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Preface to the Third Edition

Students of mathematics and computer science often have trouble the first
time they’re asked to work seriously with mathematical proofs, because
they don’t know the “rules of the game.” What is expected of you if you are
asked to prove something? What distinguishes a correct proof from an
incorrect one? This book is intended to help students learn the answers to
these questions by spelling out the underlying principles involved in the
construction of proofs.

Many students get their first exposure to mathematical proofs in a high
school course on geometry. Unfortunately, students in high school geometry
are usually taught to think of a proof as a numbered list of statements and
reasons, a view of proofs that is too restrictive to be very useful. There is a
parallel with computer science here that can be instructive. Early
programming languages encouraged a similar restrictive view of computer
programs as numbered lists of instructions. Now computer scientists have
moved away from such languages and teach programming by using
languages that encourage an approach called “structured programming.”
The discussion of proofs in this book is inspired by the belief that many of
the considerations that have led computer scientists to embrace the
structured approach to programming apply to proof writing as well. You
might say that this book teaches “structured proving.”

In structured programming, a computer program is constructed, not by
listing instructions one after another, but by combining certain basic
structures such as the if-else construct and do-while loop of the Java
programming language. These structures are combined, not only by listing
them one after another, but also by nesting one within another. For example,
a program constructed by nesting an if-else construct within a do-while loop
would look like this:

do



if [condition]
[List of instructions goes here.]

else
[Alternative list of instructions goes here.]

while [condition]

The indenting in this program outline is not absolutely necessary, but it is a
convenient method often used in computer science to display the underlying
structure of a program.

Mathematical proofs are also constructed by combining certain basic
proof structures. For example, a proof of a statement of the form “if P then
Q” often uses what might be called the “suppose-until” structure: we
suppose that P is true until we are able to reach the conclusion that Q is
true, at which point we retract this supposition and conclude that the
statement “if P then Q” is true. Another example is the “for arbitrary x
prove” structure: to prove a statement of the form “for all x, P(x),” we
declare x to be an arbitrary object and then prove P (x). Once we reach the
conclusion that P(x) is true we retract the declaration of x as arbitrary and
conclude that the statement “for all x, P(x)” is true. Furthermore, to prove
more complex statements these structures are often combined, not only by
listing one after another, but also by nesting one within another. For
example, to prove a statement of the form “for all x, if P(x) then Q(x)” we
would probably nest a “suppose-until” structure within a “for arbitrary x
prove” structure, getting a proof of this form:

Let x be arbitrary.
Suppose P(x) is true.

[Proof of Q(x) goes here.]
Thus, if P(x) then Q(x).

Thus, for all x, if P(x) then Q(x).

As before, we have used indenting to make the underlying structure of the
proof clear.

Of course, mathematicians don’t ordinarily write their proofs in this
indented form. Our aim in this book is to teach students to write proofs in
ordinary paragraphs, just as mathematicians do, and not in the indented
form. Nevertheless, our approach is based on the belief that if students are



to succeed at writing such proofs, they must understand the underlying
structure that proofs have. They must learn, for example, that sentences like
“Let x be arbitrary” and “Suppose P” are not isolated steps in proofs, but
are used to introduce the “for arbitrary x prove” and “suppose-until” proof
structures. It is not uncommon for beginning students to use these sentences
inappropriately in other ways. Such mistakes are analogous to the
programming error of using a “do” with no matching “while.”

Note that in our examples, the choice of proof structure is guided by the
logical form of the statement being proven. For this reason, the book begins
with elementary logic to familiarize students with the various forms that
mathematical statements take. Chapter 1 discusses logical connectives, and
quantifiers are introduced in Chapter 2. These chapters also present the
basics of set theory, because it is an important subject that is used in the rest
of the book (and throughout mathematics), and also because it serves to
illustrate many of the points of logic discussed in these chapters.

Chapter 3 covers structured proving techniques in a systematic way,
running through the various forms that mathematical statements can take
and discussing the proof structures appropriate for each form. The examples
of proofs in this chapter are for the most part chosen, not for their
mathematical content, but for the proof structures they illustrate. This is
especially true early in the chapter, when only a few proof techniques have
been discussed, and as a result many of the proofs in this part of the chapter
are rather trivial. As the chapter progresses, the proofs get more
sophisticated and more interesting, mathematically.

Chapters 4 and 5, on relations and functions, serve two purposes. First,
they provide subject matter on which students can practice the proof-
writing techniques from Chapter 3. And second, they introduce students to
some fundamental concepts used in all branches of mathematics.

Chapter 6 is devoted to a method of proof that is very important in both
mathematics and computer science: mathematical induction. The
presentation builds on the techniques from Chapter 3, which students
should have mastered by this point in the book.

After completing Chapter 6, students should be ready to tackle more
substantial mathematical topics. Two such topics are presented in Chapters
7 and 8. Chapter 7, new in this third edition, gives an introduction to
number theory, and Chapter 8 discusses infinite cardinalities. These



chapters give students more practice with mathematical proofs, and they
also provide a glimpse of what more advanced mathematics is like.

Every section of every chapter ends with a list of exercises. Some
exercises are marked with an asterisk; solutions or hints for these exercises
are given in the appendix. Exercises marked with the symbol PD can be done
using Proof Designer software, which is available free on the internet.

The biggest changes in this third edition are the addition of a new chapter
on number theory and also more than 150 additional exercises. The section
on reflexive, symmetric, and transitive closures of relations has been
deleted from Chapter 4 (although these topics are now introduced in some
exercises in Section 4.4); it has been replaced with a new section in Chapter
5 on closures of sets under functions. There are also numerous small
changes throughout the text.

I would like to thank all those who sent me comments about earlier
editions of this book. In particular, John Corcoran and Raymond Boute
made several helpful suggestions. I am also grateful for advice from
Jonathan Sands and several anonymous reviewers.



Introduction

What is mathematics? High school mathematics is concerned mostly with
solving equations and computing answers to numerical questions. College
mathematics deals with a wider variety of questions, involving not only
numbers, but also sets, functions, and other mathematical objects. What ties
them together is the use of deductive reasoning to find the answers to
questions. When you solve an equation for x you are using the information
given by the equation to deduce what the value of x must be. Similarly,
when mathematicians solve other kinds of mathematical problems, they
always justify their conclusions with deductive reasoning.

Deductive reasoning in mathematics is usually presented in the form of a
proof. One of the main purposes of this book is to help you develop your
mathematical reasoning ability in general, and in particular your ability to
read and write proofs. In later chapters we’ll study how proofs are
constructed in detail, but first let’s take a look at a few examples of proofs.

Don’t worry if you have trouble understanding these proofs. They’re just
intended to give you a taste of what mathematical proofs are like. In some
cases you may be able to follow many of the steps of the proof, but you
may be puzzled about why the steps are combined in the way they are, or
how anyone could have thought of the proof. If so, we ask you to be patient.
Many of these questions will be answered later in this book, particularly in
Chapter 3.

All of our examples of proofs in this introduction will involve prime
numbers. Recall that an integer larger than 1 is said to be prime if it cannot
be written as a product of two smaller positive integers. If it can be written
as a product of two smaller positive integers, then it is composite. For
example, 6 is a composite number, since 6 = 2 · 3, but 7 is a prime number.

Before we can give an example of a proof involving prime numbers, we
need to find something to prove – some fact about prime numbers whose
correctness can be verified with a proof. Sometimes you can find interesting



patterns in mathematics just by trying out a calculation on a few numbers.
For example, consider the table in Figure I.1. For each integer n from 2 to
10, the table shows whether or not both n and 2n − 1 are prime, and a
surprising pattern emerges. It appears that 2n − 1 is prime in precisely those
cases in which n is prime!

Figure I.1.

Will this pattern continue? It is tempting to guess that it will, but this is
only a guess. Mathematicians call such guesses conjectures. Thus, we have
the following two conjectures:

Conjecture 1. Suppose n is an integer larger than 1 and n is prime. Then 2n

− 1 is prime.

Conjecture 2. Suppose n is an integer larger than 1 and n is not prime.
Then 2n − 1 is not prime.

Unfortunately, if we continue the table in Figure I.1, we immediately find
that Conjecture 1 is incorrect. It is easy to check that 11 is prime, but 211 −
1 = 2047 = 23·89, so 211 − 1 is composite. Thus, 11 is a counterexample to
Conjecture 1. The existence of even one counterexample establishes that the
conjecture is incorrect, but it is interesting to note that in this case there are
many counterexamples. If we continue checking numbers up to 30, we find
two more counterexamples to Conjecture 1: both 23 and 29 are prime, but
223 − 1 = 8,388,607 = 47 · 178,481 and 229 − 1 = 536,870,911 = 2,089 ·
256,999. However, no number up to 30 is a counterexample to Conjecture
2.



Do you think that Conjecture 2 is correct? Having found
counterexamples to Conjecture 1, we know that this conjecture is incorrect,
but our failure to find a counterexample to Conjecture 2 does not show that
it is correct. Perhaps there are counterexamples, but the smallest one is
larger than 30. Continuing to check examples might uncover a
counterexample, or, if it doesn’t, it might increase our confidence in the
conjecture. But we can never be sure that the conjecture is correct if we
only check examples. No matter how many examples we check, there is
always the possibility that the next one will be the first counterexample.
The only way we can be sure that Conjecture 2 is correct is to prove it.

In fact, Conjecture 2 is correct. Here is a proof of the conjecture:

Proof of Conjecture 2. Since n is not prime, there are positive integers a and
b such that a < n, b < n, and n = ab. Let x = 2b − 1 and y = 1 + 2b + 22b + · ·
· + 2(a − 1)b. Then

Since b < n, we can conclude that x = 2b − 1 < 2n − 1. Also, since ab = n
> a, it follows that b > 1. Therefore, x = 2b − 1 > 21 − 1 = 1, so y < xy = 2n

− 1. Thus, we have shown that 2n − 1 can be written as the product of two
positive integers x and y, both of which are smaller than 2n − 1, so 2n − 1 is
not prime.

□

Now that the conjecture has been proven, we can call it a theorem. Don’t
worry if you find the proof somewhat mysterious. We’ll return to it again at
the end of Chapter 3 to analyze how it was constructed. For the moment,
the most important point to understand is that if n is any integer larger than
1 that can be written as a product of two smaller positive integers a and b,
then the proof gives a method (admittedly, a somewhat mysterious one) of
writing 2n − 1 as a product of two smaller positive integers x and y. Thus, if
n is not prime, then 2n − 1 must also not be prime. For example, suppose n



= 12, so 2n − 1 = 4095. Since 12 = 3 · 4, we could take a = 3 and b = 4 in
the proof. Then according to the formulas for x and y given in the proof, we
would have x = 2b − 1 = 24 − 1 = 15 and y = 1 + 2b + 22b

 + · · · + 2(a − 1)b =
1 + 24 + 28 = 273. And, just as the formulas in the proof predict, we have xy
= 15 · 273 = 4095 = 2n − 1. Of course, there are other ways of factoring 12
into a product of two smaller integers, and these might lead to other ways of
factoring 4095. For example, since 12 = 2 · 6, we could use the values a = 2
and b = 6. Try computing the corresponding values of x and y and make
sure their product is 4095.

Although we already know that Conjecture 1 is incorrect, there are still
interesting questions we can ask about it. If we continue checking prime
numbers n to see if 2n − 1 is prime, will we continue to find
counterexamples to the conjecture – examples for which 2n − 1 is not
prime? Will we continue to find examples for which 2n − 1 is prime? If
there were only finitely many prime numbers, then we might be able to
investigate these questions by simply checking 2n − 1 for every prime
number n. But in fact there are infinitely many prime numbers. Euclid
(circa 300 BCE) gave a proof of this fact in Book IX of his Elements. His
proof is one of the most famous in all of mathematics:1

Theorem 3. There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime numbers. Let p1, p2, . . . ,
pn be a list of all prime numbers. Let m = p1p2 · · · pn + 1. Note that m is not
divisible by p1, since dividing m by p1 gives a quotient of p2p3 · · · pn and a
remainder of 1. Similarly, m is not divisible by any of p2, p3, . . . , pn.

We now use the fact that every integer larger than 1 is either prime or can
be written as a product of two or more primes. (We’ll see a proof of this fact
in Chapter 6 – see Theorem 6.4.2.) Clearly m is larger than 1, so m is either
prime or a product of primes. Suppose first that m is prime. Note that m is
larger than all of the numbers in the list p1, p2, . . . , pn, so we’ve found a
prime number not in this list. But this contradicts our assumption that this
was a list of all prime numbers.

Now suppose m is a product of primes. Let q be one of the primes in this
product. Then m is divisible by q. But we’ve already seen that m is not



divisible by any of the numbers in the list p1, p2, . . . , pn, so once again we
have a contradiction with the assumption that this list included all prime
numbers.

Since the assumption that there are finitely many prime numbers has led
to a contradiction, there must be infinitely many prime numbers.

□

Once again, you should not be concerned if some aspects of this proof
seem mysterious. After you’ve read Chapter 3 you’ll be better prepared to
understand the proof in detail. We’ll return to this proof then and analyze its
structure.

We have seen that if n is not prime then 2n − 1 cannot be prime, but if n is
prime then 2n − 1 can be either prime or composite. Because there are
infinitely many prime numbers, there are infinitely many numbers of the
form 2n − 1 that, based on what we know so far, might be prime. But how
many of them are prime?

Prime numbers of the form 2n − 1 are called Mersenne primes, after
Father Marin Mersenne (1588–1648), a French monk and scholar who
studied these numbers. Although many Mersenne primes have been found,
it is still not known if there are infinitely many of them. Many of the largest
known prime numbers are Mersenne primes. As of this writing (February
2019), the largest known prime number is the Mersenne prime 282,589,933 −
1, a number with 24,862,048 digits.

Mersenne primes are related to perfect numbers, the subject of another
famous unsolved problem of mathematics. A positive integer n is said to be
perfect if n is equal to the sum of all positive integers smaller than n that
divide n. (For any two integers m and n, we say that m divides n if n is
divisible by m; in other words, if there is an integer q such that n = qm.) For
example, the only positive integers smaller than 6 that divide 6 are 1, 2, and
3, and 1+ 2+ 3 = 6. Thus, 6 is a perfect number. The next smallest perfect
number is 28. (You should check for yourself that 28 is perfect by finding
all the positive integers smaller than 28 that divide 28 and adding them up.)

Euclid proved that if 2n − 1 is prime, then 2n−1(2n − 1) is perfect. Thus,
every Mersenne prime gives rise to a perfect number. Furthermore, about
2000 years after Euclid’s proof, the Swiss mathematician Leonhard Euler
(1707–1783), the most prolific mathematician in history, proved that every



even perfect number arises in this way. (For example, note that 6 = 21(22 −
1) and 28 = 22(23 − 1).) Because it is not known if there are infinitely many
Mersenne primes, it is also not known if there are infinitely many even
perfect numbers. It is also not known if there are any odd perfect numbers.
For proofs of the theorems of Euclid and Euler, see exercises 18 and 19 in
Section 7.4.

Although there are infinitely many prime numbers, the primes thin out as
we look at larger and larger numbers. For example, there are 25 primes
between 1 and 100, 16 primes between 1001 and 1100, and only six primes
between 1,000,001 and 1,000,100. As our last introductory example of a
proof, we show that there are long stretches of consecutive positive integers
containing no primes at all. In this proof, we’ll use the following
terminology: for any positive integer n, the product of all integers from 1 to
n is called n factorial and is denoted n!. Thus, n! = 1 · 2 · 3 · · · n. As with
our previous two proofs, we’ll return to this proof at the end of Chapter 3 to
analyze its structure.

Theorem 4. For every positive integer n, there is a sequence of n
consecutive positive integers containing no primes.

Proof. Suppose n is a positive integer. Let x = (n + 1)! +2. We will show
that none of the numbers x, x + 1, x + 2, . . . , x + (n − 1) is prime. Since this
is a sequence of n consecutive positive integers, this will prove the theorem.

To see that x is not prime, note that

Thus, x can be written as a product of two smaller positive integers, so x is
not prime.

Similarly, we have

so x + 1 is also not prime. In general, consider any number x + i, where 0 ≤ i
≤ n − 1. Then we have



so x + i is not prime.
□

Theorem 4 shows that there are sometimes long stretches between one
prime and the next prime. But primes also sometimes occur close together.
Since 2 is the only even prime number, the only pair of consecutive integers
that are both prime is 2 and 3. But there are lots of pairs of primes that
differ by only two, for example, 5 and 7, 29 and 31, and 7949 and 7951.
Such pairs of primes are called twin primes. It is not known whether there
are infinitely many twin primes.

Recently, significant progress has been made on the twin primes
question. In 2013, Yitang Zhang (1955–) proved that there is a positive
integer d ≤ 70,000,000 such that there are infinitely many pairs of prime
numbers that differ by d. Work of many other mathematicians in 2013–14
narrowed down the possibilities for d to d ≤ 246. Of course, if the statement
holds with d = 2 then there are infinitely many twin primes.

Exercises
Note: Solutions or hints for exercises marked with an asterisk (*) are given
in the appendix.

*1. (a) Factor 215 − 1 = 32,767 into a product of two smaller positive
integers.

(b) Find an integer x such that 1 < x < 232,767 − 1 and 232,767 − 1 is
divisible by x.

2. Make some conjectures about the values of n for which 3n − 1 is
prime or the values of n for which 3n − 2n is prime. (You might start
by making a table similar to Figure I.1.)

*3. The proof of Theorem 3 gives a method for finding a prime number
different from any in a given list of prime numbers.

(a) Use this method to find a prime different from 2, 3, 5, and 7.
(b) Use this method to find a prime different from 2, 5, and 11.



4. Find five consecutive integers that are not prime.
5. Use the table in Figure I.1 and the discussion on p. 5 to find two more

perfect numbers.
6. The sequence 3, 5, 7 is a list of three prime numbers such that each

pair of adjacent numbers in the list differ by two. Are there any more
such “triplet primes”?

7. A pair of distinct positive integers (m, n) is called amicable if the sum
of all positive integers smaller than n that divide n is m, and the sum
of all positive integers smaller than m that divide m is n. Show that
(220, 284) is amicable.

1 Euclid phrased the theorem and proof somewhat differently. We have chosen to take a more
modern approach in our presentation.



1

Sentential Logic

1.1 Deductive Reasoning and Logical
Connectives
As we saw in the introduction, proofs play a central role in mathematics,
and deductive reasoning is the foundation on which proofs are based.
Therefore, we begin our study of mathematical reasoning and proofs by
examining how deductive reasoning works.

Example 1.1.1. Here are three examples of deductive reasoning:

1. It will either rain or snow tomorrow.
It’s too warm for snow.
Therefore, it will rain.

2. If today is Sunday, then I don’t have to go to work today.
Today is Sunday.
Therefore, I don’t have to go to work today.

3. I will go to work either tomorrow or today.
I’m going to stay home today.
Therefore, I will go to work tomorrow.

In each case, we have arrived at a conclusion from the assumption that
some other statements, called premises, are true. For example, the premises
in argument 3 are the statements “I will go to work either tomorrow or
today” and “I’m going to stay home today.” The conclusion is “I will go to
work tomorrow,” and it seems to be forced on us somehow by the premises.

But is this conclusion really correct? After all, isn’t it possible that I’ll
stay home today, and then wake up sick tomorrow and end up staying home



again? If that happened, the conclusion would turn out to be false. But
notice that in that case the first premise, which said that I would go to work
either tomorrow or today, would be false as well! Although we have no
guarantee that the conclusion is true, it can only be false if at least one of
the premises is also false. If both premises are true, we can be sure that the
conclusion is also true. This is the sense in which the conclusion is forced
on us by the premises, and this is the standard we will use to judge the
correctness of deductive reasoning. We will say that an argument is valid if
the premises cannot all be true without the conclusion being true as well.
All three of the arguments in our example are valid arguments.

Here’s an example of an invalid deductive argument:

Either the butler is guilty or the maid is guilty.
Either the maid is guilty or the cook is guilty.
Therefore, either the butler is guilty or the cook is guilty.

The argument is invalid because the conclusion could be false even if both
premises are true. For example, if the maid were guilty, but the butler and
the cook were both innocent, then both premises would be true and the
conclusion would be false.

We can learn something about what makes an argument valid by
comparing the three arguments in Example 1.1.1. On the surface it might
seem that arguments 2 and 3 have the most in common, because they’re
both about the same subject: attendance at work. But in terms of the
reasoning used, arguments 1 and 3 are the most similar. They both introduce
two possibilities in the first premise, rule out the second one with the
second premise, and then conclude that the first possibility must be the
case. In other words, both arguments have the form:

P or Q.
Not Q.
Therefore, P.

It is this form, and not the subject matter, that makes these arguments valid.
You can see that argument 1 has this form by thinking of the letter P as
standing for the statement “It will rain tomorrow,” and Q as standing for “It
will snow tomorrow.” For argument 3, P would be “I will go to work
tomorrow,” and Q would be “I will go to work today.”



Replacing certain statements in each argument with letters, as we have in
stating the form of arguments 1 and 3, has two advantages. First, it keeps us
from being distracted by aspects of the arguments that don’t affect their
validity. You don’t need to know anything about weather forecasting or
work habits to recognize that arguments 1 and 3 are valid. That’s because
both arguments have the form shown earlier, and you can tell that this
argument form is valid without even knowing what P and Q stand for. If
you don’t believe this, consider the following argument:

Either the framger widget is misfiring, or the wrompal mechanism is out
of alignment.
I’ve checked the alignment of the wrompal mechanism, and it’s fine.
Therefore, the framger widget is misfiring.

If a mechanic gave this explanation after examining your car, you might
still be mystified about why the car won’t start, but you’d have no trouble
following his logic!

Perhaps more important, our analysis of the forms of arguments 1 and 3
makes clear what is important in determining their validity: the words or
and not. In most deductive reasoning, and in particular in mathematical
reasoning, the meanings of just a few words give us the key to
understanding what makes a piece of reasoning valid or invalid. (Which are
the important words in argument 2 in Example 1.1.1?) The first few
chapters of this book are devoted to studying those words and how they are
used in mathematical writing and reasoning.

In this chapter, we’ll concentrate on words used to combine statements to
form more complex statements. We’ll continue to use letters to stand for
statements, but only for unambiguous statements that are either true or
false. Questions, exclamations, and vague statements will not be allowed. It
will also be useful to use symbols, sometimes called connective symbols, to
stand for some of the words used to combine statements. Here are our first
three connective symbols and the words they stand for:



Thus, if P and Q stand for two statements, then we’ll write P ∨ Q to
stand for the statement “P or Q,” P ∧ Q for “P and Q,” and ¬P for “not P
“or “P is false.” The statement P ∨ Q is sometimes called the disjunction of
P and Q, P ∧ Q is called the conjunction of P and Q, and ¬ P is called the
negation of P.

Example 1.1.2. Analyze the logical forms of the following statements:

1. Either John went to the store, or we’re out of eggs.
2. Joe is going to leave home and not come back.
3. Either Bill is at work and Jane isn’t, or Jane is at work and Bill isn’t.

Solutions

1. If we let P stand for the statement “John went to the store” and Q
stand for “We’re out of eggs,” then this statement could be
represented symbolically as P ∨ Q.

2. If we let P stand for the statement “Joe is going to leave home” and Q
stand for “Joe is not going to come back,” then we could represent
this statement symbolically as P ∧ Q. But this analysis misses an
important feature of the statement, because it doesn’t indicate that Q
is a negative statement. We could get a better analysis by letting R
stand for the statement “Joe is going to come back” and then writing
the statement Q as ¬R. Plugging this into our first analysis of the
original statement, we get the improved analysis P ∧ ¬R.

3. Let B stand for the statement “Bill is at work” and J for the statement
“Jane is at work.” Then the first half of the statement, “Bill is at work
and Jane isn’t,” can be represented as B ∧ ¬J. Similarly, the second
half is J ∧ ¬B. To represent the entire statement, we must combine
these two with or, forming their disjunction, so the solution is (B ∧
¬J) ∨ (J ∧ ¬B).

Notice that in analyzing the third statement in the preceding example, we
added parentheses when we formed the disjunction of B ∧ ¬J and J ∧ ¬B to
indicate unambiguously which statements were being combined. This is
like the use of parentheses in algebra, in which, for example, the product of
a + b and a − b would be written (a + b) · (a − b), with the parentheses



serving to indicate unambiguously which quantities are to be multiplied. As
in algebra, it is convenient in logic to omit some parentheses to make our
expressions shorter and easier to read. However, we must agree on some
conventions about how to read such expressions so that they are still
unambiguous. One convention is that the symbol ¬ always applies only to
the statement that comes immediately after it. For example, ¬P ∧ Q means
(¬P) ∧ Q rather than ¬(P ∧ Q). We’ll see some other conventions about
parentheses later.

Example 1.1.3. What English sentences are represented by the following
expressions?

1. (¬S ∧ L) ∨ S, where S stands for “John is smart” and L stands for
“John is lucky.”

2. ¬S ∧ (L ∨ S), where S and L have the same meanings as before.
3. ¬(S ∧ L) ∨ S, with S and L still as before.

Solutions

1. Either John isn’t smart and he is lucky, or he’s smart.
2. John isn’t smart, and either he’s lucky or he’s smart. Notice how the

placement of the word either in English changes according to where
the parentheses are.

3. Either John isn’t both smart and lucky, or John is smart. The word
both in English also helps distinguish the different possible positions
of parentheses.

It is important to keep in mind that the symbols ∧, ∨, and ¬ don’t really
correspond to all uses of the words and, or, and not in English. For
example, the symbol ∧ could not be used to represent the use of the word
and in the sentence “John and Bill are friends,” because in this sentence the
word and is not being used to combine two statements. The symbols ∧ and
∨ can only be used between two statements, to form their conjunction or
disjunction, and the symbol ¬ can only be used before a statement, to
negate it. This means that certain strings of letters and symbols are simply
meaningless. For example, P ¬ ∧ Q, P ∧ ∨ Q, and P ¬ Q are all
“ungrammatical” expressions in the language of logic. “Grammatical”



expressions, such as those in Examples 1.1.2 and 1.1.3, are sometimes
called well-formed formulas or just formulas. Once again, it may be helpful
to think of an analogy with algebra, in which the symbols +, −, ·, and ÷ can
be used between two numbers, as operators, and the symbol − can also be
used before a number, to negate it. These are the only ways that these
symbols can be used in algebra, so expressions such as x − ÷ y are
meaningless.

Sometimes, words other than and, or, and not are used to express the
meanings represented by ∧, ∨, and ¬. For example, consider the first
statement in Example 1.1.3. Although we gave the English translation
“Either John isn’t smart and he is lucky, or he’s smart,” an alternative way
of conveying the same information would be to say “Either John isn’t smart
but he is lucky, or he’s smart.” Often, the word but is used in English to
mean and, especially when there is some contrast or conflict between the
statements being combined. For a more striking example, imagine a
weather forecaster ending his forecast with the statement “Rain and snow
are the only two possibilities for tomorrow’s weather.” This is just a
roundabout way of saying that it will either rain or snow tomorrow. Thus,
even though the forecaster has used the word and, the meaning expressed
by his statement is a disjunction. The lesson of these examples is that to
determine the logical form of a statement you must think about what the
statement means, rather than just translating word by word into symbols.

Sometimes logical words are hidden within mathematical notation. For
example, consider the statement 3 ≤ π. Although it appears to be a simple
statement that contains no words of logic, if you read it out loud you will
hear the word or. If we let P stand for the statement 3 < π and Q for the
statement 3 = π, then the statement 3 ≤ π would be written P ∨ Q. In this
example the statements represented by the letters P and Q are so short that
it hardly seems worthwhile to abbreviate them with single letters. In cases
like this we will sometimes not bother to replace the statements with letters,
so we might also write this statement as (3 < π) ∨ (3 = π).

For a slightly more complicated example, consider the statement 3 ≤ π <
4. This statement means 3 ≤ π and π < 4, so once again a word of logic has
been hidden in mathematical notation. Filling in the meaning that we just
worked out for 3 ≤ π, we can write the whole statement as [(3 < π) ∨ (3 =
π)] ∧ (π < 4). Knowing that the statement has this logical form might be



important in understanding a piece of mathematical reasoning involving this
statement.

Exercises
*1. Analyze the logical forms of the following statements:
(a) We’ll have either a reading assignment or homework problems, but

we won’t have both homework problems and a test.
(b) You won’t go skiing, or you will and there won’t be any snow.
(c)
2. Analyze the logical forms of the following statements:

(a) Either John and Bill are both telling the truth, or neither of them is.
(b) I’ll have either fish or chicken, but I won’t have both fish and mashed

potatoes.
(c) 3 is a common divisor of 6, 9, and 15.
3. Analyze the logical forms of the following statements:

(a) Alice and Bob are not both in the room.
(b) Alice and Bob are both not in the room.
(c) Either Alice or Bob is not in the room.
(d) Neither Alice nor Bob is in the room.
4. Analyze the logical forms of the following statements:

(a) Either both Ralph and Ed are tall, or both of them are handsome.
(b) Both Ralph and Ed are either tall or handsome.
(c) Both Ralph and Ed are neither tall nor handsome.
(d) Neither Ralph nor Ed is both tall and handsome.
5. Which of the following expressions are well-formed formulas?

(a) ¬(¬P ∨ ¬¬R).
(b) ¬(P, Q, ∧ R).
(c) P ∧ ¬ P.
(d) (P ∧ Q)(P ∨ R).
*6. Let P stand for the statement “I will buy the pants” and S for the

statement “I will buy the shirt.” What English sentences are
represented by the following formulas?



(a) ¬(P ∧ ¬S).
(b) ¬P ∧ ¬S.
(c) ¬P ∨ ¬S.
7. Let S stand for the statement “Steve is happy” and G for “George is

happy.” What English sentences are represented by the following
formulas?

(a) (S ∨ G) ∧ (¬ S ∨ ¬G).
(b) [S ∨ (G ∧ ¬S)] ∨ ¬G.
(c) S ∨ [G ∧ (¬ S ∨ ¬G)].
8. Let T stand for the statement “Taxes will go up” and D for “The

deficit will go up.” What English sentences are represented by the
following formulas?

(a) T ∨ D.
(b) ¬(T ∧ D) ∧ ¬(¬T ∧ ¬D).
(c) (T ∧ ¬ D)∨ (D ∧ ¬T).
9. Identify the premises and conclusions of the following deductive

arguments and analyze their logical forms. Do you think the reasoning
is valid? (Although you will have only your intuition to guide you in
answering this last question, in the next section we will develop some
techniques for determining the validity of arguments.)

(a) Jane and Pete won’t both win the math prize. Pete will win either the
math prize or the chemistry prize. Jane will win the math prize.
Therefore, Pete will win the chemistry prize.

(b) The main course will be either beef or fish. The vegetable will be
either peas or corn. We will not have both fish as a main course and
corn as a vegetable. Therefore, we will not have both beef as a main
course and peas as a vegetable.

(c) Either John or Bill is telling the truth. Either Sam or Bill is lying.
Therefore, either John is telling the truth or Sam is lying.

(d) Either sales will go up and the boss will be happy, or expenses will go
up and the boss won’t be happy. Therefore, sales and expenses will
not both go up.

1.2 Truth Tables



We saw in Section 1.1 that an argument is valid if the premises cannot all be
true without the conclusion being true as well. Thus, to understand how
words such as and, or, and not affect the validity of arguments, we must see
how they contribute to the truth or falsity of statements containing them.

When we evaluate the truth or falsity of a statement, we assign to it one
of the labels true or false, and this label is called its truth value. It is clear
how the word and contributes to the truth value of a statement containing it.
A statement of the form P ∧ Q can be true only if both P and Q are true; if
either P or Q is false, then P ∧ Q will be false too. Because we have
assumed that P and Q both stand for statements that are either true or false,
we can summarize all the possibilities with the table shown in Figure 1.1.
This is called a truth table for the formula P ∧ Q. Each row in the truth
table represents one of the four possible combinations of truth values for the
statements P and Q. Although these four possibilities can appear in the table
in any order, it is best to list them systematically so we can be sure that no
possibilities have been skipped. The truth table for ¬P is also quite easy to
construct because for ¬P to be true, P must be false. The table is shown in
Figure 1.2.

Figure 1.1.

Figure 1.2.

The truth table for P ∨ Q is a little trickier. The first three lines should
certainly be filled in as shown in Figure 1.3, but there may be some
question about the last line. Should P ∨ Q be true or false in the case in
which P and Q are both true? In other words, does P ∨ Q mean “P or Q, or
both” or does it mean “P or Q but not both”? The first way of interpreting



the word or is called the inclusive or (because it includes the possibility of
both statements being true), and the second is called the exclusive or. In
mathematics, or always means inclusive or, unless specified otherwise, so
we will interpret ∨ as inclusive or. We therefore complete the truth table for
P ∨ Q as shown in Figure 1.4. See exercise 3 for more about the exclusive
or.

Figure 1.3.

Figure 1.4.

Using the rules summarized in these truth tables, we can now work out
truth tables for more complex formulas. All we have to do is work out the
truth values of the component parts of a formula, starting with the
individual letters and working up to more complex formulas a step at a
time.

Example 1.2.1. Make a truth table for the formula ¬(P ∨ ¬Q).

Solution

The first two columns of this table list the four possible combinations of
truth values of P and Q. The third column, listing truth values for the



formula ¬Q, is found by simply negating the truth values for Q in the
second column. The fourth column, for the formula P ∨¬Q, is found by
combining the truth values for P and ¬Q listed in the first and third
columns, according to the truth value rule for ∨ summarized in Figure 1.4.
According to this rule, P ∨ ¬Q will be false only if both P and ¬Q are false.
Looking in the first and third columns, we see that this happens only in row
two of the table, so the fourth column contains an F in the second row and
T’s in all other rows. Finally, the truth values for the formula ¬(P ∨ ¬Q) are
listed in the fifth column, which is found by negating the truth values in the
fourth column. (Note that these columns had to be worked out in order,
because each was used in computing the next.)

Example 1.2.2. Make a truth table for the formula ¬(P ∧ Q) ∨ ¬R.

Solution

Note that because this formula contains three letters, it takes eight lines to
list all possible combinations of truth values for these letters. (If a formula
contains n different letters, how many lines will its truth table have?)

Here’s a way of making truth tables more compactly. Instead of using
separate columns to list the truth values for the component parts of a
formula, just list those truth values below the corresponding connective
symbol in the original formula. This is illustrated in Figure 1.5, for the
formula from Example 1.2.1. In the first step, we have listed the truth
values for P and Q below these letters where they appear in the formula. In
step two, the truth values for ¬Q have been added under the ¬ symbol for
¬Q. In the third step, we have combined the truth values for P and ¬Q to get
the truth values for P ∨ ¬Q, which are listed under the ∨ symbol. Finally, in
the last step, these truth values are negated and listed under the initial ¬



symbol. The truth values added in the last step give the truth value for the
entire formula, so we will call the symbol under which they are listed (the
first ¬ symbol in this case) the main connective of the formula. Notice that
the truth values listed under the main connective in this case agree with the
values we found in Example 1.2.1.

Figure 1.5.

Now that we know how to make truth tables for complex formulas, we’re
ready to return to the analysis of the validity of arguments. Consider again
our first example of a deductive argument:

It will either rain or snow tomorrow.
It’s too warm for snow.
Therefore, it will rain.

As we have seen, if we let P stand for the statement “It will rain tomorrow”
and Q for the statement “It will snow tomorrow,” then we can represent the
argument symbolically as follows:



We can now see how truth tables can be used to verify the validity of this
argument. Figure 1.6 shows a truth table for both premises and the
conclusion of the argument. Recall that we decided to call an argument
valid if the premises cannot all be true without the conclusion being true as
well. Looking at Figure 1.6 we see that the only row of the table in which
both premises come out true is row three, and in this row the conclusion is
also true. Thus, the truth table confirms that if the premises are all true, the
conclusion must also be true, so the argument is valid.

Figure 1.6.

Example 1.2.3. Determine whether the following arguments are valid.

1. Either John isn’t smart and he is lucky, or he’s smart.
John is smart.
Therefore, John isn’t lucky.

2. The butler and the cook are not both innocent.
Either the butler is lying or the cook is innocent.
Therefore, the butler is either lying or guilty.

Solutions

1. As in Example 1.1.3, we let S stand for the statement “John is smart”
and L stand for “John is lucky.” Then the argument has the form:

Now we make a truth table for both premises and the conclusion.
(You should work out the intermediate steps in deriving column three
of this table to confirm that it is correct.)



Both premises are true in lines three and four of this table. The
conclusion is also true in line three, but it is false in line four. Thus, it
is possible for both premises to be true and the conclusion false, so
the argument is invalid. In fact, the table shows us exactly why the
argument is invalid. The problem occurs in the fourth line of the
table, in which S and L are both true – in other words, John is both
smart and lucky. Thus, if John is both smart and lucky, then both
premises will be true but the conclusion will be false, so it would be a
mistake to infer that the conclusion must be true from the assumption
that the premises are true.

2. Let B stand for the statement “The butler is innocent,” C for the
statement “The cook is innocent,” and L for the statement “The butler
is lying.” Then the argument has the form:

Here is the truth table for the premises and conclusion:

The premises are both true only in lines two, three, four, and six, and
in each of these cases the conclusion is true as well. Therefore, the
argument is valid.



If you expected the first argument in Example 1.2.3 to turn out to be
valid, it’s probably because the first premise confused you. It’s a rather
complicated statement, which we represented symbolically with the formula
(¬S ∧ L) ∨ S. According to our truth table, this formula is false if S and L
are both false, and true otherwise. But notice that this is exactly the same as
the truth table for the simpler formula L ∨ S! Because of this, we say that
the formulas (¬S ∧ L) ∨ S and L ∨ S are equivalent. Equivalent formulas
always have the same truth value no matter what statements the letters in
them stand for and no matter what the truth values of those statements are.
The equivalence of the premise (¬ S ∧ L) ∨ S and the simpler formula L ∨
S may help you understand why the argument is invalid. Translating the
formula L ∨ S back into English, we see that the first premise could have
been stated more simply as “John is either lucky or smart (or both).” But
from this premise and the second premise (that John is smart), it clearly
doesn’t follow that he’s not lucky, because he might be both smart and
lucky.

Example 1.2.4. Which of these formulas are equivalent?

¬(P ∧ Q), ¬P ∧ ¬Q, ¬P ∨ ¬Q.

Solution

Here’s a truth table for all three statements. (You should check it yourself!)

The third and fifth columns in this table are identical, but they are
different from the fourth column. Therefore, the formulas ¬(P ∧ Q) and ¬P
∨ ¬Q are equivalent, but neither is equivalent to the formula ¬P ∧ ¬Q. This
should make sense if you think about what all the symbols mean. For
example, suppose P stands for the statement “The Yankees won last night”
and Q stands for “The Red Sox won last night.” Then ¬(P ∧ Q) would
represent the statement “The Yankees and the Red Sox did not both win last
night,” and ¬P ∨ ¬Q would represent “Either the Yankees or the Red Sox
lost last night”; these statements clearly convey the same information. On



the other hand, ¬P ∧ ¬Q would represent “The Yankees and the Red Sox
both lost last night,” which means something entirely different.

You can check for yourself by making a truth table that the formula ¬P ∧
¬Q from Example 1.2.4 is equivalent to the formula ¬(P ∨ Q). (To see that
this equivalence makes sense, notice that the statements “Both the Yankees
and the Red Sox lost last night” and “It is not the case that either the
Yankees or the Red Sox won last night” mean the same thing.) This
equivalence and the one discovered in Example 1.2.4 are called De
Morgan’s laws. They are named for the British mathematician Augustus De
Morgan (1806–1871).

In analyzing deductive arguments and the statements that occur in them,
it is helpful to be familiar with a number of equivalences that come up
often. Verify the equivalences in the following list yourself by making truth
tables, and check that they make sense by translating the formulas into
English, as we did in Example 1.2.4.

De Morgan’s laws

Commutative laws

Associative laws

Idempotent laws

Distributive laws



Absorption laws

Double Negation law

Notice that because of the associative laws we can leave out parentheses
in formulas of the forms P ∧ Q ∧ R and P ∨ Q ∨ R without worrying that
the resulting formula will be ambiguous, because the two possible ways of
filling in the parentheses lead to equivalent formulas.

Many of the equivalences in the list should remind you of similar rules
involving +, ·, and − in algebra. As in algebra, these rules can be applied to
more complex formulas, and they can be combined to work out more
complicated equivalences. Any of the letters in these equivalences can be
replaced by more complicated formulas, and the resulting equivalence will
still be true. For example, by replacing P in the double negation law with
the formula Q ∨ ¬R, you can see that ¬¬(Q ∨ ¬R) is equivalent to Q ∨ ¬R.
Also, if two formulas are equivalent, you can always substitute one for the
other in any expression and the results will be equivalent. For example,
since ¬¬P is equivalent to P, if ¬¬P occurs in any formula, you can always
replace it with P and the resulting formula will be equivalent to the original.

Example 1.2.5. Find simpler formulas equivalent to these formulas:

1. ¬(P ∨ ¬Q).
2. ¬(Q ∧ ¬P) ∨ P.

Solutions

1. ¬(P ∨ ¬Q)

You can check that this equivalence is right by making a truth table
for ¬P ∧ Q and seeing that it is the same as the truth table for ¬(P ∨



¬Q) found in Example 1.2.1.
2. ¬(Q ∧ ¬P) ∨ P

Some equivalences are based on the fact that certain formulas are either
always true or always false. For example, you can verify by making a truth
table that the formula Q ∧ (P ∨ ¬P) is equivalent to just Q. But even before
you make the truth table, you can probably see why they are equivalent. In
every line of the truth table, P ∨ ¬P will come out true, and therefore Q ∧
(P ∨ ¬ P) will come out true when Q is also true, and false when Q is false.
Formulas that are always true, such as P ∨ ¬P, are called tautologies.
Similarly, formulas that are always false are called contradictions. For
example, P ∧ ¬P is a contradiction.

Example 1.2.6. Are these formulas tautologies, contradictions, or neither?

P ∨ (Q ∨ ¬P), P ∧ ¬ (Q ∨ ¬Q), P ∨ ¬ (Q ∨ ¬Q).

Solution

First we make a truth table for all three formulas.

From the truth table it is clear that the first formula is a tautology, the
second a contradiction, and the third neither. In fact, since the last column is
identical to the first, the third formula is equivalent to P.

We can now state a few more useful laws involving tautologies and
contradictions. You should be able to convince yourself that all of these



laws are correct by thinking about what the truth tables for the statements
involved would look like.

Tautology laws

P ∧ (a tautology) is equivalent to P. 
P ∨ (a tautology) is a tautology. 
¬(a tautology) is a contradiction.

Contradiction laws

P ∧ (a contradiction) is a contradiction. 
P ∨ (a contradiction) is equivalent to P. 

¬(a contradiction) is a tautology.

Example 1.2.7. Find simpler formulas equivalent to these formulas:

1. P ∨ (Q ∧ ¬P).
2. ¬(P ∨ (Q ∧ ¬R)) ∧ Q.

Solutions

1. P ∨ (Q ∧ ¬P)

The last step uses the fact that P ∨ ¬P is a tautology.
2. ¬(P ∨ (Q ∧ ¬R)) ∧ Q



The last step uses the fact that Q ∧ ¬Q is a contradiction. Finally, by
the associative law for ∧ we can remove the parentheses without
making the formula ambiguous, so the original formula is equivalent
to the formula ¬P ∧ Q ∧ R.

Exercises
*1. Make truth tables for the following formulas:
(a) ¬P ∨ Q.
(b) (S ∨ G) ∧ (¬ S ∨ ¬G).
2. Make truth tables for the following formulas:

(a) ¬[P ∧ (Q ∨ ¬P)].
(b) (P ∨ Q) ∧ (¬ P ∨ R).
3. In this exercise we will use the symbol + to mean exclusive or. In

other words, P + Q means “P or Q, but not both.”
(a) Make a truth table for P + Q.
(b) Find a formula using only the connectives ∧, ∨, and ¬ that is

equivalent to P + Q. Justify your answer with a truth table.
4. Find a formula using only the connectives ∧ and ¬ that is equivalent

to P ∨ Q. Justify your answer with a truth table.
*5. Some mathematicians use the symbol ↓ to mean nor. In other words,

P ↓ Q means “neither P nor Q.”
(a) Make a truth table for P ↓ Q.
(b) Find a formula using only the connectives ∧, ∨, and ¬ that is

equivalent to P ↓ Q.
(c) Find formulas using only the connective ↓ that are equivalent to ¬P, P

∨ Q, and P ∧ Q.
6. Some mathematicians write P | Q to mean “P and Q are not both

true.” (This connective is called nand, and is used in the study of
circuits in computer science.)

(a) Make a truth table for P | Q.
(b) Find a formula using only the connectives ∧, ∨, and ¬ that is

equivalent to P | Q.



(c) Find formulas using only the connective | that are equivalent to ¬P, P
∨ Q, and P ∧ Q.

*7. Use truth tables to determine whether or not the arguments in exercise
9 of Section 1.1 are valid.

8. Use truth tables to determine which of the following formulas are
equivalent to each other:

(a) (P ∧ Q) ∨ (¬ P ∧ ¬Q).
(b) ¬P ∨ Q.
(c) (P ∨ ¬ Q) ∧ (Q ∨ ¬P).
(d) ¬(P ∨ Q).
(e) (Q ∧ P) ∨ ¬ P.
*9. Use truth tables to determine which of these statements are

tautologies, which are contradictions, and which are neither:
(a) (P ∨ Q) ∧ (¬ P ∨ ¬Q).
(b) (P ∨ Q) ∧ (¬ P ∧ ¬Q).
(c) (P ∨ Q) ∨ (¬ P ∨ ¬Q).
(d) [P ∧ (Q ∨ ¬R)] ∨ (¬P ∨ R).
10. Use truth tables to check these laws:
(a) The second De Morgan’s law. (The first was checked in the text.)
(b) The distributive laws.

*11. Use the laws stated in the text to find simpler formulas equivalent to
these formulas. (See Examples 1.2.5 and 1.2.7.)

(a) ¬(¬P ∧ ¬Q).
(b) (P ∧ Q) ∨ (P ∧ ¬Q).
(c) ¬(P ∧ ¬Q) ∨ (¬P ∧ Q).
12. Use the laws stated in the text to find simpler formulas equivalent to

these formulas. (See Examples 1.2.5 and 1.2.7.)
(a) ¬(¬P ∨ Q) ∨ (P ∧ ¬R).
(b) ¬(¬P ∧ Q) ∨ (P ∧ ¬R).
(c) (P ∧ R) ∨ [¬ R ∧ (P ∨ Q)].
13. Use the first De Morgan’s law and the double negation law to derive

the second De Morgan’s law.



*14. Note that the associative laws say only that parentheses are
unnecessary when combining three statements with ∧ or ∨. In fact,
these laws can be used to justify leaving parentheses out when more
than three statements are combined. Use associative laws to show that
[P ∧ (Q ∧ R)] ∧ S is equivalent to (P ∧ Q) ∧ (R ∧ S).

15. How many lines will there be in the truth table for a statement
containing n letters?

*16. Find a formula involving the connectives ∧, ∨, and ¬ that has the
following truth table:

17. Find a formula involving the connectives ∧, ∨, and ¬ that has the
following truth table:

18. Suppose the conclusion of an argument is a tautology. What can you
conclude about the validity of the argument? What if the conclusion is
a contradiction? What if one of the premises is either a tautology or a
contradiction?

1.3 Variables and Sets
In mathematical reasoning it is often necessary to make statements about
objects that are represented by letters called variables. For example, if the
variable x is used to stand for a number in some problem, we might be
interested in the statement “x is a prime number.” Although we may
sometimes use a single letter, say P, to stand for this statement, at other
times we will revise this notation slightly and write P(x), to stress that this
is a statement about x. The latter notation makes it easy to talk about



assigning a value to x in the statement. For example, P(7) would represent
the statement “7 is a prime number,” and P(a + b) would mean “a + b is a
prime number.” If a statement contains more than one variable, our
abbreviation for the statement will include a list of all the variables
involved. For example, we might represent the statement “p is divisible by
q” by D(p, q). In this case, D(12, 4) would mean “12 is divisible by 4.”

Although you have probably seen variables used most often to stand for
numbers, they can stand for anything at all. For example, we could let M(x)
stand for the statement “x is a man,” and W(x) for “x is a woman.” In this
case, we are using the variable x to stand for a person. A statement might
even contain several variables that stand for different kinds of objects. For
example, in the statement “x has y children,” the variable x stands for a
person, and y stands for a number.

Statements involving variables can be combined using connectives, just
like statements without variables.

Example 1.3.1. Analyze the logical forms of the following statements:

1. x is a prime number, and either y or z is divisible by x.
2. x is a man and y is a woman and x likes y, but y doesn’t like x.

Solutions

1. We could let P stand for the statement “x is a prime number,” D for “y
is divisible by x,” and E for “z is divisible by x.” The entire statement
would then be represented by the formula P ∧ (D ∨ E). But this
analysis, though not incorrect, fails to capture the relationship
between the statements D and E. A better analysis would be to let
P(x) stand for “x is a prime number” and D(y, x) for “y is divisible by
x.” Then D(z, x) would mean “z is divisible by x,” so the entire
statement would be P(x)∧(D(y, x)∨D(z, x)).

2. Let M(x) stand for “x is a man,” W(y) for “y is a woman,” and L(x, y)
for “x likes y.” Then L(y, x) would mean “y likes x.” (Notice that the
order of the variables after the L makes a difference!) The entire
statement would then be represented by the formula M(x) ∧ W(y) ∧
L(x, y) ∧ ¬L(y, x).



In the last section, we introduced the idea of assigning truth values to
statements. This idea is unproblematic for statements that do not contain
variables, since such statements are either true or false. But if a statement
contains variables, we can no longer describe the statement as being simply
true or false. Its truth value might depend on the values of the variables
involved. For example, if P(x) stands for the statement “x is a prime
number,” then P(x) would be true if x = 23, but false if x = 22. To deal with
this complication, we will define truth sets for statements containing
variables. Before giving this definition, though, it might be helpful to
review some basic definitions from set theory.

A set is a collection of objects. The objects in the collection are called the
elements of the set. The simplest way to specify a particular set is to list its
elements between braces. For example, {3, 7, 14} is the set whose elements
are the three numbers 3, 7, and 14. We use the symbol ∈ to mean is an
element of. For example, if we let A stand for the set {3, 7, 14}, then we
could write 7 ∈ A to say that 7 is an element of A. To say that 11 is not an
element of A, we write 11 ∉ A.

A set is completely determined once its elements have been specified.
Thus, two sets that have exactly the same elements are always equal. Also,
when a set is defined by listing its elements, all that matters is which objects
are in the list of elements, not the order in which they are listed. An element
can even appear more than once in the list. Thus, {3, 7, 14}, {14, 3, 7}, and
{3, 7, 14, 7} are three different names for the same set.

It may be impractical to define a set that contains a very large number of
elements by listing all of its elements, and it would be impossible to give
such a definition for a set that contains infinitely many elements. Often this
problem can be overcome by listing a few elements with an ellipsis (…)
after them, if it is clear how the list should be continued. For example,
suppose we define a set B by saying that B = {2, 3, 5, 7, 11, 13, 17, …}.
Once you recognize that the numbers listed in the definition of B are the
prime numbers, then you know that, for example, 23 ∈ B, even though it
wasn’t listed explicitly when we defined B. But this method requires
recognition of the pattern in the list of numbers in the definition of B, and
this requirement introduces an element of ambiguity and subjectivity into
our notation that is best avoided in mathematical writing. It is therefore
usually better to define such a set by spelling out the pattern that determines
the elements of the set.



In this case we could be explicit by defining B as follows:

B = {x | x is a prime number}.

This is read “B is equal to the set of all x such that x is a prime number,”
and it means that the elements of B are the values of x that make the
statement “x is a prime number” come out true. You should think of the
statement “x is a prime number” as an elementhood test for the set. Any
value of x that makes this statement come out true passes the test and is an
element of the set. Anything else fails the test and is not an element. Of
course, in this case the values of x that make the statement true are precisely
the prime numbers, so this definition says that B is the set whose elements
are the prime numbers, exactly as before.

Example 1.3.2. Rewrite these set definitions using elementhood tests:

1. E = {2, 4, 6, 8,…}.
2. P = {George Washington, John Adams, Thomas Jefferson, James

Madison, …}.

Solutions

Although there might be other ways of continuing these lists of elements,
probably the most natural ones are given by the following definitions:

1. E = {n | n is a positive even integer}.
2. P = {z | z was a president of the United States}.

If a set has been defined using an elementhood test, then that test can be
used to determine whether or not something is an element of the set. For
example, consider the set {x | x2 < 9}. If we want to know if 5 is an element
of this set, we simply apply the elementhood test in the definition of the set
– in other words, we check whether or not 52 < 9. Since 52 = 25 > 9, it fails
the test, so 5 ∉ {x | x2 < 9}. On the other hand, (−2)2 = 4 < 9, so −2 ∈ {x |
x2 < 9}. The same reasoning would apply to any other number. For any
number y, to determine whether or not y ∈ {x | x2 < 9}, we just check
whether or not y2 < 9. In fact, we could think of the statement y ∈ {x | x2 <
9} as just a roundabout way of saying y2 < 9.



Notice that because the statement y ∈ {x | x2 < 9} means the same thing
as y2 < 9, it is a statement about y, but not x! To determine whether or not y
∈ {x | x2 < 9} you need to know what y is (so you can compare its square to
9), but not what x is. We say that in the statement y ∈ {x | x2 < 9}, y is a
free variable, whereas x is a bound variable (or a dummy variable). The free
variables in a statement stand for objects that the statement says something
about. Plugging in different values for a free variable affects the meaning of
a statement and may change its truth value. The fact that you can plug in
different values for a free variable means that it is free to stand for anything.
Bound variables, on the other hand, are simply letters that are used as a
convenience to help express an idea and should not be thought of as
standing for any particular object. A bound variable can always be replaced
by a new variable without changing the meaning of the statement, and often
the statement can be rephrased so that the bound variables are eliminated
altogether. For example, the statements y ∈ {x | x2 < 9} and y ∈ {w | w2 <
9} mean the same thing, because they both mean “y is an element of the set
of all numbers whose squares are less than 9.” In this last statement, all
bound variables have been eliminated, and the only variable that appears in
the statement is the free variable y.

Note that x is a bound variable in the statement y ∈ {x | x2 < 9} even
though it is a free variable in the statement x2 < 9. This last statement is a
statement about x that would be true for some values of x and false for
others. It is only when this statement is used inside the elementhood test
notation that x becomes a bound variable. We could say that the notation {x
| …} binds the variable x.

Everything we have said about the set {x | x2 < 9} would apply to any set
defined by an elementhood test. In general, the statement y ∈ {x | P(x)}
means the same thing as P(y), which is a statement about y but not x.
Similarly, y ∉ {x | P(x)} means the same thing as ¬P(y). Of course, the
expression {x | P(x)} is not a statement at all; it is a name for a set. As you
learn more mathematical notation, it will become increasingly important to
make sure you are careful to distinguish between expressions that are
mathematical statements and expressions that are names for mathematical
objects.



Example 1.3.3. What do these statements mean? What are the free
variables in each statement?

1. a + b ∉ {x | x is an even number}.
2. y ∈ {x | x is divisible by w}.
3. 2 ∈ {w | 6 ∉ {x | x is divisible by w}}.

Solutions

1. This statement says that a + b is not an element of the set of all even
numbers, or in other words, a + b is not an even number. Both a and b
are free variables, but x is a bound variable. The statement will be true
for some values of a and b and false for others.

2. This statement says that y is divisible by w. Both y and w are free
variables, but x is a bound variable. The statement is true for some
values of y and w and false for others.

3. This looks quite complicated, but if we go a step at a time, we can
decipher it. First, note that the statement 6 ∉ {x | x is divisible by w},
which appears inside the given statement, means the same thing as “6
is not divisible by w.” Substituting this into the given statement, we
find that the original statement is equivalent to the simpler statement
2 ∈ {w | 6 is not divisible by w}. But this just means the same thing
as “6 is not divisible by 2.” Thus, the statement has no free variables,
and both x and w are bound variables. Because there are no free
variables, the truth value of the statement doesn’t depend on the
values of any variables. In fact, since 6 is divisible by 2, the statement
is false.

Perhaps you have guessed by now how we can use set theory to help us
understand truth values of statements containing free variables. As we have
seen, a statement, say P(x), containing a free variable x, may be true for
some values of x and false for others. To distinguish the values of x that
make P(x) true from those that make it false, we could form the set of
values of x for which P(x) is true. We will call this set the truth set of P(x).

Definition 1.3.4. The truth set of a statement P(x) is the set of all values of
x that make the statement P(x) true. In other words, it is the set defined by



using the statement P(x) as an elementhood test: {x | P(x)}.

Note that we have defined truth sets only for statements containing one
free variable. We will discuss truth sets for statements with more than one
free variable in Chapter 4.

Example 1.3.5. What are the truth sets of the following statements?

1. Shakespeare wrote x.
2. n is an even prime number.

Solutions

1. {x | Shakespeare wrote x} = {Hamlet, Macbeth, Twelfth Night, …}.
2. {n | n is an even prime number}. Because the only even prime number

is 2, this is the set {2}. Note that 2 and {2} are not the same thing!
The first is a number, and the second is a set whose only element is a
number. Thus, 2 ∈ {2}, but 2 = {2}.

Suppose A is the truth set of a statement P(x). According to the definition
of truth set, this means that A = {x | P(x)}. We’ve already seen that for any
object y, the statement y ∈ {x | P(x)} means the same thing as P(y).
Substituting in A for {x | P(x)}, it follows that y ∈ A means the same thing
as P(y). Thus, we see that in general, if A is the truth set of P(x), then to say
that y ∈ A means the same thing as saying P(y).

When a statement contains free variables, it is often clear from context
that these variables stand for objects of a particular kind. The set of all
objects of this kind – in other words, the set of all possible values for the
variables – is called the universe of discourse for the statement, and we say
that the variables range over this universe. For example, in most contexts
the universe for the statement x2 < 9 would be the set of all real numbers;
the universe for the statement “x is a man” might be the set of all people.

Certain sets come up often in mathematics as universes of discourse, and
it is convenient to have fixed names for them. Here are a few of the most
important ones:
R = {x | x is a real number}.
Q = {x | x is a rational number}.



(Recall that a real number is any number on the number line, and a rational
number is a number that can be written as a fraction p/q, where p and q are
integers.)
Z = {x | x is an integer} = {…, −3, −2, −1, 0, 1, 2, 3, …}.
N = {x | x is a natural number} = {0, 1, 2, 3, …}.
(Some books include 0 as a natural number and some don’t. In this book,
we consider 0 to be a natural number.)
The letters R, Q, and Z can be followed by a superscript + or − to indicate
that only positive or negative numbers are to be included in the set. For
example, R+ = {x | x is a positive real number}, and Z− = {x | x is a negative
integer}.

Although the universe of discourse can usually be determined from
context, it is sometimes useful to identify it explicitly. Consider a statement
P(x) with a free variable x that ranges over a universe U. Although we have
written the truth set of P(x) as {x | P(x)}, if there were any possibility of
confusion about what the universe was, we could specify it explicitly by
writing {x ∈ U | P(x)}; this is read “the set of all x in U such that P(x).”
This notation indicates that only elements of U are to be considered for
elementhood in this truth set, and among elements of U, only those that pass
the elementhood test P(x) will actually be in the truth set. For example,
consider again the statement x2 < 9. If the universe of discourse for this
statement were the set of all real numbers, then its truth set would be {x ∈
R | x2 < 9}, or in other words, the set of all real numbers between −3 and 3.
But if the universe were the set of all integers, then the truth set would be {x
∈ Z | x2 < 9} = {−2, −1, 0, 1, 2}. Thus, for example, 1.58 ∈ {x ∈ R | x2 <
9} but 1.58 ∉ {x ∈ Z | x2 < 9}. Clearly, the choice of universe can
sometimes make a difference!

Sometimes this explicit notation is used not to specify the universe of
discourse but to restrict attention to just a part of the universe. For example,
in the case of the statement x2 < 9, we might want to consider the universe
of discourse to be the set of all real numbers, but in the course of some
reasoning involving this statement we might want to temporarily restrict our
attention to only positive real numbers. We might then be interested in the
set {x ∈ R+ | x2 < 9}. As before, this notation indicates that only positive



real numbers will be considered for elementhood in this set, and among
positive real numbers, only those whose square is less than 9 will be in the
set. Thus, for a number to be an element of this set, it must pass two tests: it
must be a positive real number, and its square must be less than 9. In other
words, the statement y ∈ {x ∈ R+ | x2 < 9} means the same thing as y ∈ R+

∧ y2 < 9. In general, y ∈ {x ∈ A | P(x)} means the same thing as y ∈ A ∧
P(y).

When a new mathematical concept has been defined, mathematicians are
usually interested in studying any possible extremes of this concept. For
example, when we discussed truth tables, the extremes we studied were
statements whose truth tables contained only T’s (tautologies) or only F’s
(contradictions). For the concept of the truth set of a statement containing a
free variable, the corresponding extremes would be the truth sets of
statements that are always true or always false. Suppose P(x) is a statement
containing a free variable x that ranges over a universe U. It should be clear
that if P(x) comes out true for every value of x in U, then the truth set of
P(x) will be the whole universe U. For example, since the statement x2 ≥ 0
is true for every real number x, the truth set of this statement is {x ∈ R | x2

≥ 0} = R. Of course, this is not unrelated to the concept of a tautology. For
example, since P ∨ ¬P is a tautology, the statement P(x) ∨ ¬P(x) will be
true for every x ∈ U, no matter what statement P(x) stands for or what the
universe U is, and therefore the truth set of the statement P(x) ∨ ¬P(x) will
be U.

For a statement P(x) that is false for every possible value of x, nothing in
the universe can pass the elementhood test for the truth set of P(x), and so
this truth set must have no elements. The idea of a set with no elements may
sound strange, but it arises naturally when we consider truth sets for
statements that are always false. Because a set is completely determined
once its elements have been specified, there is only one set that has no
elements. It is called the empty set, or the null set, and is often denoted ∅.
For example, {x ∈ Z | x = x} = ∅. Since the empty set has no elements, the
statement x ∈ ∅ is an example of a statement that is always false, no matter
what x is.

Another common notation for the empty set is based on the fact that any
set can be named by listing its elements between braces. Since the empty



set has no elements, we write nothing between the braces, like this: ∅ = {}.
Note that {∅} is not correct notation for the empty set. Just as we saw
earlier that 2 and {2} are not the same thing, ∅ is not the same as {∅}. The
first is a set with no elements, whereas the second is a set with one element,
that one element being ∅, the empty set.

Exercises
*1. Analyze the logical forms of the following statements:
(a) 3 is a common divisor of 6, 9, and 15. (Note: You did this in exercise

2 of Section 1.1, but you should be able to give a better answer now.)
(b) x is divisible by both 2 and 3 but not 4.
(c) x and y are natural numbers, and exactly one of them is prime.
2. Analyze the logical forms of the following statements:

(a) x and y are men, and either x is taller than y or y is taller than x.
(b) Either x or y has brown eyes, and either x or y has red hair.
(c) Either x or y has both brown eyes and red hair.
*3. Write definitions using elementhood tests for the following sets:
(a) {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}.
(b) {Brown, Columbia, Cornell, Dartmouth, Harvard, Princeton,

University of Pennsylvania, Yale}.
(c) {Alabama, Alaska, Arizona, . . . , Wisconsin, Wyoming}.
(d) {Alberta, British Columbia, Manitoba, New Brunswick,

Newfoundland and Labrador, Northwest Territories, Nova Scotia,
Nunavut, Ontario, Prince Edward Island, Quebec, Saskatchewan,
Yukon}.

4. Write definitions using elementhood tests for the following sets:
(a) {1, 4, 9, 16, 25, 36, 49, …}.
(b) {1, 2, 4, 8, 16, 32, 64, …}.
(c) {10, 11, 12, 13, 14, 15, 16, 17, 18, 19}.
*5. Simplify the following statements. Which variables are free and

which are bound? If the statement has no free variables, say whether
it is true or false.



(a) −3 ∈ {x ∈ R | 13 − 2x > 1}.
(b) 4 ∈ {x ∈ R− | 13 − 2x > 1}.
(c) 5 ∉ {x ∈ R | 13 − 2x > c}.

6. Simplify the following statements. Which variables are free and
which are bound? If the statement has no free variables, say whether it
is true or false.

(a) w ∈ {x ∈ R | 13 − 2x > c}.
(b) 4 ∈ {x ∈ R | 13 − 2x ∈ {y | y is a prime number}}. (It might make

this statement easier to read if we let P = {y | y is a prime number};
using this notation, we could rewrite the statement as 4 ∈ {x ∈ R |
13 − 2x ∈ P}.)

(c) 4 ∈ {x ∈ {y | y is a prime number} | 13 − 2x > 1}. (Using the same
notation as in part (b), we could write this as 4 ∈ {x ∈ P | 13 − 2x >
1}.)

7. List the elements of the following sets:
(a) {x ∈ R | 2x2 + x − 1 = 0}.
(b) {x ∈ R+ | 2x2 + x − 1 = 0}.
(c) {x ∈ Z | 2x2 + x − 1 = 0}.
(d) {x ∈ N | 2x2 + x − 1 = 0}.

*8. What are the truth sets of the following statements? List a few
elements of the truth set if you can.

(a) Elizabeth Taylor was once married to x.
(b) x is a logical connective studied in Section 1.1.
(c) x is the author of this book.
9. What are the truth sets of the following statements? List a few

elements of the truth set if you can.
(a) x is a real number and x2 − 4 x + 3 = 0.
(b) x is a real number and x2 − 2 x + 3 = 0.
(c) x is a real number and 5 ∈ {y ∈ R | x2 + y2 < 50}.



1.4 Operations on Sets
Suppose A is the truth set of a statement P(x) and B is the truth set of Q(x).
What are the truth sets of the statements P(x) ∧ Q(x), P(x) ∨ Q(x), and
¬P(x)? To answer these questions, we introduce some basic operations on
sets.

Definition 1.4.1. The intersection of two sets A and B is the set A ∩ B
defined as follows:

The union of A and B is the set A ∪ B defined as follows:

The difference of A and B is the set A \ B defined as follows:

Remember that the statements that appear in these definitions are
element-hood tests. Thus, for example, the definition of A ∩ B says that for
an object to be an element of A ∩ B, it must be an element of both A and B.
In other words, A ∩ B is the set consisting of the elements that A and B have
in common. Because the word or is always interpreted as inclusive or in
mathematics, anything that is an element of either A or B, or both, will be
an element of A ∪ B. Thus, we can think of A ∪ B as the set resulting from
throwing all the elements of A and B together into one set. A\ B is the set
you would get if you started with the set A and removed from it any
elements that were also in B.

Example 1.4.2. Suppose A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10}. List
the elements of the following sets:

1. A ∩ B.
2. A ∪ B.
3. A \ B.



4. (A ∪ B) \ (A ∩ B).
5. (A \ B) ∪ (B \ A).

Solutions

1. A ∩ B = {2, 4}.
2. A ∪ B = {1, 2, 3, 4, 5, 6, 8, 10}.
3. A \ B = {1, 3, 5}.
4. We have just computed A ∪ B and A ∩ B in solutions 1 and 2, so all

we need to do is start with the set A ∪ B from solution 2 and remove
from it any elements that are also in A ∩ B. The answer is (A ∪ B) \
(A ∩ B) = {1, 3, 5, 6, 8, 10}.

5. We already have the elements of A \ B listed in solution 3, and B \ A =
{6, 8, 10}. Thus, their union is (A \ B) ∪ (B \ A) = {1, 3, 5, 6, 8, 10}.
Is it just a coincidence that this is the same as the answer to part 4?

Example 1.4.3. Suppose A = {x | x is a man} and B = {x | x has brown
hair}. What are A ∩ B, A ∪ B, and A \ B?

Solution

By definition, A ∩ B = {x | x ∈ A and x ∈ B}. As we saw in the last section,
the definitions of A and B tell us that x ∈ A means the same thing as “x is a
man,” and x ∈ B means the same thing as “x has brown hair.” Plugging this
into the definition of A ∩ B, we find that

A ∩ B = {x | x is a man and x has brown hair}.

Similar reasoning shows that

A ∪ B = {x | either x is a man or x has brown hair}

and

A \ B = {x | x is a man and x does not have brown hair}.

Sometimes it is helpful when working with operations on sets to draw
pictures of the results of these operations. One way to do this is with



diagrams like that in Figure 1.7. This is called a Venn diagram. The interior
of the rectangle enclosing the diagram represents the universe of discourse
U, and the interiors of the two circles represent the two sets A and B. Other
sets formed by combining these sets would be represented by different
regions in the diagram. For example, the shaded region in Figure 1.8 is the
region common to the interiors of the circles representing A and B, and so it
represents the set A ∩ B. Figures 1.9 and 1.10 show the regions representing
A ∪ B and A \ B, respectively.

Figure 1.7.

Figure 1.8. A ∩ B.

Figure 1.9. A ∪ B.



Figure 1.10. A \ B.

Here’s an example of how Venn diagrams can help us understand
operations on sets. In Example 1.4.2 the sets (A ∪ B) \ (A ∩ B) and (A \ B)
∪ (B \ A) turned out to be equal, for a particular choice of A and B. You can
see by making Venn diagrams for both sets that this was not a coincidence.
You’ll find that both Venn diagrams look like Figure 1.11. Thus, these sets
will always be equal, no matter what the sets A and B are, because both sets
will always be the set of objects that are elements of either A or B but not
both. This set is called the symmetric difference of A and B and is written A
Δ B. In other words, A Δ B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B). Later in
this section we’ll see another explanation of why these sets are always
equal.

Figure 1.11. (A ∪ B) \ (A ∩ B) = (A \ B) ∪ (B \ A).

Let’s return now to the question with which we began this section. If A is
the truth set of a statement P(x) and B is the truth set of Q(x), then, as we
saw in the last section, x ∈ A means the same thing as P(x) and x ∈ B
means the same thing as Q(x). Thus, the truth set of P(x) ∧ Q(x) is {x | P(x)
∧ Q(x)} = {x | x ∈ A ∧ x ∈ B} = A ∩ B. This should make sense. It just
says that the truth set of P(x) ∧ Q(x) consists of those elements that the



truth sets of P(x) and Q(x) have in common – in other words, the values of x
that make both P(x) and Q(x) come out true. We have already seen an
example of this. In Example 1.4.3 the sets A and B were the truth sets of the
statements “x is a man” and “x has brown hair,” and A ∩ B turned out to be
the truth set of “x is a man and x has brown hair.”

Similar reasoning shows that the truth set of P(x) ∨ Q(x) is A ∪ B. To
find the truth set of ¬P(x), we need to talk about the universe of discourse
U. The truth set of ¬P(x) will consist of those elements of the universe for
which P(x) is false, and we can find this set by starting with U and
removing from it those elements for which P(x) is true. Thus, the truth set
of ¬P(x) is U \ A.

These observations about truth sets illustrate the fact that the set theory
operations ∩, ∪, and \ are related to the logical connectives ∧, ∨, and ¬.
This shouldn’t be surprising, since after all the words and, or, and not
appear in their definitions. (The word not doesn’t appear explicitly, but it’s
there, hidden in the mathematical symbol ∉ in the definition of the
difference of two sets.) It is important to remember, though, that although
the set theory operations and logical connectives are related, they are not
interchangeable. The logical connectives can only be used to combine
statements, whereas the set theory operations must be used to combine sets.
For example, if A is the truth set of P(x) and B is the truth set of Q(x), then
we can say that A ∩ B is the truth set of P(x) ∧ Q(x), but expressions such
as A ∧ B or P(x) ∩ Q(x) are completely meaningless and should never be
used.

The relationship between set theory operations and logical connectives
also becomes apparent when we analyze the logical forms of statements
about intersections, unions, and differences of sets. For example, according
to the definition of intersection, to say that x ∈ A ∩ B means that x ∈ A ∧ x
∈ B. Similarly, to say that x ∈ A ∪ B means that x ∈ A ∨ x ∈ B, and x ∈ A
\ B means x ∈ A ∧ x ∉ B, or in other words x ∈ A ∧ ¬(x ∈ B). We can
combine these rules when analyzing statements about more complex sets.

Example 1.4.4. Analyze the logical forms of the following statements:

1. x ∈ A ∩ (B ∪ C).
2. x ∈ A \ (B ∩ C).



3. x ∈ (A ∩ B) ∪ (A ∩ C).

Solutions

1. x ∈ A ∩ (B ∪ C)

2. x ∈ A \ (B ∩ C)

3. x ∈ (A ∩ B) ∪ (A ∩ C)

Look again at the solutions to parts 1 and 3 of Example 1.4.4. You should
recognize that the statements we ended up with in these two parts are
equivalent. (If you don’t, look back at the distributive laws in Section 1.2.)
This equivalence means that the statements x ∈ A ∩ (B ∪ C) and x ∈ (A ∩
B) ∪ (A ∩ C) are equivalent. In other words, the objects that are elements of
the set A∩(B ∪ C) will be precisely the same as the objects that are
elements of (A ∩ B) ∪ (A ∩ C), no matter what the sets A, B, and C are. But
recall that sets with the same elements are equal, so it follows that for any
sets A, B, and C, A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). Another way to see this
is with the Venn diagram in Figure 1.12. Our earlier Venn diagrams had two
circles, because in previous examples only two sets were being combined.
This Venn diagram has three circles, which represent the three sets A, B,
and C that are being combined in this case. Although it is possible to create
Venn diagrams for more than three sets, it is rarely done, because it cannot
be done with overlapping circles. For more on Venn diagrams for more than
three sets, see exercise 12.



Figure 1.12. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Thus, we see that a distributive law for logical connectives has led to a
distributive law for set theory operations. You might guess that because
there were two distributive laws for the logical connectives, with ∧ and ∨
playing opposite roles in the two laws, there might be two distributive laws
for set theory operations too. The second distributive law for sets should say
that for any sets A, B, and C, A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). You can
verify this for yourself by writing out the statements x ∈ A ∪ (B ∩ C) and x
∈ (A ∪ B) ∩ (A ∪ C) using logical connectives and verifying that they are
equivalent, using the second distributive law for the logical connectives ∧
and ∨. Another way to see it is to make a Venn diagram.

We can derive another set theory identity by finding a statement
equivalent to the statement we ended up with in part 2 of Example 1.4.4:

x ∈ A \ (B ∩ C)  

is equivalent to x ∈ A
¬(x ∈ B ∧ x ∈ C)

(Example 1.4.4),

which is equivalent to x ∈ A
∧(x ∉ B ∨ x ∉ C)

(De Morgan’s law),

which is equivalent to (x ∈
A ∧ x ∉ B) ∨ (x ∈ A ∧ x ∉
C)

(distributive law),

which is equivalent to (x ∈
A \ B) ∨ (x ∈ A \ C)

(definition of \),



which is equivalent to x ∈
(A \ B) ∪ (A \ C)

(definition of ∪).

Thus, we have shown that for any sets A, B, and C, we have A \ (B ∩ C) =
(A\ B) ∪ (A \ C). Once again, you can verify this with a Venn diagram as
well.

Earlier we promised an alternative way to check the identity (A ∪ B) \ (A
∩ B)= (A \ B) ∪ (B \ A). You should see now how this can be done. First, we
write out the logical forms of the statements x ∈ (A ∪ B) \ (A ∩ B) and x ∈
(A \ B) ∪ (B \ A):

You can now check, using equivalences from Section 1.2, that these
statements are equivalent. An alternative way to check the equivalence is
with a truth table. To simplify the truth table, let’s use P and Q as
abbreviations for the statements x ∈ A and x ∈ B. Then we must check that
the formulas (P ∨ Q) ∧ ¬(P ∧ Q) and (P ∧ ¬Q) ∨ (Q ∧ ¬P) are equivalent.
The truth table in Figure 1.13 shows this.

Figure 1.13.

Definition 1.4.5. Suppose A and B are sets. We will say that A is a subset of
B if every element of A is also an element of B. We write A ⊆ B to mean
that A is a subset of B. A and B are said to be disjoint if they have no
elements in common. Note that this is the same as saying that the set of
elements they have in common is the empty set, or in other words A ∩ B =
∅.

Example 1.4.6. Suppose A = {red, green}, B = {red, yellow, green,
purple}, and C = {blue, purple}. Then the two elements of A, red and green,



are both also in B, and therefore A ⊆ B. Also, A ∩ C = ∅, so A and C are
disjoint.

If we know that A ⊆ B, or that A and B are disjoint, then we might draw a
Venn diagram for A and B differently to reflect this. Figures 1.14 and 1.15
illustrate this.

Figure 1.14. A ⊆ B.

Figure 1.15. A ∩ B = ∅.

Just as we earlier derived identities showing that certain sets are always
equal, it is also sometimes possible to show that certain sets are always
disjoint, or that one set is always a subset of another. For example, you can
see in a Venn diagram that the sets A ∩ B and A \ B do not overlap, and
therefore they will always be disjoint for any sets A and B. Another way to
see this would be to write out what it means to say that x ∈ (A ∩ B) ∩ (A \
B):



But this last statement is clearly a contradiction, so the statement x ∈
(A∩B)∩(A\B) will always be false, no matter what x is. In other words,
nothing can be an element of (A∩B)∩(A\B), so it must be the case that (A ∩
B)∩(A\B) = ∅. Therefore, A ∩ B and A \ B are disjoint.

The next theorem gives another example of a general fact about set
operations. The proof of this theorem illustrates that the principles of
deductive reasoning we have been studying are actually used in
mathematical proofs.

Theorem 1.4.7. For any sets A and B, (A ∪ B) \ B ⊆ A.

Proof. We must show that if something is an element of (A ∪ B) \ B, then it
must also be an element of A, so suppose that x ∈ (A ∪ B) \ B. This means
that x ∈ A ∪ B and x ∉ B, or in other words x ∈ A ∨ x ∈ B and x ∉ B. But
notice that these statements have the logical form P ∨ Q and ¬Q, and this is
precisely the form of the premises of our very first example of a deductive
argument in Section 1.1! As we saw in that example, from these premises
we can conclude that x ∈ A must be true. Thus, anything that is an element
of (A ∪ B) \ B must also be an element of A, so (A ∪ B) \ B ⊆ A.

□
You might think that such a careful application of logical laws is not

needed to understand why Theorem 1.4.7 is correct. The set (A ∪ B) \ B
could be thought of as the result of starting with the set A, adding in the
elements of B, and then removing them again. Common sense suggests that
the result will just be the original set A; in other words, it appears that (A ∪
B) \ B = A. However, as you are asked to show in exercise 10, this
conclusion is incorrect. This illustrates that in mathematics, you must not
allow imprecise reasoning to lead you to jump to conclusions. Applying
laws of logic carefully, as we did in our proof of Theorem 1.4.7, may help
you to avoid jumping to unwarranted conclusions.

Exercises
*1. Let A = {1, 3, 12, 35}, B = {3, 7, 12, 20}, and C = {x | x is a prime

number}. List the elements of the following sets. Are any of the sets



below disjoint from any of the others? Are any of the sets below
subsets of any others?

(a) A ∩ B.
(b) (A ∪ B) \ C.
(c) A ∪ (B \ C).
2. Let A = {United States, Germany, China, Australia}, B = {Germany,

France, India, Brazil}, and C = {x | x is a country in Europe}. List the
elements of the following sets. Are any of the sets below disjoint from
any of the others? Are any of the sets below subsets of any others?

(a) A ∪ B.
(b) (A ∩ B) \ C.
(c) (B ∩ C) \ A.
3. Verify that the Venn diagrams for (A ∪ B) \ (A ∩ B) and (A \ B) ∪ (B \

A) both look like Figure 1.11, as stated in this section.
*4. Use Venn diagrams to verify the following identities:
(a) A\ (A ∩ B) = A \ B.
(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
5. Verify the identities in exercise 4 by writing out (using logical

symbols) what it means for an object x to be an element of each set
and then using logical equivalences.

6. Use Venn diagrams to verify the following identities:
(a) (A ∪ B) \ C = (A \ C) ∪ (B \ C).
(b) A ∪ (B \ C) = (A ∪ B) \ (C \ A).
7. Verify the identities in exercise 6 by writing out (using logical

symbols) what it means for an object x to be an element of each set
and then using logical equivalences.

8. Use any method you wish to verify the following identities:
(a) (A\ B) ∩ C = (A ∩ C) \ B.
(b) (A ∩ B) \ B = ∅.
(c) A\ (A \ B) = A ∩ B.
*9. For each of the following sets, write out (using logical symbols) what

it means for an object x to be an element of the set. Then determine



which of these sets must be equal to each other by determining which
statements are equivalent.

(a) (A\ B) \ C.
(b) A\ (B \ C).
(c) (A\ B) ∪ (A ∩ C).
(d) (A\ B) ∩ (A \ C).
(e) A\ (B ∪ C).
10. It was shown in this section that for any sets A and B, (A ∪ B) \ B ⊆

A.
(a) Give an example of two sets A and B for which (A ∪ B) \ B = A.
(b) Show that for all sets A and B, (A ∪ B) \ B = A \ B.
11. Suppose A and B are sets. Is it necessarily true that (A \ B) ∪ B = A? If

not, is one of these sets necessarily a subset of the other? Is (A \ B) ∪
B always equal to either A \ B or A ∪ B?

*12. It is claimed in this section that you cannot make a Venn diagram for
four sets using overlapping circles.

(a) What’s wrong with the following diagram? (Hint: Where’s the set (A
∩ D) \ (B ∪ C) ?)

(b) Can you make a Venn diagram for four sets using shapes other than
circles?

13. (a) Make Venn diagrams for the sets (A ∪ B) \ C and A ∪ (B \ C).
What can you conclude about whether one of these sets is
necessarily a subset of the other?

(b) Give an example of sets A, B, and C for which (A ∪ B) \ C ≠ A ∪ (B \
C).



*14. Use Venn diagrams to show that the associative law holds for
symmetric difference; that is, for any sets A, B, and C, A(B Δ C) = (A
Δ B) C.

15. Use any method you wish to verify the following identities:
(a)
(b)
(c)
16. Use any method you wish to verify the following identities:
(a)
(b)
(c)
17. Fill in the blanks to make true identities:
(a)
(b)
(c)

1.5 The Conditional and Biconditional
Connectives
It is time now to return to a question we left unanswered in Section 1.1. We
have seen how the reasoning in the first and third arguments in Example
1.1.1 can be understood by analyzing the connectives ∨ and ¬. But what
about the reasoning in the second argument? Recall that the argument went
like this:

If today is Sunday, then I don’t have to go to work today.
Today is Sunday.
Therefore, I don’t have to go to work today.

What makes this reasoning valid?
It appears that the crucial words here are if and then, which occur in the

first premise. We therefore introduce a new logical connective, →, and
write P → Q to represent the statement “If P then Q.” This statement is
sometimes called a conditional statement, with P as its antecedent and Q as



its consequent. If we let P stand for the statement “Today is Sunday” and Q
for the statement “I don’t have to go to work today,” then the logical form
of the argument would be

Our analysis of the new connective → should lead to the conclusion that
this argument is valid.

Example 1.5.1. Analyze the logical forms of the following statements:

1. If it’s raining and I don’t have my umbrella, then I’ll get wet.
2. If Mary did her homework, then the teacher won’t collect it, and if she

didn’t, then he’ll ask her to do it on the board.

Solutions

1. Let R stand for the statement “It’s raining,” U for “I have my
umbrella,” and W for “I’ll get wet.” Then statement 1 would be
represented by the formula (R ∧ ¬U) → W.

2. Let H stand for “Mary did her homework,” C for “The teacher will
collect it,” and B for “The teacher will ask Mary to do the homework
on the board.” Then the given statement means (H → ¬C) ∧ (¬H →
B).

To analyze arguments containing the connective → we must work out the
truth table for the formula P → Q. Because P → Q is supposed to mean that
if P is true then Q is also true, we certainly want to say that if P is true and
Q is false then P → Q is false. If P is true and Q is also true, then it seems
reasonable to say that P → Q is true. This gives us the last two lines of the
truth table in Figure 1.16. The remaining two lines of the truth table are
harder to fill in, although probably most people would say that if P and Q
are both false then P → Q should be considered true. Thus, we can sum up
our conclusions so far with the table in Figure 1.16.



Figure 1.16.

To help us fill in the undetermined lines in this truth table, let’s look at an
example. Consider the statement “If x > 2 then x2 > 4,” which we could
represent with the formula P(x) → Q(x), where P(x) stands for the statement
x > 2 and Q(x) stands for x2 > 4. Of course, the statements P(x) and Q(x)
contain x as a free variable, and each will be true for some values of x and
false for others. But surely, no matter what the value of x is, we would say it
is true that if x > 2 then x2 > 4, so the conditional statement P(x) → Q(x)
should be true. Thus, the truth table should be completed in such a way that
no matter what value we plug in for x, this conditional statement comes out
true.

For example, suppose x = 3. In this case x > 2 and x2 = 9 > 4, so P(x) and
Q(x) are both true. This corresponds to line four of the truth table in Figure
1.16, and we’ve already decided that the statement P(x) → Q(x) should
come out true in this case. But now consider the case x = 1. Then x < 2 and
x2 = 1 < 4, so P(x) and Q(x) are both false, corresponding to line one in the
truth table. We have tentatively placed a T in this line of the truth table, and
now we see that this tentative choice must be right. If we put an F there,
then the statement P(x) → Q(x) would come out false in the case x = 1, and
we’ve already decided that it should be true for all values of x.

Finally, consider the case x = −5. Then x < 2, so P(x) is false, but x2 = 25
> 4, so Q(x) is true. Thus, in this case we find ourselves in the second line
of the truth table, and once again, if the conditional statement P(x) → Q(x)
is to be true in this case, we must put a T in this line. So it appears that all
the questionable lines in the truth table in Figure 1.16 must be filled in with
T’s, and the completed truth table for the connective → must be as shown in
Figure 1.17.



Figure 1.17.

Of course, there are many other values of x that could be plugged into our
statement “If x > 2 then x2 > 4”; but if you try them, you’ll find that they all
lead to line one, two, or four of the truth table, as our examples x = 1, −5,
and 3 did. No value of x will lead to line three, because you could never
have x > 2 but x2 ≤ 4. After all, that’s why we said that the statement “If x >
2 then x2 > 4” was always true, no matter what x was! The point of saying
that this conditional statement is always true is simply to say that you will
never find a value of x such that x > 2 and x2 ≤ 4 – in other words, there is
no value of x for which P(x) is true but Q(x) is false. Thus, it should make
sense that in the truth table for P → Q, the only line that is false is the line
in which P is true and Q is false.

As the truth table in Figure 1.18 shows, the formula ¬P ∨ Q is also true
in every case except when P is true and Q is false. Thus, if we accept the
truth table in Figure 1.17 as the correct truth table for the formula P → Q,
then we will be forced to accept the conclusion that the formulas P → Q
and ¬P ∨ Q are equivalent. Is this consistent with the way the words if and
then are used in ordinary language? It may not seem to be at first, but, at
least for some uses of the words if and then, it is.

Figure 1.18.

For example, imagine a teacher saying to a class, in a threatening tone of
voice, “You won’t neglect your homework, or you’ll fail the course.”
Grammatically, this statement has the form ¬P ∨ Q, where P is the



statement “You will neglect your homework” and Q is “You’ll fail the
course.” But what message is the teacher trying to convey with this
statement? Clearly the intended message is “If you neglect your homework,
then you’ll fail the course,” or in other words P → Q. Thus, in this example,
the formulas ¬P ∨ Q and P → Q seem to mean the same thing.

There is a similar idea at work in the first statement from Example 1.1.2,
“Either John went to the store, or we’re out of eggs.” In Section 1.1 we
represented this statement by the formula P ∨ Q, with P standing for “John
went to the store” and Q for “We’re out of eggs.” But someone who made
this statement would probably be trying to express the idea that if John
didn’t go to the store, then we’re out of eggs, or in other words ¬P → Q.
Thus, this example suggests that ¬P → Q means the same thing as P ∨ Q.
In fact, we can derive this equivalence from the previous one by
substituting ¬P for P. Because P → Q is equivalent to ¬P ∨ Q, it follows
that ¬P → Q is equivalent to ¬¬P ∨ Q, which is equivalent to P ∨ Q by the
double negation law.

We can derive another useful equivalence as follows:

Thus, P → Q is also equivalent to ¬(P ∧ ¬Q). In fact, this is precisely the
conclusion we reached earlier when discussing the statement “If x > 2 then
x2 > 4.” We decided then that the reason this statement is true for every
value of x is that there is no value of x for which x > 2 and x2 ≤ 4. In other
words, the statement P(x) ∧ ¬Q(x) is never true, where as before P(x)
stands for x > 2 and Q(x) for x2 > 4. But that’s the same as saying that the
statement ¬(P(x) ∧ ¬Q(x)) is always true. Thus, to say that P(x) → Q(x) is
always true means the same thing as saying that ¬(P(x) ∧ ¬Q(x)) is always
true.

For another example of this equivalence, consider the statement “If it’s
going to rain, then I’ll take my umbrella.” Of course, this statement has the
form P → Q, where P stands for the statement “It’s going to rain” and Q
stands for “I’ll take my umbrella.” But we could also think of this statement
as a declaration that I won’t be caught in the rain without my umbrella – in
other words, ¬(P ∧ ¬Q).



To summarize, so far we have discovered the following equivalences
involving conditional statements:

Conditional laws

In case you’re still not convinced that the truth table in Figure 1.17 is
right, we give one more reason. We know that, using this truth table, we can
now analyze the validity of deductive arguments involving the words if and
then. We’ll find, when we analyze a few simple arguments, that the truth
table in Figure 1.17 leads to reasonable conclusions about the validity of
these arguments. But if we were to make any changes in the truth table, we
would end up with conclusions that are clearly incorrect. For example, let’s
return to the argument form with which we started this section:

We have already decided that this form of argument should be valid, and the
truth table in Figure 1.19 confirms this. The premises are both true only in
line four of the table, and in this line the conclusion is true as well.

Figure 1.19.

You can also see from Figure 1.19 that both premises are needed to make
this argument valid. But if we were to change the truth table for the
conditional statement to make P → Q false in the first line of the table, then
the second premise of this argument would no longer be needed. We would
end up with the conclusion that, just from the single premise P → Q, we



could infer that Q must be true, since in the two lines of the truth table in
which the premise P → Q would still be true, lines two and four, the
conclusion Q is true too. But this doesn’t seem right. Just knowing that if P
is true then Q is true, but not knowing that P is true, it doesn’t seem
reasonable that we should be able to conclude that Q is true. For example,
suppose we know that the statement “If John didn’t go to the store then
we’re out of eggs” is true. Unless we also know whether or not John has
gone to the store, we can’t reach any conclusion about whether or not we’re
out of eggs. Thus, changing the first line of the truth table for P → Q would
lead to an incorrect conclusion about the validity of an argument.

Changing the second line of the truth table would also lead to
unacceptable conclusions about the validity of arguments. To see this,
consider the argument form:

This should not be considered a valid form of reasoning. For example,
consider the following argument, which has this form:

If Jones was convicted of murdering Smith, then he will go to jail.
Jones will go to jail.
Therefore, Jones was convicted of murdering Smith.

Even if the premises of this argument are true, the conclusion that Jones
was convicted of murdering Smith doesn’t follow. Maybe the reason he will
go to jail is that he robbed a bank or cheated on his income tax. Thus, the
conclusion of this argument could be false even if the premises were true,
so the argument isn’t valid.

The truth table analysis in Figure 1.20 agrees with this conclusion. In line
two of the table, the conclusion P is false, but both premises are true, so the
argument is invalid. But notice that if we were to change the truth table for
P → Q and make it false in line two, then the truth table analysis would say
that the argument is valid. Thus, the analysis of this argument seems to
support our decision to put a T in the second line of the truth table for P →
Q.



Figure 1.20.

The last example shows that from the premises P → Q and Q it is
incorrect to infer P. But it would certainly be correct to infer P from the
premises Q → P and Q. This shows that the formulas P → Q and Q → P do
not mean the same thing. You can check this by making a truth table for
both and verifying that they are not equivalent. For example, a person might
believe that, in general, the statement “If you are a convicted murderer then
you are untrustworthy” is true, without believing that the statement “If you
are untrustworthy then you are a convicted murderer” is generally true. The
formula Q → P is called the converse of P → Q. It is very important to
make sure you never confuse a conditional statement with its converse.

The contrapositive of P → Q is the formula ¬Q → ¬P, and it is
equivalent to P → Q. This may not be obvious at first, but you can verify it
with a truth table. For example, the statements “If John cashed the check I
wrote then my bank account is overdrawn” and “If my bank account isn’t
overdrawn then John hasn’t cashed the check I wrote” are equivalent. I
would be inclined to assert both in exactly the same circumstances –
namely, if the check I wrote was for more money than I had in my account.
The equivalence of conditional statements and their contrapositives is used
often in mathematical reasoning. We add it to our list of important
equivalences:

Contrapositive law

P → Q is equivalent to ¬Q → ¬P.

Example 1.5.2. Which of the following statements are equivalent?

1. If it’s either raining or snowing, then the game has been canceled.
2. If the game hasn’t been canceled, then it’s not raining and it’s not

snowing.



3. If the game has been canceled, then it’s either raining or snowing.
4. If it’s raining then the game has been canceled, and if it’s snowing

then the game has been canceled.
5. If it’s neither raining nor snowing, then the game hasn’t been

canceled.

Solution

We translate all of the statements into the notation of logic, using the
following abbreviations: R stands for the statement “It’s raining,” S stands
for “It’s snowing,” and C stands for “The game has been canceled.”

1. (R ∨ S) → C.
2. ¬C → (¬R ∧ ¬S). By one of De Morgan’s laws, this is equivalent to

¬C → ¬(R ∨ S). This is the contrapositive of statement 1, so they are
equivalent.

3. C → (R ∨ S). This is the converse of statement 1, which is not
equivalent to it. You can verify this with a truth table, or just think
about what the statements mean. Statement 1 says that rain or snow
would result in cancelation of the game. Statement 3 says that these
are the only circumstances in which the game will be canceled.

4. (R → C) ∧ (S → C). This is also equivalent to statement 1, as the
following reasoning shows:

You should read statements 1 and 4 again and see if it makes sense to
you that they’re equivalent.

5. ¬(R ∨ S) → ¬C. This is the contrapositive of statement 3, so they are
equivalent. It is not equivalent to statements 1, 2, and 4.



Statements that mean P → Q come up very often in mathematics, but
sometimes they are not written in the form “If P then Q.” Here are a few
other ways of expressing the idea P → Q that are used often in
mathematics:

P implies Q.
Q, if P.
P only if Q.
P is a sufficient condition for Q.
Q is a necessary condition for P.

Some of these may require further explanation. The second expression,
“Q, if P,” is just a slight rearrangement of the statement “If P then Q,” so it
should make sense that it means P → Q. As an example of a statement of
the form “P only if Q,” consider the sentence “You can run for president
only if you are a citizen.” In this case, P is “You can run for president” and
Q is “You are a citizen.” What the statement means is that if you’re not a
citizen, then you can’t run for president, or in other words ¬Q → ¬P. But
by the contrapositive law, this is equivalent to P → Q.

Think of “P is a sufficient condition for Q” as meaning “The truth of P
suffices to guarantee the truth of Q,” and it should make sense that this
should be represented by P → Q. Finally, “Q is a necessary condition for P
“means that in order for P to be true, it is necessary for Q to be true also.
This means that if Q isn’t true, then P can’t be true either, or in other words,
¬Q → ¬P. Once again, by the contrapositive law we get P → Q.

Example 1.5.3. Analyze the logical forms of the following statements:

1. If at least ten people are there, then the lecture will be given.
2. The lecture will be given only if at least ten people are there.
3. The lecture will be given if at least ten people are there.
4. Having at least ten people there is a sufficient condition for the lecture

being given.
5. Having at least ten people there is a necessary condition for the

lecture being given.



Solutions

Let T stand for the statement “At least ten people are there” and L for “The
lecture will be given.”

1. T → L.
2. L → T. The given statement means that if there are not at least ten

people there, then the lecture will not be given, or in other words ¬T
→ ¬L. By the contrapositive law, this is equivalent to L → T.

3. T → L. This is just a rephrasing of statement 1.
4. T → L. The statement says that having at least ten people there

suffices to guarantee that the lecture will be given, and this means that
if there are at least ten people there, then the lecture will be given.

5. L → T. This statement means the same thing as statement 2: If there
are not at least ten people there, then the lecture will not be given.

We have already seen that a conditional statement P → Q and its
converse Q → P are not equivalent. Often in mathematics we want to say
that both P → Q and Q → P are true, and it is therefore convenient to
introduce a new connective symbol, ↔, to express this. You can think of P
↔ Q as just an abbreviation for the formula (P → Q) ∧ (Q → P). A
statement of the form P ↔ Q is called a biconditional statement, because it
represents two condi-tional statements. By making a truth table for (P → Q)
∧ (Q → P) you can verify that the truth table for P ↔ Q is as shown in
Figure 1.21. Note that, by the contrapositive law, P ↔ Q is also equivalent
to (P → Q) ∧(¬P → ¬Q).

Figure 1.21.

Because Q → P can be written “P if Q” and P → Q can be written “P
only if Q,” P ↔ Q means “P if Q and P only if Q,” and this is often written



“P if and only if Q.” The phrase if and only if occurs so often in
mathematics that there is a common abbreviation for it, iff. Thus, P ↔ Q is
often written “P iff Q.” Another statement that means P ↔ Q is “P is a
necessary and sufficient condition for Q.”

Example 1.5.4. Analyze the logical forms of the following statements:

1. The game will be canceled iff it’s either raining or snowing.
2. Having at least ten people there is a necessary and sufficient condition

for the lecture being given.
3. If John went to the store then we have some eggs, and if he didn’t

then we don’t.

Solutions

1. Let C stand for “The game will be canceled,” R for “It’s raining,” and
S for “It’s snowing.” Then the statement would be represented by the
formula C↔ (R ∨ S).

2. Let T stand for “There are at least ten people there” and L for “The
lecture will be given.” Then the statement means T ↔ L.

3. Let S stand for “John went to the store” and E for “We have some
eggs.” Then a literal translation of the given statement would be (S →
E) ∧ (¬ S → ¬E). This is equivalent to S ↔E.

One of the reasons it’s so easy to confuse a conditional statement with its
converse is that in everyday speech we sometimes use a conditional
statement when what we mean to convey is actually a biconditional. For
example, you probably wouldn’t say “The lecture will be given if at least
ten people are there” unless it was also the case that if there were fewer than
ten people, the lecture wouldn’t be given. After all, why mention the
number ten at all if it’s not the minimum number of people required? Thus,
the statement actually suggests that the lecture will be given iff there are at
least ten people there. For another example, suppose a child is told by his
parents, “If you don’t eat your dinner, you won’t get any dessert.” The child
certainly expects that if he does eat his dinner, he will get dessert, although
that’s not literally what his parents said. In other words, the child interprets



the statement as meaning “Eating your dinner is a necessary and sufficient
condition for getting dessert.”

Such a blurring of the distinction between if and iff is never acceptable in
mathematics. Mathematicians always use a phrase such as iff or necessary
and sufficient condition when they want to express a biconditional
statement. You should never interpret an if-then statement in mathematics
as a biconditional statement, the way you might in everyday speech.

Exercises
*1. Analyze the logical forms of the following statements:
(a) If this gas either has an unpleasant smell or is not explosive, then it

isn’t hydrogen.
(b) Having both a fever and a headache is a sufficient condition for

George to go to the doctor.
(c) Both having a fever and having a headache are sufficient conditions

for George to go to the doctor.
(d) If x ≠ 2, then a necessary condition for x to be prime is that x be odd.
2. Analyze the logical forms of the following statements:

(a) Mary will sell her house only if she can get a good price and find a
nice apartment.

(b) Having both a good credit history and an adequate down payment is a
necessary condition for getting a mortgage.

(c) John will drop out of school, unless someone stops him. (Hint: First
try to rephrase this using the words if and then instead of unless.)

(d) If x is divisible by either 4 or 6, then it isn’t prime.
3. Analyze the logical form of the following statement:

(a) If it is raining, then it is windy and the sun is not shining. Now
analyze the following statements. Also, for each statement determine
whether the statement is equivalent to either statement (a) or its
converse.

(b) It is windy and not sunny only if it is raining.
(c) Rain is a sufficient condition for wind with no sunshine.
(d) Rain is a necessary condition for wind with no sunshine.



(e) It’s not raining, if either the sun is shining or it’s not windy.
(f) Wind is a necessary condition for it to be rainy, and so is a lack of

sunshine.
(g) Either it is windy only if it is raining, or it is not sunny only if it is

raining.
*4. Use truth tables to determine whether or not the following arguments

are valid:
(a) Either sales or expenses will go up. If sales go up, then the boss will

be happy. If expenses go up, then the boss will be unhappy.
Therefore, sales and expenses will not both go up.

(b) If the tax rate and the unemployment rate both go up, then there will
be a recession. If the GDP goes up, then there will not be a recession.
The GDP and taxes are both going up. Therefore, the unemployment
rate is not going up.

(c) The warning light will come on if and only if the pressure is too high
and the relief valve is clogged. The relief valve is not clogged.
Therefore, the warning light will come on if and only if the pressure
is too high.

5. Use truth tables to determine whether or not the following arguments
are valid:

(a) If Jones is convicted then he will go to prison. Jones will be convicted
only if Smith testifies against him. Therefore, Jones won’t go to
prison unless Smith testifies against him.

(b) Either the Democrats or the Republicans will have a majority in the
Senate, but not both. Having a Democratic majority is a necessary
condition for the bill to pass. Therefore, if the Republicans have a
majority in the Senate then the bill won’t pass.

6. (a) Show that P ↔ Q is equivalent to (P ∧ Q) ∨ (¬P ∧ ¬Q).
(b) Show that (P → Q) ∨ (P → R) is equivalent to P → (Q ∨ R).
*7. (a) Show that (P → R) ∧ (Q → R) is equivalent to (P ∨ Q) → R.
(b) Formulate and verify a similar equivalence involving (P → R) ∨ (Q

→ R).
8. (a) Show that (P → Q) ∧ (Q → R) is equivalent to (P → R) ∧ [(P ↔

Q)∨ (R ↔Q)].



(b) Show that (P → Q) ∨ (Q → R) is a tautology.
*9. Find a formula involving only the connectives ¬ and → that is

equivalent to P ∧ Q.
10. Find a formula involving only the connectives ¬ and → that is

equivalent to P ↔ Q.
11. (a) Show that (P ∨ Q) ↔ Q is equivalent to P → Q.
(b) Show that (P ∧ Q) ↔ Q is equivalent to Q → P.
12. Which of the following formulas are equivalent?
(a) P → (Q → R).
(b) Q → (P → R).
(c) (P → Q) ∧ (P → R).
(d) (P ∧ Q) → R.
(e) P → (Q ∧ R).



2

Quantificational Logic

2.1 Quantifiers
We have seen that a statement P(x) containing a free variable x may be true
for some values of x and false for others. Sometimes we want to say
something about how many values of x make P(x) come out true. In
particular, we often want to say either that P(x) is true for every value of x
or that it is true for at least one value of x. We therefore introduce two more
symbols, called quantifiers, to help us express these ideas.

