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Foreword 
We are living in a rapidly changing world. Buildings serve multiple purposes, agri-
cultural parcels contain various crops, and forests are reduced in size and compo-
sition. Spatial information on land use and land cover is coming to us in various 
ways, and in particular remote sensing images are easily available for that purpose. 
Their large resources, being really big data, can be freely assessed, but extracting the 
essential relevant information requires solid and well developed machine learning 
methods. In addition, we are aware that the world outside is often largely uncertain, 
or fuzzy. It requires fuzzy machine learning algorithms to respect this uncertainty 
after classif cation. 

This book contains a comprehensive overview of the latest developments in fuzzy 
methods for remote sensing image classif cation. Dr. Anil Kumar together with 
his colleagues Dr. Priyadarshi Upadhyay and Dr. A. Senthil Kumar have made a 
remarkable effort to expand and test the available machine learning methods for 
fuzzy classif cation. As outstanding experts in their f eld, they have made the book at 
a high scientif c standard by providing concepts and equations applied to a range of 
practical studies. In an appendix the book contains the algorithms that are needed in 
the era of big data for an eff cient classif cation of fuzzy objects. 

At this place, I can complement the authors with their achievement and can hap-
pily recommend the book to all who are interested in identifying fuzzy information 
from space, in short: to classify fuzzy objects from remote sensing images. 

Dr. IR A. Stein (Alfred) 
Professor 

Faculty of Geo-Information Science and Earth Observation (ITC) 
University of Twente 

The Netherlands 

This  book covers remote sensing image classif cation from multi-sensor and for 
different topographic and environmental conditions. Modern machine learn-
ing approaches are used for classif cation into meaningful classes. Traditional 
approaches, e.g., statistical and fuzzy logic classif ers are covered with wide spec-
trum. In addition, modern classif cation approaches based on convolutional neural 
networks (CNN) with or without long short term memory (LSTM) layers to incorpo-
rate recurrent neural network (RNN) f avor are examined with model identif cation 
obtained by deep leaning methods. The book is a fresh presentation of the subject; it 
suits established researchers and graduate students as well. 

Dr. Aly A. Farag, Fellow, IEEE and IAPR 
Professor of Electrical and Computer Engineering 

Director, Computer Vision and Image Processing Laboratory 
University of Louisville, Kentucky 



 
  

 
 
 
 
 
 

 

xii Foreword 

Many titles on machine learning are available in the market that cover the f eld in an 
excellent manner, like Simon Haykin’s Neural Networks and Learning Machines and 
Chris Bishop’s Pattern Recognition and Machine Learning, among others. However, 
these titles cover the probabilistic approaches to dealing with the problems of clas-
sif cation and regression, while fuzzy set theory based literature that is increasing 
in volume is not given its due place in the machine learning space. It  is here that 
this book by Drs. Anil Kumar, Priyadarshi Upadhyay, and A. Senthil Kumar f lls 
an important gap and provides ample complementary material that will immensely 
benef t the Master’s/Doctoral student community and faculty members/researchers. 

The material like possibility theory based c-means (PCM) and its variants for clus-
tering, hybrid classif ers, temporal data processing and analysis using fuzzy approaches, 
fuzzy error matrix, etc. are all now available at one place treated in a unif ed manner 
by the authors for the benef t of the reader who would have been looking into multiple 
books/journals for a coverage of these topics. Given the excellent contributions made 
by the authors to the development of remotely sensed image analysis, the applications 
of the machine learning techniques in a fuzzy set theoretic framework covered in this 
title will provide useful insights to the reader that are not easily found elsewhere. 

The authors introduce machine learning in the frst chapter, followed by ground 
truth  collection in the second chapter. Again, with the exception of Dr. Russell 
Congalton’s book on Accuracy Assessment, the systematic approach to ground truth 
collection for  training the classifer and to test and validate the results covered in 
this chapter is rarely found elsewhere in detail. Chapter 3 deals with programmed 
classifers like FCM, PCM, and others, while Chapter 4 deals with learning based 
classifers like artifcial neural network (ANN), convolutional neural network (CNN), 
recurrent neural network (RNN), long short term memory (LSTM), deep learning 
(DL) principles, etc. Chapter 5 deals with hybrid classifers where fuzzy set theoretic 
principles are combined with the learning classifers. 

Accuracy values are routinely reported even in high prof le journal publications 
merely as overall accuracy, kappa coeff cient, or user/producer accuracies. There are 
several other important ways to report accuracy such as fuzzy error matrix and 
related operators, entropy method, correlation coeff cient, receiver operating charac-
teristics (ROC), and a few others. The icing on the cake is the software tool sub-pixel 
multi-spectral image classif er that has built-in many of the algorithms discussed in 
the book. This will help the reader explore the algorithms using different datasets 
and make comparisons with techniques implemented in commercial software pack-
ages and in public archives like git-hub. 

Overall, this book is a very welcome addition to the machine learning literature, 
and I recommend that it is seen on the bookshelf of every practitioner/student. Given 
the expertise of the authors in remote sensing, it is expected that the practitioners of 
remote sensing related image/data analysis will highly benef t from using this book, 
but the tools and techniques presented in the book are equally applicable in other 
domains, and therefore benef cial to students and researchers from those domains. 

Dr. Krishna Mohan Buddhiraju 
Professor of Centre of Studies in Resources Engineering, IIT 

Bombay, India 



 

 
 
 
 
 

Foreword xiii 

Information on natural resources is vital for the growth and sustenance of human 
civilization. From time immemorial, this task has been done through very crude 
methods, such as by walking through an area to data collection through low orbiting 
Earth Observation (EO) satellite data. Since 1972, satellite data has provided a con-
tinuous time series data of the whole world. With the passage of time, the advent of 
computer and its fast computing characteristics, remote sensing data and its analysis 
has undergone tremendous change and improvement. The f rst EO sensors provided 
data at a very coarse resolution where the pixel size was nearly equal to the size of 
a football f eld, whereas in this modern era, the minimum size of the pixel is close 
to 30 cm. 

Earlier, it was thought that f ner the resolution of satellite data better would be 
the information. Every advancement has both its advantages and disadvantages. The 
interpretation and analysis procedure required an improvement. From simple sta-
tistical methods, the trend shifted towards incorporation of the human mind and its 
thinking process, i.e., artif cial neural network to deep learning and now to machine 
learning and ensemble classif ers. The need for learning has become important. 
More information means more knowledge and more knowledge means better under-
standing. Interpretation approaches have changed. Thousands of human hours have 
been spent to analyze data with different perspective. The ocean of knowledge is get-
ting bigger and it has also become deeper. The remote sensing analysts are looking 
forward to a scenario where as soon as the data arrives, it is analyzed and presented 
in the desired form to the user community – an ideal concept. To achieve such a 
state, it requires high and eff cient algorithms to understand the data, correlate to the 
existing knowledge, and if possible further update the knowledge and improve the 
learning. 

This book, Fuzzy Machine Learning Algorithms for Remote Sensing Image 
Classif cation being published by CRC press, is one giant leap in learning and under-
standing analysis, in particular, satellite data. The method of introduction to different 
approaches ref ects the fundamental knowledge of the authors. Each topic has been 
dealt with utmost care keeping in mind the requirements of the user community. The 
journey of SMIC has been coolly charted and maneuvered by Dr. Anil Kumar’s own 
career and his constant urge to improve and accommodate new approaches has made 
it into a power tool. It is time that this software is made available to the user com-
munity. Dr. Priyadarshi Upadhyay has been a constant learner in his area of expert 
and with one of his Guru Dr. Anil Kumar, has embarked on a beautiful journey for 
quest of knowledge. 

I am extremely delighted to see that the two of my rose buds, Dr. Anil Kumar 
and Dr. Priyadarshi Upadhyay from my garden have now fully bloomed and the 
fragrance of the same has started to spread worldwide. My best wishes to both of 
them and may the beacon of knowledge glow brighter in their hands. Dr. A. Senthil 
Kumar is a well-known person in the area of image processing and my whatsoever 
interaction with him has always left me more knowledgeable. 

Congratulations to all the authors and the book for their efforts and hard work. 



xiv Foreword 

Thanks to CRC Press for having boosted the morale of the authors by accepting 
to publish their work. 

GOD bless all of humanity 
Dr. Sanjay Kumar Ghosh 

Professor and Head 
Department of Civil Engineering 

Indian Institute of Technology Roorkee 
Roorkee, India 

‘ask not what your country can do for you, ask what you can do for your 
country’   ....John F. Kennedy 
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Preface 
With growing utilization of satellite based earth observation data in environmental 
and socio-economic management applications, the remote sensing users community 
faces an uphill task of learning a variety of image classif cation methods reported 
in the literature. Unfortunately, description of these classif cation methods has been 
found suited to graduate students with computer science or information technology 
background and not really well suited to a large user community with diverse back-
grounds. Moreover, the methods described are largely based on simulated or outdoor 
images and do not  address the complexity and high data handling requirements, 
typically of satellite images. 

The purpose of this book is to cover state of the art image classifcation tech-
niques in discrimination of earth objects from remote sensing data. In particular, 
the emphasis is on advances in fuzzy based learning methods for preparing land 
cover classifcation maps. The primary emphasis in this book is to provide practi-
cal experience to the usage of the technology such as preparation of ground truth 
data, mono/ bi-sensor temporal data processing to study specifc crop/vegetation 
mapping, crop insurance, forest fre mapping, stubble burning, and post disaster 
damage analysis while incorporating temporal spectral indices databases generated 
using traditional or class based sensor independent approaches. This book covers 
from basic methods to the latest ones – fuzzy based machine learning approaches 
such as convolutional neural  networks, recurrent neural networks, etc. – in detail for 
preparing land cover maps. All fuzzy based machine learning algorithms covered in 
this book have been included in an in-house developed tool called SMIC: sub-pixel 
multi-spectral image classifer . 

Among the various end products derived from this information, land use/land 
cover maps have a great impact upon monitoring, planning, and development of 
resources in individual countries as well as for a region shared by multiple coun-
tries. In recent years, the large volumes of remotely sensed data acquired by global 
space agencies collected through various earth observation sensors with wide 
application areas are easily available on a global scale. One of the applications 
of remote sensing data is thematic map preparation. To achieve this, users face 
challenges like handling mixed pixels, removing isolated pixels or pepper and salt 
noise, as well as incorporating temporal information for specif c class identif ca-
tion. Advancement in machine learning enables an eff cient and effective way of 
extracting geospatial information from remote sensing data. Further, this book 
will also discuss about some unique applications of specif c class mapping such as 
a specif c crop, disaster effected area mapping, etc. with the use of temporal multi-
sensor remote sensing data. 

Application of fuzzy machine learning algorithms can provide highly realis-
tic classif cation results while mapping specif c classes of interest. These machine 
learning algorithms can handle mixed pixel problems through a soft computing 
approach, non-linear modeling of classes while applying the kernel concept and 



 
 
 
 

  
 

 

 
 

 
 
 
 

 
 

xvi Preface 

identif cation of specif c classes of interest through the learning algorithm as well 
as possibilistic based fuzzy classif ers. Independently, the fuzzy classif ers have suc-
ceeded in addressing the mixed pixel problem; however, these are not able to resolve 
the isolated pixel problem, which is then addressed by providing spatial contextual 
information to the classif er. The neighborhood pixel information in the form of con-
textual or local information can be incorporated in fuzzy machine learning algo-
rithms to handle noisy pixels as unclassif ed pixels. Markov random f eld (MRF) and 
adaptive local information have been identif ed as robust techniques to model spatial 
contextual information. 

Chapters in the book are arranged in a manner to explain use of machine learn-
ing algorithms for image classif cation in a systematic manner, to be understood by 
the professionals and students conveniently. At the end of each chapter, a selected 
list of references is also given. Chapter 1 provides the introduction on the basics of 
machine learning algorithms and pattern recognition as well as their capabilities for 
earth observation. Chapter 2 deals with the importance and necessary ground truth 
data for training and validation purposes. 

Since this book aims at realizing fuzzy based classif ers like fuzzy c-means 
(FCM), possibilistic c-means (PCM), noise clustering (NC), as well as hybrid 
fuzzy classif ers by incorporating spatial contextual information into basic fuzzy 
based classif er objective function, the middle chapters of the book describe 
various types of classif cation algorithms such as fuzzy classif ers, learning based 
classif ers, and hybrid fuzzy classif ers. Chapter 3 deals with an introduction about 
clustering  algorithms and various types of fuzzy and noise clustering based clas-
sif ers. Chapter 4 offers details on the neural and learning based classif ers. It also 
includes the upcoming machine learning algorithms, like convolutional neural net-
work (CNN), recurrent neural networks (RNN), long short term memory (LSTM), 
and deep learning which can generate much better classif ed data from remote 
sensing images. 

Chapter 5 covers various hybrid classif ers generated using the hybridization of 
methods such as entropy, similarity and dissimilarity, kernel, and contextual with 
base fuzzy based classif ers. The contextual information has been included through 
MRF as well as using some local convolution methods. 

The  classif cation algorithms discussed in this book are supervised classif ers, 
therefore exposure about collection of manual training data as well as region grow-
ing methods with large number of similarity as well as dissimilarity methods have 
been covered. The  advantage of region growing methods on training data is that 
the homogeneity in training data increases. The importance of hard as well as soft 
fraction outputs has also been explained. 

Chapter 6 of the book is devoted to use of the multi-temporal data along with 
the fuzzy based classifers, as well as deals with the specifc land cover extractions. 
Chapter 7 is concerned with the assessment of accuracy methods for classifcation. 
Both relative and absolute methods of accuracy have been discussed. The assess-
ment methods of soft classifed outputs through fuzzy error matrix (FERM) with 
single as well as composite operator have been included as a relative measure of 
accuracy. The entropy, correlation coeffcient, RMSE, and ROC are absolute meth-
ods of accuracy. 



Preface xvii 

Appendix A1 is dedicated for the demonstration of SMIC: sub-pixel multi-spectral 
image classif er, in-house tool, as supervised classif ers. All fuzzy based classif ers 
mentioned in this book have been incorporated in SMIC. Possibilistic based classi-
f ers have been further implemented in the SMIC tool to process temporal remote 
sensing data with minimum human intervention to extract specif c classes of interest 
like specif c crops, their initial sowing stage mapping or harvesting stage mapping, 
and application in specif c damage area mapping. Appendix A2 covers eleven case 
studies. These case studies include fuzzy based algorithms studies with similari-
ties measures, non-linearity handling through kernel approaches, controlling noise 
through MRF and local convolution approaches, and the semi-supervised training 
approach. Optical and microwave sensors as bi-sensor temporal data approach for 
paddy f elds mapping is also discussed. Specif c crop cases included were sugarcane 
ratoon/plant and paddy burnt f elds, and it can be applied to identify wheat, mus-
tard, cassava, ground nut, fennel, cumin crops, etc. as well as post disaster damage 
identif cation. 

BCD in Geometry of life    
Geometry of life has two f xed points, 

Birth (B) and Death (D), in between choice (C), 
....that’s only in our hand.... 



Unless what is within you comes out.... 

You cannot make an impact on yourself nor others.... 

Sharpening which is painful bring out what is within you to make an impact.... 

To become a masterpiece, life sculptor will give hard knock, trouble, failure.... 

Question is whether ready to bear pain from life 

sculpting tools.... 

We are prone to make mistakes.... 

But have opportunity, chance to correct them.... 

& 

Learn from mistakes.... 
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Our Gratitude with three R’s 
Recognizing - Thankful to all those who have made difference in our life! 
Remembering to all those who have done good for us - We Mean It! 
Reciprocating back for all good done for us.  
Thankful to all through three R’s of Gratitude 
First of all, Praise to God, the creator, destroyer, and the cherisher of the universe. 

The thought of writing this book was to share practical experience using fuzzy and 
learning based classif cation algorithms in machine learning domain for remote 
sensing data as well as temporal data from mono-sensor and multi-sensor concepts 
for specif c class identif cation. In this book, detailed, state of the art mathematical 
descriptions of fuzzy based as well as learning based algorithms in machine learning 
domain has been covered. 

This  book in your hands is the essence of blessings of gurus, elders’ support, 
encouragement, help, advice, and corporation of many people – students, friends, 
and family members. In  the sequel that follows, some names may or may not be 
there, but their contributions have all been important. 

Authors, having been working in ISRO centers, got inspiration encouragement 
and support from top management starting from the Chairman, ISRO, other digni-
taries of ISRO (HQ) and for this we are heartily thankful. 

Dr. A. Senthil Kumar sincerely acknowledges Sri. A.S. Kiran Kumar, former 
chairman, ISRO, for his constant encouragement in pursuing this academic exercise. 

We are also thankful to Dr. P. S. Roy, Dr. V. K. Dadhwal, Dr. Y. V. N. Krishna 
Murthy, and Dr. Prakash Chauhan, leaders of IIRS. 

Dr. Priyadarshi Upadhyay is thankful to Dr. M.P.S. Bisht, Director Uttrakhand 
Space Application Center, and other colleague scientists for constant encouragement 
of writing this book. 

We are thankful to Dr. V. K. Dadhwal for motivated to explore how to incorporate 
prof le information of crop as well as explained how to integrate SAR data with opti-
cal data in temporal domain. 

We are thankful to Dr. Y. V. N. Krishna Murthy, for learning about clarity and to 
be crisp in life. 

Dr. Anil Kumar and Dr. Priyadarshi Upadhyay are highly grateful to Prof 
S. K. Ghosh, Head of Department, Civil Engineering, Indian Institute of Technology 
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1 Machine Learning 

1.1 INTRODUCTION 

Pattern recognition is a very important feld having application in texts, voices, and 
image-based pattern mapping. In recent times, the automation approaches have been 
incorporated in place of visual methods. These approaches were initially called 
clustering or classifcation. Over time, these pattern recognition approaches have 
changed in many ways. In  the present scenario, these methods are called machine 
learning approaches and can be supervised or unsupervised. In case of the unsuper-
vised approach, output does not have a label, while the supervised approach has a 
label in output. 

Number of terms such as pattern recognition, machine learning, data mining and 
knowledge discovery in databases (KDD) etc. show lots of overlap in def nitions, and 
hence are diff cult to differentiate. Today machine learning has become a common 
term for learning methods and originates from artif cial intelligence (Nguyen et al., 
2019) while KDD is basically for data storage and access, scaling algorithms to mas-
sive datasets and interpreting results. Data mining is the practice of examining large, 
pre-existing databases in order to generate new information (Qiu et al., 2016). 

Machine learning develops the ability in machines to learn automatically and fur-
ther augment through self-experience without much human support or instruction. 
In machine learning, accessibility to data is provided so that machines learn themselves. 
Learning of machines requires observations of data such as direct experience or instruc-
tions to extract patterns in data to be able to make better decisions. The basic idea is 
to allow computers to learn on their own, without human intervention, and take action 
accordingly (Schmidt et al., 2019). Based on training methods, the machine learning 
algorithm can be categorized as supervised or unsupervised (Musumeci et al., 2019). 

1.2  MACHINE LEARNING APPROACHES 

Machine learning algorithms are capable to work in supervised mode, generally 
learned in the past using labeled data to predict future events. In this mode, while 
working with a known training dataset, the trained learning algorithm handles 
unknown data to label it. After suff cient training, the system can provide a label to 
any new unknown input. Machine learning algorithms can compare expected output 
with actual output and f nd errors to make modif cations in the model accordingly. 

On the other hand, unsupervised machine learning algorithms are used when the 
training samples with labels are not available. An unsupervised learning study tries 
to divide data into different clusters without labels. The application of unsupervised 
learning with clustering while processing remote sensing data is generally to know 
about how many maximum classes can be extracted from given remote sensing 
images. In the case of learning algorithms, it tries to draw inferences using datasets 
for describing hidden structures from unlabeled sample data. 



 

 
 
 

2 Fuzzy Machine Learning Algorithms 

The third type of learning algorithm is semi-supervised machine learning algo-
rithms, also called reinforcement learning. As their name suggests, these algorithms 
come in between supervised and unsupervised learning types. In the semi-supervised 
approach, a small amount of labeled data and a large amount of unlabeled data are 
used. These types of learning methods improve system’s learning accuracy consider-
ably. Though acquiring large training sample data is costlier and time consuming, 
the semi-supervised learning approaches are capable to reduce costs and time. 

Reinforcement machine learning algorithms produce action and discover errors 
or rewards while interacting with their environment. The most relevant characteris-
tics of reinforcement learning are trial-and-error search as well as delayed reward. 
The reinforcement method allows machines to automatically determine the features 
from the data in order to maximize their performance. To learn which action is a 
better agent requires a reward feedback, which is known as the reinforcement signal. 

Machine learning methods are capable of processing large amounts of data. 
Further, they provide a faster result with higher accuracy; however, during training it 
may also require additional time and resources with large amounts of training data 
for proper training. Integrating machine learning with artif cial intelligence and cog-
nitive technologies can bring more effectiveness in processing large volumes of data. 

Machine learning, which is implemented as pattern recognition, provides a label 
to a given unknown input value. This is analogous to statistical based algorithm in 
statistics. Classif cation is one of the examples of pattern recognition, which tries to 
assign each input value to a class while pattern recognition is a broader term which 
covers a more general problem that includes other types of outputs as well. 

So far various categories of machine learning algorithms have been devel-
oped such as statistical, fuzzy based, learning based, and statistical cum learning. 
Statistical based algorithms were developed and applied for thematic map generation 
extensively in the last few decades. These algorithms have been applied extensively 
in remote sensing data processing in supervised as well as in unsupervised modes. 

Later fuzzy based algorithms came while handling the mixed pixel issues. Mixed 
pixels are caused by having two or more classes in a particular pixel (Foody 1996a, 
1996b). This generally occurs due to mismatch of class size with pixel size or a pixel 
representing a boundary of classes. Fuzzy based classif ers are of two categories; 
one follows the probability rule and the other follows possibilistic rules. The former 
cannot give good results in the presence of untrained classes. In such cases, the pos-
sibilistic fuzzy classif ers are successful to handle untrained classes. Other issues 
come while classes have non-linear separation. This non-linearity between classes 
can be handled while using the kernel concept in fuzzy based classif ers. Kernels 
belong to different categories such as local, global, etc. However, this takes data to 
higher dimensionality while the classes’ separation becomes linear. Another issue is 
off-isolated noisy pixels; these pixels can be handled while incorporating contextual 
information. It can be achieved through a Markov Random Field (MRF) or with a 
local convolution approach added in a base classif er such as fuzzy based. 

Fuzzy based algorithms use the mean of a class as a reference for criteria calcula-
tion which is to be used for classifcation. While focusing on learning based classifers, 
each sample contributes in weight adjustment during training of learning algorithms. 
Therefore, these learning based algorithms give better results in some cases. Learning 



 
 
 

 
 
 

 

 

 
 
 

 
 
 
 

 
 
 

3 Machine Learning 

based algorithms start like artifcial neural network (ANN), convolutional neural net-
work (CNN), recurrent neural network (RNN), and hybrid approaches, etc. 

Learning algorithms have various parameters as well as layers to have free param-
eters. Overall, free parameters can be various layer combinations, layer size, learning 
rate, momentum, activation functions, types of pooling layers, required epochs, etc 
(Gu et al., 2018). Therefore, it becomes important to select as well as to optimize the 
learning algorithm parameters. In the present scenario there are machine learning algo-
rithms belonging to different domains. These can be statistical, tree structure based, 
fuzzy types, learning based, statistical based, and object based algorithms. Statistical 
based algorithms are based only on statistical parameters. These statistical parameters 
can be mean, mode, minimum, maximum, variance–covariance, etc. Very basic statis-
tical algorithms known are c-means, parallelepiped, and maximum likelihood classi-
fers. The c-means algorithm works while using the mean vector of a cluster or class. 
It calculates the distance parameter between unknown vectors to the mean of a cluster/ 
class. The unknown vector has a minimum distance with respect to mean of cluster/ 
class, assigned to that cluster/class. Here cluster means group generated through unsu-
pervised classifcation approach. Cluster does not have the label of a class. The advan-
tage of unsupervised classifcation is to fnd out how many maximum classes can be 
identifed from given images for the same area. But in the case of supervised classifca -
tion, the label gets assigned to a class which comes from the training or signature data. 

A c-means algorithm uses only a mean statistical parameter, which is a very simple 
parameter. This mean parameter can be estimated in an unsupervised approach or 
can also be calculated in a supervised classif cation approach. Due to this reason, 
c-means algorithm can be used either as a supervised or as an unsupervised algo-
rithm. The parallelepiped classif er works on the basis of mean as well as standard 
deviation or minimum as well as maximum parameters of a class. These parameters 
are used to create a box of a class, and any unknown vector that falls inside the box is 
labeled to that class. This classif er does not work with a single parameter but requires 
two different parameters. Since its parameters cannot be estimated through an unsu-
pervised approach, this classif er cannot be used as an unsupervised classif er. 

In the case of maximum likelihood classif er (MLC), if distance norm is used as 
Mahalanobis, then the parameters mean and variance–covariance have to be com-
puted. Due to computation complexity of too many parameters, it cannot be applied 
as an unsupervised classif er. However, if distance norm is Euclidian in place of 
Mahalanobis, then MLC can be applied as an unsupervised classif er, as in that case 
only mean has to be estimated. 

In the case of fuzzy based classifers, most algorithms use only distance measures, so 
these can also be used as unsupervised classifers. However, in some cases of the fuzzy 
based classifers, fnal membership values are computed in two steps; therefore, such 
classifers can be used as unsupervised classifers with some length y computation. 

On the other hand, the decision tree (DT) based classif ers require training data 
for generating rules; therefore, DT based classif er can be used only as supervised 
classif ers while learning based classif ers (ANNs, for example) are specif c and can 
be used as either supervised or unsupervised. The specif c learning approach in these 
classif ers works in supervised or unsupervised mode only. Still, most of the learning 
based classif ers work as supervised mode only. 



 

 
 

 

 

 

4 Fuzzy Machine Learning Algorithms 

1.3 UNDERSTANDING PATTERN RECOGNITION 

The pattern recognition approach provides a solution for given inputs and performs 
matching of the inputs while considering their statistical variation. It  is unique in 
comparison to pattern matching approaches, as it f nds exact matches in inputs with 
past existing patterns. Regular expression matching is one of the examples of a pat-
tern matching algorithm, which identif es patterns in textual data. This data is uti-
lized in search capabilities of large text editors and word processors. 

Unlike pattern recoginition, pattern matching is not considered as machine learn-
ing approach, even after the pattern matching algorithms sometimes provide similar 
quality output as that provided by pattern recognition approaches. Pattern recogni-
tion also can be categorized with respect to the type of learning technique applied to 
get the output value, whether supervised, unsupervised, or semi-supervised. 

There  are different terminologies for describing the corresponding supervised 
and unsupervised learning approaches. Unsupervised classif cation is also known 
as clustering, as there is no training data and therefore grouping of input data is into 
a cluster which is based on some similarity measure. The similarity measures, like 
distance between instances, can be considered as one of the parameters in place of 
assigning each input into predef ned classes. In some of the application areas, the ter-
minology is different, like in ecology science community, the term “classif cation” is 
equivalently used as “clustering.” The smallest part of input data for which an output 
value is generated is formally termed a feature vector. 

Some of the pattern recognition algorithms follow probabilistic constraints; these 
statistical parameters are used for f nding the best label for unknown data. Unlike 
those algorithms, that just give the best label, probabilistic algorithms often provide 
the probability of the unknown being assigned to the given label. Also, some of the 
probabilistic algorithms provide N-best labels with their probabilities for N classes, 
in the place of simply a single best class label. Probabilistic algorithms have the fol-
lowing advantages over non-probabilistic algorithms: 

1. Probabilistic algorithms provide a conf dence value associated with their choice. 
2. Later unknown data can be removed to belong to a class when the conf -

dence of choosing any particular output is too low. 
3. Because of the probabilities’ nature, partial or complete error propagation 

can be avoided, more effectively by incorporating probabilities algorithms 
for larger machine-learning tasks. 

4. Feature selection through separability analysis can remove redundant or 
irrelevant features. 

5. Sometimes raw feature vectors transformation techniques can be used as an 
application of a pattern-matching algorithm. 

Pattern recognition is an old term in the f eld of learning and looks to be relatively 
obsolete. In the present decade, deep learning in the f eld of artif cial intelligence is 
a new and popular topic, and machine learning has become a fundamental form of 
learning, different from pattern recognition and artif cial intelligence terms. Machine 
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learning in the present decade is a basic form of learning and the hottest topic is in 
many start-ups, research labs, and academic areas. Google trends show increase in 
interest toward deep learning in the present time. A  few more points can also be 
mentioned about the popularity of machine learning terms in the present decade: 

1. From the beginning of 2010 onwards, the machine learning buzzword 
has continuously become popular with various industry and academic 
applications. 

2. In the past few decades, pattern recognition was the hottest topic, but in the 
present scenario it is declining. 

3. In the present decade, machine learning as well as deep learning are being 
used in various applications. These two buzzwords are new and fast rising 
areas, overshadowing the popularity of pattern recognition. 

1.4 MACHINE LEARNING APPLICATIONS AND EXAMPLES 

The machine learning algorithm has been widely applied in day-to-day application 
areas, such as virtual personal assistants, prediction while commuting, videos sur-
veillance, social media services, email spams, and malware f ltering, online cus-
tomer support, search engine result ref ning, product recommendations, etc. Further 
categories of machine learning applications are image and speech recognition, 
medical diagnosis, prediction, classif cation, learning association, statistical arbi-
trage, extraction, and regression. The  following examples can better explain the 
machine learning applications: 

1. Spam f ltering follows the classif cation approach, in which the inputs are 
basically email or other messages and the category of classes are “spam” 
and “not spam.” 

2. In regression, it is a supervised problem in which outputs are continuous in 
place of discrete. 

3. In clustering, input data is to be divided into clusters. Further, the labels of 
groups are not known; that’s why it is called an unsupervised approach. 

4. In density estimation, distribution of inputs is found in some space. 
5. The dimensionality reduction approach brings the data to lower-dimensional 

space. Topic modeling and principal component analysis are examples. 

In place of so many categories of machine learning approaches, learning means to 
make adjustment in its parameters based on the previous experiences during training 
process. Developmental learning, elaborated for robot learning, generates its own 
sequences (also called curriculum) of learning situations to cumulatively acquire 
repertoires of novel skills through autonomous self-exploration and social interac-
tion with human teachers and using guidance mechanisms, such as active learning, 
maturation, motor synergies, and imitation. 

Pattern recognition methods have been applied in various f elds of image acqui-
sition, image enhancement, extraction of classical structure characteristics, binary 
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image processing, and image segmentation of synthetic minerals. It has also been 
applied for the classif cation, recognition, testing, and survey of the classical struc-
ture characteristics. Once the information is obtained from the image, a complete 
image description can be created from a two-dimensional image to concrete data and 
quantitative information on the characteristic structure. 

Artif cial intelligence (AI) has one of the applications in machine learning (ML), 
where machines, software, and sensors use cognition. In the present scenario, real 
working examples of machine learning are: 

Virtual Personal Assistants – Siri, Alexa, and Google Assistant are examples 
of virtual personal assistants. These help in getting information when used 
through voice. 

Predictions while Commuting  – Traff c predictions are examples in which 
congestions are found on some of the routes through ML using online GPS 
location of vehicles. 

Online Transportation Networks – Here booking a cab app estimates the price 
of the ride, as price surge hours, by predicting the rider demand using ML. 

Video Surveillance – Single person monitoring of multiple video cameras is 
a diff cult and boring job. That’s why computers are trained through video 
surveillance systems, powered by AI, to detect crimes while or before 
they happen. 

Social Media Services – Social media platforms use machine learning for their 
own and user benef ts such as: “People You May Know” Here machine 
learning works on a simple concept considering experiences through user 
interaction. 

• Face Recognition – Users upload a picture with a friend, and this picture is 
recognized by Facebook using ML. 

• Similar Pins – Machine learning is the core element of computer vision, 
which is a technique to extract useful information from images and videos. 
Pinterest uses computer vision to identify the objects (or pins) in the images 
and recommend similar pins accordingly. 

Email Spam and Malware Filtering – There are a number of spam f ltering 
approaches to f nd spam emails. These spam f lters are continuously updated 
and are powered by machine learning. 

Online Customer Support – Websites nowadays use Chatbot to reply to cus-
tomer queries 24 hours a day in place of live representatives; this is possible 
due to machine learning algorithms. 

Search Engine Result Ref ning – Machine learning is used in Google and other 
search engines to improve the search results. 

Product Recommendations – Once an item is purchased online, the customer 
continues to receive emails for shopping suggestions, which happens 
through machine learning. 

Online Fraud Detection – Cyberspace has been made secure and monetary 
frauds can be tracked online through machine learning. 



 
 

 
 

 

 

7 Machine Learning 

Remote sensing data provides information about classes of great societal ben-
ef t. Various areas include urban monitoring, f re detection, or f ood prediction 
from remotely sensed multispectral multi-sensor images, providing great impact 
on economic and environmental issues. To generate accurate and eff cient products 
from remote sensing data, the multi-disparate data processing has been evolved. 
Machine learning and signal processing algorithms have played a very impor-
tant role in remote sensing data processing for extracting meaningful information 
(Camps-Valls 2009). 

Remote sensing has been used for a variety of earth science applications, such as 
trace gases, retrieval of aerosol products, land surface products, vegetation indices 
and ocean applications. In remote sensing, machine learning applications are from 
retrieval of physical variables to bias correction, from code acceleration to detection 
of diseases in crops and species level classif cation (Lary et al., 2018). 

In  recent times, due to the advancement and development of various remote 
sensing satellites, the application of machine learning is becoming more reliable. 
Development of high spatial and spectral resolution sensor data is a key fac-
tor to increase retrieval and monitoring capabilities. Integration of hyperspectral 
data analysis with machine learning algorithms has a wide scope in species level 
identif cation. 

1.5 SUMMARY 

Machine learning methods have arisen from pattern recognition. There  are vari-
ous types of the machine learning approaches with a variety of application areas 
not only in artif cial intelligence but also for various earth observation applications. 
In the next chapter, ground truth data and their application for remote sensing will 
be discussed. 
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2 Ground Truth Data 
for Remote Sensing 
Image Classifcation 

2.1 INTRODUCTION 

In machine learning, reference data samples are a genuine requirement for training 
as well as assessing the performance of learning algorithms. Based on reference 
data as seed data, machine learning algorithms can develop cognitive thinking like 
human beings. Supervised classifcation is a genuine need of samples required to 
represent classes for training later testing the classifer . In reinforcement learning 
also, reference data samples help in developing training data as well as in assessing 
the performance of the classifers for dependability of its performance for decision 
making. 

Since remote sensing data covers a large area on the earth’s surface, it is impos-
sible to collect true pixels of each class. Also the land cover features vary in space, 
time, and spectral dimensions. A ground truth pixel is therefore dependent on space 
(x, y, z), time (t), and spectral (λ) parameters. Unlike the lab environment for machine 
learning applications, the same earth feature or class, say, vegetation, varies sig-
nif cantly across the image scene. Thus, the representation of true reference data is 
statistical in nature. The selection of the reference data needs a strong expenditure 
to ensure an acceptable end result. Ideally, the expert should collect a large num-
ber of pixels representing each class randomly across the image frame, which may 
vary from 10 × 10 km for f ner resolution images better than 3 m, to as large as 
700 × 700 km for coarser resolution images of 20–100 m pixel size. For applica-
tions related to topographic mapping, the reference pixel also includes the altitude or 
height of the objects. 

As the number of images required to be classif ed is very large for typical require-
ments like land use/land cover mapping, the ground truth samples are typically 
extracted from the image itself. This is done by careful extraction of true pixels by 
f eld experts who have the knowledge of variability of objects features in optimized 
locations. Generally, the f nal set of reference pixels are decided by unsupervised 
classif cation followed by visual interpretation with the expert knowledge. So train-
ing data is a true representation of each class in the form of pixels, while testing helps 
to study generalization properties of classif ers or robustness of classif ers for data 
variability. 

In remote sensing, reference data samples refer to truly representing a set of pure 
pixels of a class. These samples can be used as training as well as testing datasets. 
The training data is used to generate classifcation algorithm parameters like statistical 
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as well as tuning of weights for learning based classif cation algorithms. The term 
“ground truthing” refers to the process of gathering the proper objective (probable) 
data for supervised classif cation and for testing classif cation results. 

In  remote sensing, “ground truth” refers to information collected from ground 
for a class. Ground truth data helps in correlating image information with respect 
to ground real objects and materials present on that particular location. Collected 
ground truth information helps in various ways in the f eld of remote sensing data 
processing. During the preparation stage of remote sensing data in some deliverable 
form, the ground truth data helps in calibration, helps in identif cation, and investi-
gates what is being sensed. Examples include mapping, land use/land cover analysis 
of remote sensing images, and other techniques in which data are gathered through 
remote sensing. More explicitly, ground truthing is an activity where pixels from a 
given satellite image are correlated to what is there on the ground for verifying the 
content of the pixels on the image. In the context of classif ed image, ground truth 
data is used to def ne the assessment of accuracy. 

In remote sensing, domain ground truth is a jargon word, used for near surface 
observations. In the case of a planetary body, ground truth refers to the on-site gath-
ering of the reference data. It has been utilized to characterize states, conditions, 
parameters associated with the surface, and any gaseous envelope above it. Main 
application of collecting ground truth is for calibration and interpretation purposes 
of remote sensing data as well as training and testing of classif cation performed. 
The remote sensing specialist and the beginner should always consider the surface 
based perspective during all phases of data collection, analysis, and application. 

Ground truth, as its name suggests, is usually conducted on the site. It is generally 
an act of performing ground observations and measuring various properties of the 
objects. In case of remote sensing, it is done with respect to resolution cells of the 
digital image. In the present scenario, ground observations are also related to geo-
tagging in the form of geographic coordinates collected using a global navigation 
satellite system (GNSS) technology. The advantage of geo-tagging of ground truth 
observation is to have the proper spatial distribution of ground samples. Further, it 
is also used to overlap these samples on remote sensing datasets. Geo-tagging helps 
to understand the actual location status of the samples on the ground. Further, geo-
tagging may also help to f nd out the location errors and how these may affect a 
particular study. 

Ground truth data as training data is used in supervised classif cation of an image. 
In the supervised classif cation approach, the ground truth data is used as training 
data. It is used to calculate the statistical parameters while using the statistical based 
classif er. The samples are generally collected through a combination of f eld work, 
maps, and f eld personal experience. The f eld sample locations are called training 
sites. In  remote sensing classif cation, the spectral properties of training sites for 
each class are used to calculate the statistical or weight parameters. Some of the 
ground truth samples are used as testing data for the assessment of accuracy of the 
classif ed thematic maps since different classif cation algorithms may have varying 
percentages of errors for same classif cation data. Thus, it is helpful to identify the 
best classif cation algorithms with a given number of classes, while providing the 
least amount of error. 
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GNSS observations have been part of ground truth data collection since its begin-
ning by providing the spatial reference to the data. GNSS provides the spatial infor-
mation tagging to ground truth data while attaching location coordinates. In today’s 
scenario, due to availability of smart phones with GNSS chips and survey grade apps 
in smart phones, geo-tagging ground truth data can be common to everybody. These 
apps have facility of accurate positioning, in and around 5–6 m. Specialized smart 
phone based GNSS receivers location accuracy can reduce the error up to 1–2 m. 

Various sources for earth observation data collection are f eld observations, in situ 
spectral measurements, aerial photographs, detailed project reports and inventory 
lists, and maps. The requirement of collecting ground truth for supervised classif ca-
tion is for selecting training sites while for unsupervised classif cation it is for assign-
ing labels to classes. Ground truth can also be conducted to examine the accessibility 
in different portions of a study area for which classif cation has to be conducted. 
When accessibility is limited in the study area as well as limited logistics or circum-
stances during an off-season, one may think of alternatives like aerial photographs, 
maps, literature research, interviews with residents, etc. Finally, training data can be 
prepared while integrating multiple sources of ground data like direct observations, 
photo documentation, a variety of maps, personal familiarity, etc. 

2.2 CREATION OF TRAINING DATA 

For a remote sensing image, the number of training sites depends upon the maximum 
number of classes of interest that can be extracted from a given area. The sites are to 
be selected based on the fact that they are suff cient in number, homogeneous, truly 
representing to a class, well-distributed, and class size matching with spatial resolu-
tion of the sensor. Thus, the total number of sites depends upon the areal dimensions 
of the scene to be interpreted. 

A good classif cation is dependent upon the quality of the training data. The qual-
ity of training pixels of remote sensing image can signif cantly affect the perfor-
mance of the classif cation algorithm. Campbell (1987) has given criteria for an ideal 
selection of training data. However, it is not possible to adhere to all the criteria sug-
gested as different classif cation algorithms require sample training data of different 
size. Also, the sensitivity of classif ers varies with respect to homogeneity present 
in training data. The  basic purpose of training data is to derive a representative 
sample for each class (Chen and Stow, 2002). A simple random sampling scheme 
can be used to select the training pixels from the remote sensing data. At a given 
conf dence level and desired precision, the sample size for training pixels can be 
calculated using the formula given by Tortora (1978). The sample size depends upon 
the number of spectral bands used for the classif cation. In  the case of n spectral 
bands data, the number of training pixels should be greater than 10n for each class 
(Jensen, 1996). Testing samples can be def ned while following the Congolton 1991 
rule, by saying 75 to 100 samples per class. The sites should be accessible as well 
as be able to locate on the image. Site location must be near a roadside or open area 
f elds to have good accessibility of classes. In some cases, the classes on the ground 
are homogeneous and hence training data collected for these classes will be pure, as 
required. Examples of homogeneous land cover are large water bodies, clouds, snow, 
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desert sand, common types of rocks, specif c types of forest, and some core urban 
areas. Many times, it is diff cult to fulf ll the criteria of good training samples due to 
(1) heterogeneity within classes, (2) the “mixed pixel” problem, (3) criteria for select-
ing number of classes, (4) effect of atmospheric conditions from place to place and 
on different dates, (5) phenological chances within vegetation/crops, and (6) other 
unknown variables not able to account. 

In remote sensing, another type of ground truthing includes acquiring spectral 
signatures of different classes using spectrometers, spectrophotometers, and spectro-
radiometers in the laboratory and/or the f eld. The samples collected from ground, 
also called in situ measurements, should be brought at the same scale as that of the 
same radiometry as in remote sensing images. 

2.3 CRITERIA FOR GROUND TRUTH DATA 

Thus, the role of ground truth data is to compare or correlate remote sensing image 
pixels with what really is there on the ground. Ground truthing also verif es the 
numerical value of the pixel on an image with respect to ground object. In addition 
to classif cation of images, it allows evolving supervised classif cation methods to 
improve accuracy of the classif ed image and reduce errors in the classif cation, such 
as errors of commission and errors of omission. 

As mentioned in the previous section, the ground truthing is done in different 
ways usually on-site or sometimes data collected off-site. The in situ may have sur-
face observations as well as measurements of various properties of the objects that 
are being sensed through remote sensing images. Tagging of ground truth observa-
tion with the existing GNSS technology helps to know spatial distribution of ground 
truth observations. Further these observations can be overlaid on other datasets. 

Ground truth data as training data is used to initialize the parameters of classif -
cation algorithms. The number of times it can be collected as a combination of f eld 
observations, existing maps of study area, and personal experience and are called 
as training input. In remote sensing, basic classif ers like maximum likelihood clas-
sif cation, parallelepiped classif cation, and minimum distance classif cation require 
statistical parameters. Thus, spectral characteristics from these ground truth obser-
vations are used to generate classif er input parameters. These statistical parame-
ters are mean, variance–covariance, standard deviation, minimum, and maximum. 
Further, ground truth data used as testing samples allow establishing an error matrix 
which gives assessment of accuracy of the classif ed output. Different classif cation 
algorithms may generate different percentages of error in classif ed output maps. 
Therefore, it is important to choose the best classif er among all having least clas-
sif cation error. Moreover, the ground truth data can also be used while performing 
the atmospheric correction of a remote sensing image. 

2.4 TRAINING DATA IN MACHINE LEARNING 

The usage of training data in machine learning algorithms is to generate algorithm 
parameters or adjust weights, which is a part of supervised classif cation. Thus, 
training data here act as ancillary data to train (or learn) the classif er. Training data 
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may be called with different names such as training set, training dataset, or learning 
set. The training sets are samples from which the algorithm parameters are calcu-
lated and give an impression, like a computer learns how to process information. 

Machine learning algorithms like ANN, CNN, RNN, etc., mimic the ability of 
the human brain while taking diverse inputs with weights, so to produce activations 
through individual neurons in the brain. Artif cial neurons and their modif ed ver-
sions imitate while providing highly detailed models of how processes in the brain 
occur. Like in the brain, training data can be def ned in different ways for super-
vised learning algorithms. For sequential decision tree types of algorithms, training 
data can be in the form of raw text or alphanumerical data. In the case of convolu-
tional neural networks to be applied in the area of image processing and computer 
vision, the training sets are in the form of large numbers of sub-images called chips. 
Machine learning algorithms are so complex and so sophisticated that these use iter-
ative training on image chips to generate features, shapes, and even subjects such as 
people or animals. The training data is required in the supervised approach, which 
is prior mandatory information. 

