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Preface

This book has no subject matter—or, to be more precise, it’s
about both everything and nothing. For the science of logic has no doc-
trines or creeds. There is no set of beliefs that distinguishes the logical
people from the nonlogical people, not the beliefs of the EuropeanEnlight-
enment, nor the deliverances of contemporary natural science, nor the
opinions of some Princeton philosopher. Simply put, learning the science
of logic can’t be reduced to learning any particular facts at all; it’s learning a
skill, namely, the skill to discern between good and bad arguments.

There are numerous reasons why you need this skill, no matter what
you end up doing with your life. First, being logical will help you rea-
son about how to get what you want. Second, many of our society’s best
jobs require strong logic skills—whether it be programming computers,
buying stock options, curing diseases, prosecuting criminals, discovering
alternative energy sources, or interpreting theConstitution. (And that’s not
even to speak of that all-important task of parenting and raising intellectu-
ally healthy children.) Third, regardless of your ideological bent—whether
you’re religious, atheist, or agnostic—you surelywant to do everything you
can to ensure that your view aligns with reality. For this task, logic is an
invaluable tool, if only to protect you from the plethora of bad arguments
you’ll hear in your life.

vii
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Our goal here is no more or less than to initiate you into the most up-
to-date account of what makes an argument good.We’ll give you the tools,
but it’s up to you to decide how you’re going to use them.

Note about how to use this book: The first six chapters of this book (up
through “Quantifying”) correspond roughly to a first course in formal logic
at an average university in the United States. We cover the material in
about a quarter of the number of pages of some well-known logic text-
books, which was intentional: logic should organize your already existing
thoughts, not add to the jumble of thoughts that need to be organized.

In chapter 7, we gently ramp up to applications of formal logic, and in
particular to the application of formal logic to the study of itself (i.e., logical
metatheory). In one sense, this material goes beyond a typical first course
in logic, but we would like to change that. This material is not intrinsically
more difficult than what has gone before. In fact, what can make it seem
difficult is that it’s less clear what rules of reasoning one is permitted to use.
However, we try to explain clearly that the rules of reasoning here are none
other than those that were learned in the previous chapters.

Having shown how formal logic can be used to formulate theories, we
then begin to use formal logic to formulate a theory about itself. In chapter
8, we use the theory of sets to define the notion of an interpretation of a
language and Tarski’s rigorous definition of truth. In chapter 9, we present
a theory about propositional logic, proving both soundness and complete-
ness theorems. Finally, in chapter 10, we sketch the outlines of a similar
theory about quantifier logic. Thus, the chapters form a natural staircase
leading up to the treasure chest of advanced applications of logic, including
modal logic, set theory, and Gödel’s theorem.

Note to the instructor, or to the person deciding which logic book to use: To
express a thought, or to make an argument, or to formulate a theory, you
have to pick a language to use. Similarly, to become more logical, you have
to adopt some particular system of logic. I’ve made a choice for you here,
and here is my rationale.

The first choice point is between “trees” and “arguments.” The advan-
tage of trees is that they are really easy and require little mental exertion.
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But wait, isn’t the goal to become the most excellent logical thinkers that
we can be? People don’t become better logical thinkers by being taught a
recipe that somebody else found and that lets them effectively turn their
minds off. But that’s precisely the point of logical trees: they give students
a recipe for evaluating simple arguments. If the goal were tomanufacture an
army of logical automata, then Imightwell use trees. But since I’m teaching
human beings, I prefer to teach them that distinctively human skill of mak-
ing and evaluating arguments. Accordingly, this book focuses primarily on
how tomake rigorous arguments and secondarily on the (nonalgorithmic)
skill of detecting bad arguments.

The second choice point is whether to represent arguments using a
“Fitch-style” or a “Lemmon-style” system. This is a difficult decision. Fitch
style is very intuitive andhas a shallow learning curve. Unfortunately, Fitch-
style argument is opaque to reflection: it’s difficult for students to see why
Fitch style works and evenmore difficult for them to imagine how the rules
might have been different (thereby reinforcing an unfortunate perception
that there is no human creativity involved in formulating the laws of logic).
In contrast, Lemmon-style argument has a steeper learning curve, but it’s
more flexible and transparent to reflection. It’s relatively easy to see why
the systemworks, and it’s easy to tweak the rules and see how things would
comeout different. So, the steeper learning curve of the Lemmon approach
is a price I’mwilling to pay to enablemy reader to become amore clear and
creative logical thinker.

There are at least four ways in which this book differs frommany other
introductory logic books. First, we teach intrinsic methods (e.g., reason-
ing) prior to teaching extrinsic methods (e.g., checking with truth tables).
Here, our philosophical convictions have been reinforced by our peda-
gogical experience, namely, that an argument-centric approach leads to
students gaining a higher level ofmastery and confidence and that the skills
gained are more easily transferable to other intellectual tasks.

Second, and for similar reasons, we treat formal validity as defined in
terms of the inference rules and not in terms of truth preservation. Our
issue here is that a precise notion of truth preservation requires a previous
understanding of valid reasoning in set theory. So, we want to be forthright
with our reader that we, at least, don’t have a clear and distinct perception



525-85030_ch01_6P — 2020/5/22 — 15:29 — page x — #10

x P r e f a c e

of what truth preservation amounts to, at least not until we explicate the
notion in terms of set theory. By taking formal validity as defined by the
rules, we emphasize that genuine creativity is required to design rules that
both capture and sharpen our intuitions about validity.

Third, in chapter 7, we ease students away from rigid formal proofs
and toward “informal rigor.” Again, the goal is for the students to be able
to transfer their knowledge to other disciplines where rigid formal proofs
might not be appropriate or useful. Fourth, in chapter 9, we introduce logi-
cal metatheory as “just another theory” by explaining how to formulate the
metatheory for propositional with predicate logic and a bit of set theory.
Thus, we close the circle of logic back upon itself.

Note to the reader:We put an asterisk to the left of exercises that might be
perceived asmore difficult than the preceding ones. In the case of proofs, it
oftenoccurs that a difficult result is basically a versionof the lawof excluded
middle: P∨¬P. So, if you get stuck, you might try first to prove excluded
middle and then to use that to get the result you want.
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1
Logic for Humans

You’re a curious person, I suspect. Youprobably already flipped
through the pages of this book, in which case you may have run across
some unfamiliar symbols. You might have found yourself intrigued—like
an archaeologist discovering ancient runes. Or you might have been put
off—thinking that this book is for quantitative people.

That’swhat I assumedat first. Iwanted to spend thedays ofmy life think-
ing about the big questions of human existence—what exists, what we can
know, and howwe should live. Calculate the derivative of a function? Solve
a differential equation?No thank you. I’ll leave that to the peoplewhowant
to build better bridges. I’d prefer to move on to the really meaningful and
enriching topics.

But I discovered that it’s a false dilemma. In fact, it’s not a dilemma at all.
Symbolic logic is not only for mathematics, and it’s by no means a diver-
sion from the really deep questions of human life. In fact, symbolic logic
represents the best account we have of what it means to be rational.

Although logic is symbolic, it’s not really “mathematical” in any sense
that puts it in opposition to humanistic endeavors (such as literature,
poetry, history, philosophy, etc.). Yes, mathematics is a human activity
that displays logical thinking in a particularly clear way. But logic itself is
involved in any type of human thinking that aims at finding the truth. If
you’ve ever argued for a claim or evaluated someone else’s argument, then

1



525-85030_ch01_6P — 2020/5/22 — 12:40 — page 2 — #2

2 Chap t e r On e

you were using logic—whether you realized it or not and whether or not
you did a good job of it.

The goal of this book is simple: it’s to make you conscious of how you
already use logic and thereby to become even better at it. If you learn to
do symbolic logic, then you will become a better thinker, and you will
understand better what it means to be a good thinker.

Arguments

Many logic books begin by saying, “The subject matter of logic is. . . . ”
I think these statements are always a bit misleading. In one sense, logic
doesn’t have a subject matter at all. Logic isn’t about something; it’s a way
of life.

Let’s begin by trying to see ourselves from the outside. Just imagine that
you are an alien who has landed on earth, and you’re trying to understand
what humanbeings are doingwhen they say that they are thinking logically.
Imagine that there are two people, say Anne and Bernt, and that Anne is
trying to convince Bernt that something is true. Anne might proceed as
follows:

Of course gay marriage should be legal. Only people with some backward
religious view would believe otherwise.

Here Anne is trying to convince Bernt that gay marriage should be legal.
But she doesn’t try to coerce him with physical force or even with intellec-
tual intimidation. Instead, she offers Bernt a reason why he should accept
her conclusion. To be more clear, the conclusion of Anne’s argument is
the statement, “Gay marriage should be legal.” The reason that Anne gives
for this conclusion—“Only people with some backward religious view
believe otherwise”—will be called the premise of the argument. Thus, the
argument consists of a premise and a conclusion that is supposed to be
supported by the premise.

Thus, we have three things in play: argument, conclusion, and
premise. The argument itself ismadeupof the conclusion and thepremise.
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The conclusion and premise themselves are particular sentences. Notice,
moreover, that these sentences are assertions (i.e., they make a statement
that is either true or false). Thus, an argument is built out of assertions
(or statements), some of which are premises and one of which is the
conclusion.

The key point about an argument is that it’s more than just a discon-
nected collection of statements. Suppose that I have ten notecards, each
of which has a statement on it. If I shuffle them up and hand them to you,
then I haven’t given you an argument. For a collection of statements to
be an argument, there has to be some implied sense in which some of the
statements stand in a special relation to another one of the statements. In
the notecard analogy, I’d have to hand you a first batch of notecards and
say, “These are my premises,” and then I’d have to hand you another note-
card and say, “And this statement ismy conclusion—which, I claim, follows
logically from those premises.”

What is this relation of “following logically” that I claim holds between
my premises and my conclusion? We all know it when we see it, and we
have many words for it—words such as “supports” or “implies” or “entails”
or “shows that” or “grounds.” That is, we say things like, “The fact that there
are cookie crumbs on the carpet shows thatmy son was eating in the living
room.”

It’s this relation—whatever it is—that we really want to understand.
We want to know: when does this relation hold between statements?
When does one statement imply another? There is simply nothing more
basic to human rationality than the notion of one statement implying
another.

We will make a lot of progress in clarifying the notion of implication.
But we’re not going to make progress by means of a head-on assault. That
is, we’re not going to offer you a definition of the form:

To say that one statement implies another means that . . .

Such a definition would be interesting, but it’s not what this book is about.
This book ismore of a trainingmanual for logic connoisseurs. Just as awine
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connoisseur knows a good wine when he tastes one, so a logic connoisseur
knows a good argument when she sees one.

Logical Form

The study of logic began in ancientGreece—andpossibly in other places at
other times, although that history is less well known to us. It all began with
a single insight, which you’ve probably already had yourself. This insight is
that whether or not an argument is good depends only on its form and not
on its content. To explain this distinction, we need to back up for a second
and explain what we mean by saying that an argument is “good.” Consider
the following argument:

All whales are mammals.
David Hasselhoff is a whale.
Therefore, David Hasselhoff is a mammal.

Here there are two premises and one conclusion. We’ve used the word
“therefore” to indicatewhat the conclusion is. But in truth, theword “there-
fore” isn’t part of the content of the conclusion. The conclusion is just the
proposition, “David Hasselhoff is a mammal.”

Is this a good argument? I hope that your answer is, “it depends.” It
certainly isn’t a perfect argument, because it involves a false statement,
namely, that David Hasselhoff is a whale. Or maybe you don’t know any-
thing aboutDavidHasselhoff? (Suchdeplorable lack of cultural knowledge
these days!) Suppose that David Hasselhoff were actually a famous whale
in a bookby anobscure author namedMelvinHermanville. In that case—if
Hasselhoffwere a whale—thenwould it be a good argument? Yes, it would
definitely be a good argument.

If you’re a philosophy type, then you might still be doubtful. You might
be thinking, “It all depends on what you mean by ‘good.’ ” If by “good” we
mean “interesting, informative, and nontrivial,” then that argument might
not be very good. However, logic has no use for subjective words such as
“interesting.” Logic is the science of good arguments, and it’s interested in
isolating an objective sense of goodness in arguments.
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The insight—passed on to us by the ancient Greeks—is that we can
define “good argument” in an objective sense by factorizing goodness into
two distinct pieces. The first of the two pieces is easy to understand but dif-
ficult to agree upon in practice: are the premises true? The second piece is
a bit more elusive but forms the subject matter of logic as an objective sci-
ence: do the premises support (or imply, or entail) the conclusion? If the
premises do imply the conclusion, then we say that the argument is valid.

Definition. An argument is said to be valid if its premises imply its
conclusion.

The notion of validity isn’t concerned with whether the premises or con-
clusion are true or false. The question, instead, is a conditional one: if the
premises were true, thenwould the conclusion be true?

You should be able to think of cases where you would agree that the
premises support the conclusion, even though you think that the premises
are false. It might help to use the phrase, “the premises would support the
conclusion,” the idea being that if they were true, then they would imply
that the conclusion is also true.

You should also be able to think of arguments where the premises and
conclusion are true, but the premises do not imply the conclusion. For
example, the following is a true premise: “I love coffee.” The following
is also true: “I am over six feet tall.” But to make an argument from my
loving coffee to my above-average height would be patently invalid. Log-
ical validity is all about the connection between premises and conclusion;
it’s not directly concerned with the question of whether the premises or
conclusion are true.

Sameness of Form

How do we get our hands on this elusive notion of validity and the related
notion of implication? Let’s begin by looking at obvious cases—where an
argument is obviously valid or obviously invalid. For example, the argu-
ment above was obviously valid. But the argument below is obviously
invalid:
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Princeton is a town in New Jersey.
Therefore, God doesn’t exist.

Now, you might actually think that both of these statements are true. But
thatmost certainly doesn’tmean that the first statement implies the second.
Some true statements just don’t have anything to do with each other. And
that’s why this argument is invalid—because the premise doesn’t give the
right kind of support for the conclusion.

Consider another argument:

All whales are predators.
Bambi is a whale.
Therefore, Bambi is a predator.

Is that a valid argument? Before you answer, remember that validity doesn’t
have anything to do with whether you believe the premises or the conclu-
sion. It’s merely a matter of whether there is the right kind of connection
between premise and conclusion.

Imagine for a moment that you just learned English and that you aren’t
yet familiar with the word “whale” or with the name “Bambi.” For all you
know, “whale” might mean the same thing as “tiger.” And for all you know,
“Bambi” might be the name of a tiger at the Philadelphia zoo.

Here’s the amazing thing: you don’t have to know anything about the
meaning of the words “whale,” “predator,” or “Bambi” to know that this
argument is valid. How do you know it’s valid? I’m not going to try to
answer that question directly. I’m going to assume that you share my intu-
ition that it is obviously valid. If you’re still not convinced, let me put it
this way:

If all whales were predators, and if Bambi were a whale, then would it follow
that Bambi is a predator?

Now it seems pretty obvious, doesn’t it?
We said that the validity of that argument doesn’t depend at all on what

the “content words” mean. In other words, if an argument is valid, then
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it should remain valid no matter how we interpret the content words or
even if we replace the contentwordswith different ones. Thus, given a valid
argument (suchas theoneabove), we shouldbe able to create a sort of “mad
lib argument” with variables that can be filled in by content words.

All X are Y .
m is an X.
Therefore,m is a Y .

No matter what words you put in for X, Y , andm (provided that the result
is a well-formed sentence), you get a valid argument.

The thing above with the variables, it’s like a blueprint for constructing
arguments. Choose some content words, plug them in, and ta da, you have
a valid argument. Let’s call it an argument form. In this case, it’s a valid
argument form, because no matter what words you plug in, the argument
comes out as valid.

But how did we know that those arguments were valid in the first place?
To be honest, it’s just our intuition that tells us that these arguments are
valid. Nobody found a tablet of stone on a mountain with the argument
form above. Instead, that argument form was written down by a human
being in an effort to capture what is common in a bunch of arguments that
we feel (intuitively) to be valid.

That’s howwe’ll proceed in the first part of this book: wewill collect sev-
eral basic argument forms that seem obviously valid. Then, we’ll learn how
to string valid argument forms together to create longer valid arguments.
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Let’s look at another obviously valid argument.

Roses are red and violets are blue.

Roses are red.

(Here the horizontal line functions as a “therefore” indicator.) The reason
this argument is valid is because the conclusion just extracts one of two
sentences that are conjoined in the premise. In other words, the argument
form looks like this:

P andQ

P

Here we’ve replaced “roses are red” with the letter P, and we’ve replaced
“violets are blue”with the letterQ . Obviously, the argumentwould be valid
no matter what sentences we put in for P andQ .

The reason why this argument form is valid is because of the way that
the word “and” works. It’s a special word that connects two statements into
one bigger statement that logically implies both of the original statements.
Since “and” plays this special logical role, it can be helpful to make it stand

8



525-85030_ch01_6P — 2020/5/22 — 12:42 — page 9 — #2

Dedu c i n g 9

out. We’ll use the symbol “∧ ” as shorthand for “and,” so that “P∧Q ”
will stand for “P and Q .” In this case, the argument form above looks
like this:

P∧Q

P

Our arguments are gradually changing from linguistic to symbolic—but
simply because we’re trying to capture the essence of what makes them
valid. The symbol ∧ here is not a new thing. It’s just the good old notion
of “and,” written in compact notation. And that will be the case for every-
thing you encounter in this book. In this book, we won’t need to introduce
new things that you’ve never encountered before in your life. In this way,
logic is quite different from empirical sciences such as biology, chemistry,
or physics. In physics, you’ll run into things like “quantum fields,” which I
imagine your mother didn’t tell you about. But in logic, we’re just going to
make precise concepts that you use already in everyday life.

Conjunction Elimination (∧E)

For any two sentences φ and ψ , you are permitted to infer both φ

and ψ individually from the conjunction φ ∧ ψ .

The Greek letters φ and ψ here are meant to emphasize the schematic
nature of inference rules. In particular, a Greek letter like φ can stand for
any sentence whatsoever, whether it be P or Q or P∧Q or P∧ (P∧Q ).
So, for example, ∧E allows one to infer P from P∧Q , and it also allows
one to infer (Q ∧ P) from (Q ∧ P)∧Q .

In practice, we use the rules (such as ∧ elimination) in a linear format,
moving from the top of the page to the bottom. For example, the following
is a typical application of ∧ elimination.

(1) P∧Q A
(2) P 1 ∧E
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Here thefirst line is annotatedwith “A,”whichmeans that it’s an assumption
of the problem.1 The second line is annotated with “1∧E,” which means
that the conjunction elimination rulewas used on line 1. In a correctlywrit-
ten (i.e., valid) proof, every linemust either be an assumptionor be justified
by one of the rules of inference.

Here’s a slightly more complicated proof of P from (P∧Q )∧ (R∧ P).

(1) (P∧Q )∧ (R∧ P) A
(2) P∧Q 1 ∧E
(3) P 2 ∧E

Note that we weren’t forced to take the route that we did. We could have
peeled off the conjunct R∧ P instead and used that to get P. In fact, logic
never tells youwhat steps youmust take; it only tells youwhat steps you are
permitted to take. It’s up to you to decide where you want to go and how
you want to get there.

Just as a conjunction can be disassembled into its conjuncts, so a con-
junction can be assembled from individual propositions. So we have a
rule:

Conjunction Introduction (∧ I)

For any two sentences φ and ψ , you are permitted to infer φ ∧ ψ if
you already have both φ and ψ .

Schematically:
φ ψ
φ ∧ ψ

So, when you use conjunction introduction, you will cite two lines, one
for each conjunct. For example:

(1) P A
(2) Q A
(3) P∧Q 1,2 ∧ I

1. In this chapter, assumptions are things that are given to you—as part of the problem you’re
trying to solve. In the next chapter, we’ll explain how you can make your own assumptions.
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Note, however, that you can use the same line twice. For example, the
following counts as a valid application of conjunction introduction:

(1) P A
(2) P∧ P 1,1 ∧ I

It also doesn’t matter which order the lines occur in. For example, if Q
occurs before P, then you can use conjunction introduction to infer either
Q ∧ P or P∧Q .

At this stage, we need to introduce another device. Suppose that you
already have one conjunction, say P∧Q , and you want to conjoin it with
yet another statement, say R. In that case, to conjoin the first composite
statement with the second simple statement, you first have to put the first
sentence into parentheses, as follows:

(1) P∧Q A
(2) R A
(3) (P∧Q )∧R 1,2 ∧ I

You might be thinking that these parentheses aren’t really necessary,
because it doesn’t matter which conjunction gets put in first. There is a
sense in which that is correct. But for now, let’s be careful to keep track
of where things are coming from.

It’s also crucial to note that this rule is schematic. In particular, ∧ elim-
ination allows you to derive a conjunct from any conjunction; for example,
both P and Q ∧R may be derived from P∧ (Q ∧R). Note, however, that
∧Edoesnot allowyou toderiveQ immediately fromP∧ (Q ∧R), because
the original sentence isn’t a conjunction of Q with something else. Each
conjunctive sentence has precisely two conjuncts. In this case, the two con-
juncts are P andQ ∧R. The latter is a conjunction, so that the sentenceQ
is “two levels deep” inside the conjunction P∧ (Q ∧R). We’ll explain this
notion of “levels” inside sentences in chapter 9. But for now, your intuitions
should suffice to keep you out of trouble.

With these two rules (∧E and ∧ I), you can now start proving some
stuff on your own.
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Exercise 2.1.

1. Prove that Q ∧ P follows from P∧Q . That is, write P∧Q on line
(1), then use the rules (∧ introduction and elimination) repeatedly
until you obtainQ ∧ P.

2. Prove that P∧ (Q ∧R) follows from (P∧Q )∧R.

In this book, if a concept is really important, then we’ll probably invent
a symbol for it. The reason we do that is because it makes it easy for us to
identify instances where that concept is being used. The most important
concept in this book is the concept of a valid argument (and the related
concepts of when one statement entails or implies another statement).
Since this concept is so central to this book, we’ll give it a symbol�. Thus,
we write P∧Q � P as shorthand for “P∧Q logically implies P.” Or, to be
even more precise, P∧Q � Pmeans that there is a correctly written proof
that begins with P∧Q and that ends with P. The entire string P∧Q � P is
called a sequent, which is just a fancy name for a logically valid argument
in our symbolic language.

The most general sequent then looks something like this:

φ1, . . . ,φn � ψ
which says that there is a proof that assumesφ1, . . . ,φn and derives ψ . For
example, using conjunction introduction, you can easily write a three-line
proof that establishes the sequent P,Q � P∧Q . Another four-line proof
with conjunction introductionestablishes the sequentP,Q �P∧ (P∧Q ).

To keep your head clear, it’s best not to think of sequents like φ � ψ
as sentences of the artificial language we’re describing. Imagine that we’re
designing an artificial intelligence, and we’re programming it with rules for
drawing valid inferences. In this case, “P” and “Q ” are sentences of the
AI’s language, and ∧ is a connective that can be used to build more and
more complex sentences in the AI’s language. However, the symbol � is
not of the same kind. It’s not part of the AI’s language, but part of our
design language—whichwe use to describe the permissible reasoning pro-
cesses for the AI. In particular,φ � ψ means that the AI can—by using the
rules we’ve specified—derive ψ from φ. But φ � ψ is not itself one of the
sentences that the AI is programmed to assert.
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By stating the rules (such as ∧ I and ∧E), we are gradually building up
the relation � that holds between premises and conclusions. We want to
build up slowly and carefully so that we don’t by accident declare that an
argument is valid when, as a matter of fact, it’s not really valid.

At themoment, wehave only two rules. Now it’s time to add somemore.
Let’s start with a rule for introducing disjunctions, that is, sentences that
involve an “either . . .or . . . ” clause, which we’ll abbreviate by the symbol
“∨ .” That is, we’ll symbolize “either P orQ ” as “P∨Q .”

Before we state the disjunction introduction rule, note that there are
two ways that we use disjunctions in English. In one sense, a disjunction
presents you with exclusive choices. For example, a person can be born
either in the United States or in the United Kingdom (but of course a per-
son cannot be born in both places). In another sense, a disjunction just tells
us that at least one of the two options holds. For example, a person can be
either a US citizen or a UK citizen—and, as a matter of fact, it’s possible to
be both. In this case, the disjunction is inclusive.

If we take disjunction in the inclusive sense, then a disjunction always
follows from either one of its disjuncts. For example, if I tell you that I’m
a US citizen, then you know that I’m either a US citizen or a UK citizen.
You might not typically have any need to draw such an inference—once
you know that one of the disjuncts is true, why would you bother to assert
the disjunction? In real life, asserting a disjunction ismost useful when you
have reason to think that oneof the twodisjunctsmust be truebut youdon’t
knowwhich one. For example, you know that I’m either a US citizen or I’m
not a US citizen, even if you don’t know which of those two is the case.

We hereby stipulate that ∨ will behave like inclusive disjunction, and
hence the following rule makes sense.

Disjunction Introduction (∨ I)

Given φ, you are permitted to infer φ ∨ ψ , for any sentence ψ
whatsoever. Similarly, givenφ, you are permitted to infer ψ ∨φ, for

any sentence ψ whatsoever. Schematically:
φ φ

φ ∨ ψ ψ ∨φ
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The funny thing about disjunction introduction is that it throws infor-
mation away. From a stronger premise P, you get to infer a weaker
conclusion P∨Q . Why would anyone ever want to do that? In short,
weakening premises becomes really useful in contexts where two different
premises lead to the same weakening. But we’ll get to that maneuver later,
in the next chapter. For now, we can start using disjunction introduction in
combination with our conjunction rules.

(1) P∧Q A
(2) P 1 ∧E
(3) P∨R 2 ∨ I
(4) Q 1 ∧E
(5) R∨Q 4 ∨ I
(6) (P∨R)∧ (R∨Q ) 3,5 ∧ I

Notice how we disjoin R on the right in line 3 and on the left in line 5. The
disjunction introduction rule allows both of these moves.

Keep in mind that disjunction introduction allows you to disjoin any-
thing you want. So, for example, the following is also valid.

(1) P A
(2) P∨ P 1 ∨ I

The disjunction introduction rule might seem too liberal, because the pre-
mise φ puts no constraints on the statement ψ that occurs in the conclu-
sion φ ∨ ψ . For example, the following argument is valid.

Klaas is a professor.
Therefore, either Klaas is a professor or he is a serial killer.

If it seems strange to you that this argument is valid, then I suspect it
is because we usually have no good reason to assert a disjunction when
we’re already in a position to assert one of the disjuncts. For example, if
you told somebody (who doesn’t knowKlaas) that Klaas is either a profes-
sor or a serial killer, then they are likely to infer that you are unsure which
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he is—and, that if you were shown evidence that Klaas is not a professor,
then you would conclude that he is a serial killer. But logically speaking,
those inferences are not warranted. If you are shown evidence that Klaas
is not a professor, when you previously believed that he is, then you’re
more likely to retract the claim that Klaas is either a professor or a serial
killer.

It’s time then that we further clarified our methodology. Our aim here
is not to capture every single intuition we might have about good argu-
ments that are stated in our natural languages. Instead, our aim is to find
the best formal model of the notion of validity. And the thing about for-
mal models is that they can have two distinct types of virtues. On the one
hand, it’s good to fit the facts (in this case, our intuitions about which argu-
ments are valid).On theother hand, it’s good for our formal apparatus to be
be both powerful and manageable. It might be helpful to think of an anal-
ogy here. Think of how physics describes the motion of projectiles. One
of the first things that a physicist does is to make some idealizing assump-
tions (e.g., that there is no wind resistance). That assumption won’t really
hold in real-life applications. But making such an idealizing assumption
allows a physicist to bring to bear the powers of abstract reasoning to figure
out a lot of information that will be approximately true in many different
situations.

Here’s another way of putting the same thing. The physicist’s model of
projectile motion is an analogy for projectile motion in the real world. In
the same way, symbolic logic is supposed to be an analogy for good argu-
ments in real life. As with any analogy, it breaks down at some point—in
this case, it already breaks down in the failure of the logical ∨ to capture
all the nuances of the natural language “or.” However, this disanalogy is the
price of constructing a system that is powerful, manageable, and applicable
in many different situations in life.

Exercise 2.2. Prove the following sequents.

1. P∧Q � Q ∨R
2. P∧Q � (P∨R)∧ (Q ∨R)

3. P � Q ∨ (P∨Q )

4. P � (P∨R)∧ (P∨Q )
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So far, we’ve found two special logical words that enable valid infer-
ences: “and” and “or.” Are there any other logical words besides them? Yes,
there aremany others. The next onewe’ll look at is “ifφ then ψ ,” whichwe
symbolize as “φ → ψ .” The sentence φ → ψ is called a conditional; the
first component sentence φ is its antecedent, and the second component
sentence ψ is the consequent.

The statement φ → ψ does not, by itself, imply either φ or ψ . It only
tells us that, in combination with φ, you’re entitled to conclude that ψ .
Thus, the rule for eliminating→ requires a second premise as follows:

Modus Ponens (MP)

Given φ → ψ and φ, you are permitted to conclude ψ . Schemati-

cally:
φ → ψ φ

ψ

By our earlier convention, we should call this rule “→ elimination.”
However, it has an old Latin name modus ponens, and we’ll follow his-
torical precedent.

As with our previous inference rules, MP is implicitly schematic. That
is, it doesn’t apply only to the specific conditional P→Q ; it applies to any
conditional, such as (P∨Q ) →R. For example, we can use MP now to
derive R from (P∨Q ) →R and P.

(1) (P∨Q ) →R A
(2) P A
(3) P∨Q 2 ∨ I
(4) R 1,3 MP

NoticehowweusedMPonaconditional (line1)whose antecedent is com-
plex (a disjunction P∨Q). That’s perfectly OK, becauseMP is schematic.
In other words, MPworks on any conditional sentence, nomatter whether
its antecedent and consequent are simple or complex. You have to be care-
ful, however, only to apply inference rules to an entire line. For example,
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you cannot apply MP to the sentences P∨ (Q →R) and Q , because the
first sentence is a disjunction, not a conditional.

Sometimes one conditional is embedded in another, as, for example, if
I say, “If you take my class, then if you do the homework you will learn
some logic.” In such cases, we might have to apply MP twice to detach the
consequent of the conditional. Here, then, is a derivation of R from the
premises P→ (Q →R) and P∧Q .

(1) P→ (Q →R) A
(2) P∧Q A
(3) P 2 ∧E
(4) Q →R 1,3 MP
(5) Q 2 ∧E
(6) R 4,5 MP

Again, you have to be careful only to applyMPwhen themain sentence on
a line is a conditional, and you also have the antecedent of that conditional.
For example, given premises (P→Q ) →R and P, you should not infer
that Q , or that Q →R. While (P→Q ) →R is a conditional, its ante-
cedent is P→Q .

Exercise 2.3. Prove that the following argument forms are valid. You may
use the rules ∧E, ∧ I, ∨ I, andMP.

1. P→ (Q →R), P→Q , P � R
2. (A∨B) →T, Z→A, T→W , Z � W
3. (A→B)∧ (C→A), (C∧ (W →Z))∧W � (B∨D)∧ (Z∨ E)

4. P→ (P→Q ), P � Q
5. P∧ (P→Q ) � P∧Q

Our brains are so accustomed to using modus ponens that we some-
times make the simple mistake of trying to apply it in the opposite direc-
tion. For example, I’ve heardmore than one person put forward the follow-
ing argument.
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If God exists, then there are objective moral rules.
There are objective moral rules.

God exists.

This argument has the following form:

P→Q
Q

P

which is like backwardmodus ponens, since the consequent is the premise,
and the antecedent is the conclusion. However, this argument form is in-
valid. Consider, for example, the following instance of the same form.

If UCLA is in Palo Alto, then UCLA is in California.
UCLA is in California.

UCLA is in Palo Alto.

This argument has obviously true premises and an obviously false conclu-
sion. Therefore, it’s invalid, and its form doesn’t guarantee validity.

In general, if an argument form is invalid, then it admits some instance
where the premises are true and the conclusion is false. This instance is
called a counterexample to the argument form. Historically, invalid argu-
ment forms have often been called fallacies, especially when people com-
monly mistake the form for valid. The previous example is an instance of
the fallacy of affirming the consequent.

Negation

We turn now to negative phrases, such as “it is not the case that . . . ,” which
we’ll symbolize with ¬. That is, we write “it is not the case that P” as ¬P.
With this new connective in hand, we can capture another valid argument
formusing the “if . . . then ” connective. Consider, for example, the following
argument:
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If n is divisible by 4, then n is even.
n is not even.

n is not divisible by 4.

This argument is valid, and it’s an instance of a famous argument form.

Modus Tollens (MT)

Given φ → ψ and¬ψ , you are permitted to infer¬φ.

Schematically:
φ → ψ ¬ψ

¬φ

As with MP, the new rule applies not just to the conditional sen-
tence P→Q but to any other conditional, such as (P∧Q ) →R or P→
(Q ∧¬Q ).

Exercise 2.4. Prove thatQ → (P→R), ¬R∧Q � ¬P.

Modus ponens can be restated as follows: a conditional φ → ψ says
that the antecedent φ is a sufficient condition for the consequent ψ . In
other words, the truth of φ is a guarantee of the truth of ψ . Modus tollens
can then be restated as follows: a conditional φ → ψ says that the conse-
quent ψ is a necessary condition for the antecedent φ. In other words,
the falsity of ψ is a guarantee of the falsity of φ. To understand the differ-
ence between necessary and sufficient conditions, think about the example
of rain and clouds. To say that rain is a sufficient condition for clouds does
not mean that rain causes clouds but merely that the truth of “it’s raining”
guarantees the truth of “there are clouds.” To say that clouds are a necessary
condition for rainmeans that the falsity of “there are clouds” guarantees the
falsity of “it is raining.”

It’s important also to be totally clear about the relation between the
phrase “. . . if . . . ” and the phrase “. . .only if . . . .” Consider the following
examples.
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1. Alice is admitted to Harvard Medical School only if she has a high
MCAT score.

2. Alice is admitted to Harvard Medical School if she has a high MCAT
score.

The first sentence says that having a high MCAT score is a necessary con-
dition for Alice being admitted. The second sentence says that having a
highMCATscore is a sufficient condition forAlice being admitted. Iwould
guess that the first sentence is true, nomatter whoAlice is, and that the sec-
ond sentence is usually false—because having a highMCAT score is not a
sufficient condition for admission to the best medical schools.

To get the full effect out of modus tollens, we need to say something
more about the logical role of negation. It turns out that the role of nega-
tion is a bit more controversial than you might have thought. But as this
is an introductory book, we’re going to begin with a simplistic picture of
negation.

When I was young, I was taught that it’s bad English to use double
negations, such as “you don’t know nothing.” My mother told me that that
sentence really means that you do know something, and so I should say
“you don’t know anything.” Now, the goal of this book isn’t to teach you to
speak better English, and being a living and growing language, English has
an enormous amount of subtlety in expression. In particular, two negatives
in English don’t always mean exactly the same thing as a positive. In con-
trast, our symbolic language is extremely literal and rigid. We will stipulate
in fact that two negations is logically equivalent to no negation at all.

Double Negation (DN)

Given φ, you are permitted to infer ¬¬φ, and given ¬¬φ, you are
permitted to infer φ.

Schematically:
φ

¬¬φ

¬¬φ

φ

Among logicians, mathematicians, and philosophers, there has been
some skirmishing about whether the second of these rules (i.e., the DN
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elimination rule) is valid. The thought was: how can proving that some-
thing is not true establish that something is true? The foes of DN elim-
ination are typically called intuitionists, after an early twentieth-century
movement in the philosophy of mathematics. However, our methodology
in this book is more empiricist than it is rationalist. In particular, we’re
not going to stop and search for some Platonic insight into whether or not
the rules are valid. Instead, we’ll accept the rules as tentative conventions,
and then we’ll explore their consequences. We believe it’s good to ask the
deep philosophical question about which are the right rules—but it can be
good to keep that question on the back-burnerwhile you’re figuring out the
consequences of the rules.

As with the other connective symbols, the negation symbol can be
applied repeatedly. For example, we can have ¬P or ¬¬P or ¬¬¬P, and
so on. Of course, DN elimination can be applied whenever there are two
or more negation symbols, and it allows us to remove the first two. For
example, the following is a valid inference:

(1) ¬¬¬P A
(2) ¬P 1 DN

It can also make a big difference which order the connectives are applied.
So, for example, ¬(P→Q ) says something very different than ¬P→Q .
(The former is a negated sentence, and the latter is a conditional.)We take
the negation sign to apply only to what comes immediately after it. So, in
the sentence ¬P→Q , the negation applies only to P. In ¬(P→Q ), the
negation applies to P→Q . Be careful only to useDNwhen the entire sen-
tence on a line is negated twice. For example, the sentence ¬(¬P→Q )

is not a candidate for DN elimination, because the first negation symbol
applies to the conditional ¬P→Q and not to the negation ¬P. Similarly,
you are not permitted to applyDN introduction to a subformula. For exam-
ple, you may not use DN to infer ¬¬P→Q from P→Q , because the
former sentence is a conditional, not a twice-negated sentence.2

2. Later we will show that any subformula φ can in fact be replaced by¬¬φ. See page 60. But
wewant to start with a small number of strict rules and then do somework to show that these rules
allow us to prove a lot of interesting things.
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We can now use all of our deduction rules in combination to prove
further validities, such as P→ ¬Q ,Q �¬P.

(1) P→ ¬Q A
(2) Q A
(3) ¬¬Q 2 DN
(4) ¬P 1,3 MT

Notice that we needed to infer line 3 before using MT, because Q is not
itself literally the negation of ¬Q . In formal logic, there are no shortcuts;
the rules must be applied exactly as they are stated.

The following more complicated proof shows that ¬P follows from
¬(P→Q ) →Q and¬Q .

(1) ¬(P→Q ) →Q A
(2) ¬Q A
(3) ¬¬(P→Q ) 1,2 MT
(4) P→Q 3 DN
(5) ¬P 4,2 MT

Here we used ¬Q twice over: once to get ¬¬(P→Q ), and once to get
¬P.

Equivalence

You’ll have noticed that some proofs go both ways. For example, you can
proveQ ∧ P from P∧Q and vice versa. In this case, we’ll write P∧Q ��
Q ∧ P, indicating proofs in both directions, and we’ll say that the two sen-
tences are provably equivalent. There is a strong sense in which provably
equivalent sentences are the same “for all logical purposes.”

Exercise 2.5. Prove the following sequents.

1. P∧ (Q ∧R) �� (P∧Q )∧R
2. P �� P∧ P
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Summary

In this chapter, we identified someparticularly simple valid argument forms
that are based on the special logical words “and,” “or,” “if . . . then,” and “not.”
These argument forms are modus ponens, modus tollens, double nega-
tion, conjunction introduction, conjunction elimination, and disjunction
introduction.

Exercise 2.6. As we mentioned before, there is only an approximate
match between symbolic logic and arguments in the wild. Nonetheless, to
develop your intuitions, it helps sometimes to look at an argument in the
wild and to try to represent it symbolically. To that end, let’s try our hand
at representing the logical form of some sentences. Here’s how we do it.
First of all, identify the overall logical structure of the sentence. Ask your-
self: what does the sentence assert? Is it an atomic sentence in the sense that
there is no internal logical complexity? Does it assert the conjunction of
two other sentences? Does it assert the disjunction of two other sentences?
And so on.

For example, the sentence, “The cat is on the mat,” is atomic. In this
case, the best we can do is to represent it with a single letter such as P.
On the other hand, “The cat is on the mat, and the dog is in the kennel,”
asserts a conjunction of two atomic sentences. Thus, it’s best represented
as something like P∧Q .

For the following sentences, give the most perspicuous representation
you can of their inner logical form. First identify the component atomic
sentences and abbreviate each with a (distinct) letter. Then translate the
original sentence using the symbols ∨ , ∧ ,¬,→ for the logical words
“or,” “and,” “not,” “if . . . then. . . .” (We have suggested letters for the atomic
sentences at the end of each sentence.)

1. It’s not true that if Ron doesn’t do his homework, then Hermione
will finish it for him. R,H

2. Harry will be singed unless he evades the dragon’s fiery breath.
S, E

3. Aristotle was neither a great philosopher nor a great scientist. P, S
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4. Mark will get an A in logic only if he does the homework or bribes
the professor. A,H,B

5. Dumbledorewill be killed, and eitherMcGonagalwill becomehead-
mistress andHogwarts will flourish, or else it won’t flourish.K,M, F

6. Harry and Dumbledore are not both right about the moral status of
Professor Snape.H,D

Exercise 2.7. Prove that the following argument forms are valid. Each
line of your proof must either be one of the premises given, or it must be
justified from previous lines by one of our rules of inference:MP,MT, DN,
∧ I, ∧E, or ∨ I.

1. ¬¬Q → P, ¬P � ¬Q
2. P→ (P→Q ), P � Q
3. (P∧ P) →Q , P � Q
4. P � Q ∨ (¬¬P∨R)

Exercise 2.8.Demonstrate that the following argument forms are invalid
by providing a counterexample, that is, give English sentences for P,Q ,R
such that the premises are obviously true, and the conclusion is obviously
false.

1. P→ ¬Q ,¬P � Q
2. P→R � (P∨Q ) →R
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Our objective is to figure out the difference between valid and
invalid arguments. We will break this objective down into two subob-
jectives. First, we will try to write down enough rules so that we could
reproduce any valid argument by chaining those rules together. Second,
we will not write down a rule that could actually lead to our producing an
invalid argument.

We will say that a system of logic is complete just in case it has enough
rules to reproduce all the intuitively valid arguments.1 It would be com-
pletely easy to produce a complete system of logic if we didn’t have any
further objective. For example, if you said that “every inference is permit-
ted,” then you’d automatically be able to reproduce any valid argument.
Obviously, that would be a foolish way of proceeding. But there’s also dan-
ger in the opposite direction. If we write down too few rules, then there
may be some valid argument that our system cannot reproduce. And what
a shame that would be if we put on a pair of logical glasses, so to speak, that
prevented us from seeing some valid arguments. The consequence of doing
that is that we might fail to recognize some important truths, even truths
that could change our lives.

In the previous chapter, we wrote down a few rules of inference that we
took to be obviously valid. Now the question that faces us is whether we

1.At this stage, we’ll have to content ourselveswith the vaguenotionof “intuitively valid.”We’ll
investigate a more precise notion—of truth-preservation—in chapter 9.

25
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wrote down enough rules. In other words, just using the rules from the
previous chapter, can we reproduce every valid argument?

That’s not such an easy question to answer. Consider the following
argument:

(1) P∨Q A
(2) ¬P A
(3) Q 1,2 ?

Now, this argument seems obviously valid to me.2 If you know that one of
two things is true, either P or Q , and if you know that P is not true, then
surely you know that Q is true. But can we prove this argument using the
rules from the previous chapter? The answer, in short, is no: we cannot
prove this argument using the rules from the previous chapter. One hint
is that this argument uses a disjunctive premise—that is, a premise with
∨—and we don’t yet have any rule that takes a disjunctive sentence as its
input.

(Aside for the ambitious student: You can actually prove that the argu-
ment above cannot be derived from the rules laid down in the previous
chapter. In particular, let’s suppose that P∨Q is always true, no mat-
ter whether P and Q are true. It’s easy to see, then, that the rules from
the previous chapter would always take true sentences to true sentences.
However, the argument above could derive a false sentence from two true
sentences.)

So, the sequent P∨Q ,¬P�Q is intuitively valid, but it is not prov-
able from the rules given in the previous chapter. Since our objective is to
be able to reproduce all intuitively valid arguments, we need to add some
more rules so that we can derive this argument. One thing we could do is
whenever we find a new argument that is intuitively valid, we could just
add this argument itself as a new rule to our system. However, that would
be shortsighted: our system of rules would grow to unwieldy proportions.
What’smore, the result wouldn’t really be a system, because a system should

2. Most logicians in history shared this opinion. So much so that they invented a name for
this apparently valid argument: modus tollendo ponens, nowadays usually called disjunctive
syllogism. But note well: disjunctive syllogism is not a basic inference rule of our system.
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have some rhyme and reason. We don’t want to pick our basic logical rules
randomly. We want to pick them on the basis of some principle. The oper-
ative principle from chapter 2 is that each special logical word (and, or,
if-then, not) corresponds to certain inferences that we are permitted to
make. For example, a conjunction P∧Q licenses the inference to P and
Q individually.

Now, we have an elimination rule for →, but no corresponding intro-
duction rule. And we have an introduction rule for ∨ , but no correspond-
ing elimination rule. So, it would make sense to expand our system by
adding the corresponding rules. Let’s begin with the idea of arguing for a
conditional statement.

Suppose that youwant to convince somebody that ifφ then ψ , whereφ

and ψ are some sentences that are either true or false (but you might not
know which). For example, you might want to convince somebody that
if corporate taxes are reduced, then the budget will not be balanced. Or
youmight want to convince somebody that if God doesn’t exist, then there
are no moral rules. Or you might want to convince somebody that if m is
a rational number, then m2 is a rational number. In many such cases, the
argument for if φ then ψ begins with a curious maneuver: the arguer says
suppose that φ. For example, if I wanted to convince you aboutm2 being a
rational number, I might say:

Suppose thatm is a rational number. In that case,m= a/b for two integers,
andm2 = a2/b2, which means thatm2 is also rational.

Then, I would conclude by saying therefore, if m is rational, m2 is also
rational.

The word “suppose” plays a very special role here, and one that might
not seem logical at all. You might have thought that being logical boils
down to correctly inferring things from a collection of already established
facts. However, that is most definitely not what is happening in the “sup-
pose” maneuver. When a person says “suppose,” she is not deducing any-
thing. Quite to the contrary, she is asking her interlocutor to play a sort of
game with her. In fact, she is asking her interlocutor to accept something
temporarily that he or she doesn’t know to be true.
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Now, you might think that allowing suppositions is a recipe for logical
disaster. If people can just suppose whatever they want, then how is that
logical? Well, it becomes logical when the two discussants keep track of
which suppositions they have made.

Imagine then, as an idealized account of what actually occurs in argu-
mentation, that when we sit down to argue, we set out a scorecard. At
the beginning of our argument, our scorecard contains a list of agreed-
upon premises for our discussion. For example, the two of us might
agree to use the word “rational” for numbers of the form a/b, and we
might agree that (a/b)2 = a2/b2, and so on. During our subsequent argu-
mentation, each of us is allowed to cite any one of these agreed-upon
premises. However, besides citing agreed-upon premises, each of us is per-
mitted to “suppose” that something is true—provided that we mark down
clearly on the scorecard that we’ve added a new supposition. Once we’ve
added this new supposition, we can continue drawing inferences; how-
ever, it would be a terrible logical mistake to think that the conclusions
we derive follow from the original list of premises. No, the conclusions
we now derive depend on the original list of premises, plus the additional
supposition.

So far so good. However, what if we want to see what follows from the
original list of premises? Is there a way to go about “unsupposing” things
that we supposed during the course of an argument? It’s here where a
→ introduction rule could come in handy, because a conditional conclu-
sion is just that: it’s conditional on something. In particular, if you suppose
that φ, and then you—perhaps undertaking a long detailed argument—
derive ψ , then you are entitled both to conclude thatφ → ψ and to forget
that you supposed φ in the first place. For, when you say that φ → ψ ,
you are now explicitly noting that the conclusion (ψ ) depends on a
supposition of φ.

This then is the idea behind the → introduction rule. Fortunately, the
implementation of this idea is quite simple. The first thing we need to do
is to introduce the “scorecard” to keep track of the suppositions in an argu-
ment.Wewill do so by adding a new column to the left of the line numbers
in a proof. This new column will give a running tabulation of the supposi-
tions in force at each stage of the argument. So, now if I ask you to prove
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something, say, P� P∨Q , then the scorecard begins with agreed-upon
premise P. This premise is the supposition that we make together, at the
very beginning of the argument. Accordingly, the first line of your proof
would read:

1 (1) P A

This line has four columns, one of which is new. The leftmost column con-
tains the number “1,” which we call the dependency number, and it serves as
the “scorecard” of the argument. In other words, the leftmost column tells
you which suppositions are in force at that stage of the argument.

