. Also 
write a program to plot the BFs and the actual curve.

From Equation (3.20) substituting the given CPs we get:
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MATLAB Code 3.3

The code will be almost exactly same as MATLAB Code 3.2 except for an additional check 
to avoid a divide-by-zero condition before calculating each BF. If a divide-by-zero condi-
tion exists, then the expression is to replaced by 0; otherwise, it should be calculated in the 
normal process. This is illustrated as follows.

D =(t1 - t0); if D = = 0, S1 = 0; else S1 = (t - t0)/D; end;
D =(t2 - t1); if D = = 0, S2 = 0; else S2 = (t - t0)/D; end;
B02 = S1*B01 + S2*B11; B02A = B02;

3.7  QUADRATIC NON-UNIFORM B-SPLINE
In a non-uniform spline, the KV is not uniform i.e. the gaps between the knot elements 
are different. This makes the BFs unsymmetric and they tend to cluster together where 
the gaps are smaller. This has the effect of drawing the curve towards the corresponding 
CPs. Figure 3.11 shows the BFs of a non-uniform quadratic B-spline. The amount of non-
symmetry would depend upon the gaps in the KV.

Example 3.4

Find the equation of a non-uniform quadratic B-spline having CPs (1, 2), (4, 1), (6, 5), 
and (8, −1) assuming a KV T = [0, 1, 3, 5, 15, 18, 20].

Using a segment-wise analysis:
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MATLAB Code 3.4

Same as MATLAB Code 3.2 with a change in the KV.

3.8  CUBIC UNIFORM B-SPLINE
A cubic uniform B-spline is treated in much the same manner as a quadratic uniform 
B-spline with additional layer of complexity arising out of the fourth-order BF terms 
 generated by the Cox de Boor algorithm.
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FIGURE 3.11 BFs of a quadratic non-uniform B-spline.
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For generating a cubic B-spline, we need to start with d = 4 and n = 4

Then degree of the curve: d − 1 = 3

Number of CPs: n + 1 = 5

Number of curve segments: d + n = 8

Number of elements in the KV: d + n + 1= 9

Let the curve segments be A, B, C, D, E, F, G, and H and CPs be P0, P1, P2, P3, and P4 
(see Figure 3.12).

Let the KV be T = {tk} for k = {0, 1, 2, 3, 4, 5, 6, 7, 8}. In this case, 
T t t t t t t t t t,  ,  ,  ,  , ,  ,  , 0 1 2 3 4 5 6 7 8[ ]= .

Let the BFs are B0,4, B1,4, B2,4, B3,4, and B4,4.

Equation of the curve is given by:

 P t P B P B P B P B P B( ) 0 0,4 1 1,4 2 2,4 3 3,4 4 4,4= ⋅ + ⋅ + ⋅ + ⋅ + ⋅  (3.21)

As before, we assume the KV to be T = [0, 1, 2, 3, 4, 5, 6, 7, 8]. The first-order terms 
, , , , , , , , and0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1B B B B B B B B B  will be either 0 or 1 as per the first condition of 

the Cox de Boor algorithm. The second-order terms are computed as follows:
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FIGURE 3.12 Cubic uniform B-spline with five CPs.



Approximating Splines   ◾   111

 

B t B t B

B t B t B

B t B t B

B t B t B

= − ⋅ + − ⋅

= − ⋅ + − ⋅

= − ⋅ + − ⋅

= − ⋅ + − ⋅

( 4) (6 )

( 5) (7 )

( 6) (8 )

( 7) (9 )

4,2 4,1 5,1

5,2 5,1 6,1

6,2 6,1 7,1

7,2 7,1 8,1

 (3.22)

The third-order terms are calculated from second-order terms:
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The fourth-order terms are calculated from the third-order terms:

 

B t B t B

B t B t B

B t B t B
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3
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3
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3,4 3,3 4,3

4,4 4,3 5,3
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 − ⋅ + 



 − ⋅

= 



 − ⋅ + 



 − ⋅

= 



 − ⋅ + 



 − ⋅

= 



 − ⋅ + 



 − ⋅

= 



 − ⋅ + 



 − ⋅

 (3.24)



112   ◾   Fundamentals of Graphics Using MATLAB®

Since there are eight segments each BF consists of eight sub-components:

 

,  ,  ,  ,  ,  ,  , 

,  ,  ,  ,  ,  ,  , 

,  ,  ,  ,  ,  ,  , 

,  ,  ,  ,  ,  ,  , 

,  ,  ,  ,  ,  ,  , 

0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4 0,4

1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4 1,4

2,4 2,4 2,4 2,4 2,4 2,4 2,4 2,4 2,4

3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4

4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4 4,4

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

B B B B B B B B B

A B C D E F G H

A B C D E F G H

A B C D E F G H

A B C D E F G H

A B C D E F G H

{ }
{ }
{ }
{ }
{ }

=

=

=

=

=

 (3.25)

Table 3.4 summarizes the calculation of the BF values.

TABLE 3.4 Computation of BFs of Cubic Uniform B-Spline

Segment t Bk,1 Bk,2 Bk,3 Bk,4

A ≤ <0 1t =10,1B
= 01,1B
= 02,1B
= 03,1B
= 04,1B
= 05,1B
= 06,1B
= 07,1B

=0,2B t
= 01,2B
= 02,2B
= 03,2B
= 04,2B

= 





1
20,3

2B t

= 01,3B
= 02,3B
= 03,3B

= 





1
60,4

3B t

B ≤ <1 2t = 00,1B
=11,1B
= 02,1B
= 03,1B
= 04,1B
= 05,1B
= 06,1B
= 07,1B

= −20,2B t
= −11,2B t
= 02,2B
= 03,2B
= 04,2B

= − + −3 3
20,3

2B t t

= 



 −1

2
( 1)1,3

2B t

= 02,3B
= 03,3B

= − + − +
3

2 2 2
30,4

3
2B t t t

= 



 −1

6
( 1)1,4

3B t

C ≤ <2 3t = 00,1B
= 01,1B
=12,1B
= 03,1B
= 04,1B
= 05,1B
= 06,1B
= 07,1B

= 00,2B
= −31,2B t
= − 22,2B t
= 03,2B
= 04,2B

= 



 −1

2
( 3)0,3

2B t

= − + −5 11
21,3

2B t t

= 



 −1

2
( 2)2,3

2B t

= 03,3B

= − − + −
2

4 10 22
30,4

3
2B t t t

= − + − +
2

7
2

15
2

31
61,4

3 2

B t t t

= 



 −1

6
( 2)2,4

3B t

D ≤ <3 4t = 00,1B
= 01,1B
= 02,1B
=13,1B
= 04,1B
= 05,1B
= 06,1B
= 07,1B

= 00,2B
= 01,2B
= −42,2B t
= − 33,2B t
= 04,2B

= 00,3B

= 



 −1

2
( 4)1,3

2B t

= − + −7 23
22,3

2B t t

= 



 −1

2
( 3)3,3

2B t

= 



 −1

6
( 4)0,4

3B t

= − − + −
2

11
2

39
2

131
61,4

3 2

B t t t

= − + − +
2

5
2

16 50
32,4

3 2

B t t t

= 



 −1

6
( 3)3,4

3B t

(Continued)
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TABLE 3.4 (Continued) Computation of BFs of Cubic Uniform B-Spline

Segment t Bk,1 Bk,2 Bk,3 Bk,4

E ≤ <4 5t = 00,1B
= 01,1B
= 02,1B
= 03,1B
=14,1B
= 05,1B
= 06,1B
= 07,1B

= 00,2B
= 01,2B
= 02,2B
= −53,2B t
= − 44,2B t

= 00,3B
= 01,3B

= 



 −1

2
( 5)2,3

2B t

= − + −9 39
23,3

2B t t

= 



 −1

2
( 4)4,3

2B t

= 



 −1

6
( 5)1,4

3B t

= − + −
2

7
2

32 142
32,4

3 2

B t t t

= − + − +
2

13
2

55
2

229
63,4

3 2

B t t t

= 



 −1

6
( 4)4,4

3B t

F ≤ <5 6t = 00,1B
= 01,1B
= 02,1B
= 03,1B
= 04,1B
=15,1B
= 06,1B
= 07,1B

= 00,2B
= 01,2B
= 02,2B
= 03,2B
= −64,2B t
= −55,2B t

= 00,3B
= 01,3B
= 02,3B

= 



 −1

2
( 6)3,3

2B t

= − + −11 59
24,3

2B t t

= 



 −1

2
( 5)5,3

2B t

= 



 −1

6
( 6)2,4

3B t

= − + −
2

17
2

95
2

521
63,4

3 2

B t t t

= − + − +
2

8 42 218
34,4

3
2B t t t

G ≤ <5 6t = 00,1B
= 01,1B
= 02,1B
= 03,1B
= 04,1B
= 05,1B
=16,1B
= 07,1B

= 00,2B
= 01,2B
= 02,2B
= 03,2B
= 04,2B
= −75,2B t
= − 66,2B t
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= 



 −1
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= − + −13 83
25,3

2B t t

= 
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2B t

= 
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2
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3
2B t t t
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=17,1B

= 00,2B
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= 02,2B
= 03,2B
= 04,2B
= 05,2B
= −86,2B t
= − 77,2B t

= 00,3B
= 01,3B
= 02,3B
= 03,3B

= 



 −1

2
( 8)5,3

2B t

= − + −
2

7 246,3

2

B t t

= 



 −1

6
( 8)4,4

3B t
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Substituting the above values in Equation (3.25) we get:
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( 4) (4 5)
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8 42
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2
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3
(6 7)

1
6

( 8) (7 8)
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3

3 2

3 2

3

4,4

3

3
2

3
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3

B

t t A

t t t t B

t t t t C

t t D

B

t t A

t
t t t B

t t t t C

t t D
 

(3.26)

Equation (3.26) represents the BFs of a cubic uniform B-spline with five CPs and eight seg-
ments. The plot of the BFs is shown in Figure 3.13. Each BF has the same shape but shifted 
toward the right by 1 with respect to the previous one. Thus, each BF can be obtained from 
the previous one by substituting t with (t − 1). As shown in Equation (3.26), each BF has eight 
sub-divisions out of which four are non-zeros. The first curve for B04 has non-zero parts 
for segments A (0 ≤ t < 1), B (1 ≤ t < 2), C (2 ≤ t < 3), and D (3 ≤ t < 4), the second curve for 
B14 has non-zero parts for segments B (1 ≤ t < 2), C (2 ≤ t < 3), D (3 ≤ t < 4), and E (4 ≤ t < 
5), the third curve for B24 has non-zero parts for segments C (2 ≤ t < 3), D (3 ≤ t < 4), E (4 
≤ t < 5), and F (5 ≤ t < 6), the fourth curve for B34 has non-zero parts for segments D (3 ≤ t 
< 4), E (4 ≤ t < 5), F (5 ≤ t < 6), and G (6 ≤ t < 7), and the fourth curve for B44 has non-zero 
parts for segments E (4 ≤ t < 5), F (5 ≤ t < 6), G (6 ≤ t < 7), and H (7 ≤ t < 8). Since the BFs are 
associated with the CPs, this provides an indication of the local control property of the cubic 
spline. The first CP has influence over the first four segments A, B, C, and D, the second CP 
has influence over B, C, D, and E, and so on. This means that if the first CP is changed, it 
will affect only the first four segments while the rest of the spline will remain unchanged.
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The equation of the spline is a collection of the equations of its eight segments:
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 (3.27)

where

 P P B P B P B P B P B

P P B P B P B P B P B
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D D D D D D
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FIGURE 3.13 BFs of cubic uniform B-spline with five CPs.
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= ⋅ + ⋅ + ⋅ + ⋅ + ⋅
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H H H H H H

 (3.28)

Substituting values of the BFs from Table 3.4 into Equation (3.28) we get:
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Equation (3.29) represents the curve equation of a cubic uniform B-spline with five CPs. 
The eight sub-components of the equations represents the parts for the eight segments.

Example 3.5

Find the equation of a uniform cubic B-spline having CPs (−1, 0), (0, 1), (1, 0), 
(0, −1), and (−0.5, −0.5). Also write a program to plot its BFs and the actual curve.



118   ◾   Fundamentals of Graphics Using MATLAB®

From Equation (3.29), substituting the values of the given CPs we get (Figure 3.14):
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FIGURE 3.14 Plots for Example 3.5.
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 {
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
}
)
;
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B
4
4
H
 

= 
 s
u
b
s
(
B
4
4
,
 
{
B
0
1
,
B
1
1
,
B
2
1
,
B
3
1
,
B
4
1
,
B
5
1
,
B
6
1
,
B
7
1
}
,
 {
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
}
)
;

B
5
4
H
 

= 
 s
u
b
s
(
B
5
4
,
 
{
B
0
1
,
B
1
1
,
B
2
1
,
B
3
1
,
B
4
1
,
B
5
1
,
B
6
1
,
B
7
1
}
,
 {
0
,
0
,
0
,
0
,
0
,
0
,
0
,
1
}
)
;

 f
p
r
i
n
t
f
(
'
B
l
e
n
d
i
n
g
 
f
u
n
c
t
i
o
n
s
 
:
\
n
'
)
;

 B
0
4
 

= 
 [
B
0
4
A
,
 
B
0
4
B
,
 
B
0
4
C
,
 
B
0
4
D
,
 
B
0
4
E
,
 
B
0
4
F
,
 
B
0
4
G
,
 
B
0
4
H
]
;
 
B
0
4
 

= 
s
i
m
p
l
i
f
y
(
B
0
4
)

B
1
4
 

= 
 [
B
1
4
A
,
 
B
1
4
B
,
 
B
1
4
C
,
 
B
1
4
D
,
 
B
1
4
E
,
 
B
1
4
F
,
 
B
1
4
G
,
 
B
1
4
H
]
;
 
B
1
4
 

= 
s
i
m
p
l
i
f
y
(
B
1
4
)

B
2
4
 

= 
 [
B
2
4
A
,
 
B
2
4
B
,
 
B
2
4
C
,
 
B
2
4
D
,
 
B
2
4
E
,
 
B
2
4
F
,
 
B
2
4
G
,
 
B
2
4
H
]
;
 
B
2
4
 

= 
s
i
m
p
l
i
f
y
(
B
2
4
)

B
3
4
 

= 
 [
B
3
4
A
,
 
B
3
4
B
,
 
B
3
4
C
,
 
B
3
4
D
,
 
B
3
4
E
,
 
B
3
4
F
,
 
B
3
4
G
,
 
B
3
4
H
]
;
 
B
3
4
 

= 
s
i
m
p
l
i
f
y
(
B
3
4
)

B
4
4
 

= 
 [
B
4
4
A
,
 
B
4
4
B
,
 
B
4
4
C
,
 
B
4
4
D
,
 
B
4
4
E
,
 
B
4
4
F
,
 
B
4
4
G
,
 
B
4
4
H
]
;
 
B
4
4
 

= 
s
i
m
p
l
i
f
y
(
B
4
4
)

 f
p
r
i
n
t
f
(
'
\
n
'
)
;

 f
p
r
i
n
t
f
(
'
G
e
n
e
r
a
l
 
E
q
u
a
t
i
o
n
 
o
f
 
C
u
r
v
e
 
:
\
n
'
)
;

 P
 

= 
P
0

*B
0
4
 

+ 
P
1

*B
1
4
 

+ 
P
2

*B
2
4
 

+ 
P
3

*B
3
4
 

+ 
P
4

*B
4
4

 f
p
r
i
n
t
f
(
'
\
n
'
)
;

 
 
f
p
r
i
n
t
f
(
'
A
c
t
u
a
l
 
E
q
u
a
t
i
o
n
 
 
:
\
n
'
)
;

 x
 

= 
s
u
b
s
(
P
,
 
(
[
P
0
,
 
P
1
,
 
P
2
,
 
P
3
,
 
P
4
]
)
,
 
(
[
x
0
,
 
x
1
,
 
x
2
,
 
x
3
,
 
x
4
]
)
)
;
 
x
 

= 
s
i
m
p
l
i
f
y
(
x
)

y
 

= 
s
u
b
s
(
P
,
 
(
[
P
0
,
 
P
1
,
 
P
2
,
 
P
3
,
 
P
4
]
)
,
 
(
[
y
0
,
 
y
1
,
 
y
2
,
 
y
3
,
 
y
4
]
)
)
;
 
y
 

= 
s
i
m
p
l
i
f
y
(
y
)

 %
p
l
o
t
t
i
n
g
 
B
F
s

 t
t
a
 

= 
l
i
n
s
p
a
c
e
(
t
0
,
 
t
1
)
;
 

t
t
b
 

= 
l
i
n
s
p
a
c
e
(
t
1
,
 
t
2
)
;
 

t
t
c
 

= 
l
i
n
s
p
a
c
e
(
t
2
,
 
t
3
)
;
 

t
t
d
 

= 
l
i
n
s
p
a
c
e
(
t
3
,
 
t
4
)
;
 

t
t
e
 

= 
l
i
n
s
p
a
c
e
(
t
4
,
 
t
5
)
;
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t
t
f
 

= 
l
i
n
s
p
a
c
e
(
t
5
,
 
t
6
)
;
 

t
t
g
 

= 
l
i
n
s
p
a
c
e
(
t
6
,
 
t
7
)
;
 

t
t
h
 

= 
l
i
n
s
p
a
c
e
(
t
7
,
 
t
8
)
;
 

 B
0
4
a
a
 

= 
s
u
b
s
(
B
0
4
A
,
 
t
,
 
t
t
a
)
;

B
0
4
b
b
 

= 
s
u
b
s
(
B
0
4
B
,
 
t
,
 
t
t
b
)
;

B
0
4
c
c
 

= 
s
u
b
s
(
B
0
4
C
,
 
t
,
 
t
t
c
)
;

B
0
4
d
d
 

= 
s
u
b
s
(
B
0
4
D
,
 
t
,
 
t
t
d
)
;

B
0
4
e
e
 

= 
s
u
b
s
(
B
0
4
E
,
 
t
,
 
t
t
e
)
;

B
0
4
f
f
 

= 
s
u
b
s
(
B
0
4
F
,
 
t
,
 
t
t
f
)
;

B
0
4
g
g
 

= 
s
u
b
s
(
B
0
4
G
,
 
t
,
 
t
t
g
)
;

B
0
4
h
h
 

= 
s
u
b
s
(
B
0
4
H
,
 
t
,
 
t
t
h
)
;

 B
1
4
a
a
 

= 
s
u
b
s
(
B
1
4
A
,
 
t
,
 
t
t
a
)
;

B
1
4
b
b
 

= 
s
u
b
s
(
B
1
4
B
,
 
t
,
 
t
t
b
)
;

B
1
4
c
c
 

= 
s
u
b
s
(
B
1
4
C
,
 
t
,
 
t
t
c
)
;

B
1
4
d
d
 

= 
s
u
b
s
(
B
1
4
D
,
 
t
,
 
t
t
d
)
;

B
1
4
e
e
 

= 
s
u
b
s
(
B
1
4
E
,
 
t
,
 
t
t
e
)
;

B
1
4
f
f
 

= 
s
u
b
s
(
B
1
4
F
,
 
t
,
 
t
t
f
)
;

B
1
4
g
g
 

= 
s
u
b
s
(
B
1
4
G
,
 
t
,
 
t
t
g
)
;

B
1
4
h
h
 

= 
s
u
b
s
(
B
1
4
H
,
 
t
,
 
t
t
h
)
;

 B
2
4
a
a
 

= 
s
u
b
s
(
B
2
4
A
,
 
t
,
 
t
t
a
)
;

B
2
4
b
b
 

= 
s
u
b
s
(
B
2
4
B
,
 
t
,
 
t
t
b
)
;

B
2
4
c
c
 

= 
s
u
b
s
(
B
2
4
C
,
 
t
,
 
t
t
c
)
;

B
2
4
d
d
 

= 
s
u
b
s
(
B
2
4
D
,
 
t
,
 
t
t
d
)
;

B
2
4
e
e
 

= 
s
u
b
s
(
B
2
4
E
,
 
t
,
 
t
t
e
)
;

B
2
4
f
f
 

= 
s
u
b
s
(
B
2
4
F
,
 
t
,
 
t
t
f
)
;

B
2
4
g
g
 

= 
s
u
b
s
(
B
2
4
G
,
 
t
,
 
t
t
g
)
;

B
2
4
h
h
 

= 
s
u
b
s
(
B
2
4
H
,
 
t
,
 
t
t
h
)
;
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B
3
4
a
a
 

= 
s
u
b
s
(
B
3
4
A
,
 
t
,
 
t
t
a
)
;

B
3
4
b
b
 

= 
s
u
b
s
(
B
3
4
B
,
 
t
,
 
t
t
b
)
;

B
3
4
c
c
 

= 
s
u
b
s
(
B
3
4
C
,
 
t
,
 
t
t
c
)
;

B
3
4
d
d
 

= 
s
u
b
s
(
B
3
4
D
,
 
t
,
 
t
t
d
)
;

B
3
4
e
e
 

= 
s
u
b
s
(
B
3
4
E
,
 
t
,
 
t
t
e
)
;

B
3
4
f
f
 

= 
s
u
b
s
(
B
3
4
F
,
 
t
,
 
t
t
f
)
;

B
3
4
g
g
 

= 
s
u
b
s
(
B
3
4
G
,
 
t
,
 
t
t
g
)
;

B
3
4
h
h
 

= 
s
u
b
s
(
B
3
4
H
,
 
t
,
 
t
t
h
)
;

 B
4
4
a
a
 

= 
s
u
b
s
(
B
4
4
A
,
 
t
,
 
t
t
a
)
;

B
4
4
b
b
 

= 
s
u
b
s
(
B
4
4
B
,
 
t
,
 
t
t
b
)
;

B
4
4
c
c
 

= 
s
u
b
s
(
B
4
4
C
,
 
t
,
 
t
t
c
)
;

B
4
4
d
d
 

= 
s
u
b
s
(
B
4
4
D
,
 
t
,
 
t
t
d
)
;

B
4
4
e
e
 

= 
s
u
b
s
(
B
4
4
E
,
 
t
,
 
t
t
e
)
;

B
4
4
f
f
 

= 
s
u
b
s
(
B
4
4
F
,
 
t
,
 
t
t
f
)
;

B
4
4
g
g
 

= 
s
u
b
s
(
B
4
4
G
,
 
t
,
 
t
t
g
)
;

B
4
4
h
h
 

= 
s
u
b
s
(
B
4
4
H
,
 
t
,
 
t
t
h
)
;

 f
i
g
u
r
e
,

p
l
o
t
(
t
t
a
,
 
B
0
4
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
0
4
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
0
4
c
c
,
 
'
k
-
.
'
,
 
t
t
d
,
 
..
.

B
0
4
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
0
4
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
0
4
f
f
,
 
'
b
-
.
'
,
 
t
t
g
,
 
B
0
4
g
g
,
 
'
r
-
'
,
 
t
t
h
,
 
B
0
4
h
h
,
 
'
r
-
-
'
)
;

h
o
l
d
 
o
n
;
 

p
l
o
t
(
t
t
a
,
 
B
1
4
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
1
4
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
1
4
c
c
,
 
'
k
-
.
'
,
 
t
t
d
,
 
..
.

B
1
4
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
1
4
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
1
4
f
f
,
 
'
b
-
.
'
,
 
t
t
g
,
 
B
1
4
g
g
,
 
'
r
-
'
,
 
t
t
h
,
 
B
1
4
h
h
,
 
'
r
-
-
'
)
;

p
l
o
t
(
t
t
a
,
 
B
2
4
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
2
4
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
2
4
c
c
,
 
'
k
-
.
'
,
 
t
t
d
,
 
..
.

B
2
4
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
2
4
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
2
4
f
f
,
 
'
b
-
.
'
,
 
t
t
g
,
 
B
2
4
g
g
,
 
'
r
-
'
,
 
t
t
h
,
 
B
2
4
h
h
,
 
'
r
-
-
'
)
;

p
l
o
t
(
t
t
a
,
 
B
3
4
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
3
4
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
3
4
c
c
,
 
'
k
-
.
'
,
 
t
t
d
,
 
..
.

B
3
4
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
3
4
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
3
4
f
f
,
 
'
b
-
.
'
,
 
t
t
g
,
 
B
3
4
g
g
,
 
'
r
-
'
,
 
t
t
h
,
 
B
3
4
h
h
,
 
'
r
-
-
'
)
;

p
l
o
t
(
t
t
a
,
 
B
4
4
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
B
4
4
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
B
4
4
c
c
,
 
'
k
-
.
'
,
 
t
t
d
,
 
..
.

B
4
4
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
B
4
4
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
B
4
4
f
f
,
 
'
b
-
.
'
,
 
t
t
g
,
 
B
4
4
g
g
,
 
'
r
-
'
,
 
t
t
h
,
 
B
4
4
h
h
,
 
'
r
-
-
'
)
;
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x
l
a
b
e
l
 
(
'
t
'
)
;
 
y
l
a
b
e
l
(
'
B
'
)
;
 
t
i
t
l
e
(
'
B
0
4
 
-
 
B
1
4
 
-
 
B
2
4
 
-
 
B
3
4
 
-
 
B
4
4
'
)
;

l
e
g
e
n
d
(
'
A
'
,
 
'
B
'
,
 
'
C
'
,
 
'
D
'
,
 
'
E
'
,
 
'
F
'
,
 
'
G
'
,
 
'
H
'
)
;

h
o
l
d
 
o
f
f
;

%
p
l
o
t
t
i
n
g
 
c
u
r
v
e

x
a
 

= 
x
(
1
)
;
 
y
a
 

= 
y
(
1
)
;

x
b
 

= 
x
(
2
)
;
 
y
b
 

= 
y
(
2
)
;

x
c
 

= 
x
(
3
)
;
 
y
c
 

= 
y
(
3
)
;

x
d
 

= 
x
(
4
)
;
 
y
d
 

= 
y
(
4
)
;

x
e
 

= 
x
(
5
)
;
 
y
e
 

= 
y
(
5
)
;

x
f
 

= 
x
(
6
)
;
 
y
f
 

= 
y
(
6
)
;

x
g
 

= 
x
(
7
)
;
 
y
g
 

= 
y
(
7
)
;

x
h
 

= 
x
(
8
)
;
 
y
h
 

= 
y
(
8
)
;

 x
a
a
 

= 
s
u
b
s
(
x
a
,
 
t
,
 
t
t
a
)
;
 
y
a
a
 

= 
s
u
b
s
(
y
a
,
 
t
,
 
t
t
a
)
;

x
b
b
 

= 
s
u
b
s
(
x
b
,
 
t
,
 
t
t
b
)
;
 
y
b
b
 

= 
s
u
b
s
(
y
b
,
 
t
,
 
t
t
b
)
;

x
c
c
 

= 
s
u
b
s
(
x
c
,
 
t
,
 
t
t
c
)
;
 
y
c
c
 

= 
s
u
b
s
(
y
c
,
 
t
,
 
t
t
c
)
;

x
d
d
 

= 
s
u
b
s
(
x
d
,
 
t
,
 
t
t
d
)
;
 
y
d
d
 

= 
s
u
b
s
(
y
d
,
 
t
,
 
t
t
d
)
;

x
e
e
 

= 
s
u
b
s
(
x
e
,
 
t
,
 
t
t
e
)
;
 
y
e
e
 

= 
s
u
b
s
(
y
e
,
 
t
,
 
t
t
e
)
;

x
f
f
 

= 
s
u
b
s
(
x
f
,
 
t
,
 
t
t
f
)
;
 
y
f
f
 

= 
s
u
b
s
(
y
f
,
 
t
,
 
t
t
f
)
;

x
g
g
 

= 
s
u
b
s
(
x
g
,
 
t
,
 
t
t
g
)
;
 
y
g
g
 

= 
s
u
b
s
(
y
g
,
 
t
,
 
t
t
g
)
;

x
h
h
 

= 
s
u
b
s
(
x
h
,
 
t
,
 
t
t
h
)
;
 
y
h
h
 

= 
s
u
b
s
(
y
h
,
 
t
,
 
t
t
h
)
;

 X
 

= 
[
x
0
,
 
x
1
,
 
x
2
,
 
x
3
,
 
x
4
]
;
 
Y
 

= 
[
y
0
,
 
y
1
,
 
y
2
,
 
y
3
,
 
y
4
]
;

 f
i
g
u
r
e

s
u
b
p
l
o
t
(
1
3
1
)
,
 
p
l
o
t
(
t
t
a
,
 
x
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
x
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
x
c
c
,
 
'
k
-
.
'
,
 
..
.

t
t
d
,
 
x
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
x
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
x
f
f
,
 
'
b
-
.
'
,
 
t
t
g
,
 
x
g
g
,
 
'
r
-
'
,
 
t
t
h
,
 
x
h
h
,
 
'
r
-
-
'
)
;
 

x
l
a
b
e
l
(
'
t
'
)
;
 
y
l
a
b
e
l
(
'
x
'
)
;
 
 
t
i
t
l
e
(
'
t
 
-
 
x
'
)
;
 
a
x
i
s
 
s
q
u
a
r
e
;

s
u
b
p
l
o
t
(
1
3
2
)
,
 
p
l
o
t
(
t
t
a
,
 
y
a
a
,
 
'
k
-
'
,
 
t
t
b
,
 
y
b
b
,
 
'
k
-
-
'
,
 
t
t
c
,
 
y
c
c
,
 
'
k
-
.
'
,
 
..
.
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t
t
d
,
 
y
d
d
,
 
'
b
-
'
,
 
t
t
e
,
 
y
e
e
,
 
'
b
-
-
'
,
 
t
t
f
,
 
y
f
f
,
 
'
b
-
.
'
,
 
t
t
g
,
 
y
g
g
,
 
'
r
-
'
,
 
t
t
h
,
 
y
h
h
,
 
'
r
-
-
'
)
;
 

x
l
a
b
e
l
(
'
t
'
)
;
 
y
l
a
b
e
l
(
'
y
'
)
;
 
 
t
i
t
l
e
(
'
t
 
-
 
y
'
)
;
 
a
x
i
s
 
s
q
u
a
r
e
;

s
u
b
p
l
o
t
(
1
3
3
)
,
 
p
l
o
t
(
x
a
a
,
 
y
a
a
,
 
'
k
-
'
,
 
x
b
b
,
 
y
b
b
,
 
'
k
-
-
'
,
 
x
c
c
,
 
y
c
c
,
 
'
k
-
.
'
,
 
..
.

x
d
d
,
 
y
d
d
,
 
'
b
-
'
,
 
x
e
e
,
 
y
e
e
,
 
'
b
-
-
'
,
 
x
f
f
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3.9  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Approximating splines in general do not go through any of their CPs.

• B-splines are approximating splines proposed to overcome the drawbacks of Bezier 
splines.

• B-splines consist of multiple curve segments with continuity at join points.

• Values of the parametric variable t at the join points are stored in the KV.

• Uniform B-splines have uniform gaps in the KV.

• BFs of B-splines are calculated using the Cox de Boor algorithm.

• A B-spline has two defining parameters d related to its degree and n related to the 
number of CPs.

• Number of CPs can be changed independent of the degree of B-splines.

• BFs and equation of B-splines consists of multiple parts due to the segments.

• BFs of uniform B-splines have the symmetric shapes but shifted from each other.

• Changing the CPs affects only specific segments instead of the entire curve.

• The spatial B-spline curve is independent of the KV values.

• Open-uniform B-splines have KV with repeated values, called multiplicity.

• Multiplicity forces approximating B-splines to behave like hybrid splines.

• Non-uniform B-splines have non-uniform gaps in the KV.

• BFs of non-uniform B-splines are unsymmetric in shape.

3.10  REVIEW QUESTIONS
 1. What are main differences between B-splines and Bezier splines?

 2. Differentiate between uniform, open-uniform, and non-uniform B-splines

 3. What is a KV for a B-spline curve?

 4. How are BFs of B-splines calculated, using the Cox de Boor algorithm?

 5. Under what conditions can B-splines behave like hybrid splines?

 6. What is meant by local control property of a B-spline?

 7. Can the number of CPs be changed independent of the degree of B-splines?

 8. How does changing the KV affect the spatial B-spline curve?
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 9. Why does a B-spline curve equation have multiple sub-components?

 10. What is multiplicity of the KV and how does it affect the BFs and the spline curve?

3.11  PRACTICE PROBLEMS
 1. Find the equation of a linear uniform B-spline associated with the CPs (1, 0), (−1, 1), 

and (1, −1).

 2. Derive the BFs of a uniform linear B-spline with d = 2 and n = 3.

 3. Derive the BFs of a uniform quadratic B-spline associated with five CPs.

 4. A B-spline has degree 2 and is associated with four CPs. Find an expression for the 
first BF B03 for the first two curve segments A and B, using Cox de Boor algorithm, 
if the KV is of the form T = [0, 0.2, 0.5, 0.7, …].

 5. A uniform B-spline has degree 1 and is associated with three CPs P0, P1, and P2. 
Derive equation of the second curve segment using Cox de Boor algorithm, if KV is 
of the form T = [0, 0.4, 0.5, 0.8, …].

 6. A non-uniform B-spline has degree 1 and is associated with three CPs P0, P1, and P2. 
Derive equation of the first and second curve segments if the KV is T = [0, 4, 5, 8, 9].

 7. Find the equation of a uniform quadratic B-spline having CPs (2, 5), (4, −1), (5, 8), and 
(7, −5).

 8. Find the equation of a non-uniform quadratic B-spline having CPs (2, 5), (4, −1), 
(5, 8), and (7, −5) and a KV T =[0, 4, 5, 8, 9, 13, 15].

 9. Find the equations of the first two segments of a uniform cubic B-spline with CPs 
(2, 0), (4, 1), (5, 7), (6, −5), and (8, −1).

 10. Find the first two BFs of a non-uniform cubic B-spline with d = 4 and n = 4, and KV 
T = [0, 1, 2, 5, 6, 8, 10, 12, 13].
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C h a p t e r  4

2D Transformations

4.1  INTRODUCTION
Two-dimensional transformations enable us to change the location, orientation and shapes 
of splines in 2D space. These transformations are translation, rotation, scaling, reflection, 
and shear (Hearn and Baker, 1996) applied individually or in combination of two or more. 
Given known coordinates of a point, each of these transformations is represented by a 
matrix which when multiplied to the original coordinates gives us a new set of  coordinates. 
An entire spline is transformed by transforming all the points of the spline. In the  following 
sections, the transformation matrices will be derived and applied to original points to 
give new points. Before that, however, we introduce the concept of homogeneous coor-
dinates, which enable us to represent all types of transformation in a homogeneous or 
uniform manner. To calculate the coordinates and directions, we use a 2D right-handed 
 coordinate system. Although, we have been using coordinates of points from Chapter 1, 
now we  establish a formal definition of a 2D coordinate system as transformation requires 
a  rigorous understanding of how distances and angles are calculated and how they are 
changed  during the course of transformation operations.

The concept of a 2D Cartesian coordinate system is attributed to the 17th century 
French mathematician Rene Descartes and is widely used to measure location of a point 
on a 2D plane from a reference point called the origin. The location is represented as a 
pair of signed distances measured along two mutually perpendicular lines called axes 
meeting at the origin. Sometimes, the axes are also referred to as the primary axes or 
principal axes to distinguish them from other lines parallel to them. The first axis is usu-
ally depicted as a number line along the horizontal direction and called the X-axis while 
the second axis as a number line along the vertical direction and called the Y-axis (see 
Figure 4.1). Distance of a point on the plane measured along the X-axis from the ori-
gin is called the x-coordinate or abscissa and distance along the Y-axis is called the 
y-coordinate or ordinate. The location of a point is, therefore, represented as a pair of 
ordered numbers (x, y) called its  coordinates. Since all distances are measured from the 
origin, the origin itself has coordinates (0, 0) and denoted by O. In most cases, the origin 
is visualized as a point in the center of the paper with the x-coordinates being measured 
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positive toward the right and negative toward the left, and the y-coordinates being posi-
tive toward the top and negative toward the bottom. However in the context of a com-
puter display, the origin is usually located at the lower-left corner of the screen with the 
axes toward the right and top, while for some cases the origin is also depicted at the upper 
left of the screen with the axes toward the right and bottom of the screen. Since the axes 
are perpendicular to each other the system is often referred to as rectangular coordinate 
system or orthogonal coordinate system. Numbers measured along the axes can in gen-
eral be floating point numbers although in some cases like measuring pixel dimensions 
of images on screen, the numbers are thought to be only integers. The two axes divide 
the plane into four parts called quadrants such that in the first quadrant (Q1) both x and 
y are positive, in the second quadrant (Q2), x is negative, in the third quadrant (Q3) both 
are negative, and in the fourth quadrant (Q4), y is  negative. To fix the orientation of the 
axes with respect to one another a convention called the right-hand rule is often used. If 
the first finger and the second finger of the right-hand are stretched out at right angles to 
each other then the direction from the hand to the tip of the finger would represent the 
positive x and positive y directions, respectively. The angle of rotation around a primary 
axis is considered positive when in counter-clockwise (CCW) direction when seen from 
the tip of the axis toward the origin. Another way to determine this is to use the right-
handed convention: with the thumb of the right-hand pointing toward the positive end 
of an axis (away from the origin) the direction of curvature of the fingers indicate the 
positive direction of rotation around that axis (O’Rourke, 2003).
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O (0,0)
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(2,-4)(-2,-4)

FIGURE 4.1 2D coordinate system.
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A Cartesian coordinate system plays one of the most important roles in graphics since it 
enables representation of spline curves as a series of coordinate points e.g. a spline 0.5 3=y x  
can be described by the vector containing all points whose coordinates satisfy the equa-
tion. Moreover, the number of points and the gap between them can be adjusted according 
to the resolution of the display system to always produce a smooth curve. This has led to 
the growth of vector graphics.

4.2  HOMOGENEOUS COORDINATES
A point , 1 1P x y( ) when translated by amounts , t tx y( ) has new coordinates , 2 2Q x y( ) given 
by (Foley et al., 1995):
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Written in matrix form this becomes:
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Now for two main reasons, we would prefer a slightly different form of representation of 
the transformation matrix than that shown above. The first reason is that when multiple 
transformations are involved one after another we would prefer a multiplicative form of 
the matrix rather than the additive form. This would enable us to multiply all the trans-
formations together and calculate the final coordinates at the end, rather than calculate 
 intermediate coordinates after each step. The product of two or more transformation 
matrices is known as the “composite transformation” matrix, and provides the net effect 
of multiple transformations within a single matrix (Hearn and Baker, 1996). The second 
reason is that we would prefer a square transformation matrix whose inverse would give us 
the “inverse transformation.” For these reasons, we use the form in Equation (4.2), which 
is called “homogeneous coordinates” (Hearn and Baker, 1996) in contrast to Equation (4.1) 
called “Cartesian coordinates.” To generate the square matrix, a third row is included, 
which is typically ignored after the new coordinates are computed.
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Since the matrices have three rows, the homogeneous coordinates are referred to as 
( ,  ,  )x y h , which implies Cartesian coordinates of ( / ,  / )x h y h . In most cases h = 1 so the val-
ues are equal, but in some cases when h is not 1, we would need conversion from one sys-
tem to another. Such examples are also included in this book. The transformation matrices 
for each type of transformation operation will now be dealt with in more details.
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4.3  TRANSLATION
A point , 1 1P x y( ) when translated by amounts , t tx y( ) has new coordinates , 2 2Q x y( ) 
given by:
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The inverse transformation is computed by taking the inverse of the matrix as below:
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It can be verified that the inverse of the matrix is equal to the negative of the arguments.
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Symbolically, if T denotes the forward translation operation with arguments , t tx y( ) and T′ 
denotes the reverse translation then the above can be written as:

 ,  , T t t T t tx y x y( ) ( )′ = − −  

This is the convention followed throughout this book i.e. the operations themselves would 
be denoted by single letters such as T, S, R, and so on for translation, scaling, and rotation 
while a specific transformation matrix would be denoted with a letter with a subscript. For 
example

 (3,  4)
1 0 3
0 1 4
0 0 1

1T T= − = −















 

Example 4.1

A square having vertices (0, 0), (1, 0), (1, 1), and (0, 1) is translated by amounts 
(−3, 4). Find its new vertices.

Original coordinate matrix: =
















0 1 1 0
0 0 1 1
1 1 1 1

C
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Translation matrix: ( 3, 4)
0 1 3
0 0 4
0 0 1

1T T= − =
−















New coordinate matrix: = =
− − − −















*
3 2 2 3

4 4 5 5
1 1 1 1

1D T C

New vertex coordinates are (−3, 4), (−2, 4), (−2, 5), and (−3, 5) (Figure 4.2)

MATLAB® Code 4.1

clear all; clc;
X = [0 1 1 0 0]; 
Y = [0 0 1 1 0];
C = [X; Y; 1 1 1 1 1];
tx = -3; ty = 4; 
T1 = [1 0 tx; 0 1 ty; 0 0 1];
D = T1*C;
 
fprintf('New vertices : \n');

for i=1:4
    fprintf('(%.2f, %.2f) \n',D(1,i), D(2,i));

end
 

-6 -4 -2 0 2 4 6
x

-6

-4

-2

0

2

4

6

y

original
new

FIGURE 4.2 Plot for Example 4.1.
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%plotting
plot(C(1,:), C(2,:), 'b--', D(1,:),D(2,:), 'r');
xlabel('x');
ylabel('y');
legend('original', 'new');
axis([-6, 6, -6, 6]); 
grid;

4.4  SCALING
A scaling operation alters the size of graphic objects by multiplying the X- and Y-coordinates 
of each point of the object by scaling factors sx and sy. If scaling factors are less than 1, they 
reduce the size of the object; if they are more than 1, they increase the size; and if they 
are equal to 1, they keep the size unaltered. If the factors are positive, the size increases 
along the original direction of coordinate axes; if they are negative, the coordinate signs 
are flipped. If sx and sy are equal then scaling is uniform otherwise non-uniform.