Machine learning algorithms are capable to learn and predict, once construction 
and learning of algorithms has been done with given data (Ron and Foster, 1998). 
These algorithms are capable of data-driven predictions or decisions (Bishop, 2006) 
once a learning model from input data has been built. Multiple datasets can be used 
to build the model. Training data (James, 2013) is used to f t the model. This means 
that model parameters (e.g. weights at connections, learning rate, momentum, hidden 
layer and its size, combination of convolution max pooling, and LSTM layers) are 
tuned using a set of examples (Ripley, 1996). 

The neural network model is trained with a training dataset through supervised 
learning methods like gradient descent or stochastic gradient descent. In  the pro-
cess of training, it consists of an input vector and the corresponding output vector, 
commonly called the target. During the training process, the training dataset works 
as an input and produces corresponding output, which is then compared with the 
target value, for each input vector in the training dataset. The model parameters are 
adjusted while considering the comparison results as well as type of learning algo-
rithm used by the model. Thus, the meaning of model f tting includes both variable 
selection and parameter estimation. 

Once the classif cation algorithm has been trained (called a f tted model), it can be 
used to classify the data called a validation dataset (James, 2013). From a validation 
dataset, an unbiased evaluation of a model f t is done while tuning of parameters has 
been done using a training dataset (Brownlee, 2017) [e.g. the number of hidden units 
in a neural network (Ripley, 1996)]. Validation datasets can be used to regularize by 
early stopping. The early stopping means stop training when the error on the valida-
tion dataset increases, as this is a sign of overf tting to the training dataset (Prechelt 
and Genevieve, 2012). It has been noticed that a validation dataset’s error f uctuates 
during training, generating multiple local minima. Due to this, it has become dif-
f cult and necessary to make complicated rules to know when overf tting has truly 
begun (Prechelt and Genevieve, 2012). Later, the test dataset is used to provide an 
unbiased evaluation of the trained classif ed model. If the test data has never been 
used in training, then the test dataset is also called a holdout dataset. 
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Thus, in a machine learning algorithm, the training data are the samples used for 
learning, which means calculating the parameters (e.g., weights, statistical param-
eters, etc.) of a classif er. Most classif cation approaches that develop empirical rela-
tionships using training data tend to overf t the data, meaning that this algorithm can 
identify relationships in the training data that do not work for any unknown data in 
general. This is called the generalization problem. 

2.5 VALIDATION DATASET 

A validation dataset includes examples used to tune the hyper parameters of a classi-
f er. It is sometimes also called the development set or simply the “dev set,” meaning 
to evaluate the classif er with other type of dataset. In  artif cial neural networks, 
hyper parameters are called the number of hidden units. The validation dataset, as 
well as the testing set, should follow the same probability distribution as the train-
ing dataset. The validation dataset, in addition to the testing and training dataset, is 
required to avoid overf tting during adjustment of classif cation parameters. The val-
idation is generally required for performance comparison, whereas the performance 
characteristics, such as accuracy, sensitivity, specif city, F-measure, etc., are done 
with the testing dataset. The validation dataset thus provides an evaluation of a 
model to f t for a given training dataset, while adjusting model parameters. 

The main objective is always to f nd out that a particular network should give the 
best performance with unknown data. This is only possible when comparing various 
networks, while evaluating the error function with data independent to that used for 
training. Training of various networks is done while minimizing appropriate error 
function def ned with respect to the training dataset. After training, performance 
study of networks is conducted through evaluating the error function with an inde-
pendent validation set. While the network gives the smallest error during validation 
set are selected and called the hold out method as this procedure may itself lead to 
over f tting to the validation set. So, through the third independent set of data, called 
the test set, the performance of the selected network can be conf rmed. 

2.6 TESTING DATASET 

As mentioned in the previous section, a testing dataset is also a ground truth dataset 
that is different from a training dataset. This means that it should not be used for 
training of models. Ideally, if a classif cation model performs f ne with the training 
dataset, it should also work f ne with the testing dataset. However, there is much 
better performance of the classif ers with training dataset, as compared to the testing 
dataset, which generally indicates overf tting. So actually, a test set is a set of samples 
applied only to assess the robustness (i.e., generalization) of a fully trained classif er 
(Ripley, 1996). 

Thus, testing data is basically identif ed to do assessment of accuracy of classif ed 
outputs. Some testing data can be used in an assenting way, especially to assess how 
correctly a given function produces meaningful output from a given input. Other cat-
egories of testing data can be applied to assess capability of the function to respond 
for unusual, extreme, exceptional or unexpected input datasets. Testing data can be 
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generated through a focused or systematic method, as in the case of domain testing 
or less-focused approaches, having large volume randomized tests. It can also be 
generated from ground observations, and hence, may be used a number of times. 
It is not always possible to generate enough testing datasets due to the required time, 
cost and quality controls. 

2.7 SUMMARY 

In  this chapter, an introduction about the different types of ground truth data and 
their importance, especially in remote sensing data classif cation, has been cov-
ered. A clear explanation of training validation and testing data has been presented. 
The following chapter covers various fuzzy based classif ers. 
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3 Fuzzy Classifers 

3.1 INTRODUCTION 

The thematic map as information is a basic need in resources management and infra-
structure development plans. These thematic maps can be prepared in the present 
scenario using digital image classif cation techniques. These classif cation tech-
niques can be of two types, hard or soft approach. Ideally, the hard classif cation 
approach is applied when an image has pure pixels. Similarly, soft classif cation 
approaches are applied when there are mixed pixels in images. In  the real-world 
scenario, any classif er can be applied as hard or soft. In the following sections, fuzzy 
based soft classif ers have been presented. 

3.1.1 Soft ClaSSifierS 

While preparing thematic maps through the digital classif cation approach, if mixed 
pixels are present then these pixels cannot be handled through hard classif cation 
approaches. Mixed pixel problems can be handled through sub-pixel, or in the pres-
ent scenario, commonly called soft classif cation. Before going to discuss soft classi-
f ers, let us understand land cover mapping. 

Land cover information is one of the vital components for studying various aspects 
for global change and environment applications (Sellers et al., 1995). This informa-
tion of land cover is essential for management of resources, government policies, 
human activities, etc. (Cihlar, 2000). Thus, land cover is an important determinant 
of land use and hence, the value of land to the society. This land cover information 
has important applications in many areas like urban infrastructure planning, post 
disaster damage assessment and mitigation, agriculture and soil studies, forestry and 
geoscience studies, and other large application areas. 

However, mapping and studying land use/land cover through conventional ground 
based survey has limitations of resources and time. Firstly, these conventional sur-
vey techniques have limitations in monitoring dynamically changing phenomena 
like crop monitoring or f ood inundation. Secondly, for the precise extraction of land 
cover involves acquiring the spectral data of land surface at various spatial and tem-
poral scales. Multispectral satellite images are used for thematic map preparation 
using digital classif cation. In these multispectral images, it is important to have dis-
criminating ground objects. This is possible when these ground objects have unique 
spectral signatures. Currently, there are very large remote sensing satellites present 
in earth orbit, such as Landsat, SPOT, IRS, WorldView, etc. Multispectral satellite 
data based classif cation is majorly used for the extraction of land cover information. 
While classifying satellite data for the extraction of objects, every pixel is allocated 
to a class. 
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This extraction in general is done by allocating each pixel to a particular repre-
sentative class; however, in actual scenario, more than one class may exist within a 
pixel owing to the continuum variation in the landscape as well as the mixed nature 
of classes (Ju et al., 2003). Such type of pixels in a digital image is referred to as 
mixed pixels. As a traditional classif er allocates each pixel to one category, hence 
classif cation of mixed pixels will not be correct. Further, in a heterogeneous image, 
such a classif er will accumulate the error. 

Mixed pixels in remote sensing images occur due to pixels representing bound-
aries as well as pixel size not compatible with class size. These mixed pixels have 
two or more classes. The  larger the heterogeneity, the more the chance of mixed 
pixels. Natural or manmade objects like crop f elds, forests, and water are homog-
enous classes, while urban is a mostly heterogeneous class. The  task of the soft 
classif er is to separate these mixed classes present in a pixel. For  resolving the 
mixed pixel problem, many soft classif cation techniques have been proposed so 
far by researchers. The soft classif cation decomposes a pixel into the class pro-
portions representing membership values. These membership values are stored in 
fraction output images. A soft classif er can be a statistical classif er like maximum 
likelihood classif er (MLC), linear mixture model (LMM) (Sanjeevi and Barnsley, 
2000; Lu et al., 2004), fuzzy set theory like fuzzy c-means (FCM) (Dunn, 1973; 
Bezdek, 1981; Bezdek et al., 1984), possibilistic c-means (PCM), as well as modi-
f ed versions of possibilistic classif ers (Krishnapuram and Keller, 1993, 1996) and 
noise clustering (NC) (Dave, 1991), and some are based on support vector machines 
(SVM) (Vapnik, 1995) and neural networks and their modif ed versions (Li and 
Eastman, 2006; Li, 2008). 

3.1.2 traditional ClaSSifierS verSuS Soft ClaSSifierS 

Traditionally, in a hard classif cation, each pixel is assumed to be composed of only 
one class. So, the classif cation technique assigns each pixel to a single class. This is 
not always true as in reality mixing of land cover occurring within a pixel due to 
continuum variation in landscape, for example, a low spatial resolution, say 250 m 
pixel, may contain many land cover classes. Thus, the occurrence of mixed pixels 
becomes more robust when the classif cation is either performed at a regional scale 
or with coarse resolution satellite imagery (Shalan et al., 2003). 

In  many situations, the conventional hard classif cation methods like MLC, 
c-means, may tend to either over- or under-estimate the actual area of a land cover 
and therefore produce the erroneous results. In such cases, a fuzzy concept can be 
incorporated in classif cation of mixed pixels which results in multiple and partial 
class memberships for a given pixel (Pontius and Connors, 2009). Such classif ca-
tion techniques are known as soft classif cation methods, and the membership value 
for a particular class indicates the unmixing of information within a mixed pixel. 
This method allocates a pixel to different classes, in accordance with proportion of 
their area inside the pixel. The outputs of a soft classif cation are represented in the 
form of fraction images equal in number to land cover classes present in the image. 
According to Ibrahim et  al. (2005), a soft classif cation approach can be helpful 



  

   

19 Fuzzy Classifers 

for quantifying uncertainties in areas of transition between the different land cover. 
Therefore, mixed pixels cannot be handled properly by traditional image classif -
ers. Thus, there is a necessity to develop and implement different soft classif cation 
methods. 

In  this chapter, the current status of some prevalent fuzzy based soft classif -
cation methods for land cover has been presented. Among various soft classif ers, 
fuzzy c-means (FCM), possibilistic c-means (PCM), and noise clustering (NC) 
are prominent and widely used classif ers. Further, other versions of PCM in the 
form of improved possibilistic c-means (IPCM) and modif ed possibilistic c-means 
(MPCM) have also been introduced. These classif ers have been studied with entropy 
method, adding contextual methods through MRF as well as neighbor pixel informa-
tion. These classif ers have also been studied with various similarity/dissimilarity 
measures. Further kernel approaches have also been incorporated in these classif ers 
while replacing similarity/dissimilarity measures. All aforementioned classif cation 
techniques are based on the basic fuzzy clustering algorithm. According to Foody 
(2000), these methods have originally been developed as unsupervised classif ers, 
yet can be modif ed to supervised mode by providing the class means from the train-
ing dataset. 

3.1.3 linear and nonlinear ClaSSifierS 

In  a linear classif er, the boundary of separation or separating surface between 
two classes will be linear or a hyperplane. Examples of such classif ers are logistic 
regression and the support vector machine (SVM). There can be an inf nite number 
of such hyperplanes. The classif cation is generally based on the linear combinations 
of classes. If data are not linearly separable, then classif ers cannot perfectly distin-
guish the two classes. In such cases, nonlinear functions such as K-nearest neighbor-
hood and kernel based SVM will separate data in higher dimensions to linearize the 
data (Figure 3.1). 

(a)  (b) 

FIGURE 3.1 (a) Linear boundary with classif er hyperplane and (b) nonlinear boundary 
with classif er hyperplane. 



 

 
 

 
 

 
 
 
 

 

  

 
 

 

20 Fuzzy Machine Learning Algorithms 

3.2 CLUSTERING ALGORITHMS 

In scientif c data analysis, there are many situations where it is essential, however 
diff cult, to effectively group similar data, due to scarcity of information about 
the data. Clustering is a technique for grouping similar data points based on spec-
tral, textural signature details in a cluster rather than their equivalent points in 
other clusters. It is an unsupervised classif cation technique (Soman et al., 2006). 
The potential areas of application of clustering techniques include artif cial intel-
ligence, data mining, digital image processing, pattern recognition, and statistics. 
There  is not yet any single clustering algorithm available that can resolve all the 
clustering problems and perform best for all the datasets. Broadly, there are two 
types of clustering algorithms: hierarchical and partitional. The  basic difference 
between these two algorithms is that the hierarchical clustering makes a dendro-
gram structure whereas partitional clustering divides data into a specif ed number 
of clusters (Soman et al., 2006). 

Another way of classif cation of clustering algorithms are “hard” and “soft” clus-
tering (Dave, 1991). In the case of hard clustering, each data point (or pixel in image) 
is allocated to exactly one class, whereas in soft clustering, there will be a frac-
tional allotment for each class for a given data point (Babu and Murty, 1994). Some 
of the clustering techniques can be generally time-consuming processes; therefore, 
an ambiguous cluster center or initial seed value is selected for an optimal solu-
tion. Many times, clustering algorithms are represented as an optimization  problem. 
In  such cases, for hard clustering, the parameter to be optimized is only for the 
cluster center whereas for soft clustering it includes both the cluster center and mem-
bership value for each class. The  two basic and popular soft of fuzzy clustering 
algorithms are fuzzy c-means clustering (FCM) and possibilistic c-means (PCM). 
In FCM, the membership value signif es the degree to which a class is shared to 
a cluster, while in PCM it refers to the belongingness degree (Krishnapuram and 
Keller, 1993). In comparison to FCM, PCM clustering has been found to be more 
stable for noise. The outliers or noisy points (or data) are always problematic for 
effective clustering. These noisy points affect the output of the clustering algorithm, 
and hence, the outcome is nonrealistic clusters. Further, FCM clustering algorithm 
makes a certain relation between each data point and a cluster. In other words, each 
data point is convincingly assigned to a given cluster, whether the point is noisy or 
not (Dave, 1991). In PCM clustering, according to Krishnapuram and Keller (1993), 
the problem of noisy points (or outliers) has been resolved somehow by assuming the 
degree of belongingness of each data point to be equivalent to the membership value. 
However, the proper handling of noisy points was f rst proposed by Ohashi (1984) 
and Dave and Krishnapuram (1997). 

3.2.1 fuzzy C-MeanS (fCM) ClaSSifier 

The FCM method was initially introduced by Dunn (1973) and later developed by 
Bezdek in 1981. It  is one of the prevailing clustering algorithm methods for the 
fuzzy classif cations. This method can be applied for partitioning a pixel into dif-
ferent membership values corresponding to the classes present in the digital image. 



 
 
 
 
 
 
 
 

 

 

 

 

  

 

 
 

 

21 Fuzzy Classifers 

Each pixel in the image is related to every class by a function known as member-
ship function. The computed values of the membership function are simply known 
as membership values and vary between zero and one. If the membership value is 
close to one, then it implies that pixel is strong representative of that class, while 
membership value close to zero implies that the pixel has weak or no similarity with 
the information class (Bezdek et al., 1984). Thus, the net impact of such a function 
is to make fuzzy c-partition of a given data (or satellite image in case of remote 
sensing). The summation of the all the membership values for each pixel must be 
equal to unity (Bezdek, 1981). This can be achieved by minimizing the objective 
function of FCM. 

The objective function of the FCM classif er (known as the least square objec-
tive function) is given by Equation  (3.1) and the distance square is mentioned in 
Equation (3.2) with constraints in Equation (3.3): 

˝ 
c 

˝ 
N 

J fcm (U V, ) = (µki )m
D x( k , vi )  (3.1) 

i =1 k =1 

2D x( k , vi ) = dki = xk − vi 
2 

= ( xk − vi )T
A x( k − vi )  (3.2) 

A 

where constraints imposed in Equation (3.1) are 

˛ 
c 

µki = 1 for all k (pixels) (3.3) 
i=1 

˝ 
N 

µki > 0 for all i (class) (3.4) 
k =1 

0 ˜ µki ˜ 1 for all k i, (3.5) 

where in Equation (3.1) 
U N c= ×  matrix, 
V = (v1vc ) is the collection set of vector of information class centers vi, 
µki is a class membership value of a pixel, 
dki is the distance in feature space between xk and vi, 
D x vi ) is the square of dki,( ,k 

xk is a vector (or feature vector) denoting spectral response of a pixel k, 
vi is a vector (or prototype vector) denoting the information class center of 

class i, 
c and N  are total number of information classes and pixels respectively, 
A is the weight matrix, and 
m is the weighting exponent (or fuzzif er) such that 1 < m < °. When m → 1, 

the membership function is hard, and when m ˜ °, the memberships are 
maximal fuzzy (Krishnapuram and Keller, 1993). 
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22 Fuzzy Machine Learning Algorithms 

The weight matrix A controls the shape of the optimal information class (Bezdek et al., 
1984). Generally, it takes the following norm as mentioned in Equations (3.6–3.8): 

A I= Euclidean Norm (3.6) 

−1A D= i Diagonal Norm (3.7) 

−1A C= i Mahalonobis Norm (3.8) 

where, 
I is the identity matrix, 
Di is the diagonal matrix with diagonal elements as eigen values of covariance 

matrix, and 
Ci is given by Equations (3.9) and (3.10): 

˙ 
N 

Ci = ( xk − ci )( xk − ci )T
 (3.9) 

k=1 

where, 

N 

Ci = (3.10)° 
k=1 

After solving the objective function (Equation 3.1), the membership value can be 
computed as mentioned in Equation (3.11): 

x 
N 

k 

−11� �
(D xk , vi )˙ ˘ −1� 

� 
� 
�� 

� 
� 
� 
�� 

mc c 

( ) )�
=i 1 

where µ ki represents the realization of the class membership value µki. 
From Equation (3.1), the center of the information class as fuzzy mean vi can be 

computed as mentioned in Equation (3.12): 

N 
m˝( µki ) xk 

k =1vi = N  (3.12) 
m˝( µki ) 

k =1 

where vi represents the realization of the information class center value vi. 

3.2.2 PoSSibiliStiC C-MeanS (PCM) ClaSSifier 

The  objective function of PCM is derived by adding a new term in the FCM 
(Krishnapuram and Keller, 1993). The uniqueness of this new term is to emphasize 

�
=1 

ˇ 
ˇ
ˆ 

� 
�
� 

(3.11)Dwhere x , vkµ ki = =j i, (D x , v(D xk , vj ) k 
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23 Fuzzy Classifers 

(or assign high membership value) and de-emphasize (or assign low membership 
value) the representative and non-representative feature points, respectively. In PCM, 
the untrained classes do not affect the classif cation outputs (Foody, 2000). 

For PCM classif ers, the objective function can be given as in Equation  (3.13) 
(Krishnapuram and Keller, 1993): 

c N c N 
m m

J pcm U V  ) = ˆ µ D xk ,v ) + ˘i 1 µki  (3.13) ( , ˆ( ki ) ( i ˆ ˆ( − ) 
i=1 k =1 i=1 k=1 

It is subject to following constraints Equations (3.14–3.16): 

max µki > 0 for all k (3.14) 
i 

˙ 
N 

N < µki > 0 for  (3.15) 
k =1 

0 ˜ µki ˜ 1 for all k i, (3.16) 

where, 
ηi  is a suitable positive number, 
m  is a weighting exponent (or fuzzif er) such as 1 < <m ° . 

According to the f rst term in Equation (3.13), the distance between the feature vec-
tors and prototype vector should be as low as possible, whereas the second term in 
the objective function of PCM forces the membership value to be as large as pos-
sible. However, interpretation of m  is different for FCM and PCM (Krishnapuram 
and Keller, 1996). Increasing values of m , in the case of FCM, represents increased 
sharing of pixels in remote sensing images (or data) among all information classes, 
whereas for PCM, increasing values of m  represents the increased possibility of all 
pixels completely belonging to a given information class. So far, different values of 
m  have been suggested by various researchers for artif cial as well as remote sensing 
data (Krishnapuram and Keller, 1996; Foody, 2000; Ibrahim et al., 2005). 

By using the Equation (3.13), the membership values for PCM can be computed 
as Equation (3.17): 

1 µ ki = 1  (3.17) 
(m−1)1+ (D x( ,k vi ) ° i ) 

ηi  can be computed as Equation (3.18): 

N N 
m v m˜i K ˇµki D ( xk , i= ×  ) ˇµki (3.18) 

k =1 k =1 

https://3.14�3.16


 

    

 

   

24 Fuzzy Machine Learning Algorithms 

where, 
K = 1, Constant 
ηi  is also known as the bandwidth parameter (Foody, 2000), and it is a distance at 

which the membership to a class equals 0.5. 

3.2.3 noiSe CluStering (nC) ClaSSifier 

In the FCM algorithm, the noise data points are clustered with a class having equiva-
lent membership value. Dave (1991) has introduced the NC algorithm to conquer this 
noise problem. It has been proposed that the outlier or noisy points may be dumped 
into a separate class or cluster, known as a noise cluster. The quality of clustering 
analysis does not degrade while applying the NC method. Thus, the main aim of this 
algorithm is to introduce one additional cluster (c + 1) to contain all noisy points. 

Figure  3.2 shows an example of a noise clustering algorithm on a given data-
set. It  results in four valid clusters and few outlier points. These outliers or noisy 
points belong to a noise cluster. It clearly gives more realistic clusters as compared 
to PCM. This  is owing to the fact that PCM clustering assigns all the data points 
forcefully (including outliers) to one available cluster, which also affects the cluster 
center (Dave, 1993). 

The objective function for NC can be obtained by adding the term (c + 1)th for 
noise class in Equation (3.1) as Equation (3.19): 

c N N 
m m

Jnc (U V, ) = (µki ) D x( k ,vi ) + (µk c, +1 ) ˇ  (3.19) ˙˙ ˙ 
i=1 k=1 k=1 

where U = × +N (c 1) matrix and V = (v1vc ). 

(a) (b) 

FIGURE 3.2 Noise clustering on a given sample dataset. (a) Noisy data and (b) result of 
noise clustering. 
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25 Fuzzy Classifers 

Noise class has no center and the dissimilarity Dk c, +1 between xk can be repre-
sented as Equation (3.20) (Miyamoto et al., 2008): 

Dk c, +1 = ˛ (3.20) 

where ˜ > 0 is a f xed parameter. 
Equation (3.19) is subject to the following constraints as in Equation (3.21): 

c+1˘ � 
�U = µki :�µkj = , k N ; �1 1 ˛ ˛� � µ f = � j=1 �  (3.21) 
� � 
� [ ] k N  ˛ ˛ +1µki ˝ 0 1, ,  1 ˛ ˛ , 1 i c  �� � 

From Equation (3.19), the membership values of information class, noise class, and 
the cluster mean value can be computed as in Equations (3.22–3.24). 

� 1 1 �
−1 

c ˆ �m−1 ˆ �m−1� D x( k ,vi ) D x( k , vi )
µ ki = ��˘ � + ˘ � , 1 i c  (3.22)

˘ D x ,vj � ˘ ° �� j=1 ( k )ˇ � ˇ ���

� 1 �
−1 

c ˘ �m−1
° µ = �

�
� � +1  (3.23)k c, +1 

� � D x( k ,vi ) � 
j=1 � ��� � 

N 
m 

µ x˙( ki ) k 

k =1v = N ,1 i c  (3.24)i ˝ ˝  

˙ 
m(µ ki ) 

k =1 

Noise class is assumed to maintain a static distance from all remaining data points. 
This static distance is called as noise distance or resolution parameter ( )δ . Very 
small values of δ  signif es that the majority of data points will be classif ed as noise 
data points, while large δ  values mean that most of points will be assigned to other 
classes than noise. Thus (c + 1)th class takes the effect of outliers for classif cation. 

Ideally the value of resolution parameter is dependent on the data; however, an 
approximation of it can be done using Equation (3.25) (Dave, 1991, 1993). 

c N
ˆ 
˘ 
˘ 
˘ 
˘̌
 

D xk ,vi ) � 
� 
� 
� 
�� 

== 
�� 

1 1˜ 2 = ° i k 

( 
Nc 

(3.25) 

https://3.22�3.24


 

 

   

  
   
 

 
 

26 Fuzzy Machine Learning Algorithms 

The second term in objective function of NC also ensures that the outliers will get 
low membership values. Further, constraints in NC are effectively relaxed in a man-
ner that for a given pixel the summation of membership values can also be less than 1, 
unlike FCM. This opens the door for small membership values to be assigned to 
noise class and therefore more robust to noise (Dave, 1993, Dave and Krishnapuram, 
1997). This constraint is mathematically expressed as Equation (3.26): 

c+1 

0 ˜ µki ˜ 1, 1 ̃ ˜k N  (3.26) ˝ 
i=1 

Mathematically, the objective functions of PCM and NC are identical, if the number 
of cluster (c) is one. However, for c > 1, PCM is identical to c separate noise func-
tional to be assigned with a cluster (Dave and Sen, 1997). Further, Equation (3.22) 
for computing the optimal membership values can be decomposed into two compo-
nents identical to the equations for computing the membership values of PCM and 
FCM correspondingly, i.e., NCµ = FCMµ × PCMµ . This equation  signif es that 

ki ki ki 

NC algorithm is a hybrid of FCM and PCM with their individual qualities inherited 
(Dave and Sen, 1997). 

3.2.3.1 Noise Clustering Algorithm 
For an optimal solution in case of the unsupervised mode of NC classif cation, the 
following steps should be followed: 

1. Select δ > 0, f x m, c, δ, type of A-norm. 
2. Compute information class center vi for class i = 1 to c using Equation (3.24). 
3. Calculate the membership value of information class and noise class using 

Equations (3.22) and (3.23), respectively. 
4. The objective function is calculated using the Equation (3.19). 
5. Steps 2 to 4 are repeated until the objective function value converges. 

In the case of supervised classif cation, the noise clustering term can be replaced by 
the noise classif er due to prior availability of training data. 

3.2.3.2 Why Noise Clustering over PCM? 
The strength of PCM depends on its mode seeking capability that helps in locating 
meaningful clusters in the form of dense regions. However, for an optimal perfor-
mance of PCM, good initialization is required. This can be done using the FCM. 
Further, relaxation in the membership constraints of PCM results in the independent 
cluster forming processes. Furthermore, the probability of resulting local minima 
becomes higher of PCM (Barni et al., 1996). 

The noise clustering algorithm, in comparison to its counterparts, is more robust 
about noise or outliers in the data. It achieves the desired results by making a sepa-
rate noise cluster for noisy data points. This classif er and its subsequent variations 
have been proved to have better performance in a noisy environment. Thus, with 
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27 Fuzzy Classifers 

the ability to incorporate the fuzzy nature of objects as well as allocating a sepa-
rate noise class, the NC algorithm helps in producing the near realistic classif cation 
and results in a noisy environment (Richards, 2013). Moreover, even in the case of 
untrained classes (i.e., classes which are actually present in the data, but no training 
data has been given to the classif er), noise clustering does not forcefully allocate the 
data points to any available class and treats them as noise class only. 

3.2.3.3 Drawbacks of Possibilistic c-Means (PCM) 
For  good clustering, the PCM objective function requires some improvement or 
modif cation. It  is due to some of the drawbacks in the PCM algorithm and these 
drawbacks are as follows: 

1. Sensitivity toward good initialization: A good initialization of algorithm 
affects the outputs in PCM (Barni et al., 1996; Wu and Zhou, 2006).

 2. Problem of coincident clusters: Due to the independency of columns and 
rows of typicality matrix, it has the tendency to produce the coincident clus-
ters (Wu and Zhou, 2006).

 3. Neglects the membership: The typicality factor in PCM reduces the effect 
of noise, yet it neglects the membership value of class centroid (Wu and 
Zhou, 2006). 

3.2.4 iMProved PoSSibiliStiC C-MeanS (iPCM) 

To overcome the shortcomings of PCM mentioned in section (3.2.3.3), an 
improved version was proposed by Zhang and Leung (2004). IPCM algorithm 
is not  sensitive to initialization of clusters. This  new algorithm is termed as 
improved possibilistic c-means (IPCM). Its advantages over PCM are discussed 
in the section (3.2.4.1). 

3.2.4.1 Advantages of IPCM over PCM 
1. Noise sensitive: In  the presence of noise or outliers, the IPCM method 

works better than FCM and PCM.
 2. Problem of coincident clusters: The  coincident cluster problem of PCM 

mentioned in the previous section is resolved by IPCM.
 3. Proper computation of membership and typicality values: The computed 

value of typicality and membership matches the intuitive concept, contrary 
to PCM. 

3.2.4.2 Mathematical Formulation of IPCM 
For a given dataset X = {X , X X   c N fuzzy subsets by mini-1 2, 3 X N } having 1 < <  
mizing the objective function as in Equation (3.27): 

c N c N 

Jipcm (U T, ,V = ˙˙µki
mt D xk , v +˙ˇi ̇ µ m (tki − +1  (3.27)) ki ( )i ki log tki tki ) 

i =1 k =1 i=1 k =1 
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28 Fuzzy Machine Learning Algorithms 

where, 

D x v, ) = d2 = xk − vi 
2 = ( xk − vi )T

A( xk − vi )( k i ki A 

The constraints for the IPCM are: 

0 ˜ µki , tki < 1 for all k, i 

˛ 
c 

µki = 1 for all k 
i =1 

tki is the possibilistic value (typicality/compatibility value). 
The equations for membership value µki and possibilistic value (or typicality/ 

compatibility values) tki are as in Equations (3.28) and (3.29): 

−12� �
˙ ˘ −1˙ ˘˘� 
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�� 
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˙ −dki 
2 m 

ˇ 
ˇ 
ˇ 
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1− exp 
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ˆ
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˘

�

�
� 
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ˇ
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i °c 

�
=1 

i 
for all k i, ,  (3.28)µ ki = 

˙ −dkj 
2 

j 1− expˇ
ˆ 

�
� 

j ° j 

ˆ2dkit = expki ˙ ˘ 
˛ − 

for all k i, ,  (3.29)
�˝ i ˇ 

The cluster center of the information class vi  and the bandwidth parameter (or scale 
parameter) ηi can be computed as in Equations (3.30) and (3.31): 

N 
m°µ t Xki ki k 

vi 
k= 1= 

N for all i (3.30) 
mµki tki ° 

k =1 

N 
m 2µki dki˙ 

˜i = K k =1 
N K > 0  (3.31) 

mµki˙ 
k =1 

3.2.4.3 Characteristic Features of IPCM 
1. IPCM is able to compute both membership values and typicality (possibilistic) 

values. 
2. It can handle the noisy data as outliers and hence, reduce the noise sensitivity. 
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3. The coincident cluster can be resolved by IPCM. 
4. The objective function of IPCM algorithm is f exible enough to incorporate 

various other types of mathematical norms. 

3.2.5 Modified PoSSibiliStiC C-MeanS (MPCM) 

The MPCM method is a modif ed form of PCM for overcoming the shortfalls of 
FCM and PCM algorithms (Krishnapuram and Keller, 1996; Wu and Zhou, 2008). 
FCM classif er assigns membership of a pixel across class sum to one with proba-
bilistic constraint. But the membership does not always correspond to the intuitive 
concept of degree of belonging. Secondly, FCM is sensitive to noise. To overcome 
these limitations, the PCM algorithm was introduced, as PCM deals with noisy data 
better. But the drawback of PCM is that it requires good initialization and causes 
coincident clusters. So MPCM can take care of drawbacks of FCM and PCM and 
can f t the clusters which are close to each other. 

3.2.5.1 Mathematical Formulation of MPCM 
For a given dataset X X X, ,2 XN } having 1 < <= { 1 X3  c N fuzzy subsets by mini-
mizing the objective function (Wu and Zhou, 2008) in Equation (3.32): 

c N N 

Jmpcm (U ,V ) = µki Dki 
2 +˘i (µki log µki − µki ) (3.32)ˆˆ ˆ 

i=1 k =1 k =1 

where 0 ˜ µki ˜ 1, Dki = xk − vi , c is the number of clusters (or classes), N  is the num-
ber of data points, µki is the typicality value of xk in class i, and ηi is the scale 
or distribution parameter which depends on all the data which is computed by the 
Equation (3.33): 

N 
m 2˝ µki, fcm D ki 

k=1˜i = N  (3.33) 
m˝ µki, fcm 

k =1 

µki, FCM is the terminal membership value of FCM. In this case of MPCM, the typi-
cality values (µki ) viand cluster centers ( ) are obtained as stated in Equations (3.34) 
and (3.35), respectively, when Dki = xk − vi  for all i and k > 1, X contains at least c 
distinct data points, and min JMPCM (U,V ) is optimized. 

˙ 2 ˘ 
µki = exp − 

Dki , �i k, ;  (Typicality values for MPCM)  (3.34)ˇ �° ˆ i � 

ˇ
N 

µki xk 
k =1˜ i =

ˇ 
, ˝i ; (Cluster centers) (3.35)

N 
µki 

k =1 
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3.3 SUMMARY 

In this section, what is a thematic map and how this can be generated using remote sens-
ing data has been discussed. The presence of mixed pixels in remote sensing images has 
been mentioned as well as how fuzzy based classif ers can be applied to handle mixed 
pixels. Basic FCM fuzzy classif ers to the MPCM modif ed version of fuzzy classif ers 
has also been discussed. Each classif er’s advantages and disadvantages have been men-
tioned. The next chapter will be on understanding of learning based classif ers. 
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4 Learning Based 
Classifers 

4.1 INTRODUCTION 

Learning algorithms do not just have a mathematical function like other algorithms. 
These learning algorithms have a structure with different layers. These layers have 
different operations on input data to these layers. These layers have small units 
called neurons or f lters, each one passing “high” or “low” signal when its input 
receives signals, converting input to output data, or generating different features. 
These neurons of different layers are connected with the neurons of next layers, 
making a complicated structure. Before f nal application of these networks, training 
has to be done in which weights of networks are adjusted and other parameters of 
networks are optimized. In today’s scenario, these networks are of different forms. 
Further variations in the networks can be generated while using different layer com-
binations. In this chapter, various types of neural networks and their advantages and 
disadvantages have been covered with focus on remote sensing data classif cation. 

4.2 VARIANTS OF ARTIFICIAL NEURAL NETWORK (ANN) 

There are various types of classif cation techniques based on algorithms using differ-
ent parameters. These parameters can be statistical types, learning types, or combina-
tion of statistical or learning types. Statistical parameters used by algorithms can be of 
type such as mean, maximum, minimum, variance–covariance, standard deviations, 
etc. Learning parameters are weights and combinations of statistical as well as weight 
parameters. Algorithms using only weight parameters include artif cial neural network 
(ANN), convolutional neural network (CNN), recurrent neural network (RNN), or 
other network based algorithms as well as hybrid learning networks (HLN). ANN is 
developed with inspiration from the biological brain but not identical to the brain. 

These learning based systems get trained to perform classif cation by learning 
from examples, without using class-specif c rules for getting tuned. In image classif -
cation, learning algorithms are trained from sample images containing class samples 
as well as labels, and store the trained learning parameters of the classif cation algo-
rithms. Using these trained parameters, algorithms can be applied to classify new 
images. 

The ANN structure is made up of layers containing neurons called artif cial neurons, 
and these neurons of each layer are connected with the next layer of ANN (Figure 4.1). 
This structure of ANN tries to connect layer-wise neurons like in the biological brain. 
Each input can transmit a signal from one artif cial neuron to another coming through 
the synapses. An artif cial neuron, while receiving a signal, processes this input, and 
then this processed output is passed to artif cial neurons present in the next layer. 
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FIGURE 4.1 ANN structure with various layers. 

The  input coming to each neuron of ANN is a real number. Output from each 
artif cial neuron is computed by activation function with weighted sum of its inputs. 
Edges (arrows) in ANN provide connectivity between two consecutive layers of arti-
f cial neurons. Edges typically have a weight, and these weights are adjusted during 
the learning process of ANN. The weight adjustment is as per error contributed by 
that weight. This weight correction can be positive or negative as per adjustment 
required per weight in each connection. A threshold can be applied on each artif cial 
neuron, so that output from each neuron is only forwarded if the output is more than 
the threshold def ned. Multi-layer perceptron concept is named due to artif cial neu-
ral networks having multiple layers. The f ow of input data goes from the f rst layer 
(the input layer) to hidden layers and to the last layer called the output layer. 

Artif cial neural networks have specif c capability, which makes them different in 
comparison to traditional classif er techniques. The two main benef ts to apply neural 
networks are that they solve problems step-by-step, and they work like expert sys-
tems. The behavior of learning algorithms such as ANN, CNN, RNN, etc. is different 
in comparison to conventional mathematical function based classif ers. To study these 
intrinsic variabilities present in each class, suff ciently large training or reference data 
sets are to be fed for training. If the variabilities are large for each class, it is natural 
that training time is proportionately larger to f nd an optimal solution. Hence learning 
process is mathematically a multi-parameter optimization problem. 

Artif cial neural networks require large training data sets, otherwise their accu-
racy drops. They have been applied in various applications. Paola and Schowengerdt 
(1995a, 1995b) delivered an inclusive assessment of the application of the multi-layer 
perception in remote sensing. In  today’s scenario, the data can be from disparate 
sources, due to which data cannot be linear, stationary, or oriented and cannot be 
modeled comfortably. Neural networks do not  require any information about the 
problem type or statistical distribution of the data set. Initially developed conven-
tional classif ers require that input data should follow a standard distribution pattern, 
but for neural network, this is not necessary. Learning through which parameters of 
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algorithm is calculated is a f rst step in a supervised classif er. In the case of learn-
ing algorithms, learning scheme such as adjustment of weights has an altogether dif-
ferent meaning. In the case of networks, learning takes place with back-propagation 
algorithms, etc. After the network has been trained, the next step is to identify 
the unknown vector (image pixels) belong to which class. Training can be done 
in different ways, through different learning examples, learning instructions, and 
learning procedures. A static network is a system which follows clear-cut knowledge 
and manufacture phases. Networks which learn continuously during processing of 
data are known as energetic systems. 

A  learning model can be implemented in three ways the supervised, unsuper-
vised, or a hybrid approach. The learning approach is when reference data is used 
in the neural network. Supervised and unsupervised training are combined in the 
hybrid learning methods. To train the system, learning criterion is a type of model 
that can be used. During iteration of each training, interneuron synaptic weights are 
updated using specif c mathematical processes of learning algorithms. A variety of 
possible learning algorithms can be used under each learning rule. With a single 
learning rule, most of the algorithms can be used. While working with supervised 
or unsupervised learning paradigms using rules and learning algorithms, both will 
generate different effects. Unlabeled data, i.e., semi-supervised learning data, is also 
taking advantage in overcoming the small training data problem. This approach has 
been achieved through pseudo-label (Lee, 2013) and incorporating generative mod-
els, such as generative adversarial networks (GANs) (Salimans et al., 2016). But how 
much these techniques can improve the performance of deep learning (advance form 
of ANN) is not clear and is an area of active investigation. 

Overtraining of learning algorithm occurs when there are too many training 
examples, as well as when training cycles called epochs are also very large and do 
not perform well with respect to generalization. Overtraining also occurs when com-
putation in the form of iteration is very large in comparison to dimensionality of the 
input space. Large numbers of training samples should not be used during training. 
Different results with respect to quality and robustness of network can be seen with 
variation in training samples. 

While designing a neural network architecture, different free parameters have to be 
decided. Among these parameters are various numbers of layers, mainly numbers of 
hidden layers, numbers of neurons in hidden layers, numbers of training iterations, etc. 
Input layer does not have free parameters, but it is largely dedicated by the number of 
input receivers. Output layer also has no free parameters, as it def nes the number of 
classes. In hidden layer, each node and layer has free parameters as have many num-
ber of hidden layers as well as neurons in it. The number of hidden neurons, learning 
rate, and momentum parameter as well as output from each neuron, which should be 
more than the threshold value, are very important parameters in terms of training of 
model and network design of model. The hidden layers and their nodes contribute 
decision boundaries for discriminating one class from the rest. Unlike the conventional 
statistical methods, these learning methods do not def ne the decision boundaries of 
each class by their statistical distribution in feature space. Hence ANN is allowed to 
self-learn its the decision boundaries. The exact required number of hidden layers and 
neurons in hidden layers as well as initial weights are not known a priori. 
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A general approach is to start with a large number of hidden layer neurons and 
trim or “prune” the network to optimal size through a strategy to evaluate the impact 
of each neuron elimination in the f nal output evaluation. In other words, not all 
hidden neurons contribute signif cantly to the output performance and hence can be 
“pruned” out. 

In hidden layers, only hidden neurons as def ning hidden layer size are present. 
Neurons in hidden layers are essentially hidden from view due to being bonded 
between the input and output layers. The  size of hidden layers, called number of 
neurons in hidden layers, is generally free of parameters in the ANN system. More 
the hidden layers as well as hidden neurons in them require greater the processing 
power and system f exibility. This additional f exibility can be attained with the cost 
of added intricacy in the ANN training algorithm. If the ANN gets over-specif ed 
and is in general incapable of generalization while having large numbers of hidden 
neurons. It is similar to a system of mathematical functions with more free variables. 
The effect of few hidden neurons, equally, will avert the system in appropriately 
f tting the input data and result in less robustness of the system. 

Hidden layer size is def ned as the number of neurons in the hidden layers, which 
are the layers between input and output layers. According to Huang (2003), the 
number of hidden nodes in two-hidden-layer case are always more than the output 
layer neurons. Lippmann (1987) and Pao (1989) also demonstrated how neural net-
works can be used as supervised and unsupervised modes. One of the parameters 
in neural networks which is very common is learning rate. Learning rate controls 
the change in weight and bias changes while training algorithm is applied. Another 
parameter of learning is momentum adding a fraction “m” from previous weight to 
update the current one. The momentum parameter prevents the ANN from ending on 
a local minimum or saddle point. But momentum increases the speed along a local 
minimum as well as along f at regions. When considering a large value of a momen-
tum parameter, momentum increases the speed toward convergence. However, 
applying too high a value of momentum parameter can generate the risk of jump-
ing over the global minimum, and the system becomes unstable due to overshoot-
ing. A momentum coeff cient with values that are too low cannot consistently avoid 
local minima, and learning algorithms training will slow down. Another parameter 
of ANN is epochs, which controls learning. Epochs determine when training will 
stop, based on whether the number of iterations exceed the epochs. Secondly train-
ing can stop when the training neural network reaches the minimum error criteria, 
or reaches to maximum number of iterations. The minimum mean square error of 
the epoch is used to monitor learning cycles. Mean square error is calculated using 
square root of the sum of squared differences between the network targets and actual 
outputs divided by number of patterns. 

Training of ANN has to be done with training data before using ANN for clas-
sif cation or prediction. The question becomes, how does the learning process take 
place in ANN? Inputs as training data are used in the learning process, and the 
outputs are represented in numeric form. In  the training process, weights initially 
assigned randomly as internal state of ANN are modif ed. Output calculated using 
tuned weights is as close as possible to the desired output but in the predicted process 
generates most likely output according to its past “training experience” – using the 



 

 
 
 
 
 

 

   
   

 
 

 
 
 
 

37 Learning Based Classifers 

weight values as internal state, based on input. With this, machine learning is also 
called the model f tting approach. To understand this learning process, it can be 
decomposed into its several building blocks. 

To understand supervised learning of ANN, here a single dimension vector has been 
taken. In this, there will be input as a single value and output single dimension to under-
stand the relation between input and output. The objective of the supervised neural 
network as a best f t model is to f nd out the characteristic function that f ts the best for 
a given data. The initial hypothesis in supervised classif cation is learning the model 
where training data is used to adjust it’s weight values. Neural networks can start while 
taking random weights value at each connectivity. At each connectivity there should be 
weights, but initially at each connectivity there are no weights. Thus, the simplest pro-
cedure is to initialize weights randomly, called learning model initialization. 

In order to make the ANN model to generalize to any problem, there is a function 
called loss function. How ANN reaches to its goal of generating appropriate outputs 
as close as possible to the desired values can be known using performance metrics 
generated from the loss function. 

The  simplest intuitive loss function is simply loss = (Desired output  –  actual 
output). This  loss function returns positive values when the network undershoots 
(prediction < desired output) and negative values when the network overshoots 
(prediction > desired output). To generate the loss function, an absolute error on 
the performance regardless if its overshooting or undershooting can be def ned as: 
loss = Absolute value of (desired – actual). 

Different errors from various situations can give same sum of errors; for example, 
a large number of small errors or very few big errors can accumulate exactly to the 
same total amount of error. It has been more preferable to have a distribution of many 
small errors, rather than a few big ones, while to work under any situation. ANN can 
converge to a situation while def ning the loss function to be the sum of squares of 
the absolute errors. These types of loss functions are the most famous loss functions 
in ANN. The advantage of considering small errors is that they are counted much 
less than large errors. 

Notice how, for f rst input, the network predicts correctly the result. What one has 
to care about is to minimize the overall error from the whole dataset that is the total of 
the sum of the squares of the errors. Overall loss function is an error metric that gives 
an indicator on how much precision is lost, while replacing the real desired output by 
the actual output generated by the trained neural network model, which is called loss. 

In machine learning, the objective is to minimize the loss function and bringing 
loss value as close to 0 as possible. During transform of machine learning, a prob-
lem can be solved using an optimization process that aims to minimize loss func-
tion. Obviously, an optimization technique is what modif es the weights of neural 
networks, so that total function loss can be minimized. Optimization can be done 
through genetic algorithms, greedy search, or even a simple brute-force search. 
In the case of only one parameter of weight to optimize W, the search can be from 
−∞ to +∞ with a small rate change to f nd out at which weight value the sum of 
squares of errors is smallest over the dataset. 

This model works fne even though the model has only very few parameters and 
not much concern about precision. However, like in image processing, if training 
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ANN over an array of 600 × 400 inputs, weights will be in the millions to optimize. 
This means that as dimensionality of data increases, number of neurons increases 
in input layer, due to which the number of weights increases. Fortunately, there are 
various methods in mathematics which can guide how to optimize the weights in 
ANN, and one of the methods is differentiation. This  differentiation is generated 
with the help of derivative of the loss function. The derivative of a function in math-
ematics controls the rate by which a function is changing its values at a given time. 
Read Bishop (1995), Garson (1998), Haykin (1999), Hewitson and Crane (1994), 
and Ripley (1996) to know more about working with artifcial neural netw orks. 

4.2.1 baCk-ProPagation 

In neural networks between input and output layers, zero or more than zero hidden 
layers can be used inside the neural network. The effect of a large number of hidden 
layers is to have more variations in the working of the neural network, which can 
be achieved (Kavzoglu, 2001). Kanellopoulos and Wilkinson (1997) proposed that 
when there are 20 or more classes, two hidden layers should be considered, with neu-
rons in the second hidden layer two to three times more than the output layer. Sarle 
(2000) mentions reasons to highlight the causes for determining number of neurons 
in the hidden layer. The reasons are on total input and output neurons present, train-
ing data set size, classif cation complexity, noise in the input data to be classif ed, 
hidden layer neuron’s activation function, and type of training algorithm. 

Training of ANN means using some training algorithm to adjust the weights 
present at each connection of ANN (Figure  4.2). In  order to adjust the weights 
during training, derivatives take care about change in weights through the back-
propagation algorithm. First stage error is received from ANN through loss 
function, with its derivate, and with the derivation of each function from the com-
position, it is possible to propagate back the error from the end to the start. To 
implement feed-forward, there can be a set of libraries of differentiable functions, 
by directly applying the function. Secondly, through these libraries backpropa-
gation can be applied with the derivative of the function, to combine a complex 

FIGURE 4.2 Back-propagation for adjusting weights. 
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neural network. During the forward pass their parameters, also called the track 
of the function calls, have to be kept. It is possible from derivatives of these func-
tions to know the back-propagated errors. This is achieved by de-stacking of the 
function calls. This is called the auto-differentiation approach, and requires only 
the function which is provided with the implementation of its derivative. Through 
implementing basic mathematical operations over matrices, auto-differentiation 
can be accelerated. In neural networks, the previous layer neurons forward their 
output to the next layer neurons and f nally to neurons of output layers, in order 
to implement back-propagation for training of ANN. In  back-propagation, error 
at the output layer is used to adjust the weights in the previous layer, later output 
coming out from the previous layer, then the output layer is used to f nd out error 
and further adjust the weights from its previous layer. Figure 4.2 shows the pro-
cess of implementation of back-propagating errors. At each stage of ANN, such 
as Input → Forward calls → Loss function → derivative → back-propagation of 
errors, there is correction factor delta on each weight of the training stage. 

4.2.2 Weight uPdate 

While adjusting weights in training of ANN, the error change rate is represented as 
the derivative (Figure 4.3). It has been observed that, in real data processing, weights 
cannot be modif ed with very higher rates. Kavzoglu (2001) mentions that learning 
rate value 0.2, with momentum used; with momentum it should be 0.1 to 0.2. Pal 
and Mitra (1992) suggested parameters be changed during training. As the data have 
lots of non-linearities, any very large change in weights may not able to incorporate 
adjustment as required. It has been found that derivative is only local at the area. 
Weight updates general rule in ANN can be called the delta rule: 

New weight = Old weight – Derivative Rate × Learning rate 
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ro

r 

Error surface 

Local Minima 

Global Minima 

W = weight 

FIGURE 4.3 Local to global minima during training. 
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The learning rate is constant as used in ANN; this has a small value to update 
weight values smoothly and slowly and to avoid big stepladders and messy behavior. 
To validate this concept, the following points can be considered: 

• When derivative rates are positive, there is an increase in weight, which will 
increase the error, so new weight should be smaller. 

• When derivative rates are negative, there is an increase in weight, which 
will decrease the error, thus weights should be increased. 

• When derivative is 0, it is in stable minimum. When it reaches the stable 
state, no updates are required. 

In the present scenario, several weight update methods used in ANN are often called 
optimizers. The delta rule as weight optimizer is the most simple and intuitive one; 
however, it has several drawbacks. In the testing, sample data input/output training set 
may be small, but in the real world data size may be very large. While considering batch 
learning, error cost function or loss function is minimized, considering the whole data-
set. But this, called batch learning, might be very slow for a large dataset. To increase 
the speed, sub-batches can be made, providing that the dataset is shuff ed randomly, 
which is called mini-batch gradient descend (Benediktsson et al., 1993). If considering 
each single input, output observation in which weights are updated can be called full 
online learning or stochastic gradient descent. So, any optimizer can work with three 
optimizer modes like full online/mini-batch/full-batch. Kavzoglu (2001) found classi-
f er performance better with small initial weight in the range of [−0.25, 0.25]. 

While weight updated rate with a small delta step, the number of iterations will 
increase in order to learn. The same thing happens in genetic algorithms in which with 
each generation, the f ttest survives after a small mutation rate is applied. In  neural 
networks, after each iteration, the gradient descent force updates the weights in such a 
way that global loss function is minimized. The similarity between ANN learning and 
genetic algorithms can be seen through the delta rule, which acts as a mutation operator 
in genetic algorithm and the loss function acts as a f tness function to minimize in ANN. 
Mutation in genetic algorithms is blind – that is the difference. Good mutations have a 
higher chance to survive. The weight updates in ANN are controlled through decreasing 
gradient force over the error. The number of iterations required to converge may depend 
on the following points: 

• Effect of learning rates is like large learning rate with higher chance of 
instability. 

• Effect of learning also depends on free parameters of the network like how 
many layers, activation function, etc. The  larger the number of variables, 
the more time to converge, but the higher the accuracy ANN reaches. 

• There are also effects of learning algorithms used; some weight adjustment 
rules are proven to be better than others. 

• There  is also the effect of weight initialization of the network. Weights 
are initialized in such a way that there is only step away from the optimal 
solution. 

• Effect of quality of the training set also strongly affects learning of ANN. 
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4.3 CONVOLUTIONAL NEURAL NETWORK (CNN) 

In  various applications such as self-driven cars, smart web searches, and pattern 
of speech and image recognition the application of machine learning has grown 
many fold in last decades (Bhandare et al., 2016). Machine learning applications are 
becoming part of daily life (LeCun et al., 2015). In machine learning, a branch of 
artif cial intelligence computers teaches itself with being provided reference or train-
ing data. Machine learning could drive future technology, being a very interesting 
and complex topic (Krizhevsky et al., 2012; Long et al., 2015; Dong et al., 2016). 

The machine learning algorithm follows the principle of biological neural net-
works the same as biological neurons are organized. Machine learning gives an 
opportunity to mimic the processes arising in the brain (Zeng et al., 2015). One of 
the examples of machine learning is a neural network; the neural network consisting 
of individual units called neurons. Neurons are located in all the layers of a neural 
network. Neurons in each layer are connected to neurons of the next layer, and data 
f ows from the input layer to the hidden layer to the output layer. Output from each 
neuron is generated using a weighted sum into an activation function present in each 
neuron. Output from each neuron is transmitted to all the neurons of the next layer 
connected to it. 

The  benef t of neural networks came in connection with high end processing 
machines and large training data. With these two points, modif ed versions of neural 
networks can be seen used in last decade, including convolutional neural network 
(CNN), recurrent neural network (RNN), etc., added on with deep learning concepts. 
In these networks, technical pre-processing stage structures of neural networks are 
different than ANN. But these modif ed networks are able to solve a wide range 
of tasks which were not  effectively solved in the past. From various applications 
of these networks, image classif cation can be an important example. 

4.3.1 Convolutional neural netWorkS iMage ClaSSifiCation 

A convolutional neural network (CNN) has different pre-processing layers in com-
parison to MLP neural networks as shown in Figure 4.4. Basically, CNN uses fea-
tures called visual cortex (Hubel and Wiesel, 1968; Fukushima, 1980). The visual 
cortex in the brain is the main cortical region. Its main work is to receive, integrate, 
and process visual information, which is received from the retinas. Due to mimick-
ing like brain, the most popular use of CNN architecture is image pattern recogni-
tion. Some of the applications of CNN in social media are automatic tagging in 
Facebook photographs, in Amazon for generating product recommendations, and in 
Google for searching through photos. 

In  remote sensing for image data, the main use of CNN is for earth object 
recognition. The  main objective of object recognition is identifying similar pat-
terns in one group and providing labels. The pattern recognition is a skill learned 
by people from birth, and they are easily able to determine various objects. But the 
way a computer identif es the objects from an image is quite different. The com-
puter considers an image as an array of pixels. For example, an image can be of size 
300 × 300 with RGB bands. In this example, the array size will be of 300 × 300 × 3, 
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FIGURE 4.4 CNN – Multi-layer CNN architecture. 

where 300 are rows, the next 300 columns, and 3 is RGB channel values. In  the 
image range of pixels, value depends on data types of the image, which gives bits 
of the image. For 8 bits, data images have values from 0 to 255 to each of these 
numbers. These values describe as vector element the intensity of the pixel at each 
row and column. To classify these pixels, a unique property is generated from a 
classif cation algorithm. In human learning, these characteristics can be, for exam-
ple, specif c characteristics of an object. For the computer, these characteristics are 
different shapes of an object. In  the case of convolutional neural networks, con-
volutional layers construct more abstract concepts. The steps followed in CNN on 
a given input data are a series of convolutional operations, non-linear operations, 
pooling layers operations, and last, fully connected layer steps are applied to get 
the output. 

The Convolution layer operation is always the f rst in which an image is input to 
it. Reading of an image is done from the top left corner of an image, as this takes 
the least time in reading an image. The next step is to select a small matrix, called a 
f lter. This f lter generates convolutions output, while moving along the input image. 
This f lter job is to multiply its values with the original pixel values of the image in 
that region. Multiplying f lter coeff cients with image values weighted sum is cal-
culated, and f nally a single number is generated from this operation. Initially the 
f lter has used pixel values from the upper left corner only, and it moves further and 
further right by 1 or higher unit, performing a similar operation. This unit movement 
is called stride, and stride can be of any unit. After applying the f lter across the 
image, an output in the form of a matrix is obtained, which is smaller than an input 
matrix. This  operation identif es boundaries and simple colors from input image 
with respect to human perception. In order to recognize very specif c properties of 
features, a higher level of CNN network is required. The CNN network consists of 
several convolutional operations, pooling operations, and non-linear layers. In CNN, 
the f rst layer’s output becomes input to the next layer, even though the next layer 
may not be the same as the f rst one, and this happens to consecutive layers until it 
reaches the f nal layer. 
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In CNN activation, a function is present as non-linear layer, after each convolu-
tion operation to be applied (Glorot et al., 2011; Krizhevsky et al., 2012; Nair and 
Hinton, 2010; LeCun et al., 2015; Ramachandran et al., 2017). This function pro-
duces a non-linear decision boundary via non-linear combinations of the weight and 
inputs. Without the non-linear decision boundary, the network would not be able 
to model the response variable. After the non-linear layer, the pooling layer comes 
in CNN (Lin et al., 2013). Pooling operation reduces the image size through down 
sampling operation. In down sampling, the image is compressed in which its details 
were reduced as less detailed pictures. This down sampling operation was ended as 
various features have already been identif ed in previous convolution operation, and 
an image with detailed information is not needed. 

In CNN, after various steps of convolutional operations, non-linear operations 
and pooling layers are applied, then the last compulsory operation layer, called fully 
connected layer, has to apply. Fully connected layer gives the f nal output informa-
tion from convolutional networks. The end layer in CNN, called the fully connected 
layer, provides N dimensional vector; N depicts the number of classes to identify. 

4.3.2 SuPerviSed MaChine learning 

In  supervised machine learning, the model gets trained using training data and 
expected output data generated from input data. While creating CNN types of 
models, some of the steps have to follow, such as model structure creation, model 
weight adjustment through training, and model evaluation through testing process. 
The machine learning algorithm decides model construction. Input data should be 
scaled (to 0 to 1 range) before model training. Once a model has been constructed, 
learning of the model has to be done. Learning of the model is conducted using train-
ing data and evaluated expected output for this data with target data. Model testing 
is done after the model training is completed. The second set of data is loaded to 
test the model. Testing data was not used with models previously to have unbiased 
accuracy of the model (Park and Han, 2018). Once model training is over and the 
model gives correct results, its weight values and other parameters have to be saved. 
The model with saved parameters and weights can be used with real data sets; this 
process can be called model evaluation. From this evaluation, the process model can 
be used to evaluate new datasets. The pseudo code of CNN with an option to add 
LSTM layers is given as follows:

 class CNN:

 def __init__(self,bands,train_cycle,c_c,thresh,D_ 
type,row,col):

 self.bands=bands
 self.row=row
 self.col=col
 self.pixels=row*col
 self.train_cycle=train_cycle
 self.c_c=c_c
 self.thresh=thresh 
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self.D_type=D_type 
print(self.pixels)

 def cnnfit(self,data,X,y_train,activation_fn):
 print("X")
 print(X.shape)

 print("Y")
 print(y_train.shape)

 print(self.c_c)
 model = Sequential()
 j=3
 for i in range(0,len(data)):

 print(data[i])
 if data[i]=="Conv":

 if(i==0):
 print("yes",self.bands)

 model.add(Conv1D(2 ** j, 2, 
activation=activation_fn, padding='same', 
input_shape=[self.bands, 1]))

 else:
 model.add(Conv1D(2 ** j, 2, 

activation=activation_fn, padding='same'))
 #if i!=len(data)-1:

 #model.add(BatchNormalization())
 j=j+1

 elif data[i]=="Maxpooling":
 model.add(MaxPooling1D(2))

 elif data[i]=="LSTM":
 if(i==0):

 model.add(LSTM(2**j,return_ 
sequences=False, input_shape=(bands ,1)))

 else:
 model.add(LSTM(2**j, return_ 

sequences=True))
 j=j+1

 model.add(Flatten())
 model.add(Dropout(0.1))
 model.add(Dense(256, activation= activation_fn)) 
model.add(Dense(128, activation=activation_fn))

 model.add(Dense(self.c_c, activation='softmax'))
 model. compile(loss='categorical_crossentropy', 

optimizer='adam', metrics=['accuracy']) 

The  following code snippets are the keras implementation of convolution neural 
networks. The network consists of a set of three layers in the order: 2D convolution, 
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non-linear activation layer, rectif ed linear unit (ReLu), and pooling layer (max pool-
ing or average pooling). The output of the f nal layer acts as an input to the following 
two dense layers. Below is the more detailed structure of the model. 

# MODEL 

Algorithm 1: Pseudo code for CNN Model 

Requirement: Training Dataset: features x_train, labels y_train 
Testing Dataset: features x_test, labels y_test 

Procedure: 
NeuralModel(x_train, y_train) 

batchSize =  16; epochs = 10 

model = Sequential() 

model.add(Conv2D(32, (3, 3), input_shape=(300, 300, 3))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Conv2D(32, (3, 3))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 

model.add(Conv2D(64, (3, 3))) 
model.add(Activation(‘relu’)) 
model.add(MaxPooling2D(pool_size=(2, 2))) 

# the model so far outputs 3D feature maps (height, 
width, features) 

model.add(Flatten())  # this converts our 3D feature maps to 
1D feature vectors 
model.add(Dense(64)) 
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(1)) 
model.add(Activation('sigmoid')) 
# COMPILE 
model.compile(loss='binary_crossentropy', 

optimizer='rmsprop',
 metrics=['accuracy']) 

model.fit(x_train, y_train, batch_size=batchSize, 
epochs=epoch) 
score = model.evaluate(x_test, y_test, batch_size=32) 
accuracy = score[1] 
return accuracy 

end procedure 
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Now let us understand the individual layers in more detail. The  f rst convolution 
layer Conv 2D takes three input arguments in the following order: number of output 
f lters, a tuple of kernel size which determines the dimensions of convolution win-
dow, and a tuple of input shape. As mentioned in the code, there are 32 output f lters 
each of dimension (3, 3) in the f rst layer. It is worth noting that only f rst convolution 
layer has a parameter of input dimension (300, 300, 3), while the subsequent layers 
automatically take in the value of input dimension from the previous layers. Thus all 
the convolution layers except the f rst take two input arguments. 

The model uses ReLu as an activation function. The function provides a non-linearity 
to the input values as f(x) = max (0, x). The pooling functions (Max pooling, Average 
pooling) are applied on the spatial data, and the number (2, 2) means that the output’s 
dimension will be half of the input dimension based on the type of pooling performed. 

Followed by the convolution layers are two dense layers which have ReLu and Sigmoid 
as activation functions. The frst dense layer has 64 neurons, the outputs of which are fed 
to the dropout layer followed by a single layer of a neuron with a sigmoidal function as 
the activation. In the model, the dropout plays an important role as it helps us to cope with 
the issue of overftting. Overftting refers to a phenomenon in which the model performs 
extremely well on training data while giving very low accuracy on unseen test data, the 
reason being that the model has been tuned to training examples so well that it fails to 
classify any new unseen example. Thus, the dropout function ‘drops’ in some neurons, 
making the model more general than being too specifc based on the examples. Once the 
model has been built, it is compiled using “binary_crossentropy” as loss, rmsprop as the 
optimizer, and “accuracy” as the metric to access the model performance quantitatively. 
The following code fragments help us construct the model for training: 

batch_size = 16 

4.4 RECURRENT NEURAL NETWORK (RNN) 

Sequence prediction problems have been used to design recurrent neural net-
works or RNNs (Figure 4.5). Depending upon types of inputs and outputs in an 
application area, various types of sequence prediction problems can be consid-
ered (Robinson et al., 2002; Graves et al., 2013; Sak et al., 2014). Various types of 
sequence prediction problems can be: One-to-Many: Multiple steps as an output 
can get through mapping with input. Many-to-One: Class or quantity prediction 
gets mapped with sequence of multiple steps as input. Many-to-Many: Multiple 
steps as output mapped with sequence of multiple steps of input. Sequence-to-
Sequence or seq2seq in short is a many-to-many problem. Training of recurrent 
neural networks is a diff cult task. To solve the training problem of RNN, the 
best effective network is long short-term memory, or LSTM (Hochreiter and 
Schmidhuber, 1997; Mikolov et al., 2010; Sundermeyer et al., 2012). The advan-
tage of use of LSTM resolves the issues of training a recurrent network, and the 
LSTM has been applied on a wide range of applications. RNNs as the LSTMs 
have received the most success while applying in sequences of words and para-
graphs, in the area of natural language processing (Elman, 1990). Recurrent neu-
ral networks (RNNs) are networks in which data f ows in different directions 
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FIGURE 4.5 RNN architecture with different layers. 

and are used for applications such as language processing (Chung et al., 2014). 
For RNN, use of long short-term memory is effective. Time series data is repre-
sented as an example like a series of text and spoken language (Zhao et al., 2016; 
Wang et al., 2017). Generative models have also been used that require a series 
of output, not only in text form, but also in creating handwriting. RNNs have 
been applied for speech data, regression prediction problems, generative models 
application areas, text data, and classif cation prediction problems (Mandic and 
Chambers, 2001; Sutskever et al., 2011). For  tabular datasets, recurrent neural 
networks are not appropriate, and RNNs are also not appropriate for image data 
input. Time series forecasting problems have also been tested with RNNs and 
LSTMs, but the results have been poor (Walid and Alamsyah, 2017). Simple 
MLPs outperform LSTMs when applied on the same data. In computer vision, 
a recurrent neural network (RNNs) has great application. In acoustic modeling 
for automatic speech recognition (ASR), RNNs also have been strongly applied 
(Lekshmi and Elizabeth, 2016). 

4.5 HYBRID LEARNING NETWORK (HLN) 

From literature, hybrid network models have been found while adding in one model 
layers of other models like, CNN layers with the RNN model (Guo and Ding, 2015). 
These types of HLN networks in a broader model have different combinations of 
MLP layers. Technically, HLN having different layers of ANN, CNN, and RNN 
can be called hybrid type network architecture (Chin-Yi and Chung-Wei, 2012). 
Adding different types of network layers, known as ‘mixing’ of layers, together 
make hybrid models. Hybrid models will have a combination of layers mounded 
one at the top such as CNN layer, pooling layer, LSTM layer, and MLP or LSTM 
at the output (Chiou-Jye and Ping-Huan, 2018). CNN LSTM architecture types of 
models work with series of images like video frames and generate classif cation or 
prediction outputs. 
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To unlock new capabilities of networks, these models can be stacked with specif c 
layered architectures to use in reusable image recognition prototypes. Hybrid models 
use a large range of layers as deep CNN and MLP networks with LSTM model and 
can be applied for captioning photos (Hu et al., 2018). Input and output sequences 
of differing lengths can be archived through encoder–decoder LSTM networks. 
The project outcome must be very clear and then seek out a network architecture 
that meets specif c project needs. 

4.5.1 training iSSueS – reMote SenSing data doMain 

It is well known that learning algorithms require large training data sets. But 
while applying these learning algorithms on remote sensing data sets, it becomes 
impossible to collect large training data sets. To resolve this issue, a technique 
has been developed to increase the training data size. Like in photogrammetry, 
the extension of ground control points (GCPs) approach is there. In the case of 
extending/increasing the number of GCPs from a few number, it is achieved by 
triangulation technique. In the same manner, the training data size for learning 
algorithms can be increased from small seed training to larger data size, using 
statistical parameters. 

4.6 DEEP LEARNING CONCEPTS 

A deep neural network (DNN) basically has more layers in comparison to a basic 
neural network (ANN), between input and output layers (Vargas et al., 2017). But 
the main point in DNN is generating features at very large dimensionality so that 
some of the information which cannot be identif ed in normal features of data can be 
identif ed in the high dimensionality feature of data sets. Larger dimensionality of 
data can allow seeing specif c properties in data to identify specif c object (Bengio, 
2009). The DNN generates better mathematical processing to convert the input into 
the output for a linear or non-linear relationship (Alom et al., 2019). The probabil-
ity of each output is calculated due to operations done across layers. For example, 
degree of belongingness of a tree in a certain type of forest can be identif ed through 
a trained DNN. In network based algorithms, in each layer mathematical manipula-
tions take place, and complex DNNs have large number of layers and hence become 
“deep.” They are also called deep due to generating high dimensional data from a 
given input image. DNNs are capable of handling complex non-linear relationships. 
Objects can be expressed as a layered composition of primitives if DNN architec-
tures generate compositional models. Extra layers in DNN enable arrangement of 
features from fewer layers like in ANN. These extra layers model complex data in 
comparison to similarly performing fewer layers in ANN, where each layer is called 
a unit. 

Deep architectures in deep learning have different variants of layers. Specif c 
architecture of layers has given good results in specif c applications. Comparison of 
multiple layers structure with DNN cannot be done unless both performances are 
evaluated with the same data sets. Same as ANN, DNNs are classically feed-forward 
networks, which means in DNN also, without looping back, data f ows from the 
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input layer to the output layer. Like in ANN, in DNN randomly numerical weights 
also are assigned in fully connected layers. The weights are considered just like in 
ANN where weighted sum is calculated using weights and inputs. This weighted 
sum goes inside the neuron and returns an output between 0 and 1. While working 
with DNN, some of the input patterns are not  recognized correctly; in that case, 
a learning algorithm would adjust the weights. While identifying unknown data 
during classif cation, there can be certain parameters that are more inf uential; these 
parameters have to be tuned until correct values of these parameters is determined. 

4.6.1 ChallengeS in learning algorithMS 

Similar to ANNs, in DNNs many issues can arise. Overf tting and computation time 
are the common issues in CNN, RNN, DNN, etc. (Hinton et al., 2012). Due to added 
layers of abstraction, DNNs are prone to overf tting, which can be resolved through 
modeling enslavements in the training data. To resolve overf tting, regularization 
methods such as Ivakhnenko’s unit pruning or weight decay (regularization) or spar-
sity (regularization) can be used during training. Also, training data size can be 
increased. From the hidden layers during training, dropout regularization randomly 
omits units, which helps to exclude rare dependencies. Overf tting can be reduced if 
training data can be amplif ed using approaches like shifting, f ipping, cropping, and 
rotating so that training data size can be enlarged (Ioffe and Szegedy, 2015; Zhong 
et al., 2017). 

There  are large numbers of free parameters in DNNs such as types of layers, 
its units or f lters, learning rate, momentum, and initial weights. To reduce large 
time and processing resources, sweeping in the possible parameter values to achieve 
optimized parameters may not be suitable. Speed of computation can be improved 
through various tricks, such as dividing tasks into batches such as computation of 
gradient on small sets training samples at a time, rather than whole training data 
(Qian, 1999; Kingma and Ba, 2014; Ruder, 2016). Because of the availability large 
core architectures like GPUs or Intel Xeon Phi, matrix, and vector, computations 
have produced signif cant speedups in training. 

With more straightforward and convergent training algorithms, type of neural 
networks can be explored. One such kind of neural network is called CMAC  – 
cerebellar model articulation controller. In CMAC, learning rates or randomly gen-
erated initial weights are not required. The training activity while applied in a batch 
can be guaranteed to converge, while arithmetical computation in training algorithm 
behaves linearly, dependent on number of neurons considered. 

One of the f rst convincing successful uses of deep learning is in automatic speech 
recognition. Intervals of multi-second containing speech events tagged by thousands 
of discrete time steps, with one time step equivalent to about 10 ms, can be applied 
in LSTM RNNs to have very deep learning. With traditional speech recognizers on 
certain tasks, LSTM with forget gates is competitive (Han et al., 2017). 

Deep learning has been related to theory of working of brain proposed by cogni-
tive neuroscientists in the early 1990s. Computational models have been made by 
predecessors of deep learning systems following instantiated developmental theo-
ries. Developmental models generate characteristics with various important learning 
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dynamics in the brain, supporting self-learning. These are somewhat similar as in 
ANN applied in deep learning structures. In DNN, having various layers with dif-
ferent operations on the input data generates information from a prior layer and then 
passes its processed output to the next layers. 

To explore the likelihood of deep learning models from neurobiological perspec-
tive, variant methods are developed. In order to increase backpropagation algorithm’s 
processing realism, several variants have been proposed. Some researchers have 
identif ed hierarchical generative models and deep belief networks as unsupervised 
approaches of deep learning which may replicate biological reality. In  sampling 
based processing in the cerebral cortex, generative neural network models are simi-
lar to neurobiological evidence. 

A  systematic study between the human brain and deep neuronal networks is 
required to f nd out comparisons between both. Still, for example, in the context 
of computations, performance between deep learning units and actual neurons and 
neural populations could be similar. Similarly, deep learning models are similar to 
those cardinal visual systems, which contain dozens of distinct areas in the cerebral 
cortex that are widely interconnected in an isolated hierarchical network that con-
tains several entangled processing streams. 

4.7 IN-HOUSE TOOL FOR STUDY OF LEARNING ALGORITHMS 

Pseudo code has been implemented in following GUI (Figure 4.6). This GUI can 
be used for displaying multi-spectral remote sensing data. This GUI has facility to 
collect reference data of various classes to be used for training and testing purposes 
(Figure 4.7). Reference data of each class is saved in different data f les. In the next 
step, this GUI facilitate to read and insert training data of each class (Figure 4.8). 

FIGURE 4.6 Main GUI of learning tool. 
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FIGURE 4.7 Training data creation tool. 

FIGURE 4.8 Load training data module. 

Once training data of each class has been loaded, the next step comes to apply ANN 
or CNN networks, through training and tested module. By default it gives an option 
to apply ANN with input images, called training data, def ning ANN parameters like 
learning rate, epoch, and hidden neurons (Figure 4.9). While going to CNN module, 
this parameter of CNN has to be def ned like epoch or threshold (Figure 4.10). CNN 
module provides options to add CNN based layers as well as to make it a hybrid 
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FIGURE 4.9 Training and testing module with ANN. 

FIGURE 4.10 Training and testing module with CNN. 

approach while adding an LSTM layer (Figure 4.11). Once training is over, it will ask 
to save tunned weights of the model as well as hard and soft classif ed outputs. In hard 
classif ed output, it has been assumed that all pixels are pure pixels. In soft classif ed 
outputs, fraction images of each class is generated. During training and testing/clas-
sif cation, process accuracy and loss function status can also be monitored. 
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FIGURE 4.11 Module to add various layers in CNN module. 

4.8 SUMMARY 

In this chapter, starting from artif cial neural network, convolutional neural network, 
recurrent neural network, hybrid approach, and deep learning concept have been 
covered. Information about each of these learning algorithms, their structure details, 
learning approaches, and advantages and disadvantages have been mentioned. 
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The  main issue with these algorithms is limited training data availability, while 
applications on remote sensing data have been discussed and provided solution. 
The next chapter will be on understanding of hybrid fuzzy based classif ers. 
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5 Hybrid Fuzzy Classifers 

5.1 INTRODUCTION 

Hybridization of classif ers begins with the fact that, in most cases of real world 
imagery such as remote sensing, no single classif er can provide the best result for all 
classes of ground features. For example, the traditional maximum likelihood classif -
ers (MLC) by virtue are based on Gaussian probability density modeling of the earth 
features. In many homogeneous objects, this is still a valid assumption. The benef ts 
of these algorithms are fast to compute the required statistical parameters and com-
pare with those in the library. On the other hand, artif cial neural networks solve 
complex mixed classes that are common in high resolution imagery more eff ciently 
than the MLC. However, the design is complex, and much trial and error would 
be required to freeze the right network design that yields good results for all the 
classes of interest. However, a combination of two classif ers is likely to benef t from 
the best of each when they complement each other, thereby yielding the best result. 
This hybridization can be at the pixel level, feature level, or decision level. 

In this chapter, we describe fuzzy hybridization techniques wherein we use dif-
ferent properties of local features present in the image for improved classif cation 
applications. The properties of local features can be measured with a variety of func-
tions. Some of the most common features are described as below: 

1. Markov random f eld (MRF) is an approach widely used for characterizing 
contextual information. Contextual can be understood as correlation, and in 
this chapter spatial correction has been considered. 

2. Entropy in information technology def nes uncertainty, and this uncertainty 
concept has been applied to study the effect of entropy during classif cation. 

3. Similarity/dissimilarity measures with many types of distance norms and 
can be applied in classif ers using distance function. 

4. Spectral information divergence (SID) is a random probability distribution 
measure of classif cation that matches pixels in the image to the reference 
spectra, and for doing so, it utilizes the divergence function. 

5. Spectral angle mapper (SAM) based spectral classif er uses angles to match 
unknown pixels to reference spectra. 

5.2 HYBRID APPROACH 

The purpose of the hybrid approach is to include different properties of images as 
input tools for the classif cation. The hybrid classif cation approach makes data con-
sistent with two (or more) pieces of information of the image. The hybrid approach 
has been applied in different areas to bring two or more properties as input to gener-
ate more robust outputs. In many areas of remote sensing image classif cation, such 
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a situation is generally faced when these important properties together can generate 
the better classif ed output. Thus, hybrid classif ers are generated using the differ-
ent combination of various complementary heterogeneous methods. Classif cation 
is achieved by the joint effect of different methods after solving different types of 
tasks by each. 

In  this chapter, hybrid classif ers have been discussed in which contextual or 
entropy methods have been added with fuzzy classif ers. The fuzzy classif ers con-
sidered are FCM, PCM, and NC while contextual information has been used in the 
form of Markov random f eld (MRF). MRF has been initially developed to process 
the time series data. Here MRF has been applied to incorporate spatial contex-
tual information. The  spatial contextual information is equivalent to correlation 
between two neighbor pixels. Spatial correlation can be incorporated using local 
convolution approaches. In  this chapter, spatial correlation has been explained to 
add through MRF as well as local convolution methods to generate hybrid classi-
f ers. The entropy concept has also been included. Crisp c-means are fuzzif ed by 
various methods. The standard method of fuzzif cation given by Dunn and Bezdek 
in 1984 has the non-linearity (µki)m, and it also smoothes the solution from crisp into 
a differentiable one. Moreover, as “m” tends to 1, the fuzzy solution results toward 
the crisp solution. Therefore, it can be mentioned that the fuzzy based solution 
“regularizes” the crisp solution. These types of regularization are similar to the 
regularization faced while formulating problems having more than one solution. 
The function for regularization can be added in fuzzy based objective function as 
in Equation (5.1). 

( , )  0( , )  µJ ˜ U V  = J U V +˙K( ),˙ > 0 (5.1) 

In Equation  (5.1), K µ  and ϑ are non-linear regularizing function and regular-( )  
izing parameter respectively. The function represented by Equation (5.1) is known 
as the regularization by entropy method. Two types of the regularizing functions 
have been def ned, an entropy function and a quadratic function, in Equations (5.2) 
and (5.3). 

c N 

K µ = ˙˙µki log µki( )  (5.2) 
i=1 k =1 

K ( )µ = 
1 ˙ 

c 

˙ 
N 

µki 
2  (5.3) 

2
i=1 k =1 

Due to convexity of these functions, these are capable to generate fuzzy membership 
matrix, with robust unique solutions. Miyamoto and Mukaidono (1997) f rst proposed 
this formulation using the maximum entropy method, which later has been reformu-
lated by Li and Mukaidono (1999) using regularization function. The entropy based 
objective function has been developed using entropy function or quadratic function. 
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Before understanding fuzzy based objective functions, let us begin with the mean-
ing of entropy in image processing. Entropy in the context of image shows uncer-
tainty in the processed output from image. It is the amount of information content 
within the image. Digital images with low entropy values will, in many cases, have 
minimum contrast, or in other words, more pixels with similar DN values. A per-
fectly f at image with maximum homogeneity will have least entropy. Therefore, 
such low entropy images will have more redundancy with small DN range. On the 
contrary, high entropy images have high heterogeneity; therefore compression size is 
large in comparison to low entropy images. In the coming sections, soft fuzzy classi-
f ers with entropy non-linear regularizing functions have been def ned. 

5.2.1 entroPy baSed hybrid Soft ClaSSifierS 

According to Shannon (1948, 1951), the measure of information or the information 
content has an intimate relationship with the entropy theory, as in statistical thermo-
dynamics. Therefore, the information theory and thermodynamics must have some 
common points of interest. The increase in entropy has been regarded as the degrada-
tion of energy by Kelvin (Francis, 2000). In statistical thermodynamics, entropy is 
def ned as a measure of the disorder of a system. However, in information theory, low 
entropy is a measure of the lack of information about the actual structure of the sys-
tem (Feyerabend, 2015). It is thus perceived that fuzzy based information can become 
complete while adding entropy to the base classif er function. Due to the use of error 
function, the entropy based methods are similar to the statistical method. On the 
other hand, the standard soft classif cation methods such as FCM and PCM are dif-
ferent from the statistical method. Therefore, the standard methods are purely fuzzy, 
whereas entropy based methods are robust to both statistical and fuzzy models (Dunn, 
1973; Bezdek, 1981). Thus, there is a motivation to hybridize the FCM and NC based 
classif ers with entropy. It is to be mentioned that the optimization of objective func-
tion with respect to membership values and cluster center as well as constraints are 
same for both cases, viz., with or without the entropy, whereas the difference is due 
to use of objective function. In the following sections, entropy based regularization 
function has been added with objective functions of FCM and NC fuzzy classif ers. 

5.2.2 fuzzy C-MeanS With entroPy (fCMe) 

Fuzzy c-means with entropy (FCME) is a hybridization approach of classif cation 
where the emphasis is to integrate the entropy based regularization method with 
FCM. According to various researchers, the standard FCM method becomes com-
plete by adding entropy (Dunn, 1973; Bezdek et al., 1984; Miyamoto and Mukaidono, 
1997; Li and Mukaidono, 1999). The primary motivation is to use both alternatives 
for the purpose of optimization considering membership matrix and cluster cen-
ters. Secondly, constraints are same for the both methods; the only difference is 
due to the objective functions. It is observed that the standard method of FCM ini-
tially proposed by Dunn (1973) and later adopted by Bezdek (1981) is fuzzy based. 
The entropy based FCM method follows the statistical models approach (Tihonov 
and Arsenin, 1997; Vapnik, 1995, 1998, 1999, 2000). 
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Further, from the experiments it has been noticed that output from standard FCM 
classif er gives better classif cation accuracy but less robust however, the output 
from entropy based FCM classif er, with optimum value of regularizing parameter, 
generates classif ed output with minimum uncertainty (Kumar and Dadhwal, 2010). 

The objective function for FCME approach has been mentioned in Equation (5.4): 

c N c+1 N 

J fcme( ,  ) = ˙˙ µ 
m

D(x vk , )  +ˇ˙˙µki logU V  ( ki ) i µki (5.4) 
i=1 k =1 i =1 k =1 

where: 
U = × +N c 1 matrix,( ) 
V = (v1 vc ) and 
ϑ  is the regularizing parameter. 

From the objective function of FCME, the membership value can be calculated from 
Equation (5.5) and fuzzy mean from Equation (5.6): 

ˆ D x( ,° ) � 
exp − k i 

˘ �˛ˇ �µ = , 1 i c (5.5)ki c � �  
ˆ D x( ,k ° j ) ��exp −

˛˘ � 
j=1 ˇ � 

˛ 
N 

µ xki k 

k =1vi = , 1 ° i cN °  (5.6) 

µ ki 

k =1 ̨
 

In Equation (5.4), the f rst term is the objective function of FCM classif er and second 
term is a non-linear regularizing entropy function. It is noticed that regularizing func-
tion is strictly a convex function and hence it is capable to generate the membership 
values. 

5.2.3 noiSe CluStering With entroPy (nCe) ClaSSifier 

Cluster analysis is used as an important tool for the satellite image data classif -
cation and analysis. Generally, it has been found that the c-means classifer , hav-
ing c cluster centers, is still popular in remote sensing community. A collection 
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of data points is gathered around a cluster mean and which generates a cluster, 
providing a base for a noise clustering algorithm. From entropy theory, given by 
Shannon (1948), entropy of systematic arranged data points is less while entropy 
of unsystematic arranged data points is higher. In a systematic arrangement data-
set, maximum points are close to each other, while in unsystematic arrangement 
most of the data points are scattered randomly. Therefore, data point with mini-
mum entropy is a good candidate for the information class (or cluster) center (Yao 
et al., 2000). In case of noisy data being present, noise has to be removed before 
calculating class center. However, in fuzzy clustering, entropy is directly evalu-
ated with the least entropy data point as class center. Then, class centers with 
similar points within the threshold are removed (Yao et al., 2000; Chattopadhyay 
et al., 2011). Similarly, other class centers are selected from the remaining data 
points. Based upon the ideas of entropy with fuzzy clustering, Miyamoto et al. 
(2008) suggested to assign m (as defned in NC) as “1” and to add another term 
to consider entropy K( )u  along with a regularizing parameter (˜ ) to the objective 
function of NC to generate results of the noise clustering with entropy (NCE). 
It may be noted that, in the entropy based approach, the fuzzifcation is carried 
out with entropy and not by m. The objective function for NCE approach can be 
expressed by Equation (5.7): 

c N N c+1 N 

J nce U V ) = µki D( k , )  + µk c+ )ˇ ˘  µ log µki( ,  ( ) x vi ( , 1 + ki  (5.7)˙˙ ˙ ˙˙ 
i=1 k =1 k=1 i=1 k =1 

where: 
U = × +N c 1  matrix,( ) 
V = (v1 vc ) and 
ϑ , the regularizing parameter. 

By partial derivative of the objective function of the NCE, the membership values 
and fuzzy cluster center can be computed as Equations (5.8–5.10): 

˘ D x( k , vi ) � 
� �exp −
� ° � 
� �µ = , 1 i c  (5.8)ki � �  

c ˘ D x  , v �

�exp� − 
( k j ) � + exp ̆ −

˛ � 
� �� ° � � ° �j=1 � � 

https://5.8�5.10
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ˇ ° � 
exp −� �

˘ ˛ �µ = , 1 � �  (5.9)i ck c, +1 
c ˇ D x( k , v j ) � ˇ ° �� ��exp − + exp −� �� ˛ � ˘ ˛ �j=1 ˘ � 

˛ 
N 

µ xki k 

k=1v = , 1 ° i ci N °  (5.10) 

µ ki 

k=1 ̨
 

Equations  (5.8) and (5.9) represent the membership value for information class 
and noise class, respectively. In  Equation  (5.7), the f rst and second terms are 
similar to the formulation of typical NC classif er. Further, the third term is a spe-
cial regularization, while adding typical entropy as a linear regularizing function 
in the process of classif cation. The advantage of noise clustering is that untrained 
classes as noisy pixels are separated out quantitatively. Due to this capability of 
noise clustering, NCE can identify single class from a given image. All these 
algorithms use Euclidean distance, commonly. In the next section, large numbers 
of distances have been mentioned. These distances of different categories can be 
used with these classif ers. 

5.3 SIMILARITY/DISSIMILARITY MEASURES IN FUZZY CLASSIFIERS 

For the classif cation of any remote sensing image, training data points are always 
required. Sometimes the relationship within the training data points is also impor-
tant. Similarity and dissimilarity measures are used to establish relation between 
the training data points for classif cation and clustering (Von Luxburg, 2004). 
Due to the wide range of data used in various technologies right from earth’s sur-
face to revolving satellites in space, it is very important to have information about 
coherence, redundancy, and degree of association of data that helps us in inter-
pretation and meaningfulness of data. When we talk about the association of data, 
it can be interpreted as providing information about how similar and dissimilar 
data is to each other. The  idea of similarity and dissimilarity is totally linked 
with each other and interdependent in terms as “degree of proximity between two 
points.” Similarity functions are supposed to increase when the data points are 
more similar to each other; conversely, dissimilarity functions tend to increase 
when the data points are more dissimilar to each other. Therefore, we can say 
that similarity between two objects should grow as the dissimilarity between the 
objects decreases (Von Luxburg, 2004); that means they are complementary to 
each other. In the following sections, similarity and dissimilarity measures have 
been mentioned. These measures can be used as distance variables in fuzzy based 
classif ers mentioned in this book. 
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5.3.1 SiMilarity MeaSureS 

Let us consider two sets of orders of measurement � = {xi: i = 1,2,3,4…,n} and � = {yi: 
i = 1,2,3,4…,n}. The similarity between these two sets is a measure that brings the 
reliance between these X and Y to signify quantities from two objects or phenomenon. 
In remote sensing these sets can be assumed as two images, whereas xi and yi are digital 
numbers of corresponding pixels in the image. For a 2D image, these sequences can be 
according to the intensities in raster scan order. These similarity functions are called 
aff nity functions. If a similarity measure generates a higher value as reliance between 
the intensities of corresponding pixels in the sequence increases, then it will be consid-
ered as a metric similarity measure. Metric similarity measures satisfy the following 
conditions (Theodoridis and Koutroumbas, 2006; Goshtasby, 2012): 

1. Limited Range: S(X, Y) ≤ �0, for some arbitrarily large number S0.
 2. Ref exivity: S(X, Y) = �0 if and only if X = Y.
 3. Symmetry: S(X, Y) = S(Y, X).
 4. Triangle Inequality: S(X, Y) S(Y, Z) ≤ [Z(X, Y) + S(Y, Z)] S(X, Z). 

where �0 is the maximum similarity degree between all possible X and Y sequences. 
There are two other similarity measures (cosine and correlation) which can be used 
in distance based other classif ers like fuzzy based classif ers in single as well as in 
composite mode. 