So, we are proposing an update in the way we think of proofs. A proof is
not a list of sentences, where each sentence is deduced from previous sen-
tences in the list. Instead, a proof is a list of sequents, where each sequent
amounts to a statement that some list of sentences implies some other sen-
tence. Correspondingly, the inference rules shouldbe reconceived as telling
uswhichnewsequents canbegenerated fromsequents thatwehave already
obtained.

This new way of thinking about proofs is more democratic than the old
way from the last chapter. In the last chapter, all proofs began with given
premises. From now on, anyone can add new assumptions at any stage of a
proof. That is, for any sentence φ, you are permitted to write

n (n) φ A

which expresses the sequent φ �φ, since the dependency number “n”
points to the sentence φ. The official rule for making assumptions is the
following:

Rule of Assumptions (A)

At any stage in an argument, you are permitted to suppose anything
you want to, as long as you add that supposition to the argument’s
scorecard.
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Here, the schematic statement of the rule of assumptions is strange
looking:

φ � φ

The horizontal line indicates that one is permitted to infer what lies below
the line if one already has what lies above the line. In this case, nothing
lies above the line, which means that one is permitted to infer φ �φ in any
situation.

The above proof might then continue as follows:

1 (1) P A
1 (2) P∨Q 1 ∨ I

Here the far-right column is the same as the previous chapter: it says that
line 2 is justified by application of ∨ I to line 1. The far-left column has
the number “1” to indicate that the supposition at line 1 is still in force
at line 2. In general, for each of the rules that you learned in the previous
chapter, the suppositions in forcewhen the premises were assertedwill still
be in force when the conclusion is asserted. For example, the conjunction
introduction rule should be reformulated as saying:

Given sequents Γ �φ and Δ � ψ , one may derive the sequent Δ , Γ �
φ ∧ ψ .

Or, written out graphically, ∧ intro appears as follows:

Γ (∗) φ

Δ (�) ψ
Γ , Δ (†) φ ∧ ψ ∗, �∧ I

In other words, when we use conjunction introduction on lines ∗ and �

to derive line †, the dependencies of line † should be the union of the
dependencies of lines ∗ and �.

Let’s see this use of suppositions in action in the proof of the sequent
(P∨Q ) →R, P�R. Here, we are asked to proveR under the suppositions
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(P∨Q ) →R and P. We begin, then, by writing down those suppositions,
giving a new number for each in the left-hand column.

1 (1) (P∨Q ) →R A
2 (2) P A
2 (3) P∨Q 2 ∨ I
1, 2 (4) R 1,3 MP

We then proceed as we did in the previous chapter. First we derive line 3
from line 2 using the ∨ I rule, and we accordingly carry the supposition
from line 2 down to line 3. Then, we derive line 4 from lines 1 and 3 using
the MP rule, and we accordingly carry the suppositions from lines 1 and 3
down to line 4.

It would be a good idea now to go back and do a few of the proofs
from the previous chapter, but now keeping explicit track of the supposi-
tions in force at each stage. The process may be a bit tedious, but it will
be conceptually simple, because whenever you apply a rule, you simply
have to copy the suppositions from the lines you cite onto the new line.
For example:

1 (1) P A
2 (2) Q A
1, 2 (3) P∧Q 1,2 ∧ I
1, 2 (4) (P∧Q )∧ P 3,1 ∧ I

In this example, you can see that the list of suppositions doesn’t need
to contain duplicate numbers. To derive line 3, we cited lines 1 and
2, and so line 3 depends on whatever lines 1 and 2 depended on. To
derive line 4, we cited lines 3 and 1, and so line 4 depends on what-
ever those lines depended on. However, we don’t write “1, 1” in the left-
hand column, because it’s enough to note that the assumption of 1 is
in force. Similarly, it doesn’t matter in what order dependency numbers
occur. For example, having 1, 2 in the left-hand column is the same as
having 2, 1.

Similarly, consider the following proof that uses the other rules from the
last chapter.
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1 (1) P∧¬¬Q A
1 (2) ¬¬Q 1 ∧E
1 (3) Q 2 DN
1 (4) Q ∨R 3 ∨ I

The use of conjunction elimination on line 2 cites line 1, and so we copy
the dependencies of line 1 to line 2. The same goes for the use of DN on
line 3 and the use of disjunction introduction on line 4.

Now we can come back to the → introduction rule. The whole point
of keeping track of suppositions is so that you, the reasoner, can strategi-
cally make new suppositions and then later discharge these assumptions.
Hence, the → introduction rule, which is also called conditional proof
(CP), should look like this:

If, within context Γ , you suppose that φ, and if from Γ and φ you derive
ψ , then you may assert, in the same context Γ , the conditional φ → ψ .

Nowwe have to see how to implement this general idea concretely in terms
of line numbers of a proof. Let’s say that you suppose φ on some specific
linem of your proof:

m (m) φ A

Notice that the dependency number m is the same as the line number,
which will always be the case for a supposition (i.e., assumption). Now
suppose that you have another line like this:

n1, . . . , nk,m (n) ψ

The conditional proof rule says that from these two lines, youmay infer the
line

n1, . . . , nk (n′) φ → ψ m, nCP

Notice how the dependency on m is dropped in the move from line n to
line n′. Dropping the dependency signals that we are no longer supposing
that φ; we are now asserting that if φ, then ψ .

Here’s a simple example of the kind of move permitted by conditional
proof. The MT rule says ¬P can be inferred from P→Q and ¬Q . Now,
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imagine that everyone agrees that P→Q but that not everybody agrees
that ¬Q . Nonetheless, you should be able to convince all logical people
that if¬Q , then¬P. Your argument could be formalized as follows:

Contrapositive
P→Q � ¬Q → ¬P
1 (1) P→Q A
2 (2) ¬Q A
1, 2 (3) ¬P 1,2 MT
1 (4) ¬Q → ¬P 2,3 CP

Our formal system doesn’t pick up the nuance that everyone agrees (in this
example) to the first assumption (line 1), whereas you made the second
assumption (line 2) for the sake of argument. But no matter—the point is
just that nowwe canmodel this ubiquitous practice of supposing things for
the sake of argument.

Conditional Proof (CP)

A proof of ψ from dependencies Γ ,φ may be converted to a proof
of φ → ψ from dependencies Γ . Schematically:
Γ ,φ � ψ
Γ � φ → ψ

Don’t try to memorize the CP rule by staring at it. Instead: watch it
being used, and use it yourself. Let’s begin with a proof that conditionals
are transitive (i.e., that if P→Q andQ →R then P→R).

1 (1) P→Q A
2 (2) Q →R A
3 (3) P A
1, 3 (4) Q 1,3 MP
1, 2, 3 (5) R 2,4 MP
1, 2 (6) P→R 3,5 CP
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The assumption on line 3 is motivated by the idea that we want to prove
P→R. So, when we assumed P on line 3, we did so thinking, “All we have
to do is deriveR, and thenwe can useCP to getP→R.” Notice that as soon
as we’ve made the assumption of P, we are now back in the easy territory
of the previous chapter. Now we just deduce and deduce until we get R.
Then, at line 6, we remember what we were trying to do: we “discharge”
the assumption on line 3 by invoking CP.

In the following proof, we go to a second hypothetical level. That is,
we make one supposition and prepare to deduce. But then we see that the
conclusion we want is a conditional, so it makes sense to make a second
supposition.

1 (1) (P∧Q ) →R A
2 (2) P A
3 (3) Q A
2, 3 (4) P∧Q 2,3 ∧ I
1, 2, 3 (5) R 1,4 MP
1, 2 (6) Q →R 3,5 CP
1 (7) P→ (Q →R) 2,6 CP

On line 2, we suppose P, with the intention of proving Q →R. And then
it’s likewe start all over again. Sincewewant toproveQ →R, we assumeQ .
Then, we’re back in the gentle territory of the previous chapter, deducing
until we get R on line 5. On line 6, we use CP to return from the second
hypothetical level to the first. On line 7, we useCP again to return from the
first hypothetical level to the zeroth.

Things can become confusing when you try to prove a conditional
whose antecedent is a complex sentence. For example, suppose that you
want to prove (P∧Q ) →R fromP→ (Q →R). Here, youmust avoid the
temptation to assume P andQ on separate lines and then use ∧ introduc-
tion. For then you’d have two dependency numbers, whereas CP only gets
rid of one. To useCP properly, you’ve got to assume exactly the antecedent
of the conditional you are trying to prove. Consider, for example, the
following proof.
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Prefixing
Q →R � (P→Q ) → (P→R)

1 (1) Q →R A
2 (2) P→Q A
3 (3) P A
2, 3 (4) Q 2,3MP
1, 2, 3 (5) R 1,4MP
1, 2 (6) P→R 3,5 CP
1 (7) (P→Q ) → (P→R) 2,6 CP

Here we’re trying to prove (P→Q ) → (P→R), which is a conditional
whose antecedent is a conditional. Note well: the fact that the antecedent
is a conditional makes no difference at all to the fact that you should assume
the antecedent. You shouldn’t try to prove P→Q , and you shouldn’t (yet)
assume P, for neither of those would do you any good. Instead, assume
P→Q , and then take up the next problem, that is, of proving P→R from
Q →R and P→Q .

Before we set you loose on some exercises, we’ll explain a method that
can make some difficult proofs easier. Consider, for example, the sequent
¬P�¬(P∧Q ), which is sometimes called weakening. A direct attack on
this sequent will only lead to frustration: from an assumption of¬P, there
is no amount of conjoining or disjoining that will get you to¬(P∧Q ). We
recommend, then, that you prove the contrapositive, that is, P∧Q � P. Of
course, that proof is trivially easy, and then you can complete the proof of
weakening as follows:

(P∧Q ) → P CP
¬P A
¬(P∧Q ) MT

In summary, you can useMT to transform a proof of a sequent into a proof
of its contrapositive.

Exercise 3.1. Prove the following sequents.

1. P � Q → (P∧Q )

2. (P→Q )∧ (P→R) � P→ (Q ∧R)
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3. permutation: P→ (Q →R) � Q → (P→R)

4. suffixing: P→Q � (Q →R) → (P→R)

5. contraction: P→ (P→Q ) � P→Q
6. exportation: P→ (Q →R) � (P∧Q ) →R
7. strengthening: (P∨Q ) →R � P→R
8. weakening:¬P � ¬(P∧Q )

9. DeMorgan’s rule (DM):¬(P∨Q ) � ¬P∧¬Q
(Hint: prove the individual conjuncts, then use ∧ introduction.)

*10. P→ ¬P � ¬P

Proofs without Dependencies

Now that you have a rule for discharging assumptions (namely, conditional
proof), you canproduce valid arguments that endwithoutany assumptions
in force. For example, here’s a proof of the trivial truth: if P then P.

1 (1) P A
(2) P→ P 1,1 CP

We write this sequent as � P→ P, with no premises on the left-hand side
of the turnstile; and in this case, we say that P→ P is provable. The result,
then, is a statement that anybody is permitted to assert in any circumstance
whatsoever.

Beforewe set you loose proving things, we need towarn you of one dan-
ger: conditional proof must only be used when the first of the two lines is
an assumption. If you don’t observe that restriction, then you could prove
too much, as in the following argument.

1 (1) P∧Q A
1 (2) P 1 ∧E
1 (3) Q 1 ∧E

(4) P→Q 2,3 CP ⇐= incorrect

Here we tried to use CP with lines 2 and 3, even though line 2 was not
an assumption. But line 2 depends on P∧Q , which is logically stronger
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than P, and it’s not justified to erase the dependency on P∧Q when
conditionalizing only on P.

Exercise 3.2. Prove the following sequents.

1. � (P∧Q ) → (Q ∧ P)
2. � (P∧Q ) → P
3. � Q → (P→Q )

4. � Q → (P→ P)
*5. law of excludedmiddle (EM):� P∨¬P

Paradoxes of Material Implication

Before wemove on to our last two inference rules, we should talk a little bit
about something disconcerting that can happen with conditional proof. It
will be simplest just to write down two (valid) proofs. If these proofs don’t
bother you, then there’s really no need to read the rest of this section!

We first prove a result known as positive paradox: from the assump-
tion that Q , it follows that P→Q . Since logic is completely general, this
result implies, for example, that from the assumption that this match will
light when struck, it follows that if we are under water, then this match
will light when struck.

Positive Paradox
Q � P→Q
1 (1) Q A
2 (2) P A
1 (3) P→Q 2, 1 CP

Here the new suppositionP occurs on line 2, after the conclusionQ had
already been asserted. This maneuver might seem like an egregious abuse
of the rule CP, which was intended to capture the idea of making a new
supposition in order to derive a certain conclusion. In this proof, the con-
clusion was already there, and the new supposition wasn’t needed to get it.
So isn’t it quite misleading to conclude that if P, then Q ? After all, Q had
already been supposed before P was supposed.
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If you’re a bit unhappy that this proof counts as valid, then you are in
good company. Ever since the early days of modern symbolic logic, back
in the early 1900s, philosophers have wondered whether something has
gone wrong. We can’t go deeply into that debate here, but it’s worthwhile
seeing that it’s not so easy to fix the CP rule to prevent this kind of argu-
ment. The most obvious proposal to fix the CP rule is to require that the
antecedent (in this case P) is actually used to derive the consequent. We
could try to enforce this requirement by saying that the line on which the
consequent occurs must depend on the line on which the antecedent is
assumed. The proof above would violate this revised rule, because 2 does
not appear among the dependencies on line 1.

Unfortunately, when this revised rule is brought into interaction with
the other rules, it proves to be just as liberal as the original rule. Consider
the following proof that uses the more conservative rule.

1 (1) Q A
2 (2) P A
1, 2 (3) P∧Q 1,2 ∧ I
1, 2 (4) Q 3 ∧E
1 (5) P→Q 2,4 CP

Here CP is applied to lines 2 and 4, and the supposition made on line 2 is
used to get line 4. So, this proof obeys the revised rule, despite the fact that
it allows us to derive exactly the same conclusion as the previous proof.
In fact, it’s not too hard to see that anything that can be derived with the
original “liberal CP rule” can be derived with the new “conservative CP
rule.” So, the new rule is only apparently more conservative than the old,
and we might as well allow ourselves to use the old one.

There’s another pair of results that are perhaps evenmore troubling than
positiveparadox.We’ll nowwriteoneproof that proves a coupleof different
paradoxical sequents.

1 (1) ¬P A
2 (2) P A
3 (3) ¬Q A
2 (4) ¬Q → P 3,2 CP
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1, 2 (5) ¬¬Q 4,1 MT
1, 2 (6) Q 5 DN
1 (7) P→Q 2,6 CP

The sixth line of the proof demonstrates ex falso quodlibet (EFQ),
which, translated loosely, means “from the false, everything follows.” This
sequent is also sometimes called explosion, because it shows that P and
¬P together form a ticking time bomb that, when triggered, ejects all
other sentences. The last line proves negative paradox, which shows that
a conditional follows from the negation of its antecedent.

EFQ has bothered logic students like yourself for well over a thousand
years. It seems exactly wrong, youmight think, that a personwith inconsis-
tent beliefs (such as P and¬P) has “inferential omnipotence,” that is, they
can infer any sentenceQ whatsoever. But thatworry stems fromanambigu-
ity in the English verb “to infer that.” For example, if you overheard me say
that “I infer that the sun will collapse,” youmight assume that I believe that
the sun will collapse. However, there is a weaker sense of “infer” in which it
simply means that a person reasons from some claims (which that person
need not believe) to other claims (which that person need not believe). For
example, I might have inferred that the sun will collapse from a contrary-
to-fact supposition about the mass of the sun. I might not actually believe
that the mass of the sun is so large, but I nonetheless believe that if its mass
were so large, then it would collapse.

So, we should keep it clearly in mind that the typical use of logical rea-
soning is not to start from a set of premises about which we are completely
certain and then to reason to additional conclusions. Muchmore typically,
logic is used to reason from premises that we do not necessarily believe to
a conclusion that we don’t necessarily believe. In logic, it’s not the con-
clusions that we’re interested in, but in the connection between premises
and conclusions. And logic doesn’t have anything to say about whether
one should accept the conclusions of valid arguments from the premises
that one already accepts. Indeed, what logic might be telling you is that
you ought to reject one of the premises. That’s certainly what I would
recommend doing if you found yourself with premises that imply both P
and¬P.
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Reasoning fromDisjunctive Premises

Imagine that you’re stuck in a dark room and cannot see outside. How-
ever, you have a phone, and you can get text messages from your friend,
Angelina, who is outside. But Angelina loves to be a bit elusive. If you ask
her a question, she tends to reply by asserting a disjunction. For exam-
ple, if you say, “What’s the weather like today?,” then Angelina might say
something like, “Either it’s raining or it’s snowing.”

Now, Angelina isn’t completely useless to you, because you can deduce
somehelpful information fromthe things she says. (I’msupposinghere that
Angelina always tells the truth.) For example, suppose that you’re a mem-
ber of the quidditch club and the club has a rule that practice is canceled
on any day that it rains or snows. In this case, Angelina’s statement “Either
it’s raining or it’s snowing” is sufficient for you to deduce that there won’t
be quidditch practice today.

The inference you make is roughly the following:

Either it’s raining or it’s snowing. (From Angelina)
If it’s raining, then there is no quidditch practice. (Club rule)
If it’s snowing, then there is no quidditch practice. (Club rule)
Therefore, there is no quidditch practice.

And the form of this inference is

P1 ∨ P2 P1 →Q P2 →Q
Q

.

This argument form seems obviously to be valid, and hence we will take
it as the paradigm case of how to deduce something from a disjunctive
premise.

Before proceeding to formalize the rule of disjunction elimination, let’s
generalize the idea that it needs two conditional premises such as P1 →Q
and P2 →Q . Let’s consider, instead, the possibility that the conclusionQ
is based on two reasoning processes. In this case, you know that either it’s
raining or it’s snowing because Angelina told you that. Now you reason
as follows: First, if it’s raining, then there is no quidditch practice. (Here



525-85030_ch01_6P — 2020/5/22 — 12:42 — page 41 — #17

Sup p o s i n g 41

Γ (m) P1 ∨ P2

m1 (m1) P1 A
...

Δ 1,m1 (n1) Q

m2 (m2) P2 A
...

Δ 2,m2 (n2) Q

Γ , Δ 1, Δ 2 (n) Q m,m1, n1,m2, n2 ∨E

Figure 3.1.Disjunction elimination allows you to derive a conclusion from a disjunction
by using two subarguments, one based on each disjunct.

you rely possibly on some background information Δ 1, and your rea-
soning process might be quite long and intricate.) Second, if it’s snowing,
then there is no quidditch practice. (Here you might rely on some other
background information Δ 2, and you might engage in another reasoning
process to arrive at Q .) From your knowledge that either P1 or P2 is true,
and from your rigorous reasoning on a case-by-case basis, you conclude
with confidence that Q . Of course, if you want to produce a valid argu-
ment, then you need to keep track of all of the background information you
drewuponwhen reasoning about the two cases. That is, youmay assert that
Q follows from the disjunction P1 ∨ P2, plus the background information
contained in Δ 1 and Δ 2.

The overall argument can be represented visually as in figure 3.1. Here,
we’ve used Γ to represent the original background information from
which you derived the disjunction P1 ∨ P2. When the ∨ elimination rule
is invoked on line n, we have to acknowledge dependency not only on Γ
but also on the information in Δ 1 and Δ 2 that might have been used in
the two subarguments.

The reason we might need to bring other information into the subar-
guments is so that we can use disjunctions together with other premises
in order to derive conclusions. For example, consider the premises P∨Q
and Q → P. Obviously, these two premises together should imply P. Just
consider the two cases: if P, then of course P. In the case ofQ , we also have
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Q → P andhenceP. But inmaking the secondmovehere, we cannot forget
the source of our knowledge ofQ → P. In other words, that premise needs
to be cited as well. In official, regimented format, the argument would go
like this:

1 (1) P∨Q A
2 (2) Q → P A
3 (3) P A
4 (4) Q A
2, 4 (5) P 2,4 MP
1, 2 (6) P 1,3,3,4,5 ∨E

The only mystery here is the exact recipe used to calculate the dependen-
cies of line 6. Of course, line 6 should depend on whatever the disjunction
on line 1 depends upon. In this case, line 1 depends only on itself. Then, we
need to look at the two subarguments. The first subargument is completely
trivial: it starts with the assumption of P on line 3, and it ends there. It sim-
ply infersP from itself. The second subargument startswith the assumption
ofQ on line 4, but then it uses line 2 to get line 5. Thus, the second subargu-
ment presupposes line 2 and hence whatever line 2 depends upon. That’s
why we need to include line 2 in the dependencies of line 6. But we do not
need to include line 3 or 4 in the dependencies of line 6, because thosewere
purely hypothetical posits, used to see what follows from the disjunction
P∨Q . When we use disjunction elimination, we “forget” that those sub-
proofs ever happened, including the assumptions with which they began.
We only remember the fact that both subproofs led to the same conclusion.

We still need to tell you the exact recipe for calculating the dependencies
for a line that is justified by disjunction elimination. We’ll do that twice
over, first giving a schematic proof.

Γ (m) P1 ∨ P2
m1 (m1) P1 A

...
Δ 1,m1 (n1) Q

m2 (m2) P2 A
...
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Δ 2,m2 (n2) Q
Γ , Δ 1, Δ 2 (n) Q m,m1, n1,m2, n2 ∨E

That is, ∨E cites five lines: a disjunction (line m), the assumption that
begins the first subargument (linem1), the conclusion of the first subargu-
ment (line n1), the assumption that begins the second subargument (line
m2), and the conclusion of the second subargument (line n2). The depen-
dencies of line n are to be the union of the following three collections of
dependencies:

1. The dependencies Γ of the disjunction P1 ∨ P2 on linem.
2. The dependencies Δ 1 of the conclusion Q on line n1, except take

awaym1 if it happens to occur among them.
3. The dependencies Δ 2 of the conclusion Q on line n2, except take

awaym2 if it happens to occur among them.

In most applications, you’ll follow this complicated recipe subconsciously.
However, for those of you budding logicians who long for full rigor, the
precise set-theoretic calculation of the dependencies on line n is

Γ ∪ (Δ 1\{m1}) ∪ (Δ 2\{m2}),

which is just a symbolic representation of the words we said previously.
Aswe’ve said before, we recommend that you try to understand abstract

rules by working on specific examples. Let’s start, then, with a proof that P
follows from the disjunction P∨ (P∧Q ).

1 (1) P∨ (P∧Q ) A
2 (2) P A
3 (3) P∧Q A
3 (4) P 3 ∧E
1 (5) P 1,2,2,3,4 ∨E

Here the first disjunct P is assumed on line 2. Of course, it immediately fol-
lows from the assumption ofP—without drawing any further inferences—
that P. For this reason, the application of ∨E on line 5 cites line 2 twice:
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once as an assumption of the first disjunct and once as the conclusion
drawn from the first disjunct. The second disjunct P∧Q is assumed on
line 3, and the conclusion P is drawn again on line 4. Thus, the application
of ∨E on line 5 cites lines 3 and 4. (Exercise: Suppose that you obtained
line 5 from lines 1,2,2,3,2 instead of lines 1,2,2,3,4. What, then, would be
the dependencies of line 5?)

We can now give a compact schematic statement of the disjunction
elimination rule.

Disjunction Elimination (∨E)

Γ � φ ∨ ψ Δ ,φ � χ Θ , ψ � χ
Γ , Δ , Θ � χ

So, the ∨E rule says that three separate proofs can be converted into one
proof. Of course, you’re not likely to find those three proofs lying around;
you’ll usually have to make them yourself.

For example, suppose that you want to show P∨Q �Q ∨ P. Then,
you’d want to argue that the conclusion follows from each disjunct sepa-
rately, as follows.

Commutation
P∨Q � Q ∨ P
1 (1) P∨Q A
2 (2) P A
2 (3) Q ∨ P 2 ∨ I
4 (4) Q A
4 (5) Q ∨ P 4 ∨ I
1 (6) Q ∨ P 1,2,3,4,5 ∨E

In this case, the disjunction P∨Q is an assumption, that is, it hasn’t been
derived from something else. Thus, the first input to ∨E on line 6 is the
proof P∨Q � P∨Q . The second input to ∨E on line 6 is the sequent on
line 3, namely, P�Q ∨ P. The third input to ∨E on line 6 is the sequent
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on line 5, namely, Q �Q ∨ P. In this case, then, ∨E permits us to write
Q ∨ P on line 6, with the following dependencies: (a) The dependencies
Δ of the disjunctionP∨Q on line 1. In this case, Δ is simplyP∨Q itself.
(b) The auxiliary assumptions Γ that may have been used to deriveQ ∨ P
from the first disjunctP. In this case, Γ is empty. (c)The auxiliary assump-
tions Δ thatmay have been used to deriveQ ∨ P from the second disjunct
Q . In this case, Δ is empty.

For an even simpler—and yet possibly more confusing—application of
∨E, we derive P from the disjunction P∨ P.

1 (1) P∨ P A
2 (2) P A
1 (3) P 1,2,2,2,2 ∨E

Here, the first and second disjuncts are the same sentence, namely, P.
Hence, the assumption on line 2 can serve as the assumption for both sub-
proofs. In addition, the desired conclusion is simply P again; hence, line 2
can serve as the conclusion of both subproofs. It’s for this reason that the
invocation of ∨E on line 3 cites line 2 four times: twice as an assumption
and twice as the conclusion of subproofs.

It might also help to see an example where the disjunction elimination
rulehas beenmisapplied. Intuitively, it shouldn’t bepossible toproveP from
P∨Q . For example, from the fact that the number 2 is either even or odd,
you shouldn’t be able to deduce that it’s odd! But consider the following
attempt to prove P from P∨Q .

1 (1) P∨Q A
2 (2) P A
3 (3) Q A
2, 3 (4) P∧Q 2,3 ∧ I
2, 3 (5) P 4 ∧E
1 (6) P 1,2,2,3,5 ∨E ⇐= incorrect

Everything in this “proof” is OK except for the dependencies of line 6. The
problem is that line 6 should include all the dependencies of line 5 (i.e.,
the conclusion of the second subproof) except for 3 (i.e., the assumption
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of that subproof). Thus, line 6 should also include 2 among its dependen-
cies. But in that case, it would be a proof of P∨Q , P� P, which is not so
surprising after all.

Exercise 3.3. Prove the following sequents.

1. (P→R)∧ (Q →R) � (P∨Q ) →R
2. association: P∨ (Q ∨R) �� (P∨Q )∨R
3. disjunctive syllogism: P∨Q ,¬P � Q
4. distribution: P∧ (Q ∨R) �� (P∧Q )∨ (P∧R)

5. distribution: P∨ (Q ∧R) �� (P∨Q )∧ (P∨R)

6. material conditional:¬P∨Q �� P→Q
7. DM:¬P∨¬Q � ¬(P∧Q )

In the previous exercises, you proved that P∨ (Q ∨R) is equivalent to
(P∨Q )∨R. Accordingly, in some later discussions, we might allow our-
selves to write P∨Q ∨R, when we don’t need to specify which of the
equivalent sentences we’re talking about.

Reductio ad Absurdum

We began the book by stating that logic is a tool to sort between true and
false claims. To this point, it might seem that the primary role of logic is
to establish which claims are true, by showing that they are logical conse-
quences of claims that we already know to be true. However, logic may be
even more effective when applied in reverse: to show which claims cannot
possibly be true.

Imagine, for example, that your friendAngelinahas a certainbeliefP that
you arequite sure is false. Suppose also thatAngelina, like you, is quite good
at logic, and she knows the difference between good and bad arguments.
Here, then, is a very effective way to convince Angelina to reject P: give
her a valid proof that begins with P (and possibly some other agreed-upon
background information Γ ) and that ends with some conclusion C that
Angelina rejects. Since we’re supposing that Angelina is completely logical,
she’ll be forced either to give up P or to change her mind about C.
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Now, in the most extreme case, C could be something that not only
Angelina, but every rational person, must reject. In particular, C might
be a logical contradiction such as ψ ∧¬ψ . We’ll take this extreme case
to be paradigmatic of an argumentative strategy called reductio ad absur-
dum (RAA), which literally means “reducing to absurdity.” The idea, again,
is that if a statement φ leads to an absurdity ψ ∧¬ψ , then φ must be
rejected. This argumentative strategy can be formalized as follows:

Reductio ad Absurdum (RAA)

A proof of ψ ∧¬ψ from Γ and φ can be converted to a proof
of¬φ from Γ . Schematically:
Γ ,φ � ψ ∧¬ψ
Γ � ¬φ

Whenwritten in linear format, RAAmust cite two lines: (1) an assump-
tion, say of φ, and (2) a contradiction, such as ψ ∧¬ψ . The conclusion
of RAA then depends on whatever the contradiction ψ ∧¬ψ depends
upon, except possibly the assumption of φ. As with conditional proof, the
contradiction is not required to depend on the assumption of φ.

The following is a fairly standard use of RAA.

1 (1) P→Q A
2 (2) P→ ¬Q A
3 (3) P A
1, 3 (4) Q 1,3 MP
2, 3 (5) ¬Q 2,3 MP
1, 2, 3 (6) Q ∧¬Q 4,5 ∧ I
1, 2 (7) ¬P 3,6 RAA

Here, the assumption of P is used to detach Q and ¬Q from the condi-
tionals in lines 1 and 2. It is, however, acceptable to apply RAA even if the
assumption is not used—as in the following alternative proof of EFQ.



525-85030_ch01_6P — 2020/5/22 — 12:42 — page 48 — #24

48 Chap t e r Th r e e

1 (1) Q ∧¬Q A
2 (2) ¬P A
1 (3) ¬¬P 2,1 RAA
1 (4) P 3 DN

Here the assumption (line 2) comes after the contradiction (line 1). That
might feel like cheating—in the same way that it feels like cheating to use
conditional proof in a case where the assumption of the antecedent comes
after the derivation of the consequent. However, the RAA rule permits this
move.Note also that since the assumption (line 2)wasn’t used toderive the
contradiction (line 1), the dependencies on line 3 are the same as those on
line 1.

As in the previous argument, RAA is frequently used in combination
with DN, and this combination makes RAA a powerful tool for proving
positive results. In general, to establish a positive resultP, all you need to do
is to show that its negation¬P leads to a contradiction. This combination
(RAA and DN) can be used to give another proof of EM.

1 (1) ¬(P∨¬P) A
2 (2) P A
2 (3) P∨¬P 2 ∨ I
1, 2 (4) (P∨¬P)∧¬(P∨¬P) 3, 1 ∧ I
1 (5) ¬P 2, 4 RAA
1 (6) P∨¬P 5 ∨ I
1 (7) (P∨¬P)∧¬(P∨¬P) 6, 1 ∧ I

(8) ¬¬(P∨¬P) 1, 7 RAA
(9) P∨¬P 8 DN

EMcan be a useful auxiliary for proving other things. In fact, EM andRAA
are the tools of choice for proving things that have eluded all othermethods
of attack. Consider, for example, the following valid sequent:

� ((P→Q ) → P) → P

It’s not at all obvious how one could prove this sequent. Since it’s a condi-
tional sentence, youmight try to assume the antecedent (P→Q ) → P and
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then to derive the consequent P. However, since the antecedent is a con-
ditional sentence, there is nothing that you can infer from it, at least until
you assume something else. If you go on like this for awhile, youmight find
yourself increasingly flustered. Let’s, then, bring out the big guns: firstwrite
downaproof ofP∨¬P. Now set up two subproofs, onebeginningwith the
assumption of P and the other with the assumption of ¬P. The first sub-
proof immediately yields the consequent that you want, namely, P. For the
second subproof, recall negative paradox: ¬P� P→Q . Hence, from¬P,
you could derive P→Q , and then in combination with the assumption
(P→Q ) → P, you could derive P. The overall structure of this derivation
looks like this:

...
P∨¬P EM

∗ P A
� ¬P A

...
� P→Q negative paradox
† (P→Q ) → P A
�, † P
† P ∨E

((P→Q ) → P) → P CP

Here the symbols ∗, �, † stand in for unknown dependency numbers. Of
course, if you filled in all the steps, this proof would be quite long. In the
next section, we will explain a method for citing one proof inside another
so that you can keep your proofs to a manageable length.

Exercise 3.4. Prove the following sequents.

1. material conditional: P→Q � ¬(P∧¬Q )

2. DM:¬(P∧Q ) � ¬P∨¬Q
3. material conditional:¬(P→Q ) � P∧¬Q
*4. chain order:� (P→Q )∨ (Q → P)
*5. P→ (Q ∨R) � (P→Q )∨ (P→R)

6. (P∧Q ) → ¬Q � P→ ¬Q
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Exercise 3.5. People who reject DN elimination also tend to reject the law
of excluded middle. This exercise explains why. Use the law of excluded
middle and EFQ to re-deriveDNelimination. That is, show that¬¬P� P,
without using DN, but where you’re allowed to insert P∨¬P and where
you’re allowed to infer anything from a contradiction.

For discussion: Is the law of excluded middle more obviously correct
than the DN rule?
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4
New Proofs fromOld

As the old saying goes, “Don’t work harder, work smarter.” You’ve
done the hard work writing a lot of proofs; now it’s time to work smarter.
In this chapter, we’re going to think about how you can reliably take short-
cuts with proofs. The key word here is “reliably.” That is, we want to ensure
that these shortcutswon’t cause you tomisjudgewhether or not something
can be proven.

For example, suppose that we ask you to prove the following sequent:
� (P→Q )∨¬(P→Q ). You’ve probably never proved this sequent
before. However, you should have—if you’ve been diligent—proved an
instance of the law of excluded middle, that is something like � P∨¬P.
Now suppose that you have the proof of P∨¬P saved in a file em.txt
and that you run a “find and replace” to swap in P→Q for P. Then, the
resultwill be a proof of (P→Q )∨¬(P→Q ). That’sworking smart: take
an old proof, run find-and-replace, and ta da, you have a new proof.

What we just did was a case of substitution. We’ll discuss substitution
in the first section. Then, we’ll talk about another shortcut method that
allows you to splice anoldproof into anewone—themethodof cut. Finally,
we’ll talk about a third shortcut method that allows you to replace a sub-
formula with any logically equivalent subformula. If you learn these three
methods, you’ll be able to prove even the most challenging propositional
logic sequents with ease.

51
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Substitution

In this section, we describe the theoretical basis for the “find-and-replace”
method of generating new proofs from old. To this end, we first need to
define the notion of a substitution instance. The idea here is that the find-
and-replace operation changes a formula φ to a substitution instance φ∗
and a proof of φ � ψ to a proof of φ∗ � ψ ∗.

Each sentence of our symbolic language is either one of the symbols
P,Q ,R, . . . , or it’s built up from those symbols using the connectives
¬, ∧ , ∨ , and →. It’s time to be a bit more precise about the ways in
which we permit sentences to be constructed. We call the capital letters
P,Q ,R . . . our atomic sentences, the idea being that they have no internal
structure.We also stipulate that ifφ and ψ are sentences, then¬φ,φ ∧ ψ ,
φ ∨ ψ , and φ → ψ are also sentences. (To be evenmore precise, we have
to put parentheses around the resulting sentence at each stage of construc-
tion. However, we will omit parentheses after applying¬, and wewill omit
the outermost parentheses from every sentence.) What’s more, we stipu-
late that all legitimate sentences come about from applying a finite number
of these construction steps.

We now define a notion of a translation. For simplicity, let’s suppose
that we begin with a list P,Q ,R, . . . of simple sentences. A reconstrual is
an assignment F of each atomic sentence X to some other sentence F(X).
For example, F(P) could be another atomic sentence, such as R, or it could
be a complex sentence such as R→ ¬S or even ¬P or P∧¬P. There are
no restrictions at all on the assignmentF, so long as the result is a legitimate
sentence.

Once we have a reconstrual F, we can use it to translate any sentence
φ. In short, we define F(φ) to be the sentence that results from replacing
each atomic sentence X in φ with F(X). The resulting string of symbols
F(φ) will always be a legitimate sentence, and we call it a substitution
instance of φ.

As usual, the definition becomes more clear when we look at examples.
Suppose, for example, that we reconstrue P as Q → P and Q as ¬R. That
reconstrual results in the following substitution instances.
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P→Q � (Q → P) → ¬R
P∨¬P � (Q → P)∨¬(Q → P)
Q → P � ¬R→ (Q → P)

It should be clear that there is some sense in which the substitution oper-
ation preserves the form of the original sentence or, to be more precise,
that F(φ) is an instance of the form presented by φ. However, F(φ) can
have more structure than φ itself has; for example, every sentence is a
substitution instance of the atomic sentence P.

Exercise 4.1.Which of the following formulas is a substitution instance of
the formula P→ ¬Q ? In cases where you answer affirmatively, show how
to reconstrue P andQ to get the resulting formula.

1. ¬Q → ¬P
2. (P→ ¬Q ) →R
3. (P→ ¬Q ) → ¬(P→ ¬Q )

Recall that our inference rules are schematic, that is, they depend only
on the form of the sentences involved. Thus, it should immediately follow
that substitution preserves validity, since it preserves form. We will prove
that rigorously in chapter 9, with a result known as the substitution the-
orem. But for now, it will suffice to state the upshot, which we can use to
generate new proofs from old ones.

Substitution

A proof of φ1, . . . ,φn � ψ can be converted to a proof of
F(φ1), . . . , F(φn) � F(ψ ), where F is a reconstrual of the nonlog-
ical vocabulary.

The substitutionmeta-rule is just a formalization of what you already
know: that find-and-replace preserves the validity of proofs (as long as you
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restrict the finding to atomic sentences, and you replace them with other
well-formed sentences). Note that substitution is not a rule in the same
sense as, say, modus ponens, which generates newvalid inferences. To illus-
trate this point, imagine that proofs of all valid sequents are saved in some
computer file proofs.txt. Each such proof consists of finitely many lines,
and in the right-hand column, every line is justified by one of the inference
rules: ∧ I, ∧ E, MP, and so on. None of those lines is justified by some rule
called “substitution.” Instead, the substitutionmeta-rule tells us that for any
proof inproofs.txt, there is another proof inproofs.txt that looks just like
the first, except that the atomic sentences have been replacedby someother
sentences.

Exercise 4.2.Do you think the following claims are true or false? Explain
your answers.

1. If φ is not provable, then no substitution instance of φ is provable.
2. The sentence (P∧Q ) →R has a substitution instance that can be

proven.

Cut

We now introduce a key meta-rule that, if used correctly, can greatly
increase your efficiency in proving things. Let’s begin with an example.

Suppose that you’ve been asked to prove that

P→ (Q ∨R) � (P→Q )∨ (P→R).

After many failed attempts, you might decide to bring out the sledgeham-
mer of reductio ad absurdum: to assume the negation of the result youwant
and derive a contradiction. Now, the negation ¬((P→Q )∨ (P→R))

doesn’t look to be all that useful. However, you might then remember that
you’ve already proven the following version of DeMorgan’s rule: ¬(P∨
Q ) �¬P∧¬Q . You could then substitute P→Q for P and P→R forQ ,
which gives you a proof of

¬((P→Q )∨ (P→R)) � ¬(P→Q )∧¬(P→R).
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But now you’ve got to figure out how to splice that proof into the proof
you’re currently working on. The cut meta-rule will allow you to perform
this splice, yielding the following lines:

1 (1) P→ (Q ∨R) A
2 (2) ¬((P→Q )∨ (P→R)) A
2 (3) ¬(P→Q )∧¬(P→R) cut, DM

The basic idea here is that if you’ve proven a sequent φ � ψ (such as
DeMorgan’s), then you can use that sequent to continue a proof from a line
with Γ � φ to a line with Γ � ψ . We state the rule, however, in a more
general fashion.

Cut

Suppose that you have already demonstrated that φ1, . . . ,
φn � ψ . Then, in any proof where you have lines Γ 1 �φ1, . . . ,
Γ n �φn, you may infer that Γ 1, . . . , Γ n � ψ .

As with substitution, cut is not a new inference rule. Instead, it’s a
promise: if certain proofs exist, then so does another proof. Imagine again
a computer file proofs.txt that contains all correctly written proofs. The
word “cut” does not appear in any of those proofs. However, if proofs.txt
contains proofs of φ1, . . . ,φn � ψ , and also of each Γ i �φi, then cut
promises that proofs.txt also has a proof of Γ 1, . . . , Γ n � ψ . That lat-
ter proof, however, only cites the primitive inference rules such as ∧ I
andMP.

When youwrite proofs, however, you can cite cut, because you’re giving
your reader a promise that you could expand it out into a correctly written
proof. For example, suppose that you already have a proof of the sequent
φ � ψ (which you named “hocus pocus”) and that you’ve begun a new
proof whereφ appears on linem. Then, on a subsequent line, you canwrite
ψ with a citation of cut.
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Γ (m) φ
...

Γ (n) ψ cut, hocus pocus

If somebody then calls you on the cut, you can do the following: take the
proof of φ � ψ and add a line of CP to get a proof of �φ → ψ . Then,
instead of citing cut on line n, copy in that entire proof, and finish with a
step of MP.

Γ (m) φ
...
(n1) φ → ψ

Γ (n2) ψ m, n1 MPP

So, using cut with an already proven sequent is just a way of indicating that
you could write a proof.

Many cases of cut involve the special case n= 1, that is, where you’ve
already demonstrated that φ � ψ , and you find yourself with a line like
this:

Γ (m) φ

In this case, cut licenses the following inference:

Γ (n) ψ m cut

For an example of cut with n= 2, suppose that you have proved disjunctive
syllogism P∨Q ,¬P�Q and that you have the following two lines in a
proof:

Γ 1 (m) P∨Q
Γ 2 (n) ¬P

Then cut licenses a subsequent line:

Γ 1, Γ 2 (n′) Q m, n cut
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The cut rule is also really useful in the case where n= 0. In that case,
we have already proven a single sequent � ψ that has no premises. The
cut rule then says that on any line of a subsequent proof, we may write ψ
with no dependencies. So, for example, if we’ve already proven the law of
excluded middle (lem), P∨¬P, then any time we’re writing a proof, we
may insert a line:

(n) P∨¬P cut, lem

This invocation of cut goes beyond substitution, because substitution only
creates an entire new proof. Cut allows you to paste an old proof in the
middle of a new one.

You can, however, use cut together with substitution. For example, if
you’ve proven excluded middle, then substitution gives you a proof of �
(P→Q )∨¬(P→Q ). Then, cut permits you to drop this sequent into a
proof as follows:

(n) (P→Q )∨¬(P→Q ) cut, lem

Technically speaking, this line n should say something like “substitution +
cut.” But substitution is so immediate that it can typically be used without
mention.

Let’s look at one more example of the use of cut. We’ll take for granted
that you already have proofs of excluded middle � P∨¬P and posi-
tive paradox P�Q → P. We will use these results to prove the sequent
� (P→Q )∨ (Q → P).

(1) P∨¬P cut, lem
2 (2) P A
2 (3) Q → P 2 cut, pos paradox
2 (4) (P→Q )∨ (Q → P) 3 ∨ I
5 (5) ¬P A
5 (6) ¬Q → ¬P 5 cut, pos paradox
2 (7) ¬¬P 2 DN
2, 5 (8) ¬¬Q 6,7 MTT
2, 5 (9) Q 8 DN
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5 (10) P→Q 2,9 CP
5 (11) (P→Q )∨ (Q → P) 10 ∨ I

(12) (P→Q )∨ (Q → P) 1,2,4,5,11 ∨E

On line 2, we have the sequent P� P. Positive paradox establishes the
sequent P�Q → P. Hence, cut permits us to combine these two sequents
into P�Q → P, which we write on line 3. We then use positive paradox
again to obtain line 6 from line 5. (Note that if we had permitted ourselves
to use negative paradox, then we could immediately have obtained P→Q
from line 5.)

If and Only If

We have one more meta-rule to cover, namely, the replacement rule. How-
ever, we pause to define a symbol that will facilitate our discussion of
replacement.

If you spend any amount of time hanging around mathematicians or
analytic philosophers, you’ll pick up the phrase “if and only if.” This phrase
is meant to express something even stronger than a conditional; it’s meant
to express a two-directional conditional, or biconditional. For example, if
I tell you that

You will get an A on the exam if and only if you study

then I’m telling you two things. First, “you will get an A on the exam if you
study,” which means that studying is a sufficient condition for getting an
A on the exam. Second, “you will get an A on the exam only if you study,”
which means that studying is a necessary condition for getting an A on
the exam.

We will use the symbol ↔ for the “if and only if ” connective. Like a
conditional, this connective applies to two sentences; thus, if φ and ψ are
sentences of propositional logic, then so is φ ↔ ψ . In order for this new
connective to be useful, we now have to specify its inference rules. Fortu-
nately, its meaning is completely transparent, once we already know how
to express “if . . . then . . . ” and “and.” In particular, φ ↔ ψ should be equiv-
alent to (φ → ψ )∧ (ψ → φ). In fact, we will make this equivalence into
a definition of the introduction and elimination rules.
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Biconditional Introduction (↔I) and Elimination (↔E)

Γ � (φ → ψ )∧ (ψ → φ)

Γ � φ ↔ ψ
Γ � φ ↔ ψ

Γ � (φ → ψ )∧ (ψ → φ)

To check that these are good inference rules, let’s first verify that “P if
and only if P” is tautologous.

1 (1) P A
(2) P→ P 1,1 CP
(3) (P→ P)∧ (P→ P) 2,2 ∧ I
(4) P↔ P 3↔I

In technical writing, people often abbreviate “if and only if ” to the three
letters “iff.” Another expression that is sometimes used with the same
force is “just in case.” In particular, mathematicians often state their defi-
nitions by saying something like, “We’ll say that a number n is prime just in
case . . . .” By this they mean, a number n is prime if and only if . . . .

Recall that a conditional P→Q in propositional logic can be asserted
in conditions considerably weaker than those that license asserting a con-
ditional in some everyday life contexts. In particular, Q � P→Q , which
means thatQ itself is a sufficient condition forP→Q . This result also sug-
gests that P↔Q should be assertable in any context where both P andQ
are assertable. We verify that fact now.

1 (1) P∧Q A
1 (2) Q 1 ∧E
1 (3) P→Q 2 cut, positive paradox
1 (4) P 1 ∧E
1 (5) Q → P 4 cut, positive paradox
1 (6) (P→Q )∧ (Q → P) 3,5 ∧ I
1 (7) P↔Q 6↔I
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This proof yields the sequent P∧Q � P↔Q . A similar proof (see the
exercises) shows that ¬P∧¬Q � P↔Q . You could then combine these
two proofs with a step of disjunction elimination to prove the sequent:

(P∧Q )∨ (¬P∧¬Q ) � P↔Q .

Exercise 4.3. Prove the following sequents. You may invoke cut with any
named sequent that you have already proven (e.g., lem, positive paradox,
negative paradox).

1. P↔Q � Q ↔ P
2. � (Q → P)∨ (P→R)

3. P↔Q �� (P∧Q )∨ (¬P∧¬Q )

4. ¬(P↔ P) � Q ∧¬Q
5. P↔Q ,Q ↔R � P↔R
6. ¬(P↔Q ) �� (P↔ ¬Q )

7. � (P↔Q )∨ (P↔R)∨ (Q ↔R)

Replacement

The substitution meta-rule permits only transformations that begin with
atomic sentences and that propagate through the application of the logi-
cal connectives. The replacement meta-rule is more flexible: it permits
replacement of an entire subformula.

The idea behind this meta-rule is simple. Suppose that you have proven
both sequents φ � ψ and ψ �φ. So, you know then that φ and ψ are
equivalent, “for all logical purposes.” In particular, whatever inferential rela-
tions φ stands in to any other sentence θ , ψ stands in exactly those same
inferential relations to θ . This suggests that in any argument, ψ should be
able to play the same role as φ.

For example, consider the sequent

R∨ ((Q →R) → P) � R∨ ((¬Q ∨R) → P).

This sequent could be proven the long way around by performing disjunc-
tion elimination. After assuming the second disjunct of the premise, you
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could then assume¬Q ∨R. Then, plug in the proof of¬Q ∨R�Q →R
and so on.

Let θ be the formula Q →R, let θ ′ be the formula ¬Q ∨R, and
let φ be the formula R∨ ((Q →R) → P). In other words, φ is the for-
mula R∨ ( θ → P), and the conclusion of the argument is the formula
R∨ ( θ ′ → P).