A point , 1 1P x y( ) when scaled by amounts , s sx y( ) has new coordinates , 2 2Q x y( ) 
given by:
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It can be verified that the inverse of the matrix is equal to the reciprocal of the arguments.
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If S denotes the forward scaling operation with arguments , s sx y( ) and S′ denotes the 
reverse scaling then the above can be written as:

 ,  1 , 1S s s S s sx y x y( ) ( )′ =  

Note that the scaling operation pertaining to the above matrix is always with respect to 
the origin.

Example 4.2

A quadrilateral having vertices (−1, −1), (1, −2), (1, 2), (−1, 1) is scaled by amounts 
(−2, 3). Find its new vertices.

NOTE

for: initiates a for loop for printing out all the vertices



2D Transformations   ◾   139

Original coordinate matrix: =
− −
− −

















1 1 1 1
1 2 2 1

1 1 1 1
C

Scaling matrix: ( 2, 3)
2 0 0

0 3 0
0 0 1

1S S= − =
−















New coordinate matrix: = ⋅ =
− −

− −
















2 2 2 2
3 6 6 3

1 1 1 1
1D S C

New vertex coordinates are (2, −3), (−2, −6), (−2, 6), and (2, 3) (Figure 4.3)

MATLAB Code 4.2

clear all; clc;
X = [-1 1 1 -1 -1]; 
Y = [-1 -2 2 1 -1];
C = [X;Y; 1 1 1 1 1];
sx = -2; 
sy = 3; 
S1 = [sx 0 0; 0 sy 0; 0 0 1];
D = S1*C;
 
fprintf('New vertices : \n');

for i=1:4
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FIGURE 4.3 Plot for Example 4.2.
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    fprintf('(%.2f, %.2f) \n',D(1,i), D(2,i));

end
 
%plotting
plot(C(1,:), C(2,:), 'b--', D(1,:),D(2,:), 'r');
xlabel('x');
ylabel('y'); 
legend('original', 'new');
axis([-6, 6, -6, 6]); grid;

Note that here the center of the square is at point (0, 0) so the scaling is uniform with 
respect to the origin.

4.5  ROTATION
A rotation operation moves a point along the circumference of a circle centered at the 
 origin and radius equal to the distance of the point from the origin. Rotation is considered 
positive when it is in the CCW direction and negative along the clockwise (CW) direction.

A point , 1 1P x y( ) when rotated by angle (θ) has new coordinates , 2 2Q x y( ) given by 
(Figure 4.4):
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FIGURE 4.4 Deriving the rotation matrix.
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To arrive at the above expression let angle between OP and X-axis be φ and r be the 
length of OP.

Then: x1 = r·cos(φ), y1 = r·sin(φ)

Now: x2 = r·cos(φ + θ) = r·cos(φ)·cos(θ) − r·sin(φ)·sin(θ)

Similarly: y2 = r·sin(φ + θ) = r·cos(φ)·sin(θ) + r·sin(φ)·cos(θ)

Simplifying: x2 = x1·cos(θ) − y1·sin(θ)

Similarly: y2 = x1·sin(θ) + y1·cos(θ)

It can be verified that the inverse of the matrix is equal to the negative of the argument, 
remembering that cos( ) cos( )θ θ− = .
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If R denotes the forward rotation operation with arguments (θ) and R′ denotes the reverse 
rotation then the above can be written as:

 ( ) ( )θ θ′ = −R R  

Note that the rotation operation pertaining to the above matrix is always with respect to 
the origin.

Example 4.3

A square having vertices (−1, −1), (1, −1), (1, 1), and (−1, 1) is rotated by angle 30° 
around the origin along CCW direction. Find its new vertices.

Original coordinate matrix: =
− −
− −

















1 1 1 1
1 1 1 1

1 1 1 1
C

Rotation matrix: = =
−















=
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(30)
cos30 sin30 0
sin30 cos30 0

0 0 1

0.87 0.5 0
0.5 0.87 0
0 0 1

1R R

New coordinate matrix: = ⋅ =
− −
− −

















0.37 1.37 0.37 1.37
1.37 0.37 1.37 0.37
1 1 1 1

1D R C

New vertex coordinates are (−0.37, −1.37), (1.37, −0.37), (0.37, 1.37), and (−1.37, 0.37) 
(Figure 4.5)
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MATLAB Code 4.3

clear all; clc;
X = [-1 1 1 -1 -1]; 
Y = [-1 -1 1 1 -1];
C = [X;Y; 1 1 1 1 1];
A = deg2rad(30); 
R1 =[cos(A) -sin(A) 0; sin(A) cos(A) 0; 0 0 1];
D = R1*C;
 

fprintf('New vertices : \n');

for i=1:4
    fprintf('(%.2f, %.2f) \n',D(1,i), D(2,i));

end
 

%plotting
plot(C(1,:), C(2,:), 'b--', D(1,:),D(2,:), 'r');
xlabel('x');
ylabel('y');
legend('original', 'new'); 
axis([-4, 4, -4, 4]); grid;
axis square;

NOTE

Here, the center of the square is at point (0, 0) so the rotation is with respect to the origin.

cos: calculates cosine of an angle in radians
deg2rad: converts degree to radian values
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FIGURE 4.5 Plot for Example 4.3.
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4.6  FIXED-POINT SCALING
For a general fixed-point scaling with respect to a fixed point , x yf f( ), the following steps 
are taken:

 1. Translate object so that fixed-point moves to origin: , 1T T x yf f( )= − −

 2. Scale object about origin: , 1S S s sx y( )=

 3. Reverse translate the object to original location: , 2T T x yf f( )= .

Composite transformation: 2 1 1= ⋅ ⋅M T S T

Example 4.4

A square having vertices (−1, −1), (1, −1), (1, 1), and (−1, 1) is scaled by 
amounts (−2, 3) about one of its vertices (−1, −1). Find its new vertices.

Original coordinate matrix: =
− −
− −

















1 1 1 1
1 1 1 1

1 1 1 1
C

Forward translation matrix: (1, 1)
0 1 1
0 0 1
0 0 1

1T T= =
















Scaling matrix: ( 2, 3)
2 0 0

0 3 0
0 0 1

1S S= − =
−















Reverse translation matrix: ( 1,  1)
0 1 1
0 0 1
0 0 1

2T T= − − =
−
−

















Composite transformation matrix: = ⋅ ⋅ =
− −















2 0 3
0 3 2
0 0 1

2 1 1M T S T

New coordinate matrix: = ⋅ =
− − − −
− −

















1 5 5 1
1 1 5 5

1 1 1 1
D M C

New vertex coordinates are (−1, −1), (−5, −1), (−5, 5), and (−1, 5) (Figure 4.6)
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MATLAB Code 4.4

clear all; clc;
X = [-1 1 1 -1 -1]; 
Y = [-1 -1 1 1 -1];
C = [X;Y; 1 1 1 1 1];
sx = -2; sy = 3; 
xf = -1; yf = -1;
T1 = [1, 0, -xf ; 0, 1, -yf ; 0, 0, 1];
S1 = [sx, 0, 0 ; 0, sy, 0 ; 0, 0, 1];
T2 = [1, 0, xf ; 0, 1, yf ; 0, 0, 1];
M = T2 * S1 * T1 ; 
D = M*C;
 
fprintf('New vertices : \n');

for i=1:4
    fprintf('(%.2f, %.2f) \n',D(1,i), D(2,i));

end
 
%plotting
plot(C(1,:), C(2,:), 'b--', D(1,:),D(2,:), 'r', xf, yf, 'ro');
xlabel('x');
ylabel('y');
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FIGURE 4.6 Plot for Example 4.4.
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legend('original', 'new'); 
axis([-8, 8, -8, 8]); 
axis square; grid;

4.7  FIXED-POINT ROTATION
For a general fixed-point rotation with respect to a fixed point , x yf f( ), the following steps 
are taken (Foley et al., 1995):

 1. Translate object so that fixed-point moves to origin: , 1T T x yf f( )= − −

 2. Rotate object about origin: ( )1 θ=R R

 3. Reverse translate the object to original location: , 2T T x yf f( )=

 4. Calculate composite transformation matrix: 2 1 1= ⋅ ⋅M T R T .

Example 4.5

A square having vertices (−1, −1), (1, −1), (1, 1), and (−1, 1) is rotated by angle 30° 
along CCW direction about one of its vertices (−1, −1). Find its new vertices.

Original coordinate matrix: =
− −
− −

















1 1 1 1
1 1 1 1

1 1 1 1
C

Forward translation matrix: (1, 1)
0 1 1
0 0 1
0 0 1

1T T= =
















Rotation matrix: = =
−















=
−















(30)
cos30 sin30 0
sin30 cos30 0

0 0 1

0.87 0.5 0
0.5 0.87 0
0 0 1

1R R

Reverse translation matrix: ( 1,  1)
0 1 1
0 0 1
0 0 1

2T T= − − =
−
−

















Composite transformation matrix: = ⋅ ⋅ =
− −















0.87 0.5 0.63
0.5 0.87 0.37
0 0 1

2 1 1M T R T

New coordinate matrix: = ⋅ =
− − −
−

















1 0.73 0.27 2
1 0 1.73 0.73

1 1 1 1
D M C

New vertex coordinates are (−1, −1), (0.73, 0), (−0.27, 1.73), and (−2, 0.73) 
(Figure 4.7)
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MATLAB Code 4.5

clear all; clc;
X = [-1 1 1 -1 -1]; 
Y = [-1 -1 1 1 -1];
C = [X ; Y ; 1 1 1 1 1];
xf = -1; 
yf = -1; 
A = 30; 
T1 = [1, 0, -xf ; 0, 1, -yf ; 0, 0, 1];
R1 = [cosd(A), -sind(A), 0 ; sind(A), cosd(A), 0 ; 0, 0, 1];
T2 = [1, 0, xf ; 0, 1, yf ; 0, 0, 1];
M = T2 * R1 * T1 ; 
D = M * C;
 
fprintf('New vertices : \n');

for i=1:4
    fprintf('(%.2f, %.2f) \n',D(1,i), D(2,i));

end
 
%plotting
plot(C(1,:), C(2,:), 'b--', D(1,:),D(2,:), 'r', xf, yf, 'ro');
xlabel('x');
ylabel('y');
legend('original', 'new'); 
axis([-4, 4, -4, 4]); 
axis square; grid;
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FIGURE 4.7 Plot for Example 4.5.
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4.8  REFLECTION
A reflection operation about an axis reverses the sign of the coordinate perpendicular to 
the axis. Thus, for example a reflection about the X-axis reverses the y-coordinate of a 
point. The reflection matrices, therefore, are given by the following, where the subscript 
denotes the axis about which the reflection takes place:

 
1 0 0
0 1 0
0 0 1

= −
















Fx  (4.9)

 
1 0 0

0 1 0
0 0 1

=
−















Fy  (4.10)

A reflection can also take place about the origin in which case both the x- and 
y- coordinates gets reversed. This is indicated by the subscript “o.”

 
1 0 0

0 1 0
0 0 1

=
−

−
















Fo  (4.11)

Example 4.6

A triangle having vertices at (1, 2), (3, 2), and (3, 4) is reflected about the X-axis, 
Y-axis, and the origin. Find its new coordinates.

Original coordinate matrix: =
















1 3 3
2 2 4
0 0 1

C

For reflection about X-axis: = −
















1 0 0
0 1 0
0 0 1

Fx

New coordinate matrix: = ⋅ = − − −
















1 3 3
2 2 4
0 0 1

D F Cx x

NOTE

cosd: calculates cosine of an angle in degrees
sind: calculates sine of an angle in degrees
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For reflection about Y-axis: =
−















1 0 0
0 1 0
0 0 1

Fy

New coordinate matrix: = ⋅ =
− − −















1 3 3
2 2 4
0 0 1

D F Cy y

For reflection about origin: =
−

−
















1 0 0
0 1 0
0 0 1

Fo

New coordinate matrix: = ⋅ =
− − −
− − −

















1 3 3
2 2 4

0 0 1
D F Co o  (Figure 4.8)

MATLAB Code 4.6

clear all; clc;
X = [1, 3, 3, 1]; 
Y = [2, 2, 4, 2];
C = [X; Y; 1 1 1 1];

-5 50
x
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y

original
Fx
Fy
Fo

FIGURE 4.8 Plot for Example 4.6.
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Fx = [1 0 0; 0 -1 0; 0 0 1];
Fy = [-1 0 0; 0 1 0; 0 0 1];
Fo = [-1 0 0; 0 -1 0; 0 0 1];
Dx = Fx*C;
Dy = Fy*C;
Do = Fo*C;
 
fprintf('New vertices X-axis : \n');

for i=1:3
    fprintf('(%.2f, %.2f) \n',Dx(1,i), Dx(2,i));

end
 
fprintf('New vertices Y-axis : \n');

for i=1:3
    fprintf('(%.2f, %.2f) \n',Dy(1,i), Dy(2,i));

end
 
fprintf('New vertices origin: \n');

for i=1:3
    fprintf('(%.2f, %.2f) \n',Do(1,i), Do(2,i));

end
 
%plotting

plot(C(1,:), C(2,:), 'b--', Dx(1,:),Dx(2,:), 'r', ...
    Dy(1,:), Dy(2,:), 'r--', Do(1,:), Do(2,:), 'r-.');
xlabel('x'); ylabel('y');
axis([-5, 5, -5, 5]); 
legend('original', 'Fx', 'Fy', 'Fo'); 

axis square; grid;

4.9  FIXED-LINE REFLECTION
Transformation matrix for reflection about the fixed line L: = +y mx c  is obtained using 
following steps (Chakraborty, 2010):

 1. Intercept point of L with Y-axis is (0, c). Translate point to origin: (0,  )1T T c= −

 2. Rotate L about origin by −θ, where θ = arctan(m): R1 = R(θ)

 3. Apply reflection about X-axis: Fx

 4. Reverse rotate around X-axis: ( )2 θ= −R R

 5. Reverse translate to original location: (0,  )2T T c=

 6. Calculate composite transformation: 2 2 1 1= ⋅ ⋅ ⋅ ⋅M T R F R Tx  (Figure 4.9).
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Example 4.7

A triangle having vertices (2, 4), (4, 7), and (5, 6) is reflected about the line 
= +y 0.5x 2. Find its new coordinates.

Original coordinate matrix: =
















2 4 5
4 7 6
0 0 1

C

For given line L, we have m c k m= = = = = °0.5,  2,  arctan( ) 0.463 radians 26.56

Forward translation matrix: (0,  )
1 0 0
0 1 2
0 0 1

1T T c= − = −
















Forward rotation matrix: = =
−















( )
cos sin 0
sin cos 0

0 0 1
1R R k

k k
k k

= −
















0.89 0.45 0
0.45 0.89 0
0 0 1

Reflection about X-axis: = −
















1 0 0
0 1 0
0 0 1

Fx

-5 -4 -3 -2 -1 0 1 2 3 4 5

X

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y
y = mx + c

O

(0,c) = atan(m)

FIGURE 4.9 Fixed-line reflection.
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Reverse rotation matrix: R R k
k k
k k= − = −

















( )
cos sin 0
sin cos 0
0 0 1

2

=
−















0.89 0.45 0
0.45 0.89 0

0 0 1

Reverse translation matrix: (0,  )
1 0 0
0 1 2
0 0 1

2T T c= =
















Composite transformation matrix: = ⋅ ⋅ ⋅ ⋅ =
−

−
















0.6 0.8 1.6
0.8 0.6 3.2
0 0 1

2 2 1 1M T R F R Tx

New coordinate matrix: = ⋅ =
















2.8 6.4 6.2
2.4 2.2 3.6
1 1 1

D M C

New vertex coordinates are (2.8, 2.4), (6.4, 2.2), and (6.2, 3.6) (Figure 4.10).
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FIGURE 4.10 Plot for Example 4.7.
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MATLAB Code 4.7

clear all; clc;
m = 0.5; c = 2;
T1 = [1 0 0 ; 0 1 -c ; 0 0 1];
k = atan(m);
R1 = [cos(k), sin(k), 0 ; -sin(k), cos(k), 0 ; 0 0 1];
Fx = [1 0 0; 0 -1 0; 0 0 1];
R2 = inv(R1);
T2 = inv(T1);
M = T2*R2*Fx*R1*T1;
C = [2 4 5 2; 4 7 6 4; 1 1 1 1];
D = M*C;
 
fprintf('New vertices : \n');

for i=1:3
    fprintf('(%.2f, %.2f) \n',D(1,i), D(2,i));

end
 
%plotting
xx = linspace(0,10);
yy = m*xx + c;
plot(C(1,:),C(2,:), 'b--', D(1,:), D(2,:), 'r');
hold on;
plot(xx, yy, 'b-', 'LineWidth', 1.5);
legend('original', 'new'); axis([0, 10, 0, 10]);
grid; axis square;
xlabel('x'); ylabel('y');
hold off;

4.10  SHEAR
A shear operation distorts a graphic object by changing a set of coordinate values while 
keeping other values constant (Chakraborty, 2010). There can be two types of shear: one 
along the X-direction and the other along the Y-direction. For an X-direction, shear the 
x- coordinates of points are shifted in value by an amount proportional to their y- coordinates, 
while the y-coordinates themselves remain constant (see Figure 4.11a).

It is evident here that: 2 1 1= + ⋅x x h y , where h is a constant of proportionality. This means 
that larger is the y-coordinate of a point more is its shift along the x-coordinate. Since the 
y-coordinates remain unchanged, 2 1=y y . In matrix form:

NOTE

atan: computes inverse tangent in radian values
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1 0
0 1 0
0 0 1

=
















H
h

x  (4.12)

Similarly a y-direction shear (Figure 4.11b) would be represented as:

 
1 0 0

1 0
0 0 1

=
















H hy  (4.13)

Example 4.8

A square having vertices at (−1, −1), (1, −1), (1, 1), and (−1, 1) is subjected to a shear 
of 1.5 along the X-axis and then a shear of 2 along the y-axis. Find its new vertices.

Original coordinate matrix: =
− −
− −

















1 1 1 1
1 1 1 1

1 1 1 1
C

Shear along X-direction: = =
















(1.5)
1 1.5 0
0 1 0
0 0 1

1H Hx

-1 0 1 2 3

x

-1

0

1

2

3
y

x-shear

original
new

-1 0 1 2 3

x
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1

2
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y

y-shear

original
new

(a) (b)

FIGURE 4.11 (a and b) Shear along x- and y-directions.
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Shear along Y-direction: = =
















(2)
1 0 0
2 1 0
0 0 1

2H H y

New coordinate matrix: = ⋅ ⋅2 1D H H C
New vertex coordinates are (−2.5, −6), (−0.5, −2), (2.5, 6), and (0.5, 2) (Figure 4.12)

MATLAB Code 4.8

clear all; clc;
X=[-1 1 1 -1 -1]; Y=[-1 -1 1 1 -1];
C = [X;Y; 1 1 1 1 1];
hx = 1.5; hy = 2;
Hx = [1, hx, 0 ; 0, 1, 0 ; 0, 0, 1];
Hy = [1, 0, 0 ; hy, 1, 0 ; 0, 0, 1];
D = Hy*Hx*C;
 
fprintf('New vertices : \n');

for i=1:4
    fprintf('(%.2f, %.2f) \n',D(1,i), D(2,i));

end
 
plot(C(1,:), C(2,:), 'b--', D(1,:),D(2,:), 'r');
xlabel('x');
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FIGURE 4.12 Plot for Example 4.8.
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ylabel('y');
legend('original', 'new'); 
axis equal; grid;

4.11  AFFINE TRANSFORMATIONS
A composite transformation involving a combination of translation, rotation, scaling, and 
shear is referred to as affine transformation (Hearn and Baker, 1996; Shirley, 2002). An affine 
transformation preserves the following property: if P was an arbitrary point located on the 
line segment joining endpoints A and B before the  transformation, then after the trans-
formation the transformed point P′ will still be located on the line   segment joining the 
transformed endpoints A′ and B′. In general, a rectangle under affine  transformation will 
be converted to a parallelogram (Rovenski, 2010).

Recalling that,

 
1 0
0 1
0 0 1

=
















T
t
t

x

y  

 
0 0

0 0
0 0 1

=
















S
s

s
x

y  

 
cos sin 0
sin cos 0

0 0 1

θ θ
θ θ=

−















R  

 
1 0

1 0
0 0 1

=
















H
h

h
x

y  

Composite transformation can be calculated as:

 

cos sin cos sin
sin cos cos sin

0 0 1

0 0 1

M T S R H
s h s h s s t
s h s s h s t

a b c
d e f

x y x x x x x

y y y y x y y

θ θ θ θ
θ θ θ θ= ⋅ ⋅ ⋅ =

⋅ − ⋅ ⋅ ⋅ ⋅ − ⋅
⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅



















=
















 

(4.14)
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Thus under affine transformation, the transformed coordinates x′, y′ of a point are related 
to the original coordinates x, y by the general relation of the form:

 
′ = + +

′ = + +

x ax by c

y dx ey f
 (4.15)

Reflection can also be added to the set of transformations, which will simply change the 
sign of some of the coefficients depending on the type of reflection.

Example 4.9

Find the new coordinates of a square with vertices (1, 1), (1, −1), (−1, −1), and 
(−1, 1) under the composite transformations involving the following: T(2, −4), 
S(3, −1), R(π/2), and H(1, −2).

Here,

 = −
















1 0 2
0 1 4
0 0 1

T  

 = −
















3 0 0
0 1 0
0 0 1

S  

 =
π − π
π π

















=
−















cos /2 sin /2 0
sin /2 cos /2 0

0 0 1

0 1 0
1 0 0
0 0 1

R  

 = −
















1 1 0
2 1 0

0 0 1
H  

Composite transformation matrix: =
−

− − −
















6 3 2
1 1 4

0 0 1
M

Original coordinate matrix: =
− −
− −

















1 1 1 1
1 1 1 1

1 1 1 1
C



2D Transformations   ◾   157

New coordinate matrix: = ⋅ =
− −
− − − −

















1 11 5 7
2 4 6 4

1 1 1 1
D M C

New vertex coordinates are (−1, −2), (11, −4), (5, −6), and (−7, −4) (Figure 4.13).
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FIGURE 4.13 Plot for Example 4.9.
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4.12  PERSPECTIVE TRANSFORMATIONS
We have seen above that the affine transformation matrix described by Equation (4.14) 
converts a rectangle into a parallelogram and is described as below, where (x′, y′) are the 
transformed coordinates of the point (x, y).

 
'
'

1 0 0 1 1

















=
































x
y

a b c
d e f

x
y  (4.16)

The mapping relations between the old and new coordinates are given by Equation 
(4.15). During this transformation, a set of constraints are applied, which is  responsible 
for the parallelogram shape. If a rectangle has a new set of vertices with coordinates 

,  ,  ,  ,  ,  , and  , 0 0 1 1 2 2 3 3x y x y x y x y( ) ( ) ( ) ( ) then the following constraints are applied: 
1 0 2 3( ) ( )− = −x x x x  and 1 0 2 3( ) ( )− = −y y y y . These constraints simply state the lengths of 

the opposite sides should be equal and this forces the new figure to be a  parallelogram. 
However, if the constraints are not applied then a rectangle will be converted to an 
 arbitrary quadrilateral and the corresponding transformation does not remain affine 
any more (Rovenski, 2010). The new transformation is called a perspective (or projective) 
 transformation and is described by the transformation matrix shown below:

 
1 1

′
′

















=



































x
y
w

a b c
d e f
g h

x
y  (4.17)

where x′ and y′ are in homogeneous coordinates. The Cartesian coordinates are /= ′X x w  
and /= ′Y y w . From Equation (4.17), we can derive the mapping relations between the old 
and new coordinates:

 
1

1

= ′ = + +
+ +

= ′ = + +
+ +

X x
w

ax by c
gx hy

Y y
w

dx ey f
gx hy

 (4.18)

Details about the mapping process are given in Chapter 8.

Example 4.10

Find the new coordinates of a square with vertices (0,0), (1,0), (1,1), and (0,1) 

under the  following transformations: (a) 
















5 2 5
2 5 5
0 0 1

 and (b) 
















5 2 5
2 5 5
5 2 1

. 

Specify the type of transformation in each case.
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(a)

Original coordinate matrix: =
















0 1 1 0
0 0 1 1
1 1 1 1

C

Transformation matrix: =
















5 2 5
2 5 5
0 0 1

M

New coordinate matrix: = ⋅ =
















5 10 12 7
5 7 12 10
1 1 1 1

D M C

New vertex coordinates are (5.00, 5.00), (10.00, 7.00), (12.00, 12.00), and (7.00, 10.00)
Let 5,  5,  10,  7,  12,  12,  7,  100 0 1 1 2 2 3 3x y x y x y x y= = = = = = = =
Now 5,  5,  2,  21 1 0 2 2 3 3 1 0 4 2 3d x x d x x d y y d y y= − = = − = = − = = − =
Since =1 2d d  and =3 4d d , the transformation is affine in nature (Figure 4.14a)

(b)

Transformation matrix: =
















5 2 5
2 5 5
5 2 1

M

New coordinate matrix: = ⋅ =
















5 10 12 7
5 7 12 10
1 6 8 3

D M Ch  (in homogeneous 
coordinates)

New coordinate matrix: =
















5 1.67 1.5 2.33
5 1.17 1.5 3.33
1 1 1 1

D  (in Cartesian coordinates)

New vertex coordinates are (5.00, 5.00), (1.67, 1.17), (1.50, 1.50), and (2.33, 3.33)
Let 5,  5,  1.67,  1.17,  1.5,  1.5,  2.33,  3.330 0 1 1 2 2 3 3x y x y x y x y= = = = = = = =
Now 3.33,  0.83,  3.83,  1.831 1 0 2 2 3 3 1 0 4 2 3d x x d x x d y y d y y= − = − = − = − = − = − = − = −
Since 1 2≠d d  and 3 4≠d d , the transformation is perspective in nature (Figure 4.14b).

MATLAB Code 4.10

clear all; clc; format compact;
 
% (a)
 
C = [0 1 1 0 0 ; 0 0 1 1 0 ; 1 1 1 1 1]
M = [5 2 5 ; 2 5 5 ; 0 0 1]
D = M*C
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FIGURE 4.14 Plots for Example 4.10. (a) Affine transformation and (b) perspective transformation.
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figure,
plot (C(1,:), C(2,:), 'b--', D(1,:), D(2,:), 'r-'); grid;
legend('original', 'new');
title('affine transformation');
 
fprintf('New vertices : \n');

for i=1:4
    fprintf('(%.2f, %.2f) \n', D(1,i), D(2,i));

end
 
x0 = D(1,1); y0 = D(2,1); 
x1 = D(1,2); y1 = D(2,2); 
x2 = D(1,3); y2 = D(2,3); 
x3 = D(1,4); y3 = D(2,4); 
 
d1 = x1 - x0, d2 = x2 - x3, 
d3 = y1 - y0, d4 = y2 - y3, 
 

if d1 = = d2 && d3 = = d4
    fprintf('Transformation is affine\n');

else
    fprintf('Transformation is perspective\n');

end
 
fprintf('\n\n');
% (b)
 
M = [5 2 5 ; 2 5 5 ; 5 2 1]
Dh = M*C;
 

for i=1:length(Dh)
    D(:,i) = Dh(:,i)/Dh(3,i);
end
 
fprintf('New vertices : \n');

for i=1:4
    fprintf('(%.2f, %.2f) \n', D(1,i), D(2,i));

end
 
figure
plot (C(1,:), C(2,:), 'b--', D(1,:), D(2,:), 'r-'); grid;
legend('original', 'new');
title('perspective transformation');
 
x0 = D(1,1); y0 = D(2,1); 
x1 = D(1,2); y1 = D(2,2); 
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x2 = D(1,3); y2 = D(2,3); 
x3 = D(1,4); y3 = D(2,4); 
 
d1 = x1 - x0, d2 = x2 - x3, 
d3 = y1 - y0, d4 = y2 - y3, 
 

if d1 = = d2 && d3 = = d4
    fprintf('Transformation is affine\n');

else
    fprintf('Transformation is perspective\n');

end

4.13  VIEWING TRANSFORMATIONS
Viewing transformations are associated with displaying rendered graphics output on a 
 display device. It has already been mentioned that 2D graphics objects like splines and 
polygons are created on a plane and stored using a coordinate system. The coordinate 
 system is used to measure location of points and store them in vectors. The creation 
plane can extend on all sides indefinitely, limited only by the hardware resources. When 
a  portion of this plane is to be displayed on the output devices, the graphics display sys-
tem needs two  additional functional components to make this possible: the window and 
the viewport. The window is defined by the four corners of a rectangular area using the 
coordinate  system of the graphics application software, to select a particular portion of 
the creation plane that needs to be displayed. The viewport is a mapped version of the 
window to the coordinates of the output device like a monitor, to enable the hardware 
to display the stored graphics data on screen. The viewport is also defined by the four 
corners of a rectangular area but uses the coordinate system of the display device. The 
mapping between the window and the viewport is collectively referred to as “viewing 
transformations” (Hearn and Baker, 1996; Shirley, 2002) and involve both translation and 
scaling (see Figure 4.15).
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FIGURE 4.15 Window and viewport.
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The left-hand figure shows a spline generated using application specified coordinates, 
and a rectangular window on it with its vertices defined as

 ,  ,  ,  ,  ,  ,  , min min max min max max min maxA xw yw B xw yw C xw yw D xw yw( ) ( ) ( ) ( ) 

The contents inside the window is mapped onto a device viewport showed on the right 
side with its vertices defined as

 ,  ,  ,  ,  ,  ,  , min min max min max max min maxA xv yv B xv yv C xv yv D xv yv( ) ( ) ( ) ( )′ ′ ′ ′  

The mapping from the window to the viewport involve the following steps (Foley et al., 
1995):

 1. Translate A to A′: , 1 min min min minT T xv xw yv yw( )= − −

 2. Translate P to origin: , 2 min minT T xv yv( )= − −

 3. Scale about origin: , 1S S s sx y( )=

 4. Reverse translate back to A′: , 3 min minT T xv yv( )=

 5. Composite transformation: 3 1 2 1= ⋅ ⋅ ⋅M T S T T

The scaling factors involve changing the dimension of the window to the viewport. The 
width of the viewport is max min( )−xv xv  and the width of the window is .max min( )−xw xw  
The horizontal scaling factor sx will be a ratio of these i.e.

 max min

max min
= −

−
s xv xv

xw xwx  (4.19)

The height of the viewport is max min( )−yv yv  and the height of the window is .max min( )−yw yw  
The vertical scaling factor sy will be a ratio of these i.e.

 max min

max min
= −

−
s yv yv

yw ywy  (4.20)

Example 4.11

Obtain a transformation that maps a window whose lower-left corner 
is at A(1, 1) and upper-right corner at C(3, 5) onto a viewport that has 
a lower-left corner at P(0, 0) and upper-right corner at Q(0.5, 0.5).

Translate A to P: ( 1,  1)1T T= − −
Apply scaling about P, since P is already at the origin: , 1S S s sx y( )=
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From Equation (4.19),

 = −
−

= =0.5
2

0.25max min

max min
s xv xv

xw xwx  

From Equation (4.20),

 = −
−

= =0.5
4

0.125max min

max min
s yv yv

yw ywy  

Composite transformation = ⋅ =
−
−

















0.25 0 0.25
0 0.125 0.125
0 0 1

1 1M S T

MATLAB Code 4.11

clear all; clc;
 
xwmin=1; 
ywmin=1; 
xwmax=3; 
ywmax=5;
xvmin=0; 
yvmin=0; 
xvmax=0.5; 
yvmax=0.5;
 
tx = xvmin-xwmin; 
ty = yvmin-ywmin;
T1 = [1 0 tx; 0 1 ty;  0 0 1];
 
sx = (xvmax - xvmin)/(xwmax - xwmin);
sy = (yvmax - yvmin)/(ywmax - ywmin);
S1 = [sx 0 0; 0 sy 0 ; 0 0 1];
 
M = S1*T1

Another point of interest in a viewing transformation operation is to find the new 
 coordinates of a specific point in a window, after it is mapped to the viewport. Let a point 
( ,  )xw yw  in a designated window be mapped to viewport coordinates ( ,  )xv yv . To keep 
 relative  placements same we require the following to hold true:

 −
−

= −
−

min

min

max min

max min

xv xv
xw xw

xv xv
xw xw

 (4.21)
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 min

min

max min

max min

−
−

= −
−

yv yv
yw yw

yv yv
yw yw

 (4.22)

Solving for ( ,  )xv yv  we get:

 
min min

min min( )
( )= + ⋅ −

= + ⋅ −

xv xv s xw xw

yv yv s yw yw

x

y

 (4.23)

Example 4.12

A user works on a coordinate system, which is a square window with corner 
 coordinates P(−2, −5) and Q(8, 5). The user’s area is mapped to a square 
viewport whose corner coordinates are P′(400, 500) and Q′(600, 800). 
(a) Find the window to viewport transformation matrix and (b) find out 
the origin of the user’s coordinate system after mapping to the viewport.

(a)
Here, xwmin = −2, ywmin = −5, xwmax = 8, ywmax = 5, xvmin = 400, yvmin = 500, xvmax = 
600, yvmax = 800
sx = (xvmax − xvmin)/(xwmax − xwmin) = 20
sy = (yvmax − yvmin)/(ywmax − ywmin) = 30
Forward translation T1 = T(xvmin − xwmin, yvmin − ywmin)
Translation to origin T2 = T(−xvmin, −yvmin)
Scale about origin S1 = S(sx, sy)
Reverse translation T3 = T(xvmin, yvmin)

Composite transformation: * * *
20 0 440
0 30 650
0 0 1

3 1 2 1= =
















M T S T T

Verification: M*P = P′, M*Q = Q′

(b)
Here, xw = 0, yw = 0, xv = ?, yv = ?
From Equation (4.18)
xv = xvmin + (xw − xwmin)*sx = 440
yv = yvmin + (yw − ywmin)*sy = 650
Thus, point (0, 0) of the window maps to point (440, 650) of the viewport.

MATLAB Code 4.12

clear all; clc;
 
xwmin = -2; 
ywmin = -5; 
xwmax = 8; 
ywmax = 5; 
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xvmin = 400; 
yvmin = 500; 
xvmax = 600; 
yvmax = 800;
sx = (xvmax - xvmin)/(xwmax - xwmin);
sy = (yvmax - yvmin)/(ywmax - ywmin);
T1 = [1, 0, xvmin - xwmin ; 0, 1, yvmin - ywmin ; 0, 0, 1];
T2 = [1, 0, 0 - xvmin ; 0, 1, 0 - yvmin ; 0, 0, 1];
S1 = [sx, 0, 0 ; 0, sy, 0 ; 0, 0, 1];
T3 = [1, 0, xvmin ; 0, 1, yvmin ; 0, 0, 1];
M = T3 * S1 * T2 * T1
 
xw = 0; yw = 0;
xv = xvmin + (xw - xwmin)*sx; xv = round(xv)
yv = yvmin + (yw - ywmin)*sy; yv = round(yv)

4.14  COORDINATE SYSTEM TRANSFORMATIONS
Consider two Cartesian systems with origins at (0, 0) and (x0, y0) and angle θ between the 
x- and X-axes. To transform points from x–y system to X–Y system following steps are 
 followed (Hearn and Baker, 1996; Shirley, 2002):

 1. Translate origin (x0, y0) to (0, 0) point: T1 = T(−x0, −y0)

 2. Rotate X-axis onto the x-axis: R1 = R(−θ)

 3. Composite transformation: M = R1·T1 (Figure 4.16)
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FIGURE 4.16 Coordinate system transformation.
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Example 4.13

Find the equation of a straight line = +y 2x 3 in the X–Y coordinate system, 
which results from a 90° rotation of the x–y coordinate system.

Original equation: = +y mx c
Two points on the original line A(0, c) and B(−c/m, 0)
To transform from x–y to X–Y system, the latter has to be rotated by −90° to 

 coincide with x–y system
Hence, rotation matrix is R1 = R(−90)
New coordinates: P = R1*A = (c, 0)
New coordinates: Q = R1*B = (0, c/m)
Equation of line joining P and Q: ( –0)/( – ) ( / –0)/(0– )=Y X c c m c
Simplifying: ( 1/ ) (1/ )= − +Y m X m c
Substituting values of m and c we get:
Original equation: 2 3= +y x
New equation: ( 1/2) (3/2)= − +Y X

MATLAB Code 4.13

clear all; clc;
m = 2; c = 3;
syms x y X Y;
T = -90;
R = [cosd(T), -sind(T), 0 ; sind(T), cosd(T), 0 ; 0, 0, 1];
A = [0 ; c ; 1];
B = [-c/m ; 0 ; 1];
P = R*A;
Q = R*B;
fprintf('Original equation : \n'); y = m*x + c
fprintf('New equation : \n');
X1 = P(1); Y1 = P(2); X2 = Q(1); Y2 = Q(2);
M = (Y2-Y1)/(X2-X1);
Y = M*(X - X1) + Y1;
Y = eval(Y)

4.15  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Transformations change the location, dimension, orientation, and shape of splines.

• These transformations are translation, scaling, rotation, reflection, and shear.

• Homogeneous coordinates are used to represent all transformations in a uniform 
manner.

• Transformation matrices are multiplied with the original coordinates to get new 
coordinates.
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• Translation changes location of splines by adding increments to their coordinates.

• Scaling changes the dimensions of splines by multiplying scaling factors to their 
coordinates.

• Rotation changes the orientation of splines by moving them along a circular path.

• Reflection creates a mirror image of splines by flipping some of their coordinates.

• Shear distorts a spline by changing some of their coordinates while keeping others 
constant.

• Affine transformations convert a rectangle to a parallelogram.

• Perspective transformations convert a rectangle to an arbitrary quadrilateral.

• Transformations are by default with respect to the origin of the coordinate system.

• Viewing transformation maps data from an application window to a device viewport.

• Coordinate system transformation involves translation of origin and rotation of axes.

4.16  REVIEW QUESTIONS
 1. What is meant by a right-handed coordinate system?

 2. What are the advantages of homogeneous coordinates over Cartesian coordinates?

 3. How does the original coordinates of a point change during translation and scaling 
operations?

 4. What are the effects of a negative and a fractional scaling factor?

 5. What is the difference between a general rotation and a fixed-point rotation operation?

 6. What is reflection about an axis and reflection about the origin?

 7. What is the difference between affine and perspective transformations?

 8. What is the difference between x- and y-direction shears?

 9. What is mapping between window and viewport?

 10. How can coordinates be transformed from one coordinate system to another?

4.17  PRACTICE PROBLEMS
 1. Show that a reflection about the line y = x is equivalent to a reflection relative to the 

x-axis followed by a CCW rotation of 90°.

 2. Obtain a transformation that reduces rectangle ABCD formed from points A(0, 0), 
B(5, 0), C(5, 4), and D(0, 4) to half its size keeping the point D fixed.

 3. Reflect the triangle (2, 5), (3, 7), and (4, 6) about the line 2 –1=x y  and find its new 
coordinates.
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 4. A square is placed within an animation sequence with its center at (5, 5). It is 
 subsequently shrunk by 1/50th of its size in each successive frame. Determine the 
 corresponding transformation matrix for each frame.

 5. What transformation maps triangle ABC: A(0, 0), B(5, 0), and C(5, 4) onto a single 
point C?

 6. Two symbols consisting of a triangle (−1, 0), (0, 1), and (1, 0) and a square (0, 0), 
(0, 1), (1, 1), and (1, 0) is combined to create a design with the triangle at (1, 1), 
(1.5, 2), and (2, 1) and square at (1, 1), (1, 2), (2, 2), and (2, 1). Find the corresponding 
transformations.

 7. Find the equation of a straight line = +Y mX c  in the x–y coordinate system 
if  the  X–Y coordinate system results from a 90° rotation of the x–y coordinate 
system.

 8. What is the composite transformation if one shear ′ = +x ax by is followed by another 
shear ′ = +y bx ay, where a and b are constants.

 9. Find the transformation, which uses the rectangle A(1, 1), B(5, 3), C(4, 5), and D(0, 3) 
as a window and a viewport with coordinates (0, 0), (1, 0), (1, 1), and (0, 1).

 10. Find the new coordinates of a square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) under 

the following transformations: (a) 
9 8 7

6 5 4
0 0 1

− −
− −
















 and (b) 

9 8 7
6 5 4
3 2 1

− −
− −
















.
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C h a p t e r  5

Spline Properties

5.1  INTRODUCTION
This chapter discusses few common properties of splines and how these can be calcu-
lated from spline equations (Mathews, 2004). First, it discusses the critical points namely 
minimum and maximum of spline curves. Additionally, for splines of degree 3 or more 
the point of inflection (POI) is of interest, which is where the curvature changes from 
concave to convex or vice versa. Next, it discusses how the tangent and normal to a spline 
curve can be calculated. The tangent to a curve is the derivative of the curve equation, 
while the normal is the line perpendicular to the tangent. The tangent and the normal 
can be represented by line equations or as specific vectors if they are calculated for a 
specific point on the curve. Computations of the tangent and normal are discussed both 
for a parametric curve as well as an implicit curve. The third property is calculation of 
length of a spline curve between any two given points. This can be calculated both from 
a spatial curve and a parametric curve. The length of the curve segment is approximated 
by summing over a number of small line segments. The fourth property is to calculate 
the area under a curve. This is discussed both for curves of the form =y f x( ) and also 

=x f y( ). The area is calculated by considering a very thin rectangular area under the 
curve and then summing over all such rectangular areas. An extension to this is calcula-
tion of area bounded by two curves. This is the area under the upper curve minus the area 
under the lower curve. The fifth property is the centroid of an area under a curve, which 
is computed using moments. The next section deals with various ways of interpolation 
and curve fitting. Interpolation is done when we are interested in some intermediate 
value between some given data points. Interpolation can either be linear by consider-
ing straight lines connecting adjacent data points, or non-linear by considering higher 
degree curves connecting the data points. This section also mentions built-in MATLAB® 
functions for the purpose. Curve fitting is trying to fit a polynomial curve to given data 
points and estimating the coefficients of the polynomial. This enables representation of 
arbitrary data by polynomial functions. This chapter ends by reviewing few 2D plotting 
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functions included in MATLAB. These functions are broadly categorized into two types: 
one using symbolic variables and the other using a collection of values. These functions 
can also be either explicit or implicit or parametric. Arguments to some of these func-
tions can be used to specify color and transparency values.