5.3.1.1 Cosine Similarity Measure 
This calculates similarity between two vectors with an inner product space and gener-
ates cosine of the angle between them. Cosine values range between 1 and 0, and pro-
vide an orientation and not the magnitude. The cosine similarity of two vectors having 
the same orientation will be 1; two vectors orthogonal to each other will have a cosine 
similarity of 0. Generally, cosine similarity is used on the positive side with range 
between 0 and 1. There is no limitation of dimension, and therefore cosine similarity is 
mainly applied to the high-dimensional positive side. In an example of text data min-
ing, each data is notionally given a different dimension and a document is represented 
by a vector where the value of each element represents the number of times that data 
appears in the document. From cosine similarity, it can be identif ed how similar two 
documents are to each other in terms of their subject matter. The technique is also used 
to f nd out similarity within clusters in the area of data mining. Cosine similarity is 
mathematically generated by Equation (5.11) (Ye, 2011): 

j +  X
D X Vi = −  

X V1 1i X Vj2 2i + + jbVib  (5.11) ( j , ) 1 
2 2 2 2Abs X  + + Abs X[ ] × Abs + + Abs V[ ][ ]  s V[ ]  j1 jb i1 ib 

5.3.1.2 Correlation Similarity Measure 
This similarity measure between two vectors is calculated by the Pearson correla-
tion coeff cient. This coeff cient was f rst developed by Karl Pearson in the 1880s. 
Since a correlation is a similarity function, it measures similarity rather than distance 
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or dissimilarity. Its value range is between −1 and +1, where +1 represents perfect 
positive correlation, −1 as perfect negative correlation, and 0 as no correlation. It is 
considered a normalized form of covariance. Correlation similarity measure is given 
by Equation (5.12) (Zhang et al., 2008). 

D X( ,j Vi ) = 

˝ 1 1 ˇ
X j1 ( X j1 X j2  − X jb )}{ i1 ( Vi1 Vi2 − Vib{ + − − V + − − )}+ˆ �b bˆ � 

ˆ �1 1
ˆ+ X + − −1 Vb ( V1 i − V )} �{ b ( X j X j2  − X jb )}{ + − −i V 2  ib
˙ b b ˘1− 

2 2 ×˝ 1 ˇ ˝ 1 ˇ
Abs X  + − −( X X 2  − X jb )  Abs X + − −j X 2  − X jb )ˆ j1 j1 j � + +  ˆ b ( X 1 j �˙ b ˘ ˙ b ˘ 

˝ 1 ˇ
2 

˝ 1 ˇ
2 

( V1 Vi −V ) + + Abs Vb + − −1 V 2 − )Abs Vi1 + − −i 2 ib ( Vi i Vibˆ � ˆ �˙ b ˘ ˙ b ˘
 (5.12) 

where � denotes the number of bands in the image. 
Pearson correlation between the two variables, let us say X and Y, is the covariance 

of these two variables divided by the product of their standard deviations. The case 
of perfectly positive correlation (� = 1) happens when X and Y coincide seamlessly; 
seamlessly negative correlation (� = −1) occurs when X and Y are completely out of 
phase, i.e., opposite to each other; and no correlation (� = 0) case means that vari-
ables X and Y are completely independent of each other. 

5.3.2 diSSiMilarity MeaSureS 

Let us again consider two sets of measurement � = {xi: i = 1,2,3,4…,n} and � = {yi: 
i = 1,2,3,4….,�}. The dissimilarity measure between these two sets represents a mea-
sure of independency between X and Y. The measure of dissimilarity here symbolizes 
the magnitude (or amounts) from two items or phenomena. If a dissimilarity mea-
sure D generates a highly less dependent value as a corresponding value between 
two sequences, then it will be considered as a metric dissimilarity measure. A metric 
dissimilarity measure satisf es the following conditions for all sequences of X and Y 
(Duda et al., 2001; Theodoridis and Koutroumbas, 2006; Goshtasby, 2012): 

1. Non-negativity: D(X, Y) ≥ 0.
 2. Ref exivity: D(X, Y) = 0 if and only if X = Y.
 3. Symmetry: D(X, Y) = D(Y, X).
 4. Triangle Inequality: D(X, Y) + D(Y, Z) ≥ D(X, Z). 

The dissimilarity measures such as Euclidean, Manhattan, Canberra, chessboard, 
Bray Curtis, mean absolute difference, median absolute difference, and normalized 
squared Euclidean have been discussed in the following section. 
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5.3.2.1 Euclidean Distance 
In spectral similarity, Euclidean Distance (ED) calculates similarity between two 
spectral signatures by calculating square root of the squared difference between the 
two data points. If s and s′ are two spectral signature vectors of two pixels where “n” 
is the set of spectral band channels, then Euclidean measure can be given as stated 
in Equation (5.13): 

ˆ 
n 

ED s s˜ s s˜( , ) = −  = (s j − s j̃ )2
 (5.13) 

j=1 

However, in a metric space the Euclidean distance is basically the normal distance 
between two objects (generally two pixel values). This measure was f rst introduced 
by Bezdek (1984). As the measure has to operate on images, it was introduced in 
a form of identity matrix. The ED measure is given as stated in Equation  (5.14): 
Other than simple normal distance, two other norms of distance, viz. diagonal and 
Mahalanobis, can be considered depending upon matrix “A” type to be diagonal 
variance–covariance or variance–covariance Equation (5.14). 

TD X j V =( , )i X j − Vi 
2

(X j − V A X j − V )= i ) (  i  (5.14) 
A 

The matrix A can take different norms as discussed in Chapter 3. 

5.3.2.2 Manhattan Distance 
This  is the sum of absolute intensity differences and is one of the oldest dissimi-
larity measures used to compare images. In other words, the Manhattan distance 
between two vectors is the sum of the differences of their corresponding compo-
nents. This  function computes the grid-like path distance from one data point to 
another. This norm is also called the city block distance or taxicab distance; it is 
called so because of its use in the calculation of shortest distance path which a car 
could take between two intersections in the borough to have length equal to the inter-
section’s distance in the Manhattan city block. Manhattan distance is a slight varia-
tion of Euclidean distance and it differs in a way of calculating distance between 
two data points. If vector pixel value �� = (��1, ��2, ��3,…��n) and mean value is 
�i = (��1, ��2, ��3,…,��n), then Manhattan distance will be given as in Equation (5.15) 
(Hasnat et al., 2013) 

D X Vj , = Abs X j1 V + bs X j2 V ) + + Abs X jn( i ) ( − i1) A ( − i2 ( −Vin ) (5.15) 

In generalized form it is given by Equation (5.16): 

n 

D X , V ) = ˙ 
Abs X − V 

˘
 (5.16) ( j i � ( j i )

ˆ̌ 
i = 1 �� 
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5.3.2.3 Chessboard 
A metric chessboard distance is a vector space wherein the distance between two 
vectors is the greatest of their distances along any coordinate dimension (Cantrell, 
2000; Abello et  al., 2013). It  is also called Chebyshev distance as it was named 
after mathematician Pafnuty Chebyshev. It  is popularly known as chessboard dis-
tance, inspired by the game of chess where the minimum moves are required by 
a king from one square to another square on a chessboard. This distance is equal 
to Chebyshev distance between the centers of the squares, if the squares have side 
length one, as represented in 2D spatial coordinates with axes aligned to the edges of 
the board (Van Der Heijden et al., 2005). The chessboard distance may be suitable if 
the difference between vectors is ref ected more by differences in individual dimen-
sions rather than all the dimensions considered together. The chessboard distance is 
given by Equation (5.17): 

i ˙̂ ( i ˇ̆ (5.17) D ( X Vj , ) = Max Abs X j −V ) 

5.3.2.4 Bray Curtis 
Bray Curtis is a statistical dissimilarity and named after J. Roger Bray and John T. 
Curtis. Apart from image processing, it is also used in biology and ecology. It is used 
to quantify the compositional dissimilarity between two different sites, based on 
counts at each site. Bray Curtis is a normalization method that is commonly used in 
botany, ecology, and environmental science f elds. It visualizes the space as a grid 
just like city block distance. It is directly related to the Sorenson similarity index. 
One important property: if all the coordinates are positive, then the Bray Curtis 
value is between 0 and 1. For exactly similar coordinates, its value is 0. If either 
vectors overlap or have zero coordinates, then Bray Curtis dissimilarity cannot be 
def ned (Bloom, 1981). The Bray Curtis dissimilarity does not satisfy the triangle 
inequality and hence it is not exactly a distance. Bray Curtis dissimilarity is given 
by Equation (5.18): 

D X V, ) = ˝ Abs X  −V Abs X  −V ; Bray Curtis Index) (5.18) ( j i ˇ̂ j i �̆ ˝ ˇ̂ j i �̆ ( 

5.3.2.5 Canberra 
Canberra distance is an absolute numerical measure of distance between pairs of 
vectors in a vector space (Lance and Williams, 1966, 1967). It examines the sum of 
series of fraction differences between coordinates of a pair of objects. This distance 
has application in comparing ranked lists (Jurman et  al., 2009) and for intrusion 
detection in computer security (Emran and Ye, 2002). Canberra distance is equiva-
lent to weighted version of Manhattan distance (Jurman et al., 2009) and is given by 
Equation (5.19): 

D X , V ) = ˝ Abs X − V ˘ ˆ˝ Abs Xˆ ˘ Abs Vˆ ˘ (5.19) ( j i ˇ̂ j i � ˇ ˇ j � + ˇ i �̆� 
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5.3.2.6 Mean Absolute Difference 
This is a measure of statistical diffusion, equivalent to average absolute difference 
of two independent random vectors drawn for a probabilistic distribution function. 
Mathematically, it is the mean of absolute non-conformities from the central point of 
the data sets. It is given by Equation (5.20) (Vassiliadis et al., 1998): 

D( X V  ) = Abs X  −V ) + Abs( X −V ) + + Abs Xj , i 
1 

˙̋ ( j1 i1 j2 i2  ( jb −Vib )ˇ̂ (5.20)
b 

5.3.2.7 Median Absolute Difference 
For an impulse noise or due to the presence of salt and pepper noise, Manhattan 
norm produces an exaggerated distance measure. Let us consider the f xed size 
images having n pixels each, then according to Manhattan norm the sum of absolute 
intensity difference will be equivalent to the average absolute intensity difference for 
corresponding pixels. Instead of using average (mean) absolute difference, to reduce 
the effect of impulse noise, median of absolute differences may be used to measure 
the dissimilarity between two vectors. The median absolute difference can be pre-
sented by Equation (5.21) (Scollar et al., 1984): 

D ( X Vi Median X −Vi )j , ) = ( j  (5.21) 

5.3.2.8 Normalized Squared Euclidean 
This norm standardizes the measure with respect to image minimum and maximum 
differences. It  is slightly slower in comparison to correlation coeff cient similarity 
measure, because it requires standardization of intensity before calculating the sum of 
squared differences between them. For the calculation of correlation coeff cient, scale 
normalization is performed once after calculating the inner product of the normalized 
intensities. The normalized squared Euclidean distance is computed by Equation (5.22): 

1 1 
2 

Abs X  j1+ (− X j1 − X j 2  − X jb ) − Vi1 + ( i1+ i 2  + Vib{ b b
V V  )} + 

1 1 
2 

+ Abs X  jb + (− X j1 − X j 2  − X jb ) − Vib + (Vi1 +Vi 2  +Vib ){ b b }
D( ,X Vi ) = j 

ˆ 1
2 � 

˘ Abs X  j1 + (− X j1 − X j 2  − X jb ) + � 
˘

{ b }
� 
�˘ 

2
˘ 1 �

2 + Abs X  jb + (− X j1 − X j 2  − X jb ) +˘ { } �b
˘ � 
˘ 2 2�

1 1˘ �Abs + (−V V−  − V ) +  + Abs + (−V −V  −V )Vi1 i1 i 2 ib Vib i1 i2 ib˘ { b } { b }�ˇ �
 (5.22) 
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5.3.2.9 Composite Measure: Combining Similarity 
and Dissimilarity Measures 

Composite measure is a term for the weighted combination of similarity and dissimi-
larity measures. It can be developed with the help of two measures giving certain 
weight to each similarity and dissimilarity component. An example of composite 
measure is given by Equation (5.23) 

Dc = ˆDa + (1− ˆ ) Db (5.23) 

where �� is a composite measure, �� and �� can be any similarity and dissimilarity 
measure, and   is a weighting component, 0 ≤   ≤ 1. 

5.4 SPECTRAL CHARACTERIZATION MEASURES 

Three principal spectral characterization measures can also be included for use 
in a fuzzy based classifier. Spectral characterization measures have been pre-
viously worked on hyperspectral data for various applications, however their 
performance on a multi-spectral image with lower spectral resolution needs 
to be explored. It is obvious that spectral characterization measures work well 
on the data with high spectral resolution. Additionally, a concept of measure 
hybridization has been explored which has proven to be effective for many 
applications like geology and crop identification. The spectral characterization 
measures covered in this section are singular measures like spectral informa-
tion divergence (SID), spectral angle mapper (SAM), and spectral correlation 
angle (SCA) 

5.4.1 SPeCtral inforMation divergenCe (Sid) 

Spectral information divergence (SID) is a stochastic measure for classif cation that 
matches pixels in the image to the reference spectra and by doing so it utilizes diver-
gence function. It calculates the distance between the probability distributions pro-
duced by the spectral signatures of two pixels (Chang, 2000). For a pixel vector, it 
models the probability distribution of its spectrum. It was framed on the basis of 
spectral information measure (SIM), which uses spectral signature histogram and 
considers each pixel to be a random variable. It is def ned for two pixels si and sj as 
stated in Equations (5.24–5.26): 

i ( i (  (5.24)SID( ,s s j ) = D s  s j ) + D sj  si ) 

L L L 
1D s( i  sj ) = ˙ p D x  y1 1(  ) = ˙ p I x1( (1 )) − ( (I y1 ))˙ p1 log 

q

p 

1

 (5.25) 
l=1 l=1 l=1 

https://5.24�5.26


 

  

 

 

 

 

        

˙ ˙

69 Hybrid Fuzzy Classifers 

and 

L 
q

D s( j  si ) = ˝q1 log 1  (5.26) 
p1l=1 

where pl and ql are probability vectors of the spectral signatures of vectors si and sj. 
I1(x) and I1(y) stand for entropy of the information. 

5.4.2 SPeCtral angle MaPPer (SaM) 

Mostly used for hyperspectral remote sensing, spectral angle mapper (SAM) is a 
spectral similarity measure that calculates the angle between the spectral signatures 
of two samples. This measure calculates the angle between the two vectors using 
the same formula that is used in calculating the angle between two vectors (Van der 
Meer, 2006), i.e., spectra are supposed to behave like vectors. For signatures si and 
sj, the SAM is def ned as stated in Equation (5.27) and angle from Equation (5.28): 

SAM s s ) = cos−1 ˙s s, )( i , j ( i j  (5.27) 

where: 

˛ L ˇ 
˙ s s  ˙

i j�
˙ i j, =1 ˙˜s s, = ˝  (5.28)i j ˘ 
˙ 

L 
2 

L 
2 ˙ 

˙ si s j ˙� �  
˙ i=1 j= ˙ˆ 1 � 

The two SAM based measures have been framed using the value of θs s  as stated ini , j 

Equation (5.29): 

SAM − tan tan= ˛ i , j & SAM sin s si , js s  − = sin˛  (5.29) 

Unlike cosine, which projects one spectra along the other and reduces the discrim-
ination of spectra, tan and sin increase the power of discrimination of the SAM 
measure. 

5.4.3 SPeCtral Correlation angle (SCa) 

Spectral correlation angle (SCA) is a correlation function based on a deterministic 
measure. This measure computes a coeff cient of correlation between two spectral 
signatures. Suppose we have two spectral signatures si = (sil,…sit)T and sj = (sjl,…sjt)T. 
Spectral correlation angle can be determined on basis of the Pearsonian correlation 
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coeff cient (Naresh Kumar et al., 2011). The Pearsonian coeff cient is expressed as 
stated in Equation (5.30): 

n n n 

n si js − si s j� � � 
i j, =1 i=1 j=1 

i j
 (5.30) 

� n n � � n n � 
rs s, = 

2 ˙ ˘
2 

� 2 
˙ ˘

2 

��n si ˇ si � � n s j ˇ sj � 
� �( ) − ˇ� � � � �( ) −

ˇ� � � 
� i=1 ˆ i=1 � � � j=1 ˆ j=1 � �� � 

where rs s,  is the Pearsonian correlation coeff cient and “n” is the number of spectrali j  

bands of the image. 
The Pearsonian coeff cient can take any value from −1 to +1 and portrays a linear 

interdependence between two spectra (si & sj). It is a dimensional index that is con-
verted to angular form using the formula as stated in Equation (5.31): 

1 rs s, +1 
i , 

− i j  

2 (in radians  (5.31)SCA (s s j ) = cos ( ) ) 

The spectral correlation angle is symmetric and invariant quantity to multiply with 
positive scalars and value of SCA ϵ [0, 1.570796]. 

5.5 HYBRIDIZATION OF SPECTRAL MEASURES 

5.5.1 Sid-SaM hybridization 

These hybrid measures were f rst proposed in 2004 for spectral characterization on 
hyperspectral data. These can also be deployed on multi-spectral data for the purpose 
of image soft classif cation. The SID-SAM hybrid measure has the property of mak-
ing two distinct spectra more different and two similar spectra even more similar. 
The SID-SAM hybrid measure is combined with trigonometric functions tan and sin 
as they enhance the degree of discrimination among the spectra. SID-SAM between 
two spectral signatures si and sj is def ned as stated in Equations (5.32) and (5.33): 

SID-SAM − tan = SID(s s, )× tan (SAM(s s, )) (5.32)i j i j 

SID-SAM − sin = SID( i , )×sin SAM(s s, )j )s s j ( i  (5.33) 

5.5.2 Sid-SCa hybridization 

The SID-SCA hybrid measure is similar to SID-SAM but a few studies like Naresh 
Kumar et al. (2011) found this measure work better than SID-SAM with enhanced capa-
bilities of spectra discrimination. The SCA has a capacity to point out false positive results 
in measurement of spectral properties and hence effectively works on hyperspectral 
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images. These hybrid measures can be applied on a multi-spectral image and be used to 
deduce if it displays similar enhanced discriminatory powers on a multi-spectral image. 
The SID-SCA between two spectra can be stated as Equations (5.34) and (5.35): 

SID-SCA − tan  = SID(s s, )× tan  SCA(s s, )  (5.34) i j ( i j ) 

SID-SCA − sin  = SID  i , )×sin  SCA( i , )j )(s s j ( s s  (5.35) 

5.6 KERNELS CONCEPT IN FUZZY CLASSIFIERS 

The kernel concept is generally used in machine learning for handling non-linearity, 
especially in support vector machine (SVM) classifers. In the kernel concept, a linearly 
separating optimal hyperplane is ftted between the different class feature vectors in 
higher dimensional feature space (Camps-Valls and Bruzzone, 2009). Samples are sepa-
rated in a manner that identical classes will be grouped as one side of the hyperplane. 
According to Boser et al. (1992), it is better to maximize the margin between two class 
boundaries for optimizing the cost functions such as mean square error. In a data set, if 
classes are non-linear, then the data has to be transformed to a higher dimensional space 
where they are considered to be linearly separable with the help of kernel (Figure 5.1). 

Let us illustrate the kernel mapping by considering some training data of two 
given sets S T  such that (Camps-Valls and Bruzzone, 2009) Equation (5.36): × 

1 1   , S T(s t, )(s t2 2, ) (s tn n )˛ ×  (5.36) 

Here si represents input data from a set S , and ti  represents the target elements from 
set T . Original input sample set S  is transformed into higher dimensional feature 
space, Equations (5.37) and (5.38). 

˜ : S ° F , s ˛ ˜( )s  (5.37) 

Let us consider samples l and li in the input space, then 

K s s s si i F
,  (  ), ( )( ) = ˝ ˝  (5.38) 

Feature Map 

Separa˜ng hyperplane 

Input Space Higher Dimensional Space 

FIGURE 5.1 Data in higher dimensional space through kernel. 
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Here the function K  is a kernel function while φ( ), (si )s φ  is the inner product 
between s and si. Mapping function φ is referred to as the feature map and F is 
the feature space (Camps-Valls and Bruzzone, 2009). Use of such kernel function 
reduces the computational complexity in the original input space by a considerable 
amount. Mercer’s condition for kernels states that [Equation (5.39)]: 

K x x( , i ) ˛ 0 (5.39) 

A kernel that satisf es the Mercers condition is called an eligible kernel (Kumar, 
2007). Mercer condition for a function K x x i ) is analogous to the non-negative ( , 
def niteness for a matrix. Linearly separable classes are the simplest case to train a 
support vector machine. Boser et al. (1992) proposed that data is transformed into a 
higher dimensional Euclidean space (feature space) F via a non-linear vector func-
tion; however, computationally it is time consuming. To cope up with this problem, 
Cortes and Vapnik (1995) introduced the concept of the kernel function K in the 
design of non-linear SVMs. 

In SVM algorithm, the kernel functions are constructed while mapping the 
data into a higher dimensional space in absence of any possibility of linear sepa-
ration in the original one. This approach consists of transforming the data in a 
higher dimensional space to make it linearly separable. On higher dimensional 
data, any classif er can be applied to divide data into different classes as data has 
been transformed to higher dimensions. It can also be generalized to compute 
non-linear decision surfaces. Large numbers of kernels exist, and it is diff cult 
to explain their individual characteristics. Some common kernels used for hand-
ing various types of data are categorized as local kernels, global kernels, and 
spectral kernels. 

5.6.1 loCal kernelS 

In these kernels, only the close neighbor or the proximity local data has an inf uence 
on the kernel values. Basically, all distance kernels are local kernels. Some listed 
local kernels are as follows in Equations (5.40–5.43): 

Gaussian kernel (Refaat and Farag, 2004): 

−1K x, x exp(−0 5. x − x A ( )( i ) = ( i ) x x− i )T
 (5.40) 

where “A” is a weight matrix known that can have different norms, Euclidean, 
diagonal, and Mahalanobis, as discussed previously. 

Radial basis: 

( ,  i = 2K x x ) exp(− || x − xi || ) (5.41) 

https://5.40�5.43
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Kernel with moderate decreasing  (KMOD): 

˝ 1 ˇ
−1 

K x( ,  xi = ˆ 2 �) exp  (5.42) 
− ||1+ || x xi˙ ˘ 

Inverse multi-quadric: 

1
K x( ,  xi ) =  (5.43) 

(|| x x− i ||2 +1) 

5.6.2 global kernelS 

When the samples are far away from each other and still inf uencing the kernel 
value, such kernels are known as global kernels. Those kernels that follow dot 
product are known as global kernels. Some of the global kernels are given in 
Equations (5.44)–(5.46): 

Linear: 

K x x  x xi (5.44) ( ,  i) = °  

Polynomial: 

pK x x( , ) (x xi 1i = ° + ) (5.45) 

Sigmoid: 

K x x ) tan h(x x°  (5.46) ( ,  = +1)i i 

5.6.3 SPeCtral kernelS 

Local kernels are based on a quadratic distance between two samples. For hyper-
spectral nature of the data, a new criterion that takes care of the spectral signature 
into consideration is of interest. In order to measure the spectral difference between 
x and xi spectral angle ̃ ( x x, i ) can be used. This kernel is robust to the differences 
of the overall energy, such as illumination and shadow (Mercier and Lennon, 2003), 
Equations (5.47) and (5.48). 

Spectral angle (SA): 

˝ x x˛ ˇi˜( ,x x ) arccos= ˆ � (5.47) i ˆ || x || || x || �˙ i ˘ 

https://5.44)�(5.46
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Hyper tangent kernel: 

˙ 2 ˘x x  �K x, x = −1 tanhˇ −  (5.48) ( i ) ˇ �
− 

2 

i 

�
ˆ � 

5.6.4 hybrid kernel aPProaCh 

The fusion of multi-spectral image with panchromatic image sharpens the resultant 
multi-spectral. In a similar manner, in case of kernel function, a mixture of kernels 
can be used to mix the dot product or Euclidean distance with the spectral angle 
(Mercier and Lennon, 2003; Kumar, 2007). The  spatial and spectral characteris-
tics of Mercer’s single kernel can be combined to a new family known as compos-
ite kernels. This makes the classif cation more f exible by taking advantage of both 
the spatial and spectral properties and also increasing the computational eff ciency 
(Camps-valls et al., 2006). The methods for combining two different kernels include 
cross-information kernel, direct summation kernel, stacked approach, and weighted 
summation kernel. The  weighted summation kernel method is generally adopted 
by various researchers. In this method the composite kernel can be expressed as in 
(Kumar, 2007) Equation (5.49): 

i , + −  k xb  (5.49) K x( ,  x ) = ˝ka ( x xi ) (1 ˝) ( , xi ) 

where k x, x ) and k xb , ) are two local (or global) and spectral kernels respec-a ( i ( x i 

tively and λ  represents the weight of the kernel with values between 0 and 1 
(0 < < ). Optimization of λ  is also required with the degree of fuzziness for the ° 1 
composite kernels. If k x( , x ) and k x( , x ) both satisfy the Mercer’s condition for 
eligible kernels, then the linear combination is also an eligible kernel. The best single 
kernel among the local as well as global category can be combined with the spectral 
kernel. k x, x ) kernel can be taken to be any local or global kernel while k xb , ) 

a i b i 

a ( i ( x i 

kernel has been taken as a spectral kernel. 
These nine kernels in individual as well as in hybrid mode can be applied with 

fuzzy based classif cation algorithms as discussed in Chapter 3 and their hybrid ver-
sions in Chapter 5. While applying kernel in fuzzy classif ers, these algorithms can 
be mentioned as KFCM, KPCM, KNC, KIPCM, and KMPCM. 

5.7 THEORY BEHIND MARKOV RANDOM FIELD (MRF) 

Bayesian’s network and the Markov random f eld (MRF) both are graph formal-
ism methods, while modeling the joint probability distribution. The  main differ-
ence between them is that the Bayesian’s networks are directed while the MRF are 
undirected graphical models. MRF is an n-dimensional random process def ned on 
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a discrete lattice. Statistical modeling of spatial random f eld can easily be done using 
the MRF. A Markov network is based on Markovian property, generally referred to 
as the memory-less property of a stochastic process. The probability distribution 
function of future states of the process depends upon the present state, not on the 
sequences of preceding stages. Thus, there is a focus on a single random variable at 
a particular time and hence simulation of MRF becomes simple. 

MRF is an undirected graphical model which explicitly exhibits the conditional 
independence relationship between nodes. MRF networks are similar to Gibbs ran-
dom f eld in the sense of undirected path. The  basic difference is in the form of 
probability distribution function. The Gibbs f elds have implicit probability distribu-
tion function while MRF only specif es the conditional independence. Gibbs random 
f eld can be represented as Equation (5.50): 

° −U r( )  ̇
P  exp  (5.50) 

˛̋ T ˆ̌ 

where P is the probability of r, U r( ) the energy function, and T the temperature. 

5.7.1 MaP-Mrf fraMeWork 

According to the Bayes theory, when both prior distribution and neighborhood func-
tion of a pattern are known, then Bayes labeling can easily be done. The maximum 
a posterior (MAP) proposed by Geman and Geman (1984) is a special case in the 
Bayes framework solution. The MAP-MRF framework searches for the most prob-
able conf guration for the class in the image. It is done by maximizing the posterior 
probability P x d ), Equations (5.51)–(5.54). ( / 

x = arg maxx P  x d  (5.51) ( / ) 

According to the Bayesian: 

P d x( / )
P ( x d/ ) =  (5.52) 

P d( )  

The MAP estimate can be given as: 

x = arg minxU ( x d/ ) (5.53) 

or 

x = arg minx ˆ̇U (d x/ ) +U x( )˘̌  (5.54) 

where x is the optimal variable value in case of classif cation it is class label, U d x)( / 
is the conditional energy, and U x( )  is the prior energy. 

https://5.51)�(5.54
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5.7.2 Contextual inforMation uSing Mrf 

“He who loves practice without theory is like the sailor who boards ship without a 
rudder and compass and never knows where he may cast”, said Leonardo Da Vinci. 
In addition to the DN value of pixels, any other information such as contextual infor-
mation helps while interpreting the digital image. For example, in image labeling, if 
a pixel is in isolation this can lead to missing or incomplete information. The addi-
tional contextual information will be benef cial for the image interpretation and for 
improving the classif cation accuracy, while reducing noise. Contextual informa-
tion can be acquired from any domain, viz., spatial, spectral, and temporal. MRF 
provides a logical and mathematically consistent way of establishing the contextual 
relationship among pixels of the image. Spatial contextual information has been used 
widely in image classif cation, image denoising, and image segmentation. 

Contextual information is similar to correlation or homogeneity. Contextual 
information is initially generated in time domain using time series data. However, 
contextual information has potential to be used for spatial domain. Conventional 
fuzzy based classifers are using spectral property of an image. Thus, standard 
fuzzy-set based classifers algorithms do not incorporate spatial contextual infor-
mation of the pixels. The spectral information of the pixels is not suffcient enough 
to handle noise, uncertainty, and vagueness in a class. Therefore, to incorporate spa-
tial contextual information, Markov random feld (MRF) is widely used (Solberg 
et al., 1996; Li, 2009). According to Li (2009), MRF theory is able to model the 
contextual based entities such as pixels or correlated features in a convenient and 
consistent way. Contextual information in spatial domain implies the correlation 
of class labels for neighboring pixels (Solberg et al., 1996). The geographical phe-
nomenon is in the context to each other. As an example, a particular vegetation 
pixel will have a high probability to be the same vegetation pixel as its neighbors. 
Therefore, isolated or pepper and salt type of pixels exist rarely. Thus, applying 
contextual information removes isolated or so called pepper and salt pixels (Tso 
and Mather, 2009). 

To incorporate contextual information, selection of MRF model is an important 
step. The MRF models are also known as MRF priors and regularizers. Examples of 
MRF models are standard regularization model, weak string and membrane model, 
line process model, and discontinuity adaptive (DA). The  standard regularization 
model (i.e. smoothness prior) and DA models (i.e. edge preserving priors) are widely 
used to study smoothing as well as edge preserving effects in images. To model 
smoothness in an image, MRF uses smoothness prior models for calculating prior 
energy using prior probabilities (Tso and Mather, 2009). It applies smooth contextual 
concept, which assumes uniformity everywhere in the image. 

MRF gives a helpful and conceptually well-established model to incorporate 
contextual information in the classif cation process (Melgani and Serpico, 2003). 
According to Solberg et al. (1996), MRF based contextual techniques can be uti-
lized for fusion of multi-source information with enhanced classif cation accuracy. 
For dealing with a series of temporal images, the standard MRF based approach 
comprises of embracing a “cascade” scheme. According to Melgani and Serpico 
(2003), the MRF model, on one hand, exploits the spatial class relationship between 
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neighboring pixels in an image and on the other hand, provides the temporal class 
relationship between different images of the same scene. 

5.7.3 Contextual fuzzy ClaSSifier 

Contextual fuzzy classif er can be developed using the MRF model with any fuzzy 
based classife r. 

While including contextual information in fuzzy c-means classif ers, there are 
some issues mentioned as follows: 

a. The summation of membership values for a pixel for all the classes should 
be up to 1. 

b. The  membership values for a single pixel for all the classes need to be 
updated at the same time. This makes the process more complex in com-
parison with hard contextual classif er where at a time for a given pixel only 
one class label is updated. 

c. There can be an inf nite number of membership values possible in form of 
real numbers between 0 and 1. Sampling from such space is computation-
ally hard. 

5.7.4 SMoothneSS Prior 

To add contextual information, one of the methods is smoothness prior. To optimize 
global posterior energy function, simulated annealing (SA) can be applied. Simulated 
annealing (SA), a stochastic relaxation algorithm, can be used for optimization of 
global energy function. The concept to SA was initially used in thermodynamics 
and material science to remove stress from a system with a large number of particles. 
In simulated annealing, a material or any metal is heated to a desired temperature 
and then cooled at some rate to have enough time to respond. This concept is similar 
to adding some noise in a system and shakes the search process away from the local 
minima to get a global minimum. Initially Metropolis et al. (1953) have proposed the 
SA technique for sampling from a random f eld. It was reported that their technique 
performed better in comparison to Gibbs sampler. The mathematical form of the 
Metropolis algorithm can be given by, Equation (5.55): 

c N L N c 
mU (µ / d ) = −(1 °) µ ki (dkl −˛ il )2 + ° �1− ˝ µ µki ji � (5.55)�� � �

�
�� 

� 

� � 
k = l= k = i = j Nk �i =1 1 1 1 � 1 � 

where: 
U (µ /d ) is the posterior energy of membership value µ, given observed image d. 
λ is the smoothness parameter or weight factor for context and spectral information. 
µki  is a class membership values of a pixel k to class i. 
dkl is the original DN value for a pixel k in band l. 
ν il is the class mean value for class i for band l. 
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m is the fuzzy weight value. 
β  is the weight for neighbors. 
L is the total number of bands in a multi-spectral image. 
Nk is the neighborhood window around pixel k. 
N  is the total number of pixels in the image. 

This algorithm generates the new membership image conf guration µki˜  through condi-
tional random function and calculates the global posterior energy function associated 
with it. Further, lower global posterior energy is checked in comparison to previous 
energy. If this is true, then the new conf guration accepts with probability 1, otherwise 
it is less than 1. But if a new conf guration generates higher energy in comparison to the 
previous iteration, then it is accepted with a probability that decreases with the increment 
in the difference in energy states at previous and new conf guration. In Equation (5.54), 
by taking ˜ = 0 results in a solution which is like FCM algorithm. This happens due 
to the fact that smoothness prior is ignored in energy expression. But practically, it has 
been observed that if ˜ = 0 the MRF-FCM solution is not equivalent to FCM solution. 
For this, Gibbs sampler can be used to resolve this def ciency in the developed MRF-
FCM algorithm. The algorithm for the Gibbs sampler is given by Equation (5.56): 

2c N c N 

U µ /d = − °) µ − µ fcm d + ° ˛ 
2( ) (1 ��˘ ki ki ( )kl �� ��� (µki − µ ji )  (5.56)� 

i=1 k =1 i =1 k =1 j Nk� 

where µki 
fcm  is the solution of supervised FCM algorithm. 

In Gibbs sampler, the pixel value is updated using Gibbs random f eld mentioned 
U r( )° −in Equation (5.50): P  exp ˝̇.˛ T 

The algorithm starts with a high temperature, and once it converges, the tem-
perature is decreased with a carefully def ned cooling schedule until T  becomes 0 
similar to simulated annealing. Based on the local conditional distribution, Gibbs 
sampler generates the new membership value µki˜  for each pixel k and class i. It also 
includes the brightness temperature T . The Gibbs sampler concept is similar to the 
Metropolis concept except the computation of new membership value µki˜ . 

5.7.5 diSContinuity adaPtive (da) PriorS 

In a digital image, smoothness means that there is no abrupt change in the physical 
properties of the system. Thus, DN values remain nearly identical and do not change 
frequently in a particular part of image and remain coherent with each other. 
However, this remains an assumption, and in a practical scenario there is piecewise 
discontinuity for the DN values in an original satellite digital image. 

MRF assumes the smoothness prior model; however, its improper imposition 
may lead to over-smoothening and hence undesirable results. This generally occurs 
when there is any discontinuity especially at class boundaries or edge. Therefore, it 
becomes important to select MRF models which can take into account the possible 
discontinuity. Discontinuity adaptive smoothness priors and regularizers are used to 
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encode the prior energy. In MRF, the analytical regularizers are used; these include 
the prior constraints and penalize the irregularities. MAP-MRF framework is used 
to maximize the posterior probability and hence minimizes the corresponding poste-
rior energy. A general form of these regularities is given by, Equation (5.57): 

bN N 
nˆ ˘U ( )x = �U x( ) = ��n� g x y } dy  (5.57) n { ( )ˇ � 

n=1 n=1 a 

n˙ ˇwhere U ( )x  prior energy is called here nth order regularizer and g x{ ( )y }˘ is the ˆ
penalty function and is identical to clique potential. 

5.7.5.1 Standard Regularization 
These regularizers use the quadratic function in the form of gq( )˜ = ˜ 2. This implies 

n−1 nthat a higher irregularity in x ( )y  at a site x will lead to higher value of x y( ) and 
nhence g x y˜{ ( )}˛̋. This results in an increased value of energy U ( )x . Such type of ° 

regularization can be used with FCM based classif er. Limitations of the standard 
regularization are as follows: 

1. There is a constant interaction between neighborhoods. 
2. The strength of smoothening is proportional to the derivative of magnitude 

of xn . 
3. Many times it may lead to over-smoothening at discontinuities. 

5.7.5.2 DA MRF Model 
Regularizers generally differ by method of interactions among their neighborhood 
and strength. To avoid over-smoothening, at discontinuities the interactions must be 
managed accordingly. This is a need catered by DA models. There are four choices 
of potential function (say g ˜ available, known as adaptive potential function ( )) 
(APF). The derivative of APF can be expressed as Equation (5.58): 

g˜( )˙ = 2˙h ( )ˆ ˙  (5.58) 

where hγ  inf uences the interaction between the neighborhood sites and known as 
inf uence function. hγ  is termed as adaptive interaction function (AIF). 

The  strength with which a regularizer will perform smoothening is given by 
Equation (5.59): 

˜ ˜g x( ) = 2x h˜ x˜  (5.59) ( )

where α  is given as ̃ = x y˛( ). 
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All aforementioned equations and DA models are derived from the Euler’s equa-
tion, Equation (5.60): 

( d
u x x ) =ux x x, ˜) − x˜ ( , ˜ 0  (5.60) 

dx 

5.7.5.3 How DA Priors Work 
The  necessary condition for a regularizer to be “discontinuity adaptive” is as in 
Equation (5.61): 

lim g ˜ = lim 2˜h ˜ = C  (5.61) ˝( )  ( )
˜ °˛ ˜ °˛ 

where C  is a constant and C ˜[0, °]. If C = 0, smoothening strength will be zero; for 
C > 0 there will bound smoothening. The four possible choices for the DA models 
are as in Equations (5.62–5.65): 

2° 

g1˜ ° ˜ e 
−

˜( ) = −  (5.62) 

( ) = −  
˜ 

2g2˜ °  (5.63) 
° 

1+ 
˜ 

ˇ ° 2 � 
g3˜ ( )° = ˜ ln �1+ � (5.64) 

˜˘ � 

�°2 ˘ 
g4 ( ) = ˜ ° ˜ ln 1+− � � (5.65) ˜ ° 

˜� � 

The adaptive interaction function for Equation (5.65), i.e., fourth DA model, can be 
given by Equation (5.66): 

h4˜ ( )° = 
1 

(5.66) 
° 

1+
˜ 

Among all the aforementioned models given with this, AIF allows smoothening even 
at discontinuities to some extent. This overcomes the problem of boundless smooth-
ing of standard regularization, when ˜ ° ˛ and abrupt end of smoothing as in the 
case of other regularizer model such as the line process model (LP). 

https://5.62�5.65
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5.8 CONVOLUTION BASED LOCAL INFORMATION 
IN FUZZY CLASSIFIERS 

There  are several methods for incorporating contextual information while pro-
cessing remote sensing images. Contextual information can be incorporated from 
spatial domain called local information. Local information plays an important 
role to incorporate spatial and grey level information in an image. According to 
Krinidis and Chatzis (2010), the reasons behind incorporating local spatial and 
local grey level information are: (1) to sustain strength and noise insensitiveness, 
(2) to control the effect of neighborhood pixels, (3) to be independent from any 
f xed parameter, etc. 

In the section (5.7), local information as spatial contextual information has been 
covered using smoothing and DA models. In this section, spatial contextual infor-
mation has been included as three convolution based methods. In  the past, many 
case studies related to adding local information as convolution methods with fuzzy 
based classif ers have been discussed. Ahmed et al. (2002) proposed FCM-S (fuzzy 
c-means with spatial constraints) in which objective function of FCM is modif ed 
in order to minimize the limitation of FCM by allowing the label of pixel to be 
inf uenced by labels of its neighbors. Chen and Zhang (2004) said inclusion of local 
information has several advantages over conventional fuzzy based classif ers such 
as: (1) if there is no previous knowledge of noise, (2) if it is free from any parameter 
selection, (3) if loss of image details is reduced, etc. 

Ahmed et al. (2002) introduced FCM-S in which the objective function of FCM 
is modif ed in order to minimize the limitation of FCM by allowing the label of the 
pixel to be inf uenced by labels of its neighborhood. 

Krinidis and Chatzis (2010) developed a robust fuzzy local information c-means 
(FLICM) clustering technique which incorporates local information to preserve 
image details and minimize the lack of robustness to noise and outliers. Using a 
spatial attraction model, a unique adaptive fuzzy logic local information c-means 
(ADFLICM) was developed by Zhang et al. (2017) for remotely sensed image clas-
sif cation in which they incorporate local spatial and grey level information to reduce 
edge blurring effect, and make it less sensitive to noise. 

Fuzzy based classif ers work well on noise free images. Some of the fuzzy 
based classif ers are very sensitive to noise due to non-spatial contextual informa-
tion being incorporated. To overcome the isolated noise based problem in fuzzy 
based classif ers, a preprocessing image smoothing step can be applied. Through 
smoothing f lters such as low pass and median f lters, important image details can 
be lost, especially boundaries or edges. However, there are fewer ways to control 
the trade-off between smoothing and clustering. In this context, many researchers 
have tried incorporating local spatial information with base fuzzy classif cation 
algorithms to improve the performance of classif cation, while removing noisy 
pixels. 

The  following section covers adding three types of local convolution methods, 
viz., fuzzy clustering with constraints, fuzzy local information, and adaptive fuzzy 
local information to the fuzzy based basic classif ers such as FCM, PCM, MPCM, 
IPCM, and NC. 
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5.8.1 fuzzy C-MeanS With ConStraintS (fCM-S) algorithM 

Ahmed et al. (2002) introduced FCM-S in which the objective function of FCM was 
modif ed in order to reduce the limitation of FCM by allowing the label of a pixel to 
be inf uenced by labels of its neighborhood. The neighborhood effects as a regular-
izer and biases the solution toward piecewise homogenous labeling. The objective 
function for FCM-S can be given by Equation (5.67). 

c N c N 
m a m

J fcm−s ( , )U V = ˆˆ(µki D x vk i + 
N R 

ˆˆ(µki ) ˆ D(x , )i  (5.67) ) ( , )  rx v  
i=1 k = i 1 k =1 ˘1 = r Nk 

where xr  represents neighborhood of xk, Nk represents the set of neighbors falling 
into a window around pixel xk, a is the parameter for controlling the effect of neigh-
bors, and N R is the cardinality or convolution window size. By def nition, each sam-
ple point xk satisf es the constraints that ˛c µki = 1.i=1 

The calculation of membership function from the above FCM-S objective func-
tion can be given by Equation (5.68): 

˝ a ˇ
2 

ˆD( ,xk vi) + D(xr , )vi ��ˆ N R �r Nk ˘˙ �µki = 1  (5.68) 
c ˝ ˇ m−1 

ˆD( ,xk vi) + D(xr , )vi �� a �ˆ NR �j=1 rr N  ˘˙ � k 

The second term in the numerator of Equation (5.68) is a neighbor average grey level 
value around xk within a window. The images composed by all such neighbor aver-
age values around the image pixels are called mean f ltered images. 

5.8.2 PoSSibiliStiC C-MeanS With ConStraintS (PCM-S) algorithM 

PCM-S has been introduced as a novel term that enables the labeling of a pixel to 
be effected by labels of its neighbors (Singh and Kumar, 2019). The neighborhood 
effect acts as an allocator and drives the solution toward piecewise-homogeneous 
labeling. Mathematical formulation of PCM-S has been given in the following 
points: 

1. Assign the number of class c, the value of degree of fuzziness m > 1, param-
eter “a,” and convolution window size N R. 

2. Assign mean values for each class. 
3. Compute the regularization parameter ηi. 
4. Compute the membership matrix µki , Equation (5.69): 
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1 
(5.69)µ 

˙ 
= ki 1 

˘ m−1a
D( ,k vi)x + D(xr , )vi 

1+ 
ˇ
ˇ
ˇ
ˇ 

�N R 
�
�
�
� 

r N r kk �� 

° i 

�ˆ 

5. Assign f nal class to each pixel. 

The improved objective function of PCM-S is def ned as follows in Equation (5.70): 

c N c N 
mJ ( , )U V = (µ )m

D( , ) + ˘ (1− µ )  (5.70)x vpcm−s ki k i i kiˆˆ ˆ ˆ 
i=1 k =1 i=1 k =1 

a m+ 
N R 

ˆ 
c 

ˆ 
N 

) ˆ D x v(µ ( , )ki r i 

i=1 k = � k1 r N  

In  Equation  (5.69), xr is a neighbor grey level value around xk within a window. 
The  image composed by all the neighbor average values around the image pixels 
forms a mean f ltered image. The  characteristics of PCM-S have been explained 
such as: 

1. The neighborhood effect in PCM-S acts as regularizer and drives the solu-
tion toward piecewise-homogeneous labeling. 

2. Incorporating spatial constraints in conventional PCM enhances insensi-
tiveness to noise. 

5.8.3 fuzzy loCal inforMation C-MeanS (fliCM) algorithM 

The  FCM-S method has some disadvantages for assigning values to some of the 
parameters. Although the limitation of local spatial information enhances insensi-
tiveness of FCM-S to noise somehow, still it is not robust to noise or outliers, espe-
cially in the absence of prior knowledge of the same. The crucial parameter a in the 
objective function of this method is used to balance between robustness to noise 
and effectiveness of preserving the details of the image. Generally, selection of this 
parameter is based on trial and error or experience. These are all applied on a static 
image and have to be computed in advance. To overcome these disadvantages, a new 
factor is required with some special characteristics as follows: 

• It should be able to add local spatial with grey level information in fuzzy 
domain while preserving object boundaries. 