After doing many proofs, you’ll start to get the feeling that a move like
this can always be done. That is, if one formula θ occurs as part of another
φ, and if θ is provably equivalent to θ ′, then you’ll always be able to find a
proof φ �φ[ θ ′/ θ ], where φ[ θ ′/ θ ] is the formula you get if you replace
θ in φ with θ ′.

But can you be sure that it will always work? The answer is yes, that you
can be sure, but it takes some patient verification to see why. The key here
is simply to check that all of the connectives preserve interderivability of
sentences. So, for example, if θ and θ ′ are interderivable, then no matter
what sentence ψ is, the conjunction θ ∧ ψ will be interderivable with
θ ′ ∧ ψ , the conditional θ → ψ will be interderivablewith θ ′ → ψ , and
so on. If we apply the same thought again, it follows that χ ∨ ( θ ∧ ψ )

is interderivable with χ ∨ ( θ ′ ∧ ψ ) and so on. In other words, once you
have that θ �� θ ′, then θ canbe embedded asdeeply as youwant in some
other formula φ, and it will still be the case that φ ��φ[ θ ′/ θ ], where
φ[ θ ′/ θ ] is the result of replacing θ in φ with θ ′.

Ourmeta-rule of replacement canbemademore convenient for proving
stuff if we remember that φ ��φ[ θ / θ ′] implies that if Γ �φ, then Γ
�φ[ θ / θ ′]. That is, if there’s a proof ofφ from Γ , then there’s also a proof
of φ[ θ / θ ′].

Replacement with an Equivalent (RE)

Given a line Γ �φ of a proof, and a subformula θ of φ, if θ is
equivalent to θ ′, then you may infer a subsequent line Γ �φ

[ θ ′/ θ ], where θ has been replaced by θ ′. Schematically:

� θ ↔ θ ′ Γ �φ

Γ � φ[ θ ′/ θ ]
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The replacementmeta-rule can be usedwith any equivalences that have
already been proven. If you keep in mind some key equivalences (see
page 233), then it can really speed up proofs. Consider, for example, the
following alternative proof of Peirce’s law.

1 (1) (P→Q ) → P A
1 (2) ¬(P→Q )∨ P 1 RE, mat cond
1 (3) (P∧¬Q )∨ P 2 RE, mat cond
4 (4) P∧¬Q A
4 (5) P 4 ∧E
6 (6) P A
1 (7) P 3,4,5,6,6 ∨E

On line 2, we used replacement on the entire line with the equivalence
φ → ψ �� ¬φ ∨ ψ . (When replacement is applied to an entire line, we
could also have used cut.) On line 3, we used replacement on the first
disjunct with the equivalence¬(φ → ψ ) ��φ ∧¬ψ .

The replacementmeta-rule can be especially helpful if you need to con-
vert a sentence φ into an interderivable sentence φ′ that has some specific
form. For example, one particularly nice kind of sentence is one where
all negation signs apply only to atomic sentences, all conjunction symbols
apply only to atomic or negated atomic sentences, and where there are
no conditional or biconditional connectives. (Such sentences are said to
be in disjunctive normal form, and we will investigate them further in
chapter 5.) For example, the following sentence has this form:

(P∧Q )∨ (P∧¬Q )∨ (¬P∧Q )∨ (¬P∧¬Q ).

We won’t provide a detailed recipe here for finding equivalent disjunctive
normal form sentences, but instead, we’ll just work a couple of examples.

First, we write a proof of the sequent

(P→Q )∨ (Q → P) � (P∨¬P)∨ (Q ∨¬Q ).

1 (1) (P→Q )∨ (Q → P) A
1 (2) (¬P∨Q )∨ (¬Q ∨ P) 1 RE
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1 (3) ¬P∨ (Q ∨ (¬Q ∨ P)) 2 RE
1 (4) ¬P∨ ((Q ∨¬Q )∨ P) 3 RE
1 (5) ¬P∨ (P∨ (Q ∨¬Q )) 4 RE
1 (6) (¬P∨ P)∨ (Q ∨¬Q ) 5 RE
1 (7) (P∨¬P)∨ (Q ∨¬Q ) 6 RE

Since the conclusion here is a tautology, it’s not surprising that it can be
derived from the premise. (It can, in fact, be derived from any premise.)
What’s interesting is that each step of this proof uses RE, and so the
derivation is reversible—hence, the premise and conclusion are logically
equivalent.

Exercise 4.4. In the proof above, identify each equivalence that has been
used.

Now we convert P↔Q to (P∧Q )∨ (¬P∧¬Q ) using a string of
equivalences.

P↔Q �� (P→Q )∧ (Q → P)
�� (¬P∨Q )∧ (¬Q ∨ P)
�� ((¬P∨Q )∧¬Q )∨ ((¬P∨Q )∧ P)
�� ((¬P∧¬Q )∨ (Q ∧¬Q ))∨ ((¬P∧ P)∨ (Q ∧ P))
�� (¬P∧¬Q )∨ (Q ∧ P)

In the final line, we used the fact that for any contradiction ⊥, and for any
sentence φ, we have φ ∨⊥ �� φ ��⊥∨φ. In this sense, a contradiction
acts like a zero (i.e., an additive identity) for the ∨ operation.

Exercise 4.5. Use replacement-style reasoning to convert the following
sentences to disjunctive normal form. Youmight wish to consult the equiv-
alences on page 233.

1. (P→Q )∨ (Q →R)

2. (P↔Q )∨ (P↔R)∨ (Q ↔R)
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Truth

Suppose that you have been trying and trying to prove a sequent,
say φ � ψ . Suppose that you’ve spent ten hours trying to prove it, and
nothing seems to be working. At what point would you be justified in con-
cluding that this sequent actually cannot be proven—not that it just needs
a greater genius than you but that it is literally impossible to use the rules
to derive ψ from φ?

The short answer is that a failure to prove something never justifies the
conclusion that the thing cannot be proven. It doesn’t matter how smart
you are. You could be the smartest person that ever lived, and still, your
failure to prove something is not a proof that it’s unprovable. For example,
for hundreds of years, the smartest mathematicians in the world tried to
prove a result called “Fermat’s last theorem.” After a while, a lot of people
started to think: the reason these mathematicians have failed to prove it is
because itmust be false! Andyet, it turns out that it is true. In 1995, the very
patient Andrew Wiles revealed that he had a proof, which, if transcribed
into our notation, would be well over a million lines long.

The lesson is, if you want to show that something isn’t provable, then
you need a different kind of evidence than your—or anyone else’s—failure
to prove it.

One of the most amazing feats of formal logic has been in explaining
how one can prove that something cannot be proven. In this chapter, we
explain logicians’ method in the special case of propositional logic. It turns

64
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out that for propositional logic, it’s trivially easy to determine whether or
not something can be proven. The trick is to find a simple, detectable feature
that an argument has if it’s provable and that an argument doesn’t have if it’s
not provable. For propositional logic, the relevant feature is truth preser-
vation. That feature only becomes detectable when we define “truth” in a
simple mathematical way.

Truth Tables

We begin with a metaphor. Imagine that the atomic sentences P,Q ,R, . . .
are simple reports about contingent states of affairs. So, for example, P
could be the statement, “it rained in Princeton on December 7, 1941.” But
remember that logic doesn’t care at all about what actually is true or false;
so, for us, the symbol P is not, in itself, a true claim or a false claim. It only
represents the kind of statement that could be true or could be false.

Given this picture, the state of the entire universe would be specified by
determiningwhether each atomic sentenceP,Q ,R, . . . is true or false. You
could imagine that at creation, God said, “Let P be true, let R be false, etc.”
We can write all of these possible combinations of truth values in a neat
table like this:

PQ R
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0

Here we have used 1 for true and 0 for false—merely as a notational con-
venience. Since there are three atomic sentences, there are eight possible
configurations of truth values. The conventionwe’ve adopted is for the left-
most sentence (here P) to have four 1s and then four 0s; then, the next
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sentence alternates truth values twice as quickly, and so on. That pattern
ensures that we pick up all possible combinations of truth values.

The idea behind truth-functional (aka Boolean) logic is that once God
chooses whether each atomic sentence is true or false, then all His truth-
making work is done—because the truth value of the atomic sentences
completely determines the truth value of any complex sentence. For exam-
ple, once God says that P is true, then it automatically follows that ¬P is
false. In other words, we should have the following relation between the
truth value of P and the truth value of¬P.

P ¬P
1 01
0 10

We’ll call this the truth table for the negation connective. Thus, negation
is simply the Boolean “not” that flips 1 and 0. In fact, the truth table for
negation is applicable to any negated sentence, not just a negated atomic
sentence. Thus, we rewrite the previous table as

φ ¬φ

1 0 1
0 1 0

We can already get a taste now of how to compute truth values for more
complex sentences. Consider, for example, the sentence¬¬P.

P ¬¬P
1 1 0 1
0 0 1 0

Herewe use the truth value ofP to compute the truth value of¬P, and then
we use the truth value of¬P to compute the truth value of¬¬P. Themain
column (in bold font) is the column that is filled in last as we go through
the process. It represents the truth value that the sentence¬¬P has in each
different situation.

Now we’ve got to decide on how to compute truth values for conjunc-
tions, disjunctions, and conditionals. The case of conjunction is the most
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clear: a conjunction is true just in case both conjuncts are true. In particu-
lar, for P∧Q to be true, both P andQ must be true. If one or both of P and
Q is false, then P∧Q is false. That yields the following table.

PQ P ∧ Q
1 1 1 1 1
1 0 1 0 0
0 1 0 0 1
0 0 0 0 0

A similarly simple rule allows us to compute the truth value of a disjunc-
tion: a disjunction is true just in case at least one of its disjuncts is true.
This leads to the following truth table.

PQ P ∨ Q
1 1 1 1 1
1 0 1 1 0
0 1 0 1 1
0 0 0 0 0

Now, if you put your critical thinking cap on, you might conclude that this
disjunction rule is bad, because a disjunction shouldn’t be true when both
disjuncts are true. We think that’s a reasonable objection, and it would be
good, at some point, to reflect further on other possible options for giving
a precise, formal representation of the logical notion of disjunction. But for
now, please recall that we are building an idealized model of human logic,
which means that there may be some mismatch between the model and
our intuitions.

The truth value of a complex sentence φ can be calculated by working
from the inside out. One begins by copying the truth values of atomic sen-
tences P,Q ,R, . . . in each row of the truth table over to columns under
places where those atomic sentences occur in φ. Then, those truth val-
ues are used in combination with the tables for¬, ∨ , ∧ to compute truth
values of the more complex subformulas of φ, and so on, until we reach
themain connective of φ, which is the last connective that is inserted in
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the construction of φ. For the specific case where φ is the sentence ¬P∨
(Q ∧R), we computed the full table below.

PQ R ¬P ∨ (Q ∧ R )

1 1 1 0 1 1 1 1 1
1 1 0 0 1 0 1 0 0
1 0 1 0 1 0 0 0 1
1 0 0 0 1 0 0 0 0
0 1 1 1 0 1 1 1 1
0 1 0 1 0 1 1 0 0
0 0 1 1 0 1 0 0 1
0 0 0 1 0 1 0 0 0

Let’s call this table the truth table for the sentence¬P∨ (Q ∧R). To this
point, we have been casual with our understanding of what counts as a sen-
tence of propositional logic. However, in order to compute truth tables,
it’s important to note that any legitimate sentence is built up in a unique
way from propositional constants such as P,Q , and R. As a result, if a
sentence φ is not itself one of these propositional constants, then there is
one connective—the so-called main connective—that is the last one in
its construction. (For more details, see page 177.) The main connective of
¬P∨ (Q ∧R) is ∨ , and we have highlighted the column under that con-
nective in the truth table. The values in thismain column give the status
of the sentence¬P∨ (Q ∧R) in all the different possible situations.

Exercise 5.1.Write the truth table for P∧¬P. How do you interpret the
significance of the result?

You can now compute the truth values for any complex sentence built
with negation, conjunction, and disjunction. But what about sentences
built with the conditional symbol? The table is as follows:

PQ P→Q
1 1 1 1 1
1 0 1 0 0
0 1 0 1 1
0 0 0 1 0
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You’ll need to accept this truth table and use it to solve problems. But we
want to be upfront about the fact that this truth table does not simply and
obviously capture the truemeaningof “if . . . then.” For example, “Themoon
is made of green cheese” is false, and “Caesar crossed the Rubicon” is true;
hence, the table suggests that it’s true that “If the moon is made of green
cheese, then Caesar crossed the Rubicon.” That seems rather odd. And the
oddness only increases if you cook up examples for rows 1 and 4. The only
row that seems obviously correct is the second row.

At this point, symbolic logic comes to a substantial philosophical cross-
roads. In short, there is no truth table that adequately captures the nuance of
the “if . . . then . . . ” connective in natural languages. In the twentieth century,
philosophers spent a lot of time worrying about this nasty little connec-
tive →, and they came up with many more or less interesting proposals.1

Meanwhile, there’s a strong case to be made that this truth table—and
the corresponding rules MP and CP—is the de facto standard used in
mathematics and the sciences.

For our current agenda, the important fact is simply that the truth table
for→matches with the inference rules CP andMP in a precise sense that
we will explain soon—when we talk about the soundness and complete-
ness theorems.What thatmeans is that if youwant to change the truth table
for →, then you need different inference rules. And if you want different
inference rules for→, then you need a different truth table.

Once we’ve agreed upon the truth table for the conditional, we can
compute the truth table for the biconditional.

PQ P↔Q
1 1 1 1 1
1 0 1 0 0
0 1 0 0 1
0 0 0 1 0

In other words, a biconditional P↔Q is true just in case P andQ have the
same truth value.

1. You can learn more about these issues in a course or book about philosophical logic. For
example, “relevance logic” was invented precisely to avoid the paradoxes of material implication.
See p. 227 for references.
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Exercise 5.2. Compute the truth table for ¬P↔ ¬Q . How do you inter-
pret the significance of the result?

Truth in the Service of Proof

What can you do with these truth tables? What’s their cash value? Writing
out a truth table is not a particularly challenging exercise—and so it’s not a
good way to try to build mental muscle. The true utility of truth tables (for
us, in this context) is that they can show us what can and cannot be proven.

As you surely have experienced, the process of discovering a proof
involves genuine strategic thinking. Especially for the longer andmorediffi-
cult proofs, you have to choose appropriate intermediate goals. But howdo
you decide on those intermediate goals? Howdo you knowwhich interme-
diate goals are attainable, and how do you know which intermediate goals
will get you closer to the destination? Mistakes here can be costly. If you
choose an intermediate goal that cannot be proven, then you might waste
an enormous amount of time trying to prove it. Conversely, if you choose
an intermediate goal that is too weak to obtain the conclusion, then you’ll
be trapped in a dead end.

To understand how truth tables can be used in the service of proof, you
need to know two facts. We will demonstrate these facts in chapter 9, but
at present, you’ll have to take our word for it. First, a bit of terminology.

Definition. Let φ1, . . . ,φn and ψ be sentences. Let’s say that the argu-
ment from φ1, . . . ,φn to ψ is truth preserving just in case in the truth
table for all n+ 1 sentences, in any row where each of φ1, . . . ,φn is
assigned 1, the sentence ψ is also assigned 1.

Here now is the first of the two facts that you need to know:

Soundness theorem. If φ1, . . . ,φn � ψ , then the argument from φ1, . . . ,
φn to ψ is truth preserving.

The contrapositive of the soundness theorem says that if there’s any case
where φ1, . . . ,φn are true and ψ is false, then ψ cannot be proven from
φ1, . . . ,φn. The upshot is:
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If there is a truth table row inwhichφ1, . . . ,φn are true, and ψ is false, then
there is no proof from φ1, . . . ,φn to ψ .

Such a truth table row is known as a counterexample to the validity of the
argument.

To take a simple example, consider the argumentP→Q ,Q � P, which
you know intuitively to be invalid—indeed, it’s the notorious fallacy of
affirming the consequent. The truth table for this argument looks like this:

PQ P→Q Q P
1 1 1 1 1 1 1
1 0 1 0 0 0 1
0 1 0 1 1 1 0 ⇐= counterexample
0 0 0 1 0 0 0

In the first two rows of the truth table, the conclusion P is true—and so
those rows don’t provide any interesting information about the argument.
The third row, however, raises a red flag: here the two premises P→Q
and Q are both true, and the conclusion P is false. That’s a counterexam-
ple. Hence, by the soundness theorem, there is no proof from P→Q and
Q to P.

In the special case of an argument with no premises (i.e., where the con-
clusion ψ is simply asserted), the truth preservation condition says that
whenever all the premises are true (which is always, since there are none of
them), the conclusion ψ is true. Hence, the soundness theorem says that
the sequent � ψ is provable only if ψ is always true, in every row of its
truth table. Contrapositively, if ψ is ever false, then the sequent� ψ can-
not be proven. For example, and unsurprisingly, the sequent� P cannot be
proven.

Let’s see now how the soundness theorem can prevent you from choos-
ing a bad proof strategy. Suppose that you’ve been asked to prove � (P→
Q )∨ (Q → P). Since the conclusion is a disjunction, you might reason-
ably think that a good strategy would be to try to prove � P→Q , then
to infer the conclusion by means of ∨ I. However, P→Q is not a tautol-
ogy, whichmeans that� P→Q cannot be proven. Hence, that would be a
disastrously bad strategy.
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So, the soundness theorem provides a method for proving that some-
thing cannot be proven. We already know one way of proving that some-
thing can be proven: by producing a proof of it. Amazingly, though, there is
another way of proving that something can be proven. The completeness
theorem tells us that if a sequent is truth preserving, then it can in fact be
proven.

Completeness theorem If the argument from φ1, . . . ,φn to ψ is truth
preserving, then φ1, . . . ,φn � ψ .
In the special case of n= 0, it follows that if ψ is a tautology, then � ψ .
For example, it’s easy to see that P∨¬P is a tautology: if P is true, then
P∨¬P is true, and ifP is false, then¬P is true, andP∨¬P is true. Similarly,
a quick truth table test shows that Pierce’s proposition is a tautology and
hence can be proven.

PQ ((P→Q )→P)→P
1 1 1 1 1 1 1 1 1
1 0 1 0 0 1 1 1 1
0 1 0 1 1 0 0 1 0
0 0 0 1 0 0 0 1 0

Exercise 5.3.Write truth tables for¬P∨Q and P→Q , and say whether
either one implies the other.

Exercise 5.4. Show that P cannot be derived from P↔Q .

Exercise 5.5. Explain why P∧¬P�Q is truth preserving.

Shortcuts

The correspondence between proofs and truth tables gives a handy way
to classify sentences. We define three mutually exclusive and exhaustive
classes of sentences:

• A sentence is an inconsistency just in case its truth value is
always 0. (Here, “always” means “on every row of its truth table,
under the main connective.”)
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• A sentence is a tautology just in case its truth value is always 1. By
soundness and completeness, φ is a tautology just in case�φ.

• A sentence is a contingency just in case its truth value is some-
times 0 and sometimes 1.

You already know paradigm examples of each kind of sentence: P∨¬P
is a tautology, P→ P is a tautology, P∧¬P is an inconsistency, P is a
contingency, and P∨Q is a contingency.

We can also give precise definitions for logical relations between sen-
tences.

• Two sentences φ and ψ are logically equivalent just in case φ

and ψ have the same value in all rows of their common truth
table. By soundness and completeness, φ and ψ are logically
equivalent just in case�φ ↔ ψ .

• A set Γ of sentences is consistent just in case there is at least one
row in their common truth table in which all sentences in Γ have
value 1. If Γ is not consistent, then we say it is inconsistent.

We previously used the word interderivable for two sentences φ

and ψ when there are proofs φ � ψ and ψ �φ, which we wrote as
φ �� ψ . Clearly, φ �� ψ just in case �φ ↔ ψ , and it will be conve-
nient sometimes to write φ ≡ ψ as shorthand for this relation of inter-
derivability. The soundness and completeness theorems guarantee that φ
and ψ are interderivable just in case φ and ψ are logically equivalent.
(On page 233, we’ve given a list of several pairs of interderivable—hence
logically equivalent—sentences.)

Example. We will prove that if φ �� ψ , then�φ ↔ ψ . Take note: Our
proof here is not a single formal proof with dependency numbers and so
on. Instead, it is a meta-theoretic argument about the existence of certain
formal proofs.

We assume, then, that φ �� ψ . This says that there are two formal
proofs, one proof of φ � ψ and one proof of ψ �φ. By the conditional
proof rule, these two proofs can be extended to proofs of �φ → ψ and
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of � ψ → φ. Then, those two proofs can be concatenated and com-
bined with an instance of conjunction introduction to give� (φ → ψ )∧
(ψ → φ) and an instance of biconditional introduction to give�φ ↔ ψ .

Exercise 5.6. Show that if�φ ↔ ψ , then φ �� ψ .

Truth tables are easy . . . and also inefficient and potentially mind-
numbing. After you’ve done a dozen of them, you realize that you won’t
learn anything by doing more. It’s time either to find a computer program
to do them for you or, better, discover some rules of thumb to find the rele-
vant lines of a truth table without writing out the whole thing. This section
is highly pragmatic and nontheoretical. The one and only goal is to provide
you with some rules of thumb for finding relevant truth table rows.

Suppose, for example, that you want to know whether the sequent

P∨Q , R∧¬Q � R→ ¬P

can be proven or not. If you write up a full truth table, you’ll need eight
rows. But notice that the only potential counterexamples are the rows
where the conclusion R→ ¬P is false, hence rows where R and P are true.
A quick inspection of the premises shows that the first is true wheneverP is
true, and ifR is true, then the second is true when¬Q is true. So there you
have it: The following row of the truth table provides a counterexample to
the validity of this argument.

PQ R P ∨ Q R ∧ ¬Q R→ ¬P
1 0 1 1 1 0 1 1 1 0 1 0 0 1

Each row of a truth table corresponds to an assignment of 0s and 1s to the
atomic sentences.Wecall such an assignment a valuation, andwe canwrite
it in functional form like this: v(P) = 1, v(Q ) = 0, and v(R) = 1. The val-
uation v here makes the premises of the argument true and the conclusion
false. Hence, the argument fails to be truth preserving, and the conclusion
cannot be proven from the premises.

This first example shows that when the conclusion of an argument is
a conditional, you can immediately narrow focus to the lines where its
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antecedent is true and its consequent is false. The same kind of rule of
thumb applies to a disjunctive conclusion: the only relevant lines are those
where both disjuncts are false. Unfortunately, the situation is worse when
the conclusion is a conjunction, for there are three different ways that a
conjunction can be false.

Consider now a different example: You want to know whether the
sequent P∧Q ,¬Q ∨R�R can be proven. In this case, the conclusion is
an atomic sentenceR, so you can focus only on those rows whereR is false.
Among those rows where R is false, the first premise is true only if both P
andQ are true. But that is all the information we need, for ifQ is true and
R is false, then the second premise is false. In other words, there is no row
in which the premises are true and the conclusion is false. This argument
is valid, and the sequent can be proven.

Whatwe just did is a lot like playing a game of Sudoku. The key to doing
it properly is not to make guesses—you only assign a truth value to a sen-
tence when you are forced to buy the supposition that the conclusion is
false and the premises are true. Here, in fact, is how we are arguing:

Suppose that the argument from φ1 and φ2 to ψ is invalid.
There is a row in the truth table where φ1 and φ2 are true, but ψ is false.
If ψ is false, then . . .
If φ1 and φ2 are true, then . . .
[some contradiction]
Therefore, the argument from φ1 and φ2 to ψ is valid.

To draw such a conclusion, you’ve got to be careful about the steps “If ψ is
false, then . . . ” and “If φ1 and φ2 are true then. . . .”

In some cases, you simply won’t be forced by the suppositions to assign
particular truth values; instead, you’ll have options. Then, you have to
search systematically through the options to see if there is a counterexam-
ple to the argument. Consider one more example: you want to know if the
argument (P∧Q ) →R� P→ (Q ∧R) is valid. If the conclusion is false,
then P is true and Q ∧R is false. But sadly, there are three ways that Q ∧
R can be false. If the premise is true, then sadly we can’t say much either. It
could be that R is true, or it could be that P∧Q is false, and there are three
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ways that it could be false. At this stage, we can just try out various values
for Q and R. Noticing that the premise is true whenever R is true, we can
check if the conclusion can be made false in that case. Indeed, ifQ is false,
thenQ ∧R is false, and the conclusion is false. So there we have it: If P and
R are true, and Q is false, then the premise is true and the conclusion is
false. This argument is invalid, and the sequent cannot be proven.

This kind of argumentation about truth preservation can sometimes
shade into a formal proof, where theonly thing that’smissing are thedepen-
dency numbers and the explicit citation of inference rules. Consider, for
example, an argument that if the premiseP∧ (Q ∨R) is true, then so is the
conclusion (P∧Q )∨ (P∧R).

(1) Suppose that P∧ (Q ∨R) is true.
(2) Then both P andQ ∨R are true.
(3) SinceQ ∨R is true, eitherQ or R is true.
(4) IfQ is true, then P∧Q is true, hence (P∧Q )∨ (P∧R) is true.
(5) If R is true, then P∧R is true, hence (P∧Q )∨ (P∧R) is true.
(6) In either case, (P∧Q )∨ (P∧R) is true.

Here, line 2 is justified by conjunction elimination. Line 3 looks a bit like
disjunction elimination, but in fact it’s just the statement of the definition
of the truth table for ∨ . The transition from line 1 to line 2 also involves a
tacit invocation of the truth table for ∧ . Lines 4 and 5 each result from one
step of conjunction introduction and one step of disjunction introduction.
Line 6 results from disjunction elimination.

Let’s write the first bit of this argument again, bringing it even closer in
line with complete formalization.

1 (1) v(P∧ (Q ∨R)) = 1 A
1 (2) v(P) = 1 and v(Q ∨R) = 1 def ∧
1 (3) v(Q ∨R) = 1 2 and elim
1 (4) Either v(Q ) = 1 or v(R) = 1 def ∨
5 (5) v(Q ) = 1 A
1 (6) v(P) = 1 2 and elim
1, 5 (7) v(P) = 1 and v(Q ) = 1 5,6 and intro
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1, 5 (8) v(P∧Q ) = 1 def ∧
1, 5 (9) v((P∧Q )∨ (P∧R)) = 1 def ∨

We could continue here by deriving v((P∧Q )∨ (P∧R)) = 1 from the
assumption that v(R) = 1. Then, we could use ∨ elimination to eliminate
dependency on the assumptions v(Q ) = 1 and v(R) = 1. The end result
would be a proof of the sequent

v(P∧ (Q ∨R)) = 1 � v((P∧Q )∨ (P∧R)) = 1.

To argue in such an explicit fashion can have the advantage of convinc-
ing you that you really are using the rules of logic. However, there are also
disadvantages to arguing completely explicitly. One disadvantage is sim-
ple inefficiency. If your goal is to convince somebody else, then you only
need to say as much as is necessary to convince them that a formal proof
exists.

Notice also that the conclusion we really want isn’t the sequent:

v(P∧ (Q ∨R)) = 1 � v((P∧Q )∨ (P∧R)) = 1, (∗)

it’s the general claim:

For every v, [v(P∧ (Q ∨R)) = 1 � v((P∧Q )∨ (P∧R)) = 1].

While it’s intuitively clear that we have proved the general claim, we don’t
yet have an inference rule thatwill let us get from sequent (∗) to the general
claim. Todo that, weneed to be able to talk about “all valuations,” that is, we
need to be able to quantify over valuations. That’s the subject of predicate
logic, which we take up in the next chapter.

Exercise 5.7. Provide counterexamples to the following invalid argument
forms.

1. P→Q ,Q � P
2. P→R � (P∨Q ) →R
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3. P→R � P→ (Q ∧R)

4. P→ (Q →R) � (P→Q ) →R

Exercise 5.8.Classify each of the following sentences as tautology, incon-
sistency, or contingency.

1. (P→Q )∨ (Q →R)

2. (P→Q )∨ (P→R)

3. (P∧Q )∨ (P∧¬Q )∨ (¬P∧Q )

4. (P→ ¬P) → P
5. P→ (¬P→ P)

Exercise 5.9. Show that the following pairs of sentences are logically
equivalent (i.e., always have the same truth value):

1. P ≡ ¬P→ P
2. Q ≡ P↔ (P↔Q )

3. P↔R ≡ (P↔Q ) ↔ (Q ↔R)

Exercise 5.10. Are the following sequents provable? Explain your
answers.

1. � (P→ P) → ¬P
2. P↔Q � ¬P↔ ¬Q
3. � (P↔Q )∨ (Q ↔ P)
4. � (P↔Q )∨ (P↔R)∨ (P↔R)

Exercise 5.11. Show that the → connective is not associative. That is,
show that P→ (Q →R) is not equivalent to (P→Q ) →R.

Exercise 5.12. Suppose that you’re tutoring another student who is trying
to prove the sequent:

P→ (Q ∨R) � (P→Q )∨ (P→R).
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That student says that he’ll try first to prove P→Q and then use ∨
introduction to get the result. Do you think his strategy is good?

Exercise 5.13. Suppose that the sentence φ is an inconsistency. What can
you say about the sentence φ → ψ ?

Exercise 5.14. Suppose that the sentence φ ∧¬ψ is an inconsistency.
Explain how you know that the sequent φ � ψ is provable.

Propositions as Sets of Possible Worlds

There’s another way of thinking about the relation between sentences and
truth values—a way that philosophers use to frame many of their discus-
sions. Let’s think of a truth valuation (i.e., a row in a truth table) as a
“way that things could be.” Philosophers sometimes like to use the phrase
“possible world” for a way that things could be. Now we can imagine all
of these “ways that things could be” to be gathered together into a sin-
gle collection, a sort of meta-universe of all possible worlds. Imagine, for
the sake of this discussion, the point of view of an omnipotent being who
might be contemplating the question, “Which world should I create?”
As this omnipotent being surveys all of the possible worlds, She might
decide that certain things are important to Her—for example, She might
decide that She wants a world in which there are colorful flowers. Let
P be shorthand for the sentence, “There are colorful flowers.” Then She
could decide to rule out all worlds where there are no colorful flowers,
that is, all worlds in which P is false and ¬P is true. In short, She can use
propositions like P to pick out a subcollection of worlds that have a certain
feature.

Although we lack the power to create worlds, we do have the power to
imagine all possible worlds and to use propositions to differentiate worlds
fromeach other. In fact, it seems that the job of science is to figure outmore
and more about where we live in the space of all possible worlds. That is,
science tries to find which propositions are true, because each such propo-
sition narrows down the set of possible locations of our world in the space
of all possible worlds.
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v3 v4

v1 v2

Figure 5.1.The proposition P rules out possibilities v3 and v4.

Now let’s try to turn this suggestive idea into a useful tool for reasoning.
In this section, we’ll just look at the case where there are two atomic sen-
tences: P andQ . In that case, there are four truth valuations and hence four
possible worlds v1, v2, v3, v4. (In general, if there are n atomic sentences,
then there are 2n possible worlds, and if there are infinitely many atomic
sentences, then there is an uncountable infinity of possible worlds.) Let’s
imagine these worlds as blocks in a 4× 4 grid. The top blocks are those in
which v(P) = 1, and the left blocks are those in which v(Q ) = 1.

v1

v3

v2

v4

If you don’t know anything at all, then all bets are off—you could be in
any of the worlds v1, v2, v3, v4. Furthermore, if you only know a tautology,
sayP∨¬P, then you could be in anyworld. That’s what itmeans to say that
tautologies are empty or contentless: they don’t rule out any possibilities.
If, in contrast, you know that P, then you know that you’re not in one of
the bottom two worlds. Hence, the proposition P can be represented by
graying the bottom row, as in figure 5.1. Similarly, the proposition Q can
be represented by graying out the column on the right, the proposition¬P
can be represented by graying out the top row, and the proposition¬Q can
be represented by graying out the column on the left.

Interestingly, this visual representation indicates that there are “miss-
ing propositions” that are of the same logical kind as P and Q—that is,
other propositions that gray out two squares. Consider, for example, the
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Figure 5.2. Visual representation of truth assignments to two elementary sentences.

case where the top-right and bottom-left square are grayed out. The corre-
sponding propositionφ doesn’t rule out P, doesn’t rule outQ , and doesn’t
rule out either¬P or¬Q . What it does rule out are the cross-cases where
P is true and Q is false and when P is false and Q is true. In other words,
φ demands that P have the same truth value as Q . We see then that the
proposition φ isn’t missing after all: it’s the proposition P↔Q .

Propositions like P and Q leave open more than one possibility. The
tautologies, such as P∨¬P, leave open all possibilities, and the con-
tradictions, such as P∧¬P, leave open no possibilities (i.e., they cannot be
true). Another interesting kind of proposition are thosemaximally specific
propositions that leave open only one possibility. In this case, there are four
maximally specific propositions, represented by P∧Q , P∧¬Q ,¬P∧Q ,
and ¬P∧¬Q . In figure 5.2, a 4× 4 square represents the space of all
possible worlds. Each coloring of a 4× 4 square represents a proposi-
tion, where the grayed-out squares are those worlds that the proposition
rules out. A maximally specific, consistent proposition rules out all worlds
but one.

We can also use these diagrams to understand better how the logical
connectives work. For example, suppose that I assert

(P∧Q )∨ (P∧¬Q ).

The first disjunct permits only world v1, and the second disjunct permits
only world v2. However, as I’ve asserted a disjunction, I’ve permitted either
v1 or v2.Hence, thepropositionφ I’ve asserted leaves the top rowopen, that
is, φ must be equivalent to P.

If you think through all the possible ways of graying out some subset of
possibleworlds, youwill quickly see that inone sense, there are only sixteen
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distinct propositions. There is one proposition that rules out all worlds and
one that allows all worlds. There are four propositions that permit only
one world. There are also four propositions that exclude only one world.
And then there are the six propositions that permit exactly two worlds. Of
course, each of these propositions can be represented by many different
sentences—for example, P and P∧ (Q ∨¬Q ) represent the same propo-
sition. But it’s good to know that every sentence represents one and only
one of these propositions.

Before concluding this discussion, weneed towarn you about one thing.
The preceding considerations might make it seem obviously true that for
each possible worldw, there is a maximally specific proposition that is true
in w and that is false at all other worlds. While that is the case when there
are only finitely many atomic sentences, it can fail if there are infinitely
many—at least if your propositions are themselves finite strings of sym-
bols. For if a sentence φ contains only finitely many symbols, then there
might be an atomic sentenceX that doesn’t occur inφ. Then, for anyworld
w in which φ is true, there will be a distinct world w′ in which φ is also
true and in which the truth value of X is flipped. Thus, for a language
with infinitely many atomic sentences, there are no maximally specific
propositions—that is, every proposition is consistent with many different
possibilities.

In the casewhere there arenomaximally specificpropositions, the study
of the collection of all possible worlds becomes more mathematically rich.
In fact, there is a entire branch of mathematics—known as topology—that
studies collections like this, with certain special subcollections (i.e., our
propositions), which topologists call “neighborhoods.”

Exercise 5.15.

1. Consider two arbitrary sentences that contain only the atomic sen-
tences P and Q . Explain visually the relation between the colorings
for φ and ψ when φ logically implies ψ .

2. Explain visually the relation between the colorings for φ and ψ
when φ is inconsistent with ψ .
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3. Use the method of coloring to show that (P↔Q )∨ (P↔ ¬Q ) is
a tautology. Try to use the same thinking to construct an efficient
formal proof of the sentence.

4. Let P be any sentence that you wish or hope is true. Here’s how to
prove that P is true: let φ be the sentence “if φ is true, then P.” Show
that φ is true, and hence that P is true. (Obviously something fishy
is going on here!)
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The following argument is intuitively valid.

All people are mortal.
Socrates is a person.

Socrates is mortal.

However, the validity of this argument cannot be established by the meth-
ods we developed in the previous chapters. In particular, in this argument,
none of the sentences is logically complex—that is, none of them is a
conjunction, or a disjunction, or a conditional, or a negated sentence.
Hence, the proper symbolizationof this argumentwould beP,Q �R. That
sequent is invalid. Therefore, the methods of the previous chapters would
lead you to say that the argument about Socrates is invalid. Apparently, the
methods of the previous chapters get this one wrong.1

Here’s another intuitively valid argument.

Professor Dumbledore believes in magic.

Some professors believe in magic.

1. For the über-critical reader: you might translate “all people are mortal” as a very long con-
junction, and then the argument would show itself to be valid. We would reply to your objection
by presenting an argument with a premise about all natural numbers.

84
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Again, by the lights of propositional logic, the premise and conclusion
of this argument are atomic sentences. Hence, the argument should be
symbolized as P�Q , which is invalid.
We are going tomove forward with the assumption that the above argu-

ments are valid. To see why they are valid, we need a deeper analysis than
that provided by propositional logic. As before, the most important clue
is the appearance of certain special words and phrases that connect the
“content words” in the argument. In the first argument, the key connecting
word is “all,” as we can see by replacing the content words (person, mortal,
Socrates) with letters.

All P areM.
s is P.

Therefore, s isM.

If you replace these letters with any grammatically suitable words, you’ll
find that the result is once again a good argument. That’s a sign that we’ve
identified a valid argument form. The next step, then, is to decide how to
deal with the word “all.” Our previous logic words (and, or, if . . . then, not)
played the role of sentence connectives: they construct new sentences out
of old ones. Theword “all” plays a different role. Here it seems to transform
two predicate phrases (“. . . is a person” and “. . . is mortal”) into a sentence.
It doesn’t make any sense to think of “all” as combining these phrases in the
same way that, say, “and” combines two sentences.
To see how “all” works, let’s take a quick detour through another argu-

ment.

If Socrates is a person, then Socrates is mortal.
Socrates is a person.

Therefore, Socrates is mortal.

This argument is valid in respect to its propositional form—it’s just an
instance ofmodus ponens. However, propositional logic would have us use
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two completely different letters for “Socrates is a person” and “Socrates is
mortal,” thereby losing track of the fact that those two sentences have the
same subject. So now let’s write Ps for “Socrates is a person” and Ms for
“Socrates is mortal.” Then the argument would be symbolized as

Ps→Ms
Ps

Ms

Keeping your eye on the first premise Ps→Ms, return now to the ques-
tion of how to represent the logical form of “all persons are mortal.” Let’s
remove the name Socrates and replace it with a placeholder. We’ll use the
letter “x” as our placeholder. Then we get “if x is a person, then x is mortal”
(Px→Mx), which isn’t exactly a sentence but can be used to create sen-
tences by plugging a name in for x. If we plug in s, we get the sentence
Ps→Ms. Now, the sentence “all P areM” says that no matter what name
we plug in for x, the resulting sentence is true, that is, Pa→Ma is true,
Pb→Mb is true, and so on. Thus, the first premise of our original Socrates
argument can be partially symbolized as

For any x (Px→Mx)

Now let’s replace “For any x” with a symbol ∀x, yielding the following
symbolization of the original argument.

∀x(Px→Mx)
Ps

Ms

This argument form is valid, and we might want to add it as a basic rule.
But that would be a little short-sighted, because it wouldn’t capture the full
logical power of the concept represented by∀x. For example, the following
argument form is also valid:



525-85030_ch01_6P — 2020/5/28 — 14:47 — page 87 — #4

Quan t i f y i n g 87

∀x(Fx∧Gx)

∀xFx

That is, if everything is both F and G, then everything is F. That’s another
obviously valid argument, indicating that ∀x occurs inmany different valid
argument forms. Our goal is to find themost basic valid inferences using∀x
and then to show that these intuitively valid arguments—and all others—
can be reconstructed from those basic valid inferences.
The newly introduced symbol ∀x will be called the universal quanti-

fier. We used symbol x as our placeholder and will call it a variable, but
that doesn’t mean that any “varying” is happening here. It’s just a symbol.
We will also sometimes use other letters at the end of the alphabet for vari-
ables, and it will be important sometimes to havemore than one variable in
play. Suppose, for example, you want to represent the following intuitively
valid argument:

∀x(x is divisible by a → x is divisible by b)
c is divisible by a

c is divisible by b

Here, “x is divisible by y” is a relation that holds between two things, rather
than a property of a single thing. To represent “x is divisible by y,” we can
use a symbol such asDxy that has two variables. Thenwe can represent the
preceding argument as follows:

∀x(Dxa→Dxb)
Dca

Dcb

Wewill also need our inference rules for∀x to explain why this argument is
valid. But before we get to that, we need to discuss another special logical
notion that plays a key role in many valid arguments.
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The following argument is intuitively valid.

All Harvard graduates are hilarious.
SomeHarvard graduates are felons.

Some felons are hilarious.

Here, the first premise is again a universally quantified sentence. But the
second premise and the conclusion don’t say that all things have some fea-
ture; instead, they say that some things have that feature. We introduce a
new symbol ∃ corresponding to the phrase “There are some . . . ” and hence
we symbolize “There are some things with feature F” as ∃xFx. In the sec-
ond premise, we say that there are things that are both Harvard graduates
(Hx) and felons (Fx); hence, it could be symbolized as ∃x(Hx∧ Fx).
The symbol ∃x is called the existential quantifier because it expresses

that something exists. Like its universal brother, it’s always used with some
particular variable that connects it to the predicate or relation symbols that
follow it. Read somewhat literally, ∃xFx says that “There is an x such that
Fx.” Similarly, ∃x(Fx∧Gx) says that “There is an x such that Fx andGx.”
In English, we have many phrases that express that something of a cer-

tain sort exists. We can say, “There is . . . ” or “There are some . . . ” or “Some-
thing is . . . ” and many more like those. In specific conversational contexts,
these phrases can have more specific implications—for example, they can
indicate that there is more than one or that there are some things with this
feature and some things without it. Consider, for example, if somebody
asked your logic professor, “Do you have good students?” If he answered,
“Some of them are good,” then his interlocutor would reasonably conclude
that, in addition, some of them are not good. That’s because we are often
expected to answer by making the (logically) strongest statement that we
would be warranted in asserting. If, in fact, your professor believes that all
his students are good, then why wouldn’t he have said that?
Similarly, suppose that your professor believes that only one student in

his class (of say 280 students) is good and that the rest of them are terrible.
If he then says that “some ofmy students are good,” onemight justly accuse
him of concealing the true situation. He could just as easily say, “Strangely,
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F

All F areG
∀x(Fx→Gx)

G

F G

No F areG
∀x(Fx→¬Gx)

F Gx

Some F areG
∃x(Fx∧Gx)

F G

x

Some F are notG
∃x(Fx∧¬Gx)

Figure 6.1.The four standard types of quantified statements.

only one of them is good.” So, in that case, the phrase “some” wouldn’t
supply the most accurate answer to the question.
Nonetheless, in symbolic logic, the existential quantifier hasnonuanced

connotations. The sentence “∃xFx” simply means that there is at least one
F. That’s consistent with there being only one F, or there being forty-two
Fs, or with everything being F. If you wish that symbolic logic could be
more nuanced, just remember that what it loses in nuance, it gains in clarity
and rigor.
We’ve seen so far that we can express “there is an F” with ∃xFx, and we

can express “some F are G” with ∃x(Fx∧Gx). In a similar fashion, we can
express “some F are not G” by ∃x(Fx∧¬Gx). For example, to say “some
Wall Street bankers are not evil,” we could write ∃x(Wx∧¬Ex). Com-
bining the expressive power of the existential quantifier with that of the
universal quantifier, we can express the four standard sentence types that
you might have seen before in reference to Venn diagrams (figure 6.1).
A common mistake that many beginning logic students make is to use

∃x(Fx→Gx) for “some F are G.” But a moment’s thought shows that the
former symbolic sentence would be a bad translation. The formula Fx→
Gx can be true of an individual a for two different reasons. First, Fa→Ga
would be true if Fa and Ga are true. But Fa→Ga would also be true if
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Fa were false. ( Just remember negative paradox, or the truth table for the
conditional.) Thus, ∃x(Fx→Gx) would be true whenever something is
not F, which fails to capture the intent to assert the existence of something
that is both F andG.
Similarly, it’s easy to mistakenly write ∀x(Fx∧Gx) when you mean to

say that “allF areG.” But the sentence∀x(Fx∧Gx) is way too strong: it says
that everything whatsoever is both F and G. Yes, it implies that all F are G,
but only for the trivial reason that everything has both features.
As a general rule of thumb, if a natural language sentence is translated to

a universally quantified sentence, then the formula inside thequantifierwill
be a conditional. In contrast, if a natural language sentence is translated to
an existentially quantified sentence, then the formula inside the quantifier
will be a conjunction.

Exercise 6.1. Represent the form of the following sentences in predi-
cate logic. We’ve suggested appropriate symbols. (For the sentences about
people, you don’t need to add an extra predicate for “x is a person.”)

1. No logicians are celebrities. (Lx,Cx)
2. Some celebrities are not logicians. (Lx,Cx)
3. Only students who do the homework will learn logic. (Sx,Hx, Lx)
4. All rich logicians are computer scientists. (Rx, Lx,Cx)
5. All students and professors get a discount. (Sx, Px,Dx)
6. No logician is rich, unless she is a computer scientist. (Lx,Rx,Cx)
7. Not all logicians are computer scientists. (Lx,Cx)
8. Some logicians are rich computer scientists. (Lx,Rx,Cx)
9. If there are rich logicians, then some logicians are computer scien-
tists. (Rx, Lx,Cx)

10. Nopets except service animals are permitted indorms. (Px, Sx,Dx)
11. If anyone is rich, thenMary is. (Rx,m)

When you’re symbolizing sentences, there will occasionally be cases
where there seem to be two (or more) possible correct answers. Consider,
for example, the sentence “There are no friendly cats.” If we use Fx for “x is
friendly” andCx for “x is a cat,” then any one of the following is a plausible
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representation of this sentence:

¬∃x(Fx∧Cx) ∀x(Fx→ ¬Cx) ∀x(Cx→ ¬Fx)

The first sentence says that it’s false that there is a friendly cat. The second
sentence says that every friendly thing is not a cat. The third sentence says
that every cat is not friendly. In English, these three statements have slightly
different connotations, and yet they would be true in precisely the same
circumstance, namely, the circumstance when the class of friendly things
does not include any cats. Not long from now, you’ll be able to prove that
these three sentences are in fact logically equivalent.
There are other cases where a natural language sentence is simply

ambiguous between two different ways that we might construe it in sym-
bolic language. Consider, for example, the following sentence:2

Every boy loves a certain girl.

Translating this sentence might seem straightforward. First, the sentence
says that every boy has a certain property, hence ∀x(Bx→ φ(x)), where
φ(x) expresses “x loves a certain girl.” For the latter, we could writeφ(x) ≡
∃y(Gy∧ Lxy), which says that “there is a girl whom x loves.” The final
answer then would be

∀x(Bx→ ∃yLxy).

However, there’s another way to interpret this sentence: it mightmean that
there is some one girl who is loved by every boy. In that case, we want to
approach the sentence the other way around, that is, we write ∃y(Gy∧
ψ (y)), where ψ (y) expresses “every boy loves y.” Thus, ψ (y) ≡ ∀x(Bx→
Lxy), and the final answer is

∃y(Gy∧ ∀x(Bx→ Lxy)).

Unlike the previous example where the different translations were equiv-
alent, these two symbolic sentences are inequivalent—they represent

2. This example was concocted by the logician Peter Geach (1916–2013).
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genuine ambiguity in the initial English sentence. In particular, it’s possible
for the first sentence to be true while the second sentence is false.3

The preceding considerations show that, in general, it makes a differ-
ence which order you write quantifiers. In fact, a famous philosophical
debate turns precisely on this point. Among the many attempts to prove
God’s existence, the so-called cosmological argument begins from the
premise that every event has a cause. It then concludes that there must be
a first cause (which, the arguer suggests, we can call “God”). If we were
to try to capture the argument in symbolic logic, then we might write the
premise as ∀x∃yRyx, where Ryx means that “y causes x.” In that case, the
conclusion would be represented as ∃y∀xRyx. However, the philosopher
Bertrand Russell pointed out that the inference ∀x∃yRyx�∃y∀xRyx is not
valid.4 Indeed, if it were valid, then it would remain so no matter how we
interpreted the symbol Ryx. But if we interpret Ryx to mean that “y is the
mother of x,” then the premise is true of mammals, whereas the conclusion
is most definitely not true of mammals.

Exercise 6.2. Represent the form of the following sentences in pre-
dicate logic. We’ve suggested appropriate symbols. (For the senten-
ces about people, you don’t need to add an extra predicate for “x is a
person.”)

1. Mary loves everyone who loves her. (m, Lxy)
2. Mary loves all and only those people who don’t love themselves.
(Lxy,m)

3. Everyone loves their mother. (Lxy,Mxy)
4. Some people love only those people who love their mother.
(Lxy,Mxy)

5. Snape killed someone. (Kxy, s)
6. Snape is a killer. (Kxy, s)

3.While it’s intuitively clear that the first sentence does not imply the second, you’ll first learn
to prove that in chapter 8.

4. The Russell-Copleston debate of 1948. An audio recording of the debate can be found on
the internet.
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7. Someone was killed by Snape. (Kxy, s)
8. Some wizards only marry other wizards. (Wx,Mxy)
9. There is no greatest number. (Nx, x< y)
10. c is the least upper bound of a and b. (a, b, c, x≤ y)
11. c is the greatest common divisor of a and b. (a, b, c,Dxy, x≤ y)

Universal Elimination

We gave a big hint above about the meaning of ∀x. We said that somebody
who accepts ∀xφ(x) would be willing to grant that φ(a), no matter what
a names. If that’s right, then the first and most obvious inference rule for
quantified statements should look like this:

From ∀xφ(x), it’s permitted to infer φ(a), for any name a.

This rule will be called universal elimination (UE) since it permits us
to infer something from a universally quantified sentence. Here, we used
the notation φ(x) to stand for any formula that contains the variable x.
For example, φ(x) could be Px→Mx, or it could be Px→Ms, or it
could be Rx.
The UE rule can be applied to prove Ms from the conjunction of

∀x(Px→Mx) and Ps.

1 (1) ∀x(Px→Mx) A
2 (2) Ps A
1 (3) Ps→Ms 1 UE
1, 2 (4) Ms 3,2 MP

Universal elimination (UE) is one of those simple rules of inference where
we carry down the dependency numbers of the sentence we use. In the
above argument, we applyUE to line 1, which depends only on itself. Thus,
the resulting line (i.e., line 3), also depends on just line 1.
Here’s the precise formulation of the UE rule.
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Universal Elimination (UE)

From a universal sentence, you can infer any instance.

Schematically:
Γ � ∀xφ(x)
Γ � φ(a)

Exercise 6.3. Prove the following sequents.

1. ∀xFx,∀xGx � Fa∧Ga
2. ∀x¬Fx � Fa→ P
3. ∀x(Fx→Gx),¬Ga � ¬Fa
4. ∀x(Fx→Gx),¬Ga � ¬∀xFx
5. ∀x¬Fx � ¬∀xFx
6. � ¬∀x(Fx∧¬Fx)

Exercise 6.4. Do the sentences ∀x(Fx→Gx) and ∀x(Fx→ ¬Gx) seem
consistent to you?

Universal Introduction

TheUErulewon’t domuch for youon its own. For example, if you’re trying
to infer ∀xFx from ∀x(Fx∧Gx), UE can take you down to Fa∧Ga, but it
can’t get youback up to∀xFx. Indeed, to infer a universal sentence fromany
particular instance is the worst kind of mistake. For example, you cannot
conclude that all professors believe in magic from the fact that Professor
Dumbledore believes in magic. Thus, in order to get the most out of the
UE rule, it needs to be supplemented with a universal introduction rule.
Recall that conditional proof isn’t just a rule; it’s a strategy for think-

ing. In short, if you want to prove a conditional, then your first move is to
assume the antecedent, which you can use in reasoning toward the con-
sequent. Now, universal introduction (UI) will be like conditional proof in
this regard.Only nowwehave to think about howwe come to be convinced
of the truth of universal statements.
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It is really quite amazing that human beings can ever come to know that
a universal statement is true. We are limited in space and time, and none
of us will ever be able to survey all possible instances of any generalization.
So what could permit us—who can only observe a small finite number of
instances—to conclude that something is always true?
The answer is similar to the one we gave for conditional statements. To

reason to a conditional statement, we engage in the mental activity of sup-
posing, an activity that is not itself aimed at telling the truth. When I say
“suppose that P,” I am not making a claim about what is the case; instead,
I’m abstracting away from reality so that I can explore logical connections.
When it comes to establishing universal claims, we engage in an evenmore
radical version of abstraction. In essence, we suppose thatwe can talk about
things in general, without talking about any particular thing.
Consider the following dialogue where A and B agree that all Bavarians

are German, and all Germans are European, and A is trying to convince B
that all Bavarians are European.

A: Suppose that Gretel is some random Bavarian.
B: So the random Bavarian is female?
A: No, I didn’t mean that at all. I just meant to choose a Bavarian-sounding
name. If I had chosen “Hansel,” you might have asked me if the random
Bavarian is male.
B: Why don’t you just use a letter then?
A: OK, suppose that X is some random Bavarian. You agree with me then
that X is German, right?
B: Yes, certainly.
A: And since all Germans are European, X is European.
B: Agreed.
A: Since X was an arbitrary Bavarian, it follows that every Bavarian is
European.

It’s this last step where all the action happens. The letterX plays the role
of name, but we don’t know anything about who it names—except that he
or she is Bavarian. So, when we deduce that X is European, that licenses us
to conclude that all Bavarians are Europeans.
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We have to beware of a danger here. In the above dialogue, the two par-
ties chose the letter X because there was little danger that the letter would
carry connotations that would derail their reasoning process. But there are
no guarantees. What if B were obtuse, like this.

B: Since the arbitrary Bavarian’s name is “X,” it follows that no Bavarians
have the name “Gretel.”

Obviously, something has gone very wrong with B’s thinking about these
issues. Essentially, B forgot that the whole point of choosing a letter “X”
was so that nobody would assume they know anything about X. But that’s
exactly what B has done; she has assumed that X has the feature that its
name is “X.” She has missed the point completely.
In real-life reasoning, people have common sense to prevent them from

making such mistakes. But the goal of formal logic is to make explicit the
rules that common sense suggests. We want to forbid this kind of mistake
by means of an explicit rule, and here’s how we’ll do it.
To use an analogy, suppose that the argument or dialogue takes place in

a closed room. And suppose that when the two parties enter the room, they
each have to declare their assumptions. Once the dialogue begins, they can
use those assumptions that they declared upon entering the room.When it
comes to reasoning about universal claims, we’ll give both parties a stock of
newnames a, b, c, . . . that do not occur anywhere in their declared assump-
tions. They may then use these names at any point in their argument. For
example, they may use UE to infer φ(a) from ∀xφ(x).
With these new regulations in place, we can prevent the parties from

making silly mistakes in deducing universal sentences. In short, one may
infer a universal sentence ∀xφ(x) from an instance φ(a) that contains one
of the new names we supplied. Since the two parties didn’t bring in any
information about a, the only information they can have about a is what
they have deduced from universal statements.
Hopefully the analogyhelps your intuition. But youwon’t need the intu-

ition to follow the universal introduction rule, which provides a simple
(machine checkable!) syntactic recipe. In short, UI allows you to infer Γ
�∀xφ(x) from Γ �φ(a)whenever there is no information about a in the
background assumptions Γ or hidden in the formula φ(x).
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Universal Introduction (UI)

Γ � φ(a) restriction: a does not occur in Γ or φ(x).
Γ �∀xφ(x)

In general, universally quantified premises can be used together to
draw universally quantified conclusions. The strategy is often as simple as
applyingUE repeatedly to the premises, making sure to use the same name
in each case. Then one uses the rules of propositional logic to transform
those instances to an instance of the conclusion. Finally, one applies UI to
infer the conclusion from that instance.

To prove: ∀x(Fx→Gx),∀x(Gx→Hx) � ∀x(Fx→Hx)

1 (1) ∀x(Fx→Gx) A
2 (2) ∀x(Gx→Hx) A
3 (3) Fa A
1 (4) Fa→Ga 1 UE
2 (5) Ga→Ha 2 UE
1, 3 (6) Ga 4,3 MP
1, 2, 3 (7) Ha 5,6 MP
1, 2 (8) Fa→Ha 3,7 CP
1, 2 (9) ∀x(Fx→Hx) 8 UI

Looking at the conclusion, we realized that we need to show that an arbi-
trary F is also an H. That is, we need to show that Fa→Ha, depending
on no assumptions that mention a. So then on line 3, we suppose that a
is an arbitrary F. (There is nothing in line 3 that says “is an arbitrary,” but
that effect is ensured by choosing a name a that hasn’t yet occurred in the
proof.) Then we proceed to use the universal premises to infer that a is
also anH.
The restriction on the name a corresponds to the idea that a fully gen-

eral statement cannot be inferred from specific assumptions. To seewhywe
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prohibit a from occurring in φ(x), consider the following attempt to prove
∀xRxa from ∀xRxx.

1 (1) ∀xRxx A
1 (2) Raa 1 UE
1 (3) ∀xRxa 2 UI ⇐= incorrect

This argument cannot possibly be valid. Suppose thatRxy is the relation “x
has the samenetworth as y” and that a is a name for JeffBezos. The premise
is then obviously true: everybody has the same net worth as themselves.
But the conclusion says that everyone has the same net worth as Jeff Bezos,
which is as far from the truth as possible. The problem here is line 3, since
the formula φ(x) is Rxa, which contains the name a. In practice, you can
ensure that you don’t violate this restriction on UI if you follow this rule of
thumb: when generalizingφ(a) to∀xφ(x), change all occurrences of a to x.
In the case at hand, that would have forced us to generalize Raa to ∀xRxx,
which is just what we started with.
The UI rule can be used with any variable. For example, φ(a) can be

quantified to∀xφ(x) or∀yφ(y) or∀zφ(z). You only need tomake sure not
to get yourself confused by using a variable that already occurs in φ(a). So,
for example, you wouldn’t infer ∀x∀xRxx from ∀xRax, because the former
string of symbols doesn’t make sense as a formula.
Using the freedom to applyUIwith any variable, it follows that universal

statements ∀xFx and ∀yFy are equivalent.

1 (1) ∀xFx A
1 (2) Fa 1 UE
1 (3) ∀yFy 2 UI

The converse proof follows by symmetry, hence ∀xFx	�∀yFy. These
equivalences—where one variable is switched throughout for another—
are known as α -equivalences, and they can be really useful when deal-
ing with sentences that contain more than one variable. For example, by
α -equivalence, ∀xFx→ ∀yFy is a tautology, and we’ll soon see that
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∀xFx→ P implies ∃x(Fx→ P). Thus, substituting ∀yFy for P shows that
∃x(Fx→ ∀yFy) is a tautology.

Exercise 6.5. Prove the following sequents.

1. ∀x(Fx→Gx) � ∀xFx→ ∀xGx
2. ∀x(Fx→Gx) � ∀x¬Gx→ ∀x¬Fx
3. ∀xFx∧∀xGx 	� ∀x(Fx∧Gx)
4. ∀xFx∨∀xGx � ∀x(Fx∨Gx)
5. ¬Fa � ¬∀xFx
6. ∀x¬Fx � ∀x(Fx→Gx)
7. P � ∀x(Fx→ P), where P is any sentence that doesn’t contain the
variable x.

8. P→ ∀xFx 	� ∀x(P→ Fx)
9. ∀x∀yRxy � ∀xRxx
10. ∀x∀yRxy � ∀y∀xRxy

Exercise 6.6.What’s wrong with the following attempted proof?

1 (1) Fa A
(2) Fa→ Fa 1,1 CP
(3) ∀x(Fa→ Fx) 2 UI
(4) Fa→ Fb 3 UE

Exercise 6.7. Start to try to write a proof of

∀x(Fx∨Gx) � ∀xFx∨∀xGx,

and explain where the restriction on UI prevents you from continuing.

Existential Introduction

It’s not too uncommon that we know that there is something or other with
a certain feature, but we don’t know who or what it is that has that feature.
For example, we know that somebodymurdered eleven women in London



525-85030_ch01_6P — 2020/5/28 — 14:47 — page 100 — #17

100 Chap t e r S i x

in the years 1888 to 1891, but as of today, the identity of the murderer is
still unknown.
We can also use such knowledge to infer other things, although we have

to be carefulwhenusing knowledge that “something isφ”without knowing
who or what it is that is φ. For example, if you know that something is φ,
and you know that all φ are ψ , then you also know that something is ψ .
In contrast, you might know that something is φ and that something is ψ ,
but those two facts do not entitle you to conclude that something is both
φ and ψ .
What, then, is the logic of “something is φ”? As with our other key logi-

cal notions, we are looking here for typical inferences to such statements
(an introduction rule) and typical inferences from such statements (an
elimination rule).
Let’s look first for an existential intro rule—that is, a paradigmatic infer-

ence to a statement of the form “something is φ.” In real life, our reasons
for believing existential statements are frequently not guaranteeing reasons,
in the sense that the existential statement is a logical consequence of what
we know. For example, in the Jack the Ripper case, the reason that I believe
that somebody killed eleven women is because I read or heard about it on
TV. But of course, the documentary evidence doesn’t guarantee—in a logi-
cal sense—that the event actually happened. So this kind of evidence is not
whatwe’re looking for in a deductively valid rule of existential introduction.
However, there was at least one person who had guaranteeing evidence

for the claim that someone killed eleven women. In particular, Jack the
Ripper—ifhe existed—knew that “I killed elevenwomen,” and sohewould
have been entitled to infer that “somebody killed eleven women.” There
is no way that the premise could be true and the conclusion false, indicat-
ing the presence of a valid argument form. Thus, Jack the Ripper’s valid
inference could be represented as follows:

φ(a)
∃xφ(x)

.

Here a is Jack’s name for himself, and φ(x) represents “xmurdered eleven
women.” Thus, the inference goes from “I murdered eleven women” to
“somebody murdered eleven women.” We’ll take this inference to be the
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paradigm way that an existential statement can be inferred from another
statement.

Existential Introduction (EI)

If an instance φ(a) of ∃xφ(x) follows from Γ , then ∃xφ(x) follows

from Γ . Schematically:
Γ � φ(a)
Γ � ∃xφ(x)

Here, φ(x) is a formula in which the variable x occurs, and φ(a) is the
formula that is obtained by replacing all the instances of x in φ(x) with
a. However, there is no requirement that a does not occur in φ(x). For
example, it’s perfectly legitimate to infer that somebody killed ErnestHem-
ingway from the fact that Ernest Hemingway committed suicide. That is,
∃xKxa can be inferred, by existential intro, from Kaa.
Like disjunction intro, existential intro actually throws away infor-

mation—and so it’s dangerous to use it without knowing where you want
to go. Remember that disjunction intro is most useful in cases where you
want to show that two different premises have the same conclusion. We’ll
soon see that the same sort of intuition applies to existential intro, that is, it’s
most effective in the search for a common conclusion from several different
premises.
Nonetheless, there are some cases where EI by itself is useful. In the

following, we show that a negated existential sentence implies a universal
sentence.

To prove:¬∃xFx�∀x¬Fx

1 (1) ¬∃xFx A
2 (2) Fa A
2 (3) ∃xFx 2 EI
1, 2 (4) ∃xFx∧¬∃xFx 3,1 ∧ I
1 (5) ¬Fa 2,4 RAA
1 (6) ∀x¬Fx 5 UI
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(Note that since line 5 depends only on line 1, and line 1 does not contain
a, the invocation of UI on line 6 is legitimate.) Here, our strategy is not
completely straightforward. The premise ¬∃xFx is not in itself useful: it’s
a negated sentence, and none of our rules will let us do something with a
single negated sentence. We then have to work our way backward from the
conclusion, which is ∀x¬Fx. Since it’s a universal sentence, it would suffice
to obtain an instance¬Fa, so long as that instance doesn’t depend on any
assumptions about a. In frustration, one might decide (as we did) to try to
obtain¬Fa by reductio ad absurdum. Indeed, as soon as we assumed Fa, it
was obvious that it conflicts with the premise on line 1.
Notice that if we run through the preceding proof, replacing Fx with

¬Fx, then line 5 would become¬¬Fa. We can then perform a step of DN
elimination to get Fa and then ∀xFx. Thus, we also have a proof of the
sequent¬∃x¬Fx�∀xFx.

Exercise 6.8. Prove the following sequents.

1. ¬∃x(Fx∧Gx) � ∀x(Fx→ ¬Gx)
2. ∀xFx � ∃xFx
3. ∀x(Fx→Gx), Fa � ∃xGx
4. ¬Fa � ∃x(Fx→ P)
5. ¬∀xFx � ∃x(Fx→ P)
6. ¬∃xFx � ∀x(Fx→Gx)
7. ∀x∀yRxy � ∃xRxx
8. P→ Fa � P→ ∃xFx
9. ∃xFx→ P 	� ∀x(Fx→ P)
10. ¬∃xFx � ∀x(Fx→ P)
11. ¬∃x(Fx→ P) � ∀xFx∧¬P

∗12. ∀xFx→ P � ∃x(Fx→ P)

Existential Elimination

The real power of existential intro comes when it’s combined with an exis-
tential elimination rule. But let’s slowdown, because existential elimination
is the most conceptually challenging rule in this book.
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To understand the conceptual challenge of existential elimination, let’s
first note what the rule could not be. The following inference is definitely
invalid.

∃xφ(x)
φ(a)

.

For example, from the fact that somebody killed elevenwomen, you cannot
validly conclude that Lewis Carroll killed eleven women.
If you think about it, it’s hard to see how one could derive anything

of interest from an existentially quantified statement. The problem is that
∃xφ(x) just doesn’t tell youwhich thing isφ. So, how can you use that state-
ment when it is so unspecific? Well, the strategy here will be quite similar
to the strategy we used for UI. The sentence ∃xφ(x) doesn’t tell us that
Richard or Connie or Albert isφ, but it tells us that something isφ. So, you
could then grab a new name a off the shelf and use it for this φ. Then, you
can explore logical space, seeingwhat conclusions you can reach—without
assuming any further knowledge about the identity of a. The idea, then,
is that whatever conclusion ψ you reach, as long as it doesn’t mention a,
follows from ∃xφ(x).
For example, let’s take it as given that somebody killed eleven women in

London between 1888 and 1891.We can call this person “Jack the Ripper,”
or a for short, and then we could start drawing conclusions by means of
standard logical reasoning. We could infer that a was a serial killer in Lon-
don in the late 1800s and hence, by existential intro, that there was a serial
killer in London in the late 1800s. Since that conclusion doesn’t beg any
questions about the identity of the person, we have reliably deduced that
there was a serial killer in London in the late 1800s.
That’s how existential elimination will work. In this case, let’s use the

rule before properly explaining it. We will derive ∃xFx from the premise
∃x(Fx∧Gx).
1 (1) ∃x(Fx∧Gx) A
2 (2) Fa∧Ga A
2 (3) Fa 2 ∧E
2 (4) ∃xFx 3 EI
1 (5) ∃xFx 1,2,4 EE
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The first four lines use rules that you’ve seen before, but the second line
isn’t deduced from the first; it’s a new assumption. Youmight want to gloss
line 2 as saying “let a be a name for one of these things that is F and G.”
Line 5 is where all the action happens. Line 4 shows that Fa∧Ga�∃xFx,
and that conclusion would have followed no matter what name a we had
chosen on line 2. Thus, ∃xFx follows simply from the fact that something
is F and G, which is what allows us to replace the dependency on 2 with
dependency on 1 in line 5. Here, our EI rule cites three lines: line 1 where
the existential sentence occurs, line 2 where an instance of that sentence
occurs, and line 4 where we’ve drawn a conclusion from that instance. The
second two lines mark off a subproof, namely, the derivation of ∃xFx from
Fa∧Ga. So, whileEEofficially cites three lines, it’s best to thinkofEEas cit-
ing one line (with an existential sentence) and then a subproof that begins
with an assumption (of an instance of the existential) and that ends with
the desired conclusion.
Nowwe’re ready for a fully precise description of the EE rule, alongwith

all of its restrictions.

Existential Elimination (EE)

If an instance φ(a) of ∃φ(x) implies ψ , and the name a does not
occur in ψ , then ∃xφ(x) implies ψ . More precisely,

Γ � ∃xφ(x) Δ ,φ(a) � ψ restriction: a does not occur in
Γ , Δ , φ(x), or ψ .Γ , Δ � ψ

In this picture, we have three things:

1. A derivation of ∃xφ(x) from some premises Γ . That corresponds
to a line in a proof on which an existential sentence occurs, with
dependencies Γ .

2. A derivation of ψ from an instance φ(a), plus possibly some auxil-
iary assumptions Δ . These auxiliary assumptions cannot say anything
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about a. In a proof, this derivation begins with an assumption of φ(a)
and ends on a line with ψ that depends on nothing but Δ and φ(a).

3. When the first two things are in place, we are permitted to infer ψ by
EE, where the dependencies are the union of Γ and Δ .

Here’s a simple example of all the different bits in play.

To prove: ∀x(Fx→Gx), ∃xFx�∃xGx

1 (1) ∀x(Fx→Gx) A
2 (2) ∃xFx A
3 (3) Fa A
1 (4) Fa→Ga 1 UE
1, 3 (5) Ga 4,3 MP
1, 3 (6) ∃xGx 5 EI
1, 2 (7) ∃xGx 2,3,6 EE

Here, our Γ is simply ∃xFx itself, and the first part of the EE is just line
2 (i.e., the derivation of ∃xFx from itself). The second part of the EE is
the subproof that begins on line 3 (the assumption of the instance Fa) and
that ends on line 6 (the conclusion ∃xGx). This subproof shows ∀x(Fx→
Gx), Fa�∃xGx, that is, our auxiliary assumption Δ is simply ∀x(Fx→
Gx). All the restrictions on EE are respected, and so line 7 is correct.
The legalistic restrictions onEEmight seemhard to remember, but they

all flow from the same idea that an existential sentence ∃xφ(x) doesn’t give
any information about who or what is φ. Of course, it would be blatantly
invalid to argue from an existential claim ∃xFx to the claim that Fa.

1 (1) ∃xFx A
2 (2) Fa A
1 (3) Fa 1,2 EE ⇐= incorrect

Here, the application of EE on line 3 violates the restriction that the name
amay not appear in the conclusion of the subproof.
In practice, the best way not to run afoul of the restrictions on EE is to

choose a completely new name a for the assumed instance φ(a) and then
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not tomake any further assumptions about a. The only fact that you should
use about a is that it is one of the things that makes ∃xφ(x) true. Consider,
for example, what would happen if we tried to derive ∃x(Fx∧Gx) from
∃xFx and ∃xGx.
1 (1) ∃xFx A
2 (2) ∃xGx A
3 (3) Fa A
4 (4) Ga A ⇐= bad idea
3, 4 (5) Fa∧Ga 3,4 ∧ I
3, 4 (6) ∃x(Fx∧Gx) 5 EI

If we tried to perform EE on lines 1, 3, and 6, we would have the following
setup:

∃xFx � ∃xFx Ga, Fa � ∃x(Fx∧Gx)
∃xFx,Ga � ∃x(Fx∧Gx) .

The problem here is that the auxiliary assumption Δ is Ga, which men-
tions something specific about a. That’s not allowed, so lines 1, 3, and 6
cannot be used for EE.
The problem with the preceding argument is clear if you just use some

common sense. Suppose that you know someone who loves logic and
someone else who hates logic. Then it would be a bad idea to say “sup-
pose that a loves logic” and, in the next breath, “suppose that a hates logic.”
There’s nothing logically illegal with making both suppositions—logic
places no restrictions on supposing things—but the logic police won’t let
you use these suppositions together to infer something from an existential
premise.
InExercise 6.5, you showed that the universal quantifier commuteswith

conjunction, that is,

∀x(Fx∧Gx) 	� ∀xFx∧∀xGx.

While the existential quantifier doesn’t commutewith conjunction, it com-
mutes with disjunction.We prove one direction here and leave the other to
the exercises.
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To prove: ∃x(Fx∨Gx) � ∃xFx∨ ∃xGx
1 (1) ∃x(Fx∨Gx) A
2 (2) Fa∨Ga A
3 (3) Fa A
3 (4) ∃xFx 3 EI
3 (5) ∃xFx∨ ∃xGx 4 ∨ I
6 (6) Ga A
6 (7) ∃xGx 6 EI
6 (8) ∃xFx∨ ∃xGx 7 ∨ I
2 (9) ∃xFx∨ ∃xGx 2,3,5,6,8 ∨E
1 (10) ∃xFx∨ ∃xGx 1,2,9 EE

It may seem strange that the sentence φ ≡ ∃xFx∨ ∃xGx occurs four times
in this proof. However, in each case, it occurs with different dependencies,
and so it says something different. The first instance, on line 5, says that φ
follows from Fa. The second instance, on line 8, says that φ follows from
Ga. Those two subderivations show that φ follows from the disjunction
Fa∨Ga, and since the name awas arbitrary, φ follows from the existential
sentence ∃x(Fx∨Gx).
Some applications of existential elimination are a bit more subtle. Con-

sider, for example, the following derivation of ¬∀xFx from ∃x¬Fx. If
you ignored the conclusion and tried to extract some information from
the premise, you wouldn’t get very far. Being an existential sentence, the
premise is weak. However, since the conclusion is a negated sentence¬φ,
itmakes sense to assumeφ and to try for reductio ad absurdum.That’swhat
we’ve done here.

To prove: ∃x¬Fx�¬∀xFx
1 (1) ∃x¬Fx A
2 (2) ∀xFx A
3 (3) ¬Fa A
2 (4) Fa 2 UE
2, 3 (5) Fa∧¬Fa 4,3 ∧ I
3 (6) ¬∀xFx 2,5 RAA
1 (7) ¬∀xFx 1,3,6 EE
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Once we assume “everything is F,” it’s clear that it contradicts “something
is not F.” It’s just a matter of thinking how explicitly to demonstrate their
incompatibility. The only way we’ll be able to show their incompatibility
is by choosing a name a for an arbitrary ¬F and then using ∀xFx to infer
that Fa. That’s a contradiction (Fa∧¬Fa), but this contradiction doesn’t
follow from premises 1 and 2, because it depends on the assumption of Fa.
So then we use the fact that a contradiction can be leveraged to derive the
negation of any assumption, in particular, the assumption wemade on line
2. Since the negation of that assumption doesn’t contain a, we can finish by
a step of EE.
The definitions of the EI and EE rules have been fine-tuned so that we

can prove the arguments that are intuitively valid and cannot prove those
that are intuitively invalid.

To prove: ∃xRxx�∃x∃yRxy

1 (1) ∃xRxx A
2 (2) Raa A
2 (3) ∃yRay 2 EI
2 (4) ∃x∃yRxy 3 EI
1 (5) ∃x∃yRxy 1,2,4 EE

(To see that this argument is intuitively valid, remember that ∃x∃y doesn’t
say that there are two distinct things.) In contrast, suppose that we tried to
prove ∃x∃yRxy� ∃xRxx, which is intuitively invalid. The following might
be the first few steps of our attempted proof.

1 (1) ∃x∃yRxy A
2 (2) ∃yRay A
3 (3) Raa A
3 (4) ∃xRxx 3 EI

But now we are stuck. We cannot apply EE to lines 2, 3, and 4 because the
arbitrary name “a” already occurs in the sentence on line 2.
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Exercise 6.9. Explain what’s wrong with the following attempted proof.

1 (1) ∀x∃yRxy A
1 (2) ∃yRay 1 UE
3 (3) Raa A
3 (4) ∃xRxx 3 EI
1 (5) ∃xRxx 2,3,4 EE

Exercise 6.10. Which line of the following attempted proof is wrong
and why?

1 (1) Fa∧Gb A
1 (2) Gb 1 &E
1 (3) ∃xGx 2 EI
4 (4) Ga A
1 (5) Fa 1 &E
1, 4 (6) Fa∧Ga 5,4 &I
1, 4 (7) ∃x(Fx∧Gx) 6 EI
1 (8) ∃x(Fx∧Gx) 3,4,7 EE

Exercise 6.11. Prove the following sequents.

1. ∃xFx∨ ∃xGx � ∃x(Fx∨Gx)
2. ∀x(Fx→Gx),¬∃xGx � ¬∃xFx
3. ∀x(Fx→Gx) � ∃x¬Gx→ ∃x¬Fx
4. ∀x(Fx→ P) � ∃xFx→ P
5. P∧ ∃xFx � ∃x(P∧ Fx)
6. ∃x(Fx→ P) � ∀xFx→ P
7. ∃x(P→ Fx) � P→ ∃xFx
8. ∃x∀yRxy � ∀y∃xRxy
9. ∃x∀yRxy � ∃xRxx
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Relations between Quantifiers and
Boolean Connectives

In this section, we undertake a more systematic exploration of how the
quantifiers interact with the Boolean connectives. Some of the most use-
ful sequents show how quantifiers interact with negation. In particular,
any negated quantified sentence is provably equivalent to the sentence that
begins with the other quantifier and is followed by a negation symbol. It
might help you to think of a dynamic analogy: if you move a negation sign
across a quantifier, it changes to the other quantifier.

¬∃xφ 	� ∀x¬φ ¬∀xφ 	� ∃x¬φ

We call these four sequents the qn. We already proved ¬∃xφ �∀x¬φ

on page 101 and ∃x¬φ �¬∀xφ on page 107. We now sketch a proof of
¬∀xφ �∃x¬φ.

¬∃xφ � ∀x¬φ already proven
¬∃x¬φ � ∀xφ substitute¬φ for φ, DN

¬∀xφ � ¬¬∃x¬φ contraposition
¬∀xφ � ∃x¬φ DN

Exercise 6.12. Sketch a proof that ∀x¬φ �¬∃xφ.
We also established the following equivalences:

∀x(φ ∧ ψ ) 	� ∀xφ ∧∀xψ
∃x(φ ∨ ψ ) 	� ∃xφ ∨ ∃xψ

Just remember: universal commutes with conjunction, and existential
commutes with disjunction. In contrast, there are no such equivalences
for the→ connective. First of all, ∀xFx→ ∀xGx does not imply ∀x(Fx→
Gx). You’ll be able to prove that this implication doesn’t hold after chap-
ter 8, but for now, here’s an intuitive counterexample: let Fx be “x has net
worth over $100M,” and letGx be “x lives in a society without poverty.” It’s
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true that if everyone has net worth over $100M, then everyone lives in a
society without poverty, but it’s false that everyonewho has net worth over
$100M lives in a society without poverty. (By the lights of formal logic, the
truth of the first sentence is guaranteed by the falsity of its antecedent.)
The implication from ∃x(Fx→Gx) to ∃xFx→ ∃xGx fails for a similar

reason. In particular, imagine that Fx is a property that some things have
and someother things don’t, and imagine thatGx is a property that nothing
has. Then there could be some thing that is not F, but such that if it were F,
then it would beG. For example, suppose thatFx is the property ofwinning
the 2018 soccer World Cup and that Gx is the property of having won six
soccer World Cups. Then it’s true that if Brazil had won the 2018 World
Cup, then Brazil would have won six World Cups. Hence, ∃x(Fx→Gx) is
true. It’s also true that ∃xFx, that is, somebody won the 2018 World Cup.
But it’s false that ∃xGx, that is, that some country has won sixWorld Cups.
There are further equivalences in cases when one of the two formu-

las does not contain the variable that appears in the quantifier. We’ve seen
many of these equivalences in previous sections and exercises, and we
summarize them here.

∀x(φ ∨ χ ) 	� ∀xφ ∨ χ ∃x(φ ∧ χ ) 	� ∃xφ ∧ χ
∀x(χ → φ) 	� χ → ∀xφ ∃x(χ → φ) 	� χ → ∃xφ
∀x(φ → χ ) 	� ∃xφ → χ ∃x(φ → χ ) 	� ∀xφ → χ

Here, it’s required that χ is a sentence and, in particular, that the variable
x does not occur free in χ . There are twelve sequents here to prove, and
most of them are straightforward. (You were asked to prove a few of them
in exercises 6.5, 6.8, and 6.11.) The more challenging ones are the bottom
two in the right column, in particular, the ones with the existential con-
clusions. The problem there is that the premises don’t contain any infor-
mation about something existing. You were asked to prove ∀xφ → χ �
∃x(φ → χ ) in exercise 6.8. For χ → ∃xφ �∃x(χ → φ), we might rec-
ommend using excluded middle with ∃xφ ∨¬∃xφ and arguing by cases.
In the former case, positive paradox leads to∃x(χ→ φ). In the latter case,
MTwith the premise gives¬χ , andnegative paradox leads to∃x(χ→φ).
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We turn, finally, to the relations between quantifiers. You’ve already
proven the following equivalences:

∀x∀yφ 	� ∀y∀xφ ∃x∃yφ 	� ∃y∃xφ

As a summary, universal quantifiers commute with each other, and exis-
tential quantifiers commute with each other. It might be tempting to think
that universal quantifiers also commute with existential quantifiers. How-
ever, the implication from ∀x∃yφ to ∃y∀xφ fails. For example, let φ(x, y)
represent the statement that “x is the biological mother of y,” and let the
quantifiers range over mammals. Then it’s true that every mammal has a
biological mother, but it’s false that there is some particular mammal that
is the biological mother of all others.

Exercise 6.13. Prove the following sequents.

1. P→ ∃xFx � ∃x(P→ Fx)
2. ∃x(Fx→ P) � ∀xFx→ P
3. ∀x(Fx→ P) 	� ∃xFx→ P

New Tautologies

Every propositional logic tautology is also provable in predicate logic. By
this we mean that if you take a propositional tautology, say P∨¬P, and
replace the atomic sentences (in this case,P)withpredicate logic sentences,
then the result is also provable. For example, if we uniformly replace Pwith
∀xFx, then a proof of P∨¬Pwould be transformed into a proof of∀xFx∨
¬∀xFx. Similarly, if we replaced P with ∃xFx, then we would get a proof
of ∃xFx∨¬∃xFx. The fact we’ve just mentioned is an extension of the
substitution meta-rule that we introduced in chapter 4.
Predicate logic has some additional tautologies that are not substitu-

tion instances of propositional logic tautologies. For example, the sentence
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∀x(Fx∨¬Fx) can be proven without any premises.

(1) Fa∨¬Fa cut, lem
(2) ∀x(Fx∨¬Fx) 1 UI

Here, on line 1, we allowed ourselves to use cut/substitution from propo-
sitional logic. Since line 1 has no dependencies, we’re permitted to invoke
UI, resulting in ∀x(Fx∨¬Fx).

Exercise 6.14. Prove the following sequents.

1. � ∀x(Fx→ Fx)
2. � ∀xFx∨ ∃x¬Fx
3. � ∀x¬(Fx∧¬Fx)
4. � ¬∃x(Fx∧¬Fx)
5. � ∀x∃y(Rxy→Rxx)
6. � ∀x∃y(Rxy→Ryx)

∗7. � ∃x(Fx→ ∀yFy)
∗8. � ∃x∀y(Fx→ Fy)
∗9. ∀x∃y(Fx→Gy) � ∃y∀x(Fx→Gy)

∗10. � ∀x∃y(Rxy→ ∀zRxz)

Exercise 6.15. Consider the following attempted proof. Which step is
wrong and why?

1 (1) Fa A
(2) Fa→ Fa 1,1 CP
(3) ∀y(Fa→ Fy) 2 UI
(3) ∃x∀y(Fx→ Fy) 3 EI

Exercise 6.16. Symbolize the following sentence and prove that it leads to
a contradiction.

There is a person who loves all and only those people who don’t love
themselves. Lxy
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Thinking Fast but Carefully

Suppose that you want to prove the following sequent.

∀x(∃yRxy→ ∀zRzx), ∃x∃yRxy � ∀x∀yRxy.

Sometimes it helps to think syntactically, that is, about the form of the sen-
tences, andhow the rules canbeused tomove frompremises to conclusion.
Other times, it’smorehelpful to think about “what the formulas are actually
saying.” In this particular case, we have found it helpful to think about what
the formulas are actually saying.
The conclusion says that any two things stand in the relationR. The sec-

ond premise says that some two things stand in the relation R. (But recall
that “two” here doesn’t necessarily mean distinct.) The first premise says
something abit funny, whichwefindhelpful to construe in termsof an anal-
ogy. Let’s imagine that our sentences are talking about airports and thatRab
means that there is a direct flight from a to b. Then the first premise says:

If an airport offers departing flights, then you can fly to it direct from any
other airport.

Now we want to show that there is a direct flight between any two airports
a and b. From the second premise, there are airports c and d and a direct
flight from c to d. Then, by the first premise, every airport has a direct flight
to c in particular, airports a and b. So we now have the following picture:

a

c d

b

The dashed line indicates our realization that since b offers departing
flights, you can get there directly from any other airport, including from
a. Since there is a direct flight from a to b, and those were arbitrarily chosen
airports, it follows that ∀x∀yRxy.
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The reasoning we just went through could easily be converted now into
a fully regimented proof. It would be good practice to write up such a proof
yourself.

Exercise 6.17. Prove the following sequent. You might want to try first
coming up with an intuitive argument before you try writing a regimented
proof.

1. ∀x(∃zRxz→ ∀yRxy), ∃x∃yRxy � ∃x∀yRxy
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Everyone uses logic every day—albeit usually without thinking
twice about it. In the sciences, logic gets used more explicitly. I’m thinking
especially here about the all-important task of formulating theories. The-
ories are interesting creatures, because they aren’t just a bunch of truths.
Instead, a theory is like a network of truths with a lot of logical structure
between them.

In this chapter, then, we’re going to talk about how to use logic to rep-
resent the structure of a theory. We’ll focus on one particular theory that
is beloved among philosophers and mathematicians: the theory of sets. In
the following chapter, we’ll use the theory of sets to get a better handle on
what can and cannot be proven with predicate logic.

Theory of Equality

In previous chapters, we used symbols to represent predicates (such as Px)
and to represent relations (such as Rxy). We also used other symbols to
represent names (such as a, b, c). At this point, we need to add one special
relation symbol, which you already know quite well: the symbol “=.” This
symbol is binary, that is, it needs two variables, or two names, to form a
meaningful formula. But unlike our other relation symbols, people tend to
write “=” as an infix, rather than as a prefix. Following standard practice,
we’ll write formulas such as x= y, or a= b, and so on. Notice that it makes

116
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sense towrite a= b, even though a is not b. The idea here is that a and b are
distinct names, and “a= b” means that a and b name the same thing. We
then stipulate as our first axiom that a and a name the same thing.

Equality Introduction (=I)

For any name a, one may write a= awithout any

dependencies. Schematically:
a= a

Equality Elimination (=E)

From a= b and φ(a), one may infer φ(b). Schematically:
Γ � a= b Δ � φ(a)

Γ , Δ � φ(b)

While this second rule looks complicated, it just says that when you have
established a= b, then you can convert φ(a) to φ(b), as long as you
remember to gather all the dependencies together.

We can illustrate these new rules by proving that the relation = is
symmetric and transitive.

To prove: a= b � b= a

1 (1) a= b A
(2) a= a =I

1 (3) b= a 1,2=E

When we apply =E in line 3, we are thinking of line 2 as φ(a), where the
name to be replaced is on the left side of the= symbol. Sincewe have a= b
in line 1, we may infer φ(b), which is b= a.
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To prove: a= b, b= c � a= c

1 (1) a= b A
2 (2) b= c A
1, 2 (3) a= c 1,2=E

Here we are thinking of a= b as φ(b). Then applying b= c, we get φ(c),
which is a= c.

We can also show the unsurprising result that everything is equal to
something.

(1) a= a =I
(2) ∃y(a= y) 1 EI
(3) ∀x∃y(x= y) 2 UI

The use of UI on line 3 is permitted, because line 2 doesn’t depend on any
assumptions in which a occurs, and since all occurrences of a are replaced
by x and then bound by ∀x. Note that this maneuver would not work to
prove ∀x∀y(x= y). If one tried to apply UI to line 1, then one would be
required to replace both instances of a with y and bind with ∀y, yielding
∀y(y= y).

Being able to express equality claims greatly expands the expressive
power of our logic. For example, consider the following sentence:

∀x∀y((Px∧ Py) → x= y).

This sentence says that for any two things, if both are P, then they are the
same thing. (The English phrase “for any two things” typically carries an
implication of distinctness. However, ∀x∀y should be thought of on the
analogy of drawingmarbles from a jar, where we return eachmarble after it
has been drawn.) In other words, this sentence says, “There is at most one
P.” We can also assert the unconditional numerical claim as follows:

∀x∀y(x= y) ≡ There is at most one thing.
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The sentence ∀x∀y((Px∧ Py) → x= y) does not tell us that there is a
P. We now claim that the following two sentences are equivalent:

∃zPz∧∀x∀y((Px∧ Py) → x= y) ≡ ∃x(Px∧∀y(Py→ x= y)).

To write out a full numbered proof of this equivalence would be a bit
tedious. In the following “proof sketch,” we play a bit fast and loose.

1 (1) ∃zPz∧ ∀x∀y((Px∧ Py) → x= y) A
1 (2) ∃zPz 1 ∧E
3 (3) Pa A
4 (4) Pb A
1 (5) (Pa∧ Pb) → a= b 1 ∧E, UE
1, 3, 4 (6) a= b 3,4,5 ∧ I, MP
1, 3 (7) Pb→ a= b 4,6 CP
1, 3 (8) ∀y(Py→ a= y) 7 UI
1, 3 (9) Pa∧∀y(Py→ a= y) 3,8 ∧ I
1, 3 (10) ∃x(Px∧∀y(Py→ x= y)) 9 EI
1 (11) ∃x(Px∧∀y(Py→ x= y)) 2,3,10 EE

On line 5, we’ve combined an application of ∧Ewith an application ofUE.
On line 6, we combined an application of ∧ I with an application of MP.
If you decompressed these steps, you’d have a proof that follows the letter
of the law. The important thing, however, is to grasp the thought process
behind the formal proof. The premise tells us two things: first, that some-
thing is aP, and second, that any two things that areP are identical.Wenow
need to show that there is aPwith the feature that any otherP is identical to
it. So take any P, say a, whose existence is guaranteed by the premise.What
features does thisP have?Well, if there were some otherP, say b, then a and
b would be identical. Hence, a has the feature that ∀y(Py→ a= y). Thus,
there is some P (namely a) with this feature, that is, ∃x(Px∧∀y(x= y)).

Exercise 7.1. Prove the following sequent.

1. ∃x(Px∧∀y(Py→ x= y)) � ∃zPz∧∀x∀y((Px∧ Py) → x= y)
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This sentence, ∃x(Px∧∀y(Py→ x= y)), is one of the most famous of
symbolic logic. It says that there is a P, and that any other P is identical to
it. In short, it says,

∃x(Px∧∀y(Py→ x= y)) ≡ There is a unique P.

For convenience, one sometimes abbreviates this sentence as ∃!xPx, the
exclamation mark indicating the uniqueness clause. As proven above, the
sentence on the left can be broken up into two components: (1) an exis-
tence clause and (2) a uniqueness clause. For this reason, when mathe-
maticians (or computer scientists, or physicists, etc.) prove that there is a
unique such and such, they have two tasks to carry out. They have to prove
that such a thing exists, and they have to prove that there is at most one
such thing. For example, mathematicians will tell you that there is a unique
group of order p, where p is a prime number. To validate that claim, they
construct these groups (proving existence), and they prove that any two
such groups are isomorphic (proving uniqueness).1

In terms of natural language, uniqueness claims are often signaled by
the word “only.” For example, suppose that I say that the number 2 is the
only even prime number. Here I am asserting both that 2 is an even prime
number and that anything else with this feature is identical to the number
2. Hence, I might represent this statement as follows.

Fa∧∀x(Fx→ (x= a)) ≡ 2 is the only even prime number.

Here we’ve used Fx for the compound predicate “x is an even prime num-
ber.” The sentence on the right tells us that a is an F and that any F is iden-
tical to a. This reading suggests that the sentence on the right is equivalent
to ∀x(Fx↔ (x= a)), which is indeed the case.

Exercise 7.2. Prove the equivalence of Fa∧∀x(Fx→ (x= a)) and
∀x(Fx↔ (x= a)).

1. The advanced reader might note that it’s not strict uniqueness that is claimed here but only
uniqueness up to isomorphism. The idea is the same, only strict identity has been replaced by
isomorphism.
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Aswe’ve just stated, there is only one evenprimenumber. Itwouldmake
sense, then, to talk about the even prime number. In contrast, it wouldn’t
make sense to talk about the prime number less than four, since there are
two such prime numbers. It also wouldn’t make sense to talk about the
largest prime number, because there is no such thing.

In one of the most famous uses of symbolic logic in philosophy,
Bertrand Russell explained what it means to say that something does not
exist.2 The puzzle here is that if I say, “There is something that does
not exist,” then it’s dangerously close to saying that “there exists something
that does not exist.” Russell pointed out, however, that when we assert
nonexistence, all we are saying is that nothing fits a certain description. For
example, to say “Santa Claus does not exist” might mean something like,
“There is no beingwho lives at theNorth Pole and delivers gifts to children
atChristmas,” which can be symbolized simply as¬∃xφ(x). Accordingly, a
phrase suchas “SantaClaus lovesme”might appropriately be symbolized as

∃x(φ(x)∧∀y(φ(y) → y= x)∧ Lxa).

Here, the first two conjuncts assert that Santa Claus exists, and the third
conjunct asserts that this guy loves a, the name I’ve chosen for “me.” If we
simply wrote

∃x(φ(x)∧ Lxa)

then we would have “some Santa-like figure loves me,” but no implication
that this figure is unique.

I myself think that there is something slightly suspicious with Russell’s
analysis. For example, if I say that SantaClaus has a roundbelly, then I don’t
mean to be saying that Santa Claus exists. And if you told me that Santa
Claus has a white beard, then I wouldn’t judge that what you said is false on
the basis that Santa Claus doesn’t exist. So, if my intuitions are right, then
fictional discourse has a kind of logic of its own, and one might wonder
whether this logic can be illuminated by formal methods.3

2. “On denoting”Mind (1905).
3. The subject called free logic studies questions like this one.
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Phrases such as “the φ” are called definite descriptions. Russell’s pro-
posal, then, is that definite descriptions can be symbolized as a conjunction
of existence and uniqueness claims. Consequently, to say that “the φ is not
ψ ” canmean two different things: it canmean that there is no uniqueφ, or
it can mean that there is a unique φ, but it is not ψ .

The equality relation can also be used to express superlative claims.
Suppose, for example, that you want to express the following sentence:

Mette is the fastest runner in the class.

For this, we could use the relation symbol Rxy to express that x is at least
as fast as y. Then the sentence ∀yRmy says that Mette is at least as fast as
anyone, but it doesn’t rule out the possibility that somebody else is as fast
as her. If we wanted to say that Mette was the unique fastest runner, then
we could add a further clause saying thatMette is the only person who is as
fast as herself, namely, ∀x(Rxm→ x=m).

Note, however, that in usingRxy to represent “x is as fast as y,” we tend to
implicitly incorporate some other assumptions that are not explicitly cap-
tured in the formalism. For example, it’s trivially true that everyone is as fast
as herself; however, it’s not trivially true—for an arbitrary relation symbol
Rxy—that∀xRxx. Thus, if wewanted to capture all the relevant facts about
the relation “as fast as,” thenwewould have to add some other assumptions
about Rxy.

We’ve already seen how to express the claim that there is at most one P.
It’s easy to extend this method to expressing claims of the form

At most n things have property P.

Consider, for example, how we might say that there are at most two Ps.
Imagine again that you’re drawing marbles out of a jar, replacing each mar-
ble after it’s drawn. If there are at most two marbles in the jar (i.e., there
are none, one, or two), then if you draw three times from the jar, you are
guaranteed to draw the same marble twice (supposing that there are any
marbles to be drawn). Hence, for any three draws x, y, z, either x= y or
x= z or y= z. Written symbolically,
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∀x∀y∀z(x= y∨ x= z∨ y= z).

This sentence will serve as our official translation of the phrase, “There are
at most two things.” To say that there are at most two Ps, we need only
conditionalize on the things being P. In particular, the sentence

∀x∀y∀z((Px∧ Py∧ Pz) → (x= y∨ x= z∨ y= z))

says that for any three Ps, at least two of the three are identical.
It should be easy to see how to generalize from the case of “at most

2” to the case of “at most n.” Thus, for any number n, we can express the
fact that there are at most n things. We’ll now see that we can also express
that there are at least n things. Beginning again with the case of 2, the sen-
tence ∃x∃y(x �= y) is sufficient to express the fact that there are at least two
things.4 Similarly, the sentence ∃x∃y∃z(x �= y∧ x �= z∧ y �= z) expresses
the fact that there are at least three things. As before, to say that there are at
least three Ps, we need only conditionalize on the fact that the things are P.
In this case, since we’re using an existential quantifier, we want to conjoin
with the claim that the things are P, hence

∃x∃y∃z(Px∧ Py∧ Pz∧ x �= y∧ x �= z∧ y �= z).

Now, obviously if there are at least n things and at most n things, then
there are exactly n things. Similarly, if there are at least n Ps and at most n
Ps, then there are exactly n Ps. Thus, to express the claim “there are exactly
n Ps,” we could simply conjoin the two sentences above. However, there is
a more compact and elegant way to express the same thing. We claim, for
example, that the following two sentences are equivalent.

∃x∃y(x �= y)∧∀x∀y∀z(x= y∨ x= z∨ y= z),
∃x∃y(x �= y∧∀z(x= z∨ y= z)).

4. Here we use x �= y as shorthand for¬(x= y).
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The second sentence says that there are two distinct things, and everything
is identical to one of these two things. Intuitively, that sentence captures
the claim that there are exactly two things. We’ll leave it to you to prove
that this sentence is equivalent to the conjunction of the sentences saying
that there are at least, and at most, two things.

Exercise 7.3. Represent the logical structure of the following sentences
using the equality relation “=” when appropriate.

1. Maren is the only student who didn’t miss any questions on the
exam. (m,Qx, variables are restricted to students)

2. All professors except a are boring. (Px, a,Bx)
3. a is the best of all possible worlds. (Rxy, variables are restricted to

possible worlds)
4. There is no greatest prime number. (Px, x< y, variables are

restricted to numbers)
5. The smallest prime number is even. (Px, Ex, x< y)
6. For each integer, there is a unique next-greatest integer. (x< y,

variables are restricted to integers)
7. There are at least two Ivy League universities inNewYork. (Ix,Nx)
8. For any two sets a and b, there is a largest set c that is contained in

both of them. (“y is at least as large as x” ≡ “y contains x” ≡ x⊆ y)
∗9. The function f achieves its least upper bound on the domain [0, 1].

(f , x≤ y, 0, 1)

Exercise 7.4.Consider the following lyric from the jazz musician Spencer
Williams:

Everybody loves my baby, but my baby don’t love nobody but me.

Represent the logical form of this sentence, and show that it implies that
the speaker is his own baby. (Hint: use a as a name for the speaker and b as
a name for the speaker’s baby, and restrict variables to people.)
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Ordering

Wehavemanyoccasions for ranking things, or putting them into somekind
of order. Famously, each yearUS News and World Report publishes a rank-
ing of universities in the United States, which looks something like this:

· · · a b c

where c is ranked number one, b is ranked number two, and so on. Let’s
look at this as logicians, ignoring the content and focusing on the form.We
note that this ranking validates the sentence

∀x(x≤ y∧ y≤ z→ x≤ z),

that is, the ordering is transitive. It would be pretty weird if it weren’t: that
would suggest that c might be both more excellent than b, which is more
excellent than a, but c is not more excellent than a. We also note that this
ranking validates the sentence ∀x∀y(x≤ y∨ y≤ x), that is, US News and
World Report tells us that for any two universities, either the one is better
than the other, or the other way around.

Logicians don’t have any business opining about the quality of univer-
sities, but between us, I’m suspicious about whether the latter sentence is
actually true. To bemore concrete, let’s suppose that there are two different
virtues that a university can have—let’s call them F-ness and G-ness. Sup-
pose further that c has more F-ness than b but that b has moreG-ness than
c. Suppose, furthermore, that we lack public consensus about whether F is
more important than G or about how much more important it is. In that
case, if we try to build the≤ ordering based on F-ness andG-ness, then the
situation might more accurately be portrayed as follows:

c

· · · a

b
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This picture says that both c and b are better than a but that c and b are
incomparable with each other. That is, neither c≤ b nor b≤ c. In that case,
the axiom ∀x∀y(x≤ y∨ y≤ x) fails, and the ordering is not linear.

Quantifier logic is particularly good at describing structural features of
orderings. Let’s first specify a very general notionof anordering, a so-called
partial order. Any timewe construct a theory, the first thingwe need to do
is to choose some nonlogical vocabulary, that is, some relation symbols
or function symbols. For the theory of partial order, it will suffice to choose
one binary relation symbol, say≤, which we will use in infix notation.

The second step in defining a theory is to write down some axioms that
specifywhat the theory says about its nonlogical vocabulary. For the theory
of partial order, we have the following axioms:

Reflexive x≤ x
Antisymmetric (x≤ y∧ y≤ x) → (x= y)

Transitive (x≤ y∧ y≤ z) → x≤ z

(Here we have, for convenience, allowed ourselves to drop outermost
universal quantifiers. Each of these axioms ismeant to be universally quan-
tified over all the variables that occur in it.) A lot of different orderingsmeet
these criteria. The above two orderings of universities meet these criteria.

We get another kind of ranking that meets these criteria if we stick two
rankings side by side and simply say that they have nothing to do with each
other. For example, consider the collection that consists of (a) all US uni-
versities and (b) all single scullerswho competed in last year’s rowingworld
championship. Let’s say that x≤ y just in case either x and y are universi-
ties, and y was ranked higher than x in theUS News and World Report poll,
or x and y are scullers such that y finished ahead of x at the world cham-
pionship. Then this heterogeneous collection also satisfies the axioms of a
partial order.

To say that anorder is not heterogeneous in thisway—that is, that every-
thing is comparable to everything else—we might try adding an axiom
such as

Total x≤ y∨ y≤ x
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But this axiom is awfully strict; for example, it doesn’t permit the second
sort of university ranking we entertained above, where two different uni-
versities are better than all the others but cannot be directly comparedwith
each other.

We might then add the following weaker axiom:

Directed ∀x∀y∃z(z≤ x∧ z≤ y)

This axiomwould ensure that any two things are at least indirectly related;
in particular, either one is worse than the other, or there is some other
university that is worse than both of them. However, the Directed axiom
wouldn’t permit the possibility that there could be two distinct universities
that are both the worst in their own special way. That scenario would look
like this:

d

c · · ·

e

(Imagine, for example, that d has the least rigorous admissions standards
and that e has the worst postgraduation job placement record.) You could
go on trying various other axioms, but it should be clear enough now that
there’s a lot you can say about order using quantifiers and Boolean logical
connectives.

Exercise 7.5. Show that if a partial ordering satisfies the Total axiom, then
it satisfies the Directed axiom.

Exercise 7.6.A relationR is said to be symmetric just in case∀x∀y(Rxy→
Ryx). Show that if R is symmetric and transitive, then it’s reflexive.

Exercise 7.7. Write down a sentence about linear orders that is true in
the integers (i.e., whole numbers) but false in the rational numbers (i.e.,
fractions).
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Functions

In earlier chapters, we applied predicates to variables, such as x, and to
names, such as a. Let’s use the word terms as a common description
of these variables and names. Syntactically speaking, terms are whatever
comes after predicate symbols or relation symbols.

We now need to introduce another kind of symbol that builds more
complex terms. To see what we’re going for, consider first, as an example,
the phrase, “The biological father of. . . .” That phrase, of course, doesn’t
name anyone in particular. Interestingly, though, it has the feature that
whenever you plug in a name that denotes a unique individual, the phrase
also denotes a unique individual (supposing, for simplicity, that each such
individual has a unique biological father). This phrase, then, acts as a func-
tion, taking denoting terms (e.g., names) and returning other denoting
terms.

Mathematicians have long recognized the value of functions, and some
of their favorites are binary functions such as+. If you giveme twonumber
names, say 4 and 17, then 4+ 17 is a name for another number. Thus, +
takes as input two denoting terms, and it returns a denoting term as output.

In the abstract, we’ll typically use symbols like f , g, h, . . . for functions.
These functions can be unary (i.e., take one termas input), binary (i.e., take
two terms as input), or n-ary (i.e. take n terms as input). Besides allowing
function symbols to be applied tonames, we also allow function symbols to
be applied to variables. Thus, if f is a unary function symbol, then f (x) also
counts as a legitimate term (although not a name).What this means is that
f (x) can itself be put in any slot where terms are allowed to go. For example,
if R is a binary relation symbol, then Rf (x)y is a legitimate formula. More
intuitively, since = is a binary relation symbol, we may place f (x) on its
left- or right-hand side. For example, f (x) = y is a perfectly good formula;
hence, ∀x∃y(f (x) = y) is a perfectly good sentence. In fact, because of the
rules for equality, that last sentence is provable.

(1) f (a) = f (a) =I
(2) ∃y(f (a) = y) 1 EI
(3) ∀x∃y(f (x) = y) 2 UI
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Since the first step invokes =I, there are no dependencies at any stage of
the proof. This proof shows that for each input, a function always assigns
some or other output. It does not follow, however, that every possible out-
put corresponds to some input. That additional condition can be formu-
lated as

∀y∃x(f (x) = y),

and in this case, it is said that f is onto or surjective. Another important
condition a function can satisfy is having different outputs for different
inputs or, contrapositively, having the same input for the same output.
Symbolically, this condition amounts to

∀x∀y(f (x) = f (y) → x= y),

and in this case, it is said that f is one-to-one or injective.
Asmentionedbefore, mathematics is chock-full of binary function sym-

bols such as +, ×. It also uses unary function symbols, although their
presence is sometimes difficult to detect. Consider, for example, that lit-
tle superscript−1 that you learned to use when talking about the inverse of
a number. Well, you can think of that little superscript as a function sym-
bol that is applied to the right side of a term but where no parentheses are
added. In particular, given the name of a number, say 2, the symbol 2−1

names another number, namely, the multiplicative inverse of 2. You might
also remember that there is one number that doesn’t have a multiplicative
inverse, namely, 0. What this means is that the symbol 0−1 doesn’t make
sense, and −1 is only a function when restricted to nonzero numbers.

When you learned how to reason about functions (e.g., in your precal-
culus class), there were somemoves you probably came to take for granted.
For example, if a= b, then f (a) = f (b). It’s illuminating to see that this fact
can be derived from the inference rules for equality.

1 (1) a= b A
(2) f (c) = f (c) =I

1 (3) f (a) = f (b) 1,2=E
(4) a= b→ f (a) = f (b) 1,3 CP
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Since the last line has no dependencies with a or b, the result holds for
arbitrary a and b.

With the expansion of the class of terms, we should also expand the
range of the equality introduction and elimination rules. In particular, for
any term t, the =E rule allows us to write the sentence t= t on a line
without any dependencies. Similarly, if t and s are terms, then φ(s) can
be derived from φ(t) and t= s. The latter permits the following sort of
substitution:

1 (1) 1+ 1= 2 A
2 (2) 2+ 1= 3 A
1, 2 (3) (1+ 1) + 1= 3 1,2=E

Or similarly,

1 (1) Sinned(adam) A
2 (2) adam = father(cain) A
1, 2 (3) Sinned(father(cain)) 1,2=E

Exercise7.8.Suppose that f and g are functions such that∀x(g(f (x)) = x).
Show that f is one-to-one.

Exercise 7.9. A function f is said to be an involution just in case ∀x
(f (f (x)) = x). Show that if f is an involution, then f is one-to-one andonto.

Exercise 7.10. Suppose that ◦ is a binary function symbol, that i is a unary
function symbol, and that e is a name. Assume the following as axioms:

A1. The function ◦ is associative:

∀x∀y∀z((x ◦ y) ◦ z= x ◦ (y ◦ z))

A2. The name e functions as a left and right identity:

∀x(x ◦ e= x= e ◦ x)
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A3. The function i gives left and right inverses:

∀x(x ◦ i(x) = e= i(x) ◦ x)

Prove that:

1. Inverses are unique: ∀x∀y((x ◦ y= e) → (y= i(x))).
2. Inverse is an involution: ∀x(i(i(x)) = x).
3. Inverse is anti-multiplicative: ∀x∀y(i(x ◦ y) = i(y) ◦ i(x)).

Exercise7.11. Suppose that f is one-to-one but not onto. For each number
n, it can be shown that there are more than n things. Show here that there
are more than two things.

Arithmetic

At an early age, children learn basic facts about addition and subtraction. In
the process, they become comfortable with the idea of negative numbers.
Some time later, children learn facts aboutmultiplication and division, and
in doing so, it becomes apparent that for division always to make sense,
there must be further numbers beyond the whole numbers—namely, the
fractions, which can also be expressed in terms of decimal expansions. At
this stage, a studentmaybecomevaguely aware that fractional numbers cor-
respond to repeating decimals and hence that nonrepeating decimals are a
new kind of number.

With the introduction of each new type of number, students learn new
bits of vocabulary. Addition corresponds to a function symbol +, and
subtraction corresponds to a function symbol−. The introduction ofmul-
tiplication and division comes with two new function symbols: × and ÷.
The introduction of exponents provides a new binary function symbol xy

and so on. The new function symbols are given meaning by the axioms
they are assumed to satisfy. For example, addition is tacitly assumed to be
commutative and associative:

x+ y= y+ x, x+ (y+ z) = (x+ y) + z.
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Furthermore, the number 0 is tacitly assumed to be the additive identity:
x+ 0= x= 0+ x.

Multiplication is then assumed to be related to addition in certain ways;
for example,

a× b = a+ · · ·+ a︸ ︷︷ ︸
b times

,

which implies that multiplication distributes over addition and (as a limit-
ing case) that a× 0= 0.

Most students tacitly accept these facts—or, rather, axioms—and use
them when they reason about numbers. It takes a special kind of mind
to ask, “Could the axioms be written down explicitly, so that whenever a
student reasons validly about numbers, she could cite the relevant axiom?”

Let’s try to write down a sufficient set of axioms to capture all of the
facts about addition andmultiplication of the nonnegative whole numbers
0, 1, 2, . . . . The first thing we need is to introduce the basic vocabulary: we
let + and · be binary function symbols, and we let 0 and 1 be names. The
theory Peano arithmetic (PA) has six primary axioms:

P1. x+ 1 �= 0 P2. x+ 1= y+ 1→ x= y
P3. x+ 0= x P4. x+ (y+ 1) = (x+ y) + 1
P5. x · 0= 0 P6. x · (y+ 1) = x · y+ x.

For the sake of readability, we drop the outermost universal quantifiers
from the axioms. The function s(x) = x+ 1 is called the successor func-
tion. Note that P2 says that the successor function is one-to-one, and P1
says that the successor function is not onto. (Aswewill see later, thismeans
that P1 and P2 imply that there are infinitely many things.)

Peano arithmetic also comes equipped with an induction schema,
which consists of one axiom for each formula φ(y, x).

(φ(0, x)∧∀y(φ(y, x) → φ(y+ 1, x))) → ∀yφ(y, x).
Here, the vector variable x is just shorthand for an n-tuple x1, . . . , xn of
variables. Although they might look strange, the induction schema repre-
sents a well-known strategy for proving things about the natural numbers.
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In short, they say that if you can prove that 0 has some featureφ, and if you
can prove that whenever y is φ then y+ 1 also isφ, then youmay conclude
that every number is φ.

Here’s a classic case of the inductive reasoning strategy: define a func-
tion σ by

σ (x) = 1+ 2+ · · ·+ (x− 1) + x.

In other words, σ (x) is the result of adding together all the numbers up to
x. We’ll use induction to show that ∀xφ(x), where φ(x) is the formula

σ (x) = x(x+ 1)
2

.

First check that φ(0), that is, that 0= 0(0+ 1)/2. Now let a be a fixed
natural number and suppose that φ(a), that is, σ (a) = a(a+ 1)/2. Then,

σ (a+ 1) = σ (a) + a+ 1 = a2 + 3a+ 2
2

= (a+ 2)(a+ 1)
2

,

which means that φ(a+ 1) is true. We’ve shown then that ∀x(φ(x) →
φ(x+ 1)), and hence by induction, ∀xφ(x).

The preceding proof sketch assumes several facts about arithmetic that
we haven’t yet proven. For example, it assumes that addition is associative
and commutative. So let’s back up a step, and take up an argument where
each step is explicitly justified by the axioms of Peano arithmetic.

Consider, for example, the claim that every nonzero number has a pre-
decessor, that is, that ∀y(y �= 0→ ∃x(x+ 1= y)). This fact follows almost
immediately from the induction axioms. By negative paradox, it’s true that
if 0 �= 0, then ∃x(x+ 1= 0). Furthermore, for any number a+ 1, it’s true
that there is an x such that x+ 1= a+ 1. Thus, it’s trivially true that if the
claim holds for a, then it holds for a+ 1.

Let’s now formalize the argument. We use the induction schema with
the predicate

φ(y) ≡ y �= 0→ ∃x(x+ 1= y).
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The variable vector x here is the trivial zero-length vector. The argument
then proceeds like this:

(1) 0= 0 =I
(2) 0 �= 0→ ∃x(x+ 1= 0) neg paradox
(3) a+ 1= a+ 1 =I
(4) ∃x(x+ 1= a+ 1) 3 EI
(5) a+ 1 �= 0→ ∃x(x+ 1= a+ 1) pos paradox
(6) φ(a) → φ(a+ 1) pos paradox
(7) ∀y(φ(y) → φ(y+ 1)) UI

IS (8) ∀yφ(y) 2,7 induction

If we plug in the definition of φ(y), then line 2 is φ(0), and line 5 is
φ(a+ 1). Then on line 6, we apply positive paradox to get φ(a) →
φ(a+ 1). Note that induction is the only axiom of PA that we used in the
argument.We included a dependency IS on line 8 to indicate that the result
is not a tautology, in the strict sense; it is a consequence of an axiom of PA.

Exercise 7.12.We use the abbreviation PA�φ to indicate that there is a
proof from the Peano axioms to φ. Prove the following:

1. Prove that addition is associative. We’ll give an informal argument
and ask you to write something that looks more like a formal
proof.We use induction on the formulaφ(z) ≡ ∀x∀y(x+ (y+ z) =
(x+ y) + z). By two applications of P3, we have y+ 0= y and
(x+ y) + 0= x+ y. Hence, x+ (y+ 0) = x+ y= (x+ y) + 0.
That is,φ(0). Now let a be an arbitrary natural number, and suppose
that φ(a), that is, x+ (y+ a) = (x+ y) + a. Then

x+ (y+ (a+ 1)) = x+ ((y+ a) + 1) P4
= (x+ (y+ a)) + 1 P4
= ((x+ y) + a) + 1 assumption,=E
= (x+ y) + (a+ 1) P4 .

2. PA� ∀x∀y(x+ y= y+ x). Hint: you’ll need to use induction twice.
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3. PA� 0 �= 1
4. PA� 1+ 1 �= 1
5. PA� ∀x∀y∀z(x+ z= y+ z→ x= y)
6. PA�∀x∀y∀z(x · (y · z) = (x · y) · z)
7. PA�∀x∀y(x · y= y · x)

Definition

In subsequent sections, wewillmove on to yetmore sophisticated theories.
However, whenour theories become sophisticated, it becomes all themore
important thatwe clearly express concepts and the relations between them.
Thus, we take a quick detour to discuss how we can define new concepts
from old ones.

There are many misconceptions about what it means to be logical. You
might, for example, have thought that the logical person is the one who
demands evidence before believing something. However, logic has noth-
ing at all to say about which premises you should accept. What’s more, the
logical personmakes suppositions that are in no way demanded by the evi-
dence that she possesses. She does so because we humans cannot expect to
receive the truth passively—we have to seek it actively.

Another misconception about logic is that good reasoning takes place
against a fixed background scene of language—or, in philosophical terms,
with a fixed repertoire of concepts. To the contrary, logic is concerned not
just with good reasoning with a fixed set of concepts but also with best
practices for constructing new concepts. To make the contrast more clear,
deduction takes placewithin the framework of a fixed language. There is no
way that deductively valid inference could reach a conclusion thatmentions
a new concept—that is, a concept that is not mentioned in the premises.
For example, you couldn’t validly infer a sentence with the relation symbol
Rxy from sentences with predicates Fx andGx.

Let’s call the kind of reasoningwe’ve been discussing earlier in this book
horizontal reasoning, since it moves us from premises to conclusion in a
single language. We now want to describe a kind of vertical reasoning that
extends our language. If you’ve ever used a dictionary, then the main tech-
nique of vertical reasoning will be familiar to you: it’s making definitions.
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But we aren’t concerned with the kind of definition that takes a word that’s
already in use and that spells out itsmeaning in terms of other words.We’re
concerned with the kind of definition that introduces a new term.

Consider, for example, the natural language predicates “x is a parent”
and “x is female,” as applied to persons. In this case, we can define a com-
pound predicate

x is a parent ∧ x is a female

which can conveniently be abbreviated by “x is a mother.” In other words,
starting frompredicates such asGx and Fx, we can define a new compound
predicate:

φ(x) ≡ Gx∧ Fx.

The left-hand side of the definition—that is, the thing being defined—is
called the definiendum. The right-hand side of the definition consists of a
formula in the antecedently established vocabulary, in this case, the vocab-
ulary that consists of Gx and Fx. The right-hand side of the definition is
called the definiens, that is, the thing in terms of which the new symbol is
defined.

The quantifiers provide yet more sophisticated ways to formulate defi-
nitions. Suppose, for example, that instead of having a predicate for “x is a
parent,” we had a relation symbolRxy for “x is a parent of y.” Thenwe could
define

parent(x) ↔ ∃yRxy
child(x) ↔ ∃yRyx

grandparent(x, z) ↔ ∃y(Rxy∧Ryz)
sibling(x, z) ↔ ∃y(Ryx∧Ryz)

Exercise 7.13.Translate the following sentences into predicate logic nota-
tion. Restrict yourself to the following vocabulary: Fx for “x is female,” Pxy
for “x is a parent of y, andLxy for “x loves y.” Assume that we’re only talking
about people, so you don’t need a predicate symbol for “is a person.” You’ll
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want to define new relations and predicates out of the ones we’ve supplied
(e.g., “y is a child” can be symbolized as ∃xPxy).

1. Every woman who has a daughter loves her daughter.
2. Every person loves their parent’s children.
3. Everybody loves their own grandchildren.
4. Everybody loves their nieces and nephews.
5. No man loves children unless he has his own.
6. Everybody is loved by somebody.
7. Everybody loves a lover. (Hint: A lover is anyone who loves some-

body.)

This kind of defining maneuver can be very powerful when used with
genuine formal theories like Peano arithmetic. For example, let < be a
binary relation symbol, which we will write in infix notation. Define x< y
to be the formula ∃z(x+ (z+ 1) = y). Then it can be shown that x< y sat-
isfies the axioms for a strict linear ordering, and knowing that, we can bring
all of our knowledge about linear orderings to bear in our reasoning about
arithmetic.

Exercise 7.14. Prove the following sequents.

1. PA � ∀x(¬(x< x))
2. PA � ∀xyz((x< y∧ y< z) → x< z)
3. PA � ∀xy(x< y∨ x= y∨ y< z)

Predicates and relations aren’t the only things that can be defined. We
can also define new terms (names and function symbols). For example, if I
know your name (suppose it’s “a”), and I have a function symbolmom(x)
that I use to talk about themother of x, then I have a name for yourmother:
mom(a). In other words, a name plus a function symbol gives a newname.
We’re very familiar with this maneuver in the case of arithmetic. In our for-
mulation of Peano arithmetic above, we only had two names: 0 and 1. But
nowwe can use the addition symbol to define names of new numbers (e.g.,
2= 1+ 1, 3= 2+ 1, etc.).
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More generally, we can define terms from formulas, so long aswe ensure
that those formulas have the right features. For example, suppose that I have
a language with a relation symbol Rxy for “y is the biological mother of x.”
(Note the order of variables: child comes first, thenmother.) There are two
particular facts about biological motherhood that will be relevant here:

∀x∃yRxy (Rxy∧Rxz) → y= z.

The first fact is that everyone has a biological mother. The second fact is
that everyone has at most one biological mother. Under these conditions,
we say that Rxy is a functional relation, and we can define a new function
symbol f by the condition

f (x) = y ↔ Rxy.

More generally, if φ(x1, . . . , xn, y) is any formula with n+ 1 free variables,
and ifT is a theory that implies thatφ(x1, . . . , xn, y) is a functional relation,
then we permit T to be extended by means of a definition

f (x1, . . . , xn) = y ↔ φ(x1, . . . , xn, y).

In the special case of n= 0, to say that T implies that φ(y) is a functional
relation means that T �∃!yφ(y). In that case, we’re permitted to define a
new name c by the formula

c= y ↔ φ(y).

The reason for the restriction on the definition of terms is so that def-
initions don’t lead to bad logic. For example, suppose that an evil logician
tried to pull a fast one on you by doing the following:

Let’s writeφ(x) tomean that x is omnipotent, omniscient, and omnibenev-
olent. Now define a name a by ∀x(x= a↔ φ(x)). Now, it’s a theorem of
predicate logic that ∃x(x= a), and a quick argument shows that ∃xφ(x).
Therefore, God exists.
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No matter your opinion about theology, you shouldn’t let this argument
pass. The problem was letting the evil logician define the name a without
first showing that there is a unique φ.

A similar problem would arise if you tried to define a name when it has
not previously been proven that at most one thing satisfies the definiens.
For example, suppose that you decided to define the name a by

∀x((x= a) ↔ even(x)),

where the predicate even ranges over whole numbers. This definition
would then entail that there is just one even number. So, one should only
define a name in terms of a predicate if one has shown that the predicate is
uniquely instantiated.

If making definitions doesn’t add new information, then what really is
the point of making them? One might ask in reply: if deducing conse-
quences from a set of premises doesn’t lead to genuinely new information,
then what’s the point of doing that?We won’t try to solve these philosoph-
ical puzzles here. It’s enough to point out that both deducing and defining
are essential components of a logical lifestyle.

Exercise 7.15. The following series of exercises is intended to show how
defining newconcepts can facilitate reasoning.Webeginwith a spartan lan-
guage that has only one binary function symbol ◦. We then impose three
axioms:

B1. ∀x∀y∀z(x ◦ (y ◦ z) = (x ◦ y) ◦ z)
B2. ∀x∀z∃!y(x ◦ y= z)
B3. ∀x∀z∃!w(w ◦ x= z)

The theory given by B1–B3 is sometimes called autosets, because it
describes a collection of things that act upon themselves. The exercises
show that the theory of autosets is equivalent to group theory.

Recall here that ∃! is an abbreviation for the compound phrase “there
exists a unique.” From these axioms, one can directly prove the following
sentence
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∃!y∀x(x ◦ y= x= y ◦ x).

But a direct proof is hideously complex. Another way the result can be
proven is by first proving

∃!y∀x(x ◦ y= x)

and then introducing a name e for this unique y. One can then prove that
∀x(x= e ◦ x), thus completing the proof. The following steps will lead you
through the process.

1. Prove that ∀x∀z((x ◦ z= x) → ∀y(y ◦ z= y)).
2. Prove that ∃!y∀x(x ◦ y= x).
3. Define a name e for the unique ywhose existence you just proved.
4. Prove that ∀x(x= e↔ (x ◦ x= x)).
5. Since∀x∃!y(x ◦ y= e), define a function symbol−1 such that∀x(x ◦

x−1 = e).
6. Prove that ∀x(x−1 ◦ x= e). [Hint: use (x−1 ◦ x) ◦ (x−1 ◦ x) =

x−1 ◦ x.]
7. Prove that ∀x(e ◦ x= x).

Exercise 7.16.The following exercises ask you to define new relations and
then to prove that these relations have certain nice properties.

1. Let F andG be predicates, and define

φ(x, y) ≡ Fx∧Gy.

Show that φ(x, y) is symmetric, that is, ∀x∀y(φ(x, y) → φ(y, x)).
2. Let Rxy be a binary relation, and define

φ(x, y) ≡ ∀w(Rwx→Rwy).

Show thatφ(x, y) is transitive, that is,∀x∀y∀z((φ(x, y)∧φ(y, z)) →
φ(x, z)).
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3. Let F be a predicate, and define

φ(x, y) ≡ Fx↔ Fy.

Show that φ(x, y) is an equivalence relation, that is, reflexive, sym-
metric, and transitive.

Set Theory

The next theory we develop is of deep foundational importance. In fact, it
is currently believed that all of mathematics rests on the foundation of set
theory.

At the beginning of the twentieth century, some logicians hoped to
show that all of mathematics can be derived from pure logic. I say “hoped”
because the point of such aderivationwouldbe to explain away themystery
of our certainty of the truths ofmathematics. Aswehave seen, logical truths
purchase certainty at the price of vacuity. For example, you can be certain
that P∨¬P, but it doesn’t exclude any possibilities. So, if math could be
derived from logic, then mathematical truths (such as 1+ 1= 2) would
not exclude any possibilities.

To make a long story short, the reduction of math to pure logic didn’t
quitework. However, it almostworked. A consensus emerged that to get all
ofmathematics, you only need to add a few axioms that describe properties
of sets of things. In this section, we’ll present a piece of this theory of sets.
Besides its intrinsic interest for the foundations ofmathematics, the theory
of sets is of special interest to logicians, because it’s a great reference point
for checking our knowledge of basic logical facts. Most particularly, we can
use set theory to construct the analogue of truth tables for quantifier logic,
allowing us to show that certain sequents cannot be proven.

There aremanydifferentways thatwe could formalize the theory of sets.
The most common way these days is to formulate a theory with a single
relation symbol ∈ and whose objects (i.e., the things the quantifiers are
supposed to range over) are supposed to be sets. From that spartan basis,
one can then construct things like sets of ordered pairs, subsets of ordered
pairs, and even functions (seen as a certain kind of subset of ordered pairs).
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We find it more convenient, however, to take both sets and functions
between sets as primitive, undefined notions. We could do this by using
two predicates “is a set” and “is a function,” but we’ll usually just indicate
whether something is a set or a function bymeans of using a different style
of variables: we’ll use capital letters such asA,B,X, Y for sets and lowercase
letters such as f , g, h, . . . for functions. Thenotation f :A→B is shorthand
for “A and B are sets and f is a function fromA to B.” The setA is said to be
the domain of f , and the set B is said to be the codomain of f .5

As with any theory, the theory of sets tries to formalize an intuitive idea.
Here the intuitive picture is something like the following: The twoovals are
setsA andB, and the dots inside the ovals are their elements. Hence,A con-
sists of elements a, b, c, d, and B consists of elements 1, 2, 3, 4. We use the
notation “a∈A” to indicate that a is an element of A. (Thus, ∈ is a binary
relation symbol, written in infix notation.) The arrows from elements in
A to elements in B constitute a function f :A→B, which consists of an
assignment of each element in A to some element in B.

a

b

c

d

1

2

3

4

The following axiomatization of set theory prioritizes clarity over rigor.
We have attempted to write the axioms in such a way that they are easy to
understand, but so that it’s possible for the interested reader to determine
how they might be fully regimented in first-order logic.

5. To be clear, the symbols f , g, h here are not function symbols but variables that range over
the type of thing that we intuitively think of as functions. If we were to fully formalize this theory,
it would have function symbols d0 for the domain of a function, d1 for the codomain of a function,
and i for the identity function of a set.
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S1. Extensionality The first axiom provides the condition under which
two sets are equal, namely, when they contain the same elements.

∀A∀B(A=B↔ ∀x(x∈A↔ x∈B)).

Similarly, two functions are equal if and only if they agree on all inputs.

∀f∀g(f = g↔ ∀x(f (x) = g(x)).

S2. Comprehension The second axiom provides a method of building
new sets from old sets. It tells us that if we already have a set A, and if we
can describe a property φ(x) of elements of A (using the language of set
theory), then there is a set B of things that contains just those elements.
We sometimes write this set B as {x∈A |φ(x)}, read as “the x in A such
that φ(x).” The meaning of this axiom will be clearer after we see which
sorts of properties φ(x) can be described in the language of set theory.

S3. Empty Set The third axiom declares the existence of a set with no
elements.

∃A∀x(x �∈A).

Therewill be a couplemore axioms to come, but thesefirst threewill suffice
to prove some interesting basic facts about sets and functions. Consider the
following claim and proof.

Proposition 7.1. There is only one empty set, that is ∃!A∀x(x �∈A).

Proof. The empty set axiom says that there is at least one empty set, so
we only need show that there is at most one. Suppose, then, that A and
B are empty sets. That is, ∀x(x �∈A) and ∀x(x �∈B). We will show first
that ∀x(x∈A→ x∈B). Since ∀x(x �∈A), we have a �∈A. Hence, by neg-
ative paradox, if a∈A, then a∈B. Since a was arbitrary, ∀x(x∈A→ x∈
B). A similar argument shows that ∀x(x∈B→ x∈A). By extensionality,
A=B.
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This proof is fully compliant with the inference rules you learned earlier
in this book. You could, in fact, write it out in its full glory, with dependency
numbers, citations of rules, and so on. However, it’s slightly more pleasant
for human beings to read and write proofs with words. Moreover, there’s
an art to saying just the right words to convince your reader that the proof
really does work. One of the goals of this section is to help you hone your
skill as a writer of clear and rigorous arguments.

It can be a lot easier to use set theory if we define some new relation and
function symbols. We begin by using the fact we proved above—that there
is a unique empty set—to define a name “∅” with the condition

∀A(
A= ∅ ↔ ∀x(x �∈A)

)
.

We now define a binary relation symbol ⊆ (written in infix notation) that
is intended to capture the idea of one set being contained in another.

Definition. For setsA andB, we say thatA is a subset ofB, writtenA⊆B,
just in case ∀x(x∈A→ x∈B). More formally,

∀A∀B(
A⊆B ↔ ∀x(x∈A→ x∈B)

)
.

Keep in mind that the containment relation ⊆ is very different from the
elementhood relation ∈. For most purposes in this book, you can think of
the elementhood relation∈ as standing between some a that is not a set and
some A that is a set. For example, you can think of yourself as an element
or member of the set of people who have read this sentence. In contrast,
the relation⊆ can only hold between two sets. Since you are not a set, you
cannot stand in the relation⊆ to anything else.6

We illustrate the definition of subset by showing that the empty set ∅ is
a subset of every other set.

Proposition 7.2. ∀B(∅ ⊆B).

6. For the advanced reader: We are intentionally maintaining a naive distinction between sets
and nonsets. If one really adopted ZF set theory as their “theory of everything,” then everything
would be a set.
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Proof. Let B be an arbitrary set. Since ∀x(x �∈ ∅), negative paradox gives
∀x(x∈ ∅ → x∈B). By the definition of ⊆, it follows that ∅ ⊆B. Since B
was an arbitrary set, it follows that ∀B(∅ ⊆B).

Exercise 7.17. Prove the following results.

1. A⊆A.
2. If A⊆B and B⊆C, then A⊆C.
3. If A⊆B and B⊆A, then A=B.

Recall that when a theory T implies that a relation φ(x, y, z) is func-
tional, then we may define a binary function symbol, say∩, by

(x∩ y= z) ↔ φ(x, y, z).

Consider, then, the following relation, definable in the theory of sets:

φ(A,B,C) ≡ ∀x(x∈C↔ (x∈A∧ x∈B)).

To see thatφ is functional, suppose thatφ(A,B,C) andφ(A,B,D). A quick
argument shows then that ∀x(x∈C↔ x∈D), and hence by extensional-
ity, C=D. Therefore, φ is functional, and we may define

(A∩B=C) ↔ φ(A,B,C).

In other words,

∀x(x∈A∩B↔ (x∈A∧ x∈B)).

We call A∩B the intersection of A and B.

Exercise 7.18. Prove the following results.

1. A∩A=A.
2. A∩ ∅ = ∅.
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3. A⊆B if and only if A∩B=B.
4. C⊆A∩B if and only if C⊆A and C⊆B.

Similar to the definition of intersection, we can also define a union of
sets. Here, the relevant relation is

φ(A,B,C) ↔ ∀x(x∈C↔ (x∈A∨ x∈B)).

Since φ is functional, we may define a function symbol∪with the feature

∀x(x∈A∪B↔ (x∈A∨ x∈B)).

Exercise 7.19. Prove the following results.

1. A∪A=A.
2. A∪ ∅ =A.
3. A⊆B if and only if A∪B= B.
4. A∩ (B∪C) = (A∩B) ∪ (A∩C).

We need one more function on sets, namely, the relative complement
of two sets. The idea here is that A\B should consist of all those elements
in A that are not in B. Thus, the defining condition is

∀x(x∈A\B↔ (x∈A∧ x �∈B)).

It is frequently useful to speak as if a set A has an absolute complement
Ac, that is, the set of all things that are not in the set A. Mathematicians
know that it’s dangerous to talk about “the set of all things such that . . . ,”
but for many practical purposes, we can take some large set X as the back-
ground domain, and then we can think of Ac as the relative complement of
A in X.

Exercise 7.20. Let Ac =X\A, and prove the following:

1. (A∪B)c =Ac ∩Bc.
2. (A∩B)c =Ac ∪Bc.
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3. A∪Ac =X.
4. A∩Ac =X.

The construction we perform now is not exactly a definition; in one
sense, it should be considered a new axiom.

S4. Cartesian Products There is a construction process that takes two
sets A,B as input and that produces a new set A×B as output. The
set A×B is called the Cartesian product of A and B. Each element of
this new set A×B can be written in the form 〈a, b〉 with the identity
condition:

〈a, b〉 = 〈c, d〉 ↔ a= c∧ b= d.

Note that the order in 〈a, b〉matters; that is, it is not necessarily the case
that 〈a, b〉 = 〈b, a〉. Accordingly, an element of the form 〈a, b〉 is called an
ordered pair.

We define π 1 :A×B→A to be the function that takes each ordered
pair 〈a, b〉 to its first component a. Similarly, we define π 2 :A×B→
B to be the function that takes each ordered pair 〈a, b〉 to its second
component b.

It’s not difficult to see that if A and B are finite sets, then the number
|A×B| of elements in A×B is |A| · |B|, where |A| is the number of ele-
ments in A, and |B| is the number of elements in B. In fact, something like
that result continues to hold even whenA and B are infinite. However, that
more general result depends on developing a notion of different sizes of
infinity, and that’s a subject for a more advanced book.

Exercise 7.21. Show that if A has two elements and B has two elements,
then A×B has four elements.

Exercise 7.22. Show that ∅ ×A= ∅.

Predicate logic makes heavy use of relation symbols, such as Rxy. But
what is a relation? In the world of sets, we can think of a relation as a kind
of set—namely, a subset of A×B. That might seem like a strange thing to
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say. After all, if I asked you to give me an example of a relation, you might
suggest the relation of being a parent, the relation of being a sibling, or the
relation of being taller than. In what sense are these relations like a subset
of A×B?

Every relation has two aspects: an intension and an extension. The for-
mer, the intension, is a bit mysterious and difficult to define, but basically
it’s supposed to be the essence or meaning of the relation—what makes it
the particular relation that it is. The latter, the extension, is easier to define:
the extension of a relation is just the set of ordered pairs that stand in that
relation. So, for example, the extension of the relation “has been married
to” consists of all pairs of people who have been married to each other,
including

〈Donald,Marla〉, 〈Donald, Ivana〉, 〈Donald,Melania〉.
So far, we’ve just been talking about binary relations, that is, those that hold
between two things. There are, however, n-ary relations for every natu-
ral number n. The unary relations more frequently go under the name of
properties. Just like other relations, a property has an intension and an
extension. Thus, the extensionof a property is simply the set of those things
that possess the property.

Interestingly, properties with distinct intension can have the same
extension. A famous example used by W.v.O. Quine are the properties “x
is a living creature with a heart” and “x is a living creature with kidneys.”7

Obviously, having a heart is not the same thing as having kidneys.However,
any living creature has a heart if and only if it has kidneys. Therefore, these
two properties have the same extension.

It’s surprisingly useful to classify relations into different kinds. Here,
we’ll talk about two special kinds of relations: equivalence relations and
functional relations.

Equivalence Relations

We frequently have several names for the same thing. If a and b are names
for the same thing, then we would say “a is identical to b,” or in short

7. See Quine, “Two dogmas of empiricism.” The Philosophical Review 60, 20–43 (1951).



525-85030_ch01_6P — 2020/5/22 — 12:47 — page 149 — #34

Th e o r i e s 149

“a= b.” As we saw before, the equality relation has a peculiar logic. For
example, we take it for granted that a= a (which is certainly not the case
for every relation). We also showed that if a= b, then b= a and that if
a= b and b= c, then a= c. While the equality relation has these features,
it’s not the only relation with them. For example, consider the relation R
where 〈a, b〉 ∈R just in case a is the same height as b. Then 〈a, a〉 ∈R (i.e.,
everyone is the same height as themselves); if 〈a, b〉 ∈R, then 〈b, a〉 ∈R
(being the same height as is symmetric); and if 〈a, b〉 ∈R and 〈b, c〉 ∈R,
then 〈a, c〉 ∈R (being the same height as is transitive). These facts show
that R is an equivalence relation.

A relation R on A×A is said to be an equivalence relation just in
case it is

reflexive For all a∈A, 〈a, a〉 ∈R.
symmetric For all a, b∈A, if 〈a, b〉 ∈R, then 〈b, a〉 ∈R.
transitive For all a, b, c∈A, if 〈a, b〉 ∈R and 〈b, c〉 ∈R, then 〈a, c〉 ∈R.

The simplest exampleof an equivalence relation is the equality relationR=
{〈a, a〉 | a∈A}. Another equivalence relation is the relation of having the
same value for a certain quantity. For example, “x is the same height as y” is
an equivalence relation on the set of people.

Exercise 7.23.

1. Let R be an equivalence relation, and let [a] be the set of all things
related to a, that is,

[a] = {b | 〈a, b〉 ∈R}.

Show that either [a] = [b] or [a] ∩ [b] = ∅.
2. Suppose thatR and S are equivalence relations. Show thatR∩ S is an

equivalence relation.
3. Let φ ≡ ψ be the interderivability relation in propositional logic.

Show that≡ is an equivalence relation.
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x

y

Figure 7.1. Graph of the function f (x) = x2. The parabola is the set of ordered pairs
〈x, x2〉.

Functional Relations

There are several different ways to think of what a function is. First, a func-
tion can be thought of as a rule that assigns elements of one set to elements
of another set. Second, a function can be conceived of as a graph, that is,
a set of ordered pairs in a plane. You might remember that for a graph to
be a function, it has to have the feature that any vertical line intersects it in
only one point. In other words, the graph of a function has the feature that
if both 〈a, b〉 and 〈a, c〉 occur in the graph, then b= c.

Many familiar functions are not really functions in the strict sense. Con-
sider, for example, the inverse function 1

x . This operation isn’t defined at 0,
and so it isn’t really a function on all real numbers (i.e., its domain set is
not the set of all real numbers). We require that a function is defined on all
elements of its domain set, that is, for all x in the domain, there is an f (x)
in the codomain.

A relation R on A×B is said to be a functional relation just in case it
satisfies

existence For all a∈A, there is a b∈B such that 〈a, b〉 ∈R.
uniqueness If 〈a, b〉 ∈R and 〈a, c〉 ∈R, then b= c.
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Any function f :A→B gives rise to a functional relation called its graph:

graph(f ) = {〈x, f (x)〉 | x∈X}.

By the extensionality axiom, there is a one-to-one correspondencebetween
functions and functional relations, that is, each function corresponds to
precisely one functional relation, and if two functions are distinct, then
they correspond to distinct relations.

Since functions are relations, functions have both an intension and
an extension. You may already have observed that fact (i.e., that a single
function can be expressed in various ways). Consider, for example, the
following functions:

f (x) = x2 − 1, g(x) = (x+ 1)(x− 1).

Here wemight say that f and g have different intensions, since they provide
different recipes for calculating an output. Nonetheless, these two recipes
always produce the same output; hence, f and g have the same extension.

Functions, like relations, have an arity, that is, a number of inputs.
Unlike relations, however, functions always have a single output. A func-
tion like f (x) = x2 − 1 is unary (i.e., it takes one input). In contrast, the
addition function is binary (i.e., its input is two numbers). In the limit-
ing case, a 0-ary function has no inputs and one output. Such a function
is called a point or an element, that is, it is an element in a set.

Since points are a special case of functions, which is a special case of
a relation, it also follows that a point has both an intension and an exten-
sion. To see what’s going on here, it may be easier to think of a point as a
name. Then the intension of a name is its connotation, and the extension
of a name is its denotation.8

If f is a function from A to B, and g is a function from B to C, then we
may define a function g ◦ f from A to C by setting

(g ◦ f )(x) = g(f (x)), ∀x∈A.

8. For further investigation of this issue, see Gottlob Frege’s discussion of “morning star” and
“evening star.”
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Exercise 7.24. Show the rather trivial fact that h ◦ (g ◦ f ) = (h ◦ g) ◦ f ,
whenever f , g, and h have domains and codomains that align in the right
way.

Exercise 7.25. Suppose that R= graph(f ) and S= graph(g). Show that

graph(g ◦ f ) = {〈x, z〉 | ∃y(〈x, y〉 ∈R∧ 〈y, z〉 ∈ S)
}
.

Exercise 7.26.

1. Consider the function f (x) = x3 on real numbers. Is f one-to-one?
Is f onto?

2. Give an example of a functional relation that can be described in the
vocabulary of a typical ten-year-old child.

3. Show that if g ◦ f is one-to-one, then f is one-to-one.
4. Give an example of functions g and f where g ◦ f is one-to-one, but

g is not one-to-one.

Given a function f :X → Y , there’s a natural way to define a couple of
other functions. First of all, we define an inverse image function f−1 that
maps subsets of Y to subsets of X. In particular,

(x∈ f−1(A)) ↔ (f (x) ∈A).

In other words,

f−1(A) = {x∈X | f (x) ∈A}.
The set f−1(A) is called the inverse image or preimage of A under f . We
now show that inverse image preserves intersections.

Proposition 7.3. f−1(A∩B) = f−1(A) ∩ f−1(B).

Proof. We string together a series of biconditionals.

x∈ f−1(A∩B) ↔ f (x) ∈A∩B

↔ f (x) ∈A∧ f (x) ∈B
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↔ x∈ f−1(A)∧ x∈ f−1(B)

↔ x∈ f−1(A) ∩ f−1(B).

Whereas the preimage mapping f−1 takes subsets of Y to subsets of X,
the imagemapping moves in the opposite direction. Here we abuse nota-
tion by using f again for the image mapping, which applies to subsets of X
instead of to elements of X. We define

f (A) = {y∈ Y | ∃x(x∈A∧ f (x) = y)}.
That is, f (A) consists of those elements inY that are in the range ofA under
the mapping f . In general, it is not the case that f (A∩B) = f (A) ∩ f (B).
Suppose, for example, that A∩B= ∅ and that f is a function such that
f (A) = f (B) = Y . Then f (A∩B) = f (∅) = ∅, but f (A) ∩ f (B) = Y .

Exercise 7.27. Prove the following for arbitrary sets A,B, and function
f :A→B.

1. f−1(A∪B) = f−1(A) ∪ f−1(B).
2. If A⊆B, then f−1(A) ⊆ f−1(B).
3. f (A∪B) = f (A) ∪ f (B).
4. If f is a one-to-one function, then f (A∩B) = f (A) ∩ f (B).

Exercise 7.28. Show that if f :A→B is one-to-one, and A is nonempty,
then there is a function g :B→A such that g ◦ f is the identity function
on A.

Axioms S1–S4 tell us what sets must be like, but they don’t say much
about which sets exist, other than the empty set. Our next axiom ensures
us of the existenceof a setwhose elements forman infinite progression. You
know this set under the common description: 0, 1, 2, . . . (i.e., the natural
numbersN). ThekeypropertyofN is that it has anorigin0 anda successor
function s(x) = x+ 1 that enumerates all its elements.

S5. Infinity There is a setN, with element 0∈N, and a function s :N →
N such that s is one-to-one, but not onto, and every element of N can be
reached by a finite number of applications of s to 0.
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Successive applications of s allow us to name all of the elements inN:

1= s(0), 2= s(s(0)), . . . .

We can then use the comprehension axiom to define all the finite and
cofinite subsets ofN, such as

{x∈N | x= 2∨ x= 4}, {x∈N | x �= 3}.

It follows, then, that for each natural number n, there is a set Sn with exactly
n elements. As a convenient shorthand, we will write {a1, . . . , an} for the
set

{x∈N | x= a1 ∨ · · · ∨ x= a2}.

Then extensionality entails that duplicate items can be removed from a set,
for example, {a, a, b} = {a, b}.

The structure of the natural numbers N makes it possible to define an
addition function + and a multiplication function ·. For example, we set
x+ 0= x, and x+ s(y) = s(x+ y). It can be shown that+, ·, 0, 1 satisfy the
Peanoaxioms for arithmetic. Thus, there is a clear sense inwhich the theory
PA can be translated into the theory of sets. This translation provides the
desired reduction of at least one important part of mathematics (namely,
arithmetic) to set theory.

For the comprehension axiom, onemight think it would be simpler just
to say that for any formula φ(x), there is a set {x|φ(x)} of all things that
satisfy x. But that idea leads immediately to problems, as was noted by
Bertrand Russell. Consider, for example, the following predicate:

φ(x) ≡ x �∈ x,

and let A= {x |φ(x)}. In other words, A is the set of all sets that do not
contain themselves.
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Exercise 7.29. Show that if A∈A, then A �∈A. Then show that if A �∈
A, then A∈A. Conclude that the assumption that A exists leads to a
contradiction.

It turns out, then, not to be so easy to formulate a theory of sets
that is both consistent and powerful enough to serve as a foundation for
mathematics.
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Models

The primary goal of this chapter is to teach you how to prove
that an argument is invalid. The idea here is like truth tables, but the
method more closely resembles what one actually does in real-life scenar-
ios, especially in the sciences.

A typical (scientific) theory is applicable in many different situations.
For example, Darwin’s theory of evolution applies to early human history,
but it also applies to populations of fruit flies or to cancer cells. Similarly,
a theory about economic bubbles might apply to the housing bubble in
the United States in the early 2000s and also to the tulip crisis of 1637
in Holland. So, scientific thinking involves both abstract theory and the
application of that theory to specific situations—or, to be more precise,
application to more concrete descriptions of situations. We’ll say that the
concrete description is amodel of the abstract theory.1

Forourpurposes, theprimaryutilityofmodel building is thatwecanuse
it to show that an argument is invalid. For, if one can build a model where
the premises of an argument are true, but its conclusion is false, then that
argument is invalid. What, then, are the rules for model building, and how
can we tell whether or not sentences are true in amodel? To get answers to

1. Warning: The English verb “to model” is used in two almost opposite ways. First, one can
model a concrete thing by constructing an abstract representation of it. Second, one canmodel an
abstract idea or theory by constructing a more concrete instance of it. In this chapter, we will be
concerned exclusively with the second sense of modeling.

156
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these questions, let’s begin with a famous example where model building
played a crucial role.

For most of Western history, Euclidean geometry was taken to be the
paradigm example of certain knowledge. Sitting in a dark room, you can
use Euclidean geometry to deduce, with complete logical rigor, that in any
triangle, the sum of the internal angles is 180 degrees. Then if you go out-
side andmeasure triangles, youwill find again and again that the prediction
of Euclidean geometry is correct: the internal angles always add up to 180
degrees.

It seems almost like a miracle that Euclidean geometry—discovered
more than two thousand years ago—could be so certain. This kind of
thought led many people throughout history to investigate the source of
our knowledge of the axioms of Euclidean geometry. Some of these inves-
tigationswere of a philosophical nature, andotherswere focusedonmathe-
matical questions, such as: is it possible to boil down the number of axioms
of Euclidean geometry so that we’re left with just a few axioms that are
obviously true?

We won’t go into details here, but just think about it this way. Some
of the axioms of Euclidean geometry seem to be self-evidently true. For
example, between any two points, there is a line, or similarly, any two right
angles are equal to each other. Let’s write Γ for the collection of these
uncontroversial axioms.

However, Euclidean geometry also depends on the following, less obvi-
ous, axiom:

Parallel postulate: for any line x, and for an point pnot on x, there is a unique
line y such that p∈ y and such that y is parallel to x.

Let’s writeP for the parallel postulate. BecauseP is not obviously true on its
face, manymathematicians spent a lot of time trying to prove that it follows
from the uncontroversial axioms. That is, they tried to show that Γ � P.
I’m sorry to say that some of these mathematicians spent their whole lives
trying to prove this little sequent and diedwithout having found an answer.
In fact, nobody ever managed to prove it.

But then something amazing happened. In the nineteenth century, an
obscure Russian mathematician named Nikolai Lobachevsky decided that
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he would try for a proof. Being a clever logician, Lobachevsky realized that
all he had to do was to prove that Γ and¬P imply a contradiction. So, he
assumed the uncontroversial axioms and the negation of the parallel postu-
late, and he got busy working his way toward a contradiction. Lobachevsky
proved many things that seemed absurd. For example, he proved that the
internal angles of a triangle are strictly less than 180 degrees. However, he
never got a literal contradiction, that is, he never got a sentence φ and also
its negation¬φ.

After a while, it dawned on Lobachevsky that he had proven so many
things that these consequences amounted to thedescriptionof a newmath-
ematical universe. In other words, he had described a model M in which
the uncontroversial axioms Γ are true, and the parallel postulate P is false.
This modelM is a non-Euclidean universe, which means that our universe
isn’t necessarily Euclidean. Therefore, the method of modeling is respon-
sible for history’s most famous example of showing that we don’t know
something that we thought we knew.

Logical Grammar

The intuitive ideas of interpretations and models are really interesting
and suggestive. These ideas have proven to be extremely useful in many
domains of knowledge, from mathematics to economics and philosophy.
However, as we’ve described them so far, these ideas are too vague to
prove anything interesting about them and, a fortiori, to use them to prove
anything about the system of logic we’ve developed in this book.

The tool we develop here is the notion of an interpretation of a predi-
cate logic language into the theory of sets. For this we assume that we have
a fairly firm grasp of what is true or false in the universe of sets. Thus, in
order to show that a sequent φ � ψ is not valid, we will show that φ and
ψ can be interpreted as set-theoretic statements such that φ is obviously
true, and ψ is obviously false.

To this end, we first need a precise description of the family of predicate
logic sentences. Suppose that Σ is a fixed predicate logic signature. That
is, Σ consists of function symbols and relation symbols.We’ll also assume
that Σ comeswith an equality symbol.We then define the set of Σ -terms
as follows:
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• Each variable x, y, z, . . . is a Σ -term.
• If f ∈ Σ is an n-ary function symbol, and t1, . . . , tn are Σ -terms,

then f (t1, . . . , tn) is a Σ -term.

When no confusion can result, we’ll just say “term” instead of “Σ -term.”
The special case of a 0-ary function symbol is called a name or a constant
symbol.

This definition of terms should agree with the intuitions you have
already developed. For example, if Σ comes with a binary function sym-
bol ◦, then the terms include expressions such as x ◦ y and (x ◦ y) ◦ z.
If Σ comes with a name 1 and a binary function symbol +, then the
terms include expressions such as 1+ 1 and (1+ 1) + (1+ 1). Semanti-
cally speaking, the terms will be interpreted as functions and, in the special
case of names, will be interpreted as points.

We define the set of Σ -formulas as follows:

• If t1 and t2 are terms, then t1 = t2 is a formula.
• If R is an n-ary relation symbol and t1, . . . , tn are terms, then

R(t1, . . . , tn) is a formula.
• If φ and ψ are formulas, then φ ∨ ψ , φ ∧ ψ , φ → ψ , and ¬φ

are formulas.
• If φ is a formula that does not contain the quantifiers ∀x or ∃x,

then ∀xφ and ∃xφ are formulas.

A few comments on this definition of formulas. First, to be more rigorous,
we might want to define simultaneously the notion of a formula and the
notion of the variables that occur freely in that formula. However, we will
operate for now on amore intuitive level. Basically, a variable occurs freely
in a formula if that variable hasn’t been bound by a quantifier at any stage
of construction. So, for example, in the formula x= y, the variables x and
y both occur freely. However, in the formula ∀x(x= y), the variable x has
been bound, and only y occurs freely.

Second, the quantifier clause of our definition is clumsy. It would be
simpler to allow formulas like ∀x(Px→ ∃xQx), but that is not permitted
by our quantifier clause. The reason for themore restrictive clause is simply
to encourage the student to use perspicuous notation. While there is no
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reason in theory to ban sentences such as∀x(Px→ ∃xQx), it’s better to use
a variant such as ∀x(Px→ ∃yQy) in which it’s clear that the first quantifier
applies only to the first occurence of x.

We now define a predicate logic sentence to be a formula in which no
variables are free. Thus, ∃xRax is a sentence, but ∃xRyx is not a sentence
since y is free. Our proofswill always and only involve sentences. If you ever
have a step in a proof that has a formula rather than a sentence, then you’ve
misapplied one of the inference rules.2

Interpretation Formalized

An interpretation of the symbols in Σ consists of four things:

1. Some fixed setM, which we call the domain or universe of the inter-
pretation. For technical reasons, the domain M must be a nonempty
set.3

2. An assignmentof eachn-ary relation symbolR∈ Σ to some subsetRM

ofM× · · · ×M. The set RM is called the extension of R inM.
3. An assignment of each constant symbol c∈ Σ to some element

cM ∈M.
4. An assignment of each n-ary function symbol f ∈ Σ to some function

f M fromM× · · · ×M toM.

There will always be many different ways that the symbols in Σ could be
interpreted. There is somuch freedomhere it can be dizzying. How should
one choose the setM from among the untold number of conceivable sets?
Fortunately, it doesn’tmake any differencewhich particular set you choose.
All that matters are structural facts, namely, the size of the set, the size of
the extensions of the relation symbols, and the relations between the exten-
sions of the relation symbols. For many cases, you’ll be able to tell whether
a sentence is consistent or inconsistent by looking at interpretations in
finite sets. For some sentences, you’ll need an infinite set (e.g., the natural

2. The most elegant proof systems allow sequents with free variables. But baby steps. . . .
3.This requirementhas botheredmany logicians, includingBertrandRussell. It canbe avoided

by using an alternative to classical logic such as free logic or coherent logic.
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numbers). For the exercises in this book, you’ll never need a set bigger than
the natural numbers.

Once the symbols in Σ have been assigned to relevant set-theoretic
items, there is a straightforward recipe for extending the assignment to
all terms and formulas built on Σ . As with valuations (i.e., rows in truth
tables), the assignment grows, from the inside out, starting with the assign-
ments to the function and relation symbols and then applying set-theoretic
operations corresponding to the connectives and quantifiers.

Let’s begin by looking at the case of a formula φ(x) in which only the
variable x occurs. In this case, we’ll defineφ(x)M to be a subset ofM, which
can be thought of as follows:

φ(x)M is the set of all a∈M such that φ(x) is true when x takes value a.

The definition of φ(x)M is inductive. In particular, we first define φ(x)M

whenφ(x) is an atomic formula. Thenwe extend the definition to complex
formulas.

If we temporarily ignore function symbols, then an atomic formula that
contains only the variable x is either of the form x= x or of the form
R(x, . . . , x).

• Since (x= x)M should be the set of allM that are equal to them-
selves, it should be all ofM.

• As for R(x, . . . , x)M , since RM is defined to be a subset of M×
· · ·×M, we can define R(x, . . . , x)M to be the set of all a∈M
such that 〈a, . . . , a〉 ∈RM . More formally,

R(x, . . . , x)M = {a∈M | 〈a, . . . , a〉 ∈RM}.

Now that we have a definition of φ(x)M for an atomic formula φ(x), we
extend the definition to Boolean combinations of formulas. In particular,

(φ ∧ ψ )M = φM ∩ ψM (φ ∨ ψ )M = φM ∪ ψM

(¬φ)M = M\φM (φ → ψ )M = (M\φM) ∪ ψM
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These definitions are fairly intuitive. For example, (φ ∧ ψ )M is true of
some a just in case both φM and ψM are true of a. For the case of φ → ψ ,
weuse the intuitive equivalencewith¬φ ∨ ψ and thepreviousdefinitions.

Finally, we need to extend the interpretation to formulas that are built
up with quantifiers—and here we run into a little challenge. If φ(x) has a
free variable x, then ∃xφ(x) no longer has a free variable, and so it doesn’t
make much sense to think of ∀xφ(x) as a set of things. Instead, we want
to think of ∀xφ(x) as simply being true or false. The obvious thing to say
here is that (∃xφ(x))M is true when φ(x)M �= ∅, and (∃xφ(x))M is false
when φ(x)M = ∅. Similarly, (∀xφ(x))M is true when φ(x)M =M, and
(∀xφ(x))M is false when φ(x)M �=M.

Example. Suppose that F andG are predicate symbols. LetM= {1, 2, 3},
let FM = {1, 2}, and letG= {2, 3}. We can then compute

(Fx∧Gx)M = (Fx)M ∩ (Gx)M = {2}
(Fx∨Gx)M = (Fx)M ∪ (Gx)M = M

∃x(Fx∧Gx)M = true
∀x(Fx∧Gx)M = false

Example. Consider the sentence Fc. Let M be an interpretation with
domain {1, 2} where FM = {1} and cM = 2. Then Fc is false in M. Let N
be an interpretation just likeM except that cN = 1. Then Fc is true inN.

There are two primary reasons to build interpretations: to show that
a collection of sentences is consistent and, derivatively, to show that a
sequent cannot be proven. In propositional logic, a sentence φ is consis-
tent just in case there is some valuation v such that v(φ) = 1. In predicate
logic, a sentence φ is consistent just in case there is some interpretationM
such that φM is true. In propositional logic, a sequent φ � ψ is provable if
and only if every valuation that makes φ true also makes ψ true. In predi-
cate logic, a sequent φ � ψ is provable if and only if for any interpretation
M, if φM is true, then ψM is true. To show, then, that a sequent cannot be
proven, it suffices to produce an interpretation thatmakes its premises true
and its conclusion false.
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Definition. A counterexample to a sequent φ � ψ is an interpretation
M such that φM is true, but ψM is false.

A counterexample is a concrete illustration of the failure of an argument
to preserve truth. That is, a counterexample to an argument is a formaliza-
tion of the notion of a situation, or state of affairs, in which the premises are
true and the conclusion is false.

Example. It is intuitively clear that ∀x(Fx∨Gx) doesn’t imply ∀xFx∨
∀xGx. We’ll now construct a formal counterexample. Let M= {1, 2}, let
FM = {1}, and letGM = {2}. Then,

(Fx∨Gx)M = (Fx)M ∪ (Gx)M = {1} ∪ {2} = M,

hence (∀x(Fx∨Gx))M is true. Since 2 �∈ FM , it follows that (∀xFx)M is
false. Similarly, (∀xGx)M is false, and hence (∀xFx∨∀xGx)M is false.
Therefore,M shows that ∀x(Fx∨Gx) does not imply ∀xFx∨∀xGx.

You might wonder: how did we know to choose this interpretation?
Well, I’m sorry to say that there is no algorithm for finding predicate logic
interpretations.4 In this way, predicate logic differs markedly from propo-
sitional logic, where the truth table method provides a surefire method for
finding the interpretation you want. Nonetheless, with practice, a human
being can become quite good at sniffing out the relevant interpretations.
For example, can I think of a situation where everything is F or G, but it’s
not true that everything is F, and it’s not true that everything is G? What
immediately comes tomymind here, as a counterexample, is even and odd
numbers. Every number is either even or odd, but it’s not true that every
number is even, and it’s not true that every number is odd. So, I could
have chosen domainM= {1, 2, . . . }, and let FM be odd numbers and GM

be even numbers. But then I realized that two numbers were enough to
show that the argument is invalid, and that’s why I choseM= {1, 2} with
FM = {1} andGM = {2}.

4. The technical claim here is that predicate logic is undecidable.
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There’s another approach that is sometimes helpful, but it’s not guaran-
teed to succeed. Inparticular, you can start to get a feel forwhether ornot an
argument is valid by looking at what it says about small domains. For exam-
ple, if you take a domainM= {a, b}with two elements, then an existential
sentence ∃xφ(x) says that φ(a)∨φ(b), and a universal sentence ∀xψ (x)
says that ψ (a)∧ ψ (b). In some cases, you’ll get lucky by looking at small
domains, and you’ll be able to see directly how to build a counterexample.
In the example above, ∀x(Fx∨Gx) says that (Fa∨Ga)∧ (Fb∨Gb), and
∀xFx∨∀xGx says that (Fa∧Ga)∨ (Fb∧Gb). Then a simple truth table
test shows that the valuation v(Fa) = v(Gb) = 1 and v(Ga) = v(Fb) = 0
makes the first sentence true and the second sentence false. From this, we
see that FM = {a} andGM = {b} give a counterexample to the argument.5

Exercise8.1.For eachof the following sequents, provide a counterexample
to show that it is invalid.

1. ∃xFx � Fc
2. Fc � ∀xFx
3. ∃xFx∧ ∃xGx � ∃x(Fx∧Gx)
4. ∀xFx→ ∀xGx � ∀x(Fx→Gx)
5. ∀x(Fx→Hx) � ∃xFx∨¬∃xHx
6. ∀x(Fx→Gx) � ∃x(Fx∧Gx)
7. ∃x(Fx∧Gx), ∃x(Gx∧Hx) � ∃x(Fx∧Hx)
8. � ∀xFx∨∀x¬Fx
9. ∃x(Fx→Gx), ∃x(Gx→Hx) � ∃x(Fx→Hx)
10. ∃x(Fx→Gx) � ∃xFx→ ∃xGx

Exercise 8.2. Suppose that φ and ψ are formulas where the only free
variable is x. Show that (φ → ψ )M =M iff φM ⊆ ψM .

Let’s now expand the definition of an interpretation to cover proposi-
tional constants as well. An interpretation assigns a propositional constant
a truth value, either true (1) or false (0). But now we have to think about

5. There is, in fact, an algorithm for determining the validity of arguments that use only unary
predicate symbols. See p. 237.
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how to extend an interpretation to formulas that contain both predicate
symbols and propositional constants. Here we adopt the following
definitions:

PM is false PM is true

(φ ∧ P)M = ∅ (φ ∧ P)M = φM

(φ ∨ P)M = φM (φ ∨ P)M = M
(P→ φ)M = M (P→ φ)M = φM

(φ → P)M = M\φM (φ → P)M = M

In general, you should try to think of something like (φ → P)M as the col-
lection of things such that if they are φ, then P. So, if PM is true, then that
holds for every individual. However, if PM is false, then it only holds for
those individuals that are not φ.

Example. Consider the sentences ∃x(Fx→ P) and ∀x(Fx→ P). Let M
be an interpretation with domain {1, 2} where FM = {1} and PM is false.
Then,

(Fx→ P)M = M\(Fx)M = {2}.

Therefore, ∃(Fx→ P) is true, while ∀x(Fx→ P) is false.

Exercise 8.3. For each of the following sequents, provide a counterexam-
ple to show that it is invalid.

1. ∀xFx→ P � ∀x(Fx→ P)
2. ∃x(Fx→ P) � ∃xFx→ P

Interpretations Generalized

The previous discussion explained how to interpret formulas with one
free variable. Now we need to deal with the general case. Roughly speak-
ing, if φ(x1, . . . , xn) is a formula with n free variables, then we would
like for φ(x1, . . . , xn)M to be a collection of n-tuples of elements of M.
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At this point, however, we have a difficult choice to make between intu-
itiveness and rigor. On the one hand, we can give an intuitive defini-
tion of φ(x1, . . . , xn)M , but this definition is not completely rigorous.
On the other hand, we can give a mathematically precise definition of
φ(x1, . . . , xn)M but only after introducing some nonintuitive technical
auxiliaries. We’ll first give the intuitive definition and use it to solve
some problems. At the end of the chapter, we’ll give a more rigorous
definition.

For the intuitive definition, we extend an interpretationM to all atomic
formulas as follows. First, for a term t with n-free variables, we define tM as
an n-place function of those variables. For example, if f is a binary function
symbol, then f (x, x) is a termwith one free variable, andwe define f (x, x)M

to be the function that takes input a and returns output f M(a, a). As a spe-
cial case of a term, for a variable xi, we define xMi to be the function that
picks out the relevant component ai. In particular, xMi (a1, . . . , an) = ai.

Now for an atomic formula R(t1, . . . , tm), we define R(t1, . . . , tm)M to
be the set of n-tuples 〈a1, . . . , an〉 such that them-tuple

〈tM1 (a1, . . . , an), . . . , tMm (a1, . . . , an)〉

is in RM . Finally, for an equality t1 = t2 of terms, we define (t1 = t2)M to
be the set of 〈a1, . . . , an〉 such that tM1 (a1, . . . , an) = tM2 (a1, . . . , an). In the
special case of constant symbols, we say that (c= d)M is true just in case
cM = dM .

This definition extends straightforwardly to Boolean combinations of
formulas. Then, for quantified formulas, we extend as follows:

• If φ(x1, . . . , xn, y)M is already defined, then we let (∃yφ(x1, . . . ,
xn, y))M be the set of 〈a1, . . . , an〉 such that there is some b∈M
such that 〈a1, . . . , an, b〉 ∈ φ(x1, . . . , xn, y)M . In the special case
where n= 0, then (∃yφ(y))M is true when there is a b∈ φ(y)M ,
and (∃yφ(y))M is false when there is no b∈ φ(y)M .

• If φ(x1, . . . , xn, y)M is already defined, then we let (∀yφ(x1, . . . ,
xn, y))M be the set of 〈a1, . . . , an〉 such that no matter which b∈
M is chosen, 〈a1, . . . , an, b〉 ∈ φ(x1, . . . , xn, y)M .
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Example. LetM= {a1, a2}, and let RM = {〈a1, a1〉, 〈a2, a2〉}. Then (∃yR
(x, y))M is the set of a∈M such that 〈a, b〉 ∈RM for some b∈M. Hence,
(∃yR(x, y))M =M, and it follows that (∀x∃yR(x, y))M is true.

Example. Suppose again thatR is a binary relation symbol. LetM= {1, 2}
and let RM be the standard interpretation of “less than,” namely, RM =
{〈1, 2〉}. In this case,

(Rxx)M = {a∈M | 〈a, a〉 ∈RM} = ∅.

If we had instead interpreted R as “less than or equal,” then we would get

(Rxx)M = {a∈M | 〈a, a〉 ∈RM} = M.

Example. Wewill show that ∀y∃xRxy does not imply ∃x∀yRxy. LetM=
{a, b} and let RM = {〈a, a〉, 〈b, b〉}. Then, (∃xRxy)M is the set of y∈M that
occur on the right-hand side of some pair in RM , that is, everything inM.
Hence, (∀y∃xRxy)M is true. In contrast, (∀yRxy)M is the set of x∈M such
that 〈x, y〉 ∈RM for all y∈M. There is no such x∈M; hence, (∀yRxy)M is
the empty set, and (∃x∀yRxy)M is false.

Example. Consider the numerical claim ∃x∃y(x �= y), which is supposed
to say that there are at least two things. Since (x= y)M is the set of 〈a, a〉 ∈
M×M, it follows that (x �= y)M is the set of 〈a, b〉 ∈M×M such that a �=
b. Hence, (∃y(x �= y))M is the set of a∈M such that there is some b∈M
with a �= b. IfM has only a single element, then there are no such a∈M,
and ifM has at least two elements, then every a∈M is not equal to some
b∈M. Thus, (∃x∃y(x �= y))M is true iff (∃y(x �= y))M is nonempty iff M
has at least two elements.

One of the primary functions of modeling in the sciences is to explore
the possibilities that are consistent with a theory. What’s more, scientists
have a set of rules for how such possibilities must be described—and these
rules correspond roughly, with some idealization, to the axioms of set
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theory. Hence, we’ll say that a possibility relative to a theory is just an inter-
pretation in which that theory’s axioms are true, that is, it’s a model of the
theory.

Definition. IfT is a theory, then an interpretationM is said to be amodel
of T just in case all of the axioms of T are true inM.

Example. Consider the theory T with a single axiom:

∃x∃y (
(x �= y)∧∀z((x= z)∨ (y= z))

)
.

Then, a model of T is any set that contains exactly two elements.

Example. We now consider an extended example. Let T be the theory
of autosets from exercise 7.15. Here the signature Σ has a single binary
function symbol ◦, and T has three axioms that jointly say that ◦ gives a
transitive left and right action. (To say that the action is transitive means
that from a fixed x, any z can be reached bymeans of acting on xwith some
y. In other words, from any starting point, you can reach any other point.)

Consider now an interpretation of Σ with domain {0, 1}. We need to
interpret ◦ as a function fromM×M toM, and we’ll do this by explicitly
writing out a multiplication table:

◦ 0 1
0 0 1
1 1 0

In other words,

◦M = {〈0, 0, 0〉, 〈0, 1, 1〉, 〈1, 0, 1〉, 〈1, 1, 0〉}.

It’s easy to check that this interpretation satisfies the associativity and left-
right action axioms. Hence,M is a model of the theory T, that is,M is an
autoset.

In exercise 7.15, you were asked to prove that T �∃!x(x ◦ x= x). Here,
we put T before the turnstile � as shorthand for the axioms of T. By the
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soundness of our proof rules (which we haven’t proven yet, but which we
promise is true), ∃!x(x ◦ x= x) is true in all models of T, in particular in
M. Fortunately, we can see exactly what inMmakes that sentence true: the
element 0∈M is the unique idempotent.

In exercise 7.15, you also showed that

T � ∀x∃!y∀z(z ◦ x ◦ y= z).

Intuitively speaking, this unique y is the inverse x−1 of x, and we could (if
wewanted) define a corresponding unary function symbol i. It’s not hard to
see, then, that inM, this unary function symbol is interpreted as the identity
function, that is, 0 and 1 are both their own inverses.

Exercise8.4.Present amodel ofTwithdomainM= {0, 1, 2}. (Hint: inter-
pret ◦ as addition, where 2+ 1= 1+ 2= 0 and 2+ 2= 1.) Identify the
unique idempotent inM and the inverse operation i onM.

Exercise 8.5. Show that the theory of autosets does not imply that
∀x∀y(x ◦ y= y ◦ x).

Diagramming Interpretations

The goal of this section is heuristic in the sense of helping you find inter-
pretations. We won’t offer you an algorithm, but we will offer you some
pictures that should help improve your intuitions. In particular, for sen-
tences that involve a binary relation symbol, say R, we can think of an
interpretation as a sort of diagram with nodes and arrows. With practice,
you can start to see that particular sentences correspond to particular geo-
metric configurations, and then you can use your geometric intuition to
help find interpretations.

We showed previously that ∀y∃xRxy does not imply ∃x∀yRxy. The
counterexample we gave was completely mathematically rigorous but per-
haps not very intuitive.We can capture the idea of the counterexamplewith
the following simple picture. Think of an arrow between nodes as indi-
cating that the relation R holds between them. Then, the first sentence
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∀y∃xRxy says that each node has an arrow coming into it—which is true
in this picture. The second sentence ∃x∀yRxy says that there is a node that
has arrows going out to every other node—which is false in this picture.
Thus, we can see quickly from the picture that the first sentence does not
imply the second.

1 2

Some sentences have particularly nice geometric interpretations. For
example, the sentence Raa says that a bears the relation R to itself, which
means that there is an arrow looping from a back to itself (as in the upper
left of figure 8.1). Thus, in order for∀xRxx to be true, every node in the dia-
gram must have an arrow coming back to itself. The sentence Rab→Rba
says that if there is an arrow from a to b, then there is an arrow coming back
from b to a. That could be true for two reasons: first, theremay be an arrow
from a to b and also an arrow back from b to a (as in the upper right of
figure 8.1). Second, Rab→Rbawould be true if there were no arrow from
a to b. Generalizing, the sentence∀x(Rxy→Ryx) says that the relationR is
symmetric; pictorially, it says that for any twonodes a, b, if there is an arrow
from a to b, then there is an arrow back from b to a. Finally, the sentence
(Rab∧Rbc) →Rac says that if there are arrows from a to b and from b to
c, then there is an arrow from a to c. Pictorially, the sentence is true if and
only if any two-step path corresponds to a one-step path (as in the bottom
of figure 8.1). The transitivity axiom∀x∀y∀z((Rxy∧Ryz) →Rxz) asserts
that this condition holds for all two-step paths.

Suppose now that you’re given sentences φ1, . . . ,φn, and you want to
determine if these sentences are consistent. If these sentences only use
the relation symbol R, then you can establish consistency by drawing a
relevant arrow diagram. Consider, for example, the sentences that say that
the relationR is antireflexive [∀x¬Rxx], transitive, and total [∀x∀y(Rxy∨
Ryx)]. You might begin by drawing a single node a with no arrows. But
then the totality axiom fails. Thus, we need to add at least one other node



525-85030_ch01_6P — 2020/5/22 — 12:48 — page 171 — #16

Mod e l s 171

a a b

a b c

Figure 8.1. Visual representation of properties of Rxy.

b, and we need an arrow in one of the two directions. Without loss of
generality, we put in an arrow from a to b. Since there’s only one arrow, the
diagram trivially satisfies transitivity. Since no node has an arrow to itself,
the diagramsatisfies irreflexivity. Andby construction, thediagramsatisfies
totality. Therefore those sentences are consistent.

Exercise 8.6. Prove that if the relation R is antireflexive and total, then
there are at least two things.

Suppose now that we add the sentence that says that the relation R is
entire, that is, ∀x∃yRxy. Pictorially speaking, the relation R is entire only
if each node in the diagram has an arrow coming out. Of course, that fails
in the previous diagram; hence, it doesn’t validate the sentence ∀x∃yRxy.
What’s more, we couldn’t fix up that diagram simply by adding an arrow
back from b to a. For in that case, wewould haveRab∧Rba, and sincewe’re
requiring transitivity, we would have to put an arrow from a to itself, which
is banned by the irreflexivity diagram.

We now sketch an informal argument that no finite diagram can make
those four sentences true. Suppose for reductio ad absurdum that there
is a diagram with m nodes that makes these sentences true. The entirety
axiom says that for each an, there is an an+1 such that Ranan+1. We apply
this axiom sufficiently many times so that we have a list a1, . . . , am+1 of
nodes. We now show that this list has no repeated nodes. If i< j, then tran-
sitivity implies that Raiaj, and irreflexivity implies that ai �= aj. Hence, all
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elements a1, . . . , am+1 are distinct, in contradiction with the assumption
that the diagram has only m nodes. Obviously, this argument works for
any number m; hence, there is no finite diagram that makes all of these
sentences true.

Of course, it doesn’t follow (yet) that these sentences are inconsistent,
for there might be an infinite diagram that makes them all true. I suspect,
in fact, that you may already be thinking of an example, say the natural
numbersN = {1, 2, . . . }, withR interpreted as “less than or equal.” Clearly,
φ1, . . . ,φ4 are true under this interpretation, and so these sentences are
consistent.

Exercise 8.7. For each of the following sentences, provide one interpreta-
tion in which it is true and one interpretation in which it is false.

1. ∀x∀y(Rxy→Ryx)
2. ∀x∀y∃z(Rxz∧Ryz)
3. ∃x∀y(Ryx→Ryy)
4. ∀x(∃yRyx→ ∀zRzx)
5. ∃x∃y(Rxy↔ ¬Ryy)

Exercise 8.8. Is the following sentence consistent or not? If it is, describe
an interpretation in which it is true.

∀x∃y∀z(¬Rxx∧Rxy∧ (Ryz→Rxz)).

Example. Let R be a binary relation symbol, and let T be the theory of
partially ordered sets formulated with R. That is, T says that the relation
R is reflexive, antisymmetric, and transitive. Not surprisingly, a model of
T is called a partially ordered set, and there are many of these. First of
all, take any set M and let RM = {〈a, a〉 | a∈M}. Then, M is a partially
ordered set—although a rather boring one. In contrast, consider the set
N = {0, 1, 2, . . . } of natural numbers, and let RM = {〈a, b〉 | a≤ b}. Then,
N is a partially ordered set.

Exercise 8.9.Write down at least two sentences that are true in the model
N of natural numbers but not consequences of the theory of partially
ordered sets.
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Interpretation Rigorized

The way we defined interpretations suffers from some (fairly innocuous)
mathematical imprecision. In particular, we didn’t define φM for an arbi-
trary formula φ. Instead, we defined φ(x1, . . . , xn)M but without explain-
ing how to understand the notation φ(x1, . . . , xn). In this section, we fix
that problem, but only at the cost of introducing a new complication.

First we define two new things.

Definition. Let x1, . . . , xn be a duplicate-free list of variables. If all the
free variables of the term t occur in the list x1, . . . xn, then we say that
t(x1, . . . , xn) is a term in context.

Definition. If all of the free variables of the formula φ occur in the list
x1, . . . , xn, then we say that [x1, . . . , xn :φ] is a formula in context.

We sometimes abbreviate the list x1, . . . , xn by �x, so that [�x :φ] is a
formula in context. We also use a dash “−” to indicate an empty list of vari-
ables, so that [− :φ] is a formula in context when φ is a sentence. We will
soon define [�x :φ]M , but first let’s explain the intuitive idea we’re trying to
express:

[�x :φ]M is the set of n-tuples �a inM× · · · ×M such that φ is true when xi
is assigned to ai.

If a variable xi is not free inφ, then it serves as a “dummy” in this definition.
For example, if p is a predicate symbol, then [x1, x2 : p(x1)]M is the set of
〈a1, a2〉 such that a1 ∈ pM . We also adopt the convention that the product
of zero copies ofM is a one-point set 1. Hence, [− :φ]M will be a subset of
1, either the entire set, and we say that [− :φ]M is true, or the empty set,
and we say that [− :φ]M is false.

LetM be an interpretation. We first define t(�x)M , where t(�x) is a term
in context.

• Suppose that t is a variablexi. Then, t(x1, . . . , xn)M is the function
that takes an n-tuple 〈a1, . . . , an〉 and returns the ith entry ai.

• Suppose that c is a constant symbol. Then, t(�x)M is the function
that takes an n-tuple �a and returns the element cM ∈M.
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• Suppose that t is a term of the form f (t1, . . . , tm), where ti(�x)M
has already been defined. Then, t(�x)M is the composite function
that assigns f M(b1, . . . , bm) to �a, where bi = ti(�x)M(�a).

Now we define [�x :φ]M , where [�x :φ] is a formula in context.

• For the tautology�, we define [�x :�]M to beM× · · · ×M.
• Let t1 and t2 be terms. Then, [�x : t1 = t2] is the set of �a such that

t1(�x)M(�a) = t2(�x)M(�a).
• Let t1, . . . , tm be terms, and let R be an m-ary relation symbol.

Then, [�x :R(t1, . . . , tm)]M is the set of �a such that
〈
t1(�x)M(�a), . . . , tm(�x)M(�a)〉 ∈ RM .

For the inductive clauses, we look at a formula in context [�x :φ], where for
anyproper subformula ψ ofφ andany context�yof ψ , [�y : ψ ]M has already
been defined.

• For Boolean combinations:

[�x :φ ∧ ψ ]M = [�x :φ]M ∩ [�x : ψ ]M
[�x :φ ∨ ψ ]M = [�x :φ]M ∪ [�x : ψ ]M
[�x :¬φ]M = [�x :�]M\[�x :φ]M
[�x :φ → ψ ]M = [�x :¬φ ∨ ψ ]M .

• For the quantifiers, we wish to define [�x : ∃yφ]M , where we
assume that [�x, y :φ]M has already been defined. In this case,
we let [�x : ∃yφ]M be the set that results from projecting out the
last coordinate of [�x, y :φ]M . In other words, [�x : ∃yφ]M con-
sists of n-tuples 〈a1, . . . , an〉 such that there is a b∈M with
〈a1, . . . , an, b〉 ∈ [�x, y :φ]M . Similarly, for the universal quan-
tifier, [�x : ∀yφ]M consists of n-tuples 〈a1, . . . , an〉 such that
〈a1, . . . , an, b〉 ∈ [�x, y :φ]M for all b∈M.

Example. We show that [x1, x2 : p(x1)]M = [x : p(x)]M ×M. It’s clear
that [x : p(x)]M = pM . Now, if t is the variable x1, then t(x1, x2)M is the
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function that takes a pair 〈a1, a2〉 and returns a1. Hence, [x1, x2 : p(x1)]M
is the set of 〈a1, a2〉 ∈M×M such that a1 = t(x1, x2)M(a1, a2) ∈ pM .

Exercise 8.10.Describe the sets [x, y : x= y]M and [x : x= x]M .

Summary

For the purposes of this book, the primary use of interpretations is to show
that a sequent cannot be proven. Sometimes you’ll want to know that for
its own sake, and sometimes you’ll want to know that so that you can avoid
a bad strategy in trying to prove something else. In doing real science, one
often goes back and forth between searching for a proof and searching for
possible counterexamples. In particular, becoming convinced that there is
no counterexample can frequently lead to the discovery of a proof.

Thinking about interpretations can also help find proofs in formal logic.
Consider, for example, the sentence ∃x∀y(Fx→ Fy), which many stu-
dents find to be one of the most challenging tautologies that involves only
monadic predicates. Let’s see, then, why this sentence has to be true in
every interpretation. The key thing to observe is that in every interpreta-
tion M, either everything is F, or something is not F. Suppose first that
FM =M. Then, for any element b∈M, we have b∈ FM . If we pretend that
b is a name, then we can say that Fb is true inM, in which case the condi-
tionalFa→ Fb is trivially true,6 nomatterwhata is. Sincebwas anarbitrary
element ofM, ∀y(Fa→ Fy) is also true, and hence ∃x∀y(Fx→ Fy) is true.
Now suppose that there is an a∈M such that ¬Fa. Then, for any b∈M,
it trivially follows that Fa→ Fb,7 and hence that ∀y(Fa→ Fy), and so
finally that ∃x∀y(Fx→ Fy). In both cases, whether FM is empty or not,
∃x∀y(Fx→ Fy) is true. Hence, that sentence is true in every interpretation
and is therefore provable from no premises at all.

Exercise 8.11. Try to construct a similar proof to show that ∀x∀y
(Fx→ Fy) is always true. Where does it break down?

6. Positive paradox.
7. Negative paradox.
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Logic

In chapter 7, we talked about how to formulate theories in pred-
icate logic. Now here’s a weird idea: how about we formulate a theory (in
predicate logic) about propositional logic? Think of it this way. Suppose
that you travel far back in time, to a time when human beings didn’t know
how to reason with quantifiers—they only knew how to reason with the
propositional connectives “and,” “or,” and so on.1 Your job is to describe
the rules of the “game” that these early, propositional-logical humans like
to play.

If you think that the scenariowe’ve just described is strange or silly, then
just think of it as a warmup for the real job: looking in the mirror, that
is, reasoning about how we reason. Obviously, good human thinking isn’t
exhausted by propositional logic; at the very least, it also involves infer-
ences with quantified statements. Hence, we’ll want eventually to have a
theory about predicate logic. We’ll turn to that in chapter 10, and we’ll
restrict ourselves in this chapter to propositional logic.

So, to return to our simplified and fictional setup: we want a theory T
that describes propositional logic. To build T, we first need to decide on a
vocabulary (i.e., on relation symbols, function symbols, names, etc.) that

1. As far as I know, nobody believes that’s how human thinking actually evolved.

176
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can be used to describe propositional reasoning. For this, we’ll make use of
set theory. We will assume that there is a nonempty set Σ , which we’ll
call the atomic sentences. To be clear, the things in Σ aren’t our atomic
sentences—that is, they aren’t part of our language. Instead of using the
sentences in Σ , we are talking about them. We also assume that there is
another set containing the symbols ∧ , ∨ ,→,¬, andperhaps someparen-
theses. Again, don’t think of those symbols as the logical connectives we
use; instead, they are the logical connectives that are used by the people we
are studying. Finally, we assume that there is a basic operation on symbols
called “concatenation.”

We then notice that the people we are studying treat some strings of
symbols differently than others.We then hypothesize that there is a feature
of strings, which we might call “sentencehood,” and we introduce a pred-
icate symbol sent(φ) to our language that we will use to describe which
things are sentences. (Here we’re using Greek letters, such as φ, as our
variables.) Here, then, is our theory about the grammar of propositional
logic:

• Any symbol in the set Σ is a sentence.
• For any string φ of symbols, if φ is a sentence, then so is the

string¬φ.
• If φ and ψ are sentences, then φ ∨ ψ is a sentence.
• If φ and ψ are sentences, then φ ∧ ψ is a sentence.
• If φ and ψ are sentences, then φ → ψ is a sentence.

All of these axioms seem obviously correct, but they are not yet sufficient,
for they don’t entail some other things we know—for example, that our
test subjects do not count gibberish strings as sentences. To capture that
additional claim, we draw upon a little bit of set theory to say that the set
of sentences is like the set of natural numbers—namely, all of its elements
result from a finite number of applications of the construction methods to
the atomic sentences.

We can give a visual representation of the construction of a sentence by
means of the notion of a parse tree. In such a tree, each node corresponds
to a formula. The initial nodes must be atomic sentences, and new nodes
can be constructed from old ones using the propositional connectives.
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Thus, for example, given nodes φ and ψ , we can construct new nodes as
follows:

¬φ φ ∧ ψ

φ φ ψ

Here’s one example of a full parse tree:

¬(P∧Q ) →R

¬(P∧Q ) R

P∧Q

P Q

Parse trees are useful in many ways. First, a parse tree allows us to define
the notion of a subformula of a formula φ: namely, any formula that occurs
in the parse tree of φ. Second, a parse tree provides a nice visual represen-
tation of how the truth value of a sentence φ is computed from the truth
value of its atomic subformulas. Indeed, each node of a parse tree can be
considered a logic circuit: a negation node is the not circuit that flips a
bit, a conjunction node is the and circuit that gives output 1 only if both
inputs are 1, and so on. Third, a parse tree makes it obvious what themain
connective of a sentence is: it’s the connective at the root node of the parse
tree. Finally, parse trees give a nice visual picture of what happens during
substitution. Consider the simple case of the substitution F(P) =Q →R
andF(Q ) =R∧¬R applied to the sentenceφ ≡ P→Q . The parse tree of
F(φ) results from simply pasting the trees for F(P) and F(Q ) to the nodes
for P andQ in the parse tree of P→Q .

P→Q F(P→Q ) ≡ (Q →R) → (R∧¬R)

P Q F(P) F(Q )
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Induction on the Construction of Sentences

In chapter 7, we saw that the set N of natural numbers is defined so as to
license themethod of “proof by induction.” Thismethod says, roughly, that
if you canprove that 0 isφ, and if you canprove thatwhenever n isφ then so
is n+ 1, then it follows that all natural numbers areφ. Wewill now see that
thismethod of proof can be adapted to the set of sentences of propositional
logic—giving us a powerful tool for proving that something or other is true
for all sentences.

Let Σ be a fixed set of atomic sentences. For simplicity, we’ll first con-
sider a simple case where Σ = {P}, and where Δ is the set of sentences
that are built with the¬ and ∨ connectives. If you think of the set of sen-
tences on analogy to the natural numbers N, then the sentence P is the 0,
and the connectives ¬ and ∨ are like the successor function. In the case
of the set N of natural numbers, each number n∈N is the result of apply-
ing the successor function s to 0 some finite number of times. In the case
of the set Δ of sentences, each sentence φ ∈ Δ results from taking a cer-
tain number of copies of P and applying the connectives ¬ and ∨ a finite
number of times. This definition of the set Δ thus licenses the following
extension of the method of proof by induction.

Induction on the Construction of Sentences

(1) Atomic sentences have property X. base case
(2) Ifφ and ψ have propertyX, thenφ ∨ ψ has

property X.
induction ∨

(3) If φ has property X, then ¬φ has property
X.

induction¬

(C) Every sentence in Δ has property X. conclusion

Whatwe have here is a family of inference rules, one for each propertyX
that can be described in ourmeta-theory of propositional logic.We haven’t
been completely precise in telling which properties of sentences can be
articulated. However, as a general rule, the only relevant properties are the
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purely syntactic properties, for example, “the main connective of φ is ∧ ,”
or “φ has three left parentheses.”

We’ll now use induction to show that every sentence in Δ is provably
equivalent to one of the four in the diamond:

�

P ¬P

⊥

Here,� is shorthand for some tautology (e.g., P∨¬P) and⊥ is shorthand
for some contradiction (e.g.,P∧¬P) and to say thatφ and ψ areprovably
equivalent just means that φ �� ψ .

Proposition 9.1. Every sentence in Δ is provably equivalent to one of the
four in the diamond above.

Before we start the official proof, observe that if φ and ψ are provably
equivalent, then so are ¬φ and ¬ψ . Indeed, suppose we’re given proofs
φ � ψ and ψ � φ. Then, we can obtain proofs of ¬φ �¬ψ and ¬ψ �
¬φ by using the (derived) contrapositive rule. Similarly, if φ and φ′ are
provably equivalent, and ψ and ψ ′ are provably equivalent, then so are
φ ∨ ψ and φ′ ∨ ψ ′.

Exercise 9.1. Prove that if φ ��φ′ and ψ �� ψ ′, then (φ ∨ ψ ) ��
(φ′ ∨ ψ ′).

Proof. base case ObviouslyP is equivalent to itself; hence, it’s equivalent
to one of the four sentences in the diamond.

induction¬ Suppose that φ is equivalent to one of the four in the dia-
mond. Ifφ is equivalent to�, then¬φ is equivalent to⊥. Ifφ is equivalent
to P, then¬φ is equivalent to¬P. And so on.
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induction ∨ Suppose that φ and ψ are each equivalent to some sen-
tence in the diamond. If φ is equivalent to⊥, then φ ∨ ψ is equivalent to
ψ . If φ is equivalent to �, then φ ∨ ψ is equivalent to �. Similar conclu-
sions hold if ψ is equivalent to� or⊥. If φ and ψ are equivalent to each
other, thenφ ∨ ψ is equivalent toφ. Finally, ifφ is equivalent to¬ψ , then
φ ∨ ψ is equivalent to�.

We’ve seenhow touse proof by induction to show that something is true
for every sentence in the set Δ of sentences containing only the connec-
tives ∨ and¬. Thismethodcannowbeextended to the set ofall sentences,
only we need to add inductive steps for the other two connectives, ∧
and→.

(4) Ifφ and ψ have propertyX, then
φ ∧ ψ has property X.

induction ∧

(5) Ifφ and ψ have propertyX, then
φ → ψ has property X.

induction→

We will now use induction to prove that every sentence (whose only
atomic sentence is P) is equivalent to one of the four in the diamond. We
have already shown that every sentence in Δ is equivalent to one of the
four in the diamond. Thus, it will suffice—by the transitivity of logical
equivalence—to show that every sentence is equivalent to a sentence in the
set Δ .

Proposition 9.2. Every sentence is provably equivalent to a sentence in the
set Δ .

Proof. Let’s say that a sentence φ has property X just in case φ is prov-
ably equivalent to a sentence in the set Δ . We will use induction on
the construction of formulas to prove that every sentence has property X.
Before we begin, note that if ψ has property X, and φ �� ψ , then φ has
property X.

base case Since P∈ Δ , P has property X.
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induction ∨ and¬ If φ and ψ have property X, then ¬φ and φ ∨ ψ
obviously have property X.

induction ∧ Suppose that both φ and ψ have property X. Then, φ ∧
ψ �� ¬(¬φ ∨¬ψ ), and the latter obviously has property X. Therefore,
φ ∧ ψ has property X.

induction→ Suppose that both φ and ψ have property X. Then,
φ → ψ �� ¬φ ∨ ψ , and the latter obviously has property X. Therefore,
φ → ψ has property X.

This completes the inductive steps, and so it follows that every sentence
has property X.

Exercise 9.2. Let Θ be the set of sentences whose only atomic sentence
is P and whose only connectives are¬ and ∧ . Show that every sentence is
provably equivalent to a sentence in Θ .

Exercise 9.3. Let Γ be the set of formulas defined as follows:

• P∈ Γ .
• If φ ∈ Γ and ψ ∈ Γ , then φ ∨ ψ ∈ Γ .
• Every element of Γ arises from a finite number of the previous

steps.

Use mathematical induction to show that for all φ ∈ Γ , φ � P.

Truth Functions

In chapter 5, we introduced truth tables as a tool for decidingwhether argu-
ments are valid or not. It’s time now to thinkmore theoretically about what
truth tables are and what they can do.