To say that P(x) is true for every value of x in the universe of discourse
U, we will write ∀xP(x). This is read “For all x, P(x).” Think of the upside
down A as standing for the word all. The symbol ∀ is called the universal
quantifier, because the statement ∀xP(x) says that P(x) is universally true.
As we discussed in Section 1.3, to say that P(x) is true for every value of x
in the universe means that the truth set of P(x) will be the whole universe U.
Thus, you could also think of the statement ∀xP(x) as saying that the truth
set of P(x) is equal to U.

We write ∃xP(x) to say that there is at least one value of x in the universe
for which P(x) is true. This is read “There exists an x such that P(x).” The
backward E comes from the word exists and is called the existential
quantifier. Once again, you can interpret this statement as saying something
about the truth set of P(x). To say that P(x) is true for at least one value of x
means that there is at least one element in the truth set of P(x), or in other
words, the truth set is not equal to ∅.

For example, in Section 1.5 we discussed the statement “If x > 2 then x2

> 4,” where x ranges over the set of all real numbers, and we claimed that
this statement was true for all values of x. We can now write this claim
symbolically as ∀x(x > 2 → x2 > 4).



Example 2.1.1. What do the following formulas mean? Are they true or
false?

1. ∀x(x2 ≥ 0), where the universe of discourse is R, the set of all real
numbers.

2. ∃x(x2 − 2x + 3 = 0), with universe R again.

3. ∃x(M(x) ∧ B(x)), where the universe of discourse is the set of all
people, M(x) stands for the statement “x is a man,” and B(x) means “x
has brown hair.”

4. ∀x(M(x) → B(x)), with the same universe and the same meanings for
M(x) and B(x).

5. ∀xL(x, y), where the universe is the set of all people, and L(x, y)
means “x likes y.”

Solutions

1. This means that for every real number x, x2 ≥ 0. This is true.
2. This means that there is at least one real number x that makes the

equation x2 − 2x + 3 = 0 come out true. In other words, the equation
has at least one real solution. If you solve the equation, you’ll find
that this statement is false; the equation has no real solutions. (Try
either completing the square or using the quadratic formula.)

3. There is at least one person x such that x is a man and x has brown
hair. In other words, there is at least one man who has brown hair. Of
course, this is true.

4. For every person x, if x is a man then x has brown hair. In other
words, all men have brown hair. If you’re not convinced that this is
what the formula means, it might help to look back at the truth table
for the conditional connective. According to this truth table, the
statement M(x) → B(x) will be false only if M(x) is true and B(x) is
false; that is, x is a man and x doesn’t have brown hair. Thus, to say
that M(x) → B(x) is true for every person x means that this situation
never occurs, or in other words, that there are no men who don’t have
brown hair. But that’s exactly what it means to say that all men have
brown hair. Of course, this statement is false.



5. For every person x, x likes y. In other words, everyone likes y. We
can’t tell if this is true or false unless we know who y is.

Notice that in the fifth statement in this example, we needed to know
who y was to determine if the statement was true or false, but not who x
was. The statement says that everyone likes y, and this is a statement about
y, but not x. This means that y is a free variable in this statement but x is a
bound variable.

Similarly, although all the other statements contain the letter x, we didn’t
need to know the value of x to determine their truth values, so x is a bound
variable in every case. In general, even if x is a free variable in some
statement P(x), it is a bound variable in the statements ∀xP(x) and ∃xP(x).
For this reason, we say that the quantifiers bind a variable. As in Section
1.3, this means that a variable that is bound by a quantifier can always be
replaced with a new variable without changing the meaning of the
statement, and it is often possible to paraphrase the statement without
mentioning the bound variable at all. For example, the statement ∀xL(x, y)
from Example 2.1.1 is equivalent to ∀wL(w, y), because both mean the
same thing as “Everyone likes y.” Words such as everyone, someone,
everything, or something are often used to express the meanings of
statements containing quantifiers. If you are translating an English
statement into symbols, these words will often tip you off that a quantifier
will be needed.

As with the symbol ¬, we follow the convention that the expressions ∀x
and ∃x apply only to the statements that come immediately after them. For
example, ∀xP(x) → Q(x) means (∀xP(x)) → Q(x), not ∀x(P(x) → Q(x)).

Example 2.1.2. Analyze the logical forms of the following statements.

1. Someone didn’t do the homework.
2. Everything in that store is either overpriced or poorly made.
3. Nobody’s perfect.
4. Susan likes everyone who dislikes Joe.
5. A ⊆ B.
6. A ∩ B ⊆ B \ C.



Solutions

1. The word someone tips us off that we should use an existential
quantifier. As a first step, we write ∃x(x didn’t do the homework).
Now if we let H(x) stand for the statement “x did the homework,”
then we can rewrite this as ∃x¬H(x).

2. Think of this statement as saying “If it’s in that store, then it’s either
overpriced or poorly made (no matter what it is).” Thus, we start by
writing ∀x(if x is in that store then x is either overpriced or poorly
made). To write the part in parentheses symbolically, we let S(x) stand
for “x is in that store,” O(x) for “x is overpriced,” and P(x) for “x is
poorly made.” Then our final answer is ∀x[S(x) → (O(x) ∨ P(x))].

Note that, like statement 4 in Example 2.1.1, this statement has the
form of a universal quantifier applied to a conditional statement. This
form occurs quite often, and it is important to learn to recognize what
it means and when it should be used. We can check our answer to this
problem as we did before, by using the truth table for the conditional
connective. The only way that the statement S(x) → (O(x) ∨ P(x)) can
be false is if x is in that store, but is neither overpriced nor poorly
made. Thus, to say that the statement is true for all values of x means
that this never happens, which is exactly what it means to say that
everything in that store is either overpriced or poorly made.

3. This means ¬(somebody is perfect), or in other words ¬∃xP(x), where
P(x) stands for “x is perfect.”

4. As in statement 2 in this example, we could think of this as meaning
“If a person dislikes Joe then Susan likes that person (no matter who
the person is).” Thus, we can start by rewriting the given statement as
∀x(if x dislikes Joe then Susan likes x). Let L(x, y) stand for “x likes
y.” In statements that talk about specific elements of the universe of
discourse it is sometimes convenient to introduce letters to stand for
those specific elements. In this case we need to talk about Joe and
Susan, so let’s let j stand for Joe and s for Susan. Thus, we can write
L(s, x) to mean “Susan likes x,” and ¬L(x, j) for “x dislikes Joe.”
Filling these in, we end up with the answer ∀x(¬L(x, j) → L(s, x)).
Notice that, once again, we have a universal quantifier applied to a



conditional statement. As before, you can check this answer using the
truth table for the conditional connective.

5. According to Definition 1.4.5, to say that A is a subset of B means
that everything in A is in B. If you’ve caught on to the pattern of how
universal quantifiers and conditionals are combined, you should
recognize that this would be written symbolically as ∀x(x ∈ A → x ∈
B).

6. As in the previous statement, we first write this as ∀x(x ∈ A ∩ B → x
∈ B \ C). Now using the definitions of intersection and difference, we
can expand this further to get ∀x[(x ∈ A ∧ x ∈ B) → (x ∈ B ∧ x ∉
C)].

Although all of our examples so far have contained only one quantifier,
there’s no reason why a statement can’t have more than one quantifier. For
example, consider the statement “Some students are married.” The word
some indicates that this statement should be written using an existential
quantifier, so we can think of it as having the form ∃x(x is a student and x is
married). Let S(x) stand for “x is a student.” We could similarly choose a
letter to stand for “x is married,” but perhaps a better analysis would be to
recognize that to be married means to be married to someone. Thus, if we
let M(x, y) stand for “x is married to y,” then we can write “x is married” as
∃yM(x, y). We can therefore represent the entire statement by the formula
∃x(S(x) ∧ ∃yM(x, y)), a formula containing two existential quantifiers.

As another example, let’s analyze the statement “All parents are
married.” We start by writing it as ∀x(if x is a parent then x is married).
Parenthood, like marriage, is a relationship between two people; to be a
parent means to be a parent of someone. Thus, it might be best to represent
the statement “x is a parent” by the formula ∃yP(x, y), where P(x, y) means
“x is a parent of y.” If we again represent “x is married” by the formula
∃yM(x, y), then our analysis of the original statement will be ∀x(∃yP(x, y)
→ ∃yM(x, y)). Although this isn’t wrong, the double use of the variable y
could cause confusion. Perhaps a better solution would be to replace the
formula ∃yM(x, y) with the equivalent formula ∃zM(x, z). (Recall that these
are equivalent because a bound variable in any statement can be replaced by
another without changing the meaning of the statement.) Our improved
analysis of the statement would then be ∀x(∃yP(x, y) → ∃zM(x,z)).



A common mistake made by beginners is to leave out quantifiers. For
example, you might be tempted to represent the statement “All parents are
married” incorrectly by the formula ∀x(P(x, y) → M(x, z)), leaving out ∃y
and ∃z. A good way to catch such mistakes is to pay attention to free and
bound variables. In the incorrect formula, there are no quantifiers binding
the variables y and z, so y and z are free variables. But the original
statement, “All parents are married,” is not a statement about y and z, so
these variables should not be free in the answer. This is a tip-off that
quantifiers on y and z are missing. Note that if we translate the incorrect
formula ∀x(P(x, y) → M(x, z)) back into English, we get a statement about
y and z: “Everyone who is a parent of y is married to z.”

Example 2.1.3. Analyze the logical forms of the following statements.

1. Everybody in the dorm has a roommate he or she doesn’t like.
2. Nobody likes a sore loser.
3. Anyone who has a friend who has the measles will have to be

quarantined.
4. If anyone in the dorm has a friend who has the measles, then everyone

in the dorm will have to be quarantined.
5. If A ⊆ B, then A and C \ B are disjoint.

Solutions

1. This means ∀x(if x lives in the dorm then x has a roommate he or she
doesn’t like). To say that x has a roommate he or she doesn’t like, we
could write ∃y(x and y are roommates and x doesn’t like y). If we let
R(x, y) stand for “x and y are roommates” and L(x, y) for “x likes y,”
then this becomes ∃y(R(x, y) ∧ ¬L(x, y)). Finally, if we let D(x) mean
“x lives in the dorm,” then the complete analysis of the original
statement would be ∀x[D(x) → ∃y(R(x, y) ∧ ¬L(x, y))].

2. This is tricky, because the phrase a sore loser doesn’t refer to a
particular sore loser, it refers to all sore losers. The statement means
that all sore losers are disliked, or in other words ∀x(if x is a sore
loser then nobody likes x). To say nobody likes x we write
¬(somebody likes x), which means ¬∃yL(y, x), where L(y, x) means “y



likes x.” If we let S(x) mean “x is a sore loser,” then the whole
statement would be written ∀x(S(x) → ¬∃yL(y, x)).

3. You have probably realized by now that it is usually easiest to
translate from English into symbols in several steps, translating only a
little bit at a time. Here are the steps we might use to translate this
statement:

(i) ∀x(if x has a friend who has the measles then x will have to be
quarantined).

(ii) ∀x[∃y(y is a friend of x and y has the measles) → x will have to be
quarantined].

Now, letting F(y, x) stand for “y is a friend of x,” M(y) for “y has the
measles,” and Q(x) for “x will have to be quarantined,” we get:

(iii) ∀x[∃y(F(y, x) ∧ M(y)) → Q(x)].

4. The word anyone is difficult to interpret, because in different
statements it means different things. In statement 3 it meant everyone,
but in this statement it means someone. Here are the steps of our
analysis:

(i) (Someone in the dorm has a friend who has the measles) →
(everyone in the dorm will have to be quarantined).

(ii) ∃x(x lives in the dorm and x has a friend who has the measles) →
∀z(if z lives in the dorm then z will have to be quarantined).

Using the same abbreviations as in the last statement and letting D(x)
stand for “x lives in the dorm,” we end up with the following formula:

(iii) ∃x[D(x) ∧ ∃y(F(y, x) ∧ M(y))] → ∀z(D(z) → Q(z)).

5. Clearly the answer will have the form of a conditional statement, (A
⊆ B) → (A and C \ B are disjoint). We have already written A ⊆ B
symbolically in Example 2.1.2. To say that A and C \ B are disjoint
means that they have no elements in common, or in other words
¬∃x(x ∈ A ∧ x ∈ C \ B). Putting this all together, and filling in the
definition of C \ B, we end up with ∀x(x ∈ A → x ∈ B) → ¬∃x(x ∈
A ∧ x ∈ C ∧ x ∉ B).



When a statement contains more than one quantifier it is sometimes
difficult to figure out what it means and whether it is true or false. It may be
best in this case to think about the quantifiers one at a time, in order. For
example, consider the statement ∀x∃y(x + y = 5), where the universe of
discourse is the set of all real numbers. Thinking first about just the first
quantifier expression ∀x, we see that the statement means that for every real
number x, the statement ∃y(x + y = 5) is true. We can worry later about
what ∃y(x + y = 5) means; thinking about two quantifiers at once is too
confusing.

If we want to figure out whether or not the statement ∃y(x + y = 5) is true
for every value of x, it might help to try out a few values of x. For example,
suppose x = 2. Then we must determine whether or not the statement ∃y(2 +
y = 5) is true. Now it’s time to think about the next quantifier, ∃y. This
statement says that there is at least one value of y for which the equation 2 +
y = 5 holds. In other words, the equation 2 + y = 5 has at least one solution.
Of course, this is true, because the equation has the solution y = 5 − 2 = 3.
Thus, the statement ∃y(2 + y = 5) is true.

Let’s try one more value of x. If x = 7, then we are interested in the
statement ∃y(7 + y = 5), which says that the equation 7 + y = 5 has at least
one solution. Once again, this is true, since the solution is y = 5 − 7 = −2. In
fact, you have probably realized by now that no matter what value we plug
in for x, the equation x + y = 5 will always have the solution y = 5 − x, so
the statement ∃y(x + y = 5) will be true. Thus, the original statement ∀x∃y(x
+ y = 5) is true.

On the other hand, the statement ∃y∀x(x + y = 5) means something
entirely different. This statement means that there is at least one value of y
for which the statement ∀x(x + y = 5) is true. Can we find such a value of y?
Suppose, for example, we try y = 4. Then we must determine whether or not
the statement ∀x(x + 4 = 5) is true. This statement says that no matter what
value we plug in for x, the equation x + 4 = 5 holds, and this is clearly false.
In fact, no value of x other than x = 1 works in this equation. Thus, the
statement ∀x(x + 4 = 5) is false.

We have seen that when y = 4 the statement ∀x(x + y = 5) is false, but
maybe some other value of y will work. Remember, we are trying to
determine whether or not there is at least one value of y that works. Let’s
try one more, say, y = 9. Then we must consider the statement ∀x(x + 9 =



5), which says that no matter what x is, the equation x + 9 = 5 holds. Once
again this is clearly false, since only x = −4 works in this equation. In fact,
it should be clear by now that no matter what value we plug in for y, the
equation x + y = 5 will be true for only one value of x, namely x = 5 − y, so
the statement ∀x(x + y = 5) will be false. Thus there are no values of y for
which ∀x(x + y = 5) is true, so the statement ∃y∀x(x + y = 5) is false.

Notice that we found that the statement ∀x∃y(x + y = 5) is true, but
∃y∀x(x + y = 5) is false. Apparently, the order of the quantifiers makes a
difference! What is responsible for this difference? The first statement says
that for every real number x, there is a real number y such that x + y = 5. For
example, when we tried x = 2 we found that y = 3 worked in the equation x
+ y = 5, and with x = 7, y = −2 worked. Note that for different values of x,
we had to use different values of y to make the equation come out true. You
might think of this statement as saying that for each real number x there is a
corresponding real number y such that x + y = 5. On the other hand, when
we were analyzing the statement ∃y∀x(x + y = 5) we found ourselves
searching for a single value of y that made the equation x + y = 5 true for all
values of x, and this turned out to be impossible. For each value of x there is
a corresponding value of y that makes the equation true, but no single value
of y works for every x.

For another example, consider the statement ∀x∃yL(x, y), where the
universe of discourse is the set of all people and L(x, y) means “x likes y.”
This statement says that for every person x, the statement ∃yL(x, y) is true.
Now ∃yL(x, y) could be written as “x likes someone,” so the original
statement means that for every person x, x likes someone. In other words,
everyone likes someone. On the other hand, ∃y∀xL(x, y) means that there is
some person y such that ∀xL(x, y) is true. As we saw in Example 2.1.1,
∀xL(x, y) means “Everyone likes y,” so ∃y∀xL(x, y) means that there is
some person y such that everyone likes y. In other words, there is someone
who is universally liked. These statements don’t mean the same thing. It
might be the case that everyone likes someone, but no one is universally
liked.

Example 2.1.4. What do the following statements mean? Are they true or
false? The universe of discourse in each case is N, the set of all natural
numbers.



1. ∀x∃y(x < y).
2. ∃y∀x(x < y).
3. ∃x∀y(x < y).
4. ∀y∃x(x < y).
5. ∃x∃y(x < y).
6. ∀x∀y(x < y).

Solutions

1. This means that for every natural number x, the statement ∃y(x < y) is
true. In other words, for every natural number x, there is a natural
number bigger than x. This is true. For example, x + 1 is always
bigger than x.

2. This means that there is some natural number y such that the
statement ∀x(x < y) is true. In other words, there is some natural
number y such that all natural numbers are smaller than y. This is
false. No matter what natural number y we pick, there will always be
larger natural numbers.

3. This means that there is a natural number x such that the statement
∀y(x < y) is true. You might be tempted to say that this statement will
be true if x = 0, but this isn’t right. Since 0 is the smallest natural
number, the statement 0 < y is true for all values of y except y = 0, but
if y = 0, then the statement 0 < y is false, and therefore ∀y(0 < y) is
false. Similar reasoning shows that for every value of x the statement
∀y(x < y) is false, so ∃x∀y(x < y) is false.

4. This means that for every natural number y, there is a natural number
smaller than y. This is true for every natural number y except y = 0,
but there is no natural number smaller than 0. Therefore this statement
is false.

5. This means that there is a natural number x such that ∃y(x < y) is true.
But as we saw in the first statement, this is actually true for every
natural number x, so it is certainly true for at least one. Thus, ∃x∃y(x
< y) is true.



6. This means that for every natural number x, the statement ∀y(x < y) is
true. But as we saw in the third statement, there isn’t even one value
of x for which this statement is true. Thus, ∀x∀y(x < y) is false.

Exercises
*1. Analyze the logical forms of the following statements.
(a) Anyone who has forgiven at least one person is a saint.
(b) Nobody in the calculus class is smarter than everybody in the discrete

math class.
(c) Everyone likes Mary, except Mary herself.
(d) Jane saw a police officer, and Roger saw one too.
(e) Jane saw a police officer, and Roger saw him too.
2. Analyze the logical forms of the following statements.

(a) Anyone who has bought a Rolls Royce with cash must have a rich
uncle.

(b) If anyone in the dorm has the measles, then everyone who has a
friend in the dorm will have to be quarantined.

(c) If nobody failed the test, then everybody who got an A will tutor
someone who got a D.

(d) If anyone can do it, Jones can.
(e) If Jones can do it, anyone can.
3. Analyze the logical forms of the following statements. The universe

of discourse is R. What are the free variables in each statement?

(a) Every number that is larger than x is larger than y.
(b) For every number a, the equation ax2 + 4x − 2 = 0 has at least one

solution iff a ≥ −2.
(c) All solutions of the inequality x3 − 3x < 3 are smaller than 10.
(d) If there is a number x such that x2 + 5x = w and there is a number y

such that 4 − y2 = w, then w is strictly between −10 and 10.
*4. Translate the following statements into idiomatic English.
(a) ∀x[(H(x) ∧ ¬∃yM(x, y)) → U(x)], where H(x) means “x is a man,”

M(x, y) means “x is married to y,” and U(x) means “x is unhappy.”



(b) ∃z(P(z, x) ∧ S(z, y) ∧ W(y)), where P(z, x) means “z is a parent of x,”
S(z, y) means “z and y are siblings,” and W(y) means “y is a woman.”

5. Translate the following statements into idiomatic mathematical
English.

(a) ∀x[(P(x) ∧ ¬(x= 2)) → O(x)], where P(x) means “x is a prime
number” and O(x) means “x is odd.”

(b) ∃x[P(x) ∧ ∀y(P(y) → y ≤ x)], where P(x) means “x is a perfect
number.”

6. Translate the following statements into idiomatic mathematical
English. Are they true or false? The universe of discourse is R.

(a) ¬∃x(x2 + 2x + 3 = 0 ∧ x2 + 2x − 3 = 0).
(b) ¬[∃x(x2 + 2x + 3 = 0) ∧ ∃x(x2 + 2x − 3 = 0)].
(c) ¬∃x(x2 + 2x + 3 = 0) ∧ ¬∃x(x2 + 2x − 3 = 0).
7. Are these statements true or false? The universe of discourse is the set

of all people, and P(x, y) means “x is a parent of y.”
(a) ∃x∀yP(x, y).
(b) ∀x∃yP(x, y).
(c) ¬∃x∃yP(x, y).
(d) ∃x¬∃yP(x, y).
(e) ∃x∃y¬P(x, y).
*8. Are these statements true or false? The universe of discourse is N.

(a) ∀x∃y(2x − y = 0).
(b) ∃y∀x(2x − y = 0).
(c) ∀x∃y(x − 2y = 0).
(d) ∀x(x <10 → ∀y(y < x → y < 9)).
(e) ∃y∃ z(y + z = 100).
(f) ∀x∃y(y > x ∧ ∃z(y + z = 100)).
9. Same as exercise 8 but with R as the universe of discourse.

10. Same as exercise 8 but with Z as the universe of discourse.

2.2 Equivalences Involving Quantifiers



In our study of logical connectives in Chapter 1 we found it useful to
examine equivalences between different formulas. In this section, we will
see that there are also a number of important equivalences involving
quantifiers.

For example, in Example 2.1.2 we represented the statement “Nobody’s
perfect” by the formula ¬∃xP(x), where P(x) meant “x is perfect.” But
another way to express the same idea would be to say that everyone fails to
be perfect, or in other words ∀x¬P(x). This suggests that these two formulas
are equivalent, and a little thought should show that they are. No matter
what P(x) stands for, the formula ¬∃xP(x) means that there’s no value of x
in the universe of discourse for which P(x) is true. But that’s the same as
saying that for every value of x in the universe, P(x) is false, or in other
words ∀x¬P(x). Thus, ¬∃xP(x) is equivalent to ∀x¬P(x).

Similar reasoning shows that ¬∀xP(x) is equivalent to ∃x¬P(x). To say
that ¬∀xP(x) means that it is not the case that for all values of x, P(x) is
true. That’s equivalent to saying there’s at least one value of x for which
P(x) is false, which is what it means to say ∃x¬P(x). For example, in
Example 2.1.2 we translated “Someone didn’t do the homework” as
∃x¬H(x), where H(x) stands for “x did the homework.” An equivalent
statement would be “Not everyone did the homework,” which would be
represented by the formula ¬∀xH(x).

Thus, we have the following two laws involving negation and quantifiers:

Quantifier Negation laws

Combining these laws with De Morgan’s laws and other equivalences
involving the logical connectives, we can often reexpress a negative
statement as an equivalent, but easier to understand, positive statement.
This will turn out to be an important skill when we begin to work with
negative statements in proofs.

Example 2.2.1. Negate these statements and then reexpress the results as
equivalent positive statements.

1. A ⊆ B.



2. Everyone has a relative he or she doesn’t like.

Solutions

1. We already know that A ⊆ B means ∀x(x ∈ A → x ∈ B). To
reexpress the negation of this statement as an equivalent positive
statement, we reason as follows:

Thus, A ⊈ B means the same thing as ∃x(x ∈ A ∧ x ∉ B). If you
think about this, it should make sense. To say that A is not a subset of
B is the same as saying that there’s something in A that is not in B.

2. First of all, let’s write the original statement symbolically. You should
be able to check that if we let R(x, y) stand for “x is related to y” and
L(x, y) for “x likes y,” then the original statement would be written
∀x∃y(R(x, y) ∧ ¬L(x,y)). Now we negate this and try to find a
simpler, equivalent positive statement:

Let’s translate this last formula back into colloquial English. Leaving
aside the first quantifier for the moment, the formula ∀y(R(x, y) →
L(x, y)) means that for every person y, if x is related to y then x likes
y. In other words, x likes all his or her relatives. Adding ∃x to the



beginning of this, we get the statement “There is someone who likes
all his or her relatives.” You should take a minute to convince
yourself that this really is equivalent to the negation of the original
statement “Everyone has a relative he or she doesn’t like.”

For another example of how the quantifier negation laws can help us
understand statements, consider the statement “Everyone who Patricia likes,
Sue doesn’t like.” If we let L(x, y) stand for “x likes y,” and we let p stand
for Patricia and s for Sue, then this statement would be represented by the
formula ∀x(L(p, x) → ¬L(s,x)). Now we can work out a formula equivalent
to this one as follows:

Translating the last formula back into English, we get the statement
“There’s no one who both Patricia and Sue like,” and this does mean the
same thing as the statement we started with.

We saw in Section 2.1 that reversing the order of two quantifiers can
sometimes change the meaning of a formula. However, if the quantifiers are
the same type (both ∀ or both ∃), it turns out the order can always be
switched without affecting the meaning of the formula. For example,
consider the statement “Someone has a teacher who is younger than he or
she is.” To write this symbolically we first write ∃x(x has a teacher who is
younger than x). Now to say “x has a teacher who is younger than x” we
write ∃y(T(y, x) ∧ P(y, x)), where T(y, x) means “y is a teacher of x” and
P(y, x) means “y is younger than x.” Putting this all together, the original
statement would be represented by the formula ∃x∃y(T(y, x) ∧ P(y, x)).

Now what happens if we switch the quantifiers? In other words, what
does the formula ∃y∃x(T(y, x) ∧ P(y, x)) mean? You should be able to
convince yourself that this formula says that there is a person y such that y
is a teacher of someone who is older than y. In other words, someone has a
student who is older than he or she is. But this would be true in exactly the
same circumstances as the original statement, “Someone has a teacher who
is younger than he or she is”! Both mean that there are people x and y such



that y is a teacher of x and y is younger than x. In fact, this suggests that a
good way of reading the pair of quantifiers ∃y∃x or ∃x∃y would be “there
are objects x and y such that ….”

Similarly, two universal quantifiers in a row can always be switched
without changing the meaning of a formula, because ∀x∀y and ∀y∀x can
both be thought of as meaning “for all objects x and y, ….” For example,
consider the formula ∀x∀y(L(x, y) → A(x, y)), where L(x, y) means “x likes
y” and A(x, y) means “x admires y.” You could think of this formula as
saying “For all people x and y, if x likes y then x admires y.” In other words,
people always admire the people they like. The formula ∀y∀x(L(x, y) →
A(x, y)) means exactly the same thing.

It is important to realize that when we say “there are objects x and y” or
“for all objects x and y,” we are not ruling out the possibility that x and y are
the same object. For example, the formula ∀x∀y(L(x, y) → A(x, y)) means
not just that a person who likes another person always admires that other
person, but also that people who like themselves also admire themselves.
As another example, suppose we wanted to write a formula that means “x is
a bigamist.” (Of course, x will be a free variable in this formula.) You might
think you could express this with the formula ∃y∃z(M(x, y) ∧ M(x, z)),
where M(x, y) means “x is married to y.” But to say that x is a bigamist you
must say that there are two different people to whom x is married, and this
formula doesn’t say that y and z are different. The right answer is
∃y∃z(M(x, y) ∧ M(x, z) ∧ y ≠ z).

Example 2.2.2. Analyze the logical forms of the following statements.

1. All married couples have fights.
2. Everyone likes at least two people.
3. John likes exactly one person.

Solutions

1. ∀x∀y(M(x, y) → F(x, y)), where M(x, y) means “x and y are married
to each other” and F(x, y) means “x and y fight with each other.”

2. ∀x∃y∃z(L(x, y) ∧ L(x, z) ∧ y ≠ z), where L(x, y) stands for “x likes y.”
Note that the statement means that everyone likes at least two



different people, so it would be incorrect to leave out the “y ≠ z” at the
end.

3. Let L(x, y) mean “x likes y,” and let j stand for John. We translate this
statement into symbols gradually:

(i) ∃x(John likes x and John doesn’t like anyone other than x).
(ii) ∃x(L(j, x) ∧ ¬∃y(John likes y and y ≠ x)).
(iii) ∃x(L(j, x) ∧ ¬∃y(L(j, y) ∧ y ≠ x)).

Note that for the third statement in this example we could not have given
the simpler answer ∃xL(j, x), because this would mean that John likes at
least one person, not exactly one person. The phrase exactly one occurs so
often in mathematics that there is a special notation for it. We will write ∃!
xP(x) to represent the statement “There is exactly one value of x such that
P(x) is true.” It is sometimes also read “There is a unique x such that P(x).”
For example, the third statement in Example 2.2.2 could be written
symbolically as ∃! xL(j, x). In fact, we could think of this as just an
abbreviation for the formula given in Example 2.2.2 as the answer for
statement 3. Similarly, in general we can think of ∃! xP(x) as an
abbreviation for the formula ∃x(P(x) ∧ ¬∃y(P(y) ∧ y ≠ x)).

Recall that when we were discussing set theory, we sometimes found it
useful to write the truth set of P(x) as {x ∈ U | P(x)} rather than {x | P(x)},
to make sure it was clear what the universe of discourse was. Similarly,
instead of writing ∀xP(x) to indicate that P(x) is true for every value of x in
some universe U, we might write ∀x ∈ U P(x). This is read “For all x in U,
P(x).” Similarly, we can write ∃x ∈ U P(x) to say that there is at least one
value of x in the universe U such that P(x) is true. For example, the
statement ∀x(x ≥ 0) would be false if the universe of discourse were the real
numbers, but true if it were the natural numbers. We could avoid confusion
when discussing this statement by writing either ∀x ∈ R(x ≥ 0) or ∀x ∈
N(x ≥ 0), to make it clear which we meant.

As before, we sometimes use this notation not to specify the universe of
discourse but to restrict attention to a subset of the universe. For example, if
our universe of discourse is the real numbers and we want to say that some
real number x has a square root, we could write ∃y(y2 = x). To say that
every positive real number has a square root, we would say ∀x ∈ R+∃y(y2



= x). We could say that every positive real number has a negative square
root by writing ∀x ∈ R+∃y ∈ R−(y2 = x). In general, for any set A, the
formula ∀x ∈ A P(x) means that for every value of x in the set A, P(x) is
true, and ∃x ∈ A P(x) means that there is at least one value of x in the set A
such that P(x) is true. The quantifiers in these formulas are sometimes
called bounded quantifiers, because they place bounds on which values of x
are to be considered. Occasionally we may use variations on this notation to
place other kinds of restrictions on quantified variables. For example, the
statement that every positive real number has a negative square root could
also be written ∀x > 0∃y < 0(y2 = x).

Formulas containing bounded quantifiers can also be thought of as
abbreviations for more complicated formulas containing only normal,
unbounded quantifiers. To say that ∃x ∈ A P(x) means that there is some
value of x that is in A and that also makes P(x) come out true, and another
way to write this would be ∃x(x ∈ A ∧ P(x)). Similarly, you should
convince yourself that ∀x ∈ A P(x) means the same thing as ∀x(x ∈ A →
P(x)). For example, the formula ∀x ∈ R+∃y ∈ R−(y2 = x) discussed earlier
means the same thing as ∀x(x ∈ R+ → ∃y ∈ R−(y2 = x)), which in turn can
be expanded as ∀x(x ∈ R+ → ∃y(y ∈ R− ∧ y2 = x)). By the definitions of
R

+ and R−, an equivalent way to say this would be ∀x(x > 0 → ∃y(y < 0 ∧
y2 = x)). You should make sure you are convinced that this formula, like the
original formula, means that every positive real number has a negative
square root. For another example, note that the statement A ⊆ B, which by
definition means ∀x(x ∈ A → x ∈ B), could also be written as ∀x ∈ A(x ∈
B).

It is interesting to note that the quantifier negation laws work for
bounded quantifiers as well. In fact, we can derive these bounded quantifier
negation laws from the original laws by thinking of the bounded quantifiers
as abbreviations, as described earlier. For example,



Thus, we have shown that ¬∀x ∈ A P(x) is equivalent to ∃x ∈ A ¬P(x).
You are asked in exercise 5 to prove the other bounded quantifier negation
law, that ¬∃x ∈ A P(x) is equivalent to ∀x ∈ A ¬P(x).

It should be clear that if A = ∅ then ∃x ∈ A P(x) will be false no matter
what the statement P(x) is. There can be nothing in A that, when plugged in
for x, makes P(x) come out true, because there is nothing in A at all! It may
not be so clear whether ∀x ∈ A P(x) should be considered true or false, but
we can find the answer using the quantifier negation laws:

Now if A = ∅ then this last formula will be true, no matter what the
statement P(x) is, because, as we have seen, ∃ x ∈ A ¬ P(x) must be false.
Thus, ∀x ∈ A P(x) is always true if A = ∅. Mathematicians sometimes say
that such a statement is vacuously true. Another way to see this is to rewrite
the statement ∀x ∈ A P(x) in the equivalent form ∀x(x ∈ A → P(x)). Now
according to the truth table for the conditional connective, the only way this
can be false is if there is some value of x such that x ∈ A is true but P(x) is
false. But there is no such value of x, simply because there isn’t a value of x
for which x ∈ A is true.

As an application of this principle, we note that the empty set is a subset
of every set. To see why, just rewrite the statement A ⊆ B in the equivalent
form ∀x ∈ A(x ∈ B). Now if A = ∅ then, as we have just observed, this
statement will be vacuously true. Thus, no matter what the set B is, ∅ ⊆ B.
Another example of a vacuously true statement is the statement “All
unicorns are purple.” We could represent this by the formula ∀x ∈ A P(x),
where A is the set of all unicorns and P(x) stands for “x is purple.” Since



there are no unicorns, A is the empty set, so the statement is vacuously true.
(Notice that the statement “All unicorns are green” is also true – which does
not contradict the fact that all unicorns are purple!)

Perhaps you have noticed by now that, although in Chapter 1 we were
always able to check equivalences involving logical connectives by making
truth tables, we have no such simple way of checking equivalences
involving quantifiers. So far, we have justified our equivalences involving
quantifiers by just looking at examples and using common sense. As the
formulas we work with get more complicated, this method will become
unreliable and difficult to use. Fortunately, in Chapter 3 we will develop
better methods for reasoning about statements involving quantifiers. To get
more practice in thinking about quantifiers, we will work out a few
somewhat more complicated equivalences using common sense. If you’re
not completely convinced that these equivalences are right, you’ll be able to
check them more carefully when you get to Chapter 3.

Consider the statement “Everyone is bright-eyed and bushy-tailed.” If we
let E(x) mean “x is bright-eyed” and T(x) mean “x is bushy-tailed,” then we
could represent this statement by the formula ∀x(E(x) ∧ T(x)). Is this
equivalent to the formula ∀xE(x) ∧ ∀xT(x)? This latter formula means
“Everyone is bright-eyed, and also everyone is bushy-tailed,” and
intuitively this means the same thing as the original statement. Thus, it
appears that ∀x(E(x) ∧ T(x)) is equivalent to ∀ xE(x) ∧ ∀xT(x). In other
words, we could say that the universal quantifier distributes over
conjunction.

However, the corresponding distributive law doesn’t work for the
existential quantifier. Consider the formulas ∃x(E(x) ∧ T(x)) and ∃xE(x)
∧∃xT(x). The first means that there is someone who is both bright-eyed and
bushy-tailed, and the second means that there is someone who is bright-
eyed, and there is also someone who is bushy-tailed. These don’t mean the
same thing at all. In the second statement the bright-eyed person and the
bushy-tailed person don’t have to be the same, but in the first statement they
do. Another way to see the difference between the two statements is to think
about truth sets. Let A be the truth set of E(x) and B the truth set of T(x). In
other words, A is the set of bright-eyed people, and B is the set of bushy-
tailed people. Then the second statement says that neither A nor B is the



empty set, but the first says that A ∩ B is not the empty set, or in other
words that A and B are not disjoint.

As an application of the distributive law for the universal quantifier and
conjunction, suppose A and B are sets and consider the equation A = B. We
know that two sets are equal when they have exactly the same elements.
Thus, the equation A = B means ∀x(x ∈ A ↔ x ∈ B), which is equivalent to
∀x[(x ∈ A → x ∈ B) ∧ (x ∈ B → x ∈ A)]. Because the universal quantifier
distributes over conjunction, this is equivalent to the formula ∀x(x ∈ A → x
∈ B) ∧ ∀x(x ∈ B → x ∈ A), and by the definition of subset this means A ⊆
B ∧ B ⊆ A. Thus, we have shown that the equation A = B is also equivalent
to the formula A ⊆ B ∧ B ⊆ A.

We have now introduced seven basic logical symbols: the connectives ∧,
∨, ¬, →, and ↔, and the quantifiers ∀ and ∃. It is a remarkable fact that the
structure of all mathematical statements can be understood using these
symbols, and all mathematical reasoning can be analyzed in terms of the
proper use of these symbols. To illustrate the power of the symbols we have
introduced, we conclude this section by writing out a few more
mathematical statements in logical notation.

Example 2.2.3. Analyze the logical forms of the following statements.

1. Statements about the natural numbers. The universe of discourse is N.

(a) x is a perfect square.
(b) x is a multiple of y.
(c) x is prime.
(d) x is the smallest positive number that is a multiple of both y and z.
2. Statements about the real numbers. The universe of discourse is R.

(a) The identity element for addition is 0.
(b) Every real number has an additive inverse.
(c) Negative numbers don’t have square roots.
(d) Every positive number has exactly two square roots.

Solutions

1. (a) This means that x is the square of some natural number, or in
other words ∃y(x = y2).



(b) This means that x is equal to y times some natural number, or in other
words ∃z(x = yz).

(c) This means that x > 1, and x cannot be written as a product of two
smaller natural numbers. In symbols: x > 1 ∧ ¬ ∃y∃z(x = yz ∧ y < x
∧ z < x).

(d) We translate this in several steps:
(i) x is positive and x is a multiple of both y and z and there is no

smaller positive number that is a multiple of both y and z.
(ii) x >0 ∧ ∃a(x = ya) ∧ ∃b(x = zb) ∧ ¬∃w(w >0 ∧ w < x ∧ (w is a

multiple of both y and z)).
(iii) x > 0 ∧ ∃a(x = ya) ∧ ∃b(x = zb) ∧ ¬∃w(w > 0 ∧ w < x ∧ ∃ c(w =

yc) ∧ ∃d(w = zd)).
2. (a) ∀x(x + 0 = x).

(b) ∀x∃y(x + y = 0).
(c) ∀x(x <0 → ¬∃y(y2 = x)).
(d) We translate this gradually:

(i) ∀x(x >0 → x has exactly two square roots).
(ii) ∀x(x >0 → ∃y∃z(y and z are square roots of x and y ≠ z and

nothing else is a square root of x)).
(iii) ∀x(x > 0 → ∃y∃z(y2 = x ∧ z2 = x ∧ y ≠ z ∧ ¬∃w(w2 = x ∧ w ≠ y ∧

w ≠ z))).

Exercises
*1. Negate these statements and then reexpress the results as equivalent

positive statements. (See Example 2.2.1.)
(a) Everyone who is majoring in math has a friend who needs help with

his or her homework.
(b) Everyone has a roommate who dislikes everyone.
(c) A ∪ B ⊆ C \ D.
(d) ∃x∀y[y > x → ∃z(z2 + 5z = y)].
2. Negate these statements and then reexpress the results as equivalent

positive statements. (See Example 2.2.1.)



(a) There is someone in the freshman class who doesn’t have a room-
mate.

(b) Everyone likes someone, but no one likes everyone.
(c) ∀a ∈ A∃b ∈ B(a ∈ C ↔ b ∈ C).
(d) ∀y > 0∃x(ax2 + bx + c = y).
3. Are these statements true or false? The universe of discourse is N.

(a) ∀x(x < 7 → ∃a∃b∃c(a2 +b2 +c2 = x)).
(b) ∃! x(x2 + 3 = 4x).
(c) ∃! x(x2 = 4x + 5).
(d) ∃x∃y(x2 = 4x + 5 ∧ y2 = 4y + 5).
*4. Show that the second quantifier negation law, which says that

¬∀xP(x) is equivalent to ∃x¬P(x), can be derived from the first,
which says that ¬∃xP(x) is equivalent to ∀x¬P(x). (Hint: Use the
double negation law.)

5. Show that ¬∃x ∈ A P(x) is equivalent to ∀x ∈ A ¬P(x).
*6. Show that the existential quantifier distributes over disjunction. In

other words, show that ∃x(P(x) ∨ Q(x)) is equivalent to ∃xP(x) ∨
∃xQ(x). (Hint: Use the fact, discussed in this section, that the
universal quantifier distributes over conjunction.)

7. Show that ∃x(P(x) → Q(x)) is equivalent to ∀xP(x) → ∃xQ(x).
*8. Show that (∀x ∈ A P(x)) ∧ (∀x ∈ B P(x)) is equivalent to ∀x ∈ (A ∪

B) P(x). (Hint: Start by writing out the meanings of the bounded
quantifiers in terms of unbounded quantifiers.)

9. Is ∀x(P(x) ∨ Q(x)) equivalent to ∀xP(x) ∨ ∀xQ(x)? Explain. (Hint:
Try assigning meanings to P(x) and Q(x).)

10. (a) Show that ∃x ∈ A P(x) ∨ ∃x ∈ B P(x) is equivalent to ∃x ∈ (A
∪ B)P(x).

(b) Is ∃x ∈ A P(x) ∧ ∃x ∈ B P(x) equivalent to ∃x ∈ (A ∩ B) P(x)?
Explain.

*11. Show that the statements A ⊆ B and A \ B = ∅ are equivalent by
writing each in logical symbols and then showing that the resulting
formulas are equivalent.



12. Show that the statements C ⊆ A ∪ B and C \ A ⊆ B are equivalent by
writing each in logical symbols and then showing that the resulting
formulas are equivalent.

13. (a) Show that the statements A ⊆ B and A ∪ B = B are equivalent by
writing each in logical symbols and then showing that the
resulting formulas are equivalent. (Hint: You may find exercise
11 from Section 1.5 useful.)

(b) Show that the statements A ⊆ B and A ∩ B = A are equivalent.
*14. Show that the statements A ∩ B = ∅ and A \ B = A are equivalent.

15. Let T(x, y) mean “x is a teacher of y.” What do the following
statements mean? Under what circumstances would each one be true?
Are any of them equivalent to each other?

(a) ∃! yT(x, y).
(b) ∃x∃! yT(x, y).
(c) ∃! x∃yT(x, y).
(d) ∃y∃! xT(x, y).
(e) ∃! x∃! yT(x, y).
(f) ∃x∃y[T(x, y) ∧ ¬∃u∃v(T (u, v) ∧ (u ≠ x ∨ v ≠ y))].

2.3 More Operations on Sets
Now that we know how to work with quantifiers, we are ready to discuss
some more advanced topics in set theory.

So far, the only way we have to define sets, other than listing their
elements one by one, is to use the elementhood test notation {x | P(x)}.
Sometimes this notation is modified by allowing the x before the vertical
line to be replaced with a more complex expression. For example, suppose
we wanted to define S to be the set of all perfect squares. Perhaps the
easiest way to describe this set is to say that it consists of all numbers of the
form n2, where n is a natural number. This is written S = {n2 | n ∈ N}. Note
that, using our solution for the first statement from Example 2.2.3, we could
also define this set by writing S = {x | ∃n ∈ N(x = n2)}. Thus, {n2 | n ∈ N}



= {x | ∃n ∈ N(x = n2)} and therefore x ∈ {n2 | n ∈ N} means the same
thing as ∃n ∈ N(x = n2).

Similar notation is often used if the elements of a set have been
numbered. For example, suppose we wanted to form the set whose elements
are the first 100 prime numbers. We might start by numbering the prime
numbers, calling them p1, p2, p3, …. In other words, p1 = 2, p2 = 3, p3 = 5,
and so on. Then the set we are looking for would be the set P = {p1, p2, p3, .
. . , p100}. Another way of describing this set would be to say that it consists
of all numbers pi, for i an element of the set I = {1, 2, 3, . . . , 100} = {i ∈ N
| 1 ≤ i ≤ 100}. This could be written P = {pi | i ∈ I}. Each element pi in this
set is identified by a number i ∈ I, called the index of the element. A set
defined in this way is sometimes called an indexed family, and I is called
the index set.

Although the indices for an indexed family are often numbers, they need
not be. For example, suppose S is the set of all students at your school. If
we wanted to form the set of all mothers of students, we might let ms stand
for the mother of s, for any student s. Then the set of all mothers of students
could be written M = {ms | s ∈ S}. This is an indexed family in which the
index set is S, the set of all students. Each mother in the set is identified by
naming the student who is her child. Note that we could also define this set
using an elementhood test, by writing M = {m | m is the mother of some
student} = {m | ∃s ∈ S(m = ms)}. In general, any indexed family A= {xi | i
∈ I} can also be defined as A = {x| ∃i ∈ I(x = xi)}. It follows that the
statement x ∈ {xi | i ∈ I} means the same thing as ∃i ∈ I(x = xi).

Example 2.3.1. Analyze the logical forms of the following statements by
writing out the definitions of the set theory notation used.

1.
2. {xi | i ∈ I} ⊆ A.

3. {n2 | n ∈ N} and {n3 | n ∈ N} are not disjoint.

Solutions



1.
2. By the definition of subset we must say that every element of {xi | i ∈

I} is also an element of A, so we could start by writing ∀x(x ∈ {xi | i
∈ I} → x ∈ A). Filling in the meaning of x ∈ {xi | i ∈ I}, which we
worked out earlier, we would end up with ∀x(∃i ∈ I(x = xi) → x ∈
A). But since the elements of {xi | i ∈ I} are just the xi ‘s, for all i ∈ I,
perhaps an easier way of saying that every element of {xi | i ∈ I} is an
element of A would be ∀i ∈ I (xi ∈ A). The two answers we have
given are equivalent, but showing this would require the methods we
will be studying in Chapter 3.

3. We must say that the two sets have a common element, so one
solution is to start by writing ∃x(x ∈ {n2 | n ∈ N} ∧ x ∈ {n3 | n ∈
N}). However, as in the last statement, there is an easier way. An
element common to the two sets would have to be the square of some
natural number and also the cube of some (possibly different) natural
number. Thus, we could say that there is such a common element by
saying ∃n ∈ N∃m ∈ N(n2 = m3). Note that it would be wrong to
write ∃n ∈ N(n2 = n3), because this wouldn’t allow for the possibility
of the two natural numbers being different. By the way, this statement
is true, since 64 = 82 = 43, so 64 is an element of both sets.

Anything at all can be an element of a set. Some interesting and useful
ideas arise when we consider the possibility of a set having other sets as
elements. For example, suppose A = {1, 2, 3}, B = {4}, and C = ∅. There is
no reason why we couldn’t form the set F = {A, B, C}, whose elements are

the three sets A, B, and C. Filling in the definitions of A, B, and C, we could
write this in another way: F = {{1, 2, 3}, {4}, ∅}. Note that 1 ∈ A and A

∈ F but 1 ∉ F. F has only three elements, and all three of them are sets,

not numbers. Sets such as F, whose elements are all sets, are sometimes

called families of sets.
It is often convenient to define families of sets as indexed families. For

example, suppose we again let S stand for the set of all students, and for



each student s we let Cs be the set of courses that s has taken. Then the
collection of all of these sets Cs would be an indexed family of sets F = {Cs

| s ∈ S}. Remember that the elements of this family are not courses but sets
of courses. If we let t stand for some particular student Tina, and if Tina has
taken Calculus, English Composition, and American History, then Ct =
{Calculus, English Composition, American History} and Ct ∈ F, but

Calculus ∉ F.

An important example of a family of sets is given by the power set of a
set.

Definition 2.3.2. Suppose A is a set. The power set of A, denoted P(A), is
the set whose elements are all the subsets of A. In other words,

P(A)= {x| x ⊆ A}.

For example, the set A = {7, 12} has four subsets: ∅, {7}, {12}, and {7,
12}. Thus, P(A) = {∅, {7}, {12}, {7, 12}}. What about P(∅)? Although
∅ has no elements, it does have one subset, namely ∅. Thus, P(∅) = {∅}.
Note that, as we saw in Section 1.3, {∅} is not the same as ∅.

Any time you are working with some subsets of a set X, it may be helpful
to remember that all of these subsets of X are elements of P(X), by the
definition of power set. For example, if we let C be the set of all courses
offered at your school, then each of the sets Cs discussed earlier is a subset
of C. Thus, for each student s, Cs ∈ P(C). This means that every element
of the family F = {Cs | s ∈ S} is an element of P(C), so F ⊆ P(C).

Example 2.3.3. Analyze the logical forms of the following statements.

1. x ∈ P(A).

2. P(A) ⊆ P(B).

3. B ∈ {P(A)| A ∈ F}.

4. x ∈ P(A ∩ B).



5. x ∈ P(A) ∩ P(B).

Solutions

1. By the definition of power set, the elements of P(A) are the subsets
of A. Thus, to say that x ∈ P(A) means that x ⊆ A, which we already
know can be written as ∀y(y ∈ x → y ∈ A).

2. By the definition of subset, this means ∀x(x ∈ P(A) → x ∈ P(B)).
Now, writing out x ∈ P(A) and x ∈ P(B) as before, we get ∀x[∀y(y
∈ x → y ∈ A) → ∀y(y ∈ x → y ∈ B)].

3. As before, this means ∃A ∈ F(B = P(A)). Now, to say that B = P(A)

means that the elements of B are precisely the subsets of A, or in other
words ∀x(x ∈ B ↔ x ⊆ A). Filling this in, and writing out the
definition of subset, we get our final answer, ∃A ∈ F ∀x(x ∈ B ↔

∀y(y ∈ x → y ∈ A)).
4. As in the first statement, we start by writing this as ∀y(y ∈ x → y ∈

A ∩ B). Now, filling in the definition of intersection, we get ∀y(y ∈ x
→ (y ∈ A ∧ y ∈ B)).

5. By the definition of intersection, this means (x ∈ P(A)) ∧ (x ∈
P(B)). Now, writing out the definition of power set as before, we get
∀y(y ∈ x → y ∈ A) ∧ ∀y(y ∈ x → y ∈ B).

Note that for statement 5 in this example we first wrote out the definition
of intersection and then used the definition of power set, whereas in
statement 4 we started by writing out the definition of power set and then
used the definition of intersection. As you learn the definitions of more
mathematical terms and symbols, it will become more important to be able
to choose which definition to think about first when working out the
meaning of a complex mathematical statement. A good rule of thumb is to
always start with the “outermost” symbol. In statement 4 in Example 2.3.3,
the intersection symbol occurred inside the power set notation, so we wrote
out the definition of power set first. In statement 5, the power set notation
occurred within both sides of the notation for the intersection of two sets, so



we started with the definition of intersection. Similar considerations led us
to use the definition of subset first, rather than power set, in statement 2.

It is interesting to note that our answers for statements 4 and 5 in
Example 2.3.3 are equivalent. (You are asked to verify this in exercise 11.)
As in Section 1.4, it follows that for any sets A and B, P(A ∩ B) = P(A) ∩
P(B). You are asked in exercise 12 to show that this equation is not true in
general if we change ∩ to ∪.

Consider once again the family of sets F = {Cs | s ∈ S}, where S is the

set of all students and for each student s, C
s
 is the set of all courses that s

has taken. If we wanted to know which courses had been taken by all
students, we would need to find those elements that all the sets in F have in

common. The set of all these common elements is called the intersection of
the family F and is written ⋂F. Similarly, the union of the family F,

written ⋃F, is the set resulting from throwing all the elements of all the sets

in F together into one set. In this case, ⋃F would be the set of all courses

that had been taken by any student.

Example 2.3.4. Let F = {{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}}. Find ⋂F

and ⋃F.

Solution

Although these examples may make it clear what we mean by ⋂F and

⋃F, we still have not given careful definitions for these sets. In general, if

F is any family of sets, then we want ⋂F to contain the elements that all

the sets in F have in common. Thus, to be an element of ⋂F, an object will

have to be an element of every set in F. On the other hand, anything that is

an element of any of the sets in F should be in ⋃F, so to be in ⋃F an



object only needs to be an element of at least one set in F. Thus, we are led

to the following general definitions.

Definition 2.3.5. Suppose F is a family of sets. Then the intersection and

union of F are the sets ⋂F and ⋃F defined as follows:

Some mathematicians consider ⋂F to be undefined if F = ∅. For an

explanation of the reason for this, see exercise 15. We will use the notation
⋂F only when F ≠ ∅.

Notice that if A and B are any two sets and F = {A, B}, then ⋂F = A ∩ B

and ⋃F = A ∪ B. Thus, the definitions of intersection and union of a family

of sets are actually generalizations of our old definitions of the intersection
and union of two sets.

Example 2.3.6. Analyze the logical forms of the following statements.

1. x ∈ ⋂F.

2. ⋂F ⊈ ⋃G.

3. x ∈ P(⋃F).

4. x ∈ ⋃{P(A) | A ∈ F}.

Solutions

1. By the definition of the intersection of a family of sets, this means ∀A
∈ F(x ∈ A), or equivalently, ∀ A(A ∈ F → x ∈ A).

2. As we saw in Example 2.2.1, to say that one set is not a subset of
another means that there is something that is an element of the first
but not the second. Thus, we start by writing ∃x(x ∈ ⋂F ∧ x ∉ ⋃G).



We have already written out what x ∈ ⋂F means in solution 1. By

the definition of the union of a family of sets, x ∈ ⋃G means ∃A ∈

G(x ∈ A), so x ∉ ⋃G means ¬∃A ∈ G(x ∈ A). By the quantifier

negation laws, this is equivalent to ∀A ∈ G(x ∉ A). Putting this all

together, our answer is ∃x[∀ A ∈ F(x ∈ A) ∧ ∀ A ∈ G(x ∉ A)].

3. Because the union symbol occurs within the power set notation, we
start by writing out the definition of power set. As in Example 2.3.3,
we get x ⊆ ⋃F, or in other words ∀y(y ∈ x → y ⋃F). Now we use

the definition of union to write out y ∈ ⋃F as ∃A ∈ F (y ∈ A). The

final answer is ∀y(y ∈ x → ∃A ∈ F(y ∈ A)).

4. This time we start by writing out the definition of union. According to
this definition, the statement means that x is an element of at least one
of the sets P(A), for A ∈ F. In other words, ∃A ∈ F(x ∈ P(A)).

Inserting our analysis of the statement x ∈ P(A) from Example 2.3.3,
we get ∃A ∈ F∀y(y ∈ x → y ∈ A).

Writing complex mathematical statements in logical symbols, as we did
in the last example, may sometimes help you understand what the
statements mean and whether they are true or false. For example, suppose
that we once again let Cs be the set of all courses that have been taken by
student s. Let M be the set of math majors and E the set of English majors,
and let F = {Cs | s ∈ M} and G = {Cs | s ∈ E}. With these definitions, what

does statement 2 of Example 2.3.6 mean, and under what circumstances
would it be true? According to our solution for this example, the statement
means ∃x[∀A ∈ F(x ∈ A) ∧ ∀A ∈ G(x ∉ A)], or in other words, there is

something that is an element of each set in F, and that fails to be an element

of each set in G. Taking into account the definitions of F and G that we are

using, this means that there is some course that has been taken by all of the
math majors but none of the English majors. If, for example, all of the math



majors have taken Calculus but none of the English majors have, then the
statement would be true.

As another example, suppose F = {{1, 2, 3}, {2, 3, 4}, {3, 4, 5}}, and x

= {4, 5, 6}. With these definitions, would statement 3 of Example 2.3.6 be
true? You could determine this by finding P(⋂F) and then checking to see

if x is an element of it, but this would take a very long time, because it turns
out that P(⋂F) has 32 elements. It is easier to use the translation into

logical symbols given in our solution for this example. According to that
translation, the statement means ∀y(y ∈ x → ∃A ∈ F(y ∈ A)); in other

words, every element of x is in at least one set in F. Looking back at our

definitions of F and x, it is not hard to see that this is false, because 6 ∈ x,

but 6 is not in any of the sets in F.

An alternative notation is sometimes used for the union or intersection of
an indexed family of sets. Suppose F = {Ai | i ∈ I}, where each Ai is a set.

Then ⋃F would be the set of all elements common to all the Ai’s, for i ∈ I,

and this can also be written as  In other words,

Similarly, an alternative notation for ⋃F is ⋃i∈I Ai, so

Returning to our example of courses taken by students, we could use this
notation to write the set of courses taken by all students as ⋂s∈S Cs. You
could think of this notation as denoting the result of running through all of
the elements s in S, forming the set Cs for each of them, and then
intersecting all of these sets.

Example 2.3.7. Let I = {1, 2, 3}, and for each i ∈ I let Ai = {i, i + 1, i + 2,
i + 3}. Find 



Solution

First we list the elements of the sets Ai, for i ∈ I:

Then

and similarly

In fact, we can now see that the question asked in this example is exactly
the same as the one in Example 2.3.4, but with different notation.

Example 2.3.8. For this example our universe of discourse will be the set
S of all students. Let L(x, y) stand for “x likes y” and A(x, y) for “x admires
y.” For each student s, let Ls be the set of all students that s likes. In other
words Ls = {t ∈ S | L(s, t)}. Similarly, let As = {t ∈ S | A(s, t)} = the set of
all students that s admires. Describe the following sets.

1.
2.
3.
4.
5.
6.
7.

Solutions

First of all, note that in general, t ∈ Ls means the same thing as L(s, t), and
similarly t ∈ As means A(s, t).



1. ⋂s∈S Ls = {t | ∀s ∈ S(t ∈ Ls)} = {t ∈ S | ∀ s ∈ S L(s, t)} = the set of
all students who are liked by all students.

2. ⋃s∈S Ls = {t| ∃s ∈ S(t ∈ Ls)} = {t ∈ S | ∃s ∈ S L(s, t)} = the set of
all students who are liked by at least one student.

3. As we saw in solution 2, ⋃s∈S Ls = the set of all students who are
liked by at least one student. Similarly, ⋃s∈S As = the set of all
students who are admired by at least one student. Thus ⋃s∈S Ls \
⋃s∈S As = {t | t ∈ ⋃s∈S Ls and t ∉ ⋃s∈S As} = the set of all students
who are liked by at least one student, but are not admired by any
students.

4. ⋃s∈S (Ls \ As) = {t | ∃s ∈ S(t ∈ Ls \ As)} = {t ∈ S | ∃s ∈ S (L(s, t) ∧
¬A(s, t))} = the set of all students t such that some student likes t, but
doesn’t admire t. Note that this is different from the set in part 3. For a
student t to be in this set, there must be a student who likes t but
doesn’t admire t, but there could be other students who admire t. To
be in the set in part 3, t must be admired by nobody.

5.  
 the set

of all students who are liked by all students and also admired by all
students.

6.  
 the set of all students who are both liked and admired by

all students. This is the same as the set in part 5. In fact, you can use
the distributive law for universal quantification and conjunction to
show that the elementhood tests for the two sets are equivalent.

7.  But B
was defined to be the set of all students who are admired by all
students, so b ∈ B means b ∈ S ∧ ∀s ∈ S A(s, b). Inserting this, we
get  the set of all
students who are liked by some student who is admired by all
students.



Exercises
*1. Analyze the logical forms of the following statements. You may use

the symbols ∈, ∉, =, ≠, ∧, ∨, →, ↔, ∀, and ∃ in your answers, but
not ⊆, ⊈, P, ∩, ∪, \, {,}, or ¬. (Thus, you must write out the
definitions of some set theory notation, and you must use
equivalences to get rid of any occurrences of ¬.)

(a) F ⊆ P(A).

(b) A ⊆ {2n + 1 | n ∈ N}.
(c) {n2 + n + 1 | n ∈ N} ⊆ {2n + 1 | n ∈ N}.
(d)
2. Analyze the logical forms of the following statements. You may use

the symbols ∈, ∉, =, ≠, ∧, ∨, →, ↔, ∀, and ∃ in your answers, but
not ⊆, ⊈, P, ∩, ∪, \, {,}, or ¬. (Thus, you must write out the
definitions of some set theory notation, and you must use
equivalences to get rid of any occurrences of ¬.)

(a) x ∈ ⋃F \ ⋃G.

(b) {x ∈ B | x ∉ C} ∈ P(A).
(c)
(d)
3. We’ve seen that P(∅) = {∅}, and {∅} = ∅. What is P({∅})?

*4. Suppose F = {{red, green, blue}, {orange, red, blue}, {purple, red,

green, blue}}. Find ⋂F and ⋃F.

5. Suppose F = {{3, 7,12}, {5, 7, 16}, {5, 12, 23}}. Find ⋂F and ⋃F.

6. Let I = {2, 3, 4, 5}, and for each i ∈ I let Ai = {i, i + 1, i − 1, 2i}.

(a) List the elements of all the sets Ai, for i ∈ I.
(b) Find 
7. Let P = {Johann Sebastian Bach, Napoleon Bonaparte, Johann Wolf-

gang von Goethe, David Hume, Wolfgang Amadeus Mozart, Isaac
Newton, George Washington} and let Y = {1750, 1751, 1752, . . . ,



1759}. For each y ∈ Y, let Ay = {p ∈ P | the person p was alive at
some time during the year y}. Find ⋃y∈Y Ay and ⋂y∈Y Ay.

*8. Let I = {2, 3}, and for each i ∈ I let Ai = {i, 2i} and Bi = {i, i + 1}.

(a) List the elements of the sets Ai and Bi for i ∈ I.
(b) Find ⋂i ∈ I (Ai ∪ Bi) and  Are they the same?
(c) In parts (c) and (d) of execerise 2 you analyzed the statements x ∈ 

 What can you conclude
from your answer to part (b) about whether or not these statements
are equivalent?

9. (a) Analyze the logical forms of the statements  
 Do you think

that any of these statements are equivalent to each other?
(b) Let I, Ai, and Bi be defined as in exercise 8. Find  

 Now do you think any of
the statements in part (a) are equivalent?

10. Give an example of an index set I and indexed families of sets {Ai | i
∈ I} and {Bi | i ∈ I} such that 

11. Show that for any sets A and B, P(A ∩ B) = P(A) ∩ P(B), by
showing that the statements x ∈ P(A ∩ B) and x ∈ P(A) ∩ P(B)
are equivalent. (See Example 2.3.3.)

*12. Give examples of sets A and B for which P(A ∪ B) = P(A) ∪ P(B).
13. Verify the following identities by writing out (using logical symbols)

what it means for an object x to be an element of each set and then
using logical equivalences.

(a)
(b)
(c)

*14. Sometimes each set in an indexed family of sets has two indices. For
this problem, use the following definitions: I = {1, 2}, J = {3, 4}. For
each i ∈ I and j ∈ J, let Ai, j = {i, j, i + j}. Thus, for example, A2,3 =
{2, 3, 5}.

(a) For each j ∈ J let  Find B3 and B4.



(b) Find  (Note that, replacing Bj with its definition, we could say
that 

(c) Find  (Hint: You may want to do this in two steps,
corresponding to parts (a) and (b).) Are  and 

 equal?
(d) Analyze the logical forms of the statements  and 

 Are they equivalent?
15. (a) Show that if F = ∅, then the statement x ∈ ⋃F will be false no

matter what x is. It follows that ⋃∅ = ∅.
(b) Show that if F = ∅, then the statement x ∈ ⋂F will be true no

matter what x is. In a context in which it is clear what the universe of
discourse U is, we might therefore want to say that ⋂ ∅ = U.
However, this has the unfortunate consequence that the notation ⋂ ∅
will mean different things in different contexts. Furthermore, when
working with sets whose elements are sets, mathematicians often do
not use a universe of discourse at all. (For more on this, see the next
exercise.) For these reasons, some mathematicians consider the
notation ⋂ ∅ to be meaningless. We will avoid this problem in this
book by using the notation ⋂F only in contexts in which we can be

sure that F ≠ ∅.

16. In Section 2.3 we saw that a set can have other sets as elements.
When discussing sets whose elements are sets, it might seem most
natural to consider the universe of discourse to be the set of all sets.
However, as we will see in this problem, assuming that there is such a
set leads to contradictions.

Suppose U were the set of all sets. Note that in particular U is a set,
so we would have U ∈ U. This is not yet a contradiction; although
most sets are not elements of themselves, perhaps some sets are
elements of themselves. But it suggests that the sets in the universe
U could be split into two categories: the unusual sets that, like U
itself, are elements of themselves, and the more typical sets that are
not. Let R be the set of sets in the second category. In other words, R
= {A ∈ U | A ∉ A}. This means that for any set A in the universe U,



A will be an element of R iff A ∉ A. In other words, we have ∀ A ∈
U(A ∈ R ↔ A ∉ A).

(a) Show that applying this last fact to the set R itself (in other words,
plugging in R for A) leads to a contradiction. This contradiction was
discovered by Bertrand Russell (1872–1970) in 1901, and is known
as Russell’s paradox.

(b) Think some more about the paradox in part (a). What do you think it
tells us about sets?



3

Proofs

3.1 Proof Strategies
Mathematicians are skeptical people. They use many methods, including
experimentation with examples, trial and error, and guesswork, to try to find
answers to mathematical questions, but they are generally not convinced
that an answer is correct unless they can prove it. You have probably seen
some mathematical proofs before (there were some examples in the
introduction), but you may not have any experience writing them yourself.
In this chapter you’ll learn more about how proofs are put together, so you
can start writing your own proofs.

Proofs are a lot like jigsaw puzzles. There are no rules about how jigsaw
puzzles must be solved. The only rule concerns the final product: all the
pieces must fit together, and the picture must look right. The same holds for
proofs.

Although there are no rules about how jigsaw puzzles must be solved,
some techniques for solving them work better than others. For example,
you’d never do a jigsaw puzzle by filling in every other piece, and then
going back and filling in the holes! But you also don’t do it by starting at
the top and filling in the pieces in order until you reach the bottom. You
probably fill in the border first, and then gradually put other chunks of the
puzzle together and figure out where they go. Sometimes you try to put
pieces in the wrong places, realize that they don’t fit, and feel that you’re
not making any progress. And every once in a while you see, in a satisfying
flash, how two big chunks fit together and feel that you’ve suddenly made a
lot of progress. As the pieces of the puzzle fall into place, a picture
emerges. You suddenly realize that the patch of blue you’ve been putting
together is a lake, or part of the sky. But it’s only when the puzzle is
complete that you can see the whole picture.



Similar things could be said about the process of figuring out a proof.
And I think one more similarity should be mentioned. When you finish a
jigsaw puzzle, you don’t take it apart right away, do you? You probably
leave it out for a day or two, so you can admire it. You should do the same
thing with a proof. You figured out how to fit it together yourself, and once
it’s all done, isn’t it pretty?

In this chapter we will discuss the proof-writing techniques that
mathematicians use most often and explain how to use them to begin
writing proofs yourself. Understanding these techniques may also help you
read and understand proofs written by other people. Unfortunately, the
techniques in this chapter do not give a step-by-step procedure for solving
every proof problem. When trying to write a proof you may make a few
false starts before finding the right way to proceed, and some proofs may
require some cleverness or insight. With practice your proof-writing skills
should improve, and you’ll be able to tackle more and more challenging
proofs.

Mathematicians usually state the answer to a mathematical question in
the form of a theorem that says that if certain assumptions called the
hypotheses of the theorem are true, then some conclusion must also be true.
Often the hypotheses and conclusion contain free variables, and in this case
it is understood that these variables can stand for any elements of the
universe of discourse. An assignment of particular values to these variables
is called an instance of the theorem, and in order for the theorem to be
correct it must be the case that for every instance of the theorem that makes
the hypotheses come out true, the conclusion is also true. If there is even
one instance in which the hypotheses are true but the conclusion is false,
then the theorem is incorrect. Such an instance is called a counterexample to
the theorem.

Example 3.1.1. Consider the following theorem:

Theorem. Suppose x > 3 and y < 2. Then x2 − 2y > 5.

This theorem is correct. (You are asked to prove it in exercise 15.) The
hypotheses of the theorem are x > 3 and y < 2, and the conclusion is x2 − 2y
> 5. As an instance of the theorem, we could plug in 5 for x and 1 for y.
Clearly with these values of the variables the hypotheses x > 3 and y <2 are



both true, so the theorem tells us that the conclusion x2 − 2 y >5 must also
be true. In fact, plugging in the values of x and y we find that x2 − 2y = 25 −
2 = 23, and certainly 23 > 5. Note that this calculation does not constitute a
proof of the theorem. We have only checked one instance of the theorem,
and a proof would have to show that all instances are correct.

If we drop the second hypothesis, then we get an incorrect theorem:

Incorrect Theorem. Suppose x > 3. Then x2 − 2y > 5.

We can see that this theorem is incorrect by finding a counterexample. For
example, suppose we let x = 4 and y = 6. Then the only remaining
hypothesis, x > 3, is true, but x2 − 2y = 16 − 12 = 4, so the conclusion x2 −
2y > 5 is false.

If you find a counterexample to a theorem, then you can be sure that the
theorem is incorrect, but the only way to know for sure that a theorem is
correct is to prove it. A proof of a theorem is simply a deductive argument
whose premises are the hypotheses of the theorem and whose conclusion is
the conclusion of the theorem. Throughout the proof, we think of any free
variables in the hypotheses and conclusion of the theorem as standing for
some particular but unspecified elements of the universe of discourse. In
other words, we imagine that we are reasoning about some instance of the
theorem, but we don’t actually choose a particular instance; the reasoning in
the proof should apply to all instances. Of course the argument should be
valid, so we can be sure that if the hypotheses of the theorem are true for
any instance, then the conclusion will be true for that instance as well.

How you figure out and write up the proof of a theorem will depend
mostly on the logical form of the conclusion. Often it will also depend on
the logical forms of the hypotheses. The proof-writing techniques we will
discuss in this chapter will tell you which proof strategies are most likely to
work for various forms of hypotheses and conclusions.

Proof-writing techniques that are based on the logical forms of the
hypotheses usually suggest ways of drawing inferences from the
hypotheses. When you draw an inference from the hypotheses, you use the
assumption that the hypotheses are true to justify the assertion that some
other statement is also true. Once you have shown that a statement is true,
you can use it later in the proof exactly as if it were a hypothesis. Perhaps



the most important rule to keep in mind when drawing such inferences is
this: Never assert anything until you can justify it completely using the
hypotheses or using conclusions reached from them earlier in the proof.
Your motto should be: “I shall make no assertion before its time.”
Following this rule will prevent you from using circular reasoning or
jumping to conclusions and will guarantee that, if the hypotheses are true,
then the conclusion must also be true. And this is the primary purpose of
any proof: to provide a guarantee that the conclusion is true if the
hypotheses are.

To make sure your assertions are adequately justified, you must be
skeptical about every inference in your proof. If there is any doubt in your
mind about whether the justification you have given for an assertion is
adequate, then it isn’t. After all, if your own reasoning doesn’t even
convince you, how can you expect it to convince anybody else?

Proof-writing techniques based on the logical form of the conclusion are
often somewhat different from techniques based on the forms of the
hypotheses. They usually suggest ways of transforming the problem into
one that is equivalent but easier to solve. The idea of solving a problem by
transforming it into an easier problem should be familiar to you. For
example, adding the same number to both sides of an equation transforms
the equation into an equivalent equation, and the resulting equation is
sometimes easier to solve than the original one. Students who have studied
calculus may be familiar with techniques of evaluating integrals, such as
substitution or integration by parts, that can be used to transform a difficult
integration problem into an easier one.

Proofs that are written using these transformation strategies often include
steps in which you assume for the sake of argument that some statement is
true without providing any justification for that assumption. It may seem at
first that such reasoning would violate the rule that assertions must always
be justified, but it doesn’t, because assuming something is not the same as
asserting it. To assert a statement is to claim that it is true, and such a claim
is never acceptable in a proof unless it can be justified. However, the
purpose of making an assumption in a proof is not to make a claim about
what is true, but rather to enable you to find out what would be true if the
assumption were correct. You must always keep in mind that any
conclusion you reach that is based on an assumption might turn out to be
false if the assumption is incorrect. Whenever you make a statement in a



proof, it’s important to be sure you know whether it’s an assertion or an
assumption.

Perhaps an example will help clarify this. Suppose that during the course
of a proof you decide to assume that some statement, call it P, is true, and
you use this assumption to conclude that another statement Q is true. It
would be wrong to call this a proof that Q is true, because you can’t be sure
that your assumption about the truth of P was correct. All you can conclude
at this point is that if P is true, then you can be sure that Q is true as well. In
other words, you know that the statement P → Q is true. If the conclusion
of the theorem being proven was Q, then the proof is incomplete at best.
But if the conclusion was P → Q, then the proof is complete. This brings us
to our first proof strategy.

To prove a conclusion of the form P → Q:
Assume P is true and then prove Q.

Here’s another way of looking at what this proof technique means.
Assuming that P is true amounts to the same thing as adding P to your list
of hypotheses. Although P might not originally have been one of your
hypotheses, once you have assumed it, you can use it exactly the way you
would use any other hypothesis. Proving Q means treating Q as your
conclusion and forgetting about the original conclusion. So this technique
says that if the conclusion of the theorem you are trying to prove has the
form P → Q, then you can transform the problem by adding P to your list
of hypotheses and changing your conclusion from P → Q to Q. This gives
you a new, perhaps easier proof problem to work on. If you can solve the
new problem, then you will have shown that if P is true then Q is also true,
thus solving the original problem of proving P → Q. How you solve this
new problem will now be guided by the logical form of the new conclusion
Q (which might itself be a complex statement), and perhaps also by the
logical form of the new hypothesis P.

Note that this technique doesn’t tell you how to do the whole proof, it
just gives you one step, leaving you with a new problem to solve in order to
finish the proof. Proofs are usually not written all at once, but are created
gradually by applying several proof techniques one after another. Often the
use of these techniques will lead you to transform the problem several
times. In discussing this process it will be helpful to have some way to keep



track of the results of this sequence of transformations. We therefore
introduce the following terminology. We will refer to the statements that are
known or assumed to be true at some point in the course of figuring out a
proof as givens, and the statement that remains to be proven at that point as
the goal. When you are starting to figure out a proof, the givens will be just
the hypotheses of the theorem you are proving, but they may later include
other statements that have been inferred from the hypotheses or added as
new assumptions as the result of some transformation of the problem. The
goal will initially be the conclusion of the theorem, but it may be changed
several times in the course of figuring out a proof.

To keep in mind that all of our proof strategies apply not only to the
original proof problem but also to the results of any transformation of the
problem, we will talk from now on only about givens and goals, rather than
hypotheses and conclusions, when discussing proof-writing strategies. For
example, the strategy stated earlier should really be called a strategy for
proving a goal of the form P → Q, rather than a conclusion of this form.
Even if the conclusion of the theorem you are proving is not a conditional
statement, if you transform the problem in such a way that a conditional
statement becomes the goal, then you can apply this strategy as the next
step in figuring out the proof.

Example 3.1.2. Suppose a and b are real numbers. Prove that if 0 < a < b
then a2 < b2.

Scratch work

We are given as a hypothesis that a and b are real numbers. Our conclusion
has the form P → Q, where P is the statement 0 < a < b and Q is the
statement a2 < b2. Thus we start with these statements as given and goal:

According to our proof technique we should assume that 0 < a < b and
try to use this assumption to prove that a2 < b2. In other words, we
transform the problem by adding 0 < a < b to the list of givens and making
a2 < b2 our goal:



Comparing the inequalities a < b and a2 < b2 suggests that multiplying
both sides of the given inequality a < b by either a or b might get us closer
to our goal. Because we are given that a and b are positive, we won’t need
to reverse the direction of the inequality if we do this. Multiplying a < b by
a gives us a2 < ab, and multiplying it by b gives us ab < b2. Thus a2 < ab <
b2, so a2 < b2.

Solution

Theorem. Suppose a and b are real numbers. If 0 < a < b then a2 < b2.

Proof. Suppose 0 < a < b. Multiplying the inequality a < b by the positive
number a we can conclude that a2 < ab, and similarly multiplying by b we
get ab < b2. Therefore a2 < ab < b2, so a2 < b2, as required. Thus, if 0 < a
< b then a2 < b2.

□
As you can see from the preceding example, there’s a difference between

the reasoning you use when you are figuring out a proof and the steps you
write down when you write the final version of the proof. In particular,
although we will often talk about givens and goals when trying to figure out
a proof, the final write-up will generally not refer to them. Throughout this
chapter, and sometimes in later chapters as well, we will precede our proofs
with the scratch work used to figure out the proof, but this is just to help
you understand how proofs are constructed. When mathematicians write
proofs, they usually just write the steps needed to justify their conclusions
with no explanation of how they thought of them. Some of these steps will
be sentences indicating that the problem has been transformed (usually
according to some proof strategy based on the logical form of the goal);
some steps will be assertions that are justified by inferences from the givens
(often using some proof strategy based on the logical form of a given).
However, there will usually be no explanation of how the mathematician
thought of these transformations and inferences. For example, the proof in
Example 3.1.2 starts with the sentence “Suppose 0 < a < b,” indicating that
the problem has been transformed according to our strategy, and then



proceeds with a sequence of inferences leading to the conclusion that a2 <
b2. No other explanations were necessary to justify the final conclusion, in
the last sentence, that if 0 < a < b then a2 < b2.

Although this lack of explanation sometimes makes proofs hard to read,
it serves the purpose of keeping two distinct objectives separate: explaining
your thought processes and justifying your conclusions. The first is
psychology; the second, mathematics. The primary purpose of a proof is to
justify the claim that the conclusion follows from the hypotheses, and no
explanation of your thought processes can substitute for adequate
justification of this claim. Keeping any discussion of thought processes to a
minimum in a proof helps to keep this distinction clear. Occasionally, in a
very complicated proof, a mathematician may include some discussion of
the strategy behind the proof to make the proof easier to read. Usually,
however, it is up to readers to figure this out for themselves. Don’t worry if
you don’t immediately understand the strategy behind a proof you are
reading. Just try to follow the justifications of the steps, and the strategy
will eventually become clear. If it doesn’t, a second reading of the proof
might help.

To keep the distinction between the proof and the strategy behind the
proof clear, in the future when we state a proof strategy we will often
describe both the scratch work you might use to figure out the proof and the
form that the final write-up of the proof should take. For example, here’s a
restatement of the proof strategy we discussed earlier, in the form we will
be using to present proof strategies from now on.

To prove a goal of the form P → Q:
Assume P is true and then prove Q.

Scratch work

Before using strategy:

After using strategy:



Form of final proof:

Suppose P.
[Proof of Q goes here.]

Therefore P → Q.

Note that the suggested form for the final proof tells you how the
beginning and end of the proof will go, but more steps will have to be
added in the middle. The givens and goal list under the heading “After
using strategy” tells you what is known or can be assumed and what needs
to be proven in order to fill in this gap in the proof. Many of our proof
strategies will tell you how to write either the beginning or the end of your
proof, leaving a gap to be filled in with further reasoning.

There is a second method that is sometimes used for proving goals of the
form P → Q. Because any conditional statement P → Q is equivalent to its
contrapositive ¬Q → ¬P, you can prove P → Q by proving ¬Q → ¬P
instead, using the strategy discussed earlier. In other words:

To prove a goal of the form P → Q:
Assume Q is false and prove that P is false.

Scratch work

Before using strategy:

After using strategy:

Form of final proof:



Suppose Q is false.
[Proof of ¬P goes here.]

Therefore P → Q.

Example 3.1.3. Suppose a, b, and c are real numbers and a > b. Prove that
if ac ≤ bc then c ≤ 0.

Scratch work

The contrapositive of the goal is ¬(c ≤ 0) → ¬(ac ≤ bc), or in other words
(c > 0) → (ac > bc), so we can prove it by adding c > 0 to the list of givens
and making ac > bc our new goal:

We can also now write the first and last sentences of the proof. According
to the strategy, the final proof should have this form:

Suppose c > 0.
[Proof of ac > bc goes here.]

Therefore, if ac ≤ bc then c ≤ 0.

Using the new given c > 0, we see that the goal ac > bc follows
immediately from the given a > b by multiplying both sides by the positive
number c. Inserting this step between the first and last sentences completes
the proof.

Solution

Theorem. Suppose a, b, and c are real numbers and a > b. If ac ≤ bc then c
≤ 0.

Proof. We will prove the contrapositive. Suppose c > 0. Then we can
multiply both sides of the given inequality a > b by c and conclude that ac



> bc. Therefore, if ac ≤ bc then c ≤ 0.
□

Notice that, although we have used the symbols of logic freely in the
scratch work, we have not used them in the final write-up of the proof.
Although it would not be incorrect to use logical symbols in a proof,
mathematicians usually try to avoid it. Using the notation and rules of logic
can be very helpful when you are figuring out the strategy for a proof, but
in the final write-up you should try to stick to ordinary English as much as
possible.

You may be wondering how we knew in Example 3.1.3 that we should
use the second method for proving a goal of the form P → Q rather than the
first. The answer is simple: we tried both methods, and the second worked.
When there is more than one strategy for proving a goal of a particular
form, you may have to try a few different strategies before you hit on one
that works. With practice, you will get better at guessing which strategy is
most likely to work for a particular proof.

Notice that in each of the examples we have given, our strategy involved
making changes in our givens and goal to try to make the problem easier.
The beginning and end of the proof, which were supplied for us in the
statement of the proof technique, serve to tell a reader of the proof that
these changes have been made and how the solution to this revised problem
solves the original problem. The rest of the proof contains the solution to
this easier, revised problem.

Most of the other proof techniques in this chapter also suggest that you
revise your givens and goal in some way. These revisions result in a new
proof problem, and in every case the revisions have been designed so that a
solution to the new problem, when combined with some beginning or
ending sentences explaining these revisions, would also solve the original
problem. This means that whenever you use one of these strategies you can
write a sentence or two at the beginning or end of the proof and then forget
about the original problem and work instead on the new problem, which
will usually be easier. Often you will be able to figure out a proof by using
the techniques in this chapter to revise your givens and goal repeatedly,
making the remaining problem easier and easier until you reach a point at
which it is completely obvious that the goal follows from the givens.



Exercises
*1. Consider the following theorem. (This theorem was proven in the

introduction.)

Theorem. Suppose n is an integer larger than 1 and n is not prime.
Then 2n − 1 is not prime.

(a) Identify the hypotheses and conclusion of the theorem. Are the
hypotheses true when n = 6? What does the theorem tell you in
this instance? Is it right?

(b) What can you conclude from the theorem in the case n = 15?
Check directly that this conclusion is correct.

(c) What can you conclude from the theorem in the case n = 11?
2. Consider the following theorem. (The theorem is correct, but we

will not ask you to prove it here.)

Theorem. Suppose that b2 > 4ac. Then the quadratic equation ax2 +
bx + c = 0 has exactly two real solutions.

(a) Identify the hypotheses and conclusion of the theorem.
(b) To give an instance of the theorem, you must specify values for

a, b, and c, but not x. Why?
(c) What can you conclude from the theorem in the case a = 2, b =

−5, c = 3? Check directly that this conclusion is correct.
(d) What can you conclude from the theorem in the case a = 2, b = 4,

c = 3?
3. Consider the following incorrect theorem:

Incorrect Theorem. Suppose n is a natural number larger than
2, and n is not a prime number. Then 2n + 13 is not a prime
number.

What are the hypotheses and conclusion of this theorem? Show
that the theorem is incorrect by finding a counterexample.

*4. Complete the following alternative proof of the theorem in
Example 3.1.2.

Proof. Suppose 0< a < b. Then b − a > 0.



[Fill in a proof of b2 − a2 > 0 here.]
Since b2 − a2 > 0, it follows that a2 < b2. Therefore if 0 < a < b
then a2 < b2.

□

5. Suppose a and b are real numbers. Prove that if a < b < 0 then a2

> b2.
6. Suppose a and b are real numbers. Prove that if 0 < a < b then

1/b < 1/a.

7. Suppose that a is a real number. Prove that if a3 > a then a5 > a.
(Hint: One approach is to start by completing the following
equation: a5 − a =(a3 − a) · ?.)

*8. Suppose A \ B ⊆ C ∩ D and x ϵ A. Prove that if x ∉ D then x ϵ
B.

9. Suppose A ∩ B ⊆ C \ D. Prove that if x ϵ A, then if x ϵ D then x
∉ B.

*10. Suppose a and b are real numbers. Prove that if a < b then (a +
b)/2 < b.

11. Suppose x is a real number and x ≠ 0. Prove that if 
 1/x then x ≠ 8.

*12. Suppose a, b, c, and d are real numbers, 0 < a < b, and d > 0.
Prove that if ac ≥ bd then c > d.

13. Suppose x and y are real numbers, and 3x + 2y ≤ 5. Prove that if x
> 1 then y < 1.

14. Suppose that x and y are real numbers. Prove that if x2 + y = −3
and 2x − y = 2 then x = −1.

*15. Prove the first theorem in Example 3.1.1. (Hint: You might find it
useful to apply the theorem from Example 3.1.2.)

16. Consider the following theorem.

Theorem. Suppose x is a real number and x ≠ 4. If (2x −5)/(x−4) = 3
then x = 7.

(a) What’s wrong with the following proof of the theorem?



Proof. Suppose x = 7. Then (2x −5)/(x−4) = (2(7)−5)/(7−4)= 9/3
= 3. Therefore if (2x − 5)/(x − 4) = 3 then x = 7.

□
(b) Give a correct proof of the theorem.

17. Consider the following incorrect theorem:
Incorrect Theorem. Suppose that x and y are real numbers and x
≠ 3. If x2y = 9y then y = 0.

(a) What’s wrong with the following proof of the theorem?

Proof. Suppose that x2y = 9y. Then (x2 − 9)y = 0. Since x ≠ 3, x2 ≠ 9, so
x2 − 9 = 0. Therefore we can divide both sides of the equation (x2 − 9)y
= 0 by x2 − 9, which leads to the conclusion that y = 0. Thus, if x2y =
9y then y = 0.

□
(b) Show that the theorem is incorrect by finding a counterexample.

3.2 Proofs Involving Negations and Conditionals
We turn now to proofs in which the goal has the form ¬P. Usually it’s easier
to prove a positive statement than a negative statement, so it is often helpful
to reexpress a goal of the form ¬P before proving it. Instead of trying to
prove a goal that says what shouldn’t be true, see if you can rephrase it as a
goal that says what should be true. Fortunately, we have already studied
several equivalences that will help with this reexpression. Thus, our first
strategy for proving negated statements is:

To prove a goal of the form ¬P:
If possible, reexpress the goal in some other form and then use one of the

proof strategies for this other goal form.

Example 3.2.1. Suppose A ∩ C ⊆ B and a ϵ C. Prove that a ∉ A \ B.

Scratch work



To prove the goal, we must show that it cannot be the case that a ϵ A and
a ∉ B. Because this is a negative goal, we try to reexpress it as a positive
statement:

Rewriting the goal in this way gives us:

We now prove the goal in this new form, using the first strategy from
Section 3.1. Thus, we add a ϵ A to our list of givens and make a ϵ B our
goal:

The proof is now easy: from the givens a ϵ A and a ϵ C we can conclude
that a ϵ A ∩ C, and then, since A ∩ C ⊆ B, it follows that a ϵ B.

Solution

Theorem. Suppose A ∩ C ⊆ B and a ϵ C. Then a ∉ A \ B.

Proof. Suppose a ϵ A. Then since a ϵ C, a ϵ A ∩ C. But then since A ∩ C
⊆ B it follows that a ϵ B. Thus, it cannot be the case that a is an element of
A but not B, so a ∉ A \ B.

□

Sometimes a goal of the form ¬P cannot be reexpressed as a positive
statement, and therefore this strategy cannot be used. In this case it is
usually best to do a proof by contradiction. Start by assuming that P is true,



and try to use this assumption to prove something that you know is false.
Often this is done by proving a statement that contradicts one of the givens.
Because you know that the statement you have proven is false, the
assumption that P was true must have been incorrect. The only remaining
possibility then is that P is false.

To prove a goal of the form ¬P:
Assume P is true and try to reach a contradiction. Once you have reached

a contradiction, you can conclude that P must be false.

Scratch work

Before using strategy:

After using strategy:

Form of final proof:

Suppose P is true.
[Proof of contradiction goes here.]

Thus, P is false.

Example 3.2.2. Prove that if x2 + y = 13 and y ≠ 4 then x ≠ 3.

Scratch work

The goal is a conditional statement, so according to the first proof strategy
in Section 3.1 we can treat the antecedent as given and make the consequent
our new goal:



This proof strategy also suggests what form the final proof should take.
According to the strategy, the proof should look like this:

Suppose x2 + y = 13 and y ≠ 4.
[Proof of x ≠ 3 goes here.]

Thus, if x2 + y = 13 and y ≠ 4 then x ≠ 3.

In other words, the first and last sentences of the final proof have already
been written, and the problem that remains to be solved is to fill in a proof
of x ≠ 3 between these two sentences. The givens–goal list summarizes
what we know and what we have to prove in order to solve this problem.

The goal x ≠ 3 means ¬(x = 3), but because x = 3 has no logical
connectives in it, none of the equivalences we know can be used to
reexpress this goal in a positive form. We therefore try proof by
contradiction and transform the problem as follows:

Once again, the proof strategy that suggested this transformation also
tells us how to fill in a few more sentences of the final proof. As we
indicated earlier, these sentences go between the first and last sentences of
the proof, which were written before.

Suppose x2 + y = 13 and y ≠ 4.
Suppose x ≠ 3.

[Proof of contradiction goes here.]
Therefore x ≠ 3.

Thus, if x2 + y = 13 and y ≠ 4 then x ≠ 3.

The indenting in this outline of the proof will not be part of the final
proof. We have done it here to make the underlying structure of the proof
clear. The first and last lines go together and indicate that we are proving a
conditional statement by assuming the antecedent and proving the
consequent. Between these lines is a proof of the consequent, x ≠ 3, which
we have set off from the first and last lines by indenting it. This inner proof



has the form of a proof by contradiction, as indicated by its first and last
lines. Between these lines we still need to fill in a proof of a contradiction.

At this point we don’t have a particular statement as our goal; any
impossible conclusion will do. We must therefore look more closely at the
givens to see if some of them contradict others. In this case, the first and
third together imply that y = 4, which contradicts the second.

Solution

Theorem. If x2 + y = 13 and y ≠ 4 then x ≠ 3.

Proof. Suppose x2 + y = 13 and y ≠ 4. Suppose x = 3. Substituting this into
the equation x2 + y = 13, we get 9 + y = 13, so y = 4. But this contradicts the
fact that y ≠ 4. Therefore x ≠ 3. Thus, if x2 + y = 13 and y ≠ 4 then x ≠ 3.

□
You may be wondering at this point why we were justified in concluding,

when we reached a contradiction in the proof, that x ≠ 3. After all, the
second list of givens in our scratch work contained three givens. How could
we be sure, when we reached a contradiction, that the culprit was the third
given, x = 3? To answer this question, look back at the first givens and goal
analysis for this example. According to that analysis, there were two givens,
x2 + y = 13 and y ≠ 4, from which we had to deduce the goal x ≠ 3. Those
givens were introduced as assumptions in the first sentence of the proof.
Our proof that x ≠ 3 took place in a context in which those assumptions
were in force, as indicated by the indenting in the outline of the proof in our
scratch work. Thus, we only had to show that x ≠ 3 under the assumption
that x2 + y = 13 and y ≠ 4. When we reached a contradiction, we didn’t need
to figure out which of the three statements in the second list of givens was
false. We were certainly justified in concluding that if neither of the first
two was the culprit, then it had to be the third, and that was all that was
required to finish the proof.

Proving a goal by contradiction has the advantage that it allows you to
assume that your conclusion is false, providing you with another given to
work with. But it has the disadvantage that it leaves you with a rather vague
goal: produce a contradiction by proving something that you know is false.
Because all the proof strategies we have discussed so far depend on
analyzing the logical form of the goal, it appears that none of them will help



you to achieve the goal of producing a contradiction. In the preceding proof
we were forced to look more closely at our givens to find a contradiction. In
this case we did it by proving that y = 4, contradicting the given y ≠ 4. This
illustrates a pattern that occurs often in proofs by contradiction: if one of the
givens has the form ¬P, then you can produce a contradiction by proving P.
This is our first strategy based on the logical form of a given.

To use a given of the form ¬P:
If you’re doing a proof by contradiction, try making P your goal. If you

can prove P, then the proof will be complete, because P contradicts the
given ¬P.

Scratch work

Before using strategy:

After using strategy:

Form of final proof:

   [Proof of P goes here.]
Since we already know ¬P, this is a contradiction.

Although we have recommended proof by contradiction for proving
goals of the form ¬P, it can be used for any goal. Usually it’s best to try the
other strategies first if any of them apply; but if you’re stuck, you can try
proof by contradiction in any proof.

The next example illustrates this and also another important rule of proof
writing: in many cases the logical form of a statement can be discovered by
writing out the definition of some mathematical word or symbol that occurs
in the statement. For this reason, knowing the precise statements of the



definitions of all mathematical terms is extremely important when you’re
writing a proof.

Example 3.2.3. Suppose A, B, and C are sets, A \ B ⊆ C, and x is anything
at all. Prove that if x ϵ A \ C then x ϵ B.

Scratch work

We’re given that A \ B ⊆ C, and our goal is x ϵ A \ C → x ϵ B. Because the
goal is a conditional statement, our first step is to transform the problem by
adding x ϵ A \ C as a second given and making x ϵ B our goal:

The form of the final proof will therefore be as follows:

Suppose x ϵ A \ C.
[Proof of x ϵ B goes here.]

Thus, if x ϵ A \ C then x ϵ B.

The goal x ϵ B contains no logical connectives, so none of the techniques
we have studied so far apply, and it is not obvious why the goal follows
from the givens. Lacking anything else to do, we try proof by contradiction:

As before, this transformation of the problem also enables us to fill in a few
more sentences of the proof:

Suppose x ϵ A \ C.
Suppose x ∉ B.

[Proof of contradiction goes here.]
Therefore x ϵ B.

Thus, if x ϵ A \ C then x ϵ B.



Because we’re doing a proof by contradiction and our last given is now a
negated statement, we could try using our strategy for using givens of the
form ¬P. Unfortunately, this strategy suggests making x ϵ B our goal,
which just gets us back to where we started. We must look at the other
givens to try to find the contradiction.

In this case, writing out the definition of the second given is the key to
the proof, since this definition also contains a negated statement. By
definition, x ϵ A \ C means x ϵ A and x ∉ C. Replacing this given by its
definition gives us:

Now the third given also has the form ¬P, where P is the statement x ϵ
C, so we can apply the strategy for using givens of the form ¬P and make x
ϵ C our goal. Showing that x ϵ C would complete the proof because it
would contradict the given x ∉ C.

Once again, we can add a little more to the proof we are gradually
writing by filling in the fact that we plan to derive our contradiction by
proving x ϵ C. We also add the definition of x ϵ A \ C to the proof, inserting
it in what seems like the most logical place, right after we stated that x ϵ A \
C:

Suppose x ϵ A \ C. This means that x ϵ A and x ∉ C.
Suppose x ∉ B.

   [Proof of x ϵ C goes here.]
   This contradicts the fact that x ∉ C.
Therefore x ϵ B.

Thus, if x ϵ A \ C then x ϵ B.



We have finally reached a point where the goal follows easily from the
givens. From x ϵ A and x ∉ B we conclude that x ϵ A \ B. Since A \ B ⊆ C
it follows that x ϵ C.

Solution

Theorem. Suppose A, B, and C are sets, A \ B ⊆ C, and x is anything at all.
If x ϵ A \ C then x ϵ B.

Proof. Suppose x ϵ A \ C. This means that x ϵ A and x ∉ C. Suppose x ∉ B.
Then x ϵ A \ B, so since A \ B ⊆ C, x ϵ C. But this contradicts the fact that x
∉ C. Therefore x ϵ B. Thus, if x ϵ A \ C then x ϵ B.

□
The strategy we’ve recommended for using givens of the form ¬P only

applies if you are doing a proof by contradiction. For other kinds of proofs,
the next strategy can be used. This strategy is based on the fact that givens
of the form ¬P, like goals of this form, may be easier to work with if they
are reexpressed as positive statements.

To use a given of the form ¬P:
If possible, reexpress this given in some other form.

We have discussed strategies for working with both givens and goals of
the form ¬P, but only strategies for goals of the form P → Q. We now fill
this gap by giving two strategies for using givens of the form P → Q. We
said before that many strategies for using givens suggest ways of drawing
inferences from the givens. Such strategies are called rules of inference.
Both of our strategies for using givens of the form P → Q are examples of
rules of inference.

To use a given of the form P → Q:
If you are also given P, or if you can prove that P is true, then you can

use this given to conclude that Q is true. Since it is equivalent to ¬Q → ¬P,
if you can prove that Q is false, you can use this given to conclude that P is
false.

The first of these rules of inference says that if you know that both P and
P → Q are true, you can conclude that Q must also be true. Logicians call
this rule modus ponens. We saw this rule used in one of our first examples



of valid deductive reasoning in Chapter 1, argument 2 in Example 1.1.1.
The validity of this form of reasoning was verified using the truth table for
the conditional connective in Section 1.5.

The second rule, called modus tollens, says that if you know that P → Q
is true and Q is false, you can conclude that P must also be false. The
validity of this rule can also be checked with truth tables, as you are asked
to show in exercise 14. Usually you won’t find a given of the form P → Q
to be much use until you are able to prove either P or ¬Q. However, if you
ever reach a point in your proof where you have determined that P is true,
you should probably use this given immediately to conclude that Q is true.
Similarly, if you ever establish ¬Q, immediately use this given to conclude
¬P.

Although most of our examples will involve specific mathematical
statements, occasionally we will do examples of proofs containing letters
standing for unspecified statements. Later in this chapter we will be able to
use this method to verify some of the equivalences from Chapter 2 that
could only be justified on intuitive grounds before. Here’s an example of
this kind, illustrating the use of modus ponens and modus tollens.

Example 3.2.4. Suppose P → (Q → R). Prove that ¬R → (P → ¬Q).

Scratch work

This could actually be done with a truth table, as you are asked to show in
exercise 15, but let’s do it using the proof strategies we’ve been discussing.
We start with the following situation:

Our only given is a conditional statement. By the rules of inference just
discussed, if we knew P we could use modus ponens to conclude Q → R,
and if we knew ¬(Q → R) we could use modus tollens to conclude ¬P.
Because we don’t, at this point, know either of these, we can’t yet do
anything with this given. If either P or ¬(Q → R) ever gets added to the
givens list, then we should consider using modus ponens or modus tollens.
For now, we need to concentrate on the goal.

The goal is also a conditional statement, so we assume the antecedent and
set the consequent as our new goal:



We can also now write a little bit of the proof:

Suppose ¬R.
[Proof of P → ¬Q goes here.]

Therefore ¬R → (P → ¬Q).

We still can’t do anything with the givens, but the goal is another
conditional, so we use the same strategy again:

Now the proof looks like this:

Suppose ¬R.
Suppose P.

[Proof of ¬Q goes here.]
Therefore P → ¬Q.

Therefore ¬R → (P → ¬Q).

We’ve been watching for our chance to use our first given by applying
either modus ponens or modus tollens, and now we can do it. Since we
know P → (Q → R) and P, by modus ponens we can infer Q → R. Any
conclusion inferred from the givens can be added to the givens column:

We also add one more line to the proof:

Suppose ¬R.
Suppose P.

Since P and P → (Q → R), it follows that Q → R.



[Proof of ¬Q goes here.]
Therefore P → ¬Q.

Therefore ¬R → (P → ¬Q).

Finally, our last step is to use modus tollens. We now know Q → R and
¬R, so by modus tollens we can conclude ¬Q. This is our goal, so the proof
is done.

Solution

Theorem. Suppose P → (Q → R). Then ¬R → (P → ¬Q).

Proof. Suppose ¬R. Suppose P. Since P and P → (Q → R), it follows that Q
→ R. But then, since ¬R, we can conclude ¬Q. Thus, P → ¬Q. Therefore
¬R → (P → ¬Q).

□
Sometimes if you’re stuck you can use rules of inference to work

backward. For example, suppose one of your givens has the form P → Q
and your goal is Q. If only you could prove P, you could use modus ponens
to reach your goal. This suggests treating P as your goal instead of Q. If you
can prove P, then you’ll just have to add one more step to the proof to reach
your original goal Q.

Example 3.2.5. Suppose that A ⊆ B, a ϵ A, and a ∉ B \ C. Prove that a ϵ
C.

Scratch work

Our third given is a negative statement, so we begin by reexpressing it as
an equivalent positive statement. According to the definition of the
difference of two sets, this given means ¬(a ϵ B ∧ a ∉ C), and by one of
De Morgan’s laws, this is equivalent to a ∉ B ∨ a ϵ C. Because our goal is
a ϵ C, it is probably more useful to rewrite this in the equivalent form a ϵ B
→ a ϵ C:



Now we can use our strategy for using givens of the form P → Q. Our
goal is a ϵ C, and we are given that a ϵ B → a ϵ C. If we could prove that
a ϵ B, then we could use modus ponens to reach our goal. So let’s try
treating a ϵ B as our goal and see if that makes the problem easier:

Now it is clear how to reach the goal. Since a ϵ A and A ⊆ B, a ϵ B.

Solution

Theorem. Suppose that A ⊆ B, a ϵ A, and a ∉ B \ C. Then a ϵ C.

Proof. Since a ϵ A and A ⊆ B, we can conclude that a ϵ B. But a ∉ B \ C,
so it follows that a ϵ C.

□

Exercises
*1. This problem could be solved by using truth tables, but don’t do

it that way. Instead, use the methods for writing proofs discussed
so far in this chapter. (See Example 3.2.4.)

(a) Suppose P → Q and Q → R are both true. Prove that P → R is
true.

(b) Suppose ¬R → (P → ¬Q) is true. Prove that P → (Q → R) is
true.

2. This problem could be solved by using truth tables, but don’t do
it that way. Instead, use the methods for writing proofs discussed
so far in this chapter. (See Example 3.2.4.)



(a) Suppose P → Q and R → ¬Q are both true. Prove that P → ¬R is
true.

(b) Suppose that P is true. Prove that Q → ¬(Q → ¬P) is true.
3. Suppose A ⊆ C, and B and C are disjoint. Prove that if x ϵ A then

x ∉ B.
4. Suppose that A \ B is disjoint from C and x ϵ A. Prove that if x ϵ

C then x ϵ B.
*5. Prove that it cannot be the case that x ϵ A \ B and x ϵ B \ C.
*6. Use the method of proof by contradiction to prove the theorem in

Example 3.2.1.
7. Use the method of proof by contradiction to prove the theorem in

Example 3.2.5.
8. Suppose that y + x = 2y − x, and x and y are not both zero. Prove

that y ≠ 0.
*9. Suppose that a and b are nonzero real numbers. Prove that if a <

1/a < b < 1/b then a < −1.
10. Suppose that x and y are real numbers. Prove that if x2y = 2x + y,

then if y ≠ 0 then x ≠ 0.
11. Suppose that x and y are real numbers. Prove that if x ≠ 0, then if

y = (3x2 + 2y)/(x2 + 2) then y = 3.
*12. Consider the following incorrect theorem:

Incorrect Theorem. Suppose x and y are real numbers and x + y
= 10. Then x ≠ 3 and y ≠ 8.

(a) What’s wrong with the following proof of the theorem?

Proof. Suppose the conclusion of the theorem is false. Then x = 3
and y = 8. But then x + y = 11, which contradicts the given
information that x + y = 10. Therefore the conclusion must be
true.