5.2  CRITICAL POINTS
Critical points denote the maximum and minimum points of a spline and Point of 
Inflection POI for splines of degree 3 or above (see Figure 5.1). For both minimum and 
maximum points, the slope of the curve is zero as the line is horizontal. Both points of the 
curve =y f x( ) can be found by computing roots of ′ =f x( ) 0.

Let r be a root of the equation ′ =f x( ) 0. To determine whether the root corresponds to 
a minimum or maximum, consider a small displacement δ to the left and right of r. For a 
minimum point, left-hand side (LHS) slope should be negative and right-hand size (RHS) 
slope should be positive. This implies:

 δ δ′ − < ′ + >f r f r( ) 0 and ( ) 0 (5.1)

Alternatively, since the slope changes from negative to positive, rate of change of slope is 
positive i.e.

 ′′ >f r( ) 0 (5.2)

For a maximum point, LHS slope should be positive and RHS slope should be negative. 
This implies:

 δ δ′ − > ′ + <f r f r( ) 0 and ( ) 0 (5.3)

Alternatively, since the slope changes from positive to negative, rate of change of slope is 
negative i.e.

 ′′ <f r( ) 0 (5.4)

The coordinates of the minimum or maximum point is given by [r, f(r)].
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FIGURE 5.1 Critical points.
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A POI is where curvature changes from positive (convex) to negative (concave) or vice 
versa. The necessary conditions to be satisfied are that the curvature should be zero at 
the POI and the sign of curvature on either side should be opposite. Let r be a root of the 
equation ′′ =f x( ) 0. Consider a small displacement δ to the left and right of r. Conditions 
necessary for a POI to exist are:

 ′′ =f x( ) 0 

 δ δ′′ − ≠ ′′ +f r f rsign{ ( )} sign{ ( )} 
(5.5)

Example 5.1

Find the critical points for the cubic curve: = + − +y 2 13x 31x 18x2 3.
From the given equation:

 

= + − +

′ = − +

′′ = − +

( ) 2 13 31 18

( ) 13 62 54

( ) 62 108

2 3

2

f x x x x

f x x x

f x x

 

Setting ′ = − + =f x x x( ) 13 62 54 02  roots are 0.87,  0.281 2r r= = . Let δ = 0.1

Now, δ′ − = ′ − = − + = − <f r f( ) (0.87 0.1) 13 62(0.77) 54(0.77) 2.72 01
2

Also, δ′ + = ′ + = − + = + >f r f( ) (0.87 0.1) 13 62(0.97) 54(0.97) 3.67 01
2

Thus, there is a minimum point at =x 0.87.
Since =f (0.87) 1.7, coordinates of minimum point is (0.87, 1.7)
Verification: ′′ = − + = − + = >f (0.87) 62 108(0.87) 62 93.96 31.96 0

Also, δ′ − = ′ − = − + = + >f r f( ) (0.28 0.1) 13 62(0.18) 54(0.18) 3.59 02
2

And, δ′ + = ′ + = − + = − <f r f( ) (0.28 0.1) 13 62(0.38) 54(0.38) 2.76 02
2

Thus, there is a maximum point at =x 0.28
Since =f (0.28) 3.6, coordinates of maximum point is (0.28, 3.6)

Verification: ′′ = − + = − + = − <f (0.28) 62 108(0.28) 62 30.24 31.76 0

For POI, setting ′′ = − + =f x x( ) 62 108 0, root =r 0.574
 Now δ′′ − = ′′ − = − + =f r fsign{ ( )} sign{ (0.574 0.1)} sign{ 62 108(0.474)}  

− = −sign( 10.8) 1

 And δ′′ + = ′′ + = − + =f r fsign{ ( )} sign{ (0.574 0.1)} sign{ 62 108(0.674)}  
= +sign(10.8) 1

Since signs are opposite, there is a POI at =r 0.574
Coordinates of the POI: [0.574, f(0.574)] i.e. (0.574, 2.662) (Figure 5.2)
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5.3  TANGENT AND NORMAL
A parametric curve can be expressed as an ordered pair i.e.

 ( ) { ( ),  ( )}C t x t y t=  (5.6)

Tangent vector is obtained from the first derivative:

 ( ) ( ) { ( ),  ( )}T t C t x t y t= ′ = ′ ′  (5.7)

Unit tangent vector is obtained by dividing by its magnitude:

 ( ) ( ) { ( ),  ( )} ( ),  ( )T t T t x t y t x t y t= ′ ′ ′ ′  (5.8)

Normal vector is obtained by rotating tangent vector by 90 degrees:

 = ⋅N t R T t( ) (90) ( ) (5.9)

Expanding:

 =
−














⋅

′
′

















=
− ′

′

















N t
x t
y t

y t
x t( )

0 1 0
1 0 0
0 0 1

( )
( )
1

( )
( )
1

 (5.10)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1.5

2

2.5

3

3.5

4

y POI

Minimum

Maximum

FIGURE 5.2 Plot for Example 5.1.
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Writing as an ordered pair:

 ( ) { ( ),  ( )}N t y t x t= − ′ ′  (5.11)

Unit normal vector is obtained by dividing by its magnitude:

 ( ) ( ) { ( ),  ( )} ( ),  ( )N t N t y t x t y t x t= − ′ ′ − ′ ′  (5.12)

Equation of the tangent line through a point ( )x y,1 1  on the curve:

 −
−

= ′
′

y y
x x

y t
x t

( )
( )

1

1
 (5.13)

Equation of the normal line through a point ( )x y,1 1  on the curve:

 −
−

= − ′
′

y y
x x

x t
y t

( )
( )

1

1
 (5.14)

Example 5.2

For the circle C(t) = {cos(t), sin(t)}, find the unit tangent vector, unit normal vector, 
and tangent line and normal line at point P(1/√2, 1/√2).

Given curve: ( ) {cos( ), sin( )}C t t t=
Tangent vector: ( ) ( ) { ( ),  ( )} { sin( ), cos( )} unit tangent vectorT t C t x t y t t t= ′ = ′ ′ = − =
Normal vector: (90)* ( ) { ( ),  ( )} { cos( ),  sin( )} unit normal vectorR C t y t x t t t′ = − ′ ′ = − − =
Now at point P(1/√2, 1/√2), solving for = √tcos( ) 1/ 2 we must have = πt /4
Unit tangent vector at P: { sin( /4), cos( /4)} { 1/ 2, 1/ 2}− π π = − √ √
Unit normal vector at P: { cos( /4),  sin( /4)} { 1/ 2,  1/ 2}− π − π = − √ − √

Tangent line at P: −
−

= ′
′

y y
x x

y t
x t

  ( )
( )

1

1

Substituting values: − √
− √

= π
− π

= −y
x

  1/ 2
1/ 2

cos( /4)
sin( /4)

1

Simplifying: + √ =x y – 2 0

Normal line at P: −
−

= − ′
′

y y
x x

x t
y t

( )
( )

1

1

Substituting values: − √
− √

= π
π

=y
x

  1/ 2
1/ 2

sin( /4)
cos( /4)

1

Simplifying: − =x y 0 (Figure 5.3)
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MATLAB Code 5.2

clear all; clc; format compact;
P = [1/sqrt(2), 1/sqrt(2)];
syms t;
x = cos(t); y = sin(t);
C = [x, y];
fprintf('Tangent vector \n');
T = [diff(x), diff(y)]
fprintf('Normal vector \n');
N = [-diff(y), diff(x)]
R = solve(sin(t)= = 1/sqrt(2), cos(t)= = 1/sqrt(2));
fprintf('Tangent vector at P \n');
TP = subs(T, 't', R)
fprintf('Normal vector at P \n');
NP = subs(N, 't', R)

syms X Y;
fprintf('Tangent Line at P\n');
Y1 = (TP(2)/TP(1))*(X - P(1))+P(2)
fprintf('Normal Line at P\n');
Y2 = (-TP(1)/TP(2))*(X - P(1))+P(2)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x
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1

1.5
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FIGURE 5.3 Plot for Example 5.2.
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%plotting
ezplot(x, y);hold on;
axis([-2 2 -2 2]);
xx = linspace(-2,2);
yy1 = subs(Y1, X, xx);
yy2 = subs(Y2, X, xx);
plot(xx, yy1, 'r-', xx, yy2, 'r-');
scatter(P(1), P(2), 20, 'r', 'filled');
grid; hold off;

If the equation of the curve is expressed in implicit form ( ,  ) 0f x y = , then the equation 
of the tangent line to the curve at , 0 0P x y( ) is derived by first computing the partial deriva-
tive of the curve equation at the given point, which gives us the normal vector at that point.

 ( ,  ) , N x y f
x

f
y

= ∂
∂

∂
∂







 (5.15)

So normal at point P is given by:

 , N
f
x

f
yp

p p=
∂
∂

∂
∂







 (5.16)

Equation of the tangent line at P is computed as:

 ( )( )∂
∂

⋅ − +
∂
∂

⋅ −T
f
x

x x
f
y

y yp
p p: 0 0  (5.17)

Example 5.3

Find the normal vector and tangent line to the curve + + =x 2xy y 93 2  at point P(1, 2).
Here, = + + −f x xy y2 93 2

Partial derivatives: ( ,  ) 3 22f x y f
x

x yx = ∂
∂

= +  and ( ,  ) 2 2f x y f
y

x yy = ∂
∂

= +

Normal vector: =   = + + ( , ) ( , ), ( , ) 3 2 , 2 22N x y f x y f x y x y x yx y

Normal vector at point P: =(1, 2) [7, 6]N

Equation of tangent line at point P: − + − =x y7( 1) 6( 2) 0 i.e. + − =x y7 6 19 0 
(Figure 5.4)

NOTE

diff: calculates derivatives and partial derivatives
solve: generates solution of equations
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MATLAB Code 5.3

clear all; clc;
syms x y;
f = x^3 + 2*x*y + y^2 - 9;
df = [diff(f, x), diff(f, y)];
p = [1, 2];
fprintf('Normal vector : \n');
n = subs(df, [x, y], [p(1), p(2)])
fprintf('Tangent line : \n');
t = dot(n, [x-1, y-2])

% plotting
ezplot(f); hold on; grid;
ezplot(t);
quiver(p(1), p(2), n(1), n(2));
scatter(p(1), p(2), 20, 'r', 'filled'); 
hold off;

NOTE

dot: calculates vector dot product
quiver: depicts vectors as arrows with direction and magnitude
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FIGURE 5.4 Plot for Example 5.3.
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5.4  LENGTH OF A CURVE
Length of curve =y f x( ) in spatial domain between points =x a and =x b is given by:

 ∫= + 



L dy

dx
dx

a

b

1
2

 (5.18)

The derivation of this expression assumes that a curve can be approximated by a num-
ber of small line segments (see Figure 5.5). For such a small line segment if δx be the 
horizontal distance and δy be the vertical distance then the length of the segment can be 
approximated by:

 δ δ δ= +r x y( ) ( )2 2  (5.19)

The length of the entire curve is the sum of these small segment distances between =x a 
and =x b. Integrating:

 ∫= +L dx dy
a

b

( ) ( )2 2  (5.20)

Simplifying:

 ∫ ∫= 



 + 



 = + 



L dx

dx
dy
dx

dx dy
dx

dx
a

b

a

b

1
2 2 2

 (5.21)
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FIGURE 5.5 Derivation of curve length.
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Example 5.4

Find the length of the curve = +y 3x 2 between =x 1 and =x 5.

Here, =dy
dx

3

From Equation (5.18) we get:

 ∫ ∫ ∫= + 



 = + = = =L dy

dx
dx dx dx

a

b

1 1 (3) 10 4 10 12.65
2

2

1

5

1

5

 

Verification: y(1) = 5,  y(5) = 17, P1 = (1, 5), P2 = (5, 17), distance (P1, P2) = + =16 144 12.65

MATLAB Code 5.4

clear all; clc;
syms x;
y = 3*x+2;
d = diff(y);
e = sqrt(1 + d^2);
f = int(e, 1, 5);
fprintf('Length of curve : %f\n', eval(f));

If the equation of the curve is expressed in parametric form i.e. x t( ) and y t( ), then from 
Equation (5.19):

 = +dr dx dy( ) ( )2 2  

Differentiating with respect to t:

 = 



 + 





dr
dt

dx
dt

dy
dt

2 2

 

Integrating:

 ∫= 



 + 



L dx

dt
dy
dt

dt
a

b 2 2

 (5.22)

Example 5.5

Determine the length of the parametric curve = ⋅ = ⋅x 3 sint ,  y 3 cost , for ≤ ≤ π0 t 2

Here, = ⋅dx
dt

t3 cos( ) and = − ⋅dy
dt

t3 sin( )

NOTE

int: integrate symbolic expression
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From Equation (5.22):

 ∫ ∫ ∫= 



 + 



 = + − = = π

π π

L dx
dt

dy
dt

dt t t dt dt
a

b

(3cos ) ( 3sin ) 3 6
2 2

2 2

0

2

0

2

 

Verification: Since this represents a circle with radius 3, length of 
circumference = 2π(3) = 6π

MATLAB Code 5.5

clear all; clc;
syms t;
x = 3*sin(t);
y = 3*cos(t);
dx = diff(x);
dy = diff(y);
r = sqrt((dx)^2 + (dy)^2);
f = int(r, 0, 2*pi);
fprintf('Length : %f\n', eval(f));

5.5  AREA UNDER A CURVE
Area below a curve =y f x( ) between =x a and =x b is computed by considering a very 
small rectangular area of width dx and height =y f x( ) (see Figure 5.6). The area of this 
rectangular area is ⋅f x dx( ) .

To find the entire area, we integrate the small rectangular area over the specified limits.

 ∫=A f x dx
a

b

( )  (5.23)

X
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FIGURE 5.6 Area under curve.
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Example 5.6

Find the area under the curve =y 10 – x2 between the values =x –1 and =x 2.
From Equation (5.23) we get (Figure 5.7):

 ∫ ∫ ( )= = − =
−

A f x dx x dx
a

b

( ) 10 272

1

2

 

MATLAB Code 5.6

clear; clc;
syms x;
y = 10 - x^2;
f = int(y, -1, 2);
eval(f);
fprintf('Area : %f\n', eval(f));

%plotting
xx = linspace(-4, 4);
yy = subs(y, x, xx);
plot(xx, yy);
xlabel('x'); ylabel('y');
grid; hold on;
axis([-5 5, 0 12]);
text(-3, 9, 'y = 10 - x^2');

%filling
x = linspace(-1, 2);

FIGURE 5.7 Plot for Example 5.6.
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y1 = 10 - x.^2;
y2 = zeros(1,100);
X = [x,fliplr(x)];                
Y = [y1,fliplr(y2)];              
fill(X,Y,'g');  
alpha(0.25);  
hold off;

The above area computed is actually the area between the curve f x( ) and the x-axis. 
However, if the curve itself lies below the x-axis then the area computed by the above for-
mula comes out as negative. In such cases, we need to take the absolute value of the area. 
It is, therefore, always best to sketch the curve before finding areas under curves.

Example 5.7

Find the area under the curve =y x3 between the values x = −1 and x = 2
From Equation (5.23) we get (Figure 5.8):

 ∫ ∫ ∫= = + = + = + = =
− −

A f x dx x dx x dx x x
a

b

( )
4 4

1
4

16
4

17
4

4.253

1

0
3

0

2 4

1

0 4

0

2

 

NOTE

zeros: generates a matrix filled with zeros
fliplr: flip array in left–right direction
fill: fills a polygon with color
alpha: sets transparency values

FIGURE 5.8 Plot for Example 5.7.
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Alternatively, take absolute value of the function before integration:

 ∫= = = − − =
− −

A x dx x x* sign( ) 
4

16
4

1( 1)
4

17
4

3

1

2 4

1

2

 

Compare with the incorrect result if we directly take the integration without consid-
ering the sign 

 ∫= = = − =
− −

A x dx x
4

16
4

1
4

15
4

3

1

2 4

1

2

 

MATLAB Code 5.7

clear; clc;
syms x;
y = x^3;
f1 = abs(int(y, -1, 0)); 
f2 = int(y, 0, 2);
f = f1 + f2;
fprintf('Area : %f\n', eval(f));
%alternative 
f3 = int(abs(y), -1, 2);
fprintf('Alternatively : %f\n', eval(f3));
%plotting
xx = linspace(-3, 3);
yy = subs(y, x, xx);
plot(xx, yy);
xlabel('x'); ylabel('y');
hold on;
X = [-3 3]; Y = [0, 0]; plot(X, Y, 'k--');
X = [0 0]; Y = [-10, 10]; plot(X, Y, 'k--');
axis([-3 3, -10 10]); grid;
text(0.5, 4, 'y = x^3');
x = linspace(-1, 2);
y1 = x.^3;
y2 = zeros(1,100);
X = [x,fliplr(x)];                
Y = [y1,fliplr(y2)];              
fill(X,Y,'g');  alpha(0.25); 
hold off;

If the area is required between a curve and the y-axis then by an extension of earlier ideas 
we first express the curve in the form =x f y( ) and then by drawing a series of small rectan-
gle of width dy and height =x f y( ), we integrate over the specified limits c to d. In this case:

 ∫=A f y dy
c

d

( )  (5.24)
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Example 5.8

Find the area under the curve = +y x 1 between the values y = 3 and y = 5.
Rewriting: = = −x f y y( ) 12

From Equation (5.24) we get (Figure 5.9):

 ∫ ∫ ( )= = − =A f y dy y dy
c

d

( ) 1   30.672

3

5

 

MATLAB Code 5.8

clear all; clc; 
syms y;
x = y^2 - 1;
f =  int(x, 3, 5);
fprintf('Area : %f\n', eval(f));

%plotting
yy = linspace(0, 6);
xx = subs(x, y, yy);
plot(yy, xx);
xlabel('y'); ylabel('x');
hold on;
X = [3, 3]; Y = [0, subs(x, y, 3)]; plot(X, Y, 'r');
X = [5, 5]; Y = [0, subs(x, y, 5)]; plot(X, Y, 'r');

FIGURE 5.9 Plot for Example 5.8.
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plot([0, 6], [0, 0], 'k-'); grid;
x = linspace(3, 5);
y1 = x.^2 - 1;
y2 = zeros(1,100);
X = [x,fliplr(x)];                
Y = [y1,fliplr(y2)];              
fill(X,Y,'g');  alpha(0.25); 
text(3, 20, 'x = y^2 - 1');
hold off;

Area bounded by two curves f x( ) and g x( ) is the area between the upper curve and the 
x-axis minus the area between the lower curve and x-axis:

 ∫= −A f x g x dx
a

b

( ) ( )  (5.25)

Example 5.9

Find the area bounded by the curves =y x3 and =y x  between the values = −x 1 
and =x 1

From Equation (5.25) we get (Figure 5.10):

 ∫ ∫= − = − =
−

A f x g x dx x x dx
a

b

( ) ( ) 0.53

1

1

 

FIGURE 5.10 Plot for Example 5.9.
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MATLAB Code 5.9

clear; clc;
syms x;
y1 = x;
y2 = x^3;
f =  int(abs(y1 - y2), -1, 1);
fprintf('Area : %f\n', eval(f));

%plotting
xx = linspace(-2,2);
yy1 = subs(y1, x, xx);
yy2 = subs(y2, x, xx);
plot(xx, yy1, xx, yy2);
xlabel('x'); ylabel('y');
axis([-2 2 -2 2]); hold on; grid;
plot([-2, 2], [0, 0], 'k--');
plot([0, 0], [-2, 2], 'k--');
text(-1.5, -0.5, 'y = x^3');
text(-0.5, -0.75, 'y = x');
x = linspace(-1, 1);
y1 = x;
y2 = x.^3;
X = [x,fliplr(x)];                
Y = [y1,fliplr(y2)];              
fill(X,Y,'y');  alpha(0.25); 
hold off;

5.6  CENTROID
The earth exerts gravitational force on each particle of a solid object. If all these forces are 
replaced by a single equivalent force then this force will act through a single point called 
center of gravity. Assuming the density of the object is uniform, the center of gravity will 
coincide with the centroid of mass. If the object of uniform density is a thin plate then 
the center of mass will coincide with the centroid of the area. The centroid of the plate is, 
therefore, a single point through which the entire weight of the plate can be balanced. It is 
obvious that for rectangular or circular shapes, the centroid is exactly at the center. Before 
finding the centroid of an arbitrary shape, let us first consider a polygon of some random 
dimensions as shown in Figure 5.11.

To find the centroid of the polygon, it is divided into two rectangles and the centroid 
of each rectangle is at its center. The left rectangle is of width 4 and height 4 so its area is 
A1 = 4 × 4 = 16 and its center is at (x1, y1) = (−3, 1). The right rectangle is of width 5 and 
height 6 so its area is A2 = 5 × 6 = 30 and its center is at (x2, y2) = (1.5, 2). To find the centroid 
of the polygon, we compute moments of the component rectangles from both the X- and 
Y-axes and equate their sum with the moment of the entire area. Let x  and y  denote the 
coordinates of the centroid and A be its entire area. Equating moments with respect to the 
X- and Y-axes we get:
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 ⋅ + ⋅ = ⋅A x A x A x1 1 2 2  

 ⋅ + ⋅ = ⋅A y A y A y1 1 2 2  

Substituting values, the centroid of the entire area is given by:

 = ⋅ + ⋅ = − +
+

= −x A x A x
A

16( 3) 30(1.5)
16 30

0.0651 1 2 2  

 = ⋅ + ⋅ = +
+

=y A y A y
A

16(1) 30(2)
16 30

1.6521 1 2 2  

From the above, we can formulate a general rule that centroid of an area is equal to the sum 
of the moments of its component parts divided by the whole area.

Figure 5.12 depicts the graph of a function =y f x( ) and it is required to find the centroid 
of an area below the curve bounded by the lines =x a and =x b. Consider a very thin strip 
of width dx at a distance of x from the Y-axis and of height =y f x( ) so that the area of 
the strip is y·dx. Moment of the strip along x-direction is thus (y·dx)·x and moment of the 

strip along y-direction is ⋅ ⋅

y dx y( )

2
 since the center of the strip is exactly at the middle 
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FIGURE 5.11 Deriving centroid of a polygon.
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along the height of the strip. So equating the moments of all such strips within the area and 
dividing by the area itself we obtain the centroid of the area as given below:

 

∫
∫

∫
∫

=
⋅ ⋅

⋅

=
⋅

⋅

x
x f x dx

f x dx

y
f x dx

f x dx

a

b

a

b

a

b

a

b

( )

( )

{ ( )}

2 ( )

2

 (5.26)

Example 5.10

Find the centroid of the area bounded by the curves =y x3, =x 0, and =x 2.

From Equation (5.23), area: ∫ ∫⋅ = ⋅ =f x dx x dx
a

b

( ) 43

0

2

From Equation (5.26), centroid coordinates:

 ∫=
⋅ ⋅

=x
x x dx

4
1.6

3

0

2

 

 ∫=
⋅

×
=y

x dx

2 4
2.29

6

0

2

 

X

Y

y = f(x)

dx
O

ba

x
 y/2

FIGURE 5.12 Deriving centroid of an area under curve.
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MATLAB Code 5.10

clear all; clc;
syms x y;
y = x^3;

a = int(y, 0, 2);
eval(a);
fprintf('Area : %f\n', eval(a));

m1 = int(x*y, 0, 2);
m2 = int(0.5*y^2, 0, 2);

xc = m1/a;
yc = m2/a;

fprintf('Centroid : (%.2f, %.2f) \n', eval(xc), eval(yc));

If the region is bounded by two curves f(x) and g(x) on the interval [a, b] then the centroid 
of the bounded region is given as follows:
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 (5.27)

5.7  INTERPOLATION AND CURVE FITTING
To end the topic on splines, we finally take a look at few functions provided by MATLAB 
to perform two important tasks related to splines namely interpolation and curve fitting. 
These tasks are specifically done using programming tools only so there will be no associ-
ated numerical problem that can be computed manually.

Interpolation is done when there is some coarse data points and we are interested in 
finding some intermediate value between the points, which are not directly provided 
(Mathews, 2004). So the given data can be interpolated to find these values. The first func-
tion MATLAB provides is “interp1,” which stands for 1D interpolation which by default 
uses a linear interpolation between the given data. It also has a number of other options 
as illustrated in Figure 5.13 using two types of data pattern. The first and third columns 
show a step function, the second and fourth columns show a sine function. The first row 
indicates interpolation with the “linear” and the “previous neighbor” options, the second 
row indicates interpolation with the “nearest neighbor” and the “next  neighbor” options.
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FIGURE 5.13 Interpolation using interp1 with options (a) linear and nearest neighbor (b) previous 
neighbor and next neighbor
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The second function is “pchip,” which stands for “Piecewise Cubic Hermite Interpolating 
Polynomial.” It provides a piecewise polynomial form of a shape-preserving piecewise 
cubic Hermite interpolate to the values. For each sub-interval, it interpolates between the 
end points and also maintains that the slopes at the endpoints be continuous. This is illus-
trated in Figure 5.14 for the step function on the left and the sine function on the right.

The corresponding code for generating the plots is given below:

MATLAB Code 5.12

clear; clc;
x = -3:3; y = [-1 -1 -1 0 1 1 1]; t = -3:.01:3;

subplot (121)
plot(x,y,'o',t, pchip(x,y,t), 'r-', 'LineWidth', 2);
axis tight; axis square;

x = 0:2*pi; y = sin(x); t = 0:.01:2*pi;

subplot (122)
plot(x,y,'o',t, pchip(x,y,t), 'r-', 'LineWidth', 2); 
axis tight; axis square;

The third function is “spline,” which stands for “Piecewise Cubic Spline Interpolating 
Polynomial.” It provides a piecewise polynomial form of a cubic spline over the data values. 
It is illustrated in Figure 5.15 for the step function and sine function.

The corresponding code for generating the plots is given below:

MATLAB Code 5.13

clear; clc;
x = -3:3; y = [-1 -1 -1 0 1 1 1]; t = -3:.01:3;
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FIGURE 5.14 Interpolation using pchip.
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subplot (121)
plot(x,y,'o',t, spline(x,y,t), 'r-', 'LineWidth', 2);
axis tight; axis square;

x = 0:2*pi; y = sin(x); t = 0:.01:2*pi;

subplot (122)
plot(x,y,'o',t,spline(x,y,t), 'r-', 'LineWidth', 2); 
axis tight; axis square;

A comparison between the three is provided in Figure 5.16. The “interp1” function joins 
data points by straight lines, the smoothest curve is provided by “spline” function while the 
“pchip” function produces reduced oscillations at the end points.

For fitting a curve to a set of given data points, MATLAB provides a function called 
“polyfit” that creates a fitting polynomial of a specified degree whose sum of square errors 
from the data points is minimum, and returns the coefficients of the polynomial. The code 
below illustrates the process. Two sets of data points have been generated and curves of 
various degrees have been used to fit the data. The results are plotted by varying the value 
of d. The coefficients of the polynomials are returned by the function. Figure 5.17 shows a 
step function in the upper row and a sine function in the lower row. The columns indicate 
the degree of the polynomials used for curve fitting i.e. 1, 3, and 9.
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FIGURE 5.15 Interpolation using spline.
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FIGURE 5.16 Comparison between the interpolation methods.
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The corresponding code for generating the plots is given below:

clear; clc;
x = -10:10;
y = [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1];
t = -10:.01:10;

subplot (231)
d = 1; pf = polyfit(x, y, d);
pv = polyval(pf, t);
plot(x,y,'o',t, pv, 'LineWidth', 2); 
axis tight; axis square;
title('degree = 1');

subplot (232)
d = 3; pf = polyfit(x, y, d);
pv = polyval(pf, t);
plot(x,y,'o',t, pv, 'LineWidth', 2); 
axis tight; axis square;
title('degree = 3');

subplot (233)
d = 9; pf = polyfit(x, y, d);
pv = polyval(pf, t);
plot(x,y,'o',t, pv, 'LineWidth', 2); 
axis tight; axis square;
title('degree = 9');
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FIGURE 5.17 Curve fitting using polyfit.
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clear x y t pf pv;
x = -pi:pi;
y = sin(x);
t = -pi:.1:pi;

subplot (234)
d = 1; pf = polyfit(x, y, d);
pv = polyval(pf, t);
plot(x,y,'o',t, pv, 'LineWidth', 2); 
axis tight; axis square;

subplot (235)
d = 3; pf = polyfit(x, y, d);
pv = polyval(pf, t);
plot(x,y,'o',t, pv, 'LineWidth', 2); 
axis tight; axis square;

subplot (236)
d = 9; pf = polyfit(x, y, d);
pv = polyval(pf, t);
plot(x,y,'o',t, pv, 'LineWidth', 2); 
axis tight; axis square;
axis([-pi pi -1 1]);

5.8  NOTES ON 2D PLOTTING FUNCTIONS
Before we shift our primary focus from 2D to 3D domain, this section summarizes the 
MATLAB 2D plotting functions used and some additional ones (Marchand, 2002). The 
reader is encouraged to explore further details about these functions from MATLAB 
documentations.

 (a) ezplot: This function can be used to plot using symbolic variables:

 (i) one variable (Figure 5.18):

 ezplot('1 - 2.25*t + 1.25*t^2')

 (ii) two variables (Figure 5.19):

 ezplot('x^4 + y^3 = 2*x*y')

 (iii) parametric variable (Figure 5.20):

 ezplot('cos(t)', 'sin(t)')

NOTE

polyfit: generates a polynomial to fit a given data
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 (b) plot: This function can be used to plot using a vector of values:

 (i) parametric equations (Figure 5.21):

 t = 0:pi/50:10*pi; plot(t.*sin(t),t.*cos(t));

 (ii) explicit equations (Figure 5.22):

 x = -pi:.1:pi; y = tan(sin(x)) - sin(tan(x)); plot(x,y);
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FIGURE 5.18 Plotting with one variable using ezplot.
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FIGURE 5.19 Plotting with two variables using ezplot.
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 (c) ezcontour: Contour plots, one version with only the edges and the other being a filled 
version (Figure 5.23)

ezcontour ('x*exp(-x^2 - y^2)')
ezcontourf ('x*exp(-x^2 - y^2)')

 (d) fimplicit: Plots implicit functions (introduced from MATLAB version 2016). The ver-
sion of an installed MATLAB package can be checked by typing ver at the command 
line (Figure 5.24).
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FIGURE 5.20 Plotting with parametric variable using ezplot.
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FIGURE 5.21 Plotting with one variable using plot.
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FIGURE 5.23 Contour plots using ezcontour.
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FIGURE 5.24 Implicit function plots using fimplicit.
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FIGURE 5.22 Plotting explicit equations using plot.
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FIGURE 5.26 Plotting with fplot.

FIGURE 5.25 Plotting with patch.
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5.9  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Critical points of splines are the maximum, minimum and POI.

• For a minimum point the rate of change of slope is positive.

• For a maximum point the rate of change of slope is negative.

• For a POI, the curvature should be zero and should have opposite signs on either side.

• The tangent of a curve is obtained by the first derivative of the curve equation.

• The normal of a curve is obtained by rotating the tangent by 90°.

• The length of a curve segment is obtained by summing up the lengths of very small 
segments.

• The area under a curve is obtained by summing up areas of very small rectangular 
segments.

• Area is positive above the x-axis and negative below the x-axis.

• Area bounded by two curves is the absolute difference of the areas under the two curves.

• Interpolation between two data points can be done linearly using a number of options.

• Cubic spline interpolation can provide smoother interpolation curves.

• Curve fitting to a set of data points can be done using a specific degree of polynomial.

• MATLAB provides a number of plotting functions for implicit, explicit, and 
 parametric expressions.

5.10  REVIEW QUESTIONS
 1. What is meant by critical points of a spline?

 2. How are the minimum and maximum points differentiated by the gradients of a 
curve?

 3. How is the POI of a curve determined? Why does a cubic curve always have a 
single POI?

 4. Representing a parametric curve by an ordered pair, how is the tangent and normal 
computed?

 5. How is the expression for length of a curve between two given points determined?

 6. How is the area between a curve and the x-axis bounded by two vertical lines 
determined?

 7. What convention is followed for computing area above and below the x-axis?
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 8. How is the area bounded between two given curves determined?

 9. What is the observed difference between a linear interpolation and a cubic spline 
interpolation?

 10. For obtaining the best fitting curve to a set of data points what criteria needs to be 
fulfilled?

5.11  PRACTICE PROBLEMS
 1. Find the length of =y x    1.5 between =x    0 and =x    5.

 2. Determine the length of the curve =y xln(sec ) for ≤ ≤ πx0 /4.

 3. Find the area between =y x 2 and =x y2 from =x 0 to =x 1.

 4. Find the area fully enclosed between the curves = +x y 1 and = −x y0.5 32 .

 5. Find the minimum, maximum and inflection points for the curve: = +y x x–2.67 0.67 3.

 6. Find the tangent vector, the normal vector, and equation of tangent line of the curve 
(t, t2) at point (1, 1).

 7. Find the unit tangent vector and unit normal vector to the parametric curve =x t3, 
=y t 2 at (−8, 4).

 8. For the implicit curve + − =x y x 43 2 , find the tangent line and normal vector at point 
(−1, 2).

 9. For the cycloid +t t t( sin ,1–cos ), find the tangent vector and normal vector at = πt /2.

 10. Find the centroid of the area bounded by the curves =y x  and =y x3.
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C h a p t e r  6

Vectors

6.1  INTRODUCTION
Vectors involve both magnitude and direction. Two vectors are equal if they have the same 
magnitude and direction. Vectors a and b are not equal even if they have same magnitude. 
Vector –c is defined as having same magnitude but reverse direction as c. Multiplying a 
vector by a scalar changes its magnitude but keeps direction same e.g. 2a. By default vec-
tors are “free” i.e. parallel shifting does not change their magnitude or direction. Vectors 
can also be “bound” i.e. cannot be shifted e.g. position vector of point P with respect to 
origin O (Olive, 2003) (see Figure 6.1).

Vector addition implies finding the resultant of two vectors. There are two methods to 
do this, both of which are essentially equivalent. The triangle rule states that, if p and q 
represents two sides of a triangle, then +p q is given by the third side. The parallelogram 
rule states that if P  and Q  be two adjacent sides of a parallelogram, +P Q is given by its 
diagonal (Shirley, 2002). If there are more than two vectors, then we use the polygon rule, 
which says that addition of any number of vectors is obtained by arranging them end 
to end and  closing the final side of resulting polygon i.e. = + + +r a b c d (see Figure 6.2). 
For 3D  vectors, they are to be joined end to end in 3D space.

a

b

c

-c

O

P

r

2a

FIGURE 6.1 Examples of vectors.
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Vectors can be represented in terms of some chosen reference components. In practice 
reference, vectors are chosen to be orthogonal (perpendicular) and of unit length. The stan-
dard notations for the unit vectors are i along X-axis, j  along Y-axis, and k along Z-axis. 
Position vector measured from the origin of the coordinate system is written as = +P ai bj 
(2-D coordinate system) and = + +P ai bj ck (3-D coordinate system), where , , anda b c are 
the scaling factors. Vectors can be represented usually in two forms: using components as 
in = + +r ai bj ck, or as coordinates in vector space as in    ( ,  ,  )=r a b c . In the coordinate nota-
tion, the unit vectors become (1, 0, 0), (0, 1, 0), (0, 0, 1)i j k= = = . The resultant of two vectors 

= + +p ai bj ck and = + +q di ej fk is equal to ( ) ( ) ( )= + + + + +r a d i b e j c f k. Figure 6.3a shows 
that the vector 3 4= +P i j can be split into two orthogonal components: 3i along the X-axis 
and 4 j along the Y-axis. These components can in turn be represented as scaled unit vectors 
i.e. three times the i vector and four times the j  vector. Figure 6.3b shows that the vector 

2 3 2= + +P i j k can be split into three orthogonal components: 2i along the X-axis, 3 j  along 
the Y-axis, and 2k along the Z-axis. These components can in turn be represented as scaled 
unit vectors i.e. two times the i vector, three times the j  vector, and two times the k vector.

6.2  UNIT VECTOR
The magnitude of the vector = + +R ai bj ck is given by:

     2 2 2( )= + +R a b c  (6.1)

This is also known as the Euclidean length between the start and end points of the vector. 
The unit vector along the direction of R is given by:

 
       

       2 2 2( )
( )= =

+ +

+ +
r R

R
ai bj ck

a b c
 (6.2)

Example 6.1

Find the magnitude and unit vector in the direction of a specified vector = +R 2i – j 2k.

From Equation (6.1):            2 2 2( )= + +R a b c  = √(4 + 1 + 4) = 3

From Equation (6.2): = + = − +(1/3)*(2 – 2 ) (2/3)    (1/3) (2/3)r i j k i j k (Figure 6.4).
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FIGURE 6.2 Vector addition.
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MATLAB® Code 6.1

clear all; clc;
R = [2, -1, 2];
nR = norm(R);
fprintf('Magnitude : %f \n', nR);
r = R/nR;
fprintf('Unit vector : (%f, %f, %f)\n', r(1), r(2), r(3));
quiver3(0, 0, 0, R(1), R(2), R(3), 1, 'b', 'LineWidth', 1.5);
hold on;
quiver3(0, 0, 0, r(1), r(2), r(3), 1, 'r', 'LineWidth', 1.5);
hold off;
xlabel('x'); ylabel('y'); zlabel('z');

6.3  DIRECTION COSINES
Let A, B, and C be the angles made by the vector = + +R ai bj ck with the three primary 
axes. The cosines of these three angles cos(A), cos(B), and cos(C) are known as direc-
tion cosines.

NOTE

norm: calculates the magnitude or Euclidean length of a vector.
quiver3: depicts 3D vectors as arrows with direction and magnitude.
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FIGURE 6.4 Plot for Example 6.1.
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cos
       

cos
       

cos
       

2 2 2

2 2 2

2 2 2

( )

( )

( )

=
+ +

=
+ +

=
+ +

A a

a b c

B b

a b c

C c

a b c

 (6.3)

It follows from the above that: cos cos cos  12 2 2+ + =A B C

Example 6.2

Find the direction cosines and angles, the vector = + −R 3i 5 j 2k makes with 
coordinate axes.

From Equation (6.3)

 cos
       

3
38

0.4867
2 2 2( )

=
+ +

= =A a

a b c

 cos
       

5
38

0.8111
2 2 2( )

=
+ +

= =B b

a b c

 cos
       

2
38

0.3244
2 2 2( )

=
+ +

= − = −C c

a b c

A = arccos(0.4867) = 60.87°
B = arccos(0.8111) = 35.79°
C = arccos(−0.3244) = 108.93°

MATLAB Code 6.2

clear all;clc;
R = [3, 5, -2];
nR = norm(R);
cosA = R(1)/norm(R)
cosB = R(2)/norm(R)
cosC = R(3)/norm(R)
A = rad2deg(acos(cosA))
B = rad2deg(acos(cosB))
C = rad2deg(acos(cosC))
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%alternatively
A = acosd(cosA)
B = acosd(cosB)
C = acosd(cosC)

6.4  DOT PRODUCT
Dot product of two vectors = + +A ai bj ck  and = + +P pi qj rk with an angle θ between 
them is given by the following (Shirley, 2002):

 θ=• cos( )A P A P  (6.4)

Also angle between the vectors:

 θ ( )=cos( ) ( • )/A P A P  (6.5)

Even though it is a product of two vector quantities, the product itself is a scalar number. 
To see how this is possible, we expand Equation (6.4)

 = + + ⋅ + + = + +• ( ) ( )A P ai bj ck pi qj rk ap bq cr  (6.6)

The above expression is true because = = =• • • 1i i j j k k  as each has a magnitude of 1 and 
angle between them is 0. Also = = =• • • 0i j j k k i  as angle between each pair is 90°.

Corollary 1: If vectors are parallel then θ = 0 hence A • P = |A||P|

Corollary 2: If vectors are perpendicular then θ = 90° hence A • P = 0

Example 6.3

 (a)  Find if vectors = +A 3i 5 j – 2k and =B 2i – 2 j – 2k are perpendicular to each 
other.

 (b)  Find if vectors = +A 3i 5 j – 2k and B = +0.5i (5/6) j –0.333k are parallel to 
each other.

 (c) Find angle between vectors = +A 2i – 3 j k and = +B 4i j – 3k

(a)
From Equation (6.4)

 = × − × + × = − + =• 3 2 5 2 2 2 6 10 4 0A B  

NOTE

rad2deg: converts radian to degree values
acos: calculates inverse cosine in radians
acosd: calculates inverse cosine in degrees
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Thus, A and B are perpendicular.

(b)
From Equation (6.4)

 = + + − − = + + = + + =• (3)(0.5) (5)(5/6) ( 2)( 1/3) 3/2 25/6 2/3 (9 25 4)/6 38/6A B  

From Equation (6.1)

 (9 25 4) 38= √ + + = √A  

 (1/4 25/36 1/9) (9 25 4) 36 38/6= √ + + = √ + + √ = √B  

 A B A B= √ × √ = =38 38/6 38/6 •  

Thus, A and B are parallel.

(c)
From Equation (6.5)

 θ ( )=cos( ) ( • )A B A B  

 = + − + − = − − =• (2)(4) ( 3)(1) (1)( 3) 8 3 3 2A B  

 (4 9 1) 14= √ + + = √A  

 (16 1 9) 26= √ + + = √B  

 θ ( )( )= = √ √ = =cos( ) ( • ) 2 14 26 2/19.0788 0.1048A B A B  

 arccos(0.1048) 83.98θ = = ° 

MATLAB Code 6.3

clear all; clc; format compact;

% (a)
A = [3, 5, -2];
B = [2, -2, -2];
C = dot(A, B);
if C = = 0
fprintf('Perpendicular\n');

else
fprintf('Not perpendicular\n');

end
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% (b)
clear all;
A = [3, 5, -2];
B = [0.5, 5/6, -0.333];
C = dot(A,B);
nA = norm(A);
nB = norm(B);
P = nA*nB;
if (C - P) < 0.001
fprintf('Parallel\n');

else
fprintf('Not parallel\n');

end

% (c)
clear all;
A = [2, -3, 1];
B = [4, 1, -3];
C = dot(A, B);
nA = norm(A);
nB = norm(B);
D = C/(nA*nB);
angle = acosd(D);
fprintf('Angle : %f deg\n', angle);

6.5  CROSS PRODUCT
Cross (vector) product of two vectors = + +A ai bj ck  and = + +P pi qj rk with an angle θ 
between them is given by the following (Shirley, 2002):

 sin( )  θ× = ⋅A P A P n  (6.7)

The resultant is a vector in the direction of n, which is a vector perpendicular to both A and 
P . The positive direction of n is governed by the right-handed corkscrew rule, which says 
that if a right-handed corkscrew is rotated from A to P  then the positive direction of the n 
will be that along which the corkscrew advances.

Substituting the components in the above expression we get:

 ( ) ( ) × = + + × + +A P ai bj ck pi qj rk  

Remembering that 0× = × = × =i i j j k k  and , ,  × = × = × =i j k j k i k i j, it follows that 
    , ,  × = − × = − × = −j i k k j i i k j. The above expression can, therefore, be simplified as follows:

NOTE

dot: calculates dot product of vectors
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 ( ) ( ) ( )× = − + − + −A P br cq i cp ar j aq bp k (6.8)

Example 6.4

Find the vector perpendicular to both = + −A 3i 5 j 2k and = − −B 2i 2 j 2k
From Equation (6.8) we get:

 ( 10 4) ( 4 6) ( 6 10) 14 2 16× = − − + − + + − − = − + −A B i j k i j k 

MATLAB Code 6.4

clear all; clc;
A = [3, 5, -2];
B = [2, -2, -2];
C = cross(A, B)

%verification
dot(C,A)    % should be 0
dot(C,B)    % should be 0

6.6  VECTOR EQUATION OF A LINE
Consider the dashed line is shown in Figure 6.5 whose vector equation needs to be com-
puted. A vector equation of a line should be satisfied by any position vector on the line. Two 
parameters should be known regarding the line, first, a known point A on the line, and 
second, the direction of the line along a given vector b (Olive, 2003). Joining A with origin 
O, we obtain the position vector a of the point A. Let P be any other point on the line. Then 
r is the position vector of P. According to the triangle rule, OA + AP = OP i.e. a + AP = r. 
Now AP being along the direction of b could be expressed as a scalar multiple of b. Let the 
scalar multiple be t so that AP = ⋅t b. Combining the above notations together vector equa-
tion of the line can be written as below:

  = + ⋅r a t b  (6.9)

Any point on the line AP corresponds to some value of the scalar t and should satisfy the 
above equation (Shirley, 2002). Rewriting AP as ( )−r a  and plugging this in Equation (6.9) 
we  get: ( )= + ⋅ −r a t r a . Putting 0=t  gives us point A and putting 1=t  gives  us  point  P. 
Putting 0.5=t  say, gives us the mid-point of line segment AP.

To convert the vector equation to Cartesian equation, the following steps are taken:
Expanding Equation (6.9) in terms of 3D components, 1 2 3= + +a a i a j a k, = + +b b i b j b k,1 2 3  

and = + +r xi yj zk.

NOTE

cross: calculates cross product of vectors
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 1 2 3 1 2 3( ) ( )+ + = + + + ⋅ + +xi yj zk a i a j a k t b i b j b k  

For this to be true the , , andi j k components should separately be equal. Thus

 1 1= + ⋅x a t b

 2 2= + ⋅y a t b

 3 3= + ⋅z a t b

Rearranging terms

 1

1

2

2

3

3
= − = − = −t x a

b
y a

b
z a

b
 (6.10)

Equation (6.10) is the Cartesian representation of the line in 3D space as it is satisfied by 
any arbitrary point with coordinates ( , , )x y z  on the line.

Example 6.5

A straight line passes through points (6, 3, −5) and (2, 1, −4). Find its equation in 
 vector form and Cartesian form

Position vectors 6 3 5 , 2 4= + − = + −P i j k Q i j k
Direction vector along QP: (2 4 ) (6 3 5 ) 4 2− = + − − + − = − − +Q P i j k i j k i j k

-2 0 2 4 6 8 10 12 14

-2

0

2

4

6

8

O

A

P

b

a

r

FIGURE 6.5 Deriving vector equation of a line.
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From Equation (6.9) vector equation:

 ( – ) (6 3 –5 ) ( 4 – 2 ) (6 – 4 ) (3– 2 ) ( –5)= + = + + − + = + +r P t Q P i j k t i j k t i t j t k  

From Equation (6.10)

      6
2   6

    /4 3/2= −
−

= − +t x x  

    3
1   3

/2 3/2= −
−

= − +t y y  

   5
4 5

5 = +
− +

= +t z z  

Cartesian equation:    6
4

   3
2

     5
1

− + = − + = +x y z

Verification:

Substituting point (6, 3, −5) in the equation:    0=t  in all cases.
Substituting point (2, 1, −4) in the equation:    1=t  in all cases.

MATLAB Code 6.5

clear all; clc;

P = [6, 3, -5];
Q = [2, 1, -4]; 

syms t;
fprintf('Vector equation : \n');
r = P + t*(Q - P)

syms x, syms y, syms z;

x1 = P(1); x2 = Q(1);
y1 = P(2); y2 = Q(2);
z1 = P(3); z2 = Q(3);

dx = x2 - x1;
dy = y2 - y1;
dz = z2 - z1;

nx = (x - x1);
ny = (y - y1); 
nz = (z - z1); 

fprintf('\nCartesian equation : \n');
disp(nx/dx), disp('='), disp(ny/dy), disp('='), disp(nz/dz)
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6.7  VECTOR EQUATION OF PLANE
To derive vector equation of a plane, two situations are to be considered: (a) the origin lies 
on the plane and (b) the origin lies outside the plane (Olive, 2003). For the first case, if the 
plane passes through the origin, let a and b be any two non-parallel vectors lying on the 
plane and let P be any arbitrary point on the plane (see Figure 6.6a). Then the position vec-
tor r of point P can be expressed as a combination of scaled versions of a and b

 = ⋅ + ⋅r s a t b (6.11)

where s and t are the scaling factors for vectors a and b, respectively. This is the vector 
equation of the plane because any point P on the plane satisfies Equation (6.11) for different 
values of s and t.

For the second case, if the plane does not pass through the origin, then an additional 
vector c is required to define the position vector of point C, where the vectors a and b meet. 
Then the position vector r of the arbitrary point P on the plane can be expressed as a com-
bination of scaled versions of a, b, and the vector c (see Figure 6.6b).

  = + = + ⋅ + ⋅r c p c s a t b  (6.12)

To derive the Cartesian equation of the plane consider Figure 6.7, where ON is the perpen-
dicular from origin O onto the plane at N and let n be the unit vector along ON. Let length 
of ON be D. As before, let P be any arbitrary point on the plane and let r be its position 
vector. Also let the angle between ON and OP be θ.

Now from Equation (6.4)

 θ θ= = ⋅ ⋅ =•   cos( ) 1 cosr n r n r D (6.13)

In words, the above equation means that the dot product of the position vector of any point 
P on the plane and the unit normal vector equals the perpendicular distance D of the plane 
from the origin. Expanding into components if 1 2 3= + +n n i n j n k and = + +r xi yj zk then

 r n x n y n z n D= ⋅ + ⋅ + ⋅ =•  1 2 3  (6.14)

The general form of the Cartesian equation of a plane is given by (Hearn and Baker, 1996):

 + + =Ax By Cz D (6.15)

Comparing Equations (6.14) and (6.15)

 

1

2

3

=

=

=

A n

B n

C n

 (6.16)

Hence, the coefficients of the Cartesian equation of a plane are equal to the components of 
the unit normal vector from the origin onto the plane.
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FIGURE 6.6 (a) and (b) Deriving vector equations of a plane (a) passing through origin (b) not 
passing through origin.
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Example 6.6

Vector equation of a plane is = + +r c as bt , where = + −c 2i 4 j 3k, = − + −a 3i 3 j 3k, 
= + +b 4i 2 j 3k, and s, t  are the scalars. Find the normal vector N  and the normal 

distance D from the origin and Cartesian equation of the plane.
Let P be any point on the plane with OP = = + +r xi yj zk
Let N be normal vector of the plane
Then 15 3 18= × = − −N a b i j k
Magnitude N  = √{225 + 9 + 324} = 23.622
Unit vector =n N N  = 0.6350 0.1270 0.7620− −i j k
Hence, for the plane + + =Ax By Cz D, we have = = −0.6350, 0.1270, andA B

= −0.7620C
Now for any point C on the plane, we must have c n D=•  as per Equation (6.13)
Hence, = + − − − =(2 4 3 )•(0.6350 0.1270 0.7620 ) 3.048D i j k i j k
Thus, Cartesian equation of the plane is 0.6350 0.1270 0.7620 3.048− − =x y z
Verification: since C(2, 4, −3) is a point on the plane it should satisfy the plane 

equation i.e.

 0.6350(2) 0.1270(4) 0.7620( 3) 3.048 0− − − − =  

0
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0

N
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FIGURE 6.7 Deriving the Cartesian equation of a plane.
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6.8  VECTOR ALIGNMENT (2D)
A position vector = +P ai bj can be aligned with a primary axis along positive or negative 
directions by rotating through the appropriate angle θ  given by arctan( / )θ = b a . Depending 
on the orientation of the original vector and the primary axis along which it is to be 
aligned, the angle of rotation can be either positive or negative. If the angle of orientation 
with respect to +X axis, of vector ( )+ai bj  be θ , then angle of orientation of vector ( )− +ai bj  
is (180 )θ− , angle of orientation of vector ( )− −ai bj  is (180 )θ+ , and angle of orientation 
of vector ( )−ai bj  is θ− . The rotation angles for aligning these vectors with the +X axis 
will be just the negative of these angles of orientation i.e. , (180 ),   (180 ),θ θ θ θ− − − − + + , 
respectively. Angles are positive measured along counter-clockwise (CCW) direction and 
negative along the clockwise (CW) direction. The rotation matrix is calculated based on 
the latter set of values i.e. the rotation angles (see Figure 6.8).

Example 6.7

For each of the following vectors, find the angle it makes with the positive X-axis 
and the rotation matrix to align it with the positive X-axis: (a) +3i 4 j, (b) − +3i 4 j, 
(c) 3i 4 j− − , and (d) −3i 4 j. Also for each case verify, the alignment by multiplying the 
vector with the rotation matrix.

 (a)
P = 3    4+i j = [3, 4]
θ = arctan(4/3) = 53.13°
R1 = R(−53.13°)
Verification: Q = R1*P = [5, 0, 1]T

-5 -4 -3 -2 -1 0 1 2 3 4 5
X-axis

-5

-4

-3

-2

-1

0

1

2

3

4

5

Y
-a

xi
s

O (0,0)

+X, +Y-X, +Y

-X, -Y +X, -Y

P = ai + bjP = -ai + bj

P = -ai - bj P= ai - bj

FIGURE 6.8 Orientation angles of vectors.



Vectors   ◾   223

 (b)
P = 3    4− +i j = [−3, 4]
θ = 180° − arctan(4/3) = 126.87°
R1 = R(−126.87°)
Verification: Q = R1*P = [5, 0, 1]T

 (c)
P = 3    4− −i j = [−3, −4]
θ = 180° + arctan(4/3) = 233.13°
R1 = R(−233.13°)
Verification: Q = R1*P = [5, 0, 1]T

 (d)
P = 3    4−i j = [3, −4]
θ = −arctan(4/3) = −53.13°
R1 = R(53.13°)
Verification: Q = R1*P = [5, 0, 1]T

MATLAB Code 6.7

clear; clc;
P = [3, 4]
B = atan(abs(P(2))/abs(P(1)));
ang = rad2deg(B)
A = -B;
R = [cos(A) -sin(A) 0 ; sin(A) cos(A) 0 ; 0 0 1];
Q = R * [P, 1]';
P = [-3, 4]
B = pi - atan(abs(P(2))/abs(P(1)));
ang = rad2deg(B)
A = -B;
R = [cos(A) -sin(A) 0 ; sin(A) cos(A) 0 ; 0 0 1];
Q = R * [P, 1]';

P = [-3, -4]
B = pi + atan(P(2)/P(1));
ang = rad2deg(B)
A = -B;
R = [cos(A) -sin(A) 0 ; sin(A) cos(A) 0 ; 0 0 1];
Q = R * [P, 1]';

P = [3, -4]
B = -atan(abs(P(2))/abs(P(1)));
ang = rad2deg(B)
A = -B;
R = [cos(A) -sin(A) 0 ; sin(A) cos(A) 0 ; 0 0 1];
Q = R * [P, 1]';
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Apart from the +X axis angles of orientation can also be calculated with respect to the 
other primary axes. If θ be the angle with the +X axis, then angle with +Y axis will be 
(90 − θ), angle with the −X axis will be (180 − θ), and angle with the −Y axis will be 
(90 + θ). The signs are calculated by observing whether we are moving in the CW or 
CCW direction. For example, for vector ( )+ai bj  which is in Q1 quadrant, when angle 
is measured from +X axis we are moving in CCW direction hence +θ, when measuring 
from −X axis we are moving in CW direction hence −(180 − θ), when measuring from +Y 
axis we are moving in CW direction hence −(90 − θ), when measuring from −Y axis we 
are moving in CCW direction hence +(90 + θ). Given in Table 6.1 are the possible cases 
for a and b positives. Column 1 shows the vectors, column 2 shows the quadrant in which 
the vector lies, and columns 3 to 6 indicate the angle and direction values (CCW +ve 
and CW −ve). It is to be noted that for actually aligning the vector to the corresponding 
axis, the sign of the angle will be just the negative to that given in the table. For example, 
for ( )+ai bj  the angle from −X-axis is −(180 − θ) as it is measured in CW direction but 
to align the vector with the −X-axis, the vector needs to be rotated in the CCW direc-
tion, so angle for alignment is +(180 − θ). Similar for    − −ai bj  which lies in Q3 the angle 
for aligning with the +Y axis is −(90 + θ) since the vector would need to be rotated in 
CW direction.

Example 6.8

For each of the following vectors, find the rotation matrix to align it with the primary 
axis specified (a) −3i 4 j with positive Y-axis and (b) − −3i 4 j with negative X-axis. 
Also for each case, verify the alignment by multiplying the vector with the rotation 
matrix.

 (a) 
3 4= −P i j = [3, −4]

θ = arctan(4/3) = 53.13°
To align with +Y axis, the vector needs to be rotated by (90 + 53.13)° = 143.13° 

in CCW direction.
R1 = R(143.13°)
Verification: Q = R1*P = [0, 5, 1]T

 (b) 
3 4= − −P i j  = [−3, −4]

θ = arctan(4/3) = 53.13°

TABLE 6.1 Orientation Angles of Vectors

Vector Quadrant +X-axis −X-axis +Y-axis −Y-axis

= +P ai bj Q1 θ+ θ− −(180 ) θ− −(90 ) θ+ +(90 )
= − +P ai bj Q2 θ+ −(180 ) θ− θ+ −(90 ) θ− +(90 )
= − −P ai bj Q3 θ+ +(180 ) θ+ θ+ +(90 ) θ− −(90 )
= −P ai bj Q4 θ− θ+ −(180 ) θ+ +(90 ) θ+ −(90 )



Vectors   ◾   225

θ = 180° + arctan(4/3) = 233.13°
To align with −X axis, the vector needs to be rotated by 53.13° CW direction.
R1 = R(−53.13°)
Verification: Q = R1*P = [−5, 0, 1]T

MATLAB Code 6.8

clear; clc;
P = [3, -4]
B = atan(abs(P(2))/abs(P(1)));
A = B + pi/2;
R = [cos(A) -sin(A) 0 ; sin(A) cos(A) 0 ; 0 0 1];
fprintf('verification \n');
Q = R * [P, 1]'

P = [-3, -4]
B = atan(abs(P(2))/abs(P(1)));
A = -B;
R = [cos(A) -sin(A) 0 ; sin(A) cos(A) 0 ; 0 0 1];
fprintf('verification \n');
Q = R * [P, 1]'

6.9  VECTOR EQUATIONS IN HOMOGENEOUS COORDINATES (2D)
We know that Cartesian equation of a line is 0+ + =ax by c . Let ( , , )X Y W  are homogeneous 
coordinates of point ( , )x y  i.e. / ,       /= =x X W y Y W . Substituting in line equation:

 0+ + =aX bY cW  (6.17)

This is called homogeneous line equation (Marsh, 2005) and the vector  ( , , )= a b c  is 
denoted as line vector. If ( , , )P X Y W  be a point on the line, we must have:

 ( , , ) ( , , ) 0P a b c X Y W aX bY cW= = + + =�i i  (6.18)

Thus for line ( , , )a b c=  passing through  ( , , )P X Y W  we must have � i 0=P
Let the line  through two given points ( , , )1 1 1 1P X Y W  and ( , , )2 2 2 2P X Y W . From the 

above equation, � i 01 =P  and � i 02 =P  which implies that vector  is perpendicular to both 
1P  and 2P . This can be represented as  1 2= ×P P .

Thus, for line ( , , )a b c=  passing through two points ( , , )1 1 1 1P X Y Z  and ( , , )2 2 2 2P X Y Z , we 
must have:

   1 2= ×P P  (6.19)

NOTE

Vector alignment in 3D has been dealt with in the next chapter.
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Let two non-parallel lines 1 and 2 have an intersection point P.
Since P lies on both lines, we must have � i 01 =P  and � i 02 =P , which implies that 

 vector P is perpendicular to both lines. This can be represented as P = 1 × 2. Thus, inter-
section point P of two lines 1 and 2 is given by:

  1 2= ×P  (6.20)

Example 6.9

Solve the following using vector-based methods: (a) Find which of the points (0, 5), 
(2, 1), and (10/3, 0) lies on the line 3x 4 y 10 0+ − = . (b) Find the equation of the 
line passing through the points (1, 8) and (6, −7). (c) Find the point where the 
lines x 2 y 3 0− + =  and 4x 5 y 6 0− + =  intersects.

(a)
Here, L = [3, 4, −10], P1 = [0, 5, 1], P2 = [2, 1, 1], and P3 = [10/3, 0, 1]
From Equation (6.18),
L • P1 = (3)(0) + (4)(5) + (−10)(1) = 0 + 20 − 10 ≠ 0
Hence, point (0, 5) does not lie on line 3 64 10 0+ − =x
L • P2 = (3)(2) + (4)(1) + (−10)(1) = 6 + 4 − 10 = 0
Hence, point (2, 1) lies on line 3 64 10 0+ − =x
L • P3 = (3)(10/3) + (4)(0) + (−10)(1) = 10 + 0 − 10 = 0
Hence, point (10/3, 0) lies on line 3 64 10 0+ − =x

(b)
Here, P1 = [1, 8, 1] and P2 = [6, −7, 1]
From Equation (6.19),
L P P i j k i j k{ } { } { }= × = − + − + − − = + −(8)(1) (1)(7) (1)(6) (1)(1) (1)( 7) (8)(6) 15 5 551 2

Required equation of line: 15 5 55 0+ − =x y
Verification: P1 and P2 are points on this line: 15(1) + 5(8) − 55 = 0, 
15(6) + 5(−7) − 55 = 0

(c)
Here, L1 = [1, −2, 3] and L2 = [4, −5, 6]
From Equation (6.20), [3,6,3]1 2= × =P L L  (in homogeneous coordinates)
Converting to Cartesian coordinates, intersection point P = (3/3, 6/3) = (1, 2)
Verification: P satisfies both lines: 1(1) + (−2)(2) + 3 = 0, 4(1) + (−5)(2) + 6 = 0
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6.10  VECTOR EQUATIONS IN HOMOGENEOUS COORDINATES (3D)
We know that Cartesian equation of a plane in 3D space is 0+ + + =ax by cz d . 
Let ( , , , )X Y Z W  be the homogeneous coordinates of point ( , , )x y z  i.e. = =  / ,   / ,x X W y Y W

= /z Z W
Substituting in plane equation:

 0+ + + =aX bY cZ dW  (6.21)

This is called homogeneous plane equation (Marsh, 2005) and the vector ( , , , )N a b c d=  is 
denoted as plane vector.

Let ( , , , )P X Y Z W  be a point on the plane, hence we must have:

 • ( , , , )•( , , , ) 0N P a b c d X Y Z W aX bY cZ dW= = + + + =  (6.22)

Thus for plane ( , , , )N a b c d=  passing through point ( , , , )P X Y Z W  we must have 
=• 0N P .

Let the plane N  pass through three given points ( , , , ), ( , , , )1 1 1 1 1 2 2 2 2 2P X Y Z W P X Y Z W , and 
( , , , )3 3 3 3 3P X Y Z W . From the above equation, = = =• 0,   • 0, • 01 2 3N P N P N P , which implies 

that vector N  is perpendicular to P P,1 2, and P3.
The condition for this to occur is given by the vector determinant:

 

1 2 3 4

1 1 1 1

2 2 2 2

3 3 3 3

=





















N

e e e e
X Y Z W
X Y Z W
X Y Z W

 (6.23)

where e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), and e4 = (0, 0, 0, 1) are the unit vectors 
along the four orthogonal directions.

Let three non-parallel planes ( , , , ), ( , , , ), and ( , , , )1 1 1 1 1 2 2 2 2 2 3 3 3 3 3N a b c d N a b c d N a b c d  
have an intersection point P. Since P lies on all planes we must have = =•    0, • 0,1 2N P N P  

=and • 0,3N P  which implies that vector P is perpendicular to all. The condition for this to 
occur is given by the following vector determinant, where e1, e2, e3, and e4 are the unit vec-
tors along the four orthogonal directions:

 

1 2 3 4

1 1 1 1

2 2 2 2

3 3 3 3
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P

e e e e
a b c d
a b c d
a b c d

 (6.24)
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Example 6.10

Solve the following using vector-based methods: (a) Find the plane connecting the 
three points (1, 2, 3), (−4, −5, −6), and (7, 8, 9) (b) Find the point of intersection of 
the three planes x 2 y – 3z 4 0,+ + = 3x 4 y – 2z 1 0, and 5x 6 y 4z 3 0+ + = + − + = .

(a)
Here, P1 = [1, 2, 3], P2 = [−4, −5, −6], and P3 = [7, 8, 9];
Let e1, e2, e3, and e4 be the unit vectors along the four orthogonal directions.
From Equation (6.23),

 1 2 3 1
4 5 6 1

7 8 9 1

1 2 3 4

1 1 1 1

2 2 2 2

3 3 3 3

1 2 3 4

=





















=
− − −
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X Y Z W
X Y Z W

e e e e

 

 1   det
2 3 1
5 6 1

8 9 1
12 = − −

































=d  

 2 det
1 3 1
4 6 1

7 9 1
24= − − −

































= −d  

 3 det
1 2 1
4 5 1

7 8 1
12= − −

































=d  

 4 det
1 2 3
4 5 6

7 8 9
0 = − − − −

































=d  

Equation of plane: 12 24 12 0− + =x y z
Verification: P1, P2, and P3 all satisfy this equation
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(b)
Here, N1 = [1, 2, −3, 4], N2 = [3, 4, −2, 1], and N3 = [5, 6, −4, 3];
Let , , , and1 2 3 4e e e e  be the unit vectors along the four orthogonal directions.
From Equation (6.24),

 1 2 3 4
3 4 2 1
5 6 4 3

1 2 3 4

1 1 1 1

2 2 2 2

3 3 3 3

1 2 3 4
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 2 det
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 3 det
1 2 4
3 4 1
5 6 3
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= −d  

 4 det
1 2 3
3 4 2
5 6 4

6 = −
−
−
−

































= −d  

Point in homogeneous coordinates: ( 2, 2, 10, 6)− − − −
Point in Cartesian coordinates: (1/3, 1/3, 5/3)
Verification: point P satisfy all three plane equations
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6.11  NORMAL VECTOR AND TANGENT VECTOR
Given a function in implicit form ( , )=w f x y , the gradient ∇f  at a point of the curve 

( , ) =f x y k is perpendicular to the curve at that point and gives the normal vector (Shirley, 
2002). Let ,0 0( )P x y  be a point on the curve so that ,0 0( ) =x y k. Let the parametric represen-
tation of the curve be ( ) ( ( ), ( ))= =g t f x t y t k. Also let at P, 0=t t

Differentiating with respect to t at P we get:

 .   . 0
0 0

= ∂
∂

+ ∂
∂

=dg
dt

f
x

dx
dt

f
y

dy
dtP t P t

 (6.25)

Rewriting in vector form:
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∂
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=,  • ,  0
0 0

f
x

f
y

dx
dt

dy
dtP P t t

 (6.26)

The second term in the above equation gives the tangent vector and since the dot product 
is zero the gradient vector is the normal vector perpendicular to the curve. Note that the 
tangent vector can also be obtained by rotating the normal vector by 90°.

Example 6.11

For the curve + =x y 42 2 , find the normal vector and tangent vector at a point on the 
curve. Also derive the equation of the tangent line through that point.

Let ( , ) 42 2= + −f x y x y  and let 1,  3( )P  be a point on the curve.

Differentiating, , (2 ,2 )∇ = ∂
∂

∂
∂







=f f
x

f
y

x y

Gradient at P: 2, 2 3 ,1 2f N n n
P P( ) ( )∇ = =  which is the normal vector at P i.e. 

2 3.46= +N i jP

The tangent vector is obtained by rotating the normal by 90° i.e.

(90)*
0 1 0
1 0 0
0 0 1 1 1

2 3
2
1

i.e. 3.46 2
1

2

2

1= =
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n T i jP P

The tangent line equation can be obtained as the line through P with slope same as TP

 0

0

1

2

( )
( )

−
−

=
−

y y
x x

n
n

 

Equation of the tangent line at P is given by TLP: 2 2 3 8 0+ − =x y .

Verification: Point P satisfies the tangent line equation (Figure 6.9)



Vectors   ◾   235

M
A
T
L
A
B
 
C
o
d
e
 
6
.
1
1

c
l
e
a
r
 
a
l
l
;
 
c
l
c
;
 
f
o
r
m
a
t
 
c
o
m
p
a
c
t
;

s
y
m
s
 
x
 
y
;

f
 

= 
x
^
2
 

+ 
y
^
2
 
-
 
4
;

d
f
 

= 
[
d
i
f
f
(
f
,
 
x
)
,
 
d
i
f
f
(
f
,
 
y
)
]
;

p
 

= 
[
1
,
 
s
q
r
t
(
3
)
]
;

n
v
 

= 
s
u
b
s
(
d
f
,
 
[
x
,
 
y
]
,
 
[
p
(
1
)
,
 
p
(
2
)
]
)
;
 
 
 
 
%
 
n
o
r
m
a
l
 
v
e
c
t
o
r

r
9
0
 

= 
[
c
o
s
d
(
9
0
)
,
 
-
s
i
n
d
(
9
0
)
,
 
0
 
;
 
s
i
n
d
(
9
0
)
,
 
c
o
s
d
(
9
0
)
,
 
0
 
;
 
0
 
0
 
1
]
;

t
v
 

= 
r
9
0

*[
n
v
 
1
]
'
;
 
 
 
%
 
t
a
n
g
e
n
t
 
v
e
c
t
o
r

t
l
 

= 
n
v
(
1
)

*(
x
 
-
 
p
(
1
)
)
 

+ 
n
v
(
2
)

*(
y
 
-
 
p
(
2
)
)
;
 
 
 
%
 
t
a
n
g
e
n
t
 
l
i
n
e

f
p
r
i
n
t
f
(
'
N
o
r
m
a
l
 
v
e
c
t
o
r
 
:
 
(
%
.
2
f
)
i
 

+ 
(
%
.
2
f
)
j
 
\
n
'
,
 
e
v
a
l
(
n
v
(
1
)
)
,
 
e
v
a
l
(
n
v
(
2
)
)
)
;

f
p
r
i
n
t
f
(
'
T
a
n
g
e
n
t
 
v
e
c
t
o
r
 
:
 
(
%
.
2
f
)
i
 

+ 
(
%
.
2
f
)
j
 
\
n
'
,
 
e
v
a
l
(
t
v
(
1
)
)
,
 
e
v
a
l
(
t
v
(
2
)
)
)
;

f
p
r
i
n
t
f
(
'
T
a
n
g
e
n
t
 
l
i
n
e
 
:
 
'
)
;

d
i
s
p
(
s
i
m
p
l
i
f
y
(
t
l
)
)

%
p
l
o
t
t
i
n
g

e
z
p
l
o
t
(
f
)
;
 
h
o
l
d
 
o
n
;
 
g
r
i
d
;

p
l
o
t
(
p
(
1
)
,
 
p
(
2
)
,
 
'
r
o
'
)
;

q
u
i
v
e
r
(
p
(
1
)
,
 
p
(
2
)
,
 
n
v
(
1
)
,
 
n
v
(
2
)
)
;

e
z
p
l
o
t
(
t
l
)
;
 

q
u
i
v
e
r
(
p
(
1
)
,
 
p
(
2
)
,
 
t
v
(
1
)
,
 
t
v
(
2
)
)
;

a
x
i
s
 
e
q
u
a
l
;
 
h
o
l
d
 
o
f
f
;

N
O

TE

s
i
n
d

: c
al

cu
la

te
s 

si
ne

 o
f a

n 
an

gl
e 

in
 d

eg
re

es
c
o
s
d

: c
al

cu
la

te
s 

co
si

ne
 o

f a
n 

an
gl

e 
in

 d
eg

re
es



236   ◾   Fundamentals of Graphics Using MATLAB®

Similar to the case of a 2D curve, the gradient ∇f  at a point of the surface ( , , )f x y z k=  
is perpendicular to the surface at that point and gives the normal vector (Shirley, 
2002). In vector form

 ∂
∂

∂
∂

∂
∂

















=,  ,  • ,  ,  0
0 0 0

f
x

f
y

f
z

dx
dt

dy
dt

dz
dtP P P t t t

 (6.27)

The first set of terms in the above equation gives the normal vector , ,1 2 3N n n n( ) 
and the second set of terms gives the tangent vector , ,1 2 3T t t t( ) at point , ,0 0 0x y z( ), 
whose dot product is zero. The equation of the tangent plane through , ,0 0 0P x y z( ) is 
given by:

 01 0 2 0 3 0( )( ) ( )− + − + − =n x x n y y n z z  (6.28)

Example 6.12

For the surface + + =x y z 122 2 2 , find the normal vector and tangent plane at a point 
on the surface.

Let ( , ) 122 2 2= + + −f x y x y z  and (2, 2, 2)P  be a point on the surface.

Differentiating, , , (2 , 2 , 2 )f f
x

f
y

f
z

x y z∇ = ∂
∂

∂
∂

∂
∂
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FIGURE 6.9 Plot for Example 6.11.
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Gradient at P: (4, 4, 4) , ,1 2 3f N n n n
P P ( )∇ = =  which is the normal vector at P

Equation of the tangent plane TPP through P  is given by (Figure 6.10):

 4( 2) 4( 2) 4( 2) 0− + − + − =x y z  

Simplifying we get TPP: 4 4 4 24 0+ + − =x y z

FIGURE 6.10 Plot for Example 6.12.
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6.12  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Vectors have both magnitude and direction.

• Multiplying a vector by a scalar only changes its magnitude but keeps its direction 
same.

• Triangle law, parallelogram law, and polygon law define how multiple vectors can be 
combined.

• A unit vector is derived by dividing a vector by its own magnitude.

• Direction cosines are cosines of the angles made by a vector with the primary axes.

• Dot product of two vectors is the product of their magnitudes and cosine of the angle 
between them.

• Cross product of two vectors is a vector perpendicular to both of them.

• Vector equation of a line can be derived from a point on the line and a direction vector.

• Vector equation of a plane can be derived if two non-parallel vectors on the plane are 
known.

• Expressed in homogeneous coordinates, for line L passing through point P, L • P = 0.

• Expressed in homogeneous coordinates, for line L passing through points P1 and P2, 
L = P1 × P2.

• Expressed in homogeneous coordinates, for two lines L1 and L2 intersecting at point 
P, P = L1 × L2.

• In homogeneous coordinates, for normal N of a plane and point P on the plane, 
N • P = 0.

• For a plane with normal N passing through points P1, P2, and P3; N • P1 = 0, N • P2 = 0, 
and N • P3 = 0.

• For three non-parallel planes N1, N2, and N3 intersecting at P, N1 • P = 0, N2 • P = 0, 
and N3 • P = 0.

6.13  REVIEW QUESTIONS
 1. For two vectors to be equal what conditions need to be fulfilled?

 2. How can multiple vectors be combined to produce a resultant?

 3. How can the magnitude and direction of a vector be computed?

 4. How can the dot product of two vectors be used to determine whether they are 
orthogonal?
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 5. If the cross product of two vectors is zero what does it indicate?

 6. For three vectors A, B, and C specify the result: (a) A • B × C and (b) A × B • C.

 7. Why is the vector equation of a line or a plane not unique?

 8. If N is the normal to a plane and r any point on the plane, what is the value of N • r?

 9. If θ be the angle of orientation of a vector with +X axis what is its angle with −X, +Y, 
and −Y axes?

 10. If +ai bj is oriented at θ with +X axis, what are the angles of –ai bj, − +ai bj, and – –ai bj?

6.14  PRACTICE PROBLEMS
 1. Find relation between the vector = + +p ai bj ck and    (cos ) (cos ) (cos )= + +A i B j C k, 

where A, B, and C are the angles made by the vector p with the three primary axes.

 2. Convert the Cartesian equation of the line 3 4 12+ =x y  to a vector equation.

 3. Consider two lines – 4 ( – )= + + +A i j k s i j k  and 2 4 7 (2 3 )= + + + + +B i j k t i j k , where 
s and t are the scaling factors. For what values of s and t do the lines intersect?

 4. Find Cartesian equation of a line with vector equation   (2 3 – 4 ) (3 – 2 )= + + +r i j k t i j k .

 5. Consider the plane 3 4 5 12+ + =x y z . Find the equation of the line going through the 
point of intersection of the plane with the X- and Y-axes.

 6. Find out if the line :  (3, 2, 5) (5, 5, 1)L r a= + ⋅ −  is perpendicular to the plane 
:  (3, 2, 5) (3, 2, 5) (2, 3, 5)P r b c= − + ⋅ − + ⋅ , where , , anda b c  are the scalars.

 7. Where does the line (1, 3, 5) (2, 4, 6)r t= + −  meet the plane 2 3 4− + = −x y z ?

 8. Find out if the line :  (1, 3, 8) ( 2, 5, 7)L r u= + −  is parallel to the plane 
: (0.3, 0.25, 0.5) (4, 1, 2) (6, 15, 21)P r s t= − + − + − − .

 9. Find vector equation of line along which two planes 
P r s t= + − + −: (2, 0, 0) (2, 3, 0) (2, 0, 4)1 1 1  and P r s t= + +: (5, 0, 0) (5, 1, 0) (5, 0, 4)2 2 2  
meet.

 10. Find the transformation that aligns the position vector (a) 4 5− +i j with positive 
X-axis and (b) 4 5+i j  with negative Y-axis.
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C h a p t e r  7

3D Transformations

7.1  INTRODUCTION
Three dimensional transformations enable us to change the location, orientation, and 
shapes of splines in 3D space. These transformations are translation, rotation, scaling, 
reflection, and shear applied individually or in combination of two or more. Given known 
coordinates of a point, each of these transformations is represented by a matrix which 
when multiplied to the original coordinates give us a new set of coordinates. Similar to 
the case of 2D transformations, we use homogeneous coordinates to derive transfor-
mation matrices. Coordinates of points are measured using a right-handed coordinate 
system. Here, the location of each point is measured by three numbers representing coor-
dinates along an X-, Y-, and Z-axes mutually at right angles or 90°. The positive directions 
of the axes are defined using the right-handed rule, which states that if the thumb, the 
fore- finger, and the middle-finger of the right-hand are stretched so that they are mutu-
ally at right angles to each other, then the thumb denotes the positive direction of the 
X-axis, the fore-finger denotes the positive direction of the Y-axis, and the middle-finger 
denotes the positive direction of the Z-axis (O’Rourke, 2003). Angles are considered posi-
tive when measured in the counter-clockwise (CCW) direction observed from the tip of a 
primary axis and negative in the clockwise (CW) direction. Along with the three primary 
axes, there are three primary planes which together divide the coordinate space into eight 
octants (see Figure 7.1). The X–Y plane (shown in green) is located at Z = 0 and divides the 
space into top and bottom segments, the Y–Z plane (shown in red) is located at X = 0 and 
divides the space into left and right segments, the X–Z plane (shown in yellow) is located at 
Y = 0 and divides the space into front and rear segments. The three primary axes and the 
three  primary planes meet at the origin.

7.2  TRANSLATION
A translation operation changes the location of points and graphic objects by adding transla-
tion factors , ,t t tx y z( ) to the X-, Y-, Z-coordinates of each point of the object (Hearn and Baker, 
1996), (Shirley, 2002). If the factors are positive, the object moves along the positive direction 
of coordinate axes, if they are negative, the object moves along the negative direction.
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A point , ,1 1 1( )P x y z  when translated by amounts , ,t t tx y z( ) has new coordinates 
, ,2 2 2( )Q x y z  given by:
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 (7.1)

The inverse transformation is computed by taking the inverse of the matrix as below:
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It can be verified that the inverse of the matrix is equal to the negative of the arguments.
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 (7.3)

FIGURE 7.1 3D coordinate system.
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Symbolically, if T  denotes the forward translation operation with arguments ,t tx y( ) and ′T  
denotes the reverse translation then the above can be written as:

 , , , ,T t t t T t t tx y z x y z( ) ( )′ = − − −  

As before, this is the convention followed throughout this book i.e. the operations them-
selves would be denoted by single letters such as T, S, R, and so on for translation, scal-
ing, and rotation while a specific matrix would be denoted with a letter with a subscript 
e.g. T1. For example:

 (3, 4, 5)

1 0 0 3
0 1 0 4
0 0 1 5
0 0 0 1

1T T= − = −


















 

Example 7.1

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is translated by amounts (−2, −1, 3). 
Find its new vertices.

Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Translation matrix: ( 2, 1, 3)

1 0 0 2
0 1 0 1
0 0 1 3
0 0 0 1

1T T= − − =

−
−



















From Equation (7.1), new coordinate matrix: 

= =

− − − − − − − −
− − − −



















D T C*

3 1 1 3 3 1 1 3
0 0 2 2 0 0 2 2
4 4 4 4 2 2 2 2
1 1 1 1 1 1 1 1

1

New coordinates are (−3, 0, 4), (−1, 0, 4), (−1, −2, 4), (−3, −2, 4), (−3, 0, 2), (−1, 0, 2), 
(−1, −2, 2), and (−3, −2, 2) (Figure 7.2).
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7.3  SCALING
A scaling operation alters the size of graphic objects by multiplying the X-, Y-, Z-coordinates 
of each point of the object by scaling factors ,  , s s sx y z. If scaling factors are less than 1, they 
reduce the size of the object, if they are more than 1, they increase the size and if they are 
equal to 1 they keep the size unaltered (Hearn and Baker, 1996), (Shirley, 2002). If the 
 factors are positive, the size increases along the positive direction of coordinate axes, if 
they are negative, the size increases along the negative direction. If all factors are equal 
then scaling is uniform otherwise non-uniform.

A point ,  , 1 1 1P x y z( ) when scaled by amounts ,  , s s sx y z( ) has new coordinates 
,  , 2 2 2Q x y z( ) given by:

 





















=









































x
y
z

s
s

s

x
y
z

x

y

z

1

0 0 0
0 0 0
0 0 0
0 0 0 1 1

2

2

2

1

1

1
 (7.4)

It can be verified that the inverse of the matrix is equal to the reciprocal of the arguments.
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0 1 0 0

0 0 1 0

0 0 0 1
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 (7.5)

-1
1 1

0

0

1

0

xy

-1

z

2

-1 -2

3

-2 -3

4

original
new

FIGURE 7.2 Plot for Example 7.1.
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Symbolically: ,  ,  1 ,  1 ,  1S s s s S
s s sx y z

x y z
( )′ =







The scaling operation pertaining to the above matrix is always with respect to the origin.

Example 7.2

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is scaled by amounts (2, 1, 3). Find 
its new vertices.

Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Scaling matrix: (2, 1, 3)

2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

1S S= =



















From Equation (7.4), new coordinate matrix: 

= =

− − − −
− − − −

− − − −



















D S C*

2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1

1

New coordinates are (−2, 1, 3), (2, 1, 3), (2, −1, 3), (−2, −1, 3), (−2, 1, −3), (2, 1, −3), 
(2, −1, −3), and (−2, −1, −3) (Figure 7.3).
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FIGURE 7.3 Plot for Example 7.2.
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7.4  ROTATION
A rotation operation moves a point along the circumference of a circle centered at the 
 origin and radius equal to the distance of the point from the origin. Rotation is considered 
positive when it is in the CCW direction and negative along the CW direction. Unlike the 
2D case where there is a single rotation matrix, for 3D there are three different rotation 
matrices depending on which of the three primary axes is the axis of rotation (Hearn and 
Baker, 1996), (Shirley, 2002).

Rotation about X-axis:

 θ θ θ
θ θ

= −


















Rx ( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

 (7.6)

Rotation about Y-axis:

 θ

θ θ

θ θ
=

−



















Ry ( )

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

 (7.7)

Rotation about Z-axis:

 θ

θ θ
θ θ=

−

















Rz ( )

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

 (7.8)

Rotation by default is always with respect to the origin around any of the three primary 
axes.

Example 7.3

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is rotated by 45° about the X-axis. 
Find its new vertices.

Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
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Rotation matrix: 

= −


















= −


















Rx (45)

1 0 0 0
0 cos45 sin45 0
0 sin45 cos45 0
0 0 0 1

1 0 0 0
0 0.71 0.71 0
0 0.71 0.71 0
0 0 0 1

New coordinate matrix: 

= =

− − − −
− −

− −



















D R Cx (45)*

1 1 1 1 1 1 1 1
0 0 1.41 1.41 1.41 1.41 0 0

1.41 1.41 0 0 0 0 1.41 1.41
1 1 1 1 1 1 1 1

New vertices: (−1.00, 0, 1.41), (1.00, 0, 1.41), (1.00, −1.41, 0), (−1.00, −1.41, 0), (−1.00, 
1.41, 0), (1.00, 1.41, 0), (1.00, 0, −1.41), and (−1.00, 0, −1.41) (Figure 7.4)

-1

-0.5

1

0

0.5

z

0.5

y

10

1

-0.5

x

0
-1

-1

original
new

FIGURE 7.4 Plot for Example 7.3.
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7.5  FIXED-POINT SCALING
As mentioned previously, a scaling operation is by default about the origin. For a general 
scaling operation with respect to a fixed point ,  , x y zf f f( ), the following steps are taken:

• Translate object so that fixed point moves to origin: ,  , 1T T x y zf f f( )= − − −

• Scale object about origin: ,  , 1S S s s sx y z( )=

• Reverse translate the object to original location: ,  ,   2T T x y zf f f( )=

• Compute composite transformation matrix: =M T S T* *2 1 1

Example 7.4

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is scaled by amounts (2, 1, 3) with 
respect to its vertex (−1, −1, −1). Find its new vertices.

Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Forward translation: (1, 1, 1)

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

1T T= =



















Scaling: (2, 1, 3)

2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1

1S S= =



















Reverse translation: ( 1,  1,  1)

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

2T T= − − − =

−
−
−



















Composite transformation: = ⋅ ⋅ =



















M T S T

2 0 0 1
0 1 0 0
0 0 3 2
0 0 0 1

2 1 1
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New coordinate matrix: 

= ⋅ =

− − − −
− − − −

− − − −



















D M C

1 3 3 1 1 3 3 1
1 1 1 1 1 1 1 1
5 5 5 5 1 1 1 1
1 1 1 1 1 1 1 1

New vertices: (−1.00, 1.00, 5.00), (3.00, 1.00, 5.00), (3.00, −1.00, 5.00), (−1.00, −1.00, 
5.00), (−1.00, 1.00, −1.00), (3.00, 1.00, −1.00), (3.00, −1.00, −1.00), and (−1.00, −1.00, 
−1.00) (Figure 7.5).
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FIGURE 7.5 Plot for Example 7.4.
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7.6  FIXED-POINT ROTATION
As mentioned previously, a rotation operation is by default with respect to the origin. For 
a general rotation operation with respect to a fixed point ,  , x y zf f f( ), the following steps 
are taken:

• Translate object so that fixed point moves to origin: ( )= − − −, ,1T T x y zf f f

• Rotate with respect to the origin about a primary axis: θ=R Rx ( )1  or θ=R Ry ( )1  or 
θ=R Rz ( )1

• Reverse translate the object to original location: ,  ,   2T T x y zf f f( )=

• Compute composite transformation matrix: = × ×M T R T2 1 1

Example 7.5

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is rotated by 45° with respect to its 
vertex (−1, −1, −1) around Z-axis. Find its new vertices.

Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

Forward translation: = =



















T T(1, 1, 1)

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

1

Rotation about Z-axis: θ= =

−

















R Rz ( )

cos45 sin45 0 0
sin45 cos45 0 0

0 0 1 0
0 0 0 1

1

Reverse translation: ( 1,  1,  1)

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

2T T= − − − =

−
−
−



















Composite transformation: = ⋅ ⋅M T R T2 1 1

New coordinate matrix: = ⋅D M C
New vertices: (−2.41, 0.41, 1.00), (−1.00, 1.83, 1.00), (0.41, 0.41, 1.00), (−1.00, −1.00, 

1.00), (−2.41, 0.41, −1.00), (−1.00, 1.83, −1.00), (0.41, 0.41, −1.00), and (−1.00, −1.00, 
−1.00) (Figure 7.6).
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7.7  ROTATION PARALLEL TO PRIMARY AXES
Consider a straight line parallel to the Y-axis joining points ( ,  ,  )P a b c  and ( , 0,  )Q a c  
(see Figure 7.7). To derive the matrix for rotation by angle θ  in the CCW direction about 
this line, the following steps are followed:

• Translate line such that Q coincides with origin:   ( , 0,  )1T T a c= − −

• Rotate with respect to the origin around Y-axis by angle θ: θ=R Ry ( )1

• Reverse translate back to original location: ( , 0,  )2T T a c=

• Compute composite transformation: M  = ( , 0,  ) ( ) ( , 0,  )T a c R T a cy θ⋅ ⋅ − −

Example 7.6

A point C(1, 1, 1) is to be rotated by 180° around a line parallel to the Y-axis joining 
points P(5, 2, 3) and Q(5, 0, 3). Find its new coordinates.

Original coordinate matrix: C = [1, 1, 1, 1]T

Forward translation to coincide with Y-axis:   ( 5, 0,  3) 1T T= − −
Rotation around Y-axis: =R Ry (180)1

Reverse translation to original location: (5, 0, 3) 2T T=
Composite transformation: M  = (5, 0, 3) (180) ( 5, 0,  3)T R Ty⋅ ⋅ − −
New coordinate matrix D = M · C = [9, 1, 5, 1]T

New coordinates: (9, 1, 5) (Figure 7.8)
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FIGURE 7.6 Plot for Example 7.5.
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Next consider a straight line parallel to the Z-axis joining points ( ,  ,  )P a b c  and ( ,  , 0)Q a b  
(see Figure 7.9). To derive the matrix for rotation by angle θ  in the CCW direction about 
this line, the following steps are followed:

• Translate line such that Q coincides with origin: ( ,  , 0)1T T a b= − −

• Rotate with respect to the origin around Z-axis by angle θ: θ=R Rz ( )1

• Reverse translate back to original location: ( ,  , 0)2T T a b=

• Compute composite transformation: M  = ( ,  , 0) ( ) ( ,  , 0)T a b R T a bz θ⋅ ⋅ − −

Example 7.7

A point C(1, 1, 1) is to be rotated by 180° around a line parallel to the Z-axis joining 
points P(5, 2, 3) and Q(5, 2, 0). Find its new coordinates.

Original coordinate matrix: C = [1, 1, 1, 1]T

Forward translation to coincide with Y-axis:   ( 5,  2, 0) 1T T= − −
Rotation around Y-axis: =R Rz (180)1

Reverse translation to original location: (5, 2, 0)2T T=
Composite transformation: M  = (5, 2, 0) (180) ( 5,  2, 0)T R Tz⋅ ⋅ − −
New coordinate matrix D = M · C = [9, 3, 1, 1]T

New coordinates: (9, 3, 1) (Figure 7.10)
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FIGURE 7.9 Rotation parallel to Z-axis.
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Finally, consider a straight line parallel to the X-axis joining points ( ,  ,  )P a b c  and (0,  ,  )Q b c  
(see Figure 7.11). To derive the matrix for rotation by angle θ  in the CCW direction about 
this line, the following steps are followed:

• Translate line such that Q coincides with origin: (0,  ,  )1T T b c= − −

• Rotate with respect to the origin around X-axis by angle θ: θ=R Rx ( )1

• Reverse translate back to original location: (0,  ,  )2T T b c=

• Compute composite transformation: M  = (0,  ,  ) ( ) (0,  ,  )T b c R T b cx θ⋅ ⋅ − −
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FIGURE 7.11 Rotation parallel to X-axis.
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FIGURE 7.10 Plot for Example 7.7.
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Example 7.8

A point C(1, 1, 1) is to be rotated by 180° around a line parallel to the X-axis joining 
points P(5, 2, 3) and Q(0, 2, 3). Find its new coordinates.

Original coordinate matrix: C = [1, 1, 1, 1]T

Forward translation to coincide with Y-axis:   (0,  2,  3)1T T= − −
Rotation around Y-axis: =R Rx (180)1

Reverse translation to original location: (0, 2, 3)2T T=
Composite transformation: M  = (0, 2, 3) (180) (0,  2,  3)T R Tx⋅ ⋅ − −
New coordinate matrix: D = M · C = [1, 3, 5, 1]T

New coordinates: (1, 3, 5) (Figure 7.12)
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FIGURE 7.12 Plot for Example 7.8.
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7.8  VECTOR ALIGNMENT (3D)
Consider a position vector = + +P ai bj ck from origin O to point P, which is to be aligned 
along the positive Z-axis (see Figure 7.13). To derive the transformation matrix, the follow-
ing steps are followed (Chakraborty, 2010):

Step 1:
Rotate vector OP by angle α  CCW around X-axis to lie on X–Z plane at OQ: αRx ( )
Construction: To find the value of α  in terms of ( ,  ,  )a b c , the following set of construc-

tions are done.

• Project ( ,  ,  )P a b c  onto X–Z plane at ( , 0,  )A a c

• Project ( , 0,  )A a c  along X–Z plane onto Z-axis at (0, 0,  )B c

• Project ( ,  ,  )P a b c  onto Y–Z plane at (0,  ,  )C b c

• Join BC and OC

We now observe the following:
Angle POQ between OP and OQ is α .
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FIGURE 7.13 Vector alignment: Step 1.
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Since, OP and OQ are projected parallel to X–Z plane onto the Y–Z plane at OC and OB, 
angle BOC is also α .

Since, C has coordinates (0,  ,  )b c  and B has coordinates (0, 0,  )c , length BC equals b.
Also since, B has coordinates (0, 0,  )c  length OB equals c.

Let length OC be = +d b c2 2

Thus in triangle OBC, α = =OB OC c dcos( ) / /  and α = =BC OC b dsin( ) / /

Hence α α α
α α

= −


















= −


















R c d b d
b d c dx ( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

1 0 0 0
0 / / 0
0 / / 0
0 0 0 1

Coordinates of Q = α ⋅R Px ( )  = −




































=



















c d b d
b d c d

a
b
c

a

d

1 0 0 0
0 / / 0
0 / / 0
0 0 0 1 1

0

1

 i.e. ( , 0,  )a d

Step 2:
Rotate vector OQ by angle ϕ CW around Y-axis to coincide with Z-axis at R: ϕ−Ry ( ).
Note: CW rotation is considered negative (see Figure 7.14).
Construction: To find the value of ϕ in terms of ( ,  ,  )a b c , the following set of construc-

tions are done.

• Project ( , 0,  )Q a d  along X–Z plane onto Z-axis at (0, 0,  )S d  

We now observe the following:
Let length of OP = length of OQ = length of OR = = + +e a b c2 2 2 .
Since coordinates of Q are ( , 0,  )a d , length QS equals a.
Since coordinates of S are (0, 0,  )d , length OS equals d .
In triangle OQS, angle QOS equals. Thus sin(φ) = a e/ , cos(φ) = d e/

Hence ϕ

ϕ ϕ

ϕ ϕ
− =

− −

− − −





















=

−

















R

d e a e

a e d ey ( )

cos( ) 0 sin( ) 0
0 1 0 0

sin( ) 0 cos( ) 0
0 0 0 1

/ 0 / 0
0 1 0 0
/ 0 / 0
0 0 0 1

Coordinates of R = ϕ− ⋅ =

−



































=



















R Q

d e a e

a e d e

a

d ey ( )

/ 0 / 0
0 1 0 0
/ 0 / 0
0 0 0 1

0

1

0
0

1

  i.e. (0, 0,  )e
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This matches our expectation since the length of vector OP is + + =a b c e2 2 2  hence when 
it is aligned along the Z-axis the tip of the vector should have coordinates (0, 0,  ).e

Composite transformation: ϕ α= − ⋅M R Ry x( ) ( )
It can be verified that coordinates of the final vector OR can also be obtained by multi-

plying the original vector OP with the composite transformation matrix M i.e. = ⋅R M P. 
This is left as an exercise for the readers.

Example 7.9

Find the transformation for aligning the vector = + +P 2i j 2k with the positive 
Z-axis. Also find the new vector after alignment.

For the given problem,

 2,  1,  2,     2.2361,     32 2 2 2 2a b c d b c e a b c= = = = + = = + + =  

 α α= = = =b
d

c
d

sin( ) 0.4472, cos( ) 0.8944  

P (a, b,) c

O

A (a, 0,) cB (0, 0,) c

Q (a, 0,) d

C (0, b,) c

D (a, 0,) 0

R (0, 0,) e

S (0, 0,) d

X

Y

Z

 e

 c

 e

a

FIGURE 7.14 Vector alignment: Step 2.
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 ϕ ϕ= = = =a
e

d
e

sin( ) 0.6667, cos( ) 0.7454 

 α α α
α α

= −


















= −


















Rx ( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

1 0 0 0
0 0.8944 0.4472 0
0 0.4472 0.8944 0
0 0 0 1

 

 ϕ

ϕ ϕ

ϕ ϕ
− =

− −

− − −





















=

−

















Ry ( )

cos( ) 0 sin( ) 0
0 1 0 0

sin( ) 0 cos( ) 0
0 0 0 1

0.7454  0 0.6667 0
0 1 0 0

0.6667 0 0.7454 0
0 0 0 1

 

 ϕ α= − ⋅ =

− −
−



















M R Ry xComposite transformation ( ) ( )

0.7454  0.2981 0.5963 0
0 0.8944 0.4472 0

0.6667 0.3333 0.6667 0
0 0 0 1

 

Original coordinate matrix: P = [2, 1, 2, 1]T

New coordinate matrix Q = M·C = [0, 0, 3, 1]T

New coordinates of Q: (0, 0, 3)
New vector is =Q k3

MATLAB Code 7.9

clear all; clc;

P = [2; 1; 2; 1];
 
a = P(1);
b = P(2);
c = P(3);

d = sqrt(b^2 + c^2);
A = asin(b/d);
A = acos(c/d);
R1 = [1 0 0 0; 0 cos(A) -sin(A) 0; 0 sin(A) cos(A) 0; 0 0 0 1];

e = sqrt(a^2 + d^2);
B = asin(a/e);
R2 = [cos(B) 0 -sin(B) 0; 0 1 0 0; sin(B) 0 cos(B) 0; 0 0 0 1];
fprintf('Transformation matrix : \n');
M = R2*R1
fprintf('New vector : \n');
Q = M*P
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In a similar fashion alignment with the X- and Y-axes can be likewise analyzed. These are left 
for the reader as exercises. The final results are summarized below in Table 7.1 for convenience.

Example 7.10

Find the transformation for aligning the following vectors with the positive X-axis. 
Also find the new vector after alignment. (a) + +2i j 2k and (b) − −2i j 2k.

(a) 
  2,  1,  2a b c= = =  

 2.2361,   32 2 2 2 2d b c e a b c= + = = + + =  

 sin( ) / 0.4472,  cos( ) / 0.8944 b d c dα α= = = =  

 sin( ) / 0.7454,  cos( ) / 0.6667d e a eϕ ϕ= = = =  

 ϕ α= ⋅ = −
−



















M R Ry x( ) ( )

0.6667 0.3333 0.6667 0
0 0.8944 0.4472 0

0.7454 0.2981 0.5963 0
0 0 0 1

 

Original coordinate matrix: C = [2, 1, 2, 1]T

New coordinate matrix = ⋅D M C   = [3, 0, 0, 1]T

New vector is =Q i3
(b) 
 2,  1,  2a b c= = − = −  

 = + = = + + =d b c e a b c  2.2361; 32 2 2 2 2  

NOTE

asin: calculates inverse sine in radians.

To account for negative rotations in CW direction do one of the following:
Either (a) put a negative sign in the angle argument for the rotation matrix e.g. ϕ−Ry ( ),
Or (b) put a negative sign before the sine component e.g. ϕ = −a esin / ,
but not both. Cosine components are not affected by the negative sign i.e. ϕ ϕ= −cos cos( )

TABLE 7.1 Alignment of Vector = + +P ai bj ck with Primary Axes (Here, 2 2 2= + +e a b c )

Primary Axis d ααcos ααsin ϕϕcos ϕϕsin M

Z-axis 2 2= +d b c /c d /b d /d e /a e ( ) ( )ϕ α− ⋅R Ry x

X-axis 2 2= +d b c /c d /b d /a e /d e ( ) ( )ϕ α⋅R Ry x

Y-axis 2 2= +d a c /a d /c d /b e /d e ( ) ( )ϕ α⋅R Rz y
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 α α= = − = = −b d c dsin( ) / 0.4472, cos( ) / 0.8944 

 ϕ ϕ= = = =d e a esin( ) / 0.7454, cos( ) / 0.6667 

  

0.6667 0.3333 0.6667 0
0 0.8944 0.4472 0

0.7454 0.2981 0.5963 0
0 0 0 1

M R Ry xϕ α( ) ( )= ⋅ =

− −
−

− − −



















 

Original coordinate matrix: C = [2, 1, 2, 1]T

New coordinate matrix = ⋅D M C   = [3, 0, 0, 1]T

New vector is =Q i3

MATLAB Code 7.10

%(a)

clear all; clc; 
P = [2 ; 1 ; 2 ; 1];
a = 2; b = 1; c = 2;
d = sqrt(b^2 + c^2); e = sqrt(a^2 + b^2 + c^2);
sinA = b/d; cosA = c/d;
sinB = d/e; cosB = a/e;
Rx = [1 0 0 0 ; 0 cosA -sinA 0 ; 0 sinA cosA 0 ; 0 0 0 1];
Ry = [cosB 0 sinB 0 ; 0 1 0 0 ; -sinB 0 cosB 0 ; 0 0 0 1];
fprintf('Transformation matrix : \n'); 
M = Ry*Rx
fprintf('New vector : \n'); 
Q = M*P

%(b)

clear all;  
P = [2 ; -1 ; -2 ; 1];
a = 2; b = -1; c = -2;
d = sqrt(b^2 + c^2); e = sqrt(a^2 + b^2 + c^2);
sinA = b/d; cosA = c/d;
sinB = d/e; cosB = a/e;
Rx = [1 0 0 0 ; 0 cosA -sinA 0 ; 0 sinA cosA 0 ; 0 0 0 1];
Ry = [cosB 0 sinB 0 ; 0 1 0 0 ; -sinB 0 cosB 0 ; 0 0 0 1];
fprintf('Transformation matrix : \n'); 
M = Ry*Rx
fprintf('New vector : \n'); 
Q = M*P
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7.9  ROTATION AROUND A VECTOR
The transformation matrix for rotation around a vector = + +P ai bj ck by a specified angle, 
is derived by the following steps:

Step 1: Align the vector along a primary axis (see Section 7.8)

Step 2: Rotate around that primary axis by the specified angle (see Section 7.4)

Step 3: Reverse align vector to its original location

Example 7.11

A point P(1, 2, 3) is to be rotated around vector = + +V 12i 3 j 4k by 90° in CCW 
 direction. Find its new coordinates. Verify the result by aligning the vector with each 
of the three primary axes.

 [12, 3, 4],   [1, 2, 3],  90V P θ= = = ° 

Here, 12,  3,  4,  132 2 2a b c e a b c= = = = + + =

Aligning vector V along X-axis:

 = + =d b c 52 2  

 α α ϕ ϕ= = = = = = = =b
d

c
d

d
e

a
e

sin 3
5

, cos 4
5

, sin 5
13

, cos 12
13

 

 

( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

, ( )

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

,

( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

α α α
α α

ϕ

ϕ ϕ

ϕ ϕ

θ θ θ
θ θ

= −


















=
−





















= −


















R R

R

x y

x  

 α ϕ θ ϕ α= − ⋅ − ⋅ ⋅ ⋅M R R R R Rx y x y x( ) ( ) ( ) ( ) ( ) 

 = ⋅ → −Q M P (2.2071, 1.9290,2.3254) 

Aligning vector V along Y-axis:

 = + =d a c 4 102 2  
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 α α ϕ ϕ= = = = = = = =c
d

a
d

d
e

b
e

sin 1
10

, cos 3
10

, sin 4 10
13

, cos 3
13

 

 

( )

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

, ( )

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

,  

( )

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

α

α α

α α
ϕ

ϕ ϕ
ϕ ϕ

θ

θ θ

θ θ

=
−



















=

−



















=
−



















R R

R

y z

y  

 α ϕ θ ϕ α= − ⋅ − ⋅ ⋅ ⋅M R R R R Ry z y z y( ) ( ) ( ) ( ) ( ) 

 = ⋅ → −Q M P (2.2071, 1.9290,2.3254) 

Aligning vector V along Z-axis:

 + =b c 52 2  

 α α ϕ ϕ= = = = = − = − = =b
d

c
d

a
e

d
e

sin 3
5

, cos 4
5

, sin 12
13

, cos 5
13

 

 

( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

, ( )

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

,

( )

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

α α α
α α

ϕ

ϕ ϕ

ϕ ϕ

θ

θ θ
θ θ

= −


















− =
−





















=

−

















R R

R

x y

z  

 α ϕ θ ϕ α= − ⋅ − ⋅ ⋅ ⋅M R R R R Rx y z y x( ) ( ) ( ) ( ) ( ) 

 = ⋅ → −Q M P (2.2071, 1.9290,2.3254) 
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MATLAB Code 7.11

clear all; clc; format compact;
V = [12 ; 3 ; 4 ; 1];
P = [1 ; 2 ; 3 ; 1];
a = V(1); b = V(2); c = V(3);
e = sqrt(a^2 + b^2 + c^2);
C = pi/2;

fprintf('Aligning vector V along X-axis :\n');

d = sqrt(b^2 + c^2);
sinA = b/d; cosA = c/d;
sinB = d/e; cosB = a/e;
R1 = [1 0 0 0 ; 0 cosA -sinA 0 ; 0 sinA cosA 0 ; 0 0 0 1];
R2 = [cosB 0 sinB 0 ; 0 1 0 0 ; -sinB 0 cosB 0 ; 0 0 0 1];
Rx = [1 0 0 0 ; 0 cos(C) -sin(C) 0 ; 0 sin(C) cos(C) 0 ; 0 0 0 1];
R4 = inv(R2);
R5 = inv(R1);
Mx = R5*R4*Rx*R2*R1;
fprintf('New coordinates : \n');
Qx = Mx*P

fprintf('Aligning vector V along Z-axis :\n');

d = sqrt(b^2 + c^2); 
sinA = b/d; cosA = c/d;
sinB = -a/e; cosB = d/e;
R1 = [1 0 0 0 ; 0 cosA -sinA 0 ; 0 sinA cosA 0 ; 0 0 0 1];
R2 = [cosB 0 sinB 0 ; 0 1 0 0 ; -sinB 0 cosB 0 ; 0 0 0 1];
Rz = [cos(C) -sin(C) 0 0 ; sin(C) cos(C) 0 0 ; 0 0 1 0 ; 0 0 0 1];
R4 = inv(R2);
R5 = inv(R1);
Mz = R5*R4*Rz*R2*R1;
fprintf('New coordinates : \n');
Qz = Mz*P

fprintf('Aligning vector V along Y-axis :\n');

d = sqrt(a^2 + c^2);
sinA = c/d; cosA = a/d;
sinB = d/e; cosB = b/e;
R1 = [cosA 0 sinA 0 ; 0 1 0 0 ; -sinA 0 cosA 0 ; 0 0 0 1];
R2 = [cosB -sinB 0 0 ; sinB cosB 0 0 ; 0 0 1 0 ; 0 0 0 1];
Ry = [cos(C) 0 sin(C) 0 ; 0 1 0 0 ; -sin(C) 0 cos(C) 0 ; 0 0 0 1];
R4 = inv(R2);
R5 = inv(R1);
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My = R5*R4*Ry*R2*R1;
fprintf('New coordinates : \n');
Qy = My*P

7.10  ROTATION AROUND AN ARBITRARY LINE
The rotation matrix about an arbitrary line joining points ,  ,  and ,  ,  ,1 1 1 2 2 2P x y z Q x y z( ) ( )  
in the CCW direction by an angle θ along a plane perpendicular to the line, is derived by 
the following steps:

Step 1: Translate line so that one end coincides with origin (see Section 7.2)

Step 2: Align the resulting vector along a primary axis (see Section 7.8)

Step 3: Rotate around that primary axis by the given amount (see Section 7.4)

Step 4: Reverse align vector to its original location

Step 5: Reverse translate line to original location

Example 7.12

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), (−1, −1, −1) is rotated by 45° CCW around an arbitrary 
line joining points P(2, 1, −2) and Q(3, 3, 2) along a plane perpendicular to the line. 
Find its new vertices.

Here, 2,  1,  2,  3,  3,  21 1 1 2 2 2x y z x y z= = = − = = = , angle of rotation θ = °45
Translate axis of rotation such that P coincides with the origin:
Translation matrix ,  , 1 1 1 1T T x y z( )= − − −
Align the resulting vector along X-axis:
The coordinates of the vector tip: 1,   2,   42 1 2 1 2 1a x x b y y c z z= − = = − = = − =

Then = + = = + + =d b c e a b c4.4721, 4.58262 2 2 2 2

 α α ϕ ϕ= = = = = = = =b
d

c
d

d
e

a
e

sin 0.4472, cos 0.8944, sin 0.9759, cos 0.2182 

α α α
α α

ϕ

ϕ ϕ

ϕ ϕ
= = −



















= =
−





















R R R Rx y( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

, ( )

cos 0 sin 0
0 1 0 0

sin 0 cos 0
0 0 0 1

1 2  

Rotate about the origin around X-axis by angle θ: θ θ θ
θ θ

= −


















Rx ( )

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1
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Reverse align vector to its original location: ϕ α= − = −R R R Ry x( ), ( )4 5

Reverse translate line to original location: ( )=T T x y z, ,2 1 1 1

Composite transformation matrix: θ= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅M T R R R R R Tx ( )2 5 4 2 1 1

Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

New coordinate matrix: = ⋅D M C  
New vertices: (0.93, −1.06, 1.55), (2.37, 0.23, 1.04), (3.55, −1.30, 0.51), (2.11, −2.59, 

1.02), (0.20, −0.98, −0.31), (1.64, 0.31, −0.82), (2.82, −1.21, −1.35), and (1.38, −2.50, 
−0.84) (Figure 7.15)

-2
-1

3
0 2

11

x y

0
2

-1
3 -2

0z
2

original
new
axis

FIGURE 7.15 Plot for Example 7.12.
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7.11  REFLECTION
Reflection about a primary plane reverses the coordinate value along an axis perpendicu-
lar to the plane (Hearn and Baker, 1996). Reflection along X-axis is equivalent to reflec-
tion about YZ-plane and reverses the x-coordinate of a point. The corresponding matrix 
is given by:

 =

−

















Fx

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7.9)

Reflection along Y-axis is equivalent to reflection about XZ-plane and reverse the 
y- coordinate of a point. The corresponding matrix is given by:

 = −


















Fy

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7.10)

Reflection along Z-axis is equivalent to reflection about XY-plane and reverse the 
z- coordinate of a point. The corresponding matrix is given by:

 =
−



















Fz

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7.11)

If the plane of reflection is not a primary plane then it is first made to coincide with one of 
the primary planes and then the above formulas are applied.

Example 7.13

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), (−1, −1, −1) is to be reflected about a plane =z    3 
parallel to the X–Y plane along the Z-axis. Find its new vertices.

Translate plane so as to coincide with XY-plane:   (0, 0,  3)1T T= −
Reflect about XY-plane i.e. along Z-axis: Fz

Reverse translate plane to original location:   (0, 0, 3)2T T=
Composite transformation: = ⋅ ⋅M T F Tz2 1
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Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

New coordinate matrix: = ⋅D M C 
New coordinates: (−1, 1, 5), (1, 1, 5), (1, −1, 5), (−1, −1, 5), (−1, 1, 7), (1, 1, 7), (1, −1, 7), 

and (−1, −1, 7) (Figure 7.16).

-1
1

0

1

y

1

x

0 0

2

-1 -1

3z

4

5

6

7
original
new

FIGURE 7.16 Plot for Example 7.13.
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7.12  SHEAR
Involves changing coordinate values along one axis by adding an amount proportional to 
coordinate values along another axis (Hearn and Baker, 1996). Shear along each axis can 
be of two types:

Shear along X-axis can be parallel to Y = 0 plane (front and back faces) governed by the 
relation = + ⋅x x h y2 1 , where h is the constant of proportionality. The corresponding trans-
formation matrix is:

 =



















H

h

xy

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7.12)

Shear along X-axis can also be parallel to Z = 0 plane (top and bottom faces) governed by 
the relation = + ⋅x x h z2 1 . The corresponding transformation matrix is:

 =



















H

h

xz

1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7.13)

Figure 7.17 illustrates the two types of shear along X-axis. These types are, however, not 
mutually exclusive, both can occur simultaneously. The transformation matrix in that case 
becomes:

 =



















H

h h

x

1 0
0 1 0 0
0 0 1 0
0 0 0 1

1 2

 (7.14)

FIGURE 7.17 Shear along X-axis parallel to (a) front and back faces and (b) top and bottom faces.
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In a likewise manner, shear along Y-axis can be along X = 0 plane and Z = 0 plane. 
The  general transformation matrix is of the form:

 =



















H h h
y

1 0 0 0
1 0

0 0 1 0
0 0 0 1

1 2  (7.15)

Shear along Z-axis can be along X = 0 plane and Y = 0 plane. The general transformation 
matrix is of the form:

 =



















H
h hz

1 0 0 0
0 1 0 0

1 0
0 0 0 1
1 2

 (7.16)

Example 7.14

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), (−1, 
1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is subjected to a shear along the Z-axis 
with parameters (1.2, 2.3). Find its new vertices.

From Equation (7.16), =



















Hz

1 0 0 0
0 1 0 0

1.2 2.3 1 0
0 0 0 1

Original coordinate matrix: =

− − − −
− − − −

− − − −



















C

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

New coordinate matrix: = ⋅D H Cz

New vertices: (−1.00, 1.00, 2.10), (1.00, 1.00, 4.50), (1.00, −1.00, −0.10), (−1.00, −1.00, 
−2.50), (−1.00, 1.00, 0.10), (1.00, 1.00, 2.50), (1.00, −1.00, −2.10), and (−1.00, −1.00, 
−4.50) (Figure 7.18)
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7.13  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Coordinates in 3D space are measured using the right-handed coordinate system.

• Angles are considered positive along the CCW direction and negative along the CW 
direction.

• The X-, Y-, and Z-axes are the primary axes mutually at right-angles meeting at the 
origin.

• The X–Y, Y–Z, and Z–X planes divide the 3D space into eight octants.

• Translation operation adds positive or negative increments to the coordinates of a 
point.

• Scaling operation multiples coordinates of a point by positive or negative scaling 
factors.

• Rotation operation moves a point along an arc about any of the three primary axes.

• Scaling and rotation by default are calculated with respect to the origin.

• Scaling and rotation operations with respect to an arbitrary point involves translating 
the point to the origin, performing the specified operation, and reverse  translation to 
its original location.

• Rotations parallel to a primary axis are associated with a forward and reverse 
 translation to and from a primary axis.

• To align a vector to a primary axis, requires in general two rotation operations.
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FIGURE 7.18 Plot for Example 7.14.
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• Rotation around a vector involves aligning the vector to a primary axis, rotating 
about that axis and reverse aligning the vector to its original location.

• Rotation around an arbitrary line involve translating it to the origin, aligning it to a 
primary axis, rotating about that axis, reverse aligning, and reverse translating to its 
original location.

• Reflection about a primary plane reverses the coordinate value along an axis perpen-
dicular to the plane.

• Shear involves changing coordinate values along one axis by adding an amount 
 proportional to coordinate values along other axes.

7.14  REVIEW QUESTIONS
 1. What is meant by the right-handed coordinate system for 3D space?

 2. Why are there three different rotation matrices for 3D space?

 3. What are meant by positive and negative translation factors?

 4. What are meant by positive and negative scaling factors?

 5. What is considered as a positive direction of rotation around any of the primary axes?

 6. How are scaling and rotations with respect to an arbitrary point calculated?

 7. How is the rotation matrix parallel to a primary axis computed?

 8. How is a vector aligned to a primary axis?

 9. How is reflection parallel to a primary plane calculated?

 10. Why does shear operation along a primary axis involve two different options?

7.15  PRACTICE PROBLEMS
 1. A point with coordinates (2, 2, 2) is to be rotated by 45° about the Y-axis and then by 

60° about the Z-axis. Find its new coordinates. Check if the final position of the point 
is same or different if it is first rotated by 60° about the Z-axis and then by 45° about 
the Y-axis.

 2. Find the new coordinates of a point ( ,  ,  )P k k k−  when rotated clockwise about the 
origin on the X–Z plane by 30°, where k is a constant.

 3. A line is parallel to the Y-axis and joins point ( ,  ,  )P k k k−  and ( , 0,  )Q k k , where k is 
a constant. Derive the transformation matrix for rotation by angle θ  about the line. 
Assume sin(θ) = 0.76 and cos(θ) = 0.65.

 4. A point P(1, 2, 3) is to be rotated by 77° CW about a line joining points M (2, 1, 0) and 
N (3, 3, 1). Calculate the new coordinates of the point.
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 5. Find transformation matrix of reflection with respect to the plane passing through 
the origin and having normal vector = + +N i j k.

 6. Find transformation matrix of reflection with respect to the plane: + =x y z2 – 2 – 2 0.

 7. Consider a cube with a vertex at the origin and length of side 1. It is first subjected to 
a shear = +x x ay2 1 1 and then to another shear = +y y bx2 1 1, where =a 2 and =b 3. Find 
the final coordinates of the vertices of the cube.

 8. Find the transformations that align the following vectors with the positive Z-axis: 
(a) + +i j k2 2 , (b) − +i j k2 2 , and (c) − −i j k2 2 .

 9. Obtain a transformation that aligns the vector k with the vector + +i j k.

 10. Show that new coordinates of a point ( ,  2 ,  3 )P k k k− √  when rotated about Y-axis by 
30° and then about Z-axis by −30° is given by the following, where k is a constant: 

− √Q k k k( /2,  3 3 /2,  ).



http://www.taylorandfrancis.com
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C h a p t e r  8

Surfaces

8.1  INTRODUCTION
Surfaces define the shape and contour of the 3D graphical objects and models. The most 
basic type of surface is a flat surfaces commonly represented by a plane. Planes have been 
discussed in Chapter 6. In this chapter, we will focus on curved surfaces. Curved surfaces 
are usually modeled using two splines u and v in orthogonal directions. Depending on the 
types of splines used surfaces may be named accordingly e.g. Bezier surfaces or B-spline 
surfaces. Spline-based surfaces often have a grid of control points associated with them 
using which the shape of the surface may be modified (Foley et al., 1995). Figure 8.1 shows 
a surface composed of a quadratic curve along u and a cubic curve along v. Apart from the 
surface structure, this chapter also takes a look at surface appearances. Surface appear-
ances are determined by texture and lighting. Texture mapping provides a realistic look 
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FIGURE 8.1 Spline-based surface.
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to a surface and is extensively used in 3D graphical models e.g. wooden table or metal 
plate. Lighting determine the brightness and shading aspects of a surface. Surfaces can be 
categorized into two broad types based on their mathematical representation: implicit and 
parametric. Implicit surfaces have equations of the form ( ,  ,  ) 0f x y z =  while parametric 
surfaces are represented using parametric variables viz. { ( ,  ), ( ,  ),   ( ,  )}x u v y u v z u v . Surfaces 
can also be categorized based on methods of generation e.g. extrusion and revolution.

8.2  PARAMETRIC SURFACES
Recall from Chapter 1 that a 2D curve in parametric form is represented as ( ) { ( ), ( )}C t x t y t= , 
where t is the parametric variable defined over a specified interval. This essentially implies 
that as t takes on different values over this range, functions ( )x t  and ( )y t  generate values 
along the X- and Y-axes of a 2D graph, both of which together determine the locus of the 
curve ( )C t . For example, ( ) { cos ,  sin }C t r t r t= ⋅ ⋅  represents a circle of radius r on a 2D plane 
as t varies from 0 to 2π. A parametric surface is an extension of this concept to 3D. Instead 
of a single variable t now we have two parametric variables , u v and instead of two func-
tions ( ),  ( )x t y t , we have three functions ( ,  ), ( ,  ), and ( ,  )x u v y u v z u v , which together gener-
ate a surface ( ,  )S u v  in 3D space. In some books, the parametric variables are referred to as 
s and t instead of u and v.

 ( ,  ) { ( ,  ),  ( ,  ),  ( ,  )}S u v x u v y u v z u v=  (8.1)

Any point on the surface is therefore decided by three values along three orthogonal axes. 
If the functions are of degree 1 then the resulting surface is flat; otherwise, they are curves. 
To visualize a parametric surface consider the functions: , , ( )x u v y u v z abs u v= + = − = + . 
A 2D plot of the X–Y plane is shown in Figure 8.2a for the range 2 ,    2u v− ≤ ≤ , which depicts 
a plane surface in the shape of a quadrilateral. For each point on the plane surface, if the 
third value is plotted along the Z-axis then the resulting 3D plot is shown in Figure 8.2b. 
It depicts two planes intersecting on the X–Y plane.

If the functions are of degree more than 1 then the resulting surface will in gen-
eral be curves. Figure 8.3 shows the surface generated from the parametric functions: 

, 2 ,2 2x u y uv z v= = = .

Example 8.1

A parametric surface     ,      ,     == −− ++ −−( )2 2S u v u v u u  is translated using (     )3, 5, 4T  and 
then rotated about the Z-axis by 90°. Find the parametric representation of the 
resulting surface.

Translation: (3, 5, 4)1T T=
Rotation: (90)1R Rz=

Composite transformation: 

0 1 0 5
1 0 0 3
0 0 1 4
0 0 0 1

1 1M R T= ⋅ =

− −
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Original curve: 
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Required curve equation: S(u, v) = (u – v − 5, u – v + 3, u2 − v2 + 4) (Figure 8.4)
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8.3  BEZIER SURFACES
A Bezier surface is created from Bezier splines and is essentially a parametric surface 
(Hearn and Baker, 1996). However, Bezier surfaces are most often defined based on their 
associated control points. A Bezier curve using a degree 1 polynomial can be represented 

as: ( ) (1 ) [ 1 , ]0 1
0

1
f t t P t P t t

P
P

= − ⋅ + ⋅ = −











.

A bi-linear Bezier surface is generated using two first degree Bezier splines along 
orthogonal directions and has the equation shown, below where 00P  and 01P  are the control 
points of the first spline and 10P  and 11P  are the control points of the second spline.

 ( ,  ) [ 1 , ] 100 01

10 11
S u v u u

P P
P P

v
v

= −












−







 (8.2)

Example 8.2

Find the equation of a bi-linear Bezier surface using the following control points: 
==00P  (0, 0, 1), ==01P  (1, 1, 1), ==10P  (1, 0, 0), ==11P  (0, 1, 0)

From Equation (8.2),

 ( ,  ) [ 1 , ] 0 1
1 0

1 2x u v u u v
v

u v uv= −










−







 = + −  

 ( ,  ) [ 1 , ] 0 1
0 1

1y u v u u v
v

v= −










−







 =  

 ( ,  ) [ 1 , ] 1 1
0 0

1 1z u v u u v
v

u= −










−







 = −  

Required surface equation: ( ,  ) ( 2 ,  , 1 )S u v u v uv v u= + − −  (Figure 8.5)
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FIGURE 8.5 Plot for Example 8.2.
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A degree 2 Bezier curve is given by the equation: − −





















(1 ) , 2 (1 ), .2 2
0

1

2

t t t t
P
P
P

 

A bi-quadratic Bezier surface is, therefore, given by the following where a grid of 3 by 3 or 
9 control points need to be specified.

 ( ,  ) (1 ) , 2 (1 ),
(1 )

2 (1 )2 2
00 01 02

10 11 12

20 21 22

2

2

S u v u u u u
P P P
P P P
P P P

v
v v

v
= − −





















−
−



















 (8.3)

Similarly, a cubic Bezier surface is associated with a grid of 4 by 4 or 16 control points.

Example 8.3

A bi-quadratic Bezier surface has the following control points: P00 = (1, −1, 0); 
P01 = (4, 3, 0); P02 = (5, −2, 0); P10 = (1, 1, 3); P11 = (3, 2, 3); P12 = (5, 1, 3); P20 = (1, −1, 5); 
P21 = (4, 3, 5); P22 = (5, −2, 5). Find its equation.

From Equation (8.3),
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2 (1 ) ( 6)2 2
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v v
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= − −  

The required surface equation is ( ,  ) { ( ,  ), ( ,  ), ( ,  )}S u v x u v y u v z u v=  (Figure 8.6).
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8.4  IMPLICIT SURFACES
Apart from parametric surfaces, the other type of surfaces most frequently encountered 
in graphics is called implicit surfaces and their equations are of the form ( ,  ,  ) 0f x y z = . 
The second-degree implicit equations are also called quadric surfaces (Hearn and Baker, 
1996), (Rovenski, 2010) and have a general form shown below, where A to J are constants 
(Figures 8.7–8.11):

 02 2 2Ax By Cz Dxy Eyz Fzx Gx Hy Iz J+ + + + + + + + + =  (8.4)

Some commonly used quadric surfaces are listed below:

 Ellipsoid: 2 2 2ax by cz k+ + =  (8.5)

 Elliptic cone: 02 2 2ax by cz+ − =  (8.6)

 Hyperboloid (1 sheet): 2 2 2ax by cz k+ − =  (8.7)

 Hyperboloid (2 sheets): 2 2 2ax by cz k+ − = −  (8.8)

 Elliptic paraboloid: 02 2ax by z+ − =  (8.9)

 Hyperbolic paraboloid: 02 2ax by z− − =  (8.10)
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FIGURE 8.6 Plot for Example 8.3.
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FIGURE 8.7 Quadric surfaces: ellipsoid and elliptic cone.
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FIGURE 8.8 Quadric surfaces: hyperboloid (1 sheet) and hyperboloid (2 sheets).
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FIGURE 8.9 Quadric surfaces: elliptic paraboloid and hyperbolic paraboloid.
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FIGURE 8.11 Quadric surfaces: parabolic cylinder and parabolic cone.
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 Elliptic cylinder: 2 2ax by k+ =  (8.11)

 Hyperbolic cylinder: 2 2ax by k− =  (8.12)

 Parabolic cylinder: 2ax by k+ =  (8.13)

 Parabolic cone: 02ax by z− + =  (8.14)

Example 8.4

Find the point(s) of intersection between the hyperboloid 2x 3y z 162 2 2+ − =  and the 
line (t 4, t – 5,  t    10)− +

For any point on the line: 4, –5, 10x t y t z t= − = = +
At point of intersection this also should satisfy the equation of the surface
Substituting: 2( 4) 3( –5) ( 10) 162 2 2t t t− + − + =
Simplifying: 4 –66 9 02t t − =  whose solutions are 0.1353, 16.6353t = −
Substituting, points of intersection are (−4.135255, −5.135255, 9.864745) and 

(12.635255, 11.635255, 26.635255)
Verification (Figure 8.12):

 2( 4.135255) 3( 5.135255) (9.864745) 162 2 2− + − − =  

 2(12.635255) 3(11.635255) (26.635255) 162 2 2+ − =  

40

20

0

y

-20-50
-60

-40 -40

x

-20
0

20 -6040

0z

50

FIGURE 8.12 Plot for Example 8.4.
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8.5  EXTRUDED SURFACES
Extruded surfaces are created when a 2D plane curve is moved along a straight line 
in a direction perpendicular to the plane (O’Rourke., 2003). If the generating curve is 
 represented as ( ) { ( ), ( )}C u x u y u=  then the resulting surface is expressed in parametric 
form:

 ( ,  ) { ( ), ( ), }S u v x u y u v=  (8.15)

Here, 0 1, 0u v h≤ ≤ ≤ ≤ , where u is along the plane containing the curve and v is 
 perpendicular to the plane, and h is the maximum distance by which the curve is 
moved.

Example 8.5

Find the extruded surface produced from the generating curves: (a) =x sin(u), 
=y cos(u) and (b) x sin(2u), y sin(u)= =  

 (a)   {sin( ), cos( )}C u u=
( ,  ) {sin( ), cos( ), }S u v u u v=

 (b) {sin(2 ), sin( )}C u u=
( ,  ) {sin(2 ), sin( ), }S u v u u v=

(Figure 8.13)

FIGURE 8.13 Plot for Example 8.5.
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MATLAB Code 8.5

clear all; clc;
syms u v;
 
x1 = sin(u); y1 = cos(u); z1 = v;
C1 = [x1, y1]
S1 = [x1, y1, z1]
x2 = sin(2*u); y2 = sin(u); z2 = v;
C2 = [x2, y2]
S2 = [x2, y2, z2]
 
subplot(221), ezplot(C1(1), C1(2));
subplot(222), ezmesh(S1(1), S1(2), S1(3));
subplot(223), ezplot(C2(1), C2(2));
subplot(224), ezmesh(S2(1), S2(2), S2(3));

8.6  SURFACES OF REVOLUTION
Surfaces of revolution are created when a 2D plane curve is rotated about an axis (O’Rourke., 
2003), (Rovenski, 2010). If the generating curve is represented as ( ) { ( ), ( )}C u x u y u= , 
then the resulting surface is expressed in parametric form as:

 ( ,  ) { ( ) cos , ( ) sin , ( )}S u v x u v x u v y u= ⋅ ⋅  (8.16)

Here, 0 1,  0 2  u v≤ ≤ ≤ ≤ π . If 2v = π, the surface is closed, if 2v < π  the surface is open. 
Note that in 3D space the 2D curve is generated on the X–Z plane and rotates on a circle on 
the X–Y plane. If the curve is required to be drawn on the X–Y plane and rotate on the X–Z 
plane then Equation (8.16) should be re-written as below:

 ( ,  ) { ( ) cos , ( ), ( ) sin }S u v x u v y u x u v= ⋅ ⋅  (8.17)

Example 8.6

Show that the revolution of a straight line can be used to produce a cylinder and 
cone, and the revolution of a circle can be used to produce a sphere and torus. Find 
the equations of resulting surfaces. Also generate a surface from a rotating sinusoid.

Cylinder:
Curve: 2,  ,  ( ) { ( ),  ( )}x y u C u x u y u= = =
Surface: ( ,  ) {2 cos( ), 2 sin( ),  }S u v v v u= ⋅ ⋅

Cone:
Curve: ,  ,  ( ) { ( ),  ( )}x u y u C u x u y u= = =
Surface: ( ,  ) { cos( ),  sin( ),  }S u v u v u v u= ⋅ ⋅
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Sphere:
Curve: cos( ),  sin( ),  ( ) { ( ),  ( )}x u y u C u x u y u= = =
Surface: ( ,  ) {cos( ) cos( ), cos( ) sin( ), sin( )}S u v u v u v u= × ⋅

Torus:
Curve: 2 cos( ), 2 sin( ),   ( ) { ( ), ( )}x u y u C u x u y u= + = + =
Surface: ( ,  ) {(2 cos( )) cos( ), (2 cos( )) sin( ), (2 sin( ))}S u v u v u v u= + ⋅ + ⋅ +

Sinusoid 
Curve: 2 sin( ),  ,  ( ) { ( ),  ( )}x u y u C u x u y u= + = =
Surface: ( ,  ) {(2 sin( )) cos( ), (2 sin( )) sin( ),  }S u v u v u v u= + ⋅ + ⋅
Curve: 2 cos( ),  ,  ( ) { ( ),  ( )}x u y u C u x u y u= + = =
Surface: ( ,  ) {(2 cos( )) cos( ), (2 cos( )) sin( ),  }S u v u v u v u= + ⋅ + ⋅
(Figures 8.14–8.16)

FIGURE 8.14 Plots for Example 8.6: (a) cylinder; (b) cone.
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MATLAB Code 8.6

clear all; clc;
syms u v;
 
% cylinder
x = 2; y = u;
C = [x, y];
S = [x*cos(v), x*sin(v), y];
figure,
subplot(121), ezplot(C(1), C(2)); axis square;
subplot(122), ezmesh(S(1), S(2), S(3)); axis equal;
colormap(jet);
 
% cone
x = u; y = u;
C = [x, y];
S = [x*cos(v), x*sin(v), y];
figure,
subplot(121), ezplot(C(1), C(2)); axis square;

FIGURE 8.15 Plots for Example 8.6: (a) sphere; (b) torus
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subplot(122), ezmesh(S(1), S(2), S(3)); axis equal;
colormap(jet);
 
% sphere
x = cos(u); y = sin(u);
C = [x, y];
S = [x*cos(v), x*sin(v), y];
figure,
subplot(121), ezplot(C(1), C(2)); axis square;

FIGURE 8.16 Plots for Example 8.6: (a) sine; (b) cosine.
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subplot(122), ezmesh(S(1), S(2), S(3)); axis equal;
colormap(jet);
 
% torus
x = 2 + cos(u); y = 2 + sin(u);
C = [x, y];
S = [x*cos(v), x*sin(v), y];
figure,
subplot(121), ezplot(C(1), C(2)); axis ([0 4 0 4]); axis square;
subplot(122), ezmesh(S(1), S(2), S(3)); axis equal;
colormap(jet);
 
% sinusoid
x = 2 + sin(u); y = u;
C = [x, y];
S = [x*cos(v), x*sin(v), y];
figure,
subplot(121), ezplot(C(1), C(2)); axis square;
subplot(122), ezmesh(S(1), S(2), S(3)); axis equal;
colormap(jet);
 
x = 2 + cos(u); y = u;
C = [x, y];
S = [x*cos(v), x*sin(v), y];
figure,
subplot(121), ezplot(C(1), C(2)); axis square;
subplot(122), ezmesh(S(1), S(2), S(3)); axis equal;
colormap(jet);

8.7  NORMAL VECTOR AND TANGENT PLANE
This section takes a look at how the normal vector and the tangent plane can be calculated 
for a given surface, both for implicit equations and parametric equations.

For an implicit equation of the form ( ,  ,  ) 0f x y z = , the normal to the surface at point 
( ,  ,  )p a b c  is given by the vector obtained by partial derivatives of the function f  since these 

are proportional to the coefficients of the Cartesian equation of a plane perpendicular to 
the normal. See Chapter 6 to see why this so.

 ( ,  ,  ) ,  , N x y z f
x

f
y

f
z

= ∂
∂

∂
∂

∂
∂







 (8.18)

The normal to this point p is, therefore, given by:

 ( ,  ,  ) ,  ,  ,  , 
( , , )

N N a b c f
x

f
y

f
z

f
x

f
y

f
zp

a b c

p p p= = ∂
∂

∂
∂

∂
∂







=
∂
∂

∂
∂

∂
∂







 (8.19)
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If this plane needs to be the tangent plane then the plane should also pass through the point 
p on the surface. The equation of the tangent plane through p can therefore be  written 
as (Rovenski, 2010):

  : ( ) ( ) ( ) 0T
f
x

x a
f
y

y b
f
z

z cp
p p p∂

∂
⋅ − +

∂
∂

⋅ − +
∂
∂

⋅ − =  (8.20)

Example 8.7

Find the normal vector and tangent plane to the surface f x 3xy z 03 2= + − =  at 
point p(1, 2, 13).

Here, 33 2f x xy z= + −
From Equation (8.18), normal N is given by

 ( ,  ,  ) ,  ,  3 3 , 6 ,  12 2N x y z f
x

f
y

f
z

x y xy( )= ∂
∂

∂
∂

∂
∂







= + −  

At point (1, 2, 13)p , normal vector (15, 12,  1)N p = − .
Equation of the tangent plane at point p: = − + − − − =15( 1) 12( 2) 1( 13) 0N x y zp , 

which on simplification becomes + − =15 12 26x y z . (Figure 8.17)

NOTE

The z- coefficient for the vector N p is negative, which means that the vector is  pointing 
toward the negative Z-direction. Sometimes, if we are asked to calculate the upward  pointing 
 normal  then we should simply choose the opposite facing vector toward the positive 
Z-direction i.e. ( 15,  12, 1)− −  

FIGURE 8.17 Plot for Example 8.7.
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If the surface equation is in parametric form { ( ,  ),  ( ,  ),  ( ,  )}S x u v y u v z u v= , to compute 
the normal we first need to find out the component curves of the surface i.e. the curves 
along u and v, which has resulted in the surface being generated. The component curves are 
 computed using partial derivatives of the surface (Rovenski, 2010).

 
( ,  )

( ,  )

r u v S
u

r u v S
v

u

v

= ∂
∂

= ∂
∂

 (8.21)

Since the component curves lie on the surface, the normal is obtained as a cross product 
of these.

 ( ,  )    ( ,  )N r u v r u vu v= ×  (8.22)

To compute the normal vector at a given point , 0 0p u v( )=  the corresponding Cartesian 
coordinates are obtained from ,  , 0 0 0S x y zp { }= . The component curves at the given point 
are , 0 0r u vu ( ) and , 0 0r u vv ( ) and the normal vector at the given point is

 ,  ,  ( ,  ,  )0 0 0 0N r u v r u v a b cp u v( ) ( )= × =  (8.23)

The equation of the tangent plane at the point is

 :   00 0 0T a x x b y y c z zp ( )( ) ( )− + − + − =  (8.24)

Example 8.8

Find the normal vector and tangent plane to the surface S u sinv , u , 2u cos v2{ }= ⋅ ⋅  
at point (u 1, v )= = π .

Given surface: sin ,  , 2 cos2S u v u u v{ }= ⋅ ⋅
At 1,u v= = π we get by substitution, point p on the surface ,  ,  {0, 1,  2}0 0 0S x y zp { }= = −
The component curves at p: (1,  ) (0, 2,  2)ru π = −  and (1,  ) ( 1, 0, 0)rv π = −
From Equation (8.22), normal vector at point p: (1,  ) (1,  ) (0, 2, 2)N r rp u v= π × π =  

i.e. 2 2j k+
From Equation (8.24), tangent plane at p: :  2( 1) 2( 2) 0T y zp − + + =  i.e. 1y z+ = −  

(Figure 8.18)
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8.8  AREA AND VOLUME OF SURFACE OF REVOLUTION
This section discusses how to calculate the surface area and volume of the solid generated 
when a 2D curve is rotated about the X- or Y-axes perpendicular to the plane (Mathews, 
2004). Consider a continuous function ( )y f x=  in the interval [ ,  ]x a b∈  that needs to be 
rotated about the X-axis to generate a surface of revolution (see Figure 8.19). It is required 
to calculate the surface area and the volume of the surface.

FIGURE 8.18 Plot for Example 8.8.

FIGURE 8.19 Curve and its surface of revolution.
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The area of the surface generated is given by:

 2 1
2

A y dy
dx

dx
a

b

∫= π ⋅ + 



  (8.25)

The above formula is derived by dividing the function into very thin slices each of arc 

length 1
2dy

dx
+ 



  and rotating each along a circle of circumference 2 yπ  (See Section 5.4). 

The area of the whole surface is then obtained by integrating the individual areas within 
the specified limits.

The volume of the solid is derived by dividing the solid into very thin discs each of area 
2yπ  since the radius of each disc is simply the value of the function y measured from the 

X-axis. The total volume is obtained by integrating the areas of all discs over the specified 
limits and is given by:

  2V y dx
a

b

∫= π  (8.26)

If the region is bounded by two curves 1y  and 2y  then the volume of the bounded region is 

given by: 2
1

2
2V y y dx

a

b

∫ ( )= π −

Example 8.9

Find the area and volume of the surface generated when part of the curve 
y 9 x2= −  between x = −2 and x = 2 is rotated about the X-axis.

Given curve: 9 2y x= −

Differentiating: 9 2dy
dx

x x= − −

Thus: 1 3
9

2

2

dy
dx x

+ 



 =

−

From Equation (8.25), surface area: 2 9 3
9

242
22

2

A x
x∫= π − ⋅

−
= π

−

From Equation (8.26), volume: 9 92
3

2

2

2

V x dx∫ ( )= π − = π
−

 (Figure 8.20)

MATLAB Code 8.9

clear all; clc;
syms x y u v;
y = sqrt(9 - x^2);
dy = diff(y, x);
a = sqrt(1 + dy^2);
fprintf('Area : \n');
A = int(2*pi*y*a, x, -2, 2)
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B = pi*y^2;
fprintf('Volume : \n');
V = int(B, x, -2, 2)
 
%plotting
C = [x, y];
figure,
subplot(121), ezplot(C(1), C(2), [-2 2]); axis square;
subplot(122), ezmesh(C(1), C(2)*cos(v), C(2)*sin(v), [-5 5 -10 10]);
axis square;
view(-30, 23);

If the given curve is represented as ( )x f y=  in the interval [ ,  ]y c d∈  that needs to be rotated 
about the Y-axis to generate a surface of revolution, the area is derived by multiplying thin 

slices of arc length 1
2

dx
dy

+






 by the circumference of 2 xπ  and then integrating over the 
specified limits.

   2 1
2

A x dx
dy

dy
c

d

∫= π ⋅ +






 (8.27)

The volume of the solid is derived by dividing the solid into very thin discs each of area 
2xπ  since the radius of each disc is simply the value of the function x  measured from the 

Y-axis. The total volume is obtained by integrating the areas of all discs over the specified 
limits and is given by:

 2V x dy
c

d

∫= π  (8.28)

If the region is bounded by two curves 1x  and 2x  then the volume of the bounded region is 

given by: 2
1

2
2V x x dy

c

d

∫ ( )= π −
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FIGURE 8.20 Plot for Example 8.9.
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Example 8.10

Find the area and volume of the surface generated when part of the curve y x3=  
between y 1=  and y 2=  is rotated about the Y-axis.

Given curve: 3x y=

Differentiating: 3 2dx
dy

y=

Thus: 1 1 9
2

4dx
dy

y+






= +

From Equation (8.26), surface area:   2 1 9  3 4

1

2

A y y∫= π ⋅ +

Let 1 9 4u y= +  so that when 1y =  then 10u =  and when 2y =  then 145u =

Also 36 3du
dy

y=

From Equation (8.27), surface area: ∫= π ⋅ +2 1 93 4

1

2

A y y

∫= π⋅ ⋅ =2
36

199.48
10

145

dy u du

From Equation (8.28), volume: 127
7

56.996

1

2

V y dy∫= π = π =

MATLAB Code 8.10

clear all; clc;
syms y;
x = y^3;
d = diff(x);
e = sqrt(1 + d^2);
f = 2*pi*x*e;
fprintf('Area : \n');
A = int(f, 1, 2); A = eval(A)
fprintf('Volume : \n');
V = int(pi*x^2, 1, 2); V = eval(V)

8.9  TEXTURE MAPPING
Texture mapping is a process of applying an image, referred to as the texture, onto a 
 surface,  usually for the purpose of making the surface more realistic in appearance 
(Shirley, 2002) (see Figure 8.21).

The texture being an image is a rectangular 2D matrix of pixel values, usually 
 represented using ( ,  )u v  coordinate values while the surface, generally in 3D space, can be 
of any  arbitrary shape and is represented using ( ,  ,  )x y z  coordinate values. To determine 
which part of the image is applied to which part of the surface a mapping between the ( ,  )u v  
and the ( ,  ,  )x y z  values is necessary to maintain homogeneous integrity (O’Rourke., 2003).
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We will study the mapping process and derive the mathematical transformations 
required for a 2D surface. The concepts could readily be extended for a 3D surface by the 
reader. There are broadly two types of mapping transformations: affine and perspective. 
An affine transformation can be generated when the mapping of the texture on the surface 
keeps parallel lines intact. Consider a texture described by normalized ( ,  )u v  coordinates in 
the range [0, 1] and the surface described by ( ,  )x y  coordinates (see Figure 8.22).

The corners of the rectangular texture image have ( ,  )u v  coordinates of (0, 0), (1,  0), 
(1, 1), (0, 1) and these points are mapped to the surface having ( ,  )x y  coordinates of 

,  ,  ,  ,  ,  ,  , 0 0 1 1 2 2 3 3x y x y x y x y( ) ( ) ( ) ( ). It is required to derive a mapping transformation for 
the operation. Let the shape of the surface has the following constraints: 1 0 2 3x x x x( ) ( )− = −  

-10
2

-5

0

1 2

5

1

v

10

0

u

15

(a)

(b)

0
-1 -1

-2 -2

FIGURE 8.21 Surface (a) before and (b) after applying texture map.
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and 1 0 2 3y y y y( ) ( )− = − . This implies that the surface has the shape of a parallelogram and 
hence the mapping transformation will be affine in nature. An affine transformation is 
given by the following:

 
1

 
0 0 1 1

x
y

a b c
d e f

u
v

















=































 (8.29)

From Equation (8.29) we have:

 
x au bv c

y du ev f

= + +

= + +
 (8.30)

Plugging in the given boundary conditions (BC), we can solve for the unknown coeffi-
cients  ,  ,  ,  ,  , a b c d e f  as follows:

BC-1: 0, 0u v= =  is mapped to ,0 0x x y y= = , which implies 0c x=  and 0f y=

BC-2: 1, 0u v= =  is mapped to ,1 1x x y y= = , which implies 1 0a x x= −  and 1 0d y y= −

BC-3: 0, 1u v= =  is mapped to ,3 3x x y y= = , which implies 3 0b x x= −  and 3 0e y y= −

Substituting the coefficient values in Equation (8.29):

 
1 0 0 1 1

1 0 3 0 0

1 0 3 0 0

x
y

x x x x x
y y y y y

u
v

















=
− −
− −
































 (8.31)

(0, 1)

(0, 0) (1, 0)

(1, 1)

u

v

0 5 10 15
x

0

5

10

15

y

(x0, y0)

(x1, y1)

(x2, y2)
(x3, y3)

FIGURE 8.22 Texture with affine mapping.
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Example 8.11

Derive a transformation for mapping a texture with (u, v ) coordinates 
(0, 0), (1, 0), (1, 1), (0, 1) to a surface with ( x ,  y ) coordinates of 
(5, 5), (10, 7 ), (12, 12), (7 , 10). Also for the texture point (u 0.6 , v 0.7 )= = , find the 
corresponding point on the surface.

Surface coordinates: ,  (5, 5)0 0x y( ) = , ,  (10, 7)1 1x y( ) = , ,  (12, 12)2 2x y( ) = , 
,  (7, 10)3 3x y( ) =
Now 51 0x x( )− = , 52 3x x( )− = , 21 0y y( )− = , 22 3y y( )− =
Since 1 0 2 3x x x x( ) ( )− = −  and 1 0 2 3y y y y( ) ( )− = −  the mapping transformation is 

affine in nature.

From Equation (8.31), transformation matrix =
− −
− −















0 0 1

1 0 3 0 0

1 0 3 0 0M
x x x x x
y y y y y  

=
















5 2 5
2 5 5
0 0 1

From Equation (8.30),

 5 2 5x u v= + +  

 2 5 5y u v= + +  

For ( 0.6, 0.7)u v= = ,

 5(0.6) 2(0.7) 5 9.4x = + + =  

 2(0.6) 5(0.7) 5 9.7y = + + =  

Verification:

(0, 0) 5,  (0, 0) 5, (0, 1) 7,  (0, 1) 10,  (1, 0) 10,  (1, 0) 7,  (1, 1) 12,  (1, 1) 12x y x y x y x y= = = = = = = =

(Figure 8.23): 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

4 6 8 10 12
4

6

8

10

12

FIGURE 8.23 Plot for Example 8.11.
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MATLAB Code 8.11

clear all; clc;
 
x0 = 5; y0 = 5;
x1 = 10; y1 = 7;
x2 = 12; y2 = 12;
x3 = 7; y3 = 10;
 
d1 = x1 - x0; d2 = x2 - x3;
 

if d1 == d2
    fprintf('Transformation is affine\n');

else
    fprintf('Transformation is perspective\n');

end
 
U = [0 1 1 ; 0 0 1 ; 1 1 1];
X = [x0 x1 x2 ; y0 y1 y2 ; 1 1 1];
fprintf('Transformation matrix : \n');
M = X*inv(U)
 
X1 = M*[0.6 ; 0.7 ; 1];
fprintf('For u=0.6, v=0.7, (x,y) = (%.2f, %.2f) \n', X1(1),X1(2) );
 
subplot(121)
x = [0 1 1 0];
y = [0 0 1 1];
c = [0 4 6 8];
colormap(jet);
patch(x,y,c); hold on; 
scatter(0.6, 0.7, 20, 'r', 'filled');
axis square; hold off;
 
subplot(122)
x = [5 10 12 7];
y = [5 7 12 10];
c = [0 4 6 8];
colormap(jet);
patch(x,y,c); hold on;
scatter(X1(1), X1(2), 20, 'r', 'filled');
axis square; grid; hold off;

If the shape of the surface be such that: 1 0 2 3x x x x( ) ( )− ≠ −  and 1 0 2 3y y y y( ) ( )− ≠ − , 
it  implies that the surface is an arbitrary quadrilateral and hence the mapping trans-
formation will be perspective in nature. A perspective transformation is given by the 
following:
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1 1

x
y
w

a b c
d e f
g h

u
v

′
′

















=


































 (8.32)

where x′ and y′ are in homogeneous coordinates. The Cartesian coordinates are /x x w= ′  
and /y y w= ′ . From Equation (8.32) we get:

 
1

1

x x
w

au bv c
gu hv

y y
w

du ev f
gu hv

= ′ = + +
+ +

= ′ = + +
+ +

 (8.33)

Plugging in the given BC, we can solve for the unknown coefficients ,  ,  ,  ,  ,  ,  , a b c d e f g h as 
follows:

BC-1: 0, 0u v= =  is mapped to ,0 0x x y y= = , which implies 0c x=  and 0f y=

BC-2: 1, 0u v= =  is mapped to ,1 1x x y y= = , which implies ( 1)1 0x a x g( )= + +  and 
( 1)1 0y d y g( )= + +

BC-3: 0, 1u v= =  is mapped to ,3 3x x y y= = , which implies 13 0x b x h( ) ( )= + +  and 
( 1)3 0y e y h( )= + +

BC-4: 1, 1u v= =  is mapped to ,2 2x x y y= = , which implies ( 1)2 0x a b x g h( )= + + + +  
and ( 1)2 0y d e y g h( )= + + + +

The above eight equations can be solved to find out the values of the eight unknown 
 coefficients. The solution of the above equations is given by the following:

 1 1 2x x x∆ = −

 2 3 2x x x∆ = −

 3 0 1 2 3x x x x x∆ = − + −

 1 1 2y y y∆ = −

 2 3 2y y y∆ = −

 3 0 1 2 3y y y y y∆ = − + −
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det

det

3 2

3 2

1 2

1 2

g

x x
y y

x x
y y

=

∆ ∆
∆ ∆













∆ ∆
∆ ∆













 

det

det

1 3

1 3

1 2

1 2

h

x x
y y

x x
y y

=

∆ ∆
∆ ∆













∆ ∆
∆ ∆













 1 0 1a x x g x= − + ⋅

 3 0 3b x x h x= − + ⋅

 0c x=

 1 0 1d y y g y= − + ⋅

 3 0 3e y y h y= − + ⋅

 0f y=

Example 8.12

Derive a transformation for mapping a texture with (u, v ) coordinates (0, 0), 
(1, 0), (1, 1), (0, 1) to a surface with ( x ,  y ) coordinates of (5, 5), (10, 7 ), (10, 14), 
(7 , 10). Specify mapping relations and hence for the texture point (u 0.6 , v 0.7 )= = , 
find the corresponding point on the surface.

Surface coordinates: ,  (5, 5)0 0x y( ) = , ,  (10, 7)1 1x y( ) = , ,  (10, 14)2 2x y( ) = , 
,  (7, 10)3 3x y( ) =
Now 51 0x x( )− = , 32 3x x( )− = , 21 0y y( )− = , 72 3y y( )− =
Since 1 0 2 3x x x x( ) ( )− ≠ −  and 1 0 2 3y y y y( ) ( )− ≠ −  the mapping transformation is 

perspective in nature.
Here,

 01 1 2x x x∆ = − =  

 32 3 2x x x∆ = − = −  

 23 0 1 2 3x x x x x∆ = − + − = −  

 71 1 2y y y∆ = − = −  
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 42 3 2y y y∆ = − = −  

 23 0 1 2 3y y y y y∆ = − + − =  

 

det

det

0.6667

3 2

3 2

1 2

1 2

g

x x
y y

x x
y y

=

∆ ∆
∆ ∆













∆ ∆
∆ ∆













= −  

 

det

det

0.6667

1 3

1 3

1 2

1 2

h

x x
y y

x x
y y

=

∆ ∆
∆ ∆













∆ ∆
∆ ∆













=  

 1.66671 0 1a x x g x= − + ⋅ = −  

 6.66673 0 3b x x h x= − + ⋅ =  

 50c x= =  

 2.66671 0 1d y y g y= − + ⋅ = −  

 11.66673 0 3e y y h y= − + ⋅ =  

 50f y= =  

From Equation (8.32), transformation matrix =

















1

M
a b c
d e f
g h

=
−
−
−

















1.6667  6.6667 5
2.6667 11.6667 5
0.6667 0.6667 1

From Equation (8.33), mapping relations are:

 
1

( 1.6667) (6.6667) 5
( 0.6667) (0.6667) 1

x au bv c
gu hv

u v
u v

= + +
+ +

= − + +
− + +

 

 
1

( 2.6667) (11.6667) 5
( 0.6667) (0.6667) 1

y du ev f
gu hv

u v
u v

= + +
+ +

= − + +
− + +

 

For ( 0.6,  0.7)u v= = ,
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 (0.6, 0.7) 8.6667x =  

 (0.6, 0.7) 11.5667y =  

Verification:

(0, 0) 5, (0, 0) 5, (0, 1) 7, (0, 1) 10, (1, 0) 10, (1, 0) 7, (1, 1) 10, (1, 1) 14x y x y x y x y= = = = = = = =

MATLAB Code 8.12

clear all; clc;
 
x0 = 5; y0 = 5;
x1 = 10; y1 = 7;
x2 = 10; y2 = 14;
x3 = 7; y3 = 10;
 
d1 = x1 - x0; d2 = x2 - x3;
 

if d1 = = d2 
    fprintf('Transformation is affine\n');

else
    fprintf('Transformation is perspective\n');

end
 
dx1 = x1 - x2;
dx2 = x3 - x2;
dx3 = x0 - x1 + x2 - x3;
dy1 = y1 - y2;
dy2 = y3 - y2;
dy3 = y0 - y1 + y2 - y3; 
 
g = det([dx3 dx2 ; dy3 dy2 ])/det([dx1 dx2 ; dy1 dy2]);
h = det([dx1 dx3 ; dy1 dy3 ])/det([ dx1 dx2 ; dy1 dy2]);
a = x1 - x0 + g*x1;
b = x3 - x0 + h*x3;
c = x0;
d = y1 - y0 + g*y1;
e = y3 - y0 + h*y3;
f = y0;
 
fprintf('Transformation matrix : \n');
M = [a b c ; d e f ; g h 1]
 
X1 = M*[0.6 ; 0.7 ; 1];
fprintf('For u=0.6, v=0.7, (x,y) = (%.2f, %.2f) \n', X1(1),X1(2) );
 



Surfaces   ◾   329

% Verification
fprintf('\n Verification : \n');
u=0; v=0; x = (a*u + b*v + c)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, x = %d \n', u, v, x)
 
u=1; v=0; x = (a*u + b*v + c)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, x = %d \n', u, v, x)
 
u=1; v=1; x = (a*u + b*v + c)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, x = %d \n', u, v, x)
 
u=0; v=1; x = (a*u + b*v + c)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, x = %d \n', u, v, x)
 
u=0; v=0; y = (d*u + e*v + f)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, y = %d \n', u, v, y)
 
u=1; v=0; y = (d*u + e*v + f)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, y = %d \n', u, v, y)
 
u=1; v=1; y = (d*u + e*v + f)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, y = %d \n', u, v, y)
 
u=0; v=1; y = (d*u + e*v + f)/(g*u + h*v + 1);
fprintf('u = %d, v = %d, y = %d \n', u, v, y)

8.10  SURFACE ILLUMINATION
Surface illumination determines the brightness of a surface given the parameters regarding 
the light sources such as the light intensity, angle of incidence light, angle of the observer 
looking at the surface, and also the reflectance properties of the surface. An illumination 
model takes these parameters as input and produces an output regarding the brightness of 
the surface. Since the brightness depends on the angle of reflected light and the viewpoint 
of the observer in some cases, we need to derive a mathematical model for this purpose 
(Shirley, 2002).

In Figure 8.24, let PA indicate the direction of an incident light ray striking the surface 
at P making an angle θ with the normal along PC and let PD indicate the direction of the 
reflected ray such that PA = PD. Let AC be parallel to PD and CD be parallel to PA intersect-
ing at C. Project PA onto N at B and extend PB to C.

Writing in terms of vectors, let L and R represent the unit vectors for incidence and 
reflected rays and N is the unit vector along the normal. The laws of reflection dic-
tate that angles of incidence and reflection have to be equal and also the incident ray, 
reflected ray and surface normal should lie on the same plane. According to the triangle 
rule for  vectors, R = PC + CD. The projection of L onto N is given by (L·cos θ) N = PB. 
Hence PC = 2PB = 2(|L|·cos θ) N. Also CD = −L. Combining these expressions, we get the 
following,  remembering that vectors L, N, and R are the unit vectors and have magnitude 1:
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 θ θ( ) ( )= + = + = ⋅ − = ⋅ − = ⋅ −2 2 cos 2 cos 2( )R PC CD PB CD L N L L N N L L N N L 
(8.34)

Example 8.13

Light is incident along L – i 2 j –k= +  on a surface with normal N j= . Calculate the 
reflected ray and angle of incidence. Verify that angles of incidence and reflection 
are equal.

Here, –  2 –L i j k= +  and N j=

 L L
Lu = = − −( 0.4082 0.8165 0.4082) 

 N N
Nu = = (0,1,0) 

From Equation (8.34), reflected ray: R L N N Lu u u u u= −2( • )  ( )= 0.4082 0.8165 0.4082
Angle of incidence: L Ni u uθ = = =cos ( • ) 2 6 0.8165 i.e. 35.26iθ = °

Angle of reflection: N Rr u uθ ( )= = =cos ( • ) 2 6 0.8165 i.e. 35.26rθ = ° 
(Figure 8.25)
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FIGURE 8.24 Relation between incident ray, reflected ray, and normal to a surface.
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Intensity at any point on the surface depends on three types of reflections: ambient 
reflection, diffuse reflection, and specular reflection (Hearn and Baker, 1996). Ambient 
reflection assumes that all objects receive the same amount of light from all directions 
and simulates a constant background illumination. Intensity aI  at a point P due to  ambient 
light is given by the following, where aL  is the intensity of ambient light, and ak  is the 
 ambient reflection coefficient of a surface i.e. what percentage of the incident ambient light 
the  surface reflects 0 ≤ ak  ≤ 1 (Foley et al., 1995)

 a a aI L k= ⋅  (8.35)

Diffuse reflection assumes the surface is perfectly diffusing i.e. light is scattered equally in 
all directions as it strikes a surface. In this case, the intensity of a point would depend on 
the angle of reflection θ. If the angle is very small, then most of the incident light would 
bounce back along the same path and the observed brightness would be high. However as 
the angle increase, light would be scattered in other directions so that the percentage of 
reflected light coming to the observer would be smaller. This would reduce the observed 
intensity of the surface. Intensity dI  at a point P due to diffused reflection is given by the 
following, where pL  is the intensity of the light source P, θ is the angle of reflection, and dk  
is the diffuse reflection coefficient of a surface i.e. what percentage of the incident diffused 
light the surface reflects 0 ≤ dk  ≤ 1, and remembering that L and N are the unit vectors 
(Foley et al., 1995).
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FIGURE 8.25 Plot for Example 8.13.
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 θ= ⋅ ⋅ = ⋅ ⋅cos ( • )d p d p dI L k L k L N  (8.36)

Specular reflection occurs when light is reflected at a certain angle from a shiny surface. 
A shiny surface behaves like an imperfect mirror and produces specular highlights, which 
is actually the image of the light source itself reflected from the surface. Unlike diffuse 
reflection, specular reflection is dependent on position of viewer. Let V be the unit vec-
tor along the viewing direction and φ be the angle between V and R (see Figure 8.26). 
Observed intensity would be highest when the observer views the surface exactly along the 
reflected ray i.e. φ = 0 but intensity would reduce as φ increases and the observer moves 
further away from the reflected light, intensity sI  at a point P due to specular reflection is 
given by the following, where pL  is the intensity of the light source P, φ is the angle between 
R and V, m is a positive number dependent on the material of the surface, and sk  is the 
specular reflection coefficient of a surface, 0 ≤ sk  ≤ 1, and remembering that R and V are 
the unit vectors (Foley et al., 1995).

 ϕ= ⋅ ⋅ = ⋅ ⋅(cos ) ( • )s p s p sI L k L k R Vm m (8.37)

Hence, total intensity of reflected light at a point on a surface is the combined effect of all 
the above factors:

 cos (cos )a d s a a p d p sI I I I L k L k L k mθ ϕ= + + = ⋅ + ⋅ ⋅ + ⋅ ⋅  (8.38)
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FIGURE 8.26 Relation between incident ray, reflected ray, normal, and viewing direction.



334   ◾   Fundamentals of Graphics Using MATLAB®

Example 8.14

Light is incident along L – i 2 j –k= +  at a point on a surface with normal 
N j= . Calculate the intensity at the point if the source light is 10 times more 
intense than the ambient light. Assume viewing direction as V i 1.5 j 0.5 k= + +  and 

==ak k k m0.15 0.4 0.8 5, = , = , =d s .
Incident ray: –  2 –L i j k= +
Normal: N j=
Reflected ray: 2R i j k= + +  (see previous example)
Viewing direction: 1.5 0.5 V i j k= + +

 = + = − −(–  2 – )
6

( 0.4082 0.8165 0.4082)L i j k
u  

 = =
1

(0 1 0)N j
u  

 = + + =( 2 )
6

(0.4082 0.8165 0.4082)R i j k
u  

 = + + =   1.5 0.5 
1.8708

(0.5345 0.8018 0.2673)V i j k
u  

 =• 0.8165L Nu u  

 =• 0.9820R Vu u  

 1 0.15 0.15a a aI L k= ⋅ = × =  

 = ⋅ ⋅ = × × =( • ) 10 0.25 0.8165 2.0412d p dI L k L Nu u  

 = ⋅ ⋅ = × × =( • ) 10 0.5 0.9820  4.5655s p s
5 5I L k R Vu u  

 6.7567a d sI I I I= + + =  

Thus the intensity on the surface is approximately 67.5% of the source intensity.

MATLAB Code 8.14

clear all; clc;
L = [-1, 2, -1];            Lu = L/norm(L);
N = [0, 1, 0];              Nu = N/norm(N);
V = [1, 1.5, 0.5];          Vu = V/norm(V);
Ru = 2*dot(Lu,Nu)*Nu - Lu;                  
 
La = 1;
Lp = 10;
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ka = 0.15;
kd = 0.25;
ks = 0.5;
m = 5;
 
fprintf('Ambient intensity : \n');
Ia = La*ka
fprintf('Diffused intensity : \n');
Id = Lp*kd*dot(Lu,Nu)
fprintf('Specular intensity : \n');
Is = Lp*ks*(dot(Ru,Vu))^m
fprintf('Total intensity : \n');
I =  Ia + Id + Is 

8.11  NOTES ON 3D PLOTTING FUNCTIONS
This section summarizes MATLAB 3D plotting functions used and some additional 
ones (Marchand, 2002). The reader is encouraged to explore further details about these 
 functions from MATLAB documentations (Figures 8.27–8.42).

 (a) ezplot3 & fplot3: Used to plot functions using parametric variables:

ezplot3('cos(t)','t*sin(t)','sqrt(t)')
 
xt = @(t) cos(t); yt = @(t) t.*sin(t); zt = @(t) sqrt(t);
fplot3(xt,yt,zt)
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FIGURE 8.27 Plotting with ezplot & fplot3.
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 (b) plot3: Used to plot functions using vector of values:

t = 0:pi/50:10*pi; plot3(t.*sin(t), t.*cos(t), exp(-t));

 (c) ezmesh & ezsurf: Generates a mesh plot and surface plot using symbolic variables

ezmesh('x.*y.*exp(-x.^2 - y.^2)')
ezsurf('x.*y.*exp(-x.^2 - y.^2)')

 (d) ezcontour: Generates a contour plot and filled contour plot using symbolic 
variables

ezcontour('x.*y.*exp(-x.^2 - y.^2)')
ezcontourf('x.*y.*exp(-x.^2 - y.^2)')

 (e) ezsurfc: Combines a surface plot with a contour plot

ezsurfc('x.*y.*exp(-x.^2 - y.^2)')

Views on graphs can be changed by specifying the view function, which takes in two 
arguments: the first for the horizontal rotation angle (azimuth) and the second for the verti-
cal rotation angle (elevation). The colormap function can be used to change the color scheme.

ezsurfc('x.*y.*exp(-x.^2 - y.^2)'); colormap(summer); view(18, 26)
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FIGURE 8.28 Plotting with plot3.
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FIGURE 8.29 Plotting with ezmesh & ezsurf.
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 (f) mesh & surf: Generates a surface using a matrix of values. In the first step, a grid 
of points using function “meshgrid” is created on the X–Y plane. For each point a Z 
value is defined using a specific function. The “mesh” or “surf” function is used to 
create a surface by plotting the value of Z for each point on the X–Y grid and joining 
the values of Z by colored lines.

[X,Y] = meshgrid(-2:.2:2, -2:.2:2);
Z = X .*Y.* exp(-X.^2 - Y.^2); 
mesh(X,Y,Z);
 
[X,Y] = meshgrid(-2:.2:2, -2:.2:2); 
Z = X .*Y.* exp(-X.^2 - Y.^2); 
surf(X,Y,Z);
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FIGURE 8.30 Plotting with ezcontour & ezcontourf.
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 (h) isosurface: computes a surface geometry for the specified n-dimensional 
grid and function f .

[y,x,z] = ndgrid(linspace(-5,5,64));
f = (x.^2 + y.^2 + z.^2 - 5);
isosurface(x,y,z,f,.01);
axis equal; grid;
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FIGURE 8.32 Plotting with mesh & surf.
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FIGURE 8.33 Plotting with patch.

FIGURE 8.34 Plotting with isosurface.
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 (i) fimplicit3: This function has been introduced from MATLAB version 2016 and 
takes as an argument the implicit function

f = @(x,y,z) x.^2 - y.^5 + z.^2; fimplicit3(f);

 (j) lightangle: Specifies lighting parameters on a surface

h = ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',[-4*pi,4*pi]);
view(0,75);
figure
h = ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',[-4*pi,4*pi]);
view(0,75);
lightangle(-45,30);
h.AmbientStrength = 0.3;
h.DiffuseStrength = 0.8;
h.SpecularStrength = 0.9;
h.SpecularExponent = 25;

 (k) warp: Used to map a texture image over a surface with a known equation

I = imread('peppers.png');
[X,Y] = meshgrid(-10:10,-10:10);
Z = -sqrt(X.^2 + Y.^2 + 10);
surf(X,Y,Z)
figure; warp(X,Y,Z,I);
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FIGURE 8.35 Plotting with fimplicit3.
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FIGURE 8.36 Plotting a surface (a) without and (b) with lightangle.
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 (l) set: Used to set object properties, which can change over time and thereby generate 
animations

[x, y, z] = ellipsoid(0, 0, 0, 10, 10, 10);
h = surf(x,y,-z);
im = imread('world-map.jpg');
set(h, 'CData', im, 'FaceColor', 'texturemap', 'edgecolor', 'none');
el = 24;
for az=0:360
    view(az, el);
    pause(0.1);

end
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FIGURE 8.37 Plotting a surface (a) without and (b) with texture mapping using warp.
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FIGURE 8.38 Animations with set.

original image affine transform

perspective transform

FIGURE 8.39 Transformations of images with affine2d and projective2d.
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FIGURE 8.40 Plotting with impl.

FIGURE 8.41 Plotting with ezimplot3.
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 (m) affine2d and projective2d: Used to create affine and perspective (or 
 projective) transformations of images

A = checkerboard(10);
M = [5 2 5 ; 2 5 5 ; 0 0 1];
tform = affine2d(M');
B = imwarp(A, tform);
figure, imshow(B); title('affine transform');
M = [5 2 5 ; 2 5 5 ; 0.01 0.01 1];
tform = projective2d(M');
C = imwarp(A, tform);
figure, imshow(C); title('perspective transform');

In addition to in-built functions listed above, a number of user-created functions have 
been uploaded in publicly available websites. A few of them are mentioned below.

 (n) impl: This function is mentioned on the website of Jeffery Cooper, University of 
Maryland (http://www.math.umd.edu/~jcooper/matcomp/matcompmfiles/). Generates 
a surface from an implicit equation of the form ( , , ) 0f x y z = .

syms x y z; f = inline(‘x.^2 + y.^2 + z.^2 - 5’, ‘x’, ‘y’, ‘z’);
impl(f, [-3, 3, -3, 3, -3, 3], 0), axis equal; grid;
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FIGURE 8.42 Plotting with implicitplot3d.

http://www.math.umd.edu
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 (o) ezimplot3: This function is mentioned on the MathWorks File Exchange web site 
(https://in.mathworks.com/matlabcentral/fileexchange/300-implot-m). Generates a 
surface from an implicit equation of the form ( , , ) 0f x y z = .

f = 'x^2+y^2+z^2-5' ; ezimplot3(f);

 (p) implicitplot3d: This function is mentioned on the web site of Jonathan M. 
Rosenberg, University of Maryland (www2.math.umd.edu/~jmr). Generates a  surface 
from an implicit equation of the form ( , , ) 0f x y z = .

implicitplot3d('x^2+y^2-z^2', 10, -10, 10, -10, 10, -10, 10, 30);

8.12  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Surfaces can be created due to a combination of two splines along orthogonal 
directions.

• Based on mathematical representations, surfaces are categorized as parametric form 
or implicit form.

• Parametric Bezier surfaces can be modified by adjusting a grid of control points.

• Implicit surfaces can be used to represent ellipsoids and are known as quadric 
surfaces.

• Based on creation methods surfaces are categorized based on extrusion and 
revolution.

• The normal vector to a surface can be computed based on its partial derivatives.

• The tangent plane is the plane perpendicular to the normal and passing through a 
given point.

• The area and volume of the solid are obtained by rotating a curve about a primary 
axis.

• Texture mapping is a process of applying an image to a surface to improve its 
appearance.

• The texture mapping transformation can be represented as either affine or 
perspective.

NOTE

imshow: displays an image in a figure window
imwarp: applies geometric transformation to an image for mapping it to a surface

https://in.mathworks.com
http://www2.math.umd.edu
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• The surface illumination is determined based on light sources and surface reflection 
properties.

• Surface reflection can be either ambient or diffuse or specular.

8.13  REVIEW QUESTIONS
 1. What is the difference between parametric surfaces and implicit surfaces?

 2. How is a Bezier surface generated from two Bezier splines?

 3. Specify how commonly used quadric surfaces are represented using implicit 
equations?

 4. How are surfaces categorized based on creation methods?

 5. What is the difference between extruded surface and surfaces of revolution?

 6. How is the normal vector and tangent plane of a surface calculated?

 7. How is the area and volume of a surface of revolution computed?

 8. How is an affine texture mapping transformation computed?

 9. How is a perspective texture mapping transformation computed?

 10. What is an illumination model? How can it used to calculate brightness at a 
surface point?

8.14  PRACTICE PROBLEMS
 1. A parametric surface , 2 , 2s s t( ) is translated using T(1, 0, −1) and then scaled using 

S(−1, 0, 1). Find the parametric representation of the resulting surface.

 2. Find the parametric representation of the elliptic paraboloid 5 2 –102 2x y z= +  that is 
in front of the YZ-plane.

 3. A bi-quadratic Bezier surface has the following control points: (0, 0, 0),    0, 1
2

, 0 ,00 01P P 



  

  0, 1, 1 ,    1
2

, 0, 0 ,    1
2

, 1
2

, 0 ,    1
2

, 1, 1 ,    1, 0, 1 ,    1, 1
2

, 1 ,02 10 11 12 20 21P
b

P P P
b

P
a

P
a





































  1, 1, 1   1
22P

a b
+



  Find the surface equation.

 4. Find the equation of the tangent plane of the cone  2 2 2x y z+ =  at point (0.6, 0.8, 1).

 5. Find the normal to the surface ( ,  ) 2 ,  ,     2 2S u v u v u v( )= +  at point (4, 3, 13).

 6. Find the volume of the solid obtained by rotating about the x-axis the region bounded 
by the curve y x x= − +2 32 , 0x = , 3x = .
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 7. Find the volume of the solid obtained by rotating about the y-axis the portion of 
the region bounded by the curves 1/3y x=  and /4y x= , in the first quadrant between 

0x = , 2x = .

 8. A light source positioned at P(0, 10, 20) is shining on the surface ( ,  ) ,  ,       2 2S u v u v u v( )= − −  
for 0 , 1u v≤ ≤ . Determine the incident ray, the reflected ray at point Q = (½, ½, −½) 
on the surface and angle of reflection.

 9. Light along direction 2 3L i j k= + +  falls on a surface with normal N i j k= − +2 . 
Calculate the reflected ray and incidence angle. Also verify that angle of incidence is 
equal to angle of reflection.

 10. Light is striking the plane P: –2 –8 10 –10 0x y z+ =  along the direction   ,L k=  and 
the observer viewpoint is along   ( )V i j k= + + . Assuming the ambient intensity to be 
1/6th the source intensity and 2, 0.2, 0.3, 0.4a d sm k k k= = = = , determine intensity of 
reflected light at a point on the plane as a percentage of the source intensity.
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C h a p t e r  9

Projection

9.1  INTRODUCTION
Projection is used to map a higher-dimensional object to a lower-dimensional view i.e. 
from 2D to 1D or from 3D to 2D. The lower-dimensional entity is called a viewline or view-
plane, respectively. In this chapter, we will mostly discuss about projection of 3D objects 
on to a 2D viewplane but we will introduce the concepts using a 2D projection on a 1D 
viewline and then extend the concepts for the 3D case.

Projection can be of two types: parallel and perspective. In parallel projection, projec-
tion lines are parallel to each other. This type of projection produces unrealistic views in 
the sense that it is not what a viewer in the physical world would see as the apparent size 
of an object would not depend on its distance from the viewer, and all things near and far 
would appear at their true sizes. However, parallel projection is useful as it keeps intact the 
true sizes and angles of objects. In perspective projection, the projection lines appear to 
converge to a point called projection reference point (PRP). This is actually how we see in 
the real-world as parallel lines appear to converge at a distance to our eyes. This is known 
as the perspective effect and happens because the size of objects depend on their distances 
from the observer—as objects move farther their apparent sizes reduce. Although perspec-
tive projection produces realistic views of scenes; however, it distorts the true lengths and 
angles of lines and surfaces. For 2D projection, points are projected on a line called the 
viewline, while for 3D projection points are projected on a plane called the viewplane. 
Parallel projection can again be of two types: orthographic and oblique. In parallel ortho-
graphic projection, the projection lines are perpendicular to the view plane. In parallel 
oblique projection, the projection lines can be oriented at any arbitrary angles to the view 
plane (Hearn and Baker, 1996) (see Figure 9.1).

Usually for 3D projection, parallel orthographic projection can also be sub-divided into 
two types: multi-view and axonometric. In multi-view projection, the projection occurs 
on the primary planes i.e. XY-, YZ-, or XZ-planes. Such views are called top, side, and 
front views, and display only one face of the object. These are used in engineering and 
architectural drawings as length and angles can be accurately measured. In axonometric 
projection, the projection occurs on an arbitrary plane that does not coincide with any of 
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the primary planes. In this case, more than one face of the object can be viewed. The ratios 
of the actual lengths of the object along the three axes to their projected lengths are called 
foreshortening factors.

9.2 2 D PROJECTION
For studying 2D projection, we use vector equations in homogeneous coordinates, as 
explained in Section 6.9. The main results are summarized here for the benefit of the reader.

Cartesian equation of a line is: 0+ + =ax by c  and is expressed in vector form as ( ,  ,  )a b c= .
P(X, Y, W) are homogeneous coordinates of point (x, y) i.e. / , /= =x X W y Y W .
For line ( ,  ,  )a b c=  passing through P(X, Y, W) we must have: �i 0=P .
For line ℓ through two given points ( ,  ,  )1 1 1 1P X Y W  and ( ,  ,  )2 2 2 2P X Y W  we have:  1 2= ×P P .
The intersection point P of two lines ℓ1 and ℓ2 is given by:  1 2= ×P  
Let P be a point on an object, which is projected on the viewline L along direction VP at 

Q, where V is the PRP. Let the projection line through P and V be K. Since, line K passes 
through two points P and V we have (Figure 9.2a):

 = ×K V P (9.1)

Also point of intersection Q between lines L and K is given by:

 ( )= × = × ×Q L K L V P  (9.2)

Now using the vector identity ( )× × = = ⋅ ⋅ ⋅( ) ( • ) –( • ) –A B C C A B A B C B A BA I CT T  we 
get:

 ( ) –( )= × × = ⋅ ⋅ ⋅ = ⋅Q L V P V L VL I P M PT T  (9.3)

FIGURE 9.1 Projection types.
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Here, I is the identity matrix and M is the perspective projection matrix of point P onto 
viewline L along direction V (Marsh, 2005).

As shown above the points and lines are represented using homogeneous vector nota-
tions of the form ( ,  ,  )L a b c=  and ,  , 11 2V v v( )= . For parallel projection V can be thought 
to be at infinity so that projection lines are parallel (Figure 9.2b). To represent a point at 
infinity in the direction of V we use the notation ,  , 01 2V v v( )= . The vector from V towards 
the viewline L along the direction of projection is called the projection vector.

FIGURE 9.2 2D projection (a) perspective and (b) parallel.
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Example 9.1

Consider a viewline ( , ): 3 12 5 0− + − =L x y x y  and a point P(−8, −6). Determine the 
projection matrix and projected coordinates in each case: (a) Perspective projection 
of P with viewpoint (−3, 11) (b) Parallel oblique projection of P in the direction (3, −2) 
(c) Parallel orthographic projection of P at right angles to the viewline

(a)
V = [−3, 11, 1], L = [−3, 12, −5], P = [−8, 6, 1]
From Equation (9.3)

Projection matrix: –
3

11
1

3 12 5( )= ⋅ ⋅  =
−















− −



M V L VL IT T

3 11 1
3

12
5

1 0 0
0 1 0
0 0 1

− −





−

−

































Simplifying, 
127 36 15
33 4 55
3 12 141

=
− −
− − −
− −

















M  (in homogeneous coordinates)

Original coordinates of point 
8

6
1

=
−















P

Projected coordinates: 
815
185

45
= ⋅ =

−

















Q M P  (in homogeneous coordinates)

Projected coordinates: 
18.11
4.11
1

′ =
−
−

















Q  (in Cartesian coordinates)

Verification: The projected point must lie on the view line: ( 18.11,  4.11) 0L − − =  
(Figure 9.3a).

(b)
V = [3, −2, 0], L = [−3, 12, −5], P = [−8, 6, 1]
From Equation (9.3)
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Projection matrix: –
3

2
0

3 12 5( )= ⋅ ⋅  =
−















− −



M V L VL IT T

3 2 0
3

12
5

1 0 0
0 1 0
0 0 1

− −





−

−

































Simplifying, 
24 36 15
6 9 10
0 0 33

=
−















M  (in homogeneous coordinates)

Original coordinates of point 
8

6
1

=
−















P

-20 -15 -10 -5 0 5 10
x

-6

-4

-2

0

2

4

6

8

10

12
(a) (b)

(c)

y

L

P

Q

V

-10 -5 0 5 10
x

-4

-3

-2

-1

0

1

2

3

4

5

6

y

P

V

Q
L

-10 -5 0 5 10
x

-3

-2

-1

0

1

2

3

4

5

6

7

y

Q

V

P

L

FIGURE 9.3 (a–c) Plots for Example 9.1.
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Projected coordinates: 
9

16
33

= ⋅ =
















Q M P  (in homogeneous coordinates)

Projected coordinates: 
0.2727
0.4848

1
′ =

















Q  (in Cartesian coordinates)

Verification: The projected point must lie on the view line: =(0.2727, 0.4848) 0L  
(Figure 9.3b).

(c)

Slope of line 0+ + =ax by c  is given by – 3
12

0.25= − − =a
bTangent vector: [1, 0.25, 1]t =

Normal vector: (90)* [ 0.25, 1, 1]n R t= = −
Parallel orthographic projection should be along the direction of the normal vector
Hence, V = [−0.25, 1, 0], L = [−3, 12, −5], P = [−8, 6, 1]
From Equation (9.3)

Projection matrix: ( )= ⋅ ⋅  =
−















− −



–

0.25
1
0

3 12 5M V L VL IT T

− −





−

−

































0.25 1 0
3

12
5

1 0 0
0 1 0
0 0 1

Simplifying, 
12 3 1.25
3 0.75 5

0 0 12.75
=

− −
− − −

−

















M  (in homogeneous coordinates)

Projected coordinates: 
79.25
14.5
12.75

= ⋅ =
−

















Q M P  (in homogeneous coordinates)

Projected coordinates: 
6.21
1.14
1

′ =
−
−

















Q  (in Cartesian coordinates)

Verification: The projected point must lie on the view line: ( 6.21,  1.14) 0L − − =  
(Figure 9.3c).
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MATLAB® Code 9.1

clear all; clc; format compact;
P = [-8, 6, 1];
L = [-3, 12, -5];
syms x y;
f = -3*x + 12*y - 5;

% (a) perspective projection

V = [-3, 11, 1]; 
M = V'*L - V*L'*eye(3);
Q = M*P';
Qc = Q/Q(3)
%plotting
y1 = (-L(1)*x - L(3))/L(2);
xx = -20:10;
yy = subs(y1, x, xx);
plot(xx, yy, 'b-', 'LineWidth', 1.5);
hold on; grid;
scatter(P(1), P(2), 20, 'r', 'filled');
scatter(V(1), V(2), 20, 'r', 'filled');
scatter(Qc(1), Qc(2), 20, 'r', 'filled');
plot([V(1), P(1)], [V(2), P(2)], 'k--');
plot([P(1), Qc(1)], [P(2), Qc(2)], 'k--');
xlabel('x'); ylabel('y'); axis square;
text(-2, 1, 'L', 'FontSize', 15);
text(P(1)+0.5, P(2), 'P');
text(Qc(1)+0.5, Qc(2), 'Q');
text(V(1)+0.5, V(2), 'V');
%verification
vrf1 = subs(f, [x, y], [Qc(1), Qc(2)])

% (b) oblique projection

V = [3, -2, 0]; 
M = V'*L - V*L'*eye(3);
Q = M*P';
Qc = Q/Q(3)
%plotting
figure
syms x y;
y1 = (-L(1)*x - L(3))/L(2);
xx = -10:10;
yy = subs(y1, x, xx);
plot(xx, yy, 'b-', 'LineWidth', 1.5);
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hold on; grid;
quiver(P(1), P(2), V(1), V(2));
quiver(V(1), V(2), V(1), V(2));
scatter(P(1), P(2), 20, 'r', 'filled');
scatter(V(1), V(2), 20, 'r', 'filled');
scatter(Qc(1), Qc(2), 20, 'r', 'filled');
plot([P(1), Qc(1)], [P(2), Qc(2)], 'k--');
xlabel('x'); ylabel('y'); axis square;
text(P(1)+0.5, P(2), 'P');
text(V(1)+0.5, V(2), 'V');
text(Qc(1)+0.5, Qc(2), 'Q');
text(-2, 1, 'L', 'FontSize', 15);
%verification
vrf2 = subs(f, [x, y], [Qc(1), Qc(2)])

% (c) orthographic projection

m = -L(1)/L(2);  % slope
t = [1, m, 1];  % tangent
R90 = [cosd(90) -sind(90) 0 ; sind(90) cosd(90) 0 ; 0 0 1];
n = R90*t';       % normal
V = [n(1), n(2), 0]; 
M = V'*L - V*L'*eye(3);
Q = M*P';
Qc = Q/Q(3)
%plotting
figure
syms x y;
y1 = (-L(1)*x - L(3))/L(2);
xx = -10:10;
yy = subs(y1, x, xx);
plot(xx, yy, 'b-', 'LineWidth', 1.5);
hold on; grid;
quiver(P(1), P(2), V(1), V(2));
quiver(V(1), V(2), V(1), V(2));
scatter(P(1), P(2), 20, 'r', 'filled');
scatter(V(1), V(2), 20, 'r', 'filled');
scatter(Qc(1), Qc(2), 20, 'r', 'filled');
plot([P(1), Qc(1)], [P(2), Qc(2)], 'k--');
text(Qc(1)+0.5, Qc(2), 'Q');
text(V(1)+0.5, V(2), 'V');
text(P(1)+0.5, P(2), 'P');
text(-2, 1, 'L', 'FontSize', 15);
xlabel('x'); ylabel('y'); axis square;
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%verification
vrf3 = subs(f, [x, y], [Qc(1), Qc(2)]);
hold off;

9.3 3 D PROJECTION
Similar to the discussions of the previous section, it can be shown that the projected coordi-
nates Q of the point P in 3D space onto a viewplane with normal N and viewpoint V is given by:

 ( ) –( )= × × = ⋅ ⋅ ⋅ = ⋅Q L V P V N VN I P M PT T  (9.4)

Here, I is the identity matrix and M is the perspective transformation matrix (Marsh, 2005).

Example 9.2

Consider a viewplane − + + − =F(x ,  y , z ): x 3y 2z 4 0 and a point P(−4, 2,  2). 
Determine the projection matrix and projected coordinates in each case: (a) 
Perspective projection of P with viewpoint (2, −1, 1) (b) Parallel oblique projection of 
P in the direction (1, 2, 1) (c) Parallel orthographic projection of P at right angles to 
the viewplane

(a)
Point P = [−4, 2, 2, 1]
Normal N = [−1, 3, 2, −4]
Viewpoint V = [2, −1, 1, 1]
From Equation (9.4)

Projection matrix ( )= ⋅ ⋅  = −


















− −



–

2
1

1
1

1 3 2 4M V N VN IT T

− −





−

−





































2 1 1 1

1
3
2
4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

NOTE

eye: generates an identity matrix of specified size
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Simplifying, 

5 6 4 8
1 4 2 4
1 3 9 4
1 3 2 3

=

−
−

− −
−



















M

Projected coordinates: 

8
4

24
17

= ⋅ =

−

















Q M Ph  (homogeneous coordinates)

Projected coordinates: 17

0.47
0.23
1.41

1

= =

−

















Q Qh  (Cartesian coordinates)

Verification: ( 0.47, 0.23, 1.41) 0F − =  (Figure 9.4a)
(b)

Point P = [−4, 2, 2, 1]
Normal N = [−1, 3, 2, −4]
Viewpoint V = [1, 2, 1, 1]
From Equation (9.4)

Projection matrix ( )= ⋅ ⋅  =



















− −



–

1
2
1
1

1 3 2 4M V N VN IT T

− 





−

−





































1 2 1 1

1
3
2
4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Simplifying, 

8 3 2 4
2 1 4 8
1 3 5 4

0 0 0 7

=

− −
− − −
− − −

−



















M

Projected coordinates: 

38
6
4
7

= ⋅ =
−
−



















Q M Ph  (homogeneous coordinates)
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Projected coordinates: ( 7)

5.43
0.85

0.57
1

= − =

−
−



















Q Qh  (Cartesian coordinates)

Verification: ( 5.43,  0.85, 0.57) 0F − − =  (Figure 9.4b)
(c)

Point P = [−4, 2, 2, 1]
Normal N = [−1, 3, 2, −4]
Viewpoint V = N = [−1, 3, 2, −4]
From Equation (9.4)

Projection matrix ( )= ⋅ ⋅  =

−

−



















− −



–

1
3
2
4

1 3 2 4M V N VN IT T

− − −





−

−





































1 3 2 4

1
3
2
4

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

FIGURE 9.4 Plots for Example 9.2 (a) perspective projection (b) oblique projection (c) orthographic 
projection.
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Simplifying, 

13 3 2 4
3 5 6 12
2 6 10 8

0 0 0 14

=

− − −
− − −
− − −

−



















M

Projected coordinates: 

46
2
8

14

= ⋅ =
−
−



















Q M Ph  (homogeneous coordinates)

Projected coordinates: ( 14)

3.28
0.14

0.57
1

= − =

−
−



















Q Qh  (Cartesian coordinates)

Verification: ( 3.28,  0.14, 0.57) 0F − − =  (Figure 9.4c)

MATLAB Code 9.2

clear all; clc; format compact;
N = [-1, 3, 2, -4];
P = [-4, 2, 2, 1];
syms x y z;
f = -x + 3*y +2*z - 4;

% (a) perspective projection

V = [2, -1, 1, 1]; 
M = V'*N - V*N'*eye(4);
Qh = M*P';
Q = Qh/Qh(4)
figure
plot3(P(1), P(2), P(3), 'ro');
hold on; grid; view(-66, 30);
xlabel('x'); ylabel('y'); zlabel('z');
plot3(Q(1), Q(2), Q(3), 'ro');
plot3(V(1), V(2), V(3), 'ro');
plot3([V(1) P(1)], [V(2) P(2)], [V(3) P(3)], 'k--');
quiver3(0, 0, 2, N(1), N(2), N(3));
text(P(1), P(2), P(3)+0.5, 'P');
text(Q(1), Q(2), Q(3)+0.5, 'Q');
text(V(1), V(2), V(3)+0.5, 'V');
text(N(1), N(2), N(3)+2, 'N');
%verification
vrf1 = subs(f, [x, y, z], [Q(1), Q(2), Q(3)])
fimplicit3(f, 'MeshDensity', 2, 'FaceColor', 'y', 'FaceAlpha',0.3); 
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% (b) oblique projection

V = [1, 2, 1, 0]; 
M = V'*N - V*N'*eye(4);
Qh = M*P';
Q = Qh/Qh(4)
figure
plot3(P(1), P(2), P(3), 'ro');
hold on; grid; view(-66, 30);
quiver3(0, 0, 2, N(1), N(2), N(3));
quiver3(V(1), V(2), V(3), V(1), V(2), V(3));
plot3(Q(1), Q(2), Q(3), 'ro');
plot3(V(1), V(2), V(3), 'ro');
plot3([Q(1) P(1)], [Q(2) P(2)], [Q(3) P(3)], 'k--');
xlabel('x'); ylabel('y'); zlabel('z');
text(P(1), P(2), P(3)+0.5, 'P');
text(Q(1), Q(2), Q(3)+0.5, 'Q');
text(V(1), V(2), V(3)+0.5, 'V');
text(N(1), N(2), N(3)+2, 'N');
%verification
vrf2 = subs(f, [x, y, z], [Q(1), Q(2), Q(3)])
fimplicit3(f, 'MeshDensity', 2, 'FaceColor', 'y', 'FaceAlpha',0.3); 

% (c) orthographic projection

V = [N(1), N(2), N(3), 0]; 
M = V'*N - V*N'*eye(4);
Qh = M*P';
Q = Qh/Qh(4)
figure
plot3(P(1), P(2), P(3), 'ro');
hold on; grid; view(-80, 25);
quiver3(0, 0, 2, N(1), N(2), N(3));
quiver3(V(1), V(2), V(3), V(1), V(2), V(3));
plot3(Q(1), Q(2), Q(3), 'ro');
plot3(V(1), V(2), V(3), 'ro');
plot3([Q(1) P(1)], [Q(2) P(2)], [Q(3) P(3)], 'k--');
xlabel('x'); ylabel('y'); zlabel('z');
text(P(1), P(2), P(3)+0.5, 'P');
text(Q(1), Q(2), Q(3)+0.5, 'Q');
text(V(1), V(2), V(3)+0.5, 'V');
text(N(1), N(2), N(3)+2, 'N')
%verification
vrf3 = subs(f, [x, y, z], [Q(1), Q(2), Q(3)])
fimplicit3(f, 'MeshDensity', 2, 'FaceColor', 'y', 'FaceAlpha',0.3); 
hold off;
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9.4  MULTI-VIEW PROJECTION
In parallel orthographic multi-view projection, the projection lines are parallel to each 
other and perpendicular to the primary planes. Such views are called top, side, and 
front views, and display only one face of the object (Foley et al., 1995). These are used in 
 engineering and architectural drawings as length and angles can be accurately measured. 
If view plane coincides with primary planes then projection matrices are as shown below, 
where the subscripts indicate projection on the XY-, XZ-, and YZ-planes.

 =



















1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

Pxy  (9.5)

 =



















1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

Pxz  (9.6)

 =



















0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Pyz  (9.7)

If the projection planes are parallel to the primary planes say at =z k then the following 
steps are performed to derive the transformation matrix:

• Translate the =z k plane to the 0=z  plane (XY-plane): (0, 0,  )1T T k= −

• Perform projection on the XY-plane: Pxy

• Reverse translate the plane to original location: (0, 0,  )2T T k=

• Composite transformation matrix: (0, 0,  ) (0, 0,  )M T k P T kxy= ⋅ ⋅ −

Example 9.3

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1). Derive a parallel projection of the 
cube onto the 3=z  plane in a direction parallel to the Z-axis

Here, normal to viewplane N = [0, 0, 1, −3]
The viewpoint is located at infinity along the Z-axis, hence V = N
From Equation (9.4)
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Projection matrix ( )= ⋅ ⋅  =

−



















−



–

0
0
1
3

0 0 1 3M V N VN IT T

− −





−





































0 0 1 3

0
0
1
3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Simplifying, 

1 0 0 0
0 1 0 0
0 0 0 3
0 0 0 1

=

−
−

−
−



















M

Original coordinate matrix: 

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

=

− − − −
− − − −

− − − −



















C

New coordinate matrix: 

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1

= ⋅ =

− − − −
− − − −
− − − − − − − −
− − − − − − − −



















D M Ch  (homogeneous coordinates)

New coordinate matrix: 

( 1)

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1

= − =

− − − −
− − − −



















D Dh  (Cartesian coordinates)

New coordinates: (−1, 1, 3), (1, 1, 3), (1, −1, 3), (−1, −1, 3), (−1, 1, 3), (1, 1, 3), (1, −1, 3), 
and (−1, −1, 3) (Figure 9.5)

MATLAB Code 9.3

clear all; clc; format compact;
N = [0, 0, 1, -3];
p1 = [-1,1,1]; 
p2 = [1,1,1]; 
p3 = [1,-1,1]; 
p4 = [-1,-1,1]; 
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p5 = [-1,1,-1]; 
p6 = [1,1,-1]; 
p7 = [1,-1,-1]; 
p8 = [-1,-1,-1];
C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];

% orthographic multi-view projection
V = [N(1), N(2), N(3), 0]; 
M = V'*N - V*N'*eye(4);
Dh = M*C;
D = Dh/Dh(4);

fprintf('New vertices : \n')

for i=1:8
    fprintf('(%.2f, %.2f, %.2f) \n',D(1,i), D(2,i), D(3,i));

end

figure
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = M*C; D = Dh/Dh(4);
plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on;
plot3(D(1,:), D(2,:), D(3,:), 'r'); 
xlabel('x'); ylabel('y'); zlabel('z');
legend('original', 'new'); axis equal;
grid; hold off;
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FIGURE 9.5 Plot for Example 9.3.
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9.5  AXONOMETRIC PROJECTION
In parallel orthographic axonometric projection, the projection lines are parallel to each 
other and perpendicular to the viewplanes but the viewplanes do not coincide with the 
primary planes (Chakraborty, 2010). Unlike multi-view projection where only a single face 
of the object is visible, in this case multiple views of the object can be viewed. To derive the 
projection matrix the following steps are followed:

• Align the normal to the viewplane to coincide with one of the primary axes, say 
the Z-axis

• Perform projection on the corresponding primary plane i.e. XY-plane

• Reverse align the viewplane to original location

Example 9.4

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1). Derive an axonometric projection of 
the cube onto the plane having normal vector along + +i j k and passing through the 
point (0, 0, 5).

The viewplane has normal + +i j k and passes through the point (0, 0, 5). Hence, 
equation of the viewplane is ( 0) ( 0) ( 5) 0− + − + − =x y z . Thus N = [1, 1, 1, −5].

Also since the projection is parallel and orthographic the projection lines 
are along the normal to the plane and the viewpoint is located at infinity. Thus 
V = [1, 1, 1, 0].

From Equation (9.4)

Projection matrix: ( )= ⋅ ⋅  =



















−



–

1
1
1
0

1 1 1 5M V N VN IT T

− 





−





































1 1 1 0

1
1
1
5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Simplifying, 

2 1 1 5
1 2 1 5
1 1 2 5
0 0 0 3

=

− −
− −

− −
−



















M
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Original coordinate matrix: 

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

=

− − − −
− − − −

− − − −



















C

New coordinate matrix: = ⋅D M Ch

=

− − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −



















1 5 7 3 3 7 9 5
7 5 1 3 9 7 3 5
7 5 7 9 3 1 3 5
3 3 3 3 3 3 3 3

 (homogeneous coordinates)

New coordinate matrix: 

( 3)

0.33 1.67 2.33 1 1 2.33 3 1.67
2.33 1.67 0.33 1 3 2.33 1 1.67
2.33 1.67 2.33 3 1 0.33 1 1.67

1 1 1 1 1 1 1 1

= − =



















D Dh  (Cartesian coordinates)

New coordinates: (0.33, 2.33, 2.33), (1.67, 1.67, 1.67), (2.33, 0.33, 2.33), (1, 1, 3), 
(1, 3, 1), (2.33, 2.33, 0.33), (3, 1, 1), and (1.67, 1.67, 1.67) (Figure 9.6)

FIGURE 9.6 Plot for Example 9.4.
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MATLAB Code 9.4

clear all; clc; format compact;
p1 = [-1,1,1]; 
p2 = [1,1,1]; 
p3 = [1,-1,1]; 
p4 = [-1,-1,1]; 
p5 = [-1,1,-1]; 
p6 = [1,1,-1]; 
p7 = [1,-1,-1]; 
p8 = [-1,-1,-1];
C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];
N = [1, 1, 1, -5];
V = [1, 1, 1, 0]; 
M = V'*N - V*N'*eye(4);
Dh = M*C;
D = Dh/Dh(4);

fprintf('New vertices : \n')

for i=1:8
    fprintf('(%.2f, %.2f, %.2f) \n',D(1,i), D(2,i), D(3,i));

end

figure
syms x y z;
f = x + y + z - 5;
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = M*C; D = Dh/Dh(4);
plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on; grid;
plot3(D(1,:), D(2,:), D(3,:), 'r'); 
plot3(0, 0, 5, 'ro');
quiver3(0, 0, 5, 2, 2, 2);
fimplicit3(f, 'MeshDensity', 2, 'FaceColor', 'y', 'FaceAlpha',0.3); 
xlabel('x'); ylabel('y'); zlabel('z');
legend('original', 'new'); axis equal;
view(-70, 70); hold off;

9.6  FORESHORTENING FACTORS
Foreshortening factors are ratios of the projected lengths to the original lengths of compo-
nents of a vector along the three principle axes. Let a line PQ on a plane be projected on the 
XY-plane at pq. Then the ratio of length (pq) to the ratio of length (PQ) is referred to as the 
foreshortening scaling factor and defines how much the original line has been scaled due 
to projection (Marsh, 2005). It turns out that this ratio is same for all lines on the plane and 
does not depend on the actual coordinates of the line (Figure 9.7).



372   ◾   Fundamentals of Graphics Using MATLAB®

Consider projection of a plane whose normal is given by the vector = + +N ai bj ck. To 
calculate projection matrix for the plane, let the vector N be aligned along a principle axis, 
say Z-axis. As discussed in Chapter 7, Section 7.8, the processes for vector alignment are 
as follows:

• Rotate vector by angle α CCW around X-axis to place it on the XZ-plane: ( )αRx .

• Rotate vector by angle −φ CW around Y-axis to align it along Z-axis: ( )ϕ−Ry .

• Project on XY-plane along Z-axis: Pxy .

• Calculate combined transformation matrix: ( ) ( )ϕ α= ⋅ − ⋅M P R Rxy y x .

Expanding M,

 

cos sin sin cos sin 0
0 cos sin 0
0 0 0 0
0 0 0 1

ϕ α ϕ α ϕ
α α=

− ⋅ − ⋅
−



















M  (9.8)

Now consider a vector = + +P Ai Bj Ck. Its component vectors along the three principle 
axes are given by   ( , 0, 0),  (0,  , 0),  (0, 0,  )P A P B P Cx y z= = = . The lengths of the vectors are:

 ,  , L P A L P B L P Cx y z( )( ) ( )= = =  (9.9)

FIGURE 9.7 Projection of a line.
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The projected components of P onto the primary axes are calculated as follows:

 

( cos , 0, 0)

( sin sin ,  cos , 0)

( cos sin ,  sin , 0)

Q M P A

Q M P B B

Q M P C C

x x

y y

z z

ϕ

α ϕ α

α ϕ α

= ⋅ = ⋅

= ⋅ = − ⋅ ⋅ ⋅

= ⋅ = − ⋅ ⋅ − ⋅

 (9.10)

New lengths of the vector components are calculated as follows:

 

ϕ

α α ϕ

α α ϕ

( )
( )

( )

= ⋅

= ⋅ + ⋅

= ⋅ + ⋅

cos

(cos ) (sin sin )

(sin ) (cos sin )

2 2

2 2

L Q A

L Q B

L Q C

x

y

z

 (9.11)

Foreshortening factors are calculated as ratio of modified lengths to original lengths:

 

ϕ

α α ϕ

α α ϕ

( ) ( )
( ) ( )

( ) ( )

= =

= = + ⋅

= = + ⋅

cos

(cos ) (sin sin )

(sin ) (cos sin )

2 2

2 2

ff L Q L P

ff L Q L P

ff L Q L P

x x x

y y y

z z z

 (9.12)

Observation: Foreshortening factors are independent of vector components A, B, and C. 
They only depend on the angles of vertical rotation α and horizontal rotation φ.

The projection on XY-plane was an arbitrary choice. Let the projection be on another 
plane say YZ-plane. In that case the calculation of the transformation matrix is as 
follows:

• Rotate vector by angle α CCW around X-axis to place it on the XZ-plane: ( )αRx

• Rotate vector by angle φ CCW around Y-axis to align it along X-axis: ( )ϕRy .

• Project about YZ-plane along X-axis: Pyz .

• Calculate combined transformation matrix: ( ) ( )ϕ α= ⋅ ⋅M P R Ryz y x .

Expanding M,

 

0 0 0 0
0 cos sin 0

sin sin cos cos cos 0
0 0 0 1

α α
ϕ α ϕ α ϕ=

−
− ⋅ ⋅



















M  (9.13)
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The projected components of P onto the primary axes are calculated as follows:

 

(0, 0,  sin )

(0,  cos ,  sin , cos )

(0,  sin ,  cos cos )

Q M P A

Q M P B B

Q M P C C

x x

y y

z z

ϕ

α α ϕ

α α ϕ

= ⋅ = ⋅

= ⋅ = ⋅ ⋅

= ⋅ = − ⋅ ⋅ ⋅

 (9.14)

New lengths of the vector components are calculated as follows:

 

ϕ

α α ϕ

α α ϕ

( )
( )

( )

= ⋅

= ⋅ + ⋅

= ⋅ + ⋅

L Q A

L Q B

L Q C

x

y

z

sin

(cos ) (sin cos )

(sin ) (cos cos )

2 2

2 2

 (9.15)

Foreshortening factors are calculated as ratio of modified lengths to original lengths:

 

ϕ

α α ϕ

α α ϕ

( ) ( )
( ) ( )

( ) ( )

= =

= = + ⋅

= = + ⋅

sin

(cos ) (sin cos )

(sin ) (cos cos )

2 2

2 2

ff L Q L P

ff L Q L P

ff L Q L P

x x x

y y y

z z z

 (9.16)

For projection along Z- and X-axes, angle α remains the same, but angle φ is complemen-
tary to angle φ in first case. Hence, substituting φ with 90-φ Equation (9.16) becomes 
identical to Equation (9.12).

Example 9.5

Find the foreshortening factors for the plane whose normal vector is N 3i 4 j 12k= + +
Normal vector 3 4 12= + +N i j k
Here, 3,  4,  12a b c= = =

Also 12.65,  132 2 2 2 2d b c e a b c= + = = + + =

Thus α α

ϕ ϕ

= = = = = =

= = = = = =

cos / 12/12.65 0.95, sin / 4/12.65 0.32

cos / 3/13 0.23, sin / 12.65/13 0.97

c d b d

a e d e
From Equation (9.16):
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ϕ

α α ϕ

α α ϕ

= =

= + ⋅ =

= + ⋅ =

sin 0.97

(cos ) (sin cos ) 0.95

(sin ) (cos cos ) 0.38

2 2

2 2

ff

ff

ff

x

y

z

 

MATLAB Code 9.5

clear all; clc; format compact;

a = 3; b = 4; c = 12;
d = sqrt(b^2 + c^2); 
e = sqrt(a^2 + b^2 + c^2);
cosA = c/d; sinA = b/d; 
cosB = a/e; sinB = d/e;
R1 = [1, 0, 0, 0 ; 0, cosA, -sinA, 0 ; 0, sinA, cosA, 0 ; 0, 0, 0, 1]; 
R2 = [cosB, 0, sinB, 0 ; 0, 1, 0, 0 ; -sinB, 0, cosB, 0 ; 0, 0, 0, 1]; 
P_YZ = [0, 0, 0, 0 ; 0, 1, 0, 0 ; 0, 0, 1, 0 ; 0, 0, 0, 1];
M = P_YZ * R2 * R1;
ffx = (sinB)
ffy = (cosA^2 + cosB^2*sinA^2)^(1/2)
ffz = (cosA^2*cosB^2 + sinA^2)^(1/2)

9.7  ISOMETRIC, DIMETRIC, AND TRIMETRIC
Suppose the projection is along Z-axis on XY-plane from a plane with normal .= + +N ai bj ck  
Foreshortening factor along each axis from Equation (9.16):

 

ϕ

α α ϕ

α α ϕ

=

= + ⋅

= + ⋅

cos

(cos ) (sin sin )

(sin ) (cos sin )

2 2

2 2

ff

ff

ff

x

y

z

 

If all three factors are unequal, it is referred to as trimetric projection.
This occurs when ,  , a b c  are all different (Marsh, 2005).
If two of the factors are equal to each other then it is referred to as dimetric projection.
This is satisfied if: α, φ = ±45°, ±90°, ±135°
For example, putting α = 45°, φ = 90°, we get 0,  1,  1ffx ffy ffz= = = .
This occurs when one of the conditions , a b b c= =  or =c a  is true (Marsh, 2005).
If all three factors are equal to each other then it is referred to as isometric projection. 

This is satisfied if: α = ±45°, φ = ±35.264°.
For example putting α = 45°, φ = −35.265°, we get 0.8165= = =ffx ffy ffz .
This occurs when = =a b c  is true (Marsh, 2005).
If the projection is along X-axis on YZ-plane then for isometric projection: α = ±45°, 

φ = 90° ± 35.264°.
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Example 9.6

Show that axonometric projections of a unit cube at the origin, on the planes 
x y z 5+ + = , x y 2z 5+ + = , and x 3y 2z 5+ + =  are, respectively, isometric, dimetric, 
and trimetric.
(a)

Original coordinate matrix: 

0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

=



















C

 : 5+ + =P x y z  

 1,  1,  1a b c= = =  

 [1, 1, 1,  5]N = −  

 [1, 1, 1, 0]V =  
From Equation (9.4)

Projection matrix: 

( )= ⋅ ⋅  =



















−



–

1
1
1
0

1 1 1 5M V N VN IT T

 − 





−





































1 1 1 0

1
1
1
5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Simplifying, 

2 1 1 5
1 2 1 5
1 1 2 5
0 0 0 1

=

− −
− −

− −
−



















M

New coordinate matrix: 

5 7 6 4 4 6 5 3
5 4 6 7 4 3 5 6
5 4 3 4 7 6 5 6
3 3 3 3 3 3 3 3

= ⋅ =

− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −



















D M Ch  (homogeneous coordinates)

New coordinate matrix: 

1.67 2.33 2 1.33 1.33 2 1.67 1
1.67 1.33 2 2.33 1.33 1 1.67 2
1.67 1.33 1 1.33 2.33 2 1.67 2

1 1 1 1 1 1 1 1

=



















D  
(Cartesian coordinates)
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 1.41,  1.732 2 2 2 2d b c e a b c= + = = + + =  

 cos 0.71, sin 0.71c
d

b
d

α α= = = =  

 cos 0.82, sin 0.58d
e

a
e

ϕ ϕ= = = =  

 cos 0.82ϕ= =ffx  

 (cos ) (sin sin ) 0.822 2α α ϕ= + ⋅ =ff y  

 (sin ) (cos sin ) 0.822 2α α ϕ= + ⋅ =ffz  

Since all three foreshortening factors are equal, the projection is isometric (Figure 9.8a).

FIGURE 9.8 Plots for Example 9.6 (a) isometric projection (b) dimetric projection (c) trimetric 
projection.
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(b)

 : 2 5+ + =P x y z  

 1,  1,  2a b c= = =  

 [1, 1, 2,  5]N = −  

 [1, 1, 2, 0]V =  

From Equation (9.4)
Projection matrix: 

( )= ⋅ ⋅  =



















−



–

1
1
2
0

1 1 2 5M V N VN IT T

− 





−





































1 1 2 0

1
1
2
5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Simplifying, 

5 1 2 5
1 5 2 5
2 2 2 10
0 0 0 6

=

− −
− −

− −
−



















M

New coordinate matrix: 

5 10 9 4 3 8 7 2
5 4 9 10 3 2 7 8

10 8 6 8 12 10 8 10
6 6 6 6 6 6 6 6

= ⋅ =

− − − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −



















D M Ch  (homogeneous coordinates)

New coordinate matrix: 

0.83 1.67 1.5 0.67 0.5 1.33 1.16 0.33
0.83 0.67 1.5 1.67 0.5 0.33 1.16 1.33
1.67 1.33 1 1.33 2 1.67 1.33 1.67

1 1 1 1 1 1 1 1

=



















D  (Cartesian coordinates)

 2.24,  2.452 2 2 2 2d b c e a b c= + = = + + =  

 cos 0.89, sin 0.45c
d

b
d

α α= = = =  
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 cos 0.91, sin 0.41d
e

a
e

ϕ ϕ= = = =  

 cos 0.91ϕ= =ffx  

 (cos ) (sin sin ) 0.912 2α α ϕ= + ⋅ =ff y  

 (sin ) (cos sin ) 0.582 2α α ϕ= + ⋅ =ffz  

Since two out of three foreshortening factors are equal, the projection is dimetric. 
(Figure 9.8b).
(c)
 : 3 2 5+ + =P x y z  

 1,  3,  2a b c= = =  

 [1, 3, 2,  5]N = −  

 [1, 3, 2, 0]V =  

From Equation (9.4)
Projection matrix: 

–

1
3
2
0

1 3 2 5( )= ⋅ ⋅  =



















−



 −M V N VN IT T

1 3 2 0

1
3
2
5

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







−





































Simplifying, 

13 3 2 5
3 5 6 15
2 6 10 10
0 0 0 14

=

− −
− −

− −
−



















M

New coordinate matrix: = ⋅D M Ch

=

− − − − − − −
− − − − − − − −
− − − − − − − −
− − − − − − − −



















5 18 15 2 3 16 13 0
15 12 17 20 9 6 11 14
10 8 2 4 20 18 12 14
14 14 14 14 14 14 14 14

 (homogeneous 

coordinates)
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New coordinate matrix: 

0.35 1.28 1.07 0.14 0.21 1.14 0.93 0
1.07 0.85 1.21 1.42 0.64 0.43 0.79 1
0.71 0.57 0.14 0.28 1.43 1.29 0.86 1

1 1 1 1 1 1 1 1

=



















D  (Cartesian coordinates)

 3.60,  3.742 2 2 2 2d b c e a b c= + = = + + =  

 cos 0.55, sin 0.83c
d

b
d

α α= = = =  

 cos 0.96, sin 0.27d
e

a
e

ϕ ϕ= = = =  

 cos 0.96ϕ= =ffx  

 (cos ) (sin sin ) 0.592 2α α ϕ= + ⋅ =ff y  

 (sin ) (cos sin ) 0.842 2α α ϕ= + ⋅ =ffz  

Since, none of the three foreshortening factors are equal to each other, the projection 
is trimetric (Figure 9.8c).

MATLAB Code 9.6

clear all; clc; format compact;
p1 = [0,0,0]; 
p2 = [1,0,0]; 
p3 = [1,1,0]; 
p4 = [0,1,0]; 
p5 = [0,0,1]; 
p6 = [1,0,1]; 
p7 = [1,1,1]; 
p8 = [0,1,1];

% isometric projection 
fprintf('Isometric projection : \n');

C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];
a = 1; b = 1; c = 1;
N = [a, b, c, -5];
V = [a, b, c, 0]; 
M = V'*N - V*N'*eye(4);
Dh = M*C;
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D = Dh/Dh(4);
d = sqrt(b^2 + c^2);
e = sqrt(a^2 + b^2 + c^2);
cosA = c/d; sinA = b/d;
cosB = d/e; sinB = a/e;
ffx = (cosB)
ffy = (cosA^2 + sinA^2*sinB^2)^(1/2)
ffz = (sinA^2 + cosA^2*sinB^2)^(1/2)
figure
syms x y z;
f = a*x + b*y + c*z - 5;
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = M*C; D = Dh/Dh(4);
plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on; grid;
plot3(D(1,:), D(2,:), D(3,:), 'r'); 
fimplicit3(f, 'MeshDensity', 2, 'FaceColor', 'y', 'FaceAlpha',0.3); 
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; title('isometric projection');
view(-70, 80);

% dimetric projection
fprintf('Dimetric projection : \n');

C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];
a = 1; b = 1; c = 2;
N = [a, b, c, -5];
V = [a, b, c, 0]; 
M = V'*N - V*N'*eye(4);
Dh = M*C;
D = Dh/Dh(4);
d = sqrt(b^2 + c^2); 
e = sqrt(a^2 + b^2 + c^2);
d = sqrt(b^2 + c^2);
e = sqrt(a^2 + b^2 + c^2);
cosA = c/d; sinA = b/d; 
cosB = d/e; sinB = a/e;
ffx = (cosB)
ffy = (cosA^2 + sinA^2*sinB^2)^(1/2)
ffz = (sinA^2 + cosA^2*sinB^2)^(1/2)
figure
syms x y z;
f = a*x + b*y + c*z - 5;
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = M*C; D = Dh/Dh(4);
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plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on; grid;
plot3(D(1,:), D(2,:), D(3,:), 'r'); 
fimplicit3(f, 'MeshDensity', 2, 'FaceColor', 'y', 'FaceAlpha',0.3); 
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; title('dimetric projection');
view(-70, 80);

%trimetric projection
fprintf('Trimetric projection : \n');

C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];
a = 1; b = 3; c = 2;
N = [a, b, c, -5];
V = [a, b, c, 0]; 
M = V'*N - V*N'*eye(4);
Dh = M*C;
D = Dh/Dh(4);
d = sqrt(b^2 + c^2); 
e = sqrt(a^2 + b^2 + c^2);
d = sqrt(b^2 + c^2);
e = sqrt(a^2 + b^2 + c^2);
cosA = c/d; sinA = b/d;
cosB = d/e; sinB = a/e;
ffx = (cosB)
ffy = (cosA^2 + sinA^2*sinB^2)^(1/2)
ffz = (sinA^2 + cosA^2*sinB^2)^(1/2)
figure
syms x y z;
f = a*x + b*y + c*z - 5;
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = M*C; D = Dh/Dh(4);
plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on; grid;
plot3(D(1,:), D(2,:), D(3,:), 'r'); 
fimplicit3(f, 'MeshDensity', 2, 'FaceColor', 'y', 'FaceAlpha',0.3); 
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; title('trimetric projection');
view(-70, 80);
hold off;

9.8  OBLIQUE PROJECTION
When the direction of parallel projection on the viewplane is oblique i.e. not perpendicular, 
then it is called an oblique projection. The foreshortening factor of line segments parallel to 
the viewplane is 1. When the viewing direction makes an angle of 45° with the viewplane 
then the projection obtained is called cavalier projection. If ,  , 1 2 3V v v v[ ]=  be the viewpoint 
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vector, then a cavalier projection satisfies the condition: 2
3

2
1

2
2= +v v v . Here, the image of the 

projected object looks much thicker than in reality as the foreshortening factor for faces per-
pendicular to the viewing plane is 1. To reduce the thickness, a projection type called cabinet 
projection can be used, which reduces this factor to 0.5. This is possible when the viewpoint 
vector makes an angle of 63.4° with the viewplane. If ,  , 1 2 3V v v v[ ]=  be the viewpoint vector, 
then a cabinet projection satisfies the condition: 42

3
2

1
2

2( )= +v v v . (Marsh, 2005)

Example 9.7

Show that the oblique viewing directions (3, 4, 5) and (3, 4, 10) produce a cavalier and 
cabinet projection of a unit cube on the z = 0 plane, respectively. Verify by computing 
the foreshortening factor of a line perpendicular to the viewplane in each case.
(a)

The projections are on the z = 0 plane, hence N = [0, 0, 1, 0]
For a parallel projection, viewpoint vector V = [3, 4, 5, 0]
Since, it satisfies the identity 2

3
2

1
2

2= +v v v  the projection produced would be a 
cavalier projection.

From Equation (9.4)
Projection matrix: 

( )= ⋅ ⋅  =
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4
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0

0 0 1 0M V N VN IT T
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3 4 5 0

0
0
1
0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Simplifying, 

5 0 3 0
0 5 4 0
0 0 0 0
0 0 0 5

=

−
−

−



















M

Original coordinate matrix of a unit cube: 

0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

=



















C
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New coordinate matrix: 

0 5 5 0 3 2 2 3
0 0 5 5 4 4 1 1
0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5

= ⋅ =

− − − −
− − − − −

− − − − − − − −



















D M Ch

 (homogeneous coordinates)

New coordinate matrix: 

0 1 1 0 0.6 0.4 0.4 0.6
0 0 1 1 0.8 0.8 0.2 0.2
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

=

− −
− −



















D  

(Cartesian coordinates)
Consider a line segment joining the origin to the point (0, 0, 1), which is per-

pendicular to the viewplane and has length 1. The projected coordinates of the 
point is obtained by multiplying M with the point and equals (−0.6, −0.8, 0), 
which indicates that after projection the line segment still has length 1. Hence, 
the  foreshortening  factor is 1, which is as expected for a cavalier projection. 
(Figure 9.9a).
(b)

For a parallel projection, viewpoint vector V = [3, 4, 10, 0]
Since, it satisfies the identity 42

3
2

1
2

2( )= +v v v  the projection produced would be a 
cabinet projection.

From Equation (9.4)

Projection matrix: ( )= ⋅ ⋅  =
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3 4 10 0

0
0
1
0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Simplifying, 

10 0 3 0
0 10 4 0
0 0 0 0
0 0 0 10

=

−
−

−



















M
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Original coordinate matrix of a unit cube: 

0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1

=



















C

1

0.5
0

x

(a)

(b)

1
0

0.5

y

0.5z

0
-0.5-0.5

1

1

0.50

x

1

0.5

y

0

0.5z

0

1

FIGURE 9.9 Plots for Example 8.9 (a) cavalier projection (b) cabinet projection.
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New coordinate matrix: 

0 10 10 0 3 7 7 3
0 0 10 10 4 4 6 6
0 0 0 0 0 0 0 0
10 10 10 10 10 10 10 10

= ⋅ =

− − − −
− − − −

− − − − − − − −



















D M Ch  

(homogeneous coordinates)

New coordinate matrix: 

0 1 1 0 0.3 0.7 0.7 0.3
0 0 1 1 0.4 0.4 0.6 0.6
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

=

− −
− −



















D  

(Cartesian coordinates)
Consider a line segment joining the origin to the point (0, 0, 1), which is perpen-

dicular to the viewplane and has length 1. The projected coordinates of the point is 
obtained by multiplying M with the point and equals (−0.3, −0.4, 0), which indicates 
that after projection the line segment still has length 0.5. Hence, the foreshortening 
factor is 0.5, which is as expected for a cabinet projection (Figure 9.9b).

MATLAB Code 9.7

clear all; clc; format compact;
p1 = [0,0,0]; 
p2 = [1,0,0]; 
p3 = [1,1,0]; 
p4 = [0,1,0]; 
p5 = [0,0,1]; 
p6 = [1,0,1]; 
p7 = [1,1,1]; 
p8 = [0,1,1];
C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];

% cavalier projection 
fprintf('Cavalier projection : \n')
N = [0, 0, 1, 0];
V = [3, 4, 5, 0]; 
M = V'*N - V*N'*eye(4);
Dh = M*C;
D = Dh/Dh(4);
figure
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = M*C; D = Dh/Dh(4);
plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on; grid;
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plot3(D(1,:), D(2,:), D(3,:), 'r'); 
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; 
view(-66, 40);
title('cavalier projection');
% verification
V1 = [0 ; 0 ; 1 ; 1]; 
V1p = M*V1; 
V1pc = V1p/(V1p(4));
V1pcl = sqrt(V1pc(1)^2+V1pc(2)^2+V1pc(3)^2);
ff = V1pcl

%cabinet projection
fprintf('Cabinet projection : \n')
N = [0, 0, 1, 0];
V = [3, 4, 10, 0]; 
M = V'*N - V*N'*eye(4);
C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];
Dh = M*C;
D = Dh/Dh(4);
figure
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = M*C; D = Dh/Dh(4);
plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on; grid;
plot3(D(1,:), D(2,:), D(3,:), 'r'); 
xlabel('x'); ylabel('y'); zlabel('z')
axis equal; 
view(-66, 40);
title('cabinet projection');
% verification
V1 = [0 ; 0 ; 1 ; 1];
V1p = M*V1; V1pc = V1p/(V1p(4));
V1pcl = sqrt(V1pc(1)^2+V1pc(2)^2+V1pc(3)^2);
ff = V1pcl
hold off;

9.9  PERSPECTIVE PROJECTION
Under perspective projection images of parallel lines in space appear to converge to a point 
called the PRP or center of projection (COP). Let the point be ( ,  ,  )A x y z  whose projection 

( ,  , 0)P x yp p  is required on a view plane coinciding with the XY-plane. Let (0, 0,  )R r  be the 
PRP along Z-axis and let O be the origin. It is required to obtain the values of xp and yp in 
terms of x, y, z, and r.

Two cases are possible as follows (1) case-1: where A and R are on opposite side of the 
view plane and (2) case-2: where A and R are on the same side (Foley et al., 1995).
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Case-1: Opposite side of view plane (see Figure 9.10).
From similar triangles RCB and ROQ, CB/OQ = CR/OR.
Here, CB = y, OQ = yp, CR = r − z, OR = r
Substituting: / ( )/= −y y r z rp  i.e. { /( )}= − ⋅y r r z yp

From similar triangles ARB and PRQ, AB/PQ = BR/QR
Here, AB = x, PQ = xp, ( )2 2= − +BR r z y ,   2 2= +QR r yp

Substituting: / ( )  2 2 2 2= − + +x x r z y r yp p  i.e. { /( )}= − ⋅x r r z xp

Case-2: Same side of view plane (see Figure 9.11).
From similar triangles OQR and CBR, CB/OQ = CR/OR
Here, OQ = yp, CB = y, OR = r, CR = r − z
Substituting: / ( )/= −y y r z rp  i.e. { /( )}= − ⋅y r r z yp

From similar triangles PQR and ABR, AB/PQ = BR/QR
Here, PQ = xp, AB = x, 2 2= +QR r yp , ( )2 2= − +BR r z y

FIGURE 9.10 Perspective projection: case-1.

FIGURE 9.11 Perspective projection: case-2.
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Substituting: / ( )2 2 2 2= − + +x x r z y r yp p  i.e. x r r z xp = − ⋅{ /( )}

In each case, 1{ }=
−

⋅ = −



x r

r z
x x z

rp , 1{ }=
−

⋅ = −



y r

r z
y y z

rp , zp = 0

This can be represented in terms of homogeneous coordinates = ⋅P M Axy  as follows:

  

1

0

1

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1/ 1

 

1





















=

−























=

−





































x
y
z

x
y

z
r

r

x
y
z

p

p

p

 (9.17)

Here, Mxy is the required perspective projection matrix on the XY-plane.

Example 9.8

A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is projected on the plane z = 3 using 
perspective projection with the reference point at z = 5. Find its new vertices.

Here, r = 5
Translate view plane to origin: (0, 0,  3)T −
Apply perspective projection on XY-plane: 

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1/ 1

1 0 0 0
0 1 0 0
0 0 0 0
0 0 1/5 1

=

−



















=

−



















M

r

xy

Apply reverse translation: (0, 0, 3)T
Composite transformation: (0, 0, 3) (0, 0,  3)T M Txy⋅ ⋅ −

Original coordinate matrix: 

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

=

− − − −
− − − −

− − − −



















C

New coordinate matrix (homogeneous coordinates): 

(0, 0, 3) (0, 0,  3)

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

4.2 4.2 4.2 4.2 5.4 5.4 5.4 5.4
1.4 1.4 1.4 1.4 1.8 1.8 1.8 1.8

D T M T Ch xy= ⋅ ⋅ − ⋅ =

− − − −
− − − −
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New coordinate matrix (Cartesian coordinates): 

0.71 0.71 0.71 0.71 0.55 0.55 0.55 0.55
0.71 0.71 0.71 0.71 0.55 0.55 0.55 0.55

3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1

=

− − − −
− − − −



















D

New coordinates: (−0.71, 0.71, 3), (0.71, 0.71, 3), (0.71, −0.71, 3), (−0.71, −0.71, 3), 
(−0.56, 0.56, 3), (0.56, 0.56, 3), (0.56, −0.56, 3), and (−0.56, −0.56, 3) (Figure 9.12).

MATLAB Code 9.8

clear all; clc;
k = 3; r = 5;

p1 = [-1,1,1]; 
p2 = [1,1,1]; 
p3 = [1,-1,1]; 
p4 = [-1,-1,1]; 
p5 = [-1,1,-1]; 
p6 = [1,1,-1]; 
p7 = [1,-1,-1]; 
p8 = [-1,-1,-1];
C = [p1' p2' p3' p4' p5' p6' p7' p8' ; 
    1 1 1 1 1 1 1 1 ];

-1
1

0

1

y

1

0

x

0

2z

-1 -1

3

4

5

FIGURE 9.12 Plot for Example 9.8.
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tx = 0; ty = 0; tz = -k; 
T=[1 0 0 tx ; 0 1 0 ty ; 0 0 1 tz ; 0 0 0 1];  
M = [1 0 0 0 ; 0 1 0 0 ; 0 0 0 0 ; 0 0 -1/r 1];
Tr = inv(T);

Dh = Tr*M*T*C;
[rows, cols] = size(Dh);

for i=1:cols
    D(:,i) = Dh(:,i)/Dh(4,i);
end

fprintf('New vertices : \n')

for i=1:8
    fprintf('(%.2f, %.2f, %.2f) \n',D(1,i), D(2,i), D(3,i));

end

%Plotting 
C = [p1' p2' p3' p4' p1' p5' p6' p7' p8' p5' p8' p4' p3' p7' p6' p2' ; 
    1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1];
Dh = Tr*M*T*C;
[rows, cols] = size(Dh);

for i=1:cols
    D(:,i) = Dh(:,i)/Dh(4,i);
end

plot3(C(1,:), C(2,:), C(3,:), 'b'); hold on;
plot3(D(1,:), D(2,:), D(3,:), 'r'); 
plot3(0, 0, 5, 'ro'); grid;
xlabel('x'); ylabel('y'); zlabel('z');
axis equal; hold off;

9.10  CHAPTER SUMMARY
The following points summarize the topics discussed in this chapter:

• Projection is a mapping of a higher-dimensional object to a lower-dimensional view.

• Projection can be of two types: parallel and perspective.

• In parallel projection, projection lines are parallel to each other.

NOTE

size: returns the number of rows and columns of an array
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• In perspective projection, projection lines appear to converge to a point called refer-
ence point.

• Parallel projection can be of two types: orthographic and oblique.

• Parallel orthographic projection can be of two types: multi-view and axonometric.

• Multi-view projections can generate three view types: top, front, and right.

• Axonometric projections can generate three view types: isometric, dimetric, and 
trimetric.

• Oblique projections can generate two types of views: cavalier and cabinet.

• Foreshortening factors are ratios of projected lengths to their original lengths.

9.11  REVIEW QUESTIONS
 1. What is 2D and 3D projection?

 2. What is the difference between parallel and perspective projection?

 3. What is the difference between parallel orthographic and parallel oblique projection?

 4. What is the difference between multi-view and axonometric projection?

 5. What is meant by foreshortening factor? On what parameters does it depend?

 6. What are the differences between isometric, dimetric, and trimetric projection views?

 7. What are the differences between cavalier and cabinet projection views?

 8. Explain the difference between viewline, viewpoint, viewplane, and PRP.

 9. Discuss the two variations of perspective projection.

 10. Explain how foreshortening factors can be used to differentiate between isometric, 
dimetric, trimetric, cavalier, and cabinet projections.

9.12  PRACTICE PROBLEMS
 1. Consider a vector 3 4 12= + +A i j k. Obtain the ratios by which its projected lengths 

have been reduced with respect to its original length, after orthographic projection 
on the three principal planes.

 2. A point P(2, 1, 5) is projected using axonometric projection onto the plane 
2 3 4 24+ + =x y z . Find its projected coordinates.

 3. Determine the perspective projection of the triangle (3, 4), (5, 5), and (4, −1) onto the 
line 5 6 0+ − =x y  from the viewpoint (11, 2).

 4. A cube with center at origin and vertices at (−1, 1, 1), (1, 1, 1), (1, −1, 1), (−1, −1, 1), 
(−1, 1, −1), (1, 1, −1), (1, −1, −1), and (−1, −1, −1) is projected on a plane passing through 
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the origin perpendicular to the line joining points (2, 1, −2) and (3, 3, 2). Find its new 
vertices.

 5. A vector 3 4 12= + +P i j k is projected on XY-plane using perspective projection. Find 
projection coordinates if COP is at distance 2 from origin behind the view plane on 
the Z-axis. Also find foreshortening factors.

 6. Given the following points: A(3, 3, 4), B(6, 10, 10), C(7, 9, 12), D(4, 15, 15), and 
E(5, 6, 8), find out for perspective projection, which points lie on the same projection 
line joining A with COP at (1, 0, 0).

 7. Derive the projection matrix in each case (1) perspective projection onto the 
 viewplane 5 3 2 – 4 0− + =x y z  from the viewpoint (2, −1, 1) and (2) parallel oblique 
projection onto the viewplane 2 3 4 0+ + =y z  in the direction of the vector (1, −2, 3).

 8. The point (3, −2, 4) is projected onto the plane 4 7 10+ − =x y z  such that the projection 
lines are along the direction of the vector 5 6+ −i j k. Find the projected coordinates.

 9. Consider projection of a cube on the XY-plane using (1) 45 ,  35.264 ,α ϕ= ° = − °  
(2)  α ϕ= ° = − °45 , 135 , and (3) α ϕ= ° = − °20 , 70 . Compute projection matrix and 
 foreshortening factors in each case.

 10. Obtain a parallel projection transformation matrix onto the X–Y plane if the 
 direction of the projection lines are along the vector + +ai bj ck.
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Appendix I: MATLAB® 
Function Summary

 1. %: signifies a comment line

 2. ...: continues the current command or function call onto the next line

 3. acos, acosd: calculates inverse cosine in radians and degrees

 4. affine2d: generates a 2D affine transformation of an image

 5. alpha: sets transparency values

 6. asin, asind: calculates inverse sine in radians and degrees

 7. axis: controls appearance of axes, specifies ordered range of values to display

 8. clc: clears workspace of previous text

 9. clear: clears memory of all stored variables

 10. colorbar: creates a color bar by appending colors in the colormap

 11. colormap: specifies a color scheme using predefined color look-up tables

 12. cos, cosd: calculates cosine of an angle in radians and degrees

 13. cross: calculates cross product of vectors

 14. deg2rad: converts degree to radian values

 15. det: calculates determinant of a matrix

 16. diff: calculates derivatives and partial derivatives

 17. disp: displays the symbolic expressions without additional line gaps

 18. dot: calculates dot product of vectors

 19. eval: evaluates an expression

 20. eye: generates an identity matrix of specified size

 21. ezcontour, ezcontourf: generates a contour plot with optional filling
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 22. ezmesh: creates a mesh for the function ( , )z f x y=

 23. ezplot, ezplot3: plots symbolic variables directly in 2D and 3D environments

 24. ezsurf, ezsurfc: combines a surface plot with a contour plot for the function 
( , )z f x y=

 25. figure: generates a new window to display images and plots

 26. fill: fills a polygon with color

 27. fimplicit, fimplicit3: generates a 2D and 3D plot of an implicit function

 28. fliplr: flip array in left–right direction

 29. for: initiates a for loop for printing out all the vertices

 30. fplot, fplot3: plot functions in 2D and 3D environments

 31. fprintf: prints out strings and values using formatting options

 32. grid: turns on display of grid lines in a plot

 33. hold: holds the current graph state so that subsequent commands can add to the 
same graph

 34. imshow: displays an image in a figure window

 35. imwarp, warp: applies geometric transformation to an image for mapping it to a 
surface

 36. int: integrate symbolic expression

 37. interp1: performs 1-D interpolation

 38. inv: computes inverse of a matrix

 39. legend: designates different colors or line types in a graph using textual strings

 40. lightangle: specifies lighting parameters on a surface

 41. line: Draws a line from one point to another

 42. linspace: creates 100 linearly spaced values between the two endpoints specified

 43. mesh: generates a 3D mesh for plotting a function

 44. norm: calculates the magnitude or Euclidean length of a vector

 45. patch: generates filled polygons

 46. pchip: performs piecewise cubic Hermite interpolation

 47. plot, plot3: creates 2D and 3D graphical plots from a set of values

 48. polyder: differentiates a polynomial
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 49. polyfit: generates a polynomial to fit a given data

 50. polyval: evaluate a polynomial at a specified value

 51. projective2d: generates a 2D projective transformation of an image

 52. quiver, quiver3: depicts 2D and 3D vectors as arrows with direction and 
magnitude

 53. rad2deg: converts radian to degree values

 54. roots: finds roots of polynomial equation

 55. scatter: type of plot where the data is represented by colored circles

 56. sign: returns sign of the argument +1, 0, or −1

 57. simplify: simplifies an equation by resolving all intersections and nestings

 58. sin, sind: calculates sine of an angle in radians and degrees

 59. size: returns the number of rows and columns of an array

 60. solve: generates solution of equations

 61. spline: performs cubic spline interpolation

 62. subplot: displays multiple plots within a single figure window

 63. subs: substitutes symbolic variable with a matrix of values

 64. surf: generates a 3D surface for plotting a function

 65. syms: declares the arguments following as symbolic variables

 66. text: inserts text strings at specific locations within a graphical plot

 67. title: displays a title on top of the graph

 68. view: specifies the horizontal and vertical angles for viewing a 3D scene

 69. vpa: displays symbolic values as variable precision floating point values

 70. xlabel, ylabel, zlabel: puts text labels along the corresponding primary 
axes

 71. zeros: generates a matrix filled with zeros
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Appendix II: Answers to 
Practice Problems

Problem Answers

1.1 3 12y x= − −
1.2 0.405 1.272x x− +
1.3 11.67 9.67 , 1.67 5.67 22 2x t t y t t= − = − +
1.4 1.5 2.5 2, 7.5 5.5 12 2x t t y t t= + − = − + +
1.5 0.157 1.57 3.24 1.833 2y x x x= − + − +
1.6 61.38 125.3 61.92 3, 142.3 221 80.68 23 2 3 2x t t t y t t t= − + + = − + − +
1.7 0.0513 0.377 0.92 0.405,A

3 2y x x x= + + −
0.0414 0.0986 0.642 0.498,B

3 2= − + + −y x x x
0.381 6.23 32.3 53.2C

3 2y x x x= − + −
1.8 0.5 1.5 2y k x kx= − −
1.9 0.5k =
1.10 1, 4.07 10.1 5 2,A A

3 2x t y t t t= + = − + −
2, 0.2 2.13 2.93 3,B B

3 2x t y t t t= + = − + − −
3, 3.27 1.53 0.733 4C C

3 2x t y t t t= + = − + + −
2.1 3 /4= −a b
2.2 (i) 5.3 8 0.3 1, 3.9 5.5 0.4 13 2 3 2x t t t y t t t= − + + + = − + + +

(ii) 0.3 2.7 1, 3.1 1.5 3.6 13 3 2x t t y t t t= + + = − + + +
2.3 1 0 3

2 2 0
3

2 0

B

a
a b

b c a
c a c

=

−
− −

− −
− −



















2.4 ( 23.62, 112.92), (3, 4), (1,0), (73.34,120.35)− − −
70 90 17 3, 166 233 79 43 2 3 2x t t t y t t t= − + + = − + −

2.5 2 4 2, 6 4 22 2x t t y t t= − − + = − +
2.6 3 3 3, 10 30 21 43 2 3 2x t t t y t t t= − − + = − + −
2.9 (1,4), (2, 6.5), (6,15)
2.10 (4, 45), (3, 4), ( 2, 3), ( 9, 22)− − − − − −

(Continued )
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3.1

( )

(0 1) 
2 3 (1 2) 

2 5 (2 3) 
4 (3 4) 

x t

t t
t t

t t
t t

=

≤ <
− + ≤ <

− ≤ <
− + ≤ <











( )

0 (0 1) 
1 (1   2) 

2 5 (2 3) 
4 (3 4) 

y t

t
t t

t t
t t

=

≤ <
− ≤ <

− + ≤ <
− ≤ <











3.2 (0 1)
2 (1 2) 0,2B

t t
t t

=
≤ <

− ≤ <







1    (1       2) 
3     (2       3) 1,2B
t t

t t
=

− ≤ <
− ≤ <







2 (2       3)
4 (3       4)2,2B
t t

t t
=

− ≤ <
− ≤ <







3 (3       4)
5 (4       5)3,2B
t t

t t
=

− ≤ <
− ≤ <







3.3

 

1
2

(0 1) 

3 3
2

(1 2) 

1
2

( 3) (2 3)

0,3

2

2

2

B

t t

t t t

t t

=





 ≤ <

− + − ≤ <





 − ≤ <
















1
2

( 1) (1 2)

( 1) 3( 1) 3
2

(2 3)

1
2

( 4) (3 4)

1,3

2

2

2

B

t t

t t t

t t

=





 − ≤ <

− − + − − ≤ <





 − ≤ <
















1
2

( 2) (2 3)

( 2) 3( 2) 3
2

(3 4) 

1
2

( 5) (4 5) 

2,3

2

2

2

B

t t

t t t

t t

=





 − ≤ <

− − + − − ≤ <





 − ≤ <
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1
2

( 3) (3 4)

( 3) 3( 3) 3
2

(4 5)

1
2

( 6) (5 6) 

3,3

2

2

2

B

t t

t t t

t t

=





 − ≤ <

− − + − − ≤ <





 − ≤ <
















 

1
2

( 4) (4 5) 

( 4) 3( 4) 3
2

(5 6) 

1
2

( 7) (6  7) 

4,3

2

2

2

B

t t

t t t

t t

=





 − ≤ <

− − + − − ≤ <





 − ≤ <
















3.4 10 2t
13.3 9.33 0.9332t t− + −

3.5 (5 10 ) (10 4)0 1P t P t⋅ − + ⋅ −
3.6 40P t⋅

(5 ) ( 4)0 1P t P t⋅ − + ⋅ −
3.7

( )

(0 1) 
2 1 (1 2)

0.5 4 3 (2 3) 
0.5 2 6 (3 4) 
4.5 38 74 (4 5) 

3.5( 6) (5 6) 

2

2

2

2

2

x t

t t
t t

t t t
t t t
t t t

t t

=

≤ <
− ≤ <

− + − ≤ <
− + ≤ <

− + − ≤ <
− ≤ <

















( )

2.5 (0 1) 
5.5 16 8 (1 2) 

7.5 36 44 (2 3) 
11 75 122.5 (3 4) 
9 85 197.5 (4 5) 

2.5( 6) (5 6) 

2

2

2

2

2

2

y t

t t
t t t

t t t
t t t

t t t
t t

=

≤ <
− + − ≤ <

− + ≤ <
− + − ≤ <

− + ≤ <
− − ≤ <

















3.8

( )

0.1 (0 1) 
0.1 (1 2)

0.083 1.83 4.58 (2 3) 
0.15 1.9 10.4 (3 4) 

0.392 7.85 33.5 (4 5) 
0.583( 15) (5 6) 

2

2

2

2

2

2

x t

t t
t t

t t t
t t t
t t t

t t

=

≤ <
≤ <

− + − ≤ <
− + ≤ <

− + − ≤ <
− ≤ <

















( )

0.25 (0 1) 
2.5 22 44 (1 2) 

1.25 15.5 49.8 (2 3) 
4.85 82.1 341 (3 4) 

0.858 20.6 122 (4 5) 
0.417( 15) (5 6) 

2

2

2

2

2

2

y t

t t
t t t

t t t
t t t
t t t

t t

=

≤ <
− + − ≤ <

− + ≤ <
− + − ≤ <

− + ≤ <
− − ≤ <

















3.9
( )  

0.333 (0 1) 
0.333 2 2 0.667 (1 2)

3

3 2
x t

t t
t t t t

=
≤ <

− + − + ≤ <







( )
0 (0 1) 

0.166( 1) (1 2)3y t
t

t t
=

≤ <
− ≤ <







3.10

 

0.1 (0 1)
0.2 0.9 0.9 0.3 (1 2) 

0.05 0.6 2.1 1.7 (2 3) 
0.05( 6) (3 4) 

0,4

3

3 2

3 2

3

B

t t
t t t t
t t t t

t t

=

≤ <
− + − + ≤ <

− + − ≤ <
− − ≤ <
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0.05( 1) (1 2) 
0.0472 0.433 1.02 0.728 (2 3) 
0.147 2.48 13.6 23.6 (3 4) 

0.0278( 8) (4 5) 

1,4

3

3 2

3 2

3

B

t t
t t t t
t t t t

t t

=

− ≤ <
− + − + ≤ <

− + − ≤ <
− − ≤ <













4.1

(45) ( 45)
0 1 0
1 0 0
0 0 1

1M R F Rx= ⋅ ⋅ − =
















(90)
0 1 0
1 0 0
0 0 1

2M R Fx= ⋅ =
















4.2 0.5 1 0
0 0.5 2
0 0 1

















4.3 (4.80, 0.60), (7.00, 1.00), (6.80,0.40)− −

4.4 0.98 0 0.1
0 0.98 0.1
0 0 1

















4.5 0 0 5
0 0 4
0 0 1

















4.6 1 0 1
0 1 1
0 0 1

,
0.5 0 1.5
0 1 1
0 0 1

M Ms t=
















=
















4.7
y x

m
c
m

= − −

4.8 0
0

0 0 1

2

a b
ab a b+

















4.9 0.2 0.1 0.3
0.2 0.4 0.2
0 0 1

−
− −

















4.10 (a) (7.00, −4.00), (−2.00, 2.00), (−10.00, −3.00), (−1.00, −9.00)
(b) (7.00, −4.00), (−0.50, 0.50), (−1.67, −0.50), (−0.33, −3.00)

5.1 12.407
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5.2 0.88
5.3 1

3

5.4 18

5.5 (1.15, 2.05), ( 1.15,2.05), (0,0)− −

5.6 2 , 2 , 2 1i j i j y x+ − + = −

5.7 3
10

, 3
10

i j i j− +

5.8 2 3 0, 2x y i j+ − = +

5.9 ,i j i j+ − +

5.10 0.416, (0.48,0.43)

6.1 u is the unit vector along the direction of p

6.2 (4 4 ) (3 )t i t j− +

6.3 3, 2s t= − = −

6.4 2
3

3
1

4
2

x y z− = − + = +

6.5
4

3
3

, 0x y z= − + =

6.6 L is perpendicular to P

6.7 (0,5,2)

6.8 L is parallel to P

6.9 (0, 3,8) (20,21, 68)r t= − + ⋅ −

6.10 0.62 0.78 0
0.78 0.62 0
0 0 1

,
0.78 0.62 0
0.62 0.78 0
0 0 1

 
−
− −

















−
− −

















7.1 ( 0.32,3.45,0), (0.89,2.73,1.93)−

7.2 ( 0.37 , ,1.37 )k k k− −

7.3 0.65 0 0.76 0.41
0 1 0 0

0.76 0 0.65 1.11
0 0 0 1

k

k

−

−



















7.4 (4.28,0.67,2.38)

7.5 1/3 2/3 2/3 0
2/3 1/3 2/3 0
2/3 2/3 1/3 0
0 0 0 1

− −
− −
− −
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7.6 1/9 4/9 8/9 8/9
4/9 7/9 4/9 4/9
8/9 4/9 1/9 8/9
0 0 0 1

−
−

−



















7.7 (2, 7, 1), (2, 7, 0), (3, 10, 0), (3, 10, 1), (0, 0, 1), (0, 0, 0), (1, 3, 0), (1, 3, 1)

7.8 0.7454 0.2981 0.5963 0
0 0.8944 0.4472 0

0.6667 0.3333 0.6667 0
0 0 0 1

− −
−



















0.7454 0.2981 0.5963 0
0 0.8944 0.4472 0

0.6667 0.3333 0.6667 0
0 0 0 1

−

−



















0.7454 0.2981 0.5963 0
0 0.8944 0.4472 0

0.6667 0.3333 0.6667 0
0 0 0 1

−
− −



















7.9 0.8165 0 0.5774 0
0.4082 0.7071 0.5774 0
0.4082 0.7071 0.5774 0

0 0 0 1

−
− −



















8.1 1, 0, 12( )− − −s t

8.2 5 2 102 2u v+ ≥

8.3
, ,

2 2

+






u v u
a

v
b

8.4 0.6 0.8z x y= +

8.5 4 12 2i j k− − +

8.6 153
5

π

8.7 512
21

π

8.8 0.0221 0.4204 0.9071 , (0.892, 0.45, 0.0369), 41.094( )− − °

8.9 0.2673 0.8018 0.5345 , 70.89( )− − − °

8.10 33.3%
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9.1 0.3846, 0.9515, 0.9730

9.2 (1.7931,0.6897,4.5862)
9.3 (0.2632,4.6842), ( 0.3333,7.6667), (1.6053, 2.0263) − −

9.4 ( 1.24,0.52,0.05), (0.67,0.33, 0.33), (0.86, 1.29,0.43), ( 1.05, 1.10,0.81), ( 0.86,1.29, 0.43),

(1.05,1.10, 0.81), (1.24, 0.52, 0.05),( 0.67, 0.33,0.33)

− − − − − − −

− − − − −

9.5 (0.4286,0.5714,0), 0.1429, 0.1429, 0

9.6 ,C E

9.7 1 6 4 8
5 8 2 4

5 3 9 4
5 3 2 15

,

5 2 3 4
0 9 6 8
0 6 4 12
0 0 0 5

− − −
− − −

− − −
− −



















−
− − −

−



















9.8 (5.4242, 1.5152,1.0909)−

9.9 0.8165 0.4082 0.4082 0
0 0.7071 0.7071 0
0 0 4 0
0 0 0 1

, 0.8165, 0.8165, 0.8165−


















0.7071 0.5 0.5 0
0 0.7071 0.7071 0
0 0 4 0
0 0 0 1

, 0.7071, 0.8660, 0.8660

−
−



















−

0.3420 0.3214 0.8830 0
0 0.9397 0.3420 0
0 0 4 0
0 0 0 1

, 0.3420, 0.9931, 0.9469−


















−

9.10 0 0
0 0
0 0 0 0
0 0 0

c a
c b

c

−
−

−
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Index

A

Affine transformation, 155
Ambient reflection, 332
Approximating spline, 77
Area of revolution, 317
Area under curve, 183
Axonometric projection, 369

B

Basis matrix, 10, 43, 61, 64, 67, 69
Bernstein polynomials, 63
Bezier spline, 63
Bezier surface, 293
Blending functions, 41, 46
B-spline, 77, 88, 102, 105, 108

C

Cabinet projection, 383
Cardinal spline, 57
Cartesian equation, 215, 218
Catmull-rom spline, 61
Cavalier projection, 382
Centroid, 189
Constraint matrix, 5, 36
Continuity condition, 26, 32
Control points, 1, 88, 287
Coordinate system, 133–135, 167, 241–242
Cox de boor algorithm, 77, 79, 90, 109–110
Critical points, 172
Cross product, 214
Cubic spline, 18, 22
Curve fitting, 192
Curve segments, 25, 31

D

Diffused reflection, 332
Dimetric projection, 375

Direction cosine, 210
Dot product, 212

E

Extruded surface, 307

F

Fixed-line reflection, 149
Fixed-point rotation, 145, 254
Fixed-point scaling, 143
Foreshortening factors, 371

G

Geometry matrix, 10, 43, 69

H

Hermite spline, 53
Homogeneous coordinates, 135, 225, 229, 354
Hybrid spline, 41, 52

I

Identity matrix, 355, 361
Implicit surface, 298
Interpolating spline, 1, 46
Interpolation, 192
Isometric projection, 375

K

Knot vector, 77, 102

L

Length of curve, 181
Linear spline, 4, 10
Local control, 77
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M

MATLAB, xi
MATLAB function summary, 395
Multi-view projection, 366

N

Non-uniform b-spline, 77, 108
Normal, 176, 234, 312

O

Oblique projection, 353, 356, 361, 382
Open uniform b-spline, 105
Orthographic projection, 353, 356, 361

P

Parallel projection, 353, 355, 366
Parametric equations, 3, 10, 15, 22, 31
Parametric surface, 288, 293
Perspective projection, 353, 355, 361, 387
Perspective transformation, 159, 324, 361
Piecewise spline, 25, 31
Point of inflection, 172–173
Polynomial, 1, 3–4
Position vector, 207–208, 215, 218
Primary axis, 134, 222, 241
Primary plane, 241, 353
Projection, 353
Projection reference point, 353
Projection vector, 355

Q

Quadratic spline, 13, 15

R

Reflection, 147, 149, 277
Right-handed coordinate system, 133, 241
Rotation, 140, 145, 248, 254, 256, 270, 273

S

Scaling, 138, 143, 245, 251
Shape parameter, 57, 61
Shear, 152, 155, 280
Spatial domain, 4, 13, 18
Specular reflection, 333
Spline conversion, 69
Spline properties, 171
Sub-division ratio, 15, 22
Surface, 288
Surface area, 317
Surface illumination, 329
Surface of revolution, 308, 317

T

Tangent, 176, 234, 312
Texture mapping, 320
3D plotting functions, 335
3D projection, 353
Transformation matrix, 134–135
Translation, 136, 241
Trimetric projection, 375
2D plotting functions, 199
2D projection, 354

U

Uniform b-spline, 78, 89, 105
Unit vector, 208

V

Vector alignment, 222, 264
Vector equation of line, 215
Vector equation of plane, 218
Vectors, 207
Viewing direction, 334, 382
Viewing transformation, 163
Viewplane, 361
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