• It should add the effect of the pixel in the spatial domain depending on their 
spatial space from a central pixel. 
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• It should use original image without requiring any preprocessing step and 
while preserving object boundary sharpness. 

• It should be free of any parameter selection. 

This novel fuzzy factor can be def ned as in Equation (5.71): 

1 m
Gki = ˘ (1− µ ji ) D x( j ,� i ) (5.71) 

dkj +1
j Nkk jˇˆ 

where dkj is the spatial Euclidean distance between pixels k and j. 
The  advantage of factor Gki is that it is independent of any variable that con-

trols the balance between spatial and spectral information in the objective func-
tion. The control of this balance is due to parameters automatically generated and 
achieved by the def nition of the fuzziness of each image pixel (both spatial and grey 
level). The Euclidean distance dkj in the factor Gki includes the effect of pixels within 
local window, to vary f exibly according to their distances from the central pixel. If 
window size is increased, then more local spatial information can be added at more 
generalization mode. 

Thus, by using this factor Gki, a more robust form of the FCM framework, viz. 
fuzzy local information c-means (FLICM) clustering algorithm, has been proposed. 
FLICM is capable to incorporate both the local spatial and grey level information. 
The objective function of this algorithm is def ned as in Equation (5.72): 

c N 

˙˙ x v  + Gki (5.72) J flicm ( ,U V ) = (µki )m
D( k , )i 

i =1 k =1 

The  membership value for the above objective function can be computed as in 
Equation (5.73): 

1 µki = 1  (5.73) 
c ˆ �m−1D k( , )i + Gki�˘̆ D k( , j ) + Gkj 

�� 
j=1 ˇ � 

5.8.4 PoSSibiliStiC loCal inforMation C-MeanS (PliCM) algorithM 

Like the FLICM, the possibilistic local information c-means (PLICM) can be devel-
oped by adding fuzzy factor (G) for incorporating local information. The introduc-
tion of local information reduces the noise in the image. Like the FCM-S, the PCM-S 
is also not robust to noise while incorporating the local information. Again in this 
algorithm, the parameter a in the objective function also plays a crucial role for pre-
serving the image details. Thus, in order to compensate these problems, the fuzzy 
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factor (characteristic mentioned in the previous section) has been added to generate 
the PLICM. The mathematical formulation of the PLICM algorithm is as follows: 

1. Assign the number of class c, the value of degree of fuzziness m > 1, and 
convolution window size N R. 

2. Assign mean values for each class. 
3. Compute the regularization parameter ηk. 
4. Compute the membership matrix µki, Equation (5.74): 

1 µki = 1  (5.74) 
˙ v ˘ m−1D xk i) + Gki( ,

1+ ̌ �° ˆ i � 

5. Assign f nal class to each pixel. 

The improved objective function of PLICM is def ned as follows in Equation (5.75): 

c N c N 
mJ U V ) = µ 

m
D(x v, )  + ˘ (1− µ ) +  (5.75)plicm ( ,  ˆˆ( ki ) k i ˆ i ̂  ki Gki 

i=1 k =1 i=1 k =1 

By incorporating Gki, PLICM is able to preserve more image details than PCM-S; 
however, it still has limitations while identifying the boundaries of the class as well 
as results over smoothed edges (Gong et al., 2012). Characteristics of PLICM are as 
mentioned below: 

• It helps in preserving robustness and noise insensitiveness by incorporating 
local information in PCM. 

• This algorithm is helpful in controlling the effect of the neighborhood data 
points or pixels depending on their distance from the central pixel. 

• It is free of any parameter selection and independent of noise type. 
• In  PLICM, noise immunity and unwanted resistance property are com-

pletely dependent on the fuzzy factor Gki as it is seen in the object function 
of this algorithm. 

• Gki is calculated automatically irrespective of whether it is manually set, 
and it can be possible without prior knowledge of noises. 

• It preserves image details by incorporating Gki with possibilistic based fuzzy 
spatial and grey level localities constraints (Krinidis and Chatzis, 2010). 

The drawbacks of PLICM are as follows: 

• In PLICM, Gki cannot appropriately reproduce the damping extent of the 
neighbors. 

• PLICM has limitations in identifying the edges, and it may result in over 
smoothed border. 
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5.8.5 adaPtive fuzzy logiC loCal inforMation C-MeanS (adfliCM) 

The adaptive fuzzy logic local information c-means (ADFLICM) approach with dif-
ferent fuzzy based classif ers covers spatial attraction between pixels. The attraction 
model has to be effective for characterizing the spatial correlation between pixels 
in the image. While adding the local spatial and grey level information, generaliza-
tion of the attraction model is required. The spatial attraction model for two pixels 
j and k with respect to a given cluster i is the ratio of products of memberships with 
the spatial distance square between the two pixels as in Equation (5.76): 

µ ji × µkiSA i( ) = 2  (5.76)jk 
D jk 

° 

= 

where Djk  is a spatial distance between pixels j and k and is known as Chebyshev 
distance. This spatial attraction model gives birth to a unique local similarity mea-
sure Skr  and includes both spatial local and grey level information. This  is well 
def ned as in Equation (5.77): 

k r  

k r  

˛̇
˝ 
˙̂ 

= 
SAkr , 

S (5.77)kr 
0, 

r ̃ < xk xr + yk yr ˇ 2L−10 ( − )2 ( − )2 

where k th gives position of the pixel at the center of the local window whereas rth 

represents neighborhood pixel, ( xk − xr ) and ( yk − yr ) denote the coordinates of pixel 
k and r respectively. 

Based on this measure, the ADFLICM method is proposed for classif cation of 
remote sensing imagery. This was achieved by incorporating the local spatial infor-
mation and grey level information in the objective function of conventional FCM 
classif er. The effect of this function is that results get smoothed toward piecewise-
homogeneous classif cation, which reduces the edge blurring effect simultaneously. 
The objective function for this method is as in Equation (5.78): 

c N ˆ �
��( m 

( , )  
N 

1 � 1− S DJ ( , )U V = µ ) ˘D x v + ( ) ( , )x v � (5.78)adflicm ki k i kr r i 
˘ R �k =1 ˇ r N� k r k  �i =1 � 

By solving Equation  (5.78), the membership function can be computed as 
Equation (5.79): 

µki = 
1

1
 (5.79) 

˘ 1 � m−1 

k i kr r iD x v + (1− S D  x v( , ) ) ( , )ˇc � �N R ˙ˇ� r Nkr kˆ � 
� 1 � 

1 D x v + (1− S )D x vj= ( , ) ) ( , )k j kr r j� �N ˇ 
� R r N˙ kr kˆ � 
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5.8.6 adaPtive PoSSibiliStiC loCal inforMation 

C-MeanS (adPliCM) algorithM 

ADPLICM is an algorithm inspired by the advantages and disadvantages of PCM-S 
and PLICM. Like ADFLICM, this method also incorporates spatial attraction 
between pixels and local similarity measure in the image. Zhang et al. (2017) used 
the local similarity measure based on the pixel spatial attraction model in adaptive 
possibilistic local information c-means, which adaptively calculates the weighting 
factors for neighboring. Here an identical concept by including local information in 
characterizing the spatial correlation between pixels in the image (Mertens et al., 
2006; Genyun et al., 2007) is introduced. Mathematical formulation of ADPLICM 
is mentioned as follows: 

1. Assign the number of class c, the value of degree of fuzziness m > 1, and 
convolution window size N R. 

2. Assign mean values for each class. 
3. Compute the regularization parameter ηi. 
4. Compute the membership matrix µki and local similarity measure Skr , 

Equation (5.80): 

µki = 
1

1
 (5.80) 

ˆ 1 �m−1 
D xk vi + 1− ) ( , )r v( , ) S D( kr x i˘ ˘NR ˘r N� kr k˘ 

�
�1+ ˇ �° i˘ ˘ 

˘ ˘� � 

5. Assign f nal class to each pixel. 

The objective function of ADPLICM is def ned as Equation (5.81): 

c N c N 

J ( , ) = µ 
m

D x v + ˘ 1− µ )U V  ( , )  ( m 
adplicm ˆˆ( ki ) k i ˆ i ̂  ki 

i =1 k =1 i=1 k =1
 (5.81) 

c N 
m 1 

1 S D  x v( ) ( , )+ˆˆ(µki ) 
N R 

ˆ − kr r i 

= k =1 � k �i 1 r N r k  

The characteristics of ADPLICM are as follows: 

• By incorporating the local spatial attraction model, the weight factors are 
calculated by both neighboring pixels and its center pixels concurrently. 

• The ADPLICM is robust due to incorporation of the local similarity mea-
sures in possibilistic based c-means classife r. 
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• The noise acceptance and image detail conservation ability is completely 
reliant on the local spatial and grey level information from neighbors. It is 
controlled by Skr. 

• The local similarity measures Skr  balance their fuzzy membership values. 
• Skr  suppresses the impacts from the noise of the neighbors. 
• Incorporating local data in an assumed local window is independent of 

parameter selection. 
• Preprocessing steps are not  required, and classif cation can be accom-

plished directly on the original image to preserve the f ne image details. 
• It has strong impact in minimizing noisy pixels and reducing edge smooth-

ing effects concurrently (Zhang et al., 2017). 

5.8.7 Modified PoSSibiliStiC C-MeanS With 

ConStraintS (MPCM-S) algorithM 

The MPCM method discussed in the previous chapter has several disadvantages in 
the presence of noise in the image data. To overcome these, a new algorithm, modi-
fe d possibilistic c-means with constraints (MPCM-S), has been introduced. In this 
algorithm all the properties of MPCM and convolution concepts are added to make 
the algorithm more immune to noise and outliers. This method has a novel term 
which makes the labeling of pixel affected by the label of neighbors. Mathematical 
formulation of MPCM-S is mentioned as follows: 

1. Assign the number of class c, the value of degree of fuzziness m > 1, param-
eter a, and convolution window size N R. 

2. Assign mean values for each class. 
3. Compute the regularization parameter ηi and noise minimizer λi. 
4. Compute the membership matrix µki, Equation (5.82): 

(5.82) 
i 

5. Assign f nal class to each pixel. 

The modif ed objective function of MPCM-S is def ned as in Equation (5.83): 

c N c N 
mJ ( , ) = ˆˆ µ D x v +ˆ˘ ˆ( − )U V  ( )m 

( , )  � µmpcm-s ki k i i i ki 

i =1 k =1 i=1 k =1
 (5.83) 

c N 

+ 
N

a

R 
ˆˆ( )µ 

m ˆ D x v( , )ki r i

=1 k = r Nk r ki 1 � � 

D( ,k vi) + 
a

D(xr , )ix v 
N R �
r Nkr k  

ki exp − 

��̆
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ˆ̆
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�̆�̆ 
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=µ 

where λi = μki log μki. 
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5.8.8 Modified PoSSibiliStiC loCal inforMation 

C-MeanS (MPliCM) algorithM 

To overcome the limitation of the MPCM method discussed in the previous sec-
tion and to integrate the local spatial and grey level information for preserving 
image details as well as to control the effect of neighborhood pixels, the MPLICM 
method has been introduced. The mathematical formulation and objective function 
of MPLICM is represented as: 

1. Assign the number of class c, the value of degree of fuzziness m > 1, and 
convolution window size N R. 

2. Assign mean values for each class. 
3. Compute the regularization parameter ηi, noise minimizer λi and fuzzy fac-

tor Gki. 
4. Compute the membership matrix µki , Equation (5.84): 

˘ �{D( ,xk vi) + Gki}
µki = exp �− �  (5.84)

� ° i �
� � 

5. Assign f nal class to each pixel. 

The improved objective function of PLICM is def ned as in Equation (5.85): 

c N c N 

Jmplicm ( ,  ) = µki 
m

D(x vk , )  + ˘i ( − ki )( ) i i + Gki (5.85)U V  � µ mˆˆ ˆ ˆ 
i=1 k =1 i =1 k =1 

where ĩ > 0. 
In PLICM and MPLICM both the noise acceptance and outliers confrontation 

property completely rely on the fuzzy factor Gki as it is seen in the objective function 
of this algorithm, and Gki is automatically determined. 

5.8.9 adaPtive Modified PoSSibiliStiC loCal inforMation 

C-MeanS (adMPliCM) algorithM 

The ADMPLICM method has been introduced after incorporation of local simi-
larity measures in MPCM. It is robust to noise due to this reason only. The math-
ematical formulation and objective function of this method is represented as 
follows: 

1. Assign the number of class c, the value of degree of fuzziness m > 1, and 
convolution window size N R. 

2. Assign mean values for each class. 
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3. Compute the regularization parameter ηi noise minimizer λi and local simi-
larity measure Skr and µij from Equation (5.86): 

ˆ̆
ˇ 

� �̆
� 

1 �� 
� 
� 
� 
� 
�� 

(1− S Dkr ) (xr , )ivD( ,k i)x +v 
N R�̆ �̆r Nkr k��− (5.86)µki = exp

° i 

4. Assign f nal class to each pixel. 

The objective function of ADPLICM is def ned as follows in Equation (5.87): 

c N c N 
mJadmplicm ( ,U V ) = ˆˆ( )µki 

m
D(x vk , )i +ˆ˘i ̂ (� µi − ki ) 

i=1 k =1 i=1 k =1
 (5.87) 

c N 
m 1+ˆˆ( )µki 

N R 
ˆ 1− S Dkr ) ( ,r i )( x v  

=1 k 1 � k �i = r N r k  

where ĩ > 0. 
We need to add a good assessment of methods to be discussed in terms of com-

putation and accuracies, summary of methods made, and where each hybrid system 
is benef cial. 

5.9 SUMMARY 

In this chapter, hybrid classif ers covered with fuzzy based base classif ers and add-
ing MRF or local neighbor information have been discussed. As in these classif -
ers, only Euclidean distance has been used; in this chapter various single distance, 
composite distance, as well as kernels we have induced. Later contextual informa-
tion through MRF as well as local convolution based approach have been described. 
The next chapter will focus in on fuzzy based classif ers capable of classifying a 
single class of interest. 
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 6 Fuzzy Classifers 
for Temporal Data 
Processing 

6.1 INTRODUCTION 

In the budding stage of use of remote sensing technology, emphasis was generally 
placed on the use of single date multispectral data for identif cation of land cover. 
The single date image, however, may have some inherent problems because the DN 
values of objects in the image do not have a f xed value. Further it may also be pos-
sible to have similar DN values for two spectrally dissimilar objects due to back-
ground or atmospheric conditions. Therefore, single date remote sensing imagery 
for the extraction of a specif c class is generally not recommended. Due to the tech-
nological development in recent years, the use of temporal, multispectral data for 
identif cation of a specif c class is recommended (Dadhwal et al., 2002). In the case 
of temporal data, the spectral response of a land class proportion can be recognized 
due to its unique temporal characteristics. 

Classif cation of vegetation classes beyond the third level, which in other words 
can be related to discrimination between various agriculture crops and varieties, can 
be done using the growth pattern of that crop or vegetation. While mapping a specif c 
crop using remote sensing techniques, the information of other crops present in that 
area or nearby is also important. Otherwise the overlapping of spectral responses 
of different crops makes the mapping of a specif c crop using single date imagery a 
real challenge. Analysis of specif c crop in temporal domain can, however, provide 
a solution for discriminating it from other crops and vegetation classes. Thus, the 
growth pattern of a crop may act as a discriminating factor indeed. The availability 
of temporal data is necessary for continuous monitoring corresponding to the 
phenological changes of crops and vegetation. 

The  mixed pixel is another problem while preparing accurate crop maps. 
For  accurate mapping of the crop, contribution due to the fractional part of the 
pixel as well as full crop pixel need to be included. The proportional contribution 
or un-mixing of classes can be handled using techniques like linear mixture model 
(LMM), fuzzy classif cation, neural network, etc. As a result, the precise area esti-
mation of a land cover can easily be found for both low and high spatial resolution 
imageries (Dadhwal et al., 2002). 

The crop pattern in India, like some other parts of the world, is heterogeneous in 
nature. This signif es that in most cases, crops are generally grown in a small patch of 
land. Thus, in most cases, the spectral responses of crops may overlap in single date 
imagery, hence there is need of temporal images for identifying the single land cover 
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from remote sensing images (Wardlow et al., 2007; Masialeti et al., 2010). This over-
lap can also be due to cultural practices adopted by the farmers such as planting date, 
physiological status of crop, etc. Several studies show that the time series analysis of 
crops is a suitable technique for identifying a particular crop among various crops 
and vegetation classes present in the image. 

Another important hurdle for temporal analysis is availability of clouds-and 
haze-free scenes throughout the season or in case of crops during the growth period. 
Uniqueness of crop or growth stages or phenological changes can be triggering fac-
tors for identifying them independently. The  requirement of noise free temporal 
images is rarely met due to poor atmospheric conditions as well as constraints of 
temporal coverage of satellite. Thus, there remain gaps in the data sampling while 
doing temporal analysis (Steven et al., 2003). However, these gaps can be flled by a 
multi-sensor based analysis. 

6.2 TEMPORAL INDICES APPROACH 

Spectral indices are helpful for emphasizing various land cover present in the image. 
There are different indices for different types of land cover such as vegetation, urban, 
water and snow, etc. These spectral indices in temporal domain may be very helpful 
for identif cation of that land cover. 

The green vegetation canopies have a very distinctive interaction with the energy 
in the visible and infrared region of the electromagnetic spectrum. Vegetation classes 
have a distinctive nature of interaction with the electromagnetic energy in visible and 
infrared bands. In the presence of chlorophyll in vegetation, the red and blue bands 
of the visible region of the electromagnetic spectrum absorb energy strongly and 
hence the vegetation classes generally appear green. Further, in the near infrared 
band the energy is scattered strongly by the vegetation class due to internal structure 
and moist leaves and hence results in a very high ref ectance. The aforementioned 
spectral characteristics of green vegetation are key factors for the evolution of veg-
etation indices. Vegetation index (VI) is a dimensionless and radiometric measure of 
green vegetation (Ghosh, 2013). 

The vegetation indices are generally formulated by the combination of visible and 
infrared spectral values. They are carried out by the arithmetic operations and yield 
a single value, which indicates the amount of vegetation within that pixel. Vegetation 
indices computed from satellite images can give a good indication of the presence 
of vegetation in many cases, as well as minimizing the effect of shadow (Campbell, 
1987). A  time series analysis of vegetation indices for a season may help for next 
level of vegetation classif cation such as crop or forest. Time series normalized 
difference vegetation index (NDVI) data has been popularly used in continuously 
monitoring land cover characteristics (Tingting and Chuang, 2010; Pringle et  al., 
2012) and vegetation phenology (Sakamoto et al., 2005). 

While using multispectral remote sensing directly for vegetation class identif cation, 
dimensionality is another aspect to keep in mind. This  is due to the fact that the 
increasing number of bands in a multispectral image increases dimensionality. 
In addition to this, to observe the temporal change in a land cover type (say, crop or 
vegetation), the dimensionality further increases manifold. 
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On the other hand, the vegetation index for multispectral image not only reduces 
the dimensionality but also enhances the vegetation feature present in the image. 
Therefore, temporal spectral indices are the f rst choice for identif cation of a land 
cover uniquely. A  variety of spectral indices exist and can be used in temporal 
domain for identifying various land cover (Table 6.1). 

Generally, the spectral indices (especially NDVI derived) are based on the 
concept of maximum and minimum ref ectance. Therefore, another type of vege-
tation index has been used by the researchers (Sengar et al., 2012; Upadhyay et al., 
2012) which generally depends upon maximum and minimum spectral value of 

TABLE 6.1 
List of Some Commonly Used Spectral Indices 

1. Simple Ratio (SR) 
° NIR SR = 
° R 

where ρNIR is the refectance at NIR band 
and ρR  is the refectance at red band. 

Birth and McVey (1968) 

3. Soil Adjusted Vegetation Index (SAVI) 
(ˆNIR − ˆR )(1+ L)

SAVI = 
ˆNIR + ˆR + L 

where L is a canopy background adjustment 
factor and generally has a value of 0.5. 

Running et al. (1994); Huete et al. (1994) 

5. Enhanced Vegetation Index 2 (EVI2) 
2 5. ×(ˇNIR − ˇR )

EVI 2 = 
ˇNIR + 2 4. × ˇR +1 

Jiang et al. (2008) 

7. Normalized Burn Ratio (NBR) 
˝NIR − ˝MIRNBR = 
˝NIR  + ˝MIR 

Key and Benson (2006) 

9. Normalized Difference Snow Index 
(NDSI) 

˝green − ˝SWIR NDSI = 
˝green + ˝SWIR 

Green = 0.5–0.6 µm and SWIR = 
1.55–1.75 µm 

Hall et al. (1995) 

2. Normalized Difference Vegetation Index 
(NDVI) 

˝ NIR − ˝RNDVI = 
˝ NIR + ˝R 

Rouse et al. (1973) 

4. Enhanced Vegetation Index (EVI) 

˝ �NIR − �R ˇ
EVI = Gˆ �

˙ �NIR  + C1�R − C2 �B + L ̆  

The coeffcients C1, C2 , and L have been 
empirically determined as 6.0, 7.5, and 1.0, 
respectively, with G  having a value of 2.5.

 Huete et al. (1994, 1997) 

6. Transformed Vegetation Index (TVI) 

˝ �NIR − �R ˇTVI = ˆ � + 0 5. 
˙ �NIR + �R ˘ 

Deering et al. (1975) 

8. Normalized Difference Water Index (NDWI) 
˝NIR − ˝SWIR NDWI = 
˝NIR  + ˝SWIR 

NIR = 0.86 µm and SWIR = 1.24 µm 
Gao (1996) 

10. Atmospherically Resistant Vegetation Index 
(ARVI) 

˝NIR − ˝rbARVI = 
˝NIR + ˝rb 

˝rb = ˝red  − ˙ ˝( blue  − ˝red ) 

γ  mainly depends on the type of aerosol size. 
Kaufman and Tanre (1992) 

https://1.55�1.75
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a particular class. For example, if a user is interested to identify a particular land 
cover (say, crop), then his/her interest will be to observe the maximum and mini-
mum ref ecting irrespective of satellite sensor wavelength. Such type of index is 
known as a class based sensor independent index (CBSI) and can be def ned as in 
Equation (6.1): 

˝max − ˝minCBSI =  (6.1) 
˝max + ˝min 

6.3 FEATURE SELECTION METHODS 

Feature selection is required while using the multi-temporal data to reduce the 
number of unwanted scenes. It is a method to segregate the combination of use-
ful bands or scenes for identifying a particular land cover using the temporal 
multispectral data (Bruzzone and Serpico, 2000). The  increasing number of 
input features increases the computational requirement as well as cost. The fea-
ture selection method is used for generating the suitable combinations of datas-
ets for achieving the maximum accuracy with low cost and less labor (Tso and 
Mather, 2009). The  feature selection is different from the feature extraction 
method (e.g., principal component analysis, decision tree) in the sense that it uses 
the separability distances in the input feature space to derive the best sub feature 
dimensions. On the other hand, feature extraction compresses the information 
available in the original feature space with a drawback of losing the physical 
signif cance of features (Bruzzone and Serpico, 2000). 

There are few methods, such as city block distance, Euclidean distance, angu-
lar separation, normalized city block distance, divergence, transformed divergence 
(TD), Bhattacharyya’s distance, and Jeffreys-Matusita (JM) to measure the separa-
bility distances (Ghosh, 2013). Out of all these methods, the last four methods are 
commonly used for feature selection by determining the separability measure of 
remote sensing data, which is further used as an important criterion for feature selec-
tion. The separability measure tries to select the best number of bands to be used out 
of the given dataset. Suppose that there are n numbers of bands in a given dataset, 
and an analyst is interested in f nding the best q number of bands, then the number of 
band combination C to be examined at a time can be expressed as in Equation (6.2) 
(Jensen, 1996; Ghosh, 2013): 

˜ ˝ n!n
C (6.2) ˛

° 
ˆ
˙ 

= 
!( −n q)!q q 

�
�
� 

Transformed divergence (TD) (Swain and Davis, 1978) and Jeffreys-Matusita (JM) 
distance (Swain and Davis, 1978) separability approach are commonly used separa-
bility measures. Transformed divergence (TD) can be expressed as in Equation (6.3): 

˛ −Dij �
�
� 

ˆ
˘
ˇ

 (6.3) TDij = 2 000 1, − exp ̇
˝ 8 
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JMij = − −( )( )2 1  exp ˙

where: 
i and j are two signatures (classes) being compared and 
Dij is the divergence. 

The divergence Dij can be calculated by the following Equation (6.4). 

1 −1 −1 1 −1 −1 T
D = tr C C  Ci − i − C )) + tr Ci − C u u  u ui − ( i − ) ) (6.4)ij (( j )( j (( j )( j ) j

2 2 

where: 

Ci
is the covariance matrix of class i , 

ui
is the mean vector of class i , 

tr is the trace function, and 
T is the transpose function of the matrix. 

The TD values range from 0 to 2,000. According to Jensen (1996), for TD value 
greater than 1,900, there is no overlapping between classes thereby having good 
separation. If it lies between 1,700 and 1,900, the separation is fairly good, whereas 
for less than 1,700, separation is poor. On the other hand, the JM distance ranges 
from 0 to 1,414. The JM distance can be expressed as in Equations (6.5) and (6.6):

 (6.5) 

where: 

ˆ �2i + j1 T ˆ i − j � 1˜ = (u u j ˘ 
C C  

�
−1 

− j ) + ˘
i − ) (u ui ln 

C C  � (6.6)
�8 ˇ 2 � 2 ˘ ×C C jiˇ � 

where: 
i and j are two signatures (classes) being compared, 
Ci is the covariance matrix of class i, 
ui is the mean vector of class i, and 

Ci is the determinant of matrix Ci . 

6.4 SOME CASE STUDIES FOR TEMPORAL DATA ANALYSIS 

The dynamic nature of a few land cover over a period is a triggering factor to utilize 
the temporal data for mapping a specif c land cover class. Let us take an example of 
a vegetation class in which the phenological changes over a period of time will be a 
unique factor to discriminate it from the other classes. In many studies, the temporal 
remote sensing data have been used for different applications such as estimation of 
forest biomass (Powell et al., 2010), f ood study (Sakamoto et al., 2007), forest f res 
(Goetz et al., 2006; Morton et al., 2011), forest mapping (Hilker et al., 2009) and 
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landscape changes (Millward et al., 2006). The multi-temporal MODIS satellite data 
have been used for the crop studies (Xiao et al., 2006; Wardlow et al., 2007; Wardlow 
and Egbert, 2008, 2010; Pan et al., 2012, Upadhyay et al., 2016). 

Due to its coarse spatial resolution, the MODIS dataset is suitable for crop 
mapping at local to regional scales. The MODIS time series data at 250 m spatial 
resolution has been used by researchers for identif cation of forest area estimation 
(Maselli, 2011), tropical forest phenology (Pennec et al., 2011), gross primary pro-
duction (Schubert et al., 2012), and identif cation of cropping activity (Pringle et al., 
2012). Some of the case studies for identif cation of land cover are discussed in the 
following. 

1. Wang and Tenhunen (2004) used the multi-temporal NDVI data from 
NOAA-AVHRR for different vegetation mapping in northeastern China for 
the year 1997. Supervised minimum distance and unsupervised k-means 
classif cation methods have been applied on the temporal NDVI data and 
its phenology based derived matrices such as maximum, mean, threshold, 
amplitude, total length of growing season, fraction of growing season 
during green up, rate of green up, rate of senescence, etc. The overall accu-
racy for NDVI temporal prof le for unsupervised k-means and supervised 
minimum distance were 52% and 50%, respectively. The overall accuracy 
for NDVI derived matrix was below 50%. Thus, classif cations based on the 
NDVI temporal prof le were better than those with the derived matrices. 

2. Blaes et al. (2005) used the three optical images along with a number of 
time series synthetic aperture radar (SAR) images for crop identif cation. 
The  idea of using the SAR images along with the optical was to over-
come the problem due to cloud cover conditions and to guarantee necessary 
temporal frequency throughout the growing season. The  classif cation 
was  performed by the different combination of optical or SAR imagery 
independently. The main focus was to study the effect due to inclusion of 
SAR images on the optical images. It was found that the classif cation accu-
racy increased by at least 5% when SAR images were combined with the 
optical images alone. 

3. Xiao et al. (2006) mapped paddy rice f elds in south Asia and southeast 
Asia using the multi-temporal MODIS images. A MOD09A1 product with a 
spatial resolution of 500 m and composite period of 8 days was used for the 
study. Out of 46 tiles of MOD09A1 for the year 2002, only 23 were selected 
for the study. The paddy rice mapping algorithm that uses the time series of 
MODIS derived vegetation indices was used for the analysis. The resultant 
maps were compared with the agricultural statistical data at national and 
sub national levels. The outputs for the MODIS rice algorithm were similar 
to the database derived from the census statistics. 

4. Wardlow et al. (2007) investigated that the MODIS 250 m 12-month time 
series (January–December 2001) VI data. It was found that the data had the 
suff cient spatial, spectral, and temporal resolution to discriminate the crop 
types for Kansas in U.S. central Great Plains. Climatic and management 
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practice variation was also detected for the crop class of study in the time 
series data. The phenological prof les which were spectrally and temporally 
different for different crops had been observed. A similar cropping pattern 
was observed for the MODIS 250 m and Landsat ETM+ 30 m imagery. 
It  was found that MODIS 250  m is an appropriate scale to measure the 
general crop mapping pattern for the U.S. central Great Plains with the f eld 
with size 32.4 hectare or larger. The possibility of sub pixel un-mixing was 
also carried out to estimate the proportion of specif c land cover class. 

5. Wardlow and Egbert (2008) evaluated the applicability of time series 
MODIS 250 m normalized difference vegetation index (NDVI) data span-
ning from March 22 to November 1, 2001, for large-area crop-related LULC 
mapping over the U.S. central Great Plains. A hierarchical crop mapping 
protocol was applied to a decision tree classif er using multi-temporal 
NDVI data collected over the crop growing season for the state of Kansas. 
Classif cation accuracies for the time series MODIS NDVI derived crop 
maps were greater than 80%. Overall accuracies ranged from 94% to 84% 
for the general crop map and summer crop map, respectively 

6. Tingting and Chuang (2010) used the NDVI, NDWI, and normalized differ-
ence soil index (NDSoI) based time series spectral indices (12 periods out of 
the time series dataset from April 2007 to October 2007) for identifying the 
rice crop in the Chao Phraya Basin of Thailand. The f rst principal component 
corresponding to each of the three MODIS time series was combined to create 
a new dataset. A linear spectral un-mixing was then applied to this merged data 
to create another data set. Thereafter, using the composition of NDVI, NDWI, 
and NDSoI values in each pixel, agricultural crop land has been separated into 
upland and paddy f elds in Thailand by using support vector machine (SVM). 

7. Wardlow and Egbert (2010) performed a comparative study between 
Terra MODIS-250  m NDVI and EVI data, acquired from March 
22 to September 30, 2001, for different crop mapping. The study was car-
ried out under the assumption that EVI is more sensitive for crop mapping 
studies. The study was carried for the U.S. central Great Plains for gen-
eral crop types, summer crop types, and irrigated and non-irrigated crops. 
It was observed that the NDVI and EVI produced equivalent crop classif ca-
tion with a subtle difference in their multi-temporal behavior. The overall 
and class specif c classif cation accuracies were greater than 85% for both 
NDVI and EVI. The variation in the classif cation accuracy between the 
maps was of the order of 3%, and their pixel level agreement was greater 
than 90%. Since this study was performed for a small geographical area 
and for a single season, the applicability of this study can be verif ed after 
investigating its inter-annual climatic behavior and performing it for other 
major agricultural regions of the world. 

8. Potgieter et  al. (2010) provided the early season information on winter 
crop (wheat, barley, and chickpea) area estimates using the multi-temporal 
MODIS 250 m EVI data acquired for the period 2003–2004 for a study area 
in Queensland, Australia. This study was aimed to fulf ll the requirement 
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of the early estimates of net crop production before the harvest, which is 
useful for many applications such as the grain industry, disaster relief, 
and drought declaration. The  unsupervised k-means algorithm was used 
for classif cation. The study shows that the multi-temporal remote sensing 
approach could be used for the early season crop area prediction, at least 
1–2 months before the harvesting date. 

9. Atzberger and Eilers (2011) used a time series data consisting of the 10-day 
maximum value composite images from the SPOT VGT for monitoring the 
vegetation activity and phenology in South America at a spatial resolu-
tion of 1 km, from April 1998 to December 2008. The Whittaker smoother 
(WS) flter was applied on the time series data to handle the missing data, 
flter noise, and construct high quality NDVI time series. The geostatistical 
variogram technique was applied to reveal signal to noise ratio (SNR) WS 
fltered images. It was found that the fltered time series had the potential to 
distinguish between various plant functional types, as well as a key for vari-
ous phenological markers. Thus, it was concluded that the time series data-
sets have great potential for vegetation and environmental related studies. 

10. Alcantara et al. (2012) used the multi-temporal Terra and Aqua MODIS 
250 m NDVI data for mapping of abandoned agricultural felds in Eastern 
Europe. TIMESAT software-derived phenological parameters were used 
as input parameter for SVM based classifcation of these agriculture felds. 
For classifcation, an overall accuracy of 65% for growing season has been 
achieved. Although the multi-year MODIS NDVI data does not increase 
the classifcation accuracy, but by using phenology matrices the accuracy 
has been increased by 8%. 

11. Gonçalves et  al. (2012) applied univariate and multi-variate statistical 
forecasting models to compute the water requirement satisfaction index 
(WRSI) and NDVI from AVHRR time series satellite images to monitor 
the sugarcane f elds in Brazil from April 2001 to March 2008. Although 
both the models successfully predicted the NDVI values, the accuracy of 
the univariate model was higher than the multi-variate model. The aver-
age relative prediction error in case of univariate and multi-variate models 
were 5.6% and 13.4%, respectively. The  forecasting of WRSI has given 
higher prediction error of order 49.7% and 47% for univariate and multi-
variate respectively. This  is due to the fact that the WRSI values vary 
frequently throughout the season. An autocorrelation between these two 
indices has shown a time lag of one month for NDVI, which means the 
NDVI values change after approximately one month of climate change 
occurs. 

12. Pan et  al. (2012) proposed a crop proportion phenology index (CPPI) 
to estimate the winter wheat crop area up to the sub pixel level by 
using MODIS EVI time series for two agricultural regions in China. 
The phenological variables from October 2006 to June 2007 were used 
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as an input to calculate CPPI for both the study areas. CPPI has been 
estimated by f tting either the linear or non-linear regression models on 
the phenological variables. The inversion model has been used to calcu-
late the regression coeff cients using the training samples. The utility of 
the index was tested on two experimental areas in China. It was found 
that the CPPI performed well in fractional crop area predictions, with 
RMSE ranging roughly from 15% in the individual pixel to 5% above 
6.25 km2. 

6.5 SINGLE CLASS EXTRACTION 

Many times, the end user of remote sensing classifed output maps is interested in a 
specifc class or a particular land cover only (Foody et al., 2006; Li and Guo, 2010; Li 
et al., 2011). At the same time, it is not necessary to focus on the other n-number of 
classes present in the scene. Thus, the analyst has to devote time and effort to extract 
the information of no use along with the interest class. For an example, if a user is 
interested to update the transport system, his/her interest will be to extract only road 
features from the satellite data. Other features like water bodies, agricultural land, 
and forests will be of no use for that user. To extract the specifc land cover from the 
traditional supervised classifcation, it is necessary to have the information of all 
land cover types at the training stage; in other words, classes should be exhaustively 
defned (Boyd et al., 2006; Foody et al., 2006; Sanchez-Hernandez et al., 2007; Li 
and Guo, 2010; Li et al., 2011). This not only increases the classifcation cost and 
labor, but may also produce substantial error in the output (Foody et al., 2006; Li 
et al., 2011). Thus, for specifc class extraction, conventional supervised classifca -
tion methods are inappropriate (Foody et al., 2006). Foody et al. (2006) made an 
attempt to reduce the training set size while extracting the specifc class. A very few 
studies (Kumar et al., 2010; Sengar et al., 2012; Upadhyay et al., 2012, 2013, 2014) 
have been used to extract specifc class from the remote sensing data. 

6.5.1 fuzzy Set theory baSed ClaSSifierS for a Single ClaSS extraCtion 

The fuzzy set theory based classif ers discussed in Chapter 3 and hybrid classif ers in 
Chapter 5 have the capability to identify the specif c class of interest. In this section, 
the behavior of fuzzy set theory based classif ers as well as hybrid classif ers for a 
single information class (or cluster) is discussed. It may be noted that the unique-
ness of this approach is that the training data for only that class will be provided. 
Let us take the membership function of fuzzy c-means (FCM) from Equation (3.11) 
for extraction of a single class present in the dataset, then D( , )i = D x vk jk ( , )  x v 
and µ

ki 
= 1, which indicates that the membership of all features will be equal to 

one. Therefore, all the pixels in a digital image will belong to a single class, which 
is never true. Thus, the FCM algorithm fails for the extraction of a single class from 
the image. 
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Further, the possibilistic c-means (PCM) follows the FCM algorithm in the initial 
iterations. Thus, by considering Equations (3.17) and (3.18), the membership function and 
bandwidth parameter ( ) for single information class can be given in Equation (6.7): ηi 

˙ 
N 

vµ = 1 and ° i = K × D(xk , ) N  (6.7) i
ki 

k =1 

Thus, in the case of PCM, µ
ki 

for single class out of “n” number of classes present in 
the image can be calculated by from Equation (6.8) 

1 µ
kc = 1  (6.8) 

(m−1)+ D( , )vc ° c )1 ( xk 

Similarly, the MPCM algorithm also follows the same initial step as mentioned in 
Equation (6.9): 

N 

µ =  and ̃ i = ˛D( , ) 1 xk vi N (6.9) 
ki 

k =1 

whereas the membership for single class can be computed from Equation (6.10): 

x v ˘˙ −D( , )kµ = expˇ 
c 

� (6.10) 
kc ° ˆ c � 

By considering the membership function of fuzzy c-means with entropy  (FCME) 
from Equation  (5.5), for single class extraction D( , )xk vi = D xk vj and( , )  
µki = 1. Thus, FCME algorithm is also not  suitable for identifcation of single 
land cover from the image. Further, for extraction of a single class, the member-
ship values of the noise clustering (NC) classifer can be calculated by substituting 
D ( xk ,˜ i ) = D ( xk ,˜ j ) ˙ D ( xk ,˜ c ) in Equations (3.22) and (3.23). Therefore, for NC 
classifer the membership values for extraction of single class can be obtained as 
from Equations (6.11) and (6.12): 

1� �
−1 

m−1 
µ

kc 
= + ˇ 

x v  
� �  (6.11) �1 ˙ D( , )k c ˘

� ˆ ° � � 
� � 

and 

� �
−11 

˘ �m−1� ° 
µ

k c, +1 
= ��� D ( x vk , c )

�� +1  (6.12) 
�� �
� � 
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From Equations (6.11) and (6.12), it is also evident that for a single information class, 
the membership values for both good cluster and noise cluster remains signif cant 
with µ 1 µkc = −  k c, +1. Thus, the membership value of a noise point in a good cluster is 
not forced to one (Dave and Krishnapuram, 1997). 

In a similar manner, the membership values and the class center using noise clus-
tering with entropy (NCE) classif er for a single information class can be expressed 
as from Equations (6.13) and (6.14): 

˘ D x v, �( k c )
exp � − 

° 
� 

µ kc 
= 

˘ 
exp � − 

� 

� � 
( kD x , cv ) � ˛˘ −� + exp �° � ° � 

� 
�
�

 (6.13) 

and 

µ = k c, +1

° �ˇ −exp � �
˘ ˛ �

ˇ ( k , cD x  v ) � °ˇ −exp � − � + exp �˛ ˘ ˛˘ � 

� 
�
�

 (6.14) 

where µ kc = −1 µ .k c, +1 

As PCM-S is a PCM derived classif er, it enables the labeling of a pixel to be affected 
by labels of its neighbors (Singh et al., 2019). Therefore, like PCM classif ers, the 
PCM-S is also capable for extraction of single class while reducing noisy pixels. 
The membership function while extracting single class gets modif ed as mentioned 
in Equation (6.15). 

1 
 (6.15) µ 

˙ 
= kc 1 

˘ m−1�a
D Dx v( ,k ) x v( , )c+ 

1+ 
ˇ
ˇ
ˇ
ˇ 

�
�
�
� 

kc 
N R ��r N r kk 

° c 

�ˆ 

More details about the PCM-S algorithm can be seen in Chapter 5, Section 5.8.2. 
PLICM can also be used for single class extraction; however, its membership 

function gets modif ed in comparison PLICM algorithm explained in Chapter  5. 
The PLICM membership function for extraction of single class appears as mentioned 
in Equation (6.16). 

1µ (6.16) kc = 1 

˙ ˘ m−1D( ,k c + Gkcx v )
1+ ̌ �° ˆ c � 
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More details about the PLICM algorithm can be seen in Chapter 5, Section 5.8.4. 
Further, ADPLICM is also a PCM based classif er. Therefore, the ADPLCM 

algorithm can also be used for single class extraction. The  membership func-
tion for single class extraction using ADPLICM appears as mentioned in 
Equation (6.17). 

1µkc 

ˆ 
= 1 (6.17) 

D x v( , )ck + 
1 

N R 

� m−1� (1− S Dkr ) ( , )x vr c

1+ 
˘
˘
˘
˘ 

�
�
�
� 

r N r kk �� 

° c 

�ˇ 

More details about the ADPLICM algorithm can be seen in Chapter 5, Section 5.8.6. 
MPCM method has the capability to extract single class of interest, but cannot 

handle complex noise in the image data. To overcome this, modif ed possibilistic 
c-means with constraints (MPCM-S) can be used. So, MPCM-S can extract a 
single class of interest while handling noise present in the image. The member-
ship function of MPCM-S while extracting single class gets modif ed as given 
in Equation  (6.18). More details about the MPCM-S algorithm can be seen in 
Chapter 5, Section 5.8.7. 

� �ˆ̆
ˇ 

�̆
�D( ,x vc ) + 

a
D(x v, )k r c

N R r N r k�
 k 

� 
� 
� 
� 
� 
�� 

�̆ �̆− (6.18)µ kc = exp
° c 

� 

As discussed in Chapter 5, the MPLICM method has been introduced to integrate 
the local spatial and grey level information for preserving the image details as well 
as to control the effect of neighborhood in PCM. The MPLICM method can also be 
applied for single class extraction; however, its membership function will get modi-
f ed as given in Equation (6.19). 

x v˘ D( , )c + G �{ k kc}
µ = exp �− � (6.19)kc � ° c �

� � 

More details about the MPLICM algorithm can be seen in Chapter 5, Section 5.8.8. 
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The ADMPLICM method has been introduced after incorporation of local simi-
larity measure in MPCM. The ADMPLICM can also be used for single class extrac-
tion; however, its membership function gets modif ed while extracting single class 
extraction as given in Equation (6.20). 

ˆ̆
ˇ 

� �̆
�D x v( ,  )ck + 

1 
NR 

�� 
� 
� 
� 
� 
�� 

(1− S Dkr ) ( , )x vr c 

�̆ �̆r N r kk ��− (6.20)µ = exp
°kc 

c 

More details about theADMPLICM algorithm can be seen in Chapter 5, Section 5.8.9. 
Thus, it can be concluded that among all the fuzzy set theory based classif ers, 

only some are capable of single land cover classif cation. The  utility of different 
fuzzy based classif ers for mixed pixel and for single land cover identif cation is 
shown in Table 6.2. 

TABLE 6.2 
List of Fuzzy Set Theory Based Classifers for Mixed Pixel 
and Single Land Cover Identifcation 

Fuzzy Set Theory Based Classifer Mixed Pixel Single Class Identifcation 

FCM ✓ – 

FCME ✓ – 

PCM ✓ ✓ 

PCME ✓ ✓ 

IPCM ✓ – 

MPCM ✓ ✓ 

NC ✓ ✓ 

NCWE ✓ ✓ 

PCM-S ✓ ✓ 

FLICM ✓ – 

PLICM ✓ ✓ 

ADFLICM ✓ – 

ADPLICM ✓ ✓ 
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6.6 CONCEPT FOR MONO-/BI-SENSOR REMOTE SENSING 
DATA PROCESSING 

Generally extreme homogeneous land cover like water bodies (e.g., reservoirs) can 
easily be identif ed uniquely by the aforementioned classif ers from single date 
imagery. However, other features and single land cover are less homogeneous in 
nature; crops or vegetation classes having similar spectral similarity with other 
classes at different times can be identif ed using temporal images. This is due to 
signif cant  changes in spectral response of such class pixels in contrast to classes of 
no variation or high correlation, thereby making them highly identif able as a single 
land cover through temporal images. As a f rst step, this requirement of temporal 
data can be attempted from mono-sensors. In case of non-availability of the required 
temporal data dates, the bi-sensor approach can be used to meet the temporal gaps. 
These can be f lled whether using optical remote sensing or microwave remote sens-
ing or both of them together. 

6.7 SUMMARY 

From this chapter it can be inferred that the temporal analysis of dynamic land 
cover classes is capable to identify them uniquely from the rest. The  inclusion of 
spectral indices as well as capable fuzzy classif ers has made it possible to extract 
single land cover from a remote sensing image. 
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 ....Three important points.... 

Learn to tolerate from ups & downs in Life and not getting distracted from 
main purpose of life.... 

Mind a friend or enemy - It depends how we deal with mind-program. Mind 
like a friend.... 

Divinity in every aspect of life.... 
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7 Assessment of Accuracy 
for Soft Classifcation 

7.1 INTRODUCTION 

Remote sensing is one of the most important tools for generating land use/land cover 
information as thematic maps of the earth’s surface. But it is always important to 
evaluate thematic maps generated from remote sensing data as valuable information 
using assessment of accuracy methods (Foody, 2002). From the past few decades, 
remote sensing data is being used for land use/land cover information from regional 
to global scales at the sub-pixel level (Fisher and Pathirana, 1990; Cross et al., 1991; 
Gutman and Ignatov, 1998; Carpenter et al., 1999). The quality assessment of sub-
pixel classif cation outputs is diff cult using the methods used for hard classif ed out-
puts. Thematic maps prepared from any of the classif ers are not complete without 
performing the assessment of accuracy (Tortora, 1978; Jensen, 1996; Congalton and 
Green, 1999). 

Hard classif cation provides labels a pixel to one and only one class. A  typical 
strategy for assessing the accuracy of hard classif cation is to follow a statistically 
sound sampling design to select a sample of testing pixels. It is thus used to deter-
mine whether the class assigned to that pixel matches the actual class represented 
by pixels on the reference data or not. The sample data is used to generate an error 
matrix, which is then used to derive various accuracy measures (Congalton, 1991; 
Congalton and Green, 1999). 

In soft classif cation, mixed pixels are processed to extract classes present in that 
pixel. The mixed pixels are often dominant in remotely sensed data of heteroge-
neous land cover (Liu and Wu, 2005; Xu et al., 2010). The outputs generated for 
each class using the soft classif cation methods are known as fraction outputs. These 
fractional outputs hold membership values. Since these membership values are f oat 
values between 0 and 1, the conventional error matrix method falls short in using 
these membership values for assessing the accuracy of soft classif cation (Pontius 
and Cheuk, 2006). 

As described earlier, the evaluation of hard classif ed outputs can be conducted 
through assessment of accuracy using confusion matrix and its derived measures 
(Congalton, 1991; Stehman and Czaplewski, 1998; Congalton and Green, 1999). 
Confusion matrix takes each sample input from classif ed and reference as an inte-
ger value and hence is appropriate only for hard classif cations. Fraction images 
generated through soft classif cations hold membership values of each class at a 
per pixel level. For assessment of accuracy of fraction images, there is no standard 
procedure established yet. So, there is high demand for sub-pixel assessment of 
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classif ed fraction outputs generated from remote sensing studies (Latifovic and 
Olthof, 2004; Shabanov et  al., 2005; Okeke and Karnieli, 2006; Ozdogan and 
Woodcock, 2006). 

For assessment of accuracy of soft classif cations, various methods have been sug-
gested (Gopal and Woodcock, 1994; Foody, 1996; Binaghi et al., 1999; Congalton 
and Green, 1999; Townsend, 2000; Lewis and Brown, 2002; Pontius Jr. and Cheuk, 
2006). One of the methods similar to confusion matrix is the fuzzy error matrix 
(Binaghi et al., 1999). This  is one of the most commonly used approaches and is 
based on fuzzy set theory and represents a generalization of traditional confusion 
matrix. Even though fuzzy set theory has a sound theoretical basis, it has not been 
generally adopted as a standard accuracy method for soft classif cations. Some of the 
reasons for this have been highlighted as counter-intuitive characteristics (Pontius Jr. 
and Cheuk, 2006). 

Mainly, the comparison of soft evaluation methods with the conventional confu-
sion matrix should be consistent, and its total of membership grades should match 
the marginal totals. Secondly, there should be interpretable information on the 
assessment of soft classif cation outputs. A composite operator for generating cross-
comparison matrix that displays some of the aforesaid necessary features can be 
considered as a method for comparison of sub-pixel maps (Pontius Jr. and Cheuk, 
2006; Pontius Jr. and Connors, 2006). Nevertheless, single or composite operators 
generate elements of fuzzy error matrix and use of off-diagonal cells, and with their 
interpretation shown clearly. 

For conducting assessment of accuracy of a soft classif ed output, a different type 
of error matrix known as fuzzy error matrix (FERM) has been proposed by the 
Binaghi et al. (1999). A further advanced form of FERM was proposed by Silvan 
and Wang (2008), known as the sub-pixel confusion-uncertainty matrix (SCM). 
The fuzzy error matrix can be used to generate the accuracy of soft classif er out-
puts, while these outputs are in the form of fraction images. FERM is similar to 
conventional error matrix; however, it uses fractional images and fractional values 
(real numbers) as input to measure accuracy, while the conventional method uses 
integer values. 

The  correspondence between classif ed and reference datasets in FERM is 
calculated while applying single operators like minimum (MIN). But other oper-
ators can also be applied like least (LEAST) and product (PROD). There  are 
methods to generate composite operators like MIN-MIN, MIN-LEAST, and 
MIN-PROD in modif ed FERM matrix (Pontius and Cheuk, 2006; Silván and 
Wang, 2008). 

The limitation of FERM and its modif ed versions are due to the region that the 
classif ed and reference data should be in form of fraction images. Many times, it 
is not possible to have reference data as fraction images at f ner spatial resolution. 
In those cases, some of the researchers proposed absolute methods to have quanti-
tative assessment of fraction classif ed outputs. Dehghan and Ghassemian (2006) 
proposed entropy, which measures uncertainty from the samples of classif ed output 
as a measure to assess accuracy. Since in generation of entropy, sample membership 
of classif ed output only is required; this entropy is also called an absolute measure 
of uncertainty. It is absolute as it does not refer any reference data to measure the 
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uncertainty. Since from entropy parameters, direct assessment of accuracy cannot 
be represented, it is called an indirect method of assessment of accuracy. Thus, the 
entropy method as an absolute method of accuracy measure can be used even if no 
reference data is available for assessing the accuracy. The interpretation of entropy 
includes ideas such as higher entropy implies higher uncertainty and vice versa. 
Kumar and Dadhwal (2010) also have proven the advantage of entropy measures for 
assessment of accuracy. 

7.2 GENERATION OF TESTING DATA 

Assessment of accuracy is dependent on the quality of the reference sample data 
while comparing classif ed image samples. A classif ed image is the output product 
generated applying a classif cation algorithm. As discussed in Chapter 2, reference 
data may be collected from different sources like existing maps, f eld survey data, 
or classif ed output from f ner spatial resolution images. There  can be combina-
tions  of these sources for generating a reference sample dataset. Assessment of 
accuracy of fraction images as soft classif ed output can be conducted using soft ref-
erence data sets. Generation of soft reference data may be impossible from ground 
observations. In this chapter, the image-to-image based assessment of accuracy 
method has been explained for assessing the soft classif ed outputs. In order to 
assess the accuracy of soft classif ed output, there is a requirement of soft refer-
ence data. The easiest way to generate soft reference data is to use f ne resolution 
images of the same area acquired at same time as of coarse resolution classif ed 
images. From this f ne resolution image, membership value of each class from each 
pixel has been generated as reference data. Fine resolution image will be covering 
more pixels as reference sample pixels within one coarser pixel of classif ed image. 
So membership value of one pixel at output pixel will be assessed by membership 
values of more than one pixel from reference image. 

While performing the image-to-image registration, there is “one to one” corre-
spondence of pixels between classif ed and reference images. Therefore, pixels from 
classif ed and reference images represent the same area on the ground and thus have 
adjunct overlap. Therefore, after registering the two images corresponding to one 
classif ed pixel from classif ed image, there will be more than one pixel from the ref-
erence image. On these fraction images from classif ed and reference images, vari-
ous operators can be applied to generate various types of fuzzy error matrixes, which 
are discussed in coming sections. 

7.3 METHODS FOR ASSESSMENT OF ACCURACY 
OF SOFT CLASSIFIED OUTPUTS 

Assessment of accuracy of classif ed output is necessary to obtain the quality of 
results. For soft classif ed output, modif ed accuracy assessment methods have been 
suggested. As mentioned in the previous section, an image-to-image based assess-
ment of accuracy method is used for accuracy of classif cation of a coarser resolution 
image using the classif ed outputs of a f ner resolution image of similar time and 
geographical area. In this section, various accuracy assessment techniques for soft 
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classif ed outputs are described. Using different operators, various image-to-image 
based methods for assessment of soft classif cation such as fuzzy error matrix, com-
posite operators, and sub-pixel confusion matrix are described. Further, some other 
methods as absolute independent assessment methods are entropy, variance–co-
variance, correlation, root mean square error, and receiver operating characteristics 
(ROC) methods are also described. 

7.3.1 fuzzy error Matrix and other aSSoCiated oPeratorS 

Since there is no standard procedure for assessing soft classif ed outputs, sometimes 
the outputs are defuzzif ed to produce hard outputs. However, due to defuzzif ca-
tion, loss of information occurs and the purpose of classifying the mixed pixels is 
nullif ed. Therefore, to preserve the result of soft classif ed outputs, image-to-image 
based accuracy with various operators has been proposed. In this section, fuzzy 
error matrix and its variants are discussed in detail. 

7.3.1.1 Fuzzy Error Matrix 
To handle mixed pixels, soft classifcation techniques have to apply, as remote sens-
ing derived land cover maps and associated statistics are useful. So, there should be 
a method for quantitatively assessing accuracy of soft classifed output (Meyer and 
Werth, 1990). In the 1970s–1980s, classifcation accuracy assessment was an after-
thought rather than an integral part of many remote sensing studies. In a number of 
studies, the classifcation accuracy report has been expressed simply as a single num-
ber (e.g., 86%). These overall accuracy assessments do not provide locational accu-
racy. In another way, only the total assessment of all classes is considered without its 
location. Accuracy assessment that is not site-specifc yields very high accuracy, but 
gives misleading results when all the errors are located in a region. 

In accuracy assessment of classif cation results, two sources of data are com-
pared: (1) classif cation map derived from remote-sensing data and (2) reference 
test date. An error matrix provides the relationship between classif ed and ref-
erence data sets. An error matrix is a square array in size, which is laid out in 
rows and columns. This matrix expresses the number of samples units (i.e., pixels, 
clusters of pixels, or polygons) assigned to a particular category relative to the 
actual category as verif ed in the f eld. Reference data is represented by columns 
while classif ed data is represented by rows from the remotely sensed data. By an 
error matrix, accuracy of each category is clearly described, which is a very effec-
tive way to represent accuracy. As from error matrix along with overall accuracy, 
both the errors of inclusion (commission errors) and errors of exclusion (omission 
errors) can also be calculated. 

For the assessment of accuracy of soft classif ed data, FERM, which is based 
on the fuzzy set theory, is one of the most basic approaches (Binaghi et al., 1999). 
The  layout of FERM is similar to the traditional error matrix that is used for 
assessing the accuracy of hard classif cation. The exception is that the elements of 
the FERM can be any non-negative real numbers instead of non-negative integer 
numbers. The row of the FERM generally def nes the soft classif ed data and the 
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column def nes the soft reference data. The elements of FERM represent the class 
proportion corresponding to reference data (i.e., soft reference data) and classi-
f ed outputs (i.e., soft classif ed image), respectively. The fuzzy minimum operator 
(MIN) is used to construct the FERM and to determine the matrix elements in 
which the degree of membership in fuzzy interaction in between the classif ed and 
reference partition (Ci  Rj ) is computed as (Binaghi et al., 1999; Stehman et al., 
1998) in Equation (7.1): 

M i( , j ) = Ci  Rj = ˙min (ski , rkj ) (7.1) 
x X˝ 

where Rj and Ci are the sets of reference and classifcation data assigned to classes j 
and i, X  is the testing sample data set, x is a testing sample in X, and ski  and rkj 

denote the classif ed and reference grades of class i and j respectively at pixel k and 
i, j = 1 2, ,c. 

The layout of the FERM is shown in Table 7.1. 
The derived indices from the FERM are the overall, producer, and user accuracy 

measures. The overall accuracy (OA) can be calculated by Equation (7.2): 

c 

M i i,˝ ( )  
i=1OA = c = PO (7.2) 

˝Ri 

i=1 

where PO is the observed proportion of agreement. 

TABLE 7.1 
Layout for a Fuzzy Error Matrix 

Soft Reference Data 

Soft Classifcation Class 1 Class 2 … Class c Total Grades 

Class 1 

Class 2 

M(1,1) 

M(2,1) 

M(1,2) 

M(2,2) 

… 

… 

M(1,c) 

M(2,c) 

C1 

C2 

… . . . . . 
. . . . . 
. . . . . 

Class c M(c,1) M(c,2) … M(c,c) Cc 

Total Grades R1 R2 … Rc 

Note: Defnition of terms: M(i, j) is the member of FERM in the i-th class in soft classifed output and jth 
class of soft reference data, Ci is the sum of class proportions of class i in the classifed output, and 
Rj is the sum of class proportions of class j from the reference data. 
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The user’s (UAi ) and producer’s (PAi ) accuracies of class i may be computed as 
Equation (7.3), 

M M( )i i, i i( ),
UA = and PA =  (7.3) i

Ci 
i

Ri 

while the average user’s ( AAu ) and average producer’s ( AAp ) accuracies may be 
computed from Equation (7.4), 

c c 

UAi PAi ° ° 
i=1 i =1AAu = and AAp =  (7.4) 

c c 

and expected proportion of agreement (PE ) can be expressed as in Equation (7.5), 

˘ 
c 

RCi i  

PE = i=1
2  (7.5) 

°
˘ 

c ˙ 
˝̋
 

Ri ˇ̌
˛ i =1 ˆ 

and kappa coeff cient ( )κ  of agreement as in Equation (7.6), 

(PO − PE )˜ =  (7.6) 
1− PE 

FERM accounts for the diagonalization characteristic (a perfect matching case, 
agreement up to pixel level) of a sub-pixel confusion matrix. The derived indices of 
FERM (producer, user, and overall accuracy) are based on diagonal elements and 
total grades of reference and assessed data sets (Silván-Cárdenas and Wang, 2008) 
and do not account for off-diagonal elements, which represent disagreement. 

7.3.1.2 Composite Operator Based FERM 
Although FERM is the most basic approach for assessment of accuracy of soft clas-
sifcation, it is not used as a standard measure of accuracy. The  reason is that the 
cross-comparison in FERM is not consistent with the traditional confusion matrix. 
For  the cross-comparison to be consistent, it must have a diagonal matrix when a 
map is compared to itself, and its marginal totals must match with the total of mem-
bership grades from the reference and assessed data. However, the composite opera-
tors based accuracy measure proposed by Pontius and Cheuk (2006) can be used for 
the computation of cross-comparison matrix. For these composite operators, certain 
fundamental properties on agreement and disagreement have been established so that 
meaningful matrix entries can be made (Silván-Cárdenas and Wang, 2008). 
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The agreement and disagreement measures for the composite operator are given 
in Equations (7.7) to (7.9): 

ˆA s( ki , rkj ) , if i = j 
C (s r, ) = ˘

 (7.7) ki kj ˇ 
D ski , rkj , if i j˘ ˝ ˝(  ) ˙� 

sk̃i = ski − min (s rki , ki ) (7.8) 

r˜ = r − min  (s r, ) (7.9) kj kj kj kj 

where A and D denote the agreement and disagreement operators, respectively, ski 

and rkj denote the classif ed and reference grades of class i and j, respectively, at 
pixel k, and s′ ki  and rkj ′  denote the over and underestimation errors at pixel k. 

The operator A and D satisf es the basic properties as mentioned in Table 7.2 for 
agreement and disagreement measures. 

The  MIN-MIN, MIN-PROD, MIN-LEAST composite operators (Pontius and 
Cheuk, 2006; Silván-Cárdenas and Wang, 2008) are used for the assessment of soft 
classif ed outputs. These composite operators are derived from three basic opera-
tors, viz. minimum operator (MIN), product operator (PROD), and LEAST operator. 
The MIN operator is a fuzzy set intersection operator, and it measures the maximum 
sub-pixel class overlap, while the PROD operator measures the expected sub-pixel 
class overlap, and the LEAST operator measures minimum possible sub-pixel class 
overlap between classif ed and referenced sub-pixel partition. Expressions for basic 
and composite operators are listed in Tables 7.3 and 7.4, respectively. 

Since the MIN operator satisf es all basic properties mentioned in Table 7.2, all 
composite operators use MIN operator for an agreement case. The MIN-PROD oper-
ator uses MIN for diagonal (agreement) and a normalized PROD for off-diagonal 
(disagreement) cells, thus combining the fuzzy set view with a probabilistic view 
(Silván-Cárdenas and Wang, 2008). The  MIN-MIN operator uses MIN for both 

TABLE 7.2 
Basic Properties for Agreement and Disagreement Measures 

Property Defnition Agreement Disagreement 

Commutativity C (s,r) = C (r,s) Yes Yes 

Positivity s > ° > ˛0 r 0 C (  ) > 0 Yes Yes s, r 

Nullity s = ° = ˛0 r 0 C ( ) = 0 Yes Yes s, r 

Upper Bound C (s, r) ˛ C (r,r) Yes No 

Homogeneity C (as,ar  ( Yes ) = aC r,s) Yes 

Source: Reprinted from Remote Sens. Environ., 112, Silván-Cárdenas, J.L. and Wang, L., 1081–1095, 
Copyright 2008 [2020], with permission from Elsevier. 

Note: C( ,s r) denotes a comparison (agreement and disagreement) measure between grades s and r, and 
a is a positive number. 
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TABLE 7.3 
Three Basic Operators 

Traditional 
Operator ID Form Interpretation Sub-pixel Interpretation 

MIN min(s r  )ki , kj Fuzzy Set Intersection Maximum Overlap 

PROD ski r× kj Joint Probability Expected Overlap 

LEAST max(ski r+ kj , )−1 0 Minimum Overlap Minimum Overlap 

Source: Reprinted from Remote Sens. Environ., 112, Silván-Cárdenas, J.L. and Wang, L., Sub-pixel 
confusion–uncertainty matrix for assessing soft classifcations, 1081–1095, Copyright 2008 
[2020], with permission from Elsevier. 

Note: ski and rkj denote the classifed and reference grades of class i and j, respectively, at pixel k. 

TABLE 7.4 
Three Composite Operators 

Operator ID Agreement ( i = j ) Disagreement ( i ˜ j ) Sub-Pixel Confusion 

MIN-MIN 

MIN-PROD 

min (ski , rki ) 
min (ski , rki ) 

min ˜ ˜( )ski , rkj 

˜ × ˜ski rkj 
c 

Constrained maximum 

Constrained expected 

r˜˝ ni 

i=1 

MIN-LEAST min (s rki , ki ) 
c˝ ˇ 

max ̂  ˜ +ski r˜ −kj � rk̃i ,0� 
˙ i=1 ˘ 

Constrained minimum 

Source: Reprinted from Remote Sens. Environ., 112, Silván-Cárdenas, J.L. and Wang, L., Sub-pixel 
confusion–uncertainty matrix for assessing soft classifcations, 1081–1095, Copyright 2008 
[2020], with permission from Elsevier. 

Note: ski and rki denote the classifed and reference grades of class i at pixel k. 
ski ′  and rni ′ denote the over- and underestimation errors of class i at pixel k. 

agreement and disagreement case. Similarly, the MIN-LEAST operator uses MIN 
for diagonal cells and normalized LEAST for off-diagonal cells. The solution corre-
sponds to different types of sub-pixel class overlap by the aforementioned composite 
operators constrained to unmatched sub-pixel fraction. 

7.3.1.3 Sub-Pixel Confusion-Uncertainty Matrix (SCM) 
Although it has been observed that the MIN operator is an appropriate candidate for 
the measure of agreement for sub-pixel confusion matrix, it fails when one accounts 
for the measure of disagreement. This  can be solved by using composite opera-
tors based measures. However, this disagreement between off-diagonal elements 
produces uncertainty in sub-pixel distribution, leading to an underspecif ed prob-
lem termed as the sub-pixel area allocation problem. To account for this problem, 
Silván-Cárdenas and Wang (2008) proposed a cross-comparison matrix known as 
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TABLE 7.5 
General Structure of SCM 

Soft Reference Data 

Soft Classifcation Class 1 Class 2 … Class c Total Grades 

Class 1 P11 P12 ± U12 … P1c ± U1c P1+ ± U1+ 

Class 2 P21 ± U21 P22 … P2c ± U2c P2+ ± U2+ 

… . . . . . 
. . . . . 
. . . . . 

Class c Pc1 ± Uc1 Pc2 ± Uc2 … Pcc Pc+ ± Uc+ 

Total Grades P+1 ± U+1 P+2 ± U+2 … P+c ± U+c P++ ± U++ 

Source: Reprinted from Remote Sens. Environ., 112, Silván-Cárdenas, J.L. and Wang, L., Sub-pixel 
confusion–uncertainty matrix for assessing soft classifcations, 1081–1095, Copyright 2008 
[2020], with permission from Elsevier. 

the sub-pixel confusion-uncertainty matrix (SCM). It uses the confusion intervals in 
terms of center value ± maximum error to account for this uncertainty. These confu-
sion intervals express the possible confusion among classes and are formed by the 
MIN-MIN and MIN-LEAST composite operators. For the unique solution of an area 
allocation problem, these confusion intervals should be tight. 

Silván-Cárdenas and Wang (2008) represented the confusion interval in the form 
Pij ±Uij, where Pij represents the center value of the interval and Uij  interval half-
width (Table 7.5). These values are computed as Equations 7.10 and 7.11 respectively: 

MIN MIN + MIN−− LEASTPij PijPij =  (7.10) 
2 

MIN MIN MIN−− LEASTPij − PijUij = where i j, = 1 2, ,c (7.11) 
2 

where Pij is the overall agreement-disagreement measure between classifed class i 
and reference class j , Uij  is the uncertainty measure between classifed class i and 
reference class j , Pi+ is the marginal row sum of Pij , Ui + is the marginal row sum 
of Uij  for class i, P+i is the marginal column sum of Pij , U+i is the marginal column 
sum of Pij for class i, and P++ and U++  are the total sum of Pii and Uij , respectively. 

The accuracy indices derived from the SCM have been given in Equations (7.12) 
to (7.21): 

Overall accuracy (OA): 
For center value, 

˝ 
c 

P++  Pii 

i=1OA = 2 2 = PO (7.12) 
P++  −U++  
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and 
for uncertainty, 

U++˝ 
c 

Pii 

i=1OA = 2 2 = UO  (7.13) 
P++  −U++  

where PO ±UO is the observed proportion of agreement. 
For i-th user accuracy (UAi): 
For center value, 

P P+UAi = 2 
ii i 

2  (7.14) 
Pi+ −Ui+ 

and 
for uncertainty, 

P Uii i+UAi = 2 2  (7.15) 
Pi+ −Ui+ 

For i-th producer accuracy (PAi): 
For center value, 

P Pii +iPAi =  (7.16) 
P+ 

2 
i −U+ 

2 
i 

and 
for uncertainty, 

P Uii +iPAi = 2 2  (7.17) 
P+i −U+i 

Expected proportion of agreement (PE ): 
For center value, 

c P2 +U 2 P P  +U U  ) − 2P U  U P  + P U( ++  ++ )( +i i+ +i i+ ++  ++ ( +i i+ +i i+ )
PE = ˆ 2  (7.18) 

2 2 
i=1 (P++  −U+++ ) 

and 

for uncertainty (UE ), 

c 2P U  P P  +U U  ) − P2 +U 2 U P  + P U++  ++ ( +i i+ +i i+ ( ++  ++ )( +i i+ +i i+ )
UE = ˆ 2  (7.19) 

2 2 
i=1 (P++  −U+++ ) 
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where PE ±UE is the observed proportion of agreement. 
For kappa coeff cient of agreement ( )κ : 
For center value, 

P − P 1 P 1− P −U 1− P −U U +U U( E )( − E ) − (( O O )( E E ) O ) E
˜ = 

O E
 (7.20) 

2(1− P )2 −UE E 

and 
for uncertainty, 

− −P U 1− −  1− P U) + − P U(1 O O )( PE UE )( O E (1 E )˜ = O  (7.21) 
2(1− PE )2 −UE 

7.3.2 MeaSure of unCertainty: entroPy 

The accuracy of classif cation is generally measured by an error matrix. As men-
tioned in the previous section for assessment of soft classif cation, reference data 
should be in soft form with f ner resolution. Many times this is not possible due to the 
non-availability of higher resolution image. Further, it is also not possible to generate 
fraction reference output from ground with a large number of samples. In such cases, 
entropy is used as an absolute measure of uncertainty (Dehghan and Ghassemian, 
2006). Entropy, which is based on the information theory (Shannon 1948; Foody, 
1996), can be used to estimate the uncertainty in the classif cation. It expresses the 
distribution and extent of uncertainty in a single number in information theory. 
Entropy of a random variable is related to the minimum attainable error probability 
(Feder and Merhav, 1994). Unlike the membership vector, this criterion is able to 
summarize the classif cation uncertainty in a single number per pixel, per class, or 
per image (Goodchild, 1995). It shows the strength of class membership assigned to 
particular class in the classif cation output. 

Different forms of FERM are used to evaluate the performance of the classif er 
in terms of its correctness whereas RMSE and correlation coeff cient are the uncer-
tainty measures. But these methods are def ned based on the difference between the 
expected and actual results and are relative measures. Thus, they are sensitive to 
error variations and not to the uncertainty variations. On the other hand, entropy cal-
culates uncertainty from the classif ed data, from testing samples, without using any 
external data, and hence it is an indirect method to measure accuracy. Thus, entropy 
is an absolute measure of uncertainty, calculated only from the soft classif ed data 
without requiring any other external information. The entropy method has been used 
for validating the cluster formed during unsupervised clustering using FCM and 
IPCM (Yang and Wu, 2006). 

In  some of the classif ers, where membership values do not  follow the proba-
bilistic constraint, like PCM and MPCM, the entropy theorem can be utilized by 
rescaling (Ricotta, 2004). Thus, the average entropy (based on Shanon’s entropy 
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theorem) of the complete image can also be calculated (Dehghan and Ghassemian, 
2006; Ricotta and Avena, 2006). 

For a better classifed output, the entropy for a known class having less uncer-
tainty will be low, and for an unknown class with high uncertainty, it will be high in 
a fraction image. For example, if while taking a fraction image of a crop, the entropy 
value at the crop is low, the entropy value other than at the crop location will be high. 
Thus, low entropy means low uncertainty, which implies more accurate classifed 
output and vice versa. A  low degree of entropy (or uncertainty) means member-
ship is associated entirely with one class and vice versa. The entropy of a classifed 
fraction output can be computed using Equation (7.22) (Foody, 1995; Dehghan and 
Ghassemian, 2006): 

Entropy = −˝ 
c 

µkilog (µki ) (7.22) 
2 

i=1 

where log2(µki ) ° 0 for µki = 0, c denotes the number of classes, and µki  is the esti-
mated membership function of class i for pixel k. 

For high uncertainty, i.e., low accuracy the value of entropy from Equation (7.22) 
is high and inverse. Entropy is def ned based on actual output of classif er, so it can 
give the pure uncertainty of classif cation results (Dehghan and Ghassemian, 2006). 

7.3.3 Correlation CoeffiCient 

Correlation coeff cient is used to measure the linear association between the two 
variables, say, X and Y. Among all the available correlation coeff cients, Pearson-
moment correlation coeff cient is best known (DeCoursey, 2003; Kassaye, 2006). 
The two variables from which the correlation is to be determined from the fraction 
images are membership values of the classif ed image and membership values of the 
reference image. It is given by Equation (7.23). 

Cov R C)( ,
r = R C  (7.23) 

° °  

where Cov( ,R C) represents the covariance between the reference (R) and classife d 
(C) data. σ R and σ C are the standard deviations of R and C, respectively. The range of 
r is from −1 to +1. If the variables (R and C) are in perfect straight line, then, r = +1 
implies increasing linear association and r = −1 is decreasing linear association. 
r = 0, which is a special case, shows no correlation between the variables. A value 
from 0.5 to 1 states a strong correlation between two variables (DeCoursey, 2003). 

7.3.4 root Mean Square error 

Root mean square error is given by taking a square root of the sum of squared dif-
ference between the membership values of the classif ed image and the reference 
image, as in Equation (7.24). 
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ˆ 
N 

ˆ 
c 

2(Cij − Rij ) 
j =1 i =1

RMSE =  (7.24) 
×M N  

where Cij is the membership values from the classif ed image, Rij  is the membership 
values from the reference image, and M N  is the size of the image. × 

RMSE gives the measure of both systematic and random errors (Smith, 1997). 
It  is an average measure of the difference of membership values of classif ed 
image to the membership values of the reference data set. The RMSE values are 
always greater than or equal to zero, as is evident from Equation (7.24). The inter-
pretation of RMSE is that for good results, its value should be minimum or tend 
toward zero. For the given data, RMSE is calculated in two ways: global and per 
class. Global RMSE is the RMSE of the complete image, i.e., all the fraction 
images, and is given by Equation (7.24). RMSE per class can be computed using 
Equation (7.25). 

N 
2ˆ(Cij − Rij ) 

j =1
RMSE (class) =  (7.25) 

×M N  

7.3.5 reCeiver oPerating CharaCteriStiC (roC) 

The receiver operating characteristic (ROC), which is based on the Neyman-Pearson 
detection theory, is used for the evaluation of detection performance in signal pro-
cessing, communication, and medical diagnosis (Chang et  al., 2001; Wang et  al., 
2005; Miyamoto et al., 2008; Chang, 2010). The ROC curve is used to illustrate the 
performance of a binary classif er system, which means whether a class is detected 
(‘hit’) or not (‘miss’). The  detection is measured by the area under the Neyman 
Pearson curve. The area is denoted by Az and bounded between ½ and 1. For better 
detection, it should be closer to 1 (Wang et al., 2005). The 2D ROC curve is plot-
ted by the false alarm rate (FAR) on one axis (x-axis) and true positive (TP) rate on 
another axis (y-axis). On the other hand, the 3D ROC curve is plotted by taking the 
false alarm rate (FAR) on the x-axis, detection threshold (t) on the y-axis, and true 
positive (TP) rate on the z-axis (Figure 7.1). The 2D ROC can be used for hard deci-
sion produced by the classif er, whereas 3D ROC can be used for the soft decision 
(Wang et al., 2005). 

This method is also able to check the accuracy while extracting single land cover 
from remote sensing image classif cation, where the classif er acts like a binary or in 
other words, when the interest is only to know whether the classif er is able to detect 
a particular class or not. The 2D ROC curve is plotted by the true positive (TP) rate 
on one axis and the false alarm rate (FAR) on the other axis, whereas in 3D ROC 
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FIGURE 7.1 ROC curves for identif cation of wheat crop using noise clustering classif er. 
(a) 3-D curve showing variation of true positive (TP) with false alarm rate (FAR) and detec-
tion threshold (t) and (b) variation of TP with FAR alone. 

one more axis corresponding to the detection threshold is also added to the 2D ROC 
curves. The TP and FAR can be def ned in Equations (7.26) and (7.27), respectively: 

Total number of target pixels detected as target
TP = (7.26) 

Total nuumber of target pixels present in the sample 

Total number of background pixels detected as target
FAR =  (7.27) 

Tottal number of background pixels present in the sample 

The area under the 2D ROC curve is used to measure the detection performance 
of the classif er. It is bounded between ½ and 1. For better detection, it should be 
closer to 1. 

7.3.6 Method for edge PreServation 

There are methods for adding contextual information through MRF or local convo-
lution to reduce noisy pixels in a given image. While adding contextual information, 
edges of the objects are affected due to smoothing effect. Therefore, it is important 
to verify whether any edge within a classif ed output is correct or not. An edge repre-
sents boundaries between two objects which may be characterized as a step function 
or slope between two regions (Wen and Xia, 1999). 

As per Wen and Xia (1999), if for some specif c threshold c, 
µ1 − µ2 ˛ c then there is no signif cant difference between the grey levels on the 

two sides of the edge whereas if µ1 − µ2 > c, there will be a signif cant difference 
between the true averages, where µ1 and µ2 are the mean value of the pixels on each 
side of the edges. 

To verify the signif cance of an edge, the distribution of grey levels of both sides 
needs to be analyzed in the sense that the difference between the average values 
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within two regions represents the steepness of the edge. To determine the value of c, 
edge point is examined f rst through Equation (7.28). 

X Y > c + 2SZ˝  (7.28) i − i

where Xi and Yi represent the grey level of ith pixel on two sides of the edge 
respectively. S  is the standard deviation of the grey levels in the region the point. 
Zα  can be obtained from the standard distribution tables. In practice, the values 
of α  can be assigned as 0.01, 0.05, 0.1, 0.2  depending upon different require-
ments. Both low and high thresholds for an edge can be identif ed by selecting 
two different values. 

The fraction image generated using the contextual approach for a particular class 
has the high membership value if class exists for a known location. If it does not exist, 
then membership value is low. For a homogeneous area, the fraction image will have 
less variability among the membership values. Consequently, the mean membership 
value will be high and variance will be low for a homogeneous area. This concept 
has been suggested to verify the edge preservation. 

For edge preservation method, f rst a homogeneous area of a specif c class, i.e., 
crop, has been selected which has a high mean value and a low variance. After 
selecting a homogeneous area, two sets of pixels were selected at either side of the 
crop class edge. Mean and variance are calculated for these two sets of pixels in each 
iteration. The mean difference of these two sets of pixels should be high and variance 
within should be low if the edge is to be preserved. 

7.4 SUMMARY 

In  this chapter, focus has been kept on assessment of accuracy of soft classif ed 
output fraction images. In literature, methods have been developed for assessment of 
accuracy of soft output. Relative assessments from f ner reference images to absolute 
indirect assessment methods of soft classif ed outputs have been explained in this 
chapter. Relative methods were image-to-image accuracy using FERM using single 
operator as well as composite operators such as MIN-MIN, MIN-LEAST, MIN-
PROD, and SCM. Absolute indirect accuracy assessment methods include entropy, 
correlation coeff cient, RMSE, and ROC. 
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Appendix: A1, SMIC: Sub-Pixel 
Multi-Spectral Image 
Classifer Package 

This  appendix: A1 provides an in-depth discussion on the various capabilities of 
SMIC: sub-pixel multi-spectral image classif er package. The commercially avail-
able software has limitations for various classifying algorithms such as statistical 
based linear mixture model (LMM), fuzzy set based fuzzy c-means (FCM), and 
artif cial neural network (ANN). Limited algorithms have been incorporated in 
different commercially available digital image processing software like neural net-
work and unsupervised fuzzy c-Mean in PCI Geomatica and linear mixture model 
(LMM) in ERDAS, ENVI, etc. 

However, the SMIC package is menu driven type with a large number of fuzzy 
based supervised soft classif ers. There is also an option to add contextual informa-
tion through MRF or by local convolution based methods. Outputs from the SMIC 
package can be generated as soft or hard classif ed outputs and all parameters are 
open to do the experiment with different values assigned to all variables in fuzzy 
based algorithm. Fuzzy based algorithms discussed in Chapters 3, 5, 6, and 7 have 
been implemented through in-house developed package called SMIC (Figure A1.1). 

This package has three modules. The f rst module has the capability to select the 
distance as well as kernel based fuzzy classif ers. Through Figure A1.2a, various dis-
tances can be applied in a fuzzy based classif er, and through Figure A1.2b, various 
kernels can be applied in chosen fuzzy based classif er. It also has the provision to 
add contextual information through Markov random f eld and the local convolution 
methods. While classifying single date image, the classif cation GUI can be opened 
up and the fuzzy classif ers can be selected with an option to add the contextual part 
through MRF mode or local convolution mode. The soft output membership values 
generated using different classif ers are saved as fraction images. 

The second module is developed to process temporal data sets for specif c class 
extraction (Figure A1.3). 

In this module, the spectral dimensionality of data is reduced through the class 
based sensor dependent (CBSI) approach (Chapter 6, Section 6.2), and the temporal 
dimensionality can be maintained. Figure A1.4a provides an option to invoke the 
CBSI indices palate whereas Figure A1.4b provides an option for selecting math-
ematical indices expression while processing the temporal data. The advantage of 
CBSI is that the user does not have to specify band information from image data sets. 

Another main step in this package is to generate training sample data through 
region growing methods (Figure A1.5). In  the SMIC package, the region growing 
option has been implemented. This region growing method collects similar pixels 
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FIGURE A1.1 The main window of the SMIC package. 

as training data sets using seed pixels while having various similarity/dissimilarity 
options. It also generates class based sensor independence indices using seed pixels 
from temporal images. 

The third module in SMIC is for the assessment of accuracy of soft classif ed data 
through the fuzzy error matrix (FERM) (Chapter 7, Section 7.3.1.1) using soft reference 
data (Figure A1.6). For sub-pixel classif cation, when reference data and the outputs 
are soft, FERM and other modif ed versions of it can be generated using image-to-
image accuracy of soft classif ed output. Here the requirement of assessment of accu-
racy of soft classif ed data is soft reference data. So this package provides assessment 
of accuracy of soft classif ed data as image-to-image assessment of accuracy. 

The SMIC has been developed using JAVA programming language and is specif -
cally capable of soft/hard land cover mapping from remote sensing multi-spectral 
data. It has the capability to process the multi-spectral mono/temporal remote sens-
ing satellite data at a sub-pixel level with various fuzzy based classif ers. The system 
can handle multi-spectral images of any number of bands. In this package, various 
classif cation algorithms such as fuzzy c-means, possibilistic c-means, noise clus-
tering, modife d possibilistic c-means, and improved possibilistic c-means with or 
without entropy have been incorporated in supervised mode with soft/hard classi-
f cation options. These algorithms can also be used with MRF or local convolution 
methods to add contextual information to reduce noise. 

Reference training data can be generated from this system in two modes; one is 
manually and other is region growing concept. In manual mode, pixel-by-pixel train-
ing samples can be generated (Figure A1.7). In manual mode the chances of picking 
non-homogeneous training samples are higher, hence in such cases region grow-
ing through seed pixel can be used for collecting training samples (Figure A1.5). 
Additionally, in region growing similarity/dissimilarity algorithms have been 
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FIGURE A1.3 Temporal data processing module. 

FIGURE A1.4 (a) and (b) Dimensionality reduction methods. 

implemented for generating the criteria to pick similar pixels in a given search win-
dow. Training sample data of each class is saved in separate training f les. 

Minimum human intervention has been considered while developing the module 
for processing temporal data. This module includes temporal information as tem-
poral indices data while reducing spectral information of multi-spectral images. 
The advantage of including temporal data from temporal images is that, it provides 
unique information about specif c class mapping due to reduced spectral overlap-
ping with other classes. Main GUI of SMIC temporal data processing package has 
been given in Figure (A1.3). Figure A1.8 shows how to load other temporal images. 
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FIGURE A1.5 Region growing methods. 

FIGURE A1.6 FERM tool for assessment of accuracy. 
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FIGURE A1.7 Pure signature data collection module. 

FIGURE A1.8 Load other temporal images. 
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FIGURE A1.9 Saving indices outputs. 

Figure A1.9 provides an option to save indices outputs generated. These indices layers 
generated from temporal data sets give information as a temporal indices database. 

After generating the temporal indices outputs, the next step is to apply a fuzzy 
based classif er capable to identify a specif c class of interest. In  this module, 
PCM, NC, and MPCM classif ers (Chapter 3) have been implemented with various 
similarity/dissimilarity measures (Figure A1.10). The advantage of applying these 
classif ers is due to algorithms’ capability to identify the single class of interest with 
minimum parameters. 

FIGURE A1.10 Classif cation methods for specif c class mapping. 
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Another advantage of using the SMIC module for temporal data processing is 
that the user needs just four steps to identify a specif c class of interest using tempo-
ral data. Many times it is not possible to get temporal multi-spectral data from the 
same remote sensing sensor. In that case, this package has the capability to use the 
remote sensing multi-spectral data available from different sensors. In addition, this 
module does not require knowledge about different spectral bands present in remote 
sensing multi-spectral images. This module applies statistical operators to identify 
suitable bands to be used in indices generation to have a temporal indices database. 
Therefore, the overall advantage of this module is that technological knowledge is 
on the back end, and it requires minimum knowledge to work with temporal datasets 
for specif c class identif cation. 

While mapping a specif c crop, for example, the knowledge of other crops present 
in that area is also important. Further, it is a fact that the spectral responses of differ-
ent crops are likely similar to each other on a particular date and make the process 
complex for mapping specif c crops using single date imagery. Temporal information 
of a crop can, however, provide a good solution for discriminating among various 
crops and vegetation classes using the differences in their growth patterns as a dis-
criminating factor. The need of temporal data for continuous monitoring of crops 
and the unavailability of continuous temporal data is also a well-known problem. 
Hence a multi-sensor approach for increasing the temporal data sampling for moni-
toring crops has to be evaluated for its effectiveness. SMIC is capable to handle the 
mono as well as multi-sensor temporal images and hence an effective package for 
specif c class identif cation and for mixed pixel handling. 



See Inside Shows Blessed With.... 

See Outside Shows Missing Out.... 
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Appendix: A2, Case Studies 
from SMIC Package 

CASE STUDY 1: STUDY OF SIMILARITY AND DISSIMILARITY 
MEASURES WITH IPCM AND MPCM CLASSIFIERS 

As mentioned earlier, in remote sensing images there are both pure and mixed pixels. 
Hard classif ers are found to be inappropriate to address this mixed pixel problem. Fuzzy 
set theory and possibilistic based algorithms such as fuzzy c-means (FCM), possibilistic 
c-means (PCM), etc. account for information of classes mixed within a pixel, and hence 
are quite successful in dealing with the mixed pixel problem. In the literature, PCM clas-
sif ers have only been studied with Euclidean, Mahalanobis, and diagonal Mahalanobis 
norms, but other similarity and dissimilarity functions have not been applied with it. 

In  this case study, possibilistic based fuzzy algorithms such as possibilistic 
c-means (PCM), improved possibilistic c-means (IPCM), and modif ed possibilis-
tic c-means (MPCM) have been studied with twelve similarity and dissimilarity 
measures: cosine, correlation, Euclidean, Manhattan, Bray Curtis, Canberra, chess-
board, mean absolute difference, median absolute difference, variance–covariance, 
diagonal variance covariance, and normalized squared Euclidean in both single and 
composite mode. Testing and implementation of norms have been performed on the 
simulated Formosat-2 Image with f ve different classes (viz., water, wheat, forest, 
riverine sand, and fallow land) in different proportions. 

The performance of all similarity and dissimilarity norms with fuzzy based algo-
rithms have been tested on the simulated image for their capability of detecting 
different class pixels from mixing regions of varying class proportions and for 
their strength of suppressing within class variance. Optimization of performance 
of norms has been done with respect to varying weighted exponent parameter (m). 
Based on the results obtained from simulated images, the optimized parameters have 
been applied on real Formosat-2 image (8m multispectral). The effect of number of 
classes classif ed by the similarity and dissimilarity measures using PCM, IPCM, 
and MPCM classif cation results have also been studied. 

OBJECTIVES OF THE CASE STUDY 

In these case studies, the following research objectives are framed. 

1. To study various similarity and dissimilarity measures with PCM, IPCM, 
and MPCM (Chapter 3). 

2. To study the capability of all similarity and dissimilarity norms with PCM, 
IPCM, and MPCM for the suppression of within class variance (interclass 
variance) and detection of mixed pixels in the double as well as triple class 
mixing region (with varying mixing regions). 
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3. To perform the comparative analysis of performance of all similarity and 
dissimilarity norms with PCM, IPCM, and MPCM. 

4. To optimize the similarity and dissimilarity measures with PCM, IPCM, 
and MPCM with respect to weighted exponent parameter (“m”) while 
extracting one or more classes. 

STUDY AREA AND DATA USED 

The study area is located toward the east side of Haridwar city, district Haridwar, 
Uttarakhand, India. In  state Uttarakhand, it shares boundaries with districts 
Dehradun in the northeast and Pauri Garhwal to the east, whereas with Uttar 
Pradesh it shares boundaries with Muzaffarnagar and Bijnor in the south and 
Saharanpur in the west. 

The central latitude and longitude of the city are 29.956°N and 78.170°E, respectively. 
The location map and different land cover classes identif ed in the study area are shown 
in Figure A2.1. Five types of land cover classes, water, wheat, forest, riverine sand and 
fallow land, have been identif ed in the study area. The reasons for selecting this area 
are diversity in terms of land use classes such as vegetation types, sand/clay, dense for-
est, fallow agriculture land, and water as well as f eld data and availability of satellite 
data. 