Each one of our connectives ¬, ∧ , ∨ , and → has an associated truth
table. Therefore, these connectives are truth-functional, that is, the truth
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value of an output sentence, say¬φ, is completely determined by the truth
value of the input sentence φ. Now, you might wonder: how in the world
could a connective not be truth-functional?Well, consider for example, the
connective “Donald Trump said that. . . .” This phrase is a bona fide propo-
sitional connective because for any declarative sentence φ, you can set it in
the blank, and the output is a new sentence: “Donald Trump said that φ.”
However, even themost blind defender of Trumpwouldn’t want to say that
this connective is truth-functional, for there is surely at least one false sen-
tence φ such that “Donald Trump said that φ” is true and at least one false
sentence ψ such that “Donald Trump said that ψ ” is false. Therefore, the
connective cannot determine the output truth value simply on the basis of
the input truth value.

The “Donald Trump said that . . . ” connective has not been studied
carefully by philosophers. However, there are other non-truth-functional
connectives that have been. One of philosophers’ favorites is the connec-
tive “It is necessarily true that. . . .” As long as there are some truths that are
not necessarily true, then this connective is not truth-functional. And since
philosophers have long been interested in necessary truths, they have taken
particular interest in non-truth-functional connectives. They study these
connectives in a subject calledmodal logic.

Our focus here, however, is on truth-functional connectives. We can
now raise the question: are there other truth-functional connectives
besides ¬, ∨ , ∧ ,→? Well, immediately we know the answer is yes, for
we also have the connective↔, which doesn’t have the same truth table as
any of those latter three. However, youmight be quick to point out that the
truth table for ↔ can be simulated by using both the ∧ and → connec-
tives. Let’s distinguish, then, between connectives that can be expressed
in terms of ¬, ∨ , ∧ ,→ and those that cannot be so expressed. We
can then rephrase the question as follows: are there any truth-functional
connectives that cannot be expressed in terms of the ones we already
have?

Itmight sound at first like that question is impossibly difficult to answer.
But let’s start by thinking about how many possible truth functions there
could be. (Here, a truth function is simply a function that takes truth



525-85030_ch01_6P — 2020/5/22 — 12:52 — page 184 — #9

184 Chap t e r N i n e

values as inputs and returns truth values as outputs. Since our truth values
are 0 and 1, a truth function is a function from the set {0, 1} to itself.)
For this, we need to do some basic calculation. Starting with the case of
unary truth functions (i.e., those that take one input), there are precisely
four functions from {0, 1} to itself: the identity function, the function that
exchanges 0 and 1, the function that maps both elements to 0, and the
function that maps both elements to 1. And clearly we can express those
four functions in terms of combinations of connectives (e.g., the constant
0 function is expressed by P∧¬P).

Now, for binary truth functions (i.e., those with two inputs), we already
have many more possibilities. Each function from {0, 1} × {0, 1} to {0, 1}
corresponds to a division of the former set into two parts: those ele-
ments that get assigned 0 and those elements that get assigned 1. Since
the former subset is the complement of the latter, each such function
is uniquely determined by the subset of elements to which it assigns 1.
Hence, there is a one-to-one correspondence between binary truth func-
tions and subsets of {0, 1} × {0, 1}, that is, elements of the powerset of
{0, 1} × {0, 1}.

If a set X has |X| elements, then X has 2|X| subsets. In the case at hand,
{0, 1} × {0, 1} has four elements, hence 24 subsets; consequently, there are
24 = 16 binary truth functions. Thus, there are thirteen more truth func-
tions besides those represented by ∧ , ∨ , and →. It might seem, then,
we’re very far indeed from being able to express all binary truth functions.
But in fact, the opposite is true. In figure 9.1, we display sixteen sentences
that have distinct truth tables.

Since we have equivalences:

P→Q ≡ ¬P∨Q and P∧Q ≡ ¬(¬P∨¬Q ),

any sentence is equivalent to a sentencewhose only connectives are ∨ and
¬, and each of the sixteen truth functions can be expressed in terms of
these connectives. Similarly, each of these sixteen truth functions can be
expressed just with ¬ and ∧ . If every truth function can be expressed in
terms of a set Γ of connectives, then we say that Γ is expressively com-
pleteorexpressivelyadequate. Thus, we just sketchedproofs that {¬, ∨ }
and {¬, ∧ } are expressively complete.
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⊥

P∧Q P∧¬Q ¬P∧Q ¬P∧¬Q

P Q P↔Q P↔¬Q ¬Q ¬P

P∨Q P∨¬Q ¬P∨Q ¬P∨¬Q

�

Figure 9.1. Horizontal rows have the same number of 1s. A connecting line indicates
logical implication going upward.

Amazingly, there is a single truth function that is itself expressively
complete. The corresponding connective is called “nand” and is usually
symbolized by ↑. The truth table for P↑Q is, by definition, the same as
that for¬(P∧Q ).

PQ P↑Q
1 1 1 0 1
1 0 1 1 0
0 1 0 1 1
0 0 0 1 0

To show that the set {↑} is expressively complete, it will suffice to show that
it can reproduce the truth tables for ¬ and ∨ . After some trial and error,
we find that the following definitions work:
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P P↑ P
1 1 0 1
0 0 1 0

PQ (P↑ P)↑ (Q ↑Q )

1 1 1 0 1 1 1 0 1
1 0 1 0 1 1 0 1 0
0 1 0 1 0 1 1 0 1
0 0 0 1 0 0 0 1 0

Exercise9.4.Give a formula using onlyP,Q , and↑ that has the same truth
table as P∧Q .

If any truth function can be expressed by the ↑ connective, then, why,
you might wonder, don’t we use it, instead of the redundant collection
{¬, ∨ , ∧ ,→} of four connectives? The answer, in short, is that we face
a trade-off between simplicity and naturality, where the latter is a function
of what we are familiar with. For most of us, it’s fairly natural to reason in
terms of “and” and less natural to reason in terms of “nand.” Why that is,
we don’t pretend to know. Nonetheless, you now know that if somebody
has the concept of “nand,” then they can express any other truth-functional
concept.

It can be more difficult to show that a set of connectives is not expres-
sively complete. For example, suppose that we want to show that the set
{∨ } is not, by itself, truth-functionally complete. The way we would
approach this is to start trying to express some of the truth tables, to get
a feeling of what we cannot do.With the connective ∨ , we can write P∨ P,
which is equivalent toP again.Wecan alsowriteP∨Q . But it seems thatwe
get stuck at that point. If we write longer disjunctions, say P∨ (P∨Q ), we
quickly realize thatwehaven’t expressed anythingnew. That is, we get stuck
with truth functions that are true whenever P andQ are true. That realiza-
tion then gives us an idea: perhaps we can prove that every truth function
that canbe expressedwith just ∨ has this feature, that is, that it’s truewhen-
everP andQ are true. That idea provides the intuitionbehind the following
proof.

To make this proof a bit more clear, we need a slight change of termi-
nology. Instead of talking about a row of a truth table, let’s talk about a
valuation. To be precise, a valuation v assigns each atomic sentence (in
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this case, P andQ) either 0 or 1. If we follow the truth table recipe, then a
valuationnaturally extends to assign every sentence either 0 or 1. For exam-
ple, if v(φ) = 1 and v(ψ ) = 1, then v(φ ∨ ψ ) = 1. The claim above, then,
is that if v is a valuation such that v(P) = 1 and v(Q ) = 1, then v(φ) = 1 for
any sentence whose only connective is ∨ .

Proposition 9.3. The set {∨} is not truth-functionally complete.

Proof. Let Γ be the set of sentences built only with the connective ∨ . Let
v be the valuation that assigns 1 to every atomic sentence. We show that
for every sentence φ ∈ Γ , v(φ) = 1. Our argument proceeds by induction
on the construction of Γ . By definition, forφ an atomic sentence in Γ , we
have v(φ) = 1. Furthermore, if v(φ) = 1 andφ(ψ ) = 1, then v(φ ∨ ψ ) =
1. Therefore, v(φ) = 1 for all φ ∈ Γ . It follows that there is no sentence in
Γ that is logically equivalent to P∧¬P, and {∨ } is not truth-functionally
complete.

Exercise 9.5. Show that the set {∧ } is not truth-functionally complete.

Exercise 9.6. Consider sentences built out of the atomic sentences P and
Q . In this case, there are four valuations v1, v2, v3, v4. Let’s say that a sen-
tenceφ is an even just in caseφ is true for either zero, two, or four valuations.
Show that ifφ is even, then¬φ is even. Show that ifφ and ψ are even, then
φ ↔ ψ is even.

Exercise 9.7. Is the set {¬,↔} truth-functionally complete?

A Theory of What Can Be Proven

In the previous sections, we developed a theory about the grammar and
semantics of propositional logic. In this section, we develop a theory about
proofs, that is, about what can and cannot be proven with the inference
rules for propositional logic. To this end, we introduce into our language—
that is, the languageweareusing todescribepropositional logic—arelation
symbol�, which we write in infix notation, taking an argument on the left
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and an argument on the right. (Technically, the symbol � ambiguously
represents several different relation symbols, one for each finite number
of sentences that can occur on the left. But we’ll brush this complication
under the rug.)

The inference rules for propositional logic provide an inductive defi-
nition of the set of valid sequents, that is, of the extension of the relation
�. The base case here is the rule of assumptions: for any formula φ, the
sequent φ � φ is valid. Each of the other inference rules is a recipe for con-
structing a new valid sequent from one, two, or three old ones. Since the
extension of � is defined inductively, it follows that we can prove things
about all sequents by means of an induction schema. Here, the induction
schema looks like this:

Induction on the Construction of Sequents

(1) φ � φ has property X. base
(2) If Γ � φ → ψ and Γ �φ have propertyX,

then Γ � ψ has property X.
inductionMP

...
(C) All sequents have property X. conclusion

As you can see, a proof by inductionon the constructionof sequentswill
involvemany inductive steps—one for each inference rule. But what kinds
of thingsmightwewant to show about the collection of all sequents? There
are two things about the collection of sequents that we’ve already assumed
and used. First, we assumed that sequents couldn’t be messed up by find-
and-replace operations. That is, for any sequent φ � ψ , if you perform a
uniform substitution of sentences for propositional constants, then you get
another valid sequent F(φ) � F(ψ ). Second, we assumed that truth tables
can detect when a sequent cannot be proven. In other words, we assumed
that for any valid sequent φ � ψ , the truth table for φ and ψ will have no
row in which φ is true and ψ is false. It’s time now to prove that these two
assumptions are true.
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In order to set up these proofs, it will be helpful to imagine two differ-
ent languages, with different atomic sentences. Let Σ be one list of atomic
sentences, and let Σ ′ be another list of atomic sentences. We call Σ the
signature of the one language, whereas Σ ′ is the signature of the second
language. (If it helps you to remember, you could think of Σ ′ as having
atomic sentences that have a prime symbol, say P′,Q ′,R′.) We then let
both languagesbuild their sentences fromtheir respective atomic sentences
using the logical connectives¬, ∧ , ∨ ,→.

Now let’s imaginewhatmight count as a translation between languages
Σ and Σ ′. Keep in mind that a good translation between languages need
not be word-for-word. For example, it’s doubtful that there is a single
English word that could translate the German word Zeitgeist or a single
English word that could translate the Danish word hygge. (I’ve hear that
there are many more interesting examples from languages such as Hindi,
Urdu, and Mandarin.) So, we shouldn’t require that a translation from Σ
to Σ ′ has to match an atomic sentence in Σ with an atomic sentence in
Σ ′. Instead, we will allow that an atomic sentence in Σ be reconstrued as
any sentence of Σ ′.

Definition. Let Σ and Σ ′ be propositional signatures. A reconstrual F
from Σ to Σ ′ is a function that takes atomic sentences of Σ to sentences
of Σ ′.

A reconstrual F : Σ → Σ ′ extends naturally to a function from all
sentences of Σ to sentences of Σ ′. We define

F(¬φ) = ¬F(φ),
F(φ ∧ ψ ) = F(φ)∧ F(ψ ),
F(φ ∨ ψ ) = F(φ)∨ F(ψ ),
F(φ → ψ ) = F(φ) → F(ψ ).

To get a feel for how this extension works, let’s look at a specific example.
Suppose that Σ = {P,Q }, Σ ′ = {R, S} and that we define the reconstrual
F by F(P) =R∧ S and F(Q ) = ¬S. Then,

F(¬P∨Q ) = ¬F(P)∨ F(Q ) = ¬(R∧ S)∨¬S.
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While a translation F can run between distinct languages, it can also run
from a language back to itself. This kind of thing happens, in fact, quite
frequently in the sciences. For example, a few decades ago, some clever
economists figured out that some of the differential equations of physics
could be applied to financial markets. Their proposal amounted to a trans-
lation from the language of physics into the language of economics—and
since both are part of our total language, a translation from our language
back into itself.

Within propositional logic, we can use this notion of translating a lan-
guage into itself to make sense of the idea of a substitution instance of a
sentence. In short, a substitution instance of a sentence φ is any sentence
to whichφ could be translated. (It can be helpful here to continue thinking
of translations to other languages. In that case, a sentence in our language
can have substitution instances in many other different languages.)

Definition. A substitution instance ofφ is any sentence of the form F(φ),
where F : Σ → Σ ′ is a reconstrual.

The key idea here is that a substitution instance of a sentence has the
same form as that sentence. One confirmation that we’ve got the notion
right is that any substitution instance of a tautology is still a tautology.
(Here, we are using “tautology” in its semantic sense: a sentence that is true
relative to every valuation.)

Proposition9.4. Ifφ is a tautology, then any substitution instance ofφ is also
a tautology.

Proof. Suppose thatφ is a tautology and thatF(φ) is a substitution instance
of φ. Let v be an arbitrary valuation. We need to show that v(F(φ)) =
1. Consider the valuation w defined by w(P) = v(F(P)) for each atomic
sentence P. Since φ is a tautology, w(φ) = 1. In addition, since w and
v ◦ F agree on atomic sentences, and both commute with all the sentence
connectives, it follows that w= v ◦ F. Therefore, v(F(φ)) = (v ◦ F)(φ) =
w(φ) = 1. Since v was an arbitrary valuation, it follows that F(φ) is a
tautology.
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Proposition 9.5. If φ is a contingent sentence, then φ has a tautologous
substitution instance.

Proof. Suppose that φ is contingent, and let P0, . . . , Pn be a list of the
atomic sentences that occur in φ. Since φ is contingent, there is a valua-
tion v such that v(φ) = 1. Let F be an arbitrary contradiction, and let T
be an arbitrary tautology. For i= 0, . . . , n, define f (Pi) =T if v(Pi) = 1,
and f (Pi) = F if v(Pi) = 0. We claim, then, that f (φ) is a tautology. Let w
be an arbitrary valuation. For each atomic sentence Pi, if v(Pi) = 1, then
v(Pi) =w(T) =w(f (Pi)), and if v(Pi) = 0, then v(Pi) =w(F) =w(f (Pi)).
Thus, v andw ◦ f agree on all atomic sentences. Since v andw ◦ f are truth-
functional, they agree on all sentences, hence on φ. Therefore, w(f (φ)) =
v(φ) = 1. Since wwas an arbitrary valuation, f (φ) is a tautology.

Exercise 9.8. Give a tautologous substitution instance of the sentence
P→ (Q ∧R).

Exercise 9.9. Follow the outlines of the previous proof to show that if φ is
a contingent sentence, then φ has an inconsistent substitution instance.

We’re now ready for themain show. The substitutionmeta-rule says that
if you take a valid proof and perform uniform substitution, then the result
is still a valid proof. We now prove that fact.

Substitution theorem. Let F : Σ → Σ ′ be a reconstrual. If φ1, . . . ,
φn � ψ , then F(φ1), . . . , F(φn) � F(ψ ).

Proof. We prove the result by induction on the construction of sequents.
(Wewill prove the inductive steps for ∧ I, CP, and ∨E and leave the other
steps to the reader.)

base case The rule of assumptions gives not only φ �φ but also
F(φ) � F(φ).

induction ∧ I Suppose that φ1, . . . ,φn, ψ 1, . . . , ψ n � φ ∧ ψ results
from an application of ∧ I to φ1, . . . ,φn �φ and ψ 1, . . . , ψ n � ψ , and
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suppose that the result holds for these latter two sequents. That is,
F(φ1), . . . , F(φn) � F(φ) and F(ψ 1), . . . , F(ψ n) � F(ψ ). By conjunc-
tion introduction, we have

F(φ1), . . . , F(φn), F(ψ 1), . . . , F(ψ n) � F(φ)∧ F(ψ ).

Since F(φ)∧ F(ψ ) = F(φ ∧ ψ ), it follows that

F(φ1), . . . , F(φn), F(ψ 1), . . . , F(ψ n) � F(φ ∧ ψ ).

induction CP Suppose that φ1, . . . ,φn � ψ → χ is derived by CP
from φ1, . . . ,φn, ψ � χ . Now assume that the result holds for the latter
sequent, that is, F(φ1), . . . , F(φn), F(ψ ) � F(χ ). Then, CP yields

F(φ1), . . . , F(φn) � F(ψ ) → F(χ ).

Since F(ψ ) → F(χ ) = F(ψ → χ ), it follows that

F(φ1), . . . , F(φn) � F(ψ → χ ).

induction RAA Suppose thatφ1, . . . ,φn �¬ψ is derived byRAA from
φ1, . . . ,φn, ψ � χ ∧¬χ , and assume that the result holds for the latter
sequent, that is, F(φ1), . . . , F(φn), F(ψ ) � F(χ ∧¬χ ). By the proper-
ties of F, F(χ ∧¬χ ) = F(χ )∧¬F(χ ), which is also a contradiction.
Thus, RAA yields F(φ1), . . . , F(φn) �¬F(ψ ). Since¬F(ψ ) = F(¬ψ ),
it follows that F(φ1), . . . , F(φn) � F(¬ψ ), which is what we wanted to
prove.

induction ∨E Suppose thatφ, ψ 1, ψ 2 � χ results froman application
of ∨E to the following three sequents:

φ � θ 1 ∨ θ 2 ψ 1, θ 1 � χ ψ 2, θ 2 � ψ
and assume that the result holds for the latter three sequents, that is,

F(φ) � F( θ 1 ∨ θ 2) F(ψ 1), F( θ 1) � F(χ )

F(ψ 2), F( θ 2) � F(ψ ).
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Since F( θ 1 ∨ θ 2) = F( θ 1)∨ F( θ 2), an application of ∨E yields

F(φ), F(ψ 1), F(ψ 2) � F(χ ).

Asmentioned before, we leave the remaining steps to the interested reader.
With those steps completed, it follows that for any sentences φ1, . . . ,
φn, ψ , if φ1, . . . ,φn � ψ , then F(φ1), . . . , F(φn) � F(ψ ).

The previous proposition immediately yields the following corollary.

Proposition 9.6. If φ is provable, then any substitution instance of φ is also
provable.

We’re now ready to prove the soundness of the inference rules for
propositional logic. The proof is essentially another version of the proof
of the substitution theorem, except that we map sentences to the numbers
0 and 1 instead of to other sentences.

Soundness theorem. For any valuation v, if φ1, . . . ,φn � ψ , then
min{v(φ1), . . . , v(φn)} ≤ v(ψ ).

In the statement of the theorem, “min” treats the premises φ1, . . . ,φn
as forming a conjunction: the minimum of v1(φ1), . . . , v(φn) is the same
as v(φ1 ∧ · · · ∧φn).

Proof. The proof is by induction on the construction of sequents. We will
just show a couple of cases and leave the others to the reader.

inductionMP Suppose that φ1,φ2 � χ results from MP applied
to φ1 � ψ → χ and φ2 � ψ . Suppose also that v(φ1) ≤ v(ψ → χ )

and v(ψ 1) ≤ v(ψ ). If min{v(φ1), v(φ2)} = 0, then we’re done. If
min{v(φ1), v(φ2)} = 1, then v(ψ → χ ) = 1 and v(ψ ) = 1, from which
it follows that v(χ ) = 1. In either case, min{v(φ1), v(φ2)} ≤ v(χ ).

induction CP Suppose that φ � ψ → χ is derived by CP from φ, ψ
� χ , and assume that the result holds for the latter sequent, that is,
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min{v(φ), v(ψ )} ≤ v(χ ). Either v(ψ ) = 0 or v(ψ ) = 1. If v(ψ ) =
0, then v(ψ → χ ) = 1 and we’re done. If v(ψ ) = 1, then the above
gives v(χ ) = 1, and hence v(ψ → χ ) = 1. In either case, v(φ) ≤
v(ψ → χ ).

This fulfills the promise we made in chapter 5 that the truth table
method provides a reliable test for when a sequent cannot be proven. In
particular, if there is a row in the truth table where φ is assigned 1 and
ψ is assigned 0, then the sequent φ � ψ cannot be proven. Similarly, if
there is a row in the truth table where ψ is assigned 0, then� ψ cannot be
proven.

Exercise 9.10. Prove the steps of the soundness theorem for the ∨ I and
∨E rules.

Exercise 9.11. Show that if φ is inconsistent, then any substitution
instance of φ is inconsistent. Here we mean “inconsistent” in the semantic
sense of being assigned 0 by all valuations.

Exercise 9.12. Show that if φ is a contingent sentence, then φ has a
contradictory substitution instance.

Disjunctive Normal Form

What we want to do next is to prove the completeness theorem: if an
argument is truth preserving, then it can be proven with our inference
rules. That’s actually a nontrivial theorem that was only discovered in the
early twentieth century. So, to get there, we’re going to need to do some
work.We’ll start with something that might seem to be nothing but boring
syntactic bookkeeping. We define a particular kind of form a sentence can
take. Then we show that every sentence is provably equivalent to one with
this particular kind of form.2 It turns out, however, that this fact is quite
useful—in particular, because sentences in this form wear their inferential

2. It’s at this point where it becomes crucial that we have enough inference rules. If we didn’t
have enough rules, then not every sentence would be provably equivalent to one in this form.



525-85030_ch01_6P — 2020/5/22 — 12:52 — page 195 — #20

A Th e o r y ab ou t P r o p o s i t i o n a l L o g i c 195

relations on their sleeves. (It’s as if these sentences have an address that
shows where they live in logical space.)

Definition. A sentence φ is in disjunctive normal form (DNF) just in
case it is a disjunction of conjunctions of literals (atomic and negated
atomic sentences).

For example, the following sentences are DNF:

P P∧¬Q (P∧¬Q )∨ (¬P∧Q )

We can define the family of DNF formulas inductively as follows:

• All conjunctionsof literals (atomic andnegated atomic sentences)
are DNF.

• All disjunctions of DNF formulas are DNF.

The disjunctive normal form theorem will show that every propositional
logic sentence is provably equivalent to a DNF sentence. That result can
be proven in a couple of different ways, and it’s useful in a couple of differ-
ent ways. On the one hand, one can prove the DNF theorem directly by
establishing a bunch of sequents and then using mathematical induction
to generalize to all sentences. In that case, the DNF theorem is useful as a
step along the way to proving the completeness theorem for propositional
logic. On the other hand, if one has established the completeness theorem
by some other means, then it gives a quick proof of the DNF theorem. In
what follows, we’ll first sketch the argument fromcompleteness to theDNF
theorem. Then we’ll sketch a direct proof of the DNF theorem.

Suppose first that if two sentences have the same truth table, then they
are provably equivalent. (This supposition is a direct consequence of the
completeness theorem.) Now given a sentenceφ, we will construct a DNF
sentence φ′ from the truth table for φ. If φ is always false (i.e., it has 0 in all
rows of the main column), then let φ′ be the sentence P∧¬P. Otherwise,
for each row i in whichφ is true, let ψ i be the conjunction of all the atomic
sentences that are assigned true in that row, along with the negations of all
the atomic sentences that are assigned false in that row.Note that ψ i is true
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on row i of the truth table and false on every row j �= i. Finally, let φ′ be the
disjunction of all the ψ i that we have just constructed.

It’s obvious that φ′ is DNF. So we just need to show that φ and φ′ have
the same truth table. Suppose that we set them side by side, and consider
row i of the truth table. If φ is true on row i, then one of the disjuncts of
φ′ is ψ i, which is true on row i. Hence, φ′ is true on row i. Conversely, ifφ′
is true on row i, then the disjunct ψ i appears in it, and by construction,φ is
true on row i. Thus, we have shown thatφ andφ′ have the same truth table.
If we assume completeness, it follows thatφ andφ′ are provably equivalent.

This somewhat abstract argument can be illustrated by means of an
example. Consider the sentenceφ ≡ (P→R) → (Q ∧R). If youwrite out
the full truth table of φ, you’ll find that it’s true in rows 1, 2, 4, and 5 and
false in all other rows. Thus, the above recipe yields the sentence

(P∧Q ∧R)∨ (P∧Q ∧¬R)∨ (P∧¬Q ∧¬R)∨ (¬P∧Q ∧R).

It’s pretty easy to see here that φ′ �φ. If one performed a big disjunction
elimination, then the first and fourth disjuncts immediately yield Q ∧R,
andpositiveparadoxyieldsφ. The secondand thirddisjuncts yieldP∧¬R,
hence ¬(P→R), and then φ by negative paradox. Since φ′ is a disjunc-
tion, it’s a bit more difficult to see that φ �φ′. However, you’ll recall that φ
entails ¬(P→R)∨ (Q ∧R), which in turn entails (P∧¬R)∨ (Q ∧R).
This last formula is actually in DNF, and although not strictly identical to
φ′, it’s not hard to see how it’s related to φ′.

Making liberal use of known equivalences, we can rewrite φ′ as

(P∧¬R∧Q )∨ (P∧¬R∧¬Q )∨ (Q ∧R∧ P)∨ (Q ∧R∧¬P)
�� [(P∧¬R)∧ (Q ∨¬Q )]∨ [(Q ∧R)∧ (P∨¬P)]
�� (P∧¬R)∨ (Q ∧R).

This example shows that DNF equivalent forms are not generally unique.
We now turn to the argument for theDNF theorem. Actually, it’s easiest

to prove something stronger, for which we need another definition.

Definition. Asentence is in conjunctivenormal form(CNF) just in case
it’s a conjunction of disjunctions of literals.
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DNF theorem. Every sentence φ is provably equivalent to a sentence φd in
disjunctive normal form and to a sentence φc in conjunctive normal form.

Proof. We argue by induction on the construction of sentences.

• Each atomic sentence is both in DNF and in CNF.
• Suppose that φ is equivalent to φc and to φd. Then, ¬φ is

equivalent to ¬φd, which has the form ¬(ψ 1 ∨ · · · ∨ ψ n). By
DeMorgan’s rule, the latter is equivalent to ¬ψ 1 ∧ · · · ∧¬ψ n.
By another application of DeMorgan’s rule, each ¬ψ i is equiva-
lent to a disjunction of literals. Putting everything together, ¬φd

is equivalent to a CNF sentence. A similar argument shows that
¬φ is equivalent to ¬φc, which is equivalent to a DNF sen-
tence. Therefore, ¬φ is equivalent to sentences in both CNF
and DNF.

• For disjunction and conjunction, we first note that ∨ trivially
preserves the family of DNF sentences, and ∧ trivially preserves
the family of CNF sentences. Thus, if φ and ψ are sentences that
satisfy the hypothesis of the theorem, then φ ∨ ψ is equivalent
to a DNF sentence. It’s also equivalent to ¬(¬φ ∧¬ψ ), which
is equivalent to a CNF sentence. A similar argument shows that
φ ∧ ψ is equivalent to DNF and CNF sentences.

• For conditionals, we have φ → ψ ��¬φ ∨ ψ . By the previous
two steps, if φ and ψ satisfy the hypotheses of the theorem, so
does¬φ ∨ ψ .

Exercise 9.13.Go back through the proof of the DNF theorem and iden-
tify eachprovable equivalence thatwas cited.Now identifywhich inference
rules are needed to prove those equivalences. Are any of the primitive rules
of inference not needed for the proof to go through?

What use is it that every sentence is equivalent to a DNF sentence?
For one, it gives us a quick way of understanding all the different possible
logical relations between sentences. Consider, for example, the case of all
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sentences whose only atomic sentence is P. In this case, the only literals
are P and¬P, and every elementary conjunction is equivalent to P,¬P, or
P∧¬P. Consequently, theDNF formulas are equivalent toP,¬P, P∧¬P,
or P∨¬P. That is, every sentence is logically equivalent to one of these
four sentences.

Furthermore, if two sentencesφ, ψ are inDNF, then it canbequite easy
to seewhether or notφ � ψ . In short,φ � ψ just in caseφ contains a con-
junction that is as long as some conjunction in ψ . Consider, for example,
the two DNF formulas:

Q ∧ P Q ∨ (¬Q ∧¬P)

A quick inspection shows that φ � ψ , since Q ∧ P�Q by conjunction
elimination andQ � ψ by disjunction introduction.

We saw above that ifφ is a sentence containing only P, thenφ is equiva-
lent to one of the four sentencesP,¬P,�,⊥. If you took some timewriting
out formulas in DNF, you’d also see that for sentences containing both
P and Q , there are 16= 24 possibilities. (The possibilities are the four
consistent elementary conjunctions,

P∧Q P∧¬Q ¬P∧Q ¬P∧¬Q ,

and all possible disjunctions of those.) In general, if there are n atomic
sentences, then there are 22

n
possible sentences up to logical equiva-

lence. Unsurprisingly, 22
n
is also the number of distinct truth functions

on n inputs. (Each distinct sentence corresponds to a distinct truth-
function.)

Practically speaking, it’s doubtful that you’ll ever need to transform a
sentence into DNF or CNF. In fact, you can have a computer do that task
for you. But how, youmight wonder, could you write a program to convert
sentences toDNF?On the one hand, you could program the computer first
to compute a truth table and then to use the rows of the truth table to con-
struct a corresponding formula. On the other hand, you could program the
computer to perform a series of syntactic manipulations on the relevant
formula. Here’s one sort of algorithm you could use:
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• Replace all instances of φ → ψ with¬φ ∨ ψ .
• Whenever ¬ is prefixed to a conjunction or disjunction, use

DeMorgan’s equivalences to drive¬ inward.
• Whenever ∧ is applied to a disjunction, use distribution to trans-

form to a disjunction of conjunctions.

In order to trust such an algorithm, you would want to prove that it will
always terminate—after a finite number of steps—in a DNF formula.

Completeness

The claim here is that we have sufficiently many derivation rules to be
able to prove everything that we want to prove—in particular, all truth-
preserving arguments. Before we prove that, however, we can show already
that we couldn’t add any more inference rules—at least not if we want to
maintain soundness. That is, if we add any more inference rules, then we’ll
be able to prove an argument that is not truth preserving.

We first need to be clear about what it would mean to add a “new”
inference rule. For example, suppose that I proposed adding the following
inference rule, namely, DeMorgan’s rule:

Γ � ¬(φ ∨ ψ )

Γ � ¬φ ∧¬ψ .

I might think myself very clever for coming up with a plausible new infer-
ence rule. The problem here, though, is that the rule isn’t really new: it
can be derived from the rules that we already have. Indeed, we’ve already
proven that � ¬(φ ∨ ψ ) → ¬φ ∧¬ψ . So suppose now that you were
given a derivation that begins with assumptions Γ and that ends with
¬(φ ∨ ψ ). Then, you could append the derivation of that conditional,
perform a step of MP, and that would yield a proof of¬φ ∧¬ψ , depend-
ing on Γ . In other words, Γ �¬(φ ∨ ψ ) can always be converted to
Γ �¬φ ∧¬ψ .
A genuinely new derivation rule, then, would have to be a rule that per-

mits a derivation of a sentence φ, without any remaining dependencies,
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whereas φ previously was not derivable. In other words, ��φ, where �φ

means that there is a derivation of φ using the previous rules.

Proposition 9.7. If φ is not provable, then there is a substitution instance of
φ that is provably equivalent to⊥.

Proof. To illustrate the idea behind the proof, we’ll consider first the case
where the only atomic sentence in φ is P. If φ is not provable, then φ must
be provably equivalent to P,¬P, or⊥. In the last case, the result is trivially
true. But if φ is equivalent to P, then the substitution F(P) = ⊥ will do. If
φ is equivalent to¬P, then the substitution F(P) = �will do.

For the general case, suppose that the atomic sentences in φ are
P1, . . . , Pn. By the DNF theorem, φ is equivalent to a disjunction of ele-
mentary conjunctions of the Pi. If φ is equivalent to a disjunction of all 2n

distinct elementary conjunctions, thenφ is provable. Sinceφ was assumed
not tobeprovable, at least oneof those 2n conjunctions doesn’t occur inφd.
Without loss of generality, suppose thatP1 ∧ · · · ∧ Pn doesn’t occur inφd.
Now let F(Pi) = � for i= 1, . . . , n. Then each disjunct ψ that occurs in
φd contains¬Pj for some j, and since F(¬Pj) = ¬�, it follows that F(ψ )

� F(¬Pj) � ⊥. Therefore, F(φ) �⊥, and F(φ) is the desired substitution
instance of φ.

We can now show that if we added a new inference rule, then we could
prove anything whatsoever.3 If there were a new inference rule, then we
could prove some sentence φ that was not previously provable. Impor-
tantly, it’s not just that we could prove φ but that we could prove any
substitution instance F(φ) of φ. Since φ wasn’t previously provable, there
is a substitution instance F(φ) of φ such that � F(φ) ↔ ⊥. But then we
could prove ⊥, and since ⊥ � ψ for all sentences ψ , we could prove
anything whatsoever.

We can now prove the completeness theorem. For this, we use the con-
venient notation φ � ψ to mean that for any valuation v, if v(φ) = 1, then

3. This result is usually called Post completeness in honor of the logician Emil Post (1897–
1954).
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v(ψ ) = 1. In other words, φ � ψ means that the argument with premise
φ and conclusion ψ is truth preserving.

Lemma. If φ is not provable, then there is a valuation v such that
v(φ) = 0.

Proof. Go through the preceding proof, replacing each case of F(P) = �
with v(P) = 1, each case of F(P) = ⊥ with v(P) = 0, and each case of
F(φ) ≡ ⊥with v(φ) = 0.

Finite completeness theorem. If φ � ψ , then φ � ψ .

Proof. We argue for the contrapositive. Suppose that φ �� ψ . Then
��φ → ψ . By the lemma, there is a valuation v such that v(φ → ψ ) = 0.
Therefore, v(φ) = 1 and v(ψ ) = 0, which means that φ �� ψ .

The finite completeness theorem tells you that if an argument is truth
preserving, then there is a proof. But it doesn’t give you a recipe for finding
that proof. In that sense, completeness is a nonconstructive result: it shows
∃xφ(x) without producing some a such that φ(a). In the case of proposi-
tional logic, it’s possible to redo the proof of completeness so that it really
is constructive—that is, it takes the relevant truth table and builds a proof
(that might be long and ugly). However, our goal here is not to give you a
recipe for outsourcing the job of proving to a computer.

There’s another really interesting thing we could prove about proposi-
tional logic, but it’s significantly more mathematically demanding, since it
deals with infinite sets. Imagine that we had a languagewith infinitelymany
atomic sentences P0, P1, . . . , in which case there aren’t just infinitely many
distinct sentences, there are also infinitely many logically inequivalent sen-
tences. Let’s now suppose that Γ is any set of sentences, possibly an infinite
set. We write Γ �φ just in case any valuation that makes all the sentences
in Γ true also makes φ true. We write Γ �φ just in case there is a proof
that begins with some finite number of sentences from Γ and that ends
withφ. Nowwecan raise thequestion: does completeness continue tohold
in this more general case?
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The answer is yes, provided that we help ourselves to an additional
assumption about sets of sentences. This assumption can be formulated
in various ways; for example:

Compactness (C) If a set Δ of sentences is inconsistent, then some
finite subset Δ 0 of Δ is already inconsistent. (Here, we are describing
a semantic notion of inconsistency.)
Grow (G) If a set Γ of sentences does not imply ⊥, then it’s contained
in a set Γ ∗ that is maximal with respect to this property. (Here, we are
describing a syntactic notion of consistency.)

The Grow axiom makes a lot of sense. Imagine that your current state of
belief was represented by the set Γ 0, and image that you are fortunate
enough that your beliefs don’t imply a contradiction. Then, the second
assumption says that your set of beliefs could grow to the limit point Γ
where you couldn’t add any more without falling into contradiction. That
idea doesn’t just make sense, it seems obviously true.

We now show that C is equivalent to G. Suppose first that C is true,
and let Γ be a set of sentences that does not imply ⊥. Thus, no finite
subset Γ0 of Γ implies ⊥. By the finite completeness theorem, every
finite subset Γ0 of Γ is semantically consistent. Therefore by C, Γ is
semantically consistent, that is, there is a valuation v that assigns 1 to every
sentence in Γ . Let Γ ∗ be the set of all sentences that are assigned 1 by v. If
Γ ∗ �⊥, then soundness would fail. Therefore, Γ ∗ ��⊥. If φ �∈ Γ ∗, then
v(φ) = 0 and v(¬φ) = 1. Hence, ¬φ ∈ Γ ∗, from which it follows that
Γ ∗ ∪ {φ} � ⊥. Therefore, Γ ∗ is maximally consistent (in the syntactic
sense).

Suppose now that G is true. We’re going to show first that for any
set Δ , if Δ �� ⊥, then Δ is consistent. Suppose, then, that Δ ��⊥.
By G, Δ ⊆ Γ , where Γ ��⊥, and if φ �∈ Γ , then Γ ∪ {φ} � ⊥. We
claim, then, that Γ is the set of sentences that are assigned 1 by some
valuation.

• We show that if Γ �φ, then φ ∈ Γ . Suppose that Γ �φ. If Γ
∪ {φ} � ⊥, then Γ �¬φ; hence, Γ �⊥, contrary to what we
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assumed about Γ . Therefore, Γ ∪ {φ} ��⊥, and by maximality,
φ ∈ Γ .

• We show that if Γ ��φ, then ¬φ ∈ Γ . Suppose that Γ ��φ. If
Γ ∪ {¬φ} � ⊥, then Γ �¬¬φ, and hence, Γ �φ, contrary to
our assumption. Therefore, Γ ∪ {¬φ} ��⊥, and by maximality,
¬φ ∈ Γ .

• We show now that φ ∧ ψ ∈ Γ iff φ ∈ Γ and ψ ∈ Γ . If φ ∧ ψ
∈ Γ , then Γ �φ and φ ∈ Γ . Similarly, Γ � ψ and ψ ∈ Γ .
Conversely, if φ ∈ Γ and ψ ∈ Γ , then Γ �φ and Γ � ψ ;
therefore, Γ �φ ∧ ψ and φ ∧ ψ ∈ Γ .

• We show that φ ∨ ψ ∈ Γ iff either φ ∈ Γ or ψ ∈ Γ . If φ �∈ Γ
and ψ �∈ Γ , then ¬φ ∈ Γ and ¬ψ ∈ Γ , from which it follows
that¬φ ∧¬ψ ∈ Γ . But then¬(φ ∨ ψ ) ∈ Γ , whichmeans that
φ ∨ ψ �∈ Γ . Conversely, if φ ∈ Γ , then Γ �φ, from which Γ
�φ ∨ ψ , and therefore, φ ∨ ψ ∈ Γ .

We can thendefine v(φ) = 1 iffφ ∈ Γ , and it follows that v is awell-defined
valuation. Therefore, v assigns 1 to all sentences in Δ , and Δ is consistent.

By the previous argument, if Δ is inconsistent, then Δ �⊥. But if Δ
�⊥, then Δ 0 � ⊥ for some finite subset Δ 0 of Δ . By soundness, Δ 0 is
inconsistent, which completeness the derivation of C fromG.

Let’s check now that C plus finite completeness implies general com-
pleteness. If Γ � ψ , then Γ ∪ {¬ψ } is inconsistent. By compactness,
there is a finite subset {φ1, . . . ,φn} of Γ such that {φ1, . . . ,φn,¬ψ }
is inconsistent, and hence, φ1, . . . ,φn � ψ . By the finite completeness
theorem, φ1, . . . ,φn � ψ , which means that Γ �φ.

Some day you might find another logic book that claims to prove com-
pactness.Why, then, wouldwe assume compactness, when it canbeproven
to be true? In this case, proofs of compactness assume not only the axioms
of set theory but an additional axiom that goes under various names, such
as “the axiom of choice” and “Hausdorff ’s maximal principle.” Those lat-
ter axioms are like industrial-strength power tools, designed to crack some
of the hardest mathematical puzzles. For an introductory book, we don’t
need such heavy-duty set-theoretic assumptions. Nonetheless, you might
be interested to know that compactness for propositional logic is provably
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equivalent to some other well-known mathematical facts. First, if you take
a course in abstract algebra, you’ll learn that each Boolean ideal can be
extended to a prime ideal (the Boolean prime ideal theorem). That fact is
very similar to our “grow” axiom, and it is indeed provably equivalent to
compactness. Similarly, if you take a course in graph theory, youmight learn
that in a tree T with infinitely many nodes, if each node has only finitely
many children, then T has a branch of infinite length (König’s lemma).
That fact is also provably equivalent to compactness.

The compactness property can seem a bit paradoxical. Consider, for
example, the following apparently valid argument with infinitely many
premises.

There is more than one angel.
There are more than two angels.
...

There are infinitely many angels.

If this argument is valid, then compactness entails that the conclusion is
a logical consequence of only finitely many of the premises. In particular,
there is a largest natural number n such that the premise “there are more
than n angels” implies the conclusion “there are infinitely many angels,”
which seems obviously wrong. The solution to this little puzzle is sim-
ply that propositional logic renders a false verdict about the structure of
this argument. But that shouldn’t be surprising; we already know that
propositional logic provides only a partial picture ofwhatmakes arguments
valid.

Exercise 9.14.

∗1. Let T stand for the system of propositional logic with connectives
¬, ∧ , and with rules ∧ I, ∧E, RAA, and DN. We write � φ to
indicate that φ is provable in system T. Either prove or refute the
following statement: for a sentence φ that contains only¬ and ∧ ,
if� φ, then� φ.
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∗2. In this exercise, you’re asked to show that the RAA rule is redun-
dant. Let T stand for the system of propositional logic that results
from dropping the RAA rule, and write φ � ψ to indicate that the
corresponding sequent is provable in systemT. Show that ifφ � ψ ,
then φ � ψ . (Hint: prove that P→ ¬P� ¬P.)

3. Show that the DN introduction rule is redundant, that is, is deriv-
able from the remaining rules in our system.

4. Show thatMT is redundant, that is, is derivable from the remaining
rules in our system.

∗5. Show that the set of stage 0 rules of inference (i.e., those given in
chapter 2) is incomplete. Hint: construct an alternate truth table
for ∨ , and show that the stage0 rules are sound relative to that truth
table.

∗6. Give introduction and elimination rules for the nand connective↑.
Prove that your rules are sound relative to the truth table for ↑.
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10
A Theory about Predicate Logic

In this chapter, we sketch the outlines of a theory predi-
cate logic—or what’s usually called “metatheory of predicate logic.” This
theory began to be developed in the early twentieth century, and since
then, it’s given rise to a number of distinct subdisciplines of mathemat-
ics: proof theory, model theory, and recursion theory, among others. The
metatheory of predicate logic is also the context for the proof of the famous
incompleteness theorem of Kurt Gödel. Here we’ll take up a sampling of
metatheoretical topics, with focus on those that will help us become more
proficient users of predicate logic.

Substitution

The aim of formal logic is to articulate the notion of a valid argument
form. Once we know that a form is valid, we can use it again and again to
generate new valid arguments. We generate these new valid arguments by
taking the valid argument form and by substituting new content for old. The
trick, however, is in explaining what counts as a legitimate substitution of
content.

In propositional logic, the idea of substitution is simple: an elementary
sentence such as p can be replaced by any sentence φ. In predicate logic,
we’ll have to be a bitmore sophisticated. For example, suppose thatwehave
a proof of the sequent�∀x(Fx∨¬Fx). Suppose, in particular, that the last

206
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two lines of the proof look like this:

(8) Fa∨¬Fa
(9) ∀x(Fx∨¬Fx)

Intuitively, it didn’t really matter that we used F here. Surely we could have
usedG instead. So, imagine that you perform a “find F and replace withG”
on the above proof. Then, intuitively, the result should be a valid proof of
�∀x(Gx∨¬Gx).

However, the “find-and-replace” intuition is not sufficient here. For
example, the validity of ∀x(Fx∨¬Fx) doesn’t depend on the fact that Fx
is a simple formula (with no subformulas). We should be able to mod-
ify the proof of ∀x(Fx∨¬Fx) to produce a structurally identical proof of
∀x((Fx∧Gx)∨¬(Fx∧Gx)). Nonetheless, this modification cannot be
as simple as replacing instances of Fx with instances of Fx∧Gx, because
the proof is likely also to contain formulas such as Fa, and that should be
replaced with Fa∧Ga.

Similarly, it’s of course possible to prove the sequent∀x∀yRxy�∀xRxx,
and a structurally similar proof would result in the sequent

∀x∀y(Fx∧Gy) � ∀x(Fx∧Gx).

To get the latter proof, we would need to substitute Fx∧Gy for Rxy, Fa∧
Gb for Rab, and so on.

Now we will make this notion of substitution precise. In the first
instance, we will think of a substitution as resulting from reconstruing the
relation symbols of one vocabulary as formulas in another vocabulary.

Definition. A reconstrual F of Σ into Σ ′ is an assignment of each
atomic formula r(t1, . . . , tn) of Σ to a formula Fr(t1, . . . , tn) of Σ ′.

We implicitly require here that if the terms after r are changed, then the
output formula Fr is changed in the same way. So, for example, if r(x, y) is
reconstrued as p(x)∧ q(y), then r(z, z)must be reconstrued as p(z)∧ q(z).

A reconstrual F of Σ into Σ ′ extends naturally to all Σ -formulas. In
particular, we stipulate that F(φ ∧ ψ ) = F(φ)∧ F(ψ ) and similarly for
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the other binary connectives. We also stipulate that F(¬φ) = ¬F(φ) and
for the quantifiers F(∀xφ) = ∀xF(φ) and F(∃xφ) = ∃xF(φ).

Example. Consider the reconstrual F that takes r(x, y) to p(x)∧ q(y).
Then,

F(∀z r(z, z)) = ∀z F(r(z, z)) = ∀z (p(z)∧ q(z)).

Now consider the reconstrual G that takes p(x) to ∀y r(x, y). In this case,
G must reconstrue p(y) as a corresponding formula with free variable y.
Since the formula ∀y r(x, y) is equivalent to the formula ∀z r(x, z), we set
G(p(y)) ≡ ∀z r(y, z).

Now we can define the notion of a substitution instance of a formula.

Definition. A substitution instance of a formula φ is any formula of the
form Fφ, for some reconstrual F.

As was the case for propositional logic, substitution preserves prova-
bility.

Substitution theorem. Let F be a translation of relation symbols to formu-
las. If φ � ψ , then Fφ � F ψ . In particular, if φ is a tautology, then any
substitution instance of φ is a tautology.

The proof of this result is actually a simple induction on the construc-
tion of proofs—as it was in the case of propositional logic.

Exercise 10.1. Assume that you’ve already got a proof of the sequent
∀xFx→ P� ∃x(Fx→ P). Use substitution to show that �∃x(Fx→
∀yFy).

The substitution theorem continues to hold if Σ and Σ ′ both have
the equality symbol and if we require that the reconstrual preserves equal-
ity. Unfortunately, the substitution theoremdoesn’t hold—without further
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tweaks—for signatures that contain function symbols or names. Indeed,
it’s a little bit complicated in the first place to decide what a function sym-
bol (or name) should be reconstrued as. For example, if Σ has a name c,
but Σ ′ has no names, then how could c be translated from Σ to Σ ′?

One potential solution to this difficulty is to think of the name c in terms
of the associated formula φ(x) ≡ (x= c). We can then ask whether φ(x)
can be translated to some Σ ′ formula F(φ(x)).

Definition. A reconstrual F of an n-ary function symbol f if a (n+ 1)-
ary formula Ff (x1, . . . , xn, y). A reconstrual F of a constant symbol c is a
formula Fc(y).

It is fairly intuitive, although somewhat tedious, to extend a reconstrual
F to complex terms like 1+ 1 or father(a). The key here is to remember
that if n-ary terms are represented by (n+ 1)-ary formulas, then complex
terms can be represented by composing the formulas.