□
(b) Show that the theorem is incorrect by finding a counterexample.
13. Consider the following incorrect theorem:

Incorrect Theorem. Suppose that A ⊆ C, B ⊆ C, and x ϵ A.
Then x ϵ B.



(a) What’s wrong with the following proof of the theorem?

Proof. Suppose that x ∉ B. Since x ϵ A and A ⊆ C, x ϵ C. Since
x ∉ B and B ⊆ C, x ∉ C. But now we have proven both x ϵ C
and x ∉ C, so we have reached a contradiction. Therefore x ϵ B.

□
(b) Show that the theorem is incorrect by finding a counterexample.

14. Use truth tables to show that modus tollens is a valid rule
of inference.

*15. Use truth tables to check the correctness of the theorem in
Example 3.2.4.

16. Use truth tables to check the correctness of the statements
in exercise 1.

17. Use truth tables to check the correctness of the statements
in exercise 2.

18. Can the proof in Example 3.2.2 be modified to prove that if
x2 + y = 13 and x ≠ 3 then y ≠ 4? Explain.

3.3 Proofs Involving Quantifiers
Look again at Example 3.2.3. In that example we said that x could be
anything at all, and we proved the statement x ϵ A\C → x ϵ B. Because the
reasoning we used would apply no matter what x was, our proof actually
shows that x ϵ A \ C → x ϵ B is true for all values of x. In other words, we
can conclude ∀x(x ϵ A \ C → x ϵ B).

This illustrates the easiest and most straightforward way of proving a
goal of the form ∀xP(x). If you can give a proof of the goal P(x) that would
work no matter what x was, then you can conclude that ∀xP(x) must be
true. To make sure that your proof would work for any value of x, it is
important to start your proof with no assumptions about x. Mathematicians
express this by saying that x must be arbitrary. In particular, you must not
assume that x is equal to any other object already under discussion in the
proof. Thus, if the letter x is already being used in the proof to stand for
some particular object, then you cannot use it to stand for an arbitrary
object. In this case you must choose a different variable that is not already



being used in the proof, say y, and replace the goal ∀xP(x) with the
equivalent statement ∀yP(yP). Now you can proceed by letting y stand for
an arbitrary object and proving P(y).

To prove a goal of the form ∀xP(x):
Let x stand for an arbitrary object and prove P(x). The letter x must be a

new variable in the proof. If x is already being used in the proof to stand for
something, then you must choose an unused variable, say y, to stand for the
arbitrary object, and prove P(y).

Scratch work

Before using strategy:

After using strategy:

Form of final proof:

Let x be arbitrary.
[Proof of P(x) goes here.]

Since x was arbitrary, we can conclude that ∀xP(x).

Example 3.3.1. Suppose A, B, and C are sets, and A \ B ⊆ C. Prove that A
\ C ⊆ B.

Scratch work

As usual, we look first at the logical form of the goal to plan our strategy.
In this case we must write out the definition of ⊆ to determine the logical
form of the goal.



Because the goal has the form ∀xP(x), where P(x) is the statement x ϵ A \
C → x ϵ B, we will introduce a new variable x into the proof to stand for an
arbitrary object and then try to prove x ϵ A \ C → x ϵ B. Note that x is a
new variable in the proof. It appeared in the logical form of the goal as a
bound variable, but remember that bound variables don’t stand for anything
in particular. We have not yet used x as a free variable in any statement, so
it has not been used to stand for any particular object. To make sure x is
arbitrary we must be careful not to add any assumptions about x to the
givens column. However, we do change our goal:

According to our strategy, the final proof should look like this:

Let x be arbitrary.
[Proof of x ϵ A \ C → x ϵ B goes here.]

Since x was arbitrary, we can conclude that ∀x(x ϵ A \ C → x ϵ B), so A \
C ⊆ B.

The problem is now exactly the same as in Example 3.2.3, so the rest of
the solution is the same as well. In other words, we can simply insert the
proof we wrote in Example 3.2.3 between the first and last sentences of the
proof written here.

Solution

Theorem. Suppose A, B, and C are sets, and A \ B ⊆ C. Then A \ C ⊆ B.

Proof. Let x be arbitrary. Suppose x ϵ A \ C. This means that x ϵ A and x ∉
C. Suppose x ∉ B. Then x ϵ A \ B, so since A \ B ⊆ C, x ϵ C. But this
contradicts the fact that x ∉ C. Therefore x ϵ B. Thus, if x ϵ A \ C then x ϵ
B. Since x was arbitrary, we can conclude that ∀x(x ϵ A \ C → x ϵ B), so A \
C ⊆ B.

□
Notice that, although this proof shows that every element of A \ C is also

an element of B, it does not contain phrases such as “every element of A \



C” or “all elements of A \ C.” For most of the proof we simply reason about
x, which is treated as a single, fixed element of A \ C. We pretend that x
stands for some particular element of A \ C, being careful to make no
assumptions about which element it stands for. It is only at the end of the
proof that we observe that, because x was arbitrary, our conclusions about x
would be true no matter what x was. This is the main advantage of using
this strategy to prove a goal of the form ∀xP(x). It enables you to prove a
goal about all objects by reasoning about only one object, as long as that
object is arbitrary. If you are proving a goal of the form ∀xP(x) and you
find yourself saying a lot about “all x’s” or “every x,” you are probably
making your proof unnecessarily complicated by not using this strategy.

As we saw in Chapter 2, statements of the form ∀x(P(x) → Q(x)) are
quite common in mathematics. It might be worthwhile, therefore, to
consider how the strategies we’ve discussed can be combined to prove a
goal of this form. Because the goal starts with ∀x, the first step is to let x be
arbitrary and try to prove P(x) → Q(x). To prove this goal, you will
probably want to assume that P(x) is true and prove Q(x). Thus, the proof
will probably start like this: “Let x be arbitrary. Suppose P(x).” It will then
proceed with the steps needed to reach the goal Q(x). Often in this type of
proof the statement that x is arbitrary is left out, and the proof simply starts
with “Suppose P(x).” When a new variable x is introduced into a proof in
this way, it is usually understood that x is arbitrary. In other words, no
assumptions are being made about x other than the stated one that P(x) is
true.

An important example of this type of proof is a proof in which the goal
has the form ∀x ϵ A P(x). Recall that ∀x ϵ A P(x) means the same thing as
∀x(x ϵ A → P(x)), so according to our strategy the proof should start with
“Suppose x ϵ A” and then proceed with the steps needed to conclude that
P(x) is true. Once again, it is understood that no assumptions are being
made about x other than the stated assumption that x ϵ A, so x stands for an
arbitrary element of A.

Mathematicians sometimes skip other steps in proofs, if knowledgeable
readers could be expected to fill them in themselves. In particular, many of
our proof strategies have suggested that the proof end with a sentence that
sums up why the reasoning that has been given in the proof leads to the
desired conclusion. In a proof in which several of these strategies have been



combined, there might be several of these summing up sentences, one after
another, at the end of the proof. Mathematicians often condense this
summing up into one sentence, or even skip it entirely. When you are
reading a proof written by someone else, you may find it helpful to fill in
these skipped steps.

Example 3.3.2. Suppose A and B are sets. Prove that if A ∩ B = A then A
⊆ B.

Scratch work

Our goal is A ∩ B = A → A ⊆ B. Because the goal is a conditional
statement, we add the antecedent to the givens list and make the consequent
the goal. We will also write out the definition of ⊆ in the new goal to show
what its logical form is.

Now the goal has the form ∀x(P(x) → Q(x)), where P(x) is the statement
x ϵ A and Q(x) is the statement x ϵ B. We therefore let x be arbitrary,
assume x ϵ A, and prove x ϵ B:

Combining the proof strategies we have used, we see that the final proof
will have this form:

Suppose A ∩ B = A.
Let x be arbitrary.
   Suppose x ϵ A.

  [Proof of x ϵ B goes here.]
   Therefore x ϵ A → x ϵ B.
Since x was arbitrary, we can conclude that ∀x(x ϵ A → x ϵ B), so A ⊆
B.

Therefore, if A ∩ B = A then A ⊆ B.



As discussed earlier, when we write up the final proof we can skip the
sentence “Let x be arbitrary,” and we can also skip some or all of the last
three sentences.

We have now reached the point at which we can analyze the logical form
of the goal no further. Fortunately, when we look at the givens, we discover
that the goal follows easily. Since x ϵ A and A ∩ B = A, it follows that x ϵ A
∩ B, so x ϵ B. (In this last step we are using the definition of ∩: x ϵ A ∩ B
means x ϵ A and x ϵ B.)

Solution

Theorem. Suppose A and B are sets. If A ∩ B = A then A ⊆ B.

Proof. Suppose A ∩ B = A, and suppose x ϵ A. Then since A ∩ B = A, x ϵ A
∩ B, so x ϵ B. Since x was an arbitrary element of A, we can conclude that
A ⊆ B.

□
Proving a goal of the form ∃xP(x) also involves introducing a new

variable x into the proof and proving P(x), but in this case x will not be
arbitrary. Because you only need to prove that P(x) is true for at least one x,
it suffices to assign a particular value to x and prove P(x) for this one value
of x.

To prove a goal of the form ∃xP(x):
Try to find a value of x for which you think P(x) will be true. Then start

your proof with “Let x = (the value you decided on)” and proceed to prove
P(x) for this value of x. Once again, x should be a new variable. If the letter
x is already being used in the proof for some other purpose, then you should
choose an unused variable, say y, and rewrite the goal in the equivalent
form ∃yP(y). Now proceed as before by starting your proof with “Let y =
(the value you decided on)” and prove P(y).

Scratch work

Before using strategy:



After using strategy:

Form of final proof:

Let x = (the value you decided on).
[Proof of P(x) goes here.]

Thus, ∃xP(x).

Finding the right value to use for x may be difficult in some cases. One
method that is sometimes helpful is to assume that P(x) is true and then see
if you can figure out what x must be, based on this assumption. If P(x) is an
equation involving x, this amounts to solving the equation for x. However,
if this doesn’t work, you may use any other method you please to try to find
a value to use for x, including trial-and-error and guessing. The reason you
have such freedom with this step is that the reasoning you use to find a
value for x will not appear in the final proof. This is because of our rule that
a proof should contain only the reasoning needed to justify the conclusion
of the proof, not an explanation of how you thought of that reasoning. To
justify the conclusion that ∃xP(x) is true it is only necessary to verify that
P(x) comes out true when x is assigned some particular value. How you
thought of that value is your own business, and not part of the justification
of the conclusion.

Example 3.3.3. Prove that for every real number x, if x > 0 then there is a
real number y such that y(y + 1) = x.

Scratch work

In symbols, our goal is ∀x(x > 0 → ∃y[y(y + 1) = x]), where the variables x
and y in this statement are understood to range over R. We therefore start by
letting x be an arbitrary real number, and we then assume that x > 0 and try
to prove that ∃y[y(y + 1) = x]. Thus, we now have the following given and
goal:



Because our goal has the form ∃yP(y), where P(y) is the statement y(y +
1) = x, according to our strategy we should try to find a value of y for which
P(y) is true. In this case we can do it by solving the equation y(y + 1) = x for
y. It’s a quadratic equation and can be solved using the quadratic formula:

Note that  is defined, since we have x > 0 as a given. We have
actually found two solutions for y, but to prove that ∃y[y(y + 1) = x] we
only need to exhibit one value of y that makes the equation y(y + 1) = x true.
Either of the two solutions could be used in the proof. We will use the
solution 

The steps we’ve used to solve for y should not appear in the final proof.
In the final proof we will simply say “Let  and then
prove that y(y + 1) = x. In other words, the final proof will have this form:

Let x be an arbitrary real number.
Suppose x > 0.
    Let 

      [Proof of y(y + 1) = x goes here.]
    Thus, ∃y[y(y + 1) = x].
Therefore x > 0 → ∃y[y(y + 1) = x].

Since x was arbitrary, we can conclude that ∀x(x > 0 → ∃y[y(y +1) = x]).

To see what must be done to fill in the remaining gap in the proof, we
add  to the givens list and make y(y + 1) = x the goal:

We can now prove that the equation y(y +1) = x is true by simply
substituting  for y and verifying that the resulting equation
is true.

Solution



Theorem. For every real number x, if x > 0 then there is a real number y
such that y(y + 1) = x.

Proof. Let x be an arbitrary real number, and suppose x > 0. Let

which is defined since x > 0. Then

□
Sometimes when you’re proving a goal of the form ∃yQ(y) you won’t be

able to tell just by looking at the statement Q(y) what value you should plug
in for y. In this case you may want to look more closely at the givens to see
if they suggest a value to use for y. In particular, a given of the form ∃xP(x)
may be helpful in this situation. This given says that an object with a certain
property exists. It is probably a good idea to imagine that a particular object
with this property has been chosen and to introduce a new variable, say x0,
into the proof to stand for this object. Thus, for the rest of the proof you will
be using x0 to stand for some particular object, and you can assume that
with x0 standing for this object, P(x0) is true. In other words, you can add
P(x0) to your givens list. This object x0, or something related to it, might
turn out to be the right thing to plug in for y to make Q(y) come out true.

To use a given of the form ∃xP(x):
Introduce a new variable x0 into the proof to stand for an object for which

P(x0) is true. This means that you can now assume that P(x0) is true.
Logicians call this rule of inference existential instantiation.

Note that using a given of the form ∃xP(x) is very different from proving
a goal of the form ∃xP(x), because when using a given of the form ∃xP(x),



you don’t get to choose a particular value to plug in for x. You can assume
that x0 stands for some object for which P(x0) is true, but you can’t assume
anything else about x0. On the other hand, a given of the form ∀xP(x) says
that P(x) would be true no matter what value is assigned to x. You can
therefore choose any value you wish to plug in for x and use this given to
conclude that P(x) is true.

To use a given of the form ∀xP(x):
You can plug in any value, say a, for x and use this given to conclude that

P(a) is true. This rule is called universal instantiation.

Usually, if you have a given of the form ∃xP(x), you should apply
existential instantiation to it immediately. A good guideline is: if you know
something exists, you should give it a name. On the other hand, you won’t
be able to apply universal instantiation to a given of the form ∀xP(x) unless
you have a particular value a to plug in for x, so you might want to wait
until a likely choice for a pops up in the proof. For example, consider a
given of the form ∀x(P(x) → Q(x)). You can use this given to conclude that
P(a) → Q(a) for any a, but according to our rule for using givens that are
conditional statements, this conclusion probably won’t be very useful unless
you know either P(a) or ¬Q(a). You should probably wait until an object a
appears in the proof for which you know either P(a) or ¬Q(a), and plug this
a in for x when it appears.

We’ve already used this technique in some of our earlier proofs when
dealing with givens of the form A ⊆ B. For instance, in Example 3.2.5 we
used the givens A ⊆ B and a ϵ A to conclude that a ϵ B. The justification
for this reasoning is that A ⊆ B means ∀x(x ϵ A → x ϵ B), so by universal
instantiation we can plug in a for x and conclude that a ϵ A → a ϵ B. Since
we also know a ϵ A, it follows by modus ponens that a ϵ B.

Example 3.3.4. Suppose F and G are families of sets and F ∩ G ≠ ∅.

Prove that ⋂F ⊆ ⋃G.

Scratch work



Our first step in analyzing the logical form of the goal is to write out the
meaning of the subset symbol, which gives us the statement ∀x(x ϵ ⋂F →

x ϵ ⋃G). We could go further with this analysis by writing out the

definitions of union and intersection, but the part of the analysis that we
have already done will be enough to allow us to decide how to get started
on the proof. The definitions of union and intersection will be needed later
in the proof, but we will wait until they are needed before filling them in.
When analyzing the logical forms of givens and goals in order to figure out
a proof, it is usually best to do only as much of the analysis as is needed to
determine the next step of the proof. Going further with the logical analysis
usually just introduces unnecessary complication, without providing any
benefit.

Because the goal means ∀x(x ϵ ⋂F → x ϵ ⋃G), we let x be arbitrary,

assume x ϵ ⋂F, and try to prove x ϵ ⋃G.

The new goal means ∃A ϵ G(x ϵ A), so to prove it we should try to find a

value that will “work” for A. Just looking at the goal doesn’t make it clear
how to choose A, so we look more closely at the givens. We begin by
writing them out in logical symbols:

The second given starts with ∀A, so we may not be able to use this given
until a likely value to plug in for A pops up during the course of the proof.
In particular, we should keep in mind that if we ever come across an
element of F while trying to figure out the proof, we can plug it in for A in

the second given and conclude that it contains x as an element. The first
given, however, starts with ∃A, so we should use it immediately. It says that
there is some object that is an element of F ∩ G. By existential

instantiation, we can introduce a name, say A0, for this object. Thus, we can



treat A0 ϵ F ∩ G as a given from now on. Because we now have a name, A0,

for a particular element of F ∩ G, it would be redundant to continue to

discuss the given statement ∃A(A ϵ F ∩ G), so we will drop it from our list

of givens. Since our new given A0 ϵ F ∩ G means A0 ϵ F and A0 ϵ G, we

now have the following situation:

If you’ve been paying close attention, you should know what the next
step should be. We decided before to keep our eyes open for any elements
of F that might come up during the proof, because we might want to plug

them in for A in the last given. An element of F has come up: A0! Plugging

A0 in for A in the last given, we can conclude that x ϵ A0. Any conclusions
can be treated in the future as givens, so you can add this statement to the
givens column if you like.

Remember that we decided to look at the givens because we didn’t know
what value to assign to A in the goal. What we need is a value for A that is
in G and that will make the statement x ϵ A come out true. Has this

consideration of the givens suggested a value to use for A? Yes! Use A = A0.
Although we translated the given statements x ϵ ⋂F, x ϵ ⋃G, and F ∩ G

≠ ∅ into logical symbols in order to figure out how to use them in the
proof, these translations are not usually written out when the proof is
written up in final form. In the final proof we just write these statements in
their original form and leave it to the reader of the proof to work out their
logical forms in order to follow our reasoning.

Solution

Theorem. Suppose F and G are families of sets, and F ∩ G ≠ ∅. Then ⋂F

⊆ ⋃G.



Proof. Suppose x ϵ ⋂F. Since F ∩ G ≠ ∅, we can let A0 be an element of

F ∩ G. Thus, A0 ϵ F and A0 ϵ G. Since x ϵ ⋂F and A0 ϵ F, it follows that

x ϵ A0. But we also know that A0 ϵ G, so we can conclude that x ϵ ⋃G.

□
Proofs involving the quantifiers for all and there exists are often difficult

for them.
That last sentence confused you, didn’t it? You’re probably wondering,

“Who are they?” Readers of your proofs will experience the same sort of
confusion if you use variables without explaining what they stand for.
Beginning proof-writers are sometimes careless about this, and that’s why
proofs involving the quantifiers for all and there exists are often difficult for
them. (It made more sense that time, didn’t it?) When you use the strategies
we’ve discussed in this section, you’ll be introducing new variables into
your proof, and when you do this, you must always be careful to make it
clear to the reader what they stand for.

For example, if you were proving a goal of the form ∀x ϵ A P(x), you
would probably start by introducing a variable x to stand for an arbitrary
element of A. Your reader won’t know what x means, though, unless you
begin your proof with “Let x be an arbitrary element of A,” or “Suppose x ϵ
A.” These sentences tell the reader that, from now on, he or she should think
of x as standing for some particular element of A, although which element it
stands for is left unspecified. Of course, you must be clear in your own
mind about what x means. In particular, because x is to be arbitrary, you
must be careful not to assume anything about x other than the fact that x ϵ
A. It might help to think of the value of x as being chosen by someone else;
you have no control over which element of A they’ll pick. Using a given of
the form ∃xP(x) is similar. This given tells you that you can introduce a
new variable x0 into the proof to stand for some object for which P(x0) is
true, but you cannot assume anything else about x0. On the other hand, if
you are proving ∃xP(x), your proof will probably start “Let x = ….” This
time you get to choose the value of x, and you must tell the reader explicitly
that you are choosing the value of x and what value you have chosen.

It’s also important, when you’re introducing a new variable x, to be sure
you know what kind of object x stands for. Is it a number? a set? a function?
a matrix? You’d better not write a ϵ X unless X is a set, for example. If you



aren’t careful about this, you might end up writing nonsense. You also
sometimes need to know what kind of object a variable stands for to figure
out the logical form of a statement involving that variable. For example, A =
B means ∀x(x ϵ A ↔ x ϵ B) if A and B are sets, but not if they’re numbers.

The most important thing to keep in mind about introducing variables
into a proof is simply the fact that variables must always be introduced
before they are used. If you make a statement about x (i.e., a statement in
which x occurs as a free variable) without first explaining what x stands for,
a reader of your proof won’t know what you’re talking about – and there’s a
good chance that you won’t know what you’re talking about either!

Because proofs involving quantifiers may require more practice than the
other proofs we have discussed so far, we end this section with two more
examples.

Example 3.3.5. Suppose B is a set and F is a family of sets. Prove that if

⋃ F ⊆ B then F ⊆ P(B).

Scratch work

We assume ⋃ F ⊆ B and try to prove F ⊆ P(B). Because this goal means

∀x(x ϵ F → x ϵ P(B)), we let x be arbitrary, assume x ϵ F, and set x ϵ

P(B) as our goal. Recall that F is a family of sets, so since x ϵ F, x is a set.

Thus, we now have the following givens and goal:

To figure out how to prove this goal, we must use the definition of power
set. The statement x ϵ P(B) means x ⊆ B, or in other words ∀y(y ϵ x → y
ϵ B). We must therefore introduce another arbitrary object into the proof.
We let y be arbitrary, assume y ϵ x, and try to prove y ϵ B.



The goal can be analyzed no further, so we must look more closely at the
givens. Our goal is y ϵ B, and the only given that even mentions B is the
first. In fact, the first given would enable us to reach this goal, if only we
knew that y ϵ ⋃ F. This suggests that we might try treating y ϵ ⋃ F as our

goal. If we can reach this goal, then we can just add one more step,
applying the first given, and the proof will be done.

Once again, we have a goal whose logical form can be analyzed, so we
use the form of the goal to guide our strategy. The goal means ∃A ϵ F(y ϵ

A), so to prove it we must find a set A such that A ϵ F and y ϵ A. Looking

at the givens, we see that x is such a set, so the proof is done.

Solution

Theorem. Suppose B is a set and F is a family of sets. If ⋃F ⊆ B then F ⊆

P(B).

Proof. Suppose ⋃F ⊆ B. Let x be an arbitrary element of F. Let y be an

arbitrary element of x. Since y ϵ x and x ϵ F, by the definition of ⋃F, y ϵ

⋃ F. But then since ⋃ F ⊆ B, y ϵ B. Since y was an arbitrary element of x,

we can conclude that x ⊆ B, so x ϵ P(B). But x was an arbitrary element of
F, so this shows that F ⊆ P(B), as required.

□
The Venn diagram in Figure 3.1 may help you see why the theorem in

Example 3.3.5 is true, and you might find it useful to refer to the picture as
you reread the proof. But notice that we didn’t prove the theorem by simply
explaining this picture; the proof was constructed by following the proof
strategies we have discussed. There are many methods, such as drawing
pictures or working out examples, that may help you achieve an
understanding of why a theorem is true. But an explanation of this



understanding is not a proof. To prove a theorem, you must follow the
strategies in this chapter.

Figure 3.1. The small circles represent elements of F, and the shaded region is ⋃ F. The large
circle represents B.

The proof in Example 3.3.5 is probably the most complex proof we’ve
done so far. Read it again and make sure you understand its structure and
the purpose of every sentence. Isn’t it remarkable how much logical
complexity has been packed into just a few lines?

It is not uncommon for a short proof to have such a rich logical structure.
This efficiency of exposition is one of the most attractive features of proofs,
but it also often makes them difficult to read. Although we’ve been
concentrating so far on writing proofs, it is also important to learn how to
read proofs written by other people. To give you some practice with this,
we present our last proof in this section without the scratch work. See if you
can follow the structure of the proof as you read it. We’ll provide a
commentary after the proof that should help you to understand it.

For this proof, we need the following definition:

Definition 3.3.6. For any integers x and y, we’ll say that x divides y (or y is
divisible by x) if ∃k ϵ Z (kx = y). We use the notation x | y to mean “x
divides y,” and x ∤ y means “x does not divide y.”

For example, 4 | 20, since 5 · 4 = 20, but 4 21.

Theorem 3.3.7. For all integers a, b, and c, if a | b and b | c then a | c.



Proof. Let a, b, and c be arbitrary integers and suppose a | b and b | c. Since
a | b, we can choose some integer m such that ma = b. Similarly, since b | c,
we can choose an integer n such that nb = c. Therefore c = nb = nma, so
since nm is an integer, a | c.

□

Commentary. The theorem says ∀a ϵ Z∀b ϵ Z∀c ϵ Z(a | b ∧ b | c → a | c),
so the most natural way to proceed is to let a, b, and c be arbitrary integers,
assume a | b and b | c, and then prove a | c. The first sentence of the proof
indicates that this strategy is being used, so the goal for the rest of the proof
must be to prove that a | c. The fact that this is the goal for the rest of the
proof is not explicitly stated. You are expected to figure this out for yourself
by using your knowledge of proof strategies. You might even want to make
a givens and goal list to help you keep track of what is known and what
remains to be proven as you continue to read the proof. At this point in the
proof, the list would look like this:

Because the new goal means ∃k ϵ Z(ka = c), the proof will probably
proceed by finding an integer k such that ka = c. As with many proofs of
existential statements, the first step in finding such a k involves looking
more closely at the givens. The next sentence of the proof uses the given a |
b to conclude that we can choose an integer m such that ma = b. The proof
doesn’t say what rule of inference justifies this. It is up to you to figure it
out by working out the logical form of the given statement a | b, using the
definition of divides. Because this given means ∃k ϵ Z(ka = b), you should
recognize that the rule of inference being used is existential instantiation.
Existential instantiation is also used in the next sentence of the proof to
justify choosing an integer n such that nb = c. The equations ma = b and nb
= c can now be added to the list of givens.

Some steps have also been skipped in the last sentence of the proof. We
expected that the goal a | c would be proven by finding an integer k such
that ka = c. From the equation c = nma and the fact that nm is an integer, it
follows that k = nm will work, but the proof doesn’t explicitly say that this



value of k is being used; in fact, the variable k does not appear at all in the
proof. Of course, the variable k does not appear in the statement of the
theorem either. A reader of the proof would expect us to prove that a | c by
finding an integer that, when multiplied by a, gives the value c, but based
on reading the statement of the theorem, the reader would have no reason to
expect this integer to be given the name k. Assigning this name to the
integer nm would therefore not have made the proof easier to understand, so
we didn’t do it.

Exercises
Note: Exercises marked with the symbol PD can be done with Proof
Designer, which is computer software that is available free on the internet.

*1. In exercise 7 of Section 2.2 you used logical equivalences to
show that ∃x(P(x) → Q(x)) is equivalent to ∀xP(x) → ∃xQ(x).
Now use the methods of this section to prove that if ∃x(P(x) →
Q(x)) is true, then ∀xP(x) → ∃xQ(x) is true. (Note: The other
direction of the equivalence is quite a bit harder to prove. See
exercise 30 of Section 3.5.)

2. Prove that if A and B \ C are disjoint, then A ∩ B ⊆ C.
*3. Prove that if A ⊆ B \ C then A and C are disjoint.

PD4. Suppose A ⊆ P(A). Prove that P(A) ⊆ P(P(A)).

5. The hypothesis of the theorem proven in exercise 4 is A ⊆ P(A).
(a) Can you think of a set A for which this hypothesis is true?
(b) Can you think of another?
6. Suppose x is a real number.

(a) Prove that if x ≠ 1 then there is a real number y such that 
(b) Prove that if there is a real number y such that  then x ≠

1.
*7. Prove that for every real number x, if x > 2 then there is a real

number y such that y + 1/y = x.
PD8. Prove that if F is a family of sets and A ϵ F, then A ⊆ ⋃ F.



*9. Prove that if F is a family of sets and A ϵ F, then ⋂F ⊆ A.

10. Suppose that F is a nonempty family of sets, B is a set, and ∀A ϵ

F (B ⊆ A). Prove that B ⊆ ⋂F.

11. Suppose that F is a family of sets. Prove that if ∅ ϵ F then ⋂F

= ∅.
PD*12. Suppose F and G are families of sets. Prove that if F ⊆ G then

⋃ F ⊆ G.

13. Suppose F and G are nonempty families of sets. Prove that if F

⊆ G then ⋂ G ⊆ ⋂F.

*14. Suppose that {Ai | i ϵ I} is an indexed family of sets. Prove that 
 (Hint: First make sure you know what

all the notation means!)
15. Suppose {Ai | i ϵ I} is an indexed family of sets and I = ∅. Prove

that 
PD16. Prove the converse of the statement proven in Example 3.3.5. In

other words, prove that if F ⊆ P(B) then ⋃ F ⊆ B.

*17. Suppose F and G are nonempty families of sets, and every

element of F is a subset of every element of G. Prove that ⋃ F ⊆

⋂ G.

18. In this problem all variables range over Z, the set of all integers.

(a) Prove that if a | b and a | c, then a | (b + c).
(b) Prove that if ac | bc and c ≠ 0, then a | b.
19. (a) Prove that for all real numbers x and y there is a real number

z such that x + z = y − z.
(b) Would the statement in part (a) be correct if “real number” were

changed to “integer”? Justify your answer.
*20. Consider the following theorem:

Theorem. For every real number x, x2 ≥ 0.
What’s wrong with the following proof of the theorem?



Proof. Suppose not. Then for every real number x, x2 < 0. In
particular, plugging in x = 3 we would get 9 < 0, which is clearly
false. This contradiction shows that for every number x, x2 ≥ 0.

□
21. Consider the following incorrect theorem:

Incorrect Theorem. If ∀x ϵ A(x ≠ 0) and A ⊆ B then ∀x ϵ B(x ≠
0).

(a) What’s wrong with the following proof of the theorem?
Proof. Suppose that ∀x ϵ A(x ≠ 0) and A ⊆ B. Let x be an
arbitrary element of A. Since ∀x ϵ A(x ≠ 0), we can conclude
that x ≠ 0. Also, since A ⊆ B, x ϵ B. Since x ϵ B, x ≠ 0, and x
was arbitrary, we can conclude that ∀x ϵ B(x ≠ 0). □

(b) Find a counterexample to the theorem. In other words, find an
example of sets A and B for which the hypotheses of the theorem
are true but the conclusion is false.

*22. Consider the following incorrect theorem:

Incorrect Theorem. ∃x ϵ R∀y ϵ R(xy2 = y − x).

What’s wrong with the following proof of the theorem?

Proof. Let x = y/(y2 + 1). Then

□

23. Consider the following incorrect theorem:

Incorrect Theorem. Suppose F and G are families of sets. If ⋃F

and ⋃G are disjoint, then so are F and G.

(a) What’s wrong with the following proof of the theorem?

Proof. Suppose ⋃F and ⋃G are disjoint. Suppose F and G are

not disjoint. Then we can choose some set A such that A ϵ F and



A ϵ G. Since A ϵ F, by exercise 8, A ⊆ ⋃F, so every element of

A is in ⋃F. Similarly, since A ϵ G, every element of A is in ⋃G.

But then every element of A is in both ⋃F and ⋃G, and this is

impossible since ⋃F and ⋃G are disjoint. Thus, we have

reached a contradiction, so F and G must be disjoint.

□
(b) Find a counterexample to the theorem.
24. Consider the following putative theorem:

Theorem? For all real numbers x and y, x2 + xy − 2y2 = 0.
(a) What’s wrong with the following proof of the theorem?

Proof. Let x and y be equal to some arbitrary real number r. Then

x2 + xy − 2y2 = r2 + r · r − 2r2 = 0.

Since x and y were both arbitrary, this shows that for all real
numbers x and y, x2 + xy − 2y2 = 0.

□
(b) Is the theorem correct? Justify your answer with either a proof or

a counterexample.
*25. Prove that for every real number x there is a real number y such

that for every real number z, yz = (x + z)2 − (x2 + z2).
26. (a) Comparing the various rules for dealing with quantifiers in

proofs, you should see a similarity between the rules for goals of
the form ∀xP(x) and givens of the form ∃xP(x). What is this
similarity? What about the rules for goals of the form ∃xP(x) and
givens of the form ∀xP(x)?

(b) Can you think of a reason why these similarities might be
expected? (Hint: Think about how proof by contradiction works
when the goal starts with a quantifier.)



3.4 Proofs Involving Conjunctions and
Biconditionals
The method for proving a goal of the form P ∧ Q is very simple:

To prove a goal of the form P ∧ Q:
Prove P and Q separately.

In other words, a goal of the form P ∧ Q is treated as two separate goals: P,
and Q. The same is true of givens of the form P ∧ Q:

To use a given of the form P ∧ Q:
Treat this given as two separate givens: P, and Q.

We’ve already used these ideas, without mention, in some of our
previous examples. For example, the definition of the given x ϵ A \ C in
Example 3.2.3 was x ϵ A ∧ x ∉ C, but we treated it as two separate givens:
x ϵ A, and x ∉ C.

Example 3.4.1. Suppose A ⊆ B, and A and C are disjoint. Prove that A ⊆
B \ C.

Scratch work

Analyzing the logical form of the goal, we see that it has the form ∀x(x ϵ
A→ x ϵ B \ C), so we let x be arbitrary, assume x ϵ A, and try to prove that
x ϵ B \ C. The new goal x ϵ B \ C means x ϵ B ∧ x ∉ C, so according to
our strategy we should split this into two goals, x ϵ B and x ∉ C, and prove
them separately.



The final proof will have this form:

Let x be arbitrary.
Suppose x ϵ A.

[Proof of x ϵ B goes here.]
[Proof of x ∉ C goes here.]
Thus, x ϵ B ∧ x ∉ C, so x ϵ B \ C.

Therefore x ϵ A → x ϵ B \ C.
Since x was arbitrary, ∀x(x ϵ A → x ϵ B \ C), so A ⊆ B \ C.

The first goal, x ϵ B, clearly follows from the fact that x ϵ A and A ⊆ B.
The second goal, x ∉ C, follows from x ϵ A and A ∩ C = ∅. You can see
this by analyzing the logical form of the statement A ∩ C = ∅. It is a
negative statement, but it can be reexpressed as an equivalent positive
statement:

Plugging in x for y in this last statement, we see that x ϵ A → x ∉ C, and
since we already know x ϵ A, we can conclude that x ∉ C.

Solution

Theorem. Suppose A ⊆ B, and A and C are disjoint. Then A ⊆ B \ C.

Proof. Suppose x ϵ A. Since A ⊆ B, it follows that x ϵ B, and since A and C
are disjoint, we must have x ∉ C. Thus, x ϵ B \ C. Since x was an arbitrary
element of A, we can conclude that A ⊆ B \ C.

□
Using our strategies for working with conjunctions, we can now work out

the proper way to deal with statements of the form P ↔ Q in proofs.
Because P ↔ Q is equivalent to (P → Q) ∧ (Q → P), according to our
strategies a given or goal of the form P ↔ Q should be treated as two
separate givens or goals: P → Q, and Q → P.



To prove a goal of the form P ↔ Q:
Prove P → Q and Q → P separately.

To use a given of the form P ↔ Q:
Treat this as two separate givens: P → Q, and Q → P.

This is illustrated in the next example, in which we use the following
definitions.

Definition 3.4.2. An integer x is even if ∃k ϵ Z(x = 2k), and x is odd if ∃ k
ϵ Z (x= 2 k + 1).

We also use the fact that every integer is either even or odd, but not both.
For a proof of this fact, see exercise 16 in Section 6.1.

Example 3.4.3. Suppose x is an integer. Prove that x is even iff x2 is even.

Scratch work
The goal is (x is even) ↔ (x2 is even), so we prove the two goals (x is even)
→(x2 is even)and(x2 is even) → (x is even)separately. For the first, we
assume that x is even and prove that x2 is even:

Writing out the definition of even in both the given and the goal will reveal
their logical forms:

Because the second given starts with ∃k, we immediately use it and let k
stand for some particular integer for which the statement x = 2k is true.
Thus, we have two new given statements: k ϵ Z, and x = 2k.



The goal starts with ∃k, but since k is already being used to stand for a
particular number, we cannot assign a new value to k to prove the goal. We
must therefore switch to a different letter, say j. One way to understand this
is to think of rewriting the goal in the equivalent form ∃j ϵ Z(x2 = 2j). To
prove this goal we must come up with a value to plug in for j. It must be an
integer, and it must satisfy the equation x2 = 2j. Using the given equation x
= 2k, we see that x2 = (2k)2 = 4k2 = 2(2k2), so it looks like the right value to
choose for j is j = 2k2. Clearly 2k2 is an integer, so this choice for j will
work to complete the proof of our first goal.

To prove the second goal (x2 is even) → (x is even), we’ll prove the
contrapositive (x is not even) → (x2 is not even) instead. Since any integer
is either even or odd but not both, this is equivalent to the statement (x is
odd) → (x2 is odd).

The steps are now quite similar to the first part of the proof. As before,
we begin by writing out the definition of odd in both the second given and
the goal. This time, to avoid the conflict of variable names we ran into in
the first part of the proof, we use different names for the bound variables in
the two statements.

Next we use the second given and let k stand for a particular integer for
which x = 2k + 1.

We must now find an integer j such that x2 = 2j + 1. Plugging in 2k + 1
for x we get x2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, so j = 2k2 + 2k
looks like the right choice.



Before giving the final write-up of the proof, we should make a few
explanatory remarks. The two conditional statements we’ve proven can be
thought of as representing the two directions → and ← of the biconditional
symbol ↔ in the original goal. These two parts of the proof are sometimes
labeled with the symbols → and ←. In each part, we end up proving a
statement that asserts the existence of a number with certain properties. We
called this number j in the scratch work, but note that j was not mentioned
explicitly in the statement of the problem. As in the proof of Theorem 3.3.7,
we have chosen not to mention j explicitly in the final proof either.

Solution

Theorem. Suppose x is an integer. Then x is even iff x2 is even.

Proof. (→) Suppose x is even. Then for some integer k, x = 2k. Therefore,
x2 = 4k2 = 2(2k2), so since 2k2 is an integer, x2 is even. Thus, if x is even
then x2 is even.

(←) Suppose x is odd. Then x = 2 k + 1 for some integer k. Therefore, x2

= (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, so since 2k2 + 2k is an integer,
x2 is odd. Thus, if x2 is even then x is even.

□
Using the proof techniques we’ve developed, we can now verify some of

the equivalences that we were only able to justify on intuitive grounds in
Chapter 2. As an example of this, let’s prove that the formulas ∀x¬P(x) and
¬∃xP(x) are equivalent. To say that these formulas are equivalent means
that they will always have the same truth value. In other words, no matter
what statement P(x) stands for, the statement ∀x¬P(x) ↔ ¬∃xP(x) will be
true. We can prove this using our technique for proving biconditional
statements.

Example 3.4.4. Prove that ∀x¬P(x) ↔ ¬∃xP(x).

Scratch work

(→) We must prove ∀x¬ P(x) → ¬∃xP(x), so we assume ∀x¬ P(x) and try
to prove ¬∃xP(x). Our goal is now a negated statement, and reexpressing it
would require the use of the very equivalence that we are trying to prove!



We therefore fall back on our only other strategy for dealing with negative
goals, proof by contradiction. We now have the following situation:

The second given starts with an existential quantifier, so we use it
immedi-ately and let x0 stand for some object for which the statement P(x0)
is true. But now plugging in x0 for x in the first given we can conclude that
¬P(x0), which gives us the contradiction we need.

(←) For this direction of the biconditional we should assume ¬∃ xP(x)
and try to prove ∀x¬P(x). Because this goal starts with a universal
quantifier, we let x be arbitrary and try to prove ¬P(x). Once again, we now
have a negated goal that can’t be reexpressed, so we use proof by
contradiction:

Our first given is also a negated statement, and this suggests that we
could get the contradiction we need by proving ∃xP(x). We therefore set
this as our goal.

To keep from confusing the x that appears as a free variable in the second
given (the arbitrary x introduced earlier in the proof) with the x that appears
as a bound variable in the goal, you might want to rewrite the goal in the
equivalent form ∃yP(y). To prove this goal we have to find a value of y that
makes P(y) come out true. But this is easy! Our second given, P(x), tells us
that our arbitrary x is the value we need.

Solution

Theorem. ∀x¬P(x) ↔ ¬∃xP(x).



Proof. (→) Suppose ∀x¬P(x), and suppose ∃xP(x). Then we can choose
some x0 such that P(x0) is true. But since ∀x¬P(x), we can conclude that
¬P(x0), and this is a contradiction. Therefore ∀x¬P(x) → ¬∃xP(x).

(←) Suppose ¬∃xP(x). Let x be arbitrary, and suppose P(x). Since we
have a specific x for which P(x) is true, it follows that ∃xP(x), which is a
contradiction. Therefore, ¬P(x). Since x was arbitrary, we can conclude that
∀x¬P(x), so ¬∃ xP(x) → ∀x¬P(x).

□
Sometimes in a proof of a goal of the form P ↔ Q the steps in the proof

of Q→ P are the same as the steps used to prove P → Q, but in reverse
order. In this case you may be able to simplify the proof by writing it as a
string of equivalences, starting with P and ending with Q. For example,
suppose you found that you could prove P → Q by first assuming P, then
using P to infer some other statement R, and then using R to deduce Q; and
suppose that the same steps could be used, in reverse order, to prove that Q
→ P. In other words, you could assume Q, use this assumption to conclude
that R was true, and then use R to prove P. Since you would be asserting
both P → R and R → P, you could sum up these two steps by saying P ↔
R. Similarly, the other two steps of the proof tell you that R ↔ Q. These two
statements imply the goal P ↔ Q. Mathematicians sometimes present this
kind of proof by simply writing the string of equivalences

P iff R iff Q.

You can think of this as an abbreviation for “P iff R and R iff Q (and
therefore P iff Q).” This is illustrated in the next example.

Example 3.4.5. Suppose A, B, and C are sets. Prove that A ∩ (B \ C) = (A
∩ B) \ C.

Scratch work

As we saw in Chapter 2, the equation A ∩ (B \ C) = (A ∩ B) \ C means ∀x(x
ϵ A ∩ (B \ C) ↔ x ϵ (A ∩ B) \ C), but it is also equivalent to the statement
[A ∩ (B \ C) ⊆ (A ∩ B) \ C] ∧ [(A ∩ B) \ C ⊆ A ∩ (B \ C)]. This suggests
two approaches to the proof. We could let x be arbitrary and then prove x ϵ
A ∩ (B \ C) ↔ x ϵ (A ∩ B) \ C, or we could prove the two statements A ∩
(B \ C) ⊆ (A ∩ B) \ C and (A ∩ B) \ C ⊆ A ∩ (B \ C). In fact, almost every



proof that two sets are equal will involve one of these two approaches. In
this case we will use the first approach, so once we have introduced our
arbitrary x, we will have an iff goal.

For the (→) half of the proof we assume x ϵ A ∩ (B \ C) and try to prove
x ϵ (A ∩ B) \ C:

To see the logical forms of the given and goal, we write out their
definitions as follows:

At this point it is clear that the given implies the goal, since the last steps
in both strings of equivalences turned out to be identical. In fact, it is also
clear that the reasoning involved in the (←) direction of the proof will be
exactly the same, but with the given and goal columns reversed. Thus, we
might try to shorten the proof by writing it as a string of equivalences,
starting with x ϵ A ∩ (B \ C) and ending with x ϵ (A ∩ B) \ C. In this case,
if we start with x ϵ A ∩ (B \ C) and follow the first string of equivalences
displayed above, we come to a statement that is the same as the last
statement in the second string of equivalences. We can then continue by
following the second string of equivalences backward, ending with x ϵ (A
∩ B) \ C.

Solution

Theorem. Suppose A, B, and C are sets. Then A ∩ (B \ C) = (A ∩ B) \ C.

Proof. Let x be arbitrary. Then

Thus, ∀x(x ϵ A ∩ (B \ C) ↔ x ϵ (A ∩ B) \ C), so A ∩ (B \ C) = (A ∩ B) \ C.
□



The technique of figuring out a sequence of equivalences in one order
and then writing it in the reverse order is used quite often in proofs. The
order in which the steps should be written in the final proof is determined
by our rule that an assertion should never be made until it can be justified.
In particular, if you are trying to prove P ↔ Q, it is wrong to start your
write-up of the proof with the unjustified statement P ↔ Q and then work
out the meanings of the two sides P and Q, showing that they are the same.
You should instead start with equivalences you can justify and string them
together to produce a justification of the goal P ↔ Q before you assert this
goal. A similar technique can sometimes be used to figure out proofs of
equations, as the next example shows.

Example 3.4.6. Prove that for any real numbers a and b,

(a +b)2 − 4(a − b)2 =(3b − a)(3a − b).

Scratch work

The goal has the form ∀a∀b((a + b)2 − 4(a − b)2 = (3b − a)(3a − b)), so we
start by letting a and b be arbitrary real numbers and try to prove the
equation. Multiplying out both sides gives us:

Clearly the two sides are equal. The simplest way to write the proof of
this is to write a string of equalities starting with (a +b)2 −4(a − b)2 and
ending with (3b − a)(3a − b). We can do this by copying down the first
string of equalities displayed above, and then following it with the last line,
written backward.

Solution

Theorem. For any real numbers a and b,

(a +b)2 − 4(a − b)2 =(3b − a)(3a − b).

Proof. Let a and b be arbitrary real numbers. Then



□
We end this section by presenting another proof without preliminary

scratch work, but with a commentary to help you read the proof.

Theorem 3.4.7. For every integer n, 6 | n iff 2 | n and 3 | n.

Proof. Let n be an arbitrary integer.
(→) Suppose 6 |n. Then we can choose an integer k such that 6 k = n.

Therefore n = 6k = 2(3k), so 2 | n, and similarly n = 6k = 3(2k), so 3 | n.
(←) Suppose 2 | n and 3 |n. Then we can choose integers j and k such that

n = 2j and n = 3k. Therefore 6(j − k) = 6j − 6k = 3(2j) − 2(3k) = 3n − 2n = n,
so 6 | n.

□

Commentary. The statement to be proven is ∀ n ϵ Z[6 | n ↔((2 | n) ∧(3
|n))], and the most natural strategy for proving a goal of this form is to let n
be arbitrary and then prove both directions of the biconditional separately. It
should be clear that this is the strategy being used in the proof.

For the left-to-right direction of the biconditional, we assume 6 | n and
then prove 2 | n and 3 | n, treating this as two separate goals. The
introduction of the integer k is justified by existential instantiation, since the
assumption 6 | n means ∃k ϵ Z(6k = n). At this point in the proof we have
the following givens and goals:

The first goal, 2 | n, means ∃j ϵ Z(2j = n), so we must find an integer j
such that 2j = n. Although the proof doesn’t say so explicitly, the equation
n= 2(3k), which is derived in the proof, suggests that the value being used
for j is j = 3k. Clearly, 3k is an integer (another step skipped in the proof),
so this choice for j works. The proof of 3 | n is similar.



For the right-to-left direction we assume 2 | n and 3 | n and prove 6 | n.
Once again, the introduction of j and k is justified by existential
instantiation. No explanation is given for why we should compute 6(j − k),
but a proof need not provide such explanations. The reason for the
calculation should become clear when, surprisingly, it turns out that 6(j − k)
= n. Such surprises provide part of the pleasure of working with proofs. As
in the first half of the proof, since j − k is an integer, this shows that 6 | n.

Exercises
*1. Use the methods of this chapter to prove that ∀x(P(x) ∧ Q(x)) is

equivalent to ∀xP(x) ∧ ∀xQ(x).
PD2. Prove that if A ⊆ B and A ⊆ C then A ⊆ B ∩ C.
PD3. Suppose A ⊆ B. Prove that for every set C, C \ B ⊆ C \ A.
PD*4. Prove that if A ⊆ B and A ⊈ C then B ⊈ C.
PD5. Prove that if A ⊆ B \ C and A ≠ ∅ then B ⊈ C.

6. Prove that for any sets A, B, and C, A \ (B ∩ C) = (A \ B) ∪ (A \
C), by finding a string of equivalences starting with x ϵ A \ (B ∩
C) and ending with x ϵ (A \ B) ∪ (A \ C). (See Example 3.4.5.)

PD*7. Use the methods of this chapter to prove that for any sets A and
B, P(A∩ B) = P(A) ∩ P(B).

PD8. Prove that A ⊆ B iff P(A) ⊆ P(B).
*9. Prove that if x and y are odd integers, then xy is odd.
10. Prove that if x and y are odd integers, then x − y is even.
11. Prove that for every integer n, n3 is even iff n is even.
12. Consider the following putative theorem:

Theorem? Suppose m is an even integer and n is an odd integer.
Then n2 −m2 = n +m.

(a) What’s wrong with the following proof of the theorem?

Proof. Since m is even, we can choose some integer k such that m =
2k. Similarly, since n is odd we have n = 2 k + 1. Therefore



(b) Is the theorem correct? Justify your answer with either a proof or
a counterexample.

*13. Prove that ∀x ϵ R[∃y ϵ R(x + y = xy) ↔ x = 1].
14. Prove that ∃z ϵ R∀x ϵ R+[∃y ϵ R(y − x = y/x) ↔ x = z].

PD15. Suppose B is a set and F is a family of sets. Prove that ⋃{A \ B |

A ϵ F} ⊆ ⋃(F \ P(B)).

*16. Suppose F and G are nonempty families of sets and every

element of F is disjoint from some element of G. Prove that ⋃F

and ⋂G are disjoint.

PD17. Prove that for any set A, A = ⋃P(A).
PD*18. Suppose F and G are families of sets.

(a) Prove that ⋃(F ∩ G) ⊆ (⋃F) ∩ (⋃G).

(b) What’s wrong with the following proof that (⋃F) ∩ (⋃G) ⊆

⋃(F ∩ G)?

Proof. Suppose x ϵ (⋃F) ∩ (⋃G). This means that x ϵ ⋃F and x ϵ

⋃G, so ∃A ϵ F(x ϵ A) and ∃A ϵ G(x ϵ A). Thus, we can choose a set

A such that A ϵ F, A ϵ G, and x ϵ A. Since A ϵ F and A ϵ G, A ϵ F ∩

G. Therefore ∃A ϵ F ∩ G(x ϵ A), so x ϵ ⋃(F ∩ G). Since x was

arbitrary, we can conclude that (⋃F) ∩ (⋃G) ⊆ ⋃(F ∩ G).

□
(c) Find an example of families of sets F and G for which ⋃(F ∩ G)

≠ (⋃F) ∩ (⋃G).

PD19. Suppose F and G are families of sets. Prove that (⋃F) ∩ (⋃G)

⊆ ⋃(F ∩ G) iff ∀A ϵ F∀B ϵ G(A ∩ B ⊆ ⋃(F ∩ G)).



PD20. Suppose F and G are families of sets. Prove that ⋃F and ⋃G are

disjoint iff for all A ϵ F and B ϵ G, A and B are disjoint.

PD21. Suppose F and G are families of sets.

(a) Prove that (⋃F) \ (⋃G) ⊆ ⋃(F \ G).

(b) What’s wrong with the following proof that ⋃(F \ G) ⊆ (⋃F) \

(⋃G)?

Proof. Suppose x ϵ ⋃(F \ G). Then we can choose some A ϵ F \ G

such that x ϵ A. Since A ϵ F \ G, A ϵ F and A / ϵ G. Since x ϵ A and

A ϵ F, x ϵ ⋃F. Since x ϵ A and A ∉ G, x ∉ ⋃G. Therefore x ϵ (⋃F)

\ (⋃G).

□
(c) Prove that ⋃(F \ G) ⊆ (⋃F) \ (⋃G) iff ∀A ϵ (F \ G)∀B ϵ G(A ∩

B = ∅).
(d) Find an example of families of sets F and G for which ⋃(F \ G)

≠ (⋃F) \ (⋃G).

PD*22. Suppose F and G are families of sets. Prove that if ⋃F ⋃ ⋃G,

then there is some A ϵ F such that for all B ϵ G, A ⋃ B.

23. Suppose B is a set, {Ai | i ϵ I } is an indexed family of sets, and I
≠ ∅.

(a) What proof strategies are used in the following proof of the
equation B ∩ (⋃i ϵ I Ai) = ⋃i ϵ I (B ∩ Ai)?

Proof. Let x be arbitrary. Suppose x ϵ B ∩ (⋃i ϵ I Ai). Then x ϵ B
and x ϵ ⋃i ϵ I Ai, so we can choose some i0 ϵ I such that x ϵ Ai0.
Since x ϵ B and x ϵ Ai0, x ϵ B ∩ Ai0. Therefore x ϵ ⋃i ϵ I (B ∩
Ai).



Now suppose x ϵ ⋃i ϵ I (B ∩ Ai). Then we can choose some i0
ϵ I such that x ϵ B ∩ Ai0. Therefore x ϵ B and x ϵ Ai0. Since x ϵ
Ai0, x ϵ ⋃i ϵ I Ai. Since x ϵ B and x ϵ ⋃i ϵ I Ai, x ϵ B ∩ (⋃i ϵ l

Ai).
Since x was arbitrary, we have shown that ∀x[x ϵ B ∩(⋃i ϵ I

Ai) ↔ x ϵ ⋃i ϵ I (B ∩ Ai)], so B ∩ (⋃i ϵ I Ai) = ⋃i ϵ I (B ∩ Ai).
□

(b) Prove that B \ (⋃i ϵ I Ai) = ⋃i ϵ I (B \ Ai).
(c) Can you discover and prove a similar theorem about B\(⋃i ϵ I

Ai)? (Hint: Try to guess the theorem, and then try to prove it. If
you can’t finish the proof, it might be because your guess was
wrong. Change your guess and try again.)

*24. Suppose {Ai | i ϵ I } and {Bi | i ϵ I } are indexed families of sets
and I ≠ ∅.

(a) Prove that ⋃i ϵ I (Ai \ Bi) ⊆ (⋃i ϵ I Ai) \ (⋃i ϵ l Bi).
(b) Find an example for which ⋃i ϵ I (Ai \ Bi) ≠ (⋃i ϵ I Ai)\(⋃i ϵ I Bi).

25. Suppose {Ai | i ϵ I } and {Bi | i ϵ I } are indexed families of sets.
(a) Prove that ⋃i ϵ I(Ai ∩ Bi) ⊆ (⋃i ϵ I Ai) ∩ (⋃i ϵ I Bi).
(b) Find an example for which ⋃i ϵ I(Ai ∩ Bi) ≠ (⋃i ϵ I Ai) ∩ (⋃i ϵ

I Bi).

26. Prove that for all integers a and b there is an integer c such that a
| c and b | c.

27. (a) Prove that for every integer n, 15 | n iff 3 | n and 5 | n.
(b) Prove that it is not true that for every integer n, 60 | n iff 6 | n and

10 | n.

3.5 Proofs Involving Disjunctions
Suppose one of your givens in a proof has the form P ∨ Q. This given tells
you that either P or Q is true, but it doesn’t tell you which. Thus, there are
two possibilities that you must take into account. One way to do the proof



would be to consider these two possibilities in turn. In other words, first
assume that P is true and use this assumption to prove your goal. Then
assume Q is true and give another proof that the goal is true. Although you
don’t know which of these assumptions is correct, the given P ∨ Q tells you
that one of them must be correct. Whichever one it is, you have shown that
it implies the goal. Thus, the goal must be true.

The two possibilities that are considered separately in this type of proof –
the possibility that P is true and the possibility that Q is true – are called
cases. The given P ∨ Q justifies the use of these two cases by guaranteeing
that these cases cover all of the possibilities. Mathematicians say in this
situation that the cases are exhaustive. Any proof can be broken into two or
more cases at any time, as long as the cases are exhaustive.

To use a given of the form P ∨ Q:
Break your proof into cases. For case 1, assume that P is true and use this

assumption to prove the goal. For case 2, assume Q is true and give another
proof of the goal.

Scratch work

Before using strategy:

After using strategy:

Form of final proof:
Case 1. P is true.

[Proof of goal goes here.]
Case 2. Q is true.

[Proof of goal goes here.]



Since we know P ∨ Q, these cases cover all the possibilities. Therefore the
goal must be true.

Example 3.5.1. Suppose that A, B, and C are sets. Prove that if A ⊆ C and
B ⊆ C then A ∪ B ⊆ C.

Scratch work

We assume A ⊆ C and B ⊆ C and prove A ∪ B ⊆ C. Writing out the goal
using logical symbols gives us the following givens and goal:

To prove the goal we let x be arbitrary, assume x ϵ A ∪ B, and try to
prove x ϵ C. Thus, we now have a new given x ϵ A ∪ B, which we write as
x ϵ A ∨ x ϵ B, and our goal is now x ϵ C.

Because the goal cannot be analyzed any further at this point, we look
more closely at the givens. The first given will be useful if we ever come
across an object that is an element of A, since it would allow us to conclude
immediately that this object must also be an element of C. Similarly, the
second given will be useful if we come across an element of B. Keeping in
mind that we should watch for any elements of A or B that might come up,
we move on to the third given. Because this given has the form P ∨ Q, we
try proof by cases. For the first case we assume x ϵ A, and for the second
we assume x ϵ B. In the first case we therefore have the following givens
and goal:



We’ve already decided that if we ever come across an element of A, we
can use the first given to conclude that it is also an element of C. Since we
now have x ϵ A as a given, we can conclude that x ϵ C, which is our goal.
The reasoning for the second case is quite similar, using the second given
instead of the first.

Solution

Theorem. Suppose that A, B, and C are sets. If A ⊆ C and B ⊆ C then A∪
B ⊆ C.

Proof. Suppose A ⊆ C and B ⊆ C, and let x be an arbitrary element of A ∪
B. Then either x ϵ A or x ϵ B.

Case 1. x ϵ A. Then since A ⊆ C, x ϵ C.
Case 2. x ϵ B. Then since B ⊆ C, x ϵ C.
Since we know that either x ϵ A or x ϵ B, these cases cover all the

possibilities, so we can conclude that x ϵ C. Since x was an arbitrary
element of A ∪ B, this means that A ∪ B ⊆ C.

□

Note that the cases in this proof are not exclusive. In other words, it is
possible for both x ϵ A and x ϵ B to be true, so some values of x might fall
under both cases. There is nothing wrong with this. The cases in a proof by
cases must cover all possibilities, but there is no harm in covering some
possibilities more than once. In other words, the cases must be exhaustive,
but they need not be exclusive.

Proof by cases is sometimes also helpful if you are proving a goal of the
form P ∨ Q. If you can prove P in some cases and Q in others, then as long
as your cases are exhaustive you can conclude that P ∨ Q is true. This
method is particularly useful if one of the givens also has the form of a
disjunction, because then you can use the cases suggested by this given.

To prove a goal of the form P ∨ Q:
Break your proof into cases. In each case, either prove P or prove Q.

Example 3.5.2. Suppose that A, B, and C are sets. Prove that A \ (B \ C) ⊆
(A\ B) ∪ C.



Scratch work

Because the goal is ∀x(x ϵ A \ (B \ C) → x ϵ (A \ B) ∪ C), we let x be
arbitrary, assume x ϵ A \ (B \ C), and try to prove x ϵ (A \ B) ∪ C. Writing
these statements out in logical symbols gives us:

We split the given into two separate givens, x ϵ A and ¬(x ϵ B ∧ x ∉ C),
and since the second is a negated statement we use one of De Morgan’s
laws to reexpress it as the positive statement x ∉ B ∨ x ϵ C.

Now the second given and the goal are both disjunctions, so we’ll try
considering the two cases x ∉ B and x ϵ C suggested by the second given.
According to our strategy for proving goals of the form P ∨ Q, if in each
case we can either prove x ϵ A ∧ x ∉ B or prove x ϵ C, then the proof will
be complete. For the first case we assume x ∉ B.

In this case the goal is clearly true, because in fact we can conclude that x
ϵ A ∧ x ∉ B. For the second case we assume x ϵ C, and once again the goal
is clearly true.

Solution

Theorem. Suppose that A, B, and C are sets. Then A\ (B \ C) ⊆ (A\ B)∪ C.

Proof. Suppose x ϵ A \ (B \ C). Then x ϵ A and x ∉ B \ C. Since x ∉ B \ C,
it follows that either x ∉ B or x ϵ C. We will consider these cases
separately.

Case 1. x ∉ B. Then since x ϵ A, x ϵ A \ B, so x ϵ (A \ B) ∪ C.
Case 2. x ϵ C. Then clearly x ϵ (A \ B) ∪ C.



Since x was an arbitrary element of A \ (B \ C), we can conclude that A\
(B \ C) ⊆ (A \ B) ∪ C.

□
Sometimes you may find it useful to break a proof into cases even if the

cases are not suggested by a given of the form P ∨ Q. Any proof can be
broken into cases at any time, as long as the cases exhaust all of the
possibilities.

Example 3.5.3. Prove that for every integer x, the remainder when x2 is
divided by 4 is either 0 or 1.

Scratch work

We start by letting x be an arbitrary integer and then try to prove that the
remainder when x2 is divided by 4 is either 0 or 1.

Because the goal is a disjunction, breaking the proof into cases seems
like a likely approach, but there is no given that suggests what cases to use.
However, trying out a few values for x suggests the right cases:

It appears that the remainder is 0 when x is even and 1 when x is odd.
These are the cases we will use. Thus, for case 1 we assume x is even and
try to prove that the remainder is 0, and for case 2 we assume x is odd and
prove that the remainder is 1. Because every integer is either even or odd,
these cases are exhaustive.

Filling in the definition of even, here are our givens and goal for case 1:



We immediately use the second given and let k stand for some particular
integer for which x = 2k. Then x2 = (2k)2 = 4k2, so clearly when we divide
x2 by 4 the quotient is k2 and the remainder is 0.

Case 2 is quite similar:

Once again we use the second given immediately and let k stand for an
integer for which x = 2k + 1. Then x2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k)
+ 1, so when x2 is divided by 4 the quotient is k2 + k and the remainder is 1.

Solution

Theorem. For every integer x, the remainder when x2 is divided by 4 is
either 0 or 1.

Proof. Suppose x is an integer. We consider two cases.
Case 1. x is even. Then x = 2k for some integer k, so x2 = 4k2. Clearly the

remainder when x2 is divided by 4 is 0.
Case 2. x is odd. Then x = 2k +1 for some integer k, so x2 = 4k2 +4k +1 =

4(k2 + k) + 1. Clearly in this case the remainder when x2 is divided by 4 is
1.

□
Sometimes in a proof of a goal that has the form P ∨ Q it is hard to

figure out how to break the proof into cases. Here’s a way of doing it that is
often helpful. Simply assume that P is true in case 1 and assume that it is
false in case 2. Certainly P is either true or false, so these cases are
exhaustive. In the first case you have assumed that P is true, so certainly the
goal P ∨ Q is true. Thus, no further reasoning is needed in case 1. In the
second case you have assumed that P is false, so the only way the goal P ∨
Q could be true is if Q is true. Thus, to complete this case you should try to
prove Q.

To prove a goal of the form P ∨ Q:
If P is true, then clearly the goal P ∨ Q is true, so you only need to worry

about the case in which P is false. You can complete the proof in this case



by proving that Q is true.

Scratch work

Before using strategy:

After using strategy:

Form of final proof:

If P is true, then of course P ∨ Q is true. Now suppose P is false.

[Proof of Q goes here.]

Thus, P ∨ Q is true.

Thus, this strategy for proving P ∨ Q suggests that you transform the
problem by adding ¬P as a new given and changing the goal to Q. It is
interesting to note that this is exactly the same as the transformation you
would use if you were proving the goal ¬P → Q! This is not really
surprising, because we already know that the statements P ∨ Q and ¬P →
Q are equivalent. But we derived this equivalence before from the truth
table for the conditional connective, and this truth table may have been hard
to understand at first. Perhaps the reasoning we’ve given makes this
equivalence, and therefore the truth table for the conditional connective,
seem more natural.

Of course, the roles of P and Q could be reversed in using this strategy.
Thus, you can also prove P ∨ Q by assuming that Q is false and proving P.

Example 3.5.4. Prove that for every real number x, if x2 ≥ x then either x≤
0 or x ≥ 1.

Scratch work



Our goal is ∀x(x2 ≥ x → (x ≤ 0 ∨ x ≥ 1)), so to get started we let x be an
arbitrary real number, assume x2 ≥ x, and set x ≤ 0 ∨ x ≥ 1 as our goal:

According to our strategy, to prove this goal we can either assume x > 0
and prove x ≥ 1 or assume x < 1 and prove x ≤ 0. The assumption that x is
positive seems more likely to be useful in reasoning about inequalities, so
we take the first approach.

The proof is now easy. Since x > 0, we can divide the given inequality x2

≥ x by x to get the goal x ≥ 1.

Solution

Theorem. For every real number x, if x2 ≥ x then either x ≤ 0 or x ≥ 1.

Proof. Suppose x2 ≥ x. If x ≤ 0, then of course x ≤ 0 or x ≥ 1. Now suppose x
> 0. Then we can divide both sides of the inequality x2 ≥ x by x to conclude
that x ≥ 1. Thus, either x ≤ 0 or x ≥ 1.

□
The equivalence of P ∨ Q and ¬P → Q also suggests a rule of inference

called disjunctive syllogism for using a given statement of the form P ∨ Q:

To use a given of the form P ∨ Q:
If you are also given ¬P, or you can prove that P is false, then you can

use this given to conclude that Q is true. Similarly, if you are given ¬Q or
can prove that Q is false, then you can conclude that P is true.

In fact, this rule is the one we used in our first example of deductive
reasoning in Chapter 1!

Once again, we end this section with a proof for you to read without the
benefit of a preliminary scratch work analysis.



Theorem 3.5.5. Suppose m and n are integers. If mn is even, then either m
is even or n is even.

Proof. Suppose mn is even. Then we can choose an integer k such that mn =
2k. If m is even then there is nothing more to prove, so suppose m is odd.
Then m = 2j + 1 for some integer j. Substituting this into the equation mn =
2k, we get (2j + 1)n = 2k, so 2j n + n = 2k, and therefore n = 2k − 2j n = 2(k
− j n). Since k − j n is an integer, it follows that n is even.

□

Commentary. The overall form of the proof is the following:

Suppose mn is even.
If m is even, then clearly either m is even or n is even. Now suppose m
is not even. Then m is odd.

[Proof that n is even goes here.]
Therefore either m is even or n is even.

Therefore if mn is even then either m is even or n is even.

The assumptions that mn is even and m is odd lead, by existential
instantiation, to the equations mn = 2k and m = 2j + 1. Although the proof
doesn’t say so explicitly, you are expected to work out for yourself that in
order to prove that n is even it suffices to find an integer c such that n = 2c.
Straightforward algebra leads to the equation n = 2(k − j n), so the choice c
= k − j n works.

Exercises
PD*1. Suppose A, B, and C are sets. Prove that A ∩ (B ∪ C) ⊆ (A ∩ B)

∪ C.
PD2. Suppose A, B, and C are sets. Prove that (A ∪ B) \ C ⊆ A ∪ (B \

C).
PD3. Suppose A and B are sets. Prove that A \ (A \ B) = A ∩ B.
PD4. Suppose A, B, and C are sets. Prove that A\(B \ C) = (A\B)∪(A ∩

C).
PD*5. Suppose A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C. Prove that A ⊆ B.



PD6. Recall from Section 1.4 that the symmetric difference of two sets
A and B is the set A B = (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B).
Prove that if A B ⊆ A then B ⊆ A.

PD7. Suppose A, B, and C are sets. Prove that A ∪ C ⊆ B ∪ C iff A \ C
⊆ B \ C.

PD*8. Prove that for any sets A and B, P(A) ∪ P(B) ⊆ P(A ∪ B).
PD9. Prove that for any sets A and B, if P(A) ∪ P(B) = P(A ∪ B)

then either A ⊆ B or B ⊆ A.
10. Suppose x and y are real numbers and x = 0. Prove that y + 1/x =

1 + y/x iff either x = 1 or y = 1.
11. Prove that for every real number x, if |x − 3| > 3 then x2 > 6x.

(Hint: According to the definition of |x − 3|, if x − 3 ≥ 0 then |x −
3| = x − 3, and if x − 3 < 0 then |x − 3| = 3 − x. The easiest way to
use this fact is to break your proof into cases. Assume that x − 3 ≥
0 in case 1, and x − 3 < 0 in case 2.)

*12. Prove that for every real number x, |2x − 6| > x iff |x − 4| > 2.
(Hint: Read the hint for exercise 11.)

13. (a) Prove that for all real numbers a and b, |a | ≤ b iff −b ≤ a ≤ b.
(b) Prove that for any real number x, −|x| ≤ x ≤ |x|. (Hint: Use part

(a).)
(c) Prove that for all real numbers x and y, |x + y| ≤ |x| + |y|. (This is

called the triangle inequality. One way to prove this is to
combine parts (a) and (b), but you can also do it by considering a
number of cases.)

(d) Prove that for all real numbers x and y, |x + y| ≥ |x| − |y|. (Hint:
Start with the equation |x| = |(x + y) + (−y)| and then apply the
triangle inequality to the right-hand side.)

14. Prove that for every integer x, x2 + x is even.
15. Prove that for every integer x, the remainder when x4 is divided

by 8 is either 0 or 1.
*16. Suppose F and G are nonempty families of sets.

PD(a) Prove that ⋃(F ∪ G) = (⋃F) ∪ (⋃G).

(b) Prove that B ∪ (⋃F) = ⋃AϵF (B ∪ A).



(c) Can you discover and prove a similar theorem about ⋂(F ∪

G)?

17. Suppose F is a nonempty family of sets and B is a set.

PD(a) Prove that B ∪ (⋃F) = ⋃(F ∪ {B}).

(b) Prove that B ∪ (⋂F) = ⋂AϵF(B ∪ A).

(c) Can you discover and prove similar theorems about B ∩ (⋃F)

and B ∩ (⋂F)?

18. Suppose F, G, and H are nonempty families of sets and for every

A ϵ F and every B ϵ G, A ∪ B ϵ H. Prove that ⋂H ⊆ (F) ∪ (G).

PD19. Suppose A and B are sets. Prove that ∀x(x ϵ A Δ B ↔ (x ϵ A ↔ x
∉B)).

PD*20. Suppose A, B, and C are sets. Prove that A Δ B and C are disjoint
iff A ∩ C = B ∩ C.

PD21. Suppose A, B, and C are sets. Prove that A B ⊆ C iff A∪C =
B∪C.

PD22. Suppose A, B, and C are sets. Prove that C ⊆ A Δ B iff C ⊆ A ∪
B and A ∩ B ∩ C = ∅.

PD*23. Suppose A, B, and C are sets.
(a) Prove that A \ C ⊆ (A \ B) ∪ (B \ C).
(b) Prove that A C ⊆ (A B) ∪ (B C).

PD*24. Suppose A, B, and C are sets.
(a) Prove that (A ∪ B) C ⊆ (A C) ∪ (B C).
(b) Find an example of sets A, B, and C such that (A ∪ B) C ≠ (A Δ

C)∪ (B Δ C)
PD25. Suppose A, B, and C are sets.

(a) Prove that (A Δ C) ∩ (B Δ C) ⊆ (A ∩ B) Δ C.
(b) Is it always true that (A ∩ B) Δ C ⊆ (A Δ C) ∩ (B Δ C)? Give

either a proof or a counterexample.



PD26. Suppose A, B, and C are sets. Consider the sets (A \ B) Δ C and (A
Δ C)\(B Δ C). Can you prove that either is a subset of the other?
Justify your conclusions with either proofs or counterexamples.

*27. Consider the following putative theorem.

Theorem? For every real number x, if |x − 3| < 3 then 0 < x < 6.

Is the following proof correct? If so, what proof strategies does it
use? If not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary real number, and suppose | x − 3| < 3. We
consider two cases:

Case 1. x − 3 ≥ 0. Then |x − 3| = x − 3. Plugging this into the
assumption that |x − 3| < 3, we get x − 3 < 3, so clearly x < 6.

Case 2. x −3 < 0. Then |x −3| = 3−x, so the assumption |x −3| < 3
means that 3 − x < 3. Therefore 3 < 3 + x, so 0 < x.

Since we have proven both 0 < x and x < 6, we can conclude that 0
< x < 6.

□
28. Consider the following putative theorem.
Theorem? For any sets A, B, and C, if A \ B ⊆ C and A C then A ∩ B
= ∅.

Is the following proof correct? If so, what proof strategies does it
use? If not, can it be fixed? Is the theorem correct?

Proof. Suppose A \ B ⊆ C and A C. Since A C, we can choose some x
such that x ϵ A and x ∉ C. Since x ∉ C and A \ B ⊆ C, x ∉ A\B.
Therefore either x ∉ A or x ϵ B. But we already know that x ϵ A, so
it follows that x ϵ B. Since x ϵ A and x ϵ B, x ϵ A ∩ B. Therefore A ∩
B ≠ ∅.

□
*29. Consider the following putative theorem.

Theorem? ∀x ϵ R∃y ϵ R(xy2 ≠ y − x).
Is the following proof correct? If so, what proof strategies does it
use? If not, can it be fixed? Is the theorem correct?



Proof. Let x be an arbitrary real number.
Case 1. x = 0. Let y = 1. Then xy2 = 0 and y − x = 1 − 0 = 1, so xy2

≠ y − x.
Case 2. x = 0. Let y = 0. Then xy2 = 0 and y − x ≠ −x = 0, so xy2 ≠ y

− x.
Since these cases are exhaustive, we have shown that ∃y ϵ R(xy2 ≠

y − x). Since x was arbitrary, this shows that ∀x ϵ R∃y ϵ R(xy2 ≠ y −
x).

□
30. Prove that if ∀xP(x) → ∃xQ(x) then ∃x(P(x) → Q(x)). (Hint:

Remember that P → Q is equivalent to ¬P ∨ Q.)
*31. Consider the following putative theorem.

Theorem? Suppose A, B, and C are sets and A ⊆ B ∪ C. Then either
A⊆ B or A ⊆ C.

Is the following proof correct? If so, what proof strategies does it
use? If not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary element of A. Since A ⊆ B ∪ C, it follows
that either x ϵ B or x ϵ C.

Case 1. x ϵ B. Since x was an arbitrary element of A, it follows that
∀x ϵ A(x ϵ B), which means that A ⊆ B.

Case 2. x ϵ C. Similarly, since x was an arbitrary element of A, we
can conclude that A ⊆ C.

Thus, either A ⊆ B or A ⊆ C.
□

PD32. Suppose A, B, and C are sets and A ⊆ B ∪ C. Prove that either A
⊆ B or A ∩ C ≠ ∅.

33. Prove ∃x(P(x) → ∀yP(y)). (Note: Assume the universe of
discourse is not the empty set.)

3.6 Existence and Uniqueness Proofs



In this section we consider proofs in which the goal has the form ∃! xP(x).
Recall that this formula means “there is exactly one x such that P(x),” and
as we saw in Section 2.2, it can be thought of as an abbreviation for the
formula ∃ x(P(x) ∧ ¬ y(P(y) ∧ y ≠ x)). According to the proof strategies
discussed in previous sections, we could therefore prove this goal by
finding a particular value of x for which we could prove both P(x) and ¬
y(P(y) ∧ y ≠ x). The last part of this proof would involve proving a negated
statement, but we can reexpress it as an equivalent positive statement:

¬∃y(P(y) ∧ y ≠ x)

is equivalent to ∀y¬(P(y) ∧ y ≠ x) (quantifier negation law),

which is equivalent to ∀y(¬P(y) ∨ y = x) (De Morgan’s law),

which is equivalent to ∀y(P(y) → y = x) (conditional law).

Thus, we see that ∃! xP(x) could also be written as ∃x(P(x) ∧ ∀y(P(y) →
y = x)). In fact, as the next example shows, several other formulas are also
equivalent to ∃!xP(x), and they suggest other approaches to proving goals
of this form.

Example 3.6.1. Prove that the following formulas are all equivalent:

1. ∃x(P(x) ∧ ∀y(P(y) → y = x)).
2. ∃x∀y(P(y)↔ y = x).
3. ∃xP(x) ∧ ∀y∀ z((P (y) ∧ P(z)) → y = z).

Scratch work

If we prove directly that each of these statements is equivalent to each of
the others, then we will have three biconditionals to prove: statement 1 iff
statement 2, statement 1 iff statement 3, and statement 2 iff statement 3. If
we prove each biconditional by the methods of Section 3.4, then each will
involve two conditional proofs, so we will need a total of six conditional
proofs. Fortunately, there is an easier way. We will prove that statement 1
implies statement 2, statement 2 implies statement 3, and statement 3
implies state-ment 1 – just three conditionals. Although we will not give a
separate proof that statement 2 implies statement 1, it will follow from the



fact that statement 2 implies statement 3 and statement 3 implies statement
1. Similarly, the other two conditionals follow from the three we will prove.
Mathematicians almost always use some such shortcut when proving that
several statements are all equivalent. Because we’ll be proving three
conditional statements, our proof will have three parts, which we will label
1 → 2, 2 → 3, and 3 → 1. We’ll need to work out our strategy for the three
parts separately.

1 → 2. We assume statement 1 and prove statement 2. Because statement
1 starts with an existential quantifier, we choose a name, say x0, for some
object for which both P(x0) and ∀y(P(y) → y = x0) are true. Thus, we now
have the following situation:

Our goal also starts with an existential quantifier, so to prove it we should
try to find a value of x that makes the rest of the statement come out true.
Of course, the obvious choice is x = x0. Plugging in x0 for x, we see that we
must now prove ∀y(P(y) ↔ y = x0). We let y be arbitrary and prove both
directions of the biconditional. The → direction is clear by the second
given. For the ← direction, suppose y = x0. We also have P(x0) as a given,
and plugging in y for x0 in this given we get P(y).

2 → 3. Statement 2 is an existential statement, so we let x0 be some
object such that ∀y(P(y) ↔ y = x0). The goal, statement 3, is a conjunction,
so we treat it as two separate goals.

To prove the first goal we must choose a value for x, and of course the
obvious value is x = x0 again. Thus, we must prove P(x0). The natural way
to use our only given is to plug in something for y; and to prove the goal
P(x0), the obvious thing to plug in is x0. This gives us P(x0) ↔ x0 = x0. Of
course, x0 = x0 is true, so by the ← direction of the biconditional, we get
P(x0).



For the second goal, we let y and z be arbitrary, assume P(y) and P(z),
and try to prove y = z.

Plugging in each of y and z in the first given we get P(y) ↔ y = x0 and
P(z)↔ z = x0. Since we’ve assumed P(y) and P(z), this time we use the →
directions of these biconditionals to conclude that y = x0 and z = x0. Our
goal y = z clearly follows.

3 → 1. Because statement 3 is a conjunction, we treat it as two separate
givens. The first is an existential statement, so we let x0 stand for some
object such that P(x0) is true. To prove statement 1 we again let x = x0, so
we have this situation:

We already know the first half of the goal, so we only need to prove the
sec-ond. For this we let y be arbitrary, assume P(y), and make y = x0 our
goal.

But now we know both P(y) and P(x0), so the goal y = x0 follows from the
second given.

Solution

Theorem. The following are equivalent:

1. ∃ x(P(x) ∧ ∀y(P(y) → y = x)).
2. ∃x∀y(P(y)↔ y = x).
3. ∃ xP(x) ∧ ∀y∀ z((P (y) ∧ P(z)) → y = z).



Proof. 1 → 2. By statement 1, we can let x0 be some object such that P(x0)
and ∀y(P(y) → y = x0). To prove statement 2 we will show that ∀y(P(y)↔ y
= x0). Let y be arbitrary. We already know the → direction of the
biconditional. For the ← direction, suppose y = x0. Then since we know
P(x0), we can conclude P(y).

2 → 3. By statement 2, choose x0 such that ∀y(P(y) ↔ y = x0). Then, in
particular, P(x0) ↔ x0 = x0, and since clearly x0 = x0, it follows that P(x0) is
true. Thus, ∃xP(x). To prove the second half of statement 3, let y and z be
arbitrary and suppose P(y) and P(z). Then by our choice of x0 (as something
for which ∀y(P(y) ↔ y = x0) is true), it follows that y = x0 and z = x0, so y =
z.

3 → 1. By the first half of statement 3, let x0 be some object such that
P(x0). Statement 1 will follow if we can show that ∀y(P(y) → y = x0), so
suppose P(y). Since we now have both P(x0) and P(y), by the second half of
statement 3 we can conclude that y = x0, as required.

□
Because all three of the statements in the theorem are equivalent to ∃!

xP(x), we can prove a goal of this form by proving any of the three
statements in the theorem. Probably the most common technique for
proving a goal of the form ∃! xP(x) is to prove statement 3 of the theorem.

To prove a goal of the form ∃! xP(x):
Prove ∃xP(x) and ∀y∀z((P (y) ∧ P(z)) → y = z). The first of these goals

shows that there exists an x such that P(x) is true, and the second shows that
it is unique. The two parts of the proof are therefore sometimes labeled
existence and uniqueness. Each part is proven using strategies discussed
earlier.

Form of final proof:

Existence: [Proof of ∃xP(x) goes here.]
Uniqueness: [Proof of ∀y∀z((P (y) ∧ P(z)) → y = z) goes here.]

Example 3.6.2. Prove that there is a unique set A such that for every set B,
A∪ B = B.



Scratch work

Our goal is ∃! AP(A), where P(A) is the statement ∀B(A ∪ B = B). Accord-
ing to our strategy, we can prove this by proving existence and uniqueness
separately. For the existence half of the proof we must prove ∃AP(A), so we
try to find a value of A that makes P(A) true. There is no formula for finding
this set A, but if you think about what the statement P(A) means, you should
realize that the right choice is A = ∅. Plugging this value in for A, we see
that to complete the existence half of the proof we must show that ∀B(∅ ∪
B = B). This is clearly true. (If you’re not sure of this, work out the proof!)

For the uniqueness half of the proof we prove ∀C∀D((P (C) ∧ P(D)) →
C = D). To do this, we let C and D be arbitrary, assume P(C) and P(D), and
prove C = D. Writing out what the statements P(C) and P(D) mean, we
have the following givens and goal:

To use the givens, we should try to find something to plug in for B in
each of them. There is a clever choice that makes the rest of the proof easy:
we plug in D for B in the first given, and C for B in the second. This gives
us C∪ D = D and D ∪ C = C. But clearly C ∪ D = D ∪ C. (If you don’t see
why, prove it!) The goal C = D follows immediately.

Solution

Theorem. There is a unique set A such that for every set B, A ∪ B = B.

Proof. Existence: Clearly ∀B(∅ ∪ B = B), so ∅ has the required property.

Uniqueness: Suppose ∀B(C ∪ B = B) and ∀B(D ∪ B = B). Applying the
first of these assumptions to D we see that C ∪ D = D, and applying the
second to C we get D ∪ C = C. But clearly C ∪ D = D ∪ C, so C = D.

□

Sometimes a statement of the form ∃! xP(x) is proven by proving
statement 1 from Example 3.6.1. This leads to the following proof strategy.

To prove a goal of the form ∃! xP(x):



Prove ∃x(P(x) ∧ ∀y(P(y) → y = x)), using strategies from previous
sections.

Example 3.6.3. Prove that for every real number x, if x = 2 then there is a
unique real number y such that 2y/(y + 1) = x.

Scratch work

Our goal is ∀x(x ≠ 2 → ∃! y(2y/(y + 1) = x)). We therefore let x be arbitrary,
assume x ≠ 2, and prove ∃! y(2y/(y + 1) = x). According to the preceding
strategy, we can prove this goal by proving the equivalent statement

We start by trying to find a value of y that will make the equation 2y/(y + 1)
= x come out true. In other words, we solve this equation for y:

Note that we have x ≠ 2 as a given, so the division by 2 − x in the last step
makes sense. Of course, these steps will not appear in the proof. We simply
let y = x/(2 − x) and try to prove both 2y/(y + 1) = x and ∀z(2z/(z + 1) = x →
z = y).

The first goal is easy to verify by simply plugging in x/(2 − x) for y. For
the second, we let z be arbitrary, assume 2z/(z + 1) = x, and prove z = y:



We can show that z = y now by solving for z in the third given:

Note that the steps we used here are exactly the same as the steps we
used earlier in solving for y. This is a common pattern in existence and
uniqueness proofs. Although the scratch work for figuring out an existence
proof should not appear in the proof, this scratch work, or reasoning similar
to it, can sometimes be used to prove that the object shown to exist is
unique.

Solution

Theorem. For every real number x, if x ≠ 2 then there is a unique real
number y such that 2y/(y + 1) = x.

Proof. Let x be an arbitrary real number, and suppose x ≠ 2. Let y = x/(2−x),
which is defined since x ≠ 2. Then

To see that this solution is unique, suppose 2z/(z + 1) = x. Then 2z = x(z +
1), so z(2 − x) = x. Since x = 2 we can divide both sides by 2 − x to get z =
x/(2 − x) = y.

□

The theorem in Example 3.6.1 can also be used to formulate strategies
for using givens of the form ∃!xP(x). Once again, statement 3 of the
theorem is the one used most often.

To use a given of the form ∃! xP(x):
Treat this as two given statements, ∃xP(x) and ∀y∀z((P(y) ∧ P(z)) → y =

z). To use the first statement you should probably choose a name, say x0, to
stand for some object such that P(x0) is true. The second tells you that if
you ever come across two objects y and z such that P(y) and P(z) are both
true, you can conclude that y = z.



Example 3.6.4. Suppose A, B, and C are sets, A and B are not disjoint, A
and C are not disjoint, and A has exactly one element. Prove that B and C
are not disjoint.

Scratch work

We treat the last given as two separate givens, as suggested by our
strategy. Writing out the meanings of the other givens and the goal, we have
the following situation:

To prove the goal, we must find something that is an element of both B
and C. To do this, we turn to the givens. The first given tells us that we can
choose a name, say b, for something such that b ϵ A and b ϵ B. Similarly,
by the second given we can let c be something such that c ϵ A and c ϵ C. At
this point the third given is redundant. We already know that there’s
something in A, because in fact we already know that b ϵ A and c ϵ A. We
may as well skip to the last given, which says that if we ever come across
two objects that are elements of A, we can conclude that they are equal. But
as we have just observed, we know that b ϵ A and c ϵ A! We can therefore
conclude that b = c. Since b ϵ B and b = c ϵ C, we have found something
that is an element of both B and C, as required to prove the goal.

Solution

Theorem. Suppose A, B, and C are sets, A and B are not disjoint, A and C
are not disjoint, and A has exactly one element. Then B and C are not
disjoint.

Proof. Since A and B are not disjoint, we can let b be something such that b
ϵ A and b ϵ B. Similarly, since A and C are not disjoint, there is some



object c such that c ϵ A and c ϵ C. Since A has only one element, we must
have b = c. Thus b = c ϵ B ∩ C and therefore B and C are not disjoint.

□

Exercises
*1. Prove that for every real number x there is a unique real number y

such that x2y = x − y.
2. Prove that there is a unique real number x such that for every real

number y, xy + x − 4 = 4y.
3. Prove that for every real number x, if x = 0 and x = 1 then there is

a unique real number y such that y/x = y − x.
*4. Prove that for every real number x, if x = 0 then there is a unique

real number y such that for every real number z, zy = z/x.
5. Recall that if F is a family of sets, then ⋃F = {x| ∃A(A ϵ F ∧ x

ϵ A)}. Suppose we define a new set ⋃!F by the formula ⋃!F =

{x | ∃!A(A ϵ F ∧ x ϵ A)}.

(a) Prove that for any family of sets F, ⋃!F ⊆ ⋃F.

(b) A family of sets F is said to be pairwise disjoint if every pair of

distinct elements of F are disjoint; that is, ∀A ϵ F∀B ϵ F(A ≠

B→ A ∩ B = ∅). Prove that for any family of sets F, ⋃!F = ⋃F

iff F is pairwise disjoint.

PD*6. Let U be any set.
(a) Prove that there is a unique A ϵ P(U) such that for every B ϵ

P(U), A ∪ B = B.
(b) Prove that there is a unique A ϵ P(U) such that for every B ϵ

P(U), A ∪ B = A.
PD*7. Let U be any set.



(a) Prove that there is a unique A ϵ P(U) such that for every B ϵ
P(U), A ∩ B = B.

(b) Prove that there is a unique A ϵ P(U) such that for every B ϵ
P(U), A ∩ B = A.

PD*8. Let U be any set.
(a) Prove that for every A ϵ P(U) there is a unique B ϵ P(U) such

that for every C ϵ P(U), C \ A = C ∩ B.
(b) Prove that for every A ϵ P(U) there is a unique B ϵ P(U) such

that for every C ϵ P(U), C ∩ A = C \ B.
PD9. Recall that you showed in exercise 14 of Section 1.4 that

symmetric difference is associative; in other words, for all sets A,
B, and C, A Δ (B Δ C) = (A Δ B) Δ C. You may also find it useful
in this problem to note that symmetric difference is clearly
commutative; in other words, for all sets A and B, A Δ B = B Δ A.

(a) Prove that there is a unique identity element for symmetric differ-
ence. In other words, there is a unique set X such that for every
set A, A Δ X = A.

(b) Prove that every set has a unique inverse for the operation of
symmetric difference. In other words, for every set A there is a
unique set B such that A Δ B = X, where X is the identity element
from part (a).

(c) Prove that for any sets A and B there is a unique set C such that A
Δ C = B.

(d) Prove that for every set A there is a unique set B ⊆ A such that
for every set C ⊆ A, B Δ C = A \ C.

PD10. Suppose A is a set, and for every family of sets F, if ⋃F = A then

A ϵ F. Prove that A has exactly one element.

PD*11. Suppose F is a family of sets that has the property that for every

G ⊆ F, ⋃G ϵ F. Prove that there is a unique set A such that A ϵ

F and ∀ B ϵ F(B ⊆ A).

12. (a) Suppose P(x) is a statement with a free variable x. Find a
formula, using the logical symbols we have studied, that



means “there are exactly two values of x for which P(x) is
true.”

(b) Based on your answer to part (a), design a proof strategy for
proving a statement of the form “there are exactly two values of
x for which P(x) is true.”

(c) Prove that there are exactly two solutions to the equation x3 = x2.
13. (a) Prove that there is a unique real number c such that there is

a unique real number x such that x2 + 3x + c = 0. (In other
words, there is a unique real number c such that the equation
x2 + 3x + c = 0 has exactly one solution.)

(b) Show that it is not the case that there is a unique real number x
such that there is a unique real number c such that x2 +3x +c = 0.
(Hint: You should be able to prove that for every real number x
there is a unique real number c such that x2 + 3x + c = 0.)

3.7 More Examples of Proofs
So far, most of our proofs have involved fairly straightforward applications
of the proof techniques we’ve discussed. We end this chapter with a few
examples of somewhat more difficult proofs. These proofs use the
techniques of this chapter, but for various reasons they’re a little harder than
most of our earlier proofs. Some are simply longer, involving the
application of more proof strategies. Some require clever choices of which
strategies to use. In some cases it’s clear what strategy to use, but some
insight is required to see exactly how to use it. Our earlier examples, which
were intended only to illustrate and clarify the proof techniques, may have
made proof writing seem mechanical and dull. We hope that by studying
these more difficult examples you will begin to see that mathematical
reasoning can also be surprising and beautiful.

Some proof techniques are particularly difficult to apply. For example,
when you’re proving a goal of the form ∃xP(x), the obvious way to proceed
is to try to find a value of x that makes the statement P(x) true, but
sometimes it will not be obvious how to find that value of x. Using a given
of the form ∀xP(x) is similar. You’ll probably want to plug in a particular
value for x, but to com-plete the proof you may have to make a clever



choice of what to plug in. Proofs that must be broken down into cases are
also sometimes difficult to figure out. It is sometimes hard to know when to
use cases and what cases to use.

We begin by looking again at the proofs from the introduction. Some
aspects of these proofs probably seemed somewhat mysterious when you
read them in the introduction. See if they make more sense to you now that
you have a better understanding of how proofs are constructed. We will
present each proof exactly as it appeared in the introduction and then follow
it with a commentary discussing the proof techniques used.

Theorem 3.7.1. Suppose n is an integer larger than 1 and n is not prime.
Then 2n − 1is not prime.

Proof. Since n is not prime, there are positive integers a and b such that a <
n, b < n, and n = ab. Let x = 2b − 1 and y = 1 + 2b + 22b

 + · · · + 2(a−1)b.
Then

Since b < n, we can conclude that x = 2b − 1 < 2n − 1. Also, since ab = n
> a, it follows that b > 1. Therefore, x = 2b− 1 > 21 − 1 = 1, so y < xy = 2n

− 1. Thus, we have shown that 2n − 1 can be written as the product of two
positive integers x and y, both of which are smaller than 2n −1, so 2n − 1 is
not prime.

□

Commentary. We are given that n is not prime, and we must prove that 2n −
1 is not prime. Both of these are negative statements, but fortunately it is
easy to reexpress them as positive statements. To say that an integer larger
than 1 is not prime means that it can be written as a product of two smaller
positive integers. Thus, the hypothesis that n is not prime means ∃a ϵ Z+∃b
ϵ Z+(ab = n ∧ a < n ∧ b < n), and what we must prove is that 2n− 1 is not



prime, which means ∃x ϵ Z+∃y ϵ Z+(xy = 2n −1∧ x < 2n −1∧ y < 2n −1).
In the second sentence of the proof we apply existential instantiation to the
hypothesis that n is not prime, and the rest of the proof is devoted to
exhibiting numbers x and y with the properties required to prove that 2n− 1
is not prime.

As usual in proofs of existential statements, the proof doesn’t explain
how the values of x and y were chosen, it simply demonstrates that these
values work. After the values of x and y have been given, the goal
remaining to be proven is xy = 2n − 1 ∧ x < 2n − 1 ∧ y < 2n − 1. Of course,
this is treated as three separate goals, which are proven one at a time. The
proofs of these three goals involve only elementary algebra.

One of the attractive features of this proof is the calculation used to show
that xy = 2n − 1. The formulas for x and y are somewhat complicated, and at
first their product looks even more complicated. It is a pleasant surprise
when most of the terms in this product cancel and, as if by magic, the
answer 2n − 1 appears. Of course, we can see with hindsight that it was this
calculation that motivated the choice of x and y. There is, however, one
aspect of this calculation that may bother you. The use of “· · · “in the
formulas indicates that the proof depends on a pattern in the calculation that
is not being spelled out. We’ll give a more rigorous proof that xy = 2n − 1 in
Chapter 6, after we have intro-duced the method of proof by mathematical
induction (see Theorem 6.5.2).

Theorem 3.7.2. There are infinitely many prime numbers.

Proof. Suppose there are only finitely many prime numbers. Let p1,p2, . . . ,
pn be a list of all prime numbers. Let m = p1p2 · · · pn + 1. Note that m is not
divisible by p1, since dividing m by p1 gives a quotient of p2p3 · · · pn and a
remainder of 1. Similarly, m is not divisible by any of p2, p3, . . . , pn.

We now use the fact that every integer larger than 1 is either prime or can
be written as a product of primes. (We’ll see a proof of this fact in Chapter
6 – see Theorem 6.4.2.) Clearly m is larger than 1, so m is either prime or a
product of primes. Suppose first that m is prime. Note that m is larger than
all of the numbers in the list p1, p2, . . . , pn, so we’ve found a prime number
not in this list. But this contradicts our assumption that this was a list of all
prime numbers.



Now suppose m is a product of primes. Let q be one of the primes in this
product. Then m is divisible by q. But we’ve already seen that m is not
divisible by any of the numbers in the list p1, p2, . . . , pn, so once again we
have a contradiction with the assumption that this list included all prime
numbers.

Since the assumption that there are finitely many prime numbers has led
to a contradiction, there must be infinitely many prime numbers.

□

Commentary. Because infinite means not finite, the statement of the
theorem might be considered to be a negative statement. It is therefore not
surprising that the proof proceeds by contradiction. The assumption that
there are finitely many primes means that there exists a natural number n
such that there are n primes, and the statement that there are n primes means
that there is a list of distinct numbers p1, p2, . . . , pn such that every number
in the list is prime, and there are no primes that are not in the list. Thus, the
second sentence of the proof applies existential instantiation to introduce
the numbers n and p1, p2, . . . , pn into the proof. At this point in the proof
we have the following situation:

The second given could be reexpressed as a positive statement, but since
we are doing a proof by contradiction, another reasonable approach would
be to try to reach a contradiction by proving that ∃q(q is prime ∧ q ∉ {p1,
p2, . . . , pn}}). This is the strategy used in the proof. Thus, the goal for the
rest of the proof is to show that there is a prime number not in the list p1, p2,
. . . , pn – an “unlisted prime.”

Because our goal is now an existential statement, it is not surprising that
the next step in the proof is to introduce the new number m, without any
explanation of how m was chosen. What is surprising is that m may or may
not be the unlisted prime we are looking for. The problem is that m might
not be prime. All we can be sure of is that m is either prime or a product of
primes. Because this statement is a disjunction, it suggests proof by cases,
and this is the method used in the rest of the proof. Although the cases are



not explicitly labeled as cases in the proof, it is important to realize that the
rest of the proof has the form of a proof by cases. In case 1 we assume that
m is prime, and in case 2 we assume that it is a product of primes. In both
cases we are able to produce an unlisted prime as required to complete the
proof.

Our next proof uses factorial notation. Recall that for any positive integer
n, n factorial is the number n ! = 1 · 2 · 3 · · ·n.

Theorem 3.7.3. For every positive integer n, there is a sequence of n
consecutive positive integers containing no primes.

Proof. Suppose n is a positive integer. Let x = (n + 1)! +2. We will show
that none of the numbers x, x + 1, x + 2, . . . , x + (n − 1) is prime. Since this
is a sequence of n consecutive positive integers, this will prove the theorem.

To see that x is not prime, note that

Thus, x can be written as a product of two smaller positive integers, so x is
not prime.

Similarly, we have

so x + 1 is also not prime. In general, consider any number x + i, where 0 ≤ i
≤ n − 1. Then we have

so x + i is not prime.
□

Commentary. A sequence of n consecutive positive integers is a sequence
of the form x, x + 1, x + 2, . . . , x + (n − 1), where x is a positive integer.
Thus, the logical form of the statement to be proven is ∀n > 0∃x > 0∀i(0 ≤
i ≤ n − 1 → x + i is not prime), where all variables range over the integers.
The overall plan of the proof is exactly what one would expect for a proof



of a statement of this form: we let n > 0 be arbitrary, specify a value for x,
let i be arbitrary, and then assume that 0 ≤ i ≤ n − 1 and prove that x + i is
not prime. As in the proof of Theorem 3.7.1, to prove that x + i is not prime
we show how to write it as a product of two smaller positive integers.

Before the demonstration that x + i is not prime, where i is an arbitrary
integer between 0 and n − 1, the proof includes verifications that x and x + 1
are not prime. These are completely unnecessary and are only included to
make the proof easier to read.

Example 3.7.4. Prove that there is a unique real number m with the
following two properties:

1. For every real number x, x2 + 2x + 3 ≥ m.

2. If y is any real number with the property that for every real number x, x2

+ 2 x + 3 ≥ y, then m ≥ y.

Scratch work

It will be convenient to have a name for property 1. We will say that m is a
lower bound for the expression x2 + 2 x + 3 if property 1 holds; that is, if for
every real number x, x2 + 2x + 3 ≥ m. Property 2 then says that if y is any
lower bound for x2 + 2x + 3, then m ≥ y. In other words, no lower bound can
be larger than m, so m is the greatest lower bound. (We will have more to
say about lower bounds and greatest lower bounds in Section 4.4 of Chapter
4.)

We will have to prove both existence and uniqueness of the number m.
For the existence half of the proof, the hardest part is coming up with the
right value for m. We can get a hint at how to choose m by completing the
square:

x2 + 2x + 3 = x2 + 2x + 1 + 2 = (x + 1)2 + 2.

Since (x + 1)2 cannot be negative, for every real number x we will have x2 +
2x + 3 = (x + 1)2 + 2 ≥ 2, so m = 2 will work in property 1 – in other words,
2 is a lower bound for x2 + 2x + 3. Of course, any smaller number would
also be a lower bound, but property 2 requires that m must be the greatest
lower bound, so m can’t be smaller than 2. Perhaps m = 2 is the right
choice. Let’s see if we can prove property 2 with this choice of m.



To prove that property 2 holds with m = 2, we must prove ∀y[∀x(x2 + 2x
+ 3 ≥ y) → 2 ≥ y]. The obvious way to proceed is to let y be arbitrary,
assume ∀x(x2 + 2 x + 3 ≥ y), and then prove 2 ≥ y, which gives us the
following situation:

The natural way to use our given is to plug something in for x. Looking at
the goal, we see that if only there were a value of x for which x2 + 2x + 3 =
2, then plugging in this value of x in the given would lead directly to the
goal. Solving the equation x2 + 2x + 3 = 2, we find that setting x = −1 will
complete the proof.

We still have to prove uniqueness of m. For this we should assume that
m1 and m2 are two numbers that have properties 1 and 2, and then prove m1
= m2. This gives us the following givens and goal:

We should probably apply universal instantiation to one or more of the
givens, but which ones, and what values should we plug in? The key
observation is that the first two givens suggest that it would be useful to
plug in m1 or m2 for y in the third and fourth givens. In fact we will set y =
m2 in the third given and y = m1 in the fourth. (You might want to compare
this to the strategy we used for the uniqueness proof in Example 3.6.2.)
This gives us m1 ≥ m2 and m2 ≥ m1, and the goal m1 = m2 follows.

Solution

Theorem. There is a unique real number m with the following two
properties:

1. For every real number x, x2 + 2 x + 3 ≥ m.
2. If y is any real number with the property that for every real

number x, x2 + 2 x + 3 ≥ y, then m ≥ y.



Proof. Existence: Let m = 2. To prove property 1, let x be an arbitrary real
number. Then

x2 + 2x + 3 = (x + 1)2 + 2 ≥ 2 = m,

as required. This shows that 2 is a lower bound for x2 + 2x + 3.
For property 2, let y be an arbitrary number with the property that for

every x,x2 + 2 x + 3 ≥ y. In particular, setting x = −1 we find that

y ≤ (−1)2 + 2(−1) + 3 = 2 = m.

Since y was arbitrary, this proves property 2.
Uniqueness: Suppose m1 and m2 both have properties 1 and 2. In other

words, m1 and m2 are both lower bounds for x2 + 2x + 3, and also if y is any
lower bound, then m1 ≥ y and m2 ≥ y. Applying this last fact to both y = m1
and y = m2 we get m1 ≥ m2 and m2 ≥ m1, so m1 = m2.

□

For readers who are familiar with the definition of limits from calculus,
we give one more example, showing how proofs involving limits can be
worked out using the techniques in this chapter. Readers who are not
familiar with this definition should skip this example.

Example 3.7.5. Show that

Scratch work

According to the definition of limits, our goal means that for every positive
number there is a positive number δ such that if x is any number such that 0
< |x − 3| < δ, then |(2x2 − 5 x − 3)/(x − 3)− 7|<. Translating this into logical
symbols, we have

We therefore start by letting be an arbitrary positive number and then try to
find a positive number δ for which we can prove



The scratch work involved in finding δ will not appear in the proof, of
course. In the final proof we’ll just write “Let δ = (some positive number)”
and then proceed to prove

Before working out the value of δ, let’s figure out what the rest of the proof
will look like. Based on the form of the goal at this point, we should
proceed by letting x be arbitrary, assuming 0 < |x − 3| < δ, and then proving
|(2x2 − 5x − 3)/(x − 3) − 7| < ϵ. Thus, the entire proof will have the
following form:

Let ϵ be an arbitrary positive number.
Let δ = (some positive number).

Let x be arbitrary.
Suppose 0 < |x − 3| < δ.

[Proof of |(2x2 − 5x − 3)/(x − 3) − 7| < goes here.]
Therefore 0 < |x − 3| < δ → |(2x2 − 5x − 3)/(x − 3) − 7| < ϵ.
Since x was arbitrary, we can conclude that ∀x(0 < |x − 3| < δ → |(2x2 −
5x − 3)/(x − 3) − 7| <).

Therefore ∃δ > 0∀x(0 < |x −3| < δ → |(2x2−5x −3)/(x−3)−7| <) ϵ. Since
ϵ was arbitrary, it follows that ∀ϵ> 0∃δ > 0∀x(0 < |x − 3| < δ → |(2x2 − 5x
− 3)/(x − 3) − 7| <) ϵ.

Two steps remain to be worked out. We must decide what value to assign
to δ, and we must fill in the proof of |(2x2 − 5 x − 3)/(x − 3)− 7| < ϵ. We’ll
work on the second of these steps first, and in the course of working out this
step it will become clear what value we should use for δ. The givens and
goal for this second step are as follows:



First of all, note that we have 0 < |x − 3| as a given, so x = 3 and therefore
the fraction (2x2 − 5x − 3)/(x − 3) is defined. Factoring the numerator, we
find that

Now we also have as a given that |x − 3| < δ, so 2|x − 3| < 2δ. Combining
this with the previous equation, we get |(2x2 − 5x − 3)/(x − 3) − 7| < 2δ, and
our goal is |(2x2 − 5x − 3)/(x − 3) − 7| < ϵ. Thus, if we chose δ so that 2δ =
ϵ, we’d be done. In other words, we should let δ = ϵ/2. Note that since ϵ >
0, this is a positive number, as required.

Solution

Theorem. 

Proof. Suppose ϵ > 0. Let δ = /2, which is also clearly positive. Let x be an
arbitrary real number, and suppose that 0 <| x − 3|< δ. Then

□

Exercises
PD*1. Suppose F is a family of sets. Prove that there is a unique set A

that has the following two properties:
(a) F ⊆ P(A).

(b) ∀ B(F⊆ P(B) → A ⊆ B).

(Hint: First try an example. Let F = {{1, 2, 3}, {2, 3, 4}, {3, 4,

5}}. Can you find the set A that has properties (a) and (b)?)



2. Prove that there is a unique positive real number m that has the
following two properties:

(a) For every positive real number 
(b) If y is any positive real number with the property that for every

positive real number  then m ≤ y.
PD3. Suppose A and B are sets. What can you prove about P(A\B) \

(P(A)\ P(B))? (No, it’s not equal to ∅. Try some examples and
see what you get.)

PD4. Suppose that A, B, and C are sets. Prove that the following
statements are equivalent:

(a) (A Δ C)∩ (B Δ C) = ∅.
(b) A ∩ B ⊆ C ⊆ A ∪ B. (Note: This is a shorthand way of saying

that A ∩ B ⊆ C and C ⊆ A ∪ B.)
(c) A Δ C ⊆ A Δ B.
*5. Suppose {Ai | i ϵ I} is a family of sets. Prove that if P(⋃i ϵ I Ai)

⊆ ⋃i ϵ I P(Ai), then there is some i ϵ I such that ∀j ϵ I(Aj ⊆ Ai).

6. Suppose F is a nonempty family of sets. Let I = ⋃F and J = ⋃F.

Suppose also that J ≠ ∅, and notice that it follows that for every
X ϵ F, X ≠ ∅, and also that I ≠ ∅. Finally, suppose that {Ai | i ϵ

I} is an indexed family of sets.
(a) Prove that ⋃i ϵ I Ai = ⋃x ϵ F(⋃i ϵ X Ai).
(b) Prove that ⋃i ϵ I Ai = ⋃x ϵ F(⋃i ϵ X Ai).

(c) Prove that ⋃i ϵ J Ai ⊆ ⋃x ϵ F(⋃i ϵ X Ai). Is it always the case that

⋃i ϵ J Ai = ⋃x ϵ F( ⋃i ϵ X Ai)? Give either a proof or a

counterexample to justify your answer.
(d) Discover and prove a theorem relating ⋃i ϵ J Ai and ⋃x ϵ F(⋃i ϵ X

Ai).

7. Prove that 
*8. Prove that if limx→ c f(x) = L and L > 0, then there is some

number δ > 0 such that for all x, if 0 < | x − c | < δ then f(x) > 0.



9. Prove that if limx→ c f(x) = L then limx→ c 7f(x) = 7L.
*10. Consider the following putative theorem.

Theorem? There are irrational numbers a and b such that ab is
rational.

Is the following proof correct? If so, what proof strategies does it
use? If not, can it be fixed? Is the theorem correct? (Note: The proof
uses the fact that  is irrational, which we’ll prove in Chapter 6 –
see Theorem 6.4.5.)

Proof. Either  is rational or it’s irrational.
Case 1.  is rational. Let  Then a and b are irrational,

and  which we are assuming in this case is rational.
Case 2.  is irrational. Let  and  Then a is

irrational by assumption, and we know that b is also irrational. Also,

□
which is rational.



4

Relations

4.1 Ordered Pairs and Cartesian Products
In Chapter 1 we discussed truth sets for statements containing a single free
variable. In this chapter we extend this idea to include statements with more
than one free variable.

For example, suppose P(x, y) is a statement with two free variables x and
y. We can’t speak of this statement as being true or false until we have
specified two values – one for x and one for y. Thus, if we want the truth set
to identify which assignments of values to free variables make the statement
come out true, then the truth set will have to contain not individual values,
but pairs of values. We will specify a pair of values by writing the two
values in parentheses separated by a comma. For example, let D(x, y) mean
“x divides y.” Then D(6, 18) is true, since 6 | 18, so the pair of values (6,
18) is an assignment of values to the variables x and y that makes the
statement D(x, y) come out true. Note that 18 does not divide 6, so the pair
of values (18, 6) makes the statement D(x, y) false. We must therefore
distinguish between the pairs (18, 6) and (6, 18). Because the order of the
values in the pair makes a difference, we will refer to a pair (a, b) as an
ordered pair, with first coordinate a and second coordinate b.

You have probably seen ordered pairs before when studying points in the
xy-plane. The use of x and y coordinates to identify points in the plane
works by assigning to each point in the plane an ordered pair, whose
coordinates are the x and y coordinates of the point. The pairs must be
ordered because, for example, the points (2, 5) and (5, 2) are different
points in the plane. In this case the coordinates of the ordered pairs are real
numbers, but ordered pairs can have anything at all as their coordinates. For
example, suppose we let C(x, y) stand for the statement “x has y children.”
In this statement the variable x ranges over the set of all people, and y



ranges over the set of all natural numbers. Thus, the only ordered pairs it
makes sense to consider when discussing assignments of values to the
variables x and y in this statement are pairs in which the first coordinate is a
person and the second is a natural number. For example, the assignment
(Prince Charles, 2) makes the statement C(x, y) come out true, because
Prince Charles does have two children, whereas the assignment (Angelina
Jolie, 37) makes the statement false. Note that the assignment (2, Prince
Charles) makes no sense, because it would lead to the nonsensical statement
“2 has Prince Charles children.”

In general, if P(x, y) is a statement in which x ranges over some set A and
y ranges over a set B, then the only assignments of values to x and y that
will make sense in P(x, y) will be ordered pairs in which the first coordinate
is an element of A and the second comes from B. We therefore make the
following definition:

Definition 4.1.1. Suppose A and B are sets. Then the Cartesian product of
A and B, denoted A × B, is the set of all ordered pairs in which the first
coordinate is an element of A and the second is an element of B. In other
words,

A × B = {(a, b) | a ∈ A and b ∈ B}.

Example 4.1.2.

1. If A = {red, green} and B = {2, 3, 5} then

A × B = {(red, 2), (red, 3), (red, 5), (green, 2), (green, 3), (green, 5)}.

2. If P = the set of all people then

These are the ordered pairs that make sense as assignments of values
to the free variables x and y in the statement C(x, y).

3. R × R = {(x, y) | x and y are real numbers}. These are the coordinates
of all the points in the plane. For obvious reasons, this set is



sometimes written R2.

The introduction of a new mathematical concept gives us an opportunity
to practice our proof-writing techniques by proving some basic properties
of the new concept. Here’s a theorem giving some basic properties of
Cartesian products.

Theorem 4.1.3. Suppose A, B, C, and D are sets.

1. A × (B ∩ C) = (A × B) ∩ (A × C).
2. A × (B ∪ C) = (A × B) ∪ (A × C).
3. (A × B) ∩ (C × D) = (A ∩ C) × (B ∩ D).
4. (A × B) ∪ (C × D) ⊆ (A ∪ C) × (B ∪ D).
5. A × ∅ = ∅ × A = ∅.

Proof of 1. Let p be an arbitrary element of A ×(B∩C). Then by the
definition of Cartesian product, p must be an ordered pair whose first
coordinate is an element of A and second coordinate is an element of B ∩ C.
In other words, p = (x, y) for some x ∈ A and y ∈ B∩C. Since y ∈ B∩C, y
∈ B and y ∈ C. Since x ∈ A and y ∈ B, p = (x, y) ∈ A × B, and similarly p
∈ A × C. Thus, p ∈ (A × B) ∩ (A × C). Since p was an arbitrary element of
A × (B ∩ C), it follows that A × (B ∩ C) ⊆ (A × B) ∩ (A × C).

Now let p be an arbitrary element of (A × B) ∩ (A × C). Then p ∈ A × B,
so p = (x, y) for some x ∈ A and y ∈ B. Also, (x, y) = p ∈ A × C, so y ∈ C.
Since y ∈ B and y ∈ C, y ∈ B ∩ C. Thus, p =(x, y) ∈ A × (B ∩ C). Since p
was an arbitrary element of (A × B) ∩ (A × C) we can conclude that (A × B)
∩ (A × C) ⊆ A × (B ∩ C), so A × (B ∩ C) = (A × B) ∩ (A × C).

Commentary. Before continuing with the proofs of the other parts, we give
a brief commentary on the proof just given. Statement 1 is an equation
between two sets, so as we saw in Example 3.4.5, there are two natural
approaches we could take to prove it. We could prove ∀p[p ∈ A × (B ∩ C)
↔ p ∈ (A × B) ∩ (A × C)] or we could prove both A × (B ∩ C) ⊆ (A × B) ∩
(A × C) and (A × B) ∩ (A × C) ⊆ A × (B ∩ C). In this proof, we have taken
the second approach. The first paragraph gives the proof that A × (B ∩ C) ⊆



(A × B) ∩ (A × C), and the second gives the proof that (A × B) ∩(A × C) ⊆
A × (B ∩ C).

In the first of these proofs we take the usual approach of letting p be an
arbitrary element of A × (B ∩ C) and then proving p ∈ (A × B) ∩ (A × C).
Because p ∈ A × (B ∩ C) means ∃x∃y(x ∈ A ∧ y ∈ B ∩ C ∧ p = (x, y)),
we immediately introduce the variables x and y by existential instantiation.
The rest of the proof involves simply working out the definitions of the set
theory operations involved. The proof of the opposite inclusion in the
second paragraph is similar.

Note that in both parts of this proof we introduced an arbitrary object p
that turned out to be an ordered pair, and we were therefore able to say that
p = (x, y) for some objects x and y. In most proofs involving Cartesian
products mathematicians suppress this step. If it is clear from the beginning
that an object will turn out to be an ordered pair, it is usually just called (x,
y) from the outset. We will follow this practice in our proofs.

We leave the proofs of statements 2 and 3 as exercises (see exercise 5).

Proof of 4. Let (x, y) be an arbitrary element of (A × B) ∪ (C × D). Then
either (x, y) ∈ A × B or (x, y) ∈ C × D.

Case 1. (x, y) ∈ A × B. Then x ∈ A and y ∈ B, so clearly x ∈ A ∪ C and
y ∈ B ∪ D. Therefore (x, y) ∈ (A ∪ C) × (B ∪ D).

Case 2. (x, y) ∈ C × D. A similar argument shows that (x, y) ∈ (A ∪ C) ×
(B∪D).

Since (x, y) was an arbitrary element of (A × B) ∪ (C × D), it follows that
(A × B) ∪ (C × D) ⊆ (A ∪ C) × (B ∪ D).

Proof of 5. Suppose A × ∅ = ∅. Then A × ∅ has at least one element, and
by the definition of Cartesian product this element must be an ordered pair
(x, y) for some x ∈ A and y ∈ ∅. But this is impossible, because ∅ has no
elements. Thus, A × ∅ = ∅. The proof that ∅ × A = ∅ is similar.

Commentary. Statement 4 says that one set is a subset of another, and the
proof follows the usual pattern for statements of this form: we start with an
arbitrary element of the first set and then prove that it’s an element of the
second. It is clear that the arbitrary element of the first set must be an
ordered pair, so we have written it as an ordered pair from the beginning.



Thus, for the rest of the proof we have (x, y) ∈ (A × B) ∪ (C × D) as a
given, and the goal is to prove that (x, y) ∈ (A ∪ C) × (B ∪ D). The given
means (x, y) ∈ A × B ∨ (x, y) ∈ C × D, so proof by cases is an appropriate
strategy. In each case it is easy to prove the goal.

Statement 5 means A × ∅ = ∅ ∧ ∅ × A = ∅, so we treat this as two
goals and prove A × ∅ = ∅ and ∅ × A = ∅ separately. To say that a set
equals the empty set is actually a negative statement, although it may not
look like it on the surface, because it means that the set does not have any
elements. Thus, it is not surprising that the proof that A × ∅ = ∅ proceeds
by contradiction. The assumption that A × ∅ = ∅ means ∃p(p ∈ A × ∅), so
our next step is to introduce a name for an element of A × ∅. Once again, it
is clear that the new object being introduced in the proof is an ordered pair,
so we have written it as an ordered pair (x, y) from the beginning. Writing
out the meaning of (x, y) ∈ A × ∅ leads immediately to a contradiction.

The proof that ∅ × A = ∅ is similar, but simply saying this doesn’t prove
it. Thus, the claim in the proof that this part of the proof is similar is really
an indication that the second half of the proof is being left as an exercise.
You should work through the details of this proof in your head (or if
necessary write them out on paper) to make sure that a proof similar to the
proof in the first half will really work.

Because the order of the coordinates in an ordered pair matters, A × B
and B × A mean different things. Does it ever happen that A × B = B × A?
Well, one way this could happen is if A = B. Clearly if A = B then A × B = A
× A = B × A. Are there any other possibilities?

Here’s an incorrect proof that A × B = B × A only if A = B: The first
coordinates of the ordered pairs in A × B come from A, and the first
coordinates of the ordered pairs in B × A come from B. But if A × B = B ×
A, then the first coordinates in these two sets must be the same, so A = B.

This is a good example of why it’s important to stick to the rules of proof
writing we’ve studied rather than allowing yourself to be convinced by any
reasoning that looks plausible. The informal reasoning in the preceding
paragraph is incorrect, and we can find the error by trying to reformulate
this reasoning as a formal proof. Suppose A × B = B × A. To prove that A =
B we could let x be arbitrary and then try to prove x ∈ A → x ∈ B and x ∈
B → x ∈ A. For the first of these we assume x ∈ A and try to prove x ∈ B.
Now the incorrect proof suggests that we should try to show that x is the



first coordinate of some ordered pair in A × B and then use the fact that A ×
B = B × A. We could do this by trying to find some object y ∈ B and then
forming the ordered pair (x, y). Then we would have (x, y) ∈ A × B and A ×
B = B × A, and it would follow that (x, y) ∈ B × A and therefore x ∈ B. But
how can we find an object y ∈ B? We don’t have any given information
about B, other than the fact that A × B = B × A. In fact, B could be the empty
set! This is the flaw in the proof. If B = ∅, then it will be impossible to
choose y ∈ B, and the proof will fall apart. For similar reasons, the other
half of the proof won’t work if A = ∅.

Not only have we found the flaw in the proof, but we can now figure out
what to do about it. We must take into account the possibility that A or B
might be the empty set.

Theorem 4.1.4. Suppose A and B are sets. Then A × B = B × A iff either
A= ∅, B= ∅, or A=B.

Proof. (→) Suppose A × B = B × A. If either A = ∅ or B = ∅, then there is
nothing more to prove, so suppose A = ∅ and B = ∅. We will show that A =
B. Let x be arbitrary, and suppose x ∈ A. Since B = ∅ we can choose some
y ∈ B. Then (x, y) ∈ A × B = B × A, so x ∈ B.

Now suppose x ∈ B. Since A = ∅ we can choose some z ∈ A. Therefore
(x, z) ∈ B × A = A × B, so x ∈ A. Thus A = B, as required.

(←) Suppose either A = ∅, B = ∅, or A = B.
Case 1. A= ∅. Then A × B = ∅ × B = ∅ = B × ∅ = B × A.
Case 2. B = ∅. Similar to case 1.
Case 3. A = B. Then A × B = A × A = B × A.

Commentary. Of course, the statement to be proven is an iff statement, so
we prove both directions separately. For the → direction, our goal is A = ∅
∨ B = ∅ ∨ A = B, which could be written as (A = ∅ ∨ B = ∅) ∨ A = B, so
by one of our strategies for disjunctions from Chapter 3 we can assume ¬(A
= ∅ ∨ B = ∅) and prove A = B. Note that by one of De Morgan’s laws, ¬(A
= ∅ ∨ B = ∅) is equivalent to A = ∅ ∧ B = ∅, so we treat this as two
assumptions, A = ∅ and B = ∅. Of course we could also have proceeded
differently, for example by assuming A = B and B = ∅ and then proving A =
∅. But recall from the commentary on part 5 of Theorem 4.1.3 that A = ∅



and B = ∅ are actually negative statements, so because it is generally better
to work with positive than negative statements, we’re better off negating
both of them to get the assumptions A = ∅ and B = ∅ and then proving the
positive statement A = B. The assumptions A = ∅ and B = ∅ are existential
statements, so they are used in the proof to justify the introduction of y and
z. The proof that A = B proceeds in the obvious way, by introducing an
arbitrary object x and then proving x ∈ A ↔ x ∈ B.

For the ← direction of the proof, we have A = ∅ ∨ B = ∅ ∨ A = B as a
given, so it is natural to use proof by cases. In each case, the goal is easy to
prove.

This theorem is a better illustration of how mathematics is really done
than most of the examples we’ve seen so far. Usually when you’re trying to
find the answer to a mathematical question you won’t know in advance
what the answer is going to be. You might be able to take a guess at the
answer and you might have an idea for how the proof might go, but your
guess might be wrong and your idea for the proof might be flawed. It is
only by turning your idea into a formal proof, according to the rules in
Chapter 3, that you can be sure your answer is right. Often in the course of
trying to construct a formal proof you will discover a flaw in your
reasoning, as we did earlier, and you may have to revise your ideas to
overcome the flaw. The final theorem and proof are often the result of
repeated mistakes and corrections. Of course, when mathematicians write
up their theorems and proofs, they follow our rule that proofs are for
justifying theorems, not for explaining thought processes, and so they don’t
describe all the mistakes they made. But just because mathematicians don’t
explain their mistakes in their proofs, you shouldn’t be fooled into thinking
they don’t make any!

Now that we know how to use ordered pairs and Cartesian products to
talk about assigning values to free variables, we’re ready to define truth sets
for statements containing two free variables.

Definition 4.1.5. Suppose P(x, y) is a statement with two free variables in
which x ranges over a set A and y ranges over another set B. Then A × B is
the set of all assignments of values to x and y that make sense in the
statement P(x,y). The truth set of P(x, y) is the subset of A × B consisting of



those assignments that make the statement come out true. In other words,
the truth set of P(x, y) is the set {(a, b) ∈ A × B | P(a, b)}.

Example 4.1.6. What are the truth sets of the following statements?

1. “x has y children,” where x ranges over the set P of all people and y
ranges over N.

2. “x is located in y,” where x ranges over the set C of all cities and y
ranges over the set N of all countries.

3. “y = 2x − 3,” where x and y range over R.

Solutions
1. {(p, n) ∈ P×N | the person p has n children} = {(Prince Charles, 2),

…}.
2. {(c, n) ∈ C × N | the city c is located in the country n} = {(New York,

United States), (Tokyo, Japan), (Paris, France), …}.
3. {(x, y) ∈ R × R | y = 2x − 3} = {(0, −3), (1, −1), (2, 1), …}. You are

probably already familiar with the fact that the ordered pairs in this set
are the coordinates of points in the plane that lie along a certain straight
line, called the graph of the equation y = 2x − 3. Thus, you can think of
the graph of the equation as a picture of its truth set!

Many of the facts about truth sets for statements with one free variable
that we discussed in Chapter 1 carry over to truth sets for statements with
two free variables. For example, suppose T is the truth set of a statement
P(x, y), where x ranges over some set A and y ranges over B. Then for any a
∈ A and b ∈ B the statement (a, b) ∈ T means the same thing as P(a, b).
Also, if P(x, y) is true for every x ∈ A and y ∈ B, then T = A × B, and if
P(x, y) is false for every x ∈ A and y ∈ B, then T = ∅. If S is the truth set of
another statement Q(x, y), then the truth set of the statement P(x, y) ∧ Q(x,
y) is T ∩ S, and the truth set of P(x, y) ∨ Q(x, y) is T ∪ S.

Although we’ll be concentrating on ordered pairs for the rest of this
chapter, it is possible to work with ordered triples, ordered quadruples, and
so on. These might be used to talk about truth sets for statements containing
three or more free variables. For example, let L(x, y, z) be the statement “x



has lived in y for z years,” where x ranges over the set P of all people, y
ranges over the set C of all cities, and z ranges over N. Then the
assignments of values to the free variables that make sense in this statement
would be ordered triples (p,c, n), where p is a person, c is a city, and n is a
natural number. The set of all such ordered triples would be written P × C ×
N, and the truth set of the statement L(x, y, z) would be the set {(p, c, n) ∈
P × C × N | the person p has lived in the city c for n years}.

Exercises
*1. What are the truth sets of the following statements? List a few

elements of each truth set.
(a) “x is a parent of y,” where x and y both range over the set P of all

people.
(b) “There is someone who lives in x and attends y,” where x ranges

over the set C of all cities and y ranges over the set U of all
universities.

2. What are the truth sets of the following statements? List a few
elements of each truth set.

(a) “x lives in y,” where x ranges over the set P of all people and y
ranges over the set C of all cities.

(b) “The population of x is y,” where x ranges over the set C of all
cities and y ranges over N.

3. The truth sets of the following statements are subsets of R2. List a
few elements of each truth set. Draw a picture showing all the
points in the plane whose coordinates are in the truth set.

(a) y = x2 − x − 2.
(b) y < x.
(c) Either y = x2 − x − 2 or y = 3x − 2.
(d) y <x, and either y = x2 − x − 2 or y = 3 x − 2.
*4. Let A = {1, 2, 3}, B = {1, 4}, C = {3, 4}, and D = {5}. Compute

all the sets mentioned in Theorem 4.1.3 and verify that all parts
of the theorem are true.



5. Prove parts 2 and 3 of Theorem 4.1.3.
*6. What’s wrong with the following proof that for any sets A, B, C,

and D, (A ∪ C) × (B ∪ D) ⊆ (A × B) ∪ (C × D)? (Note that this is
the reverse of the inclusion in part 4 of Theorem 4.1.3.)

Proof. Suppose (x, y) ∈ (A ∪ C) × (B ∪ D). Then x ∈ A ∪ C and
y ∈ B ∪ D, so either x ∈ A or x ∈ C, and either y ∈ B or y ∈ D.
We consider these cases separately.
Case 1. x ∈ A and y ∈ B. Then (x, y) ∈ A × B.

Case 2. x ∈ C and y ∈ D. Then (x, y) ∈ C × D.
Thus, either (x, y) ∈ A × B or (x, y) ∈ C × D, so (x, y) ∈ (A ×

B) ∪ (C × D).
□

7. If A has m elements and B has n elements, how many elements
does A × B have?

PD*8. Is it true that for any sets A, B, and C, A×(B \C) = (A × B)\(A×C)?
Give either a proof or a counterexample to justify your answer.

PD9. Prove that for any sets A, B, and C, A × (B Δ C)= (A × B)(A × C).
PD*10. Prove that for any sets A, B, C, and D, (A \ C) × (B \ D) ⊆ (A ×

B) \ (C×D).
PD11. Prove that for any sets A, B, C, and D, (A × B) \ (C × D) = [A ×

(B\D)] ∪ [ (A\ C) × B].
PD12. Prove that for any sets A, B, C, and D, if A × B and C × D are

disjoint, then either A and C are disjoint or B and D are disjoint.
13. Suppose I = ∅. Prove that for any indexed family of sets {Ai | i

∈ I} and any set B, (∩
i ∈ I Ai) × B = ∩

i ∈ I (Ai × B). Where in the
proof does the assumption that I = ∅ get used?

14. Suppose {Ai | i ∈ I} and {Bi | i ∈ I} are indexed families of sets.

(a) Prove that ∪ i∈I (Ai × Bi) ⊆ (∪i∈I Ai) × (∪i∈I Bi).
(b) For each (i, j) ∈ I × I let C(i,,j) = Ai × Bj, and let P = I × I. Prove

that ∪ p∈P Cp = (∪i∈I Bi

*15. This problem was suggested by Professor Alan Taylor of
Union College, NY. Consider the following putative theorem.



Theorem? For any sets A, B, C, and D, if A × B ⊆ C × D then
A⊆ C and B ⊆ D.
Is the following proof correct? If so, what proof strategies does it
use? If not, can it be fixed? Is the theorem correct?

Proof. Suppose A × B ⊆ C × D. Let a be an arbitrary element of
A and let b be an arbitrary element of B. Then (a, b) ∈ A × B, so
since A × B ⊆ C × D, (a, b) ∈ C × D. Therefore a ∈ C and b ∈
D. Since a and b were arbitrary elements of A and B, respectively,
this shows that A⊆ C and B ⊆ D.

□

4.2 Relations
Suppose P(x, y) is a statement with two free variables x and y. Often such a
statement can be thought of as expressing a relationship between x and y.
The truth set of the statement P(x, y) is a set of ordered pairs that records
when this relationship holds. In fact, it is often useful to think of any set of
ordered pairs in this way, as a record of when some relationship holds. This
is the motivation behind the following definition.

Definition 4.2.1. Suppose A and B are sets. Then a set R ⊆ A × B is called a
relation from A to B.

If x ranges over A and y ranges over B, then clearly the truth set of any
statement P(x, y) will be a relation from A to B. However, note that
Definition 4.2.1 does not require that a set of ordered pairs be defined as the
truth set of some statement for the set to be a relation. Although thinking
about truth sets was the motivation for this definition, the definition says
nothing explicitly about truth sets. According to the definition, any subset
of A × B is to be called a relation from A to B.

Example 4.2.2. Here are some examples of relations from one set to
another.



1. Let A = {1, 2, 3}, B = {3, 4, 5}, and R = {(1, 3), (1, 5), (3, 3)}. Then R
⊆ A×B, so R is a relation from A to B.

2. Let G = {(x, y) ∈ R × R | x > y}. Then G is a relation from R to R.

3. Let A = {1, 2} and B = P(A) = {∅, {1}, {2}, {1, 2}}. Let E = {(x, y)
∈ A × B | x ∈ y}. Then E is a relation from A to B. In this case, E =
{(1, {1}), (1, {1, 2}), (2, {2}), (2, {1, 2})}.

For the next three examples, let S be the set of all students at your
school, R the set of all dorm rooms, P the set of all professors, and C
the set of all courses.

4. Let L = {(s, r) ∈ S × R | the student s lives in the dorm room r}. Then
L is a relation from S to R.

5. Let E = {(s, c) ∈ S × C | the student s is enrolled in the course c}.
Then E is a relation from S to C.

6. Let T = {(c, p) ∈ C × P | the course c is taught by the professor p}.
Then T is a relation from C to P.

So far we have concentrated mostly on developing your proof-writing
skills. Another important skill in mathematics is the ability to understand
and apply new definitions. Here are the definitions for several new concepts
involving relations. We’ll soon give examples illustrating these concepts,
but first see if you can understand the concepts based on their definitions.

Definition 4.2.3. Suppose R is a relation from A to B. Then the domain of R
is the set

Dom(R) = {a ∈ A | ∃b ∈ B((a, b) ∈ R)}.

The range of R is the set

Ran(R) = {b ∈ B | ∃a ∈ A((a, b) ∈ R)}.

The inverse of R is the relation R−1 from B to A defined as follows:

R−1 = {(b, a) ∈ B × A |(a, b) ∈ R}.

Finally, suppose R is a relation from A to B and S is a relation from B to C.
Then the composition of S and R is the relation S ◦ R from A to C defined as



follows:

S◦ R = {(a, c) ∈ A × C | ∃ b ∈ B((a, b) ∈ R and (b, c) ∈ S)}.

Notice that we have assumed that the second coordinates of pairs in R and
the first coordinates of pairs in S both come from the same set B, because
that is the situation in which we will most often be interested in S ◦  R.
However, this restriction is not really necessary, as we ask you to show in
exercise 15.

According to Definition 4.2.3, the domain of a relation from A to B is the
set containing all the first coordinates of ordered pairs in the relation. This
will in general be a subset of A, but it need not be all of A. For example,
consider the relation L from part 4 of Example 4.2.2, which pairs up
students with the dorm rooms in which they live. The domain of L would
contain all students who appear as the first coordinate in some ordered pair
in L – in other words, all students who live in some dorm room – but would
not contain, for example, students who live in apartments off campus.
Working it out more carefully from the definition as stated, we have

Similarly, the range of a relation is the set containing all the second
coordinates of its ordered pairs. For example, the range of the relation L
would be the set of all dorm rooms in which some student lives. Any dorm
rooms that are unoccupied would not be in the range of L.

The inverse of a relation contains exactly the same ordered pairs as the
original relation, but with the order of the coordinates of each pair reversed.
Thus, in the case of the relation L, if Joe Smith lives in room 213 Davis
Hall, then (Joe Smith, 213 Davis Hall) ∈ L and (213 Davis Hall, Joe Smith)
∈ L−1. In general, for any student s and dorm room r, we would have (r, s)
∈ L−1 iff (s, r) ∈ L. For another example, consider the relation G from part
2 of Example 4.2.2. It contains all ordered pairs of real numbers (x, y) in
which x is greater than y. We might call it the “greater-than” relation. Its
inverse is



In other words, the inverse of the greater-than relation is the less-than
relation!

The most difficult concept introduced in Definition 4.2.3 is the concept
of the composition of two relations. For an example of this concept,
consider the relations E and T from parts 5 and 6 of Example 4.2.2. Recall
that E is a relation from the set S of all students to the set C of all courses,
and T is a relation from C to the set P of all professors. According to
Definition 4.2.3, the composition T ◦ E is the relation from S to P defined as
follows:

Thus, if Joe Smith is enrolled in Biology 12 and Biology 12 is taught by
Prof. Evans, then (Joe Smith, Biology 12) ∈ E and (Biology 12, Prof.
Evans) ∈ T, and therefore (Joe Smith, Prof. Evans) ∈ T ◦ E. In general, if s
is some particular student and p is a particular professor, then (s, p) ∈ T ◦ E
iff there is some course c such that (s, c) ∈ E and (c, p) ∈ T. This notation
may seem backward at first. If (s, c) ∈ E and (c, p) ∈ T, then you might be
tempted to write (s, p) ∈ E ◦ T, but according to our definition, the proper
notation is (s, p) ∈ T ◦ E. The reason we’ve chosen to write compositions of
relations in this way will become clear in Chapter 5. For the moment, you’ll
just have to be careful about this notational detail when working with
compositions of relations.

Example 4.2.4. Let S, R, C, and P be the sets of students, dorm rooms,
courses, and professors at your school, as before, and let L, E, and T be the
relations defined in parts 4–6 of Example 4.2.2. Describe the following
relations.

1. E−1.



2. E◦L−1.

3. E−1 ◦ E.

4. E◦E−1.

5. T◦ (E ◦ L−1).

6. (T◦ E) ◦ L−1.

Solutions

1. E−1 = {(c, s) ∈ C × S |(s, c) ∈ E} = {(c, s) ∈ C × S | the student s is
enrolled in the course c}. For example, if Joe Smith is enrolled in
Biology 12, then (Joe Smith, Biology 12) ∈ E and (Biology 12, Joe
Smith) ∈ E−1.

2. Because L−1 is a relation from R to S and E is a relation from S to C,
E◦L−1 will be the relation from R to C defined as follows.

Returning to our favorite student Joe Smith, who is enrolled in
Biology 12 and lives in room 213 Davis Hall, we have (213 Davis
Hall, Joe Smith) ∈ L−1 and (Joe Smith, Biology 12)∈ E. According
to the definition of composition, it follows that (213 Davis Hall,
Biology 12) ∈ E ◦ L−1.

3. Because E is a relation from S to C and E−1 is a relation from C to S,
E−1 ◦ E is the relation from S to S defined as follows.



(Note that an arbitrary element of S × S is written (s, t), not (s, s),
because we don’t want to assume that the two coordinates are equal.)

4. This is not the same as the last example! Because E−1 is a relation
from C to S and E is a relation from S to C, E ◦ E−1 is a relation from
C to C. It is defined as follows.

5. We saw in part 2 that E ◦  L−1 is a relation from R to C, and T is a
relation from C to P, so T ◦ (E ◦  L−1) is the relation from R to P
defined as follows.



6.

Notice that our answers for parts 3 and 4 of Example 4.2.4 were different,
so composition of relations is not commutative. However, our answers for
parts 5 and 6 turned out to be the same. Is this a coincidence, or is it true in
general that composition of relations is associative? Often, looking at
examples of a new concept will suggest general rules that might apply to it.
Although one counterexample is enough to show that a rule is incorrect, we
should never accept a rule as correct without a proof. The next theorem
summarizes some of the basic properties of the new concepts we have
introduced.

Theorem 4.2.5. Suppose R is a relation from A to B, S is a relation from B
to C, and T is a relation from C to D. Then:

1. (R−1)−1 = R.

2. Dom(R−1) = Ran (R).

3. Ran(R−1) = Dom (R).
4. T◦ (S ◦ R) = (T ◦ S) ◦ R.

5. (S◦R)−1 = R−1 ◦ S−1.

Proof. We will prove 1, 2, and half of 4, and leave the rest as exercises. (See
exercise 7.)

1. First of all, note that R−1 is a relation from B to A, so (R−1)−1 is a
relation from A to B, just like R. To see that (R−1)−1 = R, let (a, b) be
an arbitrary ordered pair in A × B. Then

(a, b) ∈(R−1)−1 iff (b, a) ∈ R−1 iff (a, b) ∈ R.



2. First note that Dom (R−1) and Ran (R) are both subsets of B. Now let
b be an arbitrary element of B. Then

4. Clearly T ◦ (S ◦ R) and (T ◦ S) ◦ R are both relations from A to D. Let
(a, d) be an arbitrary element of A × D.

First, suppose (a, d) ∈ T ◦ (S ◦ R). By the definition of composition,
this means that we can choose some c ∈ C such that (a, c) ∈ S ◦  R
and (c, d) ∈ T. Since (a, c) ∈ S ◦ R, we can again use the definition
of composition and choose some b ∈ B such that (a, b) ∈ R and (b, c)
∈ S. Now since (b, c) ∈ S and (c, d) ∈ T, we can conclude that (b, d)
∈ T ◦ S. Similarly, since (a, b) ∈ R and (b, d) ∈ T ◦ S, it follows that
(a, d) ∈ (T ◦ S) ◦ R.

Now suppose (a, d) ∈ (T ◦ S) ◦ R. A similar argument, which is left
to the reader, shows that (a, d) ∈ T ◦ (S ◦ R). Thus, T ◦ (S ◦ R) = (T ◦
S) ◦ R.

□

Commentary. Statement 1 means ∀p(p ∈(R−1)−1 ↔ p ∈ R), so the proof
should proceed by introducing an arbitrary object p and then proving p ∈
(R−1)−1 ↔ p ∈ R. But because R and (R−1)−1 are both relations from A to B,
we could think of the universe over which p ranges as being A × B, so p
must be an ordered pair. Thus, in the preceding proof we’ve written it as an
ordered pair (a, b) from the start. The proof of the biconditional statement
(a, b) ∈(R−1)−1 ↔ (a, b) ∈ R uses the method, introduced in Example
3.4.5, of stringing together a sequence of equivalences.

The proofs of statements 2 and 4 are similar, except that the biconditional
proof for statement 4 cannot easily be done by stringing together
equivalences, so we prove the two directions separately. Only one direction
was proven. The key to this proof is to recognize that the given (a, d) ∈ T ◦
(S ◦ R) is an exis-tential statement, since it means ∃c ∈ C((a, c) ∈ S ◦ R and
(c, d) ∈ T), so we should introduce a new variable c into the proof to stand
for some element of C such that (a, c) ∈ S◦R and (c, d) ∈ T. Similarly, (a,
c) ∈ S◦R is an existential statement, so it suggests introducing the variable



b. Once these new variables have been introduced, it is easy to prove the
goal (a, d) ∈ (T ◦ S) ◦ R.

Statement 5 of Theorem 4.2.5 perhaps deserves some comment. First of
all, notice that the right-hand side of the equation is R−1 ◦ S−1, not S−1 ◦ R−1;
the order of the relations has been reversed. You are asked to prove
statement 5 in exercise 7, but it might be worthwhile to try an example first.
We’ve already seen that, for the relations E and T from parts 5 and 6 of
Example 4.2.2,

It follows that

To compute E−1 ◦ T−1, first note that T−1 is a relation from P to C and E−1

is a relation from C to S, so E−1 ◦  T−1 is a relation from P to S. Now,
applying the definition of composition, we get

Thus, (T ◦ E)−1 = E−1 ◦ T−1.

Exercises
*1. Find the domains and ranges of the following relations.

(a) {(p, q) ∈ P × P | the person p is a parent of the person q}, where P is
the set of all living people.

(b) {(x, y) ∈ R2 | y > x2}.



2. Find the domains and ranges of the following relations.
(a) {(p, q) ∈ P × P | the person p is a brother of the person q}, where P is

the set of all living people.
(b) {(x, y) ∈ R2 | y2 = 1 − 2/(x2 + 1)}.

3. Let L and E be the relations defined in parts 4 and 5 of Example 4.2.2.
Describe the following relations:

(a) L−1 ◦ L.
(b) E◦(L−1 ◦ L).
4. Let E and T be the relations defined in parts 5 and 6 of Example 4.2.2.

Also, as in that example, let C be the set of all courses at your school,
and let D = {Monday, Tuesday, Wednesday, Thursday, Friday}. Let M
= {(c, d) ∈ C × D | the course c meets on the day d}. Describe the
following relations:

(a) M◦E.
(b) M◦ T−1.
*5. Suppose that A = {1, 2, 3}, B = {4, 5, 6}, R = {(1, 4), (1, 5), (2, 5), (3,

6)}, and S = {(4, 5), (4, 6), (5, 4), (6, 6)}. Note that R is a relation
from A to B and S is a relation from B to B. Find the following
relations:

(a) S◦R.
(b) S◦S−1.
6. Suppose that A = {1, 2, 3}, B = {4, 5}, C = {6, 7, 8}, R = {(1, 7), (3,

6), (3, 7)}, and S = {(4, 7),(4, 8),(5, 6)}. Note that R is a relation from
A to C and S is a relation from B to C. Find the following relations:

(a) S−1 ◦ R.
(b) R−1 ◦ S.
7. (a) Prove part 3 of Theorem 4.2.5 by imitating the proof of part 2 in

the text.
(b) Give an alternative proof of part 3 of Theorem 4.2.5 by showing that it

follows from parts 1 and 2.
(c) Complete the proof of part 4 of Theorem 4.2.5.
(d) Prove part 5 of Theorem 4.2.5.



*8. Let E = {(p, q) ∈ P × P | the person p is an enemy of the person q},
and F = {(p, q) ∈ P × P | the person p is a friend of the person q},
where P is the set of all people. What does the saying “an enemy of
one’s enemy is one’s friend” mean about the relations E and F?

9. Suppose R is a relation from A to B and S is a relation from B to C.
(a) Prove that Dom (S ◦ R) ⊆ Dom (R).
(b) Prove that if Ran (R) ⊆ Dom (S) then Dom (S ◦ R) = Dom (R).
(c) Formulate and prove similar theorems about Ran (S ◦ R).
10. Suppose R and S are relations from A to B. Must the following state-

ments be true? Justify your answers with proofs or counterexamples.
(a) R⊆ Dom (R)× Ran (R).
(b) If R ⊆ S then R−1 ⊆ S−1.
(c) (R∪S)−1 = R−1 ∪ S−1.
*11. Suppose R is a relation from A to B and S is a relation from B to C.

Prove that S ◦ R = ∅ iff Ran (R) and Dom (S) are disjoint.
PD12. Suppose R is a relation from A to B and S and T are relations from

B to C.
(a) Prove that (S ◦ R) \ (T ◦ R) ⊆ (S \ T) ◦ R.
(b) What’s wrong with the following proof that (S \ T) ◦  R ⊆ (S ◦  R) \

(T◦R) ?

Proof. Suppose (a, c) ∈ (S \ T) ◦ R. Then we can choose some b ∈ B
such that (a, b) ∈ R and (b, c) ∈ S \ T, so (b, c) ∈ S and (b, c) ∉ T.
Since (a, b) ∈ R and (b, c) ∈ S, (a, c) ∈ S ◦ R. Similarly, since (a, b)
∈ R and (b, c) ∉ T, (a, c) ∉ T ◦ R. Therefore (a, c) ∈ (S ◦ R) \ (T ◦
R). Since (a, c) was arbitrary, this shows that (S \ T) ◦ R ⊆ (S ◦ R) \ (T
◦ R).

(c) Must it be true that (S \ T) ◦ R ⊆ (S ◦ R) \ (T ◦ R)? Justify your answer
with either a proof or a counterexample.

13. Suppose R and S are relations from A to B and T is a relation from B
to C. Must the following statements be true? Justify your answers
with proofs or counterexamples.

(a) If R and S are disjoint, then so are R−1 and S−1.



(b) If R and S are disjoint, then so are T ◦ R and T ◦ S.
(c) If T ◦ R and T ◦ S are disjoint, then so are R and S.
PD14. Suppose R is a relation from A to B, and S and T are relations from

B to C. Must the following statements be true? Justify your answers
with proofs or counterexamples.

(a) If S ⊆ T then S ◦ R ⊆ T ◦ R.
(b) (S∩ T) ◦ R ⊆ (S ◦ R) ∩ (T ◦ R).
(c) (S∩ T) ◦ R = (S ◦ R) ∩ (T ◦ R).
(d) (S∪ T) ◦ R = (S ◦ R) ∪ (T ◦ R).
15. Suppose R is a relation from A to B and S is a relation from C to D.

Show that there is a set E such that R is a relation from A to E and S is
a relation from E to D, and therefore the definition of S ◦  R in
Definition 4.2.3 can be applied. Furthermore, the definition gives the
same result no matter which such set E is used.

4.3 More About Relations
Although we have defined relations to be sets of ordered pairs, it is
sometimes useful to be able to think about them in other ways. Often even a
small change in notation can help us see things differently. One alternative
notation that mathematicians sometimes use with relations is motivated by
the fact that in mathematics we often express a relationship between two
objects x and y by putting some symbol between them. For example, the
notations x = y, x < y, x ∈ y, and x ⊆ y express four important
mathematical relationships between x and y. Imitating these notations, if R
is a relation from A to B, x ∈ A, and y ∈ B, mathematicians sometimes
write xRy to mean (x, y) ∈ R.

For example, if L is the relation defined in part 4 of Example 4.2.2, then
for any student s and dorm room r, sLr means (s, r) ∈ L, or in other words,
the student s lives in the dorm room r. Similarly, if E and T are the relations
defined in parts 5 and 6 of Example 4.2.2, then sEc means that the student s
is enrolled in the course c, and cTp means that the course c is taught by the
professor p. The definition of composition of relations could have been
stated by saying that if R is a relation from A to B and S is a relation from B
to C, then S ◦ R = {(a, c) ∈ A × C | ∃b ∈ B(aRb and bSc)}.



Another way to think about relations is to draw pictures of them. Figure
4.1 shows a picture of the relation R = {(1, 3), (1, 5), (3, 3)} from part 1 of
Example 4.2.2. Recall that this was a relation from the set A = {1, 2, 3} to
the set B = {3, 4, 5}. In the figure, each of these sets is represented by an
oval, with the elements of the set represented by dots inside the oval. Each
ordered pair (a, b) ∈ R is represented by an arrow from the dot representing
a to the dot representing b. For example, there is an arrow from the dot
inside A labeled 1 to the dot inside B labeled 5 because the ordered pair (1,
5) is an element of R.

In general, any relation R from a set A to a set B can be represented by
such a picture. The dots representing the elements of A and B in such a
picture are called vertices, and the arrows representing the ordered pairs in
R are called edges. It doesn’t matter exactly how the vertices representing
elements of A and B are arranged on the page; what’s important is that the
edges correspond precisely to the ordered pairs in R. Drawing these pictures
may help you understand the concepts discussed in the last section. For
example, you should be able to convince yourself that you could find the
domain of R by locating those vertices in A that have edges pointing away
from them. Similarly, the range of R would consist of those elements of B
whose vertices have edges pointing toward them. For the relation R shown
in Figure 4.1, we have Dom (R) = {1, 3} and Ran (R) = {3, 5}. A picture of
R−1 would look just like a picture of R but with the directions of all the
arrows reversed.

Figure 4.1.



Pictures illustrating the composition of two relations are a little harder to
understand. For example, consider again the relations E and T from parts 5
and 6 of Example 4.2.2. Figure 4.2 shows what part of both relations might
look like. (The complete picture might be quite large if there are many
students, courses, and professors at your school.) We can see in this picture
that, for example, Joe Smith is taking Biology 12 and Math 21, that Biology
12 is taught by Prof. Evans, and that Math 21 is taught by Prof. Andrews.
Thus, applying the definition of composition, we can see that the pairs (Joe
Smith, Prof. Evans) and (Joe Smith, Prof. Andrews) are both elements of
the relation T ◦ E.

Figure 4.2.

To see more clearly how the composition T ◦  E is represented in this
picture, first note that for any student s, course c, and professor p, there is
an arrow from s to c iff sEc, and there is an arrow from c to p iff cTp. Thus,
according to the definition of composition,

For example, starting at the vertex labeled Mary Edwards, we can get to
Prof. Andrews in two steps (going by way of either Math 21 or Math 13), so
we can conclude that (Mary Edwards, Prof. Andrews) ∈ T ◦ E.



In some situations we draw pictures of relations in a slightly different
way. For example, if A is a set and R ⊆ A × A, then according to Definition
4.2.1, R would be called a relation from A to A. Such a relation is also
sometimes called a relation on A (or a binary relation on A). Relations of
this type come up often in mathematics; in fact, we have already seen a few
of them. For example, we described the relation G in part 2 of Example
4.2.2 as a relation from R to R, but in our new terminology we could call it
a relation (or a binary relation) on R. The relation E−1 ◦  E from Example
4.2.4 was a relation on the set S, and E ◦ E−1 was a relation on C.

Example 4.3.1. Here are some more examples of relations on sets.

1. Let A = {1, 2} and B = P(A) = {∅, {1}, {2}, {1, 2}} as in part 3 of
Example 4.2.2. Let

Then S is a relation on B.
2. Suppose A is a set. Let iA = {(x, y) ∈ A × A | x = y}. Then iA is a

relation on A. (It is called the identity relation on A.) For example, if
A = {1, 2, 3}, then iA = {(1, 1),(2, 2),(3, 3)}. Note that iA could also be
defined by writing iA = {(x, x) | x ∈ A}.

3. For each positive real number r, let Dr = {(x, y) ∈ R × R | x and y
differ by less than r, or in other words |x − y| < r}. Then Dr is a
relation on R.

Suppose R is a relation on a set A. If we used the method described
earlier to draw a picture of R, then we would have to draw two copies of the
set A and then draw edges from one copy of A to the other to represent the
ordered pairs in R. An easier way to draw the picture would be to draw just
one copy of A and then connect the vertices representing the elements of A
with edges to represent the ordered pairs in R. For example, Figure 4.3
shows a picture of the relation S from part 1 of Example 4.3.1. Pictures like
the one in Figure 4.3 are called directed graphs.



Figure 4.3.

Note that in this directed graph there is an edge from ∅ to itself, because
(∅, ∅)∈ S. Edges such as this one that go from a vertex to itself are called
loops. In fact, in Figure 4.3 there is a loop at every vertex, because S has the
property that ∀x ∈ B((x, x) ∈ S). We describe this situation by saying that S
is reflexive.

Definition 4.3.2. Suppose R is a relation on A.

1. R is said to be reflexive on A (or just reflexive, if A is clear from
context) if ∀x ∈ A(xRx), or in other words ∀x ∈ A((x, x) ∈ R).

2. R is symmetric if ∀x ∈ A ∀y ∈ A(xRy → yRx).
3. R is transitive if ∀x ∈ A ∀y ∈ A ∀z ∈ A((xRy ∧ yRz) → xRz).

As we saw in Example 4.3.1, if R is reflexive on A, then the directed
graph representing R will have loops at all vertices. If R is symmetric, then
whenever there is an edge from x to y, there will also be an edge from y to
x. If x and y are distinct, it follows that there will be two edges connecting x
and y, one pointing in each direction. Thus, if R is symmetric, then all edges
except loops will come in such pairs. If R is transitive, then whenever there
is an edge from x to y and y to z, there is also an edge from x to z.



Example 4.3.3. Is the relation G from part 2 of Example 4.2.2 reflexive?
Is it symmetric? Transitive? Are the relations in Example 4.3.1 reflexive,
symmetric, or transitive?

Solution

Recall that the relation G from Example 4.2.2 is a relation on R and that for
any real numbers x and y, xGy means x > y. Thus, to say that G is reflexive
would mean that ∀x ∈ R(xGx), or in other words ∀x ∈ R(x > x), and this is
clearly false. To say that G is symmetric would mean that ∀x ∈ R∀y ∈ R(x
> y → y > x), and this is also clearly false. Finally, to say that G is
transitive would mean that ∀x ∈ R∀y ∈ R∀z ∈ R((x > y ∧ y > z) → x >
z), and this is true. Thus, G is transitive, but not reflexive or symmetric.

The analysis of the relations in Example 4.3.1 is similar. For the relation
S in part 1 we use the fact that for any x and y in B, xSy means x ⊆ y. As we
have already observed, S is reflexive, since ∀x ∈ B(x ⊆ x), but it is not true
that ∀x ∈ B∀y ∈ B(x ⊆ y → y ⊆ x). For example, {1} ⊆ {1, 2}, but {1, 2}
⊈ {1}. You can see this in Figure 4.3 by noting that there is an edge from
{1} to {1, 2} but not from {1, 2} to {1}. Thus, S is not symmetric. S is
transitive, because the statement ∀x ∈ B∀y ∈ B∀z ∈ B((x ⊆ y ∧ y ⊆ z) →
x ⊆ z) is true.

For any set A the identity relation iA will be reflexive, symmetric, and
transitive, because the statements ∀x ∈ A(x = x), ∀x ∈ A∀y ∈ A(x = y → y
= x), and ∀x ∈ A∀y ∈ A∀z ∈ A((x = y ∧ y = z) → x = z) are all clearly
true. Finally, suppose r is a positive real number and consider the relation
Dr. For any real number x, |x − x| = 0 < r, so (x, x) ∈ Dr. Thus, Dr is
reflexive. Also, for any real numbers x and y, |x − y| = |y − x|, so if |x − y| < r
then |y − x| < r. Therefore, if (x, y) ∈ Dr then (y, x) ∈ Dr, so Dr is
symmetric. But Dr is not transitive. To see why, let x be any real number.
Let y = x +2r/3 and z = y +2r/3 = x +4r/3. Then |x −y| = 2r/3 < r and |y−z| =
2r/3 < r, but |x − z| = 4r/3 > r. Thus, (x, y) ∈ Dr and (y, z) ∈ Dr, but (x, z)
∈/ Dr.

Perhaps you’ve already guessed that the properties of relations defined in
Definition 4.3.2 are related to the operations defined in Definition 4.2.3. To



say that a relation R is symmetric involves reversing the roles of two
variables in a way that may remind you of the definition of R−1. The
definition of transitivity of a relation involves stringing together two
ordered pairs, just as the definition of composition of relations does. The
following theorem spells these connections out more carefully.

Theorem 4.3.4. Suppose R is a relation on a set A.

1. R is reflexive iff iA ⊆ R, where as before iAis the identity relation on A.

2. R is symmetric iff R = R−1.
3. R is transitive iff R◦ R ⊆ R.

Proof. We will prove 2 and leave the proofs of 1 and 3 as exercises (see
exercises 7 and 8).

2. (→) Suppose R is symmetric. Let (x, y) be an arbitrary element of R.
Then xRy, so since R is symmetric,yRx. Thus,(y, x) ∈ R, so by the definition
of R−1, (x, y) ∈ R−1. Since (x, y) was arbitrary, it follows that R ⊆ R−1.

Now suppose (x, y) ∈ R−1. Then (y, x) ∈ R, so since R is symmetric, (x,
y) ∈ R. Thus,R−1 ⊆ R, so R = R−1.

(←) Suppose R = R−1, and let x and y be arbitrary elements of A. Suppose
xRy. Then (x, y) ∈ R, so since R = R−1,(x, y) ∈ R−1. By the definition of R−1

this means (y,x) ∈ R, so yRx. Thus, ∀x ∈ A ∀y ∈ A(xRy → yRx), so R is
symmetric.

□

Commentary. This proof is fairly straightforward. The statement to be
proven is an iff statement, so we prove both directions separately. In the →
half we must prove that R = R−1, and this is done by proving both R ⊆ R−1

and R−1 ⊆ R. Each of these goals is proven by taking an arbitrary element
of the first set and showing that it is in the second set. In the ← half we
must prove that R is symmetric, which means ∀x ∈ A∀y ∈ A(xRy → yRx).
We use the obvious strategy of letting x and y be arbitrary elements of A,
assuming xRy, and proving yRx.

Exercises



*1. Let L = {a, b, c, d, e} and W = {bad, bed, cab}. Let R = {(l, w) ∈ L ×
W | the letter l occurs in the word w}. Draw a diagram (like the one in
Figure 4.1) of R.

2. Let A = {cat, dog, bird, rat}, and let R = {(x, y) ∈ A × A | there is at
least one letter that occurs in both of the words x and y}. Draw a
directed graph (like the one in Figure 4.3) for the relation R. Is R
reflexive? Symmetric? Transitive?

*3. Let A = {1, 2, 3, 4}. Draw a directed graph for iA, the identity relation
on A.

4. List the ordered pairs in the relations represented by the directed
graphs in Figure 4.4. Determine whether each relation is reflexive,
symmetric, or transitive.

Figure 4.4.

*5. Figure 4.5 shows two relations R and S. Find S ◦ R.
6. Suppose r and s are two positive real numbers. Let Dr and Ds be

defined as in part 3 of Example 4.3.1. What is Dr ◦  Ds? Justify your



answer with a proof. (Hint: In your proof, you may find it helpful to
use the triangle inequality; see exercise 13(c) of Section 3.5.)

*7. Prove part 1 of Theorem 4.3.4.
8. Prove part 3 of Theorem 4.3.4.
9. Suppose A and B are sets.

(a) Show that for every relation R from A to B, R ◦ iA = R.
(b) Show that for every relation R from A to B, iB ◦ R = R.

*10. Suppose S is a relation on A. Let D = Dom (S) and R = Ran (S).
Prove that iD ⊆ S−1 ◦ S and iR ⊆ S ◦ S−1.

11. Suppose R is a relation on A. Prove that if R is reflexive then R ⊆ R ◦
R.

Figure 4.5.

12. Suppose R is a relation on A.
(a) Prove that if R is reflexive, then so is R−1

(b) Prove that if R is symmetric, then so is R−1.
(c) Prove that if R is transitive, then so is R−1.
*13. Suppose R1 and R2 are relations on A. For each part, give either a

proof or a counterexample to justify your answer.
(a) If R1 and R2 are reflexive, must R1 ∪ R2 be reflexive?



(b) If R1 and R2 are symmetric, must R1 ∪ R2 be symmetric?
(c) If R1 and R2 are transitive, must R1 ∪ R2 be transitive?

14. Suppose R1 and R2 are relations on A. For each part, give either a
proof or a counterexample to justify your answer.

(a) If R1 and R2 are reflexive, must R1 ∩ R2 be reflexive?
(b) If R1 and R2 are symmetric, must R1 ∩ R2 be symmetric?
(c) If R1 and R2 are transitive, must R1 ∩ R2 be transitive?

15. Suppose R1 and R2 are relations on A. For each part, give either a
proof or a counterexample to justify your answer.

(a) If R1 and R2 are reflexive, must R1 \ R2 be reflexive?
(b) If R1 and R2 are symmetric, must R1 \ R2 be symmetric?
(c) If R1 and R2 are transitive, must R1 \ R2 be transitive?

16. Suppose R and S are reflexive relations on A. Prove that R ◦ S is
reflexive.

*17. Suppose R and S are symmetric relations on A. Prove that R ◦  S is
symmetric iff R ◦ S = S ◦ R.

18. Suppose R and S are transitive relations on A. Prove that if S ◦ R ⊆ R ◦
S then R ◦ S is transitive.

19. Consider the following putative theorem.

Theorem? Suppose R is a relation on A, and define a relation S on
P(A) as follows:

S = {(X, Y) ∈ P(A) × P(A) | ∃X ∈ X ∃y ∈ Y(xRy)}.

If R is transitive, then so is S.

(a) What’s wrong with the following proof of the theorem?
Proof. Suppose R is transitive. Suppose (X, Y) ∈ S and (Y, Z) ∈ S.
Then by the definition of S, xRy and yRz, where x ∈ X, y ∈ Y, and z ∈
Z. Since xRy, yRz, and R is transitive, xRz. But then since x ∈ X and z
∈ Z, it follows from the definition of S that (X, Z) ∈ S. Thus, S is
transitive.



□
(b) Is the theorem correct? Justify your answer with either a proof or a

counterexample.

*20. Suppose R is a relation on A. Let B = {X ∈ P(A) | X ≠ ∅}, and
define a relation S on B as follows:

S = {(X, Y) ∈ B × B | ∀x ∈ X ∀y ∈ Y(xRy)}.

Prove that if R is transitive, then so is S. Why did the empty set have
to be excluded from the set B to make this proof work?

21. Suppose R is a relation on A, and define a relation S on P(A) as
follows:

S = {(X, Y) ∈ P(A) × P(A) | ∀x ∈ X ∃y ∈ Y(xRy)}.

For each part, give either a proof or a counterexample to justify your
answer.

(a) If R is reflexive, must S be reflexive?
(b) If R is symmetric, must S be symmetric?
(c) if R is transitive, must S be transitive?
22. Consider the following putative theorem:

Theorem? Suppose R is a relation on A. If R is symmetric and
transitive, then R is reflexive.

Is the following proof correct? If so, what proof strategies does it use?
If not, can it be fixed? Is the theorem correct?

Proof. Let x be an arbitrary element of A. Let y be any element of A
such that xRy. Since R is symmetric, it follows that yRx. But then by
transitivity, since xRy and yRx we can conclude that xRx. Since x was
arbitrary, we have shown that ∀x ∈ A(xRx), so R is reflexive.

□
*23. This problem was suggested by Professor William Zwicker of Union

College, NY. Suppose A is a set, and F ⊆ P(A). Let R = {(a, b) ∈ A ×



A | for every X ⊆ A \ {a,b}, if X ∪ {a} ∈ F then X ∪ {b} ∈ F}. Show

that R is transitive.
24. Let R = {(m, n) ∈ N × N | |m − n| ≤ 1}, which is a relation on N. Note

that R ⊆ Z × Z, so R is also a relation on Z. This exercise will illustrate
why, in part 1 of Definition 4.3.2, we defined the phrase “R is reflexive
on A,” rather than simply “R is reflexive.”

(a) Is R reflexive on N?
(b) Is R reflexive on Z?

4.4 Ordering Relations
Consider the relation L = {(x, y) ∈ R × R | x ≤ y}. You should be able to
check for yourself that it is reflexive and transitive, but not symmetric. It
fails to be symmetric in a rather extreme way because there are many pairs
(x, y) such that xLy is true but yLx is false. In fact, the only way xLy and yLx
can both be true is if x ≤ y and y ≤ x, and thus x = y. We therefore say that L
is antisymmetric. Here is the general definition.

Definition 4.4.1. Suppose R is a relation on a set A. Then R is said to be
antisymmetric if ∀x ∈ A ∀y ∈ A((xRy ∧ yRx) → x = y).

We have already seen a relation with many of the same properties as L.
Look again at the relation S defined in part 1 of Example 4.3.1. Recall that
in that example we let A = {1, 2}, B = P(A), and S = {(x, y) ∈ B × B | x ⊆
y}. Thus, if x and y are elements of B, then xSy means x ⊆ y. We checked in
the last section that S is reflexive and transitive, but not symmetric. In fact,
S is also antisymmetric, because for any sets x and y, if x ⊆ y and y ⊆ x
then x = y. You may find it useful to look back at Figure 4.3 in the last
section, which shows the directed graph representing S.

Intuitively, L and S are both relations that have something to do with
comparing the sizes of two objects. Each of the statements x ≤ y and x ⊆ y
can be thought of as saying that, in some sense, y is “at least as large as” x.
You might say that each of these statements specifies what order x and y
come in. This motivates the following definition.



Definition 4.4.2. Suppose R is a relation on a set A. Then R is called a
partial order on A(or just a partial order if A is clear from context) if it is
reflexive, transitive, and antisymmetric. It is called a total order on A (or
just a total order) if it is a partial order, and in addition it has the following
property:

∀x ∈ A ∀y ∈ A(xRy ∨ yRx).

The relations L and S just considered are both partial orders. S is not a
total order, because it is not true that ∀x ∈ B∀y ∈ B(x ⊆ y ∨ y ⊆ x). For
example, if we let x = {1} and y = {2}, then x ⊈ y and y ⊈ x. Thus,
although we can think of the relation S as indicating a sense in which one
element of B might be at least as large as another, it does not give us a way
of comparing every pair of elements of B. For some pairs, such as {1} and
{2}, S doesn’t pick out either one as being at least as large as the other. This
is the sense in which the ordering is partial. On the other hand, L is a total
order, because if x and y are any two real numbers, then either x ≤ y or y ≤ x.
Thus, L does give us a way of comparing any two real numbers.

Example 4.4.3. Which of the following relations are partial orders? Which
are total orders?

1. Let A be any set, and let B = P(A) and S = {(x, y) ∈ B × B | x ⊆ y}.

2. Let A = {1, 2} and B = P(A) as before. Let

3. D = {(x, y) ∈ Z+ × Z+ | x divides y}.

4. G = {(x, y) ∈ R × R | x ≥y}.

Solutions

1. This is just a generalization of one of the examples discussed earlier,
and it is easy to check that it is a partial order. As long as A has at
least two elements, it will not be a total order. To see why, just note



that if a and b are distinct elements of A, then {a} and {b} are
elements of B for which {a} ⊈ {b} and {b} ⊈ {a}.

2. Note that ({1}, {2}) ∈ R and ({2}, {1}) ∈ R, but of course {1} ≠
{2}. Thus, R is not antisymmetric, so it is not a partial order.
Although R was defined by picking out pairs (x, y) in which y is, in a
certain sense, at least as large as x, it does not satisfy the definition of
partial order. This example shows that our description of partial
orders as relations that indicate a sense in which one object is at least
as large as another should not be taken too seriously. This was the
motivation for the definition of partial order, but it is not the definition
itself.

3. Clearly every positive integer is divisible by itself, so D is reflexive.
Also, as we showed in Theorem 3.3.7, if x | y and y | z then x | z. Thus,
if (x, y) ∈ D and (y, z) ∈ D then (x, z) ∈ D, so D is transitive. Finally,
suppose (x, y) ∈ D and (y, x) ∈ D. Then x | y and y | x, and because x
and y are positive it follows that x ≤ y and y ≤ x, so x = y. Thus, D is
antisymmetric, so it is a partial order. It is easy to find examples
illustrating that D is not a total order. For example, (3, 5) ∉ D and (5,
3) ∉ D.

Perhaps you were surprised to discover that D is a partial order. It
doesn’t seem to involve comparing the sizes of things, like the other
partial orders we’ve seen. But we have shown that it does share with
these other relations the important properties of reflexivity,
transitivity, and antisymmetry. In fact, this is one of the reasons for
formulating definitions such as Definition 4.4.2. They help us to see
similarities between things that, on the surface, might not seem
similar at all.

4. You should be able to check for yourself that G is a total order. Notice
that in this case it seems more reasonable to think of xGy as meaning
that y is as least as small as x rather than at least as large. The
definition of partial order, though motivated by thinking about
orderings that go in one direction, actually applies to orderings in
either direction. In fact, this example might lead you to conjecture that
if R is a partial order on A, then so is R−1. You are asked to prove this
conjecture in exercise 13.



So far we have always used letters as the names for our relations, but
some-times mathematicians represent relations with symbols rather than
letters. For example, in part 4 of Example 4.4.3 we used the letter G as the
name for a relation. But in that example, for all real numbers x and y, xGy
meant the same thing as x ≥ y. This suggests that we didn’t really need to
introduce the letter G; we could simply have treated the symbol ≥ as the
name for the relation. Using this notation, we could say that ≥ is a total
order on R.

Here’s another example of a partial order. Let A be the set of all words in
English, and let R = {(x, y) ∈ A × A | all the letters in the word x appear,
consecutively and in the right order, in the word y}. For example, (can,
cannot), (tar, start), and (ball, ball) are all elements of R, but (can, anchor)
and (can, carnival) are not. You should be able to check that R is reflexive,
transitive, and antisymmetric, so R is a partial order. Now consider the set B
= {me, men, tame, mental} ⊆ A. Clearly many ordered pairs of words in B
are in the relation R, but note in particular that the ordered pairs (me, me),
(me, men), (me, tame), and (me, mental) are all in R. If we think of xRy as
meaning that y is in some sense at least as large as x, then we could say that
the word me is the smallest element of B, in the sense that it is smaller than
everything else in the set.

Not every set of words will have an element that is smallest in this sense.
For example, consider the set C = {a, me, men, tame, mental} ⊆ A. Each of
the words men, tame, and mental is larger than at least one other word in the
set, but neither a nor me is larger than anything else in the set. We’ll call a
and me minimal elements of C. But note that neither a nor me is the
smallest element of C in the sense described in the last paragraph, because
neither is smaller than the other. The set C has two minimal elements but no
smallest element.

These examples might raise a number of questions in your mind about
smallest and minimal elements. The set C has two minimal elements, but B
has only one smallest element. Can a set ever have more than one smallest
element? Until we have settled this question, we should only talk about an
object being a smallest element of a set, rather than the smallest element. If
a set has only one minimal element, must it be a smallest element? Can a
set have a smallest element and a minimal element that are different? Would
the answers to these questions be different if we restricted our attention to



total orders rather than all partial orders? Before we try to answer any of
these questions, we should state the definitions of the terms smallest and
minimal more carefully.

Definition 4.4.4. Suppose R is a partial order on a set A, B ⊆ A, and b ∈ B.
Then b is called an R-smallest element of B (or just a smallest element if R
is clear from the context) if ∀x ∈ B(bRx). It is called an R-minimal element
(or just a minimal element) if ¬∃x ∈ B(xRb ∧ x = b).

Example 4.4.5.

1. Let L = {(x, y) ∈ R × R | x ≤ y}, as before. Let B = {x ∈ R | x ≥ 7}.
Does B have any L-smallest or L-minimal elements? What about the
set C = { x ∈ R | x > 7}? As mentioned earlier, we could do without
the letter L here and ask for ≤-smallest or ≤-minimal elements of B
and C.

2. Let D be the divisibility relation defined in part 3 of Example 4.4.3.
Let B = {3, 4, 5, 6, 7, 8, 9}. Does B have any D-smallest or D-
minimal elements?

3. Let S = {(X, Y) ∈ P(N) × P(N) | X ⊆ Y}, which is a partial order on
the set P(N). Let F = {X ∈ P(N) | 2 ∈ X and 3 ∈ X}. Note that the

elements of F are not natural numbers, but sets of natural numbers.
For example, {1, 2, 3} and {n ∈ N | n is prime} are both elements of
F. Does F have any S-smallest or S-minimal elements? What about

the set G = {X ∈ P(N) | either 2 ∈ X or 3 ∈ X}?

Solutions

1. Clearly 7 ≤ x for every x ∈ B, so ∀x ∈ B(7Lx) and therefore 7 is a
smallest element of B. It is also a minimal element, since nothing in B
is smaller than 7, so ¬∃x ∈ B(xL7 ∧ x ≠ 7). There are no other
smallest or minimal elements. Note that 7 is not a smallest or minimal
element of C, since 7 ∉ C. According to Definition 4.4.4, a smallest
or minimal element of a set must actually be an element of the set. In
fact, C has no smallest or minimal elements.



2. First of all, note that 6 and 9 are not minimal because both are
divisible by 3, and 8 is not minimal because it is divisible by 4. All
the other elements of B are minimal elements, but none is a smallest
element.

3. The set {2, 3} is a smallest element of F, since 2 and 3 are elements

of every set in F, and therefore ∀X ∈ F({2, 3} ⊆ X). It is also a

minimal element, since no other element of F is a subset of it, and

there are no other smallest or minimal elements. The set G has two

minimal elements, {2} and {3}. Every other set in G must contain one

of these two as a subset, so no other set can be minimal. Neither set is
smallest, since neither is a subset of the other.

We are now ready to answer some of the questions we raised before
Definition 4.4.4.

Theorem 4.4.6. Suppose R is a partial order on a set A, and B ⊆ A.

1. If B has a smallest element, then this smallest element is unique. Thus,
we can speak of the smallest element of B rather than a smallest
element.

2. Suppose b is the smallest element of B. Then b is also a minimal
element of B, and it is the only minimal element.

3. If R is a total order and b is a minimal element of B, then b is the
smallest element of B.

Scratch work

These proofs are somewhat harder than earlier ones in this chapter, so we
do some scratch work before the proofs.

1. Of course, we start by assuming that B has a smallest element, and
because this is an existential statement, we immediately introduce a
name, say b, for a smallest element of B. We must prove that b is the
only smallest element. As we saw in Section 3.6, this can be written
∀c(c is a smallest element of B → b = c), so our next step should be



to let c be arbitrary, assume it is also a smallest element, and prove b
= c.

At this point, we don’t know much about b and c. We know they’re both
elements of B, but we don’t even know what kinds of objects are in B –
whether they’re numbers, or sets, or some other type of object – so this
doesn’t help us much in deciding how to prove that b = c. The only other
fact we know about b and c is that they are both smallest elements of B,
which means ∀x ∈ B(bRx) and ∀x ∈ B(cRx). The most promising way to
use these statements is to plug something in for x in each statement. What
we plug in should be an element of B, and we only know of two elements of
B at this point, b and c. Plugging in both of them in both statements, we get
bRb, bRc, cRb, and cRc. Of course, we already knew bRb and cRc, since R
is reflexive. But when you see that bRc and cRb, you should think of
antisymmetry. Since R is a partial order, it is antisymmetric, so from bRc
and cRb it follows that b = c.

2. Our first goal is to prove that b is a minimal element of B, which
means ¬∃x ∈ B(xRb ∧ x ≠ b). Because this is a negative statement, it
might help to reexpress it as an equivalent positive statement:

Thus, to prove that b is minimal we could let x be an arbitrary element of B,
assume that xRb, and prove x = b.

Once again, it’s a good idea to take stock of what we know at this point
about b and x. We know xRb, and we know that b is the smallest element of
B, which means ∀x ∈ B(bRx). If we apply this last fact to our arbitrary x,
then as in part 1 we can use antisymmetry to complete the proof.

We still must prove that b is the only minimal element, and as in part 1
this means ∀c(c is a minimal element of B → b = c). So we let c be
arbitrary and assume that c is a minimal element of B, and we must prove
that b = c. The assumption that c is a minimal element of B means that c ∈
B and ¬ x ∈ B(xRc ∧ x = c), but as before, we can reexpress this last
statement in the equivalent positive form ∀x ∈ B(xRc → x = c). To use this



statement we should plug in something for x, and because our goal is to
show that b = c, plugging in b for x seems like a good idea. This gives us
bRc → b = c, so if only we could show bRc, we could complete the proof
by using modus ponens to conclude that b = c. But we know b is the
smallest element of B, so of course bRc is true.

3. Of course, we start by assuming that R is a total order and b is a
minimal element of B. We must prove that b is the smallest element of
B, which means ∀x ∈ B(bRx), so we let x be an arbitrary element of B
and try to prove bRx.

We know from examples we’ve looked at that minimal elements in
partial orders are not always smallest elements, so the assumption
that R is a total order must be crucial. The assumption that R is total
means ∀x ∈ A∀y ∈ A(xRy ∨ yRx), so to use it we should plug in
something for x and y. The only likely candidates for what to plug in
are b and our arbitrary object x, and plugging these in we get xRb ∨
bRx. Our goal is bRx, so this certainly looks like progress. If only we
could rule out the possibility that xRb, we’d be done. So let’s see if
we can prove ¬xRb.

Because this is a negative statement, we try proof by contradiction.
Suppose xRb. What given statement can we contradict? The only
given we haven’t used yet is the fact that b is minimal, and since this
is a negative statement, it is the natural place to look for a
contradiction. To contradict the fact that b is minimal, we should try
to show that ∃x ∈ B(xRb ∧ x ≠ b). But we’ve already assumed xRb,
so if we could show x ≠ b we’d be done.

You should try proving x = b at this point. You won’t get anywhere.
The fact is, we started out by letting x be an arbitrary element of B,
and this means that it could be any element of B, including b. We then
assumed that xRb, but since R is reflexive, this still doesn’t rule out
the possibility that x = b. There really isn’t any hope of proving x ≠ b.
We seem to be stuck.

Let’s review our overall plan for the proof. We needed to show ∀x
∈ B(bRx), so we let x be an arbitrary element of B, and we’re trying
to show bRx. We’ve now run into problems because of the possibility
that x = b. But if our ultimate goal is to prove bRx, then the possibility



that x = b really isn’t a problem after all. Since R is reflexive, if x = b
then of course bRx will be true!

Now, how should we structure the final write-up of the proof? It
appears that our reasoning to establish bRx will have to be different
depending on whether or not x = b. This suggests proof by cases. In
case 1 we assume that x = b, and use the fact that R is reflexive to
complete the proof. In case 2 we assume that x = b, and then we can
use our original line of attack, starting with the fact that R is total.

Proof.

1. Suppose b is a smallest element of B, and suppose c is also a smallest
element of B. Since b is a smallest element, ∀x ∈ B(bRx), so in
particular bRc. Similarly, since c is a smallest element,cRb. But now
since R is a partial order, it must be antisymmetric, so from bRc and
cRb we can conclude b = c.

2. Let x be an arbitrary element of B and suppose that xRb. Since b is the
smallest element of B, we must have bRx, and now by antisymmetry it
follows that x = b. Thus, there can be no x ∈ B such that xRb and x ≠
b, so b is a minimal element.

To see that it is the only one, suppose c is also a minimal element.
Since b is the smallest element of B, bRc. But then since c is minimal
we must have b = c. Thus b is the only minimal element of B.

3. Suppose R is a total order and b is a minimal element of B. Let x be an
arbitrary element of B. If x = b, then since R is reflexive, bRx. Now
suppose x ≠ b. Since R is a total order, we know that either xRb or
bRx. But xRb can’t be true, since by combining xRb with our
assumption that x ≠ b we could conclude that b is not minimal,
thereby contradicting our assumption that it is minimal. Thus, bRx
must be true. Since x was arbitrary, we can conclude that ∀x ∈
B(bRx), so b is the smallest element of B.

□

When comparing subsets of some set A, mathematicians often use the
partial order S = {(X, Y) ∈ P(A) × P(A) | X ⊆ Y}, although this is not
always made explicit. Recall that if F ⊆ P(A) and X ∈ F, then according



to Definition 4.4.4, X is the S-smallest element of F iff ∀Y ∈ F(X ⊆ Y). In

other words, to say that an element of F is the smallest element means that

it is a subset of every element of F. Similarly, mathematicians sometimes

talk of a set being the smallest one with a certain property. Generally this
means that the set has the property in question, and furthermore it is a
subset of every set that has the property. For example, we might describe
our conclusion in part 3 of Example 4.4.5 by saying that {2, 3} is the
smallest set X ⊆ N with the property that 2 ∈ X and 3 ∈ X. We will see
more examples of this idea in later chapters.

Example 4.4.7.

1. Find the smallest set of real numbers X such that 5 ∈ X and for all
real numbers x and y, if x ∈ X and x < y then y ∈ X.

2. Find the smallest set of real numbers X such that X ≠ ∅ and for all
real numbers x and y, if x ∈ X and x < y then y ∈ X.

Solutions

1. Another way to phrase the question would be to say that we are
looking for the smallest element of the family of sets F = {X ⊆ R | 5

∈ X and ∀x∀ y((x ∈ X ∧ x < y) → y ∈ X)}, where it is understood
that smallest means smallest with respect to the subset partial order.
Now for any set x ∈ F we know that 5 ∈ X, and we know that

∀x∀y((x ∈ X ∧ x < y) → y ∈ X). In particular, since 5 ∈ X we can
say that ∀y(5 < y → y ∈ X). Thus, if we let A = {y ∈ R | 5 ≤ y}, then
we can conclude that ∀X ∈ F(A⊆X). But it is easy to see that A ∈ F,

so A is the smallest element of F.

2. We must find the smallest element of the family of sets F = {X ⊆ R |

X ≠ ∅ and ∀x∀y((x ∈ X ∧ x < y) → y ∈ X)}. The set A = {y ∈ R | 5
≤ y} from part 1 is an element of F, but it is not the smallest element,

or even a minimal element, because the set A = {y ∈ R | 6 ≤ y} is



smaller – in other words, A ⊆ A and A = A. But A is also not the
smallest element, since A = {y ∈ R | 7 ≤ y} is still smaller. In fact,
this family has no smallest, or even minimal, element. You’re asked to
verify this in exercise 12. This example shows that we must be careful
when talking about the smallest set with some property. There may be
no such smallest set!

You have probably already guessed how to define maximal and largest
elements in partially ordered sets. Suppose R is a partial order on A, B ⊆ A,
and b ∈ B. We say that b is the largest element of B if ∀x ∈ B(xRb), and it
is a maximal element of B if ¬∃x ∈ B(bRx ∧ b ≠ x). Of course, these
definitions are quite similar to the ones in Definition 4.4.4. You are asked in
exercise 14 to work out some of the connections among these ideas.
Another useful related idea is the concept of an upper or lower bound for a
set.

Definition 4.4.8. Suppose R is a partial order on A, B ⊆ A, and a ∈ A. Then
a is called a lower bound for B if ∀x ∈ B(aRx). Similarly, it is an upper
bound for B if ∀x ∈ B(xRa).

Note that a lower bound for B need not be an element of B. This is the
only difference between lower bounds and smallest elements. A smallest
element of B is just a lower bound that is also an element of B. For
example, in part 1 of Example 4.4.5, we concluded that 7 was not a smallest
element of the set C = {x ∈ R | x > 7} because 7 ∉ C. But 7 is a lower
bound for C. In fact, so is every real number smaller than 7, but not any
number larger than 7. Thus, the set of all lower bounds of C is the set {x ∈
R | x ≤ 7}, and 7 is its largest element. We say that 7 is the greatest lower
bound of the set C.

Definition 4.4.9. Suppose R is a partial order on A and B ⊆ A. Let U be the
set of all upper bounds for B, and let L be the set of all lower bounds. If U
has a smallest element, then this smallest element is called the least upper
bound of B. If L has a largest element, then this largest element is called the
greatest lower boundofB. The phrases least upper bound and greatest lower
bound are sometimes abbreviated l.u.b. and g.l.b.



Example 4.4.10.

1. Let L = {(x, y) ∈ R × R | x ≤ y}, a total order on R. Let B = {1/n | n ∈
Z

+} = {1, 1/2, 1/3, 1/4, 1/5, …} ⊆ R. Does B have any upper or lower
bounds? Does it have a least upper bound or greatest lower bound?

2. Let A be the set of all English words, and let R be the partial order on
A described after Example 4.4.3. Let B = {hold, up}. Does B have any
upper or lower bounds? Does it have a least upper bound or a greatest
lower bound?

Solutions

1. Clearly the largest element of B is 1. It is also an upper bound for B,
as is any number larger than 1. By definition, an upper bound for B
must be at least as large as every element of B, so in particular it must
be at least as large as 1. Thus, no number smaller than 1 is an upper
bound for B, so the set of upper bounds for B is {x ∈ R | x ≥ 1}.
Clearly the smallest element of this set is 1, so 1 is the l.u.b. of B.

Clearly 0 is a lower bound for B, as is any negative number. On the
other hand, suppose a is a positive number. Then for a large enough
integer n we will have 1/n < a. (You should convince yourself that
any integer n larger than 1/a would do.) Thus, it is not the case that
∀x ∈ B(a ≤ x), and therefore a is not a lower bound for B. So the set
of all lower bounds for B is {x ∈ R | x ≤ 0}, and the g.l.b. of B is 0.

2. Clearly holdup and uphold are upper bounds for B. In fact, no shorter
word could be an upper bound, so they are both minimal elements of
the set of all upper bounds. According to part 2 of Theorem 4.4.6, a
set that has more than one minimal element can have no smallest
element, so the set of all upper bounds for B does not have a smallest
element, and therefore B doesn’t have a least upper bound.

The words hold and up have no letters in common, so B has no
lower bounds.

Notice that in part 1 of Example 4.4.10, the largest element of B also
turned out to be its least upper bound. You might wonder whether largest
elements are always least upper bounds and whether smallest elements are



always greatest lower bounds. You are asked to prove that they are in
exercise 20. Another interesting fact about this example is that, although B
did not have a smallest element, it did have a greatest lower bound. This
was not a coincidence. It is an important fact about the real numbers that
every nonempty set of real numbers that has a lower bound has a greatest
lower bound and, similarly, every nonempty set of real numbers that has an
upper bound has a least upper bound. The proof of this fact is beyond the
scope of this book, but it is important to realize that it is a special fact about
the real numbers; it does not apply to all partial orders or even to all total
orders. For example, the set B in the second part of Example 4.4.10 had
upper bounds but no least upper bound.

We end this section by looking once again at how these new concepts
apply to the subset partial order on P(A), for any set A. It turns out that in
this partial order, least upper bounds and greatest lower bounds are our old
friends unions and intersections.

Theorem 4.4.11. Suppose A is a set, F ⊆ P(A), and F ≠ ∅. Then the least

upper bound of F (in the subset partial order) is ⋂F and the greatest lower

bound of F is ⋂ F.

Proof. See exercise 23.

Exercises
*1. In each case, say whether or not R is a partial order on A. If so, is it a

total order?
(a) A = {a,b, c}, R = {(a,a), (b, a), (b, b), (b, c), (c, c)}.
(b) A = R, R = {(x, y) ∈ R × R | |x| ≤ |y|}.
(c) A = R, R = {(x, y) ∈ R × R | |x| < |y| or x = y}.

2. In each case, say whether or not R is a partial order on A. If so, is it a
total order?

(a) A = the set of all words of English, R = {(x, y) ∈ A × A | the word y
occurs at least as late in alphabetical order as the word x}.



(b) A = the set of all words of English, R = {(x, y) ∈ A × A | the first letter
of the word y occurs at least as late in the alphabet as the first letter
of the word x}.

(c) A = the set of all countries in the world, R = {(x, y) ∈ A × A | the
population of the country y is at least as large as the population of the
country x}.

3. In each case find all minimal and maximal elements of B. Also find, if
they exist, the largest and smallest elements of B, and the least upper
bound and greatest lower bound of B.

(a) R = the relation shown in the directed graph in Figure 4.6, B = {2, 3,
4}.

Figure 4.6.

(b) R = {(x, y) ∈ R × R | x ≤ y}, B = { x ∈ R | 1 ≤ x < 2}.
(c) R = {(x, y) ∈ P(N)×P(N)| x ⊆ y}, B = { x ∈ P(N)| x has at most 5

elements}.
*4. Suppose R is a relation on A. You might think that R could not be both

antisymmetric and symmetric, but this isn’t true. Prove that R is both
antisymmetric and symmetric iff R ⊆ iA.

5. Suppose R is a partial order on A and B ⊆ A. Prove that R ∩ (B × B) is
a partial order on B.

6. Suppose R1 and R2 are partial orders on A. For each part, give either a
proof or a counterexample to justify your answer.

(a) Must R1 ∩ R2 be a partial order on A?



(b) Must R1 ∪ R2 be a partial order on A?

7. Suppose R1 is a partial order on A1, R2 is a partial order on A2, and A1
∩ A2 = ∅.

(a) Prove that R1 ∪ R2 is a partial order on A1 ∪ A2.
(b) Prove that R1 ∪ R2 ∪ (A1 × A2) is a partial order on A1 ∪ A2.
(c) Suppose that R1 and R2 are total orders. Are the partial orders in parts

(a) and (b) also total orders?
*8. Suppose R is a partial order on A and S is a partial order on B.

Define a relation T on A × B as follows: T = {((a, b), (a′, b′)) ∈ (A ×
B) × (A × B) | aRa′ and bSb′}. Show that T is a partial order on A × B.
If both R and S are total orders, will T also be a total order?

9. Suppose R is a partial order on A and S is a partial order on B. Define
a relation L on A × B as follows: L = {((a, b), (a′, b′)) ∈ (A × B) × (A
× B) | aRa′, and if a = a′ then bSb′}. Show that L is a partial order on
A × B. If both R and S are total orders, will L also be a total order?

10. Suppose R is a partial order on A. For each x ∈ A, let Px = {a ∈ A |
aRx}. Prove that ∀x ∈ A ∀y ∈ A(xRy ↔ Px ⊆ Py).

*11. Let D be the divisibility relation defined in part 3 of Example 4.4.3.
Let B = { x ∈ Z | x > 1}. Does B have any minimal elements? If so,
what are they? Does B have a smallest element? If so, what is it?

12. Show that, as was stated in part 2 of Example 4.4.7, {X ⊆ R | X ≠ ∅
and ∀x∀y((x ∈ X ∧ x < y) → y ∈ X)} has no minimal element.

13. Suppose R is a partial order on A. Prove that R−1 is also a partial order
on A. If R is a total order, will R−1 also be a total order?

*14. Suppose R is a partial order on A, B ⊆ A, and b ∈ B. Exercise 13
shows that R−1 is also a partial order on A.

(a) Prove that b is the R-largest element of B iff it is the R−1-smallest
element of B.

(b) Prove that b is an R-maximal element of B iff it is an R−1-minimal
element of B.

15. Suppose R1 and R2 are partial orders on A, R1 ⊆ R2, B ⊆ A, and b ∈
B.



(a) Prove that if b is the R1-smallest element of B, then it is also the R2-
smallest element of B.

(b) Prove that if b is an R2-minimal element of B, then it is also an R1-
minimal element of B.

16. Suppose R is a partial order on A, B ⊆ A, and b ∈ B. Prove that if b is
the largest element of B, then b is also a maximal element of B, and
it’s the only maximal element.

*17. If a subset of a partially ordered set has exactly one minimal
element, must that element be a smallest element? Give either a proof
or a counterexample to justify your answer.

18. Suppose R is a partial order on A, B1 ⊆ A, B2 ⊆ A, ∀x ∈ B1∃y ∈
B2(xRy), and ∀x ∈ B2∃y ∈ B1(xRy).

(a) Prove that for all x ∈ A, x is an upper bound of B1 iff x is an upper
bound of B2.

(b) Prove that if B1 and B2 are disjoint then neither of them has a maximal
element.

19. Consider the following putative theorem.

Theorem? Suppose R is a total order on A and B ⊆ A. Then every
element of B is either the smallest element of B or the largest element of
B.

(a) What’s wrong with the following proof of the theorem?
Proof. Suppose b ∈ B. Let x be an arbitrary element of B. Since R is a
total order, either bRx or xRb.

Case 1. bRx. Since x was arbitrary, we can conclude that ∀x ∈ B(bRx),
so b is the smallest element of R.

Case 2. xRb. Since x was arbitrary, we can conclude that ∀x ∈ B(xRb),
so b is the largest element of R.

Thus, b is either the smallest element of B or the largest element of B.
Since b was arbitrary, every element of B is either its smallest element or
its largest element.
(b) Is the theorem correct? Justify your answer with either a proof or a

counterexample.



20. Suppose R is a partial order on A, B ⊆ A, and b ∈ B.
(a) Prove that if b is the smallest element of B, then it is also the greatest

lower bound of B.
(b) Prove that if b is the largest element of B, then it is also the least upper

bound of B.
*21. Suppose R is a partial order on A and B ⊆ A. Let U be the set of all

upper bounds for B.
(a) Prove that U is closed upward; that is, prove that if x ∈ U and xRy,

then y ∈ U.
(b) Prove that every element of B is a lower bound for U.
(c) Prove that if x is the greatest lower bound of U, then x is the least

upper bound of B.
22. Suppose that R is a partial order on A, B1 ⊆ A, B2 ⊆ A, x1 is the least

upper bound of B1, and x2 is the least upper bound of B2. Prove that if
B1 ⊆ B2 then x1Rx2.

23. Prove Theorem 4.4.11.
*24. Suppose R is a relation on A. Let S = R ∪ R−1.
(a) Show that S is a symmetric relation on A and R ⊆ S.
(b) Show that if T is a symmetric relation on A and R ⊆ T then S ⊆ T.
Note that this exercise shows that S is the smallest element of the set F =

{T ⊆ A × A | R ⊆ T and T is symmetric}; in other words, it is the smallest
symmetric relation on A that contains R as a subset. The relation S is
called the symmetric closure of R.

25. Suppose that R is a relation on A. Let F = {T ⊆ A × A | R ⊆ T and T

is transitive}.
(a) Show that F ≠ ∅.

(b) Show that ⋂F is a transitive relation on A and R ⊆ ⋂F.

(c) Show that ⋂F is the smallest transitive relation on A that contains R

as a subset. The relation ⋂F is called the transitive closure of R.

26. Suppose R1 and R2 are relations on A and R1 ⊆ R2.



(a) Let S1 and S2 be the symmetric closures of R1 and R2, respectively.
Prove that S1 ⊆ S2. (See exercise 24 for the definition of symmetric
closure.)

(b) Let T1 and T2 be the transitive closures of R1 and R2, respectively.
Prove that T1 ⊆ T2. (See exercise 25 for the definition of transitive
closure.)

*27. Suppose R1 and R2 are relations on A, and let R = R1 ∪ R2.

(a) Let S1, S2, and S be the symmetric closures of R1, R2, and R,
respectively. Prove that S1 ∪ S2 = S. (See exercise 24 for the
definition of symmetric closure.)

(b) Let T1, T2, and T be the transitive closures of R1, R2, and R,
respectively. Prove that T1 ∪ T2 ⊆ T, and give an example to show
that it may happen that T1 ∪ T2 ≠ T. (See exercise 25 for the
definition of transitive closure.)

28. Suppose A is a set.
(a) Prove that if A has at least two elements then there is no largest

antisymmetric relation on A. In other words, there is no relation R on
A such that R is antisymmetric, and for every antisymmetric relation
S on A, S ⊆ R.

(b) Suppose R is a total order on A. Prove that R is a maximal anti-
symmetric relation on A. In other words, there is no antisymmetric
relation S on A such that R ⊆ S and R ≠ S.

29. Suppose R is a relation on A. We say that R is irreflexive if ∀x ∈
A((x, x) ∉ R). R is called a strict partial order on A if it is irreflexive
and transitive. It is called a strict total order if it is a strict partial
order and in addition ∀x ∈ A∀y ∈ A(xRy ∨ yRx ∨ x = y). (Note that
the terminology here is somewhat misleading, because a strict partial
order isn’t a special kind of partial order. It’s not a partial order at all,
since it’s not reflexive!)

(a) Let L = {(x, y) ∈ R × R | x < y}. Show that L is a strict total order on
R.



(b) Show that if R is a partial order on A, then R \ iA is a strict partial order
on A, and if R is a total order on A, then R \ iA is a strict total order on
A.

(c) Show that if R is a strict partial order on A, then R ∪ iA is a partial
order on A, and if R is a strict total order on A, then R ∪ iA is a total
order on A.

30. Suppose R is a relation on A, and let T be the transitive closure of R.
Prove that if R is symmetric, then so is T. (Hint: Assume that R is
symmetric. Prove that R ⊆ T−1 and T−1 is transitive. What can you
conclude about T and T−1? See exercise 25 for the definition of
transitive closure.)

4.5 Equivalence Relations
We saw in Example 4.3.3 that the identity relation iA on any set A is
always reflexive, symmetric, and transitive. Relations with this
combination of properties come up often in mathematics, and they have
some important properties that we will investigate in this section. These
relations are called equivalence relations.

Definition 4.5.1. Suppose R is a relation on a set A. Then R is called an
equivalence relation on A(or just an equivalence relation if A is clear from
context) if it is reflexive, symmetric, and transitive.

As we observed earlier, the identity relation iA on a set A is an
equivalence relation. For another example, let T be the set of all triangles,
and let C be the relation of congruence of triangles. In other words, C =
{(s, t) ∈ T × T | the triangle s is congruent to the triangle t}. (Recall that a
triangle is congruent to another if it can be moved without distorting it so
that it coincides with the other.) Clearly every triangle is congruent to
itself, so C is reflexive. Also, if triangle s is congruent to triangle t, then t
is congruent to s, so C is symmetric; and if r is congruent to s and s is
congruent to t, then r is congruent to t, so C is transitive. Thus, C is an
equivalence relation on T.



As another example, let P be the set of all people, and let B = {(p, q) ∈
P × P | the person p has the same birthday as the person q}. (By “same
birthday” we mean same month and day, but not necessarily the same
year.) Everyone has the same birthday as himself or herself, so B is
reflexive. If p has the same birthday as q, then q has the same birthday as
p, so B is symmetric. And if p has the same birthday as q and q has the
same birthday as r, then p has the same birthday as r, so B is transitive.
Therefore B is an equivalence relation.

It may be instructive to look at the relation B more closely. We can
think of this relation as splitting the set P of all people into 366
categories, one for each possible birthday. (Remember, some people were
born on February 29!) An ordered pair of people will be an element of B
if the people come from the same category, but will not be an element of
B if the people come from different categories. We could think of these
categories as forming a family of subsets of P, which we could write as an
indexed family as follows. First of all, let D be the set of all possible
birthdays. In other words, D = {Jan. 1, Jan. 2, Jan. 3, . . . , Dec. 30, Dec.
31}. Now for each d ∈ D, let Pd = {p ∈ P | the person p was born on the
day d}. Then the family F = {Pd | d ∈ D} is an indexed family of subsets

of P. The elements of F are called equivalence classes for the relation B,

and every person is an element of exactly one of these equivalence
classes. The relation B consists of those pairs (p, q) ∈ P × P such that the
people p and q are in the same equivalence class. In other words,

We will call the family F a partition of P because it breaks the set P

into disjoint pieces. It turns out that every equivalence relation on a set A
determines a partition of A, whose elements are the equivalence classes
for the equivalence relation. But before we can work out the details of
why this is true, we must define the terms partition and equivalence class
more carefully.



Definition 4.5.2. Suppose A is a set and F ⊆ P(A). We will say that F is

pairwise disjoint if every pair of distinct elements of F are disjoint, or in

other words ∀X ∈ F∀Y ∈ F(X = Y → X ∩ Y = ∅). (This concept was

discussed in exercise 5 of Section 3.6.) F is called a partition of A if it has
the following properties:

1. ⋃F = A.

2. F is pairwise disjoint.

3. ∀x ∈ F(X ≠ ∅).

For example, suppose A = {1, 2, 3, 4} and F = {{2}, {1, 3}, {4}}. Then

⋂F = {2} ∪F {1, 3} ∪ {4} = {1, 2, 3, 4} = A, so F satisfies the first

clause in the definition of partition. Also, no two sets in F have any

elements in common, so F is pairwise disjoint, and clearly all the sets in

F are nonempty. Thus, F is a partition of A. On the other hand, the family

G = {{1, 2}, {1, 3}, {4}} is not pairwise disjoint, because {1, 2} ∩ {1, 3}

= {1} ≠ ∅, so it is not a partition of A. The family H = {∅, {2}, {1, 3},

{4}} is also not a partition of A, because it fails on the third requirement
in the definition.

Definition 4.5.3. Suppose R is an equivalence relation on a set A, and x ∈
A. Then the equivalence class of x with respect to R is the set

[x]R = {y ∈ A | yRx}.

If R is clear from context, then we just write [x] instead of [x]
R
. The set of

all equivalence classes of elements of A is called A modulo R, and is
denoted A/R. Thus,

A/R = {[x]R | x ∈ A} = { X ⊆ A | ∃x ∈ A(X = [x]R)}.



In the case of the same-birthday relation B, if p is any person, then
according to Definition 4.5.3,

For example, if John was born on August 10, then

In the notation we introduced earlier, this is just the set Pd, for d = August
10. In fact, it should be clear now that for any person p, if we let d be p’s
birthday, then [p]B = Pd. This is in agreement with our earlier statement
that the sets Pd are the equivalence classes for the equivalence relation B.
According to Definition 4.5.3, the set of all of these equivalence classes is
called P modulo B:

P /B = {[p]B | p ∈ P} = {Pd | d ∈ D}.

You are asked to give a more careful proof of this equation in exercise 6.
As we observed before, this family is a partition of P.

Let’s consider one more example. Let S be the relation on R defined as
follows:

S = {(x, y) ∈ R × R | x − y ∈ Z}.

For example, (5.73, 2.73) ∈ S and (−1.27, 2.73) ∈ S, since 5.73 − 2.73 =
3 ∈ Z and −1.27 − 2.73 = −4 ∈ Z, but (1.27, 2.73) ∉ S, since 1.27 − 2.73
= −1.46 ∉ Z. Clearly for any x ∈ R, x −x = 0 ∈ Z, so (x, x) ∈ S, and
therefore S is reflexive. To see that S is symmetric, suppose (x, y) ∈ S. By
the definition of S, this means that x − y ∈ Z. But then y − x = −(x − y) ∈
Z too, since the negative of any integer is also an integer, so (y, x) ∈ S.
Because (x, y) was an arbitrary element of S, this shows that S is
symmetric. Finally, to see that S is transitive, suppose that (x, y) ∈ S and



(y, z) ∈ S. Then x − y ∈ Z and y − z ∈ Z. Because the sum of any two
integers is an integer, it follows that x − z = (x − y) + (y − z) ∈ Z, so (x, z)
∈ S, as required. Thus, S is an equivalence relation on R.

What do the equivalence classes for this equivalence relation look like?
We have already observed that (5.73, 2.73) ∈ S and (−1.27, 2.73) ∈ S, so
5.73 ∈ [2.73] and −1.27 ∈ [2.73]. In fact, it is not hard to see what the
other elements of this equivalence class will be:

[2.73] = {…, −1.27, −0.27, 0.73, 1.73, 2.73, 3.73, 4.73, 5.73, …}.

In other words, the equivalence class contains all positive real numbers of
the form “._73” and all negative real numbers of the form “−_.27.” In
general, for any real number x, the equivalence class of x will contain all
real numbers that differ from x by an integer amount:

[x] = {…, x − 3, x − 2, x − 1, x, x + 1, x + 2, x + 3, …}.

Here are a few facts about these equivalence classes that you might try
to prove to yourself. As you can see in the last equation, x is always an
element of [x]. If we choose any number x ∈ [2.73], then [x] will be
exactly the same as [2.73]. For example, taking x = 4.73 we find that

[4.73] = {…, −1.27, −0.27, 0.73, 1.73, 2.73, 3.73, 4.73, 5.73, …} = [2.73].

Thus, [4.73] and [2.73] are just two different names for the same set. But
if we choose x ∉ [2.73], then [x] will be different from [2.73]. For
example,

[1.3] = {…, −1.7, −0.7, 0.3, 1.3, 2.3, 3.3, 4.3, …}.

In fact, you can see from these equations that [1.3] and [2.73] have no
elements in common. In other words, [1.3] is actually disjoint from [2.73].
In general, for any two real numbers x and y, the equivalence classes [x]
and [y] are either identical or disjoint. Each equivalence class has many
different names, but different equivalence classes are disjoint. Because [x]
always contains x as an element, every equivalence class is nonempty, and
every real number x is in exactly one equivalence class, namely [x]. In
other words, the set of all of the equivalence classes, R/S, is a partition of



R. This is another illustration of the fact that the equivalence classes
determined by an equivalence relation always form a partition.

Theorem 4.5.4. Suppose R is an equivalence relation on a set A. Then
A/R is a partition of A.

The proof of Theorem 4.5.4 will be easier to understand if we first
prove a few facts about equivalence classes. Facts that are proven
primarily for the purpose of using them to prove a theorem are usually
called lemmas.

Lemma 4.5.5. Suppose R is an equivalence relation on A. Then:

1. For every x ∈ A, x ∈ [x].
2. For every x ∈ A and y ∈ A, y ∈ [x] iff [y] = [x].
Proof.

1. Let x ∈ A be arbitrary. Since R is reflexive, xRx. Therefore, by the
definition of equivalence class, x ∈ [x].

2. (→) Suppose y ∈ [x]. Then by the definition of equivalence class,
yRx. Now suppose z ∈ [y]. Then zRy. Since zRy and yRx, by
transitivity of R we can conclude that zRx, so z ∈ [x]. Since z was
arbitrary, this shows that [y] ⊆ [x].

Now suppose z ∈ [x], so zRx. We already know yRx, and since R is
symmetric we can conclude that xRy. Applying transitivity to zRx and
xRy, we can conclude that zRy, so z ∈ [y]. Therefore [x] ⊆ [y], so [x] =
[y].

(←) Suppose [y] = [x]. By part 1 we know that y ∈ [y], so since [y] =
[x], it follows that y ∈ [x].

□

Commentary.

1. According to the definition of equivalence classes, x ∈ [x] means
xRx. This is what leads us to apply the fact that R is reflexive.

2. Of course, the iff form of the goal leads us to prove both directions
separately. For the → direction, the goal is [y] = [x], and, since [y]



and [x] are sets, we can prove this by proving [y] ⊆ [x] and [x] ⊆
[y]. We prove each of these statements by the usual method of
taking an arbitrary element of one set and proving that it is in the
other. Throughout the proof we use the definition of equivalence
classes repeatedly, as we did in the proof of statement 1.

Proof of Theorem 4.5.4. To prove that A/R is a partition of A, we must
prove the three properties in Definition 4.5.2. For the first, we must show
that ⋃ (A/R)= A, or in other words that ⋃x ∈ A[x] = A. Now every
equivalence class in A/R is a subset of A, so it should be clear that their
union is also a subset of A. Thus, ⋃(A/R)⊆ A, so all we need to show to
finish the proof is that A⊆ ⋃(A/R). To prove this, suppose x ∈ A. Then by
Lemma 4.5.5, x ∈ [x], and of course [x] ∈ A/R, so x ∈ ⋃(A/R). Thus, ⋃
(A/R)= A.

To see that A/R is pairwise disjoint, suppose that X and Y are two
elements of A/R, and X ∩ Y ≠ ∅. By definition of A/R, X and Y are
equivalence classes, so we must have X = [x] and Y = [y] for some x, y ∈
A. Since X ∩ Y ≠ ∅, we can choose some z such that z ∈ X ∩ Y = [x] ∩
[y]. Now by Lemma 4.5.5, since z ∈ [x] and z ∈ [y], it follows that [x] =
[z] = [y]. Thus, X = Y. This shows that if X ≠ Y then X ∩ Y = ∅, so A/R is
pairwise disjoint.

Finally, for the last clause of the definition of partition, suppose X ∈
A/R. As before, this means that X = [x] for some x ∈ A. Now by Lemma
4.5.5, x ∈ [x] = X, so X ≠ ∅, as required.

□
Commentary. We have given an intuitive reason why ⋃(A/R)⊆ A, but if
you’re not sure why this is correct, you should write out a formal proof.
(You might also want to look at exercise 16 in Section 3.3.) The proof that
A⊆ ⋃(A/R)is straightforward.

The definition of pairwise disjoint suggests that to prove that A/R is
pairwise disjoint we should let X and Y be arbitrary elements of A/R and
then prove X ≠ Y → X ∩ Y = ∅. Recall that the statement that a set is
empty is really a negative statement, so both the antecedent and the
consequent of this conditional are negative. This suggests that it will
probably be easier to prove the contrapositive, so we assume X ∩ Y ≠ ∅
and prove X = Y. The givens X ∈ A/R, Y ∈ A/R, and X ∩ Y ≠ ∅ are all



existential statements, so we use them to introduce the variables x, y, and
z. Lemma 4.5.5 now takes care of the proof that X = Y as well as the proof
of the final clause in the definition of partition.

Theorem 4.5.4 shows that if R is an equivalence relation on A then A/R
is a partition of A. In fact, it turns out that every partition of A arises in
this way.

Theorem 4.5.6. Suppose A is a set and F is a partition of A. Then there is

an equivalence relation R on A such that A/R = F.

Before proving this theorem, it might be worthwhile to discuss the
strategy for the proof briefly. Because the conclusion of the theorem is an
existential statement, we should try to find an equivalence relation R such
that A/R = F. Clearly for different choices of F we will need to choose R

differently, so the definition of R should depend on F in some way.

Looking back at the same-birthday example at the start of this section
may help you see how to proceed. Recall that in that example the
equivalence relation B consisted of all pairs of people (p, q) such that p
and q were in the same set in the partition {Pd | d ∈ D}. In fact, we found
that we could also express this by saying that B = ⋃d∈D (Pd × Pd). This
suggests that in the proof of Theorem 4.5.6 we should let R be the set of
all pairs (x, y) ∈ A × A such that x and y are in the same set in the
partition F. An alternative way to write this would be R = ⋃X∈F (X × X).

For example, consider again the example of a partition given after
Definition 4.5.2. In that example we had A = {1, 2, 3, 4} and F = {{2},

{1, 3}, {4}}. Now let’s define a relation R on A as suggested in the last
paragraph. This gives us:



The directed graph for this relation is shown in Figure 4.7. We will let you
check that R is an equivalence relation and that the equivalence classes
are

[2] = {2}, [1] = [3] = {1, 3}, [4] = {4}.

Thus, the set of all equivalence classes is A/R = {{2}, {1, 3}, {4}}, which
is precisely the same as the partition F we started with.

Of course, the reasoning that led us to the formula R = ⋃X∃F(X × X) not

be part of the proof of Theorem 4.5.6. When we write the proof, we can
simply define R in this way and then verify that it is an equivalence
relation on A and that A/R = F. It may make the proof easier to follow if

we once again prove some lemmas first.

Figure 4.7.

Lemma 4.5.7. Suppose A is a set and F is a partition of A. Let R =

⋃X∈F(X × X). Then R is an equivalence relation on A. We will call R the

equivalence relation determined by F.

Proof. We’ll prove that R is reflexive and leave the rest for you to do in
exercise 8. Let x be an arbitrary element of A. Since F is a partition of A,

⋃F = A, so x ∈ ⋃F. Thus, we can choose some X ∈ F such that x ∈ X.

But then (x, x) ∈ X × X, so (x, x) ∈ ⋃X∈F (X × X) = R. Therefore, R is

reflexive.



□
Commentary. After letting x be an arbitrary element of A, we must prove
(x, x) ∈ R. Because R = ⋃X∈F (X × X), this means we must prove ∃X ∈

F((x, x) ∈ X × X), or in other words ∃X ∈ F(x ∈ X). But this just means

x ∈ ⋃F, so this suggests using the first clause in the definition of

partition, which says that ⋃F = A.

Lemma 4.5.8. Suppose A is a set and F is a partition of A. Let R be the

equivalence relation determined by F. Suppose X ∈ F and x ∈ X. Then

[x]R = X.

Proof. Suppose y ∈ [x]R. Then (y, x) ∈ R, so by the definition of R there
must be some Y ∈ F such that (y, x) ∈ Y × Y, and therefore y ∈ Y and x

∈ Y. Since x ∈ X and x ∈ Y, X ∩ Y ≠ ∅, and since F is pairwise disjoint

it follows that X = Y. Thus, since y ∈ Y, y ∈ X. Since y was an arbitrary
element of [x]R, we can conclude that [x]R ⊆ X.

Now suppose y ∈ X. Then (y, x) ∈ X × X, so (y, x) ∈ R and therefore y
∈ [x]R. Thus X ⊆ [x]R, so [x]R = X.

□
Commentary. To prove [x]R = X we prove [x]R ⊆ X and X ⊆ [x]R. For the
first we start with an arbitrary y ∈ [x]R and prove y ∈ X. Writing out the
definition of [x]R we get (y, x) ∈ R, and since R was defined to be ⋃Y∈F

(Y × Y), this means ∃ ∃Y ∈ F((y, x) ∈ Y × Y). Of course, since this is an

existential statement we immediately introduce the new variable Y by
existential instantiation. Since this gives us y ∈ Y and our goal is y ∈ X, it
is not surprising that the proof is completed by proving Y = X.

The proof that X ⊆ [x]R also uses the definitions of [x]R and R, but is
more straightforward.



Proof of Theorem 4.5.6. Let R = ⋃X∈F ((X×X). We have already seen that

R is an equivalence relation, so we need only check that A/R = F. To see

this, suppose X ∈ A/R. This means that X = [x] for some x ∈ A. Since F

is a partition, we know that ⋃F = A, so x ∈ ⋃F, and therefore we can

choose some Y ∈ F such that x ∈ Y. But then by Lemma 4.6.8, [x] = Y.

Thus X = Y ∈ F, so A/R ⊆ F.

Now suppose X ∈ F. Then since F is a partition, X ≠ ∅, so we can

choose some x ∈ X. Therefore by Lemma 4.6.8, X = [x] ∈ A/R, so F ⊆

A/R. Thus, A/R = F.

□
Commentary. We prove that A/R = F by proving that A/R ⊆ F and F ⊆

A/R. For the first, we take an arbitrary X ∈ A/R and prove that X ∈ F.

Because X ∈ A/R means ∃x ∈ A(X = [x]), we immediately introduce the
new variable x to stand for an element of A such that X = [x]. The proof
that x ∈ F now proceeds by the slightly roundabout route of finding a set

Y ∈ F such that X = Y. This is motivated by Lemma 4.5.8, which

suggests a way of showing that an element of F is equal to [x] = X. The

proof that F ⊆ A/R also relies on Lemma 4.5.8.

We have seen how an equivalence relation R on a set A can be used to
define a partition A/R of A and also how a partition F of A can be used to

define an equivalence relation ⋃X∈F (X × X) on A. The proof of Theorem

4.5.6 demonstrates an interesting relationship between these operations. If
you start with a partition F of A, use F to define the equivalence relation

R = ⋃X∈F (X × X), and then use R to define a partition A/R, then you end

up back where you started. In other words, the final partition A/R is the
same as the original partition F. You might wonder if the same idea would
work in the other order. In other words, suppose you start with an



equivalence relation R on A, use R to define a partition F = A/R, and then

use F to define an equivalence relation S = ⋃X∈F (X × X). Would the final

equivalence relation S be the same as the original equivalence relation R?
You are asked in exercise 10 to show that the answer is yes.

We end this section by considering a few more examples of
equivalence relations. A very useful family of equivalence relations is
given by the next definition.

Definition 4.5.9. Suppose m is a positive integer. For any integers x and y,
we will say that x is congruent to y modulo m if ∃k ∈ Z(x − y = km). In
other words, x is congruent to y modulo m iff m | (x − y). We will use the
notation x ≡ y (mod m) to mean that x is congruent to y modulo m.

For example, 12 ≡ 27 (mod 5), since 12 − 27 = −15 = (−3) · 5. Now for
any positive integer m we can consider the relation {(x, y) ∈ Z × Z | x ≡ y
(modm)}. As we mentioned in the last section, mathematicians sometimes
use symbols rather than letters as names of relations. In this case,
motivated by the notation in Definition 4.5.9, we will use the symbol ≡m
as our name for this relation. Thus, for any integers x and y, x ≡m y means
the same thing as x ≡ y (mod m). It turns out that this relation is another
example of an equivalence relation.

Theorem 4.5.10. For every positive integer m, ≡m is an equivalence
relation on Z.

Proof. We will check transitivity for ≡m and let you check reflexivity and
symmetry in exercise 11. To see that ≡m is transitive, suppose that x ≡m y
and y ≡m z. This means that x ≡ y (mod m) and y ≡ z (mod m), or in other
words m | (x − y) and m | (y − z). Therefore, by exercise 18(a) in Section
3.3, m | [(x − y) + (y − z)]. But (x − y) + (y − z) = x − z, so it follows that
m| (x −z), and therefore x ≡mz.

□
We will have more to say about these equivalence relations later in this

book, especially in Chapter 7.



Equivalence relations often come up when we want to group together
elements of a set that have something in common. For example, if you’ve
studied vectors in a previous math course or perhaps in a physics course,
then you may have been told that vectors can be thought of as arrows. But
you were probably also told that different arrows that point in the same
direction and have the same length must be thought of as representing the
same vector. Here’s a more lucid explanation of the relationship between
vectors and arrows. Let A be the set of all arrows, and let R = {(x, y) ∈
A×A | the arrows x and y point in the same direction and have the same
length}. We will let you check for yourself that R is an equivalence
relation on A. Each equivalence class consists of arrows that all have the
same length and point in the same direction. We can now think of vectors
as being represented, not by arrows, but by equivalence classes of arrows.

Students who are familiar with computer programming may be
interested in our next example. Suppose we let P be the set of all
computer programs, and for any computer programs p and q we say that p
and q are equivalent if they always produce the same output when given
the same input. Let R = {(p, q) ∈ P × P | the programs p and q are
equivalent}. It is not hard to check that R is an equivalence relation on P.
The equivalence classes group together programs that produce the same
output when given the same input.

Exercises
*1. Find all partitions of the set A = {1, 2, 3}.
2. Find all equivalence relations on the set A = {1, 2, 3}.
*3. Let W = the set of all words in the English language. Which of the

following relations on W are equivalence relations? For those that
are equivalence relations, what are the equivalence classes?

(a) R = {(x, y) ∈ W × W | the words x and y start with the same letter}.
(b) S = {(x, y) ∈ W × W | the words x and y have at least one letter in

common}.
(c) T = {(x, y) ∈ W × W | the words x and y have the same number of

letters}.



4. Which of the following relations on R are equivalence relations?
For those that are equivalence relations, what are the equivalence
classes?

(a) R = {(x, y) ∈ R × R | x − y ∈ N}.
(b) S = {(x, y) ∈ R × R | x − y ∈ Q}.
(c) T = {(x, y) ∈ R × R | ∃n ∈ Z (y = x · 10n)}.

5. Let L be the set of all nonvertical lines in the plane. Which of the
following relations on L are equivalence relations? For those that
are equivalence relations, what are the equivalence classes?

(a) R = {(k, l) ∈ L × L | the lines k and l have the same slope}.
(b) S = {(k, l) ∈ L × L | the lines k and l are perpendicular}.
(c) T = {(k, l) ∈ L × L | k ∩ x = l ∩ x and k ∩ y = l ∩ y}, where x and y

are the x-axis and the y-axis. (We are treating lines as sets of points
here.)

*6.In the discussion of the same-birthday equivalence relation B
following Definition 4.5.3, we claimed that P /B = {Pd | d ∈ D}.
Give a careful proof of this claim. You will find when you work out
the proof that there is an assumption you must make about people’s
birthdays (a very reasonable assumption) to make the proof work.
What is this assumption?

7. Let T be the set of all triangles, and let S = {(s, t) ∈ T × T | the
triangles s and t are similar}. (Recall that two triangles are similar if
the angles of one triangle are equal to corresponding angles of the
other.) Verify that S is an equivalence relation.

8. Complete the proof of Lemma 4.5.7.
9. Suppose R and S are equivalence relations on A and A/R = A/S.

Prove that R = S.
*10. Suppose R is an equivalence relation on A. Let F = A/R, and let S

be the equivalence relation determined by F. In other words, S =

⋃X∈F(X × X). Prove that S = R.

11. Let ≡m be the “congruence modulo m” relation defined in the text,
for a positive integer m.



(a) Complete the proof of Theorem 4.5.10 by showing that ≡m is
reflexive and symmetric.

(b) Find all the equivalence classes for ≡2 and ≡3. How many equiva-
lence classes are there in each case? In general how many equiva-
lence classes do you think there are for ≡m?

12. Prove that for every integer n, either n2 ≡ 0 (mod 4) or n2 ≡ 1 (mod
4).

*13. Suppose m is a positive integer. Prove that for all integers a, a′, b,
and b′, if a′ ≡ a (mod m) and b′ ≡ b (mod m) then a′ + b′ ≡ a + b
(mod m) and a b ≡ a′b′ (mod m).

14. Suppose that R is an equivalence relation on A and B ⊆ A. Let S =
R∩ (B × B).

(a) Prove that S is an equivalence relation on B.
(b) Prove that for all x ∈ B, [x]S = [x]R ∩ B.

15. Suppose B ⊆ A, and define a relation R on P(A) as follows:

R = {(X, Y) ∈ P(A) × P(A) | X Y ⊆ B}.

(a) Prove that R is an equivalence relation on P(A).
(b) Prove that for every X ∈ P(A) there is exactly one Y ∈ [X]R such that

Y ∩ B = ∅.
*16. Suppose F is a partition of A, G is a partition of B, and A and B are

disjoint. Prove that F ∪ G is a partition of A ∪ B.

17. Suppose R is an equivalence relation on A, S is an equivalence
relation on B, and A and B are disjoint.

(a) Prove that R ∪ S is an equivalence relation on A ∪ B.
(b) Prove that for all x ∈ A, [x]R∪S = [x]R, and for all y ∈ B, [y]R∪S = [y]S.
(c) Prove that (A ∪ B)/(R ∪ S) = (A/R) ∪ (B/S).
18. Suppose F and G are partitions of a set A. We define a new family of

sets F · G as follows:

F · G = {Z ∈ P(A) | Z ≠ ∅ and ∃X ∈ F∃Y ∈ G(Z = X ∩ Y)}.



Prove that F · G is a partition of A.

19. Let F = {R
−, R+, {0}} and G = {Z, R \ Z}, and note that both F and G

are partitions of R. List the elements of F · G. (See exercise 18 for the

meaning of the notation used here.)
*20. Suppose R and S are equivalence relations on a set A. Let T = R ∩ S.
(a) Prove that T is an equivalence relation on A.
(b) Prove that for all x ∈ A, [x]T = [x]R ∩ [x]S.
(c) Prove that A/T = (A/R) · (A/S). (See exercise 18 for the meaning of the

notation used here.)
21. Suppose F is a partition of A and G is a partition of B. We define a new

family of sets F ⊗ G as follows:

F ⊗ G = { Z ∈ P(A × B) | ∃X ∈ F∃Y ∈ G(Z = X × Y)}.

Prove that F ⊗ G is a partition of A × B.

*22. Let F = {R
−, R+, {0}}, which is a partition of R. List the elements of

F⊗F, and describe them geometrically as subsets of the xy -plane. (See

exercise 21 for the meaning of the notation used here.)
23. Suppose R is an equivalence relation on A and S is an equivalence

relation on B. Define a relation T on A × B as follows:

T = {((a, b), (a′, b′)) ∈ (A × B) × (A × B) | aRa′ and bSb′}.

(a) Prove that T is an equivalence relation on A × B.
(b) Prove that if a ∈ A and b ∈ B then [(a, b)]T = [a]R × [b]S.
(c) Prove that (A × B)/T = (A/R) ⊗ (B/S). (See exercise 21 for the meaning

of the notation used here.)
*24. Suppose R and S are relations on a set A, and S is an equivalence

relation. We will say that R is compatible with S if for all x, y, x′, and y′
in A, if xSx′ and ySy′ then xRy iff x′ Ry′.

(a) Prove that if R is compatible with S, then there is a unique relation T on
A/S such that for all x and y in A, [x]ST [y]S iff xRy.



(b) Suppose T is a relation on A/S and for all x and y in A, [x]ST [y]S iff xRy.
Prove that R is compatible with S.

25. Suppose R is a relation on A and R is reflexive and transitive. (Such a
relation is called a preorder on A.) Let S = R ∩ R−1.

(a) Prove that S is an equivalence relation on A.
(b) Prove that there is a unique relation T on A/S such that for all x and

yinA, [x]S T [y]S iff xRy. (Hint: Use exercise 24.)
(c) Prove that T is a partial order on A/S, where T is the relation from part

(b).
26. Let I = {1, 2, …, 100}, A = P(I), and R = {(X, Y) ∈ A × A | Y has at

least as many elements as X}.
(a) Prove that R is a preorder on A. (See exercise 25 for the definition of

preorder.)
(b) Let S and T be defined as in exercise 25. Describe the elements of A/S

and the partial order T. How many elements does A/S have? Is T a total
order?

27. Suppose A is a set. If F and G are partitions of A, then we’ll say that F

refines G if ∀X ∈ F ∃Y ∈ G(X ⊆ Y). Let P be the set of all partitions of

A, and let R = {(F, G) ∈ P × P | F refines G}.

(a) Prove that R is a partial order on P.
(b) Suppose that S and T are equivalence relations on A. Let F = A/S and G

= A/T. Prove that S ⊆ T iff F refines G.

(c) Suppose F and G are partitions of A. Prove that F · G is the greatest

lower bound of the set {F, G} in the partial order R. (See exercise 18

for the meaning of the notation used here.)



5

Functions

5.1 Functions
Suppose P is the set of all people, and let H = {(p, n) ∈ P × N | the person p
has n children}. Then H is a relation from P to N, and it has the following
important property. For every p ∈ P, there is exactly one n ∈ N such that
(p, n) ∈ H. Mathematicians express this by saying that H is a function from
P to N.

Definition 5.1.1. Suppose F is a relation from A to B. Then F is called a
function from A to B if for every a ∈ A there is exactly one b ∈ B such that
(a, b) ∈ F. In other words, to say that F is a function from A to B means:

To indicate that F is a function from A to B, we will write F: A → B.

Example 5.1.2.

1. Let A = {1, 2, 3}, B = {4, 5, 6}, and F = {(1, 5), (2, 4), (3, 5)}. Is F a
function from A to B?

2. Let A = {1, 2, 3}, B = {4, 5, 6}, and G = {(1, 5), (2, 4), (1, 6)}. Is G a
function from A to B?

3. Let C be the set of all cities and N the set of all countries, and let L =
{(c, n) ∈ C × N | the city c is in the country n}. Is L a function from C
to N?

4. Let P be the set of all people, and let C = {(p, q) ∈ P × P | the person
p is a parent of the person q}. Is C a function from P to P?



5. Let P be the set of all people, and let D = {(p, x) ∈ P × P(P) | x = the
set of all children of p}. Is D a function from P to P(P)?

6. Let A be any set. Recall that iA = {(a, a) | a ∈ A} is called the identity
relation on A. Is it a function from A to A?

7. Let f = {(x, y) ∈ R × R | y = x2}. Is f a function from R to R?

Solutions

1. Yes. Note that 1 is paired with 5 in the relation F, but it is not paired
with any other element of B. Similarly, 2 is paired only with 4, and 3
with 5. In other words, each element of A appears as the first
coordinate of exactly one ordered pair in F. Therefore F is a function
from A to B. Note that the definition of function does not require that
each element of B be paired with exactly one element of A. Thus, it
doesn’t matter that 5 occurs as the second coordinate of two different
pairs in F and that 6 doesn’t occur in any ordered pairs at all.

2. No. G fails to be a function from A to B for two reasons. First of all, 3
isn’t paired with any element of B in the relation G, which violates the
requirement that every element of A must be paired with some
element of B. Second, 1 is paired with two different elements of B, 5
and 6, which violates the requirement that each element of A be paired
with only one element of B.

3. If we make the reasonable assumption that every city is in exactly one
country, then L is a function from C to N.

4. Because some people have no children and some people have more
than one child, C is not a function from P to P.

5. Yes, D is a function from P to P(P). Each person p is paired with
exactly one set x ⊆ P, namely the set of all children of p. Note that in
the relation D, a person p is paired with the set consisting of all of p ’s
children, not with the children themselves. Even if p does not have
exactly one child, it is still true that there is exactly one set that
contains precisely the children of p and nothing else.

6. Yes. Each a ∈ A is paired in the relation iA with exactly one element
of A, namely a itself. In other words, (a, a) ∈ iA, but for every a' ≠ a,



(a, a') ∉ iA. Thus, we can call iA the identity function on A.

7. Yes. For each real number x there is exactly one value of y, namely y
= x2, such that (x, y) ∈ f.

Suppose f: A → B. If a ∈ A, then we know that there is exactly one b ∈
B such that (a, b) ∈ f. This unique b is called “the value of f at a,” or “the
image of a under f,” or “the result of applying f to a,” or just “f of a,” and it
is written f(a). In other words, for every a ∈ A and b ∈ B, b = f(a) iff (a, b)
∈ f. For example, for the function F = {(1, 5), (2, 4), (3, 5)} in part 1 of
Example 5.1.2, we could say that F(1) = 5, since (1, 5) ∈ F. Similarly,
F(2)= 4 and F (3)= 5. If L is the function in part 3 and c is any city, then
L(c) would be the unique country n such that (c, n) ∈ L. In other words,
L(c) = the country in which c is located. For example, L(Paris)= France. For
the function D in part 5, we could say that for any person p, D(p) = the set
of all children of p. If A is any set and a ∈ A, then (a, a) ∈ iA, so iA (a)=a.
And if f is the function in part 7, then for every real number x, f(x) =x2.

A function f from a set A to another set B is often specified by giving a
rule that can be used to determine f(a) for any a ∈ A. For example, if A is
the set of all people and B = R+, then we could define a function f from A to
B by the rule that for every a ∈ A, f(a) = a’s height in inches. Although this
definition doesn’t say explicitly which ordered pairs are elements of f, we
can determine this by using our rule that for all a ∈ A and b ∈ B, (a, b) ∈ f
iff b=f(a). Thus,

For example, if Joe Smith is 68 inches tall, then (Joe Smith, 68) ∈ f and f
(Joe Smith)= 68.

It is often useful to think of a function f from A to B as representing a rule
that associates, with each a ∈ A, some corresponding object b = f(a) ∈ B.
However, it is important to remember that although a function can be
defined by giving such a rule, it need not be defined in this way. Any subset
of A × B that satisfies the requirements given in Definition 5.1.1 is a
function from A to B.



Example 5.1.3. Here are some more examples of functions defined by
rules.

1. Suppose every student is assigned an academic advisor who is a
professor. Let S be the set of students and P the set of professors.
Then we can define a function f from S to P by the rule that for every
student s, f(s) = the advisor of s. In other words,

2. We can define a function g from Z to R by the rule that for every x ∈
Z, g(x)= 2 x + 3. Then

3. Let h be the function from R to R defined by the rule that for every x
∈ R, h(x)= 2 x + 3. Note that the formula for h(x) is the same as the
formula for g(x) in part 2. However, h and g are not the same
function. You can see this by noting that, for example, (π, 2π + 3) ∈ h
but (π, 2π + 3) ∉ g, since π ∉ Z. (For more on the relationship
between g and h, see exercise 7(c).)

Notice that when a function f from A to B is specified by giving a rule for
finding f(a), the rule must determine the value of f(a) for every a ∈ A.
Sometimes when mathematicians are stating such a rule they don’t say
explicitly that the rule applies to all a ∈ A. For example, a mathematician
might say “let f be the function from R to R defined by the formula f(x) = x2

+ 7.” It is understood in this case that the equation f(x) = x2 + 7 applies to all
x ∈ R even though it hasn’t been said explicitly. This means that you can
plug in any real number for x in this equation, and the resulting equation
will be true. For example, you can conclude that f (3) = 32 + 7 = 16.
Similarly, if w is a real number, then you can write f(w) = w2 + 7, or even f
(2w − 3) = (2 w− 3)2 + 7 = 4w2 − 12 w + 16.



Because a function f from A to B is completely determined by the rule for
finding f(a), two functions that are defined by equivalent rules must be
equal. More precisely, we have the following theorem:

Theorem 5.1.4. Suppose f and g are functions from A to B. If ∀a ∈ A(f (a)=
g(a)), then f = g.

Proof. Suppose ∀ a ∈ A(f (a) =g(a)), and let (a, b) be an arbitrary element
of f. Then b = f(a). But by our assumption f(a) = g(a), so b = g(a) and
therefore (a, b) ∈ g. Thus, f ⊆ g. A similar argument shows g ⊆ f, so f=g.

Commentary. Because f and g are sets, we prove f = g by proving f ⊆ g and
g ⊆ f. Each of these goals is proven by showing that an arbitrary element of
one set must be an element of the other. Note that, now that we have proven
Theorem 5.1.4, we have another method for proving that two functions f
and g from a set A to another set B are equal. In the future, to prove f = g we
will usually prove ∀a ∈ A(f (a) = g(a)) and then apply Theorem 5.1.4.

Because functions are just relations of a special kind, the concepts intro-
duced in Chapter 4 for relations can be applied to functions as well. For
example, suppose f: A → B. Then f is a relation from A to B, so it makes
sense to talk about the domain of f, which is a subset of A, and the range of
f, which is a subset of B. According to the definition of function, every
element of A must appear as the first coordinate of some (in fact, exactly
one) ordered pair in f, so the domain of f must actually be all of A. But the
range of f need not be all of B. The elements of the range of f will be the
second coordinates of all the ordered pairs in f, and the second coordinate of
an ordered pair in f is what we have called the image of its first coordinate.
Thus, the range of f could also be described as the set of all images of
elements of A under f:

For example, for the function f defined in part 1 of Example 5.1.3, Ran (f) =
{f(s) | s ∈ S} = the set of all advisors of students.

We can draw diagrams of functions in exactly the same way we drew
diagrams for relations in Chapter 4. If f: A → B, then as before, every
ordered pair (a, b) ∈ f would be represented in the diagram by an edge
connecting a to b. By the definition of function, every a ∈ A occurs as the



first coordinate of exactly one ordered pair in f, and the second coordinate
of this ordered pair is f(a). Thus, for every a ∈ A there will be exactly one
edge coming from a, and it will connect a to f(a). For example, Figure 5.1
shows what the diagram for the function L defined in part 3 of Example
5.1.2 would look like.

Figure 5.1.

The definition of composition of relations can also be applied to
functions. If f: A → B and g: B → C, then f is a relation from A to B and g is
a relation from B to C, so g ◦ f will be a relation from A to C. In fact, it turns
out that g ◦ f is a function from A to C, as the next theorem shows.

Theorem 5.1.5. Suppose f: A → B and g: B → C. Then g ◦  f: A → C, and
for any a ∈ A, the value of g ◦ f at a is given by the formula (g ◦ f)(a) =g(f
(a)).

Scratch work

Before proving this theorem, it might be helpful to discuss the scratch work
for the proof. According to the definition of function, to show that g ◦ f: A
→ C we must prove that ∀a ∈ A∃! c ∈ C((a, c) ∈ g ◦ f), so we will start
out by letting a be an arbitrary element of A and then try to prove that ∃! c
∈ C((a, c) ∈ g ◦f). As we saw in Section 3.6, we can prove this statement
by proving existence and uniqueness separately. To prove existence, we
should try to find a c ∈ C such that (a, c) ∈ g ◦  f. For uniqueness, we



should assume that (a, c1) ∈ g ◦ f and (a, c2) ∈ g ◦ f, and then try to prove
that c1 = c2.

Proof. Let a be an arbitrary element of A. We must show that there is a
unique c ∈ C such that (a, c) ∈ g ◦ f.

Existence: Let b = f(a) ∈ B. Let c = g(b) ∈ C. Then (a, b) ∈ f and (b, c)
∈ g, so by the definition of composition of relations,(a, c) ∈ g ◦ f. Thus, ∃c
∈ C((a, c) ∈ g ◦ f).

Uniqueness: Suppose (a, c1) ∈ g ◦  f and (a, c2) ∈ g ◦  f. Then by the
definition of composition, we can choose b1 ∈ B such that (a, b1) ∈ f and
(b1,c1)∈ g, and we can also choose b2 ∈ B such that (a, b2)∈ f and
(b2,c2)∈ g. Since f is a function, there can be only one b ∈ B such that (a,
b) ∈ f. Thus, since (a, b1)and(a, b2) are both elements of f, it follows that b1
= b2. But now applying the same reasoning to g, since (b1, c1) ∈ g and (b1,
c2) = (b2, c2) ∈ g, it follows that c1 = c2, as required.

This completes the proof that g ◦ f is a function from A to C. Finally, to
derive the formula for (g ◦ f)(a), note that we showed in the existence half
of the proof that for any a ∈ A, if we let b = f(a) and c = g(b), then (a, c) ∈
g ◦ f. Thus,

When we first introduced the idea of the composition of two relations in
Chapter 4, we pointed out that the notation was somewhat peculiar and
promised to explain the reason for the notation in this chapter. We can now
provide this explanation. The reason for the notation we’ve used for
composition of relations is that it leads to the convenient formula (g ◦ f)(x) =
g(f(x)) derived in Theorem 5.1.5. Note that because functions are just
relations of a special kind, everything we have proven about composition of
relations applies to composition of functions. In particular, by Theorem
4.2.5, we know that composition of functions is associative.

Example 5.1.6. Here are some examples of compositions of functions.

1. Let C and N be the sets of all cities and countries, respectively, and let
L: C → N be the function defined in part 3 of Example 5.1.2. Thus,



for every city c, L(c) = the country in which c is located. Let B be the
set of all buildings located in cities, and define F: B → C by the
formula F(b)= the city in which the building b is located. Then L ◦ F:
B → N. For example, F (Eiffel Tower) = Paris, so according to the
formula derived in Theorem 5.1.5,

In general for every building b ∈ B,

A diagram of this function is shown in Figure 5.2.

Figure 5.2.

2. Let g: Z → R be the function from part 2 of Example 5.1.3, which
was defined by the formula g(x) = 2x + 3. Let f: Z → Z be defined by
the formula f(n) = n2 − 3n + 1. Then g ◦ f: Z → R. For example, f (2)=
22 − 3 · 2 + 1 = −1, so (g ◦f)(2)=g(f (2))=g(−1)= 1. In general for every
n ∈ Z,



Exercises
*1. (a) Let A = {1, 2, 3}, B = {4}, and f = {(1, 4), (2, 4), (3, 4)}. Is f a

function from A to B?
(b) Let A = {1}, B = {2, 3, 4}, and f = {(1, 2), (1, 3), (1, 4)}. Is f a

function from A to B?
(c) Let C be the set of all cars registered in your state, and let S be the set

of all finite sequences of letters and digits. Let L = {(c, s) ∈ C × S |
the license plate number of the car c is s}. Is L a function from C to
S?

2. (a) Let f be the relation represented by the graph in Figure 5.3. Is f a
function from A to B?

Figure 5.3.

(b) Let W be the set of all words of English, and let A be the set of all
letters of the alphabet. Let f = {(w, a) ∈ W × A | the letter a occurs in
the word w}, and let g = {(w, a) ∈ W × A | the letter a is the first
letter of the word w}. Is f a function from W to A? How about g?

(c) John, Mary, Susan, and Fred go out to dinner and sit at a round table.
Let P = {John, Mary, Susan, Fred}, and let R = {(p, q) ∈ P × P | the
person p is sitting immediately to the right of the person q}. Is R a
function from P to P?

*3. (a) Let A = {a, b, c}, B = {a, b}, and f = {(a, b), (b, b), (c, a)}. Then
f: A → B. What are f(a), f(b), and f(c)?



(b) Let f: R → R be the function defined by the formula f(x) = x2 − 2x.
What is f (2)?

(c) Let f = {(x, n) ∈ R × Z | n ≤ x < n + 1}. Then f: R → Z. What is f (π)?
What is f (−π)?

4. (a) Let N be the set of all countries and C the set of all cities. Let H:
N→ C be the function defined by the rule that for every country
n, H(n) = the capital of the country n. What is H (Italy)?

(b) Let A = {1, 2, 3} and B = P(A). Let F: B → B be the function defined
by the formula F(X) = A \ X. What is F ({1, 3})?

(c) Let f: R → R × R be the function defined by the formula f(x) = (x + 1,
x − 1). What is f (2)?

*5. Let L be the function defined in part 3 of Example 5.1.2 and let H be
the function defined in exercise 4(a). Describe L ◦ H and H ◦ L.

6. Let f and g be functions from R to R defined by the following
formulas:

Find formulas for (f ◦ g)(x) and (g ◦ f)(x).
*7. Suppose f: A → B and C ⊆ A. The set f ∩(C × B), which is a relation

from C to B, is called the restriction of f to C, and is sometimes
denoted f ↾ C. In other words,

(a) Prove that f ↾ C is a function from C to B and that for all c ∈ C, f(c) =
(f ↾ C)(c).

(b) Suppose g: C → B. Prove that g = f ↾ C iff g ⊆ f.
(c) Let g and h be the functions defined in parts 2 and 3 of Example 5.1.3.

Show that g = h ↾ Z.

8. Suppose f: A → B and g ⊆ f. Prove that there is a set A' ⊆ A such that
g: A' → B.

9. Suppose f: A → B, B ≠ ∅, and A ⊆ A'. Prove that there is a function
g: A' → B such that f ⊆ g.



*10. Suppose that f and g are functions from A to B and f = g. Show that f g
is not a function.

11. Suppose A is a set. Show that iA is the only relation on A that is both
an equivalence relation on A and also a function from A to A.

12. Suppose f: A → C and g: B → C.
(a) Prove that if A and B are disjoint, then f ∪ g: A ∪ B → C.
(b) Prove that f ∪ g: A ∪ B → C iff f ↾ (A ∩ B) = g ↾ (A ∩ B). (See

exercise 7 for the meaning of the notation used here.)
*13. Suppose R is a relation from A to B, S is a relation from B to C, Ran

(R) = Dom (S) = B, and S ◦ R: A → C.
(a) Prove that S: B → C.
(b) Give an example to show that it need not be the case that R: A → B.
14. Suppose f: A → B and S is a relation on B. Define a relation R on A as

follows:

(a) Prove that if S is reflexive, then so is R.
(b) Prove that if S is symmetric, then so is R.
(c) Prove that if S is transitive, then so is R.

*15. Suppose f: A → B and R is a relation on A. Define a relation S on B as
follows:

Justify your answers to the following questions with either proofs or
counterexamples.
(a) If R is reflexive, must it be the case that S is reflexive?
(b) If R is symmetric, must it be the case that S is symmetric?
(c) If R is transitive, must it be the case that S is transitive?
16. Suppose A and B are sets, and let F = {f | f: A → B}. Also, suppose R

is a relation on B, and define a relation S on F as follows:



Justify your answers to the following questions with either proofs or
counterexamples.
(a) If R is reflexive, must it be the case that S is reflexive?
(b) If R is symmetric, must it be the case that S is symmetric?
(c) If R is transitive, must it be the case that S is transitive?
17. Suppose A is a nonempty set and f: A → A.
(a) Suppose there is some a ∈ A such that ∀x ∈ A(f(x) = a). (In this case,

f is called a constant function.) Prove that for all g: A → A, f ◦ g = f.
(b) Suppose that for all g: A → A, f ◦ g = f. Prove that f is a constant

function. (Hint: What happens if g is a constant function?)
18. Let F = {f | f: R → R}. Let R = {(f, g) ∈ F × F | ∃a ∈ R∀x >

a(f(x)=g(x))}.
(a) Let f: R → R and g: R → R be the functions defined by the formulas

f(x) = |x| and g(x) = x. Show that (f, g) ∈ R.
(b) Prove that R is an equivalence relation.

*19. Let F = {f | f: Z
+ → R}. For g ∈ F, we define the set O(g) as

follows:

(If f ∈ O(g), then mathematicians say that “f is big-oh of g.”)
(a) Let f: Z+ → R and g: Z+ → R be defined by the formulas f(x)= 7 x + 3

and g(x) =x2. Prove that f ∈ O(g), but g ∈ / O(f).
(b) Let S = {(f, g) ∈ F × F | f ∈ O(g)}. Prove that S is a preorder, but not

a partial order. (See exercise 25 of Section 4.5 for the definition of
preorder.)

(c) Suppose f1 ∈ O(g) and f2 ∈ O(g), and s and t are real numbers. Define
a function f: Z+ → R by the formula f(x) = sf1(x) + tf2(x). Prove that f
∈ O(g). (Hint: You may find the triangle inequality helpful. See
exercise 13(c) of Section 3.5.)

20. (a) Suppose g: A → B and let R = {(x, y) ∈ A × A | g(x) = g(y)}.
Show that R is an equivalence relation on A.



(b) Suppose R is an equivalence relation on A and let g: A → A/R be the
function defined by the formula g(x) = [x]R. Show that R = {(x, y) ∈
A × A | g(x) = g(y)}.

*21. Suppose f: A → B and R is an equivalence relation on A. We will say
that f is compatible with R if ∀x ∈ A∀y ∈ A(xRy → f(x) = f(y)). (You
might want to compare this exercise to exercise 24 of Section 4.5.)

(a) Suppose f is compatible with R. Prove that there is a unique function
h: A/R → B such that for all x ∈ A, h([x]R) = f(x).

(b) Suppose h: A/R → B and for all x ∈ A, h([x]R) = f(x). Prove that f is
compatible with R.

22. Let R = {(x, y) ∈ N × N | x ≡ y (mod 5)}. Note that by Theorem
4.5.10 and exercise 14 in Section 4.5, R is an equivalence relation on
N.

(a) Show that there is a unique function h: N/R → N/R such that for every
natural number x, h([x]R) = [x2]R. (Hint: Use exercise 21.)

(b) Show that there is no function h: N/R → N/R such that for every
natural number x, h([x]R) = [2x]R.

5.2 One-to-One and Onto
In the last section we saw that the composition of two functions is again a
function. What about inverses of functions? If f: A → B, then f is a relation
from A to B, so f−1 is a relation from B to A. Is it a function from B to A?
We’ll answer this question in the next section. As we will see, the answer
hinges on the following two properties of functions.

Definition 5.2.1. Suppose f: A → B. We will say that f is one-to-one if

We say that f maps onto B (or just is onto if B is clear from context) if



One-to-one functions are sometimes also called injections, and onto
functions are sometimes called surjections.

Note that our definition of one-to-one starts with the negation symbol ¬.
In other words, to say that f is one-to-one means that a certain situation does
not occur. The situation that must not occur is that there are two different
elements of the domain of f, a1 and a2, such that f(a1) = f(a2). This situation
is illustrated in Figure 5.4(a). Thus, the function in Figure 5.4(a) is not one-
to-one. Figure 5.4(b) shows a function that is one-to-one.

Figure 5.4.

If f: A → B, then to say that f is onto means that every element of B is the
image under f of some element of A. In other words, in the diagram of f,
every element of B has an edge pointing to it. Neither of the functions in
Figure 5.4 is onto, because in both cases there are elements of B without
edges pointing to them. Figure 5.5 shows two functions that are onto.



Figure 5.5.

Example 5.2.2. Are the following functions one-to-one? Are they onto?

1. The function F from part 1 of Example 5.1.2.
2. The function L from part 3 of Example 5.1.2.
3. The identity function iA, for any set A.

4. The function g from part 2 of Example 5.1.3.
5. The function h from part 3 of Example 5.1.3.

Solutions

1. F is not one-to-one because F (1)= 5 =F (3). It is also not onto,
because 6 ∈ B but there is no a ∈ A such that F(a) = 6.

2. L is not one-to-one because there are many pairs of different cities c1
and c2 for which L(c1)=L(c2). For example,L(Chicago)= United States
=L(Seattle). To say that L is onto means that ∀n ∈ N∃c ∈ C(L(c) =
n), or in other words, for every country n there is a city c such that the
city c is located in the country n. This is probably true, since it is
unlikely that there is a country that contains no cities at all. Thus, L is
probably onto.

3. To decide whether iA is one-to-one we must determine whether there
are two elements a1 and a2 of A such that iA(a1) = iA(a2) and a1 ≠ a2.



But as we saw in Section 5.1, for every a ∈ A, iA(a) = a, so iA(a1) =
iA((a2) means a1 = a2. Thus, there cannot be elements a1 and a2 of A
such that iA(a1) = iA(a2) and a1 ≠ a2, so iA is one-to-one.

To say that iA is onto means that for every a ∈ A, a = iA(b) for some b
∈ A. This is clearly true because, in fact, a = iA(a). Thus iA is also onto.

4. As in solution 3, to decide whether g is one-to-one, we must
determine whether there are integers n1 and n2 such that g(n1) = g(n2)
and n1 ≠ n2. According to the definition of g, we have

Thus there can be no integers n1 and n2 for which g(n1) = g(n2) and n1 ≠
n2. In other words, g is one-to-one. However, g is not onto because, for
example, there is no integer n for which g(n) = 0. To see why, suppose n is
an integer and g(n) = 0. Then by the definition of g we have 2n + 3 = 0, so
n = −3/2. But this contradicts the fact that n is an integer. Note that the
domain of g is Z, so for g to be onto it must be the case that for every real
number y there is an integer n such that g(n) = y. Since we have seen that
there is no integer n such that g(n) = 0, we can conclude that g is not onto.
5. This function is both one-to-one and onto. The verification that h is

one-to-one is very similar to the verification in solution 4 that g is
one-to-one, and it is left to the reader. To see that h is onto, we must
show that ∀y ∈ R∃x ∈ R(h(x) = y). Here is a brief proof of this
statement. Let y be an arbitrary real number. Let x = (y −3)/2. Then
g(x) = 2x +3 = 2·((y −3)/2)+3 = y− 3 + 3 =y. Thus, ∀y ∈ R∃ x ∈ R
(h(x)=y), so h is onto.

Although the definition of one-to-one is easiest to understand when it is
stated as a negative statement, as in Definition 5.2.1, we know from
Chapter 3 that the definition will be easier to use in proofs if we reexpress it
as an equivalent positive statement. The following theorem shows how to
do this. It also gives a useful equivalence for the definition of onto.



Theorem 5.2.3. Suppose f: A → B.

1. f is one-to-one iff ∀a1 ∈ A ∀a2 ∈ A(f (a1) = f(a2) → a1 = a2).

2. f is onto iff Ran (f) = B.

Proof.

1. We use the rules from Chapters 1 and 2 for reexpressing negative
state-ments as positive ones.

2. First we relate the definition of onto to the definition of range.

Now we are ready to prove part 2 of the theorem.
(→) Suppose f is onto. By the equivalence just derived we have B ⊆

Ran (f), and by the definition of range we have Ran (f) ⊆ B. Thus, it
follows that Ran (f) = B.

(←) Suppose Ran (f) = B. Then certainly B ⊆ Ran (f), so by the
equivalence, f is onto.

□

Commentary. It is often most efficient to write the proof of an iff statement
as a string of equivalences, if this can be done. In the case of statement 1
this is easy, using rules of logic. For statement 2 this strategy doesn’t quite
work, but it does give us an equivalence that turns out to be useful in the
proof.

Example 5.2.4. Let A = R \ {−1}, and define f: A → R by the formula



Prove that f is one-to-one but not onto.

Scratch work

By part 1 of Theorem 5.2.3, we can prove that f is one-to-one by proving
the equivalent statement ∀a1 ∈ A∀a2 ∈ A(f (a1) = f(a2) → a1 = a2). Thus,
we let a1 and a2 be arbitrary elements of A, assume f(a1) = f(a2), and then
prove a1 = a2. This is the strategy that is almost always used when proving
that a function is one-to-one. The remaining details of the proof involve
only simple algebra and are given later.

To show that f is not onto we must prove ¬∀x ∈ R∃a ∈ A(f (a) = x).
Reexpressing this as a positive statement, we see that we must prove ∃x ∈
R∀a ∈ A(f (a) ≠ x), so we should try to find a particular real number x such
that ∀a ∈ A(f (a) ≠ x). Unfortunately, it is not at all clear what value we
should use for x. We’ll use a somewhat unusual procedure to overcome this
difficulty. Instead of trying to prove that f is not onto, let’s try to prove that
it is onto! Of course, we’re expecting that this proof won’t work, but maybe
seeing why it won’t work will help us figure out what value of x to use in
the proof that f is not onto.

To prove that f is onto we would have to prove ∀x ∈ R∃a ∈ A(f (a) = x),
so we should let x be an arbitrary real number and try to find some a ∈ A
such that f(a) = x. Filling in the definition of f, we see that we must find a ∈
A such that

To find this value of a, we simply solve the equation for a:

Aha! The last step in this derivation wouldn’t work if x = 2, because then
we would be dividing by 0. This is the only value of x that seems to cause
trouble when we try to find a value of a for which f(a) = x. Perhaps x = 2 is
the value to use in the proof that f is not onto.



Let’s return now to the proof that f is not onto. If we let x = 2, then to
complete the proof we must show that ∀a ∈ A(f (a) ≠ 2). We’ll do this by
letting a be an arbitrary element of A, assuming f(a) = 2, and then trying to
derive a contradiction. The remaining details of the proof are not hard.

Solution

Proof. To see that f is one-to-one, let a1 and a2 be arbitrary elements of A
and assume that f(a1) = f(a2). Applying the definition of f, it follows that
2a1/(a1 + 1) = 2a2/(a2 + 1). Thus, 2a1(a2 + 1) = 2a2(a1 + 1). Multiplying out
both sides gives us 2a1a2 +2a1 = 2a1a2 +2a2, so 2a1 = 2a2 and therefore a1
=a2.

To show that f is not onto we will prove that ∀a ∈ A(f (a) ≠ 2). Suppose
a ∈ A and f(a) = 2. Applying the definition of f, we get 2 a/(a + 1)= 2.
Thus, 2a = 2a + 2, which is clearly impossible. Thus, 2 ∉ Ran(f), so Ran(f)
≠ R and therefore f is not onto.

□
As we saw in the preceding example, when proving that a function f is

one-to-one it is usually easiest to prove the equivalent statement ∀a1 ∈
A∀a2 ∈ A(f (a1) = f(a2) → a1 = a2) given in part 1 of Theorem 5.2.3. Of
course, this is just an example of the fact that it is generally easier to prove
a positive statement than a negative one. This equivalence is also often used
in proofs in which we are given that a function is one-to-one, as you will
see in the proof of part 1 of the following theorem.

Theorem 5.2.5. Suppose f: A → B and g: B → C. As we saw in Theorem
5.1.5, it follows that g ◦ f: A → C.

1. If f and g are both one-to-one, then so is g ◦ f.
2. If f and g are both onto, then so is g ◦ f.

Proof.

1. Suppose f and g are both one-to-one. Let a1 and a2 be arbitrary
elements of A and suppose that (g ◦ f)(a1) = (g ◦  f)(a2). By Theorem
5.1.5 this means that g(f (a1)) = g(f (a2)). Since g is one-to-one it



follows that f(a1) = f(a2), and similarly since f is one-to-one we can
then conclude that a1 = a2. Thus, g ◦ f is one-to-one.

2. Suppose f and g are both onto, and let c be an arbitrary element of C.
Since g is onto, we can find some b ∈ B such that g(b) =c. Similarly,
since f is onto, there is some a ∈ A such that f(a) = b. Then (g ◦ f)(a)
= g(f (a))= g(b) =c. Thus, g ◦ f is onto.

Commentary.

1. As in Example 5.2.4, we prove that g ◦ f is one-to-one by proving that
∀a1 ∈ A ∀a2 ∈ A((g ◦ f)(a1)= (g ◦ f)(a2) → a1 =a2). Thus, we let a1
and a2 be arbitrary elements of A, assume that (g ◦ f)(a1) = (g ◦ f)(a2),
which means g(f (a1)) = g(f (a2)), and then prove that a1 = a2. The
next sentence of the proof says that the assumption that g is one-to-
one is being used, but it might not be clear how it is being used. To
understand this step, let’s write out what it means to say that g is one-
to-one. As we observed before, rather than using the original
definition, which is a negative statement, we are probably better off
using the equivalent positive statement ∀b1 ∈ B∀b2 ∈ B(g(b1) =
g(b2) → b1 = b2). The natural way to use a given of this form is to
plug something in for b1 and b2. Plugging in f(a1) and f(a2), we get g(f
(a1)) = g(f (a2)) → f(a1) = f(a2), and since we know g(f (a1)) = g(f
(a2)), it follows by modus ponens that f(a1) = f(a2). None of this was
explained in the proof; readers of the proof are expected to work it out
for themselves. Make sure you understand how, using similar
reasoning, you can get from f(a1) = f(a2) to a1 = a2 by applying the
fact that f is one-to-one.

2. After the assumption that f and g are both onto, the form of the rest of
the proof is entirely guided by the logical form of the goal of proving
that g ◦ f is onto. Because this means ∀c ∈ C∃a ∈ A((g ◦ f)(a) = c),
we let c be an arbitrary element of C and then find some a ∈ A for
which we can prove (g ◦ f)(a) =c.

□



Functions that are both one-to-one and onto are particularly important in
mathematics. Such functions are sometimes called one-to-one corre-
spondences or bijections. Figure 5.5(b) shows an example of a one-to-one
correspondence. Notice that in this figure both A and B have four elements.
In fact, you should be able to convince yourself that if there is a one-to-one
cor-respondence between two finite sets, then the sets must have the same
number of elements. This is one of the reasons why one-to-one
correspondences are so important. We will discuss one-to-one
correspondences between infinite sets in Chapter 8.

Here’s another example of a one-to-one correspondence. Suppose A is the
set of all members of the audience at a sold-out concert and S is the set of
all seats in the concert hall. Let f: A → S be the function defined by the rule

Because different people would not be sitting in the same seat, f is one-to-
one. Because the concert is sold out, every seat is taken, so f is onto. Thus, f
is a one-to-one correspondence. Even without counting people or seats, we
can tell that the number of people in the audience must be the same as the
number of seats in the concert hall.

Exercises
1. Which of the functions in exercise 1 of Section 5.1 are one-to-one?

Which are onto?
*2. Which of the functions in exercise 2 of Section 5.1 are one-to-one?

Which are onto?
3. Which of the functions in exercise 3 of Section 5.1 are one-to-one?

Which are onto?
4. Which of the functions in exercise 4 of Section 5.1 are one-to-one?

Which are onto?
*5. Let A = R \ {1}, and let f: A → A be defined as follows:

(a) Show that f is one-to-one and onto.



(b) Show that f ◦ f = iA.

6. Suppose a and b are real numbers and a ≠ 0. Define f: R → R by the
formula f(x) = ax + b. Show that f is one-to-one and onto.

7. Define f: R+ → R by the formula f(x) = 1/x − x.

(a) Show that f is one-to-one. (Hint: You may find it useful to prove first
that if 0 < a < b then f(a) > f (b).)

(b) Show that f is onto.
(c) Define g: R+ → R by the formula g(x) = 1/x + x. Is g one-to-one? Is it

onto?

8. Let A = P(R). Define f: R → A by the formula f(x) = {y ∈ R | y2<
x}.

(a) Find f (2).
(b) Is f one-to-one? Is it onto?
*9. Let A = P(R) and B = P(A). Define f: B → A by the formula f (F)=

⋃F.

(a) Find f ({{1, 2}, {3, 4}}).
(b) Is f one-to-one? Is it onto?
10. Suppose f: A → B and g: B → C.
(a) Prove that if g ◦ f is onto then g is onto.
(b) Prove that if g ◦ f is one-to-one then f is one-to-one.
11. Suppose f: A → B and g: B → C.
(a) Prove that if f is onto and g is not one-to-one, then g ◦ f is not one-to-

one.
(b) Prove that if f is not onto and g is one-to-one, then g ◦ f is not onto.
12. Suppose f: A → B. Define a function g: B → P(A) by the formula

g(b)= {a ∈ A | f(a) =b}. Prove that if f is onto then g is one-to-one.
What if f is not onto?

*13. Suppose f: A → B and C ⊆ A. In exercise 7 of Section 5.1 we defined
f ↾ C(the restriction of f to C), and you showed that f ↾ C: C → B.

(a) Prove that if f is one-to-one, then so is f ↾ C.
(b) Prove that if f ↾ C is onto, then so is f.



(c) Give examples to show that the converses of parts (a) and (b) are not
always true.

14. Suppose f: A → B, and there is some b ∈ B such that ∀x ∈ A(f(x) =
b). (Thus, f is a constant function.)

(a) Prove that if A has more than one element then f is not one-to-one.
(b) Prove that if B has more than one element then f is not onto.
15. Suppose f: A → C, g: B → C, and A and B are disjoint. In exercise

12(a) of Section 5.1 you proved that f ∪ g: A ∪ B → C. Now suppose
that f and g are both one-to-one. Prove that f ∪ g is one-to-one iff Ran
(f) and Ran (g) are disjoint.

16. Suppose R is a relation from A to B, S is a relation from B to C,
Ran(R) = Dom (S) = B, and S ◦ R: A → C. In exercise 13(a) of Section
5.1 you proved that S: B → C. Now prove that if S is one-to-one then
R: A → B.

*17. Suppose f: A → B and R is a relation on A. As in exercise 15 of
Section 5.1, define a relation S on B as follows:

(a) Prove that if R is reflexive and f is onto then S is reflexive.
(b) Prove that if R is transitive and f is one-to-one then S is transitive.
18. Suppose R is an equivalence relation on A, and let g: A → A/R be

defined by the formula g(x) = [x]R, as in exercise 20(b) in Section 5.1.

(a) Show that g is onto.
(b) Show that g is one-to-one iff R = iA.

19. Suppose f: A → B, R is an equivalence relation on A, and f is
compatible with R. (See exercise 21 of Section 5.1 for the definition
of compatible.) In exercise 21(a) of Section 5.1 you proved that there
is a unique function h: A/R → B such that for all x ∈ A, h([x]R) = f(x).
Now prove that h is one-to-one iff ∀x ∈ A∀y ∈ A(f(x) = f(y) → xRy).

*20. Suppose A, B, and C are sets and f: A → B.
(a) Prove that if f is onto, g: B → C, h: B → C, and g ◦ f = h ◦ f, then g = h.
(b) Suppose that C has at least two elements, and for all functions g and h

from B to C, if g ◦ f = h ◦ f then g = h. Prove that f is onto.
21. Suppose A, B, and C are sets and f: B → C.



(a) Prove that if f is one-to-one, g: A → B, h: A → B, and f ◦ g = f ◦ h, then
g = h.

(b) Suppose that A = ∅, and for all functions g and h from A to B, if f ◦ g
= f ◦ h then g = h. Prove that f is one-to-one.

22. Let F = {f | f: R → R}, and define a relation R on F as follows:

(a) Let f, g, and h be the functions from R to R defined by the formulas
f(x)=x2 + 1, g(x) =x3 + 1, and h(x) =x4 + 1. Prove that hRf, but it is
not the case that gRf.

(b) Prove that R is a preorder. (See exercise 25 of Section 4.5 for the
definition of preorder.)

(c) Prove that for all f ∈ F, f RiR.

(d) Prove that for all f ∈ F, iRRf iff f is one-to-one. (Hint for right-to-left

direction: Suppose f is one-to-one. Let A = Ran (f), and let h = f−1 ∪
((R \ A) × {0}). Now prove that h: R → R and iR = h ◦ f.)

(e) Suppose that g ∈ F is a constant function; in other words, there is

some real number c such that ∀x ∈ R(g(x) = c). Prove that for all f ∈
F, gRf. (Hint: See exercise 17 of Section 5.1.)

(f) Suppose that g ∈ F is a constant function. Prove that for all f ∈ F, f

Rg iff f is a constant function.
(g) As in exercise 25 of Section 4.5, if we let S = R ∩ R−1, then S is an

equivalence relation on F. Also, there is a unique relation T on F/S

such that for all f and g in F, [f]S T [g]S iff f Rg, and T is a partial

order on F/S. Prove that the set of all one-to-one functions from R to

R is the largest element of F/S in the partial order T, and the set of all

constant functions from R to R is the smallest element.

23. Let f: N → N be defined by the formula f(n) = n. Note that we could
also say that f: N → Z. This exercise will illustrate why, in Definition



5.2.1, we defined the phrase “f maps onto B,” rather than simply “f is
onto.”

(a) Does f map onto N?
(b) Does f map onto Z?

5.3 Inverses of Functions
We are now ready to return to the question of whether the inverse of a
function from A to B is always a function from B to A. Consider again the
function F from part 1 of Example 5.1.2. Recall that in that example we had
A = {1, 2, 3}, B = {4, 5, 6}, and F = {(1, 5), (2, 4), (3, 5)}. As we saw in
Example 5.1.2, F is a function from A to B. According to the definition of
the inverse of a relation, F−1 = {(5, 1), (4, 2), (5, 3)}, which is clearly a
relation from B to A. But F−1 fails to be a function from B to A for two
reasons. First of all, 6 ∈ B, but 6 isn’t paired with any element of A in the
relation F−1. Second, 5 is paired with two different elements of A, 1 and 3.
Thus, this example shows that the inverse of a function from A to B is not
always a function from B to A.

You may have noticed that the reasons why F−1 isn’t a function from B to
A are related to the reasons why F is neither one-to-one nor onto, which
were discussed in part 1 of Example 5.2.2. This suggests the following
theorem.

Theorem 5.3.1. Suppose f: A → B. If f is one-to-one and onto, then f−1: B
→ A.

Proof. Suppose f is one-to-one and onto, and let b be an arbitrary element of
B. To show that f−1 is a function from B to A, we must prove that ∃! a ∈
A((b, a) ∈ f−1), so we prove existence and uniqueness separately.

Existence: Since f is onto, there is some a ∈ A such that f(a) = b. Thus,
(a, b) ∈ f, so (b, a) ∈ f−1.

Uniqueness: Suppose (b, a1) ∈ f−1 and (b, a2) ∈ f−1 for some a1, a2 ∈ A.
Then (a1, b) ∈ f and (a2, b) ∈ f, so f(a1) = b = f(a2). Since f is one-to-one, it
follows that a1 = a2.



□

Commentary. The form of the proof is guided by the logical form of the
statement that f−1: B → A. Because this means ∀b ∈ B∃! a ∈ A((b, a) ∈
f−1), we let b be an arbitrary element of B and then prove existence and
uniqueness for the required a ∈ A separately. Note that the assumption that
f is onto is the key to the existence half of the proof, and the assumption that
f is one-to-one is the key to the uniqueness half.

Suppose f is any function from a set A to a set B. Theorem 5.3.1 says that
a sufficient condition for f−1 to be a function from B to A is that f be one-to-
one and onto. Is it also a necessary condition? In other words, is the
converse of Theorem 5.3.1 true? (If you don’t remember what the words
sufficient,necessary, and converse mean, you should review Section 1.5!)
We will show in Theorem 5.3.4 that the answer to this question is yes. In
other words, if f−1 is a function from B to A, then f must be one-to-one and
onto.

If f−1: B → A then, by the definition of function, for every b ∈ B there is
exactly one a ∈ A such that (b, a) ∈ f−1, and

This gives another useful way to think about f−1. If f−1 is a function from B
to A, then it is the function that assigns, to each b ∈ B, the unique a ∈ A
such that f(a) = b. The assumption in Theorem 5.3.1 that f is one-to-one and
onto guarantees that there is exactly one such a.

As an example, consider again the function f that assigns, to each person
in the audience at a sold-out concert, the seat in which that person is sitting.
As we saw at the end of the last section, f is a one-to-one, onto function
from the set A of all members of the audience to the set S of all seats in the
concert hall. Thus, f−1 must be a function from S to A, and for each s ∈ S,



In other words, the function f assigns to each person the seat in which that
person is sitting, and the function f−1 assigns to each seat the person sitting
in that seat.

Because f: A → S and f−1: S → A, it follows by Theorem 5.1.5 that f−1 ◦ f:
A → A and f ◦ f−1: S → S. What are these functions? To figure out what the
first function is, let’s let a be an arbitrary element of A and compute (f−1 ◦ f)
(a).

But recall that for every a ∈ A, iA(a) = a. Thus, we have shown that ∀a ∈
A((f−1 ◦  f)(a) = iA(a)), so by Theorem 5.1.4, f−1 ◦  f = iA. Similarly, you
should be able to check that f ◦ f−1 = iS.

When mathematicians find an unusual phenomenon like this in an
example, they always wonder whether it’s just a coincidence or if it’s part
of a more general pattern. In other words, can we prove a theorem that says
that what happened in this example will happen in other examples too? In
this case, it turns out that we can.

Theorem 5.3.2. Suppose f is a function from A to B, and suppose that f−1 is
a function from B to A. Then f−1 ◦ f = iA and f ◦ f−1 = iB.

Proof. Let a be an arbitrary element of A. Let b = f(a) ∈ B. Then (a, b) ∈ f,
so (b, a) ∈ f−1 and therefore f−1(b) = a. Thus,

Since a was arbitrary, we have shown that ∀a ∈ A((f−1 ◦ f)(a) = iA(a)), so
f−1 ◦ f = iA. The proof of the second half of the theorem is similar and is left
as an exercise (see exercise 8).

□



Commentary. To prove that two functions are equal, we usually apply Theo-
rem 5.1.4. Thus, since f−1 ◦ f and iA are both functions from A to A, to prove
that they are equal we prove that ∀a ∈ A((f−1 ◦ f)(a) = iA(a)).

Theorem 5.3.2 says that if f: A → B and f−1: B → A, then each function
undoes the effect of the other. For any a ∈ A, applying the function f gives
us f(a) ∈ B. According to Theorem 5.3.2, f−1 (f(a))= (f−1 ◦ f)(a) = iA (a)=a.
Thus, applying f−1 to f(a) undoes the effect of applying f, giving us back the
original element a. Similarly, for any b ∈ B, applying f−1 we get f−1(b) ∈ A,
and we can undo the effect of applying f−1 by applying f, since f(f−1(b)) = b.

For example, let f: R → R be defined by the formula f(x) = 2x. You
should be able to check that f is one-to-one and onto, so f−1: R → R, and for
any x ∈ R,

f−1 (x)= the unique y such that f(y) =x.

Because f−1(x) is the unique solution for y in the equation f(y) = x, we can
find a formula for f−1(x) by solving this equation for y. Filling in the
definition of f in the equation gives us 2y = x, so y = x/2. Thus, for every x
∈ R, f−1(x) = x/2. Notice that applying f to any number doubles the number
and applying f−1 halves the number, and each of these operations undoes the
effect of the other. In other words, if you double a number and then halve
the result, you get back the number you started with. Similarly, halving any
number and then doubling the result gives you back the original number.

Are there other circumstances in which the composition of two functions
is equal to the identity function? Investigation of this question leads to the
following theorem.

Theorem 5.3.3. Suppose f: A → B.

1. If there is a function g: B → A such that g ◦ f = iA then f is one-to-one.

2. If there is a function g: B → A such that f ◦ g = iB then f is onto.

Proof.



1. Suppose g: B → A and g ◦ f = iA. Let a1 and a2 be arbitrary elements
of A, and suppose that f(a1) = f(a2). Applying g to both sides of this
equation we get g(f (a1)) = g(f (a2)). But g(f (a1)) = (g ◦  f)(a1) =
iA((a1)=a1, and similarly,g(f (a2))=a2. Thus, we can conclude that a1
=a2, and therefore f is one-to-one.

2. See exercise 9.
□

Commentary. The assumption that there is a g: B → A such that g ◦ f = iA
is an existential statement, so we immediately imagine that a particular
function g has been chosen. The proof that f is one-to-one follows the
usual pattern for such proofs, based on Theorem 5.2.3.

We have come full circle. In Theorem 5.3.1 we found that if f is a one-
to-one, onto function from A to B, then f−1 is a function from B to A. From
this conclusion it follows, as we showed in Theorem 5.3.2, that the
composition of f with its inverse must be the identity function. And in
Theorem 5.3.3 we found that when the composition of two functions is
the identity function, we are led back to the properties one-to-one and
onto! Thus, combining Theorems 5.3.1–5.3.3, we get the following
theorem.

Theorem 5.3.4. Suppose f: A → B. Then the following statements are
equivalent.

1. f is one-to-one and onto.

2. f−1: B → A.
3. There is a function g: B → A such that g ◦ f = iA and f ◦ g = iB.

Proof.1 → 2. This is precisely what Theorem 5.3.1 says.
2→ 3. Suppose f−1: B → A. Let g = f−1 and apply Theorem 5.3.2.
3→ 1. Apply Theorem 5.3.3.

□

Commentary. As we saw in Section 3.6, the easiest way to prove that
several statements are equivalent is to prove a circle of implications. In



this case we have proven the circle 1 → 2 → 3 → 1. Note that the proofs
of these implications are quite sketchy. You should make sure you know
how to fill in all the details.

For example, let f and g be functions from R to R defined by the
following formulas:

Then for any real number x,

Thus, g ◦ f = iR. A similar computation shows that f ◦  g = iR. Thus, it
follows from Theorem 5.3.4 that f must be one-to-one and onto, and f−1

must also be a function from R to R. What is f−1? Of course, a logical
guess would be that f−1 = g, but this doesn’t actually follow from the
theorems we’ve proven. You could check it directly by solving for f−1(x),
using the fact that f−1(x) must be the unique solution for y in the equation
f(y) = x. However, there is no need to check. The next theorem shows that
f−1 must be equal to g.

Theorem 5.3.5. Suppose f: A → B, g: B → A, g ◦  f = iA, and f ◦  g = iB.
Then g= f−1.

Proof. By Theorem 5.3.4, f−1: B → A. Therefore, by Theorem 5.3.2, f−1 ◦ f
= iA. Thus,

□



Commentary. This proof gets the desired conclusion quickly by clever use
of previous theorems and exercises. For a more direct but somewhat
longer proof, see exercise 10.

Example 5.3.6. In each part, determine whether or not f is one-to-one
and onto. If it is, find f−1.

1. Let A = R \ {0} and B = R \ {2}, and define f: A → B by the formula

(Note that for all x ∈ A, 1/x is defined and nonzero, so f(x) ≠ 2 and
therefore f(x) ∈ B.)

2. Let A = R and B = {x ∈ R | x ≥ 0}, and define f: A → B by the
formula

Solutions

1. You can check directly that f is one-to-one and onto, but we won’t
bother to check. Instead, we’ll simply try to find a function g: B →
A such that g ◦ f = iA and f ◦ g = iB. We know by Theorems 5.3.4 and
5.3.5 that if we find such a g, then we can conclude that f is one-to-
one and onto and g = f−1.

Because we’re hoping to have g = f−1, we know that for any x ∈ B =
R \ {2}, g(x) must be the unique y ∈ A such that f(y) = x. Thus, to find a
formula for g(x), we solve for y in the equation f(y) = x. Filling in the
definition of f, we see that the equation we must solve is

Solving this equation we get

Thus, we define g: B → A by the formula



(Note that for all x ∈ B, x ≠ 2, so 1/(x − 2) is defined and nonzero, and
therefore g(x) ∈ A.) Let’s check that g has the required properties. For
any x ∈ A, we have

so f ◦ g ≠ iB. Therefore, as we observed earlier, f must be one-to-one and
onto, and g = f−1.
2. Imitating the solution to part 1, let’s try to find a function g: B → A

such that g ◦ f = iA and f ◦g = iB. Because applying f to a number
squares the number and we want g to undo the effect of f, a
reasonable guess would be to let  Let’s see if this works.

For any x ∈ B we have

so f ◦ g = iB. But for x ∈ A we have

and this is not always equal to x. For example,  
 Thus, g ◦  f = iA. This example illustrates that you must

check both f ◦ g = iB and g ◦ f = iA. It is possible for one to work but not
the other.

What went wrong? We know that if f−1 is a function from B to A, then
for any x ∈ B, f−1(x) must be the unique solution for y in the equation
f(y) = x. Applying the definition of f gives us y2 = x, so y = ±√x. Thus,
there is not a unique solution for y in the equation f(y) = x; there are two
solutions. For example, when x = 9 we get y = ±3. In other words, f (3)
= f (−3) = 9. But this means that f is not one-to-one! Thus, f−1 is not a
function from B to A.



Functions that undo each other come up often in mathematics. For
example, if you are familiar with logarithms, then you will recognize the
formulas 10log x = x and log 10x = x. (We are using base-10 logarithms
here.) We can rephrase these formulas in the language of this section by
defining functions f: R → R+ and g: R+ → R as follows:

Then for any x ∈ R we have g(f(x)) = log 10x = x, and for any x ∈ R+,
f(g(x))= 10log x = x. Thus, g ◦  f = iR and f ◦  g = iR+, so g = f−1. In other
words, the logarithm function is the inverse of the “raise 10 to the power”
function.

We saw another example of functions that undo each other in Section 4.5.
Suppose A is any set, let E be the set of all equivalence relations on A, and
let P be the set of all partitions of A. Define a function f: E → P by the
formula f(R) = A/R, and define another function g: P → E by the formula

You should verify that the proof of Theorem 4.5.6 shows that f ◦ g = iP, and
exercise 10 in Section 4.5 shows that g ◦  f = iE. Thus, f is one-to-one and
onto, and g = f−1. One interesting consequence of this is that if A has a finite
number of elements, then we can say that the number of equivalence
relations on A is exactly the same as the number of partitions of A, even
though we don’t know what this number is.

Exercises
*1. Let R be the function defined in exercise 2(c) of Section 5.1. In

exercise 2 of Section 5.2, you showed that R is one-to-one and onto,
so R−1: P→ P. If p ∈ P, what is R−1(p)?

2. Let F be the function defined in exercise 4(b) of Section 5.1. In
exercise 4 of Section 5.2, you showed that F is one-to-one and onto,



so F−1: B → B. If X ∈ B, what is F−1(X)?
*3. Let f: R → R be defined by the formula

Show that f is one-to-one and onto, and find a formula for f−1(x). (You
may want to imitate the method used in the example after Theorem 5.3.2,
or in Example 5.3.6.)

4. Let f: R → R be defined by the formula f(x) = 2x3 − 3. Show that f is
one-to-one and onto, and find a formula for f−1(x).

*5. Let f: R → R+ be defined by the formula f(x) = 102−x. Show that f is
one-to-one and onto, and find a formula for f−1(x).

6. Let A = R \ {2}, and let f be the function with domain A defined by
the formula

(a) Show that f is a one-to-one, onto function from A to B for some set
B⊆ R. What is the set B?

(b) Find a formula for f−1(x).
7. In the example after Theorem 5.3.4, we had f(x) = (x + 7)/5 and found

that f−1(x) = 5x − 7. Let f1 and f2 be functions from R to R defined by
the formulas

(a) Show that f = f2 ◦ f1.
(b) According to part 5 of Theorem 4.2.5, f−1 = (f2 ◦  f1)−1 = f1−1 ◦  f2−1.

Verify that this is true by computing f1−1 ◦f2−1 directly.

8. (a) Prove the second half of Theorem 5.3.2 by imitating the proof of
the first half.

(b) Give an alternative proof of the second half of Theorem 5.3.2 by
applying the first half to f−1.



*9. Prove part 2 of Theorem 5.3.3.
10. Use the following strategy to give an alternative proof of Theorem

5.3.5: Let (b, a) be an arbitrary element of B × A. Assume (b, a) ∈ g
and prove (b, a) ∈ f−1. Then assume (b, a) ∈ f−1 and prove (b, a) ∈
g.

*11. Suppose f: A → B and g: B → A
(a) Prove that if f is one-to-one and f ◦ g = iB, then g = f−1.
(b) Prove that if f is onto and g ◦ f = iA, then g = f−1.
(c) Prove that if f ◦ g = iB but g ◦ f = iA, then f is onto but not one-to-one,

and g is one-to-one but not onto.
12. Suppose f: A → B and f is one-to-one. Prove that there is some set B

⊆ B such that f−1: B → A.
13. Suppose f: A → B and f is onto. Let R = {(x, y) ∈ A × A | f(x) = f(y)}.

By exercise 20(a) of Section 5.1, R is an equivalence relation on A.
(a) Prove that there is a function h: A/R → B such that for all x ∈ A,

h([x]R) =f(x). (Hint: See exercise 21 of Section 5.1.)
(b) Prove that h is one-to-one and onto. (Hint: See exercise 19 of Section

5.2.)
(c) It follows from part (b) that h−1: B → A/R. Prove that for all b ∈ B,

h−1 (b)= {x ∈ A | f(x) =b}.
(d) Suppose g: B → A. Prove that f ◦ g = iB iff ∀b ∈ B(g(b) ∈ h−1(b)).

*14. Suppose f: A → B, g: B → A, and f ◦g = iB. Let A′ = Ran (g) ⊆ A.

(a) Prove that for all x ∈ A′, (g ◦ f)(x) = x.
(b) Prove that f ↾ A is a one-to-one, onto function from A′ to B and g = (f

↾ A′)−1. (See exercise 7 of Section 5.1 for the meaning of the
notation used here.)

15. Let  be defined
by the formulas  As we saw in part 2 of
Example 5.3.6, g ≠ f−1. Show that g = (f ↾ B)−1. (Hint: See exercise
14.)

*16. Let f: R → R be defined by the formula f(x) = 4x − x2. Let B = Ran
(f).

(a) Find B.



(b) Find a set A ⊆ R such that f ↾ A is a one-to-one, onto function from A
to, and find a formula for (f ↾ A)−1(x). (Hint: See exercise 14.)

17. Suppose A is a set, and let F = {f | f: A → A} and P = {f ∈ F | f is

one-to-one and onto}. Define a relation R on F as follows:

(a) Prove that R is an equivalence relation.
(b) Prove that if f Rg then (f ◦ f)R(g ◦ g).
(c) For any f ∈ F and a ∈ A, if f(a) = a then we say that a is a fixed point

of f. Prove that if f has a fixed point and f Rg, then g also has a fixed
point.

*18. Suppose f: A → C, g: B → C, and g is one-to-one and onto. Prove that
there is a function h: A → B such that g ◦ h = f.

5.4 Closures
Often in mathematics we work with a function from a set to itself. In that
situation, the following concept can be useful.

Definition 5.4.1. Suppose f: A → A and C ⊆ A. We will say that C is
closed under f if ∀x ∈ C(f(x) ∈ C).

Example 5.4.2.

1. Let A = {a, b, c, d} and f = {(a, c), (b, b), (c, d), (d, c)}. Then f: A →
A. Let C1 = {a, c, d} and C2 = {a, b}. Is C1 closed under f? Is C2?

2. Let f: R → R and g: R → R be defined by the formulas f(x) = x + 1
and g(x) = x − 1. Is N closed under f? Is it closed under g?

3. Let f: R → R be defined by the formula f(x) = x2. Let C1 = {x ∈ R |
0 < x < 1} and C2 = {x ∈ R | 0 < x < 2}. Is C1 closed under f? Is
C2?



Solutions

1. The set C1 is closed under f, because f(a) = f(d) = c ∈ C1 and f(c) =
d ∈ C1. However, C2 is not closed under f, because a ∈ C2 but f(a)
= c ∉ C2.

2. For every natural number n, n + 1 is also a natural number, so N is
closed under f. However, N is not closed under g, because 0 ∈ N
but g(0) = −1 ∉ N.

3. For every real number x, if 0 < x < 1 then 0 < x2 < 1 (see Example
3.1.2), so C1 is closed under f. But 1.5 ∈ C2 and f (1.5) = 1.52 =
2.25 ∉ C2, so C2 is not closed under f.

We saw in part 2 of Example 5.4.2 that N is not closed under the function
g: R → R defined by the formula g(x) = x − 1. Suppose we wanted to add
elements to N to get a set that is closed under g. Since 0 ∈ N, we’d need
to add g(0) = −1. But if −1 were added to the set, then it would also have
to contain g(−1) = −2, and if we threw in −2 then we’d also have to add
g(−2)= −3. Continuing in this way, it should be clear that we’d have to
add all of the negative integers to N, giving us the set of all integers, Z.
But notice that Z is closed under g, because for every integer n, n − 1 is
also an integer. So we have succeeded in our task of enlarging N to get a
set closed under g.

When we enlarged N to Z, the numbers we added – the negative
integers – were numbers that had to be added if we wanted the resulting
set to be closed under g. It follows that Z is the smallest set containing N
that is closed under g. We are using the word smallest here in exactly the
way we defined it in Section 4.4. If we let F = {C ⊆ R | N ⊆ C and C is

closed under g}, then Z is the smallest element of F, where as usual it is

understood that we mean smallest in the sense of the subset partial order.
In other words, Z is an element of F, and it’s a subset of every element of

F. We will say that Z is the closure of N under g.



Definition 5.4.3. Suppose f: A → A and B ⊆ A. Then the closure of B
under f is the smallest set C ⊆ A such that B ⊆ C and C is closed under f,
if there is such a smallest set. In other words, a set C ⊆ A is the closure of
B under f if it has the following properties:

1. B⊆C.
2. C is closed under f.
3. For every set D ⊆ A, if B ⊆ D and D is closed under f then C ⊆ D.

According to Theorem 4.4.6, if a set has a smallest element, then it can
have only one smallest element. Thus, if a set B has a closure under a
function f, then this closure must be unique, so it makes sense to call it the
closure rather than a closure. However, as we saw in Example 4.4.7, some
families of sets don’t have smallest elements, so it is not immediately
clear if sets always have closures under functions. In fact they do, as we
will show in our proof of Theorem 5.4.5 below. But first let’s look at a
few more examples of closures.

Example 5.4.4.

1. In part 1 of Example 5.4.2, the set C2 = {a, b} was not closed under
f. What is the closure of C2 under f?

2. Let f: R → R be defined by the formula f(x) = x + 1, and let B =
{0}. What is the closure of B under f?

Solutions

1. Since a ∈ C2, to get a set closed under f we will need to add in f(a)
= c. But then we’ll also have to add f(c) = d, giving us the entire set
A = {a, b, c, d}. Clearly A is closed under f, so the closure of C2
under f is A.

2. Since 0 ∈ B, the closure of B under f will have to contain f (0) = 1.
But then it must also contain f (1) = 2, f (2) = 3, f (3) = 4, and in fact
all positive integers. Adding all the positive integers to B gives us
the set N, which we already know from part 2 of Example 5.4.2 is
closed under f. Thus the closure of {0} under f is N.



Here’s an example that illustrates the usefulness of the concepts we
have been discussing. Let P be a set of people, and suppose that each
person in the set P has a best friend who is also in P. Then we can define
a function f: P → P by let f(p) = p’s best friend. Suppose that whenever
someone in the set P hears a piece of gossip, he or she tells it to his or her
best friend (but no one else). Now consider any set C ⊆ P, and suppose
that C is closed under f. Then for any person p ∈ C, p’s best friend is also
in C. Thus, if any person in C hears a piece of gossip, the only person he
or she will tell the gossip to is also in C. No one in C will ever transmit
gossip to a person who is not in C. Thus, if we tell some people in C a bit
of gossip, it may spread to other people in C, but it will never leave C. If
you want to track the spread of gossip in this population, you should be
interested in recognizing which subsets of P are closed under f.

Suppose we tell a piece of gossip to all of the people in some set B ⊆
P. How will the gossip spread? The people in B will tell their best friends,
and then they will tell their best friends, who will tell their best friends,
and so on. Based on our previous examples, you might guess that the set
H of people who eventually hear the gossip will be the closure of B under
f. Let’s see if we can give a careful proof that H has the three properties
listed in Definition 5.4.3.

Clearly B ⊆ H, since the people in B hear the gossip right at the start of
the process. This confirms property 1 of Definition 5.4.3. If p is any
element of H, then p eventually hears the gossip. But as soon as p hears
the gossip, he or she will tell f(p), so f(p) ∈ H as well. Thus H is closed
under f, as required by property 2 of the definition. Finally, suppose B ⊆
C ⊆ P and C is closed under f. Then as we observed earlier, any gossip
that is told to the people in B may spread to others in C, but it will never
leave C. Thus, everyone who ever hears the gossip must belong to C,
which means that H ⊆ C. This confirms property 3, so H is indeed the
closure of B under f.

We turn now to the proof that closures always exist. Suppose f: A → A
and B ⊆ A. One way to try to prove the existence of the closure of B
under f is to add to B those elements that must be added to make it closed
under f, as we did in earlier examples, and then prove that the result is
closed under f. Although this can be done, a careful treatment of the
details of this proof would require the method of mathematical induction,



which we have not yet discussed. We will present this proof in Section
6.5, after we’ve discussed mathematical induction. But there is another
approach to the proof that uses only ideas that we have already studied.
We know that the closure of B under f, if it exists, must be the smallest
element of the family F ={C ⊆ A | B ⊆ C and C is closed under f }.

According to exercise 20 of Section 4.4, the smallest element of a set is
also always the greatest lower bound of the set, and by Theorem 4.4.11,
the g.l.b. of any nonempty family of sets F is  This is the motivation

for our next proof.

Theorem 5.4.5. Suppose that f: A → A and B ⊆ A. Then B has a closure
under f.

Proof. Let F = {C ⊆ A | B ⊆ C and C is closed under f }. You should be

able to check that A ∈ F, and therefore F ≠ ∅. Thus, we can let 

 and by exercise 9 of Section 3.3, C ⊆ A. We will show that C is
the closure of B under f by proving the three properties in Definition
5.4.3.

To prove the first property, suppose x ∈ B. Let D be an arbitrary
element of F. Then by the definition of F, B ⊆ D, so x ∈ D. Since D was

arbitrary, this shows that ∀D ∈ F(x ∈ D), so  Thus, B ⊆ C.

Next, suppose x ∈ C and again let D be an arbitrary element of F.

Then since  But since D ∈ F, D is closed under f,

so f(x) ∈ D. Since D was arbitrary, we can conclude that ∀D ∈ F(f (x) ∈

D), so  Thus, we have shown that C is closed under f,
which is the second property in Definition 5.4.3.

Finally, to prove the third property, suppose B ⊆ D ⊆ A and D is closed
under f. Then D ∈ F, and applying exercise 9 of Section 3.3 again we can

conclude that  □

Commentary. Our goal is ∃C(C is the closure of B under f), so we should
begin by defining C. However, the definition  doesn’t make



sense unless we know F ≠ ∅, so we must prove this first. Because F ≠ ∅

means ∃D(D ∈ F), we prove it by giving an example of an element of F.

The example is A, so we must prove A ∈ F. The statement in the proof

that “you should be able to check” that A ∈ F really does mean that you

should do the checking. According to the definition of F, to say that A ∈

F means that A ⊆ A, B ⊆ A, and A is closed under f. You should make

sure you see why all three of these statements are true.

Having defined C and verified that C ⊆ A, we must prove that C has
the three properties in the definition of the closure of B under f. To prove
the first statement, B ⊆ C, we let x be an arbitrary element of B and prove
x ∈ C. Since  the goal x ∈ C means ∀D ∈ F(x ∈ D), so to

prove it we let D be an arbitrary element of F and prove x ∈ D. To prove

that C is closed under f, we assume that x ∈ C and prove f(x) ∈ C. Once
again, by the definition of C this goal means ∀D ∈ F(f (x) ∈ D), so we

let D be an arbitrary element of F and prove f(x) ∈ D. Finally, to prove

the third goal we assume that D ⊆ A, B ⊆ D, and D is closed under f and
prove C ⊆ D. Fortunately, an exercise from an earlier section takes care
of this proof.

Closed sets and closures also come up in the study of functions of more
than one variable. If f: A × A → A, then f is called a function of two
variables. An element of the domain of f would be an ordered pair (x, y),
where x, y ∈ A. The result of applying f to this pair should be written f
((x, y)), but it is customary to leave out one pair of parentheses and just
write f(x, y).

Definition 5.4.6. Suppose f: A × A → A and C ⊆ A. We will say that C is
closed under f if ∀x ∈ C∀y ∈ C(f(x, y) ∈ C).

Example 5.4.7.



1. Let f: R
+ × R

+ → R
+ and g: R

+ × R
+ → R

+ be defined by the
formulas f(x, y) = x/y and g(x, y) = xy. Is Q+ closed under f? Is it
closed under g?

2. Let f: P(N) × P(N) → P(N) and g: P(N) × P(N) → P(N) be
defined by the formulas f(X, Y) = X ∪ Y and g(X, Y) = X ∩ Y. Let I =

{X ∈ P(N) | X is infinite}. Is I closed under f? Is it closed under g?

Solutions

1. If x, y ∈ Q+, then there are positive integers p, q, r, and s such that x
= p/q and y = r/s. Therefore

This shows that Q+ is closed under f. However, 2 and 1/2 are elements
of Q+ and  (see Theorem 6.4.5), so Q+ is
not closed under g.

2. If X and Y are infinite sets of natural numbers, then f(X, Y) = X ∪ Y is
also infinite, so I is closed under f. On the other hand, let E be the set

of even natural numbers and let P be the set of prime numbers. Then
E and P are both infinite, but g(E, P) = E ∩ P = {2}, which is finite.
Therefore I is not closed under g.

As before, we can define the closure of a set under a function of two
variables to be the smallest closed set containing it, and we can prove that
such closures always exist.

Definition 5.4.8. Suppose f: A × A → A and B ⊆ A. Then the closure of B
under f is the smallest set C ⊆ A such that B ⊆ C and C is closed under f,
if there is such a smallest set. In other words, a set C ⊆ A is the closure of
B under f if it has the following properties:

1. B ⊆ C.
2. C is closed under f.



3. For every set D ⊆ A, if B ⊆ D and D is closed under f then C ⊆ D.

Theorem 5.4.9. Suppose that f: A × A → A and B ⊆ A. Then B has a
closure under f.

Proof. See exercise 11. □

A function from A × A to A could be thought of as an operation that can
be applied to a pair of objects (x, y) ∈ A × A to produce another element
of A. Often in mathematics an operation to be performed on a pair of
mathematical objects (x, y) is represented by a symbol that we write
between x and y. For example, if x and y are real numbers then x + y
denotes another number, and if x and y are sets then x ∪ y is another set.
Imitating this notation, when mathematicians define a function from A ×
A to A they sometimes represent it with a symbol rather than a letter, and
they write the result of applying the function to a pair (x, y) by putting the
symbol between x and y, rather than by putting a letter before (x, y). When
a function from A × A to A is written in this way, it is usually called a
binary operation on A.

For example, in part 2 of Example 5.4.7 we defined g: P(N) × P(N)
→ P(N) by the formula g(X, Y) = X ∩Y. Instead of introducing the name
g for this function, we could have talked about ∩ as a binary operation on
P(N). We showed in the example that the set I of all infinite subsets of N

is not closed under g. Another way to say this is that I is not closed under

the binary operation ∩. What is the closure of I under ∩? For the answer,

see exercise 16.
Here’s another example. We could define a binary operation ∗ on Z by

saying that for any integers x and y, x ∗ y = x2 − y2. Is the set {0, 1}
closed under the binary operation ∗? The answer is no, because 0 ∗ 1 =
02 − 12 = −1 /∈ {0, 1}. Thus, the closure of {0, 1} under ∗ must include
−1. But as you can easily check, {−1, 0, 1} is closed under ∗. Therefore
the closure of {0, 1} under ∗ is {−1, 0, 1}.

Exercises



*1. Let f: R → R be defined by the formula f(x) = (x + 1)/2. Are the
following sets closed under f?

(a) Z.
(b) Q.
(c) {x ∈ R | 0 ≤ x < 4}.
(d) {x ∈ R | 2 ≤ x < 4}.

2. Let f: P(N) → P(N) be defined by the formula f(X) = X ∪ {17}. Are
the following sets closed under f?

(a) {X ⊆ N | X is infinite}.
(b) {X ⊆ N | X is finite}.
(c) {X ⊆ N | X has at most 100 elements}.
(d) {X ⊆ N | 16 ∈ X}.

*3. Let f: Z → Z be defined by the formula f(n) = n2 − n. Find the closure
of {−1, 1} under f.

4. For any set A, the set of all relations on A is P(A × A). Let f: P(A ×
A) → P(A × A) be defined by the formula f(R) = R−1. Is the set of
reflexive relations on A closed under f? What about the set of
symmetric relations and the set of transitive relations? (Hint: See
exercise 12 of Section 4.3.)

5. Suppose f: A → A. Is ∅ closed under f?
6. Suppose f: A → A.

(a) Prove that if Ran(f) ⊆ C ⊆ A then C is closed under f.
(b) Prove that for every set B ⊆ A, the closure of B under f is a subset of

B ∪ Ran(f).
*7. Suppose f: A → A and f is one-to-one and onto. Then by Theorem

5.3.1, f−1: A → A. Prove that if C ⊆ A and C is closed under f, then A
\ C is closed under f−1.

8. Suppose f: A → A and C ⊆ A. Prove that C is closed under f iff the
closure of C under f is C.



*9. Suppose f: A → A and C1 and C2 are subsets of A that are closed
under f.

(a) Prove that C1 ∪ C2 is closed under f.
(b) Must C1 ∩ C2 be closed under f? Justify your answer.
(c) Must C1 \ C2 be closed under f? Justify your answer.

10. Suppose f: A → A, B1 ⊆ A, and B2 ⊆ A. Let C1 be the closure of B1
under f, and let C2 be the closure of B2.

(a) Prove that if B1 ⊆ B2 then C1 ⊆ C2.
(b) Prove that the closure of B1 ∪ B2 under f is C1 ∪ C2.
(c) Must the closure of B1 ∩ B2 be C1 ∩ C2? Justify your answer.
(d) Must the closure of B1 \ B2 be C1 \ C2? Justify your answer.

11. Prove Theorem 5.4.9.
*12. If F is a set of functions from A to A and C ⊆ A, then we will say that

C is closed under F if ∀f ∈ F∀x ∈ C(f(x) ∈ C). In other words, C is

closed under F iff for all f ∈ F, C is closed under f. If B ⊆ A, then the

closure of B under F is the smallest set C ⊆ A such that B ⊆ C and C

is closed under F. (You are asked to prove in the next exercise that

the closure always exists.)
(a) Let f and g be the functions from R to R defined by the formulas f(x)

= x +1 and g(x) = x −1. Find the closure of {0} under {f, g}.
(b) For each natural number n, let fn: P(N) → P(N) be defined by the

formula fn (X) = X ∪ {n}, and let F = {fn | n ∈ N}. Find the closure

of {∅} under F.

13. Suppose F is a set of functions from A to A and B ⊆ A. See the

previous exercise for the definition of the closure of B under F.

(a) Prove that B has a closure under F.



For each f ∈ F, let Cf be the closure of B under f, and let C be the

closure of B under F.

(b) Prove that 
(c) Must  be closed under F? Justify your answer with either a

proof or a counterexample.
(d) Must  Justify your answer with either a proof or a

counterexample.
*14. Let f: R × R → R be defined by the formula f(x, y) = x − y. What is

the closure of N under f?
15. Let f: R+ × R+ → R+ be defined by the formula f(x, y) = x/y. What is

the closure of Z+ under f?
16. As in part 2 of Example 5.4.7, let I = {X ∈ P(N) | X is infinite}.

(a) Prove that for every set X ⊆ N there are sets Y, Z ∈ I such that Y ∩ Z

= X.
(b) What is the closure of I under the binary operation ∩?

*17. Let F = {f | f: R → R}. Then for any f, g ∈ F, f ◦  g ∈ F, so ◦  is a

binary operation on F. Are the following sets closed under ◦?

(a) {f ∈ F | f is one-to-one}. (Hint: See Theorem 5.2.5.)

(b) {f ∈ F | f is onto}.

(c) {f ∈ F | f is strictly increasing}. (A function f: R → R is strictly

increasing if ∀x ∈ R∀y ∈ R(x < y → f (x) < f (y)).)
(d) {f ∈ F | f is strictly decreasing}. (A function f: R → R is strictly

decreasing if ∀x ∈ R∀y ∈ R(x < y → f (x) > f (y)).)

18. Let F = {f | f: R → R}. If f, g ∈ F, then we define the function f + g:

R → R by the formula (f + g)(x) = f(x) + g(x). Note that + is a binary
operation on F. Are the following sets closed under +?



(a) {f ∈ F | f is one-to-one}.

(b) {f ∈ F | f is onto}.

(c) {f ∈ F | f is strictly increasing}. (See the previous exercise for the

definition of strictly increasing.)
(d) {f ∈ F | f is strictly decreasing}. (See the previous exercise for the

definition of strictly decreasing.)
19. For any set A, the set of all relations on A is P(A × A), and ◦  is a

binary operation on P(A × A). Is the set of reflexive relations on A
closed under ◦? What about the set of symmetric relations and the set
of transitive relations?

*20. Division is not a binary operation on R, because you can’t divide by
0. But we can fix this problem. We begin by adding a new element to
R. We will call the new element “NaN” (for “Not a Number”). Let 

  and define  as follows:

This notation means that if x, y ∈ R and y ≠ 0 then f(x, y) = x/y, and
otherwise f(x, y) = NaN. Thus, for example, f(3, 7) = 3/7, f(3, 0) =
NaN, and f(NaN, 7) = NaN. Which of the following sets are closed
under f?

(a) R.
(b) R

+.
(c) R

−.
(d) Q.
(e) Q ∪{NaN}.

21. If F is a set of functions from A × A to A and C ⊆ A, then we will say

that C is closed under F if ∀f ∈ F∀x ∈ C∀y ∈ C(f(x, y) ∈ C). In

other words, C is closed under F iff for all f ∈ F, C is closed under f.

If B ⊆ A, then the closure of B under F is the smallest set C ⊆ A such



that B ⊆ C and C is closed under F, if there is such a smallest set.

(Compare these definitions to the definitions in exercise 12.)
(a) Prove that the closure of B under F exists.

(b) Let f: R × R → R and g: R × R → R be defined by the formulasf(x,
y) = x+y and g(x, y) =xy. Prove that the closure of  with 
under{f adjoined,, g} is the andset  is denoted 

 (This set is called Q
(c) With f and g defined as in part (b), what is the closure of 

under {f, g}?

5.5. Images and Inverse Images: A Research
Project
Suppose f: A → B. We have already seen that we can think of f as
matching each element of A with exactly one element of B. In this section
we will see that f can also be thought of as matching subsets of A with
subsets of B and vice-versa.

Definition 5.5.1. Suppose f: A → B and X ⊆ A. Then the image of X
under f is the set f(X) defined as follows:

(Note that the image of the whole domain A under f is {f(a) | a ∈ A}, and
as we saw in Section 5.1 this is the same as the range of f.)

If Y ⊆ B, then the inverse image of Y under f is the set f−1 (Y) defined as
follows:

Note that the function f in Definition 5.5.1 may fail to be one-to-one or
onto, and as a result f−1 may not be a function from B to A, and for y ∈ B,
the notation “f−1 (y)” may be meaningless. However, even in this case
Definition 5.5.1 still assigns a meaning to the notation “f−1 (Y)” for Y ⊆ B.



If you find this surprising, look again at the definition of f−1 (Y), and
notice that it does not treat f−1 as a function. The definition refers only to
the results of applying f to elements of A, not the results of applying f−1 to
elements of B.

For example, let L be the function defined in part 3 of Example 5.1.2,
which assigns to each city the country in which that city is located. As in
Example 5.1.2, let C be the set of all cities and N the set of all countries.
If B is the set of all cities with population at least one million, then B is a
subset of C, and the image of B under L would be the set

Thus, L(B) is the set of all countries that contain a city with population at
least one million. Now let A be the subset of N consisting of all countries
in Africa. Then the inverse image of A under L is the set

Thus, L−1 (A) is the set of all cities in African countries.
Let’s do one more example. Let f: R → R be defined by the formula

f(x) = x2, and let X = {x ∈ R | 0 ≤ x < 2}. Then

Thus, f(X) is the set of all squares of real numbers between 0 and 2
(including 0 but not 2). A moment’s reflection should convince you that
this set is {x ∈ R | 0 ≤ x < 4}. Now let’s let Y = {x ∈ R | 0 ≤ x < 4} and
compute f−1 (Y). According to the definition of inverse image,



By now you have had enough experience writing proofs that you
should be ready to put your proof-writing skills to work in answering
mathematical questions. Thus, most of this section will be devoted to a
research project in which you will discover for yourself the answers to
basic mathematical questions about images and inverse images. To get
you started, we’ll work out the answer to the first question.

Suppose f: A → B, and W and X are subsets of A. A natural question
you might ask is whether or not f(W ∩ X) must be the same as f(W) ∩
f(X). It seems plausible that the answer is yes, so let’s see if we can prove
it. Thus, our goal will be to prove that f(W ∩ X) = f(W) ∩ f(X). Because
this is an equation between two sets, we proceed by taking an arbitrary
element of each set and trying to prove that it is an element of the other.

Suppose first that y is an arbitrary element of f(W∩X). By the definition
of f(W ∩ X), this means that y = f(x) for some x ∈ W ∩ X. Since x ∈ W ∩
X, it follows that x ∈ W and x ∈ X. But now we have y = f(x) and x ∈ W,
so we can conclude that y ∈ f(W). Similarly, since y = f(x) and x ∈ X, it
follows that y ∈ f(X). Thus, y ∈ f(W) ∩ f(X). This completes the first half
of the proof.

Now suppose that y ∈ f(W) ∩ f(X). Then y ∈ f(W), so there is some w
∈ W such that f(w) = y, and also y ∈ f(X), so there is some x ∈ X such
that y = f(x). If only we knew that w and x were equal, we could conclude
that w = x ∈ W ∩ X, so y = f(x) ∈ f(W ∩ X). But the best we can do is to
say that f(w) = y = f(x). This should remind you of the definition of one-
to-one. If we knew that f was one-to-one, we could conclude from the fact
that f(w) = f(x) that w = x, and the proof would be done. But without this
information we seem to be stuck.

Let’s summarize what we’ve discovered. First of all, the first half of the
proof worked fine, so we can certainly say that in general f(W∩X) ⊆
f(W)∩ f(X). The second half worked if we knew that f was one-to-one, so
we can also say that if f is one-to-one, then f(W∩X) = f(W)∩f(X). But what
if f isn’t one-to-one? There might be some way of fixing up the proof to



show that the equation f(W∩X) = f(W)∩f(X) is still true even if f isn’t one-
to-one. But by now you have probably come to suspect that perhaps f(W
∩ X) and f(W) ∩ f(X) are not always equal, so maybe we should devote
some time to trying to show that the proposed theorem is incorrect. In
other words, let’s see if we can find a counterexample – an example of a
function f and sets W and X for which f(W ∩ X) ≠ f(W) ∩ f(X).

Fortunately, we can do better than just trying examples at random. Of
course, we know we’d better use a function that isn’t one-to-one, but by
examining our attempt at a proof, we can tell more than that. The
attempted proof that f(W ∩ X) = f(W) ∩ f(X) ran into trouble only when W
and X contained elements w and x such that w ≠ x but f(w) = f(x), so we
should choose an example in which this happens. In other words, not only
should we make sure f isn’t one-to-one, we should also make sure W and
X contain elements that show that f isn’t one-to-one.

Figure 5.6.

The graph in Figure 5.6 shows a simple function that isn’t one-to-one.
Writing it as a set of ordered pairs, we could say f = {(1, 4), (2, 5), (3, 5)}
and f: A → B, where A = {1, 2, 3} and B = {4, 5, 6}. The two elements of
A that show that f is not one-to-one are 2 and 3, so these should be
elements of W and X, respectively. Why not just try letting W = {2} and X
= {3}? With these choices we get f(W) = {f(2)} = {5} and f(X) = {f(3)} =
{5}, so f(W) ∩ f(X) = {5} ∩ {5} = {5}. But f(W ∩ X) = f(∅) = ∅, so f(W
∩ X) ≠ f(W) ∩ f(X). (If you’re not sure why f(∅) = ∅, work it out using



Definition 5.5.1!) If you want to see an example in which W ∩ X ≠ ∅, try
W = {1, 2} and X = {1, 3}.

This example shows that it would be incorrect to state a theorem saying
that f(W ∩ X) and f(W) ∩ f(X) are always equal. But our proof shows that
the following theorem is correct:

Theorem 5.5.2. Suppose f: A → B, and W and X are subsets of A. Then
f(W∩X) ⊆ f(W)∩f(X). Furthermore, if f is one-to-one, then f(W∩X) = f(W)
∩ f(X).

Now, here are some questions for you to try to answer. In each case, try
to figure out as much as you can. Justify your answers with proofs and
counterexamples.
1. Suppose f: A → B and W and X are subsets of A.

(a) Will it always be true that f(W ∪ X) = f(W) ∪ f(X)?
(b) Will it always be true that f(W \ X) = f(W) \ f(X)?
(c) Will it always be true that W ⊆ X ↔ f(W) ⊆ f(X)?
2. Suppose f: A → B and Y and Z are subsets of B.

(a) Will it always be true that f−1 (Y ∩ Z) = f−1 (Y) ∩ f−1 (Z)?
(b) Will it always be true that f−1 (Y ∪ Z) = f−1 (Y) ∪ f−1 (Z)?
(c) Will it always be true that f−1 (Y \ Z) = f−1 (Y) \ f−1 (Z)?
(d) Will it always be true that Y ⊆ Z ↔ f−1 (Y) ⊆ f−1 (Z)?

3. Suppose f: A → B and X ⊆ A. Will it always be true that f−1 (f (X)) =
X?

4. Suppose f: A → B and Y ⊆ B. Will it always be true that f(f−1 (Y)) =
Y?

5. Suppose f: A → A and C ⊆ A. Prove that the following statements are
equivalent:

(a) C is closed under f.
(b) f(C) ⊆ C.
(c) C ⊆ f−1 (C).
6. Suppose f: A → B and g: B → C. Can you prove any interesting

theorems about images and inverse images of sets under g ◦ f?



Note: An observant reader may have noticed an ambiguity in our notation
for images and inverse images. If f: A → B and Y ⊆ B, then we have used
the notation f−1 (Y) to stand for the inverse image of Y under f. But if f is
one-to-one and onto, then, as we saw in Section 5.3, f−1 is a function from
B to A. Thus, f−1 (Y) could also be interpreted as the image of Y under the
function f−1. Fortunately, this ambiguity is harmless, as the next problem
shows.
7. Suppose f: A → B, f is one-to-one and onto, and Y ⊆ B. Show that the

inverse image of Y under f and the image of Y under f−1 are equal.
(Hint: First write out the definitions of the two sets carefully!)



6

Mathematical Induction

6.1. Proof by Mathematical Induction
In Chapter 3 we studied proof techniques that could be used in reasoning
about any mathematical topic. In this chapter we’ll discuss one more proof
technique, called mathematical induction, that is designed for proving
statements about what is perhaps the most fundamental of all mathematical
structures, the natural numbers. Recall that the set of all natural numbers is
N = {0, 1, 2, 3, . . .}.