Riverine Sand 

Dense Forest 

Fallow Land 

Wheat Crop 

UTTARAKHAND 
STATE: INDIA MAP 

HARIDWAR DISTRICT 

Uttarakhand 
State 

Water Body 

Formosat-2 satellite image, east side of Haridwar, towards NH 74 

FIGURE A2.1 The location map and land cover classes identif ed in the study area. 
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FIGURE A2.2 Simulated image generated from Formosat-2 image. 

In  this study, multi-spectral images and simulated images of Formosat-2 
(Figure A2.2) satellite were used. The main data set that has been used for image 
processing aspect is simulated Formosat-2 image. Formosat-2 is the f rst remote 
sensing satellite developed by National Space Organization (NSPO), Taiwan, and 
was launched on May 21, 2004. The main aim of the Formosat-2 mission has been 
to capture remotely sensed data on land and oceans of the earth with a daily revisit. 
The Formosat-2 satellite carries both “remote sensing” and “scientif c observation” 
tasks in its mission. It supports monitoring and detecting land change for any spe-
cif c regions for various industries and mapping applications. Table A2.1 shows the 
Formosat-2 sensor specif cations. 

TABLE A2.1 
Formosat-2 Satellite Sensor Specifcations 
Spectral bands (Spectral resolution) P: 0.45–0.90 µm (Panchromatic) 

B1: 0.45–0.52 µm (Blue) 
B2: 0.52–0.60 µm (Green) 
B3: 0.63–0.69 µm (Red) 
B4: 0.76–0.90 µm (Near-infrared) 

Sensor footprint 24 × 24 km 

Revisit interval Daily 

Viewing angles Cross track and along track (forward/aft): ± 45 degree 

Image dynamics 8 bits per pixel 

Resolution PAN (Panchromatic): 2 m 
MS (Multi-spectral): 8 m 
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Methodology 

Adopted methodology for the overall analysis and implementation of algorithms 
with all similarity and dissimilarity norms is shown in the form of a f ow diagram in 
Figure A2.3. A simulated Formosat-2 image has been used to test the implemented 
norms. The  training data f les for each class (water, wheat, forest, riverine sand, 
and fallow agriculture land) has been taken from the simulated Formosat-2 image. 
On the simulated image, the classif cation experiments have been performed using 
PCM, IPCM, and MPCM and it has been applied by integrating all the similarity 

FIGURE A2.3 Methodology adopted for Case Study 1. 
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and dissimilarity measures one by one. These classif cation experiments have been 
conducted in f ve different cases while considering a particular algorithm: 

Case 1: Two class classif cation: When any two classes have been classif ed 
(Water and Wheat). 

Case 2: Three classes classif cation: When any three classes have been classi-
f ed (Water, Wheat, and Forest). 

Case 3: Four classes classif cation: When any four classes have been classif ed 
(Water, Wheat, Forest, and Riverine Sand). 

Case 4: All f ve classes classif cation: When all f ve classes have been clas-
sif ed (Water, Wheat, Forest, Riverine Sand, and Fallow Agriculture 
Land). 

reSultS 

Results showed that, in the case of PCM, Euclidean (m = 3) and cosine (m = 3) 
(Figure  A2.4; two classes classifcation case results: Water and Wheat classifed) 
were found to be the best norms when applied for lower number of classes (two or 
three), whereas the normalized squared Euclidean Distatnce (ED) was the best norm 
when the number of classes are increased. In the case of IPCM also, the ED was the 
best norm when used for two or three classes, whereas for a large number of classes, 
increased variance covariance performed well at m = 1.7 and 2.5. Normalized squared 
ED has shown special affnity toward MPCM algorithm, hence it works perfectly with 
MPCM at extreme values, m = 1.1 and 3.0. Algorithms have shown specifc behavior 
to a particular norm. Thus, apart from the conventional Euclidean norm, other norms 
like cosine, normalized squared Euclidean, and variance–covariance, have performed 
nicely with PCM, IPCM, and MPCM algorithms. The study therefore signifes that 
the integration of similarity and dissimilarity measures with possibilistic based fuzzy 
algorithms is an effective approach for dealing with sub-pixel issues. 

FIGURE A2.4 Fraction images generated by cosine at m = 3.0. 
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CASE STUDY 2: BI-SENSOR TEMPORAL DATA 
FOR PADDY CROP MAPPING 

Use of single date imagery of optical remote sensing can create problems in the 
discrimination of specifc crops. This problem can be resolved by using a temporal 
dataset, but issues like cloud cover and atmospheric disturbances can create gaps 
in the temporal optical data. To overcome these problems of cloudy images, micro-
wave data is preferred because it has the ability to penetrate through the atmosphere 
and clouds. These issues are considered and resolved while integrating RISAT-1 and 
Formosat-2 temporal images for the identifcation of late transplant paddy felds and 
harvested felds. Three datasets in different temporal combinations of microwave 
and optical images are considered. Another challenge is handling the mixed pixels, 
which is resolved using fuzzy classifers. In this study, IPCM and MPCM algorithms 
(Chapter 3) are used with different similarity and dissimilarity measures for the iden-
tifcation of a specifc crop, i.e., paddy feld. 

objeCtiveS of the CaSe Study 

The following research objectives are framed in this case study. 

1. To study the effectiveness of bi-sensor temporal data for paddy f eld 
identif cation. 

2. To study the capability of IPCM and MPCM for single class extraction 
(Chapter 6). 

3. To study various norms with IPCM and MPCM classif ers. 

Study area and data uSed 

The geographical boundaries of the study area are identical to Case Study1. The holy 
Ganga river fo ws through the study area, and the land is fertile and rich for agricul-
ture purposes. Major crops cultivated in this region are paddy, mustard, wheat, sug-
arcane, groundnuts, and fruits like mangoes and litchis. The study area is 12.3 km2. 
The temperature in summer ranges from 23°C to 46°C while in winter from 0°C to 
25°C. Figure A2.5 shows the details of existing land cover in the study area. 

Water 
Bodies 

Forest 

Paddy Crop 

Village Settlement 

Riverine Sand 

  

  

 

 

 

FIGURE A2.5 Study area and details of land cover in optical and RiSAT-1 data. 
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Many studies have been conducted for crop mapping using the temporal optical 
data. These studies were conducted generally on the phenology of the crop. However, 
in India the monsoon season coincides with the transplant season for the paddy crop. 
Therefore, in this case study, the microwave data with optical data have been used to 
fulf ll those temporal gaps. Data used were from RISAT-1 and Formosat-2 temporal 
data. The sensor details are shown as follows. 

RISAT-1 
RISAT-1 is Radar Imaging satellite 1, an Indian satellite that was built and oper-
ated by Indian space research organization (ISRO), carrying synthetic aperture radar 
(SAR), which operates on a C-band (5.35 GHz) with dual polarization HH and HV in 
medium resolution scanSAR (MRS) mode. This satellite uses its active microwave 
remote sensing technique which can penetrate through the cloud and is capable of 
day–night imaging of the earth’s surface. The purpose of this satellite was for appli-
cations in agriculture, particularly paddy monitoring in kharif season and manage-
ment of natural disasters like f oods and cyclones. The specif cations of RISAT-1 are 
given in Table A2.2, and for Formosat-2 sensor details, refer to Table A2.1. 

Methodology 

A bi-sensor approach is used to analyze the paddy f eld with an effort to verify if 
SAR data can be incorporated with optical data with better classif cation results. 
The methodology followed for this work is shown in Figure A2.6. 

Three datasets were generated from two different sensors, i.e., RISAT-1 and 
Formosat-2 with image acquisition on four different dates for the frst case, i.e., for 
the transplant information of paddy. The dataset was created in such a way that it 
contained a minimum number of microwave data required to integrate with the opti-
cal data. For  the dataset generation, temporal NDVI indices from the Formosat-2 
images were calculated, and from the RISAT-1 data, backscatter coeffcient property 
was calculated. These indices’ information was taken at different dates, i.e., temporal 
NDVI indices as well as backscatter coeffcient representing the information in the 
form of vector elements. Then elements of these vectors were taken into the classi-
fer , and when this indices information club together it became the information of 
temporal indices. As it is shown in Figure A2.6, where vectors of temporal indices 

 

 

were generated, ai  & bj  represents backscatter coeffcient vector and ck  & dn rep-
resents NDVI vector information which were passed on together in the classifer . 
Tables A2.3 and A2.4 are shown the combination of three datasets. 

TABLE A2.2 
RISAT-1 Specifcations 
Band C-band 

Frequency 5.35 GHz 

Polarization Dual polarization (HH and HV) 

Mode Medium resolution scanSAR (MRS) 

Revisit time 25 days 
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For Transplant and Harvesting Paddy 

RISAT-1 Formosat-2 
Temporal Data Temporal Data 

Geometric 
Corrections 

Backscatter 
coefficient 

Temporal 
NDVI database 

Training Data 
1. IPCM and MPCM 

Classifier 
2. Segmentation using 

SVM 

Similarity/ 
Dissimilarity norms 

and Alpha cut 

Testing Data Evaluate Outputs 

Selection of Best Norm as well as best temporal dates 

Accuracy 
Assessment on best 

result 

Generating Temporal indices database 

FIGURE A2.6 Methodology adopted for Case Study 2. 

TABLE A2.3 
Temporal Datasets for Late Transplant Paddy 

RISAT-1 Formosat-2 

June 27, 2014 July 09, 2014 August 10, 2014 September 25, 2014 

Dataset 1 ✓ ✓ ✓ 

Dataset 2 ✓ ✓ ✓ 

Dataset 3 ✓ ✓ ✓ ✓ 

TABLE A2.4 
Temporal Datasets for Harvesting Paddy 

FORMOSAT-2 RISAT-1 FORMOSAT-2 

September 25, October 10, October 31, November 03, 
2014 2014 2014 2014 

Dataset 1 ✓ ✓ ✓ 

Dataset 2 ✓ ✓ ✓ 

Dataset 3 ✓ ✓ ✓ ✓ 
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Dataset-3 Normalized Sq. 
Euclidean at m=1.1 

Dataset-1 Euclidean at m=1.1 Dataset-2 Normalized Sq. 
Euclidean at m=1.1 

FIGURE A2.7 Improved possibilistic c-means results of late transplant paddy at optimized 
“m.” 

reSultS 

Late transplanted paddy f elds are successfully found with these classif ers, but 
for the harvested paddy f elds, results are not encouraging. Hence, in the case of 
harvested paddy f elds, image segmentation with SVM classif er is used. The very 
favorable results were obtained for late transplant paddy for IPCM classif er are 
normalized squared Euclidean norm at m = 1.1, while for MPCM classif er the 
best norms are normalized square Euclidean at m = 1.1. The best result is achieved 
for the late transplant paddy and harvested paddy while using the single temporal 
RISAT-1 image and two temporal Formosat-2 images (Figure A2.7). Overall accu-
racy of the late transplant paddy using IPCM and MPCM classif ers are 85.56%, and 
81.11%, respectively. However, the accuracy of harvested paddy up to November 11 
is found to be 72.22%. 

CASE STUDY 3: HANDLING NON-LVINEARITY BETWEEN 
CLASSES USING KERNELS IN FUZZY CLASSIFIERS 

In this study, kernel based fuzzy clustering has been used to handle both the problem 
of non-linearity and mixed pixels. A supervised kernel based fuzzy c-means clas-
sif er has been used to improve the performance of FCM classif cation technique. 
Eight kernel functions are incorporated to the objective function of the FCM classi-
f er. As a result, the effects of different kernel functions can be visualized in gener-
ated fraction images. The best single kernel was selected by optimizing the weight 
constant which controls the degree of fuzziness using an entropy and mean member-
ship difference calculation. Then top performing are combined to study the effect 
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of composite kernels, which includes both the spatial and spectral properties. Fuzzy 
error matrix (FERM) was used to assess the accuracy of the results and was studied 
for AWiFS, LISS-III, and LISS-IV datasets from Resourcesat-1 and Resourcesat-2. 

objeCtiveS of the CaSe Study 

The main objective of this research work is to optimally separate non-linear classes 
using a kernel based fuzzy c-means approach. The specif c objectives were: 

1. To develop an objective function for kernel based fuzzy c-means classife r 
(KFCM) (Chapter 5) to handle non-linear class separation. 

2. To select the best single or composite kernel to be used within the KFCM 
classife r. 

3. To evaluate the performance of this classif er in the case of untrained 
classes. 

4. To study the best kernel model with the best possible parameter. 

Study area and data uSed 

The study area considered for this particular research work was Sitarganj’s Tehsil, 
Udham Singh Nagar district, Uttarakhand state, India. The considered area extends 
from 28°53′N to 28°56′N latitude and 79°34′E to 79°36′E longitude. Sitagarnj’s 
Tehsil was recognized as it contained six land cover classes, e.g., agricultural f elds 
with a crop, agricultural f elds without crop both dry and moist, Sal and eucalyptus 
forests, and two water reservoirs: the Baigul (Sukhi) and Dhora reservoirs. The rea-
sons for selecting this study area include: 

1. Presence of mixed pixels which occurs because of degradation of land 
cover classes from one to another (water to grassland) will help to assess 
the capability of kernel based fuzzy c-means (KFCM) classife r. 

2. Data from the sensors AWiFS, LISS-III, and LISS-IV from Resourcesat-1 
and Resourcesat-2 were available from the same date to perform image-to-
image accuracy assessment. 

In  this case study, AWiFS (Advanced Wide Field Sensor), LISS-III (Linear 
Imaging Self-Scanning System-III), and LISS-IV (Linear Imaging Self-Scanning 
System-IV) images of both Resourcesat-1 of IRS (Indian Remote Sensing Satellite) 
and Resourcesat-2 were used. Resourcesat-1 was launched in 2003, primarily for 
natural resource management with a 5–24  days repeat cycle. The  images from 
AWiFS, LISS-III, and LISS-IV were acquired at the same time. The dataset avail-
able from Resourcesat-1 was captured at October 15, 2007 and from Resourcesat-2 
at November 23, 2011 (Figure A2.8). The soft classif ed outputs from f ner resolu-
tion LISS-IV images were used for the validation of the soft outputs of LISS-III and 
AWiFS. The specif cations of the satellite data used are shown in Table A2.5. 
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FIGURE A2.8 LISS IV (Resourcesat-2) image of Sitarganj’s Tehsil with different land 
cover classes. 
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TABLE A2.5 
Resourcesat-1 and Resourcesat-2 Sensors Specifcation 

AWiFS LISS-III LISS-IV 

Resourc- Resourc- Resourc- Resourc- Resourc- Resourc- 
Specifcation esat-1 esat-2 esat-1 esat-2 esat-1 esat-2 

Spatial resolution (m) 56 56 23.5 23.5 5.8 5.8 

Radiometric resolution 10 12 7 10 7 10 

Swath (km) 740 740 141 141 23.9 (Max 70 (Max 
Mode) Mode) 

70.3 (Pan 70 (Mono 
Mode) Mode) 

Spectral resolution 0.52–0.59 0.52–0.59 0.52–0.59 0.52–0.59 0.52–0.59 0.52–0.59 
(µm) 0.62–0.68 0.62–0.68 0.62–0.68 0.62–0.68 0.62–0.68 0.62–0.68 

0.77–0.86 0.77–0.86 0.77–0.86 0.77–0.86 0.77–0.86 0.77–0.86 
1.55–1.70 1.55–1.70 1.55–1.70 1.55–1.70 

Methodology 

The detailed explanation of steps adopted to achieve the objectives of this case study 
are shown by the f owchart in Figure A2.9. 

Supervised KFCM classifier was adopted to generate the outputs of sub-
pixel classification outputs. Three approaches, fuzzy c-means (FCM), FCM 
with single kernels (KFCM), and FCM with composite kernels, were con-
sidered for this study. Weight component m controls the degree of fuzziness, 
which was optimized based on the maximum mean membership difference 
between favorable and unfavorable classes and minimum entropy. Out of the 
three norms introduced in Chapter 3, Section 3.2.1, only one is considered, i.e., 
Euclidean norm. This is due to the fact that other norms, such as diagonal and 
Mahalonobis norms, are sensitive to noise and thus reduce the classification 
accuracy. This approach was adopted for a comparative study between simple 
FCM and the KFCM approaches. 

Mainly three categories of kernels were considered: local kernels, global kernels, 
and spectral angle kernels. In  this study, four local kernels were used: Gaussian 
kernel using Euclidean norm, radial basis kernel, kernel with moderate decreasing 
(KMOD), and inverse multi-quadratic kernel. Three global kernels were also used: 
linear kernel, polynomial kernel, and sigmoid kernel. Overall, eight single kernels 
were studied using the FCM approach. Followed by the implementation of eight 
single kernels, the next step was to optimize the weight component “m” using mean 
membership difference between favorable and unfavorable class method and entropy 
method. The best single kernels for each global and local category were selected 
based on the maximum mean membership difference between favorable and unfa-
vorable classes and minimum entropy. 
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AWiFS, LISS-III and LISS-IV images 

Proposed Kernels: 

• Local Kernels 
• Gaussian KernelPre-processing (Geo-Registration) 

Using Euclidean 
Norm 

• Radial Basis Kernel 
• KMOD Kernel 

Supervised Soft Classification • Inverse 
Multiquadratic 
Kernel 

• Global KernelsApproaches: 
• Fuzzy c-Means Classification • Linear Kernel 

(FCM) • Polynomial Kernel 
• Kernel based Fuzzy c-Means • Sigmoid Kernel 

(KFCM) 
• FCM with combination of best • Spectral Angle

kernels 
Kernel 

Image-to-Image Accuracy Assessment 

FIGURE A2.9 Methodology adopted for Case Study 3. 

The composite kernels were obtained from the best single kernels. In composite 
kernels, the weight factor λ  is given for each kernel which varies from 0.1 to 0.9. 
For  composite kernels, the optimization of m and λ  was necessary, and this was 
done considering maximum mean membership difference between favorable and 
unfavorable class and minimum entropy from where the best composite kernel was 
concluded. Untrained case outputs were also obtained by not  training the KFCM 
classif er with the signature data of a class; in this study agricultural f elds with crops 
under were considered as untrained class. 

reSultS 

Image-to-image accuracy assessment was conducted with reference datasets as 
LISS-IV for both AWiFS and LISS-III. For this, FERM was used to generate over-
all accuracy. The overall classif cation accuracy of KFCM classif er was compared 
with that of FCM classif er. Accuracy in the case of untrained case has been also 
evaluated. Overall, the highest fuzzy accuracy 97.03% was found from inverse multi-
quadratic kernel from Resourcesat-1 LISS-III dataset (Figure A2.10). Classif cation 
accuracy in the case of untrained classif er was also studied. A decrease in the aver-
age user’s accuracy was observed when compared to trained cases. 
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FIGURE A2.10 Generated fractional images for optimized values of m for Resourcesat-2 
LISS-IV using inverse multi-quadratic for classes identif ed as (a) Agricultural f eld with crop 
(b) Eucalyptus plantation (c) Fallow land (d) Sal (e) Water. 

CASE STUDY 4: HANDLING NOISE THROUGH MRF BASED 
NOISE CLUSTERING CLASSIFIER 

Unlike conventional hard classif ers, fuzzy classif ers have been found to provide 
more realistic classif cation results. Independently, fuzzy classif ers succeeded in 
addressing the mixed pixel problem but not the isolated pixel problem, which was 
addressed by providing spatial contextual information to the classif er. Markov ran-
dom f eld (MRF) has been identif ed as an effective technique to model spatial con-
textual information. This case study aims at realizing a hybrid fuzzy classif er by 
incorporating spatial contextual information into the noise classif er objective func-
tion. Spatial contextual information has been modeled using smoothness prior MRF 
(S-MRF) and four discontinuity adaptive MRF (DA-MRF) models, and their effect 
on the classif cation accuracy on coarser resolution dataset (e.g. AWiFS) and moder-
ate resolution dataset (e.g. LISS-III) have been studied. 

objeCtiveS 

The main objective of this research is to incorporate spatial contextual information 
with noise classif er using discontinuity adaptive MRF models. The specif c objec-
tives are: 

1. To incorporate spatial contextual information with noise classif er (NC) 
using the smoothness prior model. 

2. To study the effect of the four discontinuity adaptive MRF models when 
incorporated with the noise classif er. 

3. To evaluate the performance of the noise clustering algorithm while apply-
ing discontinuity adaptive MRF models for both trained and untrained 
classes. 

Study area and data uSed (refer to CaSe Study 3) 

The geographical boundaries and the data used for this case study are identical to 
Case Study 3. 
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Methodology 

In this study the main aim is to frame an objective function for noise classif er which 
incorporates the contextual information in an image using Markov random f elds mod-
els, and includes smoothness prior MRF as well as discontinuity adaptive MRF models. 
Before incorporating the contextual information, the optimal parameters of NC need to 
be estimated so that the noise classif er could be tuned to its best performance. 

Before classif cation, the LISS-III, LISS-IV, and AWiFS images from Resourcesat-1 
and Resourcesat-2 sensors have been geometrically corrected and geo-registered. 
A  survey of India toposheet has been used initially to geometrically correct the 
LISS-IV dataset which was then used for the geo-registration of AWiFS and LISS-III 
datasets. This would be followed by a classif cation of data by NC, NCS-MRF, and 
four different NC DA-MRF classif ers. Finally, the accuracy will be accessed using 
soft classif ed f ner resolution data from LISS-IV sensor and also with the help of 
f eld observation data. The performance of the classif er will be evaluated in case of 
untrained classes as noise/outliers also (Figure A2.11). 

reSultS 

FERM has been used in this case study for accuracy assessment and the reference 
data was generated from the high resolution LISS-IV datasets. Most DA-MRF models 
improved the classif cation accuracy. NC DA4-MRF has been found to be the most 
accurate, at the same time, having the best edge preserving capability among other 
MRF models (Figure A2.12). The accuracies of classif cation for AWiFS, LISS-III 
datasets from Resourcesat-1 and Resourcesat-2 have been found to be 87.26%, 89.40%, 
and 85.27%, 89.37%, respectively. For the untrained case, a small decrease in accu-
racy has been observed. 

AWiFS and LISS-
III Images 

Pre-processing 
(Geo-registration) 

LISS-IV Images 

Pre-processing 
(Geo-registration) 

NC DA-MRF 
Objective Function 

formulation 
followed by and 

/  optimization 

Classification using 
NC, NC S-MRF and 

NC DA-MRF 

Classification using 
NC, NC S-MRF and 

NC DA-MRF 

Image-to-Image 
accuracy Assessment 

on Fraction Image 
Soft reference data 

NC Parameter 
Estimation (m, ˜) 

FIGURE A2.11 Methodology adopted for Case Study 4. 
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FIGURE A2.12 Fractional images obtained from NCMRF-DA4 classif ers on AWiFS data-
set from Resourcesat-1. The fractional images correspond to Agriculture f elds with crop (1), 
Sal Forest (2), eucalyptus plantation (3), dry agricultural f eld without crop (4), moist agricul-
tural f eld without crop (5), water (6), noise (7). 

CASE STUDY 5: LOCAL CONVOLUTION BASED CONTEXTUAL 
INFORMATION IN POSSIBILISTIC c-MEANS CLASSIFICATION 

In this study, three FCM based spatial contextual classif ers, FCM-S, FLICM, and 
ADFLICM (Chapter 5), were selected and their performance has been examined on 
remotely sensed images. These classif ers use spatial information within a def ned 
local neighborhood of each pixel for estimating the class membership of that pixel. 
The FCM-S, FLICM, and ADFLICM classif ers incorporate spatial information by 
using a simple approach of modifying the FCM objective function to include a term 
that controls the effect from neighboring pixels. Further, this case study approach 
has been used to modify the PCM classif er to develop PCM based local spatial 
information classif cation algorithms such as PCM-S, PLICM, and ADPLICM. 

objeCtiveS of the CaSe Study 

The main aim of this case study is to compare the ability of fuzzy local spatial infor-
mation classif ers in handling ambiguities, caused by within-class spectral varia-
tion and spectral similarity among different classes, without losing essential image 
details. The specif c aims include: 

1. To study and compare the performance of three existing FCM based 
on local spatial information classif cation algorithms for land cover 
classifc ation. 

2. To apply fuzzy local spatial information algorithms with PCM as the base 
classif er and analyze their performance in noise reduction (isolated pixels) 
and preservation of image details. 

3. To conduct a comprehensive assessment of the PCM based local spa-
tial information classif ers and the FCM based local spatial information 
classife rs. 

4. To examine the effects of some key parameters such as fuzzif er, window 
size, and the factor that controls the impact of neighborhood on the perfor-
mance of these algorithms and optimize these values. 
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Study area and data uSed 

The geographical location of the study area is identical to the Case Study 1. Remote 
sensing data from Landsat-8 sensor at 30 m spatial resolution and Formosat-2 sensor 
at 8 m spatial resolution have been used in this study. The classif cation algorithms 
have been executed on the Landsat-8 image, and the Formosat-2 image has been 
used to create a reference map for accuracy assessment. All the bands of the images 
were used for classif cation and reference map generation. Figure A2.13 shows the 
satellite images of the study area with the six LULC classes. The specif cations of 
both the datasets are summarized in Table A2.6. 

Methodology 

Figure A2.14 explains the steps followed for the development, execution, and assess-
ment of the performance of these algorithms. 

reSultS 

Supervised classifcation with the algorithms developed was performed on Landsat-8 
image. For  the validation of results, soft reference data was created from a fner 
resolution Formosat-2 image of the same study area captured around the same time. 

Wheat Dense Forest 

Water Grassland Eucalyptus 

Riverine Sand 

(a) (b) 

FIGURE A2.13 The datasets with identif ed LULC classes. (a) Landsat-8 image used for 
classif cation. (b) Formosat-2 image with identif ed LULC classes in the study area. 
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TABLE A2.6 
Specifcations of the Datasets Used 

Specifcation Landsat-8 Formosat-2 

Spatial resolution (multi-spectral) 30  8 m 

Spectral resolution 8 Bands 4 Bands 
Band 1-Coastal Band 1-Blue 
Band 2-Blue Band 2-Green 
Band 3-Green Band 3-Red 
Band 4-Red Band 4-NIR 
Band 5-NIR P is Panchromatic (2 m) 
Band 6-SWIR1 
Band 7-SWIR2 
Band 9-Cirrus 
Band 8 is Panchromatic (15 m) 

Sensor footprint 170 × 185 km 24 × 24 km 

Revisit interval 16 Days Daily 

Date on which image was acquired February 12, 2015 February 21, 2015 

FIGURE A2.14 The methodology adopted for Case Study 5. 

Various experiments were conducted to analyze the performance of the FCM and 
PCM  based local spatial information classifcation algorithms developed. To bet-
ter analyze  the effect of incorporating spatial information into base classifers, the 
performance of the classifers was compared to the respective base classifers (FCM 
and PCM). 
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FIGURE A2.15 Output fraction images of ADPLICM classif er for the classes (a) Dense 
forest (b) Eucalyptus (c) Grassland (d) Riverine sand (e) Water (f) Wheat. 

Fuzzy error matrix (FERM), root mean square error (RMSE), and mean member-
ship difference methods were used to analyze the performance of the classif cation 
algorithms quantitatively. The  results suggested that FCM based and PCM based 
local spatial information classif ers outperform the conventional FCM and PCM 
based classif ers in terms of overall accuracy (Figure  A2.15). However, the local 
spatial information algorithms may produce over smooth results, which may cause 
loss of image details. It can be inferred that an appropriate local spatial information 
is necessary for optimal performance. 

CASE STUDY 6: OPTIMIZATION OF LOCAL CONVOLUTION 
BASED MPCM CLASSIFIER AND IDENTIFICATION OF PADDY 
AND BURNT PADDY FIELDS 

In this case study, the local information methods have been deployed with possibilis-
tic fuzzy based classifers by adding spatial constraints, fuzzy factor, local similarity 
measure/pixel spatial attraction model, and MRF model in order to preserve image 
details and aiming to provide robustness to noise and outliers. Local information 
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correlates the information between a pixel and its adjacent pixels in the image space. 
This  research work presents PCM-S, PLICM, ADPLICM, MPCM-S, MPLICM, 
ADMPLICM algorithms (Chapter 5) in a supervised classifcation. These algorithms 
can overcome the limitations of PCM, MPCM, PCM-MRF, and MPCM-MRF algo-
rithms by incorporating local information through local convolution. PCM-S and 
MPCM-S have been deployed by adding spatial constraints through local convolu-
tion (NR) and ( ) to supervise the effect of the neighbors term in conventional PCM α 
and MPCM algorithms, respectively; PLICM and MPLICM have been deployed by 
adding fuzzy factor (G) in conventional PCM and MPCM algorithms, respectively, 
to preserve more image details; ADPLICM and ADMPLICM have been deployed 
by adding local similarity measures and pixel spatial attraction model (Sir) to sustain 
image details and aiming to provide robustness to noise in conventional PCM and 
MPCM algorithms, respectively. 

objeCtiveS 

The overall objective of this case study was to include local information in fuzzy 
based classif er. The specif c objectives to meet the desired requirements are: 

1. To incorporate local information through convolution. 
2. To incorporate local information through MRF. 
3. To study the effect of various local information methods. 
4. To study the effect of convolution window size. 
5. To test the approach for burned areas in harvested paddy f elds. 

Study areaS and data uSed 

Two study areas were chosen for this research. First was from Haridwar site as used 
in Case Study 1, while another study area has been considered for identifcation of 
burnt-paddy feld located in Patiala District, Punjab State, India. The stubble burn-
ing phenomenon in Punjab is linked to three unlikely factors: the (relatively) large 
size of landholdings of farmers in state, the (consequent) high level of mechaniza-
tion, and water conservation process that shortens the harvest window. In terms of 
geographic coordinates, the area ranges from 30°26′22.8657″N, 76°5′30.4380″E to 
30°10′0.4143″N, 76°23′58.1095″E. The area consists of agricultural farm paddies as 
one of the major crops, and has some eucalyptus plantations. Figure A2.16 shows the 
geographic location of the study area, and the reasons for selecting the study area is 
that the stubble: 

Stubble burning is present during October (2018)–November (2018) in this region. 
The harvesters in Punjab use to shave-off the grainy part of paddy, leaving loose straw 
in their wake, with an observation that it is cheaper to clear the residue by burning. 

In  this research work, Landsat-8, Formosat-2, and Sentinel-2A/2B temporal 
images were used. The Landsat-8 image was used for classif cation, Formosat-2 for 
reference data, and temporal images of Sentinel-2A/2B were used for further testing 
of proposed algorithms. The dataset used in this research with sensor specif cations 
are mentioned in Table A2.7. 
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FIGURE A2.16 Study area-2 (Patiala Area, Punjab, India). 

In order to make a proper identifcation of stubble burnt patches, multi-spectral 
and temporal Sentinel-2A/2B data (10 m resolution) of September 30, October 5, 
October  12, October  15, October  20, October  25, October  30, November  9, and 
November 19, 2018 were selected. Blue, green, red, NIR, SWIR-1, and SWIR-2 has 
been taken for this study. Figure A2.17 shows the burnt-paddy feld sites that has 
been identifed on October 27, 2018, and October 28, 2018, in Patiala District. 

Methodology 

The  proposed methodology adopted for this research has been mentioned in 
Figure A2.18. The complete methodology for this study can be divided into f ve stages: 

1. Data Pre-processing: Steps like atmospheric correction and geo-registration 
were done.

 2. Development of Algorithm: Local Information was incorporated in 
PCM, MPCM using PCM-S, PLICM, ADPLICM, MPCM-S, MPLICM, 
ADMPLICM, MRF-SP, and MRF-DA algorithms. 
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TABLE A2.7 
Landsat-8, Sentinel-2, and Formosat-2 Sensor Specifcations 

For Local Convolution Study (Haridwar Area) Burnt-Paddy Field 
Identifcation 

Details Reference Data For Classifcation (Patiala Area) 

Specifcations Formosat-2 Landsat-8 Sentinel-2A & 2B 

Spatial resolution 8 m for MS imagery 30 m for MS imagery 10 m (B2,B3,B4,B8), 
20 m (B11,B12) 

Spectral bands B1 = 450–520 nm B1 = 430–450 nm (Coastal) B2-Blue (490 nm) 
(Blue) B2 = 450–510 nm (Blue) B3-Green (580 nm) 

B2 = 520–600 nm B3 = 530–590 nm (Green) B4-Red (665 nm) 
(Green) B4 = 630–670 nm (Red) B8-NIR (842 nm) 

B3 = 630–690 nm B5 = 850–880 nm (NIR) B11-SWIR-1 (1610 nm) 
(Red) B6 = 1570–1650 nm (SWIR 1) B12-SWIR-2 (2190 nm) 

B4 = 760–900 nm B7 = 2110–2290 nm (SWIR 2) Temporal Multi-spectral 
(NIR) B9 = 1360–1380 nm (Cirrus) data 

Sep 30, 2018; Oct 05, 2018; 
Oct 12, 2018; Oct 15, 2018; 
Oct 20, 2018; Oct 25, 2018; 
Oct 30, 2018; Oct 09, 2018; 
Oct 19, 2018; 

Swath width 24 km 185 km 290 km 

Pixel quantization 12 bit 16 bit 12 bit 

FIGURE A2.17 Burnt-paddy f eld sites identif ed on October  27, 2018, and October  28, 
2018, in Patiala district. 
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FIGURE A2.18 Case study methodology for optimizing parameters.

 3. Parameter Optimization: Parameter optimization has been conducted for 
all algorithms using independent MMD technique.

 4. Classif cation: Classif cation of FORMOSAT-2  & LANDSAT-8  images 
have been performed using proposed algorithm.

 5. Accuracy Measure: Accuracy assessment of classif ed fraction images w.r.t. 
classif ed reference image using root mean square error (RMSE), fuzzy 
error matrix (FERM), and MIN-PROD methods. 

Region growing for collection of training data: This is basically a segmentation 
technique for identifying homogeneous behavior of pixels in an image. This tech-
nique has several advantages over conventional Euclidean measure by incorporating 
spectral characterization measures that sets apart pixels on the basis of their spectra 
analyzed using divergence and correlation function of measures. Benef ts of region 
growing technique are as follows: 

1. Maximum number of training sample collection 
2. Provision of incorporating spectral measures. 

Methodology adopted for burnt-paddy f eld identif cation: The objective of using this 
test site was to test the performance of modif ed possibilistic based algorithm on dif-
ferent burnt sites of Patiala District. Temporal multi-spectral data of Sentinel-2A/B 
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from September 30, 2018, to November 14, 2018, have been used for burnt-paddy 
f eld identif cation. The process of implementation follows several steps: 

1. Resampling of Band-11, Band-12 from 20 m spatial resolution to 10 m spa-
tial resolution then stacked with Band-2, Band-3, Band-4, and Band-8. 

2. The next step involves the collection of training samples using region growing 
technique and then calculation of indices that have been fed to the classif er. 

3. Formulate objective function and optimized required parameters for 
selected possibilistic based algorithm for classif cation. 

4. Classif ed results have been verif ed with f eld data and NBR (normalized 
burnt-ratio) and dNBR (delta normalized burnt-ratio). 

5. Extraction of burnt-paddy f eld has been identif ed at different sites with f ve 
to six day intervals and the performance of classif ers has been evaluated. 

The fo w diagram for this study is shown in Figure A2.19. While identifying paddy 
stubble burnt feld’ s using temporal remote sensing data, the MPCM classifcation 
algorithm has been applied. Modifed possibilistic fuzzy based classifer is capable to 
extract only single class of interest like paddy stubble burnt feld for each 5 day inter-
val while reducing spectral dimensionality of temporal remote sensing data, using 
class based sensor independent indices approach. 

reSultS 

Three experiments have been conducted to optimize, test, and validate the pro-
posed algorithms, i.e., mean membership difference (MMD), root mean square error 
(RMSE), and fuzzy error matrix (FERM)/MIN-PROD, respectively. MMD has 
been calculated on original classif ed images for independent accuracy to optimize 

FIGURE A2.19 Flow diagram adopted for burnt-paddy f eld identif cation. 
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the parameters of proposed algorithms for Landsat-8 and Formosat-2 satellite 
imagery. RMSE has been calculated between original and noisy classif ed images 
for Formosat-2 satellite imagery in which MPCM-S produces least value. FERM and 
MIN-PROD composite operators have been used with respect to soft reference data. 
The  result depicts that proposed PCM and MPCM classif er with local informa-
tion can improve the fuzzy overall accuracy and fuzzy kappa by incorporating local 
information for remotely sensed imagery. Therefore, it was found that PCM with 
ADPLICM with Euclidean norm in possibilistic based fuzzy classif er and MPCM-S 
with ADPLICM classif er with Euclidean norm in modif ed possibilistic fuzzy clas-
sif er performed better as compared to other proposed algorithms. 

The  MPCM-S algorithm after training and optimization for temporal multi-
spectral Sentinel-2A/B data was used for identif cation of burnt-paddy f eld using 
temporal class based sensor independent indices database. This data was analyzed 
and detected in temporal dataset of Sentinel 2A/B from September  30, 2018, to 
November 19, 2018. The result showed that stubble burning was started in a more 
frequent way from October 20, 2018, to November 19, 2018 (Figure A2.20). 

FIGURE A2.20 Burnt patches on November 9, 2018. 
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CASE STUDY 7: SEMI-SUPERVISED TRAINING APPROACH 
FOR PCM CLASSIFIER 

The  demand for good classif cation accuracies with minimized efforts has led 
to options where a few labeled data could enhance the classif cation accuracies. 
In  this case study, a semi-supervised approach is considered to minimize the 
efforts in collecting huge labeled training samples, which is often strenuous and 
time-consuming. To handle uncertainties better, PCM classif er is used and con-
sidered with different approaches as per the labeled training data. The similarity 
between two pixel vectors becomes important when it comes to collecting unla-
beled data in a semi-supervised approach, or when the classif cation is performed 
based on assigning more membership values to similar pixels. The hybrid spectral 
similarity measures, spectral information divergence with spectral angle measure 
and spectral information divergence with spectral correlation angle, are used to 
measure the similarity between two pixel vectors due to their proven capabilities 
for capturing high band-to-band variability for hyperspectral imagery. Their roles 
are studied in view of a multi-spectral imagery. The PCM classif er is used with 
semi-supervised training data using different hybrid measures. Due to the avail-
ability of a few labeled training samples, the mean shift algorithm is employed to 
ref ne the training data and to shift the mean for a PCM classif cation algorithm 
to a higher density region. In addition, the proposed methods relate the bandwidth 
parameter from the mean shift algorithm to the bandwidth or resolution param-
eter of PCM classif er with an iterative procedure to capture the class variances. 
The methods are applied to input LANDSAT-8 imagery with 30 m spatial resolu-
tion. Formosat-2 images have been used for reference data to test the performance 
using the FERM. 

objeCtiveS of the CaSe Study 

The main objective of this study was to f nd out the role of hybrid spectral similarity 
measures for a semi-supervised possibilistic fuzzy classif er in classifying multi-
spectral imagery. The sub-objectives proposed to reach the main objectives are as 
follows: 

1. To study the effectiveness of the proposed hybrid spectral similarity mea-
sures for multispectral imagery. 

2. To develop a precise signature by using hybrid spectral similarity measures 
for a multispectral image. 

3. To identify and apply a suitable approach for incorporating a semi- supervised 
learning method in a possibilistic fuzzy classif er. 

4. To develop and optimize an objective function for a semi-supervised pos-
sibilistic fuzzy classif er with hybrid spectral similarity measures. 

5. To compare the performance of hybrid spectral similarity measures with 
conventional similarity measures (Euclidean distance). 

6. To compare the performance of a semi-supervised approach with the super-
vised approach. 
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FIGURE A2.21 Location of major land cover for the study area. 

Study area and data uSed 

The geographical location of the study area is identical to Case Study 1(Figure A2.21). 
The acquisition and other details of satellite data are identical to Case Study 5. 

Methodology 

Case 1: When membership values are initialized f rst. 
Initial membership values: Obtained from labeled training data 
η : Depends only on labeled training data (initial memberships) 
The steps are described as follows: 
• STEP 1: Initialize the class memberships from the labeled training data. 
• STEP 2: Calculate mean and distance of each pixel to this mean. 
• STEP 3: Calculate η  using the initialized class memberships. 
• STEP 4: Calculate f nal membership values of every pixel to every 

class. 

Case 2: When mean value is estimated f rst. 
Initial membership values: Obtained from all pixels 
η : Depends on all pixel values (estimated initial memberships) 
The  approach has been shown in Figure  A2.22, and the steps are 

described as follows: 
• STEP 1: Initialize the class mean values from the labeled training data. 
• STEP 2: Calculate the distance of each pixel to this mean. 
• STEP 3: Calculate initial membership values using the calculated 

distance. 
• STEP 4: Calculate η using the initialized class memberships. 
• STEP 5: Calculate f nal membership values of every pixel to every class. 
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(a) (b) 

FIGURE A2.22 Supervised possibilistic c-means approach: (a) Case 1 and (b) Case 2. 
Note: The major difference in both the approaches lies in the estimation of initial class mem-
bership values µ  and η . Both the approaches tend to give similar estimates in case of large 
and reliable training data (supervised approach). 

Semi-supervised PCM Classifer 
The  semi-supervised PCM clustering algorithm uses a very few labeled training 
samples and a large number of unlabeled samples for the calculation of parame-
ters such as mean, memberships, and η. The following diagram as represented in 
Figure  A2.23 depicts the generalized semi-supervised approach to classif cation 
with a possibilistic c-means classife r. 

The semi-supervised possibilistic c-means classif er can be both labeled and unla-
beled. Therefore reliable estimates of η  and class membership values µ  could not be 
obtained due to the following reasons: 

• The labeled data is very small in number as compared to the unlabeled data. 
• The unlabeled data obtained and added may or may not be a complete rep-

resentation of a class. 
• The parameters such as mean, η , and class membership values µ obtained 

from the semi-supervised signature data may or may not represent entire 
variance for the class. 

reSultS 

The  proposed methods are compared with the conventional methods such as the 
supervised approach and Euclidean distance as a similarity measure. It is found that 
the results from a completely supervised approach are comparable with the results 
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Semi-Supervised Signature Data: 
Both Labled and Unlabled 

Calculate ˜ 

Calculate Mean and Initial 
Memberships 

Calculate Memberships 

STEP: 1 

STEP: 2 

STEP: 3 

STEP: 4 

FIGURE A2.23 Generalized procedure for semi-supervised possibilistic c-means. 

of a semi-supervised approach when the PCM classif er is incorporated with the 
respective distance measures. In comparison to hybrid measures, Euclidean distance 
is found to be the best in terms of capturing the high inter-class and intra-class vari-
ability when incorporated as a distance measure in the PCM classif er and also in 
measuring the similarity between two pixels with highest overall accuracies and 
lowest global root mean square error. Among the hybrid measures, spectral informa-
tion divergence with spectral correlation angle works best in terms of measuring the 
similarity between pixel vectors and as a distance measure in a PCM classif er. Also, 
the hybrid measure spectral information divergence with spectral angle measure 
works best for Eucalyptus class where intra-class variability is low (Figure A2.24). 

FIGURE A2.24 Output from semi-supervised approach. 
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In addition, the classif cation methods with just a few labeled samples, after shift-
ing the mean to a higher density region using the mean shift algorithm, give com-
parable results to both supervised (large labeled data) as well as semi-supervised 
approaches, with respective distance measures. Also, it is possible to capture vari-
ance and achieve higher classif cation accuracies with a few labeled training samples 
using the mean shift algorithm and a PCM classif er. 

CASE STUDY 8: STUDY OF HYBRIDIZING STOCHASTIC AND 
DETERMINISTIC MEASURES WITH FUZZY BASED CLASSIFIER 

Spectral measures have been tested and proven to deliver satisfactory results for 
hyperspectral images. This case study aims to test their applicability and potential 
on multispectral images using both stochastic and deterministic spectral measures. 
The concept of hybridizing stochastic and deterministic measures on a soft com-
puting platform has been introduced for assessing performance of hybrid measures 
to achieve the objectives of the study. To further enhance the potential of selected 
spectral information divergence (SID), spectral angle mapper (SAM), and spectral 
correlation angle (SCA) measures, we utilize a region growing algorithm for collec-
tion of accurate and precise training data. 

objeCtiveS of the CaSe Study 

The main objective of this research is to study the performance of spectral charac-
terization measures based FCM. The main objective can be split into the following 
sub-objectives which can be stated as: 

1. To study performance of single proposed measures SID, SAM-TAN, SAM-
SIN, SCA, SCA-TAN, and SCA-SIN on multi-spectral data. 

2. To study performance of hybrid proposed measures SIDSAM-TAN, 
SIDSAM-SIN, SIDSCA-TAN, and SIDSCA-SIN on multi-spectral data. 

3. To make a comparative study of single and hybrid proposed measures with 
conventionally used Euclidean measure. 

4. To study the effect of the region growing algorithm used to collect training 
samples on classif cation accuracy. 

Study area and data uSed 

The geographical location of the study area is identical to Case Study 1. The acqui-
sition and other details of satellite data are identical to Case Study 5. A simulated 
image of Formosat-2 as in Case Study 1 (Figure A2.2) has been used to study the 
behavior of developed KPCM algorithm accurately. The advantages of using simu-
lated images are as follows: 

• The composition of each class is known. 
• The classes can be mixed in different proportions. 
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• The capability to handle the mixed pixel by the developed KPCM algo-
rithm can also be verif ed. 

• The  pixels within the class can be easily located within the simulated 
image. 

Methodology 

The methodology adopted to fulf ll the objectives of the study utilizes two multi-
spectral images, Formosat-2 of 8 m spatial resolution and Landsat 8 of 30 m resolu-
tion. When FCM is implemented on an image, it becomes necessary to determine 
the value of “m” for which an optimum classif cation is performed (Chapter 3, 
Equation 3.1). Therefore, the initial step to implement the FCM algorithm with spec-
tral characterization measures begins with optimization of measures which deter-
mines best suited value of “m” for optimum classif cation. 

The optimization of measures is performed using a simulated image generated 
using class signatures collected from satellite images. A simulated image of 900 rows 
and 900 columns is created with three types of zones. A simulated image consists 
of a single class zone, a 2-class mixing zone with a 50:50 ratio, and a 3-class mixing 
zone with a ratio 30:40:30. There is an intentional addition of interclass variation of 
1 unit added for each single class. 

This image is utilized to optimize all measures by obtaining membership val-
ues from all three zones by gradually varying the value of weighted constant “m.” 
The membership values for each zone are acquired after classif cation of simulated 
image form ϵ [1, 3] at an interval of 0.1. This process is repeated for each spectral 
measure. Thereafter a mixed pixel class variance analysis is carried out for each 
measure based on membership values acquired from classif ed simulated image. 
In a 2-class mixing region, we have a class mixing of ratio 50:50. As in an image, 
the maximum membership of a pure pixel is 1. Thus, each class in a 2-class mix-
ing region gets 0.5 class membership. So, to calculate Mixed Pixel Class Variance 
(MPCV), the obtained membership value from class-1 and class-2 of the two class 
mixing region is deducted by 0.5, whose absolute value is accepted as MPCV for 
that particular value of “m.” Similarly, for a 3-class mixing region where classes 
are mixed in a ratio of 30:40:30, the class with a share of 40% gets membership 
value deducted by 0.4 and classes with a share of 30% get their membership value 
deducted by0.3, and the absolute value of their sum serves as MPCV of the 3-class 
mixing region. 

Subsequently, the spectral measures get optimized and are ready to operate on 
both satellite images, Formosat-2 and Landsat-8 multi-spectral images. The imple-
mentation of fuzzy c-means objective function on multi-spectral images is based on 
three major aspects: 

1. Training data collected for each class acquired by ground survey from the 
image. 

2. Optimization values obtained from simulated image by MPCV analysis. 
3. Selection of spectral characterization measure that drives FCM algorithm. 
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Formosat-2 & Landsat-8 Images Collection of Class Signatures 

Formosat-2 & Landsat-8 Simulated Images 

Mixed Pixel Class Variance Analysis 

Spectral Measures 
1. SID, SCA 
2. SAM-tan, SAM-sin, SCA-tan, SCA-sin 
3. SIDSAM-tan, SIDSAM-sin, SIDSCA-tan, 

SIDSCA-sin 

Optimized Measures 

2-class Mixing Region: 
min[abs (class1-127.5) + abs(class2 -

127.5)]/255 
3-class mixing region: 

min[abs(102-class1) + abs(76.5-class2) + 
abs(76.5-class3)]/255 

Implementation of Objective 
Function on Real Images 

Classified Fraction Images 

Accuracy Assessment using Fuzzy Error 
Matrix 

Collection of Training Data Using Region 
Growing Algorithm 

Test: Landsat-8 Classified Fraction ImagesReference: Formosat-2 Classified 
Fraction Images 

FIGURE A2.25 Methodology observed to carry out Case Study 8. 

The objective function was implemented on both Formosat-2 and Landsat-8 multi-
spectral images. The FCM algorithm works to allocate membership value to each 
pixel based on training data provided for all classes. Consequently, the fuzzy 
c-means algorithm generates a fraction image of each class. The detailed f owchart 
of methodology observed to carry out the study is shown in Figure A2.25. 

reSultS 

As expected, a large numbers of collected training samples enable spectral measures 
to perform more accurately. Experiments reveal superiority of stochastic measure 
(SID) of achieving highest classifcation accuracy of 72.86% calculated using FERM. 
However, it was observed that if a soft computing algorithm is trained with numerous 
region grown accurate training samples, the accuracy of measures is subjected to an 
increment of 5–8%. As a result, stochastic SID measure ended up giving 80.4% of 
overall accuracy with an increment of 7.54%. The successfully experimented spectral 
measures after training, optimizing, and testing were deployed for examining effective 
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FIGURE A2.26 Classif ed cotton by SIDSAM-tan at α-cut = 0.8. 

identifcation of cotton crop from a homogeneous multispectral image (Figure A2.26). 
It is noted that the spectral information divergence measure effciently identifed cot-
ton crops with overall accuracy (84.95%) and a kappa coeffcient (0.7916). 

CASE STUDY 9: KERNEL BASED PCM CLASSIFICATION APPROACH 

Since the linear-PCM classif er was not able to handle the mixed pixel problem and 
non-linearity in the data adequately, thus, in order to handle the mixed pixel problem 
and non-linearity, the kernel functions are incorporated with PCM classif er in this 
case study. Nine different kernel functions were incorporated with PCM classif er, 
and the fuzzy parameter was optimized for them. 

objeCtiveS of the CaSe Study 

The main objective of this case study is to develop a method to separate the classes 
having non-linear boundaries using KPCM. The specif c objectives are: 

1. To develop an objective function for kernel based PCM (KPCM) classif er. 
2. To derive a method for selecting parameters for optimal kernel function. 
3. To evaluate the performance of developed KPCM classif er in case of 

untrained classes. 
4. To study the performance of single/composite kernels with PCM classif er. 
5. To compare the performance of PCM with the developed KPCM classif er. 

Study area and data uSed 

The geographical location of the study area is identical to Case Study 1. The acquisi-
tion and other details of satellite data are identical to Case Study 5. Simulated images 
of Formosat-2 as in Case Study 1 (Figure A2.2) have been used to study the behavior 
of developed KPCM algorithm accurately. 
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Methodology 

The supervised KPCM classif er (Chapter 5) was developed with an aim to handle 
non-linearity between the classes. In this step, the best kernel function selected from 
nine different kernel functions was incorporated into PCM. The optimized value for 
fuzzy parameter was used for classif cation. The steps followed in supervised clas-
sif cation using KPCM classif er were as follows (Richards, 1993) (Figure A2.27): 

1. Identifying the required land cover classes into which the image has to be 
classif ed. This ground cover data was used for training the classif er and 
evaluating the accuracy. 

2. Identifying the ground data in the image for each class. This data is known 
as training data. Training data was collected through ground surveys and 
the photointerpretation method. 

3. Using the training data to estimate the parameter for KPCM. These parameters 
are known as signature of the class. This step is known as training of classif er. 

4. Using the trained KPCM classifer to calculate the membership value of 
feature vectors for each class. These per class classifed maps are known as 
thematic maps. 

5. Using the higher resolution classif ed results as referenced data (Formosat-2) 
for computing accuracy of the classif cation. 

reSultS 

The hyper tangent kernel (Chapter 5) was identifed as the best performing kernel 
function as it showed highest overall accuracy of 98.37% and low entropy value of 
0.48 as compared to linear PCM classifer , which showed low overall accuracy of 
78.38% and high entropy of 0.5430. The better classifcation with KPCM classifer 
for mixed pixel was achieved with the classifcation of simulated images. To add the 
best outcome from different kernels, the composite kernel was formed by fusing the 
best performing hyper tangent kernel and sigmoid kernel using the weighted sum-
mation approach, and the value of weight constant was also optimized for composite 
kernel. The  accuracy assessment results for the composite kernel were similar to 
the best performing hyper tangent kernel. An improved average user’s accuracy of 
89.90% was obtained with composite kernel, whereas the average user’s accuracy 
with KPCM classifer was 89.17%. Hyper tangent KPCM classifcation was unaf-
fected in the presence of untrained classes as compared to PCM classifcation by 
showing a very negligible effect in correlation values. The results revealed that the 
hyper tangent KPCM was consistently performing better with Landsat-8 data as well 
as with Formosat-2 data in the presence of non-linearity as well as in the absence of 
non-linearity. 

As shown in Figure A2.28, the highest overall accuracy of 98.87% was achieved 
with hyper tangent kernel function for fuzzy parameter equal to 2.7. The  second 
best result was observed with the sigmoid kernel with maximum overall accuracy of 
92.60% at fuzzy parameter value equal to 1.5. 
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Input image and training data 

Identifying and simulating non-
linearity in the data 

Developing the objective 
function for KPCMSupervised classification using 

PCM 

Parameter estimation for 
different kernels 

Supervised classification with 
optimized kernel 

Accuracy Assessment 

FIGURE A2.27 Methodology adopted. 

Proposed Kernels-
Local Kernels 

Gaussian kernel 
Radial basis kernel 

KMOD Kernel 

Inverse multi quadratic 
kernel 

Global Kernels 

Linear kernel 

Polynomial kernel 

Sigmoid kernel 

Spectral kernel 

FIGURE A2.28 Overall accuracy of different kernels using FERM with respect to fuzzy 
parameter (m). 
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CASE STUDY 10: EFFECT OF RED EDGE BANDS IN FUZZY 
CLASSIFICATION: A CASE STUDY OF SUNFLOWER CROP 

In  this study the supervised modif ed possibilistic c-means (MPCM) classif cation 
approach has been adopted for the identif cation of sunf ower f elds due to the capa-
bility of handling outliers, noise, extraction of single crop, and coincident cluster 
problem. The classif cation approach was applied on four different modif ed temporal 
vegetation indices. The best vegetation index and suitable red-edge band for the dis-
crimination of the sunf ower crop were determined. Further, optimization of temporal 
date images to separate mapping of early sown, middle sown, and late sown f elds 
was also identif ed. From the results of this study it has been proven that for temporal 
datasets, red-edge based indices are better than the standard indices for distinguish-
ing between different crops while applying the MPCM classif cation method. 

The supervised modif ed possibilistic c-means (MPCM) classif cation approach 
was adopted for the identif cation of sunf ower f elds that can deal with outliers, 
noises, single crop extraction, and coincident cluster problems. The  classif cation 
was done with four different modif ed vegetation indices. The modif ed vegetation 
indices are generated by taking different combinations of red and red edge ref ec-
tance in a controlled manner. The value of the fuzzy weight constant and the weight 
of red edge bands in the calculation of modif ed vegetation indices are optimized. 
The  best vegetation index and suitable red edge band with corresponding weight 
for the discrimination of sunf ower crops are determined. The output assessment is 
done through the mean membership difference (MMD) method taken in two ways: 
one taken between early sown sunf ower crop and wheat and the other between early 
sown, middle sown, and late sown sunf ower crop. Optimization of temporal images 
for the separate mapping of early sown, middle sown, and late sown f elds is also 
conducted. From the results obtained it is proven that for temporal datasets, the 
modif ed indices generated with red edge bands are better than the standard indices 
for distinguishing between different crops using the MPCM classif cation method. 

objeCtiveS of the CaSe Study 

Objectives of this study are def ned as follows: 

1. To identify the best vegetation index for temporal database generation for 
MPCM classif cation. 

2. To identify the suitable red edge band and corresponding weight constant 
for crop mapping. 

3. To optimize the temporal images for early sown, middle sown, and late 
sown f eld identif cation. 

Study area and data uSed 

The study area (Figure A2.29) considered for this research work is Shahabad, one 
of the three tehsils in Kurukshetra district, Haryana, India. Haryana state is in the 
northern part of India and contributes a major share in the agriculture production 
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FIGURE A2.29 Study area: Shahabad, Haryana, India. 

of wheat and rice. Shahabad (30° 10′ 6″ N, 76° 52′ 12″ E) lies between the two 
major cities Kurukshetra and Ambala. It  is situated on a fertile riverbank which 
is mainly used for wheat, sunf ower, and vegetable cultivation. A f eld visit of the 
study area was conducted on April 10, 2019, for identif cation of reference locations 
of sunf ower crops (Figures A2.30–A2.32). The major agriculture varieties during 
the Rabi are season are sunf ower and wheat. Sunf ower f elds in different growing 
stages were located and grouped into early sown (S1), middle sown (S2), and late 
sown (S3) categories. 

FIGURE A2.30 Early sown sunf ower f eld in Nalvi village. 
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FIGURE A2.31 Middle sown sunf ower f eld near Shahabad Markanda. 

FIGURE A2.32 Late sown and early sown sunf ower f eld near Jharouli village. 
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TABLE A2.8 
Temporal Datasets Used for the Study 

Sentinel-2A (L2A product) Sentinel-2B (L2A product) 

March 21, 2019 March 3, 2019 

March 31, 2019 April 5, 2019 

April 2, 2019 April 15, 2019 

April 30, 2019 May 5, 2019 

The combined use of Sentinel-2A and -2B increases the temporal availability of 
datasets for the study area. Therefore, the temporal dataset for the study was acquired 
from multi-spectral imager (MSI) of Sentinel-2A and -2B satellites (L2A product). 
The MSI sensor contains 13 bands in which three are red edge bands with 20 m reso-
lution. The dataset from March 21, 2019, is used in the study based on sowing period 
information of early sown sunfo wer crop collected during the feld visit (Table A2.8). 

Wheat f elds were mainly at their harvesting period with some excep-
tions. Images of the sunf ower f elds taken during the f eld visit are shown in 
Figures A2.30–A2.32. 

Methodology 

The methodology adopted for the study is described in Figure A2.33. The tempo-
ral data (Table A2.8) acquired for the study contains different bands with differ-
ent spatial resolution. In pre-processing of the data, all the bands required for the 
analysis are resampled to the identical pixel spacing of 10 m. The resampled dataset 
is given as input for the generation of the temporal indices database. Vegetation 

FIGURE A2.33 Methodology adopted for the study. 
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indices NDVI, SAVI, SR, and CI were generated with different compositions of 
red and red edge bands and are stacked together for the dates concerned for each 
particular band combination. The  indices values have been calculated by varying 
the controlling parameter “a” from 0 to 1. The “a” value corresponding to minimum 
mean membership difference (MMD) was considered as an optimized controlling 
parameter value. The index corresponding to the optimized value of “a” from dif-
ferent temporal dates was then considered for making temporal indices, an input for 
the classifer . 

The training sites were collected manually according to the 10n rule. The signa-
ture for classifcation was given from the generated training data accordingly for each 
classifcation input. The classifcation was done by varying the fuzzy weight constant 
from 1.2 to 3.0 with modifed NDVI as input. The optimized value of ‘m’ for other 
indices has been taken similar as for NDVI with an assumption that the dependency 
will be similar in all cases. MMD has been used for the assessment of outputs in 
terms of identifying the best vegetation index and control parameter, weighting expo-
nent, suitable red-edge band, and optimization of temporal images. 

reSultS 

The effect of red edge bands in single crop identifcation using the fuzzy classifca -
tion concept was analyzed by taking a sunfo wer crop as a case study. On comparison 
of the classifed outputs based on sunfo wer and wheat discrimination, it was summa-
rized that the suitable red edge band required for the accurate extraction of sunfo wer 
crop was different for different vegetation indices used. From the results obtained, it 
was evident that for temporal datasets the modifed indices generated with red edge 
bands are better than the standard indices for distinguishing different crops using 
the MPCM classifcation method, while for discriminating between different growth 
stages of the same crop, the effect of red edge bands were found to be less productive. 
The outputs are shown in Figures A2.34–A2.36. 

FIGURE A2.34 The classifed output obtained for modifed NDVI with red edge band 1 
(“a” = 0.7). 
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FIGURE A2.35 The classif ed output obtained for modif ed SAVI with red edge band 1 
(“a” = 0.7). 

FIGURE A2.36 Stacked classif ed output obtained for modif ed SAVI where red represents 
S1, green represents S2 and blue represents S3 sunf ower f elds. 

CASE STUDY 11: DISCRIMINATING SUGAR RATOON/ 
PLANT CROP USING MULTI-SENSOR TEMPORAL DATA 

The objective of this research work was to discriminate sugarcane ratoon/plants that 
are of interest to sugar mill industries or government agencies for better decision 
making processes. Sugarcane in India is a high priority crop for the government 
given the fact that India is the second largest producer of sugar in the world and 
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the largest consumer of the sugar produced in the world. Any shortage in the sugar 
produce would have large impact on the sugarcane industry and also on the economy 
of the country in the end. Hence there is a need to prepare specif c crop maps in 
order to be well equipped for any shortage in agricultural produce. The need of tem-
poral data for continuous monitoring of crops and the unavailability of continuous 
temporal data is a well-known problem. So, data from different optical sensors like 
LISS-III and AWiFS (from IRS-P6) and TM from Landsat-5 was used to try to solve 
this problem. 

objeCtiveS of the CaSe Study 

The main objective of this study is to discriminate a specif c crop using a temporal 
single and multi-sensor data approach. This objective can be met by the following 
actions: 

1. To identify crop spectral growth prof le using a temporal and multi-sensor 
approach. 

2. To study the separability between the target crop and other crops or vegeta-
tion based on their spectral growth prof le. 

3. To classify mixed pixels using fuzzy PCM technique. 
4. To investigate the accuracy of the fuzzy classif cation method adopted with 

few operators like MIN, LEAST, and PROD. 

Study area and data uSed 

The study area selected for this research work was Deoband city in Saharanpur dis-
trict of the state of Uttar Pradesh, India. It  is located in the upper doab region of 
Uttar Pradesh. This city lies to the northern part of India with a center latitude and 
longitude of 29.620 N and 77.670 E, respectively. The study area spans about 15 km 
in the east–west direction and about 6 km in the north–south direction. The main 
crops grown in this area are sugarcane, wheat, and plantation crops like mango, 
poplar, etc. The many sugarcane processing mills present in this area procure the 
bulk of the sugarcane produce providing a steady source of income for the farmers 
and also help in generating employment for the many seasonal agricultural laborers. 
The abundance of sugarcane farming and ready availability of data were the main 
reasons for the selection of the area for this study. This study deals with the multi-
sensor data like LISS III and AWiFS from Resourcesat-1 satellite and TM sensor 
aboard Landsat-5 satellite. 

Methodology 

The  f owchart of the methodology followed for this case study is shown in 
Figure A2.37. The detailed explanation of the methodology followed for discrimi-
nation of sugarcane ratoon/plant crops using the temporal single and multi-sensor 
approach is given in the following sections. 
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Temporal images 
(LISS-III/ AWiFS) 

Pre-processing Registra tion & Atm. Correction 

Temporal NDVI (LISS-III) Temporal NDVI (AWiFS) 

Image to Image based accuracy 
assessment 

(FERM- MIN, LEAST & PROD 
operators) 

Accuracy assessment 

(Entropy) 

Best temporal date combination 
(LISS-III) + 

12 Oct’10 Landsat-5 TM 

PCM Classification 

Class separability analysis 

Reference 
Data 

Best temporal date combination 
(AWiFS) 

Best temporal date combination 
(LISS-III +Landsat-5 TM) 

PCM Classification 

 
 
 

 
 
 
 
 

 
 
 
 
 

   

Class separability analysis 

PCM Classification 

Best temporal date combination 

Accuracy assessment 
(Entropy) 

FIGURE A2.37 Flowchart showing methodology for the temporal and multi-sensor sugar-
cane ratoon/plant crop discrimination study. 

reSultS 

For an accurate estimation of area, PCM (possibilistic c-means), a possibilistic fuzzy 
based classif er capable of extracting single class in an image, was used. A spectral 
separability analysis (using single sensor data from LISS-III and AWiFS separately) 
was conducted between the class of interest (sugarcane plant and ratoon) and the non-
interest classes to select the best 2, 3, 4 … date combinations to discriminate the class of 
interest. Combinations of these best dates were then classif ed using PCM classif er to 
extract sugarcane ratoon/plant to f nd the best overall date combination to discriminate 
sugarcane ratoon/plant. In the absence of any reference data, the soft classif ed outputs 
from the LISS-III sensor were assessed using an entropy measure criterion. The date 
combinations providing the least entropy was selected as the optimum date combina-
tion for discriminating the specif c class. This date combination from LISS-III was used 
as a reference for assessing the soft classif ed outputs from AWiFS sensor using an 
image-to-image accuracy assessment technique. Various operators like MIN, LEAST, 
and PROD were also evaluated for their behavior and effectiveness in image-to-image 
accuracy assessment. In  the second case, the effect of data from another sensor, i.e., 
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FIGURE A2.38 Plant and ratoon sugarcane mapping from temporal LISS-III data. 

Landsat-5 TM, when added to the optimum date combination from LISS-III was also 
evaluated. It was found that the entropy of the classif ed outputs from the selected best 
dates combination and multi-sensor approach was lower than the entropy measured 
from the single sensor (LISS-III) approach. Lower entropy means lesser uncertainty 
associated with classif cation and accuracy was higher, and vice-versa. This  study 
explored the applicability of temporal single and multi-sensor data for discrimination 
of specif c crops, sugarcane plant and ratoon (Figure A2.38). A multi-sensor approach 
helped in increasing the temporal data sampling for the continuous monitoring of crops 
when data available from any single sensor approach was insuff cient. The end result of 
this study was the benef t of using the right temporal dates for discriminating sugarcane 
plant and ratoon. Such information is developed skillfully by agricultural scientists in 
selecting an optimum number of strategically placed temporal images in the crop grow-
ing season for discriminating the specif c crop accurately. 

Machine Learning or Deep Learning or Human Learning Happens 
Through Training..... 

....Comes only from.... 

Practice.... 

Practice.... 

Practice.... 
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accuracy measures, 113 

adaptive fuzzy local information c-means 

adaptive possibilistic local information c-means 

activation, 53 
hyperbolic tangent, 53 
rectif ed linear units, 53 
sigmoid, 53 

adaptive fuzzy local information, 81 

(ADFLICM), 81 
adaptive interaction function (AIF), 79 
adaptive modif ed possibilistic local information 

c-means (ADMPLICM), 89 

(ADPLICM), 87 
adaptive potential function (APF), 79 
add contextual information through MRF, 131 
adjunct overlap, 115 
adjustments of weights, 35 
Advanced Wide Field Sensor (AWiFS), 150 
advantages of IPCM over PCM, 27 

noise sensitive, 27 
problem of coincident clusters, 27 
proper computation of membership and 

typicality values, 27 
aff nity functions, 63 
agreement measure, 118–119, 120 
amplif ed, 49 

cropping, 49 
f ipping, 49 
rotating, 49 
shifting, 49 

ANN parameters, 51 
epochs, 51 
hidden neurons, 51 
learning rate, 51 

applications of CNN, 41 
area allocation problem, 121 
artif cial intelligence (AI), 2, 6 
artif cial neural network (ANN), 3, 33 

hidden layer, 34 
input layer, 34 
output layer, 34 
prune, 36 
weights, 36 

assessment of accuracy, 113 
of soft classif ed data, 132 
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A 

absolute measure of uncertainty, 114, 123 

atmospherically resistant vegetation index 
(ARVI), 97 

atmospheric disturbances, 146 
autocorrelation, 102 
auto-differentiation, 37 
automatic speech recognition (ASR), 47 
average entropy, 123 
average pooling, 45 
average producer’s accuracy, 118 
average user’s accuracy, 118 

B 

back-propagation algorithms, 35, 38–39 
bandwidth parameter, 24 
batches, 49 
Bayesian’s network, 74 

directed graphical models, 74 
best vegetation index and suitable red-edge 

band, 176 
bias, 36 
binary classif er, 125 
bi-sensor, 108 

approach, 147 
temporal data, 146 

both labeled and unlabeled, 168 
Bray Curtis, 66 

index, 66 
burnt-paddy fe ld sites identife d, 162 
burnt patches on November 9, 2018, 165 

C 

Canberra, 66 
case study of sunf ower crop, 176 
CBSI indices palate, 131 
centre value of interval, 121 
cerebellar model articulation controller 

(CMAC), 49 
challenges in learning algorithms, 49–50 
characteristic function, 37 
cheaper to clear residue by burning, 160 
chessboard, 66 

Chebyshev, 66 
class based sensor independent index (CBSI), 98 
classif cation, 1, 4, 10 

methods for specif c class mapping, 138 
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classif ed cotton by SIDSAM-tan at 
α-cut = 0.8, 173 

classif ed image, 115 
class proportions, 117 
cloud cover, 146 
cluster analysis, 60 
clustering, 1, 3–4, 20 

hard, 20 
hierarchical, 20 
partitional, 20 
soft, 20 

cognitive neuroscientists, 49 
cognitive technologies, 2 
coherence, 62 
collection of training data, 163 
commercially available software, 131 
commission errors, 116 
communication, 125 
compatibility value, 29 
composite kernels, 74 

cross-information, 74 
direct summation, 74 
stacked approach, 74 
weighted summation, 74 

composite measure, 68 
composite operator(s), 114 

based FERM, 118–120 
MIN-LEAST, 114 
MIN-MIN, 114 
MIN-PROD, 114 

computation time, 49 
confusion intervals, 121 
confusion matrix, 113–114 
contextual information, 2, 57, 76, 126 

correlation, 76 
homogeneity, 76 
isolated, 76 
pepper and salt, 76 

conventional error matrix, 113, 120 
convolutional neural network (CNN), 3, 33, 

41–42 
activation, 43 
convolutional operations, 42 
fully connected layer steps, 42 
nonlinear operations, 42 
pooling layers operations, 42 

convolution based local information, 81 
local information, 81 
spatial domain, 81 

convolution layer, 42, 53 
correlation, 116, 124 

coeff cient, 124 
similarity measure, 63–64 

cosine similarity measure, 63 
covariance, 124 
criteria of good training samples, 12 
cropping activity, 100 

crop proportion phenology index (CPPI), 102 
crop studies, 100 
cross-comparison, 118 

matrix, 114 

D 

data mining, 1 
decision tree (DT), 3, 98 
deep CNN, 48 
deep learning, 4–5, 35 

concepts, 48–50 
deep neural network, 48 

initial weights, 49 
learning rate, 49 
momentum, 49 
types of layers, 49 
units or f lters, 49 

defuzzif cation, 116 
degree of association, 62 
degree of proximity, 62 
delta normalized burnt-ratio (dNBR), 164 
dense layer, 45 
density estimation, 5 
detection threshold, 125 
development learning, 5 
diagonal elements, 118 
diagonalization characteristic, 118 
diagonal Mahalanobis norms, 141 
diagonal norm, 22 
dimensionality, 96 
dimensionality reduction, 5 

methods, 135 
disagreement measure, 118–119, 120 
discontinuity adaptive (DA), 76 
discriminate sugarcane ratoon/plants, 181 
discrimination of specif c crops, 146 
dissimilarity measure, 64–68 

non-negativity, 64 
ref exivity, 64 
symmetry, 64 
triangle inequality, 64 

distance kernels, 72 
distribution parameter, 29 
DN value, 95 
drawbacks of PCM, 27 

neglects membership, 27 
problem of coincident clusters, 27 
sensitivity toward good initialization, 27 

dropout function, 46 
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early sown sunf ower f eld in Nalvi village, 177 
edge preservation method, 127 
effect of red edge bands, 176 
eligible kernel, 72 



 

 
 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 
 

 

 

 
 

 

 
 

Index 187 

email spam and malware f ltering, 6 
encoder-decoder LSTM networks, 48 
energetic systems, 35 
enhanced vegetation index (EVI), 97 
enhanced vegetation index 2 (EVI2), 97 
entropy, 57, 114, 116, 123 

based hybrid soft classif er, 59 
based regularization function, 59 
function, 58 

epochs, 35 
error function, 59 
error matrix, 12, 113, 116 
error probability, 123 
errors of exclusion, 116 
errors of inclusion, 116 
error variations, 123 
Euclidean, 141 

norm, 22 
Euclidean distance (ED), 62, 65 
Euler’s equation, 79 
expected proportion of agreement, 118, 122 
extraction of burnt-paddy f eld area, 164 

F 

face recognition, 6 
false alarm rate, 125–126 
feature extraction, 42, 98 
feature selection, 4, 98 
FERM- MIN, LEAST & PROD operators, 183 
FERM tool for assessment of accuracy, 136 
f tted model, 13 
f ve classes classif cation, 145 

four, 145 
three, 145 
two, 145 

forest area estimation, 100 
forest biomass, 99 
forest f re, 99 
forest mapping, 99 
Formosat-2 satellite sensor specif cations, 143 
four classes classif cation, 145 
four discontinuity adaptive MRF (DA-MRF) 

models, 154 
four steps, 139 
fractional images, 114, 124, 154 
fractional values, 114 
fraction outputs, 113 
free parameters, 3, 35, 40 

activation functions, 3 
hidden layers, 35 
layer size, 3 
learning, 3 
momentum, 3 
number of neurons in hidden layer, 35 
numbers of training iterations, 35 
rate, 3 

required epochs, 3 
types of pooling layers, 3 

frequency, 147 
fully connected MLP, 42 
fuzzif cation, 58 
fuzzif er, 21, 23 
fuzzy based algorithms, 2 
fuzzy based classif ers, 2 
fuzzy based supervised soft classif ers, 131 
fuzzy clustering, 61 

with constraints, 81 
fuzzy c-means (FCM), 18, 20–22 
fuzzy c-means with spatial constraints 

(FCM-S), 81 
fuzzy c-means with entropy (FCME), 59–60 
fuzzy error matrix, 114, 116–118 
fuzzy factor (G), 160 
fuzzy hybridization techniques, 57 
fuzzy local information, 81 
fuzzy local information c-means (FLICM), 81 
fuzzy minimum operator, 117 
fuzzy set theory, 114, 116, 141 

G 

Gaussian probability density, 57 
generalized procedure for semi-supervised 

possibilistic c-means, 169 
generation of testing data, 115 
generative adversarial networks (GANs), 35 
generative models, 47 
generative neural network models, 50 
genetic algorithms, 40 
geo-tagging, 10 
Gibbs random f eld, 75 
global kernels, 73 

linear, 73 
polynomial, 73 
sigmoid, 73 

GNSS, 10–11 
grey level, 81–86, 88–89, 106, 126–127 
gross primary production, 100 
ground truth data, 9–12 
ground truthing, 10, 12 
growing season, 100 

H 

hard classif cation, 113 
hard classife rs, 141 
hard decision, 125 
heterogeneity, 18 
heterogeneous land cover, 113 
hidden layer size, 36 
hidden neurons, 35 
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higher-dimensionality, 2 
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higher dimensional space, 72 
hybrid approach, 3, 57–59 
hybrid classife rs, 58 
hybridization, 57 

decision level, 57 
feature level, 57 
pixel level, 57 

hybrid kernel approach, 74 
hybrid learning networks (HLN), 33, 47–48 
hybrid measures, 70 
hyperspectral, 7 
hyper tangent kernel, 74 

I 

identif cation of sunf ower f elds, 176 
image-to-image, 115, 153 

assessment of accuracy, 115 
registration, 115 

improved possibilistic c-means (IPCM), 19, 
27–29 

impulse noise, 67 
incorporation of local similarity measures, 87 
indices expression, 131 
information class, 103 
information theory, 59, 123 
in situ measurements, 12 
integrating RISAT-1 and Formosat-2 temporal 

images, 146 
interval half-width, 121 
isolated pixel problem, 154 

K 

kappa coeff cient, 118 
of agreement, 123 

kernel approach, 19 
kernel based fuzzy c-means, 150 
kernel concepts, 2, 71 

global, 2 
global kernels, 72 
inner product, 72 
local, 2 
local kernels, 72 
spectral kernels, 72 

key parameters, 156 
fuzzif er, 156 
window size, 156 

knowledge discovery in databases (KDD), 1 

L 

labeled data, 2 
land cover, 100 
Landsat-8, Sentinel-2, and Formosat-2 Sensor 

Specif cations, 162 
landscape changes, 99 

language processing, 46 
larger dimensionality, 48 
late transplant paddy f elds, 146 
layout of fuzzy error matrix, 117 
learning, 5 

algorithms, 33 
based classif er, 2 
model, 35 
parameters, 33 
rate, 35 

least operator (LEAST), 119 
limitations for various classifying algorithms, 131 
linear and non-linear classif ers, 19 
Linear Imaging Self-Scanning System-III 

(LISS-III), 150 
Linear Imaging Self-Scanning System-IV 

(LISS-IV), 150 
linear mixture model (LMM), 18, 95, 131 
linear spectral un-mixing, 101 
line process model (LP), 80 
LISS IV (Resourcesat-2) image of Sitarganj’s 

Tehsil, 151 
load other temporal images, 137 
local convolution, 2, 58, 126 

based methods, 131 
local kernels, 72 

Gaussian kernel, 72 
inverse multi-quadric, 73 
kernel with moderate decreasing (KMOD), 73 
radial basis, 72 

local similarity measure, 87, 107, 160 
locational accuracy, 116 
loss function, 37 
LSTM layers, 43 

M 

machine learning, 1, 6 
applications, 41 

Mahalanobis, 3, 141 
norm, 21 

Manhattan distance, 65 
city block, 65 
taxicab, 65 

mapping function, 72 
mapping of early sown/middle sown/late sown 

fe lds, 176 
marginal column sum, 121 
marginal row sum, 121 
marginal totals, 118 
Markov random f eld (MRF), 2, 19, 57, 154 
mathematical indices, 131 
maximize margin, 71 
maximum a posterior (MAP), 75 
maximum entropy method, 58 
maximum likelihood classif er (MLC), 18 
max pooling, 45, 53 
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mean absolute difference, 67 
mean shift algorithm, 166 
measure of uncertainty, 123 
median absolute difference, 67 
medical diagnosis, 125 
membership function, 21, 106 
membership value, 18, 23, 113 
Mercer’s condition, 72 
methodology adopted for case study 1, 144 
methodology adopted for case study 2, 148 
microwave data with optical data, 147 
middle sown sunf ower f eld near Shahabad 

Markanda, 178 
mini-batch gradient descend, 40 
minimum entropy, 153 
minimum human intervention, 135 
minimum knowledge, 139 
minimum operator (MIN), 117, 119 
MIN-PROD composite operators, 165 
mixed pixel, 2, 17–18, 95 
Mixed Pixel Class Variance (MPCV), 171 
mixture of kernels, 74 
model parameters, 13 
modif ed FERM matrix, 114 
modif ed indices, 176 
modif ed possibilistic c-means (MPCM), 19, 

29–30 
modif ed possibilistic c-means with constraints 

(MPCM-S), 88 
noise minimizer, 88 
regularization parameter, 88 

modif ed possibilistic local information c-means 
(MPLICM), 89 

noise acceptance, 89 
outliers confrontation, 89 

MODIS time series, 101 
momentum parameter, 35 
mono as well as multi-sensor temporal 

images, 139 
mono-sensor, 108 
multi-layer CNN architecture, 42 
multi-layer perceptron, 34 
multi-sensor, 7 

approach analysis, 96 
multispectral, 7 
multi-spectral mono/temporal remote sensing 

satellite data, 132 
multi-temporal, 98 
multi-variate model, 102 
mutations, 40 

N 

National Space Organization (NSPO), 143 
neurons, 33 
Neyman Pearson curve, 125 
Neyman-Pearson detection theory, 125 

noise cluster, 24, 105 
noise clustering (NC), 18, 24–27 
noise clustering with entropy (NCE), 60–62 
noise data, 24 
noise distance, 25 
non-linear activation layer, 45 
non-linear boundaries using KPCM, 173 
non-linear combinations of weights, 43 
non-linear decision boundary, 43 
non-linearity, 2, 58 

between classes, 2 
and mixed pixels, 149 

non-linear regularizing function, 58 
non-linear separation, 2 
non-negative integer numbers, 116 
non-negative real numbers, 116 
normalized burn ratio (NBR), 97, 164 
normalized difference snow index (NDSI), 97 
normalized difference vegetation index 

(NDVI), 97 
normalized difference water index 

(NDWI), 97 
normalized squared Euclidean, 67 
number of output f lters, 46 

O 

object based algorithms, 3 
objective of image pattern recognition, 41 
observed proportion of agreement, 122 
off-diagonal cells, 114 
off-diagonal elements, 118 
omission errors, 116 
one-to-one, 115 
online customer support, 6 
online fraud detection, 6 
online transportation networks, 6 
outlier points, 24 
output from semi-supervised approach, 169 
overall accuracy, 116, 121–122 
overall agreement-disagreement measure, 121 
overf tting, 46 
overtraining, 35 

P 

parameter of CNN, 51 
epochs, 51 
threshold, 51 

pattern matching, 4 
pattern recognition, 1–2, 4–6, 41 
Pearson correlation coeff cient, 63–64 
Pearson moment correlation coeff cient, 124 
penalty function, 79 
performance characteristics, 14 
phenological changes, 95 
phenological prof les, 101 
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phenology based derived matrices, 100 
amplitude, 100 
fraction of growing season, 100 
maximum, 100 
mean, 100 
rate of green up, 100 
rate of senescence, 100 
threshold, 100 
total length of growing season, 100 

pixel spatial attraction model (Sir), 160 
plant and ratoon sugarcane, 184 
polarization, 147 
pooling layer, 45 
possibilistic based algorithms, 141 
possibilistic c-means (PCM), 18, 22–24 
possibilistic c-means with constraints (PCM-S), 82 
possibilistic local information c-means 

(PLICM), 84 
noise immunity, 85 
unwanted resistance property, 85 

possibilistic rules, 2 
possibilistic value, 28 
predictions while commuting, 6 
principal component analysis, 5, 98 
probabilistic algorithms, 4 
probabilistic constraint, 123 
probability distribution function, 75 
probability rule, 2 
process temporal data sets, 131 
producer’s accuracy, 118, 122 
product operator (PROD), 119 
product recommendations, 6 
properties for agreement and disagreement 

measure, 119 
commutativity, 119 
homogeneity, 119 
nullity, 119 
positivity, 119 
upper bound, 119 

pseudo code of CNN, 43 
pseudo-label generative models, 35 
pure and mixed pixels, 141 
pure signature data collection module, 137 

Q 

quadratic function, 58 

R 

Radar Imaging satellite 1, 147 
random sampling, 11 
random weight, 37 
receiver operating characteristics (ROC), 116, 

125–126 
rectif ed linear unit (ReLu), 45 
recurrent neural network (RNN), 3, 33, 46–47 

reduced spectral overlapping with other classes, 135 
redundancy, 62 
reference data, 9, 113, 115–116 
reference: Formosat-2 classif ed, 172 
reference image, 115 
reference training data, 132 
region growing algorithm, 170 
region growing methods, 136 
regression, 5 

prediction problems, 47 
regular expression matching, 4 
regularization, 58 
regularization methods, 49 

Ivakhnenko’s unit pruning, 49 
sparsity, 49 
weight decay, 49 

regularizing parameter, 58, 61 
reinforcement learning, 2 
relative measures, 123 
remote sensing, 7 
require knowledge, 139 
rescaling, 123 
resolution parameter, 25 
Resourcesat-1, 150 

and Resourcesat-2 sensor specif cation, 152 
Resourcesat-2, 150 
revisit interval, 158 
ROC curves, 126 
root mean square error, 116, 124–125, 159 

S 

salt and pepper noise, 67 
sample data, 113 
sample size, 11 
sample units, 116 

clusters of pixels, 116 
pixels, 116 
polygons, 116 

sampling design, 113 
saving indices outputs, 138 
SCA, 70 
scale parameter, 28 
search engine result ref ning, 6 
semi-supervised approach, 166 
semi supervised machine learning, 2 
semi-supervised PCM clustering algorithm, 168 
separability analysis, 4 
separability distance, 98 

angular separation, 98 
Bhattacharyya’s distance, 98 
city block distance, 98 
divergence, 98 
Euclidean distance, 98 
Jeffreys-Matusita (JM), 98 
normalized city block distance, 98 
transformed divergence (TD), 98 
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sequence prediction problems, 46 
many-to-many, 46 
many-to-one, 46 
one-to-many, 46 
seq2seq, 46 

Shanon’s entropy, 123 
SID-SAM hybrid measure, 70 

sin, 70 
tan, 70 
trigonometric functions, 70 

sigmoid as activation function, 46 
signal processing, 125 
signal to noise ratio, 102 
similarity/dissimilarity, 19, 57, 62 
similarity measures, 63–64 

limited range, 63 
ref exivity, 63 
symmetry, 63 
triangle inequality, 63 

similar pins, 6 
simple ratio (SR), 97 
simulated annealing (SA), 77 
simulated Formosat-2 image, 141 
single class extraction, 103 
single date image, 95 
single land cover identif cation, 107 
single operator, 114 

least (LEAST), 114 
minimum (MIN), 114 
product (PROD), 114 

slope, 126 
SMIC with distance norm, 133 
SMIC with kernel norms, 134 
smoothing effect, 126 
smoothness prior, 76 
smoothness prior MRF(S-MRF), 154 
social media services, 6 
soft classif cation, 17–18, 113 
soft classif ed output, 115–116, 117 
soft classif er, 17–18 
soft decision, 125 
soft evaluation methods, 114 
soft/hard classif ed outputs, 131 
soft reference data, 115, 117, 121, 155 
soil adjusted vegetation index (SAVI), 97 
Sorenson similarity index, 66 
spam f ltering, 5 
spatial attraction model, 86 

unique local similarity measure, 86 
spatial contextual information, 58, 154 
spatial correlation, 58 
specif c class, 95 
spectral angle mapper (SAM), 57, 69 
spectral correlation angle (SCA), 

69–70 
spectral dimensionality, 131 
spectral indices, 96 

spectral information divergence (SID), 57, 68–69 
spectral information measure (SIM), 68 
spectral kernels, 73 

spectral angle (SA), 73 
spectrally dissimilar objects, 95 
speech data, 47 
square array, 116 
standard accuracy method, 114 
standard deviation, 124 
standard regularization, 79 
static network, 35 
statistical based algorithms, 2–3 

c-means, 3 
maximum likelihood classif ers (MLC), 3 
parallelepiped, 3 

statistical classif ers, 18 
statistical parameter, 3–4 

maximum, 3 
mean, 3 
minimum, 3 
mode, 3 
variance-covariance, 3 

statistical thermodynamics, 59 
step function, 126 
stochastic process, 75 
stochastic relaxation algorithm, 77 
stride, 42 
stubble burning, 160 

phenomenon, 160 
study of single and hybrid proposed measures, 170 
sub-pixel, 17, 113 

area allocation, 120 
class overlap, 119 

sub-pixel confusion, 120 
constrained expected, 120 
constrained maximum, 120 
constrained minimum, 120 
matrix, 118 

sub-pixel confusion-uncertainty matrix 
(SCM), 114 

sub-pixel interpretation, 120 
expected overlap, 120 
maximum overlap, 120 
minimum overlap, 120 

sub pixel multi-spectral image classif er 
(SMIC), 131 

sub-sampling layer, 42 
supervised approach, 1, 3–4, 10 
supervised machine learning, 43–46 
support vector machines (SVM), 18, 71, 101 
synthetic aperture radar (SAR), 100, 147 
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technological knowledge, 139 
temporal analysis, 96 
temporal characteristics, 95 
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temporal class based sensor independent 
indices, 165 

temporal data, 95, 179 
processing module, 135 

temporal dimensionality, 131 
temporal gaps, 147 
temporal indices database, 138 
temporal optical data, 146 
temporal single and multi-sensor data, 184 
terminal membership value, 29 
testing datasets, 14–15, 146 
testing samples, 11 
test: Landsat-8 classif ed fraction images, 172 
thematic map, 17, 113 
third module in SMIC, 132 
three classes classif cation, 145 
three modules, 131 
three optimizer modes, 40 
time series analysis, 96 
total grades, 117, 121 
total sum, 121 
track of function, 39 
traditional classife r, 18 
traditional confusion matrix, 114 
traditional interpretation, 120 

fuzzy set intersection, 120 
joint probability, 120 
minimum overlap, 120 

training data, 9, 11 
training issues, 48 
training of ANN, 38 
training sample data through region growing 

methods, 131 
training sets, 13, 103 
tree structure based, 3 
tropical forest phenology, 100 
true positive, 125–126 
tuple of input shape, 46 
tuple of kernel size, 46 
two class classif cation, 145 
typicality value, 28–29 

U 

uncertainty measure, 121, 123 
correlation coeff cient, 123 
RMSE, 123 

uncertainty variations, 123 
univariate model, 102 
unknown vector, 3 
unlabeled data, 2, 35 
un-mixing of classes, 95 
unsupervised, 1, 3–4, 9 

k-means, 102 
machine learning, 2 

untrained case outputs, 153 
usage of training data, 12 
user’s accuracy, 118, 122 

V 

validation datasets, 13–14 
variance–co-variance, 116 
various similarity/dissimilarity 

options, 132 
vegetation index (VI), 96 
vegetation phenology, 96 
video surveillance, 6 
virtual personal assistants, 6 
visual cortex, 41 

W 

weight adjustment, 2 
weight factor λ, 153 
weighting exponent, 21, 23, 141 
weight initialization, 40 
weight update, 39–40 

derivative rate, 39 
learning rate, 39 
net weight, 39 
old weight, 39 

Whittaker smoother f lter, 102 
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