Example. Suppose that f (y) = z is reconstrued asφ(y, z) and that c= y is
reconstrued as ψ (y). Then, f (c) can be thought of as the composite of the
constant c function and the f function. In other words, f (c) = z would be
represented by

∃y (
ψ (y)∧φ(y, z)

)
,

which says that z is the unique thing related by φ to the unique thing that
satisfies ψ .

A general term is of the form f (t1, . . . , tn), where f is an n-ary function
symbol, and t1, . . . , tn are terms. In this case, the formula f (t1, . . . , tn) = z
is equivalent to the following formula:

∃y1 · · · ∃yn
(
(t1 = y1)∧ · · · ∧ (tn = yn)∧ (f (y1, . . . , yn) = z)

)
.

Hence, if the terms t1, . . . , tn have been reconstrued as formulas, we can
use the above formula as a guide for how to reconstrue the complex term
f (t1, . . . , tn).
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So now we have a general recipe for generating new substitution
instances of formulas. However, the substitution theorem no longer holds
in its original form. For example, φ ≡ ∃y(y= c) is a tautology, but if Fc(y)
is the formula P(y), then Fφ is the formula ∃yPy, which is not a tautology.
Nonetheless, it’s pretty simple to modify the statement of the substitution
theorem so that we get something valid. In short, if f is a function symbol,
then let Δ f be the sentence ∀x∃!yFf (x, y). Similarly, if c is a constant sym-
bol, then let Δ c be the sentence ∃!yFc(y). If we now let Δ be a list of all
these sentences for the constant and function symbols that occur in φ and
ψ , then we have the result: if φ � ψ , then Δ , Fφ � F ψ .

At this stage, it behooves us to ask whether we have found the most
general notion of a validity-preserving substitution. For, in one impor-
tant sense, we understand “validity in terms of form” only insofar as we
understand which substitutions preserve validity. In the case at hand,
there is good reason to think that there is an even more general notion
of substitution, where individual variables can be replaced with multiple
variables.1

Soundness

When you’re first learning to use formal logic, it’s perfectly reasonable to
trust that the system of rules that you’ve been given is both safe and suffi-
ciently strong. Think of it like this: if you buy a car from a reputable dealer,
then you can trust that its wheels will stay on, that its engine will allow
you to reach certain speeds, and so on. However, if you want to become
an expert driver, then at some point, you’ll have to learn some of the the-
ory behind how cars work. In the same way, if you want to reach a higher
level of logical expertise, then at some point, you’ll have to learn some of
the theory behind how logic works.

We’ll first prove that the system of predicate logic that we developed in
this book is sound. That is, we want to check that we can’t prove just any-
thing, andwe hope even to reassure ourselves that the limits of what can be
proven match fairly well with our intuitions of what should be provable.

1. See chapter 5 of Halvorson, The Logic in Philosophy of Science, Cambridge (2019).
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For the proof of soundness, we’ll need to make use of the following
fact:

Proposition 10.1. Suppose that M is an interpretation and that c is a
name. Then, for any a∈M, there is an interpretation N such that cN = a,
and φN = φM for all formulas φ in which the name c does not occur.
In particular, if φ is a sentence in which c does not occur, then M �φ

iff N �φ.

Wewon’t argue in detail here for proposition 10.1, but it should be fairly
obvious why it’s true. In particular, the interpretationN is defined to agree
with M on all symbols except for the name c, where N is defined so that
cN = a. Thework of the argument comes in showing thatφN = φM for any
formulaφ inwhich the name cdoes not occur. Toprove this rigorously, one
could use induction on the construction of formulas. We leave the details
to the reader.

Now on to the proof of soundness. We want to show that any line in a
“correctly written” proof is soundness in the sense that for any interpreta-
tion M, if the dependencies of the line are true in M, then the sentence
on the right-hand side of the line is also true in M. For this, it will suf-
fice to show that the rule of assumptions produces sound lines and that all
the other inference rules convert sound lines to sound lines. The case of
the rule of assumptions is obvious, so we move on to the other inference
rules.

First of all, let’s note that the rules for the Boolean connectives convert
sound lines to sound lines. To see this, you need to convince yourself, for
example, that if φ and ψ are true in an interpretation M, then φ ∧ ψ is
also true inM. We’ll leave these steps to the reader.

Exercise 10.2. Prove the soundness of conditional proof.

We shownow that the∀ introduction rule converts sound lines to sound
lines. Suppose that φ � ψ (c), where the name c does not occur in φ. Now
let M be an interpretation such that M �φ. We need to show that M �
∀xψ (x), that is, we need to show that ψ (x)M =M. Let a be an arbitrary
element of M. Since c does not occur in φ, proposition 10.1 entails that
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there is an interpretation N such that cN = a and N �φ. Since φ � ψ (c),
it follows that a= cN ∈ ψ (x)N . Since c does not occur in ψ (x), we have
ψ (x)N = ψ (x)M , and therefore, a∈ φM . Since awas an arbitrarymember
ofM, it follows that ψ (x)M =M, and therefore,M �∀xψ (x).

Notice how the argument we just made uses the fact that the name c
does not occur in ψ (x), which is one of the restrictions on the use of the
UI rule. If c had occurred in ψ , then we might have been able to generate
an unsound line, as in the following:

1 (1) ∀xRxx A
1 (2) Rcc 1 UE
1 (3) ∀xRxc 2 UI ⇐ wrong
1 (4) ∀y∀xRxy 3 UI

Here, step 3 violates the restriction on the UI rule, for it applies ∀x to
the formula ψ (x) ≡Rxc in which c occurs. Moreover, lines 3 and 4 are
unsound. For example, consider the interpretationM with domain {1, 2}
and where RM = {〈1, 1〉, 〈2, 2〉} and cM = 1.

Now we argue for the soundness of the EE rule. Suppose that φ � ∃xψ
(x) and ψ (c)� θ , where c does not occur in φ or in ψ (x). We need to
show that φ � θ . LetM be an interpretation such thatM �φ; hence,M �
∃xψ (x). Thus, there is an a∈M such that a∈ ψ (x)M . Since c does not
occur in ψ (x), proposition 10.1 entails that there is an interpretation N
that agrees withM on all formulas not containing c and such that cN = a.
Thus, cN ∈ ψ (x)N , which means that N �φ(c). Since φ(c)� θ , we also
haveN � θ , and since c does not occur in θ ,M � θ . Finally, sinceM was
an arbitrary interpretation, φ � θ .

Exercise 10.3. Prove the soundness of the EI and UE rules.

Once we’ve proven that each inference rule converts sound lines to
sound lines, then we know that every line in a (correctly written) proof will
be sound. So, our rules of argument won’t lead us astray. That’s half of the
battle. The other half of the battle is to find rules of argument that can get
us where we want to go.
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Completeness

Predicate logic interpretations can be used for the same purposes as truth
tables were for propositional logic. In particular, the soundness and com-
pleteness theorems show that there’s a proof of a sequent iff there is no
counterexample to that sequent. In particular, since soundness holds,
you can give a counterexample to demonstrate that a sequent cannot be
proven. And since completeness holds, if you know that ψ is true in
every model where φ is true, then you know that there is a proof of ψ
from φ.

The completeness theorem for predicate logic tends not to be of great
practical value. For one, it’s often just as difficult (if not more so) to show
that φ � ψ than to show that φ � ψ . For another, even if you know that
φ � ψ , and so there is someproof of ψ fromφ, still that doesn’t necessarily
help you to see how to find that proof.

There’s an in-principle reason why the completeness theorem is not
of all that much practical utility: to reason about interpretations requires
the full power of the theory of sets. Moreover, logicians have proven that
there are trade-offs between power and tractability. Here, “tractability” is
a semitechnical term that means, roughly speaking, how easy it is to use a
theory. Since set theory is so powerful, it’s not very tractable.

Thus, the value of the completeness theorem tends to be more concep-
tual than practical. It helps us to understand better what’s going on in logic,
even if for individual problems, it may not provide us a quicker route to a
solution.

For a rigorous proof of the completeness theorem for predicate logic,
you’ll have towait for a second course in logic. Here, we’ll restrict ourselves
to two things. First, we’ll sketch the idea behind one version of the com-
pleteness theorem. Second, we’ll explain how the completeness theorem
for predicate logic differs from the famous incompleteness theorem that was
proven by Gödel.

Suppose for simplicity that Σ is a signature without function symbols
or names. That is, Σ only has relation symbols. Let φ be a Σ -sentence.
We will sketch a proof of the following result:
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If no contradiction can be derived from φ, then there is a modelM of φ.

What’s nice about this result is that it mimics what Lobachevsky did with
non-Euclidean geometry (see page 157). Lobachevsky assumed a sen-
tence φ, which implies the negation of Euclid’s parallel postulate. Then, he
started proving things fromφ, never achieving a contradiction⊥. From the
list of sentences he proved, Lobachevsky was essentially able to describe a
modelM in which φ is true.

Let’s suppose further thatφ has the following simple form: if it contains
anyquantifiers, then they all occurout in the front. Youmight think that this
assumption greatly reduces the generality of our proof. But in fact, with a
little work, you can show that any sentence φ is provably equivalent to one
in the form we just described—which is called prenex normal form. So
let’s just assume that φ itself is in prenex normal form.

Let’s suppose first thatφ has the simple form∃xψ (x), where no quanti-
fiers occur in ψ . Then, take the instance ψ (1), which containsnovariables
(free or bound). If ψ (1) �⊥, then an instance of EE gives ∃xψ (x) �⊥,
contrary to our assumption. Therefore, ψ (1) �⊥. By completeness for
propositional logic, there is a valuation on the atomic sentences in ψ (1)
such that v[ψ (1)] = 1. Define an interpretation M by setting M= {1},
and for each relation symbol R that occurs in ψ (1), let 〈1, . . . , 1〉 ∈RM

iff v(R(1, . . . , 1)) = 1. It immediately follows that M � ψ (1) and hence
M � ∃xψ (x). Therefore, φ has a model.

Let’s suppose now that φ has the form ∃x∃yψ (x, y). It might be tempt-
ing then to try a repeat with the domain M= {1}, but that won’t neces-
sarily work. For example, the sentence ∃x∃y(Rxy∧¬Ryx) has a model
with two elements, but it has no model with one element. Thus, when
φ begins with more than one existential quantifier, we should generate
a new object for each existential quantifier. In this case, we can take the
domain M= {1, 2} and generate the instance R(1, 2)∧¬R(2, 1), giving
RM = {〈1, 2〉}.

The cases we just considered are misleadingly simple. Indeed, those
cases have the feature that the relevantmodelM is finite.We know, though,
that there are consistent sentences that have no finite model. Interestingly,
all such sentences share the feature that, whenput into prenexnormal form,
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they have a mix of existential and universal quantifiers. Thus, we need to
consider how to generate a model from such sentences.

Consider first the sentence∀x∃y(Rxy∧¬Ryx). We begin by generating
an instance R(1, 2)∧¬R(2, 1), choosing a new name 2 for the existence
claim, since we don’t know that it must be the same thing. However, this
instance alone won’t generate a model for φ, because when we introduce
the new thing 2, we need to make sure that the original universal quan-
tifier ∀x also applies to it. So, we have to add a new object 3 and take
another instance R(2, 3)∧¬R(3, 2). This situation repeats ad infinitum,
so following our recipe will lead to a domainM= {1, 2, . . .} and a relation
RM = {〈1, 2〉, 〈2, 3〉, . . .}. In this particular case, we didn’t actually need an
infinite model—a model with two elements would have done. But what
we do need is a general recipe that sometimes leads to our constructing an
infinite model.

The procedure we have just sketched does, in fact, work quite generally
to produce a model M for φ, so long as no contradiction can be derived
from φ. It thus shows that the inference rules we gave you in this book are
completeness, at least for arguments with finitely many premises. For the
case of infinitelymany premises, onemust again invoke a new set-theoretic
axiom (such as compactness).

Complete and Incomplete Theories

In compact symbolic form, the completeness theorem shows that ifφ � ψ ,
then φ � ψ . What, then, is all this business about “incompleteness,” as in
Gödel’s incompleteness theorem?

Definition. Let T be a theory formulated in signature Σ . We say
that T is complete just in case for each Σ -sentence φ, either T �φ

or T �¬φ.

Exercise 10.4. Let T be a consistent theory in propositional logic. Show
that T is complete iff T has exactly one model.

It’s important to note that the completeness of a theory is relative to
the language in which the theory is formulated. For example, in an empty
signature (with equality), the theory that says, “There is exactly one thing”
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is complete. However, in a signature with predicate symbol P, that same
theory is incomplete—because it doesn’t decide whether ∃xPx is true or
false.

One might think that incompleteness is a defect of a theory, since it
seems to indicate that the theory hasn’t yet given an answer to some rel-
evant question. However, many theories in mathematics are intentionally
incomplete, and their power comes precisely from the fact that there are
many different ways for these theories to be true. For example, consider
the theory of autosets, which we discussed briefly in chapter 7, and which
(as we mentioned there) turns out to be equivalent to the so-called the-
ory of groups, which is much loved by mathematicians. The theory of
autosets has models of all sizes: a model with one element, a model with
two elements, and so on.What’smore, since the sentence “there are exactly
n-elements” corresponds to a sentence in the language of autosets, it fol-
lows that the theory of autosets neither implies φ nor ¬φ. Therefore, the
theory of autosets—and hence the theory of groups—is incomplete. The
word “incomplete” might sound bad, but mathematicians are quite happy
with the incompleteness of the theory of groups. What’s so interesting
about groups is that there is awide variety of them, with all sorts of different
features.

Exercise 10.5. Let T be the theory with no axioms (besides tautologies)
in a signature with only the equality symbol. Show that T is incomplete.

In 1931, Gödel published a proof of the incompleteness of arithmetic
or, more precisely, of first-order Peano arithmetic.2 Frequently, Gödel’s
remarkable result is paraphrased as showing that there is a true statement
of arithmetic that is not provable. That way of speaking is licensed by the
following simple result.

Proposition 10.2. Let T be a consistent theory. Then the following three
conditions are equivalent:

2. Kurt Gödel, 1931, "Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme, I,"Monatshefte für Mathematik und Physik, v. 38 n. 1, pp. 173–198.
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1. T is complete.
2. For each model M of T, if M �φ, then T �φ.
3. For some model M of T, if M �φ, then T �φ.

Exercise 10.6. Prove this proposition.

IfT is Peano arithmetic, then the setN = {0, 1, . . .} of natural numbers
is a model of T. Gödel proved that there is a sentence φ in the language
of arithmetic such that neither T �φ nor T �¬φ, which we now know is
equivalent to the fact that there is a sentence φ such thatN �φ but T �φ.
In other words, there is a truth φ aboutN that does not follow from Peano
arithmetic.

Now, you might raise the following objection to the supposed profun-
dity of Gödel’s theorem: although Peano arithmetic T is incomplete, can’t
we just keep adding new axioms until it’s complete? In one sense, the
answer is yes. In fact, there’s an easy recipe for constructing a complete
extension of T (if, in fact, N exists): let T+ be the set of all sentences that
are true in the model N. (Sometimes the theory T+ is called true arith-
metic.) Then,T+ is obviously complete and extendsT. Why not just take
T+ as a better theory than T?

The problem, in short, is that T+ is essentially an ineffable theory. We
know some consequences of T+, but we possess no general recipe for
generating all consequences of T+. In fact, a fully precise statement of
Gödel’s theorem says that no effable theory about the natural numbers can
be complete.

Exercise 10.7. Suppose that T has a modelM such thatM �φ, and T has
a modelN such thatN �¬φ. Show that T is incomplete.

Decidability

We concluded our discussion of completeness by saying that no “effable”
theory about the natural numbers is complete. If Gödel actually proved
such a claim, with mathematical rigor, then the word “effable” must have
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a precise mathematical meaning in this context. In fact, it does, although it
usually goesby amore technical-soundingname, recursivelyenumerable.

Intuitively speaking, a recursively enumerable collection is a collection
that can be generated step-by-step by applying some rule. In this book, you
have encountered several paradigm examples of recursively enumerable
collections.

• The setN of natural numbers is recursively enumerable: it is gen-
erated by applying the successor function s :N→N repeatedly to
the number 0∈N.

• If Σ is a propositional logic signature, then the set of Σ -
sentences is recursively enumerable. It is generated by applying
the construction rules (corresponding to the connectives) repeat-
edly to the atomic sentences in Σ .

• If Σ is a propositional logic signature, then the set of provable
sequents is recursively enumerable. It is generated by applying the
inference rules repeatedly to instances of the rule of assumptions.

Based on these characterizations, it’s also easy to see that the collection of
predicate logic formulas is recursively enumerable, as is the set of provable
sequents in predicate logic.

It does not follow from what we said here that every subset of a recur-
sively enumerable subset is also recursively enumerable. To prime your
intuition about this matter, think about subsets of the natural numbers.
There is an uncountable infinity of subsets of the natural numbers, but only
countably many recipes for generating subsets.

In the case of predicate logic, our theories T often have a finite num-
ber of axioms—and hence, they are automatically recursively enumerable,
as is the set of all their consequences. However, a theory need not have
only a finite number of axioms. For example, consider the theory T that
has axioms:

∃>1, ∃>2, . . . , ∃>n, . . .

where ∃>n is the sentence that says that there are more than n things. This
theory is sometimes called the theory of infinite sets, since its models are
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all infinite sets. Now, while the theory of infinite sets has an infinite number
of axioms, intuitively, its set of axioms is recursively enumerable. Indeed,
by writing the ellipsis after the first few axioms, I suggested a method of
generating all of the infinitely many axioms of T.

Now return to the theory T+ of true arithmetic, which consists of all
sentences that are true in the modelN of natural numbers. Gödel showed
not only that Peano arithmetic is incomplete; he showed that no complete
and consistent extension of Peano arithmetic can have a recursively enu-
merable set of axioms. In particular,T+ is not recursively enumerable, that
is, there is no rule that generates all and only the consequences of T+.

The notion of a recursively enumerable set is investigated in the subfield
ofmathematical logic called recursion theory. This theory also covers the
related notion of adecidable set, a notionwithwhich you are now familiar.

Suppose that Σ is some fixed propositional logic signature, and let Γ
be the set of all tautologous Σ -sentences. The set Γ is rather boring, in the
following sense: you could program your computer so that for any input
sentence φ, it will tell you whether or not φ ∈ Γ . The algorithm is simple:
have your computer write out a truth table for φ, and if all rows under the
main column are 1, then the computer says Accept. Otherwise, it says
Reject. Given this feature of the set Γ , we say that it is a decidable set.

What we just said also indicates that the set of valid propositional logic
sequents is also a decidable set. (We already knew that it was a recursively
enumerable set, since it is generated by applying a finite number of rules
of inference.) Indeed, given a proposed sequentφ � ψ , just have the com-
puter decide whether or not φ → ψ is a tautology. If the computer says
Accept, then the sequent is provable; if the computer says Reject,
then the sequent is not provable.

Surprisingly, perhaps, the situation turns out to be different in predi-
cate logic. Again, the set of valid predicate logic sequents is obviously a
recursively enumerable set. Indeed, we were busy generating that set ear-
lier in the book. Nonetheless, the set of valid predicate logic sequents is
not a decidable set. That fact is known as Church’s theorem, and its proof
is far from trivial.3 What it means for you, the practicing logician, is that

3. Named for Alonzo Church (1903–1995).
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there is no mechanical method for checking whether or not a predicate
logic sequent can be proven.

Compactness

Recall fromour discussion of propositional logic that the full completeness
theorem can be derived from the finite completeness theorem, if we allow
ourselves a new set-theoretic axiom: compactness.One versionof the com-
pactness axiom seems counterintuitive: it says that if every finite subset of
a set Γ of sentences is consistent, then Γ is consistent. Another version of
the compactness axiom seems obviously true: it says that if a set Γ doesn’t
imply a contradiction ⊥, then Γ can be grown to a maximal set Γ ∗ that
doesn’t imply a contradiction.

The compactness axiomalso applies in the caseof predicate logic, where
it’s perhaps even less controversial but is quite a bit more powerful in appli-
cations. Indeed, one can prove all sorts of interesting things about models
using the compactness theorem. One can also use compactness to prove
some interesting things about what cannot be said in first-order logic.

So long as we get to use the equality symbol =, first-order logic can
make any finite numerical claim we wish. For example, we can say that
there are less than n things, more than n things, or exactly n things. That
is, for each of these claims, there is a predicate logic sentence φ that cap-
tures its precise sense. There cannot, however, be a predicate logic sentence
φ that says, “There are infinitely many things.” To be clear, there are—
as we have already seen—predicate logic sentences that are only true in
infinite domains (e.g., the sentence that describes a linear order without
endpoints). However, those sentences must say something more than that
there are infinitely many things. For if φ says that there are infinitely many
things, then¬φ says that there are finitely many things. But as we will now
see, if a sentenceφ hasmodels of arbitrarily large finite size, thenφ also has
an infinite model.

Suppose that for each natural number n, φ has a model Mn that has
more than n elements. Thus, Mn � ∃>n, where the latter sentence says,
“There are more than n things.” Now let Γ be the collection of all sen-
tences: φ, ∃>1, ∃>2, . . . . We have just shown that every finite subset of Γ
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is consistent. Therefore, by compactness, Γ itself is consistent, that is, Γ
has a model M. However, M must be an infinite set, because for each n,
M � ∃>n. Therefore, φ has an infinite model.

Interestingly, although first-order logic doesn’t have a sentence φ that
says that there are infinitely many things, it does have an infinite set T of
sentences that together say there are infinitely many things. Indeed, the set
T= {∃>1, ∃>2, . . . } has only infinite models. However, that fact in no way
contradicts compactness, which says that if T is inconsistent, then some
finite subset of T is inconsistent.

We’ve just shown, then, that first-order logic cannot say some things;
in particular, it cannot say that there are infinitely many things. Perhaps
even more interesting, first-order logic cannot distinguish between differ-
ent sizes of infinity. To understand what’s going on here, you’ll have to take
on faith that the size of the set of real numbers (i.e., decimal expansions)
is strictly greater than the size of the set of natural numbers. That’s a fact
that one routinely proves in set theory. However, once again, if a first-order
logic sentenceφ has amodelN that is the size of the natural numbers, then
it has a modelM of the size of the real numbers.

Suppose, indeed, thatN is amodel ofφ. Whatever signature Σ the sen-
tenceφ is written in, we can expand it by adding a newname cr for each real
number r. Now let Γ be the set of sentences that includes φ and also the
sentences cr = cs for r = s. We claim, then, that each finite subset of Γ is
consistent. Indeed, any finite subset Γ 0 of Γ contains only finitely many
of the names cr. LetM be an interpretation that agreeswithN on the vocab-
ulary in φ and that assigns each cr to a distinct name in N. Clearly, then,
M �φ, and M validates each sentence cr = cs that occurs in Γ 0. There-
fore, Γ 0 is consistent. By compactness, Γ is consistent, and it’s clear that
a modelM of Γ must be as large as the real numbers. Therefore, φ has a
model that is as large as the real numbers.

Consider next the case of linear orders. Suppose that< is a binary rela-
tion symbol, and suppose that T is a theory that says that < is a discrete
linear order without endpoints. (The word “discrete” heremeans that each
point has an immediate successor and an immediate predecessor.) The
“standard”model ofT is the integers, that is, all negative and positivewhole
numbers: {. . . ,−2,−1, 0, 1, 2, . . . }. However, T also has nonstandard
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models, such as the “double integers,” which we now describe. Take two
copiesM1 andM2 of the integers, and paste them together, declaring each
number in the first copy is strictly smaller than each number in the second
copy. Let M be the resulting interpretation. Then, it’s straightforward to
verify thatM is also a model of T.

Now, suppose that you are a mathematician, and your job is to come up
with a set of axioms that picks out the integers. If you see that your axioms
T also permit the double integers, then youmight reasonably conclude that
you need a further axiom to rule out that case. So, what is the feature of the
double integers that we would like to rule out? Well, the double integers
have the following funny property: there are finite numbers a and b such
that there are infinitely many numbers between a and b. (For example, let
a be the 0 from the first copy of the integers, and let b be the 0 from the
second copy of the integers.) Thus, it wouldmake sense to try to add a new
axiom that says

Between any two numbers x and y, there are at most finitely many other
numbers.

Is there a first-order logic sentence that can express that English language
sentence? In short, the answer is no, for the following reason.

Suppose that φ(x, y) says that there are finitely many numbers between
x and y. Then, φ(x, y) is consistent with there being n numbers between x
and y and also with there being n+ 1 numbers, and so on. In other words,
for each n, φ(x, y) is consistent with the following statement:

ψ n(x, y) ≡ There are more than n numbers between x and y.

However, this formula ψ n(x, y) can be expressed in first-order logic. Thus,
a compactness argument shows that the entire set

{φ(c, d), ψ 1(c, d), ψ 2(c, d), . . .}

is consistent, where c and d are new names. But if there is no bound on the
distance between cM and dM , then it cannot be correct to say that there are
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finitely many numbers between cM and dM . Therefore, the formula φ(x, y)
doesn’t express the fact that there are finitely many numbers between x
and y.

We’ve just seen that first-order logic cannot express an axiom that says
that there are finitely many numbers between any two other numbers. The
problem, of course, is with that peskyword “finite.” First-order logic can say
things about specific finite numbers, but the amorphous concept of “finite-
ness” is beyond its grasp. If you wanted to speak that way, you’d have to
use a language that is more expressive than the one we’ve developed in this
book.

Let’s look at one last case of something that first-order logic cannot
express—this time close to home for anyone who has studied calculus.
In more advanced applications of calculus, it becomes important to know
that there are lots and lots of real numbers. In fact, every bounded sub-
set S of real numbers has a least upper bound. (That’s how we know that
the irrational number π exists: let S be the subset of all rational num-
bers that are less than this theoretical number π . Since S has a least upper
bound, π exists.) Stated symbolically, to say that y is an upper bound for S
is expressed by the formula

φ(x) ≡ ∀x(x∈ S→ x≤ y).

Thus, to say that r is the least upper bound of S can be expressed by

φ(r)∧∀y(φ(y) → r≤ y).

Thus, first-order logic can say that r is a least upper bound, but what it can-
not say directly is that every subset S has a least upper bound. Indeed, you
should immediately be suspicious when you see a quantifier word, such as
“every,” precede a name for a subset S of the relevant domain. Such a locu-
tion is a signal that one is quantifying not just over points in the domain
but also over subsets of the domain. In such cases, then, we are doing
something that cannot be done in first-order logic.

The preceding considerations show, or at least indicate, that the study of
the real number systemR cannot proceed within the bounds of first-order
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logic. That might seem like a blow to the idea that logic forms the founda-
tion for all human knowledge. However, the story is in fact more nuanced
than that. Aswe saw in chapter 7, first-order logic can be used to axiomatize
set theory. And as one learns in a class onmathematical analysis, set theory
canbeused to formulate the theory of real numbers, including theprinciple
that each bounded subset has a least upper bound. Thus, the foundational
aspirations of first-order logic are still alive and well.
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Beyond Logic

Since logic has no content, you cannot have failed to learn the
content of this book. We hope, though, to have shown you an example of
how you can think more clearly, more rigorously, and more freely.

You might be disappointed. You might have hoped that logic would tell
you what to to believe or how to behave. However, since logic only cares
about form (and not content), it cannot possibly advise us on what to
believe. At best, logic can help us to calculate the costs of our beliefs. And
once again, it’s up to you to decide what costs you are willing to pay.

Consider, for example, the following simple argument for God’s exis-
tence.

If God does not exist, then there are no moral rules.
There are moral rules.
Therefore, God exists.

This argument is valid. But so what? It doesn’t tell you what to believe. Per-
haps you don’t believe the premises. Or perhaps you believe the premises,
andupondiscovering that they entail this conclusion, you’ll decide to reject
the premises. Logic does not tell you that you ought not do that. There’s an
old philosophers’ saying: one person’smodus ponens is another person’smodus
tollens. In otherwords, logic doesn’t tell youwhether to accept the premises
and the conclusion or whether to reject one of the premises because you
reject the conclusion.

225
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What Next?

Did you just waste a class (or many hours, or both) on learning techniques
that you’ll never again use? Even if you never again write a formal proof,
the work you’ve put into learning formal logic will not be wasted. Consider
an analogy. A competitive athlete may spend hour upon hour performing
exercises that shewill never perform in competition. Of course, those exer-
cises are not wasted time. The different individual exercises are like vectors
that can be summed together to produce the desired outcome during com-
petition. The individual component contributors to performance may be
invisible, but if they weren’t there, the performance would be undermined.

Your life is more important than any athletic competition, and your
brain is one of your most important tools for winning in life (however you
define that for yourself). You can think of formal logic as the brain’s ver-
sion of isolation exercises. By learning the individual inference rules and by
using them again and again, you’ve built some exquisite mental muscles. In
real life, you might never have occasion to employ these individual men-
tal muscles in isolation. However, any time you need to think hard, fast,
or clearly, these individual mental muscles will combine to enable you to
perform at the highest possible level.

If you want to go further with formal logic, then I have good news for
you: it’s a thriving subject, with connections to many other fields of study,
such as computer science. As for the study of logic itself, there are many
different directions you could go from here, and I’ll briefly discuss five of
them.

First, you might wish to study extensions of classical logic. For
philosophers, the most important of these extensions is modal logic,
which studies intensional connectives such as “it is necessarily true that . . . ”
usually symbolized with a box�.1

While modal logic has primarily found its audience among philoso-
phers, other extensions of classical logic are of interest in the exact sciences.

1. For propositional modal logic, see J. C. Beall and B. van Fraassen, Possibilities and Paradox,
Oxford (2003), or G. Forbes, Modern Logic, Oxford (1994). For quantified modal logic, see K.
Konyndyk, IntroductoryModal Logic, University ofNotreDame Press (1986), or T. Sider, Logic for
Philosophy, Oxford (2010).
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Here, we shouldmention higher-order logics (where one can quantify over
subsets),2 infinitary logics (where one can form infinite conjunctions or
disjunctions of sentences), and the lambda calculus (where one adds an
operator for forming names out of predicate phrases).3

Second, if you’re feeling a bit more revolutionary, then you might be
interested in studying alternatives to classical logic. These alternatives to
classical logic can again be subdivided into two classes: fragments of clas-
sical logic and substructural logics. A fragment of classical logic is a logic
that uses only some subset of the logical vocabulary or the inference rules.
For example, intuitionistic logic drops the double-negation elimination
rule and instead adopts an ex falso quodlibet rule. (In this case, excluded
middle can no longer be proven.) The move to intuitionistic logic was ini-
tially motivated by an outlook in the philosophy of mathematics that has
largely been discredited. However, intuitionistic logic is still an important
tool for reasoning about mathematical structures that do not “live in” the
universe of sets.4 More generally, coherent logic drops the negation sym-
bol and the universal quantifier and so is neutral between intuitionistic and
classical logic.

A substructural logic is a logic thatmodifies someof the ruleswe tacitly
adopted for manipulating dependency numbers. In particular, we tacitly
assumed that lists of dependency numbers aggregate like sets, for example,
the aggregate of “2” and “2, 3” is “2, 3,” which is no different than “3, 2.” In
substructural logic, these identities are no longer assumed to hold. Already
in the1960s, some logicians argued that changes in the structural ruleswere
the best solution to the paradoxes of material implication.5 More recently,
it has been observed that changes in the structural rules can yield logics
that better represent the kind of reasoning used in quantum physics (e.g.,
quantum logic)6 and in computer science (e.g., linear logic).7

2. https://plato.stanford.edu/entries/logic-higher-order
3. https://plato.stanford.edu/entries/lambda-calculus
4. S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Springer (1994).
5. https://plato.stanford.edu/entries/logic-relevance
6. P. Gibbins, Particles and Paradoxes: The Limits of Quantum Logic, Cambridge (1987).
7. A. S. Troelstra, Lectures on Linear Logic, CSLI (1992). For a general overview, see G. Restall,

An Introduction to Substructural Logics, Routledge (2000).

https://plato.stanford.edu/entries/logic-relevance
https://plato.stanford.edu/entries/lambda-calculus
https://plato.stanford.edu/entries/logic-higher-order
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Third, this entirebookhas focusedona limiting caseof goodarguments,
namely, those arguments where the premises provide decisive support for
the conclusion (i.e., deductively valid arguments). So, it would make a lot
of sense to now go on to study less-idealized cases, where the premises are
only intended to provide some (less than decisive) support conclusion.
One promising approach to this idea is to use the probability calculus,
which offers various ways to measure the evidential support that premises
provide for a conclusion.8 More generally, various inductive logics have
been proposed, although there has been some controversy among philoso-
phers about whether the notion of inductive support can be properly
formalized.9

Fourth, one could proceed from here to a more in-depth study of the
metatheory of first-order logic. For example, in proof theory, one builds
and studies elegant “sequent calculi.” In fact, we intentionally chose the
proof system in this book because it closely resembles the sequent calcu-
lus, and so anyone who learns this system is well prepared to move on to
proof theory.10 Going in a different metatheoretical direction, in model
theory, one studies the relation between theories and their models, and
it’s here that one proves some of the most powerful results of metalogic.11

For example, the Löwenheim-Skolem theorem shows that any theory with
an infinitemodel also has a countably infinitemodel—which is deeply puz-
zlingwhen applied toZermelo-Fraenkel set theory, which entails that there
is an uncountably infinite set.12

Fifth, you might wish to study particular theories within first-order
logic. Of course, that’s precisely what’s done in many different parts of
mathematics—for example, one studies group theory, or ring theory, or
field theory, or . . . . However, some such theories are of special interest
to logicians, most particularly Zermelo-Fraenkel set theory and Peano

8. Colin Howson and Peter Urbach, Scientific Reasoning: The Bayesian Approach, Open Court
(2005).

9. Brian Skyrms, Choice and Chance: An Introduction to Inductive Logic, Cengage (1999).
10. A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge (2000).
11. D. Marker,Model Theory: An Introduction, Springer (2002).
12. For a general overview of metatheory, see G. Hunter, Metalogic: An Introduction to the

Metatheory of Standard First Order Logic, University of California Press (1996), or H. Enderton,
AMathematical Introduction to Logic, Academic Press (2001).
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arithmetic. Set theory has itself become a massive field of study, and
there are many good textbooks. As for the study of Peano arithmetic and
Gödel’s incompleteness theorem, we would point the interested reader to
Burgess, Boolos, and Jeffrey, Computability and Logic, Cambridge (2007),
or P. Smith, An Introduction to Gödel’s Theorems, Cambridge (2013).

Sixth, and finally, youmight want to study the network of all theories as
they are related to eachother via translations.Herewewould (immodestly)
point you to H. Halvorson, The Logic in Philosophy of Science, Cambridge
(2019).



525-85030_ch01_6P — 2020/5/22 — 12:53 — page 230 — #6



525-85030_ch01_6P — 2020/5/22 — 12:59 — page 231 — #1

Resumé of Inference Rules

∧ I

Γ � φ Δ � ψ
Γ , Δ � φ ∧ ψ

∧E

Γ � φ ∧ ψ

Γ � φ Γ � ψ

∨ I

Γ � φ

Γ � φ ∨ ψ Γ � ψ ∨φ

∨E

Γ � φ ∨ ψ Δ ,φ � χ Θ , ψ � χ
Γ , Δ , Θ � χ

CP

Γ ,φ � ψ

Γ � φ → ψ

MP

Γ � φ → ψ Δ � φ

Γ , Δ � ψ

MT

Γ � φ → ψ Δ � ¬ψ
Γ , Δ � ¬φ

RAA

Γ ,φ � ψ ∧¬ψ
Γ � ¬φ

DN

Γ � φ

Γ � ¬¬φ

DN

Γ � ¬¬φ

Γ � φ

231



525-85030_ch01_6P — 2020/5/22 — 12:59 — page 232 — #2

232 R e s um é o f I n f e r e n c e R u l e s

EI

Γ � φ(a)

Γ � ∃xφ(x)

EE

Γ � ∃xφ(x) Δ ,φ(a) � ψ a does not occur
in Γ , Δ , or φ(x)Γ , Δ � ψ

UE

Γ � ∀xφ(x)

Γ � φ(a)

UI

Γ � φ(a) a does not occur in
Γ or φ(x)Γ � ∀xφ(x)
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Useful Valid Argument Forms

hypothetical syllogism φ → ψ , ψ → χ � φ → χ
prefixing ψ → χ � (φ → ψ ) → (φ → χ )

suffixing φ → ψ � (ψ → χ ) → (φ → χ )

permutation φ → (ψ → χ ) � ψ → (φ → χ )

contraction φ → (φ → ψ ) � φ → ψ
positive paradox ψ � φ → ψ
negative paradox ¬φ � φ → ψ
ex falso quodlibet φ,¬φ � ψ

weakening ¬φ � ¬(φ ∧ ψ )

disjunctive syllogism φ ∨ ψ ,¬φ � ψ
excluded middle � φ ∨¬φ

commutation φ ∧ ψ �� ψ ∧φ

commutation φ ∨ ψ �� ψ ∨φ

association φ ∧ (ψ ∧ χ ) �� (φ ∧ ψ )∧ χ
association φ ∨ (ψ ∨ χ ) �� (φ ∨ ψ )∨ χ

material conditional φ → ψ �� ¬φ ∨ ψ
material conditional ¬(φ → ψ ) �� φ ∧¬ψ

contraposition φ → ψ �� ¬ψ → ¬φ

DeMorgan ¬(φ ∨ ψ ) �� ¬φ ∧¬ψ
DeMorgan ¬(φ ∧ ψ ) �� ¬φ ∨¬ψ
distribution φ ∧ (ψ ∨ χ ) �� (φ ∧ ψ )∨ (φ ∧ χ )

distribution φ ∨ (ψ ∧ χ ) �� (φ ∨ ψ )∧ (φ ∨ χ )

exportation φ → (ψ → χ ) �� (φ ∧ ψ ) → χ
duplication φ �� φ ∧φ

233
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duplication φ �� φ ∨φ

top � �� φ ∨�
top φ �� φ ∧�

bottom φ �� φ ∨⊥
bottom ⊥ �� φ ∧⊥

self-undermining φ → ¬φ �� ¬φ

biconditional ¬(φ ↔ ψ ) �� ¬φ ↔ ψ
biconditional φ ↔ ψ �� (φ ∧ ψ )∨ (¬φ ∧¬ψ )

biconditional φ ↔ ψ �� (φ → ψ )∧ (ψ → φ)

bicontraposition φ ↔ ψ �� ¬φ ↔ ¬ψ

Useful Quantifier Equivalences

quantifier negation ¬∀xφ �� ∃x¬φ

quantifier negation ¬∃xφ �� ∀x¬φ

alpha ∀xφ �� ∀yφ[y/x] substitute y for x
alpha ∃xφ �� ∃yφ[y/x] substitute y for x
swoosh ∀x(φ ∧ ψ ) �� ∀xφ ∧∀xψ
swoosh ∃x(φ ∨ ψ ) �� ∃xφ ∨ ∃xψ

∀x(χ → φ) �� χ → ∀xφ x not free in χ
∃x(χ → φ) �� χ → ∃xφ x not free in χ
∀x(φ → χ ) �� ∃xφ → χ x not free in χ
∃x(φ → χ ) �� ∀xφ → χ x not free in χ

∀x∀yφ �� ∀y∀xφ
∃x∃yφ �� ∃y∃xφ
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Truth Tables

φ ψ φ ∧ ψ
1 1 1 1 1
1 0 1 0 0
0 1 0 0 1
0 0 0 0 0

φ ¬φ

1 0 1
0 1 0

φ ψ φ ∨ ψ
1 1 1 1 1
1 0 1 1 0
0 1 0 1 1
0 0 0 0 0

φ ψ φ → ψ
1 1 1 1 1
1 0 1 0 0
0 1 0 1 1
0 0 0 1 0
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Validity Tests for Predicate Logic

In this appendix, we sketch an algorithm for testing whether arguments
with only unary predicate symbols are valid. Note that it’s enough to have
an algorithm that tests for the consistency of sentences. Thus, we first
describe analgorithm(algorithmA) that tests the consistencyof quantifier-
free sentences. We then describe algorithm B, which tests the consistency
of simple monadic sentences (which have just one quantifier at the begin-
ning). Finally, we describe algorithm C, which tests the consistency of
Boolean combinations of simple monadic sentences.

Algorithm A

Use:To test for the consistency of a set of quantifier-free sentences.

Algorithm: For any set Γ of quantifier-free sentences, try to assign truth
values to all of the elementary sentences that make up the sentences in Γ
in such a way as to make all of the sentences in Γ true. If there is such an
assignment, then the sentences in Γ are consistent. If not, then they are
inconsistent.

To determine the extension of the predicates: if a given sentence is true,
then put the object named into the extension of the predicate used in the
sentence. So, for example, ifFa is false, then leaveaout of the extensionofF.
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Algorithm B

Use:To test for the consistency of a set of simplemonadic sentences (note:
a sentence is simplemonadic just in case themain operator of the sentence
is a quantifier and it doesn’t contain any other quantifiers or names within
the scope of the main quantifier).

1. Take each sentence beginning with an existential quantifier and give
an instance of the sentence such that each sentence contains a different
arbitrary name.

2. Then, take each sentence beginning with a universal quantifier and
produce an instance of the quantifier for each name used in step (1).
If there are no sentences beginning with existential quantifiers, then
you need only one instance of each universal sentence.

3. Take the list of instances and plug that set of sentences into algorithm
A. If those sentences are consistent, then the set of simple monadic
sentences is consistent. If not, then they aren’t.

Algorithm C

Use: To test for the consistency of pure monadic sentences (note: a pure
monadic sentence is a sentence that is a truth-functional combination of
simple monadic sentences).

1. Take your pure monadic sentences and conjoin them into one giant
sentence of the form φ ∧ ψ ∧ χ , and so on.

2. Treating the simple monadic sentences as elementary, put the entire
giant sentence into disjunctive normal form (DNF).

3. Drive in any negations that are on the outside of quantifiers.
4. You’ve now got a big disjunction of conjunctions, that is, a sentence of

the form (φ ∧ ψ )∨ (χ ∧ θ ), and so on, where each sentence letter is
a simple monadic sentence. Take each disjunct one at a time and plug
the simple monadic sentences into algorithm B. If any one disjunct is
consistent, then the whole giant sentence is consistent, and the orig-
inal set of pure monadic sentences is consistent. If none of them are
consistent, then the whole thing is inconsistent.
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Glossary

� Semantic implication: whenever the sentences to the left of the dou-
ble turnstile are true, the sentence to the right of the double turnstile is
true 203

� The relation of provability defined by the inference rules 12
antecedent The antecedent of a conditional is the sentence that occurs after

“if ”; for example, in “if it is raining then the sidewalk iswet,” the sentence
“it is raining” is the antecedent 16

atomic sentence An atomic sentence is a sentence that does not have any
other sentence as a proper syntactic part. In propositional logic, atomic
sentences are represented by capital letters such as P,Q ,R, . . .. In quan-
tifier logic, the atomic sentences are either relation symbols applied to
closed terms, such as Rab, or equalities between closed terms, such as
a= b 23, 52, 85, 178

biconditional A biconditional is a statement of the form “φ if and only if
ψ .” It asserts that φ is a necessary and sufficient condition for ψ 58

complete (1) A complete proof system is one that proves everything it
should: if φ � ψ , then φ � ψ . (2) A theory T is complete just in case
T �φ or T � ¬φ, for every sentence φ in its language 196, 217

conditional A conditional sentence is one whose main connective is “if . . .
then,” symbolized by→ 16

conjunct A conjunct is one of the two subformulas that are combined with
∧ to form a conjunction 11
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consequent The consequent of a conditional is the sentence that occurs
after “then”; for example, in “if it is raining then the sidewalk is wet” the
sentence “the sidewalk is wet,” is the consequent 16

contingency A contingency is a sentence that is true in some situations and
false in other situations 73

counterexample A counterexample to an argument is a formalization of the
notion of a situation, or state of affairs, in which the premises are true
and the conclusion is false 18, 71, 164

dependency number A number in the leftmost column of a proof that dis-
plays which assumptions are in force at a particular step in the proof
29

disjunction A disjunction is a sentence whose main connective is “or,”
symbolized by ∨ 13

existential quantifier The symbol ∃ that plays the role of “some” or “there
is” 88

expressively complete A collection of connectives is expressively complete
if it can express all truth functions 185

inconsistency An inconsistency is a sentence that is false in all situations
72

interpretation An interpretation is an assignment of symbols to set-
theoretic structures 161

main column Is the column in the truth table of a sentence corresponding
to the main connective of that sentence 66

main connective For a propositional logic sentenceφ, the last connective in
the construction of φ 179

model A model of a theory is an interpretation in which all the theory’s
sentences are true 169

necessary condition In a conditional statement “if φ, then ψ ,” the conse-
quent ψ is a necessary condition for φ 19

reconstrual A reconstrual assigns nonlogical symbols to corresponding
syntactic structures. For example, a reconstrual assigns a predicate
symbol to a formula with one free variable 52, 190

sequent A sequent consists of a list of sentences (premises), a turnstile �,
and another sentence (conclusion). It is the symbolic representation of
a valid argument form 12, 29
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signature A signature is a set of nonlogical symbols: propositional con-
stants, relation, function, and constant symbols 190

sound A sound proof system is one that doesn’t prove things it shouldn’t:
if φ � ψ , then φ � ψ 194, 213

subformula A subformula of φ is any formula that occurs in the construc-
tion of φ 179

substitution When some nonlogical symbols are replaced with other suit-
able syntactic structures 179

substitution instance A substitution instance of a sentence is any other sen-
tence that results from the first by a uniform replacement of nonlogical
terms. That is, it is any sentence that could result from translating that
sentence to another language 52, 191

sufficient condition In a conditional statement “if φ, then ψ ,” the
antecedent φ is a sufficient condition for ψ 19

tautology A tautology is a sentence φ that is provable from no premises
(i.e.,�φ) or that is true merely in virtue of its form or that is true in all
situations 73

translation A translation is a map from formulas to formulas, generated by
a reconstrual of the nonlogical vocabulary in those formulas 52, 190

truth-functional A connective is truth-functional just in case its truth value
is a functionof the truth valueof the relevant component sentences 183

universal quantifier The symbol∀ that plays the role of “all” or “every” 87
valid An argument is valid just in case its premises provide decisive sup-

port for its conclusion, alternatively, if the truth of its premises guaran-
tees the truth of its conclusion 5

variable A symbol such as x, which plays the role of an open term 87
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Acronyms

CNF conjunctive normal form 198, 200

DM DeMorgan’s rule 36, 46, 49
DNF disjunctive normal form 197, 200

EFQ ex falso quodlibet 39, 47
EM law of excluded middle 37, 48, 49

MP modus ponens 16
MT modus tollens 19

QN quantifier negation equivalences 110

RAA reductio ad absurdum 47, 48
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Index

antecedent, 16
argument, 2; form of, 4, 7; invalid, 18, 24;

valid, 5, 12
arithmetic, 131
assumption, 29
atomic sentence, 52
autosets, 139

biconditional, 58

compactness, 25, 202, 220
completeness theorem, 72, 199, 213
conclusion, 2
conditional, 16
conditional proof, 32
conjunction, 9
conjunctive normal form, 196
consequent, 16
consistent sentences, 73
contingency, 73
contrapositive, 33
counterexample, 18, 71, 163
cut, 55

decidability, 217
definite description, 121
definition, 135

disjunction, 13
disjunctive normal form, 62, 194

equality, 116
equivalence, 22, 73
equivalence relation, 148
ex falso quodlibet, 39
existential quantifier, 88
expressive completeness, 184

fallacy, 18
formula, 159
function, 128

incompleteness theorem, 215
inconsistency, 72
interpretation, 158

main column, 66
main connective, 67, 178
material implication, 37, 69
mathematical induction, 132, 179, 188
model, 156

natural numbers, 153
necessary condition, 19, 58
negation, 18
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parse tree, 178
partial order, 126
Peirce’s law, 62
possible world, 79
Post completeness, 200
premise, 2

reconstrual, 52, 189, 207
reductio ad absurdum, 46
replacement, 60

sequent, 12
set theory, 141
signature, 189

soundness theorem, 70, 193, 210
substitution instance, 52, 178, 206
sufficient condition, 19, 58

tautology, 72, 112
translation, 52, 189
truth table, 65
truth value, 65

universal quantifier, 87

valuation, 74, 186
variable, 87; free, 159
Venn diagram, 89
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