

Hands-On Enterprise
Automation on Linux

Efficiently perform large-scale Linux infrastructure automation
with Ansible

James Freeman

BIRMINGHAM - MUMBAI

Hands-On Enterprise Automation on Linux
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Rohit Rajkumar
Content Development Editor: Alokita Amanna
Senior Editor: Rahul Dsouza
Technical Editor: Prachi Sawant
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Nilesh Mohite

First published: January 2020

Production reference: 1240120

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-161-1

www.packt.com

http://www.packt.com

This book is dedicated to everyone who has inspired me to follow my dreams,
my passions, and live my truth, especially Lyndon Rees, Eleonora Guantini, Elane Slade,

and the late Sirdar Khan.

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Foreword
Few would disagree when I say that the world of technology has grown ever more complex
over the last couple of decades since the internet came to prominence. More and more
products have arrived, promising us solutions to tame the growing complexity. Along with
the promises come a raft of experts, there to help us through what is actually yet more
complexity.

2012 saw the first release of Ansible. By 2013, it was gaining significant traction since its
promise of power through simplicity was not an empty one. Here was a technology rooted
in a simple truth—solving problems with technology really means solving problems for
people. Therefore, people matter. A tool that is easy to pick up and learn? What an amazing
thought! Early adopters were those who saw through the functionality list to realize that
here was a people-pleasing game changer.

I first met James at one of his technical Ansible talks a few years ago. It was still relatively
early days for Ansible, although we'd just been acquired by Red Hat. At that first meeting, I
realized that here was a fellow who understood the link between people and Ansible's
powerful simplicity. I've been lucky enough to see James speak on a number of occasions
since, with two standout talks coming to mind.

At AnsibleFest 2018 in Austin, Texas, James gave a great talk about a client engagement
where he presided over a business-critical database upgrade—on a Friday afternoon.
What's the golden rule we all tout in tech? Don't make business-critical changes on a
Friday! Yet James's charismatic storytelling had the audience enthralled. The second
occasion was more recent, at an Ansible London meetup. Taking a very different approach
to the usual tech-heavy talks, James presented the audience with a tale of positive
psychology, a story that had Ansible as the underlying tool supporting people. It turned
out to be a great success, sparking a lively interaction across the audience during the Q&A
session that followed.

Scalability isn't just about a technology; it is about people. If you want a technology to scale,
it must be easy for people to adopt, to master, and to share. James is a model of scalability
himself, as he so readily shares his knowledge. He also shows in this book that Ansible is
an orchestrator, a conductor of the symphony if you like, with the ability to span an
enterprise. I'm sure you'll enjoy reading it as much as I've enjoyed every interaction I've
had with James.

Mark Phillips
Product Marketing Manager, Red Hat Ansible

I've worked alongside James for several years and consider him to be one of the foremost
Ansible experts in the world. I've been witness to his help in the digital modernization
efforts of large and small organizations with the help of automation and DevOps practices.

In Hands-On Enterprise Automation on Linux, James generously shares his experience with a
practical, no-nonsense approach to managing heterogeneous Linux environments. If you
learn best through a hands-on approach, then this is the book for you. James provides
plenty of in-depth examples in each chapter so that you can cement your understanding
and feel prepared to take Ansible into a live environment.

Ready to become an automation rockstar and revolutionize your IT ops team? Then read
on!

Ben Strauss
Security Automation Manager, MindPoint Group

Contributors

About the author
James Freeman is an accomplished IT consultant and architect with over 20 years'
experience in the technology industry. He has more than 7 years of first-hand experience of
solving real-world enterprise problems in production environments using Ansible,
frequently introducing Ansible as a new technology to businesses and CTOs for the first
time. He has a passion for positive psychology and its application in the world of
technology and, in addition, has authored and facilitated bespoke Ansible workshops and
training sessions, and has presented at both international conferences and meetups on
Ansible.

About the reviewers
Gareth Coffey is an automation consultant for Cachesure, based in London, developing
bespoke solutions to enable companies to migrate services to public and private cloud
platforms. Gareth has been working with Unix/Linux-based systems for over 15 years.
During that time, he has worked with a multitude of different programming languages,
including C, PHP, Node.js, and various automation and orchestration tool sets. As well as
consulting, Gareth runs his own start-up – Progressive Ops, developing cloud-based
services aimed at helping start-up companies deploy resources across multiple cloud
providers, with a focus on security.

Thanks to my wife and daughter for putting up with the late nights and early mornings.

Iain Grant is a senior engineer with over 20 years' experience as an IT professional, in both
small and enterprise companies, where he has held a wide variety of positions, including
trainer, programmer, firmware engineer, and system administrator. During this time, he
has worked on multiple operating systems, ranging from OpenVMS, through Windows, to
Linux, where he has also contributed to the Alpha Linux kernel. He currently works in an
enterprise environment looking after over 300 Linux servers, with responsibility for their
automation and management.

I would recommend this book as standard reading for any professional or senior engineer
working with Linux. The areas covered provide you with excellent guidance and examples
of a controlled build, as well as a managed and secure environment, resulting in an easier
life for anyone looking after small or large Linux estates.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please
visit authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with the
global tech community. You can make a general application, apply for a specific hot topic
that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Core Concepts
Chapter 1: Building a Standard Operating Environment on Linux 8

Understanding the challenges of Linux environment scaling 9
Challenges of non-standard environments 9

Early growth of a non-standard environment 9
Impacts of non-standard environments 10
Scaling up non-standard environments 10

Addressing the challenges 11
Security 12
Reliability 13
Scalability 13
Longevity 14
Supportability 15
Ease of use 16

What is an SOE? 16
Defining the SOE 16
Knowing what to include 18

Exploring SOE benefits 20
Example benefits of an SOE in a Linux environment 20
Benefits of SOE to software testing 22

Knowing when to deviate from standards 24
Ongoing maintenance of SOEs 25
Summary 26
Questions 27
Further reading 27

Chapter 2: Automating Your IT Infrastructure with Ansible 28
Technical requirements 29
Exploring the Ansible playbook structure 29
Exploring inventories in Ansible 35
Understanding roles in Ansible 42
Understanding Ansible variables 47
Understanding Ansible templates 52
Bringing Ansible and the SOE together 56
Summary 57
Questions 58
Further reading 58

Table of Contents

[ii]

Chapter 3: Streamlining Infrastructure Management with AWX 59
Technical requirements 60
Introduction to AWX 60

AWX reduces training requirements 61
AWX enables auditability 61
AWX supports version control 62
AWX helps with credential management 63
Integrating AWX with other services 63

Installing AWX 64
Running your playbooks from AWX 70

Setting up credentials in AWX 71
Creating inventories in AWX 72
Creating a project in AWX 75
Creating a template in AWX 79
Running a playbook from AWX 80

Automating routine tasks with AWX 84
Summary 88
Questions 88
Further reading 89

pection 2: Standardizing Your Linux Servers
Chapter 4: Deployment Methodologies 91

Technical requirements 92
Knowing your environment 92

Deploying to bare-metal environments 92
Deploying to traditional virtualization environments 93
Deploying to cloud environments 95
Docker deployments 98

Keeping builds efficient 100
Keeping your builds simple 100
Making your builds secure 102
Creating efficient processes 103

Ensuring consistency across Linux images 103
Summary 106
Questions 107
Further reading 107

Chapter 5: Using Ansible to Build Virtual Machine Templates for
Deployment 108

Technical requirements 109
Performing the initial build 109

Using ready-made template images 110
Creating your own virtual machine images 112

Using Ansible to build and standardize the template 120

Table of Contents

[iii]

Transferring files into the image 121
Installing packages 125
Editing configuration files 130
Validating the image build 133
Putting it all together 137

Cleaning up the build with Ansible 139
Summary 141
Questions 142
Further reading 142

Chapter 6: Custom Builds with PXE Booting 143
Technical requirements 144
PXE booting basics 144

Installing and configuring PXE-related services 145
Obtaining network installation images 149
Performing your first network boot 152

Performing unattended builds 158
Performing unattended builds with kickstart files 158
Performing unattended builds with pre-seed files 167

Adding custom scripts to unattended boot configurations 171
Customized scripting with kickstart 171
Customized scripting with pre-seed 172

Summary 173
Questions 173
Further reading 174

Chapter 7: Configuration Management with Ansible 175
Technical requirements 176
Installing new software 176

Installing a package from operating system default repositories 177
Installing non-native packages 182
Installing unpackaged software 183

Making configuration changes with Ansible 184
Making small configuration changes with Ansible 185
Maintaining configuration integrity 187

Managing configuration at an enterprise scale 189
Making scalable static configuration changes 190
Making scalable dynamic configuration changes 196

Summary 203
Questions 203
Further reading 203

Section 3: Day-to-Day Management
Chapter 8: Enterprise Repository Management with Pulp 205

Table of Contents

[iv]

Technical requirements 206
Installing Pulp for patch management 206

Installing Pulp 207
Building repositories in Pulp 214

Building RPM-based repositories in Pulp 214
Building DEB-based repositories in Pulp 220

Patching processes with Pulp 223
RPM-based patching with Pulp 224
DEB-based patching with Pulp 230

Summary 234
Questions 235
Further reading 235

Chapter 9: Patching with Katello 236
Technical requirements 236
Introduction to Katello 237
Installing a Katello server 239

Preparing to install Katello 239
Patching with Katello 242

Patching RPM-based systems with Katello 243
Patching DEB-based systems with Katello 261

Summary 266
Questions 267
Further reading 267

Chapter 10: Managing Users on Linux 268
Technical requirements 268
Performing user account management tasks 269

Adding and modifying users with Ansible 270
Removing users with Ansible 276

Centralizing user account management with LDAP 277
Microsoft AD 278
FreeIPA 281

Enforcing and auditing configuration 284
Managing sudoers with Ansible 284
Auditing user accounts with Ansible 286

Summary 288
Questions 289
Further reading 289

Chapter 11: Database Management 290
Technical requirements 291
Installing databases with Ansible 291

Installing MariaDB server with Ansible 291
Installing PostgreSQL Server with Ansible 300

Table of Contents

[v]

Importing and exporting data 306
Automating MariaDB data loading with Ansible 306

Performing routine maintenance 318
Routine maintenance on PostgreSQL with Ansible 318

Summary 322
Questions 322
Further reading 323

Chapter 12: Performing Routine Maintenance with Ansible 324
Technical requirements 325
Tidying up disk space 325
Monitoring for configuration drift 331
Understanding process management with Ansible 337
Rolling updates with Ansible 342
Summary 346
Questions 346
Further reading 347

Section 4: Securing Your Linux Servers
Chapter 13: Using CIS Benchmarks 349

Technical requirements 350
Understanding CIS Benchmarks 350

What is a CIS Benchmark? 350
Exploring CIS Benchmarks in detail 352

Applying security policy wisely 355
Applying the SELinux security policy 356
Mounting of filesystems 356
Installing Advanced Intrusion Detection Environment (AIDE) 357
Understanding CIS Service benchmarks 358
X Windows 358
Allowing hosts by network 358
Local firewalls 359
Overall guidance on scoring 359

Scripted deployment of server hardening 360
Ensuring SSH root login is disabled 360
Ensuring packet redirect sending is disabled 365
Running CIS Benchmark scripts from a remote location 368

Summary 371
Questions 371
Further reading 372

Chapter 14: CIS Hardening with Ansible 373
Technical requirements 373
Writing Ansible security policies 374

Table of Contents

[vi]

Ensuring remote root login is disabled 375
Building up security policies in Ansible 378
Implementing more complex security benchmarks in Ansible 385
Making appropriate decisions in your playbook design 388

Application of enterprise-wide policies with Ansible 390
Testing security policies with Ansible 394
Summary 397
Questions 397
Further reading 398

Chapter 15: Auditing Security Policy with OpenSCAP 399
Technical requirements 400
Installing your OpenSCAP server 400

Running OpenSCAP Base 401
Installing the OpenSCAP Daemon 402
Running SCAP Workbench 403
Considering other OpenSCAP tools 404

Evaluating and selecting policies 405
Installing SCAP Security Guide 406
Understanding the purpose of XCCDF and OVAL policies 408
Installing other OpenSCAP policies 410

Scanning the enterprise with OpenSCAP 412
Scanning the Linux infrastructure with OSCAP 412
Running regular scans with the OpenSCAP Daemon 422
Scanning with SCAP Workbench 426

Interpreting results 428
Summary 432
Questions 432
Further reading 433

Chapter 16: Tips and Tricks 434
Technical requirements 434
Version control for your scripts 435

Integrating Ansible with Git 436
Organizing your version control repositories effectively 438
Version control of roles in Ansible 440

Inventories – maintaining a single source of truth 444
Working with Ansible dynamic inventories 445
Example – working with the Cobbler dynamic inventory 448

Running one-off tasks with Ansible 452
Summary 457
Questions 457
Further reading 458

Assessments 459

Table of Contents

[vii]

Other Books You May Enjoy 472

Index 475

Preface
Welcome to Hands-On Enterprise Automation on Linux, your guide to a collection of the most
valuable processes, methodologies, and tools for streamlining and efficiently managing
your Linux deployments at enterprise scale. This book will provide you with the
knowledge and skills required to standardize your Linux estate and manage it at scale,
using open source tools including Ansible, AWX (Ansible Tower), Pulp, Katello, and
OpenSCAP. You will learn about the creation of standard operating environments, and
how to define, document, manage, and maintain these standards using Ansible. In
addition, you will acquire knowledge of security hardening standards, such as the CIS
Benchmarks. Throughout the book, practical, hands-on examples will be provided for you
to try for yourself, on which you can build your own code, and to demonstrate the
principles being covered.

Who this book is for
This book is for anyone who has a Linux environment to design, implement, and care for. It
is intended to appeal to a wide range of open source professionals, from infrastructure
architects through to system administrators, including professionals up to C level.
Proficiency in the implementation and maintenance of Linux servers and familiarity with
the concepts involved in building, patching, and maintaining a Linux server infrastructure
are assumed. Prior knowledge of Ansible and other automation tools is not essential but
may be beneficial.

What this book covers
Chapter 1, Building a Standard Operating Environment on Linux, provides a detailed
introduction to standardized operating environments, a core concept that will be referred to
throughout this hands-on book, and which is essential understanding in order for you to
embark on this journey.

Chapter 2, Automating Your IT Infrastructure with Ansible, provides a detailed, hands-on
breakdown of an Ansible playbook, including inventories, roles, variables, and best
practices for developing and maintaining playbooks; a crash course enabling you to learn
just enough Ansible to begin your automation journey.

Preface

[2]

Chapter 3, Streamlining Infrastructure Management with AWX, explores, with the help of
practical examples, the installation and utilization of AWX (also available as Ansible
Tower) so as to build good business processes around your Ansible automation
infrastructure.

Chapter 4, Deployment Methodologies, enables you to understand the various methods
available in relation to large-scale deployments in Linux environments, and how to
leverage these to the best advantage of the enterprise.

Chapter 5, Using Ansible to Build Virtual Machine Templates for Deployment, explores the best
practices for deploying Linux by building virtual machine templates that will be deployed
at scale on a hypervisor in a practical and hands-on manner.

Chapter 6, Custom Builds with PXE Booting, looks at the process of PXE booting for when
the templated approach to server builds may not be possible (for example, where bare-
metal servers are still being used), and how to script this to build standard server images
over the network.

Chapter 7, Configuration Management with Ansible, provides practical examples of how to
manage your build once it enters service, so as to ensure that consistency remains a byword
without limiting innovation.

Chapter 8, Enterprise Repository Management with Pulp, looks at how to perform patching in
a controlled manner to prevent inconsistencies re-entering even the most carefully
standardized environment through the use of the Pulp tool.

Chapter 9, Patching with Katello, builds on our work involving the Pulp tool by introducing
you to Katello, providing even more control over your repositories whilst providing a user-
friendly graphical user interface.

Chapter 10, Managing Users on Linux, provides a detailed look at user account management
using Ansible as the orchestration tool, along with the use of centralized authentication
systems such as LDAP directories.

Chapter 11, Database Management, looks at how Ansible can be used both to automate
deployments of databases, and to execute routine database management tasks, on Linux
servers.

Chapter 12, Performing Routine Maintenance with Ansible, explores some of the more
advanced on-going maintenance that Ansible can perform on a Linux server estate.

Chapter 13, Using CIS Benchmarks, provides an in-depth examination of the CIS server
hardening benchmarks and how to apply them on Linux servers.

Preface

[3]

Chapter 14, CIS Hardening with Ansible, looks at how a security hardening policy can be
rolled out across an entire estate of Linux servers in an efficient, reproducible manner with
Ansible.

Chapter 15, Auditing Security Policy with OpenSCAP, provides a hands-on look at the
installation and use of OpenSCAP to audit Linux servers for policy violations on an on-
going basis, since security standards can be reversed by either malicious or otherwise well-
meaning end users.

Chapter 16, Tips and Tricks, explores a number of tips and tricks to keep your Linux
automation processes running smoothly in the face of the ever-changing demands of the
enterprise.

To get the most out of this book
To follow the examples in this book, it is recommended that you have access to at least two
Linux machines for testing on, though more may be preferable to develop the examples
more fully. These can be either physical or virtual machines—all examples were developed
on a set of Linux virtual machines, but should work just as well on physical ones. In
Chapter 5, Using Ansible to Build Virtual Machine Templates for Deployment, we make use of
nested virtualization on a KVM virtual machine to build a Linux image. The exact
hardware requirements for this are listed at the beginning of this chapter. This will require
either access to a physical machine with the appropriate CPU to run the examples on, or a
hypervisor that supports nested virtualization (for example, VMware or Linux KVM).

Please be aware that some examples in this book could be disruptive to other services on
your network; where there is such a risk, this is highlighted at the beginning of each
chapter. I recommend you try out the examples in an isolated test network unless/until you
are confident that they will not have any impact on your operations.

Although other Linux distributions are mentioned in the book, we focus on two key Linux
distributions—CentOS 7.6 (though if you have access to it, you are welcome to use Red Hat
Enterprise Linux 7.6, which should work just as well in most examples), and Ubuntu Server
18.04. All test machines were built from the official ISO images, using the minimal
installation profile.

As such, where additional software is required, we take you through the steps needed to
install it so that you can complete the examples. If you choose to complete all the examples,
you will install software such as AWX, Pulp, Katello, and OpenSCAP. The only exception
to this is FreeIPA, which is mentioned in Chapter 10, Managing Users on Linux. Installing a
directory server for your enterprise is a huge topic that sadly requires more space than we
have in this book—hence, you may wish to explore this topic independently.

Preface

[4]

The text assumes that you will run Ansible from one of your Linux test machines,
but Ansible can actually be run on any machine with Python 2.7 or Python 3 (versions 3.5
and higher) installed (Windows is supported for the control machine, but only through a
Linux distribution running in the Windows Subsystem for Linux (WSL) layer available on
newer versions of Windows. Supported operating systems for Ansible include (but are not
limited to) Red Hat, Debian, Ubuntu, CentOS, macOS, and FreeBSD.

This book uses the Ansible 2.8.x.x series release, although a few examples are specific to
Ansible 2.9.x.x, which was released during the course of writing. Ansible installation
instructions can be found at https:/ /docs. ansible. com/ ansible/ intro_ installation.
html.

Download the example code files
You can download the example code files for this book from your account
at www.packt.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Hands- On- Enterprise- Automation- on-Linux. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
https:/%E2%80%8B/%E2%80%8Bdocs.%E2%80%8Bansible.%E2%80%8Bcom/%E2%80%8Bansible/%E2%80%8Bintro_%E2%80%8Binstallation.%E2%80%8Bhtml
http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /static. packt- cdn. com/downloads/
9781789131611_ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To start with, let's create a role called loadmariadb."

A block of code is set as follows:

- name: Ensure PostgreSQL service is installed and started at boot time
 service:
 name: postgresql
 state: started
 enabled: yes

Any command-line input or output is written as follows:

$ mkdir /var/lib/tftpboot/EFIx64/centos7

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781789131611_ColorImages.pdf

Preface

[6]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Core Concepts

The objective of this section is to understand the systems administration fundamentals and
techniques that will be covered in this book. First, we will cover a hands-on introduction to
Ansible, the tool that will be used throughout this book for automation and purposes such
as package management and advanced systems administration en masse.

This section comprises the following chapters:

Chapter 1, Building a Standard Operating Environment on Linux
Chapter 2, Automating Your IT Infrastructure with Ansible
Chapter 3, Streamlining Infrastructure Management with AWX

1
Building a Standard Operating

Environment on Linux
This chapter provides a detailed exploration of the Standard Operating Environment
(henceforth, SOE for short) concept in Linux. Although we will go into much greater detail
later, in short, an SOE is an environment where everything is created and modified in a
standard way. For example, this would mean that all Linux servers are built in the same
way, using the same software versions. This is an important concept because it makes
managing the environment much easier and reduces the workload for those looking after it.
Although this chapter is quite theoretical in nature, it sets the groundwork for the rest of
this book.

We will start by looking at the fundamental definition of such an environment, and then
proceed to explore why it is desirable to want to create one. From there, we will look at
some of the pitfalls of an SOE to give you a good perspective on how to maintain the right
balance in such an environment, before finally discussing how an SOE should be integrated
into day-to-day maintenance processes. The effective application of this concept enables
efficient and effective management of Linux environments at very large scales.

In this chapter, we will cover the following topics:

Understanding the challenges of Linux environment scaling
What is an SOE?
Exploring SOE benefits
Knowing when to deviate from standards
Ongoing maintenance of SOEs

Building a Standard Operating Environment on Linux Chapter 1

[9]

Understanding the challenges of Linux
environment scaling
Before we delve into the definition of an SOE, let's explore the challenges of scaling a Linux
environment without standards. An exploration of this will help us to understand the
definition itself, as well as how to define the right standards for a given scenario.

Challenges of non-standard environments
It is important to consider that many challenges experienced by enterprises with
technology estates (whether Linux or otherwise) do not start out as such. In the early stages
of growth, in fact, many systems and processes are entirely sustainable, and in the next
section, we will look at this early stage of environment growth as a precursor to
understanding the challenges associated with large-scale growth.

Early growth of a non-standard environment
In a surprisingly large number of companies, Linux environments begin life without any
form of standardization. Often, they grow organically over time. Deployments start out
small, perhaps just covering a handful of core functions, and as time passes and
requirements grow, so does the environment. Skilled system administrators often make
changes by hand on a per-server basis, deploying new services and growing the server
estate as business demands dictate.

This organic growth is the path of least resistance for most companies—project deadlines
are often tight and in addition both budget and resource are scarce. Hence, when a skilled
Linux resource is available, that resource can assist in just about all of the tasks required,
from simple maintenance tasks to commissioning complex application stacks. It saves a
great deal of time and money spent on architecture and makes good use of the skillset of
staff on hand as they can be used to address immediate issues and deployments, rather
than spending time on architectural design. Hence, quite simply, it makes sense, and the
author has experienced this at several companies, even high-profile multi-national ones.

Building a Standard Operating Environment on Linux Chapter 1

[10]

Impacts of non-standard environments
Let's take a deeper look at this from a technical standpoint. There are numerous flavors of
Linux, numerous applications that perform (at a high level) the same function, and
numerous ways to solve a given problem. For example, if you want to script a task, do you
write it in a shell script, Perl, Python, or Ruby? For some tasks, all can achieve the desired
end result. Different people have different preferred ways of approaching problems and
different preferred technology solutions, and often it is found that a Linux environment has
been built using a technology that was the flavor of the month when it was created or that
was a favorite of the person responsible for it. There is nothing wrong with this in and of
itself, and initially, it does not cause any problems.

If organic growth brings with it one fundamental problem, it is this: scale. Making changes
by hand and always using the latest and greatest technology is great when the environment
size is relatively small, and often provides an interesting challenge, hence keeping technical
staff feeling motivated and valued. It is vital for those working in technology to keep their
skills up to date, so it is often a motivating factor to be able to employ up-to-date
technologies as part of the day job.

Scaling up non-standard environments
When the number of servers enters the hundreds, never mind thousands (or even greater!),
this whole organic process breaks down. What was once an interesting challenge becomes
laborious and tedious, even stressful. The learning curve for new team members is steep. A
new hire may find themselves with a disparate environment with lots of different
technologies to learn, and possibly a long period of training before they can become truly
effective. Long-serving team members can end up being silos of knowledge, and should
they depart the business, their loss can cause continuity issues. Problems and outages
become more numerous as the non-standard environment grows in an uncontrolled
manner, and troubleshooting becomes a lengthy endeavor—hardly ideal when trying to
achieve a 99.99% service uptime agreement, where every second of downtime matters!
Hence, in the next section, we will look at how to address these challenges with an SOE.

Building a Standard Operating Environment on Linux Chapter 1

[11]

Addressing the challenges
From this, we realize our requirement for standardization. Building a suitable SOE is all
about the following:

Realizing economies of scale
Being efficient in day-to-day operations
Making it easy for all involved to get up to speed quickly and easily
Being aligned with the growing needs of the business

After all, if an environment is concise in its definition, then it is easier for everyone
involved in it to understand and work with. This, in turn, means tasks are completed
quicker and with greater ease. In short, standardization can bring cost savings and
improved reliability.

It must be stressed that this is a concept and not an absolute. There is no right or wrong
way to build such an environment, though there are best practices. Throughout this
chapter, we will explore the concept further and help you to identify core best practices
associated with SOEs so that you can make informed decisions when defining your own.

Let's proceed to explore this in more detail. Every enterprise has certain demands of their
IT environments, whether they are based on Linux, Windows, FreeBSD, or any other
technology. Sometimes, these are well understood and documented, and sometimes, they
are simply implicit—that is to say, everyone assumes the environment meets these
standards, but there is no official definition. These requirements often include the following:

Security
Reliability
Scalability
Longevity
Supportability
Ease of use

These, of course, are all high-level requirements, and very often, they intersect with each
other. Let's explore these in more detail.

Building a Standard Operating Environment on Linux Chapter 1

[12]

Security
Security in an environment is established by several factors. Let's look at some questions to
understand the factors involved:

Is the configuration secure?
Have we allowed the use of weak passwords?
Is the superuser, root, allowed to log in remotely?
Are we logging and auditing all connections?

Now, in a non-standard environment, how can you truly say that these requirements are all
enforced across all of your Linux servers? To do so requires a great deal of faith they have
all been built the same way, that they had the same security parameters applied, and that
no-one has ever revisited the environment to change anything. In short, it requires fairly
frequent auditing to ensure compliance.

However, where the environment has been standardized, and all servers have been built
from a common source or using a common automation tool (we shall demonstrate this later
in this book), it is much easier to say with confidence that your Linux estate is secure.

A standards-based environment isn't implicitly secure, of course—if there
is an issue that results in a vulnerability in the build process for this
environment, automation means this vulnerability will be replicated
across the entire environment! It is important to be aware of the security
requirements of your environment and to implement these with care,
maintaining and auditing your environment continuously to ensure
security levels are maintained.

Security is also enforced by patches, which ensure you are not running any software with
vulnerabilities that could allow an attacker to compromise your servers. Some Linux
distributions have longer lives than others. For example, Red Hat Enterprise Linux (and
derivatives such as CentOS) and the Ubuntu LTS releases all have long, predictable life
cycles and make good candidates for your Linux estate.

As such, they should be part of your standards. By contrast, if a bleeding edge Linux
distribution such as Fedora has been used because, perhaps, it had the latest packages
required at the time, you can be sure that the life cycle will be short, and that updates
would cease in the not too distant future, hence leaving you open to potential unpatched
vulnerabilities and the need to upgrade to a newer release of Fedora.

Building a Standard Operating Environment on Linux Chapter 1

[13]

Even if the upgrade to a newer version of Fedora is performed, sometimes packages get
orphaned—that is to say, they do not get included in the newer release. This might be
because they have been superseded by a different package. Whatever the cause, upgrading
one distribution to another could cause a false sense of security and should be avoided
unless thoroughly researched. In this way, standardization helps to ensure good security
practices.

Reliability
Many enterprises expect their IT operations to be up and running 99.99% of the time (or
better). Part of the route to achieving this is robust software, application of relevant bug
fixes, and well-defined troubleshooting procedures. This ensures that in the worst case
scenario of an outage, the downtime is as minimal as possible.

Standardization again helps here—as we discussed in the preceding section on security, a
good choice of underlying operating system ensures that you have ongoing access to bug
fixes and updates, and if you know that your business needs a vendor backup to ensure
business continuity, then the selection of a Linux operating system with a support contract
(available with Red Hat or Canonical, for example) makes sense.

Equally, when servers are all built to a well-defined and understood standard, making
changes to them should yield predictable results as everyone knows what they are working
with. If all servers are built slightly differently, then a well-meaning change or update
could have unintended consequences and result in costly downtime.

Again with standardization, even if the worst-case scenario occurs, everyone involved
should know how to approach the problem because they will know that all servers have
been built on a certain base image and have a certain configuration. This knowledge and
confidence reduce troubleshooting times and ultimately downtime.

Scalability
All enterprises desire their business to grow and most times, this means that IT
environments need to scale up to deal with increased demand. In an environment where
the servers are built in a non-standard manner, scaling up an environment becomes more of
a challenge.

For example, if scaling horizontally (adding more identical servers to an existing service),
the new servers should all have the same configuration as the existing ones. Without
standards, the first step is to work out how the initial set of servers was built and then to
clone this and make the necessary changes to produce more unique servers.

Building a Standard Operating Environment on Linux Chapter 1

[14]

This process is somewhat cumbersome whereas, with a standardized environment, the
investigative step is completely unnecessary, and horizontal scaling becomes a predictable,
repeatable, business-as-usual task. It also ensures greater reliability as there should be no
unintended results from the new servers in the case that a non-standard configuration item
was missed. Human beings are incredible, intelligent beings capable of sending a man to
the moon, and yet they are equally capable of overlooking a single line in a configuration
file. The idea of standardization is to mitigate this risk, and hence make it quick and
efficient to scale an environment either up or out using a well-thought-out operating
system template, the concept of which we will explore as we proceed through this chapter.

Longevity
Sometimes when deploying a service, a particular software version is needed. Let's take the
example of a web application that runs on PHP. Now, suppose that your particular
enterprise has, for historical reasons, standardized on CentOS 6 (or RHEL 6). This operating
system only ships with PHP 5.3, meaning that if you suddenly take on an application that
only supports PHP 7.0 and above, you need to figure out how to host this.

One apparently obvious solution to this would be to roll out a Fedora virtual machine
image. After all, it shares similar technologies to CentOS and RHEL and has much more
up-to-date libraries included with it. The author has direct experience of this kind of
solution in several roles! However, let's take a look at the bigger picture.

RHEL (and CentOS, which is based upon this) has a lifespan of around 10 years, depending
on the point at which you purchased it. In an enterprise, this is a valuable proposition—it
means that you can guarantee that any servers you build will have patches and support for
up to 10 years (and possibly longer with extended life cycle support) from the point at
which you built them. This ties in nicely with our previous points around security,
reliability, and supportability (in the following section).

However, any servers that you build on Fedora will have a lifespan of somewhere in the
region of 12-18 months (depending on the Fedora release cycle)—in an enterprise setting,
having to redeploy a server after, say, 12-18 months is a headache that is not needed.

This is not to say there is never a case for deploying on Fedora or any other fast-moving
Linux platform—it is simply to state that in an enterprise where security and reliability are
vitally important, you are unlikely to want a Linux platform with a short life cycle as the
short term gain (newer library support) would be replaced in 12-18 months with the pain of
a lack of updates and the need to rebuild/upgrade the platform.

Building a Standard Operating Environment on Linux Chapter 1

[15]

Of course, this does depend very much on your approach to your infrastructure—some
enterprises take a very container-like approach to their servers and re-deploy them with
every new software release or application deployment. When your infrastructure and build
standards are defined by code (such as Ansible), then it is entirely possible to do this with a
fairly minimal impact on your day-to-day operations, and it is unlikely that any single
server would be around for long enough for the operating system to become outdated or
unsupported.

At the end of the day, the choice is yours and you must establish which path you feel
provides you with the most business benefit without putting your operations at risk. Part of
standardization is to make sound, rational decisions on technology and to adopt them
wherever feasible, and your standard could include frequent rebuilds such that you can use
a fast-moving operating system such as Fedora. Equally, you might decide that your
standard is that servers will have long lives and be upgraded in place, and in this case, you
would be better choosing an operating system such as an Ubuntu LTS release or
RHEL/CentOS.

In the following section, we will look in greater detail at how an SOE benefits the concept of
supportability in the next section.

Supportability
As we have already discussed, having a standardized environment brings with it two
benefits. The first is that a well-chosen platform means a long vendor support life cycle.
This, in turn, means long support from either the vendor (in the case of a product such as
RHEL) or the community (in the case of CentOS). Some operating systems such as Ubuntu
Server are available with either community support or a paid contract directly from
Canonical.

Supportability doesn't just mean support from the vendor or the Linux community at large,
however. Remember that, in an enterprise, your staff is your front line support before
anyone external steps in. Now, imagine having a crack team of Linux staff, and presenting
them with a server estate comprised of Debian, SuSe, CentOS, Fedora, Ubuntu, and
Manjaro. There are similarities between them, but also a huge number of differences.
Across them, there are four different package managers for installing and managing
software packages, and that's just one example.

Whilst entirely supportable, it does present more of a challenge for your staff and means
that, for anyone joining the company, you require both a broad and a deep set of Linux
experience—either that or an extensive on-boarding process to get them up to speed.

Building a Standard Operating Environment on Linux Chapter 1

[16]

With a standardized environment, you might end up with more than one operating system,
but nonetheless, if you can meet all of your requirements with, say, CentOS 7 and Ubuntu
Server 18.04 LTS (and know that you are covered for the next few years because of your
choices), then you immediately reduce the workload on your Linux team and enable them
to spend more time creatively solving problems (for example, automating solutions with
Ansible!) and less time figuring out the nuances between operating systems. As we have
also discussed, in the event of an issue, they will be more familiar with each OS and hence
need to spend less time debugging, reducing downtime.

This brings us nicely into the subject of ease of use at scale, and we will provide an
overview of this in the next section.

Ease of use
This final category overlaps heavily with the last two—that is to say that, quite simply, the
more standardized your environment, the easier it is for a given set of employees to get to
grips with it. This automatically promotes all of the benefits we have discussed so far
around reducing downtime, easier recruitment and on-boarding of staff, and so on.

Having set out the challenges that an SOE helps to address, we will proceed in the next
section to look at the anatomy of such an environment to understand it from a technical
standpoint.

What is an SOE?
Now that we've explored the reasons why an SOE is important to the enterprise and
understood at a high level the solutions for these problems, let's look in detail at an SOE.
We will begin by defining the SOE itself.

Defining the SOE
Let's take a quick look at this from a more practical standpoint. As we have already said, an
SOE is a concept, not an absolute. It is, at its simplest level, a common server image or build
standard that is deployed across a large number of servers throughout a company. Here, all
required tasks are completed in a known, documented manner.

Building a Standard Operating Environment on Linux Chapter 1

[17]

To start with, there is the base operating system—and, as we have discussed, there are
hundreds of Linux distributions to choose from. Some are quite similar from a system
administration perspective (for example, Debian and Ubuntu), whilst some are markedly
different (for example, Fedora and Manjaro). By way of a simple example, let's say you
wanted to install the Apache Web Server on Ubuntu 18.04 LTS—you would enter the
following commands:

sudo apt-get update
sudo apt-get install apache2

Now, if you wanted to do the same thing but on CentOS 7, you would enter the following:

sudo yum install httpd

As you can see, there is nothing in common between these commands—not even the name
of the package, even though the end result in both cases is an installation of Apache. On a
small scale, this is not an issue, but when servers are numerous and as server count goes
up, so does the complexity of managing such an environment.

The base operating system is just the start. Our example above was installing Apache, yet
we could also install nginx or even lighttpd. They are, after all, also web servers.

Then, there is configuration. Do you want users to be able to log in as root over SSH? Do
you need a certain level of logging for audit or debug purposes? Do you need local or
centralized authentication? The list is myriad, and as you can see, if left unchecked could
grow into a massive headache.

This is where the SOE comes in. It is effectively a specification, and at a high level, it might
say the following:

Our standard base operating system is Ubuntu 18.04 LTS.
Our standard web server will be Apache 2.4.
SSH logins are enabled, but only for users with SSH keys and not root.
All user logins must be logged and archived for audit purposes.
Except for a few local break glass accounts, all accounts must be centrally
managed (for example, by LDAP or Active Directory).
Our corporate monitoring solution must be integrated (for example, the Nagios
NCPA agent must be installed and configured to communicate with our Nagios
server).
All system logs must be sent to the corporate central log management system.
Security hardening must be applied to the system.

Building a Standard Operating Environment on Linux Chapter 1

[18]

The preceding is simply an example, and it is by no means complete; however, it should
begin to give you an idea of what an SOE looks like at a high level. As we proceed through
this chapter, we will delve deeper into this subject and give more examples to build up a
clear definition.

Knowing what to include
Before we proceed, let's take a look in a little more detail at what to include in the
environment. We have outlined in the previous section a very simplistic definition for an
SOE. Part of any good SOE operating process is to have a pre-defined operating system
build that can be deployed at a moment's notice. There are multiple ways this might be
achieved and we will discuss these later in this book—however, for the time being, let's
assume that a base image of Ubuntu 18.04 LTS as suggested previously has been built.
What do we integrate into this standard build?

We know, for example, that our login policy is going to be applied throughout the
organization—hence, when the build is created, /etc/ssh/sshd_config must be
customized to include PermitRootLogin no and PasswordAuthentication no. There
is no point in performing this step in the post-deployment configuration, as this would
have to be performed on each and every single deployment. Quite simply, this would be
inefficient.

There are also important automation considerations for our operating system image. We
know that Ansible itself communicates over SSH, and so we know that we are going to
require some kind of credentials (it is quite likely this will be SSH key-based) for Ansible to
run against all of the deployed servers. There is little point in having to manually roll out
Ansible credentials to every single machine before you can actually perform any
automation, and so it is important to consider the kind of authentication you want Ansible
to use (for example, password- or SSH key-based), and to create the account and
corresponding credentials when you build the image. The exact method for doing this will
depend upon your corporate security standards, but I would advocate as a potential
solution the following:

Creating a local account on the standard image for Ansible to authenticate
against
Giving this account appropriate sudo rights to ensure all desired automation
tasks can be performed
Setting the local password for this account, or adding the SSH public key from an
Ansible key-pair to the authorized_keys file for the local Ansible account you
created

Building a Standard Operating Environment on Linux Chapter 1

[19]

Doing this, of course, does present some security risks. It is most likely
that Ansible will need full access to root on your servers for it to
effectively perform all of the automation tasks you might ask of it, and so
this Ansible account could become a backdoor if the credentials were ever
compromised. It is recommended that as few people as possible have
access to the credentials and that you make use of a tool such as AWX or
Ansible Tower (which we shall explore in Chapter 3, Streamlining
Infrastructure Management with AWX) to manage your credentials, hence
preventing people from getting hold of them inappropriately. You will
also almost certainly want to enable auditing of all activities performed by
the Ansible account and have these logged to a central server somewhere
so that you can inspect them for any suspicious activity and audit them as
required.

Moving on from user accounts and authentication, consider also Nagios Cross-Platform
Agent (NCPA). We know in our example that all deployed servers are going to need to be
monitored, and so it is a given that NCPA agent must be installed, and the token defined
such that it can communicate with the Nagios server. Again, there is no point doing this on
every single server after the standard image is deployed.

What about the web server though? It is sensible to have a standard, as it means all who are
responsible for the environment can become comfortable with the technology. This makes
administration easier and is especially beneficial for automation, as we shall see in the next
section. However, unless you only ever deploy web servers running on Linux, this
probably shouldn't be included as part of the standard build.

As a sound principle, the standard builds should be as simple and lightweight as possible.
There is no point in having additional services running on them, taking up memory and
CPU cycles, when they are redundant. Equally, having unconfigured services increases the
attack surface for any potential attacker and so for security reasons, it is advisable to leave
them out.

In short, the standard build should only include configuration and/or services that are
going to be common to every server deployed. This approach is sometimes referred to as
Just enough Operating System or JeOS for short, and it is the best starting point for your
SOE.

Having understood the basic principles of an SOE, we will proceed in the next section to
look in more detail at the benefits an SOE brings to your enterprise.

Building a Standard Operating Environment on Linux Chapter 1

[20]

Exploring SOE benefits
By now, you should have some idea of what an SOE is, and how it brings economies of
scale and greater efficiency to a Linux environment. Now, let's build on that and look in
more detail at an example of the importance of standardization.

Example benefits of an SOE in a Linux
environment
To say that there are commonalities in a Linux environment is to say that the servers that
comprise it all share attributes and features. For example, they might all be built upon
Ubuntu Linux, or they might all have Apache as their web server.

We can explore this concept with an example. Suppose that you have 10 Linux web servers
behind a load balancer and that they are all serving simple static content. Everything is
working fine, but then a configuration change is mandated. Perhaps this is to change the
document root of each web server to point to a new code release that has been deployed to
them by another team.

As the person responsible, you know that because the overall solution is load balanced, all
servers should be serving the same content. Therefore, the configuration change is going to
be required on each and every one. That means 10 configurations changes to make if you
do it by hand.

You could, of course, do this by hand, but this would be tedious and certainly isn't the best
use of time for a skilled Linux admin. It is also error-prone—a typo could be made on one
of the 10 servers and not spotted. Or the admin could be interrupted by an outage
elsewhere and only a subset of the server configurations changed.

The better solution would be to write a script to make the change. This is the very basis of
automation and it is almost certainly going to be a better use of time to run a single script
once against 10 servers than to manually make the same change 10 times over. Not only is it
more efficient, but if the same change became required in a month, the script could be
reused with just minimal adjustment.

Building a Standard Operating Environment on Linux Chapter 1

[21]

Now, let's throw a spanner into the works. What if, for reasons unknown, someone built
five of the web servers using Apache on CentOS 7, and the other five using nginx on
Ubuntu 18.04 LTS? The end result would, after all, be the same—at a basic level, they are
both web servers. However, if you want to change the document root in Apache on CentOS
7, you would need to do the following:

Locate the appropriate configuration file in /etc/httpd/conf.d.1.
Make the required change to the DocumentRoot parameter.2.
Reload the web server with systemctl reload httpd.service.3.

If you had to do the same thing for nginx on Ubuntu 18.04 LTS, you would do the
following:

Locate the correct configuration file in /etc/nginx/sites-available.1.
Make the required change to the root parameter.2.
Ensure that the site configuration file is enabled using the3.
a2ensite command—otherwise, Apache will not actually see the configuration
file.
Reload the web server with systemctl reload apache2.service.4.

As you can see from this rather simplistic (albeit contrived) example, a lack of commonality
is the enemy of automation. To cope with the case, you would need to do as follows:

Detect the operating system on each server. This in itself is non-trivial—there is1.
no one way to detect a Linux operating system, so your script would have to
walk through a series of checks, including the following:

The contents of /etc/os-release, if it exists1.
The output of lsb_release, if it is installed2.
The contents of /etc/redhat-release, if it exists3.
The contents of /etc/debian_version, if it exists4.
Other OS-specific files as required, if none of the preceding produce5.
meaningful results

Run different modification commands in different directories to effect the change2.
as discussed previously.
Run different commands to reload the web server, again as detailed previously.3.

Hence, the script becomes complex, more difficult to write and maintain, and certainly
more difficult to make reliable.

Building a Standard Operating Environment on Linux Chapter 1

[22]

Although this particular example is unlikely to occur in real life, it does serve to make an
important point—automation is much easier to implement when the environment is built to
a given standard. If a decision is made that all web servers are to be based on CentOS 7, to
run Apache 2, and have the site configuration named after the service name, then our
automation becomes so much easier. In fact, you could even run a simple sed command to
complete the change; for example, suppose the new web application was deployed
to /var/www/newapp:

sed -i 's!DocumentRoot.*!DocumentRoot /var/www/newapp!g'
/etc/httpd/conf.d/webservice.conf
systemctl reload httpd.service

No environment detection was necessary at all—just two simple shell commands. This
could be the basis of a really simple automation script to be run either on each of the 10
servers in turn or remotely over SSH. Either way, our automation task is now very simple
and shows how important commonality is. Importantly, an SOE by its very nature provides
this commonality. Lack of commonality doesn't just make automation difficult though—it
also hampers testing, often distorting test results as they may not be representative if
environments are different.

In the next section of this chapter, we will build on this knowledge to demonstrate how an
SOE benefits the process of software testing.

Benefits of SOE to software testing
A common problem I have seen in many environments is that of a new software
deployment having been successfully tested in an isolated pre-production environment and
yet not working correctly when it is released into the production environment. More often
than not, this problem is traced back to fundamental differences between the production
and pre-production environments, and so it is clear that for testing to be valid, both
environments must be as similar as possible.

Indeed, one of the problems containerization platforms such as Docker set out to solve was
exactly this, and hence portability is a core feature of container environments. Code
deployed on Docker is built on top of a container image that is, in simple terms, a stripped-
down operating system image (remember JeOS?). This, in effect, is a really tiny SOE, just
running in a container rather than on a bare metal server or virtual machine. However, it is
worth considering that if portability through environment standardization is a key feature
of container technology, then should we not try to achieve this across the board regardless
of our infrastructure.

Building a Standard Operating Environment on Linux Chapter 1

[23]

After all, if the configuration of the production servers is different from the pre-production
ones, then how valid is the testing? If the pre-production environment was built on CentOS
7.6, but the production environment lags behind it on CentOS 7.4, then can you really
ensure that a successful test result in one environment will guarantee it in the other? On
paper, it should work, but with fundamental differences in software and library versions
between the environments, this can never be guaranteed. This is before we even consider
possible differences in configuration files and installed software.

Hence, SOEs can help here—if all environments are built to the same standards, then in
theory, they should all be identical. Those of you who are eagle-eyed will notice the use of
the word should in the previous sentence and it is there for a good reason. SOEs are a great
step forward in defining the solution for testing failures, but they are not the whole story.

An environment is only standard as long as no-one modifies it, and if all users have
administration-level privileges, then it is very easy for someone (well-meaning or
otherwise) to log in and make changes that mean the environment deviates from the
standard.

The answer to this issue is automation—not only do SOEs promote and enable automation,
they also rely on it to maintain the level of standardization that they were required for in
the first place. The two support each other directly and should ideally be inseparable
partners—the SOE being the definition for the environment itself, and the automation
providing the implementation, enforcement, and auditing of the standard. Indeed, this is
the very premise of this book—that environments should be standardized as far as possible,
and that as many changes as possible should be automated.

The focus of this book will be on the automation aspect of this equation, as other than
adhering to the principles outlined in this chapter, the standards adopted will be unique for
every environment and it is not the goal of this book to determine them at a low level.
Working with our earlier example, both Apache and nginx have their benefits, and what
fits one use case may not fit another.

The same is true with operating systems—some organizations may rely on the support
package provided with Red Hat Enterprise Linux, whilst others don't need this but need
the bleeding edge technologies provided by, say, Fedora. There is no right or wrong way to
define a standard, as long as it meets the needs of the services it underpins. So far, we have
focused very much on commonality and standards; however, there will always be edge
cases where an alternative solution is required. In the next section, we will establish how to
know when you should deviate from your standards.

Building a Standard Operating Environment on Linux Chapter 1

[24]

Knowing when to deviate from standards
It would be easy to oversell the benefits of standardization, and they are certainly a
requirement for automation to be effective. However, like anything, it can be taken too far.
There is no point, for example, building servers on top of Red Hat Enterprise Linux 5.7 in
2019 simply because this was once defined as a standard (it is now End of Life and no
longer supported or updated). Similarly, from time to time, software vendors will have
qualified their product on certain specific Linux distributions or application stacks and will
not provide support unless their software is run within that ecosystem.

These are cases when deviations from the SOE are necessary, but they should be performed
in a controlled manner. For example, if a business has built up its Linux server estate on
Ubuntu 18.04 LTS, and then a new software stack is purchased that is only qualified on
RHEL 7, it is clear that builds of RHEL 7 are going to be required. These should, however,
be part of a new set of standards if possible and become a secondary SOE.

For example, if the CIS security hardening benchmark is applied to the Ubuntu SOE, then
the equivalent one should be applied to the RHEL too. Similarly, if the business has
standardized on nginx, then this should be used on the environment unless there is a
compelling reason not to (hint: a compelling reason is not that it's new and sexy—it is that it
solves a real problem or somehow improves something in a tangible way).

This results in the business going from one Linux SOE to two, which is still entirely
manageable and certainly better than returning to organic growth methodologies that
hamper effective automation.

In short, expect deviations, and don't fear them. Instead, handle them and use the
requirements to expand your standards, but stick with them where you can. SOEs present a
balancing act for everyone—on the one hand, they bring advantages of scale, make
automation easier, and reduce the training time for new staff (as all servers are more or less
the same in build and configuration), but if applied too rigidly, they could hamper
innovation. They must not be used as an excuse to do things a certain way because that's how
it has always been done.

There will always be a good reason to deviate from a standard; simply look for the business
benefit it brings, whether it's vendor support, lower resource requirements (hence saving
power and money), a longer support window, or otherwise. Try and avoid doing so just
because a new technology is shiny. As long as you are mindful of this fact, you will make
good decisions regarding deviation from your standards. In the next section of this chapter,
we will explore the ongoing maintenance of SOEs.

Building a Standard Operating Environment on Linux Chapter 1

[25]

Ongoing maintenance of SOEs
Although we will look at patching and maintenance in much greater detail later in this
book, it deserves a mention here as it dovetails nicely into the discussion on commonality
and deviations.

If nothing else, you are going to have to patch your Linux environment. For security
reasons alone, this is a given and good practice, even in an air-gapped environment. Let's
say that your environment is made up entirely of virtual machines and that you decided to
standardize on CentOS 7.2 some time ago. You built a virtual machine, performed all of the
required configuration steps to turn it into your SOE image, and then converted it into a
template for your virtualization environment. This becomes your gold build. So far, so good.

However, CentOS 7.2 was released in December 2015, nearly 4 years ago at the time of
writing, and if you were to deploy such an image today, the first thing you would have to
do is patch it. This would, depending on the build definition (and the number of packages
included in it), possibly involve downloading a gigabyte or more of packages to bring it up
to the latest standard and ensure you were running with all discovered vulnerabilities
patched, and all of the requisite bug fixes in place.

Obviously, if you are doing this at scale, this is inefficient—each new server is going to pull
all that data down over the network (or worse, the internet, if you don't have an internal
mirror), and then consume a great deal of I/O time and CPU time applying the patches,
during which the server can't be used for anything meaningful. If you only deploy one
server every few months, you can probably put up with this. If you deploy them on a more
regular basis, then this is going to waste a lot of valuable time and resources.

Hence, as well as performing ongoing maintenance of your environment itself, it is
important to perform ongoing maintenance of your standards. In 2019, it makes sense to
update your CentOS build to 7.6. At the very least, your ongoing maintenance schedule
should involve updating the gold build regularly.

We will go into much greater detail on how this might be performed later in this book.
However, for those who are eager to know now, this might be as simple as booting the
virtual machine image up, performing the updates, sanitizing it (for example, removing
SSH host keys that would be duplicated when the template is cloned), and then creating a
new template from it. Obviously, if any other changes to the SOE have been made since the
last maintenance cycle, then these can be incorporated too.

Building a Standard Operating Environment on Linux Chapter 1

[26]

You should expect your SOE to evolve over time—it would be easy perhaps to labor this
point—but there is an important balance between creating and maintaining standards, and
being overly rigid with them. You must accept that there are times when you will need to
deviate from them as we discussed in the previous section and that, over time, they will
evolve.

In short, SOEs should become a part of your regular IT processes; if employed correctly,
they don't hinder innovation— instead, they actively support it by giving back time to
those working with them and ensuring they spend less time performing mundane,
repetitive tasks and hence have more time for evaluating new technologies and finding
better ways of doing things. This, after all, is one of the key benefits of automation, which
SOEs support directly.

Summary
SOEs are a valuable addition to technology processes in almost any environment. They
require some time to be spent upfront on design work and defining standards, but this time
is more than offset later on as it supports efficient and effective automation of the
environments, and in this manner, actually gives time back to those responsible for the
environment, giving them more time to work on evaluating new technologies, finding more
efficient ways to do things, and being innovative in general.

In this chapter, you learned the fundamental definition of an SOE. You explored the
benefits that they bring to just about any Linux environment where scale is important, how
they support automation, and when and how to make deviations from the standards to
ensure that they do not become overly rigid and hamper growth. Finally, you learned about
the importance of ongoing maintenance, including maintenance of your standards as part
your ongoing maintenance cycles.

In the next chapter, we will explore how to make use of Ansible as an effective automation
framework for your Linux environment.

Building a Standard Operating Environment on Linux Chapter 1

[27]

Questions
What does the acronym SOE stand for?1.
Why would you choose an operating system with a long support cycle, such as2.
CentOS, rather than one with a more rapid release cycle, such as Fedora?
Should you ever deviate from the standards you have defined for your3.
environment?
List three challenges of scaling Linux environments up to enterprise scale.4.
Name three benefits that SOEs bring to Linux in the enterprise.5.
How does an SOE help to reduce the training requirements in an enterprise?6.
Why does an SOE benefit the security of your Linux environment?7.

Further reading
To learn more about SOEs from a Red Hat perspective, refer to this
article: https:/ / servicesblog. redhat. com/ 2016/ 11/ 03/standard- operating-
environment- part- i- concepts- and- structures/ .

https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/
https://servicesblog.redhat.com/2016/11/03/standard-operating-environment-part-i-concepts-and-structures/

2
Automating Your IT

Infrastructure with Ansible
While there are numerous ways to automate tasks on Linux, there is one technology that
stands out above the rest for automation at scale, and that is Ansible. Although it is entirely
possible to automate a task (or tasks) easily with a shell script, there are a number of
disadvantages to this, the most significant being that shell scripting does not scale up well
in large environments. It should be said that there are other automation tools, but Ansible
makes use of native communication protocols (for example, SSH on Linux, and WinRM on
Windows) and hence is completely agentless! This makes deploying it into existing
environments simple. While automation with Ansible is a huge, in-depth subject, this
chapter is intended to cover the basics and get you up and running rapidly so that, even if
you have no prior experience, you can follow the automation examples in this book.
Indeed, this is one of the reasons for the rapid and widespread adoption of Ansible over the
last few years—although it is incredibly powerful, getting started and automating your first
tasks is extremely simple.

In this chapter, we will cover the following Ansible topics:

Exploring the Ansible playbook structure
Exploring inventories in Ansible
Understanding roles in Ansible
Understanding Ansible variables
Understanding Ansible templates
Bringing Ansible and the SOE together

Automating Your IT Infrastructure with Ansible Chapter 2

[29]

Technical requirements
This chapter includes examples based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to a server or virtual machine running
one of the operating systems listed here, and also access to Ansible. Note that the examples
given in this chapter may be destructive in nature (for example, they involve installing files
and packages) and, if run as is, are only intended to be run in an isolated test environment.

Once you are satisfied that you have a safe environment in which to operate, let's get
started on looking at the installation of new software packages with Ansible.

All example code discussed in this chapter is available from GitHub at: https:/ /github.
com/PacktPublishing/ Hands- On- Enterprise- Automation- on- Linux/ tree/ master/
chapter02.

Exploring the Ansible playbook structure
Getting up and running with Ansible is a straightforward endeavor, and packages are
available for most major Linux distributions, FreeBSD, and just about any platform where
Python runs. If you have a recent version of Microsoft Windows installed that supports the
Windows Subsystem for Linux (WSL), Ansible even installs and runs under this.

Note, though, that there are no native Windows packages at the time of
writing.

The official Ansible documentation provides installation documentation for all major
platforms. Please refer to https:/ / docs. ansible. com/ ansible/ latest/ installation_
guide/intro_installation. html.

In this chapter, our examples will be run on Ubuntu Server 18.04.2. However, as Ansible
works across multiple different platforms, most examples should work on other operating
systems too (or, at most, require minimal adaptation).

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter02
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Automating Your IT Infrastructure with Ansible Chapter 2

[30]

Following the official installation documentation, the following commands are executed to
install the latest version of Ansible on our demonstration system:

$ sudo apt-get update
$ sudo apt-get install software-properties-common
$ sudo apt-add-repository --yes --update ppa:ansible/ansible
$ sudo apt-get install ansible

If all goes well, you should be able to query the Ansible binary for its version by running
the following command:

$ ansible --version

The output should look something like this:

Congratulations! Now that Ansible is installed, let's take a look at the fundamentals of
running your first set of Ansible tasks, called a playbook. To get one of these to run, you
actually need to have the following three things in place:

A configuration file1.
An inventory2.
The playbook itself3.

When Ansible is installed, a default configuration file is normally installed
in /etc/ansible/ansible.cfg. There are many advanced features that can be changed
through this file, and it can be overridden using a number of methods. For this book, we
will work almost exclusively with the default settings, meaning that for now, it is sufficient
to acknowledge the existence of this file.

To find out more about the Ansible configuration file, this document is a
good starting point, available at https:/ /docs. ansible. com/ansible/
latest/ installation_ guide/ intro_ configuration. html

https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_configuration.html

Automating Your IT Infrastructure with Ansible Chapter 2

[31]

Nothing happens on Ansible without an inventory. The inventory is a text file (or script)
that provides the Ansible binaries with a list of hostnames to operate against, even if it is
just the localhost. We will look at inventories in more detail in the next part of the chapter,
as they are going to be important in our automation journey. For now, you will find that on
most Linux platforms, a sample inventory file is installed in /etc/ansible/hosts as part
of the Ansible installation. When the inventory file is empty (or contains only comments, as
in the case of the sample one), Ansible implicitly operates against the localhost only.

Last, but by no means least, you must actually have a playbook to run against a server (or
servers). Let's now work through an example to get a very simple playbook to run with
Ansible. Ansible playbooks are written in YAML (a recursive acronym, meaning YAML
Ain't Markup Language) and, as this is very easy to read—indeed, this is one of the core
strengths of Ansible—playbooks can very easily be picked up by someone with minimal
Ansible skills, and yet be easily understood, for either application or modification.

If you are not used to writing code in Python or YAML, then the one thing you need to
know about writing YAML for playbooks is this: indentation matters. Rather than using
brackets or braces to define blocks of code, and semicolons to denote line ends (as is
common in many high-level languages), YAML uses the indentation level itself to
determine where in the code you are, and how it relates to the surrounding code.
Indentation is always created using spaces—never use tabs. Even if the indentation looks
the same to the naked eye, the YAML parser will not see it as the same.

Consider the following block of code:

- name: Simple playbook
 hosts: localhost
 become: false

This is the beginning of an Ansible playbook. Ansible YAML files always start with three
dashes (---), with no indentation. Next, we have a single line that defines the start of the
play, denoted by the single dash (-), with no indentation. Note that an Ansible playbook
can consist of one or more plays, with each play being (at a basic level) a set of tasks to be
performed on a given set of hosts. This particular line of the playbook specifies the name for
the play. Although the name keyword is optional in most places and can be omitted, it is
strongly recommended to include it for all play definitions (just as we have here), and also,
for each and every task. This, quite simply, aids the readability of the playbook and the
speed at which someone new can pick it up, thus promoting efficiency and a low barrier to
entry for newcomers, as we discussed in the preceding chapter.

Automating Your IT Infrastructure with Ansible Chapter 2

[32]

The third line of this block tells Ansible which hosts the tasks included in the play should
be run against. In this instance, we are only going to run against localhost. The fourth
line tells Ansible not to become the superuser (root), as it is not required for this task. Some
tasks—for example, restarting a system service—must be performed as the superuser and,
in this case, you would specify become: true. Note the two-space indentation on both the
third and fourth lines in the preceding code—this tells the YAML parser that the lines are
part of the play, defined on the second line.

Now, let's add two tasks to our playbook by appending the following block of code under
the previous one:

 tasks:
 - name: Show a message
 debug:
 msg: "Hello world!"

 - name: Touch a file
 file:
 path: /tmp/foo
 state: touch

The tasks keyword defines the end of the play definition, and the start of the actual tasks
we wish to execute. Note that it is still indented by two spaces, which tells the parser it is
part of the play we defined previously. We then increase the indentation again for the next
line, to denote that this is part of the tasks block.

By now, you will see a familiar pattern building up. Every time a line of code forms part of
a preceding statement, we increase the indentation by two spaces. Each new item starts
with a single dash (-), thus our preceding block of code contains two tasks.

The first one uses the name keyword with the value Show a message by way of
documentation (think of comments in other programming languages) and uses something
called an Ansible module. Modules are predefined blocks of code that Ansible uses to
perform given tasks. The debug module, included here, is used largely for displaying
messages or variable contents and, hence, playbook debugging. We pass the msg parameter
to the debug module by indenting msg by a further two spaces, telling the module which
message we want to be printed when the playbook is run.

Automating Your IT Infrastructure with Ansible Chapter 2

[33]

The second task has the name and Touch a file keyword and uses the file module to
touch a file located in /tmp/foo. When we run this playbook, the output should look
something like this:

As a rule of thumb for most simple playbooks, tasks are run sequentially from top to
bottom, making the order of execution predictable and easy to manage. That's it! You have
written and executed your first Ansible playbook. You will note how easy that was, and
how little work was involved in integrating it with a single test system. Now, for such a
simple example, a valid question would be: Why go to all that trouble with Ansible when two
lines of shell scripting could achieve the same thing? An example of shell scripting can be seen
in the following code block:

echo "Hello World!"
touch /tmp/foo

Automating Your IT Infrastructure with Ansible Chapter 2

[34]

The first reason to use Ansible is that, while this example is very simple and easy to
understand, as the required tasks for a script become more complex, they become much
harder to read and require someone who understands shell scripting to debug or modify
them. With the Ansible playbook, you can see that the code is incredibly readable, and each
part has an associated name. The enforced indentation also serves to make the code more
readable, and while both comments and indentation are supported in a shell script, neither
is enforced, and they are commonly left out. On top of this, all modules must have
documentation to be accepted into the core Ansible distribution—thus, you are guaranteed
to have good-quality documentation on hand for your playbook. Module documentation
can be found on the official Ansible website, or as part of the installed Ansible package. For
example, if we wanted to learn how to use the file module we used earlier, we would
simply enter the following command in the shell of our system:

$ ansible-doc file

When invoked, this command will give you the complete documentation for the file
module, which incidentally is the same as the documentation on the official Ansible web
site. Thus you always have the Ansible module documentation at your fingertips, even if
the system you are working on is disconnected from the Internet. The following screenshot
shows a page of the output from the command we just ran:

Automating Your IT Infrastructure with Ansible Chapter 2

[35]

The next reason is that the Ansible modules (mostly) offer support for idempotent changes.
What this means is, if a change has already been made, we won't make it a second time.
This is especially important for some changes that might be destructive in nature. It also
saves time and compute resources, and even helps in auditing systems. On top of this,
Ansible offers flow control and robust error handling and, where a shell script will continue
even after an error, unless you integrate your own error-handling code (possibly causing
unpredictable or undesirable results), Ansible will stop all further execution and require
you to fix the problem before running the playbook again.

It is worth mentioning that while modules form a core part of the strength of Ansible, there
could be times when the functionality you need is not handled by any of the available
modules. The beauty of Ansible being open source software (OSS) is that you can write
and integrate your own modules. This is beyond the scope of this book but is well worth
exploring as you develop your Ansible skills. In instances where existing modules just
don't have the required functionality, and you don't have the time or resources to write
your own module, Ansible can also send raw shell commands to the system being
automated. In fact, there are two modules—shell and command—that can send raw
commands to remote systems. Thus, you can even mix shell scripting with Ansible if the
need arises, although you should always use native Ansible modules before resorting to the
use of shell or command. Ansible is incredibly flexible in this way—the built-in
functionality is extensive, but in the event that it ever falls short, it is incredibly easy to
extend the functionality yourself.

These benefits are just the tip of the iceberg, and we will explore some of the others as we
proceed through this chapter. As stated earlier, this chapter is not intended to be
exhaustive, but to serve as an introductory guide to Ansible, to get you started and help
you understand the examples in this book.

In the next section, we will explore probably one of the biggest reasons to use Ansible over
a simple shell script.

Exploring inventories in Ansible
As we have already touched upon, one of the key reasons for the rapid uptake of Ansible is
the fact that it can integrate, without an agent, into most major operating systems. For
example, a single Ansible host can automate commands on just about any other Linux (or
BSD) host to which it can connect over SSH. It can even automate tasks on Windows hosts
that have had remote WinRM enabled, and it is here that we start to uncover the real power
of Ansible.

Automating Your IT Infrastructure with Ansible Chapter 2

[36]

In the previous section of this chapter, we only looked at Ansible running against the
implicit localhost, without using SSH. Ansible supports two different kinds of inventories:
static and dynamic. Throughout this book, we will mostly work with static inventories, as
they serve the examples we are working with. Indeed, static inventories are perfect for
small environments, where the workload of keeping the list of servers to be automated
(which, in essence, is what an Ansible inventory is) is small. However, as inventories grow
in scale, or remain small but change rapidly (for example, cloud compute resources or
Docker containers), the work required to keep an Ansible inventory file up to date becomes
much larger and prone to error.

Ansible offers a number of ready-made dynamic inventory solutions that integrate with
popular public cloud platforms such as Microsoft Azure and Amazon Web Services, on-
premise compute platforms such as OpenStack and VMware, and infrastructure
management solutions such as Katello. It is even possible to write your own dynamic
inventory scripts, and as your environment scales, you will most likely find yourself going
down this path.

For now, let's focus on static inventories. Suppose that we want to take our example
playbook from earlier in the chapter, and run it against two remote hosts rather than the
localhost. First of all, let's create an inventory file that contains the names/addresses of the
two hosts. A static inventory is written in INI format (as opposed to the YAML used in the
playbooks) and, at its simplest level, consists of one host per line. Note that hosts can be
specified either by DNS entry or by IP address.

Here is the inventory file for our demo environment:

[test]
testhost1
testhost2

As you can see, the file is very simple. The first line, with square brackets around it, is the
name of a group in which the servers below it are placed. Servers can live in more than one
group, and this aids greatly in the day-to-day management of servers. For example, if you
have a playbook to apply security updates to all Linux servers, then you would probably
want a group called something like [linux-servers] that contains the addresses of all
such servers. If you then had a playbook to deploy a web application, you would probably
want to put all the web servers in a group called [web-servers]. This makes it easy to
target the correct set of servers when running a given playbook—remember
the hosts: line at the top of our playbook in the earlier example?

Automating Your IT Infrastructure with Ansible Chapter 2

[37]

Groups can even be children of other groups. Thus, if you know your web servers are all
based on Linux, you could specify the web-servers group as a child of the linux-
servers group, thus including all web servers for security patching, without the need for
duplication in the inventory.

We need to make a slight modification to our earlier playbook. The first four lines should
now contain the following:

- name: Simple playbook
 hosts: all
 become: false

As you can see, we have now changed the hosts parameter
from localhost to all (all is a special keyword, meaning all hosts in the inventory,
regardless of group). If we had wanted to just specify the test group, we would have put
in hosts: test, or even hosts: testhost1, for the playbook to run only against a
single host.

Now, we know that Ansible uses SSH to connect to remote Linux hosts in the inventory
and, at this stage, we have not set up key-based SSH authentication. Thus, we need to tell
Ansible to prompt for the SSH password (by default, it does not, meaning it will fail if key-
based authentication is not set up). Similar to the SSH command-line utility, unless you tell
Ansible otherwise, it will initiate an SSH connection to the remote system, using the
username of the current session user on the local machine. Thus, in my example, the
user james exists on my Ansible server and my two test systems, and all tasks are
performed as this user. I can run the following command to run my playbook against my
two remote systems:

$ ansible-playbook -i hosts --ask-pass simple.yml

This looks a little different from the last time we ran it—note the following new parameters:

-i hosts: Tells Ansible to use the file called hosts in the current working
directory for the inventory
--ask-pass: Tells Ansible to stop and prompt for the SSH password for access
to the remote systems (it is assumed the password is the same on all systems)
simple.yml: Tells Ansible the name of the playbook to run

Automating Your IT Infrastructure with Ansible Chapter 2

[38]

Let's see this in action, as follows:

Here, you can see that both the tasks we created earlier in the chapter have been run—only
this time, they have been run on a pair of remote systems using the native SSH
communication protocol. As SSH is normally enabled on most Linux servers, this
immediately gives us massive scope for expanding our automation—this example has been
performed on an inventory containing just two hosts, but it could just have easily contained
200 or more hosts.

Note that the tasks are still run in sequential order as before—only this time, each task is
now run to completion on all hosts in the inventory before the next task is attempted, again
making our playbook flow very predictable and easy to manage.

Automating Your IT Infrastructure with Ansible Chapter 2

[39]

If we set up SSH keys for the remote hosts, then the --ask-pass parameter is no longer
necessary, and the playbook runs without any interaction from the user, which is most
desirable for many automation scenarios:

SSH keys, while more secure than passwords, do bring their own risks,
especially if the keys are not encrypted with a password. In this case,
anyone who gets hold of an unencrypted private key will be able to gain
remote access to any system with the matching public key, without any
further prompt or challenge. If you do go down the route of setting up
SSH keys, be sure you understand the security implications.

Let's run through a simple process to generate an SSH key and configure it on our test
systems for Ansible to authenticate against:

To set up a very simple SSH key-based access on our test hosts, we could run the1.
following command from the Ansible host to create the key pair (do not do this if
you already have a key pair, as you could overwrite it!):

$ ssh-keygen -b 2048 -t rsa -f ~/.ssh/id_rsa -q -N ''

This command silently creates a 2048-bit RSA key in the file at ~/.ssh/id_rsa,2.
with no passphrase (hence unencrypted). The corresponding public key to be
copied to remote systems will be created as ~/.ssh/id_rsa.pub (that is, the
same filename and path specified by -f, with .pub appended). Now, copy it to
the two remote hosts, using the following commands (you will be prompted for
your SSH password both times):

$ ssh-copy-id testhost1
$ ssh-copy-id testhost2

Finally, we can run our playbook just as we did before, but without the --ask-3.
pass flag, as shown in the following screenshot:

Automating Your IT Infrastructure with Ansible Chapter 2

[40]

The difference, as you can see, is subtle but hugely important—no user intervention was
required, meaning our simple playbook suddenly has massive scale across an environment
of virtually any size.

Although here, we have taken advantage of the fact that Ansible will read (by default) the
SSH private keys that are found in the .ssh directory for the user account in question, you
are not limited to using these keys. You can specify a private key file manually by using
the ansible_ssh_private_key_file host variable in the inventory, or you can use ssh-
agent to make different private SSH keys available to Ansible in the current shell session.

Automating Your IT Infrastructure with Ansible Chapter 2

[41]

Doing this is left as an exercise for you to complete, and the following pages from the
official Ansible documentation will assist you with this:

For an introduction to using ssh-agent with Ansible, please refer
to https://docs.ansible.com/ansible/latest/user_guide/connection_detai
ls.html.

For an introduction to the inventory host variables available in Ansible,
including ansible_ssh_private_key_file, please refer to https:/ /docs.
ansible. com/ ansible/ latest/ user_ guide/ intro_ inventory. html.

Of course, you don't need to perform all tasks on remote systems as the current user—you
can use the --user (or -u) flag with ansible-playbook to specify a user to be used across
all hosts in the inventory, or you can even use the ansible_user host variable within the
inventory itself to specify user accounts on a per-host basis. Obviously, you should try to
avoid a scenario such as this, as it goes against the principle of commonality that we
discussed in Chapter 1, Building a Standard Operating Environment on Linux, but the
important thing to note is that Ansible offers huge flexibility and opportunity to customize.
It scales incredibly well in SOEs, but where there are deviations, it is easy to get Ansible to
adapt without difficulty.

We will go into variables in greater detail later in this chapter, but it is worth mentioning at
this stage that inventories can also contain variables. These can either be user-created
variables or special variables, such as the aforementioned ansible_user. Extending our
simple inventory from this chapter, if we wanted to set the SSH user to bob and create a
new user-defined variable called http_port for use later in a playbook, our inventory
might look like this:

[test]
testhost1
testhost2

[test:vars]
ansible_user=bob
http_port=8080

That covers the basics of inventories that you will need to know to get started with Ansible
and to proceed with this book. Hopefully, you are starting to get an idea of the low barrier
to entry presented to new users by Ansible that has made it so popular.

https://docs.ansible.com/ansible/latest/user_guide/connection_details.html
https://docs.ansible.com/ansible/latest/user_guide/connection_details.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Automating Your IT Infrastructure with Ansible Chapter 2

[42]

Understanding roles in Ansible
As easy as Ansible is to get started with, and as readable as a playbook is when it is short, it
does get more complex, as do the requirements. In addition, there are certain functions that
may well be needed repeatedly in different scenarios. For example, you might need to
deploy a MariaDB database server as a common task in your environment. A module
called apt is used for managing packages on Ubuntu servers, and so, if we wanted to
install the mariadb-server package on our test system, the playbook to perform this task
could look like this:

- name: Install MariaDB Server
 hosts: localhost
 become: true

 tasks:
 - name: Install mariadb-server package
 apt:
 name: mariadb-server
 update_cache: yes

Note that this time, we have set become to true, as we need root privileges to install
packages. This is, of course, a very simple example, as installing a database server normally
requires a great deal more configuration work, but it serves as a starting point. We could
run this on our test system, and yield the desired result, as follows:

Automating Your IT Infrastructure with Ansible Chapter 2

[43]

So far, so good. If you had to do this on a routine basis, though, in different playbooks for
different hosts, would you really want to be writing (or, indeed, copying and pasting) that
tasks block from this example over and over again? Also, this example is simplistic, and in
reality, the database deployment code would be far more complex. If someone makes a fix
or improvement in the code, how do you ensure that this new revision of code is
propagated into all the right places?

This is where roles come in, and an Ansible role, while in essence nothing more than a
structured set of directories and YAML, enables efficient and effective reuse of code. It also
makes the initial playbook easier to read, as we shall see shortly. Once roles are created,
they can be stored in a central location, such as a version control repository (for example,
GitHub), and then, the latest version can always be accessed whenever a playbook needs to
install MariaDB.

Roles are (by default) run from a subdirectory called roles/, in the same directory as your
playbook. Throughout this book, we will use this convention, though it must be stated that
Ansible will also search for roles in /etc/ansible/roles and the paths specified by the
roles_path parameter in the Ansible configuration file (which, by default, can be found in
/etc/ansible/ansible.cfg, though there are ways to override this). Each role then has
its own subdirectory under this, and that directory name forms the name of the role. Let's
explore this through a simple example, as follows:

We will get started by creating a roles/ directory, and an install-1.
mariadb/ directory under this, for our first role:

$ mkdir -p roles/install-mariadb

Each role has a fixed directory structure under it; however, for our simple2.
example, we are only interested in one: tasks/. The tasks/ subdirectory of a
role contains the main list of tasks that will be run when the role is called, in a file
called main.yml. Let's create that directory now, as follows:

$ cd roles/install-mariadb
$ mkdir tasks
$ vi tasks/main.yml

Automating Your IT Infrastructure with Ansible Chapter 2

[44]

Naturally, you can use your preferred editor in place of vi. In the main.yml file,3.
enter the following code—note that it is essentially the tasks block from the
original playbook, but the indentation level has now changed:

- name: Install mariadb-server package
 apt:
 name: mariadb-server
 update_cache: yes

Once we have created this file, we then edit our original install-4.
db.yml playbook so that it looks like this:

- name: Install MariaDB Server
 hosts: localhost
 become: true

 roles:
 - install-mariadb

Notice how much more compact the playbook is now! It is also a great deal easier to read,
and yet if we run it, we can see that it performs the same function. Note how the state of the
MariaDB server installation task was changed last time we ran it but is now ok. This means
that Ansible detected that the mariadb-server package was already installed, and hence
no further action was required. This is an example of the previously mentioned idempotent
change in action, as can be seen in the following screenshot:

Automating Your IT Infrastructure with Ansible Chapter 2

[45]

Well done! You have created and executed your first role. If you want to read more about
roles and the required directory structure, please refer to https:/ /docs. ansible. com/
ansible/latest/user_ guide/ playbooks_ reuse_ roles. html.

There's even more to roles than this—not only are they invaluable in structuring your
playbooks and enabling reuse of code; there is also a central repository for community-
contributed roles, called Ansible Galaxy. If you search Ansible Galaxy for MariaDB-related
roles, you will find (at the time of writing) 277 different roles, all designed to perform
various database installation tasks. This means that you don't even have to write your own
roles for common tasks—you can either make use of community-contributed ones or fork
them, and modify them to your own ends. Most common server automation tasks have
already been solved somewhere along the way by the Ansible community, and so it is very
likely you will find exactly what you are looking for.

Let's test this now, as follows:

First, install a role from Ansible Galaxy that installs MariaDB server on Ubuntu:1.

$ ansible-galaxy install -p roles/ mrlesmithjr.mariadb-mysql

Now, we will modify our playbook to reference this role instead:2.

- name: Install MariaDB Server
 hosts: localhost
 become: true

 roles:
 - mrlesmithjr.mariadb-mysql

That's all that is required—if we run it, we can see that this playbook performs3.
many more tasks than our simple one, including a lot of the security setup that is
good practice when installing a new database, as can be seen in the following
screenshot:

https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html

Automating Your IT Infrastructure with Ansible Chapter 2

[46]

The end result, however, is that the mariadb-server package is installed on our test
system—and this time, we barely even had to write any code! It is advisable, of course, to
check what a role from Ansible Galaxy is going to do before blindly running it on your
systems, in case it makes changes that you hadn't expected (or wanted!). Nonetheless, roles,
in conjunction with Ansible Galaxy, form a powerful addition to the value that Ansible has
to offer.

With an understanding of roles under our belts, in the next section, we will look at an
important concept to help you get the most out of your playbooks and roles by making
their content dynamic: Ansible variables.

Automating Your IT Infrastructure with Ansible Chapter 2

[47]

Understanding Ansible variables
Most of the examples we have looked at so far have been static in nature. This is fine for the
simplest playbook examples, but in many cases, it is desirable to be able to either store
values or define them easily in a central place, rather than having to go hunting through a
playbook (and tree of roles) for a specific hardcoded value. As in other languages, it is also
desirable to capture values somehow, for reuse later.

There are many different types of variables in Ansible, and it is important to know that they
have a strict order of precedence. Although we won't encounter this much in this book, it is
important to be aware of this, as you might otherwise receive unexpected results from your
variables.

More details on variable precedence can be found at https:/ /docs.
ansible. com/ ansible/ latest/ user_ guide/ playbooks_ variables.
html#variable- precedence- where- should- i-put- a- variable

In short, variables can be defined in a number of locations, and the right location for a given
scenario will be driven by the objective of the playbook. For example, if a variable is
common to an entire group of servers, it would be logical to define it in the inventory as a
group variable. If it applies to every host a specific playbook runs against regardless, then
you would almost certainly define it in the playbook. Let's take a quick look at this by
modifying our simple.yml playbook from earlier in this chapter, this time, defining a play
variable called message for our debug statement to display when the playbook is run, as
follows:

- name: Simple playbook
 hosts: localhost
 become: false

 vars:
 message: "Life is beautiful!"

 tasks:
 - name: Show a message
 debug:
 msg: "{{ message }}"
 - name: Touch a file
 file:
 path: /tmp/foo
 state: touch

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Automating Your IT Infrastructure with Ansible Chapter 2

[48]

Note that we have now defined a vars section before the tasks one and that the variable is
accessed by placing it in pairs of curly braces. Running this playbook yields the following
results:

If you refer to the variable precedence order list, you will note that variables passed to
the ansible-playbook binary on the command line are top of the list, and override all
other variables. Thus, if we want to override the contents of our message variable without
editing the playbook, we can do so as follows:

$ ansible-playbook simple.yml -e "message=\"Hello from the CLI\""

Automating Your IT Infrastructure with Ansible Chapter 2

[49]

Note the special quoting and escaping required to handle the spaces in the variable content,
and the effects of this on the operation of the playbook:

Variables can also be passed to roles, and are a simple yet powerful way of creating generic
roles that can be used in a multitude of scenarios, without using identical configuration
data. For example, in the previous section, we explored installing a MariaDB server. While
this is a good candidate for a role, you certainly don't want the same root database
password to be configured on every server. It thus makes sense to define a variable for the
password, and pass this to the role from the calling playbook (or another appropriate
source, such as a host or group variable).

As well as user-defined variables, Ansible also has a number of built-in variables, referred
to as special variables. These can be accessed from anywhere in the playbook, and are
useful for obtaining certain details pertaining to the state of the play.

Automating Your IT Infrastructure with Ansible Chapter 2

[50]

For example, if you needed to know the hostname currently being acted upon for a specific
task, this is available through the inventory_hostname variable. A full list of these
variables is available at https:/ /docs. ansible. com/ansible/ latest/ reference_
appendices/special_ variables. html

Many readers will, by now, have noticed that the output from all our example playbooks
contains a line that says Gathering Facts. Although this can be turned off, it is, in fact,
incredibly useful, and populates a wide array of variables with useful key system data. To
get an idea of the kind of data gathered during this phase, run the following code from the
command line:

$ ansible -m setup localhost

This command, rather than running a playbook, instructs Ansible to run the setup module
directly on the localhost—the setup module is the one that is run behind the scenes,
during the Gathering Facts stage. The output will look something like this, and goes on
for pages—this is just the first few lines:

https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html
https://docs.ansible.com/ansible/latest/reference_appendices/special_variables.html

Automating Your IT Infrastructure with Ansible Chapter 2

[51]

We can immediately see there is some really useful information there, such as the IP
addresses of the host, the root volume, and so on. Remember our discussion about
commonality in Chapter 1, Building a Standard Operating Environment on Linux, and the
difficulty in detecting the operating system you are running against? Well, Ansible makes
this easy, as that data is all readily available in the gathered facts. We can modify our
debug statement to display the Linux distribution we are running against, simply by
specifying the appropriate fact, accessible from the output from the last command, as
follows:

 - name: Show a message
 debug:
 msg: "{{ ansible_distribution }}"

Now, when we run the playbook, we can easily tell we are running on Ubuntu, as can be
seen in the following screenshot:

Ansible enables you to conditionally run individual tasks, roles, or even entire blocks of
tasks, and hence having access to facts makes it straightforward to write robust playbooks
that can be run against multiple platforms and perform the correct actions on each
platform.

Automating Your IT Infrastructure with Ansible Chapter 2

[52]

It is also worth noting that variables do not need to be stored in unencrypted text.
Occasionally, it might be necessary to store a password in a variable (as discussed
earlier—perhaps the root password for our MariaDB server install). Storing those details in
plain text format presents a big security risk, but fortunately, Ansible includes a technology
called Vault, which is capable of storing variable data encrypted using AES256. These
encrypted vaults can be referenced by any playbook, provided the vault password is
passed to the playbook when it is run. Vaults are beyond the scope of this chapter, but if
you would like to read more about them, please see https:/ /docs. ansible. com/ansible/
latest/user_guide/ playbooks_ vault. html. In this book, we will not use them extensively,
simply to keep the example code concise. However, it is strongly recommended that in a
production environment, you use vaults wherever sensitive data for a playbook needs to be
stored.

Now that we have introduced the concept of variables in Ansible, and the various types
available, let's take a look at an important means for managing configuration files in
Ansible—the use of templates.

Understanding Ansible templates
A common automation requirement is to set a value in a configuration file, or even to
deploy a new configuration file, based on some given parameters. Ansible provides
modules that can perform similar functions to the venerable sed and awk utilities, and of
course, these are valid ways to modify an existing configuration file. Let's suppose we have
a small Apache virtual host configuration file, containing the following code:

<VirtualHost *:80>
 DocumentRoot "/var/www/automation"
 ServerName www.example.com
</VirtualHost>

We want to deploy this configuration, but customize the DocumentRoot parameter for each
host. Naturally, we could just deploy the preceding file, exactly as it is, to every host, and
then use a regular expression, in conjunction with the Ansible replace module, to find
the DocumentRoot line and modify it (similar to using the sed command-line utility). The
resulting playbook might look like this:

- name: Deploy and customize an Apache configuration
 hosts: localhost
 become: true

 vars:

https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_vault.html

Automating Your IT Infrastructure with Ansible Chapter 2

[53]

 docroot: "/var/www/myexample"

 tasks:
 - name: Copy static configuration file to remote host
 copy:
 src: files/vhost.conf
 dest: /etc/apache2/sites-available/my-vhost.conf

 - name: Replace static DocumentRoot with variable contents
 replace:
 path: /etc/apache2/sites-available/my-vhost.conf
 regexp: '^(\s+DocumentRoot)\s+.*$'
 replace: '\1 {{ docroot }}'

If we create our sample static virtual host configuration file in files/vhost.conf with the
preceding contents shown and run this playbook, we can see that it works, as follows:

Automating Your IT Infrastructure with Ansible Chapter 2

[54]

However, this is an inelegant solution. First of all, we're using two tasks, and if we wanted
to customize ServerName as well, we'd need even more. Secondly, those who are familiar
with regular expressions will know it wouldn't take much to trip up the simple one used
here. Writing good robust regular expressions for tasks such as this is an art in itself.

Luckily, Ansible has inherited from the Python in which it is written a technology called
Jinja2 templating. This is perfect for scenarios such as this (and many other deployment-
related automation scenarios). Instead of a cumbersome multistep approach such as this,
we now define our starting virtual host configuration file as a template
in templates/vhost.conf.j2, as follows:

<VirtualHost *:80>
 DocumentRoot {{ docroot }}
 ServerName www.example.com
</VirtualHost>

As you can see, this is almost identical to our original configuration file, except that we
have now replaced one of the static values with one of our variables, surrounded by pairs
of curly braces, just as we would do in the playbook itself. Before we proceed with this
example, it is worth mentioning that Jinja2 is an incredibly powerful templating system that
goes far beyond simple variable substitution into a flat file. It is capable of conditional
statements, such as if...else and for loops, and includes a wide array of filters that can
be used to manipulate content (for example, to convert a string to uppercase, or to join the
members of a list together to form a string).

With that said, this book is not intended as a complete language reference for either Ansible
or Jinja2—rather, it is intended as a practical guide to show you how to build up your SOE
using Ansible. Please refer to the Further reading section at the end of this chapter for some
references, which will give you a more complete overview of both Ansible and Jinja2.

Returning to our example, we will modify the playbook to deploy this example, as follows:

- name: Deploy and customize an Apache configuration
 hosts: localhost
 become: true

 vars:
 docroot: "/var/www/myexample"

 tasks:
 - name: Copy across and populate the template configuration
 template:
 src: templates/vhost.conf.j2
 dest: /etc/apache2/sites-available/my-vhost.conf

Automating Your IT Infrastructure with Ansible Chapter 2

[55]

Notice how much more elegant this playbook is—the template module copies the
configuration template to the remote host, just as the copy module did in the prior
example, and also populates any variables we have specified. This is an incredibly
powerful way to deploy configuration files in a repeatable, common manner, and it is
highly recommended that you adopt this approach where possible. When human beings
edit files, they often do so in an inconsistent manner, and that can be the enemy of
automation, as you have to build a really robust regular expression to ensure you catch all
possible edge cases. Deploying from templates with Ansible creates repeatable, reliable
results that can easily be validated in a production environment. Running this playbook
yields identical results to our previous, more complex example, as follows:

That concludes our look at variables for now, and indeed, our crash course in Ansible. In
the next section, we tie up everything we have learned, before drawing this chapter to a
close.

Automating Your IT Infrastructure with Ansible Chapter 2

[56]

Bringing Ansible and the SOE together
We have already worked through a number of end-to-end examples with Ansible.
Although simple, they showcase the fundamental building blocks of automation with
Ansible, on which this book is based. A big part of achieving automation in a Linux
environment at scale is having both good standards and robust processes. Hence, not only
should your operating environment be standardized; so should your deployment and
configuration processes.

As discussed in the previous chapter, although a well-defined SOE will be consistent at the
point of deployment, this consistency can soon be lost if administrators are allowed to make
changes at will, using whatever their preferred method is. Just as it is desirable to deploy an
SOE to achieve success in automation, so it is also desirable to make automation your go-to
for as many (ideally all) administrative tasks as possible.

Ideally, there should be one single source of truth for playbooks (for example, a central Git
repository) and a single source of truth for inventories (this might be in the form of a
centrally stored static inventory, or the use of a dynamic inventory).

The goal of any well-written Ansible playbook (or role) is that the results from running it
are repeatable and predictable. Take, for example, the playbook we ran at the end of the
previous section, where we were deploying a simple Apache vhost.conf file using a
playbook that we wrote. Every time you run this playbook on any server, the contents of
/etc/apache2/sites-available/my-vhost.conf will be the same, as the playbook
deploys this file using a template, and overwrites the target file if it exists.

This, of course, is but a microcosm of the standard operating environment, but such an
environment will be built up of hundreds—if not thousands—of these tiny building blocks.
After all, if you can't get your Apache configurations to be consistent across your
infrastructure, how can you be confident that any other parts of it have been built in
accordance with your standards?

The repeatable nature of well-written playbooks is important to mention here too—just
because you deployed a consistent Apache configuration doesn't mean it will remain
consistent. Five minutes after you deploy the configuration, someone with the required
privileges could log in to the server and change the configuration. Thus, your environment
could deviate from your SOE definition almost immediately. Running your Ansible
playbooks repeatedly across your infrastructure is actually an important part of your
ongoing processes, as the nature of these playbooks will be to bring the configuration back
into line with your original standards. Thus Ansible playbooks are a vital component of not
only defining and deploying your SOE but also in the ongoing enforcement of the
standards.

Automating Your IT Infrastructure with Ansible Chapter 2

[57]

No fixes should be manually deployed, if at all possible. Suppose someone manually
tweaks the configuration in /etc/apache2/sites-available/my-vhost.conf to
overcome an issue. This in itself is not a problem, but it is vital that these changes are
placed back into the playbook, role, or template. If deploying or enforcing your SOE
through Ansible somehow breaks it, then something is wrong with your processes.

Indeed, by implementing processes such as we have discussed so far, and will continue to
explore throughout this book, successful automation across an enterprise can be achieved.
The introduction to Ansible automation given in this chapter, while brief, serves as one part
of these suggested processes.

There is much more to learn about Ansible and, in short, I would like to propose a bold
statement: If you can conceive it as a server deployment or configuration task, Ansible can
help. Thanks to its open source nature, Ansible is very extensible, and its wide adoption
means that many of the common automation challenges have already been solved, and
relevant features included. It is hoped that this chapter has given you a head start on your
journey into Linux automation with Ansible.

Summary
Ansible is a robust, powerful, open source tool that, once you have mastered a few simple
concepts, can help you to achieve automation on a very large scale in your Linux
environment. Ansible is agentless, and so requires no configuration on Linux client
machines for you to begin your automation journey, and a robust community behind the
project means that easy answers are available to most of the challenges you may wish to
solve with it.

In this chapter, you learned the fundamentals of playbook structure and some of the key
files required to run a simple playbook. You learned about the importance of inventories
and how to use them, and how to efficiently reuse code with roles (and indeed, how to
leverage code from the community to save you time and effort). You learned about
variables and facts, and how to reference them in playbooks, and how to make use of Jinja2
templating to aid your automation journey. Throughout this journey, you built and ran a
number of complete playbooks, demonstrating the use of Ansible.

In the next chapter, you'll discover how to streamline infrastructure management, and
further refine your automation processes with AWX.

Automating Your IT Infrastructure with Ansible Chapter 2

[58]

Questions
What is Ansible, and how is it different from running a simple shell script?1.
What is an Ansible inventory?2.
Why is it generally beneficial to code your tasks into roles rather than single large3.
playbooks?
Which templating language does Ansible make use of?4.
Can you override variables in Ansible?5.
Why would you use the Ansible template module in place of a simple search and6.
replace operation?
How might you make use of Ansible facts to improve the flow of your playbook?7.

Further reading
For an in-depth understanding of Ansible and Jinja2 templating, please refer
to Mastering Ansible, Third Edition—James Freeman and Jesse Keating (https:/ / www.
packtpub. com/ gb/ virtualization- and- cloud/ mastering- ansible- third-
edition).

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition

3
Streamlining Infrastructure

Management with AWX
As we have discussed so far in this book, effective enterprise automation on Linux involves
several key elements, including standardization of both tools and technologies, and
implementing processes and tools that make the management of the environment more
efficient. Ansible is a great first step in this journey and can be supplemented with a
complementary technology called AWX to further streamline its application.

AWX is, in short, a GUI-driven tool for the management of Ansible jobs. It does not replace
Ansible functionality, but rather adds to it by providing a multi-user GUI-driven frontend
that allows for the simple management and orchestration of playbooks. When managing
large Linux environments such as those in an enterprise, AWX is the perfect complement to
Ansible automation and is an important step in effective and efficient management. In this
chapter, we will cover the following topics:

Introduction to AWX
Installing AWX
Running your playbooks from AWX
Automating routine tasks with AWX

Streamlining Infrastructure Management with AWX Chapter 3

[60]

Technical requirements
This chapter includes examples based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to a server or virtual machine running
one of the aforementioned operating systems and Ansible. Note that the examples given in
this chapter may be destructive in nature (for example, they involve installing Docker and
running services on the server) and, if run as is, are only intended to be run in an isolated
test environment.

Once you are satisfied that you have a safe environment to operate in, let's get started by
looking at the installation of new software packages with Ansible.

All example code discussed in this book is available from GitHub at: https:/ /github. com/
PacktPublishing/Hands- On- Enterprise- Automation- on-Linux.

Introduction to AWX
AWX sets out to solve the problems associated with Ansible automation in an enterprise
environment. To maintain our hands-on focus, let's consider the organic growth scenario
we discussed in Chapter 1, Building a Standard Operating Environment on Linux. In a small
environment where Ansible has been implemented, you might have just one or two key
people responsible for writing and running playbooks against the environment. In this
small scenario, it is reasonably easy to know who has run which playbooks and what the
latest versions are, and the training requirements for Ansible are low as only a small
number of key people are responsible for its use.

As the environment scales to enterprise sizing, so do the number of Ansible operators. If all
of those responsible for running Ansible have it installed on their own machines, and all
have local copies of the playbooks, suddenly the management of that environment becomes
a nightmare! How can you ensure that everyone is using the latest versions of the
playbooks? How do you know who ran what and what the outcome was? What if a change
needs to be run out of hours? Can you pass the Ansible job off to a Network Operations
Center (NOC) team, or is that not possible because they would need training on how to use
Ansible?

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux

Streamlining Infrastructure Management with AWX Chapter 3

[61]

AWX sets out to address all of these challenges, as we shall see subsequently, starting in the
next section, where we look at how AWX can reduce your staff training costs.

AWX reduces training requirements
Ansible is very easy to get up and running. It still needs a little training, though. For
example, IT admins and operators who haven't received training may not be comfortable
with running a playbook on the command line. This is demonstrated in the following
example. Although fairly simple in Ansible terms, anyone unfamiliar with the tool will find
that it isn't very user-friendly:

$ ansible-playbook -i hosts --ask-pass simple.yml

Although it isn't a complex command, those unfamiliar with it might be reluctant to run it
for fear of causing damage to production systems, let alone interpret the pages of output
that a sizeable playbook can produce.

To alleviate this, AWX provides a web GUI-based interface that is quite literally point and
click. Although many advanced features can be used by those familiar with it, a playbook
can be run with literally a few clicks of the mouse, and the results are shown using a simple
traffic light system (red indicating that the playbook run failed, while green shows that it
passed). In this way, AWX provides an interface from which even those with no prior
Ansible experience can launch a playbook and pass the results on to another team for
analysis.

AWX offers benefits for security teams and managers too, by logging detailed results of all
actions and jobs performed, and we shall provide an overview of this in the next section.

AWX enables auditability
Although the Ansible command-line tools provide logging options, these are not enabled
by default and as a result, the run output of playbooks can be lost as soon as a terminal
session is closed. This is not great in an enterprise scenario, particularly when an issue or
outage occurs and a root cause analysis is required.

AWX addresses this in two ways. First of all, every user must log in to the GUI before any
actions can be performed. AWX can integrate with centralized accounting systems such as
LDAP or Active Directory, or users can be defined locally on the AWX host. All actions in
the UI are then tracked, and as such, it is possible to trace back playbook runs to specific
users and indeed configuration changes. In an enterprise environment, this level of
accountability and this kind of audit trail is a must-have.

Streamlining Infrastructure Management with AWX Chapter 3

[62]

Beyond this, AWX captures all of the output of every playbook run, along with key pieces
of information such as which inventory the playbook was run against, what variables were
passed to it (if any), and the date and time of the run. This means that if an issue occurs,
AWX can provide a complete audit trail to help you find out what happened and when.

Not only can AWX assist with auditing your automation, but it can also help with ensuring
version control of your playbooks, as we shall discuss in the next section.

AWX supports version control
In an enterprise scenario, individuals storing playbooks locally could be a problem waiting
to happen. For example, if user A updates a playbook with a critical fix, how do you ensure
that user B has access to that code? Ideally, the code should be stored in a version control
system (for example, GitHub) and the local copy updated for every single run.

Good processes are an important component of enterprise automation of Linux and while
user B should update their local playbooks before running them, you cannot enforce this.
Again, AWX addresses this issue by allowing playbooks to be sourced from a version
control repository, with the local copy of the playbooks on the AWX server being updated
automatically.

Although AWX can help you, especially when it comes to ensuring the
latest version of code has been pulled from the repository, it cannot help
with other errant behaviors such as someone not committing their code in
the first place. The intention, however, of enforcing the use of AWX for
Ansible playbook runs is that anyone who makes changes must commit
them for AWX to run them. Local access to the AWX server should be
tightly restricted to prevent people from making code changes on the local
filesystem, and in this way, you can have confidence that everyone is
actively and effectively using your version control system.

These updates can be event-driven so that, for example, local playbooks can be updated
every single time a playbook from that store is run. They can also be updated on a
scheduled basis or manually, as per the decisions of the AWX administrators.

AWX can help with the security of your automation too. We shall explore this in the next
section by looking at credential management in AWX.

Streamlining Infrastructure Management with AWX Chapter 3

[63]

AWX helps with credential management
For Ansible to effectively manage an Enterprise Linux environment, it must have some
form of credentials to access all of the servers it is managing. SSH authentication is
normally secured with either SSH keys or passwords, and in a large team of Ansible
operators, this can mean everyone has access to those passwords and SSH private keys
since they are required for Ansible to be run. Needless to say, this presents a security risk!

As stated previously, from a security standpoint, this is less than desirable as it would be
too easy for someone to copy and paste credentials and use them in a manner for which
they were not intended. AWX also handles this by storing required credentials in its
database, encrypted with a passphrase chosen at installation time. The GUI stores all the
credentials using reversible encryption so that they can be passed to Ansible when
playbooks are run later on. However, the GUI does not let you see any previously entered
sensitive data (such as passwords or SSH private keys)—that is to say that they can be
entered and changed, but you cannot show a password or SSH key in the GUI, and hence
operators can't easily make use of the AWX frontend to obtain credential information for
use elsewhere. In this way, AWX helps enterprises keep their credentials under lock and
key and ensures that they are only used for Ansible deployments and are not leaked or
used for any other unintended purposes.

Ansible Vault is an excellent tool for encrypting any sensitive data that a playbook needs to
operate on, be that for playbook data in the form of variables or storing server credentials
themselves, such as an SSH private key. Although Vault is highly secure, it is easy to see
the vault contents if you have the vault password (here, you would need to run a playbook
that uses the Vault). As a result, AWX provides unique functionality to supplement Ansible
and ensure security in an enterprise environment.

In these ways, AWX helps to address many of the challenges that enterprises face when
deploying Ansible in a large-scale environment. Before we complete this section of this
chapter, we will touch very briefly on how AWX can help you to integrate with other
services.

Integrating AWX with other services
There is a myriad of tools that AWX can integrate with—for example, both Red Hat's
Satellite 6 and CloudForms products (and their open source Katello and ManageIQ
counterparts) provide native integration with both AWX and Ansible Tower. These are just
two examples, and this is all possible because everything that we will explore as we
progress through this chapter is also accessible through an API and a command-line
interface.

Streamlining Infrastructure Management with AWX Chapter 3

[64]

This enables AWX to be integrated with a wide variety of services, or you could even write
your own that would run a playbook from AWX as a result of some other action, just by
calling the API. The command-line interface (called tower-cli, after the commercial
Ansible Tower product) is also incredibly useful, especially when it comes to
programmatically populating data in AWX. For example, if you wanted to add a host to a
static inventory, you could do this through the web user interface (as we shall demonstrate
later), the API, or using the CLI. The latter two methods lend themselves incredibly well to
integration with other services—for example, a Configuration Management Database
(CMDB) could push new hosts into an inventory using the API, without the need for any
manual action by the user.

To explore these two integration points further, you can refer to the following official
documentation sources:

The AWX API is documented here: https:/ /docs. ansible. com/ ansible- tower/
latest/html/ towerapi/ index. html.
The tower-cli command is documented here: https:/ /tower- cli.
readthedocs. io/ en/ latest/ .

Given the wide and varied nature of such integrations, they are beyond the scope of this
book—however, it is important to mention them here because it is hoped that, as you read
this chapter, you will see opportunities for integration with other services and hence be able
to explore this topic further. In the next section of this chapter, we shall get hands-on with
AWX and look at a simple deployment. Later in this chapter, this will be followed up with
some example use cases.

Installing AWX
Installing AWX is a straightforward affair once you put the right prerequisites in place. In
fact, one of the prerequisites for AWX is Ansible, proving the complementary nature of this
technology. Most of the AWX code runs in a set of Docker containers, which makes it
straightforward to deploy in most Linux environments.

The use of Docker containers means that it is possible to run AWX in OpenShift or other
Kubernetes environments—however, for the sake of simplicity here, we will get started by
installing it on a single Docker host. Before you proceed any further, you should ensure
that your chosen host has the following:

Docker, fully installed and working
The docker-py module for your version of Python

https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/

Streamlining Infrastructure Management with AWX Chapter 3

[65]

Access to Docker Hub (internet access)
Ansible 2.4 or newer
Git 1.8.4 or newer
Docker Compose

These prerequisites are normally readily available for most Linux systems. Now, we will
perform the following steps to begin our installation:

Continuing our example of the Ubuntu system we used in the previous chapter,1.
we will run the following command to install the AWX requirements:

$ sudo apt-get install git docker.io python-docker docker-compose

Once these have been installed, the next task is to clone the AWX code from its2.
repository on GitHub:

$ git clone https://github.com/ansible/awx.git

The Git tool will faithfully clone the latest and greatest version of the AWX source
code—note that this project is under active development and there is a possibility
that the latest release might have bugs in it.

If you want to clone one of the stable AWX releases, browse
the Releases section of the repository and check out the desired
version: https:/ /github. com/ansible/ awx/ releases.

We have cloned the repository, and it is now time for us to define the3.
configuration for our installation of AWX, especially security details such as a
password. To get started on this, change into the installer directory under the
cloned repository:

$ cd awx/installer

Hopefully, the contents of this directory will look familiar to you after reading the
previous chapter. There is an inventory file, a playbook for us to run
called install.yml, and a roles/ directory. However, don't go and run
the install.yml playbook just yet as there are some variables in the inventory
file that we must set before we proceed.

https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases
https://github.com/ansible/awx/releases

Streamlining Infrastructure Management with AWX Chapter 3

[66]

If you take a look through the inventory file, you will see there is a great deal of
configuration that can occur inside it. Some variables are commented out, while
others are set to default values. There is a minimum of six variables that I
recommend that you set before installing AWX, and these are as follows:

Variables name Recommended value

admin_password
This is the default password for the admin user—you will need this
the first time you log in, so be sure to set it to something memorable
and secure!

pg_password
This is the password for the backend PostgreSQL database—be sure
to set it to something unique and secure.

postgres_data_dir

This is the directory on the local filesystem where the PostgreSQL
container will store its data—it defaults to a directory
under /tmp, which, on most systems, will be automatically cleaned
up regularly. This often destroys the PostgreSQL database, so set it
to something AWX-specific
(for example, /var/lib/awx/pgdocker).

project_data_dir

For uploading playbooks manually to AWX without the need for a
version control system, the playbooks must sit somewhere on the
filesystem. To prevent having to copy them into a container, this
variable maps the local folder specified to the required one inside a
container. For the examples in this book, we will use the default
(the /var/lib/awx/projects folder).

rabbitmq_password
This is the password for the backend RabbitMQ service—be sure to
set it to something unique and secure.

secret_key

This is the secret key used to encrypt credentials in the PostgreSQL
database. It must be the same between upgrades of AWX, so be sure
to store it somewhere secure as it will need to be set in future AWX
inventories. Make this something long and secure.

You will observe that in this inventory file there is a great deal of secret4.
information that is in plaintext. While we can tolerate this for the duration of the
installation process, this file should not be left lying around on the filesystem
when the installation is complete as it could give a potential attacker all of the
details they need to easily compromise your systems. Once the installation phase
is complete, be sure to either copy this file into a password manager of some kind
or simply store the individual passwords—either way, do not leave the file
unencrypted!

Streamlining Infrastructure Management with AWX Chapter 3

[67]

Once the inventory is customized, it is time to run the installation itself—this is5.
launched by running the following command:

$ sudo ansible-playbook -i inventory install.yml

From our work on Ansible in the previous chapter, you will recognize this
command—it is using the ansible-playbook command to run the
install.yml playbook, while also using the inventory file called inventory
that we edited in step 1. Pages of output will pass by in the Terminal, and if the
installation is successful, you should see something like this:

Streamlining Infrastructure Management with AWX Chapter 3

[68]

Once the installation completes, it takes a few minutes for the Docker containers6.
to actually start up and for the backend database to be created. However, once
this is done, you should be able to navigate to the IP address of your chosen
AWX host in your browser and see the login page, an example of which is shown
in the following screenshot:

Log in as the admin user using the password you set in the admin_password7.
variable in the inventory file earlier. You should then be taken to the dashboard
page of AWX:

Streamlining Infrastructure Management with AWX Chapter 3

[69]

That's it—you have successfully installed and logged in to AWX! Of course, there are many
more advanced installation parameters you can define, and equally, in an enterprise, you
would not rely on just a single AWX host with no backup (or high availability).

Note that when you log in to AWX, the connection is not SSL-secured,
which could result in sensitive data such as machine credentials being
transmitted over your network in the clear.

There is no one solution to out-of-the-box high availability and SSL issues that will suit
every enterprise, and so we leave the actual solution for this as an exercise for you. For
example, if you have an OpenShift environment with multiple hosts, then installing AWX
in this environment will enable it to keep running, even if the host it runs on fails. There are
of course ways to achieve high availability without OpenShift too.

Streamlining Infrastructure Management with AWX Chapter 3

[70]

Applying secure HTTP to AWX is also going to be solved in a different manner in different
environments. Most Docker environments will have some kind of load balancer in front of
them to help to handle their multi-host nature, and as a result, the SSL encryption could be
offloaded onto this. It is also possible to secure a single Docker host, such as the one we
have built here, but installing something capable of reverse proxying (for example, nginx)
and configuring that to handle the SSL encryption.

In short, there is no one-size-fits-all solution to this, but it is recommended that you address
these in the manner best suited to your enterprise. For this reason, we will not discuss them
further here, other than to recommend that you take them into account when deploying
AWX for production use.

Now that you have an AWX instance running, we must configure it so that we can
successfully replicate how we ran playbooks from the command line in the previous
chapter. For example, we must define an inventory just as we did previously and ensure we
have set up SSH authentication so that Ansible can perform the automated tasks on the
remote computer. In the next part of this chapter, we will walk through all of the setup
that's required to run your first playbook through AWX.

Running your playbooks from AWX
When we ran an example playbook from the command line, we created our inventory file
and then our playbook and then ran it using the ansible-playbook command. All of this,
of course, assumed that we had already set up connectivity to the remote system by way of
either specifying a password interactively or through the setup of SSH keys.

Although the end result in AWX is very similar—playbooks are run against an
inventory—the terminology and naming are rather different. In this part of this chapter, we
will walk through the process of getting your first playbook up and running from AWX.
Although we don't have space in this book to give a complete rundown on every feature
AWX has to offer, this section intends to give you sufficient knowledge and confidence to
start managing your playbooks from AWX, and to explore further on your own.

Before you can run your first playbook from AWX, there are several prerequisite setup
stages that must be completed. In the next section, we will complete the first of
these—creating the credentials that will be used to authenticate over SSH with our target
machine.

Streamlining Infrastructure Management with AWX Chapter 3

[71]

Setting up credentials in AWX
When you log in to AWX, you will notice a menu bar down the left-hand side of the screen.
To define a new set of credentials that we will use to allow Ansible to log into our target
machine, perform the following steps:

Click on Credentials in the left-hand menu bar.1.
Click on the green + icon to create a new credential.2.
Give the credential a name and select Machine from the CREDENTIAL3.
TYPE field. There are many types of credentials that enable AWX to interact with
a wide variety of services, but for now, we are only interested in this particular
type.
There are many other fields available for specifying parameters for more4.
advanced use cases—however, for our demonstration purposes, this is sufficient.

Your end result should look something like the following screenshot. Note that I have
specified the login password for my demo machine, but you could equally have specified
the SSH private key in the larger text box on the screen. You will also observe the presence
of the Prompt on launch checkbox—there are many options in AWX that it can prompt the
user for at the time a playbook is run, which can lend itself to a really rich interactive user
experience. However, in this demo, we won't do this as we want to demonstrate playbooks
running without user intervention:

Streamlining Infrastructure Management with AWX Chapter 3

[72]

When you have a credential defined, the next step is to define the inventory to run our
playbook against. We'll explore this in the next section.

Creating inventories in AWX
Just like on the command line, AWX requires an inventory to be created for playbooks to be
executed against. Here, we are going to make use of one of the official, publicly available
Ansible example playbooks, which requires an inventory with two groups in it. In a larger
setup, we would specify a different server for each group, but for this small demo, we can
reuse the same server for both roles.

The code in question is used to install a simple LAMP stack on an RHEL or CentOS 7
machine and is available to view here: https:/ /github. com/ ansible/ ansible- examples/
tree/master/lamp_ simple_ rhel7.

To run this demo, you will need a CentOS 7 machine. My demo host is called centos-
testhost, and if I were defining an inventory file on the command line, it would look like
this:

[webservers]
centos-testhost

[dbservers]
centos-testhost

To replicate this in the AWX GUI, run through the following sequence:

Click on Inventories on the left-hand menu bar.1.
Click on the green + icon to create a new inventory.2.
Select Inventory from the drop-down menu.3.
Give the inventory a suitable name and click SAVE.4.

https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7
https://github.com/ansible/ansible-examples/tree/master/lamp_simple_rhel7

Streamlining Infrastructure Management with AWX Chapter 3

[73]

Your screen should look something like the one shown here once you have completed this
process:

When complete, we can create our first group and put our test host into it. To do this,
follow these steps:

Click on the GROUPS button at the top of the pane.1.
Click the green + icon to create a new group.2.
Enter the name webservers into the NAME field.3.
Click the green SAVE button.4.
Click the HOSTS button at the top.5.
Click the green + icon button to add a new host.6.

Select New Host from the drop-down list.1.
Enter the name centos-testhost into the HOST NAME field.7.
Click the green SAVE button.8.

Streamlining Infrastructure Management with AWX Chapter 3

[74]

Once you have completed these steps, your screen should look something like the
following screenshot:

Repeat this process to define the dbservers group. Take care not to create this group as a
subgroup of the webservers group, which is easy to do. You will note the breadcrumb
trail at the top of the preceding screenshot—use that to navigate back to the top level of our
new inventory by clicking on Hands on Inventory (or your name, if you chose a
different one).

From here, the process is almost identical, except that when you come to adding the host to
the newly created group (step 6 onward from the preceding steps), choose Existing Host as
we are reusing our single host for both groups in this example. Your resulting screen
should look something like the following screenshot:

Streamlining Infrastructure Management with AWX Chapter 3

[75]

With those steps complete, our inventory complete with groupings is complete in AWX,
and we can move on to the next stage in defining our configuration—the creation of an
AWX project. We will do exactly this in the next section of this chapter.

Creating a project in AWX
If you were working with Ansible on the command line, it is unlikely you would store all of
your playbooks and roles in one directory for very long as it would get unmanageable and
very difficult to work out which file was which. This is the purpose of a project in AWX—it
is quite simply a logical grouping of playbooks and is used to make organization easier and
simpler.

Streamlining Infrastructure Management with AWX Chapter 3

[76]

Although we will not go into Role-Based Access Control (RBAC) in this book, projects also
serve a role in this. In the screenshots provided so far, you may have noticed a
PERMISSIONS button at the top of a number of the panes. These are present throughout
the UI and are used to define which users have access to which configuration items. For
example, if you have a team of Database Administrators (DBAs) who should only have
access to run playbooks relevant to database servers against those servers, you could create
an inventory of database servers and only give the DBAs access to this. Similarly, you could
put all of the DBA-related playbooks into one project, and again only give that team
permission to access that project. In this way, AWX forms a part of the good processes
inside an enterprise, both making Ansible more accessible, and ensuring that the right
items are only available to the correct people.

To continue our simple example, let's create a new project to reference our example Ansible
code:

Click on Projects on the left-hand menu bar.1.
Click on the green + icon to create a new project.2.
Give the project a suitable name.3.
Select Git from the SCM TYPE drop-down list.4.
Enter the following URL into the SCM URL field: https:/ / github. com/5.
ansible/ ansible- examples. git.
Optionally, you could also populate the SCM BRANCH/TAG/COMMIT field if6.
you wanted to only work with a specific commit or branch in the repository. In
this simple example, we will use the latest commit, known in Git as HEAD.
No other credentials are necessary as this is a publicly available GitHub7.
example—however, if you were using a password-protected repository, you
would create an SCM credential to the machine credential we created in the
Setting up credentials in AWX section of this chapter.
Check the UPDATE REVISION ON LAUNCH checkbox—this causes AWX to8.
pull the latest version of the code from our SCM URL every time a playbook
from this project is run. If this is unchecked, you must manually update the local
copy of the code before AWX will see the latest version.
Click on the green SAVE button.9.

https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git
https://github.com/ansible/ansible-examples.git

Streamlining Infrastructure Management with AWX Chapter 3

[77]

When complete, the resulting screen should look something like the following screenshot:

Streamlining Infrastructure Management with AWX Chapter 3

[78]

Before we can proceed to the final step of configuring our playbook for its first run, we
need to manually pull the contents from the GitHub repository. To do this, click on the two
semicircular arrows to the right of your newly created project—this forces a manual sync of
the project from the upstream repository. An example of this is shown in the following
screenshot for your reference:

Streamlining Infrastructure Management with AWX Chapter 3

[79]

The green dot to the left of the project title (as seen in the preceding screenshot) will pulsate
during the sync. Once this completes successfully, it will turn a static green, whereas if
something goes wrong, it will turn red. Assuming all is well, we can proceed to the final
stage of preparing to run our playbook.

With our project defined in AWX, the next task required as we head toward running our
first playbook from it is to create a template, and we will do exactly that in the next section.

Creating a template in AWX
Templates in AWX pull together all of the other configuration items you have created so
far—in essence, a template is the AWX definition of all of the parameters you would specify
on the command line following the ansible-playbook command.

Let's walk through the process of creating a template so that we can run our playbook:

Click on Templates on the left-hand menu bar.1.
Click on the green + icon to create a new template.2.
Select Job Template from the drop-down list.3.
Give the template a suitable name.4.
In the INVENTORY field, select the inventory we created earlier in this chapter.5.
In the PROJECT field, select the project we created earlier.6.
In the PLAYBOOK field, note that the drop-down list has automatically been7.
populated with a list of all of the viable playbooks that are available in the
GitHub repository we specified in our PROJECT definition.
Choose lamp_simple_rhel7/site.yml from the list.
Finally, select the credential we defined earlier in the CREDENTIAL field.8.
Click the green SAVE button.9.

Streamlining Infrastructure Management with AWX Chapter 3

[80]

The end result should look something like the following screenshot, which shows all of the
fields filled in:

With those steps complete, we have now completed everything required to run our first
ever job from AWX. Hence, we shall proceed to do exactly that in the next section and
observe the results.

Running a playbook from AWX
When we run a playbook from AWX, what we're actually doing is running a template.
Hence, to do this interactively, we will navigate our way back to the Templates screen,
which should present a list of available templates. Note that when you are employing role-
based access control, you can only see the templates (and inventories and other
configuration items) that you have permission to see—if you don't have permission, it is
invisible. This helps make AWX more manageable when using it across different teams.

Streamlining Infrastructure Management with AWX Chapter 3

[81]

We are using an administrator account, so we can see everything. To launch our newly
created template, follow these instructions:

Click on the rocket ship icon on the right of the template name, as shown in the1.
following screenshot, which shows our newly created Templates with the option
to execute it highlighted:

Streamlining Infrastructure Management with AWX Chapter 3

[82]

When you do this, the screen automatically reloads and you will see details of the
run on your screen. Don't worry if you navigate away from this—you can always
find it again later by clicking on Jobs on the left-hand menu bar. Since we have
defined this job, it fails in the first instance. Luckily, the Jobs pane shows you all
of the same details and output that you would get when you run Ansible from the
command line, only in AWX, it is archived in the database so that you can always
go back to it at a later date or so that another user can analyze it simply by
logging into AWX (assuming they have the required permissions).

Looking at the job output, we can see the problem is some kind of permissions2.
issue, and a screenshot showing what this might look like is shown for your
reference:

Streamlining Infrastructure Management with AWX Chapter 3

[83]

Taking a look at the playbook source code on GitHub, we can see that the original
author hardcoded the use of the root user account for this playbook (note
the remote_user: root statements in site.yml). Normally, you wouldn't do
this—it is generally better practice to get Ansible to log in using an unprivileged
account, and then to use sudo as required by putting the become:
true statement in the play headers (we'll see this in action later in this book).

To work around this, for now, we'll simply allow root logins over SSH on our3.
CentOS 7 server, and then modify the credential in AWX to be for the root
account. Note that you could also define a new credential and change the
credential linked to the template—either are acceptable solutions. Once you have
changed the credential, run the template again—this time, the output should
look somewhat different, as we can see in the following screenshot, which is
showing now a successful run of the playbook:

Streamlining Infrastructure Management with AWX Chapter 3

[84]

As we can see from the preceding screenshot, we have a successful playbook run, along
with all of the relevant details about which user launched it, which revision on GitHub was
used, which credentials were used, which inventory, and so on. Scrolling down this pane
gives the output from ansible-playbook that we saw in the error screenshot previously;
if we wish to, we can further analyze the playbook run to see whether there were any
warnings, what was changed, and so on. Hence, with AWX we really achieve a nice simple
user interface to Ansible, which integrates all of the good practices that should be present
when automating Linux in an enterprise environment such as security, auditability, and
centralized control of Ansible (and indeed playbook code through source control
integration).

We have seen how AWX can assist us with running tasks manually—but what if we want a
truly hands-off approach to task automation? We will explore scheduling tasks in the next
section of this chapter.

Automating routine tasks with AWX
Although there are many facets to AWX that would require much more space than we have
in this book, one particular one stands out—the automation of routine tasks. Routine tasks
that Ansible could handle might include patching of servers, running some kind of
compliance check or audit, or enforcing a security policy.

For example, you could write an Ansible playbook to ensure that the SSH daemon does not
allow remote root logins as this is considered a good security practice. It is, of course, easy
for any system administrator with root privileges to log in and turn this back on; however,
running an Ansible playbook regularly to turn this off enforces it and ensures no-one (well-
meaning or otherwise) turns it back on. The idempotent nature of Ansible changes means
that where the configuration is already in place, Ansible will not make any changes, and
hence running the playbook is safe, light on system resources, and non-disruptive.

If you wanted to do this with Ansible on the command line, you would need to create a
cron job to run the ansible-playbook command regularly, along with all of the required
parameters. This would mean having the SSH private keys installed on the server handling
the automation, and means you have to keep track of which servers are running Ansible on
a routine basis. This is not ideal for an enterprise where good practice is the byword of
automation and ensures that everything keeps running smoothly.

Luckily, AWX can help us out here, too. To keep this example concise, we will reuse the
LAMP stack example from the previous section of this chapter. In this scenario, we might
want to schedule a one-off installation of the LAMP stack for a time when things are quiet,
whereas for a routine task, it would be on an ongoing basis.

Streamlining Infrastructure Management with AWX Chapter 3

[85]

To set a schedule for this template, follow these steps:

Click on Templates on the left-hand menu bar.1.
Click on the template we created earlier.2.
Click on the SCHEDULES button at the top of the pane.3.
Click on the green + icon to add a new schedule to it.4.
Set the appropriate start date and time—I will set mine a few minutes from now5.
to demonstrate it in action.
Also, set the appropriate timezone.6.
Finally, select the REPEAT FREQUENCY—in this example, I will choose None7.
(run once), but note that other ongoing options are available from the drop-down
list.
Click on the green SAVE button to activate the schedule.8.

When you have completed the preceding steps, the resulting configuration screen should
look something like the following:

Streamlining Infrastructure Management with AWX Chapter 3

[86]

Now, if you watch the Jobs pane, you should see your template start to run at the
scheduled time. When you analyze the completed (or indeed running) job, you should
see that it was launched by the name of the schedule you created earlier, rather than by the
name of a user account such as admin (as we saw when we launched it manually). A
screenshot is provided here that shows an example of a completed job that was launched by
our Scheduled install schedule that we created earlier in this section:

If you want to see all scheduled jobs that are forthcoming on your AWX instance, you can
simply click on the Schedules menu item on the left-hand menu bar, and a screen will load
that lists all configured schedules in your AWX instance. For those of you familiar with
Linux administration, this is akin to listing cron jobs. An example of such a screen is shown
in the following screenshot:

Streamlining Infrastructure Management with AWX Chapter 3

[87]

This gives you a concise overview of all of the schedules you have created, without having
to go into the individual configuration items themselves to edit them.

In this way, AWX supports not just interactive automation of your Linux environment, but
also hands-off scheduled automation tasks too, hence increasing the power and flexibility
of your automation solution.

It is hoped that this overview gives you an idea of the benefits that a tool such as AWX or
Ansible Tower can bring to your enterprise, and why it is beneficial to supplement your
Ansible automation with this.

Streamlining Infrastructure Management with AWX Chapter 3

[88]

Summary
Ansible offers a great deal of power with just a small amount of learning, yet when
deployed at a large scale in an enterprise, it can become more difficult to keep track of
everything, especially which users have the latest versions of playbook code and who ran
what playbook when. AWX supplements Ansible in the enterprise by bringing with it key
benefits such as role-based access control, auditability, integrated source control
management of playbook code, secure credential management, and job scheduling. It
achieves this while providing an easy to use point and click interface, which further lowers
the barrier to entry for all staff responsible for the Linux environment.

In this chapter, you learned why AWX is important to an Enterprise Linux environment
and how to leverage a number of its key features. You then carried out a hands-on
installation of a single AWX node before completing a practical end-to-end example of
running a playbook directly from GitHub to install a LAMP stack on a CentOS 7 server.
Finally, you learned about job scheduling to automate routine maintenance tasks
using Ansible.

In the next chapter, we will look at the different deployment methodologies that are
relevant to an Enterprise Linux environment and how to leverage these.

Questions
What is a key advantage of using AWX to store your credentials over the1.
methods available to you on the command line?
Why is it important to make good use of a version control system such as Git to2.
store your playbooks?
How is AWX advantageous over Ansible on the command line when it comes to3.
dynamic inventories?
What is a project in AWX?4.
What is a template in AWX analogous to on the command line?5.
How does AWX tell you which commit to a Git repository a playbook run was6.
performed against?
Why is it advisable to restrict access to the server that hosts AWX, especially the7.
shell and local filesystem?
If you need to programmatically launch playbook runs, how can AWX help you?8.

Streamlining Infrastructure Management with AWX Chapter 3

[89]

Further reading
For an in-depth understanding of Ansible including AWX, please refer
to Mastering Ansible, Third Edition by James Freeman and Jesse Keating (https:/ /
www.packtpub. com/ gb/ virtualization- and- cloud/ mastering- ansible- third-
edition).
To achieve a greater understanding of version control with Git and best practices
associated with its use, please refer to Git Best Practices Guide by Eric Pidoux
(https:/ / www. packtpub. com/ application- development/ git- best- practices-
guide).
To understand how to access and work with the AWX API, please refer
to https:/ /docs. ansible. com/ ansible- tower/ latest/ html/ towerapi/ index.
html.
If you wish to explore the control of AWX with the tower-cli tool, please refer
to the official documentation here: https:/ /tower- cli. readthedocs. io/en/
latest/.

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://www.packtpub.com/application-development/git-best-practices-guide
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://docs.ansible.com/ansible-tower/latest/html/towerapi/index.html
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/
https://tower-cli.readthedocs.io/en/latest/

2
Section 2: Standardizing Your

Linux Servers
This section presents a hands-on look at how to ensure that consistency and repeatability
remain core facets of your Linux server environment, promoting best practices such as
scalability, reproducibility, and efficiency.

This section comprises the following chapters:

Chapter 4, Deployment Methodologies
Chapter 5, Using Ansible to Build Virtual Machine Templates for Deployment
Chapter 6, Custom Builds with PXE Booting
Chapter 7, Configuration Management with Ansible

4
Deployment Methodologies

So far in this book, we have set the groundwork for a stable foundation for your Enterprise
Linux environment. We have discussed in detail how to ensure your Linux environment
lends itself well to automation through standardization and how to leverage Ansible and
AWX to support you on your automation journey. Before we get started on the really
detailed technical work in this chapter, we must take a look at one final piece of
detail—your deployment methodology.

We have already established a need for a small number of consistent Linux builds for your
environment. There is now a decision-making process for you to go through—how to
deploy these builds across your enterprise. Most enterprises have several choices available
to them, ranging from the easiest—downloading publicly available template
images—through building their own templates, to perhaps the most complex—building
from scratch using a pre-boot environment. Alternatively, the best approach might be some
hybrid of these approaches. In this chapter, we will explore these options and understand
how to ensure you are selecting the best one for your enterprise that supports you in your
automation journey and is efficient and easy to implement. In subsequent chapters, we will
then go into greater technical depth on each approach.

The following topics will be covered in this chapter:

Knowing your environment
Keeping builds efficient
Ensuring consistency across Linux images

Deployment Methodologies Chapter 4

[92]

Technical requirements
This chapter assumes that you have access to a virtualization capable environment running
Ubuntu 18.04 LTS. Some examples are also performed on CentOS 7. In either of these cases,
the examples can be run on either a physical machine (or laptop) running one of the
aforementioned operating systems, with a process that has virtualization extensions
enabled, or a virtual machine with nested virtualization enabled.

Ansible 2.8 is also used later in this chapter and it is assumed you have this installed on the
Linux host you are using.

All example code discussed in this book is available from GitHub at: https:/ /github. com/
PacktPublishing/Hands- On- Enterprise- Automation- on-Linux.

Knowing your environment
No two enterprise environments are the same. Some businesses still rely heavily on bare-
metal servers, whilst others now rely on one of a myriad of virtualization or cloud
providers (either private or public). Knowing which environments are available to you is a
key part of the decision-making process.

Let's explore the various environments and the relevant build strategies for each.

Deploying to bare-metal environments
Bare-metal environments are without a doubt the grandfather of all enterprise
environments. Before the revolution in virtualization and then cloud technologies
throughout the 21st century, the only way to build an environment was on bare metal.

These days it is unusual to find an entire environment which is run on bare metal, though it
is common to find ones where certain key components are run on physical hardware,
especially databases or computational tasks that require certain physical hardware
assistance (for example, GPU acceleration or hardware random number generation).

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux

Deployment Methodologies Chapter 4

[93]

When building servers from bare metal, two fundamental approaches are suitable in most
environments. The first is to build the servers manually using either optical media or, more
commonly now, a USB drive. This is a slow, interactive process that is not repeatable at
scale, and hence it is not recommended for any environments other than those containing
just a handful of physical servers, where the requirement to build new machines is minimal
and infrequent.

The other most viable option for building at scale in the repeatable, consistent manner that
we have advocated throughout this book so far is to boot physical servers over the network,
using a Pre-eXecution Environment (PXE). This involves loading a tiny boot environment
from a network server, and then using this to load the Linux kernel and associated data. In
this manner, it is possible to bring up an installation environment without the need for any
form of physical media. Once the environment is up, we would use an unattended
installation method to allow the installation to complete without any intervention from the
user.

We will cover these methods in detail later in this book, as well as repeatable techniques for
configuring the servers once they are built. In the meantime, however, it will suffice to
simply state that, for building out physical Linux servers in an enterprise, PXE booting
coupled with an unattended installation is the route that is easiest to automate and will
produce the most repeatable results.

Deploying to traditional virtualization
environments
Traditional virtualization environments are those that predate what we know today as
cloud environments—that is to say, they are straightforward hypervisors on which
operating systems are run. Commercial examples such as VMware are common, as well as
their open source counterparts such as Xen and KVM (and frameworks built off of these,
such as oVirt).

As these technologies were originally built to supplement traditional physical
environments, they present several possible options for building out your Enterprise Linux
estate. For example, most of these platforms support the same network-booting capabilities
as their bare-metal counterparts, and hence we could actually just pretend they are bare
metal and continue with a network booting methodology.

Deployment Methodologies Chapter 4

[94]

However, virtualized environments introduced something that was difficult to achieve in
physical environments because of the differences in hardware between the bare-metal
devices on which they all ran—templates. A templated virtual machine is quite simply a
deployable snapshot of a preconfigured virtual machine. Hence, you might build out the
perfect CentOS 7 image for your enterprise, integrate your monitoring platform, perform all
of the security hardening required, and then, using tools built into the virtualization
platform itself, turn it into a template. The following is a screenshot of the CentOS 7
templates in the author's lab environment:

Each of these templates is a fully configured CentOS 7 base image ready to be deployed,
with all pre-deployment work such as removal of SSH host keys completed. As a result, all
an administrator has to do is to select the appropriate template and click on the New
VM button—the process will be similar in platforms other than RHV, as most mainstream
virtualization solutions provide this functionality in some guise.

Note that, to keep the examples accessible, I have used the GUI as the
primary process for creating a new VM. Nearly all virtualization and
cloud platforms have APIs, command-line interfaces, and even Ansible
modules that can be used to deploy virtual machines, and in an enterprise
setting, these would scale far better than the GUI itself. Given the wide
variety of environments available, this is left as an exercise for you to
explore.

Deployment Methodologies Chapter 4

[95]

This is in itself a fairly straightforward process, but it requires a little care and attention. For
example, nearly all Linux servers these days have SSH turned on, and the SSH daemon on
each server has a unique host identification key that is used to prevent (amongst other
things) man-in-the-middle attacks. If you template a preconfigured operating system, you
will also template these keys, which means a distinct possibility of duplicates across your
environment. This reduces security quite considerably. It is hence very important to
perform several steps to prepare your virtual machine before turning it into a template, and
one such common step is to delete the SSH host keys.

Servers created using the PXE method do not suffer from this problem, as they are all
installed from scratch and hence there are no historic log entries to clean up and no
duplicate SSH keys.

In Chapter 5, Using Ansible to Build Virtual Machine Templates for Deployment, we will go into
detail on creating virtual machine templates suitable for templating using Ansible.
Although both the PXE boot and template deployment methodologies are equally valid for
virtualized environments, most people find the templated route to be more efficient and
easier to manage, and for this reason, I also advocate it (for example, most PXE boot
environments need to know the MAC address of the network interface used on the physical
or virtual server being deployed—this is not a necessary step in template deployment).

Deploying to cloud environments
The most recent incumbent to Enterprise Linux architectures (barring of course containers,
which is another discussion entirely) is the cloud provisioning environment. This might be
through a public cloud solution such as Amazon Web Services (AWS), Microsoft
Azure, Google Cloud Platform (GCP), or one of the myriad of smaller providers that have
sprung up in recent years. It might equally be through an on-premise solution such as one
of the variants of the OpenStack project or a proprietary platform.

These cloud environments have radically changed the life cycle of Linux machines in the
enterprise. Whereas on bare-metal or traditional virtualized architectures, Linux machines
were cared for, nurtured, and repaired if ever they failed, cloud architectures are built on
the premise that each machine is more or less expendable, and that if it fails, a new one is
simply deployed in its place.

As a result, PXE deployment methodologies are not even possible in such environments,
and instead they rely on pre-built operating system images. These are in essence just a
template either created by a third-party vendor or prepared by the enterprise.

Deployment Methodologies Chapter 4

[96]

Whether you go with a commercial provider or build an on-premise OpenStack
architecture, you will find a catalog of available operating system images for you to choose
from. Generally, those provided by the cloud provider themselves are trustworthy, though
depending on your security requirements, you may find those provided by external parties
suitable as well.

For example, here is a screenshot of the recommended operating system images available
for OpenStack:

As you can see from the table of contents, most of the major Linux distributions are
represented here, which immediately saves you the task of building the basic operating
system itself. The same is true of AWS:

Deployment Methodologies Chapter 4

[97]

In short, if you are using a cloud environment, you will be spoiled for choice for base
operating system images from which to get started. Even so, it is unlikely this choice will be
sufficient for all enterprises. For example, using a pre-built, cloud-ready image does not
negate requirements for things such as enterprise security standards, monitoring, or log
forwarding agent integration, and a myriad of other things that are so important for the
enterprise. Before we proceed, it is worth noting that you can, of course, create your own
images for your chosen cloud platforms. In the interests of efficiency though, why re-invent
the wheel? If someone has already completed this step for you, this is something that you
can effectively delegate elsewhere.

Although most ready-made operating system images are trustworthy, you
should always exercise caution when selecting a new one, especially if it
has been created by an author you are unfamiliar with. There is no way to
know for sure what the image comprises and you should always carry out
due diligence when selecting an image to work with.

Deployment Methodologies Chapter 4

[98]

Assuming that you do choose to proceed with a pre-made cloud-ready image, the post-
installation configuration work can all be handled neatly by Ansible. In fact, the steps
required are almost identical to those required to build templates for traditional
virtualization platforms, and we shall again cover this process in detail a little later in this
book.

Docker deployments
Docker deployments are a special case in our discussion on Linux environments. In
practical terms, they share a lot in common with cloud environments—Docker images are
built based upon pre-existing minimal OS images and are often built using the native
Docker toolchains, though automation with Ansible is entirely possible.

As Docker is a special case, we will not be focusing on it in this book, though it is important
to note that Docker, being a recent incumbent into the presence of Linux in the enterprise, is
actually designed around many of the principles we have already considered in this book.
Let's briefly consider the Dockerfile used to create the official nginx container.

For those not familiar with Docker, a Dockerfile is a flat text file that
contains all the directives and commands that are required to build up a
container image for deployment.

At the time of writing, this file contains the following:

#
Nginx Dockerfile
#
https://github.com/dockerfile/nginx
#

Pull base image.
FROM ubuntu:bionic

Install Nginx.
RUN \
 add-apt-repository -y ppa:nginx/stable && \
 apt-get update && \
 apt-get install -y nginx && \
 rm -rf /var/lib/apt/lists/* && \
 echo -e "\ndaemon off;" >> /etc/nginx/nginx.conf && \
 chown -R www-data:www-data /var/lib/nginx

Deployment Methodologies Chapter 4

[99]

Although not based on Ansible, we can see the following in the preceding code block:

The FROM line near the top defines a minimal Ubuntu base image on which to1.
perform the rest of the configuration—this can be thought of as your SOE Linux
image that we have discussed for other platforms.
The RUN command then performs the steps necessary to install2.
the nginx package and perform some housekeeping to keep the image tidy and
minimal (reducing space requirements and clutter).

The code then continues as follows:

Define mountable directories.
VOLUME ["/etc/nginx/sites-enabled", "/etc/nginx/certs",
"/etc/nginx/conf.d", "/var/log/nginx", "/var/www/html"]

Define working directory.
WORKDIR /etc/nginx

Define default command.
CMD ["nginx"]

Expose ports.
EXPOSE 80
EXPOSE 443

Continuing our analysis of this file, we can see the following:

The VOLUME line defines which directories from the host filesystem can be1.
mounted within the container.
The WORKDIR directive tells Docker which directory to run the CMD that follows it2.
in—think of it as a boot-time configuration.
The CMD line defines the command to run when the container starts—a3.
microcosm of the process of defining which services will start at boot time in a
full Linux system image.
Finally, the EXPOSE lines define which ports the container should expose to the4.
network—perhaps a little like a firewall might allow certain ports through.

In short, the native process to build a Docker container is very much aligned with our
defined build process for an Enterprise Linux environment—hence, we can proceed in
confidence with this process. With this in mind, we will now explore the process of
ensuring our builds are as tidy and efficient as possible.

Deployment Methodologies Chapter 4

[100]

Keeping builds efficient
Knowing the fundamentals of your Linux environment, as we discussed in the last section,
is vital to working out your deployment methodology. Although there exist some
similarities between the build processes themselves (especially between traditional
hypervisors and cloud environments), knowing these differences enables you to make
informed decisions about how to deploy Linux throughout your enterprise.

Once you have chosen the methodologies most appropriate to your environment, it's
important to consider a few principles to ensure your process is streamlined and efficient
(again, bywords of Enterprise Linux deployments). We will cover these here to proceed into
the real in-depth, hands-on work in the remainder of this book. Let's get started by looking
at the need for simplicity in our builds.

Keeping your builds simple
Let's start to put some practical application of our earlier discussion on the importance of
SOEs to our Linux build processes. Whatever route you choose and whatever your
environment looks like, one key facet you should consider is to keep your build standard as
simple and concise as possible.

No two enterprise environments are the same, and hence the build requirements for each
enterprise will certainly be different. Nonetheless, a common set of example requirements
is given here to demonstrate the kinds of things that will be needed in the build process:

Monitoring agents
Log forwarding configuration
Security hardening
Core enterprise software requirements
NTP configuration for time synchronization

This list is just a start, and every enterprise will be different, but it gives you an idea of the
kinds of things that will go into a build. However, let's start to look at some of the edge
cases to your build process. It is fair to say that each Linux server will be built with a
purpose in mind and, as such, will run some form of application stack.

Again, the application stack is certain to vary between enterprises, but examples of the
kinds of applications that might commonly be required are as follows:

A web server such as Apache or nginx
The OpenJDK environment for Java workloads

Deployment Methodologies Chapter 4

[101]

A MariaDB database server
A PostgreSQL database server
NFS file-sharing tools and kernel extensions

Now, in your standardization process, when you originally defined your SOE, you may
even have gone to the lengths of already specifying the use of (just as an example)
OpenJDK 8 and MariaDB 10.1. Does this mean you should actually include these in your
build process?

The answer is almost always, no. Quite simply, adding these applications adds to the
complexity of the build and to post-install configuration and debugging. It also reduces
security—but more on that shortly.

Let's suppose we standardize on MariaDB 10.1 and include that in our base operating
system image (and hence every single Linux machine deployed contains it), knowing that
only a subset of the machines in operation will actually ever use it.

There are several reasons for not including MariaDB in the base image:

An install of just the server components of MariaDB 10.1 takes around 120 MB,
depending on your operating system and packaging—there will also be
dependency packages but let's just start with this. Although storage is cheap and
plentiful these days, if you deploy 100 servers across your environment (actually
a small number for most enterprises), that's approximately 11.7 GB of space
dedicated to a package you don't need. The actual figure will be far higher as
there will be dependency packages to install and so on.
This may also have a knock-on effect on backups and the storage required for
these, and indeed any virtual machine snapshots if you use that in the enterprise.
If an application arrives that requires MariaDB 10.3 (or indeed, the business
decides to update its standard to 10.3), then the images need to be upgraded or
possibly version 10.1 uninstalled before 10.3 is installed. This is an unnecessary
level of complexity when a minimal Linux image could just have received an
updated MariaDB workload.
You need to ensure that MariaDB is turned off and firewalled off when not
required to as to prevent any misuse—this is an additional auditing and
enforcement requirement that again is unnecessary on many servers where
MariaDB isn't used.

Deployment Methodologies Chapter 4

[102]

There are other security considerations too, but the key message here is that it is wasteful
on resources and time. This doesn't, of course, only apply to MariaDB 10.1—that is simply
an example, but it serves to show that, as a rule, application workloads should not be
included in the base operating system definition. Let's take a more detailed look at the
security requirements for our builds now.

Making your builds secure
We have already touched on security and not installing or running unnecessary packages.
Any running service provides a potential attack vector for an intruder, and whilst
hopefully, you will never have one inside your enterprise network, it is still good practice
to build the environment in a manner that is as secure as possible. This is especially true of
services that come configured with default passwords (and in some cases, with no
password configured at all—though this is thankfully becoming rare now).

These principles apply when defining the build itself too. Don't create a build with weak
static passwords, for example. Ideally, every build should be configured to obtain even
initial credentials from an external source, and although there are a myriad of ways to
achieve this, you are encouraged to look up cloud-init if this is a new concept to you.
There are cases, especially in legacy environments, where you may need some initial
credentials to allow access to the newly built server, but reusing weak passwords is
dangerous and opens up the possibility of the newly built server being intercepted before it
is configured and some kind of malware planted on it.

In short, the following list provides some sound guidance on ensuring secure builds:

Don't install applications or services that are not required.
Do ensure services that are common to all builds but require post-deployment
configuration are disabled by default.
Don't re-use passwords even for initial access and configuration if at all possible.
Do apply your enterprise security policy as early as possible in the process—in
the build process of the image or server if possible, but if not, as soon as possible
after installation.

These principles are simple yet fundamental, and it is important to adhere to them.
Hopefully, a situation will never arise where it matters that they have been applied, but if it
does, they might just stop or sufficiently impede an intrusion or attack on your
infrastructure. This, of course, is a topic that deserves its own book, but it is hoped these
pointers, along with the examples in Chapter 13, Using CIS Benchmarks, will point you in
the right direction. Let's take a brief look now at ensuring our build processes are efficient.

Deployment Methodologies Chapter 4

[103]

Creating efficient processes
Efficient processes are supported heavily by automation, as this ensures minimal human
involvement and consistent, repeatable end results. Standardization also supports this, as it
means that much of the decision-making process has already been completed, and so all
people involved know exactly what they are doing and how it should be done.

In short, stick to these principles outlined in this book and your build processes will, by
their very nature, be efficient. Some degree of manual intervention is inevitable, even if it
involves choosing a unique hostname (though this can be automated) or perhaps the
process of a user requesting a Linux server in the first place. However, from here, you want
to automate and standardize wherever possible. We will follow this mantra throughout this
book. For now, though, we will take a look at the importance of consistency in our build
processes.

Ensuring consistency across Linux images
In Chapter 1, Building a Standard Operating Environment on Linux, we discussed the
importance of commonality in SOE environments. Now that we are actually looking at the
build process itself, this comes back to the fore as we are, for the first time, looking at how
to actually implement commonality. Assuming Ansible is your tool of choice, consider the
following task. We are writing playbooks for our image build process and have decided
that our standard image is to synchronize its time with our local time server. Suppose that
our base operating system of choice is Ubuntu 16.04 LTS for historic reasons.

Let's create a simple role to ensure NTP is installed and to copy across our corporate
standard ntp.conf, which includes the addresses of our in-house time servers. Finally, we
need to restart NTP to pick up the changes.

The examples in this chapter are purely hypothetical and given to
demonstrate what Ansible code for a given purpose might look like. We
will expand on the tasks performed (such as deploying configuration files)
in detail in later chapters and provide hands-on examples for you to try
out.

This role could look like the following:

- name: Ensure ntpd and ntpdate is installed
 apt:
 name: "{{ item }}"
 update_cache: yes

Deployment Methodologies Chapter 4

[104]

 loop:
 - ntp
 - ntpdate
- name: Copy across enterprise ntpd configuration
 copy:
 src: files/ntp.conf
 dest: /etc/ntp.conf
 owner: root
 group: root
 mode: '0644'
- name: Restart the ntp service
 service:
 name: ntp
 state: restarted
 enabled: yes

This role is simple, concise, and to the point. It always ensures the ntp package is installed,
and also ensures we are copying across the same version of our configuration file, making
sure it is the same on every server. We could improve this further by checking this file out
of a version control system, but that is left as an exercise for you.

Instantly, you can see the power of writing an Ansible role for this one simple step—there
is great consistency to be achieved from including this role in a playbook, and if you scale
this approach up to your entire enterprise, then all configured services will be consistently
installed and configured.

However, it gets better. Let's say that the business decides to rebase the standard operating
system to Ubuntu 18.04 LTS to make use of newer technologies and increase the supported
lifespan of the environment. The ntp package is still available on Ubuntu 18.04, though by
default, the chrony package is now installed. To proceed with NTP, the role would need
only minor tweaks to simply ensure that chrony is removed first (or you could disable it if
you prefer)—after this, it is identical, for example, consider the following role code that
ensures the correct packages are absent and present:

- name: Remove chrony
 apt:
 name: chrony
 state: absent
- name: Ensure ntpd and ntpdate is installed
 apt:
 name: "{{ item }}"
 update_cache: yes
 loop:
 - ntp
 - ntpdate

Deployment Methodologies Chapter 4

[105]

We would then continue this code by adding two further tasks that copy across the
configuration and restart the service to ensure it picks up the new configuration:

- name: Copy across enterprise ntpd configuration
 copy:
 src: files/ntp.conf
 dest: /etc/ntp.conf
 owner: root
 group: root
 mode: '0644'
- name: Restart the ntp service
 service:
 name: ntp
 state: restarted
 enabled: yes

Alternatively, we could decide to embrace this change and make use of chrony on the new
base image. Hence, we would simply need to create a new chrony.conf to ensure it talks
to our enterprise NTP servers, and then proceed exactly as before:

- name: Ensure chrony is installed
 apt:
 name: chrony
 update_cache: yes
- name: Copy across enterprise chrony configuration
 copy:
 src: files/chrony.conf
 dest: /etc/chrony.conf
 owner: root
 group: root
 mode: '0644'
- name: Restart the chrony service
 service:
 name: chrony
 state: restarted
 enabled: yes

Notice how similar these roles all are? Only minor changes are required even when
supporting a change in the base operating system or even underlying service.

Although these three roles differ in places, they are all performing the same basic tasks,
which are as follows:

Ensure that the correct NTP service is installed.1.
Copy across the standard configuration.2.
Ensure the service is enabled at boot time and has started.3.

Deployment Methodologies Chapter 4

[106]

Hence, we can be sure that, using this approach, we have consistency.

Even when changing the platform entirely, the high-level approach can still be applied.
Let's say that the enterprise has now taken on an application that is only supported on
CentOS 7. This means an accepted deviation to our SOE, however, even our new CentOS 7
build will need to have the correct time, and as NTP is a standard, it will still use the same
time servers. Hence, we can write a role to support CentOS 7:

- name: Ensure chrony is installed
 yum:
 name: chrony
 state: latest
- name: Copy across enterprise chrony configuration
 copy:
 src: files/chrony.conf
 dest: /etc/chrony.conf
 owner: root
 group: root
 mode: '0644'
- name: Restart the chrony service
 service:
 name: chronyd
 state: restarted
 enabled: yes

Again, the changes are incredibly subtle. This is a significant part of the reason for
embracing Ansible as our automation tool of choice for enterprise automation—we can
build and adhere to our standards with great ease, and our operating system builds are
consistent if we change the version or even the entire distribution of Linux we are using.

Summary
At this stage, we have defined our requirement for standardization, established which tools
to use in our journey toward automation, and now taken a practical look at the
fundamental types of environments into which enterprises can expect to deploy an
operating system. This has set the groundwork for our automation journey and has
provided us with the context for the rest of this book—a hands-on journey through the
process of building and maintaining a Linux environment in the enterprise.

Deployment Methodologies Chapter 4

[107]

In this chapter, we learned about the different types of environments into which Linux
might be deployed and the different build strategies available to each. We then looked at
some practical examples of ensuring that our builds are of a high standard and can be
completed efficiently and repeatably. Finally, we started to look at the benefits of
automation and how it can ensure consistency across builds, even when we change the
entire underlying Linux distribution.

In the next chapter, we will begin our hands-on journey into Enterprise Linux automation
and deployments, looking at how Ansible can be employed to build out virtual machine
templates, whether from cloud environment images or from scratch.

Questions
What are the similarities between building a Docker container and an SOE?1.
Why would you not include MariaDB in your base build if it is only required on2.
a handful of servers?
How would you ensure your base operating system image is as small as3.
possible?
Why should you be careful about embedding passwords in your base operating4.
system image?
How would you ensure all Linux images send their logs to your centralized5.
logging server?
When would you not use a base image provided by a cloud provider and build6.
your own instead?
How would you secure your SSH daemon configuration using Ansible?7.

Further reading
For an in-depth understanding of Ansible, please refer to Mastering Ansible, Third
Edition by James Freeman and Jesse Keating (https:/ /www. packtpub. com/gb/
virtualization- and- cloud/ mastering- ansible- third- edition).
To gain an understanding of the Docker code and discussion in this chapter,
please refer to Mastering Docker, Third Edition by Russ McKendrick and Scott
Gallagher (https:/ /www. packtpub. com/ gb/virtualization- and- cloud/
mastering- docker- third- edition).

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-docker-third-edition

5
Using Ansible to Build Virtual

Machine Templates for
Deployment

So far in this book, we have covered in detail the groundwork for the remainder—that is to
say, we have set the rationale for what we intend to do next and provided a crash course in
our automation tool of choice, Ansible. From the preceding chapter, we know that, in an
enterprise-scale environment, there are two fundamental methods for deploying Linux, and
which of these to use is determined by the technologies in use in your environment and
your intended goals.

In this chapter, we will cover in detail how to build virtual machine images that will serve
on most virtualization and cloud platforms. The differences between these two platforms
are subtle but distinct as we shall find out, and by the end of this chapter, you will know
how to handle both environments with ease. We will start with a discussion on the initial
build requirements, and then move on to configure and prepare the images for use in your
chosen environment.

The following topics will be covered in this chapter:

Performing the initial build
Using Ansible to build and standardize the template
Cleaning up the build with Ansible

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[109]

Technical requirements
This chapter assumes that you have access to a virtualization-capable environment running
Ubuntu 18.04 LTS. Some examples are also performed on CentOS 7. In either of these cases,
the examples can be run on either a physical machine (or laptop) running one of the
aforementioned operating systems, with a process that has virtualization extensions
enabled or a virtual machine with nested virtualization enabled.

Ansible 2.8 is also used later in this chapter and it is assumed you have this installed on the
Linux host you are using.

All example code discussed in this chapter is available from GitHub at: https:/ /github.
com/PacktPublishing/ Hands- On- Enterprise- Automation- on- Linux/ tree/ master/
chapter05.

Performing the initial build
As discussed in Chapter 4, Deployment Methodologies, whether you are using a traditional
virtualization platform such as oVirt or VMware or a cloud-based one such as OpenStack or
Amazon's EC2, your starting point for any Linux deployments (and hence further
automation) will be a templated image.

In terms of the SOE we defined in Chapter 1, Building a Standard Operating Environment on
Linux, the templated image is the very real initial manifestation of this. It is usually a small
virtual machine image, with just enough software installed and configuration completed
that it is useful in almost all scenarios it might be deployed in for the enterprise. As long as
the image boots up cleanly with a unique hostname, SSH host keys, and such, then it can be
customized almost immediately using further automation as we shall discover from
Chapter 7, Configuration Management with Ansible, later in this book. Let's dive into the
build process by taking a ready-made template image (provided by a third party) as our
starting point.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter05

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[110]

Using ready-made template images
For most platforms, there are a large number of readily available images for you to
download, and again, we discussed a few of these in the previous chapter. For many
enterprises, these images will be sufficient. However, what if you absolutely need full
control over your image definition? Perhaps you are adopting a new standard (at the time
of writing, Red Hat Enterprise Linux 8 has just been released, and CentOS 8 will surely
follow in due course), and you want to implement it early to gain experience and test
workloads. What if you operate in a secure environment (perhaps payment card industry-
compliant), and you absolutely have to have 100% confidence in how the image was built
and there can be no risk of compromise?

This, of course, is not to say that any publicly available images are compromised or even
likely to be, but historically there have been a handful of man-in-the-middle or supply chain
attacks where attackers have compromised services not directly, but rather indirectly by
attacking common components that are used as building blocks.

Most publicly available images come from trustworthy sources that have put in place a
variety of checks and controls to ensure their integrity. Provided you make use of these
checks, and perform due diligence on any images you download, most enterprises will find
little need to create their own images from scratch, as automation tools such as Ansible will
take care of all post-deployment configuration.

Let's take a practical example: suppose that, for a new set of deployments, we have decided
to create an SOE based upon the Fedora 30 server image, and we will be running this on an
OpenStack infrastructure:

We would download the cloud image from the official Fedora project web1.
site—details can be found here, though note that the version number will change
over time as new releases of Fedora arrive, at https:/ /alt. fedoraproject. org/
cloud/.

Upon establishing the correct Fedora cloud image for our environment, we can
download our required image with a command such as this:

$ wget
https://download.fedoraproject.org/pub/fedora/linux/releases/30/Clo
ud/x86_64/images/Fedora-Cloud-Base-30-1.2.x86_64.qcow2

Simple enough—now, let's verify it. Verification instructions are normally2.
provided with all major Linux releases, whether for ISOs or complete images,
and those for our Fedora image download can be found at https:/ /alt.
fedoraproject. org/ en/ verify. html.

https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/cloud/
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html
https://alt.fedoraproject.org/en/verify.html

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[111]

Let's run through the process and validate our image. First of all, we will import
the official Fedora GPG key to validate the checksum file to make sure it hasn't
been tampered with:

$ curl https://getfedora.org/static/fedora.gpg | gpg --import

Now we will download the checksum file for the cloud base images and verify it:3.

$ wget
https://alt.fedoraproject.org/en/static/checksums/Fedora-Cloud-30-1
.2-x86_64-CHECKSUM
$ gpg --verify-files *-CHECKSUM

Although you may get a warning about the key not being certified by a trusted4.
signature (this is a facet of the way GPG key trust is established), the important
thing is that the signature of the file is validated as good—see the following
screenshot for an example of the output:

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[112]

As long as the signature verifies successfully, the last step is to validate the actual5.
image against the checksums themselves, with the following command:

$ sha256sum -c *-CHECKSUM

You will get errors for any files that are in the *-CHECKSUM file that you haven't
downloaded, but as you can see in the following screenshot, our downloaded
image matches the checksum in the file and so we can proceed to use it:

With these steps completed, we can proceed to use the downloaded image in our
OpenStack platform. You may, of course, want to customize this image after deployment,
and we will look at ways to do this later in this book. Just because you have chosen an off-
the-shelf image does not mean it has to remain that way. Note that these steps will vary
slightly for each Linux distribution, but the high-level procedure should be the same. The
important thing is to validate all downloaded images.

There is also an issue of trust surrounding the use of publicly available operating system
images. How do you know that the author removed all redundant services and sysprepped
the image correctly? How do you know that there are no back doors or other
vulnerabilities? Although there are many excellent publicly available images out there, you
should always perform due diligence on any that you download and ensure they are fit for
your environment.

What if you absolutely have to generate your own image, however? We will explore this in
the next part of this chapter.

Creating your own virtual machine images
The preceding process described will be fine for many enterprises, but sooner or later, the
requirement will come about to create your own completely customized virtual machine
image. Fortunately, modern Linux distributions make it easy to achieve this, and you don't
need to even be on the same platform as you are building.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[113]

Let's take a look at building a CentOS 7.6 virtual machine image using an Ubuntu 18.04
Server host:

The first step before we begin is to ensure that the build host is capable of1.
running virtual machines—this is normally a set of CPU extensions that are
included with most modern x86 systems. It is also possible to build virtual
machine images using nested virtualization, that is, to create a virtual machine
within another virtual machine. However, to do this, you will have to enable
virtualization support in your build VM. The process for this varies from one
hypervisor to another, and so we will not go into detail on this here.

If you are using a VMware hypervisor to perform nested virtualization,
you will need to enable code profiling support for the CPU as well as
enabling hypervisor applications—some of the steps in this process will
fail otherwise.

Once you have your build host up and running, you will need to install the2.
Linux Kernel-based Virtual Machine (KVM) toolset—the commands to do this
will vary depending upon your build host version of Linux, but on our Ubuntu
host, we need to run the following commands:

$ sudo apt-get install libvirt-bin libvirt-doc libvirt-clients
virtinst libguestfs-tools libosinfo-bin
$ sudo gpasswd -a <your account> libvirt
$ sudo gpasswd -a <your account> kvm
$ logout

Note the need to add your user account to two KVM-related groups—you will
also need to log out and back in again for these group changes to take effect.

Once this is complete, you will also need to download a local copy of the ISO3.
image for your chosen Linux image. I use the following command to download
an ISO image as it is sufficient for the CentOS 7.6 SOE image I am going to
create:

$ wget
http://vault.centos.org/7.6.1810/isos/x86_64/CentOS-7-x86_64-Minima
l-1810.iso

With all of these pieces in place, you will now create an empty virtual machine4.
disk image. The best format to choose for this is the Quick Copy On
Write (QCOW2) format, which is compatible with OpenStack and most public
cloud platforms. Hence, we will make this image as generic as possible to enable
the widest array of support possible.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[114]

To create a blank 20 GB QCOW2 image in the current directory, we would run the
following command:

$ qemu-img create -f qcow2 centos76-soe.qcow2 20G

Note that other image formats are available. If, for example, you were building exclusively
for VMware, it would make sense to use the VMDK format instead:

$ qemu-img create -f vmdk centos76-soe.vmdk 20G

Note that both these commands create sparse images—that is, they are only as big as the
data and metadata they contain. They can be turned later into pre-allocated images by your
chosen hypervisor platform if you wish:

With the empty disk images created, it's time to install the VM image:

We will use the virt-install command to achieve this, which basically runs1.
up a temporary VM for OS installation. Don't worry about parameters such as
CPU and memory—as long as these are sufficient for the OS installation to be
run, they will be fine—they do not have any bearing on the deployed virtual
machine.

Note the use of VNC in the --graphics
vnc,listen=0.0.0.0 option—we will use this to remotely control the
virtual machine and complete the installation. You can choose another
graphics option, such as SPICE, if you prefer.

The following command is an example of how to use virt-install to create a2.
CentOS 7 image from the ISO we downloaded earlier, using the preceding 20 GB
QCOW2 disk image we created:

$ virt-install --virt-type kvm \
--name centos-76-soe \
--ram 1024 \

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[115]

--cdrom=CentOS-7-x86_64-Minimal-1810.iso \
--disk path=/home/james/centos76-soe.qcow2,size=20,format=qcow2 \
--network network=default \
--graphics vnc,listen=0.0.0.0 \
--noautoconsole \
--os-type=linux \
--os-variant=centos7.0 \
--wait=-1

Most of these parameters are self-explanatory, but pay particular attention to your
environment. For example, if you have edited or removed the default network,
the preceding command will fail. Similarly, ensure the correct paths for all files
referenced.

To see the list of supported --os-variant parameters, run the osinfo-
query os command.

Naturally, you would vary these parameters according to the operating system
you are installing, your disk image name, and so on.

For now, let's run this command—when successful, it should inform you that3.
you can connect to the virtual machine console to continue:

We will now connect to it from another shell using the virt-viewer utility:4.

$ virt-viewer centos-76-soe

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[116]

From here, you will install the operating system in the normal way. As we have discussed
in Chapter 4, Deployment Methodologies, try to go for the most minimal install that you can.
Don't worry too much about hostname and such, as these should get set later as part of the
deployment process; specify the following:

Choose KEYBOARD and LANGUAGE SUPPORT most relevant to your locale.1.
Choose the appropriate DATE & TIME settings for your country.2.
Ensure SOFTWARE SELECTION is Minimal Install (this is the default).3.
Set INSTALLATION DESTINATION—there will only be one virtual hard drive4.
attached to this VM using the preceding virt-install command, so this is
simply a matter of selecting it.
Enable or disable KDUMP as appropriate.5.
Ensure networking is enabled under NETWORK & HOST NAME.6.

The resulting CentOS 7 installation settings screen should look something like the following
screenshot:

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[117]

Allow the installation to complete as normal, and then log into the VM you have just
created. Once logged into the running VM, you should perform any and all customization
that you want to appear in the final version of the VM template. In the next section of this
chapter, we will go into the use of Ansible for configuring deployed virtual machines, and
using it to build templates is no different—hence, to prevent overlap with later chapters, we
will not go into details of Ansible configuration work here.

When your VM goes to reboot after the initial installation, you may find that it shuts down.
If it does, you will need to undefine it using the virsh utility, and then run it again using a
slight variant on our previous virt-install command, telling virt-install to boot
this time from the hard drive image rather than the CD:

$ virsh undefine centos-76-soe
$ virt-install --virt-type kvm \
--name centos-76-soe \
--ram 1024 \
--disk path=/home/james/centos76-soe.qcow2,size=20,format=qcow2 \
--network network=default \
--graphics vnc,listen=0.0.0.0 \
--noautoconsole \
--os-type=linux \
--os-variant=centos7.0 \
--boot=hd

It is worth noting at this stage that most cloud platforms, whether OpenStack, Amazon
Web Services (AWS) or otherwise, all make use of the cloud-init utility to perform the
initial configuration of the virtual machine image once it is deployed and running. Hence,
as a bare minimum, we will install this in our VM image before we shut it down. The
following are the listed commands required to install this manually and, in the next section,
we will turn this into an Ansible role for installation:

$ yum -y install epel-release
$ yum -y install cloud-init cloud-utils-growpart dracut-modules-growroot

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[118]

When you have completed these commands successfully, you will probably need to
customize /etc/cloud/cloud.cfg to configure cloud-init for the environment you
will use it in, although the default configuration serves as a good start for many
environments.

Configuring cloud-init is left as an exercise for you, given the wide
variety of cloud platforms.

Finally, when you have performed any other customization you need, you can now shut
the virtual machine down. Make sure to shut it down cleanly rather than simply powering
it off, as this is going to become a template to be deployed at scale.

Once the virtual machine has been shut down, the next step is to run system preparation
(sysprep) on the image, and then to compact the sparse image file to make it as small as
possible for distribution and archival.

The process of sysprepping is to prepare an image for deployment at scale. Hence, all
uniquely identifiable parameters will be wiped to produce a clean image for deployment at
scale, such as the following:

SSH host keys
History files
Local session configuration
Log files
MAC address references in network configuration

The preceding list is not exhaustive though—there are numerous items to clean up for an
image to be considered truly clean and ready for deployment, and it would warrant an
entire chapter by itself to explain them all. Fortunately for us, there are two commands in
the suite of KVM tools that perform exactly these tasks for us:

$ sudo virt-sysprep -a centos76-soe.qcow2
$ sudo virt-sparsify --compress centos76-soe.qcow2 centos76-soe-final.qcow2

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[119]

Although the output from the first command is too lengthy to fit in a single screenshot, it
shows the wide variety of tasks that are considered necessary as part of sysprep, and if you
find yourself running through this process either manually or with Ansible, the virt-
sysprep utility should give you a good guideline as to the tasks you should perform:

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[120]

Finally, we re-sparsify the disk image, effectively compacting it for efficient storage. Note
that if you get any free space warnings when running this tool (it requires a great deal of
space in /tmp by default—the exact amount will be determined by the size of your virtual
disk image), you should generally not ignore them, as there is a chance the utility will fill
up your partition, hence stopping your build host from working correctly:

The steps performed in this part of this chapter should work for just about any Linux
distribution, being built on just about any Linux host. As ever, refer to the documentation
for your preferred distribution for guidance on package names. Nonetheless, by following
this process, you have now successfully built yourself a completely bespoke cloud image,
which you should be able to upload to many of the popular cloud and hypervisor
platforms.

From here, we will take a more detailed look at customizing the template with Ansible,
rather than entering commands manually as we did in this section.

Using Ansible to build and standardize the
template
You should, by now, have a base Linux image for deployment in your enterprise. If you
chose to download a ready-made template (or indeed, to make use of one provided by a
public cloud provider), then your image will be very much a blank template, ready for
customization. If you chose to build your own, then you may have already chosen to
perform a small amount of customization such as the installation of cloud-init that we
performed earlier. You will note, however, that we did this by hand, which is hardly along
the line of the scalable, repeatable, auditable processes that we have lauded throughout the
early parts of this book. As we proceed through this section of this chapter, we will take a
look at how to customize a base template, regardless of its origin, using Ansible.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[121]

There is no one-size-fits-all Linux image that will suit everyone, and as a result, this chapter
is not definitive. We will, however, look at some of the more common tasks that might be
associated with customizing as an image for deployment, such as the following:

Transferring files into the image
Installing packages
Editing configuration files
Validating the image

Through a combination of these examples, most readers should be able to customize their
own images to their requirements with ease. Let's start exploring this in greater depth with
a look at how to transfer files into the virtual machine image we created previously using
Ansible.

Transferring files into the image
It is commonplace, in the experience of the author, to need to inject files into an operating
system image to ensure it meets a given set of requirements. These files might be a simple
text file, such as an enterprise-standard message of the day, a configuration file for an existing
package, or perhaps even a binary file that is not available in a package. Ansible can handle
all of these with ease, so let's look at some specific examples. As it is generally good practice
to write your Ansible code in roles to support reuse and readability, we will define a role
for our example here. In this example, I am making the following assumptions:

We have downloaded/built our Linux template as outlined in the previous
section of this chapter.
We are running this bare template in a virtual machine.
The IP address of this virtual machine is 192.168.81.141.
The virtual machine has a user account already set up with the following
credentials:

Username: imagebuild.
Password: password.
This account is sudo-enabled.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[122]

Naturally, we would not distribute a cloud image with a sudo-enabled account that uses a
weak password like this, so we are assuming we will use this account during the build
phase only and then will remove it during the cleanup phase. Ansible needs to be able to
connect to a remote host to perform its magic, but the account it uses can be transient in
nature and removed after use:

Under our example, we would create an inventory file that looks like this—yours1.
will undoubtedly be different and customizing it for your image and
environment is left as an exercise for you:

[imagesetup]
192.168.81.141

[imagesetup:vars]
ansible_user=imagebuild
ansible_password=password
ansible_sudo_pass=password

This is a very simple example; in many ways, it is the bare minimum needed for
this process when we do not have SSH key authentication configured. Often SSH
keys are the best way to handle SSH authentication as they offer several benefits,
not least that tasks can run without a password prompt.

Although this inventory file is intended to be transient in nature, it is still
best practice to use ansible-vault to store passwords and this is
recommended here. For the sake of simplicity in this chapter and to
reduce the number of steps that you need to complete, we will leave the
passwords unencrypted (in cleartext).

Next, we'll create the basic directory structure for our role:2.

$ mkdir -p roles/filecopyexample/tasks
$ mkdir -p roles/filecopyexample/files

Now, let's create a few sample files to copy across. First of all, create a3.
customized message to append to the message of the day
in roles/filecopyexample/files/motd:

Enteprise Linux Template
Created with Ansible

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[123]

Let's also create a new configuration file for the chrony service to synchronize4.
time to our corporate time servers
in roles/filecopyexample/files/chrony.conf:

pool ntp.example.com iburst maxsources 4

keyfile /etc/chrony/chrony.keys

driftfile /var/lib/chrony/chrony.drift

logdir /var/log/chrony

maxupdateskew 100.0

rtcsync

makestep 1 3

We intend to copy these two files across to the remote server. However, Ansible is not
limited to copying files from the Ansible host—it can also download files from a remote
server directly to the target host:

Let's suppose your build is going to need docker-compose—we could1.
download this from an internal server, or even directly from the internet if your
image machine has access to the internet. Suppose we want to install docker-
compose 1.18.0 into our images, we can instruct Ansible to download this
directly from https:/ /github. com/docker/ compose/ releases/ download/ 1.18.
0/docker- compose- Linux- x86_ 64.
Now, let's build our role to copy across our two files and download docker-2.
compose into our image—this must be written
in roles/filecopyexample/tasks/main.yml. The first part of this role is
shown in the following code, and serves to copy across the two configuration
files we discussed earlier:

- name: Copy new MOTD file, and backup any existing file if it
exists
 copy:
 src: files/motd
 dest: /etc/motd
 owner: root
 group: root
 mode: '0644'
 backup: yes
- name: Copy across new chrony configuration, and backup any

https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64
https://github.com/docker/compose/releases/download/1.18.0/docker-compose-Linux-x86_64

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[124]

existing file if it exists
 copy:
 src: files/chrony.conf
 dest: /etc/chrony.conf
 owner: root
 group: root
 mode: '0644'
 backup: yes

The role then continues, with the task of installing docker-compose on the VM
image:

- name: Install docker-compose 1.18.0
 get_url:
 url:
https://github.com/docker/compose/releases/download/1.18.0/docker-c
ompose-Linux-x86_64
 dest: /usr/local/bin/docker-compose
 mode: 0755
 owner: root
 group: root

Hence, our role is now complete, though be sure to customize it correctly for your
environment. For example, it is likely a newer version of docker-compose might
be available and this will mean a change to the url parameter of the
preceding get_url module.

The path of the chrony configuration file may vary depending on your
operating system—check this before running the preceding playbook. The
path shown in the example is suitable for a CentOS 7 system like the one
we built earlier.

Finally, we will create a file in the top-level directory (where3.
the roles/ directory was created) called site.yml to call and run this role. This
should contain the following:

- name: Run example roles
 hosts: all
 become: yes

 roles:
 - filecopyexample

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[125]

Finally, let's run our example with the ansible-playbook -i hosts4.
site.yml command and see what happens:

As we can see, the changed statuses tell us that all three of our files were transferred or
downloaded successfully, and by way of example, we can see that it is now possible to
run docker-compose, which was installed during the playbook run (though this would
require Docker to run correctly, which we have not installed as part of this example).

Obviously this example has made a fundamental assumption—that the chrony package
was installed on our example image during the build phase. Although it makes sense to
start with a minimal operating system image for the reasons we have discussed previously,
there is almost certainly going to be a requirement to install a few supplemental packages
on the basic build, and we will explore this in the next section.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[126]

Installing packages
We have looked at how to install a standalone binary such as docker-compose in the
previous section—but what if we need to actually install some additional operating system
packages that were not installed in our base image? For example, cloud-init is incredibly
useful in most cloud environments but was not included in our minimal CentOS 7 install
that we performed earlier.

Here, again, Ansible can help—this time, we will define a role to install the packages we
require. We'll reuse the inventory file from the previous section and create a new role
called packageinstall in the same manner that we did before:

Now, the preceding example on copying files would work on all Linux1.
distributions—the only thing you need to be mindful of is where destination files
might life. For example, our CentOS 7 VM image will have the chrony
configuration file installed in /etc/chrony.conf, whilst an Ubuntu 18.04 LTS
server would have it in /etc/chrony/chrony.conf. Apart from this small
change to the dest: parameter of the copy module, the code would remain the
same.

Unfortunately, it gets a little more complex with package installation.

Let's suppose we want to install cloud-init and docker on our CentOS 72.
example image—the role required to do this might look like this:

- name: Install the epel-release package
 yum:
 name: epel-release
 state: present

- name: Install cloud-init and docker
 yum:
 name: "{{ item }}"
 state: present
 loop:
 - cloud-init
 - docker

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[127]

We must install the EPEL repository first, and then we can install the required3.
packages. When we run it, the output should look something like this:

If you are using a different Linux distribution, then you need to vary the package manager
accordingly. For example, on distributions that use the apt package manager such as
Debian or Ubuntu, the equivalent Ansible role would look like the following block of code:

- name: Install cloud-init and docker
 apt:
 name: "{{ item }}"
 state: present
 loop:
 - cloud-init
 - docker.io

Note the change in module from yum to apt, and the different package name used for the
Docker container service. Other than that, the playbook is almost identical.

We can improve on this further—this different results in the need to maintain two different
roles for two different operating system bases—but what if we could intelligently combine
them into one? Fortunately, the facts that Ansible gathers when it first runs can be used to
identify the operating system and, as such, run the correct code.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[128]

We will repurpose our earlier example code to combine both of these installations into one
Ansible role:

The first part of the code is almost identical to the preceding example, except that1.
we have now specified the when clause to ensure it is only run on Debian- or
Ubuntu-based Linux distributions:

- name: Install cloud-init and docker
 apt:
 name: "{{ item }}"
 state: present
 loop:
 - cloud-init
 - docker.io
 when: ansible_distribution == 'Debian' or ansible_distribution ==
'Ubuntu'

We then add two further tasks that perform the required steps to install Docker2.
on CentOS or Red Hat Enterprise Linux:

- name: Install the epel-release package
 yum:
 name: epel-release
 state: present
 when: ansible_distribution == 'CentOS' or ansible_distribution ==
'Red Hat enterprise Linux'

- name: Install cloud-init and docker
 yum:
 name: "{{ item }}"
 state: present
 loop:
 - cloud-init
 - docker
 when: ansible_distribution == 'CentOS' or ansible_distribution ==
'Red Hat enterprise Linux'

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[129]

Notice again the when clauses under each task—these specific examples are used
to determine whether the tasks should be run depending on the facts that Ansible
obtained during the initial part of the run. Hence, if we now run this role on an
Ubuntu system, we see the following:

As you can see, the first task related to apt was run, but the two following ones3.
based on yum were skipped because the conditions of the when clause were not
met. Now, if we run it on a CentOS 7 target instead, we see this:

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[130]

The inverse is now true: the apt task was skipped, but the two yum related tasks were run.
In this way, it is possible to maintain a single role for installing a common set of package
requirements, even when dealing with several different base operating systems. Combining
when clauses with Ansible facts is a very powerful way to ensure the correct behavior of a
single code base across a variety of systems, and hence if your SOE does extend to both
Debian and Red Hat-based systems, you can still maintain code with ease and simplicity.

Once supplemental packages have been installed, they often must be configured for them
to be useful. In the next section, we will explore the use of Ansible in editing configuration
files.

Editing configuration files
So far, all of the configuration work we have performed has been very black and white—we
are either installing something (be that a file or a package), or we could equally and just as
easily delete it (more on this in the section on cleaning up). However, what if something
more subtle is required? Earlier in this chapter, in the section entitled Transferring files into
the image, we replaced the entire chrony.conf file with our own version. This, however,
might be a bit too much brute force—for example, we might only need to change one line in
a file, and replacing the entire file to change one line is a bit heavy-handed, especially when
you consider that the configuration file might get updated in a future package version.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[131]

Let's take another common operating system image configuration requirement: SSH
daemon security. By default, CentOS 7 installations like the one we created earlier allow
remote logins from the root account. This is not desirable for security reasons, so the
question is, how do we update the SSH daemon configuration without having to replace
the entire file? Luckily, Ansible has modules for just such a task.

To perform this task, the lineinfile module will come in handy. Consider the following
role, which we'll call securesshd:

- name: Disable root logins over SSH
 lineinfile:
 dest: /etc/ssh/sshd_config
 regexp: "^PermitRootLogin"
 line: "PermitRootLogin no"
 state: present

Here, we are using the lineinfile module to process the /etc/ssh/sshd_config file.
We are telling it to look for lines beginning with PermitRootLogin (this prevents us from
accidentally editing commented-out lines), and then to replace this line
with PermitRootLogin no.

Let's try that against a CentOS 7 test system:

This works just as desired. Regular expressions require a great deal of care though. For
example, the SSH daemon will process configuration lines that contain whitespace at the
beginning of the line. However, our simple regular expression in the preceding code does
not take account of whitespace, and so could easily miss an otherwise valid SSH
configuration directive. To craft regular expressions that take account of all possible
situations and permutations of a file is an art in itself and so caution is most definitely
advised in their creation and use.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[132]

Note that, on a live system, you would also need to restart the SSH service
to make this change effective; however, as this is an image that we will
clean up and then shut down for future deployment, there is no need to
do this here.

A halfway house between uploading an entire file and editing an existing one is the use of
templates. Ansible Jinja2 templating is incredibly powerful and very useful where files
might have to have contents that vary with some variable parameter.

Consider again our chrony configuration example from earlier—here, we transferred a
static file with a hardcoded NTP server address. This is fine if your enterprise relies on a
static NTP server (or a set of them), but some will rely on different NTP servers depending
on where the image is to be deployed.

Let's demonstrate this with a new role called templatentp. For this, we will define a
templates directory in roles/templatentp/templates and place into it a file
called chrony.conf.j2 with the following contents:

pool {{ ntpserver }} iburst maxsources 4

keyfile /etc/chrony/chrony.keys

driftfile /var/lib/chrony/chrony.drift

logdir /var/log/chrony

maxupdateskew 100.0

rtcsync

makestep 1 3

Notice that the file is almost identical to the previous example, except that we now have an
Ansible variable name in place of the static hostname on the first line of the file.

Let's create the main.yml file for the role as follows:

- name: Deploy chrony configuration template
 template:
 src: templates/chrony.conf.j2
 dest: /etc/chrony.conf
 owner: root
 group: root
 mode: '0644'
 backup: yes

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[133]

Notice how similar it is to the copy example. Our site.yml is also only slightly
different—in it, we will define the variable with the NTP server hostname. There are many
places in Ansible where this variable could be defined, and it is left to the user to figure out
the best place for them to define it:

- name: Run example roles
 hosts: all
 become: yes

 vars:
 ntpserver: time.example.com

 roles:
 - templatentp

Finally, we can run the playbook and see the results:

In this way, Ansible provides you with powerful tools to not only copy or download entire
configurations into place, but also to manipulate existing ones to suit your environment.
Let's suppose that our image is now complete. We could take this on faith, but good
practice suggests we should always test the result of any build process, especially an
automated one. Thankfully, Ansible can help us to validate the image we have created
according to our requirements, and we will explore this in the next section.

Validating the image build
As well as installing and configuring your image, you might also wish to verify that certain
components that are critical, and that you assume to be present, are actually present. This is
especially true when you download an image that was created by someone else.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[134]

There are many ways to perform this task in Ansible—let's take a simple example. Suppose
you have an archival script that makes use of the bzip2 compression utility to compress
files. This is just a small tool but if you rely on it for certain purposes, your scripts would
break if it was not present. It is also a pertinent example, as the minimal install of CentOS 7
(as we performed earlier) does not actually include it!

How can Ansible solve this problem? There are two approaches we can take. First of all, we
know from our earlier background work on Ansible that most modules are
idempotent—that is, they are designed to achieve a desired state on the target host and not
repeat actions that have already been performed.

Hence, we could have very easily included a role such as this in our configuration
playbook:

- name: Ensure bzip2 is installed
 yum:
 name: bzip2
 state: present

When this role is run and bzip2 is not installed, it will perform the installation and return
the result changed. When it detects that bzip2 is installed, it will return ok and perform no
further actions. However, what if we truly want to check for something rather than just
perform an action, perhaps as a post-build step? Later in this book, we'll look at more
detailed ways of auditing systems, but for now, let's further this example with Ansible.

If you were using shell commands, you would check for the presence of bzip2 in one of
two ways, that is, query the RPM database to see whether the bzip2 package is installed or
check for the presence of /bin/bzip2 on the filesystem.

Let's look at the latter example in Ansible. The Ansible stat module can be used1.
to verify the existence of a file. Consider the following code, which we'll create in
a role called checkbzip2 in the usual manner:

- name: Check for the existence of bzip2
 stat:
 path: /bin/bzip2
 register: bzip2result
 failed_when: bzip2result.stat.exists == false

- name: Display a message if bzip2 exists
 debug:
 msg: bzip2 installed.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[135]

Here, we are using the stat module to tell us about the /bin/bzip2 file (if it
exists). We register the result of the module run in a variable
called bzip2result, and then we define a custom failure condition on the task
that will cause it to fail (and hence fail the entire the playbook run) if the file does
not exist. Note that when a failure condition is encountered, Ansible halts the
entire playbook run, forcing you to address the issue before continuing.
Obviously, this may or may not be the behavior you desire, but it is easy to vary
the failure condition accordingly.

Let's take a look at this in action:2.

As you can see, the debug statement was never run because of the failure
encountered. Hence, we can be absolutely sure when running this role that our
image is going to have bzip2 installed—if it doesn't, our playbook will fail.

Once bzip2 is installed, the run looks quite different:3.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[136]

This is quite definitive in its behavior, which is exactly what we would want. Ansible is not
just limited to checking for files though—we could also check that our sshd_config file
has the PermitRootLogin no line we looked at earlier:

We could do this with a role as follows:1.

- name: Check root login setting in sshd_config
 command: grep -e "^PermitRootLogin no" /etc/ssh/sshd_config
 register: grepresult
 failed_when: grepresult.rc != 0

- name: Display a message if root login is disabled
 debug:
 msg: root login disabled for SSH

Now, running this when the setting is not in place again yields a failure:2.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[137]

Yet if we put this setting in place, we see the following:3.

Again, it's very definitive. Note the changed status in the preceding output—this is so
because we used the command module, which successfully ran command—hence, it always
returns changed. We could alter this behavior with a changed_when clause to this task if
we wanted.

In this manner, Ansible playbooks can be put together that not only customize your build
but also validate the end result. This is especially useful for testing purposes, and where
security is a consideration.

Before completing this chapter, let's take a look, in the next section, at how we pull together
all of the disparate roles and pieces of code we have discussed so far to form a cohesive
automated solution.

Putting it all together
Throughout this section of this chapter, you will note that we have used roles for all of our
examples. Naturally, when it comes to building out your final image, you don't want to end
up running lots of playbooks individually as we have done here. Luckily, if we were to
combine everything, all we would need to do is put all of the roles together in
the roles/ subdirectory, and then reference them all in the site.yml playbook. The
roles directory should look something like this:

~/hands-on-automation/chapter05/example09/roles> tree -d
.
├── checkbzip2

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[138]

│ └── tasks
├── checksshdroot
│ └── tasks
├── filecopyexample
│ ├── files
│ └── tasks
├── installbzip2
│ └── tasks
├── packageinstall
│ └── tasks
├── securesshd
│ └── tasks
└── templatentp
 ├── tasks
 └── templates

Then, our site.yml file will look like this:

- name: Run example roles
 hosts: all
 become: yes

 roles:
 - filecopyexample
 - packageinstall
 - templatentp
 - installbzip2
 - securesshd
 - checkbzip2
 - checksshdroot

Running this code is left as an exercise for the reader, as we have already run all of the
component parts earlier in this chapter. However, if all goes well then, when all roles have
completed, there should be no failed statuses—just a mixture of changed and ok.

If you have run through the process of post-build customization, as detailed in this chapter,
the resulting image will likely need cleaning up a second time. We could resort to the
virt-sysprep command again, however, Ansible can help us here too. In the next section,
we will explore the use of Ansible for cleaning up images for large scale deployment.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[139]

Cleaning up the build with Ansible
By now, you should have a pretty good idea of how to build or validate a base image, and
then customize it with Ansible. Before we close this chapter, it is worth revisiting the task of
cleaning up your image for deployment. Whether you have built an image from scratch or
downloaded a ready-made one, if you have booted it up and run commands on it, either
manually or using Ansible, you are likely to have a whole load of items that you really
don't want present every time you deploy the image. For example, do you really want all of
the system log files from every configuration task you performed and the initial boot to be
present on every single virtual machine deployed? If you had to run any commands by
hand (even if it was to set up authentication to allow Ansible to run), do you want those
commands in the .bash_history file of the account you ran them in on every
deployment?

The answer to these is, of course, no. Then there are those files that could actually cause
problems if cloned—for example, duplicate SSH host keys or MAC address-specific
configurations such as udev configuration data. All of this should be cleaned out before
you consider the image ready for distribution.

Ansible can help with this task too, although it is recommended that you use the virt-
sysprep tool that we demonstrated earlier in this chapter, as this takes care of all of these
steps for you. There might be a reason why you don't want to use this tool—perhaps you
don't have access to it in your environment, or there isn't a build for your preferred
distribution of Linux. In this instance, you can use Ansible to perform the final cleanup. The
great thing about Ansible is that you can use the built-in modules, as we have
demonstrated so far in this chapter, but you can equally use raw shell commands—this can
be especially useful when you need to perform wildcard operations across a filesystem.

The following is an example of a role that relies on raw shell commands to clean up an
image in preparation for deployment. It is not as complete as the job performed by virt-
sysprep, but does serve as a good example of how this could be performed using Ansible.
Note that this example is specific to CentOS 7—if using a different operating system, then it
will be necessary to change paths, package database cleanup commands, and so on. Hence,
this playbook is presented to the reader very much as a practical example of how the
cleanup could be performed in Ansible, though it is intended that the reader takes this
further depending on their own requirements. First of all, we clean out the package
database, as this data need not be replicated across deployments:

- name: Clean out yum cache
 shell: yum clean all

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[140]

We then continue by clearing out the logs—this is achieved by stopping the logging
daemon, forcing a rotation of the logs, and then recursively deleting the directory
containing them:

- name: Stop syslog
 shell: service rsyslog stop

- name: Force log rotation
 shell: /sbin/logrotate -f /etc/logrotate.conf
 ignore_errors: yes

- name: Clean out logs
 shell: /bin/rm -f /var/log/*-???????? /var/log/*.gz /var/log/*.[0-9]
/var/log/**/*.gz /var/log/**/*.[0-9]

- name: Truncate log files
 shell: truncate -s 0 /var/log/*.log

- name: Truncate more logs
 shell: truncate -s 0 /var/log/**/*.log

- name: Clear the audit log
 shell: /bin/cat /dev/null > /var/log/audit/audit.log

- name: Clear wtmp
 shell: /bin/cat /dev/null > /var/log/wtmp

We then clear our hardware and MAC address-specific configurations that would be
invalid on a deployed VM image:

- name: Remove the udev persistent device rules
 shell: /bin/rm -f /etc/udev/rules.d/70*

- name: Remove network related MAC addresses and UUID's
 shell: /bin/sed -i '/^\(HWADDR\|UUID\)=/d' /etc/sysconfig/network-
scripts/ifcfg-*

Following this, we clear out /tmp and remove any history files from user home directories.
The following example is not complete, but does show some pertinent examples:

- name: Clear out /tmp
 shell: /bin/rm -rf /tmp/* /var/tmp/*

- name: Remove user history
 shell: /bin/rm -f ~root/.bash_history /home/**/.bash_history

- name: Remove any viminfo files
 shell: rm -f /root/.viminfo /home/**/.viminfo

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[141]

- name: Remove .ssh directories
 shell: rm -rf ~root/.ssh m -rf /home/**/.ssh

Finally, we perform our final task—in this case, the removal of the SSH host keys. Note that
following this, we also shut down the VM—this is performed as part of this command to
prevent accidental creation of any additional history or logging data. Note also
the ignore_errors clause, which prevents the playbook from failing when the shutdown
occurs and the SSH connection is terminated:

- name: Remove SSH keys and shut down the VM (this kills SSH connection)
 shell: /bin/rm -f /etc/ssh/*key* && shutdown -h now
 ignore_errors: yes

Running this code on a CentOS 7 VM will result is a fairly well-cleaned image, but there are
specifics not covered here. For example, we have cleared out all bash history, but if any
alternate shells were used, their data would not be cleaned. Similarly, we have cleaned out
VIM application data from root's home directory, but not any other applications that may
or may not have been used during the image creation. Hence, it is up to you to extend this
role as you require in your environment.

By this stage, you will have run through the entire process, end-to-end, of creating,
customizing, and cleaning up a Linux operating system for our proposed SOE. Effective use
of Ansible means that the entire process can be automated, and hence enables us to make a
strong start toward automation in the enterprise. All that remains is to deploy the template
we have created into your environment, and from here, you can clone it and build on it to
your heart's content.

Summary
We have seen several hands-on examples of how to obtain or build Linux virtual machine
images for use in a wide variety of scenarios and environments. We have seen how Ansible
lends itself to automating this process, and hence how it complements the image build
process to support the good practices we have previously discussed for automation in the
enterprise and, in particular, the creation and management of an SOE.

In this chapter, you learned how to build Linux images for templating purposes and indeed
obtain and verify ready-made ones. You then learned through practical examples how to
customize these template images with Ansible, covering key concepts such as package
installation and configuration file management. Finally, you learned how to ensure that
image builds are clean and tidy and do not contain data that would either be wasteful or
harmful to replicate across and infrastructure.

Using Ansible to Build Virtual Machine Templates for Deployment Chapter 5

[142]

In the next chapter of this book, we will look at how to create standardized images for use
on bare metal servers and in some traditional virtualization environments.

Questions
What is the purpose of system preparation (sysprep)?1.
When would you need to make use of Ansible facts in your roles?2.
How would you deploy a new configuration file to a virtual machine image3.
using Ansible?
Which Ansible module is used to download a file from the internet directly into a4.
virtual machine image?
How would you write a single Ansible role that will install packages on both5.
Ubuntu and CentOS?
Why would you wish to validate an ISO image you have downloaded?6.
How does the use of Ansible roles at this stage benefit the environment once it is7.
deployed?

Further reading
For an in-depth understanding of Ansible, please refer to Mastering Ansible, Third
Edition by James Freeman and Jesse Keating, available at https:/ /www. packtpub.
com/gb/ virtualization- and- cloud/ mastering- ansible- third- edition

For more details on the use of KVM for virtualization on Linux, please refer to
Mastering KVM Virtualization by Prasad Mukhedkar, Anil Vettathu, Humble Devassy
Chirammal, available at https:/ /www. packtpub. com/ gb/networking- and-
servers/ mastering- kvm- virtualization

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization
https://www.packtpub.com/gb/networking-and-servers/mastering-kvm-virtualization

6
Custom Builds with PXE

Booting
When working with physical hardware, it is not a given that you could simply clone a
virtual machine template to the hard drive and expect it to work. It is, of course, entirely
possible to do this with the right tools, but it is tricky, and there is no guarantee the
resulting system will run.

For example, cloud-ready images will only have the kernel modules installed for the
common virtualized network adapters, and so, may not run (or not have network
connectivity) when installed on a modern piece of hardware.

In spite of this, it is still entirely possible to perform automated, standardized builds on
physical hardware, and this chapter provides a complete hands-on approach to doing so. In
conjunction with the preceding chapter, by the end of this one, you will have practical
experience of the automated build process for standardizing images for all your platforms,
whether they are virtual, cloud-based, or physical.

The following topics will be covered in this chapter:

PXE booting basics
Performing unattended builds
Adding custom scripts to unattended boot configurations

Custom Builds with PXE Booting Chapter 6

[144]

Technical requirements
In this chapter, we are going to look at the process of PXE booting, for physical and virtual
servers. You will require two servers on the same network, and it is recommended that the
network be isolated, as some of the steps performed in this chapter could be disruptive and,
even, destructive if performed in a live operational network.

You will need one server (or virtual machine) to be pre-installed with your choice of Linux
distribution—in our examples, we will use Ubuntu Server 18.04 LTS. The other server (or
virtual machine) should be blank, and suitable for reinstalling.

All example code discussed in this chapter is available from GitHub at: https:/ /github.
com/PacktPublishing/ Hands- On- Enterprise- Automation- on- Linux/ tree/ master/
chapter06.

PXE booting basics
Before the widespread adoption of virtualization and cloud platforms, there was a
requirement to generate a standardized operating system build on physical servers,
without the need to visit a data center and insert some form of installation media. PXE
booting was created, as one of the common solutions to this requirement, and the name
comes from the Pre-eXecution Environment (think of a tiny, minimal operating system)
that is loaded so that an operating system installation can occur.

At a high level, when we talk about the PXE build of a given server, the following process is
occurring:

The server must be configured to use one (or all) of its network adapters for1.
network booting. This is commonly a factory default setting for most new
hardware.
Upon power-up, the server brings up the network interfaces, and on each, in2.
turn, attempts to contact a DHCP server.
The DHCP server sends back IP address configuration parameters, along with3.
further information on where the pre-execution environment should be loaded
from.
The server then retrieves the pre-execution environment, typically, using the4.
Trivial File Transfer Protocol (TFTP).

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter06

Custom Builds with PXE Booting Chapter 6

[145]

The PXE environment runs and looks in a known, well-defined location on the5.
TFTP server for configuration data.
The configuration data is loaded, and instructs the PXE environment how to6.
proceed. Normally, with Linux, this involves loading a kernel and initial
RAMDisk image from the TFTP server, which contains just enough Linux to
proceed with the installation, and pulling further installation sources from
another network service (often HTTP).

Although this all sounds rather complex, it is, in fact, quite straightforward when broken
down into a step-by-step process. As we proceed through this chapter, we will walk
through the process of building out a PXE boot server that is capable of performing an
unattended installation of either CentOS 7 or Ubuntu 18.04 Server. This will serve as a good
hands-on example, and also demonstrates how we can script our build processes even on
physical hardware, where the VM template processes we discussed in the last chapter are
not readily available.

Before any process of PXE booting can commence, we must first set up some supporting
services that provide the necessary network services. In the next section, we will look at
how these may be set up and configured.

Installing and configuring PXE-related services
As with just about any Linux setup, the exact way to do this will depend upon the Linux
distribution on which you are performing the installation, and also, the software packages
you are going to use. Here, we are going to make use of the ISC DHCP server, the
venerable TFTP daemon, and nginx. However, you could just as feasibly use dnsmasq and
Apache.

In many enterprises, these decisions will have already been made—most will have some
form of DHCP infrastructure already in place, and many businesses with IP telephony
systems will have a TFTP server too. Thus, this chapter serves to provide an example
only—real-world implementations will likely be driven by long-established corporate
standards.

There is no safety mechanism to prevent you from running two DHCP
servers on the same network. DHCP relies on broadcast messages, and so
any DHCP clients on the network will receive an answer from whichever
server answers them faster. As a result, it is entirely possible to stop a
network from functioning by setting up a second DHCP server. If you
follow the process outlined in this chapter, be sure you are performing it
on an isolated network, suitable for testing.

Custom Builds with PXE Booting Chapter 6

[146]

For this setup, we are going to assume that we have an isolated network. Our PXE server
will have the IP address 192.168.201.1, and the subnet mask will be 255.255.255.0.
These details will be important in setting up our DHCP server. Let's now walk through the
process of setting up your server to support PXE booting:

We need to install the following list of required packages:1.
DHCP server
TFTP server
Web server

Assuming an Ubuntu 18.04 host, as discussed earlier, run this command to install
the packages we will need for this part of the chapter:

$ apt-get install isc-dhcp-server tftpd-hpa nginx

With these installed, the next step is to configure our DHCP2.
server, with which the preceding package is configured through the
/etc/dhcp/dhcpd.conf file. The configuration file shown in the following code
block is a good, if basic, example for our PXE boot network, though naturally,
you'll need to edit the subnet definition to match your own test network. The first
part of the file contains some important global directives and the subnet
definition for the network:

allow bootp;
https://www.syslinux.org/wiki/index.php?title=PXELINUX#UEFI
This one line must be outside any bracketed scope
option architecture-type code 93 = unsigned integer 16;

subnet 192.168.201.0 netmask 255.255.255.0 {
 range 192.168.201.51 192.168.201.99;
 option broadcast-address 192.168.201.255;
 option routers 192.168.201.1;
 option domain-name-servers 192.168.201.1;

The next part of the file then contains configuration directives, to ensure that we
load the correct pre-execution binary, depending on the type of system being
used. It is common at the time of writing to find a mix of both BIOS- and UEFI-
based systems, so the following configuration is important:

 class "pxeclients" {
 match if substring (option vendor-class-identifier, 0, 9) =
"PXEClient";

 if option architecture-type = 00:00 {

Custom Builds with PXE Booting Chapter 6

[147]

 filename "BIOS/pxelinux.0";
 } else if option architecture-type = 00:09 {
 filename "EFIx64/syslinux.efi";
 } else if option architecture-type = 00:07 {
 filename "EFIx64/syslinux.efi";
 } else if option architecture-type = 00:06 {
 filename "EFIia32/syslinux.efi";
 } else {
 filename "BIOS/pxelinux.0";
 }
 }
}

Most of this is fairly self-explanatory if you have worked with DHCP servers
before. However, the block of text headed class "pxeclients" deserves a
special mention. Some years ago, server hardware relied on the BIOS to boot, and
thus PXE boot configurations were simple, as there was only one pre-boot
environment that you needed to load. Most new server hardware now is
configured with firmware that can operate in either Legacy BIOS or UEFI modes,
and most default to UEFI, unless configured otherwise. The pre-execution binary
is different, depending on the type of firmware in use, and hence,
the if statements in this block make use of a DHCP option, returned to the
server when the client makes its DHCP request.

With this configuration in place, enable the DHCP server, and restart it, as3.
follows:

$ systemctl enable isc-dhcp-server.service
$ systemctl restart isc-dhcp-server.service

The default configuration for the TFTP server will suffice for this example, so,4.
let's also enable this and ensure it is running as follows:

$ systemctl enable tftpd-hpa.service
$ systemctl restart tftpd-hpa.service

Finally, we'll use the default configuration of nginx, and serve all the files we5.
need from /var/www/html—obviously, in an enterprise environment, you
would want to do something a bit more advanced, but for the following practical
example here, this will suffice:

$ systemctl enable nginx.service
$ systemctl restart nginx.service

Custom Builds with PXE Booting Chapter 6

[148]

That's our server infrastructure configured, but one last task remains. We need the pre-
execution environment binaries for our TFTP server, to send to the clients.

Although these are readily available for most Linux distributions (and Ubuntu 18.04 is no
exception), these packages are often quite old (the last stable release of PXELINUX was in
2014), and I have run into known bugs with these, especially when working with UEFI
hardware. Although you are welcome to try newer snapshots, the author has achieved the
most success with the release tagged 6.04-pre2, and so, we will explain how to build this
and copy the files into the correct places for our TFTP server, as follows:

First of all, download and unpack the required release of SYSLINUX (which1.
contains the PXELINUX code) by entering the following code:

$ wget
https://www.zytor.com/pub/syslinux/Testing/6.04/syslinux-6.04-pre2.
tar.gz
$ tar -xzf syslinux-6.04-pre2.tar.gz
$ cd syslinux-6.04-pre2/

Next, we need to install a few build tools to successfully compile the code, as2.
follows:

$ sudo apt-get install nasm uuid-dev g++-multilib

Finally, we'll make sure the build directory is clean, and then build the code, as3.
follows:

$ make spotless
$ make

When the build is complete, the final step is to copy the files into the correct places.
Recalling our DHCP server configuration from earlier, we know that we need to separate
out the files related to Legacy BIOS boots, and those released to newer UEFI boots. Here,
we will step through the process of setting up your server for both BIOS and UEFI network
boots:

The default root directory for the TFTP server is /var/lib/tftpboot on1.
Ubuntu 18.04. Under this path, we will create the two directories referenced by
the DHCP server configuration, as follows:

$ mkdir -p /var/lib/tftpboot/{EFIx64,BIOS}

Custom Builds with PXE Booting Chapter 6

[149]

Then, we will run this set of commands, to gather up and copy all BIOS-related2.
boot files into the newly created BIOS directory:

$ cp bios/com32/libutil/libutil.c32
bios/com32/elflink/ldlinux/ldlinux.c32 bios/core/pxelinux.0
/var/lib/tftpboot/BIOS
$ mkdir /var/lib/tftpboot/BIOS/pxelinux.cfg
$ mkdir /var/lib/tftpboot/BIOS/isolinux
$ find bios -name *.c32 -exec cp {} /var/lib/tftpboot/BIOS/isolinux
\;

We then repeat this step, except this time, we specify the UEFI-related boot files,3.
as follows:

$ cp efi64/com32/elflink/ldlinux/ldlinux.e64
efi64/com32/lib/libcom32.c32 efi64/com32/libutil/libutil.c32
efi64/efi/syslinux.efi /var/lib/tftpboot/EFIx64
$ mkdir /var/lib/tftpboot/EFIx64/pxelinux.cfg
$ mkdir /var/lib/tftpboot/EFIx64/isolinux
$ find efi64/ -name *.c32 -exec cp {}
/var/lib/tftpboot/EFIx64/isolinux \;

With those steps completed, we now have a completed, functional PXE server. We have not
downloaded any operating system images yet, so the boot process wouldn't proceed very
far, but if you were to execute a test at this point, your server firmware should report that it
has obtained an IP address from the DHCP server, and should present you with some boot-
related messages. However, we will build this out further before going into any detailed
testing in this book, and, in the next section, we will look at how to obtain the correct
network installation images for your chosen Linux distribution.

Obtaining network installation images
The next step in our PXE boot setup process is to build out the images required. Luckily,
obtaining the boot images is quite easy—the kernel and packages are normally contained
on the DVD ISO images for your chosen Linux distribution. Obviously, this can vary from
distribution to distribution, so you will need to check this. In this chapter, we will show
examples for Ubuntu Server and CentOS 7—these principles could also be applied to many
Debian derivatives, Fedora, and Red Hat Enterprise Linux.

Custom Builds with PXE Booting Chapter 6

[150]

The installation images required for network booting, along with the
required installation packages, are normally found on the full DVD
images—live images are often not sufficient because they lack either a
sufficiently complete set of packages to perform the installation, or the
network boot-capable kernel is missing.

Let's make a start with the CentOS 7 image, as follows:

First of all, download the latest DVD image from your nearest mirror—for1.
example, the one shown in the following code block:

$ wget
http://mirror.netweaver.uk/centos/7.6.1810/isos/x86_64/CentOS-7-x86
_64-DVD-1810.iso

Once downloaded, mount the ISO image to a suitable location so that the files2.
can be copied from it, as follows:

$ mount -o loop CentOS-7-x86_64-DVD-1810.iso /mnt

Now, the network boot-capable kernel and initial RAMDisk image should be3.
copied to a location of our choosing, under the TFTP server root.

Note that in the following example, we are only doing this for UEFI
booting. To set up for Legacy BIOS booting, follow exactly the same
process, but place all files to be served by TFTP
in /var/lib/tftpboot/BIOS instead. This applies throughout the rest of
this chapter.

The commands to achieve this on our test system are as follows:

$ mkdir /var/lib/tftpboot/EFIx64/centos7

$ cp /mnt/images/pxeboot/{initrd.img,vmlinuz}
/var/lib/tftpboot/EFIx64/centos7/

Custom Builds with PXE Booting Chapter 6

[151]

Finally, we need the web server we installed earlier to serve out the files for the4.
installer—once the kernel and initial RAMDisk environment load, the rest of the
environment will be served over HTTP, which is better suited to large data
transfers. Again, we'll create a suitable subdirectory for our CentOS content, as
follows:

$ mkdir /var/www/html/centos7/

$ cp -r /mnt/* /var/www/html/centos7/

$ umount /mnt

That's all there is to it! Once these steps have been completed, we'll repeat this process for
our Ubuntu 18.04 Server boot image, as follows:

$ wget
http://cdimage.ubuntu.com/releases/18.04/release/ubuntu-18.04.2-ser
ver-amd64.iso

$ mount -o loop ubuntu-18.04.2-server-amd64.iso /mnt

$ mkdir /var/lib/tftpboot/EFIx64/ubuntu1804

$ cp /mnt/install/netboot/ubuntu-installer/amd64/{linux,initrd.gz}
/var/lib/tftpboot/EFIx64/ubuntu1804/

$ mkdir /var/www/html/ubuntu1804

$ cp -r /mnt/* /var/www/html/ubuntu1804/

$ umount /mnt

With these steps complete, we just have one more configuration stage to go before we can
perform a network boot of our chosen operating system.

The process is almost identical—the only difference is that the NetBoot-
capable kernel and RAMDisk were sourced from a different directory on
the ISO image.

In the next section, we will configure the PXE boot server we have built so far, so as to boot
from these installation images.

Custom Builds with PXE Booting Chapter 6

[152]

Performing your first network boot
Thus far, we have configured our server to give our clients an IP address on boot, and have
even built two installation trees, such that we can install either CentOS 7 or Ubuntu 18.04
Server, without the need for any physical media. However, when our target machine boots
over the network, how does it know what to boot?

The answer to this comes in the form of the PXELINUX configuration. This is very similar
in nature to the GRand Unified Bootloader (GRUB) configuration that most Linux
installations use, to define their boot options and parameters when they boot from disk.
Using the installation we have built so far, these configuration files are expected to be
in /var/lib/tftpboot/EFIx64/pxelinux.cfg (or /var/lib/tftpboot/BIOS/pxelin
ux.cfg for Legacy BIOS machines).

Now, a word on file naming. You might want all devices that boot off a network interface
to perform a network boot. However, consider a server where a valid Linux installation is
on the local disk, but through some error (perhaps misconfiguration of the boot order in the
firmware, or a missing boot loader), it boots from the network interface instead of the local
disk. If you have a full, unattended installation configured on your PXE server, this would
wipe the local disks, with potentially disastrous consequences.

If you want all servers to perform a network boot regardless, you create a special
configuration file, called default.

However, if you want to be more targeted, you instead create a configuration file with the
name based on the MAC address. Suppose we have a server with the MAC
address DE:AD:BE:EF:01:23, and our DHCP server is going to assign it the IP
address 192.168.10.101/24 (this would most likely be through a static DHCP mapping
so that we can ensure that this server always gets this IP address). When this server
network boots using UEFI, it will look initially
for /var/lib/tftpboot/EFIx64/pxelinux.cfg/01-de-ad-be-ef-01-23.

If this file is not present, it will look for a file named after the hex-encoded IP address. If
this does not exist, it then takes one digit off the hexadecimal IP address at a time, until it
finds a matching file. In this manner, our server would look
for /var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A80A65. If it doesn't find it, it cycles
through the ever-shortening IP address representations, until it runs out of options. If no
appropriately named file is found, it finally reverts to the default file, and if that file isn't
present, a boot failure is reported by the client.

Custom Builds with PXE Booting Chapter 6

[153]

Thus, the full search sequence for configuration files is as follows:

/var/lib/tftpboot/EFIx64/pxelinux.cfg/01-de-ad-be-ef-01-231.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A80A652.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A80A63.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A80A4.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A805.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A86.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A7.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C08.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/C9.
/var/lib/tftpboot/EFIx64/pxelinux.cfg/default10.

The idea of shortening the IP address filename is to enable you to create a subnet-wide
configuration—for example, if all machines in the 192.168.10.0/24 subnet needed the
same boot configuration, you could create a single file
called /var/lib/tftpboot/EFIx64/pxelinux.cfg/C0A80A. Pay special attention to the
case of the letters in the filename—the MAC address-based filename requires lowercase
letters, while the IP address requires uppercase letters.

There are numerous permutations of configuration for the contents of this configuration
file, and looking into all the possibilities for this is left as an exercise for the reader—there is
ample documentation, and examples, available for PXELINUX. However, with the specific
aim of booting our network install images, let's consider the following file. Initially, we
define the header for the menu, with a simple title and timeout, as follows:

default isolinux/menu.c32
prompt 0
timeout 120

menu title --------- Enterprise Automation Boot Menu ---------

Custom Builds with PXE Booting Chapter 6

[154]

We then proceed to define the entries for our two operating system install images that we
have built, as follows:

label 1
menu label ^1. Install CentOS 7.6 from local repo
kernel centos7/vmlinuz
append initrd=centos7/initrd.img method=http://192.168.201.1/centos7
devfs=nomount ip=dhcp inst.vnc inst.vncpassword=password

label 2
menu label ^2. Install Ubuntu Server 18.04 from local repo
kernel ubuntu1804/linux
append initrd=ubuntu1804/initrd.gz vga=normal locale=en_US.UTF-8
mirror/country=manual mirror/http/hostname=192.168.201.1
mirror/http/directory=/ubuntu1804 mirror/http/proxy="" live-installer/net-
image=http://192.168.201.1/ubuntu1804/install/filesystem.squashfs

As with other examples in this book, these are real-world, tested examples that will work in
their own right. However, they should be customized to your own requirements, and you
should endeavor to read and understand the code before applying it in a production
environment.

In these preceding examples, 192.168.201.1 is the IP address of my PXE
server in my test setup. Be sure to replace this wherever you see it with
the IP address of your PXE server.

This is, in fact, a very simple example—here, we are defining a simple text mode menu with
two entries, one for each of our operating systems. Each menu entry has a label, a title that
appears in the menu, and then, a kernel and append line. The kernel line tells the client
from where to source the kernel on our TFTP server, while the append line is used to
specify the path of the RAMDisk image and all supplementary boot parameters.

These boot parameters, as you can see, are greatly different for different Linux
distributions, as are the capabilities of the installers. For example, the CentOS 7 installer is
graphical (though a text mode option is available) and supports a VNC server, which we
are configuring in the first menu item, enabling a remote installation using a VNC console,
using the parameters inst.vnc and inst.vncpassword=password. The other parameters
used are the following:

method=http://192.168.201.1/centos7: Sets the address from where our
CentOS 7 repo will be served
devfs=nomount: Tells the kernel not to mount the devfs filesystem

Custom Builds with PXE Booting Chapter 6

[155]

ip=dhcp: Tells the pre-boot environment to obtain an IP address using DHCP, to
then be able to reach the HTTP server

The Ubuntu installer is, by contrast, normally run in text mode, and so does not support a
VNC server, so a different remote access technology would be required to perform an
interactive installation, such as Serial-Over-LAN (SOL). Nonetheless, this menu file would
be sufficient for us to perform an interactive installation of either OS as we choose, and is
provided as a template for the reader to build on and develop, as they see fit. The
parameters in use are the following:

vga=normal: Tells the installer to use the standard VGA mode
locale=en_US.UTF-8: Sets the locale—adjust this to suit your environment
mirror/country=manual: Tells the installer we are manually defining the
repository mirror
mirror/http/hostname=192.168.201.1: Sets the hostname of the repository
mirror we created previously
mirror/http/directory=/ubuntu1804: Sets the path on the repository mirror
host that is serving the repository content
mirror/http/proxy="": Tells the installer we are not using a proxy
live-installer/net-
image=http://192.168.201.1/ubuntu1804/install/filesystem.squash

fs : The URL from where the installer disk image can be downloaded

Of course, in an unattended boot scenario, you would not want to present the server with a
choice of operating system—you simply want it to boot the one you want to install. In this
instance, simply remove the menu items that are not needed.

Custom Builds with PXE Booting Chapter 6

[156]

Let's take a look at this in action. Upon a successful network boot of a test machine, we
should be presented with the following menu, as defined previously:

If we select the CentOS image as our boot target, you will see the kernel and base1.
system load, and then ultimately, a screen asking you to connect to the installer
using a VNC client, as shown in the following screenshot:

Custom Builds with PXE Booting Chapter 6

[157]

Connecting with a VNC viewer, as instructed, yields the familiar interactive2.
CentOS 7 graphical installer, as shown in the following screenshot:

Thus, a complete remote installation is possible, without the need to visit the3.
location of the server, or connect a keyboard and mouse! The same is almost true
if we boot our Ubuntu Server image, only this time, the console is on the host
screen, rather than available over VNC, as can be seen in the following
screenshot:

Custom Builds with PXE Booting Chapter 6

[158]

This lends itself well to either redirecting the console over an SOL implementation or a
remove KVM option. Neither of these is particularly convenient, especially as the goal of
this book is automation!

Thus, in the next section, we will look at performing automated installations, using the
concept of unattended builds—that is to say, builds where no human needs to intervene for
the installation to take place.

Performing unattended builds
The ultimate goal of this process is to have a server boot over the network and configure
itself completely, rather than having to have someone interact with it. Although this is not a
process controlled by Ansible, it is still a vital component in our Standard Operating
Environment (SOE) architecture to ensure consistency of builds, and that build standards
can be well documented and version controlled.

Fortunately, both CentOS (Red Hat-based) and Ubuntu (Debian-based) installers provide
the capability for unattended installs to be completed in a programmatic manner. Sadly,
there is no common standard for this process and, as you will see in this section, the
language used for this process is wholly different between the two Linux types we are
discussing here. Nevertheless, by covering off these two technologies, we are giving a good
grounding that will enable you to perform remote, unattended installations on a wide
variety of Linux systems.

Note that the examples in this chapter are complete and working, and thus are provided as
hands-on examples—however, they are really just scratching the surface in terms of what
these unattended installation technologies can do. It is left as an exercise for you to expand
on these examples, and build them out to your own requirements.

Let's get started by looking in the next section at how we perform unattended builds on
Red Hat-based platforms such as CentOS using kickstart files.

Performing unattended builds with kickstart files
The Red Hat installer, Anaconda, uses a scripting language called kickstart to define
unattended builds. This is well documented, and there are many examples available on the
internet for you to work from—in fact, when you manually install a Red Hat derivative
such as CentOS 7, you will find a kickstart file in /root/anaconda-ks.cfg, which could
be employed to automate future builds! In the following, we will build up our own simple
kickstart file, based loosely on a minimal install of CentOS 7 from the interactive installer.

Custom Builds with PXE Booting Chapter 6

[159]

Let's start building up our example kickstart file for use in this chapter. Consider1.
this block of code:

auth --enableshadow --passalgo=sha512
url --url="http://192.168.201.1/centos7/"
graphical
firstboot --enable
ignoredisk --only-use=sda
keyboard --vckeymap=gb --xlayouts='gb'
lang en_GB.UTF-8
reboot

Much of the kickstart file is very readable—in the preceding code block, you can
see the following: we are defining sha512 for the password hashing algorithm;
our repository server is available at http://192.168.201.1/centos7/; we are
performing a graphical install, using only /dev/sda, and with some GB specific
locale settings. We also tell the installer to reboot automatically once the install
completes successfully.

We then build on this by setting up the network (note that you must know the2.
network device name in advance of creating this file, so you might find it useful
to boot into a live environment to check this first) by running the following code:

network --bootproto=dhcp --device=ens33 --ipv6=auto --activate
network --hostname=ksautomation

This sets the hostname of our newly built server to ksautomation, and enables
IPv6 and IPv4 DHCP on the network device called ens33.

We then define the root account password, and—optionally—any additional3.
accounts we want to be added as part of the build, by running the following
code:

rootpw --iscrypted
6cUkXdOxB$o8uxoU6arUj0g9SXqMGnigBYDH4rCkkQt9z/qYPm.lUYNwaZChCz2ep
QMUlbHUg8IVzN9lei9i/rschw1HydU.
user --groups=wheel --name=automation --
password=6eCIJyrjn$Vu30KX//UntsM0h..MLT6ik.m1GL8ayILBFWjbDrKSXowl
i5/hycMaiFzGI926YXEMfXXjAuwOFLIdANZ09/g1 --iscrypted --
gecos="Automation User"

Custom Builds with PXE Booting Chapter 6

[160]

Note that the password hashes must be used in this file—there are many ways to
generate these. I used the following snippet of Python to generate unique hashes
for the password string (you would obviously want to choose a more secure
password!):

$ python -c "import random,string,crypt;
pwsalt = ''.join(random.sample(string.ascii_letters,8));
print crypt.crypt('password', '\$6\$%s\$' % pwsalt)"

Running the preceding three lines of code in the shell of any Linux server that has
Python installed will generate the password hash needed for your kickstart file,
which you can copy and paste into your installation.

The preceding code is used only to generate the password hashes—do not
include it in your kickstart file!

Finally, we set the time zone appropriately, and enable the chrony time4.
synchronization service. We initialize the disk label on our chosen boot
device, sda, and make use of Anaconda's automated partitioning (designated by
the autopart directive), to set up the disk.

Note that clearpart --none does not actually clear the partition table—and if you run
through this example with the kickstart file as defined here, the installation will only
complete if there is space on the target disk to install CentOS 7. To have the kickstart file
wipe the target disk and perform a fresh installation of CentOS 7 (which may be desirable
to avoid having to manually wipe old machines before reuse), perform the following
changes to the kickstart file:

Insert the zerombr directive above the clearpart statement to ensure the boot1.
sector is cleared.
Change the clearpart line to read clearpart --drives=sda --initlabel2.
--all—be sure to only specify the drives you want clearing in the --
drives= parameter!

The fragment of following code does not include these changes as they are
destructive—however, you are free to experiment with them as you wish in your
test environment:

services --enabled="chronyd"
timezone Europe/London --isUtc

Custom Builds with PXE Booting Chapter 6

[161]

bootloader --location=mbr --boot-drive=sda
autopart --type=lvm
clearpart --none --initlabel

We then define our packages to be installed by default. Here, we are installing
the core package group, the minimal system package set, and the chrony package. We are
also disabling kdump for our test server, as shown in the following code block:

%packages
@^minimal
@core
chrony

%end

%addon com_redhat_kdump --disable --reserve-mb='auto'

%end

Finally, we can perform additional customization, such as setting a strong password
policy—the following lines are actually the defaults from the interactive installer, and
should be customized to your requirements:

%anaconda
pwpolicy root --minlen=6 --minquality=1 --notstrict --nochanges --
notempty
pwpolicy user --minlen=6 --minquality=1 --notstrict --nochanges --
emptyok
pwpolicy luks --minlen=6 --minquality=1 --notstrict --nochanges --
notempty
%end

When you have built your complete kickstart file, it's time to test the boot process.
Remember the PXELINUX boot configuration we used in the last section? Well, that is
reused almost in its entirety, except this time, we need to tell it where to find the kickstart
file. I am storing the file we have just created in /var/www/html/centos7-
config/centos7unattended.cfg—thus, it can be downloaded from our HTTP server,
just like with the packages for the installer. In this case, our PXELINUX configuration
would look like this:

default isolinux/menu.c32
prompt 0
timeout 120

menu title --------- Enterprise Automation Boot Menu ---------

label 1

Custom Builds with PXE Booting Chapter 6

[162]

menu label ^1. Install CentOS 7.6 from local repo
kernel centos7/vmlinuz
append initrd=centos7/initrd.img
method=http://192.168.201.1/centos7 devfs=nomount ip=dhcp inst.vnc
inst.vncpassword=password
inst.ks=http://192.168.201.1/centos7-config/centos7unattended.cfg

Let's run through the installation process, and see what happens. Initially, the process will
look identical to the interactive installation we performed earlier in this chapter.

The preceding PXE boot configuration shown is identical to before, save
for the inst.ks parameter at the end, telling Anaconda where to
download our kickstart file from.

Indeed, when you connect to the VNC console of your machine as it is being built, things
will initially look the same—the graphical installer for CentOS 7 loads, as shown in the
following screenshot:

Custom Builds with PXE Booting Chapter 6

[163]

So far, everything looks like an ordinary interactive installation. However, once the installer
finishes the various tasks listed (for example, Saving storage configuration...), you will
note that you are presented with a screen that looks complete, save for the Begin
Installation button being grayed out (as shown in the following screenshot):

Custom Builds with PXE Booting Chapter 6

[164]

Note the differences here—the installation source has now been set to the HTTP server we
set up for our installation process. All other items that are usually completed manually,
such as disk selection, have been completed automatically, using the configuration in our
kickstart script. In fact, if we wait a short while longer, you will see that the installation
commences automatically, without the need to click the Begin Installation button, as
shown in the following screenshot:

The installation now proceeds, using the parameters from our kickstart file. Note that the
root password and initial user account creation has been completed, using the parameters
from the kickstart script, and so, these buttons are again grayed out. In short, although the
installation process appears very similar to a normal interactive installation, the user is not
able to interact with the process in any way.

Custom Builds with PXE Booting Chapter 6

[165]

There are only two times when a user will be expected to interact with a kickstart
installation, as follows:

A configuration is incomplete or incorrect—in this instance, the installer will1.
pause and expect the user to intervene, and (if possible) correct the issue.
If the reboot keyword has not been specified in the kickstart file.2.

In the latter case, the installation will complete, but the installer will wait for the Reboot
button to be clicked, as shown in the following screenshot:

Custom Builds with PXE Booting Chapter 6

[166]

Rebooting automatically at the end of a kickstart installation is often desirable, as it saves
the need to connect to the console. However, there are times when it is not—perhaps you
don't actually want the newly built server to be running on the network at the present time.
Or, perhaps you are building an image for templating purposes, and so don't want the first
boot to complete, as it will mean log files and other data that subsequently need to be
cleaned up.

The exact path the installation takes is up to you—the important thing to note is that you
can connect to the VNC console, as shown in the preceding screenshots, and see exactly
how the installation is going. If there are any errors or issues, you will be alerted.

Test this out, and see how the build performs for you. In the event of any issues, the
installer runs up several consoles on the physical server that contain logging
information—you can switch between these using Alt + Tab, or Alt + F<n>, where F<n> is
one of the function keys—each of the first six corresponds to a different console, which will
contain useful logging information. These can be queried, to debug any issues that might
arise. The instructions are actually shown at the bottom of the text mode console
screen—see the following screenshot for an example:

In the preceding screenshot, we can see we are on console 1, entitled main. Console 2 has a
shell for debugging purposes, and consoles 3 through 5 show log files specific to the
installation process.

However, if all of this goes well, you will see the installer run without any intervention
required, and then, the server will reboot and present you with a login prompt. From there,
you should be able to log in, using the password you defined via the password hash earlier.

That concludes the process of building a CentOS 7 server over the network using a kickstart
file. The same high-level process can be followed for Ubuntu and other Debian derivatives
through the use of pre-seed files, as we shall explore in the next section.

Custom Builds with PXE Booting Chapter 6

[167]

Performing unattended builds with pre-seed files
Broadly speaking, Ubuntu Server builds (and indeed, other Debian derivative operating
systems) function exactly the same way. You specify a script file to tell the installer what
actions to take, in place of a human being selecting options. With Ubuntu Server, this is
called a pre-seed file. Let's go through this now, and build one up.

The pre-seed files are very powerful, and there is lots of documentation around—however,
they can sometimes appear more complex to the naked eye. Starting with the following
lines of code, we set the appropriate locale and keyboard layout for our server:

d-i debian-installer/locale string en_GB
d-i console-setup/ask_detect boolean false
d-i keyboard-configuration/xkb-keymap select gb

We then configure the following network parameters:

d-i netcfg/choose_interface select auto
d-i netcfg/get_hostname string unassigned-hostname
d-i netcfg/get_domain string unassigned-domain
d-i netcfg/hostname string automatedubuntu
d-i netcfg/wireless_wep string

Here, you will note that we don't actually need to know the interface name in
advance—rather, we can get Ubuntu to guess it, using its automated detection algorithm.
We are setting the hostname to automatedubuntu; however, note that the other
parameters are used to prevent the installer from prompting for a hostname from the user,
thus meaning the installation is not truly unattended. Next, we add some details about
where the installer can download its packages from, as shown in the following code block:

d-i mirror/country string manual
d-i mirror/http/hostname string 192.168.201.1
d-i mirror/http/directory string /ubuntu1804
d-i mirror/http/proxy string

These should naturally be adjusted to suit your network, HTTP server setup on your PXE
server, and so on.

Many of these are also set in the kernel parameters, as we saw in our
PXELINUX configuration earlier—we just need to confirm a few of them
here.

Custom Builds with PXE Booting Chapter 6

[168]

We then set up the root account password, and any additional user accounts, as follows:

d-i passwd/root-password password password
d-i passwd/root-password-again password password
d-i passwd/user-fullname string Automation User
d-i passwd/username string automation
d-i passwd/user-password password insecure
d-i passwd/user-password-again password insecure
d-i user-setup/allow-password-weak boolean true
d-i user-setup/encrypt-home boolean false

Note here that I have specified the passwords in plain text, to highlight the possibility to do
this here—there are alternative parameters you can specify that will accept a password
hash, which is far more secure when creating configuration files. Here, the root password is
set to password, and a user account called automation is set up, with the
password insecure. As before, our password policy is quite weak and could be
strengthened here, or later, using Ansible. We then set the time zone as appropriate, and
turn on NTP synchronization, as follows:

d-i clock-setup/utc boolean true
d-i time/zone string Etc/UTC
d-i clock-setup/ntp boolean true

The most complex block of code in our otherwise simplistic example is the following one,
which is used to partition and set up the disk:

d-i partman-auto/disk string /dev/sda
d-i partman-auto/method string lvm
d-i partman-lvm/device_remove_lvm boolean true
d-i partman-md/device_remove_md boolean true
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true
d-i partman-auto-lvm/guided_size string max
d-i partman-auto/choose_recipe select atomic
d-i partman/default_filesystem string ext4
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true
d-i partman-md/confirm boolean true
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true

Custom Builds with PXE Booting Chapter 6

[169]

Although verbose, this section of the file basically says to automatically partition the
disk /dev/sda, set up LVM, use automated calculations to determine the filesystem layout,
and then create ext4 filesystems. As you can see, there are many safeguards and
confirmation prompts that we have flagged as true as otherwise, the installer would stop
and wait for user input to proceed. If this were to happen, our installation would again not
be truly unattended. From here, we specify the package set we want to be installed, as
follows:

tasksel tasksel/first multiselect standard
d-i pkgsel/include string openssh-server build-essential
d-i pkgsel/update-policy select none

The preceding lines of code essentially set up a minimal server build with the openssh-
server package and build-essential packages on it. The automated update policy is
configured to not automatically update. Finally, to finish off the file, we tell it where to
install the boot loader, and to reboot upon successful completion, as follows:

d-i grub-installer/only_debian boolean true
d-i grub-installer/with_other_os boolean true
d-i finish-install/reboot_in_progress note

As with our CentOS example, we will serve this file from our web server, and thus, the
PXELINUX boot configuration needs adjusting, to make sure we incorporate this file—an
appropriate example is shown as follows:

default isolinux/menu.c32
prompt 0
timeout 120

menu title --------- Enterprise Automation Boot Menu ---------

label 1
menu label ^1. Install Ubuntu Server 18.04 from local repo
kernel ubuntu1804/linux
append initrd=ubuntu1804/initrd.gz
url=http://192.168.201.1/ubuntu-config/ubuntu-unattended.txt vga=normal
locale=en_US.UTF-8 console-setup/ask_detect=false console-
setup/layoutcode=gb keyboard-configuration/layoutcode=gb
mirror/country=manual mirror/http/hostname=192.168.201.1
mirror/http/directory=/ubuntu1804 mirror/http/proxy="" live-installer/net-
image=http://192.168.201.1/ubuntu1804/install/filesystem.squashfs
netcfg/get_hostname=unassigned-hostname

Custom Builds with PXE Booting Chapter 6

[170]

Note the following new options in use this time:

url: Tells the installer from where to obtain our pre-seed file.
console-setup/layoutcode and keyboard-
configuration/layoutcode: Prevents the installer from asking about
keyboard settings when it is first run.
netcfg/get_hostname: Although we have set the hostname in the pre-seed file,
we have to specify this parameter here, otherwise the installer will stop, and
prompt the user to enter a hostname.

Again, if you test this by booting a server over the network using the preceding
configuration, you should see the server build complete. Unlike the CentOS 7 installation,
you will not see any menu options—these will only be presented to you if your pre-seed
configuration file is incorrect, or is missing some important details. Instead, you will simply
see a series of progress bars flash by, as the various stages of the installation are completed.
For example, the following screenshot shows that the base system is installed to the disk
after the partitions and logical volumes have been set up:

Assuming all goes well, this process will continue until you are presented with a final
progress bar, which shows the final tidy-up being completed before the server is rebooted.
In the following screenshot, the filesystems are being unmounted, in preparation for a
reboot:

When this final progress bar completes, your server will reboot, and you will be presented
with a login prompt, from where you can log in with the credentials specified in the pre-
seed file d-i passwd parameters shown previously. Note that if you use different
credentials for your build, you must use these here, and not those specified previously.

Custom Builds with PXE Booting Chapter 6

[171]

At this stage, you should be able to perform an unattended build of either CentOS or
Ubuntu Server over the network and perform basic changes, such as selecting the required
packages and setting credentials. In the next section, we will explore methods of additional
bespoke customization, beyond the original OS.

Adding custom scripts to unattended boot
configurations
As you will have seen from the examples in this chapter, the kickstart and pre-seed files are
quite prescriptive in what they can do. For most purposes, they should be perfectly
adequate, allowing you to build a machine suitable for further customization with Ansible.
Indeed, much of the rest of this book is dedicated to how you would manage and automate
configuration management across an estate of servers, built per the details in this and the
preceding chapters.

However, what if your enterprise has a task (or tasks) that absolutely has to be performed
at build time—perhaps for security compliance (which we shall explore in Chapter 13,
Using CIS Benchmarks), for example? Luckily, both of the technologies we have discussed
here provide an option for that. Let's first take a look at how you might perform custom
commands in a kickstart-unattended installation.

Customized scripting with kickstart
As discussed previously, it is recommended for most tasks that you perform the post-build
configuration with Ansible. However, let's take a simple and hypothetical
example—suppose that, for security reasons, you need to disable root SSH logins
immediately when the server is built, for security compliance. There is no directive in
kickstart that can perform this task, and leaving the server with this enabled while it waits
for Ansible to run against it may not be acceptable to a corporate security team, as there is a
window of opportunity for a potential attacker. Luckily, at the bottom of our kickstart file,
we can put a %post block in that runs any shellcode you put into it. Thus, we could run
the sed utility from within the following code block:

%post --log=/root/ks.log

/bin/sed -i 's/#PermitRootLogin yes/PermitRootLogin no/'
/etc/ssh/sshd_config

%end

Custom Builds with PXE Booting Chapter 6

[172]

This very simple block of code runs after the installation process has finished (but before
the reboot), and logs its output into /root/ks.log. You could customize this as you see
fit—however, here, for the sake of our simple example, we are performing a search and
replace operation on the default SSH daemon configuration, to ensure that even on first
boot, root logins over SSH are disabled.

In the next section, we'll see how the same thing is achieved in an Ubuntu pre-seed file.

Customized scripting with pre-seed
Suppose we want to perform the same customization with Ubuntu. Ubuntu pre-seed files
run a single line of commands rather than a block as used in kickstart; hence, they lend
themselves better to either simple tasks, or indeed to downloading a script for more
complex operations. We could embed the sed command in our pre-seed file by adding the
following line at the bottom:

d-i preseed/late_command string in-target /bin/sed -i
's/#PermitRootLogin.*/PermitRootLogin no/' /etc/ssh/sshd_config

Suppose, however, we have a much more complex script to run, and that trying to write it
all on one line would make it difficult both to read and manage—instead, we could change
the preceding command, to download a script from a chosen place and run it, as follows:

d-i preseed/late_command string in-target wget -P /tmp/
http://192.168.201.1/ubuntu-config/run.sh; in-target chmod +x /tmp/run.sh;
in-target sh -x /tmp/run.sh

Note here that we are using wget (which was installed earlier in the build process) to
download a file called run.sh from the /ubuntu-config/ path on our web server. We
then make it executable and run it. In this way, far more complex command sequences can
be run at the end of the build process, just prior to the first reboot.

In this manner, incredibly complex, bespoke operating system builds can be installed
remotely, over the network, without any human intervention at all. The use of kickstart and
pre-seed files also means that the process is scripted and repeatable, which is an important
principle for us to adhere to.

Custom Builds with PXE Booting Chapter 6

[173]

Summary
Even when using bare-metal servers (and some virtualization platforms), it is entirely
possible to script the installation process, to ensure that all builds are consistent and thus
adhere to the SOE principle we set out earlier in this book. By following the processes set
out in this chapter, you will ensure that all your servers are built in a consistent manner,
regardless of the platform on which they are running.

Specifically, you gained experience of performing an interactive Linux installation
environment, using PXE network booting. You then learned how to fully automate the
build process, using kickstart and pre-seed scripts, to ensure that builds are completely
unattended (and, hence, automated). Finally, you learned how to further customize the
builds, by adding custom scripts to the build definition.

In the next chapter, we will proceed to look at the use of Ansible to customize servers, both
when they are newly built, and on an ongoing basis.

Questions
What does PXE stand for?1.
Which basic services are required for a PXE boot?2.
Where would you obtain the installation sources for a network boot?3.
What is an unattended installation?4.
What is the difference between a kickstart file and a pre-seed file?5.
Why would you need to use a %post block in a kickstart file?6.
What is the purpose of the BIOS and EFIx64 directories under the TFTP server7.
root?
How would you create a separate partition for /home in a pre-seed file?8.

Custom Builds with PXE Booting Chapter 6

[174]

Further reading
To see all the possible pre-seed file options, please visit https:/ /help. ubuntu.
com/lts/ installation- guide/ example- preseed. txt.
To learn more about kickstart files (also works on CentOS), please visit https:/ /
access.redhat. com/ documentation/ en-us/ red_ hat_enterprise_ linux/ 7/html/
installation_ guide/ sect- kickstart- howto.
To see a syntax reference for kickstart file commands, please visit https:/ /
access.redhat. com/ documentation/ en-us/ red_ hat_enterprise_ linux/ 7/html/
installation_ guide/ sect- kickstart- syntax#sect- kickstart- commands.

https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://help.ubuntu.com/lts/installation-guide/example-preseed.txt
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-howto
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/sect-kickstart-syntax#sect-kickstart-commands

7
Configuration Management with

Ansible
So far in this book, we have established a solid framework for our Enterprise Linux
infrastructure, one that lends itself well to the large-scale deployments typical in an
enterprise, and to automated management with Ansible at this scale. In this chapter, we
now proceed to go into depth on the automated management aspect of this infrastructure,
starting with the installation and configuration of software packages.

In just about every enterprise, one task is almost guaranteed to be required during the
lifespan of a standardized Linux system—the installation and configuration of a service.
This might simply involve the configuration of an existing system service, or possibly even
the installation of the service itself, followed by post-configuration work.

We will cover the following topics in this chapter, to explore Ansible configuration
management in greater depth:

Installing new software
Making configuration changes with Ansible
Managing configuration at an enterprise scale

Configuration Management with Ansible Chapter 7

[176]

Technical requirements
This chapter includes examples based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to two servers or virtual machines
running one of each of the operating systems listed here, and also Ansible. Note that the
examples given in this chapter may be destructive in nature (for example, they install and
uninstall software packages and make changes to server configuration), and if run as-is,
they are only intended to be run in an isolated test environment.

Once you are satisfied that you have a safe environment in which to operate, let's get
started on looking at the installation of new software packages with Ansible.

All example code discussed in this chapter is available from GitHub, at the following
URL: https://github. com/ PacktPublishing/ Hands- On-Enterprise- Automation- on-
Linux/tree/master/ chapter07.

Installing new software
Depending on your requirements, it is quite possible that your SOE operating system build
has sufficient software installed, and requires only configuration work. However, for many
people, that will not be the case, so we will begin this chapter with a section covering the
installation of software. As with all our work so far, our desire is that anything we do here
is repeatable and lends itself well to automation, and thus, even if new software is required,
it is desirable that we do not install it by hand.

Let's start by looking at the simplest possible case here—installing a native operating
system package.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter07

Configuration Management with Ansible Chapter 7

[177]

Installing a package from operating system
default repositories
Suppose that you are rolling out a new service that requires a database server—for
example, MariaDB. It is unlikely that you will have installed and enabled MariaDB in all of
your SOE images, and hence, the first task before you do anything else will be to install the
software package.

Both of our example operating systems in this book (and indeed, many of their derivatives)
include native packages for MariaDB, so we could quite easily make use of these. When it
comes to package installation, there is, of course, a need to understand what is going on
behind the scenes in our target operating system. For example, on Ubuntu, we know that
we would normally install our chosen software by using the APT package manager. Thus,
if we wanted to install this manually, including the matching client for management
purposes, we would issue the following command:

sudo apt install mariadb-server mariadb-client

Of course, on CentOS, things are quite different—even though packages are available for
MariaDB, the command to install them would instead be the following one:

sudo yum install mariadb mariadb-server

Although Ansible can automate a great deal of your Enterprise Linux requirements, it
cannot abstract away some of the fundamental differences between different Linux
operating systems. Fortunately, though, Ansible makes everything else quite
straightforward. Consider the following inventory:

[servers]
ubuntu-testhost
centos-testhost

We have advocated building a standard operating environment throughout this book, so
this inventory is rather unlikely to occur in real life—however, it serves as a good example
here as we can demonstrate how to install a MariaDB server on two differing platforms. As
with earlier examples in this book, we'll complete this task by making use of roles.

Building on our work on templates from earlier in this book, consider the following role:

- name: Install MariaDB Server on Ubuntu or Debian
 apt:
 name: "{{ item }}"
 state: present

Configuration Management with Ansible Chapter 7

[178]

 loop:
 - mariadb-server
 - mariadb-client
 when: ansible_distribution == 'Debian' or ansible_distribution ==
'Ubuntu'

- name: Install MariaDB Server on CentOS or RHEL
 yum:
 name: "{{ item }}"
 state: present
 loop:
 - mariadb-server
 - mariadb
 when: ansible_distribution == 'CentOS' or ansible_distribution == 'Red
Hat Enterprise Linux'

This neatly packaged role will operate correctly on both Ubuntu and CentOS (and, indeed,
Red Hat Enterprise Linux (RHEL) and Debian, if required), and takes account of both the
differing package managers and different package names. Naturally, if you are fortunate
enough to have an environment that is completely unified (for example, only Ubuntu
Server-based), then the code can be simplified even further.

There exists an Ansible module called package that attempts to detect the
correct package manager to use, based on the operating system the
playbook is run against. Although this removes the need for separate
yum- and apt- based tasks, such as the ones we used previously, you still
need to take into account the different package naming between different
Linux operating systems, so you may still require a when clause.

We will define a simple playbook to call the role, as follows:

- name: Install MariaDB
 hosts: all
 become: yes

 roles:
 - installmariadb

Configuration Management with Ansible Chapter 7

[179]

Now, we can run the playbook and observe what happens, as follows:

From the preceding output, you can see how the tasks that are irrelevant to each system are
skipped, while the successful installation of our desired package results in
a changed status. Also, note that the task status returned was ok when installing the
MariaDB client package called mariadb on our CentOS test system. The reason for this is
that the loop defined in our role iterates over each listed package in turn, installing it; on
CentOS, the mariadb package is a dependency of the mariadb-server package, and so it
was installed when that particular task was run.

Although specifying this manually could be seen as redundant, it does no harm to keep it
in our role as it ensures that whatever happens, the client package is present. It is also a
form of self-documentation—in a few years, someone could come back to this playbook
and understand that both the MariaDB client and server packages were required, even if
they were unaware of this nuance of the CentOS 7 operating system.

Configuration Management with Ansible Chapter 7

[180]

Before we build on this example, a note on package removal. Ansible tasks are, as we have
discussed previously, idempotent. For example, if we run our playbook a second time, we
will see that the results returned are all ok. In the following instance, Ansible has detected
that our chosen packages are already installed, and doesn't attempt a second installation:

However, what if you need to tidy something up? Perhaps a package that features in the
standard image has become obsolete or needs removing, for security reasons. In this
instance, it is not sufficient simply to remove the playbook or role. While the presence of
our example role ensures the installation of packages, the removal of the role does not
reverse this. In short, we must manually uninstall or remove changes if they are not
required. Backing out of our installation would require a role such as this:

- name: Uninstall MariaDB Server on Ubuntu or Debian
 apt:
 name: "{{ item }}"
 state: absent
 loop:
 - mariadb-server
 - mariadb-client
 when: ansible_distribution == 'Debian' or ansible_distribution ==
'Ubuntu'

Configuration Management with Ansible Chapter 7

[181]

- name: Uninstall MariaDB Server on CentOS or RHEL
 yum:
 name: "{{ item }}"
 state: absent
 loop:
 - mariadb-server
 - mariadb
 when: ansible_distribution == 'CentOS' or ansible_distribution == 'Red
Hat Enterprise Linux'

Notice the almost identical nature of the role, except that we are now using state:
absent instead of state: present. This is common to most Ansible tasks you might
run—if you want to define a procedure for backing out or otherwise reverting a change,
you will need to write that separately. Now, when we run the preceding role by calling it
from a suitable playbook, we can see that the packages are cleanly uninstalled, as shown in
the following screenshot:

Sometimes, of course, the packages we want to install are not available as part of the
default operating system package repositories.

In the next section, we will look at how to handle this in accordance with the automation
principles we have set out so far.

Configuration Management with Ansible Chapter 7

[182]

Installing non-native packages
Thankfully, the installation of non-native packages is not significantly more difficult with
Ansible than with native ones. Ideally, in an enterprise environment, all required packages
would be served out of an internal repository, and indeed, we will cover this later in the
book. In this instance, the enterprise repository would be used in conjunction with Ansible
roles, such as those from the previous section.

Occasionally, though, this may not be possible, or desirable. Take, for instance, a
development or test system where a new package is being evaluated—here, you would
probably not want to upload a test package to an enterprise repository server when it is not
known whether there will be a requirement for the package moving forward. Nonetheless,
we wish to adhere to our principles of automation and ensure that we perform our testing
in a repeatable, self-documenting manner.

Suppose you are evaluating the Duplicati backup software for your enterprise and need to
install the latest beta version to perform some testing. Obviously, you could download this
manually from their releases page, copy it across to your target server, and install it by
hand. However, this is inefficient, and certainly not a repeatable process. Luckily,
the apt and yum modules we used earlier support the installation of packages, both from a
local path and a remote URL.

Thus, to test the installation of Duplicati beta version 2.0.4.23, you could write a role such as
this:

- name: Install Duplicati beta on Ubuntu
 apt:
 deb:
https://github.com/duplicati/duplicati/releases/download/v2.0.4.23-2.0.4.23
_beta_2019-07-14/duplicati_2.0.4.23-1_all.deb
 when: ansible_distribution == 'Debian' or ansible_distribution ==
'Ubuntu'

- name: Install Duplicati beta on CentOS or RHEL
 yum:
 name:
https://github.com/duplicati/duplicati/releases/download/v2.0.4.23-2.0.4.23
_beta_2019-07-14/duplicati-2.0.4.23-2.0.4.23_beta_20190714.noarch.rpm
 state: present
 when: ansible_distribution == 'CentOS' or ansible_distribution == 'Red
Hat Enterprise Linux'

Configuration Management with Ansible Chapter 7

[183]

As you can see from this role, the installation proceeds without needing to separately
download the package first, as shown in the following screenshot:

Thus, in this way, whether for testing or production purposes, you can install packages that
are not available in the default package repositories of your chosen operating system, and
maintain the benefits of automation. In the next section, we will explore how Ansible can
install software that is not packaged at all and that requires manual installation.

Installing unpackaged software
Some software, of course, doesn't come neatly packaged and requires a more manual
approach to installation. Take, for example, the hosting control panel software Virtualmin.
This, at the time of writing, normally requires the user to download a shell script and
execute it to perform the installation.

Fortunately, once again, Ansible can help here—consider the following role:

- name: download virtualmin install script
 get_url:
 url: http://software.virtualmin.com/gpl/scripts/install.sh
 dest: /root/install.sh
 mode: 0755

- name: virtualmin install (takes around 10 mins) you can see progress
using: tail -f /root/virtualmin-install.log
 shell: /root/install.sh --force --hostname {{ inventory_hostname }} --

Configuration Management with Ansible Chapter 7

[184]

minimal --yes
 args:
 chdir: /root

Here, we are making use of the Ansible get_url module to download the installation
script and then using the shell module to run it. Notice also how we can put helpful
instructions into the task names—although no substitute for good documentation, this is
incredibly helpful as it tells anyone running the script how to check on the progress of the
installation using the tail command.

Note that the shell module requires some care in its use—as it cannot
possibly know whether the shell task you have given it has been run
before, it runs the command every time the playbook is run. Thus, if you
run the preceding role a second time, it will attempt to install Virtualmin
again. You should use a when clause under your shell task to ensure it
only runs under certain conditions—perhaps in the preceding example,
when /usr/sbin/virtualmin (which is installed by install.sh) is not
present.

This method could be extended to almost any software you can imagine—you could even
download a source code tarball and extract it and build the code using a series of shell
module calls in Ansible. This is an unlikely case, of course, but the emphasis here is that
Ansible can help you create repeatable installations, even if you don't have access to pre-
packaged software in an RPM or DEB format.

In this manner, almost any software can be installed—after all, the process of software
installation is to download a file (or archive), put it into the right location, and configure it.
This is, in essence, what package managers such as yum and apt are doing behind the
scenes, and Ansible can handle this kind of activity just as well, as we have demonstrated
here. In the next section, we will explore the use of Ansible to make configuration changes
on systems on which you have built and/or installed software.

Making configuration changes with Ansible
When it comes to configuring a new service, the task is rarely completed by simply
installing the required software. There is almost always a configuration stage required after
the installation.

Let's consider in detail some fundamental examples of the myriad of configuration changes
that might be required.

Configuration Management with Ansible Chapter 7

[185]

Making small configuration changes with Ansible
When it comes to making configuration changes, the lineinfile Ansible module is often
your first port of call and can handle a lot of the small-scale changes that might be required.
Consider the example of deploying a MariaDB server that we started earlier in this chapter.
Although we successfully installed the packages, they will have been installed with their
default configuration, and this is unlikely to suit all but the most basic of use cases.

For example, the default bind address for the MariaDB server is 127.0.0.1, meaning that
it is not possible to make use of our MariaDB installation from an external application. We
have well established the need to make changes in a reliable, repeatable manner, so let's
take a look at how we might change this using Ansible.

In order to change this configuration, the first thing we need to do is establish where the
default configuration is located and what it looks like. From here, we will define an Ansible
task, to rewrite the configuration.

Taking our Ubuntu server by way of example, the service bind-address is configured in the
/etc/mysql/mariadb.conf.d/50-server.cnf file—the default directive looks like this:

bind-address = 127.0.0.1

Thus, in order to change this, we might employ a simple role, like this:

- name: Reconfigure MariaDB Server to listen for external connections
 lineinfile:
 path: /etc/mysql/mariadb.conf.d/50-server.cnf
 regexp: '^bind-address\s+='
 line: 'bind-address = 0.0.0.0'
 insertafter: '^\[mysqld\]'
 state: present

- name: Restart MariaDB to pick up configuration changes
 service:
 name: mariadb
 state: restarted

Let's break the lineinfile task down and look at it in more detail:

path: Tells the module which configuration file to modify.
regexp: Used to locate an existing line to modify if there is one so that we don't
end up with two conflicting bind-address directives.
line: The line to replace/insert into the configuration file.

Configuration Management with Ansible Chapter 7

[186]

insertafter: If the regexp is not matched (that is, the line is not present in the
file), this directive ensures that the lineinfile module inserts a new line after
the [mysqld] statement, thus ensuring it is in the correct part of the file.
state: Setting this to present state ensures that the line is present in the file,
even if the original regexp is not matched—in this instance, a line is added to the
file in accordance with the value of line.

Following on from this modification, we know that the MariaDB server will not pick up
any configuration changes unless we restart it, so we do exactly that at the end of the role.
Now, if we run this, we can see that it has the desired effect, as shown in the following
screenshot:

For simple configuration adjustments such as this, on a small number of systems, this
achieves exactly the result that we desire. There are, however, drawbacks to this approach
that need to be addressed, especially when it comes to not just the point in time where the
change is made, but also to the long-term integrity of the system. Even with the best
automation strategies in the world, someone making manual changes can remove the
consistency and standardization that is core to good automation practice, and hence there is
a real need to ensure that future playbook runs will still yield the desired end result. We
will explore this issue in the next section.

Configuration Management with Ansible Chapter 7

[187]

Maintaining configuration integrity
The issue with making changes in this manner is that they do not scale well. Tuning a
MariaDB server for a production workload often requires setting perhaps half a dozen, or
more, parameters. Thus, that simple role that we wrote previously could well grow to
become a tangle of regular expressions and directives that are difficult to decipher, let alone
manage.

Regular expressions themselves are not foolproof and are only as good as they are written
to be. In our previous example, we used the following line to look for the bind-address
directive, with a view to changing it. The regular expression ^bind-address\s+= means
to look for lines in the file that have the following:

Have the bind-address literal string at the start of the line (denoted by the ^)
Have one or more spaces after the bind-address literal string
Have a = sign after these spaces

The idea behind this regular expression is to ensure that we ignore comments such as the
following one:

#bind-address = 0.0.0.0

However, MariaDB is quite tolerant of whitespace in its configuration files, and the regular
expression we have defined here will fail to match the following permutations of this line,
all of which are equally valid:

bind-address=127.0.0.1
 bind-address = 127.0.0.1

In these instances, since the regexp parameter didn't match, our role will add a new line to
the configuration file with the bind-address = 0.0.0.0 directive. As MariaDB treats the
preceding examples as valid configuration, we end up with two configuration directives in
the file which, may well give you unexpected results. Different software packages will
handle this differently too, adding to the confusion. There are other complexities to
consider too. Many Linux services feature highly complex configurations that are often
broken down across multiple files to make them easier to manage. The documentation that
comes with the native MariaDB server package on our test Ubuntu system states the
following:

The MariaDB/MySQL tools read configuration files in the following order:
1. "/etc/mysql/mariadb.cnf" (this file) to set global defaults,
2. "/etc/mysql/conf.d/*.cnf" to set global options.
3. "/etc/mysql/mariadb.conf.d/*.cnf" to set MariaDB-only options.
4. "~/.my.cnf" to set user-specific options.

Configuration Management with Ansible Chapter 7

[188]

However, this configuration order is dictated by
the /etc/mysql/mariadb.cnf file, which at the bottom has directives to include the files
listed on lines 2 and 3 in the preceding code block. It is entirely possible for someone (well-
meaning or otherwise) to simply come along and
overwrite /etc/mysql/mariadb.cnf with a new version that removes the include
statements for these subdirectories, and instead includes the following:

[mysqld]
bind-address = 127.0.0.1

As our role that makes use of lineinfile is completely unaware of this file, it will
faithfully set the parameter in /etc/mysql/mariadb.conf.d/50-server.cnf, without
understanding that this configuration file is no longer being referenced, and again, the
results on the server will—at best—be unpredictable.

While the goal of enterprise automation is that all systems should have their changes
managed centrally with a tool such as Ansible, the reality is that you cannot always
guarantee that this will occur. Occasionally, things will break, and people who are in a
hurry to fix them may be forced to bypass processes to save time. Equally, new staff
members who are unfamiliar with systems may make changes in a manner such as we have
suggested here.

Alternatively, take—for example—our proposed SSH daemon configuration from Chapter
5, Using Ansible to Build Virtual Machine Templates for Deployment. Here, we proposed a
simple role (shown again in the following code block, for reference) that would disable root
logins over SSH, one of a number of recommended security parameters for the SSH
daemon:

- name: Disable root logins over SSH
 lineinfile:
 dest: /etc/ssh/sshd_config
 regexp: "^PermitRootLogin"
 line: "PermitRootLogin no"
 state: present

Note that our regexp has the same weaknesses as our other role when it comes to
whitespace. When sshd has two duplicate parameters in its configuration file, it takes the
first value as the correct one. Thus, if I knew that the role listed in the previous code block
was being run against a system, all I would have to do is put these lines at the very top
of /etc/ssh/sshd_config:

Override Ansible roles
 PermitRootLogin yes

Configuration Management with Ansible Chapter 7

[189]

Thus, our Ansible role will run faithfully against this server and report that it has
successfully managed the SSH daemon configuration, while in reality, we have overridden
it and enabled root logins.

These examples show us two things. First of all, be very careful when working with regular
expressions. The more thorough you can be, especially when dealing with whitespace, the
better. Obviously, in an ideal world, this would not even be necessary, but unexpected
changes such as this have brought down many systems. To prevent the preceding SSH
daemon example from being possible, we might try the following regular expression:

^\s*PermitRootLogin\s+

This will take account of zero or more spaces before the PermitRootLogin keyword, and
then take account of one or more spaces afterward, all while taking account of the
whitespace tolerance built into sshd. However, regular expressions are very literal, and we
haven't even taken account of tabs yet!

Ultimately, this brings us to the second factor demonstrated through these examples—that
to maintain configuration and, hence, system integrity at enterprise scale, and ensure that
you have a high degree of confidence in both your automation and the systems it produces,
another approach might be required for configuration management. This is exactly what
we go on to explore in the next section—techniques for reliably managing configuration at
large, enterprise scales.

Managing configuration at an enterprise
scale
Clearly, from these examples, another approach is required for the management of
configuration at an enterprise scale. There is nothing wrong with
the lineinfile approach we discussed previously when it comes to making small
numbers of changes in a well-controlled environment, yet let us consider a more robust
approach to configuration management, better suited to a large organization.

We will start by considering scalable methods for simple static configuration changes (that
is, those that are the same across all servers) in the next section.

Configuration Management with Ansible Chapter 7

[190]

Making scalable static configuration changes
It is vital that the configuration changes that we make are version controlled, repeatable,
and reliable—thus, let's consider an approach that achieves this aim. Let's start with a
simple example by revisiting our SSH daemon configuration. On most servers, this is likely
to be static, as requirements such as restricting remote root logins and disabling password-
based logins are likely to apply across an entire estate. Equally, the SSH daemon is
normally configured through one central file—/etc/ssh/sshd_config.

On an Ubuntu server, the default configuration is very simple, consisting of just six lines if
we remove all the whitespace and comments. Let's make some modifications to this file so
that remote root logins are denied, X11Forwarding is disabled, and only key-based logins
are allowed, as follows:

ChallengeResponseAuthentication no
UsePAM yes
X11Forwarding no
PrintMotd no
AcceptEnv LANG LC_*
Subsystem sftp /usr/lib/openssh/sftp-server
PasswordAuthentication no
PermitRootLogin no

We will store this file within our roles/ directory structure and deploy it with the
following role tasks:

- name: Copy SSHd configuration to target host
 copy:
 src: files/sshd_config
 dest: /etc/ssh/sshd_config
 owner: root
 group: root
 mode: 0644

- name: Restart SSH daemon
 service:
 name: ssh
 state: restarted

Configuration Management with Ansible Chapter 7

[191]

Here, we use the Ansible copy module to copy the sshd_config file we have created and
stored within the role itself to our target host and ensure it has the ownership and mode
that's suitable for the SSH daemon. Finally, we restart the SSH daemon to pick up the
changes (note that this service name is valid on Ubuntu Server and may vary on other
Linux distributions). Thus, our completed roles directory structure looks like this:

roles/
└── securesshd
 ├── files
 │ └── sshd_config
 └── tasks
 └── main.yml

Now, we can run this to deploy the configuration to our test host, as follows:

Now, deploying the configuration through this means gives us a number of advantages
over the methods we have explored previously, as listed here:

The role itself can be committed to a version control system, thus implicitly
bringing the configuration file itself (in the files/ directory of the role) under
version control.
Our role tasks are very simple—it is very easy for someone else to pick up this
code and understand what it does, without the need to decipher the regular
expressions.

Configuration Management with Ansible Chapter 7

[192]

It doesn't matter what happens to our target machine configuration, especially in
terms of whitespace or configuration format. The pitfalls discussed at the end of
the previous section are avoided completely because we simply overwrite the file
on deployment.
All machines have an identical configuration, not just in terms of directives, but
in terms of order and formatting, thus ensuring it is easy to audit configuration
across an enterprise.

Thus, this role represents a big step forward in terms of enterprise-scale configuration
management. However, let's see what happens if we run the role against the same host a
second time. The resulting output can be seen in the following screenshot:

From the preceding screenshot, we can see that Ansible has determined that the SSH
configuration file is unmodified from the last run, and hence, the ok status is returned.
However, in spite of this, the changed status of the Restart SSH daemon task indicates
that the SSH daemon has been restarted, even though no configuration change was made.
Restarting system services is normally disruptive, and so it should be avoided unless
absolutely necessary. In this case, we would not wish to restart the SSH daemon unless a
configuration change is made.

Configuration Management with Ansible Chapter 7

[193]

The recommended way to handle this is with a handler. A handler is an Ansible
construct that is much like a task, except that it only gets called when a change is made.
Also, when multiple changes are made to a configuration, the handler can be notified
multiple times (once for each applicable change), and yet the Ansible engine batches up all
handler calls and runs the handler once, only after the tasks complete. This ensures that
when it is used to restart a service, such as in this example, the service is only restarted
once, and only then when a change is made. Let's test this now, as follows:

First of all, remove the service restart task from the role and add a notify clause1.
to notify the handler (we shall create this in a minute). The resulting role tasks
should look like this:

- name: Copy SSHd configuration to target host
 copy:
 src: files/sshd_config
 dest: /etc/ssh/sshd_config
 owner: root
 group: root
 mode: 0644
 notify:
 - Restart SSH daemon

Now, we need to create a handlers/ directory in the role and add our2.
previously removed handler code to it so that it looks like this:

- name: Restart SSH daemon
 service:
 name: ssh
 state: restarted

The resulting roles directory structure should now look like this:3.

roles/
└── securesshd
 ├── files
 │ └── sshd_config
 ├── handlers
 │ └── main.yml
 └── tasks
 └── main.yml

Configuration Management with Ansible Chapter 7

[194]

Now, when we run the playbook twice on the same server (having initially4.
reverted the SSH configuration to the original one), we see that the SSH daemon
is only restarted in the instance where we have actually changed the
configuration, as shown in the following screenshot:

To further demonstrate handlers before we move on, let's consider this enhancement to the
role tasks:

- name: Copy SSHd configuration to target host
 copy:
 src: files/sshd_config
 dest: /etc/ssh/sshd_config
 owner: root
 group: root

Configuration Management with Ansible Chapter 7

[195]

 mode: 0644
 notify:
 - Restart SSH daemon

- name: Perform an additional modification
 lineinfile:
 path: /etc/ssh/sshd_config
 regexp: '^\# Configured by Ansible'
 line: '# Configured by Ansible on {{ inventory_hostname }}'
 insertbefore: BOF
 state: present
 notify:
 - Restart SSH daemon

Here, we deploy our configuration file and perform an additional modification. We are
putting a comment into the head of the file, which includes an Ansible variable, with the
hostname of the target host.

This will result in two changed statuses on our target host, and yet, if we revert to the
default SSH daemon configuration and then run our new playbook, we see the following:

Pay careful attention to the preceding output and the sequence in which the tasks are run.
You will note that the handler is not run in sequence and is actually run once at the end of
the play.

Configuration Management with Ansible Chapter 7

[196]

Even though our tasks both changed and hence would have notified the
handler twice, the handler was only run at the end of the playbook run,
minimizing restarts, just as required.

In this manner, we can make changes to static configuration files at large scales, across
many hundreds—if not thousands—of machines. In the next section, we will build on this
to demonstrate ways of managing configuration where dynamic data is required—for
example, configuration parameters that might change on a per-host or per-group basis.

Making scalable dynamic configuration changes
While the preceding examples resolve many of the challenges of making automated
configuration changes at scale in an enterprise, it is noticeable that our final example was
somewhat inefficient. We deployed a static, version-controlled configuration file, and made
a change to it using the lineinfile module again.

This allowed us to insert an Ansible variable into the file, which in many instances is
incredibly useful, especially when configuring more complex services. However, it is—at
best—inelegant to split this change across two tasks. Also, reverting to the use of
the lineinfile module again exposes us to the risks we discussed earlier and means we
would need one lineinfile task for every variable we wish to insert into a configuration.

Thankfully, Ansible includes just the answer to such a problem. In this case, the concept of
Jinja2 templating comes to our rescue.

Jinja2 is a templating language for Python that is incredibly powerful and easy to use. As
Ansible is coded almost entirely in Python, it lends itself well to the use of Jinja2 templates.
So, what is a Jinja2 template? At its most fundamental level, it is a static configuration file,
such as the one we deployed for the SSH daemon earlier, but with the possibility of
variable substitutions. Of course, Jinja2 is far more powerful than that—it is, in essence, a
language in its own right, and features common language constructs such as for loops
and if...elif...else constructs, just as you would find in other languages. This makes
it incredibly powerful and flexible, and entire sections of a configuration file (for example)
can be omitted, depending on how an if statement evaluates.

As you can imagine, Jinja2 deserves a book of its own to cover the detail of the
language—however, here, we will provide a practical hands-on introduction to Jinja2
templating for the automation of configuration management in an enterprise.

Configuration Management with Ansible Chapter 7

[197]

Let's go back to our SSH daemon example for a minute, where we wanted to put the target
hostname into a comment at the head of the file. While this is a contrived example,
progressing it from the copy/lineinfile example to a single template task will show the
benefits that templating brings. From here, we can progress to a more comprehensive
example. To start with, let's define our Jinja2 template for the sshd_config file, as follows:

Configured by Ansible {{ inventory_hostname }}
ChallengeResponseAuthentication no
UsePAM yes
X11Forwarding no
PrintMotd no
AcceptEnv LANG LC_*
Subsystem sftp /usr/lib/openssh/sftp-server
PasswordAuthentication no
PermitRootLogin no

Notice that the file is identical to the file we deployed using the copy module earlier, only
now, we have included the comment in the file header and used the Ansible variable
construct (denoted by pairs of curly braces) to insert the inventory_hostname variable.

Now, for the sake of our sanity, we will call this file sshd_config.j2 to ensure we can
differentiate templates from flat configuration files. Templates are normally placed into
a templates/ subdirectory within the role, and so are subject to version control in the
same way that playbook, roles, and any associated flat configuration files are.

Now, rather than copying the flat file and then performing substitutions with one or more
lineinfile tasks, we can use the Ansible template module to deploy this template and
parse all Jinja2 constructs.

Thus, our tasks now look like this:

- name: Copy SSHd configuration to target host
 template:
 src: templates/sshd_config.j2
 dest: /etc/ssh/sshd_config
 owner: root
 group: root
 mode: 0644
 notify:
 - Restart SSH daemon

Notice that the task is almost identical to our earlier copy task and that we call our handler,
just as before.

Configuration Management with Ansible Chapter 7

[198]

The completed module directory structure now looks like this:

roles
└── securesshd
 ├── handlers
 │ └── main.yml
 ├── tasks
 │ └── main.yml
 └── templates
 └── sshd_config.j2

Let's run this and evaluate the results, which can be seen in the following screenshot:

As can be seen here, the template has been copied across to the target host, and the variable
in the header comment has been processed and the appropriate value substituted.

Configuration Management with Ansible Chapter 7

[199]

This becomes incredibly powerful as our configuration becomes more complex as, no
matter how large and complex the template, the role still only requires the one template
task. Returning to our MariaDB server, suppose that we want to set a number of
parameters on a per-server basis to effect tuning appropriate to the different workloads we
are deploying. Perhaps we want to set the following:

The server bind-address, defined by bind-address
The maximum binary log size, defined by max_binlog_size
The TCP port that MariaDB listens on, as defined by port

All of these parameters are defined in /etc/mysql/mariadb.conf.d/50-server.cnf.
However, as discussed earlier, we need to also ensure the integrity
of /etc/mysql/mariadb.cnf to ensure it includes this (and other) files, to reduce the
possibility of someone overriding our configuration. Let's start building our
templates—first of all, a simplified version of the 50-server.cnf file, with some variable
substitutions. The first part of this file is shown in the following code—note the port and
bind-address parameters, which are now defined using Ansible variables, denoted in the
usual manner with pairs of curly braces:

[server]
[mysqld]
user = mysql
pid-file = /var/run/mysqld/mysqld.pid
socket = /var/run/mysqld/mysqld.sock
port = {{ mariadb_port }}
basedir = /usr
datadir = /var/lib/mysql
tmpdir = /tmp
lc-messages-dir = /usr/share/mysql
skip-external-locking
bind-address = {{ mariadb_bind_address }}

The second part of this file looks as follows—you will observe here the presence of
the mariadb_max_binlog_size variable, while all other parameters remain static:

key_buffer_size = 16M
max_allowed_packet = 16M
thread_stack = 192K
thread_cache_size = 8
myisam_recover_options = BACKUP
query_cache_limit = 1M
query_cache_size = 16M
log_error = /var/log/mysql/error.log
expire_logs_days = 10
max_binlog_size = {{ mariadb_max_binlog_size }}

Configuration Management with Ansible Chapter 7

[200]

character-set-server = utf8mb4
collation-server = utf8mb4_general_ci
[embedded]
[mariadb]
[mariadb-10.1]

Now, let's also add in a templated version of /etc/mysql/mariadb.cnf, as follows:

[client-server]
!includedir /etc/mysql/conf.d/
!includedir /etc/mysql/mariadb.conf.d/

This file might be short, but it serves a really important purpose. It is the first file that is
read by the MariaDB service when it loads, and it references other files or directories to be
included. If we did not maintain control of this file using Ansible, then anyone with
sufficient privileges could log in and edit the file, possibly including entirely different
configurations and bypassing our Ansible-defined configuration entirely. Whenever you
deploy configuration with Ansible, it is important to consider factors such as this, as
otherwise, your configuration changes might be bypassed by a well-meaning (or otherwise)
administrator.

A template doesn't have to have any Jinja2 constructs in it—if there are no
variables to insert, as in our second example, the file will simply be copied
as-is to the target machine.

Obviously, it would be slightly more efficient to use the copy module to send this static
configuration file to the remote server, but this requires two tasks, where we can use just
one with a loop to process all our templates. Such an example is shown in the following
code block:

- name: Copy MariaDB configuration files to host
 template:
 src: {{ item.src }}
 dest: {{ item.dest }}
 owner: root
 group: root
 mode: 0644
 loop:
 - { src: 'templates/mariadb.cnf.j2', dest: '/etc/mysql/mariadb.cnf' }
 - { src: 'templates/50-server.cnf.j2', dest:
'/etc/mysql/mariadb.conf.d/50-server.cnf' }
 notify:
 - Restart MariaDB Server

Configuration Management with Ansible Chapter 7

[201]

Finally, we define a handler to restart MariaDB if the configuration has changed, as follows:

- name: Restart MariaDB Server
 service:
 name: mariadb
 state: restarted

Now, before we run this, a word on variables. In Ansible, variables can be defined at a wide
number of levels. In a case such as this, where we are applying a different configuration to
different hosts with differing purposes, it makes sense to define the variables at the host or
hostgroup level. However, what happens if someone were to forget to put these in the
inventory, or in another appropriate location? Fortunately, we can leverage the variable
precedence order of Ansible to our advantage here and define default variables for our role.
These are second lowest on the order of precedence, so are almost always overridden by
another setting elsewhere, yet they provide a safety net, should they be missed accidentally.
As our preceding templates have been written, if the variables are not defined anywhere,
the configuration file will be invalid and the MariaDB server will refuse to start—a case we
would definitely like to avoid.

Let's define the default values for these variables in our role now under
defaults/main.yml, as follows:

mariadb_bind_address: "127.0.0.1"
mariadb_port: "3306"
mariadb_max_binlog_size: "100M"

With this complete, our role structure should look like this:

roles/
└── configuremariadb
 ├── defaults
 │ └── main.yml
 ├── handlers
 │ └── main.yml
 ├── tasks
 │ └── main.yml
 └── templates
 ├── 50-server.conf.j2
 └── mariadb.cnf.j2

Configuration Management with Ansible Chapter 7

[202]

Naturally, we want to override the default values, so we will define these in our inventory
grouping—this is a good use case for inventory groups. All MariaDB servers that serve the
same function would go in one inventory group, and then have a common set of inventory
variables assigned to them, such that they all receive the same configuration. However, the
use of templates in our role means that we can reuse this role in a number of situations,
simply by providing differing configurations through variable definition. We will create an
inventory for our test host that looks like this:

[dbservers]
ubuntu-testhost

[dbservers:vars]
mariadb_port=3307
mariadb_bind_address=0.0.0.0
mariadb_max_binlog_size=250M

With this complete, we can finally run our playbook and observe what happens. The result
is shown in the following screenshot:

With this successfully run, we have shown a complete end-to-end example of how to
manage configuration on an enterprise scale, all while avoiding the pitfalls of regular
expression substitutions and multi-part configurations. Although these examples are
simple, they should serve as the basis for any well-thought-out enterprise automation
strategy where a configuration is required.

Configuration Management with Ansible Chapter 7

[203]

Summary
Managing configuration across an enterprise Linux estate is filled with pitfalls and the
potential for configuration drift. This can be caused by people with good intentions, even in
break-fix scenarios where changes have to be made in a hurry. However, it can also be
caused by those with malicious intent, seeking to circumvent security requirements. Good
use of Ansible, especially templating, enables the construction of easy-to-read, concise
playbooks that make it easy to ensure configuration management is reliable, repeatable,
auditable, and version-controlled—all the basic tenets we set out earlier in this book for
good enterprise automation practice.

In this chapter, you gained practical experience in extending a Linux machine with new
software packages. You then learned how to apply simple, static configuration changes to
those packages, and the potential pitfalls associated with this. Finally, you learned best
practices for managing configuration across an enterprise using Ansible. In the next
chapter, we proceed to look at internal repository management with Pulp.

Questions
What are the different Ansible modules commonly used for making changes to1.
configuration files?
How does templating work in Ansible?2.
Why must you consider configuration file structure when making changes with3.
Ansible?
What are the pitfalls of using regular expressions when making file4.
modifications?
How does a template behave if there are no variables in it?5.
How can you check that a configuration template you have deployed is valid6.
before committing it to disk?
How can you quickly audit the configuration of 100 machines against a known7.
template with Ansible?

Further reading
For an in-depth understanding of Ansible, please refer to Mastering Ansible, Third
Edition, by James Freeman and Jesse Keating (https:/ /www. packtpub. com/gb/
virtualization- and- cloud/ mastering- ansible- third- edition).

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition

3
Section 3: Day-to-Day

Management
This section covers how the management of Linux servers in the Enterprise does not end
with good build processes—it is vital that ongoing management is effective and efficient. In
this section, we will explore the use of Ansible and other tools to achieve these goals.

This section comprises the following chapters:

Chapter 8, Enterprise Repository Management with Pulp
Chapter 9, Patching with Katello
Chapter 10, Managing Users on Linux
Chapter 11, Database Management
Chapter 12, Performing Routine Maintenance with Ansible

8
Enterprise Repository

Management with Pulp
So far in this book, we have covered several tasks related to the build and configuration of
Linux servers for deployment in an Enterprise environment. While much of the work we
have completed scales well to cover most scenarios, it must be noted that so far we have
only installed packages from one of two sources—either the upstream public package
repositories corresponding to each Linux distribution we are using or, in the case of our
PXE booting chapter, from an ISO image we downloaded.

Needless to say, this presents several challenges, especially when it comes to creating
repeatable, manageable builds of Linux. We will explore these in greater depth in the
section titled Installing Pulp for patch management, but suffice to say, using the publicly
available repositories means that two builds being performed on two different weekdays
could be different! The ISO installation method presents the other end of the spectrum and
always produces consistent builds regardless of when they are performed, but in this case,
no security (or other) updates are received! What is required is a compromise between
these two extremes, and thankfully, one exists in the form of a software package called
Pulp.

We shall explore Pulp in this chapter, specifically covering the following:

Installing Pulp for patch management
Building repositories in Pulp
Patching processes with Pulp

Enterprise Repository Management with Pulp Chapter 8

[206]

Technical requirements
This chapter includes examples based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to two servers or virtual machines
running one of each of the operating systems listed previously and Ansible. Note that the
examples provided in this chapter may be destructive in nature and if run as-is are only
intended to be run in an isolated test environment.

All example code discussed in this chapter is available on GitHub at the following URL:
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree

/master/chapter08.

Installing Pulp for patch management
Before we delve into the practical aspects of installing Pulp, let's take a more in-depth look
at why you would use it. Throughout this book, we have advocated building a Linux
environment that is standardized and features high degrees of repeatability, audibility, and
predictability. These are important not just as a foundation for automation, but also serves
as good practice in the enterprise.

Let's assume that you build a server and deploy a new service to it with Ansible, as we
have set out earlier in this book. So far, so good—the Ansible playbooks provide
documentation on the build standard and ensure the build can be accurately repeated at a
later date. There is a catch, however. Let's say that, a few months later, you return to create
another server—perhaps to scale an application or for a Disaster Recovery (DR) scenario.
Depending on the source for your packages, one of two things will happen:

If you install from the public internet-facing repositories, both builds will have
the latest versions of all the packages that were installed on the date they were
built. This difference may be significant, and if time has been put into testing and
qualifying software on a given build of Linux, you may not be able to guarantee
this with different package versions. Sure, everything is up to date, and you will
have all of the latest security patches and bug fixes, but every time you perform
this build on a different day, you are prone to getting different package versions.
This causes problems with repeatability, especially when ensuring that code that
has been tested in one environment works in another.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter08
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter08

Enterprise Repository Management with Pulp Chapter 8

[207]

At the other end of the scale is the ISO build repositories that we used in Chapter
6, Custom Builds with PXE Booting. These never change (unless someone
downloads a newer ISO and extracts it over the old one), and so while it
produces builds that are of a completely known quantity (and hence support our
repeatability goal), they never receive any security updates. This in itself may be
a problem.

The compromise is, of course, to find a middle ground between these two extremes. What if
it were possible to create our own repositories of packages that were a snapshot of a given
point in time of a public repository? Hence, they remain static when we need them to (thus
ensuring consistent builds), and yet can be updated on demand if an important security fix
comes out. The Pulp project comes to our rescue here and is capable of doing exactly these
things. It is also a component in some of the more complex infrastructure management
solutions such as Katello, as we shall see in the next chapter.

However, for installations where a Graphical User Interface (GUI) is not a requirement,
Pulp meets our needs perfectly. Let's take a look at how we might install it.

Installing Pulp
As we discussed in Chapter 1, Building a Standard Operating Environment on Linux, in this
book, there will be times when even though you may have built a standardized operating
environment around a given Linux distribution such as Ubuntu Server, you have to create
an exception. Pulp is such a case, for although it can manage both .rpm and .deb packages
(hence handling repository requirements for a wide variety of Linux distributions), it is
only packaged for (and therefore is easiest to install) on CentOS, Fedora, and RHEL-based
operating systems. You can still manage your Ubuntu Server estate with Pulp—you just
need to install it on CentOS (or your preferred Red Hat variant).

There are several facets to the Pulp installation. For example, Pulp relies
on a MongoDB installation, which may be external if desired. Similarly, it
also relies on a message bus, and it is possible to use either RabbitMQ or
Qpid as preferred. Most organizations will have their own standards for
these things, and so it is left as an exercise to you to define the architecture
best suited to your enterprise. In this chapter, we will perform a very
simple installation of Pulp on a single server to demonstrate the steps
involved.

Enterprise Repository Management with Pulp Chapter 8

[208]

Given the relative complexity of installing Pulp, it is recommended that you create an
Ansible Playbook for your Pulp installation. However, in this chapter, we will complete the
installation manually to demonstrate the work involved—there is no one-size-fits-all Pulp
installation:

Before we can begin the installation, we must build a virtual (or physical) server1.
to host our Pulp repositories. For our example, we will base this on CentOS 7.6,
which is the latest supported version for Pulp at the time of writing. Also, note
the following filesystem requirements:

/var/lib/mongodb: We will build our example Pulp server with
MongoDB on the same host. The MongoDB database can grow to over
10 GB in size, and it is recommended to mount this path on a
dedicated LVM backed filesystem so that it can be easily grown if
required, and so that if it ever does fill up, it doesn't halt the rest of the
system.
/var/lib/pulp: This directory is where the Pulp repositories are
housed, and again it should be on a dedicated LVM backed filesystem.
The size will be determined by the repositories you wish to create—for
example, if you want to mirror a 20 GB upstream repository,
then /var/lib/pulp needs to be a minimum of 20 GB in size. This
filesystem also must be XFS-based—if created on ext4, you run the
risk of running out of inodes.

Once these requirements are met, we must install the EPEL repository as the2.
Pulp install will draw packages from here:

$ sudo yum install epel-release

We then need to install the Pulp repository file:3.

$ sudo wget -O /etc/yum.repos.d/rhel-pulp.repo
https://repos.fedorapeople.org/repos/pulp/pulp/rhel-pulp.repo

Next, we set up the MongoDB server—this must be completed before we proceed4.
with the Pulp installation. It is expected that most enterprises will have some
internal standards for the database servers that they will follow—here, we will
suffice with a default installation with SSL encryption:

$ sudo yum install mongodb-server

Enterprise Repository Management with Pulp Chapter 8

[209]

Again, it is fair to say that most enterprises will have their own certificate5.
authority, be it internal or otherwise. For our example server, we will generate a
simple self-signed certificate with the following command:

$ sudo openssl req -x509 -nodes -newkey rsa:4096 -keyout
/etc/ssl/mongodb-cert.key -out /etc/ssl/mongodb-cert.crt -days 3650
-subj "/C=GB/CN=pulp.example.com"

We then need to concatenate the private key and certificate into one file for6.
MongoDB to pick up:

$ sudo cat /etc/ssl/mongodb-cert.key /etc/ssl/mongodb-cert.crt |
sudo tee /etc/ssl/mongodb.pem > /dev/null

With this complete, we must reconfigure MongoDB to pick up the newly created7.
certificate file and enable SSL. Edit the /etc/mongod.conf file and configure the
following parameters (any other parameters in the file can be left at their
defaults):

Use ssl on configured ports
sslOnNormalPorts = true

PEM file for ssl
sslPEMKeyFile = /etc/ssl/mongodb.pem

At this stage, we can now enable the MongoDB service to start on boot and start8.
it:

$ sudo systemctl enable mongod.service
$ sudo systemctl restart mongod.service

With our Mongo database server running, we now need to install the message9.
bus. Again, most enterprises will have corporate standards for this and it is
recommended to adhere to these where they are defined. The following example
is the minimum required set of steps for a functional demo—it should not be
considered fully secured, but it is functional for the sake of testing and evaluating
pulp. Here, we simply install the required packages and then enable and start the
services:

$ sudo yum install qpid-cpp-server qpid-cpp-server-linearstore
$ sudo systemctl enable qpidd.service
$ sudo systemctl start qpidd.service

Enterprise Repository Management with Pulp Chapter 8

[210]

With our underlying infrastructure completed, we can now install Pulp itself.10.
The initial steps are to install the base packages:

$ sudo yum install pulp-server python-gofer-qpid python2-qpid qpid-
tools

Pulp uses a plugin-based architecture to host the various repositories it is capable
of serving. At the time of writing, Pulp is capable of hosting the following:

RPM-based repositories (for example, CentOS, RHEL, and Fedora)
DEB-based repositories (for example, Debian and Ubuntu)
Python modules (for example, for mirroring PyPI content)
Puppet manifests
Docker images
OSTree content

Unfortunately, this chapter does not allow us space to go into all of these modules
in detail—however, it is safe to say that, at a high-level, Pulp operates in the same
manner across all these different technologies. Whether working with Python
modules, Docker images, or RPM packages, you can create a central repository
that is stable and can be version controlled to ensure an up-to-date environment
can be maintained without losing control of what that environment contains.

As our use case is Pulp for serving out Linux packages, we will install the RPM-
and DEB-based plugins:

$ sudo yum install pulp-deb-plugins pulp-rpm-plugins

With Pulp installed, we must configure the core services. This is performed by11.
editing /etc/pulp/server.conf—most of the default settings are fine for a
simple demo such as ours—however, as we enabled SSL support on our
MongoDB backend, we must tell the Pulp server we have done this and disable
SSL verification as we are using self-signed certificates. The [database] section
of the aforementioned file should look like this:

[database]
ssl: true
verify_ssl: false

Enterprise Repository Management with Pulp Chapter 8

[211]

If you examine this file, you will see there is a great deal of configuration that can
be carried out, all of which is well documented with comments. Specifically, you
can customize the following sections:

[email]: This is off by default but if you want your Pulp server to
send email reports, you would configure this here.
[database]: We have simply turned on SSL support in this
section, but if the database was on an external server or required
more advanced parameters, these would be specified here.
[messaging]: For communication between different Pulp
components, the default Qpid message broker requires no further
configuration here, but if you are using RabbitMQ and/or have
turned on authentication/SSL support, then that will need to be
configured here.
[tasks]: Pulp can have separate message brokers for inter-
component communication and its asynchronous tasks, and the
broker for the latter can be configured here. As we are using the
same Qpid instance for both functions, nothing further is required
for this example.
[server]: This is used to configure the server's default
credentials, hostname, and such.

Once the Pulp server is configured, we must generate the RSA key pair and CA12.
certificate for Pulp using the following two commands:

$ sudo pulp-gen-key-pair
$ sudo pulp-gen-ca-certificate

Pulp uses Apache to serve its HTTP(S) content, and so we must configure this.13.
First of all, we initialize the backend database by running the following
command (note it is run as the apache user):

$ sudo -u apache pulp-manage-db

Enterprise Repository Management with Pulp Chapter 8

[212]

If you are intending to use SSL transport with Apache, be sure to configure it to14.
your enterprise requirements. CentOS installs a self-signed certificate for Apache
SSL by default, but you may want to replace this with a certificate signed by your
Enterprise CA. Also, be sure to disable the insecure SSL protocols—as a
minimum, it is recommended to place the following two settings
into /etc/httpd/conf.d/ssl.conf:

SSLProtocol all -SSLv2 -SSLv3

SSLCipherSuite HIGH:3DES:!aNULL:!MD5:!SEED:!IDEA

This, of course, is only a guide, and most enterprises will have their own security
standards that should be adhered to here.

As new vulnerabilities are discovered, these requirements may change.
The preceding configuration is believed to be good practice at the time of
writing, but could change at any time without notice. It is up to you to
check any and all security-related settings for your environment.

With Apache configured, set it to start on boot and start it up:15.

$ sudo systemctl enable httpd.service
$ sudo systemctl start httpd.service

Pulp has several other backend services that are required for it to be operational.16.
Each of these can be configured and tuned as required, but again, for the sake of
our example server, it is sufficient to enable and start each in turn:

$ sudo systemctl enable pulp_workers.service
$ sudo systemctl start pulp_workers.service

$ sudo systemctl enable pulp_celerybeat.service
$ sudo systemctl start pulp_celerybeat.service

$ sudo systemctl enable pulp_resource_manager.service
$ sudo systemctl start pulp_resource_manager.service

Our final task is to install the administrative components of Pulp so that we can17.
manage our server:

$ sudo yum install pulp-admin-client pulp-rpm-admin-extensions
pulp-deb-admin-extensions

Enterprise Repository Management with Pulp Chapter 8

[213]

There is one final task to complete for our server. Pulp is designed to be18.
administered remotely, and as such, it communicates over SSL to ensure the
security of all transactions. Although we have created an all-in-one host and
throughout this chapter will perform the server admin from the same host, we
need to tell the Pulp admin client that we are using self-signed
certificates—otherwise, SSL validation will fail. To do this,
edit /etc/pulp/admin/admin.conf, and in the [server] section, define the
following parameter:

verify_ssl: False

Finally, we can test that our Pulp server is operational by logging in to it.19.
Although Pulp supports multiple user accounts, and even integration with LDAP
backends, a simple installation such as ours comes with one administrator
account, where the username and password are both admin.

If all goes well, you should see output similar to the following and be able to
query to server status (note that the output has been truncated to save space):

Now that we have a fully operational Pulp server, we shall demonstrate the process of
creating repositories for managed stable updates and system builds using our newly built
Pulp system.

Enterprise Repository Management with Pulp Chapter 8

[214]

Building repositories in Pulp
Although in this chapter we will only be using a subset of the features available in Pulp, it
is intended that a viable workflow is demonstrated here that showcases why you might
choose Pulp to manage Enterprise repositories, rather than rolling your own solution (for
example, copying packages off an ISO as we did in Chapter 6, Custom Builds with PXE
Booting).

The process for handling RPM-based package repositories and DEB-based ones is broadly
similar.

Let's start by exploring how to create and manage RPM-based repositories.

Building RPM-based repositories in Pulp
Although installing Pulp is quite a complex process, once it is installed, the process of
managing repositories is incredibly straightforward. However, it does require a little
knowledge of the repository structure for your chosen Linux distribution. Let's continue
with the CentOS 7 build that we have been using as an example throughout this book.

The core CentOS 7 repositories are split into two—first of all, there is the OS repository; this
contains all of the files for the latest point release of CentOS 7—which, at the time of
writing, is 7.6. This was last updated in November 2018 and will remain static until CentOS
7.7 is released. The updates for this release are then contained in a separate repository, and
so to build a fully functional mirror for CentOS 7 in our Pulp server, we need to mirror both
of these paths.

Let's start by creating a mirror of the base operating system:

The first step is to log into the pulp-admin client, as we demonstrated at the end1.
of the previous section. Then, from there, we run the following command to
create a new repository:

$ pulp-admin rpm repo create --repo-id='centos76-os' --relative-
url='centos76-os' --
feed=http://mirror.centos.org/centos/7/os/x86_64/

Enterprise Repository Management with Pulp Chapter 8

[215]

Let's break that command down:

rpm repo create: This set of keywords tells the Pulp server to
create a new RPM-based repository definition. Note that nothing is
synchronized or published at this stage—this is simply creating
metadata for a new repository.
--repo-id='centos76-os': This tells Pulp that the ID of our
new repository is centos76-os—this is like a unique key and
should be used to differentiate your new repository from others.
--relative-url='centos76-os': This instructs Pulp where to
publish the repository—RPM-based repositories are published
at http(s)://pulp-server-
address/pulp/repos/<relative-url>.
--feed=http://mirror.centos.org/centos/7/os/x86_64/:
 This is the upstream location from which RPM-based content will
be synchronized.

With our repository definition created, the next step is to synchronize the2.
packages from the upstream server. This is as simple as running this command:

$ pulp-admin rpm repo sync run --repo-id='centos76-os'

This kicks off an asynchronous command that runs in the background on the3.
server—you can check the status at any time using this command:

$ pulp-admin rpm repo sync status --repo-id='centos76-os'

Finally, once the synchronization is completed, the repository must be4.
published—this effectively makes the synchronized content available over the
Apache web server installed as part of the Pulp installation earlier:

$ pulp-admin rpm repo publish run --repo-id='centos76-os'

Enterprise Repository Management with Pulp Chapter 8

[216]

Now, with this completed, you have an internal snapshot of the upstream CentOS 7.6 OS
repository defined by the --feed parameter, which will remain constant on our Pulp
server even when CentOS 7.7 is released.

Now, of course, we also need updates to ensure we get the latest security patches, bug fixes,
and so on. The frequency of updates of your repositories will depend upon your patching
cycle, internal security policies, and so on. Hence, we will define a second repository to
house the update packages.

We will issue an almost identical set of commands to the preceding ones to create the
updates repository, only this time there are two key differences:

We are using the /updates/ path for the feed rather than /os/.
We have put a date stamp into repo-id and relative-url—you could, of
course, adopt your own versioning scheme here—however, as this repository
will be a snapshot of all CentOS 7 updates to August 7, 2019, using the date of
the snapshot as an identifier is one sensible approach:

$ pulp-admin rpm repo create --repo-id='centos7-07aug19' --
relative-url='centos7-07aug19' --
feed=http://mirror.centos.org/centos/7/updates/x86_64/
$ pulp-admin rpm repo sync run --repo-id='centos7-07aug19'
$ pulp-admin rpm repo publish run --repo-id centos7-07aug19

With this run, we can then use the pulp-admin client to inspect the repositories and
inspect the disk usage. At present, we can see that the Pulp filesystem has 33 GB used,
though not all of this is for CentOS as there are other repositories on this test system. This
level of usage will become important in a minute.

In an enterprise environment, a good practice would be to build or update a set of test
CentOS 7 systems to this August 7 snapshot and perform the requisite testing on them to
ensure confidence in the build. This is especially important in physical systems where
kernel changes could cause issues. Once confidence has been established in this build, it
becomes the baseline for all CentOS 7 systems. The great thing about this for an enterprise
scenario is that all systems (provided they use the Pulp repository) will have the same
versions of all packages. This, combined with good automation practices, as we have
discussed throughout this book so far, brings almost Docker-like stability and platform
confidence to a Linux environment.

Enterprise Repository Management with Pulp Chapter 8

[217]

Building on this scenario, suppose that overnight a critical security patch is released for
CentOS 7. As important it is to apply this patch in a timely manner, it also is important to
perform testing on it to ensure it doesn't break any existing services. As a result, we do not
wish to update our centos7-07aug19 repository mirror, as this is a known stable snapshot
(in other words, we have tested it and are happy with it—it is stable within our enterprise
environment).

If we were just using the upstream internet-facing repositories, then we would have no
control over this and our CentOS 7 servers would blindly pick up the patch the next time
an update was run. Equally, if we were manually building repository mirrors using a tool
such as reposync, we would have one of two choices. First, we could update our existing
mirror, which would cost us little disk space, but would bring the same problems as using
the upstream repositories (that is, all servers pick up the new patch as soon as an update is
run). Alternatively, we could create a second snapshot for testing purposes. I estimated that
mirroring the CentOS 7 updates on the Pulp server required approximately 16 GB of disk
space and so creating a second snapshot would require around 32 GB of disk space. As time
goes on, more snapshots would require more and more disk space, which is incredibly
inefficient.

This is where Pulp really shines—not only can it create and manage RPM-based
repositories in an efficient manner, but it also knows not to download packages that it
already has on a sync operation and not to duplicate packages on a publish—hence, it is
very efficient in terms of both bandwidth and disk usage. Due to this, we can issue the
following command set to create a new snapshot of the CentOS 7 updates on August 8:

$ pulp-admin rpm repo create --repo-id='centos7-08aug19' --relative-
url='centos7-08aug19' --
feed=http://mirror.centos.org/centos/7/updates/x86_64/
$ pulp-admin rpm repo sync run --repo-id='centos7-08aug19'
$ pulp-admin rpm repo publish run --repo-id centos7-08aug19

Enterprise Repository Management with Pulp Chapter 8

[218]

You will recognize the similarity with the commands we ran earlier in this section to create
the August 7, 2019 snapshot—they are, in fact, identical except for the new repository ID (-
-repo-id) and URL (--relative-url), which carry the new date in to differentiate it
from our earlier one. This process will run as before, as shown in the following
screenshot—it appears that all packages are downloaded and at this stage, there is little
clue as to what goes on behind the scenes:

However, let's now examine the disk usage:

Here, we can see that the disk usage has been rounded up to 34 GB—we would likely find
the usage considerably less if we used a more fine-grained measure. In this way, Pulp
allows us to create snapshots almost as we require them, without consuming vast amounts
of disk space, while retaining older ones for stability purposes until new ones are proved, at
which point redundant snapshots can be deleted.

It is worth saying in this regard that deleting a repository from Pulp does not necessarily
free up disk space. The reason for this is that the package de-duplication at the backend
must be careful not to delete any packages that are still required. In our example, more than
99% of the packages from our August 7 snapshot are also in the August 8 one, and so it is
important that if we delete either of these, that the other remains intact.

Enterprise Repository Management with Pulp Chapter 8

[219]

In Pulp, this process is called orphan recovery, and it is the very process of finding
packages that no longer belong to any repository (presumably because the repository was
deleted) and tidying them up.

Completing our current example, suppose that we tested our August 8 snapshot and the
updated packages in it caused problems in testing. From this, we have determined that this
snapshot is not suitable for production and that we will delete it, pending creation of a new
snapshot when a fix becomes available:

First of all, we must delete the repository itself:1.

$ pulp-admin rpm repo delete --repo-id='centos7-08aug19'

This removes the repository definition and the published URL on the Apache
server so that it can no longer be used.

To clean up any orphan packages, we can then issue the following command:2.

$ pulp-admin orphan remove --all

This command is a general cleanup that removes all orphans from across the
entire Pulp server and is a good general maintenance step. However, the
command can receive more fine-grained control to remove only a specific type of
orphan (for example, you could clean out all orphan RPMs, but not DEB
packages):

Enterprise Repository Management with Pulp Chapter 8

[220]

Once this step is completed, we will see that our additional disk space used by3.
the new snapshot has been recovered:

In this section, so far we have stepped through all the Pulp commands and activities
manually—this has been done to provide you with a good understanding of the steps
required in setting up Pulp and the accompanying repositories. In regular services, best
practice would dictate that these steps are performed with Ansible—however, there are no
native Ansible modules to cover all of the tasks we have performed in this chapter.

For example, the pulp_repo module (introduced to Ansible in version 2.3) is capable of
creating and deleting repositories, as we have done so far in this chapter with pulp-admin
rpm repo create. However, it cannot perform orphan clean-up, and so this command
would need to be issued using the shell or command Ansible modules. Full automation
with Ansible is left as an exercise for you.

Once our repos are set up, the final step is to put them into use on our Enterprise Linux
servers, and we will cover this in the next section of this chapter.

First, though, we will look at some of the nuances of managing DEB packages in Pulp in
contrast to RPM-based management.

Building DEB-based repositories in Pulp
Although there are some subtle differences in the command-line structure between the
RPM repository plugin for Pulp and the DEB one, the overall process is the same. As
before, some prior knowledge is also required of the repository structure to create an
effective mirror. In this book, we have worked with Ubuntu Server 18.04 LTS as an
example, and the default repository set that is configured on this is as follows:

bionic: This is the baseline repository for the release of Ubuntu Server 18.04
(codename Bionic Beaver), and as with the OS repository for CentOS 7, does not
change following the release of the operating system
bionic-security: These are security-specific updates for the bionic operating
system built post-release
bionic-updates: These are non-security updates for the bionic operating
system release

Enterprise Repository Management with Pulp Chapter 8

[221]

There are other repositories too, such as backports, and in addition to
the main component (which we will concern ourselves with here), there is a wide array of
packages available in the restricted, universe, and multiverse components. Going
into greater detail about the Ubuntu repository structure is beyond the scope of this book,
but suffice to say there is a wide array of documentation available on this subject. The
following link is a good place to start reading about the different Ubuntu repositories you
may wish to mirror: https:/ /wiki. ubuntu. com/ SecurityTeam/ FAQ#Repositories_ and_
Updates.

For now, let's suppose we are updating a minimal build of Ubuntu Server 18.04 LTS. For
this, we are only interested in packages in the main component, but we do need a snapshot
of all the security fixes and updates at a given point in time, just like one we had for our
CentOS 7 build:

First of all, having ensured we are logged in to the pulp-admin client as before,1.
we will create a repository in Pulp for the main component and the operating
system release packages:

$ pulp-admin deb repo create --repo-id='bionic-amd64-08aug19' --
relative-url='bionic-amd64-08aug19' --
feed='http://de.archive.ubuntu.com/ubuntu' --releases=bionic --
components=main --architectures='amd64' --serve-http=true

As you can see, the preceding command is very similar to our RPM repository
creation command. We specify repo-id and relative-url in the same manner
as before and specify an upstream feed URL. This time, though, we are
specifying the Ubuntu releases, components, and architectures as
command-line options whereas, in our CentOS 7 example, these were implicit in
the URL we mirrored. In addition to these DEB-specific configuration parameters,
we are now also specifying the --serve-http option. By default, Pulp serves all
repository content over HTTPS only. However, owing to some limitations around
package signing for DEB packages in Pulp, which will be discussed later in this
chapter, we must enable the serving of repository content over plain HTTP.

Note that, as the plural naming of the --releases option implies, more
than one release may be specified here. Although this works at repository
creation time, the sync process is, at the time of writing, broken, and so
one separate Pulp repository must be created for each Ubuntu release we
wish to mirror. This is expected to be fixed at a future date.

https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates
https://wiki.ubuntu.com/SecurityTeam/FAQ#Repositories_and_Updates

Enterprise Repository Management with Pulp Chapter 8

[222]

Having done this, we will create two more repositories for
the security and updates repositories:

$ pulp-admin deb repo create --repo-id='bionic-security-
amd64-08aug19' --relative-url='bionic-security-amd64-08aug19' --
feed='http://de.archive.ubuntu.com/ubuntu' --releases=bionic-
security --components=main --architectures='amd64' --serve-
http=true

$ pulp-admin deb repo create --repo-id='bionic-updates-
amd64-08aug19' --relative-url='bionic-updates-amd64-08aug19' --
feed='http://de.archive.ubuntu.com/ubuntu' --releases=bionic-
updates --components=main --architectures='amd64' --serve-http=true

With our repository creation completed, we can run our sync processes, just like2.
we did previously:

$ pulp-admin deb repo sync run --repo-id='bionic-amd64-08aug19'

$ pulp-admin deb repo sync run --repo-id='bionic-security-
amd64-08aug19'

$ pulp-admin deb repo sync run --repo-id='bionic-updates-
amd64-08aug19'

Finally, we publish the repositories:3.

$ pulp-admin deb repo publish run --repo-id='bionic-amd64-08aug19'

$ pulp-admin deb repo publish run --repo-id='bionic-security-
amd64-08aug19'

$ pulp-admin deb repo publish run --repo-id='bionic-updates-
amd64-08aug19'

It is worth noting that Ubuntu repositories tend to be much larger than their CentOS
counterparts, especially the updates and security ones. During the sync process, the
packages are downloaded into /var/cache/pulp temporarily before they are archived
into the /var/lib/pulp directory. If /var/cache/pulp is on your root filesystem, there is
a significant danger of your root filesystem filling up, and as such, it may be best to create a
new volume for this purpose and mount at /var/cache/pulp to prevent a disk full
situation from stopping your Pulp server.

Enterprise Repository Management with Pulp Chapter 8

[223]

The DEB plugin for Pulp features the same package deduplication as its RPM counterpart
and publishes packages over HTTPS (and optionally HTTP) in the same manner. With a
few changes to the syntax of the commands, we can effectively create snapshots of
upstream Linux repositories for most of the major distributions that are found in enterprise
environments.

As a result of completing this section, you have learned how to create your own repository
mirrors for both RPM- and DEB-based content in Pulp, which may be treated as stable and
unchanging and hence provide an excellent basis for patch management in an enterprise.

In the next section of this chapter, we will look at how to deploy these repositories to two
different types of Linux server.

Patching processes with Pulp
It is worth mentioning at the outset of this section that Pulp supports two main methods for
the distribution of packages from the repositories created within it. The first is a kind of
push-based distribution that uses something called the Pulp Consumer.

We will not be exploring this in this chapter for the following reasons:

The Pulp Consumer only works with RPM-based repositories and distributions,
and at the time of writing, there is no equivalent client available for Ubuntu or
Debian. This means that our processes cannot be uniform across the enterprise,
which, in an ideal world, they would be.
Using the Pulp Consumer means we would have two overlapping means of
automation. Distributing packages to nodes using the consumer is a task that can
be performed with Ansible, and if we use Ansible for this task, then we have an
approach that is common across all of our platforms. This supports the principles
of automation in an enterprise context that we established earlier in this book
around lowering barriers to entry, ease of use, and so on.

As such, we will build out separate Ansible-based examples for managing repositories and
updates using the repositories we created in the previous section, entitled Building
repositories in Pulp. These can be managed along with all the other Ansible playbooks and
can be run through a platform such as AWX to ensure a single pane of glass is used
wherever possible for all tasks.

Let's get started by looking at how to patch RPM-based systems using a combination of
Ansible and Pulp.

Enterprise Repository Management with Pulp Chapter 8

[224]

RPM-based patching with Pulp
In the previous section of this chapter, we created two repositories for our CentOS 7
build—one for the operating system release and another to contain the updates.

The process of updating a CentOS 7 build from these repositories is, at a high level, done as
follows:

Move aside any existing repository definitions in /etc/yum.repos.d to ensure1.
we only load repositories from the Pulp server.
Deploy the appropriate configuration using Ansible.2.
Employ Ansible to pull the updates (or any required packages) from the Pulp3.
server using the new configuration.

Before we proceed with creating the appropriate playbooks, let's take a look at what the
repository definition file would look like on our CentOS 7 machine if we created it by hand.
Ideally, we want it to look something like this:

[centos-os]
name=CentOS-os
baseurl=https://pulp.example.com/pulp/repos/centos76-os
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
sslverify=0

[centos-updates]
name=CentOS-updates
baseurl=https://pulp.example.com/pulp/repos/centos7-07aug19
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
sslverify=0

There's nothing particularly unique about this configuration—we are using the relative-
url we created earlier with our repository using pulp-admin. We are using GPG checking
of package integrity, along with the CentOS 7 RPM GPG key, which we know will already
be installed on our CentOS 7 machine. The only tweak we've had to make to this otherwise
standard configuration is to turn off SSL verification since our demo Pulp server features a
self-signed certificate. Of course, if we are using an enterprise certificate authority and the
CA certificates are installed on each machine, then this problem goes away.

Given the power of Ansible, we can be a bit clever about how we do this. There's no point
creating and deploying static configuration files when we know that, at some point, we're
going to update the repository—meaning, at the very least, that baseurl might change.

Enterprise Repository Management with Pulp Chapter 8

[225]

Let's start off by creating a role called pulpconfig to deploy the correct
configuration—tasks/main.yml should look like this:

- name: Create a directory to back up any existing REPO configuration
 file:
 path: /etc/yum.repos.d/originalconfig
 state: directory

- name: Move aside any existing REPO configuration
 shell: mv /etc/yum.repos.d/*.repo /etc/yum.repos.d/originalconfig

- name: Copy across and populate Pulp templated config
 template:
 src: templates/centos-pulp.repo.j2
 dest: /etc/yum.repos.d/centos-pulp.repo
 owner: root
 group: wheel

- name: Clean out yum database
 shell: "yum clean all"

The accompanying templates/centos-pulp.repo.j2 template should look like this:

[centos-os]
name=CentOS-os
baseurl=https://pulp.example.com/pulp/repos/{{ centos_os_relurl }}
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
sslverify=0

[centos-updates]
name=CentOS-updates
baseurl=https://pulp.example.com/pulp/repos/{{ centos_updates_relurl }}
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7
sslverify=0

Notice the variable substitutions at the end of each of the baseurl lines—these allow us to
keep the same template (which should be common for most purposes) but change the
repository URL over time to adapt to updates.

Next, we will define a second role specifically for updating the kernel—this will be very
simple for our example and tasks/main.yml will contain the following:

- name: Update the kernel

Enterprise Repository Management with Pulp Chapter 8

[226]

 yum:
 name: kernel
 state: latest

Finally, we will define site.yml at the top level of the playbook structure to pull all of this
together. We could, as we discussed previously, define the variables for the relative URLs
in a whole host of places, but for the sake of this example, we will put them in
the site.yml playbook itself:

- name: Install Pulp repos and update kernel
 hosts: all
 become: yes
 vars:
 centos_os_relurl: "centos76-os"
 centos_updates_relurl: "centos7-07aug19"

 roles:
 - pulpconfig
 - updatekernel

Now, if we run this in the usual manner, we will see output similar to the following:

Enterprise Repository Management with Pulp Chapter 8

[227]

So far, so good—the changed statuses from the preceding play tell us that the new
configuration was applied successfully.

Those with a keen eye will have observed the warning on the Clean out
yum database tasks—Ansible detects when a raw shell command is
being used that has overlapping functionality with a module and
recommends that you use the module instead for reasons of repeatability
and idempotency, as we discussed earlier. However, as we want to ensure
all traces of any earlier yum databases are removed (which can present
problems), I have adopted a brute force method here to clean up the old
databases.

Now, as I'm sure you will have spotted, the great thing about this approach is that if, say,
we want to test our 08aug19 repository snapshot that we created in the previous section,
all we have to do is modify the vars: block of site.yml so that it looks like this:

 vars:
 centos_os_relurl: "centos76-os"
 centos_updates_relurl: "centos7-08aug19"

Hence, we can reuse the same playbook, roles, and templates in a variety of scenarios
simply by changing one or two variable values. In an environment such as AWX, these
variables could even be overridden using the GUI, making the whole process even easier.

In this way, combining Ansible with Pulp lends itself to a really stable enterprise
framework for managing and distributing (and even testing) updates. However, before we
look at this process on Ubuntu, a word on rollbacks. In the previous section, we
hypothesized an example where our 08aug19 snapshot failed testing and so had to be
deleted. As far as CentOS 7 servers are concerned, rollbacks are not as straightforward as
simply installing the earlier repository definitions and performing an update since the
update will detect newer packages that have been installed and take no action.

The Pulp repository does, of course, provide a stable base to roll back to—however,
rollbacks are generally quite a manual process as you must identify the transaction ID in
the yum database that you want to roll back to and validate the actions to be performed and
then roll back to it. This, of course, can be automated, provided you have a reliable way of
retrieving the transaction ID.

Enterprise Repository Management with Pulp Chapter 8

[228]

The following screenshot shows a simple example of identifying the transaction ID for the
kernel update we just automated and establishing the details of the change that was
performed:

Then, we can (if we so choose) roll back the transaction using the command shown in the
following screenshot:

Enterprise Repository Management with Pulp Chapter 8

[229]

Using this simple process and the playbooks offered here as a guide, it should be possible
to establish a solid, stable, automated update platform for any RPM-based Linux
distribution.

In the next section, we will look at the method we can use to perform the same set of tasks,
except for DEB-based systems such as Ubuntu.

Enterprise Repository Management with Pulp Chapter 8

[230]

DEB-based patching with Pulp
At a high level, the process of managing updates on Ubuntu from our Pulp server is exactly
the same as it is for managing the RPM based updates for CentOS (save for the fact that we
have no option regarding the use of the Pulp Consumer and must use Ansible for the
update process).

There are, however, a couple of limitations when it comes to the use of Pulp with Ubuntu's
APT repository system:

At the time of writing, there is an issue whereby the Pulp sync process does not
mirror the signing keys from the upstream Ubuntu repository. This means that
even though the upstream repository features Release.gpg, it is not mirrored
on the Pulp server. Hopefully, in the future, this will be fixed, but in this chapter,
we will work around this by adding implicit trust to the packages.
HTTPS support on Ubuntu is configured not to accept updates from unverifiable
(that is, self-signed) certificates by default. Although we can turn off SSL
verification as we did on CentOS, Ubuntu's APT package manager then goes in
search of an InRelease file (which should have the aforementioned GPG key
embedded). As we discussed in the previous point, the Pulp DEB plugin does not
support the signing of mirrored repositories, and so right now, the only
workaround for this is to use unencrypted HTTP traffic. Hopefully, in a future
release, these two issues will be fixed—however, at the time of writing, there
appears to be no documented fix or workaround for them.

With these two limitations understood, we can define our APT sources file for the
repository set we created earlier. Following on from the examples in the previous section,
our /etc/apt/sources.list file could look like this:

deb [trusted=yes] http://pulp.example.com/pulp/deb/bionic-amd64-08aug19
bionic main
deb [trusted=yes]
http://pulp.example.com/pulp/deb/bionic-security-amd64-08aug19 bionic-
security main
deb [trusted=yes]
http://pulp.example.com/pulp/deb/bionic-updates-amd64-08aug19 bionic-
updates main

Enterprise Repository Management with Pulp Chapter 8

[231]

The [trusted=yes] string tells the APT package manager to ignore the lack of package
signing. The file structure itself is incredibly simple, and so just as with our CentOS
example, we can create a template file so that the relative URL can be populated using a
variable:

First, we'll create a role called pulpconfig and create the1.
following templates/sources.list.j2 template:

deb [trusted=yes] http://pulp.example.com/pulp/deb/{{
ubuntu_os_relurl }} bionic main
deb [trusted=yes] http://pulp.example.com/pulp/deb/{{
ubuntu_security_relurl }} bionic-security main
deb [trusted=yes] http://pulp.example.com/pulp/deb/{{
ubuntu_updates_relurl }} bionic-updates main

Then, we will create some tasks with the role to install this template and move2.
aside any old configuration for APT:

- name: Create a directory to back up any existing REPO
configuration
 file:
 path: /etc/apt/originalconfig
 state: directory

- name: Move existing config into backup directory
 shell: mv /etc/apt/sources.list /etc/apt/originalconfig

- name: Copy across and populate Pulp templated config
 template:
 src: templates/sources.list.j2
 dest: /etc/apt/sources.list
 owner: root
 group: root

- name: Clean out dpkg database
 shell: "apt-get clean"

Enterprise Repository Management with Pulp Chapter 8

[232]

Finally, we will define a role to update the kernel, but this time using APT:3.

- name: Update the kernel
 apt:
 name: linux-generic
 state: latest

Our site.yml playbook for Ubuntu systems now looks like this—save for the4.
variable differences, it is almost identical to the CentOS 7 one, once again
highlighting the value in using Ansible as an automation platform:

- name: Install Pulp repos and update kernel
 hosts: all
 become: yes
 vars:
 ubuntu_os_relurl: "bionic-amd64-08aug19"
 ubuntu_security_relurl: "bionic-security-amd64-08aug19"
 ubuntu_updates_relurl: "bionic-updates-amd64-08aug19"

 roles:
 - pulpconfig
 - updatekernel

Now, after putting this all together and running it, we should see output similar5.
to what can be seen in the following screenshot:

Enterprise Repository Management with Pulp Chapter 8

[233]

Putting aside the security limitations present in the current Pulp Debian support, this
provides a neat space-efficient solution for managing Ubuntu updates across an enterprise
infrastructure in a manner that is repeatable and lends itself well to automation. As with
our earlier CentOS-based example, it would be very easy to test packages from a new
snapshot by simply changing the variable definitions passed to our roles.

Enterprise Repository Management with Pulp Chapter 8

[234]

As with CentOS, should a new package set not be suitable for production use, Ansible
makes it easy to restore the previous repository configuration. However, rolling back
packages on Ubuntu (and other Debian-based distributions) is a much more manual
process than we saw in the previous section. Fortunately, there is a great deal of history
regarding package transactions kept
in /var/log/dpkg.log and /var/log/apt/history.log*, which can be used to
determine which packages were installed and/or upgraded and when. The apt-
get command can then be used to install a specific version of a package using the apt-get
install <packagename>=<version> syntax. There are many elegant scripted solutions
to this problem on the internet, and so it is left as an exercise for you to determine the one
best suited to your needs and environment.

Summary
Managing package repositories in an enterprise setting can present numerous challenges,
especially when it comes to efficient storage, conservation of internet bandwidth, and
ensuring build consistency. Fortunately, the Pulp software package provides an elegant
solution to these challenges for most of the common Linux distributions and lends itself
well to effective management in the enterprise.

In this chapter, you learned how to install Pulp to begin patching an Enterprise Linux
environment. You then learned how to build repositories in Pulp for both RPM-based and
DEB-based Linux distributions through hands-on examples, before gaining practical
knowledge of deploying the appropriate Pulp configuration and updating packages using
Ansible.

In the next chapter, we will explore how the Katello software tools complement Pulp in
enterprise environment management.

Enterprise Repository Management with Pulp Chapter 8

[235]

Questions
Why would you want to create a repository with Pulp rather than just a simple1.
mirror of files that you could download manually?
What are the issues around building and testing Linux patch repositories in an2.
enterprise environment?
What components does Pulp need to run?3.
Specify the filesystem requirements for successfully installing Pulp.4.
How would you patch an RPM-based system from a Pulp repository you created5.
previously?
Why would you use Ansible to deploy patches from a Pulp repository rather6.
than the Pulp Consumer?
Does the removal of a Pulp repository free up disk space? If not, how is this7.
performed?

Further reading
For more in-depth details on the Pulp project and how to make use of this tool,
please refer to the official documentation (https:/ /pulpproject. org/).

https://pulpproject.org/
https://pulpproject.org/
https://pulpproject.org/
https://pulpproject.org/
https://pulpproject.org/
https://pulpproject.org/
https://pulpproject.org/
https://pulpproject.org/

9
Patching with Katello

In Chapter 8, Enterprise Repository Management with Pulp, we explored the Pulp software
package and how it lends itself to automated, repeatable, controllable patching in an
enterprise setting. In this chapter, we will build on this by taking a look at a product called
Katello, which is complementary to Pulp and lends itself to not just patching but complete
infrastructure management.

Katello is a GUI-driven tool that provides advanced solutions for enterprise infrastructure
management, and in many ways can be considered to be the successor to the venerable
Spacewalk product that many are familiar with. We will explore why you would choose
Katello for this purpose and then proceed with hands-on examples of how to build a
Katello server and perform patching.

The following topics will specifically be covered in this chapter:

Introduction to Katello
Installing a Katello server
Patching with Katello

Technical requirements
The minimum requirements for completing the hands-on exercises in this chapter are a
single CentOS 7 server with around 80 GB of disk space allocated, 2 CPU cores (virtual or
physical), and 8 GB of memory. Although we will only look at a subset of the Katello
features in this chapter, it should be noted that Foreman in particular (which is installed
under Katello) is capable of acting as a DHCP server, DNS server, and PXE boot host and,
as such, if configured incorrectly could cause issues if deployed on a production network.

Patching with Katello Chapter 9

[237]

For this reason, it is recommended that all exercises are performed in an isolated network
suitable for testing. Where Ansible code is given, it will have been developed and tested in
Ansible 2.8. For testing patching from Katello, you will need a CentOS 7 virtual machine.

All example code discussed in this book is available from GitHub at: https:/ /github. com/
PacktPublishing/Hands- On- Enterprise- Automation- on-Linux.

Introduction to Katello
Katello is not actually a single product in isolation, but a union of several open source
infrastructure management products into one cohesive infrastructure management
solution. Where Pulp is solely focused on the efficient, controllable storage of packages
(and other important content for infrastructure management), Katello brings together the
following:

Foreman: This is an open source product designed to handle the provisioning
and configuration of both physical and virtual servers. Foreman includes a rich
web-based GUI, a RESTful API, and a CLI tool called Hammer, providing a rich
and varied means of management. It also provides integration with several
automation tools, originally just Puppet but more recently also Ansible.
Katello: Katello is actually a plugin for Foreman and provides additional features
such as the rich version control of content (more so than Pulp alone) and
subscription management.
Candlepin: Provides software subscription management, especially integration
with environments such as the Red Hat Subscription Management (RHSM)
model. Although it is possible to mirror Red Hat repositories in Pulp, the process
is cumbersome, and you risk violating your license terms because there is no
visibility on the number of systems you are managing or their relationship to
your Red Hat subscriptions.
Pulp: This is the very same Pulp software that we explored in the last chapter,
now integrated into one fully featured project.
Capsule: A proxy service for distributing content and controlling updates across
a geographically diverse infrastructure while maintaining a single management
console.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux

Patching with Katello Chapter 9

[238]

The use of Katello hence provides several advantages over using Pulp alone, and even if
you use it just for patch management (as we will explore in this chapter, in the section
entitled Patching with Katello), the rich web GUI, CLI, and API lend itself to integration with
enterprise systems. Beyond this though, Katello (and more specifically Foreman, which
underpins it) provides many other benefits such as being able to dynamically PXE boot
servers and control both container and virtualization systems, and it can even act as both
the DNS and DHCP servers for your network. Indeed, it is fair to say that the combination
of Katello/Foreman is designed to sit at the heart of your network, although it will only
perform the functions you ask of it, so those with existing DNS and DHCP infrastructures
need not fear.

It is worth mentioning that Katello also features tight integration with the Puppet
automation tool. The original project was sponsored by Red Hat, and before their
acquisition of Ansible, Red Hat and Puppet had a strategic alliance, which led to it
becoming heavily featured in the Katello project (which is available commercially as Red
Hat Satellite 6). Given the Ansible acquisition, while the Puppet integration still remains in
Katello, support for integration with Ansible, especially through Ansible Tower/AWX, has
evolved rapidly and it is entirely up to the user which automation tool they wish to use.

At this stage, the venerable Spacewalk software tool deserves an honorable mention.
Spacewalk is the upstream open source version of Red Hat Satellite 5 and is still being
actively developed and maintained. There is a huge degree of overlap between the two
systems in terms of high-level functionality; however, Katello/Satellite 6 is a complete from-
the-ground-up rewrite of the platform and so there is no clear upgrade path between the
two. Given that Red Hat's contribution to the Spacewalk program is likely to decrease when
they end-of-life their Satellite 5 product, our focus in this book will be on Katello.

Indeed, it is fair to say that Katello deserves a book of its own, so rich is its feature set. Our
goal in this chapter is simply to raise awareness of the Katello platform and to demonstrate
how it lends itself to patching in an enterprise environment. Many of the additional
features, such as the PXE booting of servers, require an understanding of the concepts we
have already covered in this book, and hence it is hoped that, should you decide upon
Katello or Satellite 6 as a platform for managing your infrastructure, then you will be able
to build on the foundation that this book provides and explore additional resources to take
you further.

Let's get started by taking a practical look in the next section at how to install a simple
standalone Katello server so that we can explore this more fully.

Patching with Katello Chapter 9

[239]

Installing a Katello server
This is a hands-on book, so without further ado, let's get started and set up our very own
Katello server. Alongside the advantages of Katello already discussed, another is the
packaging of the product. When we set up our Pulp server, there were many individual
components where we had to make decisions (for example, RabbitMQ versus Qpid) and
then additional setup to perform (for example, SSL transport for MongoDB). Katello has
even more moving parts than Pulp (if Pulp is considered as just a component of the Katello
platform), and hence installing it by hand would be a vast and complex task.

Thankfully, Katello provides an installation system that can get you up and running with
just a few commands, which we will explore in the next section of this chapter.

Preparing to install Katello
Katello, as with Pulp, only installs (at the time of writing) on Enterprise Linux 7
variants—so here, again, we will use the latest stable release of CentOS 7. The requirements
for Katello change from time to time as the product grows, and it is always worth
reviewing the installation documentation for yourself before proceeding. At the time of
writing, version 3.12 is the latest stable release, and the installation documentation can be
found here: https:/ / theforeman. org/ plugins/ katello/ 3.12/ installation/ index. html.
Now, let's follow these steps:

As before, our biggest concern is ensuring we have sufficient disk space1.
allocated, and just as for a standalone Pulp installation, we must ensure that we
have enough disk space allocated
in /var/lib/pulp and /var/lib/mongodb for all of the Linux distributions we
may wish to mirror. Again, as with Pulp, they should be separate from the root
volume to ensure that if one fills up, the entire server does not die.
With the filesystem set up, our first step is to install the required repositories so2.
that all required packages for installation can be downloaded—this requires
setting up several external repositories that provide packages not included by
default with CentOS 7. The following commands set up the repositories for
Katello, Foreman, Puppet 6, and the EPEL repository before actually installing
the Foreman release package tree:

$ yum -y localinstall
https://fedorapeople.org/groups/katello/releases/yum/3.12/katello/e
l7/x86_64/katello-repos-latest.rpm
$ yum -y localinstall
https://yum.theforeman.org/releases/1.22/el7/x86_64/foreman-release

https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html
https://theforeman.org/plugins/katello/3.12/installation/index.html

Patching with Katello Chapter 9

[240]

.rpm
$ yum -y localinstall
https://yum.puppet.com/puppet6-release-el-7.noarch.rpm
$ yum -y localinstall
https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.
rpm
$ yum -y install foreman-release-scl

From here, it is recommended to bring the base system fully up to date:3.

$ yum -y update

The final step before the actual installation is to install the Katello package and its4.
dependencies:

$ yum -y install katello

From here on, all installation tasks are performed with the foreman-5.
installer command—there are a huge plethora of options that can be specified
and, with most of them, if you need to change your decision, you can run the
installer again with the different flags and it will perform the changes without
any data loss. To see all possible options, run the following command:

$ foreman-installer --scenario katello --help

To build our demo server, the defaults will mostly suffice—however, if you6.
explore the options, you will see that many will need to be specified in an
enterprise setting. For example, SSL certificates can be specified at install time
(rather than relying on self-signed ones that will be generated otherwise), default
secrets for underlying transports are set, and so on. It is highly recommended
that you review the output of the preceding command for yourself when
installing in a production setting. For now, we will issue the following
installation command to initiate the installation:

$ foreman-installer --scenario katello --foreman-initial-admin-
password=password --foreman-initial-location='London' --foreman-
initial-organization='HandsOn'

This is probably the simplest possible installation case for a Katello server, and it
perfectly serves our examples in this book. However, in a Production
environment, I highly recommend that you explore the more advanced
installation features to ensure that the server will meet your requirements,
especially where security and availability are concerned. This is left as an exercise
for you to explore.

Patching with Katello Chapter 9

[241]

Note that, in this scenario, the installer checks several prerequisites,
including that the forward and reverse DNS lookups for the Katello server
name resolve correctly and that the machine has 8 GB of RAM available.
The installer will refuse to proceed if these prerequisites are not met.

The Katello installation should run to completion provided all prerequisites have7.
been met, and once completed, you should be presented with a screen similar to
the one shown in the following screenshot, detailing the login details, as well as
other pertinent information such as how to set up a proxy server for another
network if required:

The only task not completed by the installer is setting up the local firewall on the8.
CentOS 7 machine. Luckily, there is a FirewallD service definition included with
Katello that covers all of the services likely to be required—this derives its named
from the commercial Red Hat Satellite 6 product and can be enabled by running
the following commands as root:

$ firewall-cmd --permanent --zone=public --add-service=RH-
Satellite-6
$ firewall-cmd --reload

With those steps completed, it will be possible to load the web interface of9.
Katello and log in with the details shown:

Patching with Katello Chapter 9

[242]

Technically speaking, Katello is a module that sits on top of Foreman and provides
important features that we will look at later in this chapter—for example, a web UI for the
Pulp repository management system that is also installed behind the scenes. Hence, the
Foreman branding of the code stands out, and you will find the name comes up frequently.
Once logged in, you should be presented with the default dashboard page, and we can start
to configure some repositories for patching purposes, which we will commence in the next
section.

Patching with Katello
As Katello is built around technologies we have already explored, such as Pulp, it carries
with it the same limitations we have already seen regarding DEB packages. For instance,
although repositories of DEB packages can be built up easily in Katello, and even the
appropriate GPG public keys imported, the resulting published repositories do not feature
an InRelease or Release.gpg file and so must be implicitly trusted by all hosts that use
these. Similarly, although there is a complete subscription management framework
available for RPM-based hosts consisting of the subscription-manager tool and the Pulp
Consumer agent, again, no such equivalent exists for DEB hosts and so these must be
configured manually.

Although it would be entirely possible to configure RPM-based hosts to use the built-in
technologies, DEB-based ones would have to be configured with Ansible, just as for Pulp,
and given the importance of commonality across environments in an enterprise,
configuring all servers in the same manner rather than using two contrasting solutions for
two different host types is advised.

Patching with Katello Chapter 9

[243]

One of the advantages that Katello brings over Pulp, other than the web user interface, is
the concept of lifecycle environments. This feature acknowledges that most businesses will
have separate technology environments for differing purposes. For example, your
enterprise may well have a Development environment for developing new software and
testing bleeding edge packages, then a Testing environment for testing releases, and
finally, a Production environment where the most stable builds exist and services for
customers and clients are run.

Let's now explore some hands-on examples of building up repositories in Katello for
patching purposes.

Patching RPM-based systems with Katello
Let's consider the use of Katello to build repositories for our CentOS 7 system across
multiple lifecycle environments. As Katello supports the key-based validation of RPMs, our
first task is to install the GPG public key for the RPMs. A copy of this is freely
downloadable from the CentOS project and can be found on most CentOS 7 systems
in /etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7:

To add this public key to Katello, navigate to Content | Content1.
Credentials from the menu bar. Then, click Create Content Credential:

Patching with Katello Chapter 9

[244]

Give the key a suitable name and either upload the key file or copy and paste the2.
contents of it into the textbox on the screen. Click Save when done:

Patching with Katello Chapter 9

[245]

Next, we will create a product—in Katello, a product is a logical grouping of3.
repositories, and this is incredibly useful for creating manageable scalable
configurations. For our example here, we will only mirror the CentOS 7 OS
repository, but when you start mirroring the updates and any other related
repositories, it would make sense to group these together under a single product.
Navigate to Content | Products from the menu bar, and then click on the Create
Product button:

Now, define the high-level product definition—for a simple CentOS 7 repository4.
mirror, we simply need to create Name and Label and associate the GPG key we
uploaded previously. The various SSL options are for upstream repositories that
feature two-way SSL validation. Note also that all products can be synced
according to a Sync Plan (essentially a schedule)—however, for this example, we
will simply perform a manual sync. The screen should look something like the
following screenshot when completed:

Patching with Katello Chapter 9

[246]

With the high-level product definition completed, we can now create our CentOS5.
7 repository under it by clicking on the New Repository button:

Patching with Katello Chapter 9

[247]

Complete the repository details on the screen provided. Set the Type field6.
as yum and enter the URL of the upstream repository in the appropriate field (this
is the same as the --feed parameter when using Pulp from the command line):

Patching with Katello Chapter 9

[248]

Scrolling down the same screen, ensure that Publish via HTTP is ticked and7.
associate the GPG uploaded previously, as shown in the following screenshot:

Patching with Katello Chapter 9

[249]

For our example, we'll immediately kick off a sync of this repository by putting a8.
tick against it in the table of repositories, and then clicking on the Sync
Now button, as shown in the following screenshot:

The synchronization begins in the background immediately—you can always9.
check on its progress (and kick off further manual synchronizations) by
navigating to the Content | Sync Status page:

Patching with Katello Chapter 9

[250]

While the sync process completes, let's go and create some lifecycle10.
environments.

Note that while you can have discrete products and separate repositories
within them, lifecycle environments are global and apply to everything. In
an enterprise context, this makes sense, as you would most likely still have
a Development, Test, and Production environment regardless of which
underlying technologies you use.

From the menu bar, navigate to Content | Lifecycle Environments Paths, and
then click the Create Environment Path button:

Create an initial environment called Development by following the instructions11.
onscreen. You should be presented with a screen such as the one shown in the
following screenshot:

Patching with Katello Chapter 9

[251]

Now, we'll add Testing and Production environments so that our example12.
enterprise has a logical flow through these three environments. Click the Add
New Environment button, and then add each in turn, ensuring they have the
correct Prior Environment set to maintain the correct sequence. The following
screenshot shows an example of creating the Production environment as the
next step from the Testing one:

Patching with Katello Chapter 9

[252]

The final configuration should look like the following example screenshot:13.

Once our sync process has completed and we have created our environments, we can
proceed to the final part of our RPM repository setup—Content Views. In Katello,
a content view is a user-defined amalgamation of the various content forms that can be
ingested, version-controlled, and distributed to a given environment. This is best explained
through a practical example.

When we used Pulp alone, we created a repository called centos7-07aug19. When we
wanted to test out an update released a day later, we then created a second repository
called centos7-08aug19. Although this works, and we demonstrated how Pulp
deduplicates packages and saves on disk space while neatly publishing apparently separate
repositories, you can quickly see how this mechanism for content management could
become unwieldy, especially at enterprise scale, with numerous environments and some
months (or years) worth of snapshots to manage.

This is where Content Views come to the rescue. Although we have mirrored the CentOS
7 OS repository here, suppose we had mirrored the updates one. With Content Views, we
don't need to create a new product or repository to test out updates. Instead, the workflow
is, at a high level, as follows:

Create a product and a corresponding repository and perform sync (for example,1.
on August 7, 2019).
Create a content view containing the repository created in the previous step.2.
Publish the content view on August 7, 2019—this creates a version-numbered3.
snapshot of this repository on this date (for example, version 1.0).

Patching with Katello Chapter 9

[253]

Promote the content view to the Development environment. Perform testing,4.
and when validated, promote it to testing. Repeat the cycle to reach Production.
This can all happen asynchronously to the next steps.
On August 8, perform another sync of the repository created in step 1 (if you have5.
an overnight sync happening automatically through Sync Plan, this will
already be done for you on the morning of the 8th).
Publish the content view on August 8, 2019, following the sync. This creates a +16.
version of the repository for this date (for example, version 2.0).
Now, at this stage, you have snapshots of the CentOS 7 channel on both August 77.
and 8. However, all servers will still receive updates from the August 7 channel.
Promote the Development environment to version 2.0. The machines in8.
the Development environment now receive (with no additional configuration
required on them) the repository snapshot of August 8.
The Testing and Production environments, which were not promoted to this9.
version, still receive packages from the August 7 snapshot.

In this way, Katello makes managing numerous versions (snapshots) of repositories easy
across differing environments, with the added bonus that the repository configuration on
each host always remains the same, removing the need to push new repository information
through Ansible as we did with Pulp.

Let's step through an example of the preceding process in our demo Katello environment:

First of all, create a new content view for the preceding process.1.
Navigate to Content | Content Views and click on the Create New View button:2.

Patching with Katello Chapter 9

[254]

For our purposes, the new content view only requires a Name and a Label, such3.
as those shown in the following screenshot:

Patching with Katello Chapter 9

[255]

Once you have clicked on the Save button, navigate to the Yum Content tab4.
within the new content view, and ensure the Add sub-tab is selected. Tick the
repositories you want to add to the content view (in our simple demo, we only
have one CentOS 7 repository, so select that), and click on the Add
Repositories button:

Patching with Katello Chapter 9

[256]

Now, navigate back to the Versions tab and click the Publish New5.
Version button. This creates the hypothetical August 7 version we discussed
earlier. Note that Publish and Promote operations take an enormous amount of
disk I/O and will be very slow, especially on slow mechanically-backed storage
arrays. Although there are no published requirements for I/O performance for
either Katello or Red Hat Satellite 6, they perform best on flashbacked storage, or
if this is not available, fast mechanical storage that is not shared with other
devices. The following screenshot shows the Publish New Version button being
clicked for the CentOS7-CV content view:

Patching with Katello Chapter 9

[257]

The Publish operation is asynchronous and you can see it complete on this6.
screen, although if you navigate away, it will still complete. You can see that it is
automatically numbered Version 1.0—this numbering is, at the time of
writing, automatic and you cannot choose your own version numbering. You
can, however, add notes to each published version, which can be incredibly
useful to track which version is which and why they were created. This is highly
recommended. The following screenshot shows the promotion in progress on our
Version 1.0 environment:

Once the Publish operation is completed, the Promote button (shown grayed7.
out in the preceding screenshot) will become active. You will note that this
version is automatically published to the Library environment—the latest
version of any content view is always automatically promoted to this
environment.

Patching with Katello Chapter 9

[258]

To simulate the August 8 snapshot we discussed earlier, let's perform a8.
second publish of this content view. This will produce a Version
2.0 environment, which can then be promoted to
the Development environment by clicking on the Promote button and selecting
the required environment. The following screenshot shows our two versions,
with Version 1.0 available to only the Production environment and Version
2.0 available to the Development environment (and the built-in Library one).
Note that as we have not promoted the Testing environment to either version
and that no packages are available to machines in the Testing environment. You
must promote it to all environments that require packages—the following
screenshot shows the two versions we have published and which environments
are associated with which versions:

Patching with Katello Chapter 9

[259]

In the following screenshot, the promotion process is shown for reference—this is9.
how you would promote the Production environment to Version 2.0:

The one remaining piece of the puzzle here is to configure the clients to receive packages
from the Katello server. Here, we will perform a simple manual integration, as this method
is common to both DEB- and RPM-based packages and hence supports a common
approach across the enterprise. The process for distributing RPM packages from Katello
using the subscription-manager tool and the Katello agent is well documented and is
left as an exercise for you.

The official Katello documentation for Activation Keys is a good place to
start: https:/ / theforeman. org/ plugins/ katello/ 3.12/ user_ guide/
activation_ keys/ index. html

https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html
https://theforeman.org/plugins/katello/3.12/user_guide/activation_keys/index.html

Patching with Katello Chapter 9

[260]

To make use of the content we have published in this example, machines in the
Development environment would have a repository file with content such as this:

[centos-os]
name=CentOS-os
baseurl=http://katello.example.com/pulp/repos/HandsOn/Development/CentOS7-C
V/custom/CentOS7/CentOS7-os/
gpgcheck=1
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7

Your base URL will surely vary—at the very least, your Katello hostname will be different.
RPM-based repositories published and promoted in Katello are generally available at the
following path:

http://KATELLOHOSTNAME/pulp/repos/ORGNAME/LIFECYCLENAME/CONTENTVIEWNAME/cus
tom/PRODUCT/REPO

Here, we have the following:

KATELLOHOSTNAME: The hostname of your Katello server (or nearest
Capsule/Proxy if you are using them)
ORGNAME: The name of the Katello organization in which your Content
View lives—we defined ours as HandsOn during the installation process
LIFECYCLENAME: The name of the Lifecycle Environment, for
example, Development
CONTENTVIEWNAME: The name you gave your Content View
PRODUCT: The name you gave your Product
REPO: The name you gave to your repository within the Product

This makes the URLs entirely predictable and easy to deploy to target machines using
Ansible, just as we did in the previous chapter regarding Pulp. Note that accessing the
repositories over HTTPS from Katello requires the installation of SSL certificates for trust
validation, which is beyond the scope of this chapter—instead, we will simply make use of
plain HTTP.

Patching with Katello Chapter 9

[261]

As the lifecycle environment name remains constant, no matter whether we sync, publish,
or promote an environment, the repository URL, as shown previously, remains constant
and hence we never have to perform client configuration work even when a new package
repository snapshot is published. This is a significant advantage over Pulp, where we
would have to push a new configuration using Ansible every time a new version is created.

Once the repository configuration has been built as shown previously, you can patch your
systems in the normal manner. This can be done as follows:

Manually, using a command such as yum update on each machine
Centrally, using an Ansible playbook
From the Katello user interface, if the katello-agent package is installed on
your target machines

Given the varied nature of the tools available, we won't go into any greater depth in this
chapter but will instead leave this as an exercise for you. Experience has shown that central
deployment using Ansible is the most robust method, but you are welcome to experiment
and find the path that best suits you.

That concludes our brief tour of RPM-based patching with Katello, though it is hoped that
it has shown you enough to give you a taste of how it might prove valuable in your
enterprise. In the next section, we will look at the process of patching DEB-based systems
with Katello.

Patching DEB-based systems with Katello
The patching of DEB-based systems such as Ubuntu through Katello is broadly similar to
the RPM-based process, save for a few changes in the GUI, and the limitations around
package signing discussed earlier in this chapter, in the section entitled Patching with
Katello. Let's briefly walk through an example now for Ubuntu Server 18.04:

First, create a new product for our Ubuntu package repositories:1.

Patching with Katello Chapter 9

[262]

It is important to state here that importing the Ubuntu signing public key makes
no impact on the published repository and so can be specified or ignored as you
prefer. The resulting repository will not have a signed Release file and so must
be treated as implicitly trusted.

Patching with Katello Chapter 9

[263]

Once the product is saved, create a new repository within it to contain the2.
packages—the package mirror creation requires the same parameters we used on
the command line with Pulp, as shown in the following screenshot:

Sync the newly created repository as before, and ensure this has completed
successfully before proceeding to the content view creation.

Patching with Katello Chapter 9

[264]

Once it has, create a separate content view for our Ubuntu content—the3.
following screenshot shows the content view creation in progress:

Patching with Katello Chapter 9

[265]

This time, navigate to the Apt Repositories tab and select the appropriate4.
Ubuntu repositories—again, in our simple example here, we only have one, and
the following screenshot shows the process of our lone Ubuntu 18.04 base
repository being added to the Ubuntu1804-CV content view:

From here, our new content view is published and promoted just as we did for5.
the RPM-based one. The resulting repository is accessible again at a predictable
URL, this time being of the following pattern:

http://KATELLOHOSTNAME/pulp/deb/ORGNAME/LIFECYCLENAME/CONTENTVIEWNA
ME/custom/PRODUCT/REPO

As can be seen, this is almost identical to the RPM-based example, save for the initial path.
An appropriate entry for /etc/apt/sources.list to match the content view we just
created in this example might look like this:

deb [trusted=yes]
http://katello.example.com/pulp/deb/HandsOn/Development/Ubuntu1804-CV/custo
m/Ubuntu_18_04_Server/Ubuntu_18_04_base/ bionic main

Patching with Katello Chapter 9

[266]

As before, this URL remains constant regardless of when we might sync, publish, or
promote this content view and so it need only be deployed once to target systems to ensure
they can receive packages from the Katello server. Again, you can perform this patching
manually through the apt update and apt upgrade commands on the end systems, or
centrally through Ansible.

Note that there is no katello-agent package for Debian/Ubuntu-based
systems at the time of writing.

In this chapter, we have barely scratched the surface of all that Katello can do, yet this
example alone demonstrates how effective a tool it is for enterprise patch management. It is
highly recommended that you explore this further to establish whether it meets your wider
infrastructure needs.

It must be stressed that, in this chapter, we have really only scratched the surface of what
Katello can do—however, it is hoped that the work we have done so far gives you enough
to make an informed decision on whether to proceed with this incredibly powerful and
versatile platform as part of your Linux architecture.

Summary
Katello is actually an amalgamation of several incredibly powerful open source
infrastructure management tools, including Pulp, which we have already explored. It is
incredibly adept at patch management in an infrastructure setting, offering numerous
advantages over a standalone Pulp installation and can handle most build and maintenance
tasks from a single pane of glass—more than we have had space to cover!

In this chapter, you gained an understanding of what the Katello project actually is and the
components that it is comprised of. You then learned how to perform a standalone
installation of Katello for patching purposes and then how to build out repositories suitable
for patching both RPM- and DEB-based Linux distributions and the basics of integrating
these two operating systems with Katello content views.

In the next chapter, we will explore how Ansible can be effectively employed in an
enterprise for user management.

Patching with Katello Chapter 9

[267]

Questions
Why would you want to use Katello over a product such as Pulp?1.
What is a Product in Katello terms?2.
What is a content view in Katello?3.
Can Foreman (which underpins Katello) assist with the PXE booting of bare-4.
metal servers?
How would you use lifecycle environments in Katello?5.
What is the difference between the Publish and Promote operations on a6.
content view?
When would you want to perform a Promote operation on a previously7.
published content view?

Further reading
For a greater understanding of Katello, please refer to the official Red Hat Satellite 6
documentation as this is the commercial version of Katello and all of the documentation is
usually written for this platform—however, the features and menu structure are almost
identical (https:// access. redhat. com/ documentation/ en-us/ red_ hat_satellite/).

https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/
https://access.redhat.com/documentation/en-us/red_hat_satellite/

10
Managing Users on Linux

No Linux server is complete without a method for users to access it. Whether
administrators or end users, and whether using local or centralized credentials, Linux
servers need a mechanism for users (and even tools such as Ansible!) to access them.

User management is, like all good server configuration and maintenance activities, an
ongoing job. Credentials need rotating on a regular basis, to ensure the security and
integrity of systems. Employees come and go, meaning access details must be updated
accordingly. Indeed, access management can, in a busy organization, be a full-time job in
itself!

In this chapter, we will explore, through hands-on examples, how to automate your user
and access management through Ansible, in a way that is consistent with our Standard
Operating Environment (SOE) model.

The following topics will be covered in this chapter:

Performing user account management tasks
Centralizing user account management with Lightweight Directory Access
Protocol (LDAP)
Enforcing and auditing configuration

Technical requirements
This chapter includes examples, based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

Managing Users on Linux Chapter 10

[269]

To run through these examples, you will need access to two servers or virtual machines
running one each of the operating systems just listed, and also, Ansible. Note that the
examples given in this chapter may be destructive in nature (for example, they add and
remove user accounts, and make changes to server configuration) and, if run as is, are only
intended to be run in an isolated test environment.

Once you are satisfied that you have a safe environment in which to operate, let's get
started on looking at the installation of new software packages with Ansible.

All example code discussed in this chapter is available from GitHub, at the following
URL: https://github. com/ PacktPublishing/ Hands- On-Enterprise- Automation- on-
Linux/tree/master/ chapter10.

Performing user account management tasks
At the most fundamental level, every Linux server in your environment will require some
degree of access for users. In an enterprise setting where there could be hundreds, if not
thousands, of servers, a centralized user management system such as LDAP or Active
Directory would be an ideal solution as, taking the examples of a user leaving or changing
their password, they can do this in one place, and it is applied across all servers. We will
explore this aspect of Enterprise Linux management and automation in the next section,
Centralizing user account management with LDAP.

For now, though, let us concern ourselves with local account management—that is,
accounts that are created on each and every Linux server where access is required. Even
when a centralized solution such as LDAP is present, local accounts are still a
requirement—if for no other purpose than to serve as an emergency access solution, should
the directory service fail.

Note that, as with all Ansible examples in this book, they can be run
equally well on 1, 100, or even 1,000 servers. In fact, the use of Ansible
reduces the need for a centralized user management system, as user
account changes can be pushed out across the entire estate of servers with
ease. However, there are good reasons not to rely solely on this—for
example, one server being down for maintenance during an Ansible
playbook run means it will not receive the account changes being made.
In the worst-case scenario, this server could then pose a security risk once
it is brought back into service.

Starting in the next section, we will explore the ways in which Ansible can assist with your
local account management.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter10

Managing Users on Linux Chapter 10

[270]

Adding and modifying users with Ansible
Whether you are configuring a brand new server for the first time after it has been built or
making changes when a new employee joins the company, adding user accounts to a server
is a commonly required task. Thankfully, Ansible has a module called user, which is
designed to perform user account management tasks, and we shall proceed to use exactly
this.

Throughout our previous examples, we have been very careful to highlight the differences
between platforms such as Ubuntu and CentOS, and user account management requires a
little consideration here too.

Take, for example, the following shell command (which we will later automate in Ansible):

$ useradd -c "John Doe" -s /bin/bash johndoe

This command could be run on either CentOS 7 or Ubuntu Server 18.04, and would yield
the same results, namely:

The user account johndoe would be added with the next free user identification
number (UID) for users.
The account comment would be set to John Doe.
The shell would be set to /bin/bash .

Indeed, you could run this command on just about any Linux system, and it would work.
The differences start, however, when you consider groups, especially built-in ones. For
example, if you wanted this account to be able to use sudo for root access (that is, johndoe
is a system administrator), you would want to put this account into the wheel group on
CentOS 7. On Ubuntu Server, however, there is no wheel group, and attempting to put the
user into such a group would result in an error. Instead, on Ubuntu, this user would go into
the sudo group.

It is subtle differences like this that could trip you up when it comes to automated user
account management across different Linux distributions—however, as long as you remain
mindful of such things, you can easily create Ansible playbooks or roles, to manage your
Linux users with ease.

Managing Users on Linux Chapter 10

[271]

Let's build on this example, to instead create the johndoe user in an Ansible role, such that
access for them can be rolled out on all Linux servers. The code
for roles/addusers/tasks/main.yml to perform the same function as the shell of the
preceding command should look something like the following:

- name: Add required users to Linux servers
 user:
 name: johndoe
 comment: John Doe
 shell: /bin/bash

If we run this role in the usual way, we can see that the user account gets created on the
first run, and that no action is taken if we run the playbook a second time. This is denoted
in the following screenshot, which shows the preceding role being run twice—the changed
and ok statuses show when a user account is added, and when no action is taken because it
already exists respectively:

Managing Users on Linux Chapter 10

[272]

So far, so good—however, this example is rather skeletal in nature—our user has no
password set, no group membership, and no authorized SSH keys. We demonstrated
previously that we can run an Ansible role containing the user module more than once and
changes will only be made if required, and we can leverage this to our advantage. Let's
now expand our example role, to add these things.

Before we get into our next example, we will demonstrate how to generate a password
hash, using Ansible. Here, we will choose the word secure123. The user module of
Ansible is capable of setting and modifying user account passwords, but it does not (for
very good reasons) allow you to specify the password in plaintext. Instead, you must create
a password hash, to send to the machine being configured. In Chapter 6, Custom Builds with
PXE Booting, we looked at a way to do this with a small amount of Python code, and you
are welcome to reuse this method here. However, you can also make use of Ansible's vast
array of filters, to generate a password hash from a string. Run the following command
from the shell:

$ ansible localhost -i localhost, -m debug -a "msg={{ 'secure123' |
password_hash('sha512') }}"

Running this produces a password hash that you can copy and paste into your role, as
shown in the following screenshot:

This is very useful in itself—however, let's bear something in mind: no password hash is
completely secure. Remember that once, MD5 hashes were considered secure, but are now
not. Ideally, you should not be storing the hash in plaintext either, and should regenerate it
on every system as it contains a unique salt. Luckily, we can use the password_hash filter
in a role directly to achieve this.

Managing Users on Linux Chapter 10

[273]

In the following example, we demonstrate how to store the password string in a variable,
and then, how to use the password_hash filter to generate the hash for the remote system.
In a real-world use case, you would replace the plaintext variable file with an Ansible vault
file so that at no point is either the original password or hash stored unencrypted.

First of all, let's create roles/addusers/vars/main.yml, and store John Doe's1.
password in a variable, as follows:

johndoepw: secure123

Next, let's create an SSH key pair for this user, in the directory2.
roles/addusers/files/, by running the following command in that directory:

$ ssh-keygen -b 2048 -t rsa -f ./johndoe_id_rsa -q -N ''

Of course, it is likely in an enterprise setting that the user would generate their
own key pair and provide an administrator with the public key for distribution to
the systems they will use—however, for our example here, it is easier to
demonstrate with a newly generated key pair.

Finally, let's say that johndoe is going to administer Ubuntu systems, and so,3.
should be in the sudo group. Our resulting role should now look like this:

- name: Add required users to Linux servers
 user:
 name: johndoe
 comment: John Doe
 shell: /bin/bash
 groups: sudo
 append: yes
 password: "{{ johndoepw | password_hash('sha512') }}"

- name: Add user's SSH public key
 authorized_key:
 user: johndoe
 state: present
 key: "{{ lookup('file', 'files/johndoe_id_rsa.pub') }}"

Running the code yields changed results, as we would expect, and the following4.
screenshot shows the successful addition of the user and their corresponding
SSH public key:

Managing Users on Linux Chapter 10

[274]

Note that we have successfully modified the johndoe account here, as we created it earlier
in this section—however, we could also have run this most recent role before the account
creation, and the end result would have been the same. That is the beauty of Ansible—you
don't need to write different code for modifications and additions. There are many other
modifications possible with the user module, and it should serve most of your needs.

Returning briefly to the vars/main.yml file we created earlier, we left this in plaintext for
simplicity in this example. However, we can very easily encrypt our existing file, using the
following command:

$ ansible-vault encrypt main.yml

The following screenshot shows this encryption process in action:

Managing Users on Linux Chapter 10

[275]

The data is now encrypted at rest! We can still run the playbook without decrypting
it—simply add the --ask-vault-pass parameter to the ansible-playbook command,
and enter your chosen vault password when prompted.

Before concluding this section, it is worth noting that we can also leverage loops, to create
multiple accounts at once. The following example creates two new users with differing
group membership, and with distinct username and matching comments on their accounts.
Expanding this example to address initial passwords and/or SSH keys is left as an exercise
for you, but you should have enough information to build upon to achieve this. The code
can be seen below:

- name: Add required users to Linux servers
 user:
 name: "{{ item.name }}"
 comment: "{{ item.comment }}"
 shell: /bin/bash
 groups: "{{ item.groups }}"
 append: yes
 state: present
 loop:
 - { name: 'johndoe', comment: 'John Doe', groups: 'sudo'}
 - { name: 'janedoe', comment: 'Jane Doe', groups: 'docker'}

Noting that we created johndoe earlier in this chapter, we can see that if we run this role,
the janedoe user is the only account created as they did not already exist—the following
screenshot shows exactly this. janedoe shows a changed status, informing us that a
change was made—in this case, the account was created. The ok status against the johndoe
user account tells us that no action was performed, as can be seen in the following
screenshot:

Managing Users on Linux Chapter 10

[276]

In this way, user accounts can be created and managed at scale, across a wide number of
Linux servers. As we can see in the preceding screenshot, in the usual Ansible manner, only
the required changes are made, with existing accounts left unchanged. While adding
accounts is straightforward, we must also consider that employees also leave enterprises
from time to time, and so, account cleanup is also required in this instance.

We will explore the ways in which Ansible can assist with removing user accounts and
tidying up after them, in the next section.

Removing users with Ansible
Although we have shown that it is easy to add and modify user accounts with Ansible, we
must consider removal as a separate case. The reason for this is simple—Ansible assumes
that, if we use the user module in conjunction with a loop to add both johndoe and
janedoe, it will add them if they do not exist; otherwise, it will modify them. If, of course,
they match the state described by the role or playbook, then it will do nothing at all.

However, Ansible assumes nothing about the state prior to it being run. Thus, if we delete
johndoe from the loop described previously and run the playbook again, this account is
not removed. As a direct result of this, we must handle account removal separately.

The following code will remove this user account:

- name: Add required users to Linux servers
 user:
 name: johndoe
 state: absent

Now, if we run this command, the output should look something like the following
screenshot:

Managing Users on Linux Chapter 10

[277]

Running this role is the equivalent of using the userdel command in the shell—the user
account is removed, along with all group memberships. However, the home directory is left
intact. This is normally the safest route, as users might have stored important code or other
data in their home directory, and often, it is best for someone to sanity-check that the
directory is safe to remove, before it is actually removed. If you are sure that you want to
remove the directory (which is best practice, for both security reasons and to free up disk
space), then add the following code to the role we just created:

- name: Clean up user home directory
 file:
 path: /home/johndoe
 state: absent

This performs a recursive delete of the path specified, so use this with care!

With these practical examples and a little additional detail from the documentation, you
should be in a good position to automate your local account tasks with Ansible. In the next
section, we will explore the use of centralized user account management with LDAP.

Centralizing user account management with
LDAP
Although Ansible performs a fine job when it comes to managing user accounts across an
estate of servers, the best practice in an enterprise is to make use of a centralized directory
system. A centralized directory is able to perform a number of tasks that Ansible can
not—for example, enforcing password security criteria, such as length and character types,
password expiry, and account lockout when too many incorrect passwords are tried. As
such, it is highly recommended that such a system be used in the enterprise.

Indeed, many enterprises already have such a system in place, two common ones being
FreeIPA and Microsoft Active Directory (AD). In the following sections, we will explore
the integration of these two systems with your Linux servers.

Managing Users on Linux Chapter 10

[278]

Microsoft AD
As this is a book on Linux automation, an in-depth discussion of Microsoft AD and its
setup and configuration is well beyond its scope. Suffice to say that in the context of Linux,
AD is best suited to centralized user account management, although, of course, its
capabilities are far greater than this. Most organizations that need an AD server will
already have one set up, and so, our concern is not with this aspect, but with getting our
Linux servers to authenticate against it.

On most modern Linux distributions, the realmd tool is used to join the Linux server in
question to AD. Next, we consider a hypothetical example of joining a CentOS 7 server to
AD—however, every organization, their AD setup, organizational units, and so on will be
different, and so, there is no one-size-fits-all solution here.

As you will no doubt be aware by now, performing this process on
Ubuntu will be very similar, except that you will use the apt module in
place of yum, and the package names could differ. Once realmd and its
required packages are installed, the process is identical.

It is hoped, though, that the following code given provides you with a good basis on which
to develop your own Ansible role to join AD.

Before beginning the process of joining the directory, it is vital that the Linux1.
server is using the correct DNS servers that contain the appropriate Service
(SRV) records for the domain. Often, these DNS servers will be the AD servers
themselves, but that again will vary from organization to organization.
The realmd tool must be installed, along with a number of supporting packages.2.
Let's create a role called realmd, using our familiar roles directory structure.
The roles/realmd/tasks/main.yml should begin with the following code, to
install the required packages:

- name: Install realmd packages
 yum:
 name: "{{ item }}"
 state: present
 loop:
 - realmd
 - oddjob
 - oddjob-mkhomedir
 - sssd
 - samba-common
 - samba-common-tools
 - adcli

Managing Users on Linux Chapter 10

[279]

 - krb5-workstation
 - openldap-clients
 - policycoreutils-python

Some of these packages offer supporting functions—for example, openldap-
clients is not directly required, but can be very useful in debugging directory
issues.

Once our prerequisite packages are installed, our next task is to join the Active3.
Directory itself. Here, we are assuming the presence of
roles/realmd/vars/main.yml with the
realm_join_password, realm_join_user, and realm_domain variables set.
As this file might well contain a password with sufficient privileges to join the
AD domain, it is recommended that this variables file be encrypted with
ansible-vault. Run the following code:

- name: Join the domain
 shell: echo '{{ realm_join_password }}' | realm join --user={{
realm_join_user }} {{ realm_domain }}
 register: command_result
 ignore_errors: True
 notify:
 - Restart sssd

The use of the shell module to perform the realm join requires special
consideration, as running this task twice will not yield the normal clean behavior
of Ansible. Indeed, performing a second realm join when the server is already
a domain member results in an error. As a result, we set ignore_errors: True,
and register the result of the command so that we can later evaluate if it ran
successfully. We also notify a handler that we will define later, to restart the sssd
service. The aforementioned vars file should look something like this:

realm_join_password: securepassword
realm_join_user: administrator@example.com
realm_domain: example.com

Be sure to substitute the variable values with ones appropriate to your own
environment.

Managing Users on Linux Chapter 10

[280]

We immediately follow this task with a check, to see if the realm join was4.
successful. If it was successful, we should either get a return code of 0 or an
error, informing us that the server is Already joined to this domain. If we
don't get these expected results, then we will fail the entire play to ensure that the
issue can be rectified, as follows:

- name: Fail the play when the realm join fails
 fail:
 msg="Realm join failed with this error: {{
command_result.stderr }}"
 when: "'Already joined to this domain' not in
command_result.stderr and command_result.rc != 0"

Finally, we create the handler, to restart sssd in5.
roles/realmd/handlers/main.yml, as follows:

- name: Restart sssd
 service:
 name: sssd
 state: restarted
 enabled: yes

These steps are all sufficient to perform the basic addition of a Linux server to an AD
domain. Although the example is given for CentOS 7, the process should be broadly similar
for operating systems like Ubuntu, as long as you take account of the different package
manager and package names.

There are, of course, a vast number of enhancements that can be made to the preceding
procedure, most of which will be performed with the realm command. Sadly, at the time of
writing, there is no realm module for Ansible, so, all realm commands must be issued
with the shell module—though this still enables automated rollouts of AD membership to
Linux servers using Ansible.

Possible enhancements for you to consider to the preceding process (all of which can easily
be automated by extending the example playbook we have previously suggested) are as
follows:

Specify the organizational unit (OU) that the Linux server is to go into when the
join is complete. Without specifying this, it will go into the default Computers
OU. You can change this, by specifying something like --computer-
ou=OU=Linux,OU=Servers,OU=example,DC=example,DC=com within your
realm join command. Be sure the OU has been created first, and adjust the
preceding parameter to match your environment.

Managing Users on Linux Chapter 10

[281]

By default, all valid domain user accounts will be able to log in to the Linux
server. This may not be desirable and, if not, you will need to first of all deny all
access, using the command realm deny --all. Then, to say you wish to allow
all users in the LinuxAdmins AD group, you would then issue the following
command: realm permit -g LinuxAdmins.
It is unlikely you will have a group in your AD called wheel or sudo, and as a
result, AD users may find themselves unable to execute privileged commands.
This can be rectified by adding the appropriate users or groups into
/etc/sudoers or, better still, a unique file under /etc/sudoers.d that Ansible
can manage. For example, creating /etc/sudoers.d/LinuxAdmins with the
following content would enable all members of the LinuxAdmins AD group to
perform sudo commands without re-entering their passwords:

%LinuxAdmins ALL=(ALL) NOPASSWD: ALL

All of these tasks are left as an exercise for you, though it is expected that the information
given in this chapter is sufficient for you to build up your own playbook suited to your AD
infrastructure.

In the next section, we will look at the use of the FreeIPA directory service that is native to
Linux, and how to integrate this into your environment with Ansible.

FreeIPA
FreeIPA is a freely available open source directory service that is simple to install and
manage. It runs on Linux and runs primarily on CentOS or Red Hat Enterprise Linux
(RHEL), though client support is readily available on Ubuntu and other Linux platforms.
Integration with Windows AD is even possible, though is in no way required.

If you are building a purely Linux environment, it makes sense to look at FreeIPA, as
opposed to putting in a proprietary solution such as Microsoft AD.

FreeIPA and Microsoft AD are by no means the only two options on the
market for directory services, and a number of cloud-based alternatives
are now available, including JumpCloud, AWS Directory Service, and
many others. Always make your own independent decisions regarding
the best option for you as the field is fast evolving, especially when it
comes to cloud-based directory services.

Managing Users on Linux Chapter 10

[282]

As with the previous section on Microsoft AD, the design and deployment of a FreeIPA
infrastructure are beyond the scope of this book. Directory services are core services on
your network—imagine if you only built a single directory server, and then had to shut it
down for maintenance. Even a simple reboot would leave users unable to log in to all
machines joined to it for the duration the services were down. For these reasons, it is vitally
important that you design your directory service infrastructure to take account of
redundancy and disaster recovery. It is also important that you have well-secured local
accounts in case your directory infrastructure does fail, as discussed earlier in this chapter,
in the section entitled Performing user account management tasks.

Once you have designed a suitably redundant infrastructure for your FreeIPA installation,
there are a series of playbooks and roles available on GitHub, created by the FreeIPA team,
to install your server and clients, and you can explore these further here: https:/ /github.
com/freeipa/ansible- freeipa

This book leaves the task of installing your FreeIPA infrastructure to you—however, let's
take a look at the use of the freely available FreeIPA roles, to install clients on your
infrastructure. After all, this is one of the key benefits of open source software—the sharing
of knowledge, information, and code.

First of all, we clone the ansible-freeipa repository to our local machine, and1.
change into the directory to make use of it, as follows:

$ cd ~
$ git clone https://github.com/freeipa/ansible-freeipa
$ cd ansible-freeipa

Next, create symbolic links to roles and modules we just cloned into our local2.
Ansible environment, as follows:

$ ln -s ~/ansible-freeipa/roles/ ~/.ansible/
$ mkdir ~/.ansible/plugins
$ ln -s ~/ansible-freeipa/plugins/modules ~/.ansible/plugins/
$ ln -s ~/ansible-freeipa/plugins/module_utils/ ~/.ansible/plugins/

Once that is done, we must create a simple inventory file that includes3.
appropriate variables, to define the FreeIPA realm and domain, and also, the
password of the admin user (which is required to join a new server to the IPA
realm). The following example is shown, but be sure to customize it to your
requirements:

[ipaclients]
centos-testhost

[ipaclients:vars]

https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa
https://github.com/freeipa/ansible-freeipa

Managing Users on Linux Chapter 10

[283]

ipaadmin_password=password
ipaserver_domain=example.com
ipaserver_realm=EXAMPLE.COM

With the appropriate variables set and the inventory compiled, we can then run4.
the playbooks provided, with the code downloaded from GitHub. An example of
this FreeIPA client installation playbook running is shown, as follows:

The preceding output shown is truncated but shows the FreeIPA client installation in
process. As usual for examples in this book, we have kept it simple, but this could just as
easily be run against 100, or even 1,000, servers.

As these playbooks and roles are provided by the official FreeIPA project, they are a
trustworthy source for installing both servers and clients, and although it is highly
recommended to test and review any code you download, these should serve well for
building up your FreeIPA-based infrastructure.

Managing Users on Linux Chapter 10

[284]

In the next section, we will take a look at the ways in which Ansible can help with enforcing
and auditing user accounts and configuration.

Enforcing and auditing configuration
When it comes to user account management, security is important. As we discussed in the
section entitled Centralizing user account management with LDAP, Ansible is not designed
specifically for enforcement or auditing— however, it can help us greatly. Let's consider a
few of the security risks around user management that Ansible can help to mitigate,
starting with the sudoers file.

Managing sudoers with Ansible
The /etc/sudoers file is one of the most sensitive on most Linux systems, as it defines
which user accounts can run commands as the superuser. Needless to say, this file being
compromised or modified in an unauthorized way could pose a huge security risk to not
just the Linux server in question, but to the network at large.

Thankfully, Ansible templates can help us to manage this file effectively. Like other modern
Linux configurations, the sudoers configuration is broken up into several files, to make it
more manageable. The files are, typically, as follows:

/etc/sudoers: This is the master file, and references all other files that might be
considered.
/etc/sudoers.d/*: These files are normally included by a reference in the
/etc/sudoers file.

As we discussed in the chapter entitled Configuration Management with Ansible, someone
could potentially edit /etc/sudoers and tell it to include a completely different path in
addition to, or instead of, /etc/sudoers.d/*, meaning that it is vital we deploy this file
through a template. This ensures we maintain control of which files provide sudo
configuration.

Managing Users on Linux Chapter 10

[285]

We will not repeat our discussion on templates and their deployment with Ansible, as the
techniques discussed in Chapter 7, Configuration Management with Ansible apply equally
well here. However, we will add an important caveat. If you break the sudo configuration
by deploying a file with (for example) a syntax error in it, you risk locking all users out of
privileged access. This would mean the only way to fix the problem would be to log in to
the server using the root account, and if this is disabled (as it is by default on Ubuntu, and
is recommended in many environments), then your path to recovery becomes quite tricky.

As with so many scenarios, prevention is better than cure, and the template module we
used earlier has a trick up its sleeve, to help us out here. When you edit the sudoers file
using visudo on a Linux system, the file you have created is checked automatically before
it is written to disk. If there is an error, you are warned and given the option to rectify it.
Ansible can make use of this utility through the addition of the validate parameter to the
template module. Thus, a very simple role, to deploy a new version of the sudoers file
with Ansible, might look like this:

- name: Copy a new sudoers file on if visudo validation is passed
 template:
 src: templates/sudoers.j2
 dest: /etc/sudoers
 validate: /usr/sbin/visudo -cf %s

In the preceding example, the template module passes the name of the file specified by
dest to the command in the validate parameter—this is the significance of the %s. If the
validation is passed, the new file is written into place. If the validation fails, then the new
file is not written and the old one remains. In addition, when validation fails, the task
results in a failed status, thus ending the play and alerting the user to rectify the
condition.

This isn't the only task that the validate parameter can be used to
complete—it can be used to check the results of any template operation,
provided you can define a shell command that will perform a suitable
check on the template operation. This might be as simple as using grep to
check for a line in a file, or a check to see that a service restarts.

In the next section, we will take a look at how Ansible can assist with enforcing and
auditing user accounts across a large number of servers.

Managing Users on Linux Chapter 10

[286]

Auditing user accounts with Ansible
Say your enterprise has 1,000 Linux servers, all using directory services for authentication,
as we have discussed so far. Now, suppose an errant user, wishing to bypass this privilege
management, manages to create a local account called john on a single server. This might
happen when privileges are temporarily granted for a change request but then
revoked—unscrupulous individuals can easily create their own access methods, to bypass
the security provided by your directory service.

How would you find this had happened? Although Ansible is not technically a tool for
auditing, it has the benefit of being able to run a command (or set of commands) on 1,000
servers at once and returning the results to you for processing.

As all your server builds should be to a given standard (see Chapter 1, Building a Standard
Operating Environment on Linux), then you should know which accounts are supposed to be
on each Linux server. It is possible that there will be some variance—for example, if you
install the PostgreSQL database server, this normally creates a local user account called
postgres. However, these cases are well understood, and can quickly and easily be
filtered out.

We don't even need to write a complete playbook for Ansible to help us out here—once you
have an inventory file with your Linux server (or servers) in, you can run what is called an
ad hoc command. This is simply a single-line command that can run any single Ansible
module with a set of arguments—much like a playbook with just one task in it.

Thus, to obtain a list of all user accounts on all my servers, I could run the following
command:

$ ansible -i hosts -m shell -a 'cat /etc/passwd' all

That's all there is to it—Ansible will faithfully connect to all servers in the inventory file
specified by the -i parameter, and dump the /etc/passwd file contents to the screen. You
could pipe this output to a file for further processing and analysis, rather than having to log
on to each box. Although Ansible is not actually doing any analysis, it makes for a very
powerful and easy tool to perform the data gathering for the purposes of auditing, and, as
is the beauty of Ansible, no agent is required on the remote machines.

Managing Users on Linux Chapter 10

[287]

The following screenshot shows an example of Ansible obtaining the local user accounts
from one of our test systems, using a simple grep command to filter out two commonly
present accounts. Naturally, you can expand this example as you wish, to improve the data
processing and hence make your task easier:

In this manner, you can make good use of Ansible, to gather useful information from a
large number of systems for further processing—as the results are returned directly to the
Terminal, it is easy to pipe them to a file and then process them with your favorite tools (for
example, AWK) to establish whether there are any systems queried that violate enterprise
policies. While this example has been performed with the local user account list, it could
just as effectively be performed on any given text file on the remote systems.

This, as you can see, is a very simple example, but it is a fundamental building block, on
top of which you can build other playbooks. Here are some ideas for you to explore further
by yourself:

Change the ad hoc command we ran previously, and run it as a playbook
instead.

Managing Users on Linux Chapter 10

[288]

Schedule the preceding playbook to run on a regular basis in AWX.
Modify the playbook to check for certain key user accounts.

Your ability to audit users doesn't stop there, though—although centralized logging should
(and probably will) be part of your infrastructure, you can also interrogate log files with
Ansible. Using the ad hoc command structure previously shown, you could run the
following command against a group of Ubuntu servers:

$ ansible -i hosts -m shell -a 'grep "authentication failure | cat"
/var/log/auth.log' all

On CentOS, these log messages would appear in /var/log/secure instead, so you would
alter the path accordingly for these systems.

The grep command returns code 1 if the string you specify is not found,
and Ansible, in turn, interprets this as a failure, reporting the task as
failed. As a result, we pipe the output of grep into the cat command,
which always returns zero, and hence, the task does not fail, even if the
string we are searching for is not found.

As I'm sure you have realized by now, these commands would be far better run as a
playbook, with some detection for the operating system and the appropriate paths used in
each case—however, the goal of this section is not to provide you with an exhaustive set of
solutions, but rather, to inspire you to go and build your own code based on these
examples, to help you audit your infrastructure with Ansible.

The fact that Ansible can perform such a wide variety of commands, and that it has
agentless access across your infrastructure, means that it can be an effective solution in your
toolbox, both for configuring your Linux servers and for maintaining the integrity of the
configuration, and, even, auditing them.

Summary
User account and access management is an integral part of any Enterprise Linux
environment, and Ansible can be a key component in both configuring this and rolling it
out across a wide number of servers. Indeed, in the case of FreeIPA, there are already freely
available Ansible roles and playbooks that can set up not only the Linux clients, but even
your server architecture as well. Thus, automation of all key components within your Linux
infrastructure can be achieved.

Managing Users on Linux Chapter 10

[289]

In this chapter, you learned how to effectively manage user accounts with Ansible across a
large number of Linux servers. You then learned how to integrate logins with common
directory servers such as FreeIPA and Microsoft AD using Ansible, and finally, you
learned how Ansible can be used to enforce configuration and audit its state.

In the next chapter, we will explore the use of Ansible in database management.

Questions
What are the benefits of local user accounts, even when a directory service is1.
employed?
Which module is used to create and manipulate user accounts in Ansible?2.
How would you generate an encrypted password hash, using just Ansible?3.
Which package is used to integrate Linux servers with AD?4.
How can you use Ansible to audit configuration from a group of servers?5.
What is the purpose of validating the sudoers file when deploying it from a6.
template?
What additional benefits does a directory service bring that Ansible could not7.
provide, even though it can deploy user accounts across all your servers?
How would you make the choice between FreeIPA and AD?8.

Further reading
For an in-depth understanding of Ansible, please refer to Mastering Ansible, Third
Edition—James Freeman and Jesse Keating (https:/ /www. packtpub. com/ gb/
virtualization- and- cloud/ mastering- ansible- third- edition).

To explore the setup and use of AD in greater depth, readers may refer
to Mastering Active Directory, Second Edition—Dishan Francis (https:/ /www.
packtpub. com/ cloud- networking/ mastering- active- directory- second-
edition).

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition
https://www.packtpub.com/cloud-networking/mastering-active-directory-second-edition

11
Database Management

No application stack is complete without data, and this is commonly stored in a database.
There is a myriad of databases to choose from when your platform is Linux, and the whole
topic of database management and administration often warrants entire books by itself—in
fact, normally one book per database technology. In spite of the vastness of this topic, a
little knowledge of Ansible can assist greatly when it comes to database administration.

Indeed, whether you are installing a new database server, or performing maintenance or
administration tasks on an existing one, our original principles discussed in Chapter 1,
Building a Standard Operating Environment on Linux still apply. Indeed, why would you go to
all the trouble of standardizing your Linux environment and ensuring all changes are
automated, only to insist on manual management of the database tier? This could easily
result in a lack of standardization, auditability, and even traceability (for example, who
made which changes, and when?). Ansible can perform database operations and
configuration via modules. It is perhaps not a replacement for some of the more advanced
database management tools available on the market, but if these can be driven through the
command line, it can execute these on your behalf, as well as taking care of many tasks
itself. Ultimately, you want all changes to be documented (or self-documented) and
auditable, and Ansible (combined with Ansible Tower, or AWX) can help you achieve this.
This chapter explores methods that will help you with this.

The following topics will be covered in this chapter:

Installing databases with Ansible
Importing and exporting data
Performing routine maintenance

Database Management Chapter 11

[291]

Technical requirements
This chapter includes examples, based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to two servers or virtual machines
running one each of the operating systems just listed, and also, Ansible. Note that the
examples given in this chapter may be destructive in nature (for example, they add and
remove databases and tables, and change database configuration) and, if run as is, are only
intended to be run in an isolated test environment. Once you are satisfied that you have a
safe environment in which to operate, let's get started on looking at the installation of new
software packages with Ansible. All example code discussed in this chapter is available
from GitHub, at the following URL: https:/ / github. com/ PacktPublishing/ Hands- On-
Enterprise-Automation- on- Linux/ tree/ master/ chapter11.

Installing databases with Ansible
In Chapter 7, Configuration Management with Ansible, we explored a few examples of
package installation and used MariaDB server in some of our examples. Of course,
MariaDB is only one of a myriad of databases available on Linux, and there are too many
to cover in detail here. Nonetheless, Ansible can help you install just about any database
server on Linux, and in this chapter, we will proceed through a series of examples that will
provide you with the tools and techniques to install your own database server, no matter
what it is.

Let's get started in the next section, by building on our example of installing MariaDB.

Installing MariaDB server with Ansible
Although earlier in the book, we installed the native mariadb-server package that ships
with CentOS 7, most enterprises that need a MariaDB server would choose to standardize
on a specific release directly from MariaDB. This is often more up to date than the version
shipped with a given Linux release, and hence provides newer features and, sometimes,
performance improvements. In addition, standardizing on a release directly from MariaDB
ensures consistency of your platform, a principle we have kept to throughout this book.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter11

Database Management Chapter 11

[292]

Let's take a simple example—suppose you are running your infrastructure on Red Hat
Enterprise Linux (RHEL) 7. This ships with MariaDB version 5.5.64. Now, suppose you
want to standardize your infrastructure on the newly released RHEL 8—if you are relying
on the packages supplied by Red Hat, this suddenly moves you to version 10.3.11 of
MariaDB, meaning not only an upgrade to your Linux infrastructure but also to your
databases, too.

Instead, it would be better to standardize upfront on a release directly from MariaDB itself.
At the time of writing, the latest stable release of MariaDB is 10.4—but let us suppose that
you have standardized on the 10.3 release, as it is known, and tested successfully in your
environment.

The installation process is quite straightforward and is well documented on the MariaDB
website—see https:/ /mariadb. com/ kb/ en/ library/ yum/ for CentOS- and Red Hat-specific
examples. However, this details the manual installation process, and we wish to automate
this with Ansible. Let's now build this into a real, working Ansible example.

In this example, we will follow the instructions from MariaDB, which
includes downloading the packages from their repository. Although for
simplicity we will follow this example through, you could mirror the
MariaDB package repositories into Pulp or Katello, as detailed in Chapter
8, Enterprise Repository Management with Pulp and Chapter 9, Patching with
Katello.

First of all, we can see from the installation documentation that we need to create1.
a .repo file, to tell yum where to download the packages from. We can use a
template to provide this, such that the MariaDB version can be defined by a
variable and thus changed in the future when migration to version 10.4 (or
indeed, any other future version) is deemed necessary.

Thus, our template file, defined in
roles/installmariadb/templates/mariadb.repo.j2, would look like this:

[mariadb]
name = MariaDB
baseurl = http://yum.mariadb.org/{{ mariadb_version }}/centos7-
amd64
gpgkey=https://yum.mariadb.org/RPM-GPG-KEY-MariaDB
gpgcheck=1

https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/
https://mariadb.com/kb/en/library/yum/

Database Management Chapter 11

[293]

Once we have created this, we should also create a default for this variable, to2.
prevent any issues or errors if it is not specified when the role is run—this will be
defined in roles/installmariadb/defaults/main.yml. Ordinarily, this
variable would be provided in the inventory file for a given server or group of
servers, or by one of the many other supported methods in Ansible, but the
defaults file provides a catch-all, in case it gets overlooked. Run the following
code:

mariadb_version: "10.3"

With this defined, we can now begin to build up the tasks in our role3.
in roles/installmariadb/tasks/main.yml, as follows:

- name: Populate MariaDB yum template on target host
 template:
 src: templates/mariadb.repo.j2
 dest: /etc/yum.repos.d/mariadb.repo
 owner: root
 group: root
 mode: '0644'

This will ensure that the correct repository file is written to the server, and if it is
ever incorrectly modified, restored to its original, desired state.

On CentOS or RHEL, you could also use the yum_repository Ansible
module to perform this task—however, this has the disadvantage of being
unable to modify an existing repository definition, and so, in a scenario
where we might wish to change the repository version in future, we are
better off using a template.

Next, we should clean out the yum cache—this is especially important when4.
upgrading MariaDB to a new version, as package names will be the same, and
cached information could cause issues with the installation. At present, cleaning
the yum cache is achieved using the shell module, to run the yum clean all
command. However, as this is a shell command, it will always run, and this
could be considered inefficient—especially as this command being run would
result in any future package operations needing to update the yum cache again,
even if we didn't modify the MariaDB repository definition. Thus, we want to
run it only when the template module task results in a changed state.

Database Management Chapter 11

[294]

To do this, we must first add this line to our template task, to store the results of
the task:

 register: mariadbtemplate

Now, when we define our shell command, we can tell Ansible to only run it if the5.
template task resulted in a changed state, as follows:

- name: Clean out yum cache only if template was changed
 shell: "yum clean all"
 when: mariadbtemplate.changed

With our cache appropriately cleared out, we can then install the required6.
MariaDB packages—the list used in the task shown in the following code block is
taken from the MariaDB documentation referenced earlier in this section, but you
should tailor it to your exact requirements:

- name: Install MariaDB packages
 yum:
 name:
 - MariaDB-server
 - galera
 - MariaDB-client
 - MariaDB-shared
 - MariaDB-backup
 - MariaDB-common
 state: latest

The use of state: latest ensures that we always install the latest packages
from the repository file created by our template task. Thus, this role can be used
equally for initial installation and upgrade to the latest version. However, if you
do not want this behavior, change this statement to state: present—this
simply ensures that the packages listed are installed on our target host. If they are,
it does not update them to the latest version—it simply returns an ok status and
proceeds to the next task, even if updates are available.

Database Management Chapter 11

[295]

With the packages installed, we must ensure that the server service is then7.
started at boot time. We would probably also want to start it now so that we can
perform any initial configuration work on it. Thus, we will add a final task to our
installmariadb role that looks like this:

- name: Ensure mariadb-server service starts on boot and is started
now
 service:
 name: mariadb
 state: started
 enabled: yes

Also, we know that CentOS 7 has a firewall enabled by default—as such, we8.
must change the firewall rules to ensure that our newly installed MariaDB server
can be accessed. The task to perform this would look something like this:

- name: Open firewall port for MariaDB server
 firewalld:
 service: mysql
 permanent: yes
 state: enabled
 immediate: yes

Let's now run this role and see it in action—the output should look something9.
like this:

Database Management Chapter 11

[296]

The output has been truncated to conserve space, but clearly shows the installation in
progress. Note that the warning can safely be ignored—the Ansible engine has detected our
yum clean all command and is helpfully advising us to use the yum module—however,
the yum module in this instance does not provide the function we need, and hence, we used
the shell module instead.

With the database installed and running, we have the following three high-level tasks to
perform next:

Update the MariaDB configuration.
Secure the MariaDB installation.
Load initial data (or schemas) into the database.

Of these tasks, we explored, in detail, methods to use the Ansible template module
effectively to manage the MariaDB configuration in Chapter 7, Configuration Management
with Ansible (see the Making scalable dynamic configuration changes section). As such, we will
not go into detail on this here—however, check the configuration file structure for your
chosen version of MariaDB, as it might differ from that shown in the aforementioned
chapter.

If you have installed MariaDB RPMs on a platform such as CentOS, you
can find out where the configuration files live, by running the command
rpm -qc MariaDB-server in a root shell.

Thus, assuming that you have the installation and configuration of the database server in
hand, let us proceed to secure it. This, at a bare minimum, will entail changing the root
password, though good practice states that you should also remove remote root access, the
test database, and the anonymous user accounts that come with a default MariaDB
installation.

MariaDB comes with a command-line utility called
mysql_secure_installation, to perform exactly these
tasks—however, it is an interactive tool and does not lend itself to
automation with Ansible. Luckily, Ansible provides modules for
interacting with the database that can assist us in performing exactly these
tasks.

Database Management Chapter 11

[297]

To separate out these tasks from the installation, we'll create a new role called
securemariadb. Before we can define the tasks, we must define a variable to contain the
root password for the MariaDB installation. Note that normally, you would provide this in
a more secure manner—perhaps through an Ansible Vault file, or using some of the
advanced features in AWX or Ansible Tower. For simplicity, in this example, we will define
a variables file in the role (in roles/securemariadb/vars/main.yml), as follows:

mariadb_root_password: "securepw"

Now, let's build up the tasks for the role. Ansible includes a few native modules for use in
database management, and we can make use of these here, to make the required changes to
our MariaDB database.

Note, however, that some modules have certain Python requirements, and
in the case of our example system—MariaDB on CentOS 7—we must
install the MySQL-python package.

Knowing this, the first step in building up our role is to install the prerequisite Python
package, as follows:

- name: Install the MariaDB Python module required by Ansible
 yum:
 name: MySQL-python
 state: latest

Our most immediate task, once this is installed, is to set the password on the local root
account, and prevent anyone from logging in without authentication. Run the following
code:

- name: Set the local root password
 mysql_user:
 user: root
 password: "{{ mariadb_root_password }}"
 host: "localhost"

So far, this is a textbook example of how to use the mysql_user module—however, there is
a twist in our usage from here. The preceding example takes advantage of the fact that no
root password is set—it is implicitly manipulating the database as root, by virtue of the
fact that we will put become: yes in our site.yml file, and thus, the playbook will be run
as root. At the time that this task is run, the root user has no password, and so, the above
task will run satisfactorily.

Database Management Chapter 11

[298]

The answer to this is to add the login_user and login_password parameters to the
module for all future tasks, to ensure that we have authenticated successfully with the
database to perform the required tasks.

This role will only run successfully once as it is written—on the second
run, a password will be set for the root MariaDB user, and the preceding
task will fail. However, if we specify a login_password for the above
task, and the password is blank (as in the initial run), the task will also
fail. There are a number of ways around this, such as setting the old
password in another variable or, indeed, committing to only running this
role once. You could also specify ignore_errors: yes under this task
so that, if the root password is already set, we simply carry on to the next
tasks, which should run successfully.

With this condition understood, we now add another task to the role, to remove the remote
root accounts, as follows:

- name: Delete root MariaDB user for remote logins
 mysql_user:
 user: root
 host: "{{ ansible_fqdn }}"
 state: absent
 login_user: root
 login_password: "{{ mariadb_root_password }}"

Again, this code is quite self-explanatory—however, note here too that running this task a
second time will also yield an error, this time because on the second run, these privileges
will not exist because we deleted them on the first run. Thus, this is almost certainly a role
to run once only—or where careful consideration must be applied to the code and the error
handling logic.

We now add a task to delete the anonymous user accounts, as follows:

- name: Delete anonymous MariaDB user
 mysql_user:
 user: ""
 host: "{{ item }}"
 state: absent
 login_user: root
 login_password: "{{ mariadb_root_password }}"
 loop:
 - "{{ ansible_fqdn }}"
 - localhost

Database Management Chapter 11

[299]

You will see the use of a loop here—this is used to remove both the local and remote
privileges within a single task. Finally, we remove the test database, which is redundant
in most enterprise scenarios, by running the following code:

- name: Delete the test database
 mysql_db:
 db: test
 state: absent
 login_user: root
 login_password: "{{ mariadb_root_password }}"

With the role fully complete, we can run it in the usual manner, and secure our newly
installed database. The output should look something like this:

Database Management Chapter 11

[300]

With these two roles and some input from Chapter 7, Configuration Management with
Ansible, we have successfully installed, configured, and secured a MariaDB database on
CentOS. This is, obviously, a very specific example—however, if you were to perform this
on Ubuntu, the process would be very similar. The differences would be the following:

The apt module would be used in place of the yum module in all tasks.
Package names would have to be changed for Ubuntu.
Defining the repository source would be performed under /etc/apt rather than
/etc/yum.repos.d, with the file format adjusted accordingly.
Configuration paths may be different for MariaDB on Ubuntu.
Ubuntu normally uses ufw instead of firewalld—by default, you might find
that ufw is disabled, so, this step could be skipped.

With these changes taken into account, the preceding process can be very quickly adapted
for Ubuntu (or, indeed, any other platform, provided the appropriate changes are made).
Once the packages are installed and configured, as the modules such as mysql_user and
mysql_db are cross-platform, they will work equally well on all supported platforms.

So far in this book, we have focused very heavily on MariaDB—this is not because of any
inherent bias toward this database, nor indeed should it be inferred as any
recommendation. It has simply been chosen as a relevant example and built upon
throughout the text. Before we proceed to look at the process of loading data or schemes
into a newly installed database, we will take a brief look in the next section at how to apply
the processes we have learned so far to another popular Linux database—PostgreSQL.

Installing PostgreSQL Server with Ansible
In this section, we will demonstrate how the principles and high-level processes we have
looked at so far for MariaDB on CentOS can be applied to another platform. Taking a high-
level view, these processes can be applied to almost any database and Linux platform, with
the proper attention to detail. Here, we will install PostgreSQL Server onto Ubuntu Server,
and then secure it by setting the root password—essentially, analogous to the process we
have performed in the preceding section.

Database Management Chapter 11

[301]

Let us get started by creating a role called installpostgres. In this role we will again
define a template for the package downloads from the official PostgreSQL sources, this
time—of course—tailoring it to the fact that we're using Ubuntu Server, and not CentOS.
The following code shows the template file—note that this is specific for Ubuntu Server
18.04 LTS—codename bionic:

deb http://apt.postgresql.org/pub/repos/apt/ bionic-pgdg main

As before, once our package sources are defined, we can proceed to create the tasks that
will install the database. In the case of Ubuntu, we must add the package-signing key
manually to the apt keyring, in addition to copying the preceding template into place.
Thus, our tasks within the role begin, as follows:

- name: Populate PostgreSQL apt template on target host
 template:
 src: templates/pgdg.list.j2
 dest: /etc/apt/sources.list.d/pgdg.list
 owner: root
 group: root
 mode: '0644'

We could also use apt_repository here, but, for consistency with the previous MariaDB
example, we are using template. Both will achieve the same end result.

When the template package is in place, we must then add the package-signing key to
apt's keyring, as follows:

- name: Add key for PostgreSQL packages
 apt_key:
 url: https://www.postgresql.org/media/keys/ACCC4CF8.asc
 state: present

The postgresql-11 and other supporting packages are then installed (as per the
documentation at https:/ / www. postgresql. org/ download/ linux/ ubuntu/), as follows:

- name: Install PostgreSQL 11 packages
 apt:
 name:
 - postgresql-11
 - postgresql-client-11
 state: latest
 update_cache: yes

https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/
https://www.postgresql.org/download/linux/ubuntu/

Database Management Chapter 11

[302]

As our default Ubuntu Server install is not running a firewall, the final task in this
playbook is to start the service, and ensure it starts at boot time, as follows:

- name: Ensure PostgreSQL service is installed and started at boot time
 service:
 name: postgresql
 state: started
 enabled: yes

Running this should yield output similar to the following:

By default, out-of-the-box installation of PostgreSQL is much more secure than MariaDB.
Without additional configuration, no remote logins are allowed at all, and although no
password is set for the superuser account, it can only be accessed on the local machine from
the postgres user account. Similarly, there is no test database to drop.

Thus, although the high-level process is the same, you must be aware of the nuances of
both the database server you are using and the underlying operating system.

Database Management Chapter 11

[303]

By way of example and to complete this section, let's create a database called production,
and an associated user called produser who will be given access to it. Although
technically, this overlaps with the next section on loading initial data, it is provided here to
be analogous to the preceding section on MariaDB, and to demonstrate how to use the
native Ansible modules for PostgreSQL.

Let's create a role called setuppostgres, and start by defining a task to install1.
the Ubuntu package necessary to support the Ansible PostgreSQL modules, as
follows:

- name: Install PostgreSQL Ansible support packages
 apt:
 name: python-psycopg2
 state: latest

After this, we add a task to create the database (this is a very simple2.
example—you will want to tailor it to your exact requirements), as follows:

- name: Create production database
 postgresql_db:
 name: production
 state: present
 become_user: postgres

Notice how we leverage the local postgres account on the target machine for3.
database superuser access with the become_user statement. Next, we'll add the
user, and give them privileges on this database, as follows:

- name: Add produser account to database
 postgresql_user:
 db: production
 name: produser
 password: securepw
 priv: ALL
 state: present
 become_user: postgres

As usual, you would not just specify the password in plaintext like this—this has
been done here for simplicity. As usual, substitute appropriate data for variables,
and if those variables are sensitive, either encrypt them at rest using Ansible
Vault or prompt the user for them when the playbook is run.

Database Management Chapter 11

[304]

Now, to get PostgreSQL to listen for remote connections for this user, we need to4.
perform two more actions. We need to add a line to pg_hba.conf, to tell
PostgreSQL to allow the user we just created to access this database from the
appropriate network—the following example is shown, but be sure to tailor it to
your network and requirements:

- name: Grant produser access to the production database over the
local network
 postgresql_pg_hba:
 dest: /etc/postgresql/11/main/pg_hba.conf
 contype: host
 users: produser
 source: 192.168.81.0/24
 databases: production
 method: md5

We must also change the listen_addresses parameter in the5.
postgresql.conf file, which defaults to local connections only. The exact
location of this file will vary depending on your operating system and version of
PostgreSQL—the following example shown is suitable for our install of
PostgreSQL 11 on Ubuntu Server 18.04:

- name: Ensure PostgreSQL is listening for remote connections
 lineinfile:
 dest: /etc/postgresql/11/main/postgresql.conf
 regexp: '^listen_addresses ='
 line: listen_addresses = '*'
 notify: Restart PostgreSQL

Observant readers will have noticed the use of handlers here too—the6.
postgresql service must be restarted to pick up any changes to this file.
However, this should only be performed when the file is changed, and hence we
make use of handlers. Our handlers/main.yml file will look like this:

- name: Restart PostgreSQL
 service:
 name: postgresql
 state: restarted

Database Management Chapter 11

[305]

With our playbook assembled, we can now run it, and the output should look7.
something like the following screenshot:

Although this example is not strictly the same as the replication of the
mysql_secure_installation tool in the previous section, it does show how to use
native Ansible modules to configure and secure a PostgreSQL database and shows how
Ansible can powerfully assist you in setting up and securing new database servers. These
principles can be applied to just about any database server that is compatible with Linux,
though the modules available for each database will vary. A full list of modules can be
found here: https:/ / docs. ansible. com/ ansible/ latest/ modules/ list_ of_database_
modules.html

Now that we have looked at the process of installing a database server, in the next section,
we will build on our installation work, to load initial data and schemas.

https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html

Database Management Chapter 11

[306]

Importing and exporting data
No database is complete simply by installing the software and configuring it—often, there
is a very important intermediate stage, which involves loading an initial dataset. This might
be a backup from a previous database, a sanitized dataset for testing purposes, or, simply, a
schema into which application data can be loaded.

Although Ansible has modules for a limited set of database functions, the functionality here
is not as complete as that for other automation tasks. The most complete support offered for
a database by Ansible is for PostgreSQL—with lesser support for some other databases.
Through some clever use of the shell module, any manual task that you can perform on
the command line can be replicated into an Ansible task. It is up to you to apply logic to the
tasks to handle errors or conditions where, for example, a database already exists, and we
shall see an example of this in the next section.

In the next section, we will look at how you could use Ansible to automate the task of
loading a sample database into a MariaDB database.

Automating MariaDB data loading with Ansible
MariaDB is a good choice for this chapter because it offers a middle-of-the-road view when
it comes to database management with Ansible. There is some native module support in
Ansible, but this is not complete for all tasks you might want to execute. As a result, we will
develop the following example, which automates the loading of a sample set of data, using
just the shell Ansible modules. We will then develop this to show how it would be
completed with the mysql_db module, to provide you with a direct comparison between
the two automation techniques.

Note that the following examples performed using the shell module
could be adapted for almost any database you can manage from the
command line, and so it is hoped these will provide you with a valuable
reference for automating your database management tasks.

Database Management Chapter 11

[307]

In terms of example databases, we will work with the publicly available Employees sample
database, as this is available to everyone reading this book. You can, of course, choose your
own set of data to work with—however, it is, as ever, hoped that this following practical
example will teach you the skills you need to load data into your newly installed database
with Ansible:

To start with, let's create a role called loadmariadb. Into the roles directory1.
structure, create a directory called files/, and clone the employees sample
database. This is publicly available on GitHub, and, at the time of writing, could
be cloned using the following command:

$ git clone https://github.com/datacharmer/test_db.git

From here, we create a tasks/ directory within the role and write the code for2.
our role tasks themselves. To start with, we need to copy the database files across
to our database server, by running the following code:

- name: Copy sample database to server
 copy:
 src: "{{ item }}"
 dest: /tmp/
 loop:
 - files/test_db/employees.sql
 - files/test_db/load_departments.dump
 - files/test_db/load_employees.dump
 - files/test_db/load_dept_emp.dump
 - files/test_db/load_dept_manager.dump
 - files/test_db/load_titles.dump
 - files/test_db/load_salaries1.dump
 - files/test_db/load_salaries2.dump
 - files/test_db/load_salaries3.dump
 - files/test_db/show_elapsed.sql

Once the data files are copied to the server, it is simply a matter of loading them3.
into the database. However, as there is no module for this task, we must revert to
a shell command to handle this, as shown in the following code block:

- name: Load sample data into database
 shell: "mysql -u root --password={{ mariadb_root_password }} <
/tmp/employees.sql"
 args:
 chdir: /tmp

Database Management Chapter 11

[308]

The role tasks are simplicity themselves—however, before we can run the4.
playbook, we need to set the mariadb_root_password variable, ideally in a
vault, but for simplicity in this book, we will put it in a plaintext vars file in the
role. The file vars/main.yml should look like this:

mariadb_root_password: "securepw"

As you will have spotted, this playbook assumes that you already installed and
configured MariaDB in a previous role—the password used in the preceding code
block is that set in the previous section when we installed MariaDB and secured it
using Ansible.

Running the playbook should yield results like this:5.

Here, we have not only loaded a sample schema, but also sample data, into our database. In
your enterprise, you could choose to perform either of these tasks in isolation, as required.

Database Management Chapter 11

[309]

You will probably have spotted that this playbook is extremely dangerous. As we discussed
previously, the issue with using the shell module in Ansible playbooks is that the results
of the task will vary as the shell command is always run, whether it needs running or not.
Thus, if you ran this playbook against a server with an existing database called employees,
it would overwrite all the data in it with the sample data! Contrast this with the copy
module, which only copies the files if they do not already exist on the receiving end.

Given the lack of native database modules at the time of writing, we need to devise a more
intelligent way of running this command. Here, we can make use of some of the clever
error handling built into Ansible.

The shell module assumes that the command it is running has run successfully if it
returns exit code zero. This results in the task returning the changed status we saw in this
playbook run. However, if the exit code is not zero, the shell module will instead return a
status of failed.

We can take advantage of this knowledge, and couple it with a useful MariaDB command
that will return a zero exit code if the database we query exists, and non-zero if it doesn't.
See the following screenshot for an example:

Database Management Chapter 11

[310]

We can make use of this command by running it before our task that loads the data. We can
ignore any errors from the command, and instead register them in a variable. We use this to
conditionally run the data load, loading it only if an error occurred (this is the instance
where the database does not exist, and so it is safe to load the data).

The copy task remains the same, but the tail end of the tasks now looks like this:

- name: Check to see if the database exists
 shell: "mysqlshow -u root --password={{ mariadb_root_password }}
employees"
 ignore_errors: true
 register: dbexists

- name: Load sample data into database
 shell: "mysql -u root --password={{ mariadb_root_password }} <
/tmp/employees.sql"
 args:
 chdir: /tmp
 when: dbexists.rc != 0

Now, we will only load the data if the database doesn't exist. This code has been kept
simple for the sake of providing an example, and it is left to you to enhance it—for
example, by putting the filenames and database name into a variable so that the role
becomes reusable in a variety of circumstances (which, after all, is one of the goals of
writing a role).

Database Management Chapter 11

[311]

If we now run this code, we can see that it operates as desired—on the first run, the data is
loaded, as the following screenshot shows:

Database Management Chapter 11

[312]

However, on the second run, it is not—the following screenshot shows the playbook being
run a second time, and the data load task being skipped because the database exists:

Database Management Chapter 11

[313]

Although these examples are specific to MariaDB, the high-level process performed here
should work with just about any database. The key element is to use the shell module to
load the data and/or schema but to do so in a way that reduces the right of a valid database
getting overwritten, in the event that the playbook gets run twice. You should extend this
logic to any other task you perform—your ultimate goal should be that if your playbook is
run unintentionally, then no damage is done to the existing database.

Having completed this example, it is worth noting that Ansible does provide a module
called mysql_db, which can natively handle tasks such as dumping and importing
database data. Let's now develop an example that makes use of the native mysql_db
module:

If we were to develop a role to perform exactly the same task as shown1.
previously, but using this native module, we would first of all check to see if the
database exists as before, registering the result to a variable, like this:

- name: Check to see if the database exists
 shell: "mysqlshow -u root --password={{ mariadb_root_password }}
employees"
 ignore_errors: true
 register: dbexists

We then create a block in our tasks file, as there is no point running any of the2.
tasks after this step if the database exists. The block uses the when clause we
used before, to determine whether the tasks inside it should run or not, as
follows:

- name: Import new database only if it doesn't already exist
 block:

 when: dbexists.rc != 0

Inside the block, we copy over all the SQL files to import just as we did before,3.
like this:

 - name: Copy sample database to server
 copy:
 src: "{{ item }}"
 dest: /tmp/
 loop:
 - files/test_db/employees.sql
 - files/test_db/load_departments.dump
 - files/test_db/load_employees.dump
 - files/test_db/load_dept_emp.dump

Database Management Chapter 11

[314]

 - files/test_db/load_dept_manager.dump
 - files/test_db/load_titles.dump
 - files/test_db/load_salaries1.dump
 - files/test_db/load_salaries2.dump
 - files/test_db/load_salaries3.dump
 - files/test_db/show_elapsed.sql

Now, an important difference emerges between using the shell module,4.
and mysql_db. When using the shell module, we used the chdir argument to
change the working directory to /tmp, which is where all our SQL files were
copied to. The mysql_db module has no chdir (or equivalent) argument, and so
will fail when it comes to try to load the *.dump files that are sourced via
employees.sql. To work around this, we use the Ansible replace module, to
add the full path to these files into the appropriate lines in employees.sql, as
follows:

 - name: Add full paths to employees.sql as mysql_db won't know
where to load them from otherwise
 replace:
 path: /tmp/employees.sql
 regexp: '^source (.*)$'
 replace: 'source /tmp/\1'

Finally, we use the mysql_db module to load in the data (this is analogous to the5.
shell command we performed in our earlier example), as follows:

 - name: Load sample data into database
 mysql_db:
 name: all
 state: import
 target: /tmp/employees.sql
 login_user: root
 login_password: "{{ mariadb_root_password }}"

Database Management Chapter 11

[315]

When we run this code, it achieves the same end result as our previous role that6.
used the shell module, as the following screenshot shows:

Database Management Chapter 11

[316]

This process works equally well for backing up databases, too. If you were to use the shell
module, you could use the mysqldump command to back up a database, and then copy the
backed-up data to your Ansible host (or indeed, another) for archiving. A simple piece of
example code to achieve this might be constructed as follows:

As we want the backup filename to be dynamic and include useful information1.
such as the current date and hostname on which the backup is being performed,
we use the set_fact module, along with some internal Ansible variables, to
define a filename for the backup data, as follows:

- name: Define a variable for the backup file name
 set_fact:
 db_filename: "/tmp/{{ inventory_hostname }}-backup-{{
ansible_date_time.date }}.sql"

We then use the shell module to run mysqldump, with the appropriate2.
parameters for creating a backup—going into depth on these is beyond the scope
of this book, but the following example creates a backup of all databases on your
server, without locking the tables during the backup:

- name: Back up the database
 shell: "mysqldump -u root --password={{ mariadb_root_password }}
--all-databases --single-transaction --lock-tables=false --quick >
{{ db_filename }}"

The fetch module is then used to retrieve the data for archiving—fetch works3.
just like the copy module that we used earlier in this section, except that it copies
data in the reverse direction (that is, from the inventory host to the Ansible
server). Run the following code:

- name: Copy the backed up data for archival
 fetch:
 src: "{{ db_filename }}"
 dest: "/backup"

Database Management Chapter 11

[317]

Running this in the usual manner results in a complete backup of the database,4.
with the resulting file being copied to our Ansible server, as the following
screenshot shows:

This example could also be achieved using the mysql_db module, just as we did
before—the set_fact and fetch tasks remain exactly the same, while the shell task is
replaced with the following code:

- name: Back up the database
 mysql_db:
 state: dump
 name: all
 target: "{{ db_filename }}"
 login_user: root
 login_password: "{{ mariadb_root_password }}"

Thus, Ansible can assist you both with loading data into your databases and backing it up.
As we have discussed previously, it is generally better to use the native Ansible modules
(such as mysql_db) where they are available, but, provided you apply the correct logic to
it, the shell module can assist you, if native modules don't exist or provide the
functionality you need.

Now that we have considered the process of creating databases and loading data into them,
we will proceed in the next section to demonstrate how to build on this work, to perform
routine database maintenance with Ansible.

Database Management Chapter 11

[318]

Performing routine maintenance
Loading schemas and/or data is not the only task you would perform with Ansible on a
database. Sometimes, manual intervention is required in a database. For example,
PostgreSQL requires VACUUM operations from time to time, to free up unused space in
the database. MariaDB has a maintenance tool called mysqlcheck that can be used to
verify the integrity of tables and perform optimization. Each platform will have its own
specific tools for maintenance operations, and it is up to you to establish the best practices
for database maintenance on your chosen platform. Furthermore, sometimes it is necessary
to make simple changes to a database. For example, it might be necessary to delete (or
update) a row from a table, to clear an error situation that has occurred in an application.

Of course, all these activities could be performed manually—however, this (as always)
brings about the risk of losing track of what happened, who ran a task, and how they ran it
(for example, which options were provided). If we move this example into the world of
Ansible and AWX, suddenly we have a complete audit trail of activities, and we know
exactly what was run and how it was run. Furthermore, if special options are required for a
task, these will be stored within the playbooks, and thus the self-documentation that Ansible
provides is available here too.

As our examples thus far have been very MariaDB-centric, let's take a look at how you
might run a full vacuum on a table in PostgreSQL, with Ansible.

Routine maintenance on PostgreSQL with
Ansible
PostgreSQL is something of a special case on Ansible, as it has more native modules to
support database activities than most other databases. Let's consider an example case:
performing a vacuum on the sales.creditcard table in the publicly available
AdventureWorks sample database (available here: https:/ /github. com/ lorint/
AdventureWorks-for- Postgres).

Vacuuming is a PostgreSQL-specific maintenance process and one that
you might want to consider running on a regular basis, especially if your
tables have a lot of deletes or modifications. Although a full discussion of
this is beyond the scope of this book, it is important to consider that tables
that are subject to these activities can become bloated in size and queries
can become slow over time, and vacuuming is a way to release unused
space and speed up queries again.

https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres
https://github.com/lorint/AdventureWorks-for-Postgres

Database Management Chapter 11

[319]

Now, to perform a vacuum on this table by hand, you would log in to the psql client utility
with appropriate credentials, and then run the following commands to connect to the
database and perform the task:

postgres=# \c AdventureWorks
AdventureWorks=# vacuum full sales.creditcard;

In a real enterprise, this would be a task that encompasses many more tables, and even
databases, but here, we will once again keep the example simple, to demonstrate the
principles involved. Scaling this up is then left as a task for you to perform. Let's automate
this, first of all using the shell module in Ansible. This is a useful example, as this
technique will work with most major databases—simply, you must establish the command
needed for your particular maintenance operation, and then run it.

A simple role to perform this task would look like this:

- name: Perform a VACUUM on the sales.credit_card table
 shell: psql -c "VACUUM FULL sales.creditcard" AdventureWorks
 become: yes
 become_user: postgres

Note—as before—very simple use of the shell module with the appropriate command,
except that, this time, we are using the become_user parameter to switch to the postgres
user account, which has superuser rights on the database on the host to which we connect.
Let's see what happens when we run this, as follows:

Database Management Chapter 11

[320]

Naturally, this could be scaled to just about any other database—for example, you could
use the mysql client tool on a MariaDB database, or even run the mysqlcheck tool, as
discussed earlier. The limit really is on what you can script for the shell module to run,
and because Ansible runs the command over SSH on the database server itself, you don't
need to worry about opening up your database for access across the network—it can
remain tightly locked down.

In addition to using the shell module, Ansible offers us the option to actually run queries
directly from a module called postgresql_query. This is unique, though such support
could be added for any other database if someone was willing to write the module and
submit it.

Unfortunately for Ansible versions prior to 2.9, it was not possible to extend our VACUUM
example to this as the postgresql_query module runs transactions inside a block, and it
is not possible to run a VACUUM inside a transaction block. If you are running version 2.9
or later, you can now run a VACUUM using example code, as shown here:

- name: Perform a VACUUM on the sales.credit_card table
 postgresql_query:
 db: AdventureWorks
 query: VACUUM sales.creditcard
 autocommit: yes
 become_user: postgres
 become: yes

By way of another simple example, we could also use the postgresql_query module to
directly manipulate the database.

Suppose that a bug in the application using this database has occurred, and an operator
must manually insert a credit card number into the database. The SQL code to perform this
might look something like this:

INSERT INTO sales.creditcard (creditcardid, cardtype, cardnumber,
expmonth, expyear) VALUES (0, 'Visa', '0000000000000000', '11', '2019');

Database Management Chapter 11

[321]

We could achieve the same end result in Ansible, using a role that looks like the following:

- name: Manually insert data into the creditcard table
 postgresql_query:
 db: AdventureWorks
 query: INSERT INTO sales.creditcard (creditcardid, cardtype,
cardnumber, expmonth, expyear) VALUES (0, 'Visa', '0000000000000000',
'11', '2019');
 become_user: postgres
 become: yes

Naturally, you would use variables for the data values, and sensitive data like this should
always be stored in a vault (or, perhaps, entered by hand when the role is run).

AWX has a feature called Surveys, which presents the user with a series
of predefined questions to answer before a playbook is run. The answers
to these questions are stored in Ansible variables— thus, a role such as the
preceding one could be parameterized, and run from AWX with all the
values entered into a Survey, negating the need for a vault and concerns
over sensitive customer data being stored in Ansible.

As you can see here, when we run this role, we actually get a changed status when the
INSERT operation is successful—very useful for monitoring such tasks and ensuring they
have run as desired. The following screenshot shows this role being run, and the changed
status, denoting the successful insertion of data into the sales.creditcard table:

Database Management Chapter 11

[322]

The world really is your oyster when it comes to database management with Ansible, and,
regardless of the task required, it is desirable that all database tasks be handled in a
standardized, repeatable, and auditable manner, just like the rest of your Enterprise Linux
estate. It is hoped that this chapter has gone some way in showing you how to achieve this.

Summary
Databases are a core part of the application stack in most enterprises, and there is a
multitude of databases available on the Linux platform. Although many databases have
their own management tools, Ansible is well suited to assist with a wide array of database
management tasks, from the installation of database services and loading of initial data or
schemas (or even restoring from backups) to handling day-to-day maintenance tasks.
Combining Ansible's error handling and secure automation, there is virtually no limit to the
types of database management tasks you can perform with Ansible.

In this chapter, you learned how to use Ansible to install database servers in a consistent
and repeatable manner. You then learned how to import initial data and schemas, and how
to extend this to automate backup tasks. Finally, you gained hands-on knowledge of some
routine database maintenance tasks with Ansible.

In the next chapter, we will look at how Ansible can assist with the task of routine
maintenance on your Linux servers.

Questions
Why is it prudent to install and manage your database platform with Ansible?1.
What are the best practices for database configuration file management with2.
Ansible?
How can Ansible help you keep your database secure on the network?3.
When would you use the shell module instead of a native database module in4.
Ansible?
Why would you want to perform routine maintenance with Ansible?5.
How would you perform a PostgreSQL database backup with Ansible?6.
Which module would you use to manipulate the users on a MariaDB database?7.
How is PostgreSQL support unique in Ansible at the present time?8.

Database Management Chapter 11

[323]

Further reading
For an in-depth understanding of Ansible, please refer to Mastering Ansible, Third
Edition—James Freeman and Jesse Keating (https:/ /www. packtpub. com/ gb/
virtualization- and- cloud/ mastering- ansible- third- edition).
To learn more about the specifics relating to PostgreSQL database management,
readers may refer to Learning PostgreSQL 11, Third Edition—Andrey Volkov,
Salahadin Juba (https:/ /www. packtpub. com/ gb/ big-data- and- business-
intelligence/ learning- postgresql- 11-third- edition).
Similarly, to learn more about MariaDB database management, readers can refer
to MariaDB Essentials—Federico Razzoli, Emilien Kenler (https:/ /www. packtpub.
com/gb/ application- development/ mariadb- essentials).
For a full list of available Ansible modules, readers should refer to https:/ /
docs.ansible. com/ ansible/ latest/ modules/ list_ of_ database_ modules. html.

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/big-data-and-business-intelligence/learning-postgresql-11-third-edition
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://www.packtpub.com/gb/application-development/mariadb-essentials
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html
https://docs.ansible.com/ansible/latest/modules/list_of_database_modules.html

12
Performing Routine

Maintenance with Ansible
As you have worked through this book, you will have completed many steps to define and
build a Linux environment for your enterprise that supports automation. However,
Ansible's assistance with your environment does not end here. Even an environment that
has been built and is in active use requires maintenance and intervention from time to time.
Historically, these interventions would have been performed manually by system
administrators, using shell commands or scripts.

As we have discussed many times throughout this book, tasks that are run by hand present
a number of challenges for the enterprise—not least that they may not be well documented,
and hence there is a steep learning curve for new members of staff. In addition, our old
friends auditability and repeatability come into play—how can you be sure of who did
what, and when, if everyone is logging on to the shell of your Linux machines and
performing tasks by hand?

In this chapter, we explore the ways in which Ansible can assist the enterprise with the day-
to-day management of the Linux estate and, especially, in performing routine maintenance
tasks. Ansible is extremely powerful, and your possibilities for routine maintenance are not
limited to the examples in this chapter—rather, they are intended to get you started, and
show by example the kinds of tasks you may be able to automate.

Specifically, we will cover the following topics in this chapter:

Tidying up disk space
Monitoring for configuration drift
Managing processes with Ansible
Rolling updates with Ansible

Performing Routine Maintenance with Ansible Chapter 12

[325]

Technical requirements
This chapter includes examples, based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to two servers or virtual machines
running one each of the operating systems just listed, and also Ansible. Note that the
examples given in this chapter may be destructive in nature (for example, they delete files,
and make changes to server configuration), and if run as is, are only intended to be run in
an isolated test environment.

Once you are satisfied that you have a safe environment in which to operate, let's get
started with routine system maintenance, with Ansible.

All example code discussed in this chapter is available from GitHub, at the following
URL: https://github. com/ PacktPublishing/ Hands- On-Enterprise- Automation- on-
Linux/tree/master/ chapter12.

Tidying up disk space
One of the most routine and mundane (and yet, vitally important) tasks that a system
administrator has to complete on a routine basis is clearing out disk space. Although
ideally, systems should be well behaved—for example, log files should be rotated, and
temporary files cleaned up—those with experience in the industry will know that this is not
always the case. The author of this book has worked in environments where clearing out a
given directory was considered a routine task—hence, a prime candidate for automation.

Of course, you would not just randomly delete files from a filesystem. Any task like this
should be performed in a precise manner. Let's proceed with a practical example—as this is
hypothetical, let's create some test files to work with. Suppose our fictional application
creates a data file every day, and never prunes its data directory. To synthesize this, we
might create some data files, as follows:

$ sudo mkdir -p /var/lib/appdata
$ for i in $(seq 1 20); do DATE=$(date -d "-$i days" +%y%m%d%H%M); sudo
touch -t $DATE /var/lib/appdata/$DATE; done

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter12

Performing Routine Maintenance with Ansible Chapter 12

[326]

The preceding commands create a directory called /var/lib/appdata, and then create
one (empty) file for each day, for the last 20 days. We could, of course, create files with data
in, but it makes no difference to this example—we don't actually want to fill the disk up!

Now, let's suppose that our disk is getting full and that we want to prune this directory,
keeping only the last 5 days' worth. If we were to do this by hand, we might use the
venerable find command, to list the files meeting our criteria, and remove anything older.
This might look something like this:

$ sudo find /var/lib/appdata -mtime +5 -exec rm -f '{}' \;

That is an easy enough command to run, and you might be surprised to learn how common
it is to see commands like that in enterprise run-books for Linux servers. Let's improve on
this, with Ansible. We know that if we implement this in Ansible, the following will be the
case:

The Ansible engine will return an appropriate status—ok, changed, or failed,
depending on the actions taken. The find command shown in the preceding
code block will return the same output and exit code, whether it deletes any files
or not.
The Ansible code we write will be self-documenting—for example, it will begin
with an appropriate name—perhaps Prune /var/lib/appdata.
The Ansible code can be run from AWX or Ansible Tower, ensuring that this
routine task can be delegated to the appropriate team, using the built-in role-
based access controls.
In addition, the task can be given a user-friendly name in AWX, meaning
operators don't need any specialist knowledge to jump in and start being
effective in assisting with Linux environment management.
AWX and Ansible Tower will faithfully log the output from the task run, to
ensure it is possible to audit these cleanup jobs in the future.

Performing Routine Maintenance with Ansible Chapter 12

[327]

Of course, none of these Ansible benefits is new to us by now—we have frequently referred
to them throughout the book. Nonetheless, it is my wish to impress upon you the benefits
of effective automation in the enterprise. Let's start by defining a role to perform exactly
this function—prune a directory of files over 5 days old with Ansible:

We start by making use of the Ansible find module, which enables us to build1.
up a list of filesystem objects (such as files or directories), just as the find shell
command does. We will register the output in an Ansible variable to make use
of it later on, as follows:

- name: Find all files older than {{ max_age }} in {{ target_dir }}
 find:
 paths: "{{ target_dir }}"
 age: "{{ max_age }}"
 recurse: yes
 register: prune_list

The code fragment shown here should be fairly self-explanatory—note, however,
that we have made use of variables for the path and age parameters; this is with
good reason. Roles are all about reuse of code, and if we define these parameters
using variables, we can reuse this role to prune other directories (for example, for
different applications), without needing to change the role code itself. You will
also observe that we can use the variables in the name of the task—very useful
and powerful when returning to audit Ansible runs in the future.

The find module will build up a list of files we need to delete—however, given2.
our goal of auditing, it might be useful for us to print these filenames in the
Ansible output, to ensure we can come back later and find out exactly what was
deleted. Note that we could print more data than just the path—perhaps also
capturing size and timestamp information could be useful? All of this is available
in the prune_list variable we captured earlier, and it is left as an exercise for
you to explore this. (Hint: Replace msg: "{{ item.path }}" with msg: "{{
item }}", to see all the information captured by the find task.) Run the
following code:

- name: Print file list for auditing purposes
 debug:
 msg: "{{ item.path }}"
 loop:
 "{{ prune_list.files }}"
 loop_control:
 label: "{{ item.path }}"

Performing Routine Maintenance with Ansible Chapter 12

[328]

Here, we are simply using an Ansible loop to iterate over the data generated by
the find module—specifically, extracting the path dictionary item from the
files dictionary within our variable. The loop_control option prevents
Ansible from printing the entire dictionary structure above each debug message,
instead, just using the path to each file as the label.

Finally, we use the file module to remove the files, again looping over3.
prune_list, just as we did previously, as follows:

- name: Prune {{ target_dir }}
 file:
 path: "{{ item.path }}"
 state: absent
 loop:
 "{{ prune_list.files }}"
 loop_control:
 label: "{{ item.path }}"

With the role complete, we must define the variables for our play—in this4.
example, I am defining them in the site.yml playbook that references our new
role, as follows:

- name: Prune Directory
 hosts: all
 become: yes
 vars:
 max_age: "5d"
 target_dir: "/var/lib/appdata"

 roles:
 - pruneappdata

Performing Routine Maintenance with Ansible Chapter 12

[329]

Running this code with the test files generated earlier in this section will result in an output
that looks something like this:

The test file set has been reduced for the preceding screenshot, to ensure it fits on the
screen—however, you can clearly see the output, and which files were deleted.

While good housekeeping is an essential part of server maintenance, sometimes it is only
desirable to take action (such as pruning a directory) if it is absolutely necessary. What if
we decided that this role should only run when there is 10% or less disk space remaining
on the filesystem containing /var/lib/appdata?

Performing Routine Maintenance with Ansible Chapter 12

[330]

The following process demonstrates how Ansible can be used to perform conditional
housekeeping, operating only when the disk is more than 90% full:

We start by modifying our existing role—first of all, we add a new task to the1.
role, to get the disk usage as a percentage from our target directory, as follows:

- name: Obtain free disk space for {{ target_dir }}
 shell: df -h "{{ target_dir }}" | tail -n 1 | awk {'print $5 '} |
sed 's/%//g'
 register: dfresult
 changed_when: false

Although there are Ansible facts that contain disk usage information, we use the
df command here because it can query our directory directly—we must somehow
trace this back to the mount point on which it lives if we are to successfully use
Ansible facts. We also make use of changed_when: false, as this shell task will
always show a changed result otherwise, which can be confusing in the
output—this is a read-only query, so nothing should have changed!

With this data gathered and registered in the dfresult variable, we then wrap2.
our existing code in a block. A block in Ansible is simply a way of wrapping a set
of tasks together—thus, rather than having to put a when condition on each of
our three tasks from our earlier example, we simply put the conditional on the
block instead. The block would begin something like this:

- name: Run file pruning only if disk usage is greater than 90
percent
 block:

 - name: Find all files older than {{ max_age }} in {{ target_dir
}}
 find:

Note how the previous set of tasks is now indented by two spaces. This ensures
that Ansible understands it is part of the block. Indent all the existing tasks, and
conclude the block with the following code:

 loop_control:
 label: "{{ item.path }}"
 when: dfresult.stdout|int > 90

Performing Routine Maintenance with Ansible Chapter 12

[331]

Here, we are using the standard output captured in the dfresult variable,
casting it to an integer, and then, checking to see if it is 90% or more. Thus, we
only run the pruning tasks if the filesystem is more than 90% full. This is, of
course, just one conditional—you could gather any data that you require to make
any of your tasks run, in a variety of other cases. Running this new role on my
test server, which has much less than 90% disk utilization, shows the pruning
tasks being skipped altogether now, as can be seen in the following screenshot:

In this way, it is easy for us to perform routine disk housekeeping tasks across a large
enterprise estate, and—as is ever the case with Ansible—the sky is the limit for what you
can do. Hopefully, the examples from this section will give you some ideas on how to get
started. In the next section, we will look at how Ansible can be used to effectively monitor
for configuration drift, across your Linux estate.

Monitoring for configuration drift
In Chapter 7, Configuration Management with Ansible, we have explored the ways that
Ansible can be used both to deploy configuration at an enterprise scale and to enforce it.
Let us now build on this, with something else—monitoring for configuration drift.

Performing Routine Maintenance with Ansible Chapter 12

[332]

As we discussed in Chapter 1, Building a Standard Operating Environment on Linux, manual
changes are the enemy of automation. Beyond this, they are also a security risk. Let us work
with a specific example here, to demonstrate. As was suggested previously in this book, it
would be advisable to manage the Secure Shell (SSH) server configuration with Ansible.
SSH is the standard protocol for managing Linux servers and can be used not only for
management but also for file transfer. In short, it is one of the key mechanisms through
which people will access your servers, and hence it is vital that it is secure.

It is also common, however, for a variety of people to have root access to Linux servers.
Whether developers are deploying code, or system administrators are performing routine
(or break-fix) work, it is considered perfectly normal for many people to have root access to
a server. This is fine if everyone is well behaved, and actively supports the principles of
automation in your enterprise. However, what happens if someone makes unauthorized
changes?

Through the SSH configuration, they might enable remote root logins. They might turn on
password-based authentication when you have disabled this in favor of key-based
authentication. Many times, these kinds of changes are made to support laziness—it is
easier to copy files around as a root user, for example.

Whatever the intention and root cause, someone manually making these changes to a Linux
server you deployed previously is a problem. How do you go about detecting them,
though? Certainly, you don't have time to log in to every server and check the files by hand.
Ansible, however, can help.

In Chapter 7, Configuration Management with Ansible, we proposed a simple Ansible
example that deployed the SSH server configuration from a template and restarted the SSH
service if the configuration was changed using a handler.

We can actually repurpose this code for our configuration drift checks. Without even
making any code changes, we can run the playbook with Ansible in check mode. Check
mode makes no changes to the systems on which it is working—rather, it tries its best to
predict any changes that might occur. The reliability of these predictions depends very
much on the modules used in the role. For example, the template module can reliably
predict changes because it knows whether the file that would be written is different from
the file that is in place. Conversely, the shell module can never know the difference
between a change and an ok result because it is such a general-purpose module (though it
can detect failures with a reasonable degree of accuracy). Thus, I advocate strongly the use
of changed_when when this module is used.

Performing Routine Maintenance with Ansible Chapter 12

[333]

Let's see what happens if we rerun the securesshd role from before, this time in check
mode. The result can be seen in the following screenshot:

Here, we can see that someone has indeed changed the SSH server configuration—if it
matched the template we were providing, the output would look like this instead:

So far, so good—you could run this against a hundred, or even a thousand, servers, and
you would know that any changed results came from servers where the SSH server
configuration no longer matches the template. You could even run the playbook again to
rectify the situation, only this time not in check mode (that is, without the -C flag on the
command line).

Performing Routine Maintenance with Ansible Chapter 12

[334]

In an environment such as AWX or Ansible Tower, jobs (that is to say, running playbooks)
are categorized into two different states—success and failure. Success is categorized as any
playbook that runs to completion, producing only changed or ok results. Failure, however,
comes about from one or more failed or unreachable states being returned from the
playbook run.

Thus, we could enhance our playbook by getting it to issue a failed state if the
configuration file is different from the templated version. The bulk of the role remains
exactly the same, but, on our template task, we add the following clauses:

 register: template_result
 failed_when: (template_result.changed and ansible_check_mode == True) or
template_result.failed

These have the following effect on the operation of this task:

The result of the task is registered in the template_result variable.
We change the failure condition of this task to the following:

The template task result was changed, and we are running it in
check mode.
Or, the template task failed for some other reason—this is a catch-
all case, to ensure we still report other failure cases correctly (for
example, access denied to a file).

You will observe the use of both logical and and or operators in the failed_when
clause—a powerful way to expand on the operation of Ansible. Now, when we run the
playbook in check mode and the file has changed, we see the following result:

Performing Routine Maintenance with Ansible Chapter 12

[335]

Now, we can very clearly see that there is an issue on our host, and it will be reported as a
failure in AWX and Ansible Tower too.

Of course, this works very well for plain text files. What about binary files, though? Ansible
is, of course, not a complete replacement for a file integrity monitoring tool such as
Advanced Intrusion Detection Environment (AIDE) or the venerable Tripwire—however,
it can help with the use of binary files too. In fact, the process is very simple. Let's suppose
you want to ensure the integrity of /bin/bash—this is the shell that everyone uses by
default on most systems, so the integrity of this file is incredibly important. If you have
space to store a copy of the original binary on your Ansible server, then you can use the
copy module to copy it across to the target hosts. The copy module makes use of
checksumming to determine whether a file needs to be copied, and so, you can be sure that,
if the copy module results in a changed result, then the target file differs from your
original version, and integrity is compromised. The role code for this would look very
similar to our template example here:

- name: Copy bash binary to target host
 copy:
 src: files/bash
 dest: /bin/bash
 owner: root
 group: root
 mode: 0755
 register: copy_result
 failed_when: (copy_result.changed and ansible_check_mode == True) or
copy_result.failed

Of course, storing original binaries on your Ansible server is inefficient, and also, means
you have to keep them up to date, in line with your server patching schedule, which is not
desirable when you have a large number of files to check. Fortunately, the
Ansible stat module can generate checksums, as well as returning lots of other useful data
about files, and so, we could very easily write a playbook to check that our binary for Bash
has not been tampered with, by running the following code:

- name: Get sha256 sum of /bin/bash
 stat:
 path: /bin/bash
 checksum_algorithm: sha256
 get_checksum: yes
 register: binstat

- name: Verify checksum of /bin/bash
 fail:

Performing Routine Maintenance with Ansible Chapter 12

[336]

 msg: "Integrity failure - /bin/bash may have been compromised!"
 when: binstat.stat.checksum !=
'da85596376bf384c14525c50ca010e9ab96952cb811b4abe188c9ef1b75bff9a'

This is a very simple example and could be enhanced significantly by ensuring the file path
and name, and checksum, are variables rather than static values. It could also be made to
loop over a dictionary of files and their respective checksums—these tasks are left as an
exercise for you, and this is entirely possible, using techniques we have covered throughout
this book. Now, if we run this playbook (whether in check mode or not), we will see a failed
result if the integrity of Bash has not been maintained, and ok otherwise, as follows:

Checksumming can be used to verify the integrity of configuration files too, so, this
example role serves as a good basis for any file integrity checking you might wish to
undertake.

We have now completed our exploration of file and integrity monitoring with Ansible, and
hence, the ability check for configuration drift. In the next section of this chapter, we'll take
a look at how Ansible can be used to manage processes across an Enterprise Linux estate.

Performing Routine Maintenance with Ansible Chapter 12

[337]

Understanding process management with
Ansible
Sooner or later, you will end up with the need to manage, and possibly even kill, processes
on one or more Linux servers within your enterprise. Obviously, this is not an ideal
scenario, and in day-to-day operations, most services should be managed using the Ansible
service module, many examples of which we have seen in this book.

What if, however, you need to actually kill a service that has hung? Obviously, a system
administrator could SSH into the errant server and issue commands such as the following:

$ ps -ef | grep <processname> | grep -v grep | awk '{print $2}'
$ kill <PID1> <PID2>

If the process refuses stubbornly to terminate, then the following may become necessary:

$ kill -9 <PID1> <PID2>

While this is a fairly standard practice, in which most system administrators will be well
versed (and indeed, may have their own favorite tools to handle, such as pkill), it suffers
the same problem as most manual interventions on a server—how can you keep track of
what happened, and which processes were affected? If numeric process IDs (PIDs) were
used, then even with access to the command history, it is still impossible to tell which
process historically held that numeric PID.

What we propose here is an unconventional use of Ansible—yet one that, if run through a
tool such as AWX or Ansible Tower, would enable us to track all operations that were
performed, along with details of who ran them and, if we put the process name in a
parameter, what the target was too. This could be useful if, in the future, it becomes
necessary to analyze the history of a problem, whereupon it would be easy to check which
servers were acted upon, and which processes were targeted, along with precise
timestamps.

Performing Routine Maintenance with Ansible Chapter 12

[338]

Let's build up a role to perform exactly this set of tasks. This chapter was originally written
against Ansible 2.8, which did not feature a module for process management, and so, the
following example uses native shell commands to handle this case:

We start by running the process listing we proposed earlier in this section, but1.
this time, registering the list of PIDs into an Ansible variable, as follows:

- name: Get PID's of running processes matching {{ procname }}
 shell: "ps -ef | grep -w {{ procname }} | grep -v grep | grep -v
ansible | awk '{print $2\",\"$8}'"
 register: process_ids

Most people familiar with shell scripting should be able to understand this
line—we are filtering the system process table for whole-word matches for the
Ansible variable procname, and removing any extraneous process names that
might come up and confuse the output, such as grep and ansible. Finally, we
use awk to process the output into a comma-separated list, containing the PID, in
the first column, and the process name itself in the second.

Now, we must start to take action on this output. We now loop over the2.
process_ids variable populated previously, issuing a kill command against
the first column in the output (that is, the numeric PID), as follows:

- name: Attempt to kill processes nicely
 shell: "kill {{ item.split(',')[0] }}"
 loop:
 "{{ process_ids.stdout_lines }}"
 loop_control:
 label: "{{ item }}"

You will observe the use of Jinja2 filtering here—we can use the built-in split
function to split the data we created in the previous code block, taking only the
first column of output (the numeric PID). However, we use the loop_control
label to set the task label containing both the PID and process name, which could
be very useful in an auditing or debugging scenario.

Performing Routine Maintenance with Ansible Chapter 12

[339]

Any experienced system administrator will know that it is not sufficient to just3.
issue a kill command to a process—some processes must be forcefully killed as
they are hung. Not all processes exit immediately, so we will use the Ansible
wait_for module to check for the PID in the /proc directory—when it becomes
absent, then we know the process has exited. Run the following code:

- name: Wait for processes to exit
 wait_for:
 path: "/proc/{{ item.split(',')[0] }}"
 timeout: 5
 state: absent
 loop:
 "{{ process_ids.stdout_lines }}"
 ignore_errors: yes
 register: exit_results

We have set the timeout here to 5 seconds—however, you should set it as
appropriate in your environment. Once again, we register the output to a
variable—we need to know which processes failed to exit, and hence, try killing
them more forcefully. Note that we set ignore_errors here, as the wait_for
module produces an error if the desired state (that is, /proc/PID becomes
absent) does not occur within the timeout specified. This should not be an error
in our role, simply a prompt for further processing.

We now loop over the results of the wait_for task —only this time, we use the4.
Jinja2 selectattr function, to select only dictionary items that have failed
asserted; we don't want to forcefully terminate non-existent PIDs. Run the
following code:

- name: Forcefully kill stuck processes
 shell: "kill -9 {{ item.item.split(',')[0] }}"
 loop:
 "{{ exit_results.results | selectattr('failed') | list }}"
 loop_control:
 label: "{{ item.item }}"

Now, we attempt to kill the stuck processes with the -9 flag—normally, sufficient
to kill most hung processes. Note again the use of Jinaj2 filtering and the tidy
labeling of the loop, to ensure we can use the output of this role for auditing and
debugging.

Performing Routine Maintenance with Ansible Chapter 12

[340]

Now, we run the playbook, specifying a value for procname—there is no default5.
process to be killed, and I would not suggest that setting a default value for this
variable is safe. Thus, in the following screenshot, I am setting it using the -e flag
when I invoke the ansible-playbook command:

From the preceding screenshot, we can clearly see the playbook killing the mysqld process,
and the output of the playbook is tidy and concise, yet contains enough information for
debugging, should the need occur.

As an addendum, if you are using Ansible 2.8 or later, there is now a native Ansible
module called pids that will return a nice, clean list of PIDs for a given process name, if it
is running. Adapting our role for this new functionality, we can, first of all, remove the
shell command and replace it with the pids module, which is much easier to read, like this:

- name: Get PID's of running processes matching {{ procname }}
 pids:
 name: "{{ procname }}"
 register: process_ids

Performing Routine Maintenance with Ansible Chapter 12

[341]

From this point on, the role is almost identical to before, except that, rather than the
comma-separated list we generated from our shell command, we have a simple list that just
contains the PIDs for each running process that matches the procname variable in name.
Thus, we no longer need to use the split Jinja2 filter on our variables when executing
commands on them. Run the following code:

- name: Attempt to kill processes nicely
 shell: "kill {{ item }}"
 loop:
 "{{ process_ids.pids }}"
 loop_control:
 label: "{{ item }}"

- name: Wait for processes to exit
 wait_for:
 path: "/proc/{{ item }}"
 timeout: 5
 state: absent
 loop:
 "{{ process_ids.pids }}"
 ignore_errors: yes
 register: exit_results

- name: Forcefully kill stuck processes
 shell: "kill -9 {{ item.item }}"
 loop:
 "{{ exit_results.results | selectattr('failed') | list }}"
 loop_control:
 label: "{{ item.item }}"

This block of code performs the same functions as before, only now, it is a little more
readable, as we've reduced the number of Jinja2 filters required, and we have removed one
shell command, in favor of the pids module. These techniques, combined with
the service module discussed earlier, should give you a sound basis to meet all of your
process control needs with Ansible.

In the next and final section of this chapter, we'll take a look at how to use Ansible when
you have multiple nodes in a cluster, and you don't want to take them all out of service at
once.

Performing Routine Maintenance with Ansible Chapter 12

[342]

Rolling updates with Ansible
No chapter on routine maintenance would be complete without a look at rolling updates.
So far in this book, we have kept our examples simple with one or two hosts, and have
worked on the basis that all examples can be scaled up to manage hundreds, if not
thousands, of servers using the same roles and playbooks.

This, by and large, holds true—however, there are certain special cases where perhaps we
need to look a little deeper at the operation of Ansible. Let's build up a hypothetical
example, where we have four web application servers behind a load balancer. A new
release of the web application code needs to be deployed, and the deployment process
requires multiple steps (thus, multiple Ansible tasks). In our simple example, the
deployment process will be as follows:

Deploy the web application code to the server. 1.
Restart the web server service, to pick up the new code.2.

In a production environment, you would almost certainly want to take
further steps to ensure the integrity of your web service—for example, if it
is behind a load balancer, you would take it out of service during the code
deployment, and ensure it is not returned to service until it is validated as
working properly. It is not anticipated that everyone reading this book
will have access to such an environment, and so, the example has been
kept simple, to ensure everyone can try it out.

We could easily write a simple Ansible role to perform this task—an example is shown, as
follows:

- name: Deploy new code
 template:
 src: templates/web.html.j2
 dest: /var/www/html/web.html

- name: Restart web server
 service:
 name: nginx
 state: restarted

Performing Routine Maintenance with Ansible Chapter 12

[343]

This code performs our two steps in turn, exactly as we desire. However, let's have a look at
what happens when we run this role in a playbook. The result is shown in the following
screenshot:

Notice how Ansible performed the tasks. First of all, the new code was deployed on all four
servers. Only then, were they restarted. This may not be desirable, for a number of reasons.
For example, the servers may be in an inconsistent state after the first task, and you would
not want all four servers to be in an inconsistent state at once, as anyone using the web
application would experience errors. Also, if the playbook goes wrong for some reason and
produces a failed state, it will faithfully fail on all four servers, thus breaking the entire web
application for everyone, and causing a service outage.

Performing Routine Maintenance with Ansible Chapter 12

[344]

To prevent these kinds of issues from occurring, we can use the serial keyword, to ask
Ansible to only perform the update on a given number of servers at a time. For example, if
we insert the line serial: 2 into the site.yml playbook calling this role, suddenly the
behavior becomes rather different, as the following screenshot shows:

The preceding output is truncated to save space but clearly shows that the playbook is now
being run on only two servers at a time—thus, during the initial phase of the run, only
cluster1 and cluster2 are inconsistent, while cluster3 and cluster4 remain
consistent and untouched. Only when all tasks are completed on the first two servers are
the next two processed.

Failure handling is also important, and a danger of automation is that you could break an
entire environment very easily if an issue exists in the code or playbook. For example, if our
Deploy new code task fails for all servers, running the playbook on two servers at a time
will not help. Ansible will still faithfully do what it is asked—in this case, break all four
servers.

Performing Routine Maintenance with Ansible Chapter 12

[345]

In this instance, it is a good idea to add to the playbook the max_fail_percentage
parameter too. For example, if we set this to 50, then Ansible will stop processing hosts as
soon as 50% of its inventory has failed, as shown in the following screenshot:

As we can see here, even though our inventory has not been changed, Ansible has stopped
after processing cluster1 and cluster2—because they failed, it is not performing any
tasks on cluster3 and cluster4; thus, at least two hosts remain in service with good
code, allowing users to continue using the web application, in spite of the failure.

It is important to make use of these Ansible features when working with large, load-
balanced environments, to ensure that failures do not propagate to an entire estate of
servers. That concludes our look at the use of Ansible in routine server maintenance—as
ever, the possibilities are endless, but it is hoped that once again, this chapter has given you
some inspiration and examples upon which to build.

Performing Routine Maintenance with Ansible Chapter 12

[346]

Summary
Ansible is a very powerful tool, but not just for deployment and configuration
management. Although these are core strengths it possesses, it is also of powerful
assistance when it comes to day-to-day management tasks. As ever, when coupled with an
enterprise management tool such as AWX or Ansible Tower, it becomes incredibly
important in the management of your Linux estate, especially for auditing and debugging
purposes.

In this chapter, you learned how to tidy up disk space using Ansible, and how to make this
conditional. You then learned how Ansible can help monitor configuration drift, and even
alert to possible tampering with binary files. You learned how to manage processes on
remote servers using Ansible, and finally, how to perform rolling updates in a graceful and
managed fashion, across a load-balanced pool of servers.

In the next chapter, we take a look at securing your Linux servers in a standardized fashion,
with CIS Benchmarks.

Questions
Why might you make use of the output from the df command rather than an1.
Ansible fact when examining disk space?
Which Ansible module is used to locate files based on given criteria, such as age?2.
Why is it important to monitor for configuration drift?3.
What are two ways in which you can monitor a text-based configuration file for4.
changes in Ansible?
How would you manage a systemd service on a remote server using Ansible?5.
What is the name of the built-in filtering within Ansible that can help process6.
string output (for example, to split a comma-separated list)?
How would you split a comma-separated list in an Ansible variable?7.
When operating in a load-balanced environment, why would you not want all8.
tasks performed on all the servers in one go?
Which Ansible feature can prevent you from rolling out a failed task to all9.
servers?

Performing Routine Maintenance with Ansible Chapter 12

[347]

Further reading
For an in-depth understanding of Ansible, please refer to Mastering Ansible,
Third Edition—James Freeman and Jesse Keating (https:/ /www. packtpub. com/ gb/
virtualization- and- cloud/ mastering- ansible- third- edition)

https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition

4
Section 4: Securing Your Linux

Servers
In this section, we go hands-on with security benchmarks and cover practical examples of
how to apply, enforce, and audit them in the Enterprise.

This section comprises the following chapters:

Chapter 13, Using CIS Benchmarks
Chapter 14, CIS Hardening with Ansible
Chapter 15, Auditing Security Policy with OpenSCAP
Chapter 16, Tips and Tricks

13
Using CIS Benchmarks

When implementing Linux in the Enterprise, security is paramount. There is no one step
that can be taken to achieve the nirvana of a truly secure environment—rather, the approach
is an amalgamation of disparate steps that come together to build an environment that is as
safe and secure as it can be. Indeed, this statement brings us to another important
point—security is a moving target. As just one example, SSLv2 was considered to be secure
and was used to secure websites across the internet for many years. Then came the
DROWN attack in 2016, which rendered it insecure. Thus, a server secured for internet
traffic (perhaps a frontend web server) in 2015 would have, at the time, been considered
secure. However, in 2017, it would have been considered highly vulnerable.

Linux itself has always been considered a secure operating system, though its high and
increasing levels of adoption has seen attacks on the rise. Throughout this book, we have
advocated, at a high level, good security practices in the design of your Linux estate, for
example, not installing unnecessary services on your base operating system image.
Nonetheless, there is much more we can do to make our Linux environment more secure
and, in this chapter, we will explore the ways in which standards have been developed to
ensure the security of Linux environments. Specifically, we will consider the use of the CIS
Benchmarks, along with some practical examples of how to apply them.

Specifically, the following topics will be covered in this chapter:

Understanding CIS Benchmarks
Applying security policy wisely
Scripted deployment of server hardening

Using CIS Benchmarks Chapter 13

[350]

Technical requirements
This chapter includes examples based on the following technologies:

CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to two servers or virtual machines
running the operating system listed previously, along with Ansible. Note that the examples
given in this chapter may be destructive in nature (for example, they delete files and make
changes to server configuration) and, if run as shown, are only intended to be run in an
isolated test environment.

Once you are satisfied that you have a safe environment to operate in, let's get started with
routine system maintenance with Ansible.

All example code discussed in this chapter is available from GitHub at the following
URL: https://github. com/ PacktPublishing/ Hands- On-Enterprise- Automation- on-
Linux/tree/master/ chapter13.

Understanding CIS Benchmarks
Before we delve into what a CIS Benchmark actually consists of, let's take a look at why
they exist and, conceptually, what they are.

What is a CIS Benchmark?
Securing servers, regardless of their operating system, is a big task. It requires being
constantly up to date with new attack vectors and vulnerabilities as they are discovered
(see the mention of the DROWN attack and SSLv2 in the introduction to this chapter). Some
things are well-known and considered normal. For example, on Linux, it is generally
frowned upon to ever log in as root—instead, it is almost universally recognized that each
individual user should have their own user account and should perform all commands
requiring elevated permissions using the sudo command. Thus, some Linux distributions
such as Ubuntu come with remote root access disabled by default. Others, such as CentOS,
do not. Even between these two key distributions commonly found in the enterprise, you
know that, for one, you need to actively turn off remote root SSH access and, for the other,
you just need to check that it is turned off.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter13

Using CIS Benchmarks Chapter 13

[351]

Of course, defining a security policy goes far deeper than whether root access is allowed
over SSH. Over the years, individuals build up a wealth of knowledge about what works
and, perhaps by learning the hard way, what doesn't. However, the security of your
environment should not be defined by how experienced your system administrators are.
Rather, there should be some defined standard for how to best secure a server to prevent
most of the common attacks, and also to ensure that a suitable level of information is
logged in the case that an audit is ever required to find the root cause of an event.

This is where the concept of the CIS Benchmark comes in. Many people are familiar with
the concept of a benchmark as a performance test (that is, speed). However, whether your
server is secure or not is something that can be tested by looking for certain criteria, and
thus the CIS Benchmark exists. Quoting directly from the Community for Internet Security
(CIS for short) website:

"CIS Benchmarks are developed through a unique consensus-based process comprised of
cybersecurity professionals and subject matter experts around the world."

Thus, these benchmarks can be considered an amalgamation of best practices from industry
professionals. Further, they are regularly updated and so can be used by engineers and
administrators to keep abreast of best practices when it comes to securing a server.

It should, of course, be noted that there are other security standards out there that go to
even greater depths than the CIS Benchmark, for example, FedRAMP and NSA security
requirements. It would be impossible to go into detail of all the different profiles available
within this book, and so we will focus on the CIS Benchmark, which is freely available (in
exchange for some personal information) and is also well regarded.

That this book focuses on the CIS Benchmarks should not be taken as an
implicit statement that you should implement these on your server estate
in order for it to be secure. It is the duty of each and every reader to
ensure they understand their own security requirements and to
implement the correct ones accordingly. In this chapter, we work through
the use of CIS Benchmarks as a worked example of server hardening to a
given standard.

Also of note is that the CIS Benchmarks are divided by technology. For example, there is a
CIS Benchmark for both Red Hat Enterprise Linux 7 and Ubuntu Server, which you can
apply to your Enterprise Linux estate. However, these focus on securing the base operating
system, and if you install an application layer on top of it, then you must apply the
appropriate security policy for that as well.

Using CIS Benchmarks Chapter 13

[352]

There are CIS Benchmarks for more than 140 technologies, including common Linux
services such as nginx, Apache, and PostgreSQL. Thus, if you are building an internet-
facing web server, it would make sense to apply both the operating system benchmark and
then the appropriate one for the chosen web server.

If you have a bespoke application layer, or indeed are simply using a technology not listed
on the CIS website, do not despair—secure the underlying operating system using the
appropriate benchmark and then apply security practices in the best way you can. Often,
there is good advice on the internet, but figuring this out is beyond the scope of this book.

A full list of the technologies for which there are CIS Benchmarks can be found
here: https://www. cisecurity. org/ cis- benchmarks/ .

Once you have obtained the security benchmark for your chosen operating system, it is
time to consider the application of it. Before we get this far, though, in the next section of
this chapter, we will explore in greater detail the contents of a CIS Benchmark for the Linux
operating system.

Exploring CIS Benchmarks in detail
Let's take a practical example to explore CIS Benchmarks in greater detail by looking at the
one for RHEL 7. At the time of writing, this is on release version 2.2.0 and consists of 386
pages! Thus, immediately we can see that implementing this benchmark is unlikely to be a
trivial activity.

As you explore the document, you will find that the section of most interest to us—the
Recommendations section—is divided into subsections. Each of these focuses on a specific
area of security within the operating system. At the time of writing, section 1 is all about the
initial setup of the operating system; parameters and configuration likely to be applied at
build time. Section 2 is all about securing common services that might be installed by
default on a RHEL 7 server. Section 3 deals with network configuration, while section 4 goes
into detail on your logging and audit logging setup to ensure you are capturing the
requisite amount of data during daily use. This is to ensure you can audit your servers and
find out what happened if you are unfortunate enough to suffer a breach or an outage.
Section 5 considers access to your server and authentication (this is where you will find SSH
server security mentioned—in fact, you will see that our example of disabling remote root
logins is benchmark 5.2.8 in version 2.2.0 of the document). Finally, section 6 is entitled
System Maintenance and is intended to be run not once, but regularly, to ensure the integrity
of the system.

https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/

Using CIS Benchmarks Chapter 13

[353]

Of course, we have discussed previously in this book that it is possible for anyone with root
privileges to change core system configuration, and thus it is recommended that all of the
benchmarks be run (or at least checked) on a regular basis to ensure compliance with the
original policy.

We will explore this across the next two chapters of this book; however, for now, let's
return to furthering our understanding of the CIS Benchmark itself. As you look into each
recommendation, you will notice that each has a level associated with it and is either Scored
or Not Scored (this is stated in the title of each benchmark).

Each of these benchmarks are intended to contribute to a final report or scoring of a system
as part of a compliance check—and recommendations that are scored quite literally
contribute to the final score. Thus, if your system meets the check, then the final score is
increased—however, if it is not met, the final score is decreased. Those marked as Not
Scored have no bearing on the final score at all. In other words, you are not marked down
for failing to implement them.

This, of course, does not mean they are any less important to consider. By way of example,
let's consider benchmark 3.7 of the version 2.2.0 RHEL 7 benchmark, which is
entitled Ensure wireless interfaces are disabled. The rationale between each benchmark is given
in the details of the benchmark, and this one states the following:

"If wireless is not to be used, wireless devices can be disabled to reduce the potential attack
surface."

This is a logical approach—we know that if your device has a wireless interface, it should
be disabled unless it is in use. In addition, wireless security protocols have been historically
broken, just as SSLv2 was, and thus, in the long term, wireless network communication
might not be considered to be truly secure. Nonetheless, on a corporate laptop running
RHEL 7, you cannot guarantee that it will be connected to a wired network connection.
Wireless networking might be the only option and, in this instance, you would need to
leave it turned on.

Of course, the CIS Benchmark cannot make this decision for you—only you can know
whether your system needs to have its wireless network adapters enabled (if present), and
so it is reasonable that this is a non-scorable item.

By contrast, our old friend benchmark 5.2.8 (disabling remote root SSH access) is scored as
there should be no rational reason for enabling this in an enterprise environment. Thus, we
would expect our system to be scored down if this benchmark could not be met.

Using CIS Benchmarks Chapter 13

[354]

Each benchmark has details on how to test for the presence of the condition or
configuration mentioned, along with the details on how to apply the desired configuration.

In addition to these details, you will also note that each benchmark has a level associated
with it that can be either 1 or 2. In each case, for RHEL 7, you will see that these levels are
applied to two different scenarios—the use of RHEL 7 as a server and as a workstation.
Again, this makes sense when we delve into the meaning of these levels.

Level 1 is intended to be a sensible security baseline for you to apply to your environment
to reduce the attack surface. It is not intended to have an extensive impact on the day-to-
day business usage of your Linux environment, and so level 1 benchmarks are the less
intrusive ones to implement.

By contrast, level 2 benchmarks are offered to provide a much more rigorous level of
security, and are highly likely to have an impact on the day-to-day usage of your
environment.

If we look again at benchmark 3.7, we will see that it is categorized as level 1 for servers
and level 2 for workstations. This makes sense—a server is unlikely to have a wireless
network adapter, and even less likely to be using it, even if present, thus disabling it has
little or no impact on the day-to-day usage of the server. However, a RHEL 7 laptop would
become a lot less portable if benchmark 3.7 was implemented on it, and so the level 2
categorization warns us of this. Imagine having a laptop and not being able to use it on a
wireless network—this is a concept that, to many, is unfeasible in this day and age!

Benchmark 5.2.8 is considered level 1 for both server and workstation because it is already
considered good practice not to use the root account for day-to-day operations—thus,
disabling access to it over SSH should not have any impact on a day-to-day basis.

In an ideal world, you should read and understand all benchmarks before you apply them
in case they have an impact on your way of doing things—for example, I still come across
systems that make use of the root account over SSH for scripted operations, and while my
first task is normally to rectify this, if I were to blindly apply the CIS Benchmark to these
systems, I would break an otherwise working setup.

However, accepting that anyone who manages an Enterprise Linux environment is
incredibly busy, you could be forgiven for thinking that you could just apply the scored
level 1 benchmarks to your systems. Indeed, this would give you a reasonable security
baseline while incurring a relatively low risk—yet there is no substitute for being thorough.
In the next section of this chapter, we will look in greater detail at how to wisely select
benchmarks without causing issues in your environment!

Using CIS Benchmarks Chapter 13

[355]

Applying security policy wisely
As we had begun to explore in the previous section, each CIS Benchmark has a level and
scoring associated with it. The level is of particular concern to us as, while we wish to
secure our systems as effectively as possible, we would not wish to break any running
systems. For this reason, it is highly advisable to apply the benchmarks in an isolated test
environment and test your applications before deploying them to a production
environment. Indeed, if the application of a benchmark breaks a given system, the
following process should be executed in the enterprise to resolve it:

Establish which benchmark caused the issue.1.
Determine which internal systems were affected by the benchmark.2.
Decide whether the internal systems can be changed to work with the3.
benchmarks (for example, use an unprivileged account over SSH rather than
root).
Implement the changes to the internal systems and apply the benchmark4.
universally or (only if there is a good reason to) make an exception for that
benchmark and record it.

The CIS Benchmarks could even break your Ansible automation—the
simplest example being that you are using the root account to perform
your automation tasks over, and you disable this as part of your CIS
Benchmark deployment. In this instance, you would find Ansible locked
out of all of your systems and, in the worst case, you would have to
manually modify each server to reinstate Ansible access.

Although we can't go through the benchmarks one by one in this chapter, in the following
subsections, we will explore some of the relevant examples to look out for. It is hoped this
will give you enough information to review the benchmark for your chosen version of
Linux, and then make informed decisions on what security policies are in the best interests
of your environment.

We will continue with our example of using the RHEL 7 benchmark version 2.2.0.
However, most of what we describe here will be applicable to other Linux platforms too.
Configuration file paths and even log file paths might vary, but these will be detailed in the
relevant CIS Benchmark for your operating system, so be sure to download the benchmark
that is most relevant to you.

Now that we have considered the overall principles of security policy application, we will
dive into some specific examples, starting with the SELinux policy in the next section.

Using CIS Benchmarks Chapter 13

[356]

Applying the SELinux security policy
Section 1.6.1 of the RHEL 7 benchmark concerns the implementation of SELinux and
consists of checks to ensure SELinux is in enforcing mode rather than disabled at some
level. You will note that these checks are all level 2 benchmarks, meaning they could break
existing systems.

Enabling and applying SELinux is a very good idea on operating systems that support it,
yet even at the time of writing there are many Linux applications that do not work with it
and whose installation instructions state that SELinux must be disabled for the application
to function. This, of course, is not ideal and instead you should create an SELinux policy
that allows your application stack to work without the need to disable it.

Not all enterprises will have the skill set of time to allow this to be completed, though, and
so some careful consideration needs to be given to this set of benchmarks—in short, it
should be applied if at all possible, but exceptions may be required.

If you are working with Ubuntu, the same logic should be applied to AppArmor, which is
enabled by default on Ubuntu Server.

In the next section of this chapter, we will take a look at how the CIS Benchmarks affect the
way filesystems are mounted on Linux.

Mounting of filesystems
All filesystems in Linux must be mounted before they can be used—this is quite simply the
mapping of block devices such as a partition on a disk to a path. To most users, this is
transparent and happens at boot time, but to those responsible for configuring systems, it
needs some attention. For example, the /tmp filesystem is usually writable to all users, and
so it is desirable to not let people execute files from this directory as they could put any
arbitrary binary in there to be run by themselves or someone else. Thus, this filesystem is
often mounted with the noexec flag to achieve exactly this.

Changing mount options for partitions (and indeed partition structure)
can be problematic on machines that have already been deployed. In
addition, many cloud platforms feature a flat filesystem structure and, as
such, the preceding example of /tmp may not be achievable as it cannot be
mounted separately from the root partition. As a result, I recommend
that you factor this part of the CIS Benchmark into your server (or image)
build process and create exclusions for public cloud platforms where
required.

Using CIS Benchmarks Chapter 13

[357]

The benchmarks in section 1.1 of the CIS Benchmark (entitled Filesystem Configuration)
concern exactly these kinds of details and, again, these will need to be tailored to your
environment. For example, benchmark 1.1.1.8 recommends disabling the ability to mount
FAT filesystems, and section 1.1.5 recommends disabling binary execution on /tmp, as
discussed previously. These are both scored benchmarks and, at the time of writing, there
should be little need to use or mount FAT volumes or execute files from /tmp. However, in
some legacy environments, this could still be required and so this should be applied with
some care.

Similarly, there are many recommendations around having separate filesystems for
important paths such as /tmp and /var, and also special mount options. All of these will
work in a large number of cases but, again, it would be too bold to state that this will work
for everyone, especially in preexisting environments, and so these should be applied but
with an understanding of the environmental requirements.

Having looked at the implications of the CIS Benchmarks on how filesystems are mounted,
we will proceed to look at the recommendations around intrusion detection using file
checksumming.

Installing Advanced Intrusion Detection
Environment (AIDE)
Benchmark 1.3.1 concerns the installation of Advanced Intrusion Detection Environment
(AIDE)—a modern replacement for the venerable Tripwire utility that can scan the
filesystem and checksum all the files, thus providing a reliable way of detecting
modifications to the filesystem.

On the face of it, installing and using AIDE is a very good idea—however, if you have an
environment with 100 machines in it and you update all of them, you will get 100 reports,
each containing details of a large number of file changes. There are other solutions to this
problem, including the open source OSSEC project (https:/ /www. ossec. net/), but this is
not checked for as part of the CIS Benchmark and so it is left for you to decide what the
right solution is for your enterprise.

This, of course, is not to say that AIDE should not be used—far from it. Rather, it is to say
that, if you choose to use AIDE, make sure you have processes in place to process and
understand the reports, and to ensure that you can distinguish false positives (for example,
a change in the checksum of a binary due to a package update) from genuinely malicious
and unexpected modifications (for example, /bin/ls changes even though no package
update has been performed).

https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/
https://www.ossec.net/

Using CIS Benchmarks Chapter 13

[358]

Having looked at whether AIDE is a viable tool to install on your Linux infrastructure, we
will proceed to look at how the CIS Benchmarks impact the default configuration of
services at boot time.

Understanding CIS Service benchmarks
Section 2.2 of the benchmark details a number of scored level 1 benchmarks around services
that are to be disabled. Again, the rationale behind this is that the attack surface should be
minimized, and so, for example, httpd should not be running unless a server is intended to
be a web server.

While logical in itself, a review of this section turns up a large number of services that could
be vital for your environment, including squid, httpd, and snmpd. For all of these
benchmarks, they should only be applied if it makes sense to do so. You would not turn off
Apache on a web server, and neither would you disable squid on a proxy server.

However, good guidance is given with regard to these benchmarks about when they
should be applied and, in the case of snmpd, there is even guidance on securing the service
if your environment relies on this for monitoring purposes.

X Windows
Benchmark 2.2.2 goes as far as ensuring that the X Windows server is actually uninstalled
from your systems. Most servers are headless and it would be possible to do
this—however, you would not do this for a workstation or for a system that performs
remote desktop functions.

Be sure to apply this benchmark to your servers, but only when you know it is safe to apply
it.

Allowing hosts by network
Benchmarks 3.4.2 and 3.4.3 ensure that /etc/hosts.allow and /etc/hosts.deny are
configured—this means that, for all services that process these two files, only connections
from networks that are allowed are actually processed.

Using CIS Benchmarks Chapter 13

[359]

This is generally a good idea—however, many organizations have good firewalls and some
actually have policies of not allowing local firewalls on their servers because it complicates
the process of debugging. If a connection is denied, the more firewalls you have, the more
you have to check to find out where it was denied.

Thus, it is recommended you apply these two benchmarks in accordance with your
corporate security policy.

Local firewalls
The same applies for the benchmarks in section 3.6 that concern the installation and
configuration of iptables. Although this local firewall increases your level of server security,
it is in contrast to many corporate security policies of having fewer, more centralized,
firewalls rather than many localized ones. Apply these benchmarks in accordance with
corporate policy.

Overall guidance on scoring
You will note that many of the benchmarks I have advised you to exercise caution over
applying are actually scored. This brings us to a wider point regarding scoring—the aim of
applying CIS Benchmarks is not to achieve a 100% score. Rather, it is to achieve the highest
possible score that is right for your environment and enables your enterprise to function
correctly.

Scoring should instead be used to establish your own baseline—once you have worked
through all benchmarks in the manner discussed in this chapter, you will know which are
right for your enterprise and, hence, what your target score is.

Through a process of auditing the results of repeated applications of the benchmark,
repeated scoring exercises can be performed to track overall environment compliance and
drift over time. For example, if repeated audits show an ever-decreasing score, then you
know you have a problem with regards to compliance, for the root cause must be
established—whether that is users making unauthorized changes to systems, or even
rolling out new servers that have not been correctly secured.

Either way, your CIS Benchmark score will become a useful tool in monitoring the
compliance of your Linux estate with your security policy. In the next section of this
chapter, we will explore scripted approaches to CIS Benchmark application and
compliance.

Using CIS Benchmarks Chapter 13

[360]

Scripted deployment of server hardening
We have spent some time exploring the CIS Benchmarks and how they are intended to be
worked with. Now, let us turn our attention to more practical matters—how to audit them
and how to implement them. In this book, we have focused on Ansible as our chosen tool
for automating such tasks, and indeed Ansible is an excellent solution for this purpose.
With that said, of course, you will have noticed that the examples in the CIS Benchmark
document itself are often shell commands or, in some cases, are simply statements
regarding configuration lines that should exist (or not exist) in a given file.

In order to clearly explain the auditing and implementation of the CIS Benchmark on a
Linux system, I have split the examples into two. In this part of this chapter, we will
develop traditional shell scripts for checking for CIS Benchmark compliance, and then for
implementing the recommendations if required. This will look very similar to the CIS
Benchmark document itself and thus will help with generating an understanding of how to
implement them. Then, in the next chapter, we will develop these shell script-based
examples into Ansible roles so that we can use our favorite automation tool to manage our
CIS Benchmark compliance.

Let's work through some examples to demonstrate how to develop such scripts, starting
with our root login over SSH example.

Ensuring SSH root login is disabled
CIS recommendation 5.2.8 in version 2.2.0 of the RHEL 7 benchmark is that we should
disable remote root logins. We have visited this example already in other guises, and here
we will look specifically at the recommendations in the CIS Benchmark document to help
us understand how this should be implemented.

The document states that, to audit for this requirement (and thus score this item), the
following test result should be observed:

grep "^PermitRootLogin" /etc/ssh/sshd_config
PermitRootLogin no

Using CIS Benchmarks Chapter 13

[361]

Note that the command is intended for a human being to interpret the output of it—this
command will return the PermitRootLogin line from this file, regardless of whether it is
enabled or disabled. The text shows the desired output, but assumes that the person
running the test will read the output and check whether it is enabled or not—workable on a
small scale, but not viable for automation purposes. The remediation suggested is to edit
/etc/ssh/sshd_config to set the following parameter:

PermitRootLogin no

So far, so good—the CIS Benchmark document is quite descriptive, and even gives us a
head start with our coding. However, as stated previously, these snippets don't really help
us to either check or implement this recommendation in an automated manner.

Suppose we want to audit for this condition using a shell script. In this instance, we would
want to run the grep command mentioned in the benchmark document, but use a more
precise pattern to ensure we only match the PermitRootLogin line when it is set to no. We
would then check for the desired output and echo a suitable message to the console,
depending on the result of the check. This script might look like this (noting that there are
multiple ways to achieve the same end result in shell scripting!):

#!/bin/sh
#
This file implements CIS Red Hat Enterprise Linux 7 Benchmark
Recommendation 5.2.8 from version 2.2.0
echo -n "Ensure root logins are disabled on SSH... "
OUTPUT=$(grep "^PermitRootLogin no" /etc/ssh/sshd_config)
if ["x$OUTPUT" == "x"]; then
 echo FAILED!
else
 echo OK
fi

The script is fairly straightforward for anyone familiar with shell scripts, but in brief, here
are the steps:

We put some useful documentation in the comments at the top of the file so that1.
we know which recommendation we are testing for. Note that recommendation
numbers might change between document versions and so it is important to
record both.
We echo a line of informative text about the test we are running.2.
Then, the suggested audit command from the CIS Benchmark is run, only this3.
time we are checking for the presence of the PermitRootLogin no line. The
output is captured in an OUTPUT variable.

Using CIS Benchmarks Chapter 13

[362]

If the contents of OUTPUT are blank, then we know the line we are checking for4.
does not exist in the file and the test is assumed to have failed. We can safely
assume this because root logins are enabled by default in the OpenSSH server,
and so if this line is absent from the configuration file, then provided there were
no issues with our grep pattern, root logins are enabled. We echo this to the
Terminal so that the user knows to take action.
The only condition under which the OUTPUT variable should contain text is when5.
the grep command finds the desired pattern. If this condition is achieved, then
we echo a different message for the user so that they know that this test has
passed and no further action is required.

Let's see this script in action, along with an attempt to fix the problem by hand:

Here, we can see a prime example of the manual process, which many system
administrators and engineers will be familiar with when managing their estates. We ran the
check script defined previously and it yielded the response FAILED!. Thus, our first step
was to take a look at the config file to see why the test failed. There were one of two
possibilities that would have caused this result—either the line containing
PermitRootLogin was not present at all, or it was commented out. In this case, the former
proved to be true.

Using CIS Benchmarks Chapter 13

[363]

If the line had been present, but commented out, we could have used sed (or another inline
editing tool) to uncomment the line and set the parameter to no. However, as the line was
not present, we needed to append the line to the file, which we have done in the previous
screenshot using the tee -a command. Note that this was needed in conjunction with
sudo because only root can write to this file. We then run the test a second time and it
passes. Of course, you will note that it would have been entirely possible to simply open
this file with vim (or your favorite editor) and correct the issue manually; however, the
previous example could lend itself to a scripted solution.

As shown from the preceding example, this is an incredibly slow and manual process. This
would be bad enough to perform on a single server (for example, the template image), but
imagine scaling this up across an entire estate of Linux servers, and then to all the
recommendations in the CIS Benchmark document. The task would be a full-time (and very
tedious) job for someone.

It's better to automate the process and you will note that, in the CIS Benchmark document,
there is not only a test case for auditing the recommendation on a server, but also a
recommended alteration. In most cases, this is simply a statement of the line(s) that should
be present in the given configuration file(s). In this case, we want to assert the following:

PermitRootLogin no

If we were to try and remedy this issue by developing our shell script further, we would
need to perform the following steps when the test results are in a FAILED! state (on an OK
result, no further action is necessary):

As we have failed to match the desired pattern in the file, we know that the line1.
is either present, but has the wrong setting, or is not present at all (either absent
or commented out). We can ignore the difference between the last two
possibilities as it will do no harm to leave the commented out line in place and
add the correct line in. Thus, our first task is to test for the presence of the
PermitRootLogin line, regardless of its setting:

 OPTPRESENT=$(grep -e "^PermitRootLogin.*" /etc/ssh/sshd_config)
 if ["x$OPTPRESENT" == "x"]; then
 ...
 else
 ...
 fi

Using CIS Benchmarks Chapter 13

[364]

In the previous screenshot, we are looking for any line in the configuration file2.
that begins with PermitRootLogin. If we get nothing back (our positive test
case), then we know we must add the line to the file by adding the following
directly under the if statement:

 echo "Configuration not present - attempting to add"
 echo "PermitRootLogin no" | sudo tee -a /etc/ssh/sshd_config
1>/dev/null

So far, so good. However, if our grep command did return some output, we3.
know the line is present and the value is incorrect, and so we can use a tool such
as sed to modify the line in place:

 echo "Configuration present - attempting to modify"
 sudo sed -i 's/^PermitRootLogin.*/PermitRootLogin no/g'
/etc/ssh/sshd_config

When we have modified the file (regardless of the route taken), we know we4.
must restart sshd for the changes to be picked up. Thus, under the closing fi
statement of the inner if construct, we add the following:

 sudo systemctl restart sshd

When we run this with an SSH configuration where this setting is not present, we5.
see the following behavior—note that a second run of the script shows that the
modifications were successful:

Similarly, if we run it and the line is present and not correct according to the CIS6.
Benchmark, we see the following:

Using CIS Benchmarks Chapter 13

[365]

This is excellent—we have just used shell scripts to automate one of the recommendations
in the CIS Benchmark document. However, you will note that the shell script we developed
contains a lot of repetition and would not be easy to pick up by someone else.

Further, this recommendation is one of the more simple ones—there is only one line to
modify in one file in this case. What if the recommendation is more in depth? Let's take a
look at that in the next section.

Ensuring packet redirect sending is disabled
Recommendation 3.1.2 of the version 2.2.0 RHEL benchmark is somewhat more
detailed—this is a scored level 1 benchmark that ensures that your servers do not send
routing information to other hosts. Unless they have been configured as a router, there
should be no good reason for them to do this.

From the documentation itself, we can see that the recommended audit commands (and
results) are as follows:

$ sysctl net.ipv4.conf.all.send_redirects
net.ipv4.conf.all.send_redirects = 0
$ sysctl net.ipv4.conf.default.send_redirects
net.ipv4.conf.default.send_redirects = 0
$ grep "net\.ipv4\.conf\.all\.send_redirects" /etc/sysctl.conf
/etc/sysctl.d/*
net.ipv4.conf.all.send_redirects = 0
$ grep "net\.ipv4\.conf\.default\.send_redirects" /etc/sysctl.conf
/etc/sysctl.d/*
net.ipv4.conf.default.send_redirects= 0

The commands to be run begin with the $ character, while the desired results are shown on
the following line. We can already see that developing this into a shell script is going to
take some work—we need to validate the output of the two sysctl commands, and then
also check the configuration files to ensure that the parameters will persist across reboots
and kernel parameter reloads.

Using CIS Benchmarks Chapter 13

[366]

We can check for the current kernel parameter setting quite easily using some shell code
such as this:

echo -n "Ensure net.ipv4.conf.all.send_redirects = 0... "
OUTPUT=$(sysctl net.ipv4.conf.all.send_redirects | grep
"net.ipv4.conf.all.send_redirects = 0" 2> /dev/null)
if ["x$OUTPUT" == "x"]; then
 echo FAILED!
 else
 echo OK
fi

You will note that the code structure is almost identical to that which we used to check the
PermitRootLogin parameter for SSH—hence, although the code to automate our auditing
process is getting easier, it is also getting highly repetitious and inefficient. A similar block
of code would then be used to check the value of
the net.ipv4.conf.default.send_redirects parameter.

We can also check the persistent configuration of these parameters, again, by building the
audit commands from the CIS Benchmark document into a conditional structure similar to
what we did previously:

echo -n "Ensure net.ipv4.conf.all.send_redirects = 0 in persistent
configuration..."
OUTPUT=$(grep -e "^net\.ipv4\.conf\.all\.send_redirects = 0"
/etc/sysctl.conf /etc/sysctl.d/*)
if ["x$OUTPUT" == "x"]; then
 echo FAILED!
 else
 echo OK
fi

Once again, we would replicate this block for
the net.ipv4.conf.default.send_redirects parameter. Thus, once again, we have
successfully built up a script to audit this benchmark—running it on our system looks
something like this:

Using CIS Benchmarks Chapter 13

[367]

That's 35 lines of shell script (albeit with a few comments at the top of the file), much of it
repetitious, and all just to know that we have completely failed to meet this requirement!
Once again, if we are to expand this example to resolve the issues, we need to expand our
script.

Setting the active kernel parameters is quite easy—we just need to add a series of
commands such as the following into the FAILED! branch of our first two if constructs:

 echo "Attempting to modify active kernel parameters"
 sudo sysctl -w net.ipv4.conf.all.send_redirects=0
 sudo sysctl -w net.ipv4.route.flush=1

We could add something similar for net.ipv4.conf.default.send_redirects in the
appropriate place.

For our persistent parameters, however, things are a bit more tricky—we need to deal with
the two possible configuration file scenarios as with the PermitRootLogin example, but
now we have a configuration that is built up of a series of files and we must choose which
file to modify if the parameter isn't present.

Thus, once again, we must build up a block of code to handle these two differing scenarios:

 OPTPRESENT=$(grep -e "^net\.ipv4\.conf\.all\.send_redirects"
/etc/sysctl.conf /etc/sysctl.d/*)
 if ["x$OPTPRESENT" == "x"] ; then
 echo "Line not present - attempting to append configuration"
 echo "net.ipv4.conf.all.send_redirects = 0" | sudo tee -a
/etc/sysctl.conf 1>/dev/null
 else
 echo "Line present - attempting to modify"
 sudo sed -i -r
's/^net\.ipv4\.conf\.all\.send_redirects.*/net.ipv4.conf.all.send_redirects
= 0/g' /etc/sysctl.conf /etc/sysctl.d/*
 fi

That's a pretty ugly and difficult-to-read piece of code. What it does is as follows:

It runs a second grep against the known configuration files to see whether the1.
parameter is in there, regardless of its value.
If the parameter is not set, then we choose to append it to /etc/sysctl.conf.2.
If the parameter is set, we instead use sed to modify the parameter, forcing it to3.
our desired value of 0.

Using CIS Benchmarks Chapter 13

[368]

Now when we run this script as before, we get the following:

As we can see, this works nicely; however, we are now up to 57 lines of shell code and
much of it starting to get quite unreadable. All of this is for setting just two kernel
parameters, and although we have now built up a fairly solid code base for taking the CIS
Benchmarks (along with their recommended audit and remediation steps), it is not scaling
at all well.

Further, these scripts are all being run locally in the preceding example—what if we
wanted to run them from a central place? In the next section, we will take a look at exactly
that.

Running CIS Benchmark scripts from a remote
location
The challenge with shell scripting is that, while it is easy to run on the machine where the
scripts exist, it is a little more difficult to do on a remote machine.

Using CIS Benchmarks Chapter 13

[369]

The scripts we developed previously are designed to be run from an unprivileged
account—thus, we have used sudo on the steps that specifically require root access to be
run. This is fine when you have passwordless sudo access set up, but when a password is
required for elevated access using sudo, this further complicates the task of running the
scripts remotely.

Of course, the entire script could be run as root and, depending on your use case and
security requirements, this may or may not be desirable. Let's take a look at the task of
running our send redirect example on a remote system called centos-testhost. To
achieve this, we need to do the following:

SSH into the remote system and authenticate—this could be with a password or1.
SSH keys that were set up previously.
Invoke the shell required to run the script we have developed—in our examples,2.
this is /bin/bash.
We add the -s flag to the bash command—this causes the shell to read its3.
command from the standard input (that is, the commands can be piped to it).
Finally, we pipe our script across to bash.4.

There is one further caveat to this approach—in our script, we have boldly assumed that
the commands we rely on (such as sysctl) exist within one of the directories defined in
the PATH variable. It could be argued that this is flawed—however, it can also make script
development easier, especially when building up scripts that might be used in a cross-
platform environment.

For example, although we have been exclusively working with the RHEL 7 CIS Benchmark
in this chapter, it is fair to assume that Ubuntu Server would also want to have SSH root
logins disabled, and not send packet redirect information unless it is explicitly configured
as a router. Hence, we might reasonably expect the scripts we have developed so far to
work on both systems and save us some development effort.

However, on RHEL 7 (and CentOS 7), the sysctl command is found in
/usr/sbin/sysctl, whereas on Ubuntu it is in /sbin/sysctl. This difference in itself
could be handled by defining the path to sysctl in a variable at the top of the script, and
then calling it via this—however, even so, it would mean modifying many scripts related to
CIS hardening, like so:

RHEL 7 systems
SYSCTL=/usr/sbin/sysctl
$SYSCTL -w net.ipv4.conf.all.send_redirects=0

Ubuntu systems

Using CIS Benchmarks Chapter 13

[370]

SYSCTL=/sbin/sysctl
$SYSCTL -w net.ipv4.conf.all.send_redirects=0

In short, this is better than our original approach, but still highly manual and messy.
Returning to the task of running our existing script remotely, putting all our requirements
together, we might run it using the following command:

$ ssh centos-testhost 'PATH=$PATH:/usr/sbin /bin/bash -s' <
cis_v2.2.0_recommendation_3.1.2.sh

The preceding command assumes we are running the script as the current user on the local
system—we could explicitly set the user by adding it before the hostname:

$ ssh james@centos-testhost 'PATH=$PATH:/usr/sbin /bin/bash -s' <
cis_v2.2.0_recommendation_3.1.2.sh

Running this against our remote system (including a second run to ensure the
modifications took place effectively) will look something like this:

Using CIS Benchmarks Chapter 13

[371]

We can see that this has been effective against our remote system and that no modification
to our original script was required. All of this, while very effective, is somewhat inefficient
and cumbersome, especially when compared to our experience with Ansible. In fact, it is
fair to say that these examples demonstrate the value that Ansible brings to automating
fundamental system administration tasks. To develop this, in the next chapter, we will look
at how to build upon our foundation in CIS Benchmarks by developing Ansible playbooks
to carry out the tasks required.

Summary
In today's highly connected world, system security is paramount, and while Linux has long
been regarded as a secure operating system, there is much that can be done to enhance its
security. CIS Benchmarks provided one such standardized approach by bringing together a
consensus on security best practices from across the technology industry. CIS Benchmarks,
however, are extensive and, if applied by hand, would take many hours for an engineer to
implement on a single system. Thus, automating their deployment is of vital importance.

In this chapter, you have learned about CIS Benchmarks, what they are for, and the benefits
they bring. You then learned about the balance between security and application support,
and how to make informed decisions when applying a server hardening policy. You also
learned how to make use of shell scripts to apply some example security policies on a Linux
server.

In the next chapter, we will develop this concept further by demonstrating effective
methods for automating the deployment of CIS Benchmark recommendations using
Ansible.

Questions
Why are CIS Benchmarks relevant to securing Linux servers?1.
If you secure Ubuntu Server with the appropriate benchmark and then install2.
nginx on that server, does that also need hardening?
What is the difference between a level 1 and a level 2 benchmark?3.
Why are some benchmarks scored and others not?4.
How can you check using a shell script that a given audit requirement has been5.
met?

Using CIS Benchmarks Chapter 13

[372]

State three possible issues relating to automated modification of configuration6.
files using a shell script.
Why do shell scripts not scale well for the automated rollout of CIS Benchmarks?7.
How can you run a CIS Benchmark shell script on a remote server using SSH?8.
Why would you want to make use of a variable to specify the path to a binary9.
used to implement a CIS recommendation?
Why might you use sudo for individual commands within a script rather than10.
needing the whole script to run as root?

Further reading
To review common questions about the CIS Benchmarks, please refer to https:/
/www.cisecurity. org/ cis- benchmarks/ cis- benchmarks- faq/ .
A full list of CIS Benchmarks is available at https:/ /www. cisecurity. org/ cis-
benchmarks/ .
For a greater understanding of Linux shell scripting, please refer to Mastering
Linux Shell Scripting, Second Edition, Andrew Mallett and Mokhtar Ebrahim (https:/
/www.packtpub. com/ gb/ virtualization- and- cloud/ mastering- linux- shell-
scripting- second- edition).
To understand more about SELinux and how to create your own policies, please
refer to SELinux System Administration, Second Edition, Sven Vermeulen (https:/ /
www.packtpub. com/ gb/ networking- and- servers/ selinux- system-
administration- second- edition).

https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-linux-shell-scripting-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition
https://www.packtpub.com/gb/networking-and-servers/selinux-system-administration-second-edition

14
CIS Hardening with Ansible

In Chapter 13, Using CIS Benchmarks, we explored in detail the concept of CIS Benchmarks,
how they benefit Linux security in the enterprise, and how to apply them. We examined in
some detail an example of the CIS hardening benchmarks, that being the one for Red Hat
Enterprise Linux (and CentOS) 7. Although we concluded that the benchmark document
provided a great deal of detail regarding the validation checks, and even how to implement
the benchmarks, we also saw that the whole process was incredibly manual. Further, with
almost 400 pages of detail to a single operating system benchmark, we established that the
potential workload for an engineer to implement this on just one server would be huge.

In this chapter, we will once again bring Ansible into consideration. We have already
established that Ansible lends itself extremely well to automation at enterprise scale, and
implementation of the CIS Benchmarks is no exception. As we proceed through this
chapter, we will learn how to rewrite the CIS Benchmarks in Ansible, and then how to
apply them at enterprise scale and even maintain oversight of the ongoing compliance of
your Linux servers against these benchmarks going forward. In doing this, we will develop
a highly scalable, repeatable approach to implementing security benchmarks in the
enterprise in a manner that is manageable, repeatable, reliable, and secure – all the
hallmarks of effective automation in the enterprise.

The following topics will be covered in this chapter:

Writing Ansible security policies
Application of enterprise-wide policies with Ansible
Testing security policies with Ansible

Technical requirements
This chapter includes examples based on the following technologies:

CentOS 7.6
Ansible 2.8

CIS Hardening with Ansible Chapter 14

[374]

To run through these examples, you will need access to a server or virtual machine running
the operating system listed previously, alongside Ansible. Note that the examples given in
this chapter may be destructive in nature (for example, they delete files and make changes
to server configuration) and if run as shown are only intended to be run in an isolated test
environment.

Once you are satisfied that you have a safe environment to operate in, we can get started
with routine system maintenance with Ansible.

All example code discussed in this chapter is available on GitHub at the following
URL: https://github. com/ PacktPublishing/ Hands- On-Enterprise- Automation- on-
Linux/tree/master/ chapter14.

Writing Ansible security policies
In Chapter 13, Using CIS Benchmarks, we explored the CIS Benchmark for Red Hat
Enterprise Linux 7 (version 2.2.0) and looked in detail at the document and implementation
techniques. Although throughout this book we have focused on two of the more common
operating systems found in the enterprise – Ubuntu Server LTS and RHEL/CentOS 7 – in
the previous chapter, we chose to focus on the CIS Benchmark for RHEL 7 alone. This was
purely for simplicity, as many of the good security practices that apply to RHEL 7 will also
apply to Ubuntu Server LTS. For example, neither system should have root SSH logins
enabled, and neither should have packet redirect sending enabled unless it is core to their
role.

In this chapter, we will continue to develop our RHEL 7-based example. Please know that
most of the techniques employed in this chapter for automating the implementation of this
benchmark with Ansible will apply equally well to Ubuntu Server LTS, and so it is hoped
that the knowledge you gain from this chapter will serve you well when it comes to
implementing security benchmarks on Ubuntu, or any other Linux server to which they
may apply.

Let's get straight into some practical, hands-on examples of developing CIS Benchmark
implementations, only this time we will use Ansible rather than shell scripts based on the
example code in the CIS Benchmark document.

Let's start by considering our old friend, the remote root login.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux/tree/master/chapter14

CIS Hardening with Ansible Chapter 14

[375]

Ensuring remote root login is disabled
In the previous chapter, we devised the following shell script to test for the condition
described in CIS Benchmark recommendation 5.2.8 (RHEL 7, benchmark version 2.2.0), and
then implemented it if the condition was not met. It is included here so that it can be
contrasted against the Ansible solution we are about to create:

#!/bin/bash
#
This file implements CIS Red Hat Enterprise Linux 7 Benchmark
Recommendation 5.2.8 from version 2.2.0
echo -n "Ensure root logins are disabled on SSH... "
OUTPUT=$(grep -e "^PermitRootLogin no" /etc/ssh/sshd_config)
if ["x$OUTPUT" == "x"]; then
 echo FAILED!
 OPTPRESENT=$(grep -e "^PermitRootLogin.*" /etc/ssh/sshd_config)
 if ["x$OPTPRESENT" == "x"]; then
 echo "Configuration not present - attempting to add"
 echo "PermitRootLogin no" | sudo tee -a /etc/ssh/sshd_config
1>/dev/null
 else
 echo "Configuration present - attempting to modify"
 sudo sed -i 's/^PermitRootLogin.*/PermitRootLogin no/g'
/etc/ssh/sshd_config
 fi
 sudo systemctl restart sshd
else
 echo OK
fi

This shell script is for just one of the numerous benchmarks, and although it does work, it is
quite fragile and does not scale across multiple systems. Further, the script is not at all easy
to read, and so imagine the scale of the script that would be required if all the CIS
Benchmark recommendations were implemented!

Let's consider how we might rewrite this functionality in an Ansible role instead. First of
all, we know we are testing for a specific line of configuration in a single file. If it is not
present, then we know that the configuration (implicit or otherwise) is to allow remote root
logins. In this instance, we carry out two actions: first of all, we modify the configuration
file to insert the correct line (or modify the existing line if it exists but has the wrong value
configured). Then, we restart the SSH daemon if the configuration file was changed.

CIS Hardening with Ansible Chapter 14

[376]

Our experience with Ansible has shown us that the lineinfile module can handle nearly
all of the work-related to both checking the configuration file and modifying it if the
requisite line isn't correctly configured. We have also learned that the service module can
easily restart the SSH daemon, and that this module would be run from a handler rather
than in the main task flow to ensure that the daemon is not restarted unless the
configuration is actually modified.

Thus, we might define a role containing a single task that looks like this in a role called
rhel7cis_recommendation528:

- name: 5.2.8 Ensure SSH root login is disabled (Scored - L1S L1W)
 lineinfile:
 state: present
 dest: /etc/ssh/sshd_config
 regexp: '^PermitRootLogin'
 line: 'PermitRootLogin no'
 notify: Restart sshd

Notice how we have given the task a meaningful name – taken, in fact, directly from the
CIS Benchmark document itself. Thus, we know exactly which benchmark this is, what it is
for, and whether or not it is scored. We have also inserted the level information into the
title as again this would save us from cross-referencing the original CIS Benchmark
document later on.

Alongside our role tasks, we also want to create a handler to restart the SSH daemon if we
modify the configuration file (it will not pick up the changes without this) – an example of
suitable code for this handler is as follows:

- name: Restart sshd
 service:
 name: sshd
 state: restarted

We can already see that this playbook is much easier to read than our original shell script
– there is none of the code duplication we found when we implemented this benchmark in
a shell script, and the lineinfile module is so powerful that it wraps all of our various
checks up into one single Ansible task.

Running the role should yield output similar to that shown in the following screenshot on a
system that has remote root logins enabled:

CIS Hardening with Ansible Chapter 14

[377]

By contrast, if the recommendation is already implemented, then the output will look like
that shown in the following screenshot:

As you can see, if the condition is met, the lineinfile module makes no changes
(resulting in the ok status seen in the preceding screenshot), and the handler does not run
at all.

This in itself is extremely powerful, and a huge improvement over our shell script in terms
of both manageability and coding effort. Nonetheless, the RHEL 7 CIS Benchmark contains
almost 400 recommendations, and you would not want to have to create and include 400
roles in a playbook run as this would detract from the otherwise manageable nature of our
Ansible automation.

CIS Hardening with Ansible Chapter 14

[378]

In the next section of this chapter, we will look at expanding our current playbook by
adding another recommendation from section 5 of the CIS Benchmark, thus building up our
playbook code in a scalable, manageable fashion.

Building up security policies in Ansible
If we were to proceed precisely as we did in the previous section, then when it comes to
section 5.2.9 of the RHEL 7 CIS Benchmark version 2.2.0 (Ensure SSH
PermitEmptyPasswords is disabled), we would create a new role
called rhel7cis_recommendation529 and put the relevant tasks and handlers inside it.

I'm sure that you will be able to see that this does not scale well – the creation of a new role
means we need to specify it in our top-level playbook, which would look something like
the following:

- name: Test and implement CIS benchmark
 hosts: all
 become: yes

 roles:
 - rhel7cis_recommendation528
 - rhel7cis_recommendation529

Having one role per line, with almost 400 roles to include, would quickly become tedious
and detract from the highly manageable nature of our Ansible code.

Exactly how you divide up your Ansible tasks into roles is up to you, and you should
utilize the method that you find most manageable. As a suggestion, though, looking at the
table of contents for our example CIS Benchmark, we can see that the recommendations are
divided into six sections. Those in section 5 relate specifically to Access, Authentication, and
Authorization, and thus it is entirely logical that we might want to group all of these
together into one role, perhaps called rhel7cis_section5.

With this decision made regarding playbook structure, we can now proceed to build both
the checks for recommendations 5.2.8 and 5.2.9 into the same role. They can share the same
handler too, as both relate to SSH daemon configuration. Thus, our new role's tasks could
look like the following:

- name: 5.2.8 Ensure SSH root login is disabled (Scored - L1S L1W)
 lineinfile:
 state: present
 dest: /etc/ssh/sshd_config

CIS Hardening with Ansible Chapter 14

[379]

 regexp: '^PermitRootLogin'
 line: 'PermitRootLogin no'
 notify: Restart sshd

- name: 5.2.9 Ensure SSH PermitEmptyPasswords is disabled (Scored - L1S
L1W)
 lineinfile:
 state: present
 dest: /etc/ssh/sshd_config
 regexp: '^PermitEmptyPasswords'
 line: 'PermitEmptyPasswords no'
 notify: Restart sshd

The resulting code is still highly readable and is broken down into manageable chunks, but
is now not so granular that it would be difficult to maintain the top-level playbook.

Our handler code remains the same as before, and now when we run the role on a system
that does not meet either of these recommendations, the output should look something like
the following screenshot:

CIS Hardening with Ansible Chapter 14

[380]

This is very clean and tidy, and hopefully you can see how this could scale well when it
comes to implementing all of the nearly 400 recommendations from the CIS Benchmark if
you chose to do so. However, it also raises an important consideration: in an ideal world,
all of the CIS recommendations would be applied to every machine, yet in reality, this is
not always possible. In the Applying security policy wisely section of Chapter 13, Using CIS
Benchmarks, we discussed a variety of recommendations that you would apply caution to
implementing. In addition, as much as it is desirable to never perform a remote login with
the root account over SSH, I have come across systems where this is actually required to
support some kind of legacy system until it can be updated.

In short, there will always be a requirement for exceptions in the process of policy
enforcement. The important thing is to handle this in a graceful manner. Say you have 100
Linux machines to apply our newly written mini security policy to, but that two require
remote root logins to be enabled.

In this instance, we have two choices:

Maintain a separate set of playbooks for the two servers where the exceptions are
required
Find a way to selectively run the tasks in our role without having to modify it

Of these choices, the second is clearly the better of them as it supports us in maintaining
one single playbook. But how do we achieve this?

Ansible offers us two tools to approach this problem. The first is the when clause that we
have already considered several times in this book. So far, we have only looked at this
clause to evaluate a condition programatically (for example, to run a disk cleanup on the
condition that free space on the disk falls below a certain value). In this instance, we
employ a much simpler implementation – simply evaluating whether a Boolean value is
true or not.

Suppose that we add the following code below our task to implement recommendation
5.2.8:

 when:
 - recommendation_528|default(true)|bool

CIS Hardening with Ansible Chapter 14

[381]

These two lines evaluate a variable called recommendation_528 and applies two Jinja2
filters to ensure it is processed correctly, even when the variable is undefined:

The default filter sets the variable to true by default as Ansible will fail the
play with an error if any variable it encounters is undefined. This removes the
need for us to define these variables up-front – our role simply defaults them to
true unless we set them otherwise.
The second filter casts them to a bool type to ensure a reliable evaluation of the
condition.

Remember that true can be both a string and a Boolean value, depending
on how you interpret it. Using the |bool filter ensures that Ansible
evaluates it in the Boolean context.

Similarly, for the second task, we would add the following immediately below the notify
clause:

 when:
 - recommendation_529|default(true)|bool

Now, if we run the playbook without doing anything else to it against a system that is not
compliant, it behaves exactly as it did before, as shown in the following screenshot:

CIS Hardening with Ansible Chapter 14

[382]

The magic now happens when we want to run it against a system where we wish to skip
one or both of these recommendations. Imagine that our host, legacy-testhost, is a
legacy system where remote root logins are still a requirement. To use this role on this
particular system, we know that we must set recommendation_528 to false. This can be
performed at a variety of levels, and the inventory is probably the most sensible place to
define it as it prevents someone from accidentally running the playbook in the future
without defining this and hence breaking our legacy code by denying remote root logins.
We can create a new inventory for this system that might look something like this:

[legacyservers]
legacy-testhost

[legacyservers:vars]
recommendation_528=false

Having set the variable for the recommendation we want to skip to false, we can then run
our role against this new inventory, and the results should look something like those
shown in the following screenshot:

This was exactly what we desired – recommendation 5.2.8 was skipped on our legacy
system, and all we had to do was define a variable in the inventory – the role code from all
our other servers was reused.

CIS Hardening with Ansible Chapter 14

[383]

Using the when clause with a simple Boolean variable works well for simple decisions like
this, but what about when you have multiple criteria to evaluate? Although the when clause
can evaluate both logical and and or constructs, this could become somewhat difficult to
manage as complexity increases.

Ansible tags are the second tool that will help us here, and these are a special feature that is
designed specifically to allow you to run only desired portions of a role or playbook, rather
than having to run the whole thing from start to finish. Suppose that we add the following
tags below our task for implementing recommendation 5.2.8:

 tags:
 - notlegacy
 - allservers

Below the task for recommendation 5.2.9, we might add the following:

 tags:
 - allservers

The behavior of these tags is best explained by example, and as this is a hands-on book, we
will do exactly that. The first thing to note is that adding tags to a playbook (or role within a
playbook) does absolutely nothing unless you specify which tags to run, or to skip. Thus, if
we run our playbook in its current form, it behaves exactly as it always has, in spite of the
addition of the tags, as the following screenshot shows:

CIS Hardening with Ansible Chapter 14

[384]

The magic comes when we specify which tags are to be run. Let's repeat the previous
command, but this time add --skip-tags=notlegacy. The switch does exactly what it
implies – all tasks with the notlegacy tag are ignored. The following screenshot shows the
output from such a run of this playbook:

Here, we see a marked difference from the use of the when clause – where previously we
observed that our task for recommendation 5.2.8 was evaluated but subsequently skipped,
it does not even appear in the preceding playbook output – in short, the entire task has
been treated as if it didn't exist.

If we had run the playbook with the --tags=allservers option, we would have
observed both tasks running, as both were tagged with this value.

This becomes incredibly useful not only for our example here, but when considering the
wider benchmark document. For example, we have already discussed that all
recommendations are either level 1 or level 2. Equally, we know that some are scored, and
some not.

CIS Hardening with Ansible Chapter 14

[385]

Knowing that level 1 benchmarks are less likely to disrupt the day-to-day running of a
Linux server, we could implement all recommendations in a playbook with the level as one
of the tags for each, and then if we were to run the playbook with --tag=level1, then
only the level 1 recommendations would be implemented. Working with this example, the
tags for our task for recommendation 5.2.8 might be as follows:

 tags:
 - notlegacy
 - allservers
 - level1
 - scored

When you are building up your roles and playbooks to implement security benchmarks,
regardless of the operating system or security standard, it is recommended that you make
use of the when clause and tags to the best of your advantage. Remember – when
automating at enterprise scale, the last thing you want is lots of fragmented pieces of code
to manage, all of which are similar but do slightly different things. The more you can
standardize, the more manageable your enterprise will be, and appropriate use of these
features will serve you well in ensuring you can maintain a single Ansible code base, and
yet tailor its actions at runtime to handle the exceptions in your server estate.

Since we have been considering appropriate playbook and role structure for our security
benchmark, we have deliberately kept our examples simple in this section. In the next
section, we will revisit some of the more complex examples we highlighted in Chapter 13,
Using CIS Benchmarks, and demonstrate how Ansible makes them far easier to code and
understand.

Implementing more complex security
benchmarks in Ansible
One of the examples we considered in detail in Chapter 13, Using CIS Benchmarks, was
recommendation 3.1.2, which is concerned with packet redirect sending being disabled.
This is considered important on any machine that is not supposed to be acting as a router
(though it should not be implemented on a router as it would stop the router from
functioning correctly).

CIS Hardening with Ansible Chapter 14

[386]

On the face of it, this recommendation looks quite straightforward – we simply need to set
these two kernel parameters, as follows:

net.ipv4.conf.all.send_redirects = 0
net.ipv4.conf.default.send_redirects = 0

In spite of this apparent simplicity, we ended up developing almost 60 lines of shell script
to implement this check because we had to check both the currently active kernel
parameters and persistent configuration file values, and then perform the appropriate
changes if the values were not set as desired.

Here, once again, Ansible comes to our rescue. The sysctl module within Ansible wraps
up many of the tests and configuration work that we constructed into our shell script.
Further, we can use a loop so that the same task code can we run twice – once against each
of the aforementioned kernel parameters.

When developing a role for this, we could define a single task that looks something like
this:

- name: 3.1.2 Ensure packet redirect sending is disabled (Scored - L1S L1W)
 sysctl:
 name: "{{ item.paramname }}"
 value: "{{ item.paramvalue }}"
 reload: yes
 ignoreerrors: yes
 sysctl_set: yes
 state: present
 loop:
 - { paramname: net.ipv4.conf.all.send_redirects, paramvalue: 0 }
 - { paramname: net.ipv4.conf.default.send_redirects, paramvalue: 0 }
 notify:
 - Flush IPv4 routes

The recommendation also says that if we implement these changes, we should also flush
out the IPv4 routes on the system. This is also achieved through a sysctl parameter, and
so we simply use the sysctl module again, only this time in a handler:

- name: Flush IPv4 routes
 sysctl:
 name: net.ipv4.route.flush
 value: "1"
 sysctl_set: yes

CIS Hardening with Ansible Chapter 14

[387]

Running this against a test system might yield output similar to that shown in the following
screenshot:

As we can see from the preceding screenshot, this code has run successfully and applied
the setting recommended by the benchmark, and as a direct result of the change, the
handler has fired and flushed the IPv4 routes. The overall result of this is that what took 57
lines of fairly unreadable shell script can now be achieved in 14 lines of far more readable
YAML.

So far, we have built up a clear picture of how Ansible can make the design and
implementation of CIS recommendations straightforward, especially when compared to
alternatives such as shell scripting. We have noted that native Ansible modules such as
sysctl and lineinfile can gracefully wrap up a multitude of steps that would have
have been performed by a shell script. However, there are times when you, as the playbook
author, must make some important decisions for your playbooks, and we will look at this
in more detail in the following section.

CIS Hardening with Ansible Chapter 14

[388]

Making appropriate decisions in your playbook
design
As you build up your roles and playbooks to implement security baselines, you will
discover that some of your implementation will be cut and dried (for example, you will
almost certainly know whether you want root SSH logins to be possible or not), whereas
there will be decisions to be made for other aspects. Time synchronization is one such
example, and in this section, we will explore this in more detail to demonstrate the kinds of
decisions you can expect to make when designing your roles, as well as how to address
them in a constructive manner.

If you review section 2.2.1 of the RHEL 7 CIS Benchmark (version 2.2.0), you will see that it
is entirely concerned with time synchronization. Indeed, this is an important function in
just about every Enterprise Linux infrastructure, and discrepancies between the clocks on
servers can cause issues such as with certificate validity and Kerberos tickets.

Although it is almost universally agreed that time synchronization is vitally important,
there is less agreement on the way to achieve it. For example, there are two main time
synchronization services available for most mainstream Linux distributions:

chrony

ntpd

Although chrony is now the standard on RHEL 7, this does not mean that the venerable
ntpd service will no longer work – in fact, some enterprises still choose to implement this
because they have extensive experience with it.

It is entirely possible to get Ansible to detect which of these two services a given Linux
server is using – at a high level, we could get Ansible to do the following:

Query the RPM package database to see whether ntpd, chrony, or both are1.
installed.
If one or both are installed, detect which one is active:2.

a. If neither are active, this needs rectifying as we have established the need
for time synchronization.

b. If both are active, the services will clash and one should be disabled.

CIS Hardening with Ansible Chapter 14

[389]

As I'm sure you will see, there comes a point in the preceding process where an
intervention is required – if neither service is started, we need to choose one to start. If both
are active, we need to disable one. This is where Ansible's ability to help ends – it cannot
decide for your particular enterprise which of these two perfectly valid services is best for
your use case.

Thus, it is important to make a decision up-front about which time synchronization service
you are using. With this decision made, playbooks can then be specifically coded to
perform the appropriate checks and equally perform the appropriate remediation steps as
required. In addition, we know from our discussion in Chapter 1, Building a Standard
Operating Environment on Linux, that automation at enterprise scale is supported by
commonality and standards – so we know from these principles that we should choose a
standard time synchronization service and stick with it except where there is a good
business reason to raise an exception.

To progress this example, let's look at recommendation 2.2.1.1. This states that we should
ensure that a time synchronization service is in use – though it is agnostic about which one.
If we have made our decision up-front about which service is relevant, our playbook
development is easy. Suppose we have chosen chrony (the default for RHEL 7); our role
for this recommendation might be as follows:

- name: 2.2.1.1 Ensure time synchronization is in use (Not Scored - L1S
L1W)
 yum:
 name: chrony
 state: present

- name: 2.2.1.1 Ensure time synchronization is in use (Not Scored - L1S
L1W)
 service:
 name: chronyd
 state: started

This simple code ensures that we both check for and satisfy recommendation 2.2.1.1
without the need for any logic to detect which time service is in use. Of course, we could
choose to be more thorough and check that ntpd is not started, but this is left as an exercise
to you.

CIS Hardening with Ansible Chapter 14

[390]

Naturally, we cannot fit all the Ansible code that's required for the roughly 400
recommendations in this CIS Benchmark into this book – that would deserve an entire book
to itself! In addition, this example is just for one benchmark – if your enterprise introduces a
new operating system such as RHEL 8, you can be sure there will be a separate CIS
Benchmark for this operating system that will need to be implemented. However, it is
hoped that the development of these examples from the RHEL 7 CIS Benchmark is
sufficient for you to design and build your own policy. Thus, in the next section of this
chapter, we will look at techniques for making this task manageable at enterprise scale.

Application of enterprise-wide policies with
Ansible
Although we have seen the significant benefits that Ansible can bring to CIS Benchmark
implementation, I'm sure it is apparent at this stage that development and maintenance of
these policies could turn into a full-time job, especially when coupled with the need to run
them against the infrastructure and manage the results of each run.

Fortunately, the spirit of open source development brings a solution to this dilemma.
Imagine if someone had already spent a great deal of time and effort developing a high-
quality set of Ansible roles for implementing CIS Benchmarks, and that this was available
as open source code so that you could audit it, ensure it was fit for your environment, and
tailor it easily if required. Further, imagine that they had put a great deal of time and effort
into tagging each task, and adding appropriate variable structure to allow you to easily
specify your choices such as which time synchronization service your enterprise uses.

Thankfully, this work has already been completed by MindPoint Group, and their code has
been made freely available on GitHub at https:/ /github. com/ MindPointGroup/ RHEL7- CIS.

At the time of writing, the latest CIS Benchmark available for EL7 systems
is version 2.2.0, whereas the aforementioned playbooks are written against
version 2.1.1 of the benchmark. It is up to you to ensure you are aware of
the benchmark version you are implementing, as well as any possible
security implications if you implement a slightly older version.

https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS
https://github.com/MindPointGroup/RHEL7-CIS

CIS Hardening with Ansible Chapter 14

[391]

In addition to this, just as users of Ubuntu may choose paid support or to use the free open
source operating system, and EL7 users may choose between Red Hat Enterprise Linux 7 or
CentOS 7, MindPoint Group also offers a commercially supported version of their Ansible
hardening code, available via https:/ / www. lockdownenterprise. com/ . Thus, they offer
support for both ends of the spectrum, respecting that some enterprises will absolutely
require an enterprise support contract, while others will prefer to use freely available open
source software.

Let's explore how we might use the open source code against our CentOS 7 server:

First of all, we need to clone the GitHub repository:1.

$ cd roles
$ git clone https://github.com/MindPointGroup/RHEL7-CIS.git
$ cd ..

Once this is complete, we can then proceed to use the code exactly as we would2.
use any other role. Where appropriate, we should set variables, which can be set
either in the inventory or in the main playbook (more on this in a second).

Thus, the purest and simplest possible implementation of the MindPoint Group
CIS Benchmark in Ansible once the role has been cloned from GitHub is a
playbook that looks like this:

- name: Implement EL7 CIS benchmark
 hosts: all
 become: yes

 roles:
 - RHEL7-CIS

https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/
https://www.lockdownenterprise.com/

CIS Hardening with Ansible Chapter 14

[392]

With these steps complete, you can literally begin implementing the EL73.
benchmark and its near 400 recommendations on your Linux servers in a matter
of minutes – the playbook is run in the normal manner, and will produce many
pages of output as all the checks are performed and recommendations
implemented (if/when required). The following screenshot shows the playbook
being run and the initial page of output:

Now, a word on variables. As we established in the previous section (Writing Ansible
security policies), there will be occasions where you need to vary your playbook run. The
variables and tags are all documented in the README.md file that accompanies the GitHub
repository we cloned earlier, and for purposes of illustration, let's consider a few examples.

First off, suppose we only want to implement the level 1 recommendations (those that are
less risky to day-to-day operations). This can be achieved by running the playbook and
using the level1 tag:

$ ansible-playbook -i hosts site.yml --tags=level1

CIS Hardening with Ansible Chapter 14

[393]

Alternatively, you might be running the hardening playbooks against a set of servers that
act as routers. In this instance, we would need to set the rhel7cis_is_router variable to
false to ensure that kernel parameters that disable router functionality are not set.

This could be done on the command line as follows:

$ ansible-playbook -i hosts site.yml -e rhel7cis_is_router=true

However, this is very manual, and it would be far too easy for someone to accidentally run
the playbook without setting this variable, suddenly disabling the router.

It would be far better to set this variable at the inventory level, thus ensuring that it is
always set correctly whenever the playbook is run. Thus, we might create an inventory
such as this:

[routers]
router-testhost

[routers:vars]
rhel7cis_is_router=true

With this inventory in place, running the playbook against the routers is performed using a
command such as the following:

$ ansible-playbook -i routers site.yml

As long as this inventory file is used, there is no danger of someone forgetting to set
the rhel7cis_is_router variable to true.

Of course, this discussion does not mean that you must download and use these playbooks
– it is still entirely possible to develop and maintain your own playbooks to your own
requirements. Indeed, there may be situations in which this strategy is actually preferable.

What is important is that you choose the strategy that is best for your enterprise. When
selecting your strategy for implementing security policy at scale, you should take the
following into account:

Whether you want to own your own code (with all the advantages and
disadvantages that brings)
Whether you want to be responsible for the maintenance of your code base going
forward
That you should standardize on one code base as far as possible to ensure your
code structure remains maintainable
Whether you need third-party support on implementing these benchmarks or
whether you are happy that you have the skills and resources in-house

CIS Hardening with Ansible Chapter 14

[394]

Once you have made your evaluation, you will be well placed to define your path forward
with creating Ansible playbooks to implement your chosen security standards. It is
intended that the information provided to you in this chapter so far will be sufficient to
support you in whichever path you choose. Although we have focused on EL7 (Red Hat
Enterprise Linux 7 and CentOS 7) in this chapter, everything we have discussed will scale
well to other operating systems for which there exist security benchmarks (for example,
Ubuntu Server 18.04). In fact, if you run through the processes we have discussed within
this chapter using the CIS Benchmark for Ubuntu Server 18.04, you will find a great deal of
similarity can be achieved.

So far, we have dealt almost exclusively with the implementation of CIS Benchmarks. This
chapter would not be complete, however, without providing a method to check levels of
enforcement without the need to make changes. After all, auditing is an important part of
most enterprise policies, especially where security is concerned, yet changes must be made
under an authorized change request window.

Testing security policies with Ansible
As we have discussed so far, it is important to ensure that not only can you implement
security policies in an efficient and repeatable manner, but that it should also be possible to
audit them. There are a variety of tools available for this task, both closed source and open
source. Before we consider any other tools, though, it is worthwhile looking at how Ansible
itself can assist with this task.

Let's return to one of our original examples, where we were implementing two of the
recommendations from section 5 of the CIS Benchmark.

Previously, we ran this with the following command:

$ ansible-playbook -i hosts site.yml

This ran through the two checks, implementing the changes if the system was not already
compliant with the security recommendations. However, Ansible also has a mode of
operation called check mode. In this mode, Ansible does not make any changes to the
remote system(s) – rather, it tries to predict all changes that might be made to the systems
instead.

Not all modules are compatible with check mode, and so some care is advised when using
this mode. For example, Ansible cannot possibly know the output of running a particular
shell command using the shell module, as there are so many possible permutations of
commands. Also, running shell commands might be destructive or cause a change to the
system, and so any tasks that use the shell module are skipped during a check run.

CIS Hardening with Ansible Chapter 14

[395]

However, many of the core modules we have already used, such as yum, lineinfile, and
sysctl, do support check mode and so can be used quite effectively in this mode.

Thus, if we run our example playbook again, only this time in check mode, we would see
an output similar to what's shown in the following screenshot:

You will notice that this looks exactly like any other playbook run – there are, in fact, no
clues at all that it is running in check mode, other than the -C flag on the command line
invoking this run. However, if you examine the target system, you will see that no changes
were made.

The preceding output is very useful, though, for auditing processes – it demonstrates to us
that the target system does not meet the recommendations for either section 5.2.8 or 5.2.9 of
the benchmark – if these were met, then the result should have been ok. Equally, we know
that the handler only fires in the event that changes are required on the remote system, and
again this tells us that the system is not compliant in some way.

CIS Hardening with Ansible Chapter 14

[396]

It is accepted that some interpretation of the output is going to be required – however, by
exercising good design practices in your roles when you write them (especially when
putting the benchmark section number and title into the task names), then you can very
quickly start to interpret the output and see which systems are not compliant, and further,
which recommendations specifically they fail on.

Further, the variable structure we put in place to determine which tasks are run and when
still applies in check mode, so if we run this playbook on the legacy hosts that need remote
root logins enabled (but this time in check mode), we can see that this task is skipped,
ensuring that we don't get false positives during an audit. The following screenshot shows
this being run:

In this manner (coupled with good playbook design), Ansible code can be reused not just
for implementation purposes, but for auditing purposes too.

It is hoped that this chapter has given you sufficient knowledge to proceed with confidence
when it comes to implementing security hardening on your Linux servers at enterprise
scale, and even auditing them as part of an ongoing process.

CIS Hardening with Ansible Chapter 14

[397]

Summary
Ansible is an incredibly powerful tool that lends itself well to the implementation and
auditing of security benchmarks such as the CIS security benchmark. We have
demonstrated through practical example how it can reduce a shell script of nearly 60 lines
down to less than 20, and how the same code can be easily reused in a variety of scenarios,
and even be used to audit security policies across the enterprise.

In this chapter, you learned how to write Ansible playbooks to apply server hardening
benchmarks such as CIS. You then gained hands-on knowledge of applying server
hardening policies across the enterprise using Ansible, and how to make use of publicly
available open source roles to assist you in this. Finally, you learned about how Ansible
supports testing and auditing of successful policy application.

In the next chapter, we will look at an open source tool called OpenSCAP that can be used
to perform effective auditing of security policies across the enterprise.

Questions
How do Ansible modules such as lineinfile make security benchmark1.
implementation code more efficient than shell scripting?
How can Ansible tasks be made conditional for a specific server or group of2.
servers?
What are good practices for naming your tasks when writing Ansible tasks to3.
implement the CIS Benchmark?
How might you modify a playbook so that you can easily get the CIS level 14.
benchmarks to run without any of the level 2 ones being evaluated?
What is the difference between the --tags and --skip-tags options when5.
running an Ansible playbook?
Why would you want to make use of publicly available open source code for6.
your CIS Benchmark implementation?
What does the -C flag do to a playbook run when used with the ansible-7.
playbook command?
Does the shell module support check mode?8.

CIS Hardening with Ansible Chapter 14

[398]

Further reading
To review common questions about the CIS Benchmarks, please refer to https:/
/www.cisecurity. org/ cis- benchmarks/ cis- benchmarks- faq/ .
A full list of CIS Benchmarks is available at https:/ /www. cisecurity. org/ cis-
benchmarks/ .
For an in-depth understanding of Ansible, please refer to Mastering Ansible, Third
Edition by James Freeman and Jesse Keating (https:/ /www. packtpub. com/gb/
virtualization- and- cloud/ mastering- ansible- third- edition).

https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/cis-benchmarks-faq/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.cisecurity.org/cis-benchmarks/
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition

15
Auditing Security Policy with

OpenSCAP
Throughout the two chapters that preceded this one, we established the value of applying a
security policy such as the CIS Benchmark to your Enterprise Linux infrastructure. We have
discussed a variety of methods for both applying it and ensuring it remains enforced; the
latter point is especially important in an infrastructure where a wide array of people have
superuser access to your Linux servers. Although we have established ways that both shell
scripting and Ansible can assist with auditing the compliance of your infrastructure with
your chosen security policy, we have also established that neither of these are particularly
suited to providing readable and actionable reports of a large infrastructure. For example, it
is entirely reasonable that an infrastructure security team might want a readable report
showing the compliance of the infrastructure with the security policy, and neither shell
scripting nor Ansible immediately lend themselves to this task.

Although there are a wide variety of infrastructure scanning tools available on the market,
most of these are commercial and the focus of this book is on open source solutions that are
accessible to any enterprise, regardless of their budget. Hence, in this chapter, we will
consider the freely available OpenSCAP tool. SCAP stands for Security Content
Automation Protocol, and it is a standardized solution for checking a Linux infrastructure
for compliance against a given security policy (in our case, CIS). OpenSCAP is hence an
open source implementation of SCAP that has been widely adopted by Enterprise Linux
vendors including Red Hat. We will hence explore the process for setting up your own
OpenSCAP infrastructure for compliance scanning and reporting. This, in turn, will enable
all teams with a vested interest in infrastructure security to get oversight of the levels of
compliance.

Auditing Security Policy with OpenSCAP Chapter 15

[400]

Specifically, we will cover the following topics in this chapter:

Installing your OpenSCAP server
Evaluating and selecting policies
Scanning the enterprise with OpenSCAP
Interpreting results

Technical requirements
This chapter includes examples based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

To run through these examples, you will need access to two servers or virtual machines
running one each of the operating systems listed previously and Ansible.

All example code discussed in this book is available from GitHub at: https:/ /github. com/
PacktPublishing/Hands- On- Enterprise- Automation- on-Linux.

Installing your OpenSCAP server
When it comes to scanning your infrastructure, we have a few decisions to make, as the
OpenSCAP project provides a few tools that have overlapping functions. The reason for
this is that they are targeted at different audiences—some are purely command line-driven
and so lend themselves extremely well to scheduled, scripted tasks such as a monthly
compliance report. At the time of writing, there are a total of five OpenSCAP tools
available, and we will look at each of these in more detail in the following sections to enable
you to make an educated decision as to which tool (or tools) are right for your enterprise.

In the following subsection, we will start by looking at the most fundamental tool,
OpenSCAP Base.

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux

Auditing Security Policy with OpenSCAP Chapter 15

[401]

Running OpenSCAP Base
The OpenSCAP Base tool provides the very fundamentals required to scan a single Linux
machine and report on its compliance against a given policy. It actually consists of two
components and so is a requirement for some of the other tools we will look at in the
following subsections.

The first component of this tool is a command-line utility called oscap. This tool can be run
on the local machine using an appropriate security policy and profile to produce a report of
compliance. The report is generated in HTML and so although the process of report
creation is very much manual, the final report is very easy to read and so is well suited for
sending to a security or compliance team for audit or evaluation.

The second component of OpenSCAP Base includes a library that is used as a building
block for other OpenSCAP services such as SCAP Workbench and the OpenSCAP
Daemon—we will cover these in greater detail later in this section.

In this book, we will only make use of the library when we use other OpenSCAP tools. We
will see these tools in action later in this chapter in the section entitled Scanning the
enterprise with OpenSCAP. For now, though, we will concern ourselves with the installation
of OpenSCAP Base.

Installing OpenSCAP Base by hand on a single machine is incredibly easy—it already
comes pre-packaged for the two key Linux distributions we have explored in this
book—Ubuntu Server and CentOS (and hence, by extension, Red Hat Enterprise Linux). To
install it on CentOS 7 or RHEL 7, you would simply run the following command:

$ sudo yum -y install openscap-scanner

Similarly, on Ubuntu Server 18.04 LTS, you would run this:

$ sudo apt -y install libopenscap8

It is important to remember that these packages include both the oscap command-line tool
and the library as stated earlier in this section. Hence, even if you never intend to run
OpenSCAP using the oscap CLI tool, the libraries that these packages contain could still be
required for your given use case (for example, performing remote scans using SCAP
Workbench).

Auditing Security Policy with OpenSCAP Chapter 15

[402]

As a result, it is important to consider deploying these packages using Ansible, and it may
even be desirable to include them in your standard build image so that you know that you
can remotely scan any given Linux server for compliance without needing to perform any
prerequisite steps. We will look at how to run scans with the oscap tool in a subsequent
section, entitled Scanning the enterprise with OpenSCAP—however, for now, it is sufficient to
understand what this package is and why it might be required.

In the next section, we will look at installing the OpenSCAP Daemon, another part of the
OpenSCAP toolset.

Installing the OpenSCAP Daemon
Security auditing is not a one-time task—given administrator-level (that is, root) access in a
Linux environment, someone could make a Linux server non-compliant at any given time,
either deliberately or through a well-meaning change. Hence, the results of a security scan
really only guarantee that the server being scanned was compliant (or not) at the time of the
scan itself.

Hence, regular scanning of the environment is extremely important. There is a myriad of
ways to achieve this, and you could even run the oscap command-line tool using a
scheduler such as cron or via a scheduled Ansible playbook in AWX or Ansible Tower.
However, the OpenSCAP Daemon is a native tool provided as part of the suite of
OpenSCAP tools. Its purpose is to run in the background and perform scheduled scans
against a given target or set of targets. This might be the local machine running the
daemon, or it might be a set of remote machines, all accessed over SSH.

The process of installation is again extremely simple—if you were to do this manually, you
would, on an EL7 system (for example, RHEL7 or CentOS 7), run the following:

$ sudo yum -y install openscap-daemon

On Ubuntu systems, the package name is identical, so you would run the following to
install it:

$ sudo apt -y install openscap-daemon

Although you could set up every machine in your Linux environment with this daemon
and configure a job for each to scan itself regularly, this is prone to abuse as it would be
easy for someone with root access to disable or otherwise tamper with the scan. As a result,
we recommend that you consider setting up a centralized scanning architecture, with one
central secure server performing remote scans across your network.

Auditing Security Policy with OpenSCAP Chapter 15

[403]

It is upon such a server that you would install the OpenSCAP Daemon and, once
completed, you can use the oscapd-cli utility to configure your regular scans. We will
take a more detailed look at this later in this chapter, in the section entitled Scanning the
enterprise with OpenSCAP.

Although both of the tools we have considered so far are extremely powerful and can
perform all of your auditing needs, they are entirely command-line-based and so might not
be suited to users who are not comfortable in a shell environment or who are responsible
for auditing scan results but not necessarily running them. This requirement is fulfilled by
another tool in the OpenSCAP armory—SCAP Workbench. We shall look at installing this
in the next section.

Running SCAP Workbench
SCAP Workbench is a graphical user interface to the SCAP toolset that is designed to
provide users with an easy, intuitive way of performing common scanning tasks. Hence, it
is well suited to less technical users or those who are more comfortable in a graphical
environment.

One thing of consideration is that SCAP Workbench is a graphical tool, and in many
environments, Linux servers are run headless and without the graphical X environment
installed. Hence, if you install it on an ordinary Linux server without a graphical
environment, you will see an error such as the one shown in the following screenshot:

Thankfully there are several ways to run SCAP Workbench. First of all, it is worth noting
that it is a true cross-platform application, with downloads available for Windows, macOS,
and most common Linux platforms, and as a result, the easiest path for most users will be
to run it in their native operating system.

If, for consistency, you wish to run SCAP Workbench on Linux, you would either need to
set up a remote X11 session or set up a dedicated scanning host that includes the graphical
desktop environment. There is no right or wrong approach here—it really is up to you to
decide which path suits your environment and working patterns best.

Auditing Security Policy with OpenSCAP Chapter 15

[404]

If you choose to run from Linux, the installation of SCAP Workbench is no more difficult
than for any of the other OpenSCAP tools we have considered:

1. To install it on RHEL7/CentOS 7, you would run the following:

$ sudo yum -y install scap-workbench

On Ubuntu Server, you would run this:

$ sudo apt -y install scap-workbench

Once this is complete, you can then open SCAP Workbench using the2.
appropriate method for your chosen operating system. If you are running it on a
Linux server using a remote X session, it is as simple as running this command:

$ scap-workbench &

We will explore how to set up and run a scan from this graphical environment later in this
chapter, in the section entitled Scanning the enterprise with OpenSCAP. Before we complete
this part of this chapter, though, we will discuss two of the other tools on offer from the
OpenSCAP project—SCAPTimony and the Anaconda Addon.

Considering other OpenSCAP tools
So far in this chapter, we have considered a variety of OpenSCAP tools for scanning and
auditing your infrastructure. There are, however, two further tools available to you that we
have not yet considered, though neither are truly interactive tools in the way that the ones
we have considered so far are, and so they are not within the scope of this book.
Nonetheless, they deserve a mention as you may choose to integrate them into your
environment in the future.

One of these tools is called SCAPTimony. Rather than being an end user application such
as SCAP Workbench or oscap, this is a middleware, Ruby-on-Rails engine that is designed
for you to integrate into your own Rails-based application. The benefit that SCAPTimony
brings is that it provides both a database and storage platform for your SCAP scan results.
Hence, if you do decide to write your own Rails application to handle your OpenSCAP
scanning, this can be written to provide centralized reporting on OpenSCAP scans. It also
enables your Rails application to manipulate and aggregate the data gathered and so is an
incredibly powerful tool in managing your scan data.

Auditing Security Policy with OpenSCAP Chapter 15

[405]

Although developing a Rails application to make use of SCAPTimony is beyond the scope
of this book, it is worth considering that the Katello project (and hence Red Hat Satellite 6)
already makes use of SCAPTimony and so would form a good basis for you to make use of
this tool without the need to create your own application.

The final tool available at the time of writing is the OSCAP Anaconda Addon. For those
who are not familiar, Anaconda is the installation environment used by Linux distributions
such as CentOS and Red Hat Enterprise Linux. Although this add-on cannot help us with
our Ubuntu-based servers, it does provide a way to build Red Hat-based servers that are
compliant from the point of installation.

As we have already considered ways to apply security policy using Ansible (see Chapter
14, CIS Hardening with Ansible) and have heavily advocated the use of standard images for
your Linux environment, which we created in Chapter 5, Using Ansible to Build Virtual
Machine Templates for Deployment, and Chapter 6, Custom Builds with PXE Booting, we will
not be exploring this add-on as it duplicates functionality we have already provided cross-
platform solutions for elsewhere.

By now, you should hopefully have a good feel for the OpenSCAP tools, and which might
be the best fit for your environment. Before we can proceed with our first scan, however,
we need an OpenSCAP security policy to utilize. In the next section, we will look at where
to download these policies and how to select the right one for your environment.

Evaluating and selecting policies
OpenSCAP and its related tools are by themselves engines—they cannot actually help you
to audit your environment without a security policy against which to scan. As we explored
in Chapter 13, Using CIS Benchmarks, there are numerous security standards for Linux, and
in this book, we have considered in depth the CIS Benchmarks. Sadly, this standard is not
currently available for audit through OpenSCAP, though many other security policies are
that would be well suited to securing your infrastructure. Also, as OpenSCAP and its
policies are entirely open source, there is nothing to stop you from creating your own
policy for whatever requirements you have.

There are plenty of security standards available for you to freely download and audit your
infrastructure against, and in the next section, we will look at the primary one that you will
most likely wish to consider—SCAP Security Guide.

Auditing Security Policy with OpenSCAP Chapter 15

[406]

Installing SCAP Security Guide
Some of the most comprehensive, ready-made security policies can be found as part of the
SCAP Security Guide (SSG) project, and you will often find reference to the
ssg acronym in the directory and sometimes even package names. These policies, just like
the CIS Benchmark we explored previously, cover many facets of Linux security and offer
remediation steps. Hence, OpenSCAP can be used not just for auditing, but also for
enforcing a security policy. However, it must be stated that given its nature, it is my
opinion that Ansible is best suited for this task, and it is notable that, in recent upstream
releases of SCAP Security Guide, Ansible playbooks are now being provided alongside the
XML formatted SCAP policies themselves.

OpenSCAP policies, like any security definition, will evolve and change over time as new
vulnerabilities and attacks are discovered. Hence, when considering which version of SSG
you wish to work with, you will need to take into account how up to date the copy you are
using is and whether this meets your needs. It might seem obvious to state that you should
always use the latest version, but there are exceptions as we shall see shortly.

This decision requires careful consideration, and it is not as obvious as it might at first seem
to state, just go and download the latest copy. Although the versions that are included with
most major Linux distributions tend to lag behind the versions available from the SSG
project's GitHub page (see https:/ / github. com/ ComplianceAsCode/ content/ releases), in
some cases (especially on Red Hat Enterprise Linux), they have been tested and are known
to work on the Linux distribution they are provided with.

On other distributions, however, your mileage may vary. For example, at the time of
writing, the latest publicly available version of the SSG policies is 0.1.47, while the version
included with Ubuntu Server 18.04.3 is 0.1.31. This version of SSG does not even support
Ubuntu 18.04, and if you attempt to run a scan against Ubuntu Server 18.04 using the
Ubuntu 16.04 policy, all of the scan results will be notapplicable. All scans validate the
host on which they are run and ensure it matches the one they were intended to be run
against, and so if they detect a mismatch, they will report notapplicable rather than
applying the tests.

There is also a bug in the libopenscap8 package on Ubuntu 18.04, which
results in errors regarding the /usr/share/openscap/cpe/openscap-
cpe-dict.xml file as missing. It is hoped that, in due course, the Ubuntu
OpenSCAP packages are updated and fixed so that they can be used
reliably.

https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases
https://github.com/ComplianceAsCode/content/releases

Auditing Security Policy with OpenSCAP Chapter 15

[407]

Users of Red Hat Enterprise Linux will need to find that Red Hat will only support users
with their OpenSCAP scanning if they are using the SSG policies that ship with RHEL, and
so in this scenario, it is even more important to make use of the vendor-provided policy
files.

As with any open source environment, the beauty is that the choice is up to you—if you
wish to evaluate the newer policies available, then you are free to do so, and for Ubuntu
18.04, you must do this or the scans will not work! However, if you wish to take advantage
of a commercially-supported environment, then that is available too, especially if you use
RHEL.

To install the vendor-provided SSG packages on CentOS 7 or RHEL 7, you would run this
command:

$ sudo yum -y install scap-security-guide

This package contains the SSG policies for all operating systems and applications that Red
Hat directly supports (bearing in mind that CentOS is based on RHEL). Hence, you will
only find policies for RHEL 6 and 7, CentOS 6 and 7, the Java Runtime Environment (JRE),
and Firefox when you install this package. At the time of writing, this installs version 0.1.43
of the SSG.

On Ubuntu Server, SSG is split across multiple packages but offers cross-platform support.
To install the complete set of SSG packages on Ubuntu Server 18.04, you would run the
following:

$ sudo apt -y install ssg-base ssg-debderived ssg-debian ssg-nondebian ssg-
applications

These packages provide policies for the following systems:

ssg-base SSG Base content and documentation files

ssg-debderived
SSG policies for Debian-derived operating systems such as Ubuntu
Server

ssg-debian SSG policies for Debian operating systems

ssg-nondebian
SSG policies for other Linux operating systems such as RHEL and
SuSE Enterprise Linux

ssg-applications
SSG policies for securing applications such as the Java Runtime
Environment (JRE), Firefox, and Webmin

Hence, it is fair to say that, at the time of writing, although Ubuntu Server ships a much
older package version (0.1.13), it offers support for a wider range of platforms.

Auditing Security Policy with OpenSCAP Chapter 15

[408]

The choice of which SSG you wish to install is up to you, or if you are feeling bold, you may
even choose to write your own! The most important thing is that you make an informed
choice and retain support from your operating system vendor if that is a requirement for
you. Before we proceed to explore other policies you might also download, it is worth
looking in greater detail at two of the security policy file formats you may come across
when you are searching for and implementing your OpenSCAP auditing architecture. We
shall proceed with this in the next section.

Understanding the purpose of XCCDF and OVAL
policies
When you download policies, you will often find that you see the terms Open
Vulnerability and Assessment Language (OVAL) and eXtensible Configuration
Checklist Description Format (XCCDF). Some security policies you will come across are
only available in OVAL format. Hence, we must take a moment to consider these different
file types.

First of all, it is important to state that they are not interchangeable—instead, they should
be thought of as hierarchical in nature. At the lower level in the hierarchy is the OVAL file,
which in essence describes all of the system-level checks that the OpenSCAP scanning
engine should perform. This might, for example, consist of checking whether a given
package is newer than a given version as a known vulnerability might exist in the older
one. Or it might be a check to ensure that an important system file such as /etc/passwd is
owned by root.

These checks are all incredibly valuable when it comes to auditing a system's compliance
against your security policy, but they might not be very readable for managers or security
teams. They would be more interested in a high-level security policy, such as Verify
Permissions on Important Files and Directories. Indeed, this check would almost certainly
encompass the check on the ownership of /etc/passwd, along with a whole set of other
vital system files such as /etc/group and /etc/shadow.

This is where the XCCDF format becomes relevant—this can be thought of as the next level
in the hierarchy as it provides a set of human-readable security policies (along with
valuable documentation and references) that would be useful to an audience such as a
manager or information security team. These describe the state of a system in reference to
the checks performed by the OVAL definition. The XCCDF files do not contain any check
definitions for the scanning engine (for example, oscap)—instead, they reference the
checks that have been written in the OVAL file and hence can be thought of as sitting on
top of the OVAL files in the hierarchy.

Auditing Security Policy with OpenSCAP Chapter 15

[409]

Therefore, an OVAL file can be used for auditing purposes in isolation, but an XCCDF file
cannot be used unless its corresponding OVAL file is present.

XCCDF files also contain a selection of scanning profiles that tell the scanning engine what
your policy looks like, and hence what it should scan for. This will almost certainly mean
only scanning for a subset of the checks that are present in the OVAL file.

The profiles available can easily be listed using the graphical SCAP Workbench tool or on
the command line by using the oscap info command. An example of this command run
against SSG for CentOS 7 is shown in the following screenshot:

Auditing Security Policy with OpenSCAP Chapter 15

[410]

Although the output has been truncated in the interests of space, you can clearly see the
wide array of security profiles available for CentOS 7. You will notice in the screenshot that
(for example) there are different profiles for CentOS 7 servers that run graphical user
interfaces and for those that don't. This is because additional security measures are
required on a graphical system to ensure that the X Windows subsystem is properly
secured. There is a profile suitable for Payment Card Industry (PCI) environments and at
the top, the most basic profile, which should be the minimum viable security policy suitable
for just about any CentOS 7 server.

Once you know which profile you wish to use from your XCCDF policy file, you will
specify it when you run the scan, and we shall explore this in greater detail in a later
section, entitled Scanning the enterprise with OpenSCAP.

Before we conclude this section, it is important to state that OVAL files do not have profiles,
and if you run an OVAL scan, you will automatically run all tests defined in the OVAL file
on your system regardless of its purpose. This may be problematic because, taking the
CentOS 7 SSG OVAL file as an example, this contains tests for the security of the X
Windows graphical subsystem. These tests will fail on a system that does not have a GUI
installed, and so might present false positives in your scan results.

It is important to note that SCAP Workbench only supports scanning with
XCCDF policies, and so if you are using a profile that only includes an
OVAL file, you will need to use a different scanning tool.

Now that we understand more about the file formats of the various security policies you
might download, let's take a look at some of the other security profiles you may wish to
download.

Installing other OpenSCAP policies
It is highly possible that the SSG security policies will form the core of your auditing
framework with OpenSCAP—however, given the open source nature of OpenSCAP, it is
entirely possible for anyone, including you, to write a policy file.

The most likely policies you would wish to supplement your SSG ones with are ones that
can check the patch level of your servers. Given the frequent nature at which patches are
released for Linux operating systems, integrating such policies with SSG would create a
headache for the maintainers, and so they are generally kept separate.

Auditing Security Policy with OpenSCAP Chapter 15

[411]

For example, on your CentOS 7 server, you can download the following security policy
(note that it is available in OVAL format only):

$ wget
https://www.redhat.com/security/data/oval/com.redhat.rhsa-RHEL7.xml.bz2
$ bunzip2 com.redhat.rhsa-RHEL7.xml.bz2

This contains checks for all CentOS 7 (and RHEL 7) package vulnerabilities that have been
found to date and checks the installed versions to ensure that they are newer than the
versions where known vulnerabilities existed. Hence, this can very easily generate a report
that can show you whether you need to patch your CentOS 7 or RHEL 7 systems urgently.

A similar list is available from Canonical for Ubuntu Server 18.04, which can be
downloaded as follows:

$ wget
https://people.canonical.com/~ubuntu-security/oval/com.ubuntu.bionic.cve.ov
al.xml.bz2
$ bunzip2 com.ubuntu.bionic.cve.oval.xml.bz2

Once again, this contains a list of all packages vulnerabilities that have been found on
Ubuntu Server 18.04 and again checks to ensure that the package versions installed on your
system are newer than the vulnerable versions. For both of these security policies, all checks
are run every time as they are in OVAL format—however, tests only report a failure if a
package is installed and is older than the version containing the fix for the given
vulnerability. Hence, you should not receive any false positives resulting from running
these scans.

Unlike the SSG policies, these policies are updated regularly—at the time of writing, the
Ubuntu package vulnerability scanning profile we downloaded using the preceding
commands was only one hour old! As a result, part of your auditing process must
involve downloading the latest package vulnerability OVAL policies and scanning against
these—possibly a good job for Ansible (though this is left as an exercise for you).

By now, you should have a good understanding of the types of policies you can download,
the formats you may come across them in, and what their intended purposes are. Hence, in
the next section, we will proceed to demonstrate how they can be used to scan your Linux
hosts and audit your compliance against your chosen security policies.

Auditing Security Policy with OpenSCAP Chapter 15

[412]

Scanning the enterprise with OpenSCAP
So far in this chapter, we have covered the various tools available from the OpenSCAP
project and the security policies you might wish to employ to scan your Enterprise Linux
environment. Now that we have completed that groundwork, it's time to take a look at how
to make use of these to actually scan your infrastructure. As we have discussed, there are
three key tools that you might use to scan your infrastructure. We will start off this process
by exploring the oscap command-line tool in the next section.

Scanning the Linux infrastructure with OSCAP
As we discussed earlier in this chapter, the oscap tool is a command-line utility designed
for scanning the local machine that it is installed on. The security policies that you wish to
audit the host against must also be on the filesystem of the host that it runs on. If you have
completed the steps in the section entitled Evaluating and selecting policies, then you should
already have everything you need.

With that said, if using the oscap tool to scan your infrastructure is going to be your way
forward, you may wish to consider Ansible as a tool to both install it and gather the results
when the scan is complete.

Before we come to this, let's look at how we might scan a single host:

Assuming that we are working on our Ubuntu 18.04 server and that we have1.
unpacked the latest upstream SSG into our current working directory so that we
have the required Ubuntu 18.04 support, we would use the oscap info
command to query the XCCDF policy file to see which policies are available to
us:

$ oscap info scap-security-guide-0.1.47/ssg-ubuntu1804-ds.xml

Auditing Security Policy with OpenSCAP Chapter 15

[413]

The output of the info command will yield something like that shown in the
following screenshot:

From here, we will choose the profile (or profiles—after all, you could always2.
run more than one scan) that you wish to audit against. In our case, we are
running a general-purpose server, so we will choose the profile with Id:
xccdf_org.ssgproject.content_profile_standard.

To run this scan, and save the output in a human-readable HTML report, you3.
would then run a command such as the following:

$ sudo oscap xccdf eval --profile
xccdf_org.ssgproject.content_profile_standard --report
/var/www/html/report.html ./scap-security-guide-0.1.47/ssg-
ubuntu1804-ds.xml

Auditing Security Policy with OpenSCAP Chapter 15

[414]

We must run this command using sudo, as it requires access to some core system
files that would not otherwise be accessible. The scan runs and produces a nice
human-readable output on the screen, an example of which is shown in the
following screenshot:

As you can see, the XCCDF policy produces a highly readable output, with a clear pass/fail
result for each test. Hence, even within these first few lines of the output, you can see that
our test system is not compliant in several areas.

Furthermore, the oscap command has also generated a nice HTML report that we have put
into the web root of this server. Of course, you wouldn't do this in a production
environment—the last thing you'd want to do is publicize any security issues with your
server! However, you could send this report to your IT Security team, and if you were
running OSCAP using an Ansible playbook, Ansible could copy the report from the remote
server to a known place where the reports can be collated.

Auditing Security Policy with OpenSCAP Chapter 15

[415]

A portion of this HTML report is shown in the following screenshot—you can see how
readable it is. Further, even at a quick glance, someone non-technical can see that this
system fails compliance tests and needs remedial steps:

Suddenly, it becomes apparent how powerful this tool is, and why you would wish to use
it to scan your infrastructure! In addition to this report, we can also check the patch status
of our test system using the com.ubuntu.bionic.cve.oval.xml policy that we
downloaded in the section entitled Installing other OpenSCAP policies. As we discussed,
OVAL policies do not produce reports that are as readable as XCCDF reports, but
nonetheless they are still incredibly valuable. To scan our Ubuntu system to see whether it
is missing any critical security patches, you would run this:

$ sudo oscap oval eval --report /var/www/html/report-patching.html
com.ubuntu.bionic.cve.oval.xml

Auditing Security Policy with OpenSCAP Chapter 15

[416]

As shown in the following screenshot, the output is not as readable as the XCCDF output
and needs a little more interpretation. In short, the false result means that the machine
being scanned does not fail the compliance test, and so infers that the requisite patch has
already been applied, whereas true means that a patch is missing from the system:

Once again, however, the HTML report comes to our rescue—to start with, it has a
summary section at the top, which shows that our system has a total of 432 detected
package vulnerabilities, but also 8,468 test passes. Hence, we urgently need to apply
patches to fix known security vulnerabilities, as we understood by the policy file we ran the
audit against:

Auditing Security Policy with OpenSCAP Chapter 15

[417]

Of course, it is highly important to download an updated copy of this policy regularly to
ensure that it is up to date. If you drill down into the report, you will see that, for each
check, there is a cross-reference CVE vulnerability report so you can find out which
vulnerabilities your system exhibits:

Just through these few examples, I'm sure you can see how valuable these reports are and
how they could be easily reviewed by an IT Security team without any specific Linux
command-line knowledge.

The process for running OSCAP-based scans on CentOS or RHEL is broadly similar:

Assuming that you are using the SSG policy packaged by your operating system1.
vendor and included with the OS, you would query the XCCDF profiles so that
you know which to run against:

$ oscap info /usr/share/xml/scap/ssg/content/ssg-centos7-xccdf.xml

You can then run an XCCDF-based scan in exactly the same way as we did on2.
Ubuntu—here, we are choosing the standard profile to scan our system with:

$ sudo oscap xccdf eval --fetch-remote-resources --report
/var/www/html/report.html --profile standard
/usr/share/xml/scap/ssg/content/ssg-centos7-xccdf.xml

Auditing Security Policy with OpenSCAP Chapter 15

[418]

You will observe the presence of the --fetch-remote-resources flag here too—this is
used because the CentOS 7 policy requires some additional content that it downloads
directly from Red Hat so that it is always working with the most up-to-date copy. The scan
runs in much the same way as before, producing the same human-readable report. One
thing you will see as the scan runs is that many of the tests return
notapplicable—unfortunately, the CentOS 7 security policy is very much a work in
progress and the version included with CentOS 7 at the time of writing does not include
complete support for this operating system. This demonstrates how pedantic OpenSCAP
policies can be—most CentOS 7 security requirements will apply equally to RHEL 7 and
vice versa, yet the policies are coded to work very specifically with certain operating
systems. The following screenshot shows the scan in progress and the aforementioned
notapplicable test results:

Auditing Security Policy with OpenSCAP Chapter 15

[419]

In spite of this, the audit still reveals some valuable insights—for example, as we can see
from the following screenshot of the HTML report, we have accidentally allowed accounts
with empty passwords to log in:

Auditing Security Policy with OpenSCAP Chapter 15

[420]

If you are running CentOS 7 specifically, you will not receive vendor support from Red
Hat, and so it is worth trying the upstream SSG policy as the support for operating systems
such as CentOS and Ubuntu is improving all the time (as we saw earlier in this section
when we audited our Ubuntu Server 18.04 host). Rerunning the exact same scan but using
SSG 0.1.47, our scan results look quite different:

This just highlights the importance of understanding the policy you are using and making
sure that you download the right version for your situation. If you are using RHEL 7, you
would be advised to make use of the packages supplied by Red Hat, whereas with CentOS
7 and Ubuntu Server 18.04, you would be better off trying the latest version from the
upstream GitHub repository. Indeed, the following screenshot shows the results of the
exact same scan on our CentOS 7 test system using the version 0.1.47 SSG, and we can see
that this time, we have run a total of 958 tests and have a much clearer understanding of the
security of our server:

Auditing Security Policy with OpenSCAP Chapter 15

[421]

On CentOS 7, you can also run the OVAL scan for package vulnerabilities in the same
manner that we did with Ubuntu Server, but using the com.redhat.rhsa-RHEL7.xml file
that we downloaded previously. Just as we did on Ubuntu Server, we would run this scan
with this command:

$ sudo oscap oval eval --report /var/www/html/report-patching.html
com.redhat.rhsa-RHEL7.xml

The report is interpreted in exactly the same way as on Ubuntu, and if we refer directly to
the HTML report, we can see that this system is fully patched against known package
vulnerabilities at this time:

This wraps up our look at the oscap command-line tool, but by now you should have all of
the information you need to run your own scans regularly. Automating this process is left
as an exercise for you, but here are some tips on what I would consider a good Ansible
solution:

Use the yum or apt modules to install the required OpenSCAP packages on the
server before performing any other tasks.

Auditing Security Policy with OpenSCAP Chapter 15

[422]

Use the get_url module to download SSG and/or the package vulnerability
OVAL definition file to ensure you have the most up-to-date copy (except on
RHEL 7, where you would use the version supplied by Red Hat). Use the
unarchive module to unzip the file you downloaded.
Run the OSCAP scan using the shell module.
Use the fetch module to grab a copy of the HTML report(s) for distribution and
analysis.

In the next section, we will look at running scheduled regular scans using the OpenSCAP
Daemon.

Running regular scans with the OpenSCAP
Daemon
As you have now understood the basis of scanning with the oscap command-line tool, it
will be easy to set up regular scanning with the OpenSCAP Daemon as the techniques
involved are the same. Assuming that you have already installed the daemon, as we
discussed earlier, it is fairly easy to create automated scans, although, at the time of writing,
the OpenSCAP Daemon does not run on Ubuntu Server 18.04. This is a result of a missing
CPE file, which, to date, has not been rectified, and although this did not impact our use of
the oscap command-line tool (though those of who are eagle-eyed will have noticed an
error relating to this file at the end of the scan), it does prevent the OpenSCAP Daemon
from starting.

As a result, the examples in this section will be based on CentOS 7 only—however, the
procedure would be broadly similar on Ubuntu Server 18.04 when the OpenSCAP
packages are fixed. In fact, this issue, which was first reported in October 2017 according to
the ComplianceAsCode GitHub project, seems to be relatively long-standing and so is an
excellent reason to make use of Ansible in conjunction with the oscap tool for your
scanning needs.

When this Ubuntu related issue is fixed, you will be able to schedule scans for both CentOS
and Ubuntu hosts from one central scanning host using the process outlined in this chapter.
Note that the SSG files for all of your hosts (be they CentOS, RHEL, or Ubuntu) must live
on the same host as the OpenSCAP Daemon – they are copied across to each host to be
scanned whenever a scan is run by the OpenSCAP Daemon, and so do not need to be
deployed on every host.

Auditing Security Policy with OpenSCAP Chapter 15

[423]

Nonetheless, if you want to set up a scheduled scan using the OpenSCAP Daemon, the
easiest way to do this is by using the oscapd-cli tool in interactive mode:

This is achieved by invoking oscapd-cli with the following parameters:1.

$ sudo oscapd-cli task-create -i

This launches a text-based guided configuration that you can easily2.
complete—the following screenshot shows an example of how I set up the
daemon to run a daily scan on my CentOS 7 test system:

Most of the steps in that interactive setup should be self-explanatory—however,
you will note a step that asks about Online remediation. The OpenSCAP
profiles include the capability to automatically rectify any compliance issues they
find as they go through the scan. It is up to you whether you wish to enable this
or not, as this will depend on whether you feel happy with an automated process
making changes to your systems, even for security purposes. You may want to
separate your audit tasks from your policy enforcement tasks, in which case you
would use Ansible for the remediation steps.

Auditing Security Policy with OpenSCAP Chapter 15

[424]

If you do enable remediation, be sure that you have tested this in an
isolated environment first to ensure that the remediation steps do not
break any of your existing applications. This testing must be performed
not only when your application code changes, but also when new versions
of SSG are downloaded as each new version might contain new
remediation steps. This is the same as the guidance we explored in
Chapter 13, Using CIS Benchmarks, only now applied to OpenSCAP SSG.

Once you have enabled the scan, you will find that, at the scheduled time, it3.
deposits the scan results in /var/lib/oscapd/results. Under this, you will
find a numbered subdirectory that corresponds to the task ID you were given
when you created the task (1, in the preceding screenshot), and then under
another numbered directory, which is the scan number. Hence, the results for the
first scan for task ID 1 will be found in /var/lib/oscapd/results/1/1.
When you examine the contents of this directory, you will notice that the results4.
are only stored in an XML file, which, while suited for further processing, is not
very readable. Fortunately, the oscap tool that we looked at previously can
easily convert scan results into human-readable HTML—for this result, we
would run the following command:

$ sudo oscap xccdf generate report --output /var/www/html/report-
oscapd.html /var/lib/oscapd/results/1/1/results.xml

Once this command has run, you can view the HTML report in your web browser just as
we did earlier in this chapter. Of course, if you aren't running a web server on this machine,
you can simply copy the HTML report to a host that has one (or even open it locally on
your computer).

The beauty of setting up the OpenSCAP Daemon is that, unlike the oscap tool, it can scan
remote hosts as well as the local one. This scanning is performed over SSH, and you must
ensure that you have set up passwordless SSH access from the server running the
OpenSCAP Daemon to the remote host. If you are using an unprivileged account to log in,
you should also ensure that the account has sudo access, again without requiring a
password. This should be quite easy for any experienced system administrator to set up.

Auditing Security Policy with OpenSCAP Chapter 15

[425]

On CentOS 7, the default SELinux policy prevented the remote scan from
running on my test system. I had to disable SELinux temporarily for the
remote scan to run. Obviously, this is not an ideal solution—if you
encounter this issue, it would be better to build an SELinux policy that
enables the remote scan to run.

Once you have set up the remote access, configuring the OpenSCAP Daemon through the
interactive task creation process is no more complex than for the local machine—the only
difference this time around is that you need to specify the remote connection in this format:

ssh+sudo://<username>@<hostname>

If you are logging in directly as root (not recommended), you can leave out the +sudo part
of the preceding string. Hence, to set up add another remote scan from my test server, I ran
through the commands shown in the following screenshot:

Auditing Security Policy with OpenSCAP Chapter 15

[426]

As you can see, this creates task number 2 for this purpose. The advantage of this setup is
that, once you have set up the SSH and sudo access, you can have one designated host that
is responsible for scanning your entire estate of Linux servers. Also, the hosts being
scanned only need the OpenSCAP libraries present—they do not need the OpenSCAP
Daemon or the security policy files—these are automatically transferred to the hosts as part
of the remote scanning process.

The results of the scheduled scan are stored in XML format in the
/var/lib/oscapd/results directory exactly as before and can be analyzed or converted
into HTML as required.

The OpenSCAP Daemon is almost certainly your quickest and easiest route to scanning
your infrastructure, and the fact that it collects and stores all of the results locally as well as
uses security policies stored on its own filesystem means it is fairly resistant to tampering.
For automated, ongoing SCAP-based scanning of your environment, the OpenSCAP
Daemon is almost certainly your best choice, and you could always create a cron job to
automatically convert the XML results into HTML and put them into your web server root
directory so that they can be viewed.

Last but not least, in the next section, we will look at the SCAP Workbench tool and see
how that can help you with your security auditing.

Scanning with SCAP Workbench
The SCAP Workbench tool is an interactive, GUI-based tool for running SCAP scans. It has
almost the same capabilities as the oscap command-line tool, except that it can scan both
remote hosts over SSH (similarly to the OpenSCAP Daemon). The high-level process for
using SCAP Workbench is the same as for oscap—you select your policy file from the
policy you downloaded, select the profile from within it, and then run the scan.

This time, however, the results are displayed in the GUI and are easily interpretable
without the need to generate an HTML report and load it in a browser. The following
screenshot shows the equivalent of running the following on the command line with
oscap:

$ sudo oscap xccdf eval --profile
xccdf_org.ssgproject.content_profile_standard ./scap-security-
guide-0.1.47/ssg-ubuntu1804-ds.xml

Auditing Security Policy with OpenSCAP Chapter 15

[427]

It is important to state that no report file is generated by the scan, but you can generate
either an HTML- or XML-based one by clicking on the Save Results button at the bottom of
the screen:

Auditing Security Policy with OpenSCAP Chapter 15

[428]

As you can clearly see, if you need to run an interactive and immediate scan of a system,
SCAP Workbench is the easiest way to do it. The only limitation is that it can only process
XCCDF files, so the OVAL files used to establish whether you have package vulnerabilities
cannot be used here.

Throughout this section, we have explored ways that you can use the various OpenSCAP
tools to scan your infrastructure. We have also shown a variety of scans, and their output is
generally quite easy to interpret. However, in the next section, we will explore these in a
little more depth before we complete our work on OpenSCAP.

Interpreting results
So far, we have seen that the OpenSCAP scans, especially the XCCDF-based ones, produce
nice, easy-to-read reports that you can easily take action on. However, if the reports are not
clear to you, then you would not know what needs fixing to rectify the lack of compliance.

Fortunately, both the OVAL policies we used earlier to check for vulnerable packages and
the XCCDF-based reports contain enough information for you to do both things.

Let's take an example from our earlier scan of our CentOS 7 server using the SSG version
0.1.47. In this, we failed, among other things, a check called Disable ntpdate Service
(ntpdate). Suppose that this result was not obvious to you, and you were unsure what
the underlying problem was or why it was an issue. Fortunately, in the HTML report
generated from this scan, you can click on the check title. A screen should pop up that looks
like the one in the following screenshot:

Auditing Security Policy with OpenSCAP Chapter 15

[429]

Here, you can see all the detail you could ever need—from the details of the scan through
to the references and identifiers from the various security standards that make this
recommendation, and even the manual commands that could be used to rectify the issue so
that the system becomes compliant for the next scan.

Auditing Security Policy with OpenSCAP Chapter 15

[430]

Even better, if you scroll down this screen, you will find that many of the latest versions of
the SSG (version 0.1.47 included) actually include a great deal of Ansible code that can be
applied to remedy this situation, as shown in the following screenshot:

Auditing Security Policy with OpenSCAP Chapter 15

[431]

Hence, through a little exploration, you really can use these scan results not only to find out
why your infrastructure is not compliant but to also produce the exact set of fixes you
require.

OpenSCAP can also remediate (that is, fix) problems that it finds while
scanning to help you to both audit and maintain compliance. However,
we have not explored this here because it is vital that you understand the
scans and what they will do before attempting automatic remediation.
Hence, this is left as an exercise for you—however, you will see that in
both the OpenSCAP Daemon and SCAP Workbench, there is a simple
option you can enable that will not just perform the scan but attempt
remediation.

While we have established how powerful and user-friendly the XCCDF profiles are, we
have seen that reports generated by OVAL profiles are a little less readable. Fortunately, if
you refer to the following screenshot, you will notice that the CVE numbers for the
identified vulnerabilities are, in fact, hyperlinks:

Clicking on these will take you to the operating system vendor's website, directly to a page
that details the vulnerability, the affected package(s), and when the fix was implemented.
As a result, you can find out exactly which packages you need to update to remedy the
situation.

That concludes our look at auditing your Linux environment with OpenSCAP—it is hoped
that you have found this useful and that you will be able to apply this to your environment
for the benefit of your security and auditing processes.

Auditing Security Policy with OpenSCAP Chapter 15

[432]

Summary
Keeping an eye on the security compliance of your Linux infrastructure is ever more
important, and given the large number of security recommendations, coupled with the
large number of Linux servers that might exist in a modern enterprise, it is clear that a tool
that can audit for compliance is needed. OpenSCAP provides exactly such a framework
and with a little care and attention (and application of the right security profiles) can easily
audit your entire Linux estate and provide you with valuable, easy to read and interpret
reports of your compliance levels.

In this chapter, you gained hands-on experience of installing OpenSCAP tools for server
audit and understood the available policies and how to make effective use of them in
OpenSCAP. You then learned how to audit your Linux servers with the various OpenSCAP
tools, and finally explored how to interpret the scan reports to take appropriate action.

In the next and final chapter of this book, we will look at some tips and tricks to make your
automation tasks easier.

Questions
What does SCAP stand for?1.
Why are SCAP policies a valuable tool in auditing your Linux infrastructure?2.
Which OpenSCAP tool would you use to centrally perform scanning of several3.
Linux hosts regularly?
What is the difference between an XCCDF file and an OVAL file?4.
When would you use the vendor-supplied SSG policies, even if they are older5.
than the currently available ones?
Why might the scan results for a CentOS 7 host show notapplicable when6.
using a RHEL 7 policy file?
Can you generate an HTML report from the XML results generated by the7.
OpenSCAP Daemon?
What are the requirements for a remote SSH scan to be performed by SCAP8.
Workbench or the OpenSCAP Daemon?

Auditing Security Policy with OpenSCAP Chapter 15

[433]

Further reading
Learn Ansible by Russ McKendrick: https:/ /www. packtpub. com/ gb/
virtualization- and- cloud/ learn- ansible

OpenSCAP website: https:/ /www.open- scap. org/

https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.packtpub.com/gb/virtualization-and-cloud/learn-ansible
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/
https://www.open-scap.org/

16
Tips and Tricks

It is hoped that, by now, this book has given you a sense of how you can automate your
Enterprise Linux environment and the requirements for standardization that enable tasks to
be performed efficiently at large scale. However, we have kept the example code very
simple throughout this book and for good reason—it is not fair to assume that every reader
will have a network with hundreds or even thousands of Linux machines to test these
examples against.

Hence, this concluding chapter of this book is written to provide you with some important
tips and tricks that will help you to better understand how to scale the examples in this
book up to enterprise scale and how to do this in a manner that will not simply move you
management headaches from one part of your infrastructure to another. Automation of
your Linux environment should not in itself become a headache that you need to solve, and
it is important to take several factors into account early on to prevent this. This chapter
explores some of the most important facets of Ansible automation you should consider to
ensure your automation journey is as smooth as possible.

The following topics will be covered in this chapter:

Version control for your scripts
Inventories – maintaining a single source of truth
Handling one-off tasks

Technical requirements
This chapter includes examples based on the following technologies:

Ubuntu Server 18.04 LTS
CentOS 7.6
Ansible 2.8

Tips and Tricks Chapter 16

[435]

To run through these examples, you will need access to two servers or virtual machines
running one each of the operating systems listed previously and Ansible.

All example code discussed in this book is available from GitHub at: https:/ /github. com/
PacktPublishing/Hands- On- Enterprise- Automation- on-Linux.

Version control for your scripts
Throughout this book, we have focused heavily on creating standardized ways of doing
things, whether that be how you build your Linux operating system images for
deployment, how you manage configuration files and databases, or even how you patch
your infrastructure. This was done for many good reasons, all of which we discussed in
Chapter 1, Building a Standard Operating Environment on Linux, including minimizing your
staff training requirements and ensuring you get consistent results from your automation
tasks.

What is also vital to consider is ensuring your Ansible playbooks themselves (and indeed,
any other scripts you might rely on) are standardized and uniform across your enterprise.
Imagine if everyone just had Ansible installed on their laptop or management station, along
with a set of playbooks for management tasks. How quickly would things get out of hand if
one person decided a tweak was needed to a playbook and didn't distribute it to everyone
else? Equally, how would you know what was run previously if the previous version of a
playbook did not exist—after all, Ansible code is supposed to be self-documenting, but this
value is lost if the previous versions are deleted.

In short, just as we proposed building standardized Linux images in Chapter 5, Using
Ansible to Build Virtual Machine Templates for Deployment, and Chapter 6, Custom Builds with
PXE Booting, so too should your Ansible playbooks be standardized across your enterprise.

The best way to achieve this will be to use version control for this purpose. Most enterprises
will already have a version control system already in place. This might take the form of a
corporate account on https:/ /github. com/, an internal deployment of what was
previously known as Microsoft Team Foundation Server (now Azure DevOps Server), or
one of the many open source self-hosted Git options such as GitLab or Gitea. You may even
be on a system that is not Git-based such as Subversion or Mercurial—the choice is not
really important (although if you can make use of Git, Subversion, or Mercurial, this is to
your advantage as we shall see in a minute).

https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/PacktPublishing/Hands-On-Enterprise-Automation-on-Linux
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Tips and Tricks Chapter 16

[436]

Whatever your version control platform, it is important that you not only make effective
use of it for storing and maintaining a history of your Ansible playbooks; it is also vital that
you use your chosen tool effectively in the context of your enterprise. Take for example Git
(whichever system you choose to manage your repository). If your users modify the same
file at the same time, how do you handle that? Who's changes will take precedence? There
are good practices around the use of Git in the context of teams and enterprises, and it is
highly advisable that individuals make use of branches when they are working on code,
then use a pull request to merge their changes back into the source tree.

Effective use of Git in an enterprise setting is a large topic that could take up an entire
chapter on its own—if you are not familiar with this, then I advise you refer to the
resources in the Further reading section of this chapter for guidance on how to make the best
use of your version control system.

For the remainder of this section, we will assume the version control
system you are using is Git as this will make the examples easier to read.
If you are using another system such as Subversion or Mercurial, replace
the Git-specific commands to check out code, commit updates, and so on
with your own.

Once you have decided upon your version control system, it is time to put it into day-to-
day usage. To ensure this happens, you must consider how you are going to integrate
Ansible with your version control system, and we will take a look at exactly that in the next
section.

Integrating Ansible with Git
Before we proceed any further, we must point out that the title of this section is an
oxymoron as Ansible itself does not integrate with Git. Specifically, Ansible playbooks and
roles are stored in Git, to be checked out locally on the host that will execute them. It does
have modules such as git and git_config, which allow you to write playbooks that
deploy code from a Git repository, but the ansible-playbook command does not support
running a playbook from anything other than the local filesystem.

Tips and Tricks Chapter 16

[437]

We will make use of the publicly available ansible-examples repository on github.com
for these next few examples as they are publicly available to you for testing. Hypothetically
speaking, suppose that you wanted to run the playbook for installing WordPress on RHEL
7 in your enterprise from this repository. Your process to perform this would (assuming
you have already defined your Ansible inventory) look something like the following
example:

$ git clone https://github.com/ansible/ansible-examples.git
$ cd ansible-examples/wordpress-nginx_rhel7/
$ ansible-playbook site.yml

The preceding three commands ensure that you clone the very latest playbook from this Git
repository, and the output will look a little something like the following screenshot (the
deprecation warning shows that this playbook needs updating for more recent versions of
Ansible):

Once checked out, the playbooks can always be updated to the latest version from the Git
server (assuming there are no local changes that need to be committed):

$ git pull

https://github.com/ansible/ansible-examples

Tips and Tricks Chapter 16

[438]

Following a successful update of the local working copy of your playbooks, the latest
version of the playbook can be run. This is a fairly painless process, and requiring engineers
or admins to run the git pull command before running a playbook is not too arduous a
task.

Sadly, though, this process does not really help to enforce good practices in the enterprise.
It would be very easy for someone to forget to run the git pull command before running
a playbook. Equally, there is nothing to stop administrators and engineers amassing their
own playbooks and failing to share them. This is definitely a step forward, but it is by no
means the full solution.

A far more robust option is to enforce the use of a tool such as AWX or Ansible Tower.
These, as we saw in Chapter 3, Streamlining Infrastructure Management with AWX, enable
the enforcement of good processes by ensuring that playbook runs can only be executed
against playbooks pulled down from a version control system. If administrators are not
given access to the filesystem of the AWX server, then it will not be possible to run
arbitrary playbooks that they have knocked up themselves and they must instead pull them
in from a version control source.

In Creating a project in AWX section of Chapter 3, Streamlining Infrastructure Management
with AWX, we looked at creating a project that would actually make use of the ansible-
examples repository we looked at earlier. This, of course, begs the question, how do you
organize your playbooks within a version control system effectively? We will look at
precisely this in the next section.

Organizing your version control repositories
effectively
It is all very well stating that Ansible playbooks should be cloned from a version control
system and cloned to the systems from which they are to be run (be that from the command
line or AWX), but how do you actually organize these effectively so that you can find your
code when you need it?

A clue comes to us from the user interface of the AWX tool, which refers to each version
control repository you might reference as Project. As you build up your automation
processes and solution, you could end up with many playbooks, possibly into the
hundreds, depending on the size of your enterprise.

Tips and Tricks Chapter 16

[439]

You can, of course, store all of these within the same repository. The ansible-examples
repository is a good (albeit smaller) example of this—it contains a variety of playbooks for
different purposes, each within its own directory. There are even Windows-specific
playbooks that live under a Windows subdirectory. The directory structure is relatively
easy to navigate for you to find playbook that you want, but you will note that all of the
code contained within it are examples for people to learn Ansible with.

If you worked for an online retailer, for example, it would not be logical to put the
playbooks for building the standardized Linux images into the same repository as the ones
for deploying your stock control system. This would be counter-intuitive and would lead to
confusion, especially when people are looking for a particular playbook.

Naturally, the decision comes down to you at the end of the day—only you can decide on
the structure that will suit your enterprise best. However, the division of repositories by
project is a good starting point for anyone looking for a sound starting point to build on.

There will always be gray areas too – for example, in Chapter 12, Performing Routine
Maintenance with Ansible, we advocated building Ansible playbooks for performing
frequent housekeeping tasks such as cleaning up disk space. Now, suppose you have a
playbook that cleans up a directory structure, but that it is specific to the stock control
system we mentioned earlier— does that go in the stock control repository or the general
maintenance repository?

Again, the choice is yours—but the stock control cleanup playbook will not run properly
(and might even be dangerous) on systems that do not run the stock control system, so I
would advocate making it a sub-directory within the stock control repository.

So far, we are building up a picture of how you would effectively and efficiently store your
playbooks, yet we must remember that, throughout this book, we have strongly advocated
the authoring of Ansible code as roles wherever possible, as roles can be reused in multiple
playbooks. None of the solutions we have discussed actually support role reuse (other than
manually copying the code between playbooks), even though we have established a sound
methodology for building up our directory structures and processes for running the
playbooks.

In the next section, we will look at the specific capabilities of Ansible when it comes to the
version control of roles.

Tips and Tricks Chapter 16

[440]

Version control of roles in Ansible
Role reuse is an important part of building an efficient, standardized system of playbooks
for administrators and engineers to apply. We have given many examples throughout this
book—for example, in Chapter 10, Managing Users on Linux—we proposed a simple role
that would add users to a Linux system. To save you referring back, the code is as follows:

- name: Add required users to Linux servers
 user:
 name: "{{ item.name }}"
 comment: "{{ item.comment }}"
 shell: /bin/bash
 groups: "{{ item.groups }}"
 append: yes
 state: present
 loop:
 - { name: 'johndoe', comment: 'John Doe', groups: 'sudo'}
 - { name: 'janedoe', comment: 'Jane Doe', groups: 'docker'}

Given our discussion about role reuse, I'm sure that you can see that the design of this role
could be improved. This role has hardcoded user accounts in it, which does not lend itself
to reuse at all. However, if the user accounts were specified via an Ansible variable, then
this role could be used in any playbook that needed to add a user account to a Linux
system. This moves us one step closer to our goal of creating standardized, reusable code.

However, we need to ensure that the code appears in every playbook that requires it.
Further, we must also ensure that the version is kept up to date—otherwise, if someone
makes an improvement to the code (or fixes a bug or adapts the code for a newer version of
Ansible because of some feature deprecation), this will only exist in the modified role—all
of the copies will be out of date. If the role is copied to any playbooks, it will become
difficult to ensure that they are kept up to date. To achieve this, we clearly need to start
storing our roles in our source control system, and in this case, we must store one role per
repository (the reasons for this will become apparent as we progress through the following
examples).

Once your roles are in your source control system, there are two ways to address the
problem of efficient and effective reuse. The first is to make use of Git submodules. This is a
Git-specific technology so will not suit you if you are using Subversion or Mercurial, but if
you are using Git it is one of two possible solutions.

Tips and Tricks Chapter 16

[441]

A Git submodule is basically a reference to another Git repository from within another.
Hence, it does not actually contain the code of the submodule—it simply contains a
reference to it that can be cloned and updated as required. Suppose that you are writing a
playbook to install Apache 2 on a server and you decide that, rather than write your own
module, you are going to use Jeff Geerling's Apache 2 role from GitHub (https:/ /github.
com/geerlingguy/ansible- role- apache):

Before you start, you will need to have your playbook directory structure created1.
and checked into your version control system. Then, ensure you have the roles/
directory in your playbook structure as normal and change to this directory:

$ mkdir roles
$ cd roles

 Now, check out the code you want as a submodule, providing the Git tool with a2.
directory name to clone it to—in our case, we'll call it jeffgeerling.apache2:

$ git submodule add
https://github.com/geerlingguy/ansible-role-apache.git
jeffgeerling.apache2

Once this is done, you will notice that you have a new file at the root of your3.
working copy called .gitmodules. You will need to add this and the directory
created by the submodule add command to your repository:

$ git add ../.gitmodules jeffgeerling.apache2
$ git commit -m "Added Apache2 submodule as role"
$ git push

That's all there is to it—you now have this role stored within your playbook
directory structure, but as far as Git is concerned, it is stored elsewhere. The
whole process should look something like what's shown in the following
screenshot:

https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache
https://github.com/geerlingguy/ansible-role-apache

Tips and Tricks Chapter 16

[442]

To update this submodule at any time, you must change into the directory you created for
it earlier and then run a standard git pull command. The beauty of this is that, as far as
Git is concerned, the submodule is just another repository and so you can run all of the
usual subcommands you are used to such as push, pull, status, and so on.

The only thing to add is that, when you clone the playbook directory for the first time from
your Git server, although it will be aware of the submodule, it doesn't actually check out
the code. Hence, when you clone for the first time, you must run the following commands:

$ git clone <your repository URL>
$ cd <your repository name>
$ git submodule init
$ git submodule update

From here, you can use the working copy and submodule exactly as described previously.

Tips and Tricks Chapter 16

[443]

The other way to solve the problem of role code reuse is to make use of the ansible-
galaxy tool. We saw ansible-galaxy in action in Chapter 2, Automating Your IT
Infrastructure with Ansible, where we demonstrated it as a way of cloning publicly available
roles from the Ansible Galaxy web site (https:/ /galaxy. ansible. com/). However,
ansible-galaxy can also clone roles from a valid Git URL.

Suppose we wanted to achieve exactly what we have just done with the Apache 2 role, but
without using Git submodules. Instead, we create a file called requirements.yml in the
base directory of the playbook structure.

To clone the role we just used, our requirements.yml file would need to look like this:

- src: https://github.com/geerlingguy/ansible-role-apache.git
 scm: git

You can, of course, have more than one requirement in this file—just specify them as a
standard YAML list. When you have completed this file, you can then download the roles
to your working copy using this command:

$ ansible-galaxy install -r requirements.yml --roles-path roles

This clones the Git repository referenced by the src parameter in requirements.yml into
the roles/ directory. Note that we do not customize the directory name, so the one from
the Git repository is used for the role name (in this case, ansible-role-apache). The
following screenshot shows an example of this being completed:

https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/
https://galaxy.ansible.com/

Tips and Tricks Chapter 16

[444]

Unlike the submodules, ansible-galaxy does not actually clone the repository as a
working copy; hence, you cannot simply change into its directory and run git
pull command to update it to the latest version. Instead, requirements.yml should
remain in your working copy, and in the future, to update, you would run the following
command:

$ ansible-galaxy install -r requirements.yml --roles-path roles --force

The --force parameter instructs ansible-galaxy to download the role even if it is
already downloaded, hence overwriting the version you have already installed.

We have only scratched the surface of what can be achieved with
requirements.yml—you can download from private repositories,
ensure you only ever download a specific Git version, and more—this is
left as an exercise for you to investigate.

Hence, you have two completely different yet equally valid ways to efficiently reuse roles
by storing them individually in a source control system. By considering everything in this
section, including the decision to use AWX or Ansible Tower, you should have a robust and
scalable automation architecture built around Ansible.

In the next section, we will address another facet of Ansible that has so far not received a
great deal of attention by virtue of our simple example structure, and yet is vital to its
operation—the inventory.

Inventories – maintaining a single source of
truth
We have worked hard throughout this book to build an automation architecture that
implements good practices for your enterprise. For example, when it comes to managing
your Ansible playbooks and roles, we have strongly encouraged the use of version control
systems and including roles from source control so that there is always a single source of
truth for your Ansible code.

Tips and Tricks Chapter 16

[445]

However, in our examples throughout this book, we have worked with very simple, static
inventory files that feature, at most, a handful of hosts. Naturally, your enterprise won't
look like this—the whole goal of automation is to be able to handle a large infrastructure of
hundreds of machines with ease and grace and to be able to cope with changes in that
infrastructure efficiently and effectively.

Most enterprises that begin their automation journey are not starting from scratch—it is
anticipated that many who read this book will already have a Linux estate of some size that
they need to manage more effectively, and so will already have a list of machines that need
automation applying to them.

This completes our problem statement—imagine that you have an estate of Linux servers
comprised of hundreds of machines and have built up a scalable automation system using
Ansible and AWX/Ansible Tower, with all code stored in version control and roles actively
being reused. Why then would you want to manually type out those hundreds of
hostnames into a flat-text inventory file?

Further, whenever a new Linux machine is commissioned (or an old one
decommissioned)—a not uncommon task in this age of virtualization—imagine having to
manually edit that inventory file and ensuring it is in sync with what your estate actually
looks like.

In short, this situation is not acceptable. It is not scalable and will very quickly become
unmanageable. How can you, to pick one example, be confident that all of the servers in
your estate have had the CIS Benchmark applied to them if you are not confident that your
inventory contains all your servers to begin with?

Thankfully, Ansible includes a solution to this too, in the form of dynamic inventory script,
and we will look at the anatomy of these in the next section.

Working with Ansible dynamic inventories
To keep the examples in this book simple and to focus on the automation code being
written, we have made use of the simple inifile format of inventory that Ansible
supports. However, Ansible can ingest inventory data in JSON format, which can be passed
to it by any executable script.

Tips and Tricks Chapter 16

[446]

Almost every Linux machine these days will exist within some ecosystem, be it a public
cloud provider such as AWS or Azure, a private cloud environment such as OpenStack, or
a traditional virtualization environment such as VMware or oVirt. All of these systems
already know what their inventory is, although they do not use that term as such. For
example, if you run a set of Linux virtual machines in Amazon EC2 or OpenStack, both
systems know exactly what those machines are and what they are called. Similarly, if you
spin them up in VMware or oVirt, the hypervisor managers know what machines are
running and what they are called.

In essence, what we are saying is that just about every infrastructure management system
already has a kind of inventory that Ansible can use. Our task is to extract that inventory
and convert it into the JSON format that Ansible understands so that it can use it.

Thankfully, the developers and contributors involved in the Ansible project have already
developed dynamic inventory scripts that cover a wide array of systems. If you look at the
project's Ansible repository (https:/ /github. com/ ansible/ ansible/ tree/ devel/ contrib/
inventory), you will see all of the currently available inventory scripts. Most of them are
written in Python, but you can write it in any language that your operating system can
execute—it can even be a shell script if you wish!

In short, if you need a dynamic inventory, there is a good chance that it already exists and
you can make use of the existing script. If you are making use of AWX/Ansible Tower, all of
these scripts along with their required libraries are all pre-installed, which makes it
incredibly easy to get started.

If, however, you are using Ansible in the shell, note that many of the scripts will require
additional libraries to function. For example, the ec2.py script for producing a dynamic
inventory from Amazon EC2 requires the boto Python library, which may not be pre-
installed. For example, we could download and run the ec2.py script by executing these
commands:

$ wget
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/e
c2.py
$ chmod +x ec2.py
$./ec2.py

https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory
https://github.com/ansible/ansible/tree/devel/contrib/inventory

Tips and Tricks Chapter 16

[447]

We would expect the preceding commands to fail because we have not configured the
dynamic inventory script with our AWS account data—however, if you perform this
without checking the prerequisites (such as the boto library), you will be presented with an
error such as this:

The exact fix for this will be dependent on your operating system—on Ubuntu Server 18.04,
I can fix this by running this:

$ sudo apt install python-boto

On CentOS 7, you will need the EPEL repositories configured, and then you can install it
using a command like this:

$ sudo yum install python2-boto

Each dynamic inventory script will have different pre-requisites—some might not even
have any! In addition to the dependencies, you must also configure the script as it will (at a
bare minimum) require authentication parameters so that it can query the upstream source
for the inventory. You will find that the configuration file is alongside the dynamic
inventory script—hence, for our example ec2.py script, you could download the example
configuration file using the following command:

$ wget
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inventory/e
c2.ini

Tips and Tricks Chapter 16

[448]

Both the template configuration file and the comments at the beginning of the dynamic
inventory script provide a great deal of documentation and information on how the scripts
work and how to make use of them. Be sure to read these when implementing these scripts
as it will save you a lot of time when implementing them.

It is not anticipated that everyone reading this book will have an AWS account to test
dynamic inventory scripts against, so completing this exercise is left for you.

Finally, it should be noted that, although many dynamic inventory scripts have been
provided, there will be systems that do not have a dynamic inventory script available yet.
Perhaps you have your own in-house Configuration Management System (CMS)—in this
instance, as long as you can extract the data from it, you can write your own dynamic
inventory plugin. The Ansible project provides you with some guidance and example code
to get you started here: https:/ /docs. ansible. com/ ansible/ latest/ dev_ guide/
developing_inventory. html.

The beauty of open source software is that you can even contribute it back to the Ansible
project so that others may benefit from your work (if you so wish). In short, just as you
should always reuse your role code and ensure it is version controlled, so should you make
use of dynamic inventories wherever possible.

Before we finish our look at dynamic inventory scripts, we will complete a simple worked
example that anyone can try in their environment.

Example – working with the Cobbler dynamic
inventory
Cobbler is an open source provisioning system that provides a framework for managing
your PXE-based installs. It is embedded in the Spacewalk project (and Red Hat Satellite
Server 5.x) and can be used standalone if you require a management framework for your
PXE boot environment (rather than managing it by hand as we did in Chapter 6, Custom
Builds with PXE Booting).

Although the actual use of Cobbler is beyond the scope of this book, it serves as an excellent
example for our dynamic inventory section of this book because it is extremely easy to get
up and running with.

https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html
https://docs.ansible.com/ansible/latest/dev_guide/developing_inventory.html

Tips and Tricks Chapter 16

[449]

If you are considering the use of Katello for patch management, as
discussed in Chapter 9, Patching with Katello, note that Katello also
provides a robust framework for managing PXE-based installs and it is
recommended you investigate this for this purpose so that you are using
one tool for both processes. This supports our principle of commonality
discussed in Chapter 1, Building a Standard Operating Environment on
Linux. You would use the foreman.py dynamic inventory script to work
with Katello in your environment.

To get started with this example, you will need a demo system that Cobbler is packaged
for—at the time of writing, there are no native packages for Ubuntu Server 18.04, so we will
install our Cobbler server on CentOS 7. Your dynamic inventory script can be run from an
Ubuntu Server machine, though—the only requirement is that it can communicate with
your Cobbler server on the network:

To get started, install the minimum required Cobbler packages on your CentOS 71.
system using the following command:

$ sudo yum -y install cobbler cobbler-web

The default configuration for Cobbler should be fine for our simple dynamic2.
inventory test purposes, so we will start the server with this command:

$ sudo systemctl start cobblerd.service

Next, we will create distro and profile for our systems—when using Cobbler3.
for actual PXE-based installs, distro describes the operating system and
specifies items such as the kernel and initial RAMDisk to be used. These
commands should work on your CentOS 7 test system, but be aware that if you
don't have these specific kernel files installed, you must change these to reference
the kernel you have installed:

$ sudo cobbler distro add --name=CentOS --
kernel=/boot/vmlinuz-3.10.0-957.el7.x86_64 --
initrd=/boot/initramfs-3.10.0-957.el7.x86_64.img
$ sudo cobbler profile add --name=webservers --distro=CentOS

Tips and Tricks Chapter 16

[450]

It appears that Cobbler does not function with the out of the box SELinux policy4.
that runs on CentOS 7—in a production environment, you would modify the
policy to support Cobbler correctly. For the sake of this simple demo, you can
simply disable SELinux using this command:

$ sudo setenforce 0

Just don't do this in a production environment!

With our prerequisite steps completed, we can now commence adding our actual5.
systems to the Cobbler inventory. We will add two frontend web servers to our
webservers group using the following commands:

$ cobbler system add --name=frontend01 --profile=webservers --dns-
name=frontend01.example.com --interface=eth0
$ cobbler system add --name=frontend02 --profile=webservers --dns-
name=frontend02.example.com --interface=eth0

The --dns-name parameter should be an actual resolvable DNS name in your
test environment for this test to work—I am adding them to /etc/hosts on my
Ansible server for this test but, again, in a production environment, you would
not do this.

Cobbler is now set up and has an inventory of two hosts in a group (profile)6.
called webservers. Now, we can move back to our Ansible server. On this
machine, download the Cobbler dynamic inventory script and its associated
configuration file by running this:

$ wget
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inv
entory/cobbler.py
$ wget
https://raw.githubusercontent.com/ansible/ansible/devel/contrib/inv
entory/cobbler.ini
$ chmod +x cobbler.py

Now, edit the configuration file, cobbler.ini—near the top of this file, you will7.
see a few lines that look like this:

[cobbler]

host = http://PATH_TO_COBBLER_SERVER/cobbler_api

Change the PATH_TO_COBBLER_SERVER string to the hostname or IP address of
the machine you just installed Cobbler on. That's all there is to it!

Tips and Tricks Chapter 16

[451]

Now, you can run Ansible and use an ad hoc command to test your dynamic8.
inventory—simply run this:

$ ansible webservers -i cobbler.py -m ping

You will observe that we are telling Ansible to only perform this action on the webservers
group from the inventory specified by the -i parameter—which, in this case, is our Cobbler
dynamic inventory script. If all has gone well, your output should look something like this
screenshot:

In this case, the deprecation warning is about the output from the Cobbler dynamic
inventory script, which suggests it might need updating to work with Ansible 2.10 onward.
However, we can see that Ansible can extract the inventory from the Cobbler server and
use it for our simple ad hoc command—this would work just as well with a whole
playbook!

Tips and Tricks Chapter 16

[452]

Play with the Cobbler server; try adding and removing systems and see how Ansible
retrieves the up to date inventory each and every time. Using other dynamic inventory
scripts can be a little more involved, but it is not complicated provided you refer to the
documentation and examples that ship with each. The time spent learning this will more
than pay off later in terms of making your life easier and your inventories more accurate.

In the final section of this chapter, we will look a little deeper at ad hoc commands and how
they can help you with one-off tasks.

Running one-off tasks with Ansible
In the previous chapter, we used the ansible webservers -i cobbler.py -m
ping command to test connectivity to all of the servers in the webservers group of our
dynamic inventory. This type of Ansible command is known as an ad hoc command, and it
is typically used to run a single Ansible module against an inventory, with a set of
parameters.

Throughout this book, we have encouraged the use of full playbooks and roles for all
Ansible tasks—and for good reason! If you frequently run commands without storing the
code in some shape or form, it will soon become very difficult, if not impossible, to know
who ran what and when they ran it. Indeed, if you have looked into AWX/Ansible Tower,
you will see that it does not even support ad hoc Ansible commands—running them is not
aligned with the principles of auditability and role-based access control that underpin this
product.

The example ping command we have looked at is the same as writing a playbook that
looks like this:

- hosts: webservers
 gather_facts: no

 tasks:
 - ping:

The question is, then, why would you want to learn about ad hoc commands in Ansible?
The answer often comes about for one-off maintenance tasks. The beauty of Ansible is that
once you have implemented it throughout your infrastructure (and set up authentication,
inventories, and so on), it has access to all of your servers.

Tips and Tricks Chapter 16

[453]

For example, suppose you need to distribute an emergency patch to a set of systems by
copying a file across. There are several ways you could solve this problem, including these:

Write an Ansible playbook (and/or reusable role) to copy the file
Copy across the file manually using scp or a similar tool
Execute an ad hoc Ansible command

Of these three options, the first is almost certainly going to be inefficient in an emergency
scenario. The manual copying using scp is perfectly valid but is inefficient, especially when
you have gone to the trouble of setting up Ansible.

In an ad hoc command, you can use any module that you can use in a playbook or role.
You can specify the same arguments too, only they are formatted a little differently as we
specify them on the command line rather than in a YAML file.

Let's suppose an error has been found on the front page of our web server, and we urgently
need to copy across a new version that has the fix in it. The ad hoc command to run this
might look like this:

$ ansible webservers -i inventory -m copy -a "src=frontpage.html
dest=/var/www/html/frontpage.html" --become

Let's break that command down—the group and inventory script are specified just as
before, but this time, we have the following:

-m copy
Tells Ansible to use the copy module for the ad
hoc command

-a "..."
Provides the parameters or arguments for the
module

src=frontpage.html
The src parameter, which tells the copy
module where to obtain the file from on the
Ansible server

dest=/var/www/html/frontpage.html
The dest parameter, which tells the copy
module where to write the file on the
destination server

--become Tells Ansible to become root (that is, sudo)

When you run this command, you will note that the output is quite different from the
ansible-playbook command. Nonetheless, the files are faithfully copied to all specified
hosts in the inventory without you needing to write an entire playbook. The following
screenshot shows an example of the output from this command:

Tips and Tricks Chapter 16

[454]

What is doubly useful about these ad hoc commands is that not only is the file copied to all
hosts specified without writing an entire playbook, but that the output from the command
shows all of the return values from the module that you launched—copy, in this case. This
is incredibly useful in playbook and role development as you might want to register the
output of a particular task into a variable, and using an ad hoc command such as this shows
you what this variable would contain.

For example, say that you wanted to actually perform the preceding task in a role instead of
an ad hoc command, and register the results of this task in a variable called filecopy. The
main.yml file in the role tasks/ directory might look like this:

- name: Copy across new web server front page
 copy:
 src: "frontpage.html"
 dest: "/var/www/html/frontpage.html"
 register: filecopy

Tips and Tricks Chapter 16

[455]

We know from our ad hoc command that filecopy will be a dictionary containing several
useful items, including changed and size. Hence, we could easily perform some
conditional processing on these in a later task—for example, perhaps running another
related task with the following clause:

 when: filecopy.changed == true

Of course, if you needed to just run a raw shell command, you could do that too using the
shell command—a simple example is shown as follows:

$ ansible webservers -i inventory -m shell -a "echo test > /tmp/test"

This, of course, is a contrived example, but it demonstrates to you how you could run an
identical shell command across all of the servers in an Ansible inventory with relative ease.
You can even inject variables into the module arguments using the format now familiar to
you from your role and playbook development, as in this example:

$ ansible webservers -i inventory -m shell -a "echo Hello from {{
inventory_hostname }} > /tmp/test && cat /tmp/test"

The output of this specific command should look something like the following
screenshot—see how the shell module returns the output from the command within the
Ansible output—this is incredibly powerful and would, for example, enable you to gather
information from all of the machines in an inventory with ease:

Hence, you could use Ansible ad hoc commands to perform a quick audit of your systems
or to check the value of a specific setting across a set of servers.

Another place where ad hoc commands are valuable is in testing Jinja2 expressions. We
have come across these a few times in the book, and when developing a playbook or role,
the last thing you want to do is run through an entire play, only to discover that one of your
Jinja2 expressions was wrong. Ad hoc commands enable you to easily and rapidly test
these on the command line.

Tips and Tricks Chapter 16

[456]

Say, for example, you want to develop a Jinja2 expression to put into a playbook that
returns the uppercase value of a variable called vmname if it is defined, and otherwise,
return the keyword all in lowercase. This would be useful in defining a host pattern for
use in a playbook workflow, for example. This is not a trivial Jinja2 expression, and so
rather than testing it within a playbook, let's figure it out on the command line. What we
would do is print the Jinja2 expression using a debug msg, and then set the vmname
variable using the -e flag. Hence, we might run this:

$ ansible localhost -m debug -a "msg={% if vmname is defined %}{{ vmname |
upper }}{% else %}all{% endif %}" -e vmname=test

$ ansible localhost -m debug -a "msg={% if vmname is defined %}{{ vmname |
upper }}{% else %}all{% endif %}"

The following screenshot shows this in action:

As you can see from the preceding screenshot, the commands produce the desired output
when vmname is set and undefined, and so we can copy this into our playbook or role and
proceed with confidence!

That concludes our chapter on tips and tricks—it is hoped that these final words will help
you with implementing a highly reliable and scalable Linux automation infrastructure
based upon Ansible in your enterprise.

Tips and Tricks Chapter 16

[457]

Summary
Effective automation in an enterprise setting goes beyond writing Ansible playbooks and
roles—it is all about maintaining single sources of truth so that you can always have
confidence in your automation processes. It is also about leveraging your chosen tool for as
many purposes as possible, including assisting you with playbook and role development,
and in helping you with one-off tasks that do not necessarily warrant a playbook (although
this is discouraged as it removes some of the auditing capability offered by playbook
development and effective use of AWX/Ansible Tower).

In this chapter, you learned how to make effective use of version control to maintain a
history of your Linux environment. You then gained hands-on experience in using dynamic
inventories for Ansible to prevent discrepancies in deployments and to ensure that both
your inventories and playbooks can be trusted. Finally, you learned how to handle one-off
tasks using Ansible and even assist your own playbook development.

That concludes our book on Linux automation in the enterprise—I hope that you have
found it valuable and that it will assist you on your own journey of effective automation in
a large scale setting.

Questions
What is Ansible Galaxy?1.
Why is it important to use version control for your playbooks and especially your2.
roles?
List two ways in which you can include role code from a separate Git repository3.
within your own Git project.
Why is it important to use dynamic inventories where possible?4.
What language(s) should you write your dynamic inventory scripts in if writing5.
your own?
Where would you find the documentation on requirements and configuration6.
examples for the dynamic inventory scripts shipped with Ansible?
What is an ad hoc Ansible command?7.
List two ways in which ad hoc commands can help you with playbook and role8.
development.
How can you run an arbitrary shell command across a group of Linux servers9.
using an Ansible ad hoc command?

Tips and Tricks Chapter 16

[458]

Further reading
To explore the effective use of Git for version control of your playbooks,
especially when it comes to branching and merging, please refer to Git Best
Practices Guide by Eric Pidoux (https:/ /www. packtpub. com/ gb/ application-
development/ git- best- practices- guide)
For an in-depth understanding of Ansible, please refer to Mastering Ansible, 3rd
Edition by James Freeman and Jesse Keating (https:/ /www. packtpub. com/gb/
virtualization- and- cloud/ mastering- ansible- third- edition)

https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/application-development/git-best-practices-guide
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition
https://www.packtpub.com/gb/virtualization-and-cloud/mastering-ansible-third-edition

Assessments

Chapter 1 - Building a Standard Operating
Environment on Linux

Standard Operating Environment.1.
There are many reasons, but commonly enterprises will have Linux machines in2.
service for many years (often whether they originally planned to or not!). An
operation system falling out of support and not having security patches available
is a big problem for most enterprises, and so Linux distributions should be
chosen accordingly.
Yes, absolutely—the standards are there to serve as a guideline and to prevent3.
things from getting chaotic, but they are not intended to be so rigid that they
hamper progress or innovation.
Possible answers might include the following:4.

The speed at which new machines can be brought up for scaling
purposes
Confidence in those machines that they will work the same as the
current ones
The reliability of the machines brought into service

Possible answers might include the following:5.
High levels of confidence in the environment amongst all staff
members
Supports automation of tasks
Consistency reduces the possibility of an application working in one
environment and failing in another

As all the machines across the enterprise are the same (or at least broadly6.
similar), staff can manage a large environment with a relatively small amount of
knowledge, as all machines should be built the same way, to the same standards,
and all applications should be deployed in the same way.
SOEs ensure the consistency of machine builds, which will include security7.
hardening—the environment will also be built to known standards, which
should have redundant services disabled (reducing the attack surface) and a
well-understood patching strategy.

Assessments

[460]

Chapter 2 - Automating Your IT
Infrastructure with Ansible

Ansible is an open source automation platform used for running tasks across an1.
inventory of servers. It differs from a simple shell script in that it will (when
using native modules) only attempt to make changes when they are required
(hence resulting in a consistent state), and it offers native support for remote
connections to other machines (using SSH on Linux) and encryption of sensitive
data and makes use of highly readable, self-documenting code.
An Ansible inventory is simply a list of servers against which an Ansible2.
playbook is to be run.
Ansible has built-in features to make it easy to reuse roles—hence, a single role3.
might find application in several playbooks. Conversely, if the code is written in
a single large playbook, the only way to reuse the code in a different playbook is
to copy and paste, which is both cumbersome and difficult to keep track of
(especially when the code is changed in one place).
Jinja2.4.
Yes—Ansible has a strict and well-documented variable precedence order.5.
Employing templates will always result in a deployed file that looks the same on6.
all machines. Using search and replace can be tricky, and simple changes to the
target file on one machine can break the search pattern in all but the most
meticulously designed regular expressions.
Ansible facts can be used to tell Ansible useful information, such as which7.
operating system it is running on—hence, playbooks can be coded to perform
different actions on a CentOS and Ubuntu host (for example, using yum on
CentOS and apt on Ubuntu).

Chapter 3 - Streamlining Infrastructure
Management with AWX

AWX stores credentials in a manner that is not easily reversible, even to1.
administrators—as a result, it prevents those running automation tasks from
accessing secure credentials and making use of them in another context.

Assessments

[461]

If two people are working from a set of playbooks, how can you ensure they are2.
consistent? Equally, how can you ensure that you understand the changes that
have been made in your playbooks, especially when issues arise? Good version
control strategies address these and many more challenges.
AWX has all of the dynamic inventory scripts provided as part of the Ansible3.
project built in, along with all supporting libraries. They can be configured
through the AWX user interface, and so can be considered to work out of the box,
whereas additional work is required to use them on the command line.
A project is a logical grouping of playbooks—it might be a single directory on a4.
filesystem or a repository in a version control system such as Git.
A template is analogous to the ansible-playbook command, along with all its5.
switches and parameters, which you might run on the command line.
This is visible in the Job History pane for each job in the user interface—every6.
job has the Git commit hash stored along with other valuable information about
the task that was run.
The AWX server itself houses some very sensitive data, including the database,7.
which contains reversibly encrypted credentials. Also, it is possible to run
playbooks from a known path on the local filesystem of the AWX host and so, to
enforce version control usage, it is important that as few people as possible have
access to this server.
AWX has a built-in scheduler that can run playbooks at a time of your choosing8.
(either as a one-off or regularly).

Chapter 4 - Deployment Methodologies
A Docker container is built from code—commonly a Dockerfile—and as a1.
result, you can be confident of what a Docker container will look like when it is
built. An SOE is also built programmatically, and so all builds in the SOE should
look the same (perhaps allowing for minor differences when deploying on
different platforms).
The MariaDB service takes up disk space, which although seemingly small,2.
would waste a lot of storage if deployed hundreds of times. It also means you
need to ensure it is disabled when it is not needed, which is not a necessary check
if it is not installed at all.
Build the image off the most minimal set of packages possible. Don't include3.
anything that isn't needed across all (or at least 90% of) machines. Clean up the
image (for example, sysprep) before completing the build process.

Assessments

[462]

If a password gets compromised, you will have to change it across all deployed4.
machines as the password will be replicated from the original image. This may
require an audit to ensure all machines that were deployed with this password
are found and addressed.
Create the standard operating system image with a syslog file that includes the5.
correct parameters to send logging information to a centralized logging server.
Check and enforce this configuration regularly with Ansible.
If your requirements are highly specialized (perhaps a very specific set of6.
package versions is required for one of your applications), you might choose to
build your own. You would also do this if you had special security requirements,
or perhaps for some reason, you don't have confidence/trust in the publicly
available image.
Deploy the SSH configuration file with Ansible using a Jinja2 template to ensure7.
consistency across all machines.

Chapter 5 - Using Ansible to Build Virtual
Machine Templates for Deployment

Sysprep removes all redundant information from the image so it is clean when it1.
is deployed. This might include system logs, bash history files, SSH host
identification keys, MAC addresses in udev rules—anything that should not be
deployed a hundred times across the enterprise.
Whenever you need to know something about the underlying system—perhaps2.
the IP address, the operating system, or the disk geometry.
Ideally, create a Jinja2 template and deploy it with Ansible using the template3.
module.
get_url.4.
You would write two tasks, one that uses the apt module, and one that uses the5.
yum module. Each task should have a when clause and check the Ansible Facts to
ensure it runs the correct task on the corresponding operating system.
To ensure it was not corrupted when you downloaded it and to ensure it has not6.
been tampered with (for example, malicious software injected).
The roles can be reused to audit, validate, and enforce configuration across the7.
enterprise once the template has been deployed.

Assessments

[463]

Chapter 6 - Custom Builds with PXE Booting
Pre-eXecution Environment.1.
A DHCP server and a TFTP server—commonly, another service is required for2.
serving larger volumes of data; this might be a web, FTP, or NFS server.
Check the download site for the distribution you are using or the ISO3.
contents—there is normally a specific folder containing the kernel and RAMDisk
images for network booting.
An installation where no user interaction is required at all and the end result is a4.
fully installed and configured machine.
A kickstart file is specific to Red Hat-derivative operating systems such as5.
CentOS and RHEL, whereas a pre-seed file is used on Debian derivatives such as
Ubuntu.
To execute custom scripts or actions that cannot be performed earlier in the6.
unattended installation.
Legacy BIOS PXE booting and UEFI network booting require different binary7.
files for the boot process—hence, these must be separated and served
appropriately according to the machine type.
There are multiple ways—the easiest if using automated partitioning is to8.
provide a statement such as this:

d-i partman-auto/choose_recipe select home

Chapter 7 - Configuration Management with
Ansible

Commonly, these might be replace and lineinfile.1.
In brief, a template file is created that contains a mix of plaintext (which will be2.
replicated as is) and valid Jinja2 expressions, which will be parsed and turned
into the appropriate text when the template is deployed. These might be simple
variable substitutions or more complex constructs such as for loops or
if..then..else statements.
Many Linux configurations are now split across multiple files, and it is possible3.
for someone to accidentally (or maliciously) override your configuration in
another file that gets included later on.

Assessments

[464]

Regular expressions can easily be broken if not carefully designed—for example,4.
a Linux service might accept a configuration directive if there is whitespace
before it; however, if your regular expression does not take account of this, it
might overlook valid configuration directives, which need changing.
It is simply deployed as is—almost akin to the copy module in Ansible.5.
Make use of the validate parameter with the template module.6.
Run Ansible in check mode—if the playbook and roles are well written, any7.
reported changed results means that the configuration has deviated from the
desired state and might need to be addressed.

Chapter 8 - Enterprise Repository
Management with Pulp

Pulp repositories can be version controlled (through snapshots taken in time).1.
They are also disk space-efficient and do not duplicate packages across mirrors.
Linux repositories change on a very regular basis, and a machine patched on2.
Monday may not look like a machine patched on Tuesday. This can, in worst-
case scenarios, impact testing results.
Pulp 2.x requires a message broker and a MongoDB database to run.3.
/var/lib/mongodb should be 10 GB or more in size. /var/lib/pulp should be4.
sized according to the repositories you want to mirror. They should be created on
the XFS filesystem.
At the simplest possible level, you could create a repository file in5.
/etc/yum.repos.d and point it at the appropriate path on the Pulp server (as
documented in Chapter 8, Enterprise Repository Management with Pulp). It is also
possible to configure the Pulp Consumer for this task.
The Pulp Consumer only works on RPM-based systems, and so if you use this in6.
a mixed CentOS and Ubuntu environment (for example), you will have a
differing approach between your Ubuntu and CentOS hosts. Using Ansible for
patching works for both system types and ensures consistency in your approach,
which makes life simpler for those who manage the environment.
No, it does not. You would run pulp-admin orphan remove --all.7.

Assessments

[465]

Chapter 9 - Patching with Katello
Katello offers a rich web-based user interface, filtering for repository creation, the1.
concept of life cycle environments (for example, development and production),
and a whole other set of features.
A Product is a collection of supported files in Katello—it might be a mirror of an2.
RPM repository, some manually uploaded files, a collection of Puppet manifests,
or a DEB repository mirror.
A content view is a version-controlled snapshot of a set of Products as defined in3.
the answer to question 2. In the context used in this book, it is a version-controlled
set of repositories.
Yes, it can.4.
You would create one Lifecycle Environment for each distinct environment5.
in your enterprise—for example, Development, Testing, Staging, and
Production. Hence, you can have a different version of a Content View
associated with each environment, allowing Development to test the most
bleeding-edge packages, whilst Production receives the most stable, tested
ones.
A Publish operation created a new version of a content view—this is not6.
associated with any of your Lifecycle Environments at this stage. A Promote
operation associates the published version with a Lifecycle Environment.
When you are ready to test/deploy that version of the repository content in the7.
environment you are promoting to (for example, new version of packages to
Development).

Chapter 10 - Managing Users on Linux
They provide an emergency route into the server in case of failure of the1.
directory service.
The user module.2.
Run an ad hoc Ansible command and use the password_hash filter to generate3.
the hash, as in this example:

$ ansible localhost -i localhost, -m debug -a "msg={{ 'secure123' |
password_hash('sha512') }}"

Assessments

[466]

The realmd package.4.
Create a template to match the file on the group of servers, and then write a5.
role/playbook with a task to deploy the template. Run the playbook in check
mode and if changed status results occur, then the templated file differs from the
configuration on the servers.
If you get a directive wrong in sudoers, the worst-case scenario is you will lock6.
yourself out of becoming root on your server (hence preventing you from fixing
the problem). Validating the file helps to prevent this.
A directory service can audit logins, manage password complexity, lock accounts7.
centrally either on demand or as a result of too many failed login attempts.
This depends on your business requirements and existing architecture. A8.
business with a Microsoft infrastructure will almost certainly already have
Microsoft Active Directory, whilst a business running purely on Linux will not
need to introduce Windows Server and so should consider FreeIPA.

Chapter 11 - Database Management
Ansible provides a self-documenting way of deploying both the software and1.
database content—coupled with a tool such as AWX, it ensures you have an
audit trail of who made what changes and when.
Create the configuration file as a template and deploy it using the template2.
across all servers. Where configurations are split across multiple files, either
ensure that all files are managed by Ansible or remove the include statement
from the files to ensure parameters cannot be accidentally overridden.
Ansible performs all its operations on the database machine using SSH—hence,3.
there is no need to open your database server to the network to manage it.
You would use the shell module when the native module you need cannot4.
perform the operation you require. For example, older versions of Ansible could
do most things on PostgreSQL, but couldn't perform a full vacuum. This has now
been rectified but serves as an example - the shell module is your solution
when you either do not have a native Ansible module that addresses your
requirements, or where one exists but the task you are performing is outside its
capabilities.

Assessments

[467]

Ansible, especially when coupled with AWX, provides an audit trail and ensures5.
that you can track what operations were performed and when. You can also
schedule routine operations in AWX.
You would create a role or playbook and use the shell module to call one of the6.
native PostgreSQL backup tools such as pg_basebackup or pg_dump.
mysql_user.7.
PostgreSQL has more native modules supporting it in Ansible than any other8.
database platform.

Chapter 12 - Performing Routine
Maintenance with Ansible

The df command can be provided with a path and it will work out the mount1.
point on which that path lives and give you the free disk space. Ansible Facts
provide disk usage statistics, but only by mount point, and so you must figure
out which mount point your path lives on.
The find module is used to locate files.2.
Changes to configuration files might get made accidentally, maliciously, or as a3.
result of an emergency change to fix an issue. In all cases, it is important to
identify the changes and ensure that they are either removed or the playbooks
updated to reflect the new configuration (especially when they were made to
resolve an issue).
You could use the template module or copy module to copy over the file and4.
run Ansible in check mode. You could also checksum the file and see whether
that matches a known value.
Use the service module in a task with the appropriate parameters.5.
Jinja2 provides the filtering as well as templating in Ansible.6.
Use the split operator on the variable—for example, {{ item.split(,) }}.7.
If you change all of the server content in one go, you might accidentally take the8.
whole service offline—it is better to take a small number of servers out of service
at a time, make and validate the changes, and then reintroduce them.
Set max_fail_percentage to an appropriate value for your environment to9.
stop the play if more than a given percentage of failures occur.

Assessments

[468]

Chapter 13 - Using CIS Benchmarks
They provide a standardized, industry-agreed way to secure Linux servers.1.
Yes, it does.2.
A level 1 benchmark is not expected to have an impact on day-to-day operations3.
of your server. A level 2 benchmark is and so should be implemented with care.
Scored benchmarks are expected to be crucial to all systems, whereas4.
benchmarks that are not scored are expected to be applied to only some systems
(for example, wireless network adapter configuration hardening will only apply
to a subset of machines—hence, this should not affect the score of all machines).
This is normally provided in the benchmark document but often involves using5.
the grep utility within the script to check for the configuration settings in a given
file and reporting back on whether it was found or not.
Possible answers include the following:6.

Pattern matching can be an imprecise science, and you must be careful
of false positives and indeed false negatives!
Shell scripts are not normally state-aware and care must be taken not
to write the same configuration out each time the script is run, even if
it is the same as before.
Shell scripts are difficult to read, especially when they become large,
and so can be difficult to manage and maintain.

Shell scripts are not very readable, and as the number of security requirements to7.
implement increases, so does the size of the script, in the end becoming
something that no-one would be able to manage.
Pipe the shell script into an SSH session opened with the remote server.8.
This enables the path to be altered easily in case the script needs to be9.
repurposed—for example, some key system binaries live in different paths on
Ubuntu and CentOS systems.
In general, it is best to run scripts at the lowest privilege level possible, only10.
elevating for specific tasks that require this. Also, sudo is sometimes configured
to require a Terminal session, and this can prevent running an entire script under
sudo when you pipe it into an SSH session.

Assessments

[469]

Chapter 14 - CIS Hardening with Ansible
The modules wrap up a whole set of shell scripting functionality, including the1.
conditionals that would be required to ensure that the script only makes changes
when required and can report back on whether the change was made and
whether it was successful.
There are several ways—you can run the entire playbook with the --limit2.
parameter set, or you can use the when clause within the playbook to ensure that
the tasks only run on given hostnames.
Name your tasks after the benchmark (including the number) so you can easily3.
identify what they are for. Also, include the level and scoring detail to make it
easy to interpret and audit results from playbook runs.
Tag the tasks as level1 and level2 accordingly, and then run the playbook4.
with the --tags level1 parameter.
The --tags parameter only runs tasks with the tags specified, whereas the --5.
skip-tags parameters runs all tasks except those specified.
The CIS Benchmarks are very large in size, and there is no point in reinventing6.
the wheel, especially with open source code as you can audit the playbooks
before you use them to ensure they are secure and meet your requirements.
It tells Ansible to run in check mode, which means that no changes are7.
performed, but Ansible will try to predict which changes would have been made
if it had been run in its normal mode.
No—the shell module can't support check mode because it is impossible to8.
know what command someone may have passed to it in a playbook.

Chapter 15 - Auditing Security Policy with
OpenSCAP

Security Content Automation Protocol.1.
SCAP policies can audit your systems against a given standard - for example the2.
CIS Benchmarks discussed in this book, or the PCI-DSS (Payment Card Industry
- Data Security Standard) requirements. There are many pre-written policies
available, and with open source tools such as OpenSCAP, you can write your
own policies with your own requirements. This is valuable to the enterprise in
being able to run audits against Linux servers and ensure they remain compliant
with a chosen standard.
You would most likely the OpenSCAP Daemon for this purpose.3.

Assessments

[470]

At a fundamental level, the OVAL file contains the low level system checks the4.
scanning engine should perform. The XCCDF file references the OVAL file (in
fact it cannot be used without it) contains amongst other definitions, profiles
which make use of scan definitions to audit against known policies (for example,
PCI-DSS), and code to generate human readable reports from the scan output.
In some environments, the vendor might only provide you with support if you5.
use their policy files. An example of this is Red Hat Enterprise Linux 7, where
Red Hat state that they will only support you if you use the SSG policies
available from their own repos.
SCAP policies are highly specific to the operating system they are running on.6.
Although in many scenarios, CentOS 7 and RHEL 7 can be treated as the same,
there are fundamental differences. SCAP takes account of this and ensures that it
differentiates between operating systems, even CentOS 7 and RHEL 7, and as
such it will mark many if not all of the RHEL 7 audits as notapplicable when
they are run against CentOS 7. The same would be true if a CentOS 7 specific
policy was run against a RHEL 7 host.
Yes you can - a command such as the following would generate an HTML report7.
from an XML results file: sudo oscap xccdf generate report --output
/var/www/html/reportoscapd.html
/var/lib/oscapd/results/1/1/results.xml

You must have set up passwordless (key based) SSH access to the server you8.
wish to scan. It must also have passwordless sudo access unless you are using
the root account over SSH (not recommended).

Chapter 16 - Tips and Tricks
Ansible Galaxy is a publicly available repository of Ansible roles for you to reuse1.
or develop as you wish. It is also a place where you can share the roles you have
created.
Playbooks and roles are bound to change over time, but there will always be2.
times where it is a requirement to understand what happened historically. Roles
especially are designed to be reused, and so it is important they are centrally
version controlled so that all playbooks that make use of them are sure they are
using the correct version role.
Possible answers include the following:3.

Use a requirements.yml file to specify the role URLs in a repository
and install them with ansible-galaxy.
Add them to your roles/ directory as Git submodules.

Assessments

[471]

Especially in cloud computing, the servers you have deployed will change4.
constantly. Ansible only knows what to automate from its inventory file, so it is
vital that the inventory file is up to date or servers may get missed. Making use
of dynamic inventories ensures the inventory is always up to date as the latest
inventory is always dynamically generated.
You can write them in any language provided the output is in the correct JSON5.
format for Ansible. Most are written in Python.
Look in the comments at the beginning of the dynamic inventory script itself or6.
the accompanying configuration file.
It is a command that can run a single Ansible module once without the need to7.
write an entire playbook.
Possible answers include the following:8.

They can help you to test and develop Jinja2 filter expressions without
having to run an entire playbook.
They can help you to test out module functionality before you commit
it to playbook or role code.

Run an Ansible ad hoc command using the shell module (-m shell) and pass9.
the shell command in the arguments of the module (-a "ls -la /tmp").

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Linux Administration on Azure
Frederik Vos

ISBN: 978-1-78913-096-6

Understand why Azure is the ideal solution for your open source workloads
Master essential Linux skills and learn to find your way around the Linux
environment
Deploy Linux in an Azure environment
Use configuration management to manage Linux in Azure
Manage containers in an Azure environment
Enhance Linux security and use Azure's identity management systems
Automate deployment with Azure Resource Manager (ARM) and Powershell
Employ Ansible to manage Linux instances in an Azure cloud environment

https://www.packtpub.com/virtualization-and-cloud/hands-linux-administration-azure

Other Books You May Enjoy

[473]

Hands-On Linux for Architects
Denis Salamanca, Esteban Flores

ISBN: 978-1-78953-410-8

Study the basics of infrastructure design and the steps involved
Expand your current design portfolio with Linux-based solutions
Discover open source software-based solutions to optimize your architecture
Understand the role of high availability and fault tolerance in a resilient design
Identify the role of containers and how they improve your continuous
integration and continuous deployment pipelines
Gain insights into optimizing and making resilient and highly available designs
by applying industry best practices

https://www.packtpub.com/networking-and-servers/hands-linux-architects

Other Books You May Enjoy

[474]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Active Directory (AD) 277
Advanced Intrusion Detection Environment (AIDE)
 about 335
 installing 357
Amazon Web Services (AWS) 95, 117
Ansible configuration file
 reference link 31
Ansible documentation
 installation link 29
Ansible dynamic inventories
 working with 445, 446, 447, 448
Ansible Galaxy 45
Ansible module 32
Ansible playbook structure
 exploring 29, 30, 32, 33, 34, 35
Ansible security policies
 writing 374
Ansible templates 52, 54, 55
Ansible variables 47, 48, 50, 51, 52
Ansible
 application of enterprise-wide policy 390, 391,

392, 393, 394
 build, cleaning up 139, 140
 combining, with SOE 56, 57
 complex security benchmarks, implementing

385, 386, 387
 configuration files, editing 130, 131, 132, 133
 configuration integrity, maintaining 187, 188,

189

 configuration, auditing 284
 configuration, enforcing 284
 files, transferring into image 121, 122, 123, 125
 image build, validating 133, 134, 135, 136, 137
 integrating, with Git 436, 437, 438
 inventories, exploring 35, 36, 37, 38, 40, 41

 one-off tasks, running with 452, 453, 454, 455,
456

 packages, installing 126, 127, 128, 129
 process management 338, 339, 340, 341
 roles 42, 43, 44, 45
 security policies, building up 378, 380, 381,

382, 383, 384, 385
 security policy, testing 394, 395, 396
 used, for adding user account 270, 271, 272,

273, 274, 275, 276
 used, for auditing user accounts 286, 287, 288
 used, for automating MariaDB data loading 306,

307, 308, 309, 310, 311, 312, 313, 315, 316,
317

 used, for building template 120, 121
 used, for creating configuration changes 184,

185, 186
 used, for installing databases 291
 used, for installing MariaDB server 291, 292,

293, 294, 295, 296, 297, 298, 299, 300
 used, for installing PostgreSQL Server 300, 301,

302, 303, 304, 305
 used, for managing sudoers 284, 285
 used, for modifying user account 270, 271, 272,

273, 274, 275, 276
 used, for performing routine maintenance on

PostgreSQL 318, 319, 320, 321, 322
 used, for process management 337
 used, for removing users 276, 277
 used, for rolling updates 342, 343, 344, 345
 used, for standardizing template 120, 121
AWX API
 reference link 64
AWX
 about 60
 benefits 61, 62, 63, 64
 credentials, setting up 71

[476]

 installing 64, 65, 66, 67, 68, 70
 inventories, creating 72, 73, 74
 playbook, executing from 70, 80, 81, 82, 83, 84
 project, creating 75, 76, 77, 78, 79
 routine tasks, automating with 84, 85, 86
 template, creating 79, 80

B
bare-metal environments
 deploying 92, 93
builds
 cleaning up, with Ansible 139, 140
 efficient processes, creating 103
 enhancing 100, 101, 102
 securing 102

C
CIS Benchmark scripts
 executing, from remote location 368, 369, 371
CIS Benchmarks
 about 350, 351, 352
 exploring 352, 354
 reference link 352
CIS Service benchmarks 358
cloud environments
 deploying 95, 96, 98
Cobbler dynamic inventory
 working with 448, 449, 450, 451, 452
Community for Internet Security (CIS) 351
complex security benchmarks
 implementing, in Ansible 385, 386, 387
configuration changes
 creating, with Ansible 184, 185, 186
configuration drift
 monitoring 331, 332, 333, 334, 335
configuration integrity
 maintaining 187, 188, 189
Configuration Management Database (CMDB) 64
Configuration Management System (CMS) 448
credentials
 setting up, in AWX 71
custom scripts
 adding, to unattended boot configuration 171
 with kickstart 171, 172
 with Ubuntu pre-seed file 172

D
data
 exporting 306
 importing 306
Database Administrator (DBA) 76
databases
 installing, with Ansible 291
DEB-based patching
 used, with Pulp 230, 231, 232, 233, 234
DEB-based repositories
 building, in Pulp 220, 221, 222, 223
DEB-based systems
 patching, with Katello 261, 263, 264, 265, 266
Disaster Recovery (DR) 206
disk space
 clearing 325, 326, 327, 328, 329, 330, 331
Docker deployments 98, 99

E
enterprise scale
 configuration, managing 189
eXtensible Configuration Checklist Description

Format (XCCDF) 408, 410

F
Fedora project web site
 URL 110
filesystems
 mounting 356, 357
FreeIPA
 about 281, 283, 284
 reference link 282

G
Git
 Ansible, integrating with 436, 437, 438
Google Cloud Platform (GCP) 95
Graphical User Interface (GUI) 207

H
Hammer 237
HEAD 76
hosts
 allowing, by network 358, 359

[477]

I
initial build
 performing 109
inventories
 about 444, 445
 creating, in AWX 72, 73, 74
 exploring, in Ansible 35, 36, 37, 38, 40, 41
inventory host variables
 reference link 41

J
Java Runtime Environment (JRE) 407
Jinja2 templating 54
Just enough Operating System (JeOS) 19

K
Katello 3.12 documentation
 reference link 239
Katello documentation, for Activation Keys
 reference link 259
Katello server
 installation, preparing 239, 241, 242
 installing 239
Katello
 about 237, 238
 Candlepin 237
 Capsule 237
 DEB-based systems, patching 261, 263, 264,

265, 266
 Foreman 237
 patching 242, 243
 Pulp 237
 RPM-based systems, patching 243, 244, 245,

247, 248, 249, 250, 251, 252, 253, 254, 255,
256, 257, 258, 259, 260, 261

kickstart 158
kickstart files
 used, for performing unattended builds 158,

159, 161, 163, 164, 165, 166

L
LDAP
 used, for centralizing user account management

277

Linux environment scaling, challenges
 about 9
 addressing 11
Linux environment scaling, requisites
 ease of use 16
 longevity 14, 15
 reliability 13
 scalability 13, 14
 security 12, 13
 supportability 15, 16
Linux images
 consistency, ensuring 103, 105, 106
Linux infrastructure
 scanning, with OpenSCAP tools 412, 413, 414,

415, 416, 417, 418, 419, 420, 422
local firewalls 359

M
MariaDB data loading
 automating, with Ansible 306, 307, 308, 309,

310, 311, 312, 313, 315, 316, 317
MariaDB server
 installation link 292
 installing, with Ansible 291, 292, 293, 294, 295,

296, 297, 298, 299, 300
Microsoft AD 278, 279, 280, 281

N
Nagios Cross-Platform Agent (NCPA) 19
network boot
 performing 152, 153, 154, 155, 156, 157, 158
network installation images
 obtaining 149, 150, 151
Network Operations Center (NOC) 60
non-native packages
 installing 182, 183
non-standard environments
 challenges 9
 early growth 9
 impacts 10
 scaling up 10

O
one-off tasks
 running, with Ansible 452, 453, 454, 455, 456

[478]

open source software (OSS) 35
Open Vulnerability and Assessment Language

(OVAL) 408, 410
OpenSCAP Base tool
 executing 401, 402
OpenSCAP Daemon
 installing 402, 403
 used, for executing scans 422, 423, 424, 425,

426

OpenSCAP policies
 installing 410, 411
OpenSCAP server
 installing 400
OpenSCAP tools
 considering 404, 405
 used, for scanning Linux infrastructure 412, 413,

414, 415, 416, 417, 418, 419, 420, 422
OpenSCAP
 used, for scanning enterprise 412
operating system default repositories
 package, installing 177, 179, 181
organizational unit (OU) 280
OSSEC project
 reference link 357

P
package
 installing, from operating system default

repositories 177, 179, 181
patch management
 Pulp, installing 206, 207
Payment Card Industry (PCI) 410
playbook design
 appropriate decisions, making 388, 389, 390
playbook
 about 30
 executing, from AWX 70, 80, 81, 82, 83, 84
PostgreSQL Server
 installing, with Ansible 300, 301, 302, 303, 304,

305

Pre-eXecution Environment (PXE) 93, 144
pre-seed files
 used, for performing unattended builds 167,

168, 169, 170, 171
process IDs (PIDs) 337

process management
 with Ansible 337, 338, 339, 340, 341
project
 creating, in AWX 75, 76, 77, 78, 79
Pulp Consumer 223
Pulp
 DEB-based repositories, building 220, 221, 222,

223

 installing 207, 208, 209, 210, 211, 212, 213
 installing, for patch management 206, 207
 repositories, building 214
 RPM-based repositories, building 214, 215, 216,

217, 218, 219, 220
 used, for patching processes 223
 used, in RPM-based patching 224, 225, 227,

228, 229
 used, with DEB-based patching 230, 231, 232,

233, 234
PXE booting
 about 144, 145
 network boot, performing 152, 153, 154, 155,

156, 157, 158
 network installation images, obtaining 149, 150,

151

 PXE-related services, configuring 145, 146,
148, 149

 PXE-related services, installing 145, 146, 148,
149

PXE-related services
 configuring 145, 146, 148, 149
 installing 145, 146, 148, 149

Q
Quick Copy On Write (QCOW2) 113

R
ready-made template images
 using 110, 111, 112
Red Hat Enterprise Linux (RHEL) 178, 281, 292
Red Hat Subscription Management (RHSM) 237
remote root login
 disability, ensuring 375, 376, 378
Role-Based Access Control (RBAC) 76
roles and directory structure
 reference link 45

[479]

roles
 version control, in Ansible 440, 441, 442, 443,

444

rolling updates
 with Ansible 342, 343, 344, 345
routine maintenance
 performing 318
 performing, on PostgreSQL with Ansible 318,

319, 320, 321, 322
routine tasks
 automating, with AWX 84, 85, 86
RPM-based patching
 used, with Pulp 224, 225, 227, 228, 229
RPM-based repositories
 building, in Pulp 214, 215, 216, 217, 218, 219,

220

RPM-based systems
 patching, with Katello 243, 244, 245, 247, 248,

249, 250, 251, 252, 253, 254, 255, 256, 257,
258, 259, 260

S
scalable dynamic configuration changes
 creating 196, 197, 200, 201, 202
scalable static configuration changes
 creating 190, 191, 192, 193, 194, 196
scan reports
 interpreting 428, 430, 431
scans
 executing, with OpenSCAP Daemon 422, 423,

424, 425, 426
SCAP Security Guide (SSG) 406
SCAP Security Guide
 installing 406, 407, 408
SCAP Workbench
 about 403
 executing 403, 404
 scanning with 426, 427, 428
SCAPTimony 404
scoring 359
scripted approaches, CIS Benchmark application
 packet redirect sending, ensuring 365, 366, 367,

368

 SSH root login, disabling 360, 361, 362, 363,
365

scripts
 version control 435, 436
Secure Shell (SSH) 332
security policy
 applying 355
 building up, in Ansible 378, 380, 381, 382, 383,

384, 385
 evaluating 405
 selecting 405
 testing, with Ansible 394, 395, 396
SELinux security policy
 applying 356
Serial-Over-LAN (SOL) 155
server hardening
 scripted deployment 360
SOE benefits
 exploring 20
SOE, in Linux environment
 benefits 20, 21, 22
software
 installing 176
Spacewalk software tool 238
special variables
 reference link 50
ssh-agent, with Ansible
 reference link 41
Standard Operating Environment (SOE), benefits
 to software testing 22, 23
Standard Operating Environment (SOE)
 about 16, 17, 18, 19, 158
 combining, with Ansible 56, 57
 deviations 24
 maintenance 25, 26
sudoers
 managing, with Ansible 284, 285
Surveys 321
system preparation (sysprep) 118

T
template
 creating, in AWX 79, 80
tower-cli command
 reference link 64
traditional virtualization environments
 deploying 93, 94, 95

Trivial File Transfer Protocol (TFTP) 144

U
Ubuntu repositories
 reference link 221
unattended boot configuration
 custom scripts, adding 171
unattended builds
 performing 158
 performing, with kickstart files 158, 159, 161,

163, 164, 165, 166
 performing, with pre-seed files 167, 168, 169,

170, 171
unique identification number (UID) 270
unpackaged software
 installing 183
user account management
 centralizing, with LDAP 277
 tasks, performing 269
user accounts
 auditing, with Ansible 286, 287, 288
 removing, with Ansible 276, 277

V
variable precedence
 reference link 47
Vault
 about 52
 reference link 52
version control
 for scripts 435, 436
 repositories, organizing 438, 439
virtual machine images
 creating 112, 113, 114, 116, 117, 118, 119,

120

Virtualmin 183

W
Windows Subsystem for Linux (WBL) 29

X
X Windows 358

Y
YAML Ain't Markup Language (YAML) 31

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1: Core Concepts
	Building a Standard Operating Environment on Linux
	Understanding the challenges of Linux environment scaling
	Challenges of non-standard environments
	Early growth of a non-standard environment
	Impacts of non-standard environments
	Scaling up non-standard environments

	Addressing the challenges
	Security
	Reliability
	Scalability
	Longevity
	Supportability
	Ease of use

	What is an SOE?
	Defining the SOE
	Knowing what to include

	Exploring SOE benefits
	Example benefits of an SOE in a Linux environment
	Benefits of SOE to software testing

	Knowing when to deviate from standards
	Ongoing maintenance of SOEs
	Summary
	Questions
	Further reading

	Automating Your IT Infrastructure with Ansible
	Technical requirements
	Exploring the Ansible playbook structure
	Exploring inventories in Ansible
	Understanding roles in Ansible
	Understanding Ansible variables
	Understanding Ansible templates
	Bringing Ansible and the SOE together
	Summary
	Questions
	Further reading

	Streamlining Infrastructure Management with AWX
	Technical requirements
	Introduction to AWX
	AWX reduces training requirements
	AWX enables auditability
	AWX supports version control
	AWX helps with credential management
	Integrating AWX with other services

	Installing AWX
	Running your playbooks from AWX
	Setting up credentials in AWX
	Creating inventories in AWX
	Creating a project in AWX
	Creating a template in AWX
	Running a playbook from AWX

	Automating routine tasks with AWX
	Summary
	Questions
	Further reading

	Section 2: Standardizing Your Linux Servers
	Deployment Methodologies
	Technical requirements
	Knowing your environment
	Deploying to bare-metal environments
	Deploying to traditional virtualization environments
	Deploying to cloud environments
	Docker deployments

	Keeping builds efficient
	Keeping your builds simple
	Making your builds secure
	Creating efficient processes

	Ensuring consistency across Linux images
	Summary
	Questions
	Further reading

	Using Ansible to Build Virtual Machine Templates for Deployment
	Technical requirements
	Performing the initial build
	Using ready-made template images
	Creating your own virtual machine images

	Using Ansible to build and standardize the template
	Transferring files into the image
	Installing packages
	Editing configuration files
	Validating the image build
	Putting it all together

	Cleaning up the build with Ansible
	Summary
	Questions
	Further reading

	Custom Builds with PXE Booting
	Technical requirements
	PXE booting basics
	Installing and configuring PXE-related services
	Obtaining network installation images
	Performing your first network boot

	Performing unattended builds
	Performing unattended builds with kickstart files
	Performing unattended builds with pre-seed files

	Adding custom scripts to unattended boot configurations
	Customized scripting with kickstart
	Customized scripting with pre-seed

	Summary
	Questions
	Further reading

	Configuration Management with Ansible
	Technical requirements
	Installing new software
	Installing a package from operating system default repositories
	Installing non-native packages
	Installing unpackaged software

	Making configuration changes with Ansible
	Making small configuration changes with Ansible
	Maintaining configuration integrity

	Managing configuration at an enterprise scale
	Making scalable static configuration changes
	Making scalable dynamic configuration changes

	Summary
	Questions
	Further reading

	Section 3: Day-to-Day Management
	Enterprise Repository Management with Pulp
	Technical requirements
	Installing Pulp for patch management
	Installing Pulp

	Building repositories in Pulp
	Building RPM-based repositories in Pulp
	Building DEB-based repositories in Pulp

	Patching processes with Pulp
	RPM-based patching with Pulp
	DEB-based patching with Pulp

	Summary
	Questions
	Further reading

	Patching with Katello
	Technical requirements
	Introduction to Katello
	Installing a Katello server
	Preparing to install Katello

	Patching with Katello
	Patching RPM-based systems with Katello
	Patching DEB-based systems with Katello

	Summary
	Questions
	Further reading

	Managing Users on Linux
	Technical requirements
	Performing user account management tasks
	Adding and modifying users with Ansible
	Removing users with Ansible

	Centralizing user account management with LDAP
	Microsoft AD
	FreeIPA

	Enforcing and auditing configuration
	Managing sudoers with Ansible
	Auditing user accounts with Ansible

	Summary
	Questions
	Further reading

	Database Management
	Technical requirements
	Installing databases with Ansible
	Installing MariaDB server with Ansible
	Installing PostgreSQL Server with Ansible

	Importing and exporting data
	Automating MariaDB data loading with Ansible

	Performing routine maintenance
	Routine maintenance on PostgreSQL with Ansible

	Summary
	Questions
	Further reading

	Performing Routine Maintenance with Ansible
	Technical requirements
	Tidying up disk space
	Monitoring for configuration drift
	Understanding process management with Ansible
	Rolling updates with Ansible
	Summary
	Questions
	Further reading

	Section 4: Securing Your Linux Servers
	Using CIS Benchmarks
	Technical requirements
	Understanding CIS Benchmarks
	What is a CIS Benchmark?
	Exploring CIS Benchmarks in detail

	Applying security policy wisely
	Applying the SELinux security policy
	Mounting of filesystems
	Installing Advanced Intrusion Detection Environment (AIDE)
	Understanding CIS Service benchmarks
	X Windows
	Allowing hosts by network
	Local firewalls
	Overall guidance on scoring

	Scripted deployment of server hardening
	Ensuring SSH root login is disabled
	Ensuring packet redirect sending is disabled
	Running CIS Benchmark scripts from a remote location

	Summary
	Questions
	Further reading

	CIS Hardening with Ansible
	Technical requirements
	Writing Ansible security policies
	Ensuring remote root login is disabled
	Building up security policies in Ansible
	Implementing more complex security benchmarks in Ansible
	Making appropriate decisions in your playbook design

	Application of enterprise-wide policies with Ansible
	Testing security policies with Ansible
	Summary
	Questions
	Further reading

	Auditing Security Policy with OpenSCAP
	Technical requirements
	Installing your OpenSCAP server
	Running OpenSCAP Base
	Installing the OpenSCAP Daemon
	Running SCAP Workbench
	Considering other OpenSCAP tools

	Evaluating and selecting policies
	Installing SCAP Security Guide
	Understanding the purpose of XCCDF and OVAL policies
	Installing other OpenSCAP policies

	Scanning the enterprise with OpenSCAP
	Scanning the Linux infrastructure with OSCAP
	Running regular scans with the OpenSCAP Daemon
	Scanning with SCAP Workbench

	Interpreting results
	Summary
	Questions
	Further reading

	Tips and Tricks
	Technical requirements
	Version control for your scripts
	Integrating Ansible with Git
	Organizing your version control repositories effectively
	Version control of roles in Ansible

	Inventories – maintaining a single source of truth
	Working with Ansible dynamic inventories
	Example – working with the Cobbler dynamic inventory

	Running one-off tasks with Ansible
	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