Suppose you want to prove that every natural number has some property
P. In other words, you want to show that 0, 1, 2, . . . all have the property P.
Of course, there are infinitely many numbers in this list, so you can’t check
one-by-one that they all have property P. The key idea behind mathematical
induction is that to list all the natural numbers all you have to do is start
with 0 and repeatedly add 1. Thus, you can show that every natural number
has the property P by showing that 0 has property P, and that whenever you
add 1 to a number that has property P, the resulting number also has
property P. This would guarantee that, as you go through the list of all
natural numbers, starting with 0 and repeatedly adding 1, every number you
encounter must have property P. In other words, all natural numbers have
property P. Here, then, is how the method of mathematical induction works.

To prove a goal of the form ∀n ∈ N P(n):
First prove P(0), and then prove ∀n ∈ N(P (n) → P(n + 1)). The first of

these proofs is sometimes called the base case and the second the induction
step.

Form of final proof:



Base case: [Proof of P(0) goes here.]
Induction step: [Proof of ∀n ∈ N(P (n) → P(n + 1)) goes here.]
We’ll say more about the justification of the method of mathematical

induction later, but first let’s look at an example of a proof that uses
mathematical induction. The following list of calculations suggests a
surprising pattern:

The general pattern appears to be:

Will this pattern hold for all values of n? Let’s see if we can prove it.

Example 6.1.1. Prove that for every natural number n, 20 + 21 +· · · +2n =
2n+1 − 1.

Scratch work
Our goal is to prove the statement ∀n ∈ N P(n), where P(n) is the
statement 20 + 21 +· · · +2n = 2n+1 − 1. According to our strategy, we can do
this by proving two other statements, P(0) and ∀n ∈ N(P (n) → P(n + 1)).

Plugging in 0 for n, we see that P(0) is simply the statement 20 = 21 − 1,
the first statement in our list of calculations. The proof of this is easy – just
do the arithmetic to verify that both sides are equal to 1. Often the base case
of an induction proof is very easy, and the only hard work in figuring out
the proof is in carrying out the induction step.

For the induction step, we must prove ∀n ∈ N(P (n) → P(n + 1)). Of
course, all of the proof techniques discussed in Chapter 3 can be used in
mathematical induction proofs, so we can do this by letting n be an arbitrary
natural number, assuming that P(n) is true, and then proving that P(n + 1) is
true. In other words, we’ll let n be an arbitrary natural number, assume that



20 + 21 +· · · +2n = 2n+1 − 1, and then prove that 20 + 21 +· · · +2n+1 = 2n+2 −
1. This gives us the following givens and goal:

Clearly the second given is similar to the goal. Is there some way to start
with the second given and derive the goal using algebraic steps? The key to
the proof is to recognize that the left side of the equation in the goal is
exactly the same as the left side of the second given, but with the extra term
2n+1 added on. So let’s try adding 2n+1 to both sides of the second given.
This gives us

or in other words,

This is the goal, so we are done!

Solution

Theorem. For every natural number n, 20 + 21 +· · · +2n = 2n+1 − 1.

Proof. We use mathematical induction.
Base case: Setting n = 0, we get 20 = 1 = 21 − 1 as required.
Induction step: Let n be an arbitrary natural number and suppose that 20

+ 21 +· · · +2n = 2n+1 − 1. Then

□



Does the proof in Example 6.1.1 convince you that the equation 20 + 21 +
· · · + 2n = 2n+1 − 1, which we called P(n) in our scratch work, is true for all
natural numbers n? Well, certainly P(0) is true, since we checked that
explicitly in the base case of the proof. In the induction step we showed that
∀n ∈ N(P (n) → P(n + 1)), so we know that for every natural number n,
P(n) → P(n + 1). For example, plugging in n = 0 we can conclude that P(0)
→ P(1). But now we know that both P(0) and P(0) → P(1) are true, so
applying modus ponens we can conclude that P(1) is true too. Similarly,
plugging in n = 1 in the induction step we get P(1) → P(2), so applying
modus ponens to the statements P(1) and P(1) → P(2) we can conclude that
P(2) is true. Setting n = 2 in the induction step we get P(2) → P(3), so by
modus ponens, P(3) is true. Continuing in this way, you should be able to
see that by repeatedly applying the induction step you can show that P(n)
must be true for every natural number n. In other words, the proof really
does show that ∀n ∈ N P(n).

As we saw in the last example, the hardest part of a proof by
mathematical induction is usually the induction step, in which you must
prove the statement ∀n ∈ N(P (n) → P(n + 1)). It is usually best to do this
by letting n be an arbitrary natural number, assuming P(n) is true, and then
proving that P(n + 1) is true. The assumption that P(n) is true is sometimes
called the inductive hypothesis, and the key to the proof is usually to work
out some relationship between the inductive hypothesis P(n) and the goal
P(n + 1).

Here’s another example of a proof by mathematical induction.

Example 6.1.2. Prove that ∀n ∈ N(3 | (n3 − n)).

Scratch work

As usual, the base case is easy to check. The details are given in the
following proof. For the induction step, we let n be an arbitrary natural
number and assume that 3 | (n3 − n), and we must prove that 3 | ((n + 1)3 −
(n + 1)). Filling in the definition of divides, we can sum up our situation as
follows:



The second given is the inductive hypothesis, and we need to figure out
how it can be used to establish the goal.

According to our techniques for dealing with existential quantifiers in
proofs, the best thing to do first is to use the second given and let k stand for
a particular integer such that 3k = n3 − n. To complete the proof we’ll need
to find an integer j (which will probably be related to k in some way) such
that 3j = (n + 1)3 − (n + 1). We expand the right side of this equation,
looking for some way to relate it to the given equation 3k = n3 − n:

It should now be clear that we can complete the proof by letting j = k + n2 +
n. As in similar earlier proofs, we don’t bother to mention j in the proof.

Solution

Theorem. For every natural number n, 3 | (n3 − n).

Proof. We use mathematical induction.
Base case: If n = 0, then n3 − n = 0 = 3 · 0, so 3 | (n3 − n).
Induction step: Let n be an arbitrary natural number and suppose 3 | (n3 −

n). Then we can choose an integer k such that 3k = n3 − n. Thus,

Therefore 3 | ((n + 1)3 − (n + 1)), as required.
□



Once you understand why mathematical induction works, you should be
able to understand proofs that involve small variations on the method of
induction. The next example illustrates such a variation. In this example
we’ll try to figure out which is larger, n2 or 2n. Let’s try out a few values of
n:

It’s a close race at first, but starting with n = 5, it looks like 2n is taking a
decisive lead over n2. Can we prove that it will stay ahead for larger values
of n?

Example 6.1.3. Prove that ∀n ≥ 5(2n > n2).

Scratch work

We are only interested in proving the inequality 2n > n2 for n ≥ 5. Thus, it
would make no sense to use n = 0 in the base case of our induction proof.
We’ll take n = 5 as the base case for our induction rather than n = 0. Once
we’ve checked that the inequality holds when n = 5, the induction step will
show that the inequality must continue to hold if, starting with n = 5, we
repeatedly add 1 to n. Thus, it must also hold for n = 6, 7, 8, . . . . In other
words, we’ll be able to conclude that the inequality holds for all n ≥ 5.

The base case n = 5 has already been checked in the table. For the
induction step, we let n ≥ 5 be arbitrary, assume 2n > n2, and try to prove
that 2n+1 > (n + 1)2. How can we relate the inductive hypothesis to the goal?
Perhaps the simplest relationship involves the left sides of the two
inequalities: 2n+1 = 2 · 2n. Thus, multiplying both sides of the inductive
hypothesis 2n > n2 by 2, we can conclude that 2n+1 > 2n2. Now compare this
inequality to the goal, 2n+1 > (n + 1)2. If we could prove that 2n2 ≥ (n + 1)2,



then the goal would follow easily. So let’s forget about the original goal and
see if we can prove that 2n2 ≥ (n + 1)2.

Multiplying out the right side of the new goal we see that we must prove
that 2n2 ≥ n2 +2n+1, or in other words n2 ≥ 2n+1. This isn’t hard to prove:
Since we’ve assumed that n ≥ 5, it follows that n2 ≥ 5n = 2n + 3n > 2n + 1.

Solution

Theorem. For every natural number n ≥ 5, 2n > n2.

Proof. By mathematical induction.
Base case: When n = 5 we have 2n = 32 > 25 = n2.
Induction step: Let n ≥ 5 be arbitrary, and suppose that 2n > n2. Then

□

Exercises
*1. Prove that for all n ∈ N, 0 + 1 + 2 +· · · +n = n(n + 1)/2.

2. Prove that for all n ∈ N, 02 + 12 + 22 +· · · +n2 = n(n + 1)(2n + 1)/6.
*3. Prove that for all n ∈ N, 03 + 13 + 23 +· · · +n3 = [n(n + 1)/2]2.

4. Find a formula for 1 + 3 + 5 +· · · +(2n − 1), for n ≥ 1, and prove that
your formula is correct. (Hint: First try some particular values of n and
look for a pattern.)

5. Prove that for all n ∈ N, 0 · 1 + 1 · 2 + 2 · 3 + · · · + n(n + 1) = n(n + 1)
(n + 2)/3.



6. Find a formula for 0 · 1 · 2 + 1 · 2 · 3 + 2 · 3 · 4 +· · · +n(n + 1)(n + 2),
for n ∈ N, and prove that your formula is correct. (Hint: Compare this
exercise to exercises 1 and 5, and try to guess the formula.)

*7. Find a formula for 30 +31 +32 +· · · +3n, for n ≥ 0, and prove that your
formula is correct. (Hint: Try to guess the formula, basing your guess
on Example 6.1.1. Then try out some values of n and adjust your guess
if necessary.)

8. Prove that for all n ≥ 1,

9. (a) Prove that for all n ∈ N, 2 | (n2 + n).

(b) Prove that for all n ∈ N, 6 | (n3 − n).

10. Prove that for all n ∈ N, 64 | (9n − 8n − 1).
11. Prove that for all n ∈ N, 9 | (4n + 6n − 1).

12. (a) Prove that for all n ∈ N, 7n − 5n is even.

(b) Prove that for all n ∈ N, 24 | (2 · 7n − 3 · 5n + 1).

13. Prove that for all integers a and b and all n ∈ N, (a − b) | (an − bn).
(Hint: Let a and b be arbitrary integers and then prove by induction that
∀n ∈ N[(a − b) | (an − bn)]. For the induction step, you must relate an+1

− bn+1 to an − bn. You might find it useful to start by completing the
following equation: 

14. Prove that for all integers a and b and all n ∈ N, (a + b) | (a2n+1 +
b2n+1).

15. Prove that for all n ≥ 10, 2n > n3.
16. (a) Prove that for all n ∈ N, either n is even or n is odd, but not both.

(b) Prove that, as claimed in Section 3.4, every integer is either even or
odd, but not both. (Hint: To prove that a negative integer n is even or
odd, but not both, apply part (a) to −n.)

17. Prove that for all n ≥ 1, 2 · 21 + 3 · 22 + 4 · 23 +· · · +(n + 1)2n = n2n+1.



18. (a) What’s wrong with the following proof that for every n ∈ N, 1· 30

+ 3 · 31 + 5 · 32 +· · · +(2n + 1)3n = n3n+1?

Proof. We use mathematical induction. Let n be an arbitrary natural
number, and suppose 1·30 +3·31 +5·32 +· · ·+(2n+1)3n = n3n+1.
Then

as required.
□

(b) Find a formula for 1 · 30 + 3 · 31 + 5 · 32 +· · · +(2n + 1)3n, and prove
that your formula is correct.

19. Suppose a is a real number and a < 0. Prove that for all n ∈ N, if n is
even then an > 0, and if n is odd then an < 0.

20. Suppose a and b are real numbers and 0 < a < b.
(a) Prove that for all n ≥ 1, 0 < an < bn. (Notice that this generalizes

Example 3.1.2.)
(b) Prove that for all 
(c) Prove that for all n ≥ 1, abn + ban < an+1 + bn+1.
(d) Prove that for all n ≥ 2,

6.2. More Examples
We introduced mathematical induction in the last section as a method for
proving that all natural numbers have some property. However, the
applications of mathematical induction extend far beyond the study of the
natural numbers. In this section we’ll look at some examples of proofs by
mathematical induction that illustrate the wide range of uses of induction.



Example 6.2.1. Suppose R is a partial order on a set A. Prove that every
finite, nonempty set B ⊆ A has an R-minimal element.

Scratch work

You might think at first that mathematical induction is not appropriate for
this proof, because the goal doesn’t seem to have the form ∀n ∈ N P(n). In
fact, the goal doesn’t explicitly mention natural numbers at all! But we can
see that natural numbers enter into the problem when we recognize that to
say that B is finite and nonempty means that it has n elements, for some n
∈ N, n ≥ 1. (We’ll give a more careful definition of the number of elements
in a finite set in Chapter 8. For the moment, an intuitive understanding of
this concept will suffice.) Thus, the goal means ∀n ≥ 1∀B ⊆ A(B has n
elements → B has a minimal element). We can now use induction to prove
this statement.

In the base case we will have n = 1, so we must prove that if B has one
element, then it has a minimal element. It is easy to check that in this case
the one element of B must be minimal.

For the induction step we let n ≥ 1 be arbitrary, assume that ∀B ⊆ A(B
has n elements → B has a minimal element), and try to prove that ∀B ⊆
A(B has n + 1 elements → B has a minimal element). Guided by the form of
the goal, we let B be an arbitrary subset of A, assume that B has n + 1
elements, and try to prove that B has a minimal element.

How can we use the inductive hypothesis to reach our goal? The
inductive hypothesis tells us that if we had a subset of A with n elements,
then it would have a minimal element. To apply it, we need to find a subset
of A with n elements. Our arbitrary set B is a subset of A, and we have
assumed that it has n + 1 elements. Thus, a simple way to produce a subset
of A with n elements would be to remove one element from B. It is not clear
where this reasoning will lead, but it seems to be the simplest way to make
use of the inductive hypothesis. Let’s give it a try.

Let b be any element of B, and let B′ = B \ {b}. Then B′ is a subset of A
with n elements, so by the inductive hypothesis, B′ has a minimal element.
This is an existential statement, so we immediately introduce a new
variable, say c, to stand for a minimal element of B′.



Our goal is to prove that B has a minimal element, which is also an
existential statement, so we should try to come up with a minimal element
of B. We only know about two elements of B at this point, b and c, so we
should probably try to prove that one of these is a minimal element of B.
Which one? Well, it may depend on whether one of them is smaller than the
other according to the partial order R. This suggests that we may need to
use proof by cases. In our proof we use the cases bRc and ¬bRc. In the first
case we prove that b is a minimal element of B, and in the second case we
prove that c is a minimal element of B. Note that to say that something is a
minimal element of B is a negative statement, so in both cases we use proof
by contradiction.

Solution

Theorem. Suppose R is a partial order on a set A. Then every finite,
nonempty set B ⊆ A has an R-minimal element.

Proof. We will show by induction that for every natural number n ≥ 1, every
subset of A with n elements has a minimal element.

Base case: n = 1. Suppose B ⊆ A and B has one element. Then B = {b}
for some b ∈ A. Clearly ¬∃x ∈ B(x ≠ b), so certainly ¬∃x ∈ B(xRb ∧ x ≠
b). Thus, b is minimal.

Induction step: Suppose n ≥ 1, and suppose that every subset of A with n
elements has a minimal element. Now let B be an arbitrary subset of A with
n + 1 elements. Let b be any element of B, and let B′ = B \ {b}, a subset of A
with n elements. By the inductive hypothesis, we can choose a minimal
element c ∈ B′.

Case 1. bRc. We claim that b is a minimal element of B. To see why,
suppose it isn’t. Then we can choose some x ∈ B such that xRb and x ≠ b.
Since x ≠ b, x ∈ B′. Also, since xRb and bRc, by transitivity of R it follows
that xRc. Thus, since c is a minimal element of B′, we must have x = c. But
then since xRb we have cRb, and we also know bRc, so by antisymmetry of
R it follows that b = c. This is clearly impossible, since c ∈ B′ = B \ {b}.
Thus, b must be a minimal element of B.

Case 2. ¬bRc. We claim in this case that c is a minimal element of B. To
see why, suppose it isn’t. Then we can choose some x ∈ B such that xRc
and x ≠ c. Since c is a minimal element of B′, we can’t have x ∈ B′, so the



only other possibility is x = b. But then since xRc we must have bRc, which
contradicts our assumption that ¬bRc. Thus, c is a minimal element of B.

□

Note that an infinite subset of a partially ordered set need not have a
minimal element, as we saw in part 1 of Example 4.4.5. Thus, the
assumption that B is finite was needed in our last theorem. This theorem
can be used to prove another interesting fact about partial orders, again
using mathematical induction:

Example 6.2.2. Suppose A is a finite set and R is a partial order on A. Prove
that R can be extended to a total order on A. In other words, prove that there
is a total order T on A such that R ⊆ T.

Scratch work
We’ll only outline the proof, leaving many details as exercises. The idea is
to prove by induction that ∀n ∈ N∀A∀R[(A has n elements and R is a
partial order on A) →∃T (T is a total order on A and R ⊆ T)]. The induction
step is similar to the induction step of the last example. If R is a partial
order on a set A with n + 1 elements, then we remove one element, call it a,
from A, and apply the inductive hypothesis to the remaining set A′ = A\{a}.
This will give us a total order T′ on A′, and to complete the proof we must
somehow turn this into a total order T on A such that R ⊆ T. The relation T′
already tells us how to compare any two elements of A′, but it doesn’t tell us
how to compare a to the elements of A′. This is what we must decide in
order to define T, and the main difficulty in this step of the proof is that we
must make this decision in such a way that we end up with R ⊆ T. Our
resolution of this difficulty in the following proof involves choosing a
carefully in the first place. We choose a to be an R-minimal element of A,
and then when we define T, we make a smaller in the T ordering than every
element of A′. We use the theorem in the last example, with B = A, to
guarantee that A has an R-minimal element.

Solution

Theorem. Suppose A is a finite set and R is a partial order on A. Then there
is a total order T on A such that R ⊆ T.



Proof. We will show by induction on n that every partial order on a set with
n elements can be extended to a total order. Clearly this suffices to prove
the theorem.

Base case: n = 0. Suppose R is a partial order on A and A has 0 elements.
Then clearly A = R = ∅. It is easy to check that ∅ is a total order on A (all
required properties hold vacuously), so we are done.

Induction step: Let n be an arbitrary natural number, and suppose that
every partial order on a set with n elements can be extended to a total order.
Now suppose that A has n + 1 elements and R is a partial order on A. By the
theorem in the last example, there must be some a ∈ A such that a is an R-
minimal element of A. Let A′ = A \ {a} and let R′ = R ∩ (A′ × A′). You are
asked to show in exercise 1 that R′ is a partial order on A′. By the inductive
hypothesis, we can let T′ be a total order on A′ such that R′ ⊆ T′. Now let T
= T′ ∪ ({a} × A). You are also asked to show in exercise 1 that T is a total
order on A and R ⊆ T, as required.

□

The theorem in the last example can be extended to apply to partial
orders on infinite sets. For a step in this direction, see exercise 19 in Section
8.1.

Example 6.2.3. Prove that for all n ≥ 3, if n distinct points on a circle are
connected in consecutive order with straight lines, then the interior angles
of the resulting polygon add up to (n − 2)180◦.

Solution

Figure 6.1 shows an example with n = 4. We won’t give the scratch work
separately for this proof.



Figure 6.1. α + β + γ + δ = (4 − 2)180◦ = 360◦.

Theorem. For all n ≥ 3, if n distinct points on a circle are connected in
consecutive order with straight lines, then the interior angles of the
resulting polygon add up to (n − 2)180◦.

Proof. We use induction on n.

Base case: Suppose n = 3. Then the polygon is a triangle, and it is well
known that the interior angles of a triangle add up to 180◦.

Induction step: Let n be an arbitrary natural number, n ≥ 3, and assume
the statement is true for n. Now consider the polygon P formed by
connecting some n + 1 distinct points A1, A2, . . . , An+1 on a circle. If we
skip the last point An+1, then we get a polygon P′ with only n vertices, and
by the inductive hypothesis the interior angles of this polygon add up to (n
− 2)180 ◦ . But now as you can see in Figure 6.2, the sum of the interior
angles of P is equal to the sum of the interior angles of P′ plus the sum of
the interior angles of the triangle A1 An An+1. Since the sum of the interior
angles of the triangle is 180◦, we can conclude that the sum of the interior
angles of P is

as required.



□

Figure 6.2.

Example 6.2.4. Prove that for any positive integer n, a 2n × 2n square grid
with any one square removed can be covered with L-shaped tiles that look
like this: 

Scratch work
Figure 6.3 shows an example for the case n = 2. In this case 2n = 4, so we
have a 4 × 4 grid, and the square that has been removed is shaded. The
heavy lines show how the remaining squares can be covered with five L-
shaped tiles.

Figure 6.3.



We’ll use induction in our proof, and because we’re only interested in
positive n, the base case will be n = 1. In this case we have a 2 × 2 grid with
one square removed, and this can clearly be covered with one L-shaped tile.
(Draw a picture!)

For the induction step, we let n be an arbitrary positive integer and
assume that a 2n ×2n grid with any one square removed can be covered with
L-shaped tiles. Now suppose we have a 2n+1 × 2n+1 grid with one square
removed. To use our inductive hypothesis we must somehow relate this to
the 2n × 2n grid. Since 2n+1 = 2n · 2, the 2n+1 × 2n+1 grid is twice as wide and
twice as high as the 2n × 2n grid. In other words, by dividing the 2n+1 × 2n+1

grid in half both horizontally and vertically, we can split it into four 2n × 2n

“subgrids.” This is illustrated in Figure 6.4. The one square that has been
removed will be in one of the four subgrids; in Figure 6.4, it is in the upper
right.

Figure 6.4.

The inductive hypothesis tells us that it is possible to cover the upper
right subgrid in Figure 6.4 with L-shaped tiles. But what about the other
three subgrids? It turns out that there is a clever way of placing one tile on
the grid so that the inductive hypothesis can then be used to show that the
remaining subgrids can be covered. See if you can figure it out before
reading the answer in the following proof.

Solution



Theorem. For any positive integer n, a 2n × 2n square grid with any one
square removed can be covered with L-shaped tiles.

Proof. We use induction on n.

Base case: Suppose n = 1. Then the grid is a 2 × 2 grid with one square
removed, which can clearly be covered with one L-shaped tile.

Induction step: Let n be an arbitrary positive integer, and suppose that a
2n × 2n grid with any one square removed can be covered with L-shaped
tiles. Now consider a 2n+1 × 2n+1 grid with one square removed. Cut the
grid in half both vertically and horizontally, splitting it into four 2n × 2n

subgrids. The one square that has been removed comes from one of these
subgrids, so by the inductive hypothesis the rest of this subgrid can be
covered with L-shaped tiles. To cover the other three subgrids, first place
one L-shaped tile in the center so that it covers one square from each of the
three remaining subgrids, as illustrated in Figure 6.5. The area remaining to
be covered now contains every square except one in each of the subgrids, so
by applying the inductive hypothesis to each subgrid we can see that this
area can be covered with tiles.

□

Figure 6.5.

It is interesting to note that this proof can actually be used to figure out
how to place tiles on a particular grid. For example, consider the 8 × 8 grid
with one square removed shown in Figure 6.6.



Figure 6.6.

According to the preceding proof, the first step in covering this grid with
tiles is to split it into four 4 × 4 subgrids and place one tile in the center,
covering one square from each subgrid except the upper left. This is
illustrated in Figure 6.7. The area remaining to be covered now consists of
four 4 × 4 subgrids with one square removed from each of them.

How do we cover the remaining 4 × 4 subgrids? By the same method, of
course! For example, let’s cover the subgrid in the upper right of Figure 6.7.
We need to cover every square of this subgrid except the lower left corner,
which has already been covered. We start by cutting it into four 2 × 2
subgrids and put one tile in the middle, as in Figure 6.8. The area remaining
to be covered now consists of four 2 × 2 subgrids with one square removed
from each. Each of these can be covered with one tile, thus completing the
upper right subgrid of Figure 6.7.

Figure 6.7.



Figure 6.8.

The remaining three quarters of Figure 6.7 are completed by a similar
procedure. The final solution is shown in Figure 6.9.

Figure 6.9.

The method we used in solving this problem is an example of a recursive
procedure. We solved the problem for an 8×8 grid by splitting it into four
4×4 grid problems. To solve each of these, we split it into four 2×2
problems, each of which was easy to solve. If we had started with a larger
grid, we might have had to repeat the splitting many times before reaching
easy 2 × 2 problems. Recursion and its relationship to mathematical
induction are the subject of our next section.

Exercises
*1. Complete the proof in Example 6.2.2 by doing the following proofs.

(We use the same notation here as in the example.)



(a) Prove that R′ is a partial order on A′.
(b) Prove that T is a total order on A and R ⊆ T.
2. Suppose R is a partial order on a set A, B ⊆ A, and B is finite. Prove that

there is a partial order T on A such that R ⊆ T and ∀x ∈ B∀y ∈ A(xT y
∨ yT x). Note that, in particular, if A is finite we can let B = A, and the
conclusion then means that T is a total order on A. Thus, this gives an
alternative approach to the proof of the theorem in Example 6.2.2.
(Hint: Use induction on the number of elements in B. For the induction
step, assume the conclusion holds for any set B ⊆ A with n elements,
and suppose B is a subset of A with n + 1 elements. Let b be any
element of B and let B′ = B \{b}, a subset of A with n elements. By the
inductive hypothesis, let T′ be a partial order on A such that R ⊆ T′ and
∀x ∈ B′ ∀y ∈ A(xT′ y ∨ yT′ x). Now let A1 = {x ∈ A | (x, b) ∈ T′} and
A2 = A \ A1, and let T = T′ ∪ (A1 × A2). Prove that T has all the required
properties.)

3. Suppose R is a total order on a set A. Prove that every finite, nonempty
set B ⊆ A has an R-smallest element and an R-largest element.

*4. (a) Suppose R is a relation on A, and ∀x ∈ A∀y ∈ A(xRy ∨ yRx).
(Note that this implies that R is reflexive.) Prove that for every
finite, nonempty set B ⊆ A there is some x ∈ B such that ∀y ∈
B((x, y) ∈ R ◦ R). (Hint: Imitate Example 6.2.1.)

(b) Consider a tournament in which each contestant plays every other
contestant exactly once, and one of them wins. We’ll say that a
contestant x is excellent if, for every other contestant y, either x beats y
or there is a third contestant z such that x beats z and z beats y. Prove
that there is at least one excellent contestant.

5. For each n ∈ N, let Fn = 2(2n) + 1. (These numbers are called the
Fermat numbers, after the French mathematician Pierre de Fermat
(1601–1665). Fermat showed that F0, F1, F2, F3, and F4 are prime, and
conjectured that all of the Fermat numbers are prime. However, over
100 years later Euler showed that F5 is not prime. It is not known if
there is any n > 4 for which Fn is prime.)

Prove that for all n ≥ 1, Fn = (F0 · F1 · F2 · · · Fn−1) + 2.



6. Prove that if n ≥ 1 and a1, a2, . . . , an are any real numbers, then |a1 + a2
+ · · · + an | ≤ |a1| + |a2| + · · · + |an|. (Note that this generalizes the
triangle inequality; see exercise 13(c) of Section 3.5.)

7. (a) Prove that if a and b are positive real numbers, then a/b + b/a ≥ 2.
(Hint: Start with the fact that (a − b)2 ≥ 0.)

(b) Suppose that a, b, and c are real numbers and 0 < a ≤ b ≤ c. Prove that
b/c + c/a − b/a ≥ 1. (Hint: Start with the fact that (c − a)(c − b) ≥ 0.)

(c) Prove that if n ≥ 2 and a1, a2, . . . , an are real numbers such that 0 < a1
≤ a2 ≤ · · · ≤ an, then a1/a2 +a2 /a3 + · · · + an−1/an +an/a1 ≥ n.

*8. If n ≥ 2 and a1, a2, . . . , an is a list of positive real numbers, then the
number (a1 + a2 + · · · + an)/n is called the arithmetic mean of the
numbers a1, a2, . . . , an, and the number  is called their
geometric mean. In this exercise you will prove the arithmetic mean–
geometric mean inequality, which says that the arithmetic mean is
always at least as large as the geometric mean.

(a) Prove that the arithmetic mean–geometric mean inequality holds for
lists of numbers of length 2. In other words, prove that for all positive
real numbers a and 

(b) Prove that the arithmetic mean–geometric mean inequality holds for
any list of numbers whose length is a power of 2. In other words, prove
that for all n ≥ 1, if a1, a2, . . . , a2n is a list of positive real numbers,
then

(c) Suppose that n0 ≥ 2 and the arithmetic mean–geometric mean
inequality fails for some list of length n0. In other words, there are
positive real numbers a1, a2, . . . , an0

 such that

Prove that for all n ≥ n0, the arithmetic mean–geometric mean
inequality fails for some list of length n.



(d) Prove that the arithmetic mean–geometric mean inequality always
holds.

9. Prove that if n ≥ 2 and a1, a2, . . . , an is a list of positive real numbers,
then

(Hint: Apply exercise 8. The number on the left side of the inequality
above is called the harmonic mean of the numbers a1, a2, . . . , an.)

10. (a) Prove that if a1, a2, b1, and b2 are real numbers, with a1 ≤ a2 and
b1 ≤ b2, then a1 b2 + a2 b1 ≤ a1 b1 + a2 b2.

(b) Suppose that n is a positive integer, a1, a2, . . . , an and b1, b2, . . . , bn
are real numbers, a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bn, and f is a one-
to-one, onto function from {1, 2, . . . , n} to {1, 2, . . . , n}. Prove that
a1 bf(1) + a2 bf(2) +· · · +an bf(n) ≤ a1 b1 + a2 b2 +· · · +an bn. (This fact is
known as the rearrangement inequality.)

11. Prove that for every set A, if A has n elements then P(A) has 2n

elements.
12. If A is a set, let P2 (A) be the set of all subsets of A that have exactly

two elements. Prove that for every set A, if A has n elements then P2
(A) has n(n − 1)/2 elements. (Hint: See the solution for exercise 11.)

13. Suppose n is a positive integer. An equilateral triangle is cut into 4n

congruent equilateral triangles by equally spaced line segments parallel
to the sides of the triangle, and one corner is removed. (Figure 6.10
shows an example in the case n = 2.) Show that the remaining area can
be covered by trapezoidal tiles like this: 

Figure 6.10.



14. Let n be a positive integer. Suppose n chords are drawn in a circle in
such a way that each chord intersects every other, but no three intersect
at one point. Prove that the chords cut the circle into (n2 + n + 2)/2
regions. (Figure 6.11 shows an example in the case n = 4. Note that
there are (42 + 4 + 2)/2 = 11 regions in this figure.)

Figure 6.11.

15. Let n be a positive integer, and suppose that n chords are drawn in a
circle in any way, cutting the circle into a number a regions. Prove that
the regions can be colored with two colors in such a way that adjacent
regions (that is, regions that share an edge) are different colors. (Figure
6.12 shows an example in the case n = 4.)

Figure 6.12.

16. Prove that for every finite set A and every function f: A → A, if f is one-
to-one then f is onto. (Hint: Use induction on the number of elements in
A. For the induction step, assume the conclusion holds for any set A
with n elements, and suppose that A has n + 1 elements and f: A → A.
Suppose f is one-to-one but not onto. Then there is some a ∈ A such
that a /∈ Ran(f). Let A′ = A \ {a} and f′ = f ∩ (A′ × A′). Show that f′: A′



→ A′, f′ is one-to-one, and f′ is not onto, which contradicts the inductive
hypothesis.)

17. What’s wrong with the following proof that if A ⊆ N and 0 ∈ A then A
= N?

Proof. We will prove by induction that ∀n ∈ N(n ∈ A).

Base case: If n = 0, then n ∈ A by assumption.
Induction step: Let n ∈ N be arbitrary, and suppose that n ∈ A.

Since n was arbitrary, it follows that every natural number is an
element of A, and therefore in particular n + 1 ∈ A.

□
18. Suppose f: R → R. What’s wrong with the following proof that for

every finite, nonempty set A ⊆ R there is a real number c such that ∀x
∈ A(f (x) = c) ?

Proof. We will prove by induction that for every n ≥ 1, if A is any
subset of R with n elements then ∃c ∈ R∀x ∈ A(f (x) = c).

Base case: n = 1. Suppose A ⊆ R and A has one element. Then A =
{a}, for some a ∈ R. Let c = f(a). Then clearly ∀x ∈ A(f (x) = c).

Induction step: Suppose n ≥ 1, and for all A ⊆ R, if A has n elements
then ∃c ∈ R∀x ∈ A(f (x) = c). Now suppose A ⊆ R and A has n + 1
elements. Let a1 be any element of A, and let A1 = A \ {a1}. Then A1
has n elements, so by the inductive hypothesis there is some c1 ∈ R
such that ∀x ∈ A1 (f (x) = c1). If we can show that f(a1) = c1 then we
will be done, since then it will follow that ∀x ∈ A(f (x) = c1).

Let a2 be an element of A that is different from a1, and let A2 = A \
{a2}. Applying the inductive hypothesis again, we can choose a
number c2 ∈ R such that ∀x ∈ A2 (f (x) = c2). Notice that since a1 ≠
a2, a1 ∈ A2, so f(a1) = c2. Now let a3 be an element of A that is
different from both a1 and a2. Then a3 ∈ A1 and a3 ∈ A2, so f(a3) = c1
and f(a3) = c2. Therefore c1 = c2, so f(a1) = c1, as required.



□

6.3. Recursion
In Chapter 3 we learned to prove statements of the form ∀nP (n) by letting
n be arbitrary and proving P(n). In this chapter we’ve learned another
method for proving such statements, when n ranges over the natural
numbers: prove P(0), and then prove that for any natural number n, if P(n)
is true then so is P(n + 1). Once we have proven these statements, we can
run through all the natural numbers in order and see that P must be true of
all of them.

We can use a similar idea to introduce a new way of defining functions.
In Chapter 5, we usually defined a function f by saying how to compute f(n)
for any n in the domain of f. If the domain of f is the set of all natural
numbers, an alternative method to define f would be to say what f(0) is and
then, for any natural number n, say how we could compute f(n + 1) if we
already knew the value of f(n). Such a definition would enable us to run
through all the natural numbers in order computing the image of each one
under f.

For example, we might use the following equations to define a function f
with domain N:

The second equation tells us how to compute f(n + 1), but only if we
already know the value of f(n). Thus, although we cannot use this equation
to tell us directly what the image of any number is under f, we can use it to
run through all the natural numbers in order and compute their images.

We start with f(0), which we know from the first equation is equal to 1.
Plugging in n = 0 in the second equation, we see that f(1) = 1 · f(0) = 1 · 1 =
1, so we’ve determined the value of f(1). But now that we know that f(1) =
1, we can use the second equation again to compute f(2). Plugging in n = 1
in the second equation, we find that f(2) = 2 · f(1) = 2 · 1 = 2. Similarly,
setting n = 2 in the second equation we get f(3) = 3·f(2) = 3·2 = 6.
Continuing in this way we can compute f(n) for any natural number n. Thus,



the two equations really do give us a rule that determines a unique value
f(n) for each natural number n, so they define a function f with domain N.
Definitions of this kind are called recursive definitions.

Sometimes we’ll work backwards when using a recursive definition to
evaluate a function. For example, suppose we want to compute f(6), where f
is the function just defined. According to the second equation in the
definition of f, f(6) = 6 · f(5), so to complete the calculation we must
compute f(5). Using the second equation again, we find that f(5) = 5 · f(4),
so we must compute f(4). Continuing in this way leads to the following
calculation:

Perhaps now you recognize the function f. For any positive integer n, f(n)
= n · (n − 1) · (n − 2) · · · 1, and f(0) = 1. The number f(n) is called n
factorial, and is denoted n!. (Recall that we used this notation in our proof
of Theorem 3.7.3.) For example, 6! = 720. Often, if a function can be
written as a formula with an ellipsis (. . .) in it, then the use of the ellipsis
can be avoided by giving a recursive definition for the function. Such a
definition is usually easier to work with.

Many familiar functions are most easily defined using recursive
definitions. For example, for any number a, we could define an with the
following recursive definition:

Using this definition, we would compute a4 like this:



For another example, consider the sum 20 + 21 + 22 + · · · + 2n, which
appeared in the first example of this chapter. The ellipsis suggests that we
might be able to use a recursive definition. If we let f(n) = 20 +21 +22 +· · ·+
2n, then notice that for every n ∈ N, f(n+1) = 20 +21 +22 +· · ·+2n +2n+1 =
f(n) + 2n+1. Thus, we could define f recursively as follows:

As a check that this definition is right, let’s try it out in the case n = 3:

Sums such as the one in the last example come up often enough that there
is a special notation for them. If a0, a1, . . . , an is a list of numbers, then the
sum of these numbers is written  This is read “the sum as i goes
from 0 to n of ai.” For example, we can use this notation to write the sum in
the last example:

More generally, if n ≥ m, then



For example,

The letter i in these formulas is a bound variable and therefore can be
replaced by a new variable without changing the meaning of the formula.

Now let’s try giving a recursive definition for this notation. We let m be
an arbitrary integer, and then proceed by recursion on n. Just as the base
case for an induction proof need not be n = 0, the base for a recursive
definition can also be a number other than 0. In this case we are only
interested in n ≥ m, so we take n = m as the base for our recursion:

Trying this definition out on the previous example, we get

just as we wanted.
Clearly induction and recursion are closely related, so it shouldn’t be

surprising that if a concept has been defined by recursion, then proofs
involving this concept are often best done by induction. For example, in
Section 6.1 we saw some proofs by induction that involved summations and
exponentiation, and now we have seen that summations and exponentiation



can be defined recursively. Because the factorial function can also be
defined recursively, proofs involving factorials also often use induction.

Example 6.3.1. Prove that for every n ≥ 4, n! > 2n.

Scratch work

Because the problem involves factorial and exponentiation, both of which
are defined recursively, induction seems like a good method to use. The
base case will be n = 4, and it is just a matter of simple arithmetic to check
that the inequality is true in this case. For the induction step, our inductive
hypothesis will be n! > 2n, and we must prove that (n + 1)! > 2n+1. Of
course, the way to relate the inductive hypothesis to the goal is to use the
recursive definitions of factorial and exponentiation, which tell us that (n +
1)! = (n + 1) · n! and 2n+1 = 2n · 2. Once these equations are plugged in, the
rest is fairly straightforward.

Solution

Theorem. For every n ≥ 4, n! > 2n.

Proof. By mathematical induction.

Base case: When n = 4 we have n! = 24 > 16 = 2n.
Induction step: Let n ≥ 4 be arbitrary and suppose that n! > 2n. Then

□

Example 6.3.2. Prove that for every real number a and all natural numbers
m and n, am+n = am · an.

Scratch work

There are three universal quantifiers here, and we’ll treat the first two
differently from the third. We let a and m be arbitrary and then use



mathematical induction to prove that ∀n ∈ N(am+n = am · an). The key
algebraic fact in the induction step will be the formula an+1 = an · a from the
recursive definition of exponentiation.

Solution

Theorem. For every real number a and all natural numbers m and n, am+n

= am · an.

Proof. Let a be an arbitrary real number and m an arbitrary natural number.
We now proceed by induction on n.

Base case: When n = 0, we have am+n = am+0 = am = am · 1 = am · a0 = am

· an.
Induction step. Suppose am+n = am · an. Then

□

Example 6.3.3. A sequence of numbers a0, a1, a2, . . . is defined recursively
as follows:

Find a formula for an and prove that your formula is correct.

Scratch work

It’s probably a good idea to start out by computing the first few terms in the
sequence. We already know a0 = 0, so plugging in n = 0 in the second
equation we get a1 = 2a0 + 1 = 0 + 1 = 1. Thus, plugging in n = 1, we get a2
= 2a1 + 1 = 2 + 1 = 3. Continuing in this way we get the following table of
values:



Aha! The numbers we’re getting are one less than the powers of 2. It
looks like the formula is probably an = 2n − 1, but we can’t be sure this is
right unless we prove it. Fortunately, it is fairly easy to prove the formula
by induction.

Solution

Theorem. If the sequence a0, a1, a2, . . . is defined by the recursive
definition given earlier, then for every natural number n, an = 2n − 1.

Proof. By induction.
Base case: a0 = 0 = 20 − 1.
Induction step: Suppose an = 2n − 1. Then

□
We end this section with a rather unusual example. We’ll prove that for

every real number x > −1 and every natural number n, (1 + x)n > nx. A
natural way to proceed would be to let x > −1 be arbitrary, and then use
induction on n. In the induction step we assume that (1 + x)n > nx, and then
try to prove that (1 + x)n+1 > (n + 1)x. Because we’ve assumed x > −1, we
have 1 + x > 0, so we can multiply both sides of the inductive hypothesis (1
+ x)n > nx by 1 + x to get

But the conclusion we need for the induction step is (1 + x)n+1 > (n + 1)x,
and it’s not clear how to get this conclusion from the inequality we’ve
derived.



Our solution to this difficulty will be to replace our original problem with
a problem that appears to be harder but is actually easier. Instead of proving
the inequality (1 + x)n > nx directly, we’ll prove (1 + x)n ≥ 1 + nx, and then
observe that since 1 + nx > nx, it follows immediately that (1 + x)n > nx.
You might think that if we had difficulty proving (1 + x)n > nx, we’ll surely
have more difficulty proving the stronger statement (1 + x)n ≥ 1 + nx. But it
turns out that the approach we tried unsuccessfully on the original problem
works perfectly on the new problem!

Theorem 6.3.4. For every x >−1 and every natural number n, (1+x)n > nx.

Proof. Let x > −1 be arbitrary. We will prove by induction that for every
natural number n, (1 + x)n ≥ 1 + nx, from which it clearly follows that (1 +
x)n > nx.

Base case: If n = 0, then (1 + x)n = (1 + x)0 = 1 = 1 + 0 = 1 + nx.
Induction step: Suppose (1 + x)n ≥ 1 + nx. Then

□

Exercises
*1. Find a formula for  and prove that your formula is correct.

2. Prove that for all n ≥ 1,

3. Prove that for all n ≥ 2,



4. Prove that for all n ∈ N,

5. Suppose r is a real number and r ≠ 1. Prove that for all n ∈ N,

(Note that this exercise generalizes Example 6.1.1 and exercise 7 of
Section 6.1.)

*6. Prove that for all n ≥ 1,

7. (a) Suppose a0, a1, a2, . . . , an and b0, b1, b2, . . . , bn are two
sequences of real numbers. Prove that

(b) Suppose c is a real number and a0, a1, . . . , an is a sequence of real
numbers. Prove that

*8. The harmonic numbers are the numbers Hn for n ≥ 1 defined by the
formula



(a) Prove that for all natural numbers n and m, if n ≥ m ≥ 1 then Hn − Hm ≥
(n − m)/n. (Hint: Let m be an arbitrary natural number with m ≥ 1 and
then proceed by induction on n, with n = m as the base case of the
induction.)

(b) Prove that for all n ≥ 0, H2n ≥ 1 + n/2.
(c) (For those who have studied calculus.) Show that limn→∞ Hn = ∞, so 

 diverges.
9. Let Hn be defined as in exercise 8. Prove that for all n ≥ 2,

10. Find a formula for  and prove that your formula is correct.
11. Find a formula for  and prove that your formula is

correct.
12. (a) Prove that for all n ∈ N, 2n > n.

(b) Prove that for all n ≥ 9, n! ≥ (2n)2.
(c) Prove that for all n ∈ N, n! ≤ 2(n2).

13. Suppose k is a positive integer.
(a) Prove that for all n ∈ N, (k2 + n)! ≥ k2n.
(b) Prove that for all n ≥ 2k2, n! ≥ kn. (Hint: Use induction, and for the base

case use part (a). Note that in the language of exercise 19 of Section
5.1, this shows that if f(n) = kn and g(n) = n!, then f ∈ O(g).)

14. Prove that for every real number a and all natural numbers m and n,
(am)n = amn.

15. A sequence a0, a1, a2, . . . is defined recursively as follows:

Prove that for all n ∈ N, an = 2n − n − 1.
16. A sequence a0, a1, a2, . . . is defined recursively as follows:



Find a formula for an and prove that your formula is correct.
17. A sequence a1, a2, a3, . . . is defined recursively as follows:

Find a formula for an and prove that your formula is correct.
18. For n ≥ k ≥ 0, the quantity  is defined as follows:

(a) Prove that for all 
(b) Prove that for all natural numbers n and k, if n ≥ k > 0 then  

(c) If A is a set and k ∈ N, let Pk (A) be the set of all subsets of A that
have k elements. Prove that if A has n elements and n ≥ k ≥ 0, then Pk
(A) has  elements. (Hint: Prove by induction that ∀n ∈ N∀A[A is a
set with n elements →∀k(n ≥ k ≥ 0 → Pk (A) has  elements)].
Imitate exercises 11 and 12 of Section 6.2. In fact, this exercise
generalizes exercise 12 of Section 6.2. This exercise shows that  is
the number of ways of choosing k elements out of a set of size n, so it
is sometimes called n choose k.)

(d) Prove that for all real numbers x and y and every natural number n,

(This is called the binomial theorem, so the numbers  are sometimes
called binomial coefficients.)

Note: Parts (a) and (b) show that we can compute the numbers 
conveniently by using a triangular array as in Figure 6.13. This array is
called Pascal’s triangle, after the French mathematician Blaise Pascal



(1623–1662). Each row of the triangle corresponds to a particular value
of n, and it lists the values of  for all k from 0 to n. Part (a) shows
that the first and last numbers in every row are 1. Part (b) shows that
every other number is the sum of the two numbers above it. For
example, the lines in Figure 6.13 illustrate that  is the sum of 

 and 

Figure 6.13. Pascal’s triangle.

19. For the meaning of the notation used in this exercise, see exercise 18.
(a) Prove that for all  (Hint: You can do this by

induction using parts (a) and (b) of exercise 18, or you can combine
part (c) of exercise 18 with exercise 11 of Section 6.2, or you can plug
something in for x and y in part (d) of exercise 18.)

(b) Prove that for all 
20. A sequence a0, a1, a2, . . . is defined recursively as follows:

Prove that for all n ≥ 1, 0 < an < 1.
21. In this problem we will define, for each natural number n, a function fn:

Z
+ → Z+. The sequence of functions f0, f1, f2, . . . is defined recursively

as follows:



(a) The first equation in this recursive definition gives a formula for f0 (x),
namely f0 (x) = x. Find formulas for f1 (x), f2 (x), and f3 (x).

(b) Prove that for all natural numbers n and all positive integers x and y, if
x < y then fn (x) < fn (y).

(c) Prove that for all natural numbers m and n and all positive integers x, if
m < n then fm (x) < fn (x).

(d) Prove that for every natural number n, fn ∈ O(fn+1) but fn+1 /∈ O(fn).
(See exercise 19 in Section 5.1 for the meaning of the notation used
here.)
Now define g: Z+ → Z+ by the formula g(x) = fx (x).

(e) Compute g(1), g(2), and g(3). (Do not try to compute g(4); the answer
would be a number with more than 6 × 1019727 digits.)

(f) Prove that for every natural number n, fn ∈ O(g) but g /∈ O(fn).

22. Explain the paradox in the proof of Theorem 6.3.4, in which we made
the proof easier by changing the goal to a statement that looked like it
would be harder to prove.

6.4. Strong Induction
In the induction step of a proof by mathematical induction, we prove that a
natural number has some property based on the assumption that the
previous number has the same property. In some cases this assumption isn’t
strong enough to make the proof work, and we need to assume that all
smaller natural numbers have the property. This is the idea behind a variant
of mathematical induction sometimes called strong induction:

To prove a goal of the form ∀n ∈ N P(n):
Prove that ∀n[(∀k < n P (k)) → P(n)], where both n and k range over the

natural numbers in this statement. Of course, the most direct way to prove
this is to let n be an arbitrary natural number, assume that ∀k < nP(k), and
then prove P(n).

Note that no base case is necessary in a proof by strong induction. All
that is needed is a modified form of the induction step in which we prove



that if every natural number smaller than n has the property P, then n has
the property P. In a proof by strong induction, we refer to the assumption
that every natural number smaller than n has the property P as the inductive
hypothesis.

To see why strong induction works, it might help if we first review
briefly why ordinary induction works. Recall that a proof by ordinary
induction enables us to go through all the natural numbers in order and see
that each of them has some property P. The base case gets the process
started, and the induction step shows that the process can always be
continued from one number to the next. But note that in this process, by the
time we check that some natural number n has the property P, we’ve
already checked that all smaller numbers have the property. In other words,
we already know that ∀k < nP(k). The idea behind strong induction is that
we should be allowed to use this information in our proof of P(n).

Let’s work out the details of this idea more carefully. Suppose that we
have followed the strong induction proof strategy, and we’ve proven the
statement ∀n[(∀k < n P (k)) → P(n)]. Then, plugging in 0 for n, we can
conclude that (∀k < 0 P(k)) → P(0). But because there are no natural
numbers smaller than 0, the statement ∀k < 0 P(k) is vacuously true.
Therefore, by modus ponens, P(0) is true. (This explains why the base case
doesn’t have to be checked separately in a proof by strong induction; the
base case P(0) actually follows from the modified form of the induction
step used in strong induction.) Similarly, plugging in 1 for n we can
conclude that (∀k < 1 P(k)) → P(1). The only natural number smaller than
1 is 0, and we’ve just shown that P(0) is true, so the statement ∀k < 1 P(k)
is true. Therefore, by modus ponens, P(1) is also true. Now plug in 2 for n
to get the statement (∀k < 2 P(k)) → P(2). Since P(0) and P(1) are both
true, the statement ∀k < 2 P(k) is true, and therefore by modus ponens, P(2)
is true. Continuing in this way we can show that P(n) is true for every
natural number n, as required. For an alternative justification of the method
of strong induction, see exercise 1.

As our first example of the method of strong induction, we prove an
important fact of number theory known as the division algorithm.1

Theorem 6.4.1. (Division algorithm) For all natural numbers n and m, if m
> 0 then there are natural numbers q and r such that n = qm + r and r < m.



(The numbers q and r are called the quotient and remainder when n is
divided by m.)

Scratch work

We let m be an arbitrary positive integer and then use strong induction to
prove that ∀n∃q∃r(n = qm + r ∧ r < m). According to the description of
strong induction, this means that we should let n be an arbitrary natural
number, assume that ∀k < n∃q∃r(k = qm + r ∧ r < m), and prove that
∃q∃r(n = qm + r ∧ r < m).

Our goal is an existential statement, so we should try to come up with
values of q and r with the required properties. If n < m then this is easy
because we can just let q = 0 and r = n. But if n ≥ m, then this won’t work,
since we must have r < m, so we must do something different in this case.
As usual in induction proofs, we look to the inductive hypothesis. The
inductive hypothesis starts with ∀k < n, so to apply it we should plug in
some natural number smaller than n for k, but what should we plug in? The
reference to division in the statement of the theorem provides a hint. If we
think of division as repeated subtraction, then dividing n by m involves
subtracting m from n repeatedly. The first step in this process would be to
compute n − m, which is a natural number smaller than n. Perhaps we
should plug in n − m for k. It’s not entirely clear where this will lead, but it’s
worth a try. In fact, as you’ll see in the proof, once we take this step the
desired conclusion follows almost immediately.

Notice that we are using the fact that a quotient and remainder exist for
some natural number smaller than n to prove that they exist for n, but this
smaller number is not n−1, it’s n − m. This is why we’re using strong
induction rather than ordinary induction for this proof.

Proof. We let m be an arbitrary positive integer and then proceed by strong
induction on n.

Suppose n is a natural number, and for every k < n there are natural
numbers q and r such that k = qm + r and r < m.

Case 1. n < m. Let q = 0 and r = n. Then clearly n = qm + r and r < m.
Case 2. n ≥ m. Let k = n − m < n and note that since n ≥ m, k is a natural

number. By the inductive hypothesis we can choose q′ and r′ such that k =



q′ m + r′ and r′ < m. Then n − m = q′ m + r′, so n = q′ m + r′ + m = (q′
+1)m+r′. Thus, if we let q = q′ +1 and r = r′, then we have n = qm+r and r <
m, as required.

□

The division algorithm can also be extended to negative integers n, and it
can be shown that for every m and n the quotient and remainder q and r are
unique. For more on this, see exercise 14.

Our next example is another important theorem of number theory. We
used this theorem in our proof in the introduction that there are infinitely
many primes. We will have more to say about this theorem in Chapter 7.

Theorem 6.4.2. Every integer n > 1 is either prime or a product of two or
more primes.

Scratch work

We write the goal in the form ∀n ∈ N[n > 1 → (n is prime ∨ n is a product
of primes)] and then use strong induction. Thus, our inductive hypothesis is
∀k < n[k > 1 → (k is prime ∨ k is a product of primes)], and we must prove
that n > 1 → (n is prime ∨ n is a product of primes). Of course, we start by
assuming n > 1, and according to our strategies for proving disjunctions, a
good way to complete the proof would be to assume that n is not prime and
prove that it must be a product of primes. Because the assumption that n is
not prime means ∃a∃b(n = ab ∧ a < n ∧ b < n), we immediately use
existential instantiation to introduce the new variables a and b into the
proof. Applying the inductive hypothesis to a and b now leads to the
desired conclusion.

Proof. We use strong induction. Suppose n > 1, and suppose that for every
integer k, if 1 < k < n then k is either prime or a product of primes. Of
course, if n is prime then there is nothing to prove, so suppose n is not
prime. Then we can choose positive integers a and b such that n = ab, a < n,
and b < n. Note that since a < n = ab, it follows that b > 1, and similarly we
must have a > 1. Thus, by the inductive hypothesis, each of a and b is either
prime or a product of primes. But then since n = ab, n is a product of
primes.

□



The method of recursion studied in the last section also has a strong
form. As an example of this, consider the following definition of a sequence
of numbers, called the Fibonacci numbers. These numbers were first
studied by the Italian mathematician Leonardo of Pisa (circa 1170–circa
1250), who is better known by the nickname Fibonacci.

For example, plugging in n = 2 in the last equation we find that F2 = F0 +
F1 = 0 + 1 = 1. Similarly, F3 = F1 + F2 = 1 + 1 = 2 and F4 = F2 + F3 = 1 + 2
= 3. Continuing in this way leads to the following values:

Note that, starting with F2, each Fibonacci number is computed using,
not just the previous number in the sequence, but also the one before that.
This is the sense in which the recursion is strong. It shouldn’t be surprising,
therefore, that proofs involving the Fibonacci numbers often require strong
induction rather than ordinary induction.

To illustrate this we’ll prove the following remarkable formula for the
Fibonacci numbers:

It is hard at first to believe that this formula is right. After all, the Fibonacci
numbers are integers, and it is not at all clear that this formula will give an
integer value. And what do the Fibonacci numbers have to do with 
Nevertheless, a proof by strong induction shows that the formula is correct.
(To see how this formula could be derived, see exercise 9.)

Theorem 6.4.3. If Fn is the nth Fibonacci number, then



Scratch work

Because F0 and F1 are defined separately from Fn for n ≥ 2, we check the
formula for these cases separately. For n ≥ 2, the definition of Fn suggests
that we should use the assumption that the formula is correct for Fn−2 and
Fn−1 to prove that it is correct for Fn. Because we need to know that the
formula works for two previous cases, we must use strong induction rather
than ordinary induction. The rest of the proof is straightforward, although
the algebra gets a little messy.

Proof. We use strong induction. Let n be an arbitrary natural number, and
suppose that for all k < n,

Case 1. n = 0. Then

Case 2. n = 1. Then

Case 3. n ≥ 2. Then applying the inductive hypothesis to n − 2 and n − 1,
we get



Now note that

and similarly

Substituting into the formula for Fn, we get

□
Notice that in the proof of Theorem 6.4.3 we had to treat the cases n = 0

and n = 1 separately. The role that these cases play in the proof is similar to
the role played by the base case in a proof by ordinary mathematical
induction. Although we have said that proofs by strong induction don’t need
base cases, it is not uncommon to find some initial cases treated separately
in such proofs.



An important property of the natural numbers that is related to
mathematical induction is the fact that every nonempty set of natural
numbers has a smallest element. This is sometimes called the well-ordering
principle, and we can prove it using strong induction.

Theorem 6.4.4. (Well-ordering principle) Every nonempty set of natural
numbers has a smallest element.

Scratch work

Our goal is ∀S ⊆ N(S ≠ ∅ → S has a smallest element). After letting S be
an arbitrary subset of N, we’ll prove the contrapositive of the conditional
statement. In other words, we will assume that S has no smallest element
and prove that S = ∅. The way induction comes into it is that, for a set S ⊆
N, to say that S = ∅ is the same as saying that ∀n ∈ N(n /∈ S). We’ll prove
this last statement by strong induction.

Proof. Suppose S ⊆ N, and S does not have a smallest element. We will
prove that ∀n ∈ N(n /∈ S), so S = ∅. Thus, if S ≠ ∅ then S must have a
smallest element.

To prove that ∀n ∈ N(n /∈ S), we use strong induction. Suppose that n
∈ N and ∀k < n(k /∈ S). Clearly if n ∈ S then n would be the smallest
element of S, and this would contradict the assumption that S has no
smallest element. Therefore n /∈ S.

□

Sometimes, proofs that could be done by induction are written instead as
applications of the well-ordering principle. As an example of the use of the
well-ordering principle in a proof, we present a proof that  is irrational.
See exercise 2 for an alternative approach to this proof using strong
induction.

Theorem 6.4.5.  is irrational.

Scratch work



Because irrational means “not rational,” our goal is a negative statement, so
proof by contradiction is a logical method to use. Thus, we assume  is
rational and try to reach a contradiction. The assumption that  is rational
means that there exist integers p and q such that  and since  is
positive, we may as well restrict our attention to positive p and q. Because
this is an existential statement, our next step should probably be to let p and
q stand for positive integers such that  As you will see in the
proof, simple algebraic manipulations with the equation  do not
lead to any obvious contradictions, but they do lead to the conclusion that p
and q must both be even. Thus, in the fraction p/q we can cancel a 2 from
both numerator and denominator, getting a new fraction with smaller
numerator and denominator that is equal to 

How can we derive a contradiction from this conclusion? The key idea is
to note that our reasoning would apply to any fraction that is equal to 
Thus, in any such fraction we can cancel a factor of 2 from numerator and
denominator, and therefore there can be no smallest possible numerator or
denominator for such a fraction. But this would violate the well-ordering
principle! Thus, we have our contradiction.

This idea is spelled out more carefully in the following proof, in which
we’ve applied the well-ordering principle to the set of all possible
denominators of fractions equal to  We have chosen to put this
application of the well-ordering principle at the beginning of the proof,
because this seems to give the shortest and most direct proof. Readers of the
proof might be puzzled at first about why we’re using the well-ordering
principle (unless they’ve read this scratch work!), but after the algebraic
manipulations with the equation  are completed, the contradiction
appears almost immediately. This is a good example of how a clever,
carefully planned step early in a proof can lead to a wonderful punch line at
the end of the proof.

Proof. Suppose that  is rational. This means that 
 so the set  is nonempty. By the

well-ordering principle we can let q be the smallest element of S. Since q ∈
S, we can choose some p ∈ Z+ such that  Therefore p2/q2 = 2, so
p2 = 2q2 and therefore p2 is even. We now apply the theorem from Example
3.4.3, which says that for any integer x, x is even iff x2 is even. Since p2 is



even, p must be even, so we can choose some  such that 
Therefore  and substituting this into the equation p2 = 2q2 we get 

 and therefore q2 is even. Appealing to Example
3.4.3 again, this means q must be even, so we can choose some  such
that  But then  Clearly 

 so this contradicts the fact that q was chosen to be the smallest
element of S. Therefore  is irrational.

□

Exercises
*1. This exercise gives an alternative way to justify the method of strong

induction. All variables in this exercise range over N. Suppose P(n) is a
statement about a natural number n, and suppose that, following the
strong induction strategy, we have proven that ∀n[(∀k < n P (k)) →
P(n)]. Let Q(n) be the statement ∀k < nP(k).

(a) Prove ∀nQ(n) ↔ ∀nP (n) without using induction.
(b) Prove ∀nQ(n) by ordinary induction. Thus, by part (a), ∀nP (n) is true.
2. Rewrite the proof of Theorem 6.4.5 as a proof by strong induction that 

3. In this exercise you will give another proof that  is irrational.
Suppose  is rational. As in the proof of Theorem 6.4.5, let 

  let q be the smallest element
of S, and let p be a positive integer such that  Now get a
contradiction by showing that p − q ∈ S and p − q < q.

*4. (a) Prove that  is irrational.
(b) Prove that  is irrational.
5. The Martian monetary system uses colored beads instead of coins. A

blue bead is worth 3 Martian credits, and a red bead is worth 7 Martian
credits. Thus, three blue beads are worth 9 credits, and a blue and red
bead together are worth 10 credits, but no combination of blue and red
beads is worth 11 credits. Prove that for all n ≥ 12, there is some
combination of blue and red beads that is worth n credits.



6. Suppose that x is a real number, x ≠ 0, and x + 1/x is an integer. Prove
that for all n ≥ 1, xn + 1/xn is an integer.

*7. Let Fn be the nth Fibonacci number. All variables in this exercise range
over N.

(a) Prove that for all 
(b) Prove that for all 
(c) Prove that for all 
(d) Find a formula for  and prove that your formula is correct.
8. Let Fn be the nth Fibonacci number. All variables in this exercise range

over N.

(a) Prove that for all m ≥ 1 and all n, Fm+n = Fm−1 Fn + Fm Fn+1.
(b) Prove that for all m ≥ 1 and all n ≥ 1, Fm+n = Fm+1 Fn+1 − Fm−1 Fn−1.
(c) Prove that for all n, (Fn)2 +(Fn+1)2 = F2n+1 and (Fn+2)2 −(Fn)2 = F2n+2.
(d) Prove that for all m and n, if m | n then Fm | Fn.
(e) See exercise 18 in Section 6.3 for the meaning of the notation used in

this exercise. Prove that for all n ≥ 1,

and

*9. A sequence of numbers a0, a1, a2, . . . is called a generalized Fibonacci
sequence, or a Gibonacci sequence for short, if for every n ≥ 2, an =
an−2 + an−1. Thus, a Gibonacci sequence satisfies the same recurrence
relation as the Fibonacci numbers, but it may start out differently.



(a) Suppose c is a real number and ∀n ∈ N(an = cn). Prove that a0, a1, a2, .
. . is a Gibonacci sequence iff either  or 

(b) Suppose s and t are real numbers, and for all n ∈ N,

Prove that a0, a1, a2, . . . is a Gibonacci sequence.
(c) Suppose a0, a1, a2, . . . is a Gibonacci sequence. Prove that there are

real numbers s and t such that for all n ∈ N,

(Hint: First show that there are real numbers s and t such that the
formula above is correct for a0 and a1. Then show that with this choice
of s and t, the formula is correct for all n.)

10. The Lucas numbers (named for the French mathematician Edouard
Lucas (1842–1891)) are the numbers L0, L1, L2, . . . defined as follows:

Find a formula for Ln and prove that your formula is correct. (Hint:
Apply exercise 9.)

11. A sequence a0, a1, a2, . . . is defined recursively as follows:

Find a formula for an and prove that your formula is correct. (Hint:
Imitate exercise 9.)

12. A sequence a0, a1, a2, . . . is defined recursively as follows:



Prove that for all n ∈ N, an = Fn, the nth Fibonacci number.
13. For each positive integer n, let An = {1, 2, . . . , n}, and let Pn = {X ∈

P(An) | X does not contain two consecutive integers}. For example, P3
= {∅, {1}, {2}, {3}, {1, 3}}; P3 does not contain the sets {1, 2}, {2,
3}, and {1, 2, 3} because each contains at least one pair of consecutive
integers. Prove that for every n, the number of elements in Pn is Fn+2,
the (n + 2)th Fibonacci number. (For example, the number of elements
in P3 is 5 = F5. Hint: Which elements of Pn contain n? Which don’t?
The answers to both questions are related to the elements of Pm, for
certain m < n.)

14. Suppose n and m are integers and m > 0.
(a) Prove that there are integers q and r such that n = qm + r and 0 ≤ r < m.

(Hint: If n ≥ 0, then this follows from Theorem 6.4.1. If n < 0, then
start by applying Theorem 6.4.1 to −n and m. Another possibility is to
apply Theorem 6.4.1 to −n − 1 and m.)

(b) Prove that the integers q and r in part (a) are unique. In other words,
show that if q′ and r′ are integers such that n = q′ m + r′ and 0 ≤ r′ < m,
then q = q′ and r = r′.

(c) Prove that for every integer n, exactly one of the following statements
is true: n ≡ 0 (mod 3), n ≡ 1 (mod 3), n ≡ 2 (mod 3). (Recall that this
notation was introduced in Definition 4.5.9.)

15. Suppose k is a positive integer. Prove that there is some positive integer
a such that for all n > a, 2n ≥ nk. (In the language of exercise 19 of
Section 5.1, this implies that if f(n) = nk and g(n) = 2n then f ∈ O(g).
Hint: By the division algorithm, for any natural number n there are
natural numbers q and r such that n = qk + r and 0 ≤ r < k. Therefore 2n

≥ 2qk = (2q)k. To choose a, figure out how large q has to be to guarantee
that 2q ≥ n. You may find Example 6.1.3 useful.)



16. (a) Suppose k is a positive integer, a1, a2, . . . , ak are real numbers,
and f1, f2, . . . , fk, and g are all functions from Z+ to R. Also,
suppose that f1, f2, . . . , fk are all elements of O(g). (See exercise
19 of Section 5.1 for the meaning of the notation used here.)
Define f: Z+ → R by the formula f(n) = a1 f1 (n)+a2 f2 (n)+· · · +ak
fk (n). Prove that f ∈ O(g). (Hint: Use induction on k, and exercise
19(c) of Section 5.1.)

(b) Let g: Z+ → R be defined by the formula g(n) = 2n. Suppose a0, a1, a2,
. . . , ak are real numbers, and define f: Z+ → R by the formula f(n) = a0

+ a1 n + a2 n2 +· · · +ak nk. (Such a function is called a polynomial.)
Prove that f ∈ O(g). (Hint: Use exercise 15 and part (a).)

17. A sequence a0, a1, a2, . . . is defined recursively as follows:

Find a formula for an and prove that your formula is correct.
18. A sequence a0, a1, a2, . . . is defined recursively as follows:

Find a formula for an and prove that your formula is correct. (Hint:
These numbers are related to the Fibonacci numbers.)

19. In this problem, you will prove that there are no positive integers a, b,
c, and d such that

(∗)

(a) Prove that for all integers m and n, if 3 | (m2 + n2) then 3 | m and 3 | n.
(Hint: By exercise 14(c), either m ≡ 0 (mod 3) or m ≡ 1 (mod 3) or m ≡
2 (mod 3), and also either n ≡ 0 (mod 3) or n ≡ 1 (mod 3) or n ≡ 2 (mod



3). This gives nine possibilities. Determine which of these possibilities
are compatible with the assumption that 3 | (m2 + n2).)
Now suppose there are positive integers satisfying (∗). Let

Then S ≠ ∅, so by the well-ordering principle we can let d be the
smallest element of S. Let a, b, and c be positive integers satisfying
(∗).

(b) Prove that 3 | c and 3 | d. (Hint: Add the two equations in (∗) and then
apply part (a).)

(c) Prove that 3 | a and 3 | b. (Hint: Add the two equations in (∗) and then
apply part (b).)

(d) Show that there is an element of S that is smaller than d, which
contradicts our choice of d. (Hint: Combine parts (b) and (c).)

20. The number  that appears in the formula for the Fibonacci
numbers in Theorem 6.4.3 is called the golden ratio. It is usually
denoted φ, and it comes up in numerous contexts in mathematics, art,
and the natural world. In this exercise you will investigate a few of the
mathematical contexts in which φ arises.

(a) In Figure 6.14, AEFD is a square. Show that if the ratio of the length of
the longer side of rectangle BCFE to its shorter side is the same as the
ratio of the length of the longer side of rectangle ABCD to its shorter
side, then that ratio is φ.

(b) Show that cos(36 ◦ ) = φ/2. (Hint: Let x = cos(36 ◦ ). First show that
cos(108 ◦ ) = −cos(72 ◦ ). Then use trigonometric identities to express
cos(108 ◦ ) and cos(72 ◦ ) in terms of x. Substitute into the equation
cos(108◦) = −cos(72◦) to get an equation involving x and then solve the
equation.)

(c) In Figure 6.15, ABCDE is a regular pentagon with side length 1. Show
that the length of the diagonal AC is φ. (Hint: First find the angles in
triangle ABC; you may find Example 6.2.3 helpful for this. Then use
part (b).)



Figure 6.14.

Figure 6.15.

21. The commutative law for multiplication says that for any numbers a
and b, ab = ba. The associative law says that for any numbers a, b, and
c, (ab)c = a(bc). In this problem you will show that, although these
laws are stated for products of two or three numbers, they can be used
to justify reordering and regrouping the terms in a product of any list of
numbers in any way.

(a) Use the commutative and associative laws to show that for any
numbers a, b, c, and d, (ab)(cd) = c((ad)b).

(b) Let us say that the left-grouped product of a list of numbers a1, a2, . . . ,
an is the product in which the terms are grouped as follows:

More precisely, we can define the left-grouped product recursively as
follows: For a list consisting of a single number a1, the left-grouped



product is a1. If the left-grouped product of a1, a2, . . . , an is p, then the
left-grouped product of a1, a2, . . . , an, an+1 is pan+1. Use the
associative law to show that any product of a list of numbers a1, a2, . . .
, an (with the terms in that order, but with parentheses inserted to group
the terms in any way) is equal to the left-grouped product.

(c) Use the commutative and associative laws to show that any two
products of the numbers a1, a2, . . . , an, with the terms in any order and
grouped in any way, are equal.

6.5. Closures Again
In Section 5.4 we promised to use mathematical induction to give an
alternative treatment of closures of sets under functions. In this section we
fulfill this promise.

Recall that if f: A → A and B ⊆ A, then the closure of B under f is the
smallest set C ⊆ A such that B ⊆ C and C is closed under f. In this section
we’ll find this set C by starting with B and then adding only those elements
of A that must be added if we want to end up with a set that is closed under
f. We begin with a sketchy description of how we’ll do this, motivated by
the examples in Section 5.4. Then we’ll use recursion and induction to
make this sketchy idea precise and prove that it works.

As we saw in the examples in Section 5.4, if we want to find a set C ⊆ A
such that B ⊆ C and C is closed under f, then for every x ∈ B, we must
have f(x) ∈ C. In other words, {f(x) | x ∈ B} ⊆ C. Recall from Section 5.5
that {f(x) | x ∈ B} is called the image of B under f, and is denoted f(B). So
we will need to have f(B) ⊆ C. But then similar reasoning implies that the
image of f(B) under f must also be a subset of C; in other words, f(f(B)) ⊆
C.

Continuing in this way leads to a sequence of sets that must be contained
in C: B, f(B), f(f(B)), and so on. We will prove that putting these sets
together by taking their union will give us the closure of B under f. In other
words, if we let B0 = B, B1 = f(B), B2 = f(f(B)), . . . , then the closure of B
under f is B0 ∪ B1 ∪ B2 ∪ · · ·. The use of ellipses in our description of this
process suggests that to make it precise, we should use induction and



recursion. This is what we do in the statement and proof of our next
theorem.

Theorem 6.5.1. Suppose f: A → A and B ⊆ A. Let the sets B0, B1, B2 , . . .
be defined recursively as follows:

Then the closure of B under f is the set ⋃n∈N Bn.

Proof. Let  Since f: A → A, it is not hard to see that each set
Bn is a subset of A, and therefore C ⊆ A. According to the definition of
closure, we must check that B ⊆ C, C is closed under f, and for every set D
⊆ A, if B ⊆ D and D is closed under f then C ⊆ D.

The first of these holds because  For the second,
suppose that x ∈ C. Then by the definition of C, we can choose some m ∈
N such that x ∈ Bm. But then f(x) ∈ f(Bm) = Bm+1, so  
Since x was an arbitrary element of C, this shows that C is closed under f.

Finally, suppose that B ⊆ D ⊆ A and D is closed under f. We must show
that C ⊆ D, and by the definition of C it suffices to show that ∀n ∈ N(Bn ⊆
D). We prove this by induction on n.

The base case holds because we have B0 = B ⊆ D by assumption. For the
induction step, suppose that n ∈ N and Bn ⊆ D. Now suppose x ∈ Bn+1. By
the definition of Bn+1 this means x ∈ f(Bn), so there is some b ∈ Bn such
that x = f(b). But by the inductive hypothesis, Bn ⊆ D, so b ∈ D, and since
D is closed under f it follows that x = f(b) ∈ D. Since x was an arbitrary
element of Bn+1, this shows that Bn+1 ⊆ D.

□

Commentary. Because the proof must refer to the set  often, it is
convenient to give this set the name C right at the beginning of the proof.
The proof claims that it is not hard to see that for every n ∈ N, Bn ⊆ A, and
therefore C ⊆ A. As usual, if you don’t see why this is true you should
work out the details of the proof yourself. (You might try proving ∀n ∈



N(Bn ⊆ A) by mathematical induction.) The definition of closure then tells
us that we must prove three statements: B ⊆ C, C is closed under f, and for
all D ⊆ A, if B ⊆ D and D is closed under f then C ⊆ D. Of course, we
prove them one at a time.

The proof of the first of these statements, B ⊆ C, is also not worked out
in detail. If you have trouble following it, see exercise 8 in Section 3.3. The
second statement we must prove says that C is closed under f, and the proof
is based on the definition of closed: we let x be arbitrary, assume x ∈ C, and
prove that f(x) ∈ C. According to the definition of C, the statement x ∈ C
means ∃n ∈ N(x ∈ Bn), so we immediately introduce the variable m to
stand for a natural number such that x ∈ Bm. The goal f(x) ∈ C is also an
existential statement, so to prove it we must find a natural number k such
that f(x) ∈ Bk. The proof shows that k = m + 1 works.

Finally, to prove the third statement we use the natural strategy of letting
D be an arbitrary set, assuming B ⊆ D ⊆ A and D is closed under f, and
then proving that C ⊆ D. Once again, if you don’t see why the conclusion C
⊆ D follows from ∀n ∈ N(Bn ⊆ D), as claimed in the proof, you should
work out the details of the proof yourself. This last statement is proven by
induction, as you might expect based on the recursive nature of the
definition of Bn. For the induction step, we let n be an arbitrary natural
number, assume that Bn ⊆ D, and prove that Bn+1 ⊆ D. To prove that Bn+1
⊆ D we take an arbitrary element of Bn+1 and prove that it must be an
element of D. Writing out the recursive definition of Bn+1 gives us a way to
use the inductive hypothesis, which, as usual, is the key to completing the
induction step.

We end this chapter by returning once again to one of the proofs in the
introduction. Recall that in our first proof in the introduction we used the
formula

We discussed this proof again in Section 3.7 and promised to give a more
careful proof of this formula after we had discussed mathematical



induction. We are ready now to give this more careful proof. Of course, we
can also state the formula more precisely now, using summation notation.

Theorem 6.5.2. For all positive integers a and b,

Proof. We let b be an arbitrary positive integer and then proceed by
induction on a.

Base case: When a = 1 we have

Induction step: Suppose a ≥ 1 and  Then

□

Exercises
*1. Let f: R → R be defined by the formula f(x) = x+1, and let B = {0}. We

saw in part 2 of Example 5.4.4 that the closure of B under f is N. What
are the sets B0, B1, B2, . . . defined in Theorem 6.5.1?



2. Let f: R → R be defined by the formula f(x) = x − 1, and let B = N. We
saw after Example 5.4.2 that the closure of B under f is Z. What are the
sets B0, B1, B2, . . . defined in Theorem 6.5.1?

3. Suppose F is a set of functions from A to A and B ⊆ A. In exercise 12

of Section 5.4 we defined the closure of B under F to be the smallest set

C ⊆ A such that B ⊆ C and for every f ∈ F, C is closed under f. Let the

sets B0, B1, B2, . . . be defined recursively as follows:

Prove that  is the closure of B under F.

*4. For each natural number n, let fn: P(N) → P(N) be defined by the
formula fn (X) = X ∪ {n}, and let F = {fn | n ∈ N}. Let B = {∅}. In part

(b) of exercise 12 in Section 5.4 you showed that the closure of B under
F is the set of all finite subsets of N. What are the sets B0, B1, B2, . . .

defined in exercise 3?
*5. Let f: N × N → N be defined by the formula f(x, y) = xy. Let P be the

set of all prime numbers. What is the closure of P under f?
6. Consider the following incorrect theorem:

Incorrect Theorem. Suppose f: A × A → A and B ⊆ A. Let the sets B0,
B1, B2, . . . be defined recursively as follows:

Then the closure of B under f is the set 

What’s wrong with the following proof of the theorem?

Proof. Let  It is not hard to see that each set Bn is a subset
of A, so C ⊆ A, and B = B0 ⊆ C.



To see that C is closed under f, suppose x, y ∈ C. Then by the
definition of C, there is some m ∈ N such that x, y ∈ Bm. Therefore 

Finally, suppose B ⊆ D ⊆ A and D is closed under f. To prove that C
⊆ D, it will suffice to prove that ∀n ∈ N(Bn ⊆ D). We prove this by
induction. The base case holds because B0 = B ⊆ D by assumption. For
the induction step, suppose Bn ⊆ D and let x ∈ Bn+1 be arbitrary. By the
definition of Bn+1 this means that x = f(a, b) for some a, b ∈ Bn. By the
inductive hypothesis, Bn ⊆ D, so a, b ∈ D, and since D is closed under
f, it follows that x = f(a, b) ∈ D. Therefore Bn+1 ⊆ D.

□
*7. Let f: R × R → R be defined by the formula f(x, y) = xy, and let B = {x

∈ R | −2 ≤ x ≤ 0}. In this problem you will show that f and B are a
counterexample to the incorrect theorem in exercise 6.

(a) What are the sets B0, B1, B2, . . . defined in the incorrect theorem?
(b) Show that  is not the closure of B under f. Which of the three

properties in the definition of closure (Definition 5.4.8) does not hold?
(c) What is the closure of B under f?
8. Suppose f: A × A → A and B ⊆ A. Let the sets B0, B1, B2, . . . be defined

recursively as follows:

(a) Prove that for all natural numbers m and n, if m ≤ n then Bm ⊆ Bn.
(Hint: Let m be arbitrary and then use induction on n.)

(b) Prove that  is the closure of B under f.
9. Suppose f: A → A and f is a constant function; in other words, there is

some c ∈ A such that for all x ∈ A, f(x) = c. Suppose B ⊆ A. What are
the sets B0, B1, B2, . . . defined in Theorem 6.5.1? What is the closure of
B under f?

10. There is another proof in the introduction that could be written more
rigorously using induction. Recall that in the proof of Theorem 4 in the



introduction we used the fact that if n is a positive integer, x = (n+1)!
+2, and 0 ≤ i ≤ n−1, then (i +2) | (x +i). Use induction to prove this. (We
used this fact to show that x + i is not prime.)

The remaining exercises in this section will use the following definition.
Suppose R ⊆ A × A. Let R1, R2, R3, . . . be defined recursively as follows:

Clearly for every positive integer n, Rn is a relation on A.

11. Suppose R ⊆ A × A. Prove that for all positive integers m and n, Rm+n =
Rm ◦ Rn.

12. Suppose f: A → A.
(a) Prove that for every positive integer n, fn: A → A.
(b) Suppose B ⊆ A, and let the sets B0, B1, B2, . . . be defined as in

Theorem 6.5.1. Prove that for every positive integer n, fn (B) = Bn.

13. Suppose f: A → A and a ∈ A. We say that a is a periodic point for f if
there is some positive integer n such that fn (a) = a.

(a) Show that if a is a periodic point for f then the closure of {a} under f is
a finite set.

(b) Suppose the closure of {a} under f is a finite set. Must a be a periodic
point for f?

14. Suppose R ⊆ A × A and let  Prove that T is the
transitive closure of R. (See exercise 25 of Section 4.4 for the definition
of transitive closure.)

15. Suppose R and S are relations on A and R ⊆ S. Prove that for every
positive integer n, Rn ⊆ Sn.

16. Suppose R and S are relations on A and n is a positive integer.
(a) What is the relationship between Rn ∩Sn and (R ∩S)n? Justify your

conclusions with proofs or counterexamples.
(b) What is the relationship between Rn ∪Sn and (R ∪S)n? Justify your

conclusions with proofs or counterexamples.



17. Suppose R is a relation on A and T is the transitive closure of R. If (a, b)
∈ T, then by exercise 14 there is some positive integer n such that (a,
b) ∈ Rn, and therefore by the well-ordering principle (Theorem 6.4.4),
there must be a smallest such n. We define the distance from a to b to
be the smallest positive integer n such that (a, b) ∈ Rn, and we write
d(a, b) to denote this distance.

(a) Suppose that (a, b) ∈ T and (b, c) ∈ T (and therefore (a, c) ∈ T, since
T is transitive). Prove that d(a, c) ≤ d(a, b) + d(b, c).

(b) Suppose (a, c) ∈ T and 0 < m < d(a, c). Prove that there is some b ∈ A
such that d(a, b) = m and d(b, c) = d(a, c) − m.

18. Suppose R is a relation on A. For each positive integer n, let Jn = {0, 1,
2, . . . , n}. If a ∈ A and b ∈ A, we will say that a function f: Jn → A is
an R-path from a to b of length n if f(0) = a, f(n) = b, and for all i < n, (f
(i), f(i + 1)) ∈ R.

(a) Prove that for all n ∈ Z+, Rn = {(a, b) ∈ A × A | there is an R-path from
a to b of length n}.

(b) Prove that the transitive closure of R is {(a, b) ∈ A × A | there is an R-
path from a to b (of any length)}.

19. Suppose R is a relation on A. In this problem we find a relationship
between distance, as defined in exercise 17, and R-paths, which were
discussed in exercise 18.

(a) Suppose d(a, b) = n and a ≠ b. Prove that if f is an R-path from a to b of
length n, then f is one-to-one.

(b) Suppose d(a, a) = n. Prove that if f is an R-path from a to a of length n,
then ∀i < n∀j < n(f(i) = f(j) → i = j). (In other words, f is one-to-one,
except for the fact that f(0) = f(n) = a.)

20. Suppose R is a relation on A, T is the transitive closure of R, and A has
m elements. Prove that

(Hint: Use exercise 19.)

1 The terminology here is somewhat unfortunate, since what we are calling the division
algorithm is actually a theorem and not an algorithm. Nevertheless, this terminology is
common.



7

Number Theory

7.1. Greatest Common Divisors
In this chapter we will give an introduction to number theory: the study of
the positive integers 1, 2, 3, . . . . It may seem that these numbers are so
easy to understand that investigating them will not lead to any interesting
discoveries. But we will see in this chapter that simple questions about the
positive integers can be surprisingly difficult to resolve, and the answers
sometimes reveal subtle and unexpected patterns. Of course, the only way
to be sure of the answers to our questions will be to give proofs, using the
methods we have developed in earlier chapters of this book. By now, you
should be fairly proficient at reading and writing proofs, so we’ll give less
discussion of the strategy behind proofs and leave more proofs as exercises.

We begin with a concept that is fundamental to all of number theory, the
greatest common divisor of a pair of positive integers.

Definition 7.1.1. Suppose a is a positive integer. The divisors of a are the
positive integers that divide a. We will denote the set of divisors of a by
D(a). Thus,

If a and b are two positive integers, then D(a) ∩ D(b) is the set of positive
integers that divide both a and b – the common divisors of a and b. The
largest element of this set is called the greatest common divisor of a and b,
and is denoted gcd(a, b).

For example, D(18) = {1, 2, 3, 6, 9, 18} and D(12) = {1, 2, 3, 4, 6, 12},
so the set of common divisors of 18 and 12 is D(18) ∩ D(12) = {1, 2, 3, 6}.
The largest of these common divisors is 6, so gcd(18, 12) = 6.



Notice that 1 and a are always elements of D(a), and D(a) is a finite set,
since D(a) ⊆ {1, 2, . . . , a}. Thus, for any two positive integers a and b,
D(a)∩ D(b) is a finite set that is nonempty (since it contains 1), so it has a
largest element (see exercise 3 in Section 6.2). In other words, gcd(a, b) is
always defined.

Given two positive integers a and b, how can we compute gcd(a, b)? One
possibility is to start by listing all elements of D(a) and D(b), as we did
when we computed gcd(18, 12). But if a and b are large then this may be
impractical. Fortunately, there is a better way.

Since D(a) ∩ D(b) = D(b) ∩ D(a), gcd(a, b) = gcd(b, a). In other words,
in our notation for the greatest common divisor of two positive integers, it
doesn’t matter which integer we list first. We will often find it convenient to
list the larger integer first; in particular, when computing gcd(a, b), we will
assume that a ≥ b.

One helpful observation is that if b | a then gcd(a, b) = b. This is because
b is the largest element of D(b). If b | a then b is also an element of D(a), so
it must be the largest element of D(a) ∩ D(b). This suggests that to compute
gcd(a, b), where a ≥ b, we could start by dividing a by b. According to the
division algorithm (Theorem 6.4.1), if we divide a by b we will find natural
numbers q and r (the quotient and remainder) such that a = qb+r and r < b.
If r = 0, then a = qb, so b | a and therefore gcd(a, b) = b.

But what if r > 0? How can we compute gcd(a, b) in that case? We claim
that in that case, D(a) ∩ D(b) = D(b) ∩ D(r). Let’s prove this fact. Suppose
first that d ∈ D(a) ∩ D(b). Then d | a and d | b, so there are integers j and k
such that a = jd and b = kd. But then from the equation a = qb + r we get r =
a −qb = jd −qkd = (j −qk)d, so d | r. Therefore d ∈ D(r), and since we also
have d ∈ D(b), d ∈ D(b) ∩ D(r). A similar argument shows that if d ∈
D(b)∩D(r) then d ∈ D(a)∩D(b), so D(a)∩D(b) = D(b)∩D(r). By the
definition of greatest common divisor, it follows that gcd(a, b) = gcd(b, r).

Let’s summarize what we’ve learned with a theorem.

Theorem 7.1.2. Suppose a and b are positive integers with a ≥ b. Let r be
the remainder when we divide a by b. If r = 0 then gcd(a, b) = b, and if r > 0
then gcd(a, b) = gcd(b, r).

Now, if r > 0, does this theorem help us to compute gcd(a, b)? One
reason to think it might is that b ≤ a and r < b, so it is probably easier to



compute gcd(b, r) than gcd(a, b). Thus, the theorem allows us to replace our
original problem of computing gcd(a, b) with the potentially easier problem
of computing gcd(b, r).

This should remind you of our study of recursion in Chapter 6. A
recursive definition of a function f with domain Z+ gives us a method of
finding f(n) by using the values of f(k) for k < n. By using this method
repeatedly, we are able to compute f(n) for any n. Perhaps if we apply our
division method repeatedly we will be able to compute gcd(a, b).

Before working out this idea in general, let’s try it out in an example.
Suppose we want to find gcd(672, 161). We begin by dividing a = 672 by b
= 161, which gives us a quotient q = 4 and remainder r = 28:

By Theorem 7.1.2, we conclude that gcd(672, 161) = gcd(a, b) = gcd(b, r) =
gcd(161, 28). So let’s try to compute gcd(161, 28), which seems like an
easier problem.

How do we solve this problem? By the same method, of course! We start
by dividing 161 by 28, to get a quotient of 5 and remainder of 21:

Applying Theorem 7.1.2 again, we see that gcd(161, 28) = gcd(28, 21). To
compute gcd(28, 21) we divide 28 by 21:

Thus gcd(28, 21) = gcd(21, 7). But 21 = 3 · 7 + 0, so 7 | 21 and therefore
gcd(21, 7) = 7. We conclude that this is the answer to our original problem:
gcd(672, 161) = 7.

We can summarize our calculations with the following list of equations:



These calculations produce a decreasing list of natural numbers: 672, 161,
28, 21, 7, 0. The first two numbers are our original positive integers a and
b, and after that every number is the remainder when dividing the previous
number into the one before that. The greatest common divisors of all
adjacent pairs of positive integers in the list are the same. The calculation
ended when we got a remainder of 0, and the last nonzero number in the list
is 7 = gcd(21, 7) = gcd(672, 161).

Now let’s generalize. Suppose we want to find gcd(a, b), where a and b
are positive integers and a ≥ b. We define a sequence of natural numbers r0,
r1, r2, . . . recursively as follows. To start off the sequence, we let r0 = a and
r1 = b; notice that r0 ≥ r1. Then we let q2 and r2 be the quotient and
remainder when we divide r0 by r1:

If r2 ≠ 0, then we divide r1 by r2 to get a quotient q3 and remainder r3. In
general, having computed r0, r1, . . . , rn, if rn ≠ 0 then we divide rn−1 by rn
to produce a quotient and remainder of qn+1 and rn+1:

The calculation stops when we reach a remainder of 0.
Are we sure that we will eventually have a remainder of 0? Well, if we

don’t, then the sequence of divisions will go on forever, and we will end up
with an infinite sequence of positive integers r0, r1, r2, . . . with r0 ≥ r1 > r2
> · · ·. This is impossible, since {r0, r1, r2, . . .} would be a nonempty set of
natural numbers with no smallest element, contradicting the well-ordering
principle (Theorem 6.4.4). Thus, we must eventually have a remainder of 0.

Suppose m is the largest index for which rm ≠ 0. Then rm+1 = 0, and there
are m divisions, which can be summarized as follows:



Applying Theorem 7.1.2 to each division, we conclude that

Thus, gcd(a, b) is the last nonzero value in the sequence r0, r1, r2, . . . .
This method of computing the greatest common divisor of two positive

integers is called the Euclidean algorithm. It is named for Euclid, who
described it in Book VII of his Elements.

Example 7.1.3. Find the greatest common divisor of 444 and 1392.

Solution

We apply the Euclidean algorithm with a = 1392 and b = 444. The
calculations are shown in Figure 7.1. Each equation in the column
“Division” shows the division calculation that leads to the quotient and
remainder in the next row. Since the last nonzero remainder is 12, we
conclude that gcd(1392, 444) = 12.

Figure 7.1. Calculation of gcd(1392, 444) by Euclidean algorithm.

The inputs to the Euclidean algorithm in the last example were a = 1392
and b = 444. It is instructive to see how the remainders we computed are
related to these inputs. Rearranging the first equation in the “Division”
column in Figure 7.1, we see that

Similarly, from the next equation we get



and the third equation gives us

We see that each remainder can be written in the form sa + tb, for some
integers s and t. We say that each remainder is a linear combination of a
and b. But the last nonzero remainder is the greatest common divisor of a
and b, so we conclude that gcd(a, b) is a linear combination of a and b:
gcd(a, b) = r4 = 15a − 47b. Working out this reasoning in general proves
our next theorem.

Theorem 7.1.4. For all positive integers a and b there are integers s and t
such that gcd(a, b) = sa + tb.

Proof. As usual, we may assume a ≥ b; if not, we can simply reverse the
values of a and b. Let r0, r1, . . . , rm+1 be the sequence of numbers produced
by the Euclidean algorithm, where rm ≠ 0 and rm+1 = 0. We claim that for
every natural number n ≤ m, rn is a linear combination of a and b. In other
words, for every natural number n, if n ≤ m then there are integers sn and tn
such that rn = sn a + tn b. We prove this statement by strong induction.

Suppose n is a natural number and n ≤ m, and suppose also that for all k <
n, rk is a linear combination of a and b. We now consider three cases.

Case 1: n = 0. Then rn = r0 = a = s0 a + t0 b, where s0 = 1 and t0 = 0.
Case 2: n = 1. Then rn = r1 = b = s1 a + t1 b, where s1 = 0 and t1 = 1.
Case 3: n ≥ 2. Then rn is the remainder when rn−2 is divided by rn−1:

By the inductive hypothesis, there are integers sn−1, sn−2, tn−1, and tn−2 such
that

Therefore



so rn = sn a + tn b, where sn = sn−2 − qn sn−1 and tn = tn−2 − qn tn−1.
This completes the inductive proof that for every n ≤ m, rn is a linear

combination of a and b. Applying this statement in the case n = m, we
conclude that gcd(a, b) = rm is a linear combination of a and b. □

For an alternative proof of Theorem 7.1.4, see exercise 4. One advantage
of the proof we have given is that it provides us with a method to find
integers s and t such that gcd(a, b) = sa + tb. While carrying out the
Euclidean algorithm, we can compute numbers sn and tn recursively by
using the formulas:

If m is the largest index for which rm ≠ 0, then gcd(a, b) = rm = sm a + tm b.
The version of the Euclidean algorithm in which we keep track of these
extra numbers sn and tn is called the extended Euclidean algorithm.

Example 7.1.5. Use the extended Euclidean algorithm to find gcd(574,
168) and express it as a linear combination of 574 and 168.

Solution

The calculations are shown in Figure 7.2. We conclude that gcd(574, 168) =
14 = 5 · 574 − 17 · 168.



Figure 7.2. Calculation of gcd(574, 168) by extended Euclidean algorithm.

As an immediate consequence of Theorem 7.1.4, we have the following
surprising fact.

Theorem 7.1.6. For all positive integers a, b, and d, if d | a and d | b then d
| gcd(a, b).

Proof. Let a, b, and d be arbitrary positive integers and suppose that d | a
and d | b. Then there are integers j and k such that a = jd and b = kd. Now
by Theorem 7.1.4 let s and t be integers such that gcd(a, b) = sa + tb. Then

so d | gcd(a, b). □

Recall from part 3 of Example 4.4.3 that the divisibility relation is a
partial order on Z+. We could interpret Theorem 7.1.6 as saying that gcd(a,
b) is the largest element of D(a) ∩ D(b) not only with respect to the usual
ordering of the positive integers, but also with respect to the divisibility
partial order.

Exercises
1. Let a = 57 and b = 36.

(a) Find D(a), D(b), and D(a) ∩ D(b).
(b) Use the Euclidean algorithm to find gcd(a, b).
*2. Find gcd(a, b), and express it as a linear combination of a and b.



(a) a = 775, b = 682.
(b) a = 562, b = 243.
3. Find gcd(a, b), and express it as a linear combination of a and b.

(a) a = 2790, b = 1206.
(b) a = 191, b = 156.
4. Complete the following alternative proof of Theorem 7.1.4. Suppose a

and b are positive integers. Let L = {n ∈ Z+ | ∃s ∈ Z∃t ∈ Z(n = sa +
tb)}. Show that L has a smallest element. Let d be the smallest element
of L. Now show that d = gcd(a, b). (Hint: Show that when you divide
either a or b by d, the remainder cannot be positive.)

*5. Suppose a and b are positive integers, and let d = gcd(a, b). Show that
for every integer n, n is a linear combination of a and b iff d | n.

6. Prove that for all positive integers a, b, and c, gcd(a, b) = gcd(a+bc, b).
*7. Suppose that a, a ′, b, and b ′ are positive integers.
(a) If a ≤ a ′ and b ≤ b ′, must it be the case that gcd(a, b) ≤ gcd(a ′, b ′)?

Justify your answer with either a proof or a counterexample.
(b) If a | a ′ and b | b ′, must it be the case that gcd(a, b) | gcd(a ′, b ′)?

Justify your answer with either a proof or a counterexample.
8. Prove that for every positive integer a, gcd(5a + 2, 13a + 5) = 1.

*9. Prove that for all positive integers a and b, gcd(2a − 1, 2b − 1) =
2gcd(a,b) − 1.

10. Prove that for all positive integers a, b, and n, gcd(na, nb) = n gcd(a, b).
11. Suppose a, b, and c are positive integers.
(a) Prove that D(gcd(a, b)) = D(a) ∩ D(b).
(b) Prove that gcd(gcd(a, b), c) is the largest element of D(a) ∩ D(b) ∩

D(c).
12. (a) Use the Euclidean algorithm to find gcd(55, 34). Do you

recognize the numbers in the sequence r0, r1, . . . ? (Hint: Look
back at Section 6.4.) How many division steps are there?

(b) Suppose n ≥ 2. What is gcd(Fn+1, Fn)? How many division steps are
there when using the Euclidean algorithm to find gcd(Fn+1, Fn)? (Fis
the nth Fibonacci number.)



13. Suppose a and b are positive integers with a ≥ b. Let r0, r1, . . . , rm+1 be
the sequence of numbers produced when using the Euclidean algorithm
to compute gcd(a, b), where rm ≠ 0 and rm+1 = 0. Note that this means
that the algorithm required m divisions.

(a) Prove that ∀k ∈ N(k < m → rm−k ≥ Fk+2), where Fk+2 is the (k + 2)th
Fibonacci number.

(b) Let  6.4.) Prove that for every(φ ispositivethe
goldeninteger  ratio; see exercise20 in Section(Hint:
Use Theorem 6.4.3.)

(c) Show that

(You can use either base-10 logarithms or natural logarithms in this
formula.)

(d) Show that if b has at most 100 digits, then the number of divisions
when using the Euclidean algorithm to compute gcd(a, b) will be at
most 479.

14. (a) Prove the following alternative version of the division algorithm:
For any positive integers a and b, there are natural numbers q and
r such that r ≤ b/2 and either a = qb + r or a = qb − r.

(b) Suppose that a, b, and r are positive integers, q is a natural number, and
either a = qb + r or a = qb − r. Prove that gcd(a, b) = gcd(b, r).

(c) Suppose a and b are positive integers with a ≥ b. Define a sequence r0,
r1, . . . recursively as follows: r0 = a, r1 = b, and for all n ≥ 1, if rn ≠ 0
then we use part (a) to find natural numbers qn+1 and rn+1 such that rn+1
≤ rn /2 and either rn−1 = qn+1 rn + rn+1 or rn−1 = qn+1 rn − rn+1. Prove
that there is some m such that rm ≠ 0 and rm+1 = 0, and gcd(a, b) = rm.
This gives us a new method of computing greatest common divisors; it
is called the least absolute remainder Euclidean algorithm.

(d) Compute gcd(1515, 555) by both the Euclidean algorithm and the least
absolute remainder Euclidean algorithm. Which takes fewer steps?



7.2. Prime Factorization
In Section 6.4 we saw that every integer n > 1 is either prime or can be
written as a product of prime numbers; we say that n has a prime
factorization. In this section we will show that this prime factorization is in
a certain sense unique. One important tool in this investigation will be
greatest common divisors. In particular, we will be interested in pairs of
positive integers whose greatest common divisor has the smallest possible
value, 1.

Definition 7.2.1. If a and b are positive integers and gcd(a, b) = 1, then we
say that a and b are relatively prime.

Equivalently, we can say that a and b are relatively prime if their only
common divisor is 1. For example, D(50) = {1, 2, 5, 10, 25, 50} and D(63)
= {1, 3, 7, 9, 21, 63}, so D(50) ∩ D(63) = {1}. Therefore gcd(50, 63) = 1,
so 50 and 63 are relatively prime.

One reason relatively prime integers are important is given by our next
theorem. The key to the proof of the theorem is the use of existential
instantiation to introduce names for integers that we know exist.

Theorem 7.2.2. For all positive integers a, b, and c, if c | ab and gcd(a, c) =
1 then c | b.

Proof. Suppose c | ab and gcd(a, c) = 1. Then there is some integer j such
that ab = jc, and by Theorem 7.1.4, there are integers s and t such that sa +
tc = 1. Therefore

so c | b. □

Notice that if p is a prime number then D(p) = {1, p}. Thus, for any
positive integer a, the only possible values of gcd(a, p) are 1 and p. If p | a
then gcd(a, p) = p, and if not, then the only common divisor of a and p is 1
and therefore a and p are relatively prime. Combining this observation with
Theorem 7.2.2, we get the following important fact about prime divisors.



Theorem 7.2.3. For all positive integers a, b, and p, if p is prime and p | ab
then either p | a or p | b.

Proof. Suppose p is prime and p | ab. As we observed earlier, if p ∤ a then a
and p are relatively prime, and therefore by Theorem 7.2.2, p | b. Thus,
either p | a or p | b. □

Commentary. Notice that to prove the disjunction (p | a) ∨ (p | b), we used
the strategy of assuming p ∤ a and then proving p | b.

Using mathematical induction, we can extend this theorem to the case of
a prime number dividing a product of a list of positive integers.

Theorem 7.2.4. Suppose p is a prime number and a1, a2, . . . , ak are
positive integers. If p | (a1 a2 · · · ak), then for some i ∈ {1, 2, . . . , k}, p | ai.

Proof. We prove this theorem by induction on k. In other words, we will use
induction to prove the following statement: for every k ≥ 1, if p divides the
product of any list of k positive integers, then it divides one of the integers
in the list.

Our base case is k = 1, and in that case the statement is clearly true: if p |
a1, then there is some i ∈ {1} such that p | ai, namely, i = 1.

Now suppose the statement holds for any list of k positive integers, and
let a1, a2, . . . , ak+1 be a list of positive integers such that p | (a1 a2 · · · ak
ak+1). Since a1 a2 · · · ak ak+1 = (a1 a2 · · · ak)ak+1, by Theorem 7.2.3 either p
| (a1 a2 · · · ak) or p | ak+1. In the first case, by the inductive hypothesis we
have p | ai for some i ∈ {1, 2, . . . , k}, and in the second we have p | ai
where i = k + 1. □

We are now ready to address the issue of the uniqueness of prime
factorizations. Consider, for example, the problem of writing 12 as a
product of prime numbers. There are actually three different ways to write
12 as a product of prime numbers: 12 = 2 · 2 · 3 = 2 · 3 · 2 = 3 · 2 · 2. But of
course in all three cases we are multiplying the same three prime numbers,
just in a different order. To avoid counting these as three different prime
factorizations of 12, we will only consider factorizations in which the



primes are listed from smallest to largest. There is only one prime
factorization of 12 that meets this additional requirement: 12 = 2 · 2 · 3.

More generally, we will be interested in expressions of the form p1 p2 · · ·
pk, where p1, p2, . . . , pk are prime numbers and p1 ≤ p2 ≤ · · · ≤ pk. We will
say that such an expression is the product of a nondecreasing list of prime
numbers. We will show that every integer larger than 1 can be written as the
product of a nondecreasing list of prime numbers in a unique way.

Recall that, to show that an object with some property is unique, we show
that any two objects with the property would have to be equal. Thus, the
key to proving the uniqueness of prime factorizations will be the following
fact.

Theorem 7.2.5. Suppose that p1, p2, . . . , pk and q1, q2, . . . , qm are prime
numbers, p1 ≤ p2 ≤ · · · ≤ pk, q1 ≤ q2 ≤ · · · ≤ qm, and p1 p2 · · · pk = q1 q2 · · ·
qm. Then k = m and for all i ∈ {1, . . . , k}, pi = qi.

Proof. The proof will be by induction on k. In other words, we use
induction to prove that for all k ≥ 1, if the product of some nondecreasing
list of k prime numbers is equal to the product of another nondecreasing list
of prime numbers, then the two lists must be the same.

When k = 1, we have p1 = q1 q2 · · · qm. If m > 1 then this contradicts the
fact that p1 is prime. Therefore m = 1 and p1 = q1.

For the induction step, suppose the statement is true for products of
nondecreasing lists of k prime numbers, and suppose that p1, p2, . . . , pk+1
and q1, q2, . . . , qm are prime numbers, p1 ≤ p2 ≤ · · · ≤ pk+1, q1 ≤ q2 ≤ · · · ≤
qm, and p1 p2 · · · pk+1 = q1 q2 · · · qm. Notice that if m = 1 then this equation
says p1 p2 · · · pk+1 = q1, and as in the base case this contradicts the fact that
q1 is prime, so m > 1.

Clearly pk+1 | (p1 p2 · · · pk+1), so pk+1 | (q1 q2 · · · qm), and by Theorem
7.2.4 it follows that pk+1 | qi for some i. Therefore pk+1 ≤ qi ≤ qm. A similar
argument shows that qm | pj for some j, so qm ≤ pj ≤ pk+1. We conclude that
pk+1 = qm. Canceling these factors from the equation p1 p2 · · · pk+1 = q1 q2 ·
· · qm gives us p1 p2 · · · pk = q1 q2 · · · qm−1, and now the inductive



hypothesis tells us that the remaining factors on both sides of the equation
are the same, as required. □

We now have in place everything we need to establish the existence and
uniqueness of prime factorizations. This theorem is so important it is known
as the fundamental theorem of arithmetic.

Theorem 7.2.6. (Fundamental theorem of arithmetic) For every integer n>1
there are unique prime numbers p1, p2, . . . , pk such that p1 ≤ p2 ≤ · · · ≤ pk
and n = p1 p2 · · · pk.

Proof. By Theorem 6.4.2, every integer greater than 1 is either prime or a
product of primes. Listing the primes from smallest to largest gives us the
required nondecreasing prime factorization. Uniqueness of the factorization
follows from Theorem 7.2.5. □

If we write the product of the list of prime numbers p1, p2, . . . , pk in the
form 1 · p1 p2 · · · pk, then it is natural to introduce the convention that the
product of the empty list is 1. With this convention we can extend the
fundamental theorem of arithmetic to say that every positive integer has a
unique prime factorization, where the factorization of the number 1 is the
product of the empty list of prime numbers.

Example 7.2.7. Find the prime factorizations of the following integers:

Solution

The most straightforward way to find the prime factorization of a positive
integer is to search for its smallest prime divisor, factor it out, and repeat
until all factors are prime. This gives the following results. (Note that 277 is
prime, so the factoring process for 277 stops immediately.)



When there are repeated primes in the prime factorization of an integer,
we often use exponent notation to write the prime factorization. For
example, the factorizations of 275 and 276 in the last example could be
written in the form 275 = 52 · 11 and 276 = 22 · 3 · 23. More generally, we
can write the prime factorization of a positive integer n in the form 

 where p1, p2, . . . , pk are prime numbers, p1 < p2 < · · · <
pk, and e1, e2, . . . , ek are positive integers. Again, by the fundamental
theorem of arithmetic, this representation of n is unique.

The fundamental theorem of arithmetic can provide insight into a number
of concepts of number theory. For example, suppose n and d are positive
integers and d | n. Then there is some positive integer c such that cd = n.
Now let the prime factorizations of c and d be c = p1 p2 · · · pk and d = q1 q2
· · · qm. Then n = cd = p1 p2 · · · pk q1 q2 · · · qm. If we rearrange the primes
in this product into nondecreasing order, then this must be the unique prime
factorization of n. Therefore d must be the product of some subcollection of
the primes in the prime factorization of n. Notice that we are including here
the possibility that the subcollection is the empty subcollection (so that d =
1 and c = n) or that it includes all of the primes in the factorization of n (so
that d = n and c = 1).

Rephrasing this conclusion using exponent notation, suppose the prime
factorization of n is  Then the divisors of n are precisely
the numbers of the form  where for all i ∈ {1, 2, . . . , k}, 0 ≤
fi ≤ ei. For example, we saw in Example 7.2.7 that the prime factorization of
276 is 276 = 22 · 3 · 23. Therefore

Prime factorization can also help us understand greatest common
divisors. Suppose a and b are positive integers. Let p1, p2, . . . , pk be a list
of all primes that occur in the prime factorization of either a or b. Then we
can write a and b in the form



where some of the exponents ei and fi might be 0, since some primes might
occur in only one of the factorizations. By the discussion of divisibility and
prime factorization in the previous paragraph, the common divisors of a and
b are all numbers of the form  where for every i ∈ {1, . . . ,
k}, gi ≤ ei and gi ≤ fi. The greatest common divisor can be found by letting
each gi have the largest possible value, which is min(ei, fi) = the minimum
of ei and fi. In other words,

For example, in Example 7.1.3 we used the Euclidean algorithm to find
that gcd(1392, 444) = 12. We could instead have factored 1392 and 444 into
primes:

These factorizations give us another way to find the greatest common
divisor of 1392 and 444:

Usually the Euclidean algorithm is a more efficient way to find the greatest
common divisor of two positive integers than prime factorization. But if
you happen to know the prime factorizations of two positive integers, then
you can compute their greatest common divisor very easily.

Another concept that is elucidated by prime factorization is least
common multiples. For any positive integers a and b, the least common
multiple of a and b, denoted lcm(a, b), is the smallest positive integer m
such that a | m and b | m. Least common multiples come up when we are
adding fractions: to add two fractions with denominators a and b, we start
by rewriting them with the common denominator lcm(a, b).

Suppose that, as before,



For each i ∈ {1, . . . , k}, any common multiple of a and b must include a
factor  in its prime factorization, where gi ≥ ei and gi ≥ fi. The smallest
possible value of gi is the maximum of ei and fi, which we will denote
max(ei, fi), so

It is not hard to show that for any numbers e and f, min(e, f) + max(e, f) = e
+ f (see exercise 4), so

This gives us another way to compute lcm(a, b):

For an alternative proof of this formula, see exercise 8.
For example, we now have two ways to compute lcm(1392, 444):

and

This shows that if we want to add two fractions with denominators 1392
and 444, we should use the common denominator 51504.

Example 7.2.8. Find the least common multiple of 1386 and 1029.

Solution



We begin by using the Euclidean algorithm to find gcd(1386, 1029). The
calculations in Figure 7.3 show that gcd(1386, 1029) = 21. Therefore

Figure 7.3. Calculation of gcd(1386, 1029) by Euclidean algorithm.

Alternatively, we could use prime factorizations: 1386 = 2 · 32 · 7 · 11 and
1029 = 3 · 73, so lcm(1386, 1029) = 2 · 32 · 73 · 11 = 67914.

Exercises
1. Find the prime factorizations of the following positive integers: 650,

756, 1067.
*2. Find lcm(1495, 650).
3. Find lcm(1953, 868).
4. Prove that for any numbers e and f, min(e, f) + max(e, f) = e + f.

*5. Suppose a and b are positive integers. Prove that a and b are relatively
prime iff their prime factorizations have no primes in common.

6. Suppose a and b are positive integers. Prove that a and b are relatively
prime iff there are integers s and t such that sa + tb = 1.

7. Suppose a, b, a ′, and b ′ are positive integers, a and b are relatively
prime, a ′ | a, and b ′ | b. Prove that a ′ and b ′ are relatively prime.

*8. Suppose a and b are positive integers. In this exercise you will give an
alternative proof of the formula lcm(a, b) = ab/gcd(a, b). Let m =



lcm(a, b).
(a) Prove that ab/gcd(a, b) is an integer and that a | (ab/gcd(a, b)) and b |

(ab/gcd(a, b)). Use this to conclude that m ≤ ab/gcd(a, b).
Let q and r be the quotient and remainder when ab is divided by m.
Thus, ab = qm + r and 0 ≤ r < m.

(b) Prove that r = 0.
(c) By part (b), ab = qm. Prove that q | a and q | b.
(d) Use part (c) to conclude that m ≥ ab/ gcd(a, b). Together with part (a),

this shows that m = ab/ gcd(a, b).
9. Suppose a and b are positive integers, and let d = gcd(a, b). Then d | a

and d | b, so there are positive integers j and k such that a = jd and b =
kd. Prove that j and k are relatively prime.

10. Prove that for all positive integers a, b, and d, if d | ab then there are
positive integers d1 and d2 such that d = d1 d2, d1 | a, and d2 | b.

11. Prove that for all positive integers a, b, and m, if a | m and b | m then
lcm(a, b) | m.

12. Suppose a, b, and c are positive integers. Let m be the smallest positive
integer such that a | m, b | m, and c | m. Prove that m = lcm(lcm(a, b),
c).

13. Prove that for all positive integers a and b, if a2 | b2 then a | b.
14. (a) Find all prime numbers p such that 5p + 9 ∈ {n2 | n ∈ N}.

(b) Find all prime numbers p such that 15p + 4 ∈ {n2 | n ∈ N}.
(c) Find all prime numbers p such that 5p + 8 ∈ {n3 | n ∈ N}.

15. Let H = {4n + 1 | n ∈ N} = {1, 5, 9, 13, . . .}. The elements of H are
called Hilbert numbers (named for David Hilbert (1862–1943)). A
Hilbert number that is larger than 1 and cannot be written as a product
of two smaller Hilbert numbers is called a Hilbert prime. For example,
9 is a Hilbert prime. (Of course, 9 is not a prime, since 9 = 3 · 3, but 3 /
∈ H.)

(a) Show that H is closed under multiplication; that is, ∀x ∈ H ∀y ∈ H(xy
∈ H).

(b) Show that every Hilbert number that is larger than 1 is either a Hilbert
prime or a product of two or more Hilbert primes.



(c) Show that 441 is a Hilbert number that can be written as a product of a
nondecreasing list of Hilbert primes in two different ways. Thus,
Hilbert prime factorization is not unique.

16. Suppose a and b are positive integers. Prove that there are relatively
prime positive integers c and d such that c | a, d | b, and cd = lcm(a, b).

17. Suppose a, b, and c are positive integers.
(a) Prove that gcd(a, bc) | (gcd(a, b) · gcd(a, c)).
(b) Prove that lcm(gcd(a, b), gcd(a, c)) | gcd(a, bc). (Hint: Use exercise

11.)
(c) Suppose that b and c are relatively prime. Prove that gcd(a, bc) =

gcd(a, b) · gcd(a, c).
18. Recall from exercise 5 in Section 6.2 that the numbers Fn = 2(2n) +1 are

called Fermat numbers. Fermat showed that Fn is prime for 0 ≤ n ≤ 4,
and Euler showed that F5 is not prime. It is not known if there is any n
> 4 for which Fn is prime. In this exercise you will see one reason why
one might be interested in prime numbers of this form. Show that if m
is a positive integer and 2m +1 is prime, then m is a power of 2. (Hint: If
m is not a power of 2, then m has an odd prime number p in its prime
factorization. Thus there is a positive integer r such that m = pr. Now
apply exercise 14 in Section 6.1 to conclude that (2r + 1) | (2m + 1).)

19. Suppose x is a positive rational number.
(a) Prove that there are positive integers a and b such that x = a/b and

gcd(a, b) = 1.
(b) Suppose a, b, c, and d are positive integers, x = a/b = c/d, and gcd(a, b)

= gcd(c, d) = 1. Prove that a = c and b = d.
(c) Prove that there are prime numbers p1, p2, . . . , pk and nonzero integers

e1, e2, . . . , ek such that p1 < p2 < · · · < pk and

Note that some of the exponents ei may be negative.
(d) Prove that the representation of x in part (c) is unique. In other words, if

p1, p2, . . . , pk and q1, q2, . . . , qm are prime numbers, e1, e2, . . . , ek



and f1, f2, . . . , fm are nonzero integers, p1 < p2 < · · · < pk, q1 < q2 < · · ·
< qm, and

then k = m and for all i ∈ {1, 2, . . . , k}, p= qand e= f.
20. Complete the following proof that  is irrational: Suppose a/b = 

 where a and b are positive integers. Then a2 = 2b2. Now derive a
contradiction by considering the exponent of 2 in the prime
factorizations of a and b.

7.3. Modular Arithmetic
Suppose m is a positive integer. Recall from Definition 4.5.9 that for any
integers a and b, we say that a is congruent to b modulo m if m | (a − b). We
write a ≡ b (mod m), or more briefly a ≡m b, to indicate that a is congruent
to b modulo m. We saw in Theorem 4.5.10 that ≡m is an equivalence
relation on Z. For any integer a, let [a]m be the equivalence class of a with
respect to the equivalence relation ≡m. The set of all of these equivalence
classes is denoted Z/≡m. Thus,

As we know from Theorem 4.5.4, Z/≡m is a partition of Z.
For example, in the case m = 3 we have

Notice that every integer is an element of exactly one of these equivalence
classes. It follows that every integer is congruent modulo 3 to exactly one
of the numbers 0, 1, and 2. This is an instance of the following general
theorem.



Theorem 7.3.1. Suppose m is a positive integer. Then for every integer a,
there is exactly one integer r such that 0 ≤ r < mand a ≡ r (mod m).

Proof. Let a be an arbitrary integer. Let q and r be the quotient and
remainder when a is divided by m (see exercise 14 in Section 6.4). This
means that a = qm + r and 0 ≤ r < m. Then a − r = qm, so m | (a − r), and
therefore a ≡ r (mod m). This proves the existence of the required integer r.

To prove uniqueness, suppose r1 and r2 are integers such that 0 ≤ r1 < m,
0 ≤ r2 < m, a ≡ r1 (mod m), and a ≡ r2 (mod m). Then by the symmetry and
transitivity of the equivalence relation ≡m, r1 ≡ r2 (mod m), so there is some
integer d such that r1 − r2 = dm. But from 0 ≤ r1 < mand 0 ≤ r2 < m we see
that −m < r1 − r2 < m. Thus −m < dm < m, which implies that −1 < d < 1.
The only integer strictly between −1 and 1 is 0, so d = 0 and therefore r1 −
r2 = dm = 0. In other words, r1 = r2. □

Commentary. Of course, the existence and uniqueness of the number r are
proven separately, and the proof of uniqueness uses the usual strategy of
assuming that r1 and r2 are two integers with the required properties and
then proving r1 = r2.

Theorem 7.3.1 says that every integer is congruent modulo m to exactly
one element of the set {0, 1, . . . , m − 1}. We say that this set is a complete
residue system modulo m.

Note that by Lemma 4.5.5,

Thus, Theorem 7.3.1 shows that every equivalence class in Z/≡m is equal to
exactly one of the equivalence classes in the list [0] m, [1] m, . . . , [m − 1]m.
Thus, these m equivalence classes are distinct, and Z/≡m = {[0]m, [1]m, . . . ,
[m − 1]m }.

Consider any two equivalence classes X and Y in Z/≡m. Something
surprising happens if we add or multiply elements of X and Y. It turns out
that all sums of the form x + y, where x ∈ X and y ∈ Y, belong to the same



equivalence class, and also all products xy belong to the same equivalence
class. In other words, we have the following theorem.

Theorem 7.3.2. Suppose m is a positive integer and X and Y are elements of
Z/≡m. Then:

1. There is a unique S ∈ Z/≡m such that ∀x ∈ X∀y ∈ Y(x + y ∈ S).

2. There is a unique P ∈ Z/≡m such that ∀x ∈ X∀y ∈ Y(xy ∈ P).

We will prove this theorem shortly, but first we use it to introduce two
binary operations on Z/≡m.

Definition 7.3.3. Suppose X and Y are elements of Z/≡m. Then we define
the sum and product of X and Y, denoted X + Y and X · Y, as follows:

The key to our proof of Theorem 7.3.2 will be the following lemma.

Lemma 7.3.4. Suppose m is a positive integer. Then for all integers a, a ′, b,
and b ′, if a ′ ≡ a (mod m) and b ′ ≡ b (mod m) then a ′ +b ′ ≡ a+b (mod m)
and a ′ b ′ ≡ ab (mod m).

Proof. Suppose a ′ ≡ a (mod m) and b ′ ≡ b (mod m). Then m | (a ′ − a) and
m | (b ′ − b), so we can choose integers c and d such that a ′ − a = cm and b ′
− b = dm, or in other words a ′ = a + cm and b ′ = b + dm. Therefore (a ′ + b
′) − (a + b) = (a + cm + b + dm) − (a + b) = cm + dm = (c + d)m, so m | ((a ′
+b ′)−(a +b)), which means a ′ +a ≡ b ′ +b (mod m). Similarly, a ′ b ′ −ab =
(a+cm)(b+dm)−ab = adm+bcm+cdm2 = (ad+bc+cdm)m, so m | (a ′ b ′ − ab),
and therefore a ′ b ′ ≡ ab (mod m). □

Proof of Theorem 7.3.2. Since X and Y are elements of Z/≡m, we can let a
and b be integers such that X = [a] m and Y = [b] m. To prove part 1 of the
theorem, let S = [a + b] m. Now let x ∈ X and y ∈ Y be arbitrary. Then x ∈
[a]m and y ∈ [b]m, so x ≡ a (mod m) and y ≡ b (mod m). By Lemma 7.3.4 it



follows that x + y ≡ a + b (mod m), so x + y ∈ [a + b] m = S. Since x and y
were arbitrary, we conclude that ∀x ∈ X∀y ∈ Y(x + y ∈ S).

To prove that S is unique, suppose S ′ is another equivalence class such
that ∀x ∈ X∀y ∈ Y(x+y ∈ S ′). Since a ∈ X and b ∈ Y, a+b ∈ S and a+b
∈ S ′. Therefore S and S ′ are not disjoint, and since Z/≡m is pairwise
disjoint, this implies that S = S ′.

The proof of part 2 is similar, using P = [ab]m; see exercise 2. □

The proof of Theorem 7.3.2 shows that if X = [a]m and Y = [b]m, then the
sum of X and Y is the equivalence class S = [a + b] m and the product is P =
[ab]m. Thus, we have the following theorem.

Theorem 7.3.5. For any positive integer m and any integers a and b,

Let’s try out these ideas. Consider the case m = 5. We know that every
element of Z/≡5 is equal to either [0]5, [1]5, [2]5, [3]5, or [4]5, and we will
often choose to write equivalence classes in one of these forms. For
example, [2]5 + [4]5 = [6]5, but also 6 ≡ 1 (mod 5), so [6]5 = [1]5. Thus, we
can say that [2]5 + [4]5 = [1]5. Similarly, [2]5 · [4]5 = [8]5 = [3]5. Figure 7.4
shows the complete addition and multiplication tables for Z/≡5.

Figure 7.4. Addition and multiplication tables for Z/≡5.



How do addition and multiplication in Z/≡m compare to addition and
multiplication in Z? Many properties of addition and multiplication in Z
carry over easily to Z/≡m.

Theorem 7.3.6. Suppose m is a positive integer. Then for all equivalence
classes X, Y, and Z in Z/≡m:

1. X + Y = Y + X. (Addition is commutative.)
2. (X + Y) + Z = X + (Y + Z). (Addition is associative.)
3. X + [0]m = X. ([0]m is an identity element for addition.)

4. There is some X ′ ∈ Z/≡m such that X + X ′ = [0]m. (X has an additive
inverse.)

5. X · Y = Y · X. (Multiplication is commutative.)
6. (X · Y) · Z = X · (Y · Z). (Multiplication is associative.)
7. X · [1]m = X. ([1]m is an identity element for multiplication.)

8. X · [0]m = [0]m.

9. X · (Y + Z) = (X · Y) + (X · Z). (Multiplication distributes over addition.)

Proof. Since X, Y, Z ∈ Z/≡m, there are integers a, b, and c such that X =
[a]m, Y = [b] m, and Z = [c] m. For part 1, we use the commutativity of
addition in Z:

The proof of 2 is similar. To prove part 3, we compute

For part 4, let X ′ = [−a]m. Then

The proofs of the remaining parts are similar (see exercise 3). □



You are asked to show in exercise 4 that the identity elements and
inverses in Theorem 7.3.6 are unique. Thus, in part 3 of the theorem we can
say that [0] m is not just an identity element for addition, but the identity
element, and similarly [1]m is the identity element for multiplication. In part
4, we can say that X ′ is the additive inverse of X; we will denote the
additive inverse of X by −X. For example, according to the addition table
for Z/≡5 in Figure 7.4, [4]5 + [1]5 = [0]5, so −[4]5 = [1]5.

What about multiplicative inverses? If X ∈ Z/≡m, X ′ ∈ Z/≡m, and X · X ′
= [1]m, then we say that X ′ is a multiplicative inverse of X. For example,
according to the multiplication table for Z/≡5 in Figure 7.4, [3]5 · [2]5 =
[1]5, so [2]5 is a multiplicative inverse of [3]5. In fact, in Z/≡5, every
element except [0]5 has a multiplicative inverse. Multiplicative inverses,
when they exist, are also unique (see exercise 4), so we can say that [2]5 is
the multiplicative inverse of [3]5. In general, if X ∈ Z/≡m, then the
multiplicative inverse of X, if it exists, is denoted X−1. Thus 

A little experimentation reveals that multiplicative inverses often don’t
exist. For example, we leave it for you to check that in Z/≡6, only [1]6 and
[5]6 have multiplicative inverses (see exercise 1). When does an
equivalence class have a multiplicative inverse? The answer is given by our
next theorem.

Theorem 7.3.7. Suppose that a and m are positive integers. Then [a] m has
a multiplicative inverse iff m and a are relatively prime.

Proof. Suppose first that [a]m has a multiplicative inverse; say 
 Then [a]m · [a ′]m = [aa ′]m = [1] m, and therefore aa ′ ≡ 1

(mod m). This means that m | (aa ′ −1), so we can choose some integer c
such that aa ′ −1 = cm, or equivalently −cm + a ′ a = 1. Thus 1 is a linear
combination of m and a, and by exercise 6 in the last section it follows that
m and a are relatively prime.

For the other direction, assume that m and a are relatively prime. Then by
Theorem 7.1.4 there are positive integers s and t such that sm + ta = 1.
Therefore ta−1 = −sm, so ta ≡ 1 (mod m). We conclude that [a] m · [t]m =
[ta]m = [1]m, so [t] m is the multiplicative inverse of [a]m. □



Commentary. Notice that the conclusion of the theorem is a biconditional
statement, and the proof uses the usual strategy of proving both directions
of the biconditional separately.

The proof of Theorem 7.3.7 shows that for any positive integers m and a,
we can use the extended Euclidean algorithm to find  If the algorithm
shows that gcd(m, a) ≠ 1 then  doesn’t exist, and if we find that gcd(m,
a) = 1 = sm + ta then 

Example 7.3.8. Find, if possible, the multiplicative inverses of [34]847 and
[35]847 in Z/≡847.

Solution

Figure 7.5 shows the calculation of gcd(847, 34) by the extended Euclidean
algorithm. We conclude that gcd(847, 34) = 1 = 11 · 847 − 274 · 34, and
therefore  As you can easily check, 34·573 =
19482 ≡ 1 (mod 847), so [34]847 · [573]847 = [19482]847 = [1]847.

Figure 7.5. Calculation of gcd(847, 34) by extended Euclidean algorithm.

We leave it to you to compute that gcd(847, 35) = 7. Therefore [35]847
does not have a multiplicative inverse.

Example 7.3.9. A class has 25 students. For Easter, the teacher bought
several cartons of eggs, each containing a dozen eggs, and then distributed
the eggs among the students for them to decorate. After giving an equal
number of eggs to each student, she had 7 eggs left over. What is the
smallest number of cartons of eggs she could have bought?



Solution

Let x be the number of cartons of eggs the teacher bought. Then she had
12x eggs, and setting aside the 7 left over at the end, the remaining eggs
were divided evenly among 25 students. Therefore 25 | (12x − 7), so 12x ≡
7 (mod 25). We must find the smallest positive integer x satisfying this
congruence.

If we were solving the equation 12x = 7 for a real number x, we would
know what to do. If 12x = 7, then by multiplying both sides of the equation
by 1/12 we conclude that x = 7/12. In fact, this reasoning can be reversed: if
x = 7/12, then multiplying by 12 we get 12x = 7. Thus, the equations 12x =
7 and x = 7/12 are equivalent, which means that x = 7/12 is the unique
solution to the equation 12x = 7.

Unfortunately, we are working with the congruence 12x ≡ 7 (mod 25),
which is not an equation. But we can turn it into an equation by working
with equivalence classes. Our congruence is equivalent to the equation
[12]25 · [x]25 = [7]25, and we can solve this equation by imitating our
solution to the equation 12x = 7. We begin by finding the multiplicative
inverse of [12]25. Applying the extended Euclidean algorithm, we find that
gcd(25, 12) = 1 = 1 · 25 − 2 · 12, so 

To solve the equation [12]25 · [x]25 = [7]25, we multiply both sides by 
 We spell out all the steps in detail, to make it clear how the

properties in Theorem 7.3.6 are being used:

As before, these steps can be reversed: multiplying both sides of the
equation [x]25 = [11]25 by [12]25 gives us [12]25 · [x]25 = [7]25. Therefore



In other words, the solutions to the congruence 12x ≡ 7 (mod 25) are
precisely the elements of the equivalence class [11]25, and the smallest
positive solution is x = 11. If the teacher bought 11 cartons of eggs, then she
had 132 eggs, and after giving 5 to each student she had 7 left over.

We were lucky in this example that 25 and 12 were relatively prime, so
that [12]25 had a multiplicative inverse. This multiplicative inverse played a
crucial role in our solution of the congruence 12x ≡ 7 (mod 25). How can
we solve a congruence ax ≡ b (mod m) if m and a are not relatively prime?
We won’t analyze such congruences in detail, but we’ll give a couple of
examples illustrating how such congruences can be solved by using the
following two theorems.

Theorem 7.3.10. Suppose m and a are positive integers, and let d = gcd(m,
a). Then for every integer b, if  then there is no integer x such that ax ≡
b (mod m).

Proof. See exercise 7. □

Theorem 7.3.11. Suppose n and m are positive integers. Then for all
integers a and b,

Proof. See exercise 8. □

Example 7.3.12. Solve the following congruences:

Solution

We begin by computing that gcd(374, 77) = 11. Since  Theorem
7.3.10 tells us that the first congruence, 77x ≡ 120 (mod 374), has no
solutions. To solve the second congruence, we first write it as 11 · 7x ≡ 11 ·
11 (mod 11 · 34) and then observe that by Theorem 7.3.11, this is equivalent
to 7x ≡ 11 (mod 34). To solve this congruence, we compute that gcd(34, 7)
= 1 = −1 · 34 + 5 · 7, so  Therefore



Thus the solutions to the second congruence are the elements of [21]34.

Exercises
1. Make addition and multiplication tables for Z/≡6.

2. Complete the proof of Theorem 7.3.2.
3. Prove parts 5–9 of Theorem 7.3.6.

*4. Suppose m is a positive integer.
(a) Suppose Z1 and Z2 are both additive identity elements for Z/≡m; in

other words, for all X ∈ Z/≡m, X + Z1 = X and X + Z2 = X. Prove that
Z1 = Z2. This shows that the additive identity element in Z/≡m is
unique. (Hint: Compute Z1 + Z2 in two different ways.)

(b) Suppose X ∈ Z/≡m and  and  are both additive inverses for X; in
other words,  Prove that  This shows
that the additive inverse of X is unique. (Hint: Compute 
in two different ways.)

(c) Prove that the multiplicative identity element in Z/≡m is unique.
(d) Prove that if an equivalence class X ∈ Z/≡m has a multiplicative

inverse, then this inverse is unique.
5. Show that if p is a prime number then every element of Z/≡p except [0]

p has a multiplicative inverse.

6. If ab ≡ 0 (mod m), is it necessarily true that either a ≡ 0 (mod m) or b ≡
0 (mod m)? Justify your answer with either a proof or a
counterexample.

7. Prove Theorem 7.3.10.
*8. Prove Theorem 7.3.11.



9. A class has 26 students. The teacher bought some packages of file
cards, each of which contained 20 file cards. When he passed the cards
out to the students, he discovered that he needed to add 2 additional
cards from his desk to be able to give each student the same number of
cards. If each student got between 10 and 20 cards, how many packages
did he buy?

*10. Solve the following congruences.
(a) 40x ≡ 8 (mod 237).
(b) 40x ≡ 8 (mod 236).
11. Solve the following congruences.
(a) 31x ≡ 24 (mod 384).
(b) 32x ≡ 24 (mod 384).
12. In this exercise you will solve the following problem: Suppose a chair

without arms costs $35 and a chair with arms costs $50. If Alice spent
$720 on chairs, how many of each kind of chair did she buy?

(a) Show that if x is the number of chairs without arms that she bought,
then 35x ≡ 20 (mod 50).

(b) Solve the congruence in part (a).
(c) Not every solution to the congruence in part (a) leads to a possible

answer to the problem. Which ones do? (Note: There is more than one
possible answer to the problem.)

13. Suppose m and n are relatively prime positive integers. Prove that for
all integers a and b, a ≡ b (mod m) iff na ≡ nb (mod m).

14. Suppose that m1 and m2 are positive integers. Prove that for all integers
a and b, if a ≡ b (mod m1) and a ≡ b (mod m2) then a ≡ b (mod lcm(m1,
m2)). (Hint: Use exercise 11 in Section 7.2.)

15. Prove that for all positive integers m, a, and b, if a ≡ b (mod m) then
gcd(m, a) = gcd(m, b).

16. Suppose a ≡ b (mod m). Prove that for every natural number n, an ≡ bn

(mod m).

In exercises 17–19, we use the following notation. If d0, d1, . . . , dk ∈ {0, 1,
. . . , 9}, then (dk · · · d1 d0)10 is the number whose representation in decimal
notation is dk · · · d1 d0. In other words,



17. Suppose n = (d· · · dd)10.

(a) Show that n ≡ (d0 + d1 +· · · +dk) (mod 3).
(b) Show that 3 | n iff 3 | (d0 + d1 +· · · +dk). (This gives a convenient way

to test a natural number for divisibility by 3: add up the digits and
check if the digit sum is divisible by 3.)

18. Suppose n = (dk · · · d1 d0)10.

(a) Show that n ≡ (d0 − d1 + d2 − d3 +· · · +(−1)k dk) (mod 11).
(b) Show that 11 | n iff 11 | (d0 − d1 +· · · +(−1)k dk).
(c) Is 535172 divisible by 11?
19. Define a function f with domain {n ∈ Z | n ≥ 10} as follows: if n = (dk ·

· · d1 d0)10 then f(n) = (dk · · · d1)10 +5d0. For example, f(1743) = 174 +
5 · 3 = 189.

(a) Show that for all n ≥ 10, f(n) ≡ 5n (mod 7) and n ≡ 3f(n) (mod 7).
(b) Show that for all n ≥ 10, 7 | n iff 7 | f(n). (This gives a convenient way

to test a large integer n for divisibility by 7: repeatedly apply f until
you get a number whose divisibility by 7 is easy to determine.)

(c) Is 627334 divisible by 7?
20. (a) Find an example of positive integers m, a, a ′, b, and b ′ such that a

′ ≡ a (mod m) and b ′ ≡ b (mod m) but 
(b) Show that it is impossible to define an exponentiation operation on

equivalence classes in such a way that for all positive integers m, a,
and 

21. Suppose m is a positive integer. Define f: Z × Z → Z/≡m by the formula
f(a, b) = [a+b]m, and define h: (Z/≡m)×(Z/≡m) → Z/≡m by the formula
h(X, Y) = X + Y. You might want to compare this exercise to exercise 21
in Section 5.1.

(a) Show that for all integers x1, x2, y1, and y2, if x1 ≡m y1 and x2 ≡m y2 then
f(x1, x2) = f(y1, y2). (Extending the terminology of exercise 21 in
Section 5.1, we could say that f is compatible with ≡m.)

(b) Show that for all integers x1 and x2, h([x1] m, [x2] m) = f(x1, x2).



7.4. Euler’s Theorem
In the last section, we saw that some elements of Z/≡m have multiplicative
inverses and some don’t. In this section, we focus on the ones that do. We
let (Z/≡m)∗ denote the set of elements of Z/≡m that have multiplicative
inverses. In other words,

The number of elements of (Z/≡m)∗ is denoted φ(m). The function φ is
called Euler’s phi function, or Euler’s totient function; it was introduced by
Euler in 1763. For every positive integer m, (Z/≡m)∗ ⊆ Z/≡m and Z/≡m has
m elements, so φ(m) ≤ m. And [1]m · [1]m = [1] m, so [1]m ∈ (Z/≡m)∗ and
therefore φ(m) ≥ 1. For example,

so φ(10) = 4.
For our purposes, the most important properties of (Z/≡m)∗ are that it is

closed under inverses and multiplication. That is:

Theorem 7.4.1. Suppose m is a positive integer.

1. For every X in (Z/≡m)∗, X−1 ∈ (Z/≡m)∗.

2. For every X and Y in (Z/≡m)∗, X · Y ∈ (Z/≡m)∗.

Proof.

1. Suppose X ∈ (Z/≡m)∗. Then X has a multiplicative inverse X−1, and X
· X−1 = [1]m. But this equation also tells us that X is the multiplicative
inverse of X−1; in other words, (X−1)−1 = X. Therefore X−1 ∈ (Z/≡m)∗.

2. Suppose X ∈ (Z/≡m)∗ and Y ∈ (Z/≡m)∗. Then X and Y have
multiplicative inverses X−1 and Y−1. Therefore



This means that X−1 · Y−1 is the multiplicative inverse of X · Y, so (X ·
Y)−1 = X−1 · Y−1 and X · Y ∈ (Z/≡m)∗. □

Suppose X ∈ (Z/≡m)∗. By Theorem 7.4.1, for every Y ∈ (Z/≡m)∗, X·Y ∈
(Z/≡m)∗, so we can define a function fX: (Z/≡m)∗ → (Z/≡m)∗ by the
formula fX (Y) = X · Y. Let’s investigate the properties of this function.

We claim first that fX is one-to-one. To see why, suppose Y1 ∈ (Z/≡m)∗,
Y2 ∈ (Z/≡m)∗, and fX (Y1) = fX (Y2). Then X · Y1 = X · Y2, and therefore

This proves that fX is one-to-one. Next, we claim that fX is onto. To prove
this, suppose Y ∈ (Z/≡m)∗. Then since (Z/≡m)∗ is closed under inverses
and multiplication, X−1 · Y ∈ (Z/≡m)∗, and

Thus, fX is onto.
For example, consider again the case m = 10, and let X = [3]10. Applying

fX to the four elements of (Z/≡10)∗ gives the values shown in Figure 7.6.
Notice that, since fX is one-to-one and onto, each of the four elements of (Z/
≡10)∗ appears exactly once in the column under fX (Y); each element
appears at least once because fX is onto, and it appears only once because fX
is one-to-one. Thus, the entries in the second column of Figure 7.6 are
exactly the same as the entries in the first column, but listed in a different
order.



Figure 7.6. Values of fX when X = [3]10.

More generally, suppose m is a positive integer and X ∈ (Z/≡m)∗. By the
definition of Euler’s phi function, there are φ(m) elements in (Z/≡m)∗. Let
Y1, Y2, . . . , Yφ(m) be a list of these elements. Then since fX is one-to-one and
onto, each of these elements occurs exactly once in the list fX (Y1), fX (Y2), .
. . , fX (Yφ(m)). In other words, the two lists Y1, Y2, . . . , Yφ(m) and fX (Y1), fX
(Y2), . . . , fX (Yφ(m)) contain exactly the same entries, but listed in different
orders – just like the two columns in Figure 7.6. It follows, by the
commutative and associative laws for multiplication, that if we multiply all
of the entries in each of the two lists, the products will be the same (see
exercise 21 in Section 6.4):

where of course by Xφ(m) we mean X multiplied by itself φ(m) times. To
simplify this equation, let Z = Y1 · Y2 · · · Yφ(m). Then the equation says Z =
Xφ(m) · Z. Since (Z/≡m)∗ is closed under multiplication, Z ∈ (Z/≡m)∗, so it
has an inverse. Multiplying both sides of the equation Z = Xφ(m) · Z by Z−1,
we get

Thus, we have proven the following theorem.

Theorem 7.4.2. Suppose m is a positive integer and X ∈ (Z/≡m)∗. Then
Xφ(m) = [1]m.



To understand the significance of this theorem, it may help to rephrase it
in terms of numbers.

Theorem 7.4.3. (Euler’s theorem) Suppose m is a positive integer. Then for
every positive integer a, if gcd(m, a) = 1 then aφ(m) ≡ 1 (mod m).

Proof. Suppose a is a positive integer and gcd(m, a) = 1. Then by Theorem
7.3.7, [a]m ∈ (Z/≡m)∗, so by Theorem 7.4.2,  where 
denotes [a]m multiplied by itself φ(m) times. But

(For a more careful proof of this equation, see exercise 5.) Thus, 
 and therefore aφ(m) ≡ 1 (mod m). □

For example, 10 and 7 are relatively prime, so according to Euler’s
theorem, 7φ(10) should be congruent to 1 modulo 10. To check this, we
compute

To apply Euler’s theorem, we need to be able to compute φ(m). Of
course, we can check all the elements of Z/≡m one-by-one and count how
many have multiplicative inverses, as we did in the case m = 10, but for
large m this will be impractical. We devote the rest of this section to finding
a more efficient way to compute φ(m).

We begin by rephrasing the definition of φ(m). We know that {0, 1, . . . ,
m − 1} is a complete residue system modulo m, but since 0 ≡ m (mod m),
we can also say that {1, 2, . . . , m} is a complete residue system. Thus, Z/
≡m = {[1]m, [2]m, . . . , [m − 1]m, [m]m } = {[a]m | 1 ≤ a ≤ m}, where each
element of Z/≡m appears exactly once in this list of elements. To identify
which of these elements are in (Z/≡m)∗, we use Theorem 7.3.7, which tells
us that for any positive integer a, [a] m has a multiplicative inverse iff m and
a are relatively prime. Thus,



This gives us another way to understand Euler’s phi function:

φ(m) = the number of elements in the set {a | 1 ≤ a ≤ m and gcd(m, a) = 1}.

Using this characterization of the phi function, it is easy to compute φ(p)
when p is prime: If 1 ≤ a ≤ p − 1 then p ∤ a, and therefore gcd(p, a) = 1, but
gcd(p, p) = p > 1. Therefore

so φ(p) = p−1. In fact, it is almost as easy to compute φ(pk) for any positive
integer k. If a is a positive integer and p | a then gcd(pk, a) ≥ p > 1, but if p ∤
a then the only common divisor of pk and a is 1, so gcd(pk, a) = 1. Thus the
elements of the set {a | 1 ≤ a ≤ pk } that are not relatively prime to pk are
precisely the ones that are divisible by p, and those elements are p, 2p, 3p, .
. . , pk = pk−1 p. In other words,

and the number of elements in this set is pk − pk−1 = pk−1 (p − 1). Thus φ(pk)
= pk−1 (p − 1).

To compute φ(m) for other values of m, we use the following theorem,
which we will prove later in this section.

Theorem 7.4.4. Suppose m and n are relatively prime positive integers.
Then φ(mn) = φ(m) · φ(n).

A function f from the positive integers to the real numbers is called a
multiplicative function if it has the property that for all relatively prime
positive integers m and n, f(mn) = f(m) · f(n). Thus, Theorem 7.4.4 says that
Euler’s phi function is a multiplicative function. A number of other
important functions in number theory are also multiplicative, but φ is the
only one we will study in this book. (For two more examples, see exercises
16 and 17.)

Theorem 7.4.4 allows us to use the prime factorization of any positive
integer m to find φ(m). Suppose the prime factorization of m is 



 where p1, p2, . . . , pk are prime numbers and p1 < p2 < ·
· · < pk. Then  and  are relatively prime, because they have no
prime factors in common (see exercise 5 in Section 7.2), so 

 Repeating this reasoning we conclude that

For example, 600 = 23 · 3 · 52, so

That was a lot easier than explicitly listing the 160 elements of (Z/≡600)∗ !
Our proof of Theorem 7.4.4 will depend on three lemmas.

Lemma 7.4.5. Suppose m and n are relatively prime positive integers. Then
for all integers a and b, a ≡ b (mod mn) iff a ≡ b (mod m) and a ≡ b (mod
n).

Proof. See exercise 6. □

Lemma 7.4.6. For all positive integers a, b, and c, gcd(ab, c) = 1 iff gcd(a,
c) = 1 and gcd(b, c) = 1.

Proof. See exercise 7. □

Lemma 7.4.7. Suppose m and n are relatively prime positive integers. Then
for all integers a and b, there is some integer r such that 1 ≤ r ≤ mn, r ≡ a
(mod m), and r ≡ b (mod n).

Proof. Let a and b be arbitrary integers. Since m and n are relatively prime,
there are integers s and t such that sm+ tn = 1. Therefore tn − 1 = −sm and
sm − 1 = −tn.

Let x = tna + smb. Then

so m | (x − a), and therefore x ≡ a (mod m). Similarly,



so n | (x − b) and x ≡ b (mod n).
Since {1, 2, . . . , mn} is a complete residue system modulo mn, we can

find some integer r such that r ≡ x (mod mn) and 1 ≤ r ≤ mn. By Lemma
7.4.5, r ≡ x (mod m) and r ≡ x (mod n), and by the transitivity of ≡m and ≡n
it follows that r ≡ a (mod m) and r ≡ b (mod n). □

Commentary. After the introduction of the arbitrary integers a and b, the
goal is an existential statement. As is common in proofs of existential
statements, the proof introduces a number x without providing any
motivation for the choice of x. The number x turns out to have most of the
properties we want, but perhaps not all of them, since it might not be
between 1 and mn. We therefore need an extra step to come up with the
number r that has all of the required properties.

We will need one more idea for our proof of Theorem 7.4.4. Suppose A is
a set with p elements and B is a set with q elements; say A = {a1, a2, . . . , ap
} and B = {b1, b2, . . . , bq }. Then A × B has pq elements. To see why,
imagine arranging the elements of A×B in a table, with the ordered pair (ai,
bj) in row i, column j of the table. Since the table will have p rows and q
columns, A×B must have pq elements. For a more careful proof of this fact,
see exercise 22 in Section 8.1.

We are now ready to prove that φ is a multiplicative function.

Proof of Theorem 7.4.4. Let R = {a | 1 ≤ a ≤ mn and gcd(mn, a) = 1}. By
Lemma 7.4.6, if a ∈ R then gcd(m, a) = 1 and gcd(n, a) = 1, so [a]m ∈ (Z/
≡m)∗ and [a]n ∈ (Z/≡n)∗. Thus we can define a function f: R → (Z/≡m)∗ ×
(Z/≡n)∗ by the formula f(a) = ([a]m, [a] n). Our plan is to show that f is one-
to-one and onto, which implies that the sets R and (Z/≡m)∗ × (Z/≡n)∗ have
the same number of elements. But R has φ(mn) elements and (Z/≡m)∗ × (Z/
≡n)∗ has φ(m) · φ(n) elements, so this will establish that φ(mn) = φ(m) ·
φ(n).



To show that f is one-to-one, suppose a1 ∈ R, a2 ∈ R, and f(a1) = f(a2).
This means that ([a1]m, [a1]n) = ([a2]m, [a2] n), so [a1]m = [a2]m and [a1] n =
[a2]n, and therefore a1 ≡ a2 (mod m) and a1 ≡ a2 (mod n). By Lemma 7.4.5
it follows that a1 ≡ a2 (mod mn). But since {a | 1 ≤ a ≤ mn} is a complete
residue system modulo mn, no two distinct elements of R are congruent
modulo mn, so a1 = a2. This completes the proof that f is one-to-one.

Finally, to show that f is onto, let ([a]m, [b]n) be an arbitrary element of
(Z/≡m)∗ × (Z/≡n)∗. By Lemma 7.4.7, there is some integer r such that 1 ≤ r
≤ mn, r ≡ a (mod m), and r ≡ b (mod n). Therefore [r]m = [a]m ∈ (Z/≡m)∗

and [r] n = [b] n ∈ (Z/≡n)∗, so by Theorem 7.3.7, gcd(m, r) = gcd(n, r) = 1.
Applying Lemma 7.4.6, we conclude that gcd(mn, r) = 1. Therefore r ∈ R
and f(r) = ([r]m, [r]n) = ([a] m, [b]n), which shows that f is onto. □

Exercises
1. List the elements of (Z/≡20)∗.

*2. Find φ(m):
(a) m = 539.
(b) m = 540.
(c) m = 541.

3. Check these instances of Euler’s theorem by computing aφ(m) and
verifying that aφ(m) ≡ 1 (mod m).

(a) m = 18, a = 5.
(b) m = 19, a = 2.
(c) m = 20, a = 3.
4. Check these instances of Lemma 7.4.7 by finding an integer r such that

1 ≤ r ≤ mn, r ≡ a (mod m), and r ≡ b (mod n).
(a) m = 5, n = 8, a = 4, b = 1.
(b) m = 7, n = 10, a = 6, b = 4.
5. Suppose m and a are positive integers. Use mathematical induction to

prove that for every positive integer n, [a]n
m = [an]m.



*6. Prove Lemma 7.4.5.
7. Prove Lemma 7.4.6.

*8. Show that if we drop the hypothesis that m and n are relatively prime
from Lemma 7.4.5, then one direction of the “iff” statement is correct
and one is not. Justify your answer by giving a proof for one direction
and a counterexample for the other.

9. If we drop the hypothesis that m and n are relatively prime from Lemma
7.4.7, is the lemma still correct? Justify your answer by giving either a
proof or a counterexample.

10. Prove Fermat’s little theorem, which says that if p is a prime number,
then for every positive integer a, ap ≡ a (mod p).

11. Prove that if m and a are relatively prime positive integers, then 
 

12. Prove that for all positive integers m, a, p, and q, if m and a are
relatively prime and p ≡ q (mod φ(m)) then ap ≡ aq (mod m).

13. Prove that if a, b1, b2, . . . , bk are positive integers and gcd(a, b1) =
gcd(a, b2) = · · · = gcd(a, bk) = 1, then gcd(a, b1 b2 · · · bk) = 1.

14. Suppose that m1, m2, . . . , mk are positive integers that are pairwise
relatively prime; i.e., for all i, j ∈ {1, 2, . . . , k}, if i ≠ j then gcd(mi, mj)
= 1. Let M = m1 m2 · · · mk. Prove that for all integers a and b, a ≡ b
(mod M) iff for every i ∈ {1, 2, . . . , k}, a ≡ b (mod mi).

15. In this exercise you will prove the Chinese remainder theorem. (The
theorem was first stated by the Chinese mathematician Sun Zi in the
third century.)

(a) Suppose that m1, m2, . . . , mk are positive integers that are pairwise
relatively prime; i.e., for all i, j ∈ {1, 2, . . . , k}, if i ≠ j then gcd(mi,
mj) = 1. Let M = m1 m2 · · · mk. Prove that for all integers a1, a2, . . . , ak
there is an integer r such that 1 ≤ r ≤ M and for all i ∈ {1, 2, . . . , k}, r
≡ ai (mod mi). (Hint: Use induction on k. In the induction step, use
Lemma 7.4.7. You will also find exercises 13 and 14 helpful.)

(b) Prove that the integer r in part (a) is unique.
16. For each positive integer n, let τ(n) = the number of elements of D(n).

For example, D(6) = {1, 2, 3, 6}, so τ(6) = 4. In this exercise you will



prove that τ is a multiplicative function. Suppose m and n are relatively
prime positive integers.

(a) Prove that if a ∈ D(m) and b ∈ D(n) then ab ∈ D(mn).
(b) By part (a), we can define a function f: D(m) × D(n) → D(mn) by the

formula f(a, b) = ab. Prove that f is one-to-one and onto.
(c) Prove that τ(mn) = τ(m)·τ(n), which shows that τ is multiplicative.
17. For each positive integer n, let σ(n) = the sum of all elements of D(n).

For example, D(6) = {1, 2, 3, 6}, so σ(6) = 1 + 2 + 3 + 6 = 12. Prove
that σ is a multiplicative function. (Hint: Use the function f from part
(b) of exercise 16.)

18. In this exercise you will prove Euclid’s theorem on perfect numbers.
Recall that a positive integer n is called perfect if n is equal to the sum
of all divisors of n that are smaller than n. Equivalently, n is perfect if
σ(n) = 2n, where σ is the function defined in exercise 17. Prove that if p
is a positive integer and 2p − 1 is prime, then 2p−1 (2p − 1) is perfect.
(Hint: You will find exercise 17 and Example 6.1.1 useful.)

19. In this exercise you will prove Euler’s theorem on perfect numbers.
Suppose n is an even perfect number. (As in exercise 18, to say that n is
perfect means that σ(n) = 2n, where σ is the function defined in exercise
17.)

(a) Prove that there are positive integers k and m such that n = 2k m and m
is odd.

(b) Prove that 2k+1 m = (2k+1 − 1)σ (m).
(c) Prove that 2k+1 | σ(m). Thus there is a positive integer d such that σ(m)

= 2k+1 d.
(d) Prove that m = (2k+1 − 1)d.
(e) Prove that d = 1. (Hint: Suppose d > 1. Then 1, d, and m are distinct

divisors of m, so σ(m) ≥ 1+d +m. Derive a contradiction.)
(f) Let p = k + 1. Then by parts (a), (d), and (e), n = 2p−1 (2p − 1). Prove

that 2p − 1 is prime. Thus n is a perfect number of the form considered
in exercise 18.

7.5. Public-Key Cryptography



Suppose you want to make a purchase online. You go to the merchant’s
website and place your order. Then the website asks you to enter your credit
card number. You type the number on your computer, and your computer
must transmit the number over the internet to the merchant’s computer.

Internet communications generally pass through several computers on
their way from the sender to the recipient. As a result, there is a possibility
that someone with access to one of those intermediary computers could be
eavesdropping when your computer sends your credit card number to the
merchant. To keep such an eavesdropper from stealing your credit card
number, your computer scrambles, or encrypts the number before sending
it. The merchant’s computer then unscrambles, or decrypts the number and
charges your credit card.

For example, suppose your credit card number is the 16-digit sequence m
= m1 m2 · · · m16. Each mi is one of the digits 0, 1, 2, . . . , 9, but we will
think of it as representing the equivalence class [mi]10 ∈ Z/≡10. If your
computer and the merchant’s computer could agree on a random sequence
of digits k = k1 k2 · · · k16, then they could proceed as follows, doing all
calculations in Z/≡10. Your computer could replace the ith digit mi of your
credit card number with the digit ci such that [ci]10 = [mi]10 + [ki]10. Your
computer would send the 16-digit sequence c = c1 c2 · · · c16 to the
merchant’s computer, which would then recover the original sequence m by
using the formula [mi]10 = [ci]10 + (−[ki]10). The sequence k is the key that
your computer uses to encrypt the credit card number and the merchant’s
computer uses to decrypt it. An eavesdropper who didn’t know the key k
would be unable to decrypt the encrypted message c and learn your credit
card number m.

But how can your computer and the merchant’s computer agree on the
key k? If one computer chooses the key and sends it to the other, then an
eavesdropper could learn the key and then decrypt the encrypted message.
Sending the key securely is just as hard as sending the credit card number,
so we don’t seem to have made any progress.

The problem with this scheme is that it uses symmetric cryptography, in
which the same key is used for both encryption and decryption. The
solution to the problem is to use public-key cryptography, in which the
encryption and decryption keys are different. The merchant’s computer



creates two keys, one for encryption and one for decryption. It sends the
encryption key to your computer. Your computer uses the encryption key to
encrypt your credit card number and then sends the encrypted number to the
merchant’s computer, which uses the decryption key to recover the credit
card number. An eavesdropper could learn the encryption key, so this key is
regarded as a public key. But this doesn’t help the eavesdropper, because
decryption requires the decryption key, and this key is never transmitted
and remains secret.

It may seem surprising that it is possible to have different keys for
encryption and decryption, but it can be done. In this section we discuss one
well-known public-key encryption system called RSA. It is named for Ron
Rivest (1947–), Adi Shamir (1952–), and Leonard Adleman (1945–), who
developed the system in 1977. A similar system was developed in 1973 by
Clifford Cocks (1950–), a mathematician working for the British
intelligence agency, but it was classified and not revealed until 1997. As we
will see, the RSA system is based on Euler’s theorem.

We have introduced the idea of public-key cryptography in the context of
internet purchases, but it can be used any time one person wants to send a
message to another while preventing an eavesdropper from reading the
message. Suppose Alice wants to send a message securely to Bob. To use
the RSA public-key system, they would proceed as follows. First Bob
chooses two distinct prime numbers p and q. He computes n = pq and φ(n)
= (p − 1)(q − 1). Next, he chooses a positive integer e such that e and φ(n)
are relatively prime and e < φ(n). By Theorem 7.3.7, [e]φ(n) has a
multiplicative inverse in Z/≡φ(n), which can be computed by the extended
Euclidean algorithm. Thus, Bob can compute a positive integer d such that
d < φ(n) and [e]φ(n) · [d]φ(n) = [1]φ(n), which means that ed ≡ 1 (mod φ(n)).
Bob sends the pair of numbers (n, e) to Alice; this is the encryption key that
Alice will use to encrypt her message. He keeps the numbers p, q, and d
secret; he will use d to decrypt Alice’s message.

We will assume that the message Alice wants to send is a natural number
m < n. Of course, her message might actually be a piece of text, not a
number, but a piece of text can be encoded as a natural number. If the text is
long, it might be necessary to encode it as a sequence of natural numbers,
each of which is less than n, and then each of these natural numbers would



have to be encrypted separately. But to keep the discussion simple, we will
assume that Alice’s message is a single natural number m < n.

As before, we think of the message m as representing an equivalence
class [m] n ∈ Z/≡n, and Alice and Bob will do all of their calculations using
arithmetic in Z/≡n. To encrypt her message, Alice computes  in other
words, she computes the unique natural number c < n such that 
The number c is the encrypted message, which she sends to Bob.

To decrypt the message, Bob computes  What makes the RSA
system work is the surprising fact that  as we will prove below.
Thus, by computing  Bob can recover the original message m. Notice
that encryption and decryption both involve exponentiation, but the
encryption exponent e and the decryption exponent d are different. Thus, it
doesn’t matter if an eavesdropper learns e; as long as Bob keeps d secret,
the eavesdropper will not know what exponent to use to decrypt the
encrypted message.

To show that RSA works we need to prove the following theorem.

Theorem 7.5.1. Suppose p and q are distinct primes, n = pq, e and d are
positive integers such that ed ≡ 1 (mod φ(n)), and m and c are natural
numbers such that  Then 

Proof. If e = d = 1 then [m]n = [c]n and the conclusion clearly holds. If not,
then ed > 1, so since ed ≡ 1 (mod φ(n)), there is some positive integer k
such that ed−1 = kφ(n), and therefore ed = kφ(n)+1 = k(p−1)(q −1)+1. And
since  we have me ≡ c (mod n), so n | (me − c).

Although we ultimately want to draw a conclusion about arithmetic in Z/
≡n, we will find it useful to do some calculations in Z/≡p and Z/≡q first.
Since p | n and n | (me − c), by the transitivity of the divisibility relation, p |
(me − c). Therefore me ≡ c (mod p), or equivalently 

Note that the usual exponent rules work for exponentiation in Z/≡p.
Specifically, for any X ∈ Z/≡p and any positive integers a and b we have



and

(For more careful proofs of these equations, see exercise 8.) Applying these
rules, we see that

We claim now that  To prove this, we consider two cases.
Case 1.  Then p and m are relatively prime, so by Euler’s theorem, 

 Therefore

Case 2. p | m. Then [m]p = [0] p, so

In both cases we have reached the desired conclusion that 
Therefore cd ≡ m (mod p). Similar reasoning shows that cd ≡ m (mod q),
and since pq = n, it follows by Lemma 7.4.5 that cd ≡ m (mod n). In other
words,  which is what we wanted to prove. □

Let’s try this out in a simple example. Suppose Bob chooses the primes p
= 3 and q = 11, so n = pq = 33 and φ(n) = (p − 1)(q − 1) = 20. He also
chooses e = 7, and he then computes  so d = 3. (As a
check on Bob’s work, note that [7]20 · [3]20 = [21]20 = [1]20.) Bob sends the
numbers n = 33 and e = 7 to Alice.

Suppose Alice wants to send the message m = 5 to Bob. She computes

so her encrypted message is c = 14. She sends this number to Bob. To
decrypt the message, Bob computes



Thus, Bob successfully recovers the original message m = 5.
Are Alice and Bob’s communications secure? Suppose an eavesdropper

intercepts both Bob’s message to Alice and Alice’s message to Bob, thus
learning the numbers n = 33, e = 7, and c = 14. By factoring n = 33 = 3·11,
the eavesdropper could learn that p = 3 and q = 11 (or vice-versa), and
therefore φ(n) = (p − 1)(q − 1) = 20. But then the eavesdropper could
compute, just as Bob did, that  thus learning the
decryption exponent d = 3. The eavesdropper can now decrypt Alice’s
message just the way Bob did. The communications are not secure!

What has gone wrong? The problem is that in this simple example we
have used small numbers. The eavesdropper’s first step was to factor n =
33, which is a product of two prime numbers. A small number n can be
factored easily by simply dividing n by all smaller prime numbers until a
prime factor is found, but if n is large then this procedure will take too long
to be practical. Factoring numbers that are products of two large prime
numbers is especially hard. As of 2019, the largest such number that has
ever been factored is a product of two 116-digit primes. It was factored in
2009 after two years of computation by many hundreds of computers
working together on the problem, using the equivalent of almost 2000 years
of computing by a single computer. Factoring a product of primes
significantly larger than this would not be feasible with current computing
technology. Today most people who use RSA choose prime numbers that
are several hundreds of digits long. If an eavesdropper learns the numbers n
and e, then in principle he has enough information to find the decryption
exponent d, but the only known way to do it is to factor n. The security of
RSA depends on the fact that, in practice, the numbers used are so large that
factoring n is not feasible.

But wait! What about the computations that Alice and Bob have to do
with these extremely large numbers? Will they also be computationally
infeasible? If so, then the system will be useless. Fortunately, there are
efficient ways to do the computations required of Alice and Bob. While a
detailed discussion of how these computations are performed is beyond the
scope of this book, we can briefly comment on the main points.

The most difficult computations Alice and Bob have to do are:



Bob must find two large prime numbers p and q.
Bob must find 
Alice must compute  and Bob must compute 

To find the primes p and q, Bob can simply choose suitably large
numbers at random and test them to see if they are prime until he finds two
primes. The problem of testing a large number to see if it is prime has been
studied extensively. In 2019, using the best known methods, a computer can
determine whether or not a 1000-digit number is prime in a few minutes.
But this is not fast enough to be convenient for RSA, since Bob may have
to test hundreds of numbers for primality before he finds a prime. So most
implementations of RSA use probabilistic primality tests. These tests take a
fraction of a second, but they are not guaranteed to be accurate; in
particular, if a number is not prime, there is a chance that the test will fail to
detect this and report that the number is prime. But by repeating the test
several times, the probability of an error can be made as small as desired.
For more on probabilistic primality testing, see exercises 10–14.

We already know a method that Bob can use to compute  the
extended Euclidean algorithm. This algorithm is very fast, even with very
large numbers. For more on this, see exercise 13 in Section 7.1.

Finally, to encrypt and decrypt messages, Alice and Bob must raise
elements of Z/≡n to high powers. Suppose X ∈ Z/≡n and a is a positive
integer. The most straightforward way to compute Xa is to multiply X by
itself a times, but this will not be feasible if a is large. There is a better way
using recursion. If a = 1, then of course Xa = X. For larger values of a, we
use the following formulas:

Example 7.5.2. Find [347]172
582.

Solution

Let X = [347]582 ∈ Z/≡582; we must find X172. Since 172 is even, we start
with



If we can find X86, then we’ll just have to multiply it by itself to find X172.
To find X86, we use the same method:

Now we need to find X43, and since 43 is odd, we use the formula

Continuing in this way, we get the following list of formulas:

We can now work through this list in reverse order and evaluate each
formula:

We conclude that  If you count, you will find that we
only performed 10 multiplications – much less than the 171 that would be



required if we simply multiplied 172 Xs. For more on the number of
multiplications required to compute Xa in general, see exercise 9.

We end this section with one more example of the use of RSA. This time
we will use numbers that are large enough to force us to use efficient
methods of calculation, although they are still not as large as would be used
in a real application of RSA.

Example 7.5.3. Suppose Bob chooses the prime numbers p = 48611 and q =
37813. He computes n = pq = 1838127743 and φ(n) = (p − 1)(q − 1) =
1838041320. He then chooses the encryption exponent e = 184270657.

1. Find the decryption exponent d.
2. Suppose Alice wants to send the message m = 357249732. Find the

encrypted message c, and verify that Bob can decrypt it.

Solutions

1. To compute d, Bob uses the extended Euclidean algorithm to find 
  The steps are shown in Figure 7.7.

Bob concludes that d = 88235833.

Figure 7.7. Computing the decryption exponent d.



As a check, Bob can compute that

so ed ≡ 1 (mod φ(n)).
2. Let X = [m]n = [357249732]1838127743. To encrypt her message, Alice

must compute Xe = X184270657. The steps are shown in Figure 7.8; of
course, Alice plans her calculations by starting at the end of this table,
but performs the calculations from the beginning. She sends the
encrypted message c = 1357673396.

Figure 7.8. Computing the encrypted message c.

To decrypt the message, Bob lets Y = [c] n and computes Yd = Y88235833,
as shown in Figure 7.9. As expected, he gets m = 357249732.



Figure 7.9. Decrypting the message.

Exercises
1. Suppose Bob chooses p = 5, q = 11, and e = 7.

(a) Find n, φ(n), and d.
(b) Suppose Alice wants to send the message m = 9. Find the encrypted

message c, and verify that Bob can decrypt it.
*2. Suppose Bob chooses p = 71, q = 83, and e = 1369.

(a) Find n, φ(n), and d.
(b) Suppose Alice wants to send the message m = 1001. Find the encrypted

message c, and verify that Bob can decrypt it.
3. Suppose Bob chooses p = 71 and q = 83. Why would e = 1368 be a bad

choice?
4. Suppose Bob chooses p = 17389, q = 14947, and e = 35824631.

(a) Find n, φ(n), and d.
(b) Suppose Alice wants to send the message m = 123456789. Find the

encrypted message c, and verify that Bob can decrypt it.



*5. You are eavesdropping on Alice and Bob. You intercept the message (n,
e) = (493, 129) sent to Alice by Bob, and then the message c = 149 sent
to Bob by Alice.

(a) Factor n.
(b) Find the decryption exponent d.
(c) Decrypt the message.
6. Suppose Alice and Bob are using RSA. As usual, Bob has generated the

numbers n, e, and d, and he has sent n and e to Alice but kept d secret.
Alice has a message m that represents a contract that she wants Bob to
sign. The contract is not secret – she is glad to send it to Bob without
encrypting it. But she wants Bob to send back a digital signature for the
contract. Like an ordinary signature, it should be a message that
someone else could not forge, so that Alice knows that Bob, and not
some impostor, has written the signature, and Bob cannot deny at a later
date that he signed the contract. To create his signature, Bob computes
the unique integer s such that 0 ≤ s < n and  and he sends s
to Alice.

(a) Show that  and if s ′ is any integer such that 0 ≤ s ′ < n and s
′ ≠ s, then  Thus, Alice can authenticate the signature by
computing  and verifying that it is equal to [m]n.

(b) Why can’t an impostor forge Bob’s signature?
*7. In this exercise we will see why it is important for p and q to be prime.

Suppose Bob chooses p = 9, q = 35, and e = 95, not noticing that 9 and
35 are not prime. He computes n = pq = 315, and he sends (n, e) = (315,
95) to Alice.

(a) Suppose Alice wants to send the message m = 123. What encrypted
message c will she send?

(b) Bob computes φ = (p − 1)(q − 1) = 272; he thinks this is φ(n), but he’s
wrong. To find the decryption exponent d, he then computes 

 What value of d does he get?
(c) Using the decryption exponent d from part (b), what does Bob get when

he tries to decrypt Alice’s message?
(d) What is the correct value of φ(n)? What decryption exponent d would

Bob have gotten if he had used the correct value for φ(n) and computed



 Using this decryption exponent, what would Bob
have gotten when he tried to decrypt Alice’s message?

8. Suppose m is a positive integer and X ∈ Z/≡m.

(a) Give a recursive definition of Xa, for positive integers a.
(b) Use mathematical induction to prove that for all positive integers a and

b, Xa · Xb = Xa+b.
(c) Use mathematical induction to prove that for all positive integers a and

b, (Xa)b = Xab.
*9. Suppose X ∈ Z/≡n. Prove that for every positive integer a, the recursive

method of computing Xa that is illustrated in Example 7.5.2 uses at
most 2log2 a multiplications.

Exercises 10–14 are concerned with probabilistic primality testing. In these
problems, we are looking for a computational test that can be performed on
a positive integer n so that if n is prime then n passes the test, and if n is not
prime then it fails the test. We will find that there are some tests that work
in many cases, but not all cases.

10. According to Euler’s theorem, if n is prime and 2 ≤ a ≤ n − 1, then an−1

≡ 1 (mod n). This suggests the following primality test: To test whether
or not an integer n > 2 is prime, choose a random number a ∈ {2, 3, . . .
, n − 1} and check whether or not an−1 ≡ 1 (mod n). If so, then n passes
the test, and if not, then it fails. This test is called the Fermat primality
test, because the instance of Euler’s theorem on which it is based is
closely related to Fermat’s little theorem; see exercise 10 in Section 7.4.
If n is prime, then by Euler’s theorem, it is guaranteed to pass the test.
Unfortunately, composite numbers sometimes pass the test as well. If 2
≤ a ≤ n − 1 and an−1 ≡ 1 (mod n), but n is not prime, then we say that n
is a Fermat pseudoprime to the base a; it passes the Fermat primality
test using the base a, even though it is not prime. If 2 ≤ a ≤ n − 1 and
an−1 ≢ 1 (mod n) then we say that a is a Fermat witness for n. If there
is a Fermat witness for n then, by Euler’s theorem, n is not prime.

(a) Show that 15 is a Fermat pseudoprime to the base 4, but 3 is a Fermat
witness for 15.



(b) Show that if n is a Fermat pseudoprime to the base a, then n and a are
relatively prime.

11. Recall from exercise 5 in Section 6.2 that the numbers 
called Fermat numbers. Fermat showed that Fn is prime for 0 ≤ n ≤ 4,
and Euler showed that F5 is not prime. It is not known if there is any n
> 4 for which Fn is prime. In this exercise you will show that for every
natural number  Thus, if Fn is not prime, then in
the terminology of exercise 10, it is a Fermat pseudoprime to the base
2. In other words, the Fermat primality test with a = 2 will not be useful
for testing whether Fn is prime.

(a) Show that 
(b) Show that 
(c) Show that 2n+1 | (Fn − 1). (Hint: Use exercise 12(a) in Section 6.3.)
(d) Show that  (Hint: Use parts (b) and (c) and

exercise 16 in Section 7.3.)
12. Suppose n is an integer larger than 2 and let R = {2, 3, . . . , n − 1}. Let

Suppose a ∈ R2 and gcd(n, a) = 1. Then a is a Fermat witness for n, so
n is not prime. (See exercise 10 for the meanings of the terms used in
this exercise.)

(a) Show that for every x ∈ R1 there is a unique y ∈ R2 such that ax ≡ y
(mod n).

(b) By part (a), we can define a function f: R1 → R2 by the formula

Show that f is one-to-one.
(c) Use part (b) to conclude that at least half of the elements of R are

Fermat witnesses for n. (This shows that, with probability at least 1/2,
n will fail the Fermat primality test. By repeating the test with different



choices for a, the probability of an incorrect result can be made as
small as desired.)

13. Exercise 12 shows that if there is at least one Fermat witness for n that
is relatively prime to n, then the Fermat primality test has a good
chance of detecting that n is not prime. Unfortunately, there are
composite numbers n for which no such witness exists. An integer n > 2
is called a Carmichael number if it is not prime, but it is a Fermat
pseudoprime to the base a for every integer a ∈ {2, 3, . . . , n − 1} such
that a and n are relatively prime. They are named for Robert Daniel
Carmichael (1879– 1967), who first studied them. If n is a Carmichael
number, then although n is not prime, the Fermat primality test is
unlikely to detect this fact. In 1994, W. R. Alford (1937–2003), Andrew
Granville (1962–), and Carl Pomerance (1944–) proved that there are
infinitely many Carmichael numbers. In this problem you will show
that 561 is a Carmichael number. (In fact, it is the smallest Carmichael
number.) We leave it to you to verify that 561 = 3 · 11 · 17, so 561 is not
prime. Suppose 2 ≤ a ≤ n − 1 and gcd(561, a) = 1.

(a) Show that a560 ≡ 1 (mod 3).
(b) Show that a560 ≡ 1 (mod 11).
(c) Show that a560 ≡ 1 (mod 17).
(d) Show that a560 ≡ 1 (mod 561). (Hint: Use exercise 14 in Section 7.4.)
14. In this exercise you will work out some of the mathematical basis for

the Miller-Rabin test, a commonly used probabilistic primality test. It is
named for Gary L. Miller (1946–) and Michael O. Rabin (1931–).
Suppose n is an odd integer and n > 1.

(a) Prove that there are positive integers s and d such that n − 1 = 2s d and
d is odd.

(b) Prove that if n is prime and b is a positive integer such that b2 ≡ 1 (mod
n), then either b ≡ 1 (mod n) or b ≡ −1 (mod n).
Let s and d be as in part (a). If 2 ≤ a ≤ n − 1, ad ≢ 1 (mod n), and for
all natural numbers  then a is called a
Miller-Rabin witness for n.

(c) Prove that if there is a Miller-Rabin witness for n then n is not prime.
(Hint: Suppose a is a Miller-Rabin witness for n and n is prime. Then
by Euler’s theorem,  Therefore we can let k



be the smallest natural number such that  Now use
part (b) to get a contradiction.)
The Miller-Rabin test works as follows: To test whether or not an odd
integer n > 1 is prime, choose a random number a ∈ {2, 3, . . . , n − 1}
and check whether or not a is a Miller-Rabin witness for n. If it is, then
n fails the test. If it is not, then n passes the test. By part (c), if n is
prime then there are no Miller-Rabin witnesses, so n is guaranteed to
pass the test. It can be proven that if n is not prime then at least 3/4 of
the numbers a ∈ {2, 3, . . . , n − 1} are Miller-Rabin witnesses for n, so
n will fail the test with probability at least 3/4. As in exercise 12, the
probability of an incorrect result can be made as small as desired by
repeating the test with different choices of a.

(d) Show that 13 is not a Miller-Rabin witness for 85, but 14 is.



8

Infinite Sets

8.1. Equinumerous Sets
In this chapter, we’ll discuss a method of comparing the sizes of infinite
sets. Surprisingly, we’ll find that, in a sense, infinity comes in different
sizes!

For finite sets, we determine the size of a set by counting. What does it
mean to count the number of elements in a set? When you count the
elements in a set A, you point to the elements of A in turn while saying the
words one, two, and so forth. We could think of this process as defining a
function f from the set {1, 2, . . . , n} to A, for some natural number n. For
each i ∈ {1, 2, . . . , n}, we let f(i) be the element of A you’re pointing to
when you say “i.” Because every element of A gets pointed to exactly once,
the function f is one-to-one and onto. Thus, counting the elements of A is
simply a method of establishing a one-to-one correspondence between the
set {1, 2, . . . , n} and A, for some natural number n. One-to-one
correspondence is the key idea behind measuring the sizes of sets, and sets
of the form {1, 2, . . . , n} are the standards against which we measure the
sizes of finite sets. This suggests the following definition.

Definition 8.1.1. Suppose A and B are sets. We’ll say that A is
equinumerous with B if there is a function f: A → B that is one-to-one and
onto. We’ll write A ∼ B to indicate that A is equinumerous with B. For each
natural number n, let In = {i ∈ Z+ | i ≤ n}. A set A is called finite if there is
a natural number n such that In ∼ A. Otherwise, A is infinite.

You are asked in exercise 6 to show that if A is finite, then there is exactly
one n such that In ∼ A. Thus, it makes sense to define the number of
elements of a finite set A to be the unique n such that In ∼ A. This number is



also sometimes called the cardinality of A, and it is denoted |A|. Note that
according to this definition, ∅ is finite and |∅| = 0.

The definition of equinumerous can also be applied to infinite sets, with
results that are sometimes surprising. For example, you might think that Z+

could not be equinumerous with Z because Z includes not only all the
positive integers, but also all the negative integers and zero. But consider
the function f: Z+ → Z defined as follows:

This notation means that for every positive integer n, if n is even then f(n)
= n/2 and if n is odd then f(n) = (1 − n)/2. The table of values for f in Figure
8.1 reveals a pattern that suggests that f might be one-to-one and onto.

Figure 8.1.

To check this more carefully, first note that for every positive integer n, if
n is even then f(n) = n/2 > 0, and if n is odd then f(n) = (1 − n)/2 ≤ 0. Now
suppose n1 and n2 are positive integers and f(n1) = f(n2). If f(n1) = f(n2) > 0
then n1 and n2 must both be even, so the equation f(n1) = f(n2) means n1 /2 =
n2 /2, and therefore n1 = n2. Similarly, if f(n1) = f(n2) ≤ 0 then n1 and n2 are
both odd, so we get (1 − n1)/2 = (1 − n2)/2, and once again it follows that n1
= n2. Thus, f is one-to-one.

To see that f is onto, let m be an arbitrary integer. If m > 0 then let n = 2m,
an even positive integer, and if m ≤ 0 then let n = 1 − 2m, an odd positive
integer. In both cases it is easy to verify that f(n) = m. Thus, f is onto as well
as one-to-one, so according to Definition 8.1.1, Z+ ∼ Z.

Note that the function f had to be chosen very carefully. There are many
other functions from Z+ to Z that are one-to-one but not onto, onto but not
one-to-one, or neither one-to-one nor onto, but this does not contradict our



claim that Z+ ∼ Z. According to Definition 8.1.1, to show that Z+ ∼ Z we
need only show that there is at least one function from Z+ to Z that is both
one-to-one and onto, and of course to prove this it suffices to give an
example of such a function.

Perhaps an even more surprising example is that Z+ × Z+ ∼ Z+. To show
this we must come up with a one-to-one, onto function f: Z+ × Z+ → Z+. An
element of the domain of this function would be an ordered pair (i, j), where
i and j are positive integers. Exercise 12 asks you to show that the following
formula defines a function from Z+ × Z+ to Z+ that is one-to-one and onto:

Once again, the table of values in Figure 8.2 may help you understand this
example.

Figure 8.2.

Theorem 8.1.2. Suppose A ∼ B and C ∼ D. Then:

1. A × C ∼ B × D.
2. If A and C are disjoint and B and D are disjoint, then A ∪ C ∼ B ∪ D.

Proof. Since A ∼ B and C ∼ D, we can choose functions f: A → B and g: C
→ D that are one-to-one and onto.

1. Define h: A × C → B × D by the formula



To see that h is one-to-one, suppose h(a1, c1) = h(a2, c2). This means
that (f (a1), g(c1)) = (f (a2), g(c2)), so f(a1) = f(a2) and g(c1) = g(c2).
Since f and g are both one-to-one, it follows that a1 = a2 and c1 = c2,
so (a1, c1) = (a2, c2).

To see that h is onto, suppose (b, d) ∈ B × D. Then since f and g are
both onto, we can choose a ∈ A and c ∈ C such that f(a) = b and g(c)
= d. Therefore h(a, c) = (f (a), g(c)) = (b, d), as required. Thus h is
one-to-one and onto, so A × C ∼ B × D.

2. Suppose A and C are disjoint and B and D are disjoint. You are asked
in exercise 14 to show that f ∪ g is a one-to-one, onto function from A
∪ C to B ∪ D, so A ∪ C ∼ B ∪ D. □

It is not hard to show that ∼ is reflexive, symmetric, and transitive. In
other words, we have the following theorem:

Theorem 8.1.3. For any sets A, B, and C:

1. A ∼ A.
2. If A ∼ B then B ∼ A.
3. If A ∼ B and B ∼ C then A ∼ C.

Proof.

1. The identity function iA is a one-to-one, onto function from A to A.

2. Suppose A ∼ B. Then we can choose some function f: A → B that is
one-to-one and onto. By Theorem 5.3.4, f−1 is a function from B to A.
But now note that (f−1)−1 = f, which is a function from A to B, so by
Theorem 5.3.4 again, f−1 is also one-to-one and onto. Therefore B ∼
A.

3. Suppose A ∼ B and B ∼ C. Then we can choose one-to-one, onto
functions f: A → B and g: B → C. By Theorem 5.2.5, g ◦ f: A → C is
one-to-one and onto, so A ∼ C. □



Theorems 8.1.2 and 8.1.3 are often helpful in showing that sets are
equinumerous. For example, we showed earlier that Z+ × Z+ ∼ Z+ and Z+

∼ Z, so by part 3 of Theorem 8.1.3 it follows that Z+ × Z+ ∼ Z. Part 2 tells
us that we need not distinguish between the statements “A is equinumerous
with B” and “B is equinumerous with A,” because they are equivalent. For
example, we already know that Z+ × Z+ ∼ Z+, so we can also write Z+ ∼
Z

+ × Z+. By part 1 of Theorem 8.1.2, Z+ × Z+ ∼ Z × Z, so we also have Z+

∼ Z × Z.

We have now found three sets, Z, Z
+ ×Z

+, and Z×Z, that are
equinumerous with Z

+. Such sets are especially important and have a
special name.

Definition 8.1.4. A set A is called denumerable if Z
+ ∼ A. It is called

countable if it is either finite or denumerable. Otherwise, it is uncountable.

You might think of the countable sets as those sets whose elements can
be counted by pointing to all of them, one by one, while naming positive
integers in order. If the counting process ends at some point, then the set is
finite; and if it never ends, then the set is denumerable. The following
theorem gives two more ways of thinking about countable sets.

Theorem 8.1.5. Suppose A is a set. The following statements are
equivalent:

1. A is countable.

2. Either A = ∅ or there is a function f: Z+ → A that is onto.

3. There is a function f: A → Z+ that is one-to-one.

Proof. 1 → 2. Suppose A is countable. If A is denumerable, then there is a
function f: Z+ → A that is one-to-one and onto, so clearly statement 2 is
true. Now suppose A is finite. If A = ∅ then there is nothing more to prove,
so suppose A ≠ ∅. Then we can choose some element a0 ∈ A. Let g: In →
A be a one-to-one, onto function, where n is the number of elements of A.
Now define f: Z+ → A as follows:



It is easy to check now that f is onto, as required.
2 → 3. Suppose that either A = ∅ or there is an onto function from Z+ to

A. We consider these two possibilities in turn. If A = ∅, then the empty set
is a one-to-one function from A to Z+. Now suppose g: Z+ → A, and g is
onto. Then for each a ∈ A, the set {n ∈ Z+ | g(n) = a} is not empty, so by
the well-ordering principle it must have a smallest element. Thus, we can
define a function f: A → Z+ by the formula

Note that for each a ∈ A, g(f (a)) = a, so g ◦ f = iA. But then by Theorem
5.3.3, it follows that f is one-to-one, as required.

3 → 1. Suppose g: A → Z+ and g is one-to-one. Let B = Ran(g) ⊆ Z+.
Then g maps onto B. This means that if we think of g as a function from A
to B, then it is one-to-one and onto, so A ∼ B. Thus, it suffices to show that
B is countable, since by Theorem 8.1.3 it follows from this that A is also
countable.

Suppose B is not finite. We must show that B is denumerable, which we
can do by defining a one-to-one, onto function f: Z+ → B. The idea behind
the definition is simply to let f(n) be the nth element of B, for each n ∈ Z+.
(Recall that B ⊆ Z+, so we can use the ordering of the positive integers to
make sense of the idea of the nth element of B.) For a more careful
definition of f and the proof that f is one-to-one and onto, see exercise 15. □

If A is countable and A ≠ ∅, then by Theorem 8.1.5 there is a function f:
Z

+ → A that is onto. If, for every n ∈ Z+, we let an = f(n), then the fact that
f is onto means that every element of A appears at least once in the list a1,
a2, a3, . . . . In other words, A = {a1, a2, a3, . . .}. Countability of a set A is
often used in this way to enable us to write the elements of A in a list,
indexed by the positive integers. In fact, you might want to think of
countability for nonempty sets as meaning listability. Of course, if A is



denumerable, then the function f can be taken to be one-to-one, which
means that each element of A will appear only once in the list a1, a2, a3, . . .
. For an example of an application of countability in which the elements of
a countable set are written in a list, see exercise 19.

Theorem 8.1.5 is also sometimes useful for proving that a set is
denumerable, as the proof of our next theorem shows.

Theorem 8.1.6. Q is denumerable.

Proof. Let f: Z × Z+ → Q be defined as follows:

Clearly f is onto, since by definition all rational numbers can be written as
fractions, but note that f is not one-to-one. For example, f(1, 2) = f(2, 4) =
1/2. Since Z+ ∼ Z, by Theorem 8.1.2 we have Z+ × Z+ ∼ Z × Z+, and since
we already know that Z+ × Z+ is denumerable, it follows that Z × Z+ is also
denumerable. Thus, we can choose a one-to-one, onto function g: Z+ → Z ×
Z

+. By Theorem 5.2.5, f ◦  g: Z+ → Q is onto, so by Theorem 8.1.5, Q is
countable. Clearly Q is not finite, so it must be denumerable. □

Although our focus in this chapter is on infinite sets, the methods in this
section can be used to prove theorems that are useful for computing the
cardinalities of finite sets. We end this section with one example of such a
theorem, and give several other examples in the exercises (see exercises
20–30).

Theorem 8.1.7. Suppose A and B are disjoint finite sets. Then A ∪ B is
finite, and |A ∪ B| = |A| +|B|.

Proof. Let n = |A| and m = |B|. Then A ∼ In and B ∼ Im. Notice that if x ∈
Im then 1 ≤ x ≤ m, and therefore n + 1 ≤ x + n ≤ n + m, so x + n ∈ In+m \ In.
Thus we can define a function f: Im → In+m \ In by the formula f(x) = x + n.
It is easy to check that f is one-to-one and onto, so Im ∼ In+m \ In. Since B ∼
Im, it follows that B ∼ In+m \ In. Applying part 2 of Theorem 8.1.2, we can



conclude that A ∪ B ∼ In ∪ (In+m \ In) = In+m. Therefore A ∪ B is finite, and
|A ∪ B| = n + m = |A| +|B|. □

Exercises
*1. Show that the following sets are denumerable.
(a) N.
(b) The set of all even integers.
2. Show that the following sets are denumerable:

(a) Q ×Q.
(b)  (See exercise 21(b) of Section 5.4 for the meaning of the

notation used here.)
3. In this problem we’ll use the following notation for intervals of real

numbers. If a and b are real numbers and a < b, then

(a) Show that [0, 1] ∼ [0, 2].
(b) Show that (−π/2, π/2) ∼ R. (Hint: Use a trigonometric function.)
(c) Show that (0, 1) ∼ R.
(d) Show that (0, 1] ∼ (0, 1).
*4. Justify your answer to each question with either a proof or a

counterexample.
(a) Suppose A ∼ B and A × C ∼ B × D. Must it be the case that C ∼ D?
(b) Suppose A ∼ B, A and C are disjoint, B and D are disjoint, and A ∪ C

∼ B ∪ D. Must it be the case that C ∼ D?
5. Prove that if A ∼ B then P(A) ∼ P(B).

*6. (a) Prove that for all natural numbers n and m, if In ∼ Im then n = m.
(Hint: Use induction on n.)



(b) Prove that if A is finite, then there is exactly one natural number n such
that In ∼ A.

7. Suppose A and B are sets and A is finite. Prove that A ∼ B iff B is also
finite and |A| = |B|.

*8. (a) Prove that if n ∈ N and A ⊆ In, then A is finite and |A| ≤ n.
Furthermore, if A ≠ In, then |A| < n.

(b) Prove that if A is finite and B ⊆ A, then B is also finite, and |B| ≤ |A|.
Furthermore, if B ≠ A, then |B| < |A|.

9. Suppose B ⊆ A, B ≠ A, and B ∼ A. Prove that A is infinite.
10. Prove that if n ∈ N, f: In → B, and f is onto, then B is finite and |B| ≤ n.

11. Suppose A and B are finite sets and f: A → B.
(a) Prove that if |A| < |B| then f is not onto.
(b) Prove that if |A| > |B| then f is not one-to-one. (This is sometimes called

the pigeonhole principle, because it means that if n items are put into m
pigeonholes, where n > m, then some pigeonhole must contain more
than one item.)

(c) Prove that if |A| = |B| then f is one-to-one iff f is onto.
12. Show that the function f: Z+ × Z+ → Z+ defined by the formula

is one-to-one and onto.

13. In this exercise you will give another proof that Z+ × Z+ ∼ Z+. Let f:
Z

+ × Z+ → Z+ be defined by the formula

Prove that f is one-to-one and onto.
14. Complete the proof of part 2 of Theorem 8.1.2 by showing that if f: A

→ B and g: C → D are one-to-one, onto functions, A and C are disjoint,
and B and D are disjoint, then f ∪ g is a one-to-one, onto function from
A ∪ C to B ∪ D.



15. In this exercise you will complete the proof of 3 → 1 of Theorem 8.1.5.
Suppose B ⊆ Z+ and B is infinite. We now define a function f: Z+ → B
by recursion as follows:

For all n ∈ Z+,

f(n) = the smallest element of B \ {f(m) | m ∈ Z+, m < n}.

Of course, the definition is recursive because the specification of f(n)
refers to f(m) for all m < n.

(a) Suppose n ∈ Z+. The definition of f(n) only makes sense if we can be
sure that B \ {f(m) | m ∈ Z+, m < n} ≠ ∅, in which case the well-
ordering principle guarantees that it has a smallest element. Prove that
B \ {f(m) | m ∈ Z+, m < n} ≠ ∅. (Hint: See exercises 8 and 10.)

(b) Prove that for all n ∈ Z+, f(n) ≥ n.
(c) Prove that f is one-to-one and onto.
16. In this exercise you will give an alternative proof of Theorem 8.1.6.

(a) Find a function f: Z+ → Z \ {0} that is one-to-one and onto.
(b) Let g: Z+ → Q+ be defined as follows. Suppose n ∈ Z+ and the prime

factorization of n is  where p1, p2, . . . , pk are prime
numbers, p1 < p2 < · · · < pk, and e1, e2, . . . , ek are positive integers.
Then we let

where f is the function from part (a). (As in Section 7.2, we consider
the empty product to be 1, so that g(1) = 1.) Prove that g is one-to-one
and onto. (Hint: You will find exercise 19 in Section 7.2 useful.)

(c) Use g to define a one-to-one, onto function h: Z → Q, and conclude
that Q is denumerable.

17. Prove that if B ⊆ A and A is countable, then B is countable.
18. Prove that if B ⊆ A, A is infinite, and B is finite, then A \ B is infinite.



19. Suppose A is denumerable and R is a partial order on A. Prove that R
can be extended to a total order on A. In other words, prove that there is
a total order T on A such that R ⊆ T. Note that we proved a similar
theorem for finite A in Example 6.2.2. (Hint: Since A is denumerable,
we can write the elements of A in a list: A = {a1, a2, a3, . . .}. Now,
using exercise 2 of Section 6.2, recursively define partial orders Rn, for
n ∈ N, so that R = R0 ⊆ R1 ⊆ R2 ⊆ · · · and ∀i ∈ In ∀j ∈ Z+ ((ai, aj) ∈
Rn ∨ (aj, ai) ∈ Rn). Let 

20. Suppose A is finite and B ⊆ A. By exercise 8, B and A \ B are both
finite. Prove that |A \ B| = |A| − |B|. (In particular, if a ∈ A then |A \ {a}|
= |A| −1. We used this fact in several proofs in Chapter 6; for example,
we used it in Examples 6.2.1 and 6.2.2.)

21. Suppose n is a positive integer and for each i ∈ In, Ai is a finite set.
Also, assume that ∀i ∈ In ∀j ∈ In (i ≠ j → Ai ∩ Aj = ∅). Prove that 

 is finite and 
*22. (a) Prove that if A and B are finite sets, then A × B is finite and |A ×

B| = |A| · |B|. (Hint: Use induction on |B|. In other words, prove the
following statement by induction: ∀n ∈ N∀A∀B(if A and B are
finite and |B| = n, then A × B is finite and |A × B| = |A| · n). You
may find Theorem 4.1.3 useful.)

(b) A meal at Alice’s Restaurant consists of an entree and a dessert. The
entree can be either steak, chicken, pork chops, shrimp, or spaghetti,
and dessert can be either ice cream, cake, or pie. How many different
meals can you order at Alice’s Restaurant?

23. For any sets A and B, the set of all functions from A to B is denoted A B.
(a) Prove that if A ∼ B and C ∼ D then A C ∼ B D.
(b) Prove that if A, B, and C are sets and A ∩ B = ∅, then A∪B C ∼ A C × B

C.
(c) Prove that if A and B are finite sets, then A B is finite and |A B| = |B||A|.

(Hint: Use induction on |A|.)
(d) A professor has 20 students in his class, and he has to assign a grade of

either A, B, C, D, or F to each student. In how many ways can the
grades be assigned?



24. Suppose |A| = n, and let F = {f | f is a one-to-one, onto function from In
to A}.

(a) Prove that F is finite, and |F | = n!. (Hint: Use induction on n.)
(b) Let L = {R | R is a total order on A}. Prove that F ∼ L, and therefore |L|

= n!.
(c) Five people are to sit in a row of five seats. In how many ways can they

be seated?
25. Suppose A is a finite set and R is an equivalence relation on A.

Suppose also that there is some positive integer n such that ∀x ∈ A(|
[x]R | = n). Prove that A/R is finite and |A/R| = |A|/n. (Hint: Use exercise
21.)

26. (a) Suppose that A and B are finite sets. Prove that A ∪ B is finite, and
|A ∪ B| = |A| +|B| −|A ∩ B|.

(b) Suppose that A, B, and C are finite sets. Prove that A ∪ B ∪ C is finite,
and

27. In this problem you will prove the inclusion-exclusion principle, which
generalizes the formulas in exercise 26. Suppose A1, A2, . . . , An are
finite sets. Let P = P(In) \{∅}, and for each S ∈ P let 
Prove that  is finite and

(The notation on the right-hand side of this equation denotes the result
of running through all sets S ∈ P, computing the number (−1)|S|+1 |AS |
for each S, and then adding these numbers. Hint: Use induction on n.)

28. Prove that if A and B are finite sets and |A| = |B|, then |A △ B| is even.
29. Each customer in a certain bank has a PIN number, which is a

sequence of four digits. Show that if the bank has more than 10,000
customers, then some two customers must have the same PIN number.
(Hint: See exercise 11.)



30. Alice opened her grade report and exclaimed, “I can’t believe Prof.
Jones flunked me in Probability.” “You were in that course?” said Bob.
“That’s funny, I was in it too, and I don’t remember ever seeing you
there.” “Well,” admitted Alice sheepishly, “I guess I did skip class a
lot.” “Yeah, me too” said Bob. Prove that either Alice or Bob missed at
least half of the classes.

8.2. Countable and Uncountable Sets
Often when we perform some set-theoretic operation with countable sets,
the result is again a countable set.

Theorem 8.2.1. Suppose A and B are countable sets. Then:

1. A × B is countable.
2. A ∪ B is countable.

Proof. Since A and B are countable, by Theorem 8.1.5 we can choose one-
to-one functions f: A → Z+ and g: B → Z+.

1. Define h: A × B → Z+ × Z+ by the formula

As in the proof of part 1 of Theorem 8.1.2, it is not hard to show that
h is one-to-one. Since Z+ ×Z

+ is denumerable, we can let j: Z+ ×Z
+

→ Z+ be a one-to-one, onto function. Then by Theorem 5.2.5, j ◦h:
A×B → Z+ is one-to-one, so by Theorem 8.1.5, A × B is countable.

2. Define h: A ∪ B → Z as follows:

We claim now that h is one-to-one. To see why, suppose that h(x1) =
h(x2), for some x1 and x2 in A ∪ B. If h(x1) = h(x2) > 0, then according



to the definition of h, we must have x1 ∈ A, x2 ∈ A, and f(x1) = h(x1)
= h(x2) = f(x2). But then since f is one-to-one, x1 = x2. Similarly, if
h(x1) = h(x2) ≤ 0, then we must have g(x1) = −h(x1) = −h(x2) = g(x2),
and then since g is one-to-one, x1 = x2. Thus, h is one-to-one.

Since Z is denumerable, we can let j: Z → Z+ be a one-to-one, onto
function. As in part 1, we then find that j ◦ h: A ∪ B → Z+ is one-to-
one, so A ∪ B is countable. □

As our next theorem shows, part 2 of Theorem 8.2.1 can be extended to
unions of more than two sets.

Theorem 8.2.2. The union of countably many countable sets is countable.
In other words, if F is a family of sets, F is countable, and also every

element of F is countable, then  is countable.

Proof. We will assume first that ∅ /∈ F. At the end of the proof we will

discuss the case ∅ ∈ F.

If F = ∅, then of course  which is countable. Now suppose F ≠

∅. Then, as described after the proof of Theorem 8.1.5, since F is

countable and nonempty we can write the elements of F in a list, indexed

by the positive integers. In other words, we can say that F = {A1, A2, A3, . .

.}. Similarly, every element of F is countable and nonempty (since ∅ /∈

F), so for each positive integer i the elements of Ai can be written in a list.

Thus we can write

and, in general,



Note that, by the definition of union, 
Now define a function  by the formula

Clearly f is onto. Since Z+ × Z+ is denumerable, we can let g: Z+ → Z+ ×
Z

+ be a one-to-one, onto function. Then  is onto, so 
is countable.

Finally, suppose ∅ ∈ F. Let F ′ = F \ {∅}. Then F ′ is also a countable

family of countable sets and ∅ /∈ F ′, so by the earlier reasoning,  is

countable. But clearly  so  is countable too. □

Another operation that preserves countability is the formation of finite
sequences. Suppose A is a set and a1, a2, . . . , an is a list of elements of A.
We might specify the terms in this list with a function f: In → A, where for
each i, f(i) = ai = the ith term in the list. Such a function is called a finite
sequence of elements of A.

Definition 8.2.3. Suppose A is a set. A function f: In → A, where n is a
natural number, is called a finite sequence of elements of A, and n is called
the length of the sequence.

Theorem 8.2.4. Suppose A is a countable set. Then the set of all finite
sequences of elements of A is also countable.

Proof. For each n ∈ N, let Sn be the set of all sequences of length n of
elements of A. We first show that for every n ∈ N, Sn is countable. We
proceed by induction on n.

In the base case we assume n = 0. Note that I0 = ∅, so a sequence of
length 0 is a function f: ∅ → A, and the only such function is ∅. Thus, S0 =
{∅}, which is clearly a countable set.

For the induction step, suppose n is a natural number and Sn is countable.
We must show that Sn+1 is countable. Consider the function F: Sn × A →



Sn+1 defined as follows:

In other words, for any sequence f ∈ Sn and any element a ∈ A, F(f, a) is
the sequence you get by starting with f, which is a sequence of length n, and
then tacking on a as term number n + 1. You are asked in exercise 2 to
verify that F is one-to-one and onto. Thus, Sn × A ∼ Sn+1. But Sn and A are
both countable, so by Theorem 8.2.1, Sn × A is countable, and therefore Sn+1
is countable.

This completes the inductive proof that for every n ∈ N, Sn is countable.
Finally, note that the set of all finite sequences of elements of A is 
and this is countable by Theorem 8.2.2. □

As an example of the use of Theorem 8.2.4, you should be able to show
that the set of all grammatical sentences of English is a denumerable set.
(See exercise 17.)

By now you may be wondering if perhaps all sets are countable! Is there
any set-theoretic operation that can be used to produce uncountable sets?
We’ll see in our next theorem that the answer is yes, the power set
operation. This fact was discovered by the German mathematician Georg
Cantor (1845–1918) by means of a famous and ingenious proof. In fact, it
was Cantor who first conceived of the idea of comparing the sizes of
infinite sets. Cantor’s proof is somewhat harder than the previous proofs in
this chapter, so we’ll discuss the strategy behind the proof before presenting
the proof itself.

Theorem 8.2.5. (Cantor’s theorem) P(Z+) is uncountable.

Scratch work

The proof is based on statement 2 of Theorem 8.1.5. We’ll show that there
is no function f: Z+ → P(Z+) that is onto. Clearly P(Z+) ≠ ∅, so by
Theorem 8.1.5 this shows that P(Z+) is not countable.

Our strategy will be to let f: Z+ → P(Z+) be an arbitrary function and
prove that f is not onto. Reexpressing this negative goal as a positive



statement, we must show that ∃D[D ∈ P(Z+) ∧∀n ∈ Z+ (D ≠ f(n))]. This
suggests that we should try to find a particular set D for which we can prove
both D ∈ P(Z+) and ∀n ∈ Z+ (D ≠ f(n)). This is the most difficult step in
figuring out the proof. There is a set D that makes the proof work, but it
will take some cleverness to come up with it.

We want to make sure that D ∈ P(Z+), or in other words D ⊆ Z+, so we
know that we need only consider positive integers when deciding what the
elements of D should be. But this still leaves us infinitely many decisions to
make: for each positive integer n, we must decide whether or not we want n
to be an element of D. We also need to make sure that ∀n ∈ Z+ (D ≠ f(n)).
This imposes infinitely many restrictions on our choice of D: for each
positive integer n, we must make sure that D ≠ f(n). Why not make each of
our infinitely many decisions in such a way that it guarantees that the
corresponding restriction is satisfied? In other words, for each positive
integer n, we’ll make our decision about whether or not n is an element of
D in such a way that it will guarantee that D ≠ f(n). This isn’t hard to do.
We can let n be an element of D if n /∈ f(n), and leave n out of D if n ∈
f(n). This will guarantee that D ≠ f(n), because one of these sets will contain
n as an element and the other won’t. This suggests that we should let D = {n
∈ Z+ | n /∈ f(n)}.

Figure 8.3 may help you understand the definition of the set D. For each
m ∈ Z+, f(m) is a subset of Z+, and it can be specified by saying, for each
positive integer n, whether or not n ∈ f(m). The answers to these questions
can be arranged in a table as shown in Figure 8.3. Each row of the table
gives the answers needed to specify the set f(m) for a particular value of m.
The set D can also be specified with a row of yesses and noes, as shown at
the bottom of Figure 8.3. For each n ∈ Z+ we’ve decided to determine
whether or not n ∈ D by asking whether or not n ∈ f(n), and the answers to
these questions are the ones surrounded by boxes in Figure 8.3. Because n
∈ D iff n /∈ f(n), the row of yesses and noes that specifies D can be found
by reading the boxed answers along the diagonal of Figure 8.3 and
reversing all the answers. This is guaranteed to be different from every row
of the table in Figure 8.3, because for each n ∈ Z+ it differs from row n in
the nth position.



If you found this reasoning difficult to follow, don’t worry about it.
Remember, the reasoning used in choosing the set D won’t be part of the
proof anyway! After you finish reading the proof, you can go back and try
reading the last two paragraphs again.

Figure 8.3.

It should be clear that the set D we have chosen is a subset of Z+, so D ∈
P(Z+). Our other goal is to prove that ∀n ∈ Z+ (D ≠ f(n)), so we let n be
an arbitrary positive integer and prove D ≠ f(n). Now recall that we chose D
carefully so that we would be able to prove D ≠ f(n), and the reasoning
behind this choice hinged on whether or not n ∈ f(n). Perhaps the easiest
way to write the proof is to consider the two cases n ∈ f(n) and n /∈ f(n)
separately. In each case, applying the definition of D easily leads to the
conclusion that D ≠ f(n).

Proof. Suppose f: Z+ → P(Z+). We will show that f cannot be onto by
finding a set D ∈ P(Z+) such that D /∈ Ran(f). Let D = {n ∈ Z+ | n /∈
f(n)}. Clearly D ⊆ Z+, so D ∈ P(Z+). Now let n be an arbitrary positive
integer. We consider two cases.

Case 1. n ∈ f(n). Since D = {n ∈ Z+ | n /∈ f(n)}, we can conclude that n
/∈ D. But then since n ∈ f(n) and n /∈ D, it follows that D ≠ f(n).



Case 2. n /∈ f(n). Then by the definition of D, n ∈ D. Since n ∈ D and n
/∈ f(n), D ≠ f(n).

Since these cases are exhaustive, this shows that ∀n ∈ Z+ (D ≠ f(n)), so
D /∈ Ran(f). Since f was arbitrary, this shows that there is no onto function
f: Z

+ → P(Z+). Clearly P(Z+) ≠ ∅, so by Theorem 8.1.5, P(Z+) is
uncountable. □

The method used in the proof of Theorem 8.2.5 is called diagonalization
because of the diagonal arrangement of the boxed answers in Figure 8.3.
Diagonalization is a powerful technique that can be used to prove many
theorems, including our next theorem. However, rather than doing another
diagonalization argument, we’ll simply apply Theorem 8.2.5 to prove the
next theorem.

Theorem 8.2.6. R is uncountable.

Proof. We will define a function f: P(Z+) → R and show that f is one-to-
one. If R were countable, then there would be a one-to-one function g: R →
Z

+. But then g ◦  f would be a one-to-one function from P(Z+) to Z+ and
therefore P(Z+) would be countable, contradicting Cantor’s theorem. Thus,
this will show that R is uncountable.

To define f, suppose A ∈ P(Z+). Then f(A) will be a real number
between 0 and 1 that we will specify by giving its decimal expansion. For
each positive integer n, the nth digit of f(A) will be the number dn defined as
follows:

In other words, in decimal notation we have f(A) = 0.d1 d2 d3. . .. For
example, if E is the set of all positive even integers, then f(E) = 0.37373737
. . . . If P is the set of all prime numbers, then f(P) = 0.37737373337 . . . .

To see that f is one-to-one, suppose that A ∈ P(Z+), B ∈ P(Z+), and A
≠ B. Then there is some n ∈ Z+ such that either n ∈ A and n /∈ B, or n ∈



B and n /∈ A. But then f(A) and f(B) cannot be equal, since their decimal
expansions differ in the nth digit.1 Thus, f is one-to-one. □

Exercises
*1. (a) Prove that the set of all irrational numbers, R \ Q, is uncountable.

(b) Prove that R \ Q ∼ R.

2. Let F: Sn × A → Sn+1 be the function defined in the proof of Theorem
8.2.4. Show that F is one-to-one and onto.

3. In this exercise you will give an alternative proof of Theorem 8.2.4.
Suppose A is a countable set, and let S be the set of all finite sequences
of elements of A. Since A is countable, there is a one-to-one function g:
A → Z+. For each positive integer n, let pn be the nth prime number;
thus, p1 = 2, p2 = 3, and so on. Define F: S → Z+ as follows: Suppose f
∈ S and the length of f is n. Then

Show that F is one-to-one, and therefore S is countable.

4. Let P = {X ∈ P(Z+) | X is finite}. Prove that P is denumerable.
*5. Prove the following more general form of Cantor’s theorem: For any

set  (Hint: Imitate the proof of Theorem 8.2.5.)
6. For the meaning of the notation used in this exercise, see exercise 23 of

Section 8.1.
(a) Prove that for any sets A, B, and C, A (B × C) ∼ A B × A C.
(b) Prove that for any sets A, B, and C,(A×B) C ∼ A (B C).
(c) Prove that for any set A, P(A) ∼ A {yes, no}. (Note that if A is finite

and |A| = n then, by exercise 23(c) of Section 8.1, it follows that |P(A)|
= |{yes, no}||A| = 2n. Of course, you already proved this, by a different
method, in exercise 11 of Section 6.2.)

(d) Prove that 



7. Suppose A is denumerable. Prove that there is a partition P of A such
that P is denumerable and for every X ∈ P, X is denumerable.

*8. Prove that if A and B are disjoint sets, then P(A∪B) ∼ P(A)×P(B).
9. (a) Suppose A1 ⊆ A2 ⊆ A3 ⊆ · · · and  Prove that for

every uncountable set B ⊆ R there is some positive integer n such
that B ∩ An is uncountable.

(b) Suppose A1 ⊆ A2 ⊆ A3 ⊆ · · · and  Suppose also that
for every infinite set B ⊆ Z+ there is some positive integer n such that
B ∩ Anis infinite. Prove that for some n, A= Z+.

10. Suppose A ⊆ R+, b ∈ R+, and for every list a1, a2, . . . , ak of finitely
many distinct elements of A, a1 + a2 + · · · + ak ≤ b. Prove that A is
countable. (Hint: For each positive integer n, let An = {x ∈ A | x ≥ 1/n}.
What can you say about the number of elements in An?)

11. Suppose E is an equivalence relation on R and for all real numbers x
and y, [x]E ∼ [y]E. Prove that either R/E is uncountable or for every x
∈ R, [x]Eis uncountable.

12. A real number x is called algebraic if there is a positive integer n and
integers a0, a1, . . . , an such that a0 + a1 x + a2 x2 +· · · +an xn = 0 and an
≠ 0. Let A be the set of all algebraic numbers.

(a) Prove that Q⊆ A.
(b) Prove that 
(c) Prove that A is countable. Note: You may use the fact that if n is a

positive integer, a0, a1, . . . , an are integers, and an ≠ 0, then {x ∈ R |
a0 + a1 x + a2 x2 +· · · +an xn = 0} is finite.

13. Suppose F ⊆ {f | f: Z+ → R} and F is countable. Prove that there is a

function g: Z+ → R such that F ⊆ O(g). (See exercise 19 of Section 5.1

for the meaning of the notation used here.)
14. Suppose F ⊆ P(Z+) and F is pairwise disjoint. Prove that F is

countable.



*15. If A and B are infinite sets, we say that A and B are almost disjoint if A
∩ B is finite. If F is a family of infinite sets, then we say that F is

pairwise almost disjoint if for all A and B in F, if A ≠ B then A and B

are almost disjoint. In this exercise you will prove that there is some F

⊆ P(Z+) such that all elements of F are infinite, F is pairwise almost

disjoint, and F is uncountable. (Contrast this with the previous

exercise.)
Let P = {X ∈ P(Z+) | X is finite} and Q = {X ∈ P(Z+) | X is

infinite}. By exercise 4, P is denumerable, so we can choose a one-to-
one, onto function g: P → Z+.

(a) Prove that Q is uncountable. For each A ∈ Q, let SA = {A∩In | n ∈ Z+

}. For example, if A is the set of all prime numbers, then SA = {∅, {2},
{2, 3}, {2, 3, 5}, . . .}. (We might describe SA as the set of all initial
segments of A.)

(b) Prove that if A ∈ Q then SA ⊆ P and SA is infinite.
(c) Prove that if A, B ∈ Q and A ≠ B then SA ∩ SB is finite.
(d) Let F = {g(SA) | A ∈ Q}. Prove that F ⊆ P(Z+), every element of F is

infinite, F is pairwise almost disjoint, and F is uncountable.

16. Prove that there is a function f: Z+ → Z
+ such that for all positive

integers a, b, and c there is some positive integer n such that f(an+ b) =
c.

17. Prove that the set of all grammatical sentences of English is
denumerable. (Hint: Every grammatical sentence of English is a finite
sequence of English words. First show that the set of all grammatical
sentences is countable, and then show that it is infinite.)

18. Some real numbers can be defined by a phrase in the English language.
For example, the phrase “the ratio of the circumference of a circle to its
diameter” defines the number π.

(a) Prove that the set of numbers that can be defined by an English phrase
is denumerable. (Hint: See exercise 17.)



(b) Prove that there are real numbers that cannot be defined by English
phrases.

8.3. The Cantor-Schröder-Bernstein Theorem
Suppose A and B are sets and f is a one-to-one function from A to B. Then f
shows that A ∼ Ran(f) ⊆ B, so it is natural to think of B as being at least as
large as A. This suggests the following notation:

Definition 8.3.1. If A and B are sets, then we will say that B dominates A,
and write A ≾ B, if there is a function f: A → B that is one-to-one. If A ≾ B
and A ≁ B, then we say that B strictly dominates A, and write A ≺ B.

For example, in the proof of Theorem 8.2.6 we gave a one-to-one
function f: P(Z+) → R, so P(Z+) ≾ R. Of course, for any sets A and B, if
A ∼ B then also A ≾ B. It should also be clear that if A ⊆ B then A ≾ B.
For example, Z+ ≾ R. In fact, by Theorem 8.2.6 we also know that Z+ ≁ R,
so we can say that Z+ ≺ R.

You might think that ≾ would be a partial order, but it turns out that it
isn’t. You’re asked in exercise 1 to check that ≾ is reflexive and transitive,
but it is not antisymmetric. (In the terminology of exercise 25 of Section
4.5, ≾ is a preorder.) For example, Z+ ∼ Q, so Z+ ≾ Q and Q ≾ Z+, but of
course Z+ ≠ Q. But this suggests an interesting question: If A ≾ B and B ≾
A, then A and B might not be equal, but must they be equinumerous?

The answer, it turns out, is yes, as we’ll prove in our next theorem.
Several mathematicians’ names are usually associated with this theorem.
Cantor was the first person to state the theorem, and he gave a partial proof.
Later, Ernst Schröder (1841–1902) and Felix Bernstein (1878–1956)
discovered proofs independently.

Theorem 8.3.2. (Cantor-Schröder-Bernstein theorem) Suppose A and B are
sets. If A ≾ B and B ≾ A, then A ∼ B.

Scratch work



We start by assuming that A ≾ B and B ≾ A, which means that we can
choose one-to-one functions f: A → B and g: B → A. To prove that A ∼ B
we need to find a one-to-one, onto function h: A → B.

At this point, we don’t know much about A and B. The only tools we
have to help us match up the elements of A and B are the functions f and g.
If f is onto, then of course we can let h = f; and if g is onto, then we can let h
= g−1. But it may turn out that neither f nor g is onto. How can we come up
with the required function h in this case?

Our solution will be to combine parts of f and g−1 to get h. To do this,
we’ll split A into two pieces X and Y, and B into two pieces W and Z, in
such a way that X and W can be matched up by f, and Y and Z can be
matched up by g. More precisely, we’ll have W = f(X) = {f(x) | x ∈ X} and Y
= g(Z) = {g(z) | z ∈ Z}. The situation is illustrated in Figure 8.4. Once we
have this, we’ll be able to define h by letting h(a) = f(a) for a ∈ X, and h(a)
= g−1 (a) for a ∈ Y.

Figure 8.4.

How can we choose the sets X, Y, W, and Z? First of all, note that every
element of Y must be in Ran(g), so any element of A that is not in Ran(g)
must be in X. In other words, if we let A1 = A \ Ran(g), then we must have
A1 ⊆ X. But now consider any a ∈ A1. We know that we must have a ∈ X,
and therefore f(a) ∈ W. But now note that since g is one-to-one, g(f (a))



will be different from g(z) for every z ∈ Z, and therefore g(f (a)) /∈ g(Z) =
Y. Thus, we must have g(f (a)) ∈ X. Since a was an arbitrary element of A1,
this shows that if we let A2 = g(f (A1)) = {g(f (a)) | a ∈ A1 }, then we must
have A2 ⊆ X. Similarly, if we let A3 = g(f (A2)), then it will turn out that we
must have A3 ⊆ X. Continuing in this way we can define sets An for every
positive integer n, and for every n we must have An ⊆ X. As you will see,
letting  works. In the following proof, we actually do not
mention the sets W and Z.

Proof. Suppose A ≾ B and B ≾ A. Then we can choose one-to-one
functions f: A → B and g: B → A. Let R = Ran(g) ⊆ A. Then g maps onto R,
so by Theorem 5.3.4, g−1: R → B.

We now define a sequence of sets A1, A2, A3, . . . by recursion as follows:

Let  and Y = A \ X. Of course, every element of A is in either
X or Y, but not both. Now define h: A → B as follows:

Note that for every a ∈ A, if a /∈ R then a ∈ A1 ⊆ X. Thus, if a ∈ Y then a
∈ R, so g−1 (a) is defined. Therefore this definition makes sense.

We will show that h is one-to-one and onto, which will establish that A ∼
B. To see that h is one-to-one, suppose a1 ∈ A, a2 ∈ A, and h(a1) = h(a2).

Case 1. a1 ∈ X. Suppose a2 ∈ Y. Then according to the definition of h,
h(a1) = f(a1) and h(a2) = g−1 (a2). Thus, the equation h(a1) = h(a2) means
f(a1) = g−1 (a2), so g(f (a1)) = g(g−1 (a2)) = a2. Since  
we can choose some n ∈ Z+ such that a1 ∈ An. But then a2 = g(f (a1)) ∈
g(f (An)) = An+1, so a2 ∈ X, contradicting our assumption that a2 ∈ Y.



Thus, a2 /∈ Y, so a2 ∈ X. This means that h(a2) = f(a2), so from the
equation h(a1) = h(a2) we get f(a1) = f(a2). But f is one-to-one, so it follows
that a1 = a2.

Case 2. a1 ∈ Y. As in case 1, if a2 ∈ X, then we can derive a
contradiction, so we must have a2 ∈ Y. Thus, the equation h(a1) = h(a2)
means g−1 (a1) = g−1 (a2). Therefore, a1 = g(g−1 (a1)) = g(g−1 (a2)) = a2.

In both cases we have a1 = a2, so h is one-to-one.
To see that h is onto, suppose b ∈ B. Then g(b) ∈ A, so either g(b) ∈ X

or g(b) ∈ Y.
Case 1. g(b) ∈ X. Choose n such that g(b) ∈ An. Note that g(b) ∈ Ran(g)

= R and A1 = A \ R, so g(b) /∈ A1. Thus, n > 1, so An = g(f (An−1)), and
therefore we can choose some a ∈ An−1 such that g(f (a)) = g(b). But then
since g is one-to-one, f(a) = b. Since a ∈ An−1, a ∈ X, so h(a) = f(a) = b.
Thus, b ∈ Ran(h).

Case 2. g(b) ∈ Y. Then h(g(b)) = g−1 (g(b)) = b, so b ∈ Ran(h).
In both cases we have b ∈ Ran(h), so h is onto. □

The Cantor-Schröder-Bernstein theorem is often useful for showing that
sets are equinumerous. For example, in exercise 3 of Section 8.1 you were
asked to show that (0, 1] ∼ (0, 1), where

and

It is surprisingly difficult to find a one-to-one correspondence between
these two sets, but it is easy to show that they are equinumerous using the
Cantor-Schröder-Bernstein theorem. Of course, (0, 1) ⊆ (0, 1], so clearly
(0, 1) ≾ (0, 1]. For the other direction, define f: (0, 1] → (0, 1) by the
formula f(x) = x/2. It is easy to check that this function is one-to-one
(although it is not onto), so (0, 1] ≾ (0, 1). Thus, by the Cantor-Schröder-
Bernstein theorem, (0, 1] ∼ (0, 1). For more on this example see exercise 9.



Our next theorem gives a more surprising consequence of the Cantor-
Schröder-Bernstein theorem.

Theorem 8.3.3. R ∼ P(Z+).

It is quite difficult to prove Theorem 8.3.3 directly by giving an example
of a one-to-one, onto function from R to P(Z+). In our proof we’ll use the
Cantor-Schröder-Bernstein theorem and the following lemma.

Lemma 8.3.4. Suppose x and y are real numbers and x < y. Then there is a
rational number q such that x < q < y.

Proof. Let k be a positive integer larger than 1/(y −x). Then 1/k < y−x. We
will show that there is a fraction with denominator k that is between x and y.

Let m and n be integers such that m < x < n, and let S = {j ∈ N | m+j/k >
x}. Note that m+k(n−m)/k = n > x, and therefore k(n−m) ∈ S. Thus S ≠ ∅,
so by the well-ordering principle it has a smallest element. Let j be the
smallest element of S. Note also that m + 0/k = m < x, so 0 /∈ S, and
therefore j > 0. Thus, j − 1 is a natural number, but since j is the smallest
element of S, j − 1 /∈ S. It follows that m + (j − 1)/k ≤ x.

Let q = m + j/k. Clearly q is a rational number, and since j ∈ S, q = m +
j/k > x. Also, combining the observations that m + (j − 1)/k ≤ x and 1/k < y −
x, we have

Thus, we have x < q < y, as required. □

Proof of Theorem 8.3.3. As we noted earlier, we already know that P(Z+)
≾ R. Now consider the function f: R → P(Q) defined as follows:

We claim that f is one-to-one. To see why, suppose x ∈ R, y ∈ R, and x ≠ y.
Then either x < y or y < x. Suppose first that x < y. By Lemma 8.3.4, we can
choose a rational number q such that x < q < y. But then q ∈ f(y) and q /∈



f(x), so f(x) ≠ f(y). A similar argument shows that if y < x then f(x) ≠ f(y), so
f is one-to-one.

Since f is one-to-one, we have shown that R ≾ P(Q). But we also know
that Q ∼ Z+, so by exercise 5 in Section 8.1 it follows that P(Q) ∼ P(Z+).
Thus, R ≾ P(Q) ≾ P(Z+), so by transitivity of ≾ (see exercise 1) we
have R ≾ P(Z+). Combining this with the fact that P(Z+) ≾ R and
applying the Cantor-Schröder-Bernstein theorem, we conclude that R ∼
P(Z+). □

We said at the beginning of this chapter that we would show that infinity
comes in different sizes. We now see that, so far, we have found only two
sizes of infinity. One size is represented by the denumerable sets, which are
all equinumerous with each other. The only examples of nondenumerable
infinite sets we have given so far are P(Z+) and R, which we now know
are equinumerous. In fact, there are many more sizes of infinity. For
example, P(R) is an infinite set that is neither denumerable nor
equinumerous with R. Thus, it represents a third size of infinity. For more
on this see exercise 8.

Because Z+ ≺ R, it is natural to think of the set of real numbers as larger
than the set of positive integers. In 1878, Cantor asked whether there was a
size of infinity between these two sizes. More precisely, is there a set X
such that Z+ ≺ X ≺ R? Cantor conjectured that the answer was no, but he
was unable to prove it. His conjecture is known as the continuum
hypothesis. At the Second International Congress of Mathematicians in
1900, David Hilbert (1862–1943) gave a famous lecture in which he listed
what he believed to be the most important unsolved mathematical problems
of the time, and the proof or disproof of the continuum hypothesis was
number one on his list.

The status of the continuum hypothesis was “resolved” in a remarkable
way by the work of Kurt Gödel (1906–1978) in 1939 and Paul Cohen
(1934–2007) in 1963. The resolution turns out to require even more careful
analyses than we have given in this book of both the notion of proof and the
basic assumptions underlying set theory. Once such analyses have been
given, it is possible to prove theorems about what can be proven and what



cannot be proven. What Gödel and Cohen proved was that, using the
methods of mathematical proof and set-theoretic assumptions accepted by
most mathematicians today, it is impossible to prove the continuum
hypothesis, and it is also impossible to disprove it!

Exercises
*1. Prove that ≾ is reflexive and transitive. In other words:
(a) For every set A, A ≾ A.
(b) For all sets A, B, and C, if A ≾ B and B ≾ C then A ≾ C.
2. Prove that ≺ is irreflexive and transitive. In other words:

(a) For every set A, A ⊀ A.
(b) For all sets A, B, and C, if A ≺ B and B ≺ C then A ≺ C.
3. Suppose A ⊆ B ⊆ C and A ∼ C. Prove that B ∼ C.
4. Suppose A ≾ B and C ≾ D.

(a) Prove that A × C ≾ B × D.
(b) Prove that if A and C are disjoint and B and D are disjoint, then A ∪ C

≾ B ∪ D.
(c) Prove that P(A) ≾ P(B).
*5. For the meaning of the notation used in this exercise, see exercise 23 of

Section 8.1. Suppose A ≾ B and C ≾ D.
(a) Prove that if A ≠ ∅ then A C ≾ B D.
(b) Is the assumption that A ≠ ∅ needed in part (a)?
6. (a) Prove that if A ≾ B and B is finite, then A is finite and |A| ≤ |B|.

(b) Prove that if A ≺ B and B is finite, then A is finite and |A| < |B|.
7. Prove that for every set A, A ≺ P(A). (Hint: See exercise 5 of Section

8.2. Note that in particular, if A is finite and |A| = n then, as you showed
in exercise 11 of Section 6.2, and again in exercise 6(c) of Section 8.2,
|P(A)| = 2n. It follows, by exercise 6(b), that 2n > n. Of course, you
already proved this, by a different method, in exercise 12(a) of Section
6.3.)



*8. Let A1 = Z+, and for all n ∈ Z+ let An+1 = P(An).

(a) Prove that for all n ∈ Z+ and m ∈ Z+, if n < mthen A≺ A.
(b) The sets An, for n ∈ Z+, represent infinitely many sizes of infinity. Are

there any more sizes of infinity? In other words, can you think of an
infinite set that is not equinumerous with An for any n ∈ Z+?

9. The proof of the Cantor-Schröder-Bernstein theorem gives a method for
constructing a one-to-one and onto function h: A → B from one-to-one
functions f: A → B and g: B → A. Use this method to find a one-to-one,
onto function h: (0, 1] → (0, 1). Start with the functions f: (0, 1] → (0,
1) and g: (0, 1) → (0, 1] given by the formulas:

10. Let E = {R | R is an equivalence relation on Z+ }.

(a) Prove that E ≾ P(Z+).

(b) Let A = Z+ \{1, 2} and let P be the set of all partitions of Z+. Define f:

P(A) → P by the formula f(X) = {X ∪ {1}, (A \ X) ∪ {2}}. Prove that

f is one-to-one.
(c) Prove that E ∼ P(Z+).

11. Let T = {R | R is a total order on Z+ }. Prove that T ∼ P(Z+). (Hint:

Imitate the solution to exercise 10.)
12. (a) Prove that if A has at least two elements and A × A ∼ A then P(A)

× P(A) ∼ P(A).
(b) Prove that R × R ∼ R.

13. An interval is a set I ⊆ R with the property that for all real numbers x,
y, and z, if x ∈ I, z ∈ I, and x < y < z, then y ∈ I. An interval is
nondegenerate if it contains at least two different real numbers.
Suppose F is a set of nondegenerate intervals and F is pairwise disjoint.



Prove that F is countable. (Hint: By Lemma 8.3.4, every nondegenerate

interval contains a rational number.)
14. For the meaning of the notation used in this exercise, see exercise 23 of

Section 8.1.
(a) Prove that R R ∼ P(R).
(b) Prove that Q R ∼ R.
(c) (For readers who have studied calculus.) Let C = {f ∈ R

 R | f is

continuous}. Prove that C ∼ R. (Hint: Show that if f and g are

continuous functions and ∀x ∈ Q(f (x) = g(x)), then f = g.)

1 We should really be a bit more careful here. It is actually possible for two different decimal
expansions to represent the same number. For example, in a calculus class you may have
learned the surprising fact that 0.999 . . . = 1.000 . . . . However, this only happens with
decimal expansions that end with either an infinite sequence of 9s or an infinite sequence of
0s. For decimal expansions made up of 3s and 7s, different decimal expansions always
represent different numbers.



Appendix

Solutions to Selected Exercises

Introduction
1. (a) One possible answer is 32,767 = 31 · 1057.

(b) One possible answer is x = 231 − 1 = 2,147,483,647.
3. (a) The method yields the prime number 211.

(b) The method yields two primes, 3 and 37.



Chapter 1

Section 1.1
1. (a) (R ∨ H) ∧ ¬(H ∧ T), where R stands for the statement “We’ll

have a reading assignment,” H stands for “We’ll have homework
problems,” and T stands for “We’ll have a test.”

(b) ¬G ∨ (G ∧ ¬S), where G stands for “You’ll go skiing,” and S stands
for “There will be snow.”

(c)
6. (a) I won’t buy the pants without the shirt.

(b) I won’t buy the pants and I won’t buy the shirt.
(c) Either I won’t buy the pants or I won’t buy the shirt.

Section 1.2
1. (a)

(b)

5. (a)

(b) ¬(P ∨ Q).
(c) ¬P is equivalent to P ↓ P, P ∨ Q is equivalent to (P ↓ Q) ↓ (P ↓ Q),

and P ∧ Q is equivalent to (P ↓ P) ↓ (Q ↓ Q).



7. (a) and (c) are valid; (b) and (d) are invalid.
9. (a) is neither a contradiction nor a tautology; (b) is a contradiction;

(c) and (d) are tautologies.
11. (a) P ∨ Q.
(b) P.
(c) ¬P ∨ Q.
14. We use the associative law for ∧ twice:

16. P ∨ ¬Q.

Section 1.3

1. (a) D(6) ∧ D(9) ∧ D(15), where D(x) means “x is divisible by 3.”
(b) D(x, 2) ∧ D(x, 3) ∧ ¬D(x, 4), where D(x, y) means “x is divisible by

y.”
(c) N(x) ∧ N(y) ∧ [(P (x) ∧ ¬P(y)) ∨ (P (y) ∧ ¬P(x))], where N(x) means

“x is a natural number” and P(x) means “x is prime.”
3. (a) {x | x is a planet}.

(b) {x | x is an Ivy League school}.
(c) {x | x is a state in the United States}.
(d) {x | x is a province or territory in Canada}.
5. (a) (−3 ∈ R) ∧ (13 − 2(−3) > 1). Bound variables: x; no free

variables. This statement is true.
(b) (4 ∈ R) ∧ (4 < 0) ∧ (13 − 2(4) > 1). Bound variables: x; no free

variables. This statement is false.
(c) ¬[(5 ∈ R) ∧ (13 − 2(5) > c)]. Bound variables: x; free variables: c.

8. (a) {x | Elizabeth Taylor was once married to x} = {Conrad Hilton
Jr., Michael Wilding, Michael Todd, Eddie Fisher, Richard
Burton, John Warner, Larry Fortensky}.

(b) {x | x is a logical connective studied in Section 1.1} = { ∧, ∨, ¬}.
(c) {x | x is the author of this book} = {Daniel J. Velleman}.



Section 1.4
1. (a) {3, 12}.

(b) {1, 12, 20, 35}.
(c) {1, 3, 12, 20, 35}.

The sets in parts (a) and (b) are both subsets of the set in part (c).
4. (a) Both Venn diagrams look like this:

(b) Both Venn diagrams look like this:

9. Sets (a), (d), and (e) are equal, and sets (b) and (c) are equal.
12. (a) There is no region corresponding to the set (A ∩ D) \ (B ∪ C),

but this set could have elements.
(b) Here is one possibility:



14. The Venn diagrams for both sets look like this:

Section 1.5
1. (a) (S ∨ ¬E) → ¬H, where S stands for “This gas has an unpleasant

smell,” E stands for “This gas is explosive,” and H stands for
“This gas is hydrogen.”

(b) (F ∧ H) → D, where F stands for “George has a fever,” H stands for
“George has a headache,” and D stands for “George will go to the
doctor.”

(c) (F → D) ∧ (H → D), where the letters have the same meanings as in
part (b).

(d) (x ≠ 2) → (P (x) → O(x)), where P(x) stands for “x is prime” and
O(x) stands for “x is odd.”

4. (a) and (b) are valid, but (c) is invalid.
7. (a) Either make a truth table, or reason as follows:

(b) (P → R) ∨ (Q → R) is equivalent to (P ∧ Q) → R.
9. ¬(P → ¬Q).



Chapter 2

Section 2.1
1. (a) ∀x[∃yF(x, y) → S(x)], where F(x, y) stands for “x has forgiven

y,” and S(x) stands for “x is a saint.”
(b) ¬∃x[C(x) ∧ ∀y(D(y) → S(x, y))], where C(x) stands for “x is in the

calculus class,” D(y) stands for “y is in the discrete math class,” and
S(x, y) stands for “x is smarter than y.”

(c) ∀x(¬(x = m) → L(x, m)), where L(x, y) stands for “x likes y,” and m
stands for Mary.

(d) ∃x(P(x) ∧ S(j, x)) ∧ ∃y(P(y) ∧ S(r, y)), where P(x) stands for “x is a
police officer,” S(x, y) stands for “x saw y,” j stands for Jane, and r
stands for Roger.

(e) ∃x(P(x) ∧ S(j, x) ∧ S(r, x)), where the letters have the same meanings
as in part (d).

4. (a) All unmarried men are unhappy.
(b) y is a sister of one of x’s parents; i.e., y is x’s blood aunt.
8. (a), (d), and (e) are true; (b), (c), and (f) are false.

Section 2.2
1. (a) ∃x[M(x) ∧ ∀y(F(x, y) → ¬H(y))], where M(x) stands for “x is

majoring in math,” F(x, y) stands for “x and y are friends,” and
H(y) stands for “y needs help with his or her homework.” In
English: There is a math major all of whose friends don’t need
help with their homework.

(b) ∃x∀y(R(x, y) → ∃zL(y, z)), where R(x, y) stands for “x and y are
roommates” and L(y, z) stands for “y likes z.” In English: There is
someone all of whose roommates like at least one person.

(c) ∃x[(x ∈ A ∨ x ∈ B) ∧ (x ∉ C ∨ x ∈ D)].
(d) ∀x∃y[y > x ∧ ∀z(z2 + 5z ≠ y)].



4. Hint: Begin by replacing P(x) with ¬P(x) in the first quantifier
negation law, to get the fact that ¬∃x¬P(x) is equivalent to ∀x¬¬P(x).

6. Hint: Begin by showing that ∃x(P(x) ∨ Q(x)) is equivalent to ¬∀x¬(P
(x) ∨ Q(x)).

8. (∀x ∈ A P (x)) ∧ (∀x ∈ B P (x))

11. A \ B = ∅ is equivalent to ¬∃x(x ∈ A ∧ x ∉ B)

14. A ∩ B = ∅ is equivalent to ¬∃x(x ∈ A ∧ x ∈ B)

 

(by Section 1.5 exercise 11(b)) 

Section 2.3
1. (a) ∀x(x ∈ F → ∀y(y ∈ x → y ∈ A)).

(b) ∀x(x ∈ A → ∃n ∈ N(x = 2n + 1)).
(c) ∀n ∈ N∃m ∈ N(n2 + n + 1 = 2m + 1).



(d) ∃x(∀y(y ∈ x → ∃i ∈ I (y ∈ Ai)) ∧ ∀i ∈ I∃y(y ∈ x ∧ y ∉ Ai)).

4.  and 
8. (a) A2 = {2, 4}, A3 = {3, 6}, B2 = {2, 3}, B3 = {3, 4}.

(b)
(c) They are not equivalent.
12. One example is A = {1, 2} and B = {2, 3}.
14. (a) B3 = {1, 2, 3, 4, 5} and B4 = {1, 2, 4, 5, 6}.

(b)
(c)
(d)  means ∀j ∈ J ∃i ∈ I (x ∈ Ai,j) and  

 means ∃i ∈ I∀j ∈ J(x ∈ Ai,j). They are not
equivalent.



Chapter 3

Section 3.1
1. (a) Hypotheses: n is an integer larger than 1 and n is not prime.

Conclusion: 2n − 1 is not prime. The hypotheses are true when n
= 6, so the theorem tells us that 26 − 1 is not prime. This is
correct, since 26 − 1 = 63 = 9 · 7.

(b) We can conclude that 32767 is not prime. This is correct, since 32767
= 151 · 217.

(c) The theorem tells us nothing; 11 is prime, so the hypotheses are not
satisfied.

4. Suppose 0 < a < b. Then b − a > 0. Multiplying both sides by the
positive number b + a, we get (b + a) · (b − a) > (b + a) · 0, or in other
words b2 − a2 > 0. Since b2 − a2 > 0, it follows that a2 < b2. Therefore
if 0 < a < b then a2 < b2.

8. We will prove the contrapositive. Suppose x ∉ B. Then since x ∈ A, it
follows that x ∈ A \ B. But we also know that A \ B ⊆ C ∩ D, so we
can conclude that x ∈ C ∩ D, and therefore x ∈ D. Thus, if x ∉ D
then x ∈ B.

10. Hint: Add b to both sides of the inequality a < b.
12. We will prove the contrapositive. Suppose c ≤ d. Multiplying both

sides of this inequality by the positive number a, we get ac ≤ ad.
Also, multiplying both sides of the given inequality a < b by the
positive number d gives us ad < bd. Combining ac ≤ ad and ad < bd,
we can conclude that ac < bd. Thus, if ac ≥ bd then c > d.

15. Since x > 3 > 0, by the theorem in Example 3.2.1, x2 > 9. Also,
multiplying both sides of the given inequality y < 2 by −2 (and
reversing the direction of the inequality, since −2 is negative) we get
−2y > −4. Finally, adding the inequalities x2 > 9 and −2y >−4 gives us
x2−2y >5.

Section 3.2



1. (a) Suppose P. Since P → Q, it follows that Q. But then, since Q →
R, we can conclude R. Thus, P → R.

(b) Suppose P. To prove that Q → R, we will prove the contrapositive, so
suppose ¬R. Since ¬R → (P → ¬Q), it follows that P → ¬Q, and
since we know P, we can conclude ¬Q. Thus, Q → R, so P → (Q →
R).

5. Suppose x ∈ A \ B and x ∈ B \C. Since x ∈ A \ B, x ∈ A and x ∉ B,
and since x ∈ B \ C, x ∈ B and x ∉ C. But now we have x ∈ B and x
∉ B, which is a contradiction. Therefore it cannot be the case that x ∈
A \ B and x ∈ B \ C.

6. Suppose a ∈ A \ B. This means that a ∈ A and a ∉ B. Since a ∈ A
and a ∈ C, a ∈ A ∩ C. But then since A ∩ C ⊆ B, it follows that a ∈
B, and this contradicts the fact that a ∉ B. Thus, a ∉ A \ B.

9. Hint: Assume a < 1/a < b < 1/b. Now prove that a < 1, then use this
fact to prove that a < 0, and then use this fact to prove that a < −1.

12. (a) The sentence “Then x = 3 and y = 8” is incorrect. (Why?)
(b) One counterexample is x = 3, y = 7.
15.

Section 3.3
1. Suppose ∃x(P(x) → Q(x)). Then we can choose some x0 such that

P(x0) → Q(x0). Now suppose that ∀xP(x). Then in particular, P(x0),
and since P(x0) → Q(x0), it follows that Q(x0). Since we have found a
particular value of x for which Q(x) holds, we can conclude that
∃xQ(x). Thus ∀xP(x) → ∃xQ(x).



3. Suppose that A ⊆ B \ C, but A and C are not disjoint. Then we can
choose some x such that x ∈ A and x ∈ C. Since x ∈ A and A ⊆ B \
C, it follows that x ∈ B \C, which means that x ∈ B and x ∉ C. But
now we have both x ∈ C and x ∉ C, which is a contradiction. Thus, if
A ⊆ B \ C then A and C are disjoint.

7. Suppose x > 2. Let  which is defined since x2 −
4 > 0. Then

9. Suppose F is a family of sets and A ∈ F. Suppose  Then by

the definition of  since  and A ∈ F, x ∈ A. But x was an

arbitrary element of  so it follows that 
12. Hint: Assume F ⊆ G and let x be an arbitrary element of  You

must prove that  which means ∃A ∈ G(x ∈ A), so you

should try to find some A ∈ G such that x ∈ A. To do this, write out

the givens in logical notation. You will find that one of them is a
universal statement, and one is existential. Apply existential
instantiation to the existential one.

14. Suppose  Then we can choose some i ∈ I such that x
∈ P(Ai), or in other words x ⊆ Ai. Now let a be an arbitrary element
of x. Then a ∈ Ai, and therefore  Since a was an
arbitrary element of x, it follows that  which means that 

 Thus 
17. Hint: The last hypothesis means ∀A ∈ F ∀B ∈ G(A ⊆ B), so if in the

course of the proof you ever come across sets A ∈ F and B ∈ G, you

can conclude that A ⊆ B. Start the proof by letting x be arbitrary and
assuming  and prove that  To see where to go from
there, write these statements in logical symbols.

20. The sentence “Then for every real number x, x2 < 0” is incorrect.
(Why?)



22. Based on the logical form of the statement to be proven, the proof
should have this outline:

This outline makes it clear that y should be introduced into the
proof after x. Therefore, x cannot be defined in terms of y, because y
will not yet have been introduced into the proof when x is being
defined. But in the given proof, x is defined in terms of y in the first
sentence. (The mistake has been disguised by the fact that the
sentence “Let y be an arbitrary real number” has been left out of the
proof. If you try to add this sentence to the proof, you will find that
there is nowhere it could be added that would lead to a correct proof
of the incorrect theorem.)

25. Here is the beginning of the proof: Let x be an arbitrary real number.
Let y = 2x. Now let z be an arbitrary real number. Then . . . .

Section 3.4
1. (→) Suppose ∀x(P(x) ∧ Q(x)). Let y be arbitrary. Then since ∀x(P(x)
∧ Q(x)), P(y) ∧ Q(y), and so in particular P(y). Since y was arbitrary,
this shows that ∀xP(x). A similar argument proves ∀xQ(x): for
arbitrary y, P(y) ∧ Q(y), and therefore Q(y). Thus, ∀xP(x) ∧ ∀xQ(x).

(←) Suppose ∀xP(x) ∧ ∀xQ(x). Let y be arbitrary. Then since
∀xP(x), P(y), and similarly since ∀xQ(x), Q(y). Thus, P(y) ∧ Q(y),
and since y was arbitrary, it follows that ∀x(P(x) ∧ Q(x)).

4. Suppose that A ⊆ B and A ⊈ C. Since A ⊈ C, we can choose some a
∈ A such that a ∉ C. Since a ∈ A and A ⊆ B, a ∈ B. Since a ∈ B
and a ∉ C, B ⊈ C.

7. Let A and B be arbitrary sets. Let x be arbitrary, and suppose that x ∈
P(A ∩ B). Then x ⊆ A ∩ B. Now let y be an arbitrary element of x.
Then since x ⊆ A ∩ B, y ∈ A ∩ B, and therefore y ∈ A. Since y was



arbitrary, this shows that x ⊆ A, so x ∈ P(A). A similar argument
shows that x ⊆ B, and therefore x ∈ P(B). Thus, x ∈ P(A) ∩ P(B).

Now suppose that x ∈ P(A)∩P(B). Then x ∈ P(A) and x ∈
P(B), so x ⊆ A and x ⊆ B. Suppose that y ∈ x. Then since x ⊆ A and
x ⊆ B, y ∈ A and y ∈ B, so y ∈ A ∩ B. Thus, x ⊆ A ∩ B, so x ∈
P(A ∩ B).

9. Suppose that x and y are odd. Then we can choose integers j and k
such that x = 2j + 1 and y = 2k + 1. Therefore xy = (2j + 1)(2k + 1) =
4jk + 2j + 2k + 1 = 2(2jk + j + k) + 1. Since 2jk + j + k is an integer, it
follows that xy is odd.

13. Hint: Let x ∈ R be arbitrary, and prove both directions of the
biconditional separately. For the “→” direction, use existential
instantiation and proof by contradiction. For the “←” direction,
assume that x ≠ 1 and then solve the equation x + y = xy for y in order
to decide what value to choose for y.

16. Suppose that  are not disjoint. Then we can choose some
x such that  Since  we can choose
some A ∈ F such that x ∈ A. Since we are given that every element

of F is disjoint from some element of G, there must be some B ∈ G

such that A∩B = ∅. Since x ∈ A, it follows that x ∉ B. But we also
have  and B ∈ G, from which it follows that x ∈ B, which is a

contradiction. Thus,  must be disjoint.
18. (a) Suppose  Then we can choose some A ∈ F ∩ G

such that x ∈ A. Since A ∈ F ∩ G, A ∈ F and A ∈ G. Since x ∈

A and  and similarly since x ∈ A and 
 Therefore,  Since x was

arbitrary, this shows that 
(b) The sentence “Thus, we can choose a set A such that A ∈ F, A ∈ G,

and x ∈ A” is incorrect. (Why?)
(c) One example is F = {{1}, {2}}, G = {{1}, {1, 2}}.



22. Suppose that  Then there is some  such that  
 Since  we can choose some A ∈ F such that x ∈ A.

Now let B ∈ G be arbitrary. If A ⊆ B, then since x ∈ A, x ∈ B. But

then since x ∈ B and  which we already know is false.
Therefore A ⊈ B. Since B was arbitrary, this shows that for all B ∈ G,

A ⊈ B. Thus, we have shown that there is some A ∈ F such that for

all B ∈ G, A ⊈ B.

24. (a) Suppose  Then we can choose some i ∈ I
such that x ∈ Ai \ Bi, which means x ∈ Ai and x ∉ Bi. Since x ∈
Ai,  and since  Thus, 

 
(b) One example is I = {1, 2}, A1 = B1 = {1}, A2 = B2 = {2}.

Section 3.5
1. Suppose x ∈ A ∩ (B ∪ C). Then x ∈ A, and either x ∈ B or x ∈ C.

Case 1. x ∈ B. Then since x ∈ A, x ∈ A ∩ B, so x ∈ (A ∩ B) ∪ C.
Case 2. x ∈ C. Then clearly x ∈ (A ∩ B) ∪ C.
Since x was arbitrary, we can conclude that A∩(B ∪ C) ⊆

(A∩B)∪C.
5. Suppose x ∈ A. We now consider two cases:

Case 1. x ∈ C. Then x ∈ A ∩ C, so since A ∩ C ⊆ B ∩ C, x ∈ B ∩
C, and therefore x ∈ B.

Case 2. x ∉ C. Since x ∈ A, x ∈ A ∪ C, so since A ∪ C ⊆ B ∪ C, x
∈ B ∪ C. But x ∉ C, so we must have x ∈ B.

Thus, x ∈ B, and since x was arbitrary, A ⊆ B.
8. Hint: Assume x ∈ P(A) ∪ P(B), which means that either x ∈ P(A)

or x ∈ P(B). Treat these as two separate cases. In case 1, assume x ∈
P(A), which means x ⊆ A, and prove x ∈ P(A ∪ B), which means x
⊆ A ∪ B. Case 2 is similar.

12. Let x be an arbitrary real number.



(←) Suppose |x − 4| > 2.
Case 1. x − 4 ≥ 0. Then |x − 4| = x − 4, so we have x − 4 > 2, and

therefore x > 6. Adding x to both sides gives us 2x > 6 + x, so 2x −6 >
x. Since x > 6, this implies that 2x −6 is positive, so |2x −6| = 2x − 6 >
x.

Case 2. x − 4 < 0. Then |x − 4| = 4 − x, so we have 4 − x > 2, and
therefore x < 2. Therefore 3x < 6, and subtracting 2x from both sides
we get x < 6 − 2x. Also, from x < 2 we get 2x < 4, so 2x − 6 < −2.
Therefore 2x − 6 is negative, so |2x − 6| = 6 − 2x > x.

(→) Hint: Imitate the “←” direction, using the cases 2x − 6 ≥ 0 and
2x − 6 < 0.

16. (a) Suppose  Then we can choose some A ∈ F ∪ G

such that x ∈ A. Since A ∈ F ∪ G, either A ∈ F or A ∈ G.

Case 1. A ∈ F. Since x ∈ A and  

Case 2. A ∈ G. Since x ∈ A and  

Thus, 
Now suppose that  Then either  or 

Case  Then we can choose some A ∈ F such that x ∈

A. Since A ∈ F, A ∈ F ∪ G, so since x ∈ A, it follows that 

Case  A similar argument shows that 
Thus, 

(b) The theorem is: 
20. (→) Suppose that A △  B and C are disjoint. Let x be an arbitrary

element of A ∩ C. Then x ∈ A and x ∈ C. If x ∉ B, then since x ∈ A,
x ∈ A \ B, and therefore x ∈ A △  B. But also x ∈ C, so this
contradicts our assumption that A △ B and C are disjoint. Therefore x
∈ B. Since we also know x ∈ C, we have x ∈ B ∩ C. Since x was an



arbitrary element of A ∩ C, this shows that A ∩ C ⊆ B ∩ C. A similar
argument shows that B ∩ C ⊆ A ∩ C.

(←) Suppose that A ∩ C = B ∩ C. Suppose that A △  B and C are
not disjoint. Then we can choose some x such that x ∈ A △ B and x ∈
C. Since x ∈ A △ B, either x ∈ A \ B or x ∈ B \ A.

Case 1. x ∈ A \ B. Then x ∈ A and x ∉ B. Since we also know x ∈
C, we can conclude that x ∈ A ∩ C but x ∉ B ∩ C. This contradicts
the fact that A ∩ C = B ∩ C.

Case 2. x ∈ B \ A. Similarly, this leads to a contradiction.
Thus we can conclude that A △ B and C are disjoint.

23. (a) Hint: Suppose x ∈ A \ C, and then break the proof into cases,
depending on whether or not x ∈ B. (b) Hint: Apply part (a).

24. (a) Suppose x ∈ (A ∪ B) △ C. Then either x ∈ (A ∪ B) \ C or x ∈
C \ (A ∪ B).

Case 1. x ∈ (A ∪ B) \ C. Then either x ∈ A or x ∈ B, and x ∉ C.
We now break case 1 into two subcases, depending on whether x ∈
A or x ∈ B:

Case 1a. x ∈ A. Then x ∈ A \ C, so x ∈ A △ C, so x ∈ (A △ C) ∪
(B △ C).

Case 1b. x ∈ B. Similarly, x ∈ B △ C, so x ∈ (A △ C) ∪ (B △ C).
Case 2. x ∈ C \ (A ∪ B). Then x ∈ C, x ∉ A, and x ∉ B. It follows

that x ∈ A △ C and x ∈ B △ C, so certainly x ∈ (A △ C) ∪ (B △ C).
(b) Here is one example: A = {1}, B = {2}, C = {1, 2}.
27. The proof is incorrect, because it only establishes that either 0 < x or x

< 6, but what must be proven is that 0 < x and x < 6. However, it can
be fixed.

29. The proof is correct.
31. Hint: Here is a counterexample to the theorem: A = {1, 2}, B = {1}, C

= {2}.

Section 3.6

1. Let x be an arbitrary real number. Let y = x/(x2 + 1). Then



To see that y is unique, suppose that x2 z = x − z. Then z(x2 + 1) = x,
and since x2 + 1 ≠ 0, we can divide both sides by x2 + 1 to conclude
that z = x/(x2 + 1) = y.

4. Suppose x ≠ 0. Let y = 1/x. Nowlet z be an arbitrary real number. Then
zy = z(1/x) = z/x, as required.

To see that y is unique, suppose that y′ is a number with the
property that ∀z ∈ R(zy′ = z/x). Then in particular, taking z = 1, we
have y′ = 1/x, so y′ = y.

6. (a) Let A = ∅ ∈ P(U). Then clearly for any B ∈ P(U), A ∪ B = ∅
∪ B = B.

To see that A is unique, suppose that A′ ∈ P(U) and for all B ∈
P(U), A′ ∪ B = B. Then in particular, taking B = ∅, we can
conclude that A′ ∪ ∅ = ∅. But clearly A′ ∪ ∅ = A′, so we have A′ =
∅ = A.

(b) Hint: Let A = U.
11. Existence: We are given that for every  so in

particular, since  Now suppose B ∈
F. Then by exercise 8 of Section 3.3,  as required.

Uniqueness: Suppose that A1 ∈ F, A2 ∈ F, ∀B ∈ F(B ⊆ A1), and

∀B ∈ F(B ⊆ A2). Applying this last fact with B = A1 we can

conclude that A1 ⊆ A2, and similarly the previous fact implies that A2
⊆ A1. Thus A1 = A2.

Section 3.7
1. Hint: Comparing (b) to exercise 16 of Section 3.3 may give you an

idea of what to use for A.
5. Suppose  It is clear that 

so  and therefore  By the
definition of the union of a family, this means that there is some i ∈ I



such that  Now let j ∈ I be arbitrary. Then by exercise 8
in Section 3.3,  so Aj ⊆ Ai.

8. Suppose that limx→c f(x) = L > 0. Let ϵ = L. Then by the definition of
limit, we can choose some δ > 0 such that for all x, if 0 < |x − c| < δ
then |f(x) − L| < ϵ = L. Now let x be an arbitrary real number and
suppose 0 < |x − c| < δ. Then |f(x) − L| < L, so −L < f(x) − L < L and
therefore 0 < f(x) < 2L. Therefore, for every real number x, if 0 < |x −
c| < δ then f(x) > 0.

10. The proof is correct.



Chapter 4

Section 4.1
1. (a) {(x, y) ∈ P × P | x is a parent of y} = {(Bill Clinton, Chelsea

Clinton), (Goldie Hawn, Kate Hudson), . . .}.
(b) {(x, y) ∈ C × U | there is someone who lives in x and attends y}. If

you are a university student, then let x be the city you live in, and let
y be the university you attend; (x, y) will then be an element of this
truth set.

4. A × (B ∩ C) = (A × B) ∩ (A × C) = {(1, 4), (2, 4), (3, 4)},

6. The cases are not exhaustive.
8. Yes, it is true.

10. Suppose (x, y) ∈ (A \ C) × (B \ D). Then x ∈ A \ C and y ∈ B \ D,
which means x ∈ A, x ∉ C, y ∈ B, and y ∉ D. Since x ∈ A and y ∈
B, (x, y) ∈ A × B. And since x ∉ C, (x, y) ∉ C × D. Therefore (x, y)
∈ (A × B) \ (C × D).

15. The theorem is incorrect. Counterexample: A = {1}, B = C = D = ∅.
Notice that A ⊈ C. Where is the mistake in the proof that A ⊆ C?

Section 4.2
1. (a) Domain = {p ∈ P | p has a living child}; Range = {p ∈ P | p has

a living parent}.
(b) Domain = R; Range = R+.

5. (a) {(1, 4), (1, 5), (1, 6), (2, 4), (3, 6)}.



(b) {(4, 4), (5, 5), (5, 6), (6, 5), (6, 6)}.
8. E ◦ E ⊆ F.

11. We prove the contrapositives of both directions.
(→) Suppose Ran(R) and Dom(S) are not disjoint. Then we can

choose some b ∈ Ran(R) ∩ Dom(S). Since b ∈ Ran(R), we can
choose some a ∈ A such that (a, b) ∈ R. Similarly, since b ∈
Dom(S), we can choose some c ∈ C such that (b, c) ∈ S. But then (a,
c) ∈ S ◦ R, so S ◦ R ≠ ∅.

(←) Suppose S ◦ R ≠ ∅. Then we can choose some (a, c) ∈ S ◦ R.
By the definition of S ◦ R, this means that we can choose some b ∈ B
such that (a, b) ∈ R and (b, c) ∈ S. But then b ∈ Ran(R) and b ∈
Dom(S), so Ran(R) and Dom(S) are not disjoint.

Section 4.3
1.

3.

5. S ◦ R = {(a, y), (a, z), (b, x), (c, y), (c, z)}.
7. (→) Suppose R is reflexive. Let (x, y) be an arbitrary element of iA.

Then by the definition of iA, x = y ∈ A. Since R is reflexive, (x, y) =
(x, x) ∈ R. Since (x, y) was arbitrary, this shows that iA ⊆ R.

(←) Suppose iA ⊆ R. Let x ∈ A be arbitrary. Then (x, x) ∈ iA, so
since iA ⊆ R, (x, x) ∈ R. Since x was arbitrary, this shows that R is
reflexive.

10. Suppose (x, y) ∈ iD. Then x = y ∈ D = Dom(S), so there is some z ∈
A such that (x, z) ∈ S. Therefore (z, x) ∈ S−1, so (x, y) = (x, x) ∈ S−1 ◦
S. Thus, iD ⊆ S−1 ◦ S. The proof of the other statement is similar.



13. (a) Yes. To prove it, suppose R1 and R2 are reflexive, and suppose a
∈ A. Since R1 is reflexive, (a, a) ∈ R1, so (a, a) ∈ R1 ∪ R2.

(b) Yes. To prove it, suppose R1 and R2 are symmetric, and suppose (x, y)
∈ R1 ∪ R2. Then either (x, y) ∈ R1 or (x, y) ∈ R2. If (x, y) ∈ R1 then
since R1 is symmetric, (y, x) ∈ R1, so (y, x) ∈ R1 ∪ R2. Similar
reasoning shows that if (x, y) ∈ R2 then (y, x) ∈ R1 ∪ R2.

(c) No. Counterexample: A = {1, 2, 3}, R1 = {(1, 2)}, R2 = {(2, 3)}.

17. First note that by part 2 of Theorem 4.3.4, since R and S are
symmetric, R = R−1 and S = S−1. Therefore

(Theorem 4.3.4, part 2) 
 
(Theorem 4.2.5, part 5)

20. Suppose R is transitive, and suppose (X, Y) ∈ S and (Y, Z) ∈ S. To
prove that (X, Z) ∈ S we must show that ∀x ∈ X∀z ∈ Z(xRz), so let x
∈ X and z ∈ Z be arbitrary. Since Y ∈ B, Y ≠ ∅, so we can choose y
∈ Y. Since (X, Y) ∈ S and (Y, Z) ∈ S, by the definition of S we have
xRy and yRz. But then since R is transitive, xRz, as required. The
empty set had to be excluded from B so that we could come up with y
∈ Y in this proof. (Can you find a counterexample if the empty set is
not excluded?)

23. Hint: Suppose aRb and bRc. To prove aRc, suppose that X ⊆ A \ {a,
c} and X ∪ {a} ∈ F; you must prove that X ∪ {c} ∈ F. To do this,

you may find it helpful to consider two cases: b ∉ X or b ∈ X. In the
second of these cases, try working with the sets X′ = (X ∪ {a}) \ {b}
and X″ = (X ∪{c}) \ {b}.

Section 4.4
1. (a) Partial order, but not total order. (b) Not a partial order. (c)

Partial order, but not total order.
4. (→) Suppose that R is both antisymmetric and symmetric. Suppose

that (x, y) ∈ R. Then since R is symmetric, (y, x) ∈ R, and since R is



antisymmetric, it follows that x = y. Therefore (x, y) ∈ iA. Since (x, y)
was arbitrary, this shows that R ⊆ iA.

(←) Suppose that R ⊆ iA. Suppose (x, y) ∈ R. Then (x, y) ∈ iA, so x
= y, and therefore (y, x) = (x, y) ∈ R. This shows that R is symmetric.
To see that R is antisymmetric, suppose that (x, y) ∈ R and (y, x) ∈ R
Then (x, y) ∈ iA, so x = y.

8. To see that T is reflexive, consider an arbitrary (a, b) ∈ A × B. Since
R and S are both reflexive, we have aRa and bSb. By the definition of
T, it follows that (a, b)T (a, b). To see that T is antisymmetric,
suppose that (a, b)T (a′, b′) and (a′, b′)T (a, b). Then aRa′ and a′ Ra,
so since R is antisymmetric, a = a′. Similarly, bSb′ and b′ Sb, so since
S is antisymmetric, we also have b = b′. Thus (a, b) = (a′, b′), as
required. Finally, to see that T is transitive, suppose that (a, b)T (a′, b′)
and (a′, b′)T (a″, b″). Then aRa′ and a′ Ra″, so since R is transitive,
aRa″. Similarly, bSb′ and b′ Sb″, so bSb″, and therefore (a, b)T (a″,
b″).

Even if both R and S are total orders, T need not be a total order.
11. The minimal elements of B are the prime numbers. B has no smallest

element.
14. (a) b is the R-largest element of B

(b) b is an R-maximal element of B

17. No. Let A = R × R, and let R = {((x, y), (x′, y′)) ∈ A × A | x ≤ x′ and y
≤ y′}. (You might want to compare this to exercise 8.) Let B = {(0, 0)}
∪ ({1} × R). We will leave it to you to check that R is a partial order
on A, and that (0, 0) is the only minimal element of B, but it is not a
smallest element.



21. (a) Suppose that x ∈ U and xRy. To prove that y ∈ U, we must
show that y is an upper bound for B, so suppose that b ∈ B.
Since x ∈ U, x is an upper bound for B, so bRx. But we also
have xRy, so by the transitivity of R we can conclude that bRy.
Since b was arbitrary, this shows that y is an upper bound for B.

(b) Suppose b ∈ B. To prove that b is a lower bound for U, let x be an
arbitrary element of U. Then by the definition of U, x is an upper
bound for B, so bRx. Since x was arbitrary, this shows that b is a
lower bound for U.

(c) Hint: Suppose x is the greatest lower bound of U. First use part (b) to
show that x is an upper bound for B, and therefore x ∈ U. Then use
the fact that x is a lower bound for U to show that x is the smallest
element of U – in other words, it is the least upper bound of B.

24. (a) Suppose (x, y) ∈ S. Then either (x, y) ∈ R or (x, y) ∈ R−1. If (x,
y) ∈ R, then (y, x) ∈ R−1, so (y, x) ∈ S. If (x, y) ∈ R−1, then (y,
x) ∈ R, so (y, x) ∈ S. Therefore S is symmetric. Since S = R ∪
R−1, it is clear that R ⊆ S.

(b) Suppose T is a symmetric relation on A and R ⊆ T. To show that S ⊆
T, let (x, y) be an arbitrary element of S. Then either (x, y) ∈ R or (x,
y) ∈ R−1. If (x, y) ∈ R, then since R ⊆ T, (x, y) ∈ T. If (x, y) ∈ R−1,
then (y, x) ∈ R, so since R ⊆ T, (y, x) ∈ T. But T is symmetric, so it
follows that (x, y) ∈ T.

27. (a) First, note that R1 ⊆ R and R2 ⊆ R. It follows, by exercise 26,
that S1 ⊆ S and S2 ⊆ S, so S1 ∪ S2 ⊆ S. For the other direction,
note that R = R1 ∪ R2 ⊆ S1 ∪ S2, and by exercise 13(b) of
Section 4.3, S1 ∪ S2 is symmetric. Therefore, by exercise 24(b),
S ⊆ S1 ∪ S2.

(b) Imitating the first half of the proof in part (a), we can use exercise 26
to show that T1 ∪ T2 ⊆ T. However, the answer to exercise 13(c) of
Section 4.3 was no, so we can’t imitate the second half of the proof.
In fact, the example given in the solution to exercise 13(c) works as
an example for which T1 ∪ T2 ≠ T.



Section 4.5
1. Here is a list of all partitions:

3. (a) R is an equivalence relation. There are 26 equivalence classes –
one for each letter of the alphabet. The equivalence classes are:
the set of all words that start with a, the set of all words that start
with b, . . . , the set of all words that start with z.

(b) S is not an equivalence relation, because it is not transitive.
(c) T is an equivalence relation. The equivalence classes are: the set of all

one-letter words, the set of all two-letter words, and so on. For every
positive integer n, if there is at least one English word of length n,
then the set of all words of length n is an equivalence class.

6. The assumption that is needed is that for every date d, someone was
born on the date d. What would go wrong if, say, just by chance, no
one was born on April 23? Where in the proof is this assumption
used?

10. Since S is the equivalence relation determined by F, the proof of

Theorem 4.5.6 shows that A/S = F = A/R. The desired conclusion now

follows from exercise 9.
13. See Lemma 7.3.4.
16. By exercise 16(a) of Section 3.5, 

see that F ∪ G is pairwise disjoint, suppose that X ∈ F ∪ G, Y ∈ F ∪

G, and X ∩ Y ≠ ∅. If X ∈ F and Y ∈ G then X ⊆ A and Y ⊆ B, and

since A and B are disjoint it follows that X and Y are disjoint, which is
a contradiction. Thus it cannot be the case that X ∈ F and Y ∈ G, and

a similar argument can be used to rule out the possibility that X ∈ G

and Y ∈ F. Thus, X and Y are either both elements of F or both



elements of G. If they are both in F, then since F is pairwise disjoint,

X = Y. A similar argument applies if they are both in G. Finally, we

have ∀X ∈ F(X ≠ ∅) and ∀X ∈ G(X ≠ ∅), and it follows by exercise

8 of Section 2.2 that ∀X ∈ F ∪ G(X ≠ ∅).

20. (a) Here is the proof of transitivity: Suppose (x, y) ∈ T and (y, z) ∈
T. Then since T = R ∩ S, (x, y) ∈ R and (y, z) ∈ R, so since R is
transitive, (x, z) ∈ R. Similarly, (x, z) ∈ S, so (x, z) ∈ R ∩ S = T.

(b) Suppose x ∈ A. Then for all y ∈ A,

(c) Suppose X ∈ A/T. Then since A/T is a partition, X ≠ ∅. Also, for
some x ∈ A, X = [x]T = [x]R ∩ [x]S, so since [x]R ∈ A/R and [x]S ∈
A/S, X ∈ (A/R) · (A/S).

Now suppose X ∈ (A/R) · (A/S). Then for some y and z in A, X =
[y]R ∩ [z]S. Also, X ≠ ∅, so we can choose some x ∈ X. Therefore x
∈ [y]R and x ∈ [z]S, and by part 2 of Lemma 4.5.5 it follows that
[x]R = [y]R and [x]S = [z]S. Therefore X = [x]R ∩ [x]S = [x]T ∈ A/T.

22. F ⊗ F = {R
+ × R+, R− × R+, R− × R−, R+ × R−, R+ ×{0}, R− × {0},

{0} × R+, {0} × R−, {(0, 0)}}. In geometric terms these are the four
quadrants of the plane, the positive and negative x-axes, the positive
and negative y-axes, and the origin.

24. (a) Hint: Let T = {(X, Y) ∈ A/S × A/S | ∃x ∈ X∃y ∈ Y(xRy)}.
(b) Suppose x, y, x′, y′ ∈ A, xSx′, and ySy′. Then [x]S = [x′]S and [y]S =

[y′]S, so xRy iff [x]S T [y]S iff [x′]S T [y′]S iff x′ Ry′.



Chapter 5

Section 5.1
1. (a) Yes.

(b) No.
(c) Yes.
3. (a) f(a) = b, f(b) = b, f(c) = a.

(b) f(2) = 0.
(c) f(π) = 3 and f(−π) = −4.
5. L ◦ H: N → N, and for every n ∈ N, (L ◦ H)(n) = n. Thus, L ◦ H = iN.

H ◦  L: C → C, and for every c ∈ C, (H ◦  L)(c) = the capital of the
country in which c is located.

7. (a) Suppose that c ∈ C. We must prove that there is a unique b ∈ B
such that (c, b) ∈ f ↾ C.

Existence: Let b = f(c) ∈ B. Then (c, b) ∈ f and (c, b) ∈ C × B,
and therefore (c, b) ∈ f ∩ (C × B) = f ↾ C.

Uniqueness: Suppose that (c, b1) ∈ f ↾ C and (c, b2) ∈ f ↾ C.
Then (c, b1) ∈ f and (c, b2) ∈ f, so since f is a function, b1 = b2.

This proves that f ↾ C is a function from C to B. Finally, to derive
the formula for (f ↾ C)(c), suppose that c ∈ C, and let b = f(c). We
showed in the existence half of the proof that (c, b) ∈ f ↾ C. It
follows that

(b) (→) Suppose g = f ↾ C. Then g = f ∩ (C × B), so clearly g ⊆ f. (←)
Suppose g ⊆ f. Suppose c ∈ C, and let b = g(c). Then (c, b) ∈ g, so
(c, b) ∈ f, and therefore f(c) = b. But then by part (a), (f ↾ C)(c) =
f(c) = b = g(c). Since c was arbitrary, it follows by Theorem 5.1.4
that g = f ↾ C.



(c) h ↾ Z = h ∩ (Z × R) = {(x, y) ∈ R × R | y = 2x + 3} ∩(Z × R) = {(x,
y) ∈ Z × R | y = 2x + 3} = g.

10. Since f ≠ g, by Theorem 5.1.4 we can choose some a ∈ A such that
f(a) ≠ g(a). Therefore (a, f(a)) ∈ f and (a, f(a)) ∉ g, so by the
definition of symmetric difference, (a, f(a)) ∈ f △ g, and similarly (a,
g(a)) ∈ f △ g. Since f(a) ≠ g(a), it follows that f △ g is not a function.

13. (a) Suppose b ∈ B. Since Dom(S) = B, we know that there is some
c ∈ C such that (b, c) ∈ S. To see that it is unique, suppose that
c′ ∈ C and (b, c′) ∈ S. Since Ran(R) = B, we can choose some a
∈ A such that (a, b) ∈ R. But then (a, c) ∈ S ◦ R and (a, c′) ∈ S
◦ R, and since S ◦ R is a function, it follows that c = c′.

(b) A = {1}, B = {2, 3}, C = {4}, R = {(1, 2), (1, 3)}, S = {(2, 4), (3, 4)}.
15. (a) No. Example: A = {1}, B = {2, 3}, f = {(1, 2)}, R = {(1, 1)}.
(b) Yes. Suppose R is symmetric. Suppose (x, y) ∈ S. Then we can

choose some u and v in A such that f(u) = x, f(v) = y, and (u, v) ∈ R.
Since R is symmetric, (v, u) ∈ R, and therefore (y, x) ∈ S.

(c) No. Example: A = {1, 2, 3, 4}, B = {5, 6, 7}, f = {(1, 5), (2, 6), (3, 6),
(4, 7)}, R = {(1, 2), (3, 4)}.

19. (a) Let a = 3 and c = 8. Then for any x > a = 3,

This shows that f ∈ O(g).
Now suppose that g ∈ O(f). Then we can choose a ∈ Z+ and c ∈

R
+ such that ∀x > a(|g(x)| ≤ c|f(x)|), or in other words, ∀x > a(x2 ≤

c(7x + 3)). Let x be any positive integer larger than both a and 10c.
Multiplying both sides of the inequality x > 10c by x, we can
conclude that x2 > 10cx. But since x > a, we also have x2 ≤ c(7x + 3)
≤ c(7x + 3x) = 10cx, so we have reached a contradiction. Therefore g
∉ O(f).

(b) Clearly for any function f ∈ F we have ∀x ∈ Z+ (|f(x)| ≤ 1 · |f(x)|), so

f ∈ O(f), and therefore (f, f) ∈ S. Thus, S is reflexive. To see that it is
also transitive, suppose (f, g) ∈ S and (g, h) ∈ S. Then there are
positive integers a1 and a2 and positive real numbers c1 and c2 such



that ∀x > a1 (|f(x)| ≤ c1 |g(x)|) and ∀x > a2 (|g(x)| ≤ c2 |h(x)|). Let a be
the maximum of a1 and a2, and let c = c1 c2. Then for all x > a,

Thus, (f, h) ∈ S, so S is transitive. Finally, to see that S is not a partial
order, we show that it is not antisymmetric. Let f and g be the
functions from Z+ to R defined by the formulas f(x) = x and g(x) =
2x. Then for all x ∈ Z+, |f(x)| ≤ |g(x)| and |g(x)| ≤ 2|f(x)|, so f ∈ O(g)
and also g ∈ O(f). Therefore (f, g) ∈ S and (g, f) ∈ S, but f ≠ g.

(c) Since f1 ∈ O(g), we can choose a1 ∈ Z+ and c1 ∈ R+ such that ∀x >
a1 (|f1 (x)| ≤ c1 |g(x)|). Similarly, since f2 ∈ O(g) we can choose a2 ∈
Z

+ and c2 ∈ R+ such that ∀x > a2 (|f2 (x)| ≤ c2 |g(x)|). Let a be the
maximum of a1 and a2, and let c = |s|c1 + |t|c2 + 1. (We have added 1
here just to make sure that c is positive, as required in the definition
of O.) Then for all x > a,

Therefore f ∈ O(g).
21. (a) Hint: Let h = {(X, y) ∈ A/R × B | ∃x ∈ X(f(x) = y)}.
(b) Hint: Use the fact that for all x and y in A, if xRy then [x]R = [y]R.

Section 5.2
2. (a) f is not a function.

(b) f is not a function. g is a function that is onto, but not one-to-one.
(c) R is one-to-one and onto.
5. (a) Suppose that x1 ∈ A, x2 ∈ A, and f(x1) = f(x2). Then we can

perform the following algebraic steps:



This shows that f is one-to-one.
To show that f is onto, suppose that y ∈ A. Let

Notice that this is defined, since y ≠ 1, and also clearly x ≠ 1, so x ∈
A. Then

(b) For any x ∈ A,

9. (a) {1, 2, 3, 4}.
(b) f is onto, but not one-to-one.
13. (a) Suppose that f is one-to-one. Suppose that c1 ∈ C, c2 ∈ C, and

(f ↾ C)(c1) = (f ↾ C)(c2). By exercise 7(a) of Section 5.1, it
follows that f(c1) = f(c2), so since f is one-to-one, c1 = c2.

(b) Suppose that f ↾ C is onto. Suppose b ∈ B. Then since f ↾ C is onto,
we can choose some c ∈ C such that (f ↾ C)(c) = b. But then c ∈ A,
and by exercise 7(a) of Section 5.1, f(c) = b.

(c) Let A = B = R and C = R+. For (a), use f(x) = |x|, and for (b), use f(x)
= x.

17. (a) Suppose R is reflexive and f is onto. Let x ∈ B be arbitrary.
Since f is onto, we can choose some u ∈ A such that f(u) = x.



Since R is reflexive, (u, u) ∈ R. Therefore (x, x) ∈ S.
(b) Suppose R is transitive and f is one-to-one. Suppose that (x, y) ∈ S

and (y, z) ∈ S. Since (x, y) ∈ S, we can choose some u and v in A
such that f(u) = x, f(v) = y, and (u, v) ∈ R. Similarly, since (y, z) ∈ S
we can choose p and q in A such that f(p) = y, f(q) = z, and (p, q) ∈
R. Since f(v) = y = f(p) and f is one-to-one, v = p. Therefore (v, q) =
(p, q) ∈ R. Since we also have (u, v) ∈ R, by the transitivity of R it
follows that (u, q) ∈ R, so (x, z) ∈ S.

20. (a) Let b ∈ B be arbitrary. Since f is onto, we can choose some a ∈
A such that f(a) = b. Therefore g(b) = (g ◦  f)(a) = (h ◦  f)(a) =
h(b). Since b was arbitrary, this shows that ∀b ∈ B(g(b) = h(b)),
so g = h.

(b) Let c1 and c2 be two distinct elements of C. Suppose b ∈ B. Let g and
h be functions from B to C such that ∀x ∈ B(g(x) = c1), ∀x ∈ B \ {b}
(h(x) = c1), and h(b) = c2. (Formally, g = B ×{c1} and h = [(B \{b})
×{c1}] ∪{(b, c2)}.) Then g ≠ h, so by assumption g ◦  f ≠ h ◦  f, and
therefore we can choose some a ∈ A such that g(f (a)) ≠ h(f (a)). But
by the way g and h were defined, the only x ∈ B for which g(x) ≠
h(x) is x = b, so it follows that f(a) = b. Since b was arbitrary, this
shows that f is onto.

Section 5.3

1. R−1 (p) = the person sitting immediately to the right of p.
3. Let g(x) = (3x − 5)/2. Then for any x ∈ R,

and

Therefore f ◦ g = iR and g ◦ f = iR, and by Theorems 5.3.4 and 5.3.5 it
follows that f is one-to-one and onto and f−1 = g.



5. f−1 (x) = 2 − log x.
9. Suppose that f: A → B, g: B → A, and f ◦ g = iB. Let b be an arbitrary

element of B. Let a = g(b) ∈ A. Then f(a) = f(g(b)) = (f ◦ g)(b) = iB (b)
= b. Since b was arbitrary, this shows that f is onto.

11. (a) Suppose that f is one-to-one and f ◦ g = iB. By part 2 of Theorem
5.3.3, f is also onto, so f−1: B → A and f−1 ◦ f = iA. This gives us
enough information to imitate the reasoning in the proof of
Theorem 5.3.5:

(b) Hint: Imitate the solution to part (a).
(c) Hint: Use parts (a) and (b), together with Theorem 5.3.3.
14. (a) Suppose x ∈ A′ = Ran(g). Then we can choose some b ∈ B such

that g(b) = x. Therefore (g ◦f)(x) = g(f (g(b))) = g((f ◦g)(b)) = g(iB
(b)) = g(b) = x.

(b) By the given information, (f ↾ A′) ◦ g = iB, and by part (a), g ◦ (f ↾
A′) = iA′. Therefore by Theorem 5.3.4, f ↾ A′ is a one-to-one, onto
function from A′ to B, and by Theorem 5.3.5, g = (f ↾ A′)−1.

16. Hint: Suppose x ∈ R. To determine whether or not x ∈ Ran(f), you
must see if you can find a real number y such that f(y) = x. In other
words, you must try to solve the equation 4y − y2 = x for y in terms of
x. Notice that this is similar to the method we used in part 1 of
Example 5.3.6. However, in this case you will find that for some
values of x there is no solution for y, and for some values of x there is
more than one solution for y.

18. Since g is one-to-one and onto, g−1: C → B. Let h = g−1 ◦ f. Then h: A
→ B and

 
 
(Theorem 4.2.5) 
(Theorem 5.3.2) 
(exercise 9 of Section 4.3).



Section 5.4
1. (a) No.

(b) Yes.
(c) Yes.
(d) No.
3. {−1, 0, 1, 2}.
7. Suppose C ⊆ A and C is closed under f. Suppose x ∈ A \ C, so x ∈ A

and x ∉ C. Then f−1 (x) ∈ A. Suppose f−1 (x) ∈ C. Then since C is
closed under f, x = f(f−1 (x)) ∈ C, which is a contradiction. Therefore
f−1 (x) ∉ C, so f−1 (x) ∈ A \ C. Since x was an arbitrary element of A \
C, this shows that A \ C is closed under f−1.

9. (a) Suppose x ∈ C1 ∪ C2. Then either x ∈ C1 or x ∈ C2.

Case 1. x ∈ C1. Then since C1 is closed under f, f(x) ∈ C1, so f(x)
∈ C1 ∪ C2.

Case 2. x ∈ C2. Then since C2 is closed under f, f(x) ∈ C2, so f(x)
∈ C1 ∪ C2.

Therefore f(x) ∈ C1 ∪ C2. Since x was arbitrary, we can conclude
that C1 ∪ C2 is closed under f.

(b) Yes. Proof: Suppose x ∈ C1 ∩ C2. Then x ∈ C1 and x ∈ C2. Since x
∈ C1 and C1 is closed under f, f(x) ∈ C1. Similarly, f(x) ∈ C2.
Therefore f(x) ∈ C1 ∩ C2, so since x was arbitrary, C1 ∩ C2 is closed
under f.

(c) No. Here is a counterexample: A = {1, 2}, f = {(1, 2), (2, 2)}, C1 = {1,
2}, C2 = {2}.

12. (a) Z.

(b) {X ⊆ N | X is finite}.

14. Z.
17. (a) Yes.
(b) Yes.
(c) Yes.



(d) No. (The composition of two strictly decreasing functions is strictly
increasing.)

20. (b) and (e) are closed under f.



Chapter 6

Section 6.1
1. Base case: When n = 0, both sides of the equation are 0.

Induction step: Suppose that n ∈ N and 0+1+2+· · ·+n = n(n+1)/2.
Then

as required.
3. Base case: When n = 0, both sides of the equation are 0.

Induction step: Suppose n ∈ N and 03 + 13 + 23 + · · · + n3 = [n(n +
1)/2]2. Then

7. Hint: The formula is (3n+1 − 1)/2.
10. Base case: When n = 0, 9n − 8n − 1 = 0 = 64 · 0, so 64 | (9n − 8n − 1).

Induction step: Suppose that n ∈ N and 64 | (9n − 8n − 1). Then
there is some integer k such that 9n − 8n − 1 = 64k. Therefore



so 64 | (9n+1 − 8(n + 1) − 1).
12. (a) Base case: When n = 0, 7n − 5n = 0 = 2 · 0, so 7n − 5n is even.

Induction step: Suppose n ∈ N and 7n − 5n is even. Then there is
some integer k such that 7n − 5n = 2k. Therefore

so 7n+1 − 5n+1 is even.
(b) For the induction step, you might find it useful to complete the

following equation: 
15. Base case: When n = 10, 2n = 1024 > 1000 = n3.

Induction step: Suppose n ≥ 10 and 2n > n3. Then

20. (a) Base case: When n = 1, the statement to be proven is 0 < a < b,
which was given.

Induction step: Suppose that n ≥ 1 and 0 < an < bn. Multiplying
this inequality by the positive number a we get 0 < an+1 < abn, and



multiplying the inequality a < b by the positive number bn gives us
abn < bn+1. Combining these inequalities, we can conclude that 0 <
an+1 < bn+1.

(b) Hint: First note that  and  are both positive. (For n odd, this
follows from exercise 19. For n even, each of a and b has two nth
roots, one positive and one negative, but  and  are by definition
the positive roots.) Now use proof by contradiction, and apply part
(a).

(c) Hint: The inequality to be proven can be rearranged to read an+1 − abn

− ban + bn+1 > 0. Now factor the left side of this inequality.
(d) Hint: Use mathematical induction. For the base case, use the n = 1

case of part (c). For the induction step, multiply both sides of the
inductive hypothesis by (a + b)/2 and then apply part (c).

Section 6.2
1. (a) We must prove that R′ is reflexive (on A′), transitive, and

antisymmetric. For the first, suppose x ∈ A′. Since R is reflexive
(on A) and x ∈ A, (x, x) ∈ R, so (x, x) ∈ R ∩ (A′ × A′) = R′. This
shows that R′ is reflexive.

Next, suppose that (x, y) ∈ R′ and (y, z) ∈ R′. Then (x, y) ∈ R, (y,
z) ∈ R, and x, y, z ∈ A′. Since R is transitive, (x, z) ∈ R, so (x, z) ∈
R ∩ (A′ × A′) = R′. Therefore R′ is transitive.

Finally, suppose that (x, y) ∈ R′ and (y, x) ∈ R′. Then (x, y) ∈ R
and (y, x) ∈ R, so since R is antisymmetric, x = y. Thus R′ is
antisymmetric.

(b) To see that T is reflexive, suppose x ∈ A. If x = a, then (x, x) = (a, a)
∈ {a} × A ⊆ T. If x ≠ a, then x ∈ A′, so since R′ is reflexive, (x, x) ∈
R′ ⊆ T′ ⊆ T.

For transitivity, suppose that (x, y) ∈ T and (y, z) ∈ T. If x = a then
(x, z) = (a, z) ∈ {a} × A ⊆ T. Now suppose x ≠ a. Then (x, y) ∉ {a}
× A, so since (x, y) ∈ T = T′ ∪ ({a} × A) we must have (x, y) ∈ T′.
But T′ ⊆ A′ × A′, so y ∈ A′ and therefore y ≠ a. Similar reasoning
now shows that (y, z) ∈ T′. Since T′ is transitive, it follows that (x, z)
∈ T′ ⊆ T.



To show that T is antisymmetric, suppose (x, y) ∈ T and (y, x) ∈
T. If x = a then (y, x) ∉ T′, so (y, x) ∈ {a} × A and therefore y = a =
x. Similarly, if y = a then x = y. Now suppose x ≠ a and y ≠ a. Then
as in the proof of transitivity it follows that (x, y) ∈ T′ and (y, x) ∈
T′, so by antisymmetry of T′, x = y.

We now know that T is a partial order. To see that it is total,
suppose x ∈ A and y ∈ A. If x = a then (x, y) ∈ {a} × A ⊆ T.
Similarly, if y = a then (y, x) ∈ T. Now suppose x ≠ a and y ≠ a.
Then x ∈ A′ and y ∈ A′, so since T′ is a total order, either (x, y) ∈ T′
⊆ T or (y, x) ∈ T′ ⊆ T.

Finally, to see that R ⊆ T, suppose that (x, y) ∈ R. If x = a then (x,
y) ∈ {a}×A ⊆ T. Now suppose x ≠ a. If y = a then the fact that (x, y)
∈ R would contradict the R-minimality of a. Therefore y ≠ a. But
then (x, y) ∈ R ∩ (A′ × A′) = R′ ⊆ T′ ⊆ T.

4. (a) We will prove the statement: ∀n ≥ 1∀B ⊆ A[B has n elements →
∃x ∈ B∀y ∈ B((x, y) ∈ R ◦ R)]. We proceed by induction on n.

Base case: Suppose n = 1. If B ⊆ A and B has one element, then
for some x ∈ B, B = {x}. Since R is reflexive, (x, x) ∈ R, and
therefore (x, x) ∈ R ◦  R. But x is the only element in B, so ∀y ∈
B((x, y) ∈ R ◦ R), as required.

Induction step: Suppose that n ≥ 1 and for every B ⊆ A, if B has n
elements then ∃x ∈ B∀y ∈ B((x, y) ∈ R ◦ R). Now suppose that B ⊆
A and B has n + 1 elements. Choose some b ∈ B, and let B′ = B \{b}.
Then B′ ⊆ A and B′ has n elements, so by the inductive hypothesis
there is some x ∈ B′ such that ∀y ∈ B′ ((x, y) ∈ R ◦  R). We now
consider two cases.

Case 1: (x, b) ∈ R ◦  R. Then ∀y ∈ B((x, y) ∈ R ◦  R), so we are
done.

Case 2: (x, b) ∉ R ◦ R. In this case, we will prove that ∀y ∈ B((b,
y) ∈ R ◦ R). To do this, let y ∈ B be arbitrary. If y = b, then since R is
reflexive, (b, b) ∈ R, and therefore (b, y) = (b, b) ∈ R ◦  R. Now
suppose y ≠ b. Then y ∈ B′, so by the choice of x we know that (x, y)
∈ R ◦ R. This means that for some z ∈ A, (x, z) ∈ R and (z, y) ∈ R.
We have (x, z) ∈ R, so if (z, b) ∈ R then (x, b) ∈ R ◦ R, contrary to
the assumption for this case. Therefore (z, b) ∉ R, so by the



hypothesis on R, (b, z) ∈ R. But then since (b, z) ∈ R and (z, y) ∈ R,
we have (b, y) ∈ R ◦ R, as required.

(b) Hint: Let A = B = the set of contestants and let R = {(x, y) ∈ A × A | x
beats y} ∪ iA. Now apply part (a).

8. (a) Let m = (a + b)/2, the arithmetic mean of a and b, and let d = (a
− b)/2. Then it is easy to check that m + d = a and m − d = b, so

(b) We use induction on n.
Base case: n = 1. This case is taken care of by part (a).
Induction step: Suppose n ≥ 1, and the arithmetic mean–geometric

mean inequality holds for lists of length 2n. Now let a1, a2, . . . ,
a2n+1 be a list of 2n+1 positive real numbers. Let

Notice that a1 + a2 + · · · + a2n = m1 2n, and similarly a2n+1 + a2n+2 +· ·
·+a2n+1 = m22n. Also, by the inductive hypothesis, we know that 

 Therefore

(c) We use induction on n.
Base case: If n = n0, then by assumption the arithmetic mean–

geometric mean inequality fails for some list of length n.
Induction step: Suppose n ≥ n0, and there are positive real numbers

a1, a2, . . . , an such that



Let m = (a1 + a2 +· · · +an)/n, and let an+1 = m. Then we have 
 so mn < a1 a2 · · · an. Multiplying both sides of this

inequalityby m gives us mn+1 < a1 a2 · · · an m = a1 a2 · · · an+1, so 
 But notice that we also have mn = a1 + a2 +· · ·

+an, so

Thus, we have a list of length n + 1 for which the arithmetic mean–
geometric mean inequality fails.

(d) Suppose that the arithmetic mean–geometric mean inequality fails for
some list of positive real numbers. Let n0 be the length of this list,
and choose an integer n ≥ 1 such that n0 ≤ 2n. (In fact, we could just
let n = n0, as you will show in exercise 12(a) in Section 6.3.) Then by
part (b), the arithmetic mean–geometric mean inequality holds for all
lists of length 2n, but by part (c), it must fail for some list of length
2n. This is a contradiction, so the inequality must always hold.

10. (a) Hint: Show that (a1 b1 + a2 b2) − (a1 b2 + a2 b1) ≥ 0.

(b) Use induction on n. For the induction step, assume the result holds
for sequences of length n, and suppose a1 ≤ a2 ≤ · · · ≤ an ≤ an+1, b1 ≤
b2 ≤ · · · ≤ bn ≤ bn+1, and f is a one-to-one, onto function from {1, 2, .
. . , n + 1} to itself. Now consider two cases. For case 1, assume that
f(n + 1) = n + 1, and use the inductive hypothesis to complete the
proof. For case 2, assume that f(n + 1) < n + 1. Find a one-to-one,
onto function g from {1, 2, . . . , n + 1} to itself such that g is almost
the same as f but g(n + 1) = n + 1, and show that

11. We proceed by induction on n.
Base case: n = 0. If A has 0 elements, then A = ∅, so P(A) = {∅},

which has 1 = 20 elements.



Induction step: Suppose that for every set A with n elements, P(A)
has 2n elements. Now suppose that A has n+1 elements. Let a be any
element of A, and let A′ = A \ {a}. Then A′ has n elements, so by the
inductive hypothesis P(A′) has 2n elements. There are two kinds of
subsets of A: those that contain a as an element, and those that don’t.
The subsets that don’t contain a are just the subsets of A′, and there
are 2n of these. Those that do contain a are the sets of the form X
∪{a}, where X ∈ P(A′), and there are also 2n of these, since there
are 2n possible choices for X. Thus the total number of elements of
P(A) is 2n + 2n = 2n+1.

14. Base case: n = 1. One chord cuts the circle into two regions, and (n2 +
n + 2)/2 = 2.

Induction step: Suppose that when n chords are drawn, the circle is
cut into (n2 +n+2)/2 regions. When another chord is drawn, it will
intersect each of the first n chords exactly once. Therefore it will
pass through n+1 regions, cutting each of those regions in two. (Each
time it crosses one of the first n chords, it passes from one region to
another.) Therefore the number of regions after the next chord is
drawn is

as required.

Section 6.3
1. Hint: The formula is

6. Base case: n = 1. Then

Induction step: Suppose that



Then

8. (a) We let m be arbitrary and then prove by induction that for all n ≥
m, Hn − Hm ≥ (n − m)/n.

Base case: n = m. Then Hn − Hm = 0 ≥ 0 = (n − m)/n.
Induction step: Suppose that n ≥ m and Hn − Hm ≥ (n − m)/n. Then

(b) Base case: If n = 0 then H2n = H1 = 1 ≥ 1 = 1 + n/2.
Induction step: Suppose n ≥ 0 and H2n ≥ 1 + n/2. By part (a),

Therefore

(c) Since limn→∞ (1+n/2) = ∞, by part (b) limn→∞ H2n = ∞. Clearly the
Hn ’s form an increasing sequence, so limn→∞ Hn = ∞.

12. (a) Hint: Try proving that 2n ≥ n + 1, from which the desired
conclusion follows.

(b) Base case: n = 9. Then n! = 362880 ≥ 262144 = (2n)2.
Induction step: Suppose that n ≥ 9 and n! ≥ (2n)2. Then



(c) Base case: n = 0. Then n! = 1 ≤ 1 = 2(n2).
Induction step: Suppose that n! ≤ 2(n2). Then

15. Base case: n = 0. Then an = a0 = 0 = 20 − 0 − 1 = 2n − n − 1.

Induction step: Suppose that n ∈ N and an = 2n − n − 1. Then

18. (a)
(b)

(c) We follow the hint.
Base case: n = 0. Suppose A is a set with 0 elements. Then A = ∅,

the only value of k we have to worry about is k = 0, P0 (A) = {∅},
which has 1 element, and 

Induction step: Suppose the desired conclusion holds for sets with
n elements, and A is a set with n + 1 elements. Let a be an element of
A, and let A′ = A \ {a}, which is a set with n elements. Now suppose
0 ≤ k ≤ n + 1. We consider three cases.

Case 1: k = 0. Then Pk (A) = {∅}, which has 1 element, and 

Case 2: k = n + 1. Then Pk (A) = {A}, which has 1 element, and 



Case 3. 0 < k ≤ n. There are two kinds of k-element subsets of A:
those that contain a as an element, and those that don’t. The k-
element subsets that don’t contain a are just the k-element subsets of
A′, and by the inductive hypothesis there are  of these. Those that
do contain a are the sets of the form X ∪ {a}, where X ∈ Pk−1 (A′),
and by the inductive hypothesis there are  of these, since this is
the number of possibilities for X. Therefore by part (b), the total
number of k-element subsets of A is

(d) We let x and y be arbitrary and then prove the equation by induction
on n.

Base case: n = 0. Then both sides of the equation are equal to 1.
Induction step: We will make use of parts (a) and (b). Suppose that

Then



 

20. Hint: Surprisingly, it is easier to prove that for all n ≥ 1, 0 < an < 1/2.

Section 6.4
1. (a) (→) Suppose that ∀nQ(n). Let n be arbitrary. Then Q(n + 1) is

true, which means ∀k < n + 1 P(k). In particular, since n < n + 1,
P(n) is true. Since n was arbitrary, this shows that ∀nP (n).

(←) Suppose that ∀nP (n). Then for any n, it is clearly true that ∀k
< nP(k), which means that Q(n) is true.

(b) Base case: n = 0. Then Q(n) is the statement ∀k < 0 P(k), which is
vacuously true.



Induction step: Suppose Q(n) is true. This means that ∀k < nP(k)
is true, so by assumption, it follows that P(n) is true. Therefore ∀k <
n + 1 P(k) is true, which means that Q(n + 1) is true. 4. (a) Suppose 

 is rational. Let  Then S ≠ ∅,
so we can let q be the smallest element of S, and we can choose a
positive integer p such that  Therefore p2 = 6q2, so p2 is
even, and hence p is even. This means that  for some integer 

 Thus  so  and therefore 3q2 is even. It is easy
to check that if q is odd then 3q2 is odd, so q mustbe even, which
means that  for some integer  But then  and 
contradictingthe fact that q is the smallest element of S.

(b) Supposethat  Squaring both sides gives us 5 + 
 which contradicts part (a).

7. (a) We use ordinary induction on n.
Base case: n = 0. Both sides of the equation are equal to 0.
Induction step: Suppose that  Then

(b) We use ordinary induction on n.
Base case: n = 0. Both sides of the equation are equal to 0.
Induction step. Suppose that  Then

(c) We use ordinary induction on n.
Base case: n = 0. Both sides of the equation are equal to 1.
Induction step: Suppose that  Then



(d) The formula is 
9. (a) (→) Suppose a0, a1, a2, . . . is a Gibonacci sequence. Then in

particular a2 = a0 + a1, which means c2 = 1 + c. Solving this
quadratic equation by the quadratic formula leads to the
conclusion 

(←) Suppose either  Then c2 =
1 + c, and therefore for every n ≥ 2, an = cn = cn−2 c2 = cn−2 (1 + c) =
cn−2 + cn−1 = an−2 + an−1.

(b) It will be convenient to introduce the notation  and 
 Then for any  

 

(c) Hint: Let  

11. Hint: The formula is an = 2 · 3n − 3 · 2n.
15. Let a be the larger of 5k and k(k + 1). Now suppose n > a, and by the

division algorithm choose q and r such that n = qk + r and 0 ≤ r < k.
Note that if q ≤ 4 then n = qk + r ≤ 4k + r < 5k ≤ a, which is a
contradiction. Therefore q > 4, so q ≥ 5, and by Example 6.1.3 it
follows that 2q ≥ q2. Similar reasoning shows that q ≥ k + 1, so q2 ≥
q(k + 1) = qk + q > qk + k > qk + r = n. Therefore 2n ≥ 2qk = (2q)k ≥
(q2)k ≥ nk.

18. Hint: The formula is an = Fn+2 /Fn+1.
21. (a) For any numbers a, b, c, and d,

(b) To simplify notation, we will assume that any product is the left-
grouped product unless parentheses are used to indicate otherwise.
We use strong induction on n. Assume the statement is true for
products of fewer than n terms, and consider any product of a1, a2, . .



. , an. If n = 1, then the only product is the left-grouped product, so
there is nothing to prove. Now suppose n > 1. Then our product has
the form pq, where p is a product of a1, . . . , ak−1 and q is a product
of ak, . . . , an for some k with 2 ≤ k ≤ n. By the inductive hypothesis,
p = a1 · · · ak−1 and q = ak · · · an (where by our convention, these two
products are left-grouped). Thus, it will suffice to prove (a1 · · · ak−1)
(ak · · · an) = a1 · · · an. If k = n, then the left-hand side of this
equation is already left-grouped, so there is nothing to prove. If k < n,
then

(c) By part (b), we may assume that the two products are left-grouped.
Thus, we must prove that if b1, b2, . . . , bn is some reordering of a1,
a2, . . . , an, then a1 · · · an = b1 · · · bn, where as in part (b) we assume
products are left-grouped unless parentheses indicate otherwise. We
use induction on n. If n = 1 then the products are clearly equal
because b1 = a1. Now suppose the statement is true for products of
length n, and suppose that b1, . . . , bn+1 is a reordering of a1, . . . ,
an+1. Then bn+1 is one of a1, . . . , an+1. If bn+1 = an+1 then

Now suppose bn+1 = ak for some k ≤ n. We will write 
for the (left-grouped) product of the numbers a1, . . . , an with the
factor ak left out. Then



Section 6.5
1. Bn = {n}.

4. B0 = {∅}, B1 = {X ∈ P(N) | X has exactly one element}, B2 = {X ∈
P(N) | X has either one or two elements}, . . . . In general, for every
positive integer n, Bn = {X ∈ P(N) | X ≠ ∅ and X has at most n
elements}.

5. {n ∈ Z | n ≥ 2}.
7. (a) B0 = {x ∈ R | −2 ≤ x ≤ 0}, B1 = {x ∈ R | 0 ≤ x ≤ 4}, B2 = {x ∈

R | 0 ≤ x ≤ 16}, . . . . In general, for every positive integer n, Bn

= {x ∈ R | 0 ≤ x ≤ 2(2n)}.

(b)  Therefore  but 
 is not closed under f. In other

words, property 2 in Definition 5.4.8 does not hold.
(c) R.

10. We use induction on n.
Base case: n = 1. Then x = 2! +2 = 4. The only value of i we have to

worry about is i = 0, and for this value of i we have i + 2 = 2 and x + i
= 4. Since 2 | 4, we have (i + 2) | (x + i), as required.

Induction step: Suppose that n is a positive integer, and for every
integer i, if 0 ≤ i ≤ n − 1 then (i + 2) | ((n + 1)! + 2 + i). Now let x = (n
+ 2)! +2, and suppose that 0 ≤ i ≤ n. If i = n then we have



so (i + 2) | (x + i). Now suppose 0 ≤ i ≤ n − 1. By the inductive
hypothesis, we know that (i + 2) | ((n + 1)! +2 + i), so we can choose
some integer k such that (n+1)! +2+i = k(i+2), and therefore (n+1)! =
(k − 1)(i + 2). Therefore

so (i + 2) | (x + i).
14. Clearly T is a relation on A and R = R1 ⊆ T. To see that T is transitive,

suppose (x, y) ∈ T and (y, z) ∈ T. Then by the definition of T, we can
choose positive integers n and m such that (x, y) ∈ Rn and (y, z) ∈
Rm. Thus by exercise 11, (x, z) ∈ Rm ◦  Rn = Rm+n, so 

  Therefore T is transitive.
Finally, suppose R ⊆ S ⊆ A × A and S is transitive. We must show

that T ⊆ S, and clearly by the definition of T it suffices to show that
∀n ∈ Z

+ (Rn ⊆ S). We prove this by induction on n. We have
assumed R ⊆ S, so when n = 1 we have Rn = R1 = R ⊆ S. For the
induction step, suppose n is a positive integer and Rn ⊆ S. Now
suppose (x, y) ∈ Rn+1. Then by the definition of Rn+1 we can choose
some z ∈ A such that (x, z) ∈ R and (z, y) ∈ Rn. By assumption R ⊆
S, and by the inductive hypothesis Rn ⊆ S. Therefore (x, z) ∈ S and
(z, y) ∈ S, so since S is transitive, (x, y) ∈ S. Since (x, y) was an
arbitrary element of Rn+1, this shows that Rn+1 ⊆ S.

16. (a) R∩S ⊆ R and R∩S ⊆ S. Therefore by exercise 15, for every
positive integer n, (R ∩ S)n ⊆ Rn and (R ∩ S)n ⊆ Sn, so (R ∩ S)n

⊆ Rn ∩ Sn. However, the two need not be equal. For example, if
A = {1, 2, 3, 4}, R = {(1, 2), (2, 4)}, and S = {(1, 3), (3, 4)}, then
(R ∩ S)2 = ∅ but R2 ∩ S2 = {(1, 4)}.

(b) Rn ∪ Sn ⊆ (R ∪ S)n, but they need not be equal. (You should be able
to prove the first statement, and find a counterexample to justify the
second.)

18. (a) We use induction.



Base case: n = 1. Suppose (a, b) ∈ R1 = R. Let f = {(0, a), (1, b)}.
Then f is an R-path from a to b of length 1. For the other direction,
suppose f is an R-path from a to b of length 1. By the definition of R-
path, this means that f(0) = a, f(1) = b, and (f (0), f(1)) ∈ R.
Therefore (a, b) ∈ R = R1.

Induction step: Suppose n is a positive integer and Rn = {(a, b) ∈
A × A | there is an R-path from a to b of length n}. Now suppose (a,
b) ∈ Rn+1 = R1 ◦ Rn by exercise 11. Then there is some c such that
(a, c) ∈ Rn and (c, b) ∈ R. By the inductive hypothesis, there is an
R-path f from a to c of length n. Then f ∪ {(n + 1, b)} is an R-path
from a to b of length n + 1. For the other direction, suppose f is an R-
path from a to b of length n + 1. Let c = f(n). Then f \{(n+1, b)} is an
R-path from a to c of length n, so by the inductive hypothesis (a, c)
∈ Rn. But also (c, b) = (f (n), f(n + 1)) ∈ R, so (a, b) ∈ R1 ◦  Rn =
Rn+1.

(b) This follows from part (a) and exercise 14.



Chapter 7

Section 7.1
2. (a) gcd(775, 682) = 31 = −7 · 775 + 8 · 682.

(b) gcd(562, 243) = 1 = 16 · 562 − 37 · 243.
5. Let n be an arbitrary integer.

(→) Suppose n is a linear combination of a and b. Then there are
integers s and t such that n = sa + tb. Since d = gcd(a, b), d | a and d |
b, so there are integers j and k such that a = jd and b = kd. Therefore n
= sa + tb = sj d + tkd = (sj + tk)d, so d | n.

(←) Suppose d | n. Then there is some integer k such that n = kd.
By Theorem 7.1.4, there are integers s and t such that d = sa+tb.
Therefore n = kd = k(sa + tb) = ksa + ktb, so n is a linear combination
of a and b.

7. (a) No. Counterexample: a = b = 2, a′ = 3, b′ = 4.
(b) Yes. Suppose a | a′ and b | b′. Let d = gcd(a, b). Then d | a and d | b.

Since d | a and a | a′, by Theorem 3.3.7, d | a′. Similarly, d | b′.
Therefore, by Theorem 7.1.6, d | gcd(a′, b′).

9. We use strong induction on the maximum of a and b. In other words,
we prove the following statement by strong induction:

where max(a, b) denotes the maximum of a and b.
Let k ∈ Z+ be arbitrary and assume that for every positive integer

k′ < k,

Now let a and b be arbitrary positive integers and assume that max(a,
b) = k. We may assume that a ≥ b, since otherwise we can swap the
values of a and b. We consider two cases.



Case 1. a = b. Then

Case 2. a > b. Let c = a−b > 0, so that a = c+b. Let k′ = max(c, b).
Since b < a and c < a, k′ < a = max(a, b) = k. Therefore

12. (a) gcd(55, 34) = 1. The numbers ri are the Fibonacci numbers.
There are 8 divisions.

(b) gcd(Fn+1, Fn) = 1. There are n − 1 division steps.

Section 7.2
2. 14950.
5. Suppose some prime number p appears in the prime factorizations of

both a and b. Then p | a and p | b, so gcd(a, b) ≥ p > 1, and therefore a
and b are not relatively prime.

Now suppose a and b are not relatively prime. Let d = gcd(a, b) >
1. Let p be any prime number in the prime factorization of d. Then
since d | a and d | b, p must occur in the prime factorizations of both a
and b.

8. Let d = gcd(a, b) and x = ab/ gcd(a, b) = ab/d.
(a) Since d = gcd(a, b), d | b, so there is some integer k such that b = kd.

Therefore x = akd/d = ak, so x is an integer and a | x. A similar
argument shows that b | x, so x is a common multiple of a and b.
Since m is the least common multiple, m ≤ x.

(b) Suppose r > 0. Since a | m, there is some integer t such that m = ta.
Therefore r = ab − qm = ab − qta = (b − qt)a, so a | r. Similarly, b | r.



But r < m, so this contradicts the definition of m as the least positive
integer that is divisible by both a and b. Therefore r = 0.

(c) With t defined as in part (b), ab = qm = qta. Dividing both sides by a,
we get b = qt, so q | b. The proof that q | a is similar.

(d) Since q | a and q | b, q ≤ gcd(a, b). Therefore ab = qm ≤ gcd(a, b)m,
so m ≥ ab/gcd(a, b).

11. Hint: One approach is to let q and r be the quotient and remainder
when m is divided by lcm(a, b), and prove that r = 0.

13. Let the prime factorization of b be  Then the
factorization of b2 is  Since a2 | b2, every prime
factor of a must be one of p1, p2, . . . , pk, so  for
some natural numbers f1, f2, . . . , fk. Therefore 
Since a2 | b2, for every i we must have 2fi ≤ 2ei, and therefore fi ≤ ei.
Thus a | b.

16. Let p1, p2, . . . , pk be a list of all primes that occur in the prime
factorization of either a or b, so that

for some natural numbers e1, e2, . . . , ek and f1, f2, . . . , fk. For i = 1, 2,
. . . , k, let

Let

Then for all i, gi ≤ ei and hi ≤ fi, and therefore c | a and d | b. Also, c
and d have no prime factors in common, so by exercise 5, c and d are
relatively prime. Finally,

19. (a) Since x is a positive rational number, there are positive integers
m and n such that x = m/n. Let d = gcd(m, n). By exercise 9, we



can let a and b be positive integers such that m = da, n = db, and
gcd(a, b) = 1. Then

(b) Since a/b = c/d, ad = bc. Therefore a | bc. Since gcd(a, b) = 1, by
Theorem 7.2.2, a | c. A similar argument shows c | a, so a = c.
Therefore ad = bc = ba, and dividing both sides by a we conclude
that b = d.

(c) By part (a), we have x = a/b, where a and b are relatively prime
positive integers. Let the prime factorizations of a and b be

Note that by exercise 5, these factorizations have no primes in
common. Then

Rearranging the primes r1, . . . , rj, s1, . . . , sl into increasing order
gives the required product 

(d) We begin by reversing the steps of part (c). Let r1, r2, . . . , rj be those
primes in the product  whose exponents are positive,
listed in increasing order, and s1, s2, . . . , sl those whose exponents
are negative. Rewriting each prime raised to a negative power as the
prime to a positive power in the denominator, we get

where all the exponents gi and hi are positive integers. The numerator
and denominator have no prime factors in common, so they are
relatively prime. Similarly, the product  can be rewritten
as a fraction with all exponents positive:



By part (b),  and  By the
uniqueness of prime factorizations, j = t and for all i ∈ {1, . . . , j}, ri
= vi and gi = yi, and also l = u and for all i ∈ {1, . . . , l}, si = wi and
hi = zi. Rewriting the primes in the denominator as primes raised to
negative powers, we find that the original two products 

 are the same.

Section 7.3
4. (a) Since Z1 is an additive identity element, Z1 + Z2 = Z2. And since

Z2 is an additive identity element, Z1 + Z2 = Z1. Therefore Z1 =
Z1 + Z2 = Z2.

(b) Since  is an additive inverse for 
Similarly, since  is an additive inverse for  

 Therefore 
(c) Suppose O1 and O2 are multiplicative identity elements. Then O1 =

O1 · O2 = O2.
(d) Suppose  and  are multiplicative inverses of X. Then  

8. Let a and b be arbitrary integers. Then

10. (a) x ∈ [95]237.

(b) x ∈ [12]59.

13. Let a and b be arbitrary integers. Suppose first that a ≡ b (mod m).
Then [a]m = [b]m, so [na]m = [n]m·[a]m = [n]m·[b]m = [nb]m, and
therefore na ≡ nb (mod m).

Now suppose that na ≡ nb (mod m), so [n]m · [a]m = [na]m = [nb]m
= [n]m · [b]m. Since m and n are relatively prime, [n]m has a



multiplicative inverse. Multiplying both sides of the equation 
  we get [a]m = [b]m, so a ≡ b (mod m).

15. Hint: Prove that if a ≡ b (mod m) then D(m) ∩ D(a) = D(m) ∩ D(b).
17. (a) First note that 10 ≡ 1 (mod 3), so [10]3 = [1]3. Therefore [102]3

= [10]3·[10]3 = [1]3·[1]3 = [1]3, [103]3 = [102]3·[10]3 = [1]3·[1]3
= [1]3, and, in general, for every i ∈ N, [10i]3 = [1]3. (A more
careful proof could be done by induction.) Thus

In other words, n ≡ (d0 + d1 +· · · +dk) (mod 3).
(b) 3 | n iff [n]3 = [0]3 iff [d0 +· · · +dk]3 = [0]3 iff 3 | (d0 +· · · +dk).

19. (a) Suppose n ≥ 10. First note that

Therefore 3f(n)−n = 49d0 −7f(n) = 7(7d0 −f(n)), so n ≡ 3f(n) (mod 7),
or equivalently [n]7 = [3]7 · [f(n)]7. Since [3]−1

7 = [5]7, it follows that
[f(n)]7 = [5]7 · [n]7, so f(n) ≡ 5n (mod 7).

(b) Suppose n ≥ 10. If 7 | n then [n]7 = [0]7, so [f(n)]7 = [5n]7 = [5]7 · [0]7
= [0]7, and therefore 7 | f(n). Similarly, if 7 | f(n) then [f(n)]7 = [0]7,
so [n]7 = [3f(n)]7 = [3]7 · [0]7 = [0]7 and 7 | n.

(c) f(627334) = 62733 + 5 · 4 = 62753; f(62753) = 6275 + 5 · 3 = 6290;
f(6290) = 629 + 5 · 0 = 629; f(629) = 62 + 5 · 9 = 107; f(107) = 10 +
5 · 7 = 45; f(45) = 4 + 5 · 5 = 29. Since 7 ∤ 29, 7 ∤ 627334.

Section 7.4
2. (a) φ(539) = 420.

(b) φ(540) = 144.
(c) φ(541) = 540.



6. Suppose a ≡ b (mod mn). Then mn | (b − a), so for some integer k, b −
a = kmn. Therefore m | (b − a) and n | (b − a), so a ≡ b (mod m) and a
≡ b (mod n).

Now suppose a ≡ b (mod m) and a ≡ b (mod n). Since a ≡ b (mod
n), n | (b − a), so there is some integer j such that b − a = jn. Since a ≡
b (mod m), m | (b − a), so m | jn. But gcd(m, n) = 1, so by Theorem
7.2.2 it follows that m | j. Let k be an integer such that j = km. Then b
− a = jn = kmn. Therefore mn | (b − a), so a ≡ b (mod mn).

8. The first half of the solution to exercise 6 does not use the hypothesis
that m and n are relatively prime, so the left-to-right direction of the
“iff” statement is correct even if this hypothesis is dropped. Here is a
counterexample for the other direction: a = 0, b = 12, m = 4, n = 6.

10. Suppose p is prime and a is a positive integer. We consider two cases.
Case 1.  Then p and a are relatively prime, so by Theorem

7.4.2,  Therefore 
 so ap ≡ a (mod p).

Case 2. p | a. Then [a]p = [0]p, so  and
therefore ap ≡ a (mod p).

13. Hint: Use Lemma 7.4.6 and induction on k.
15. (a) We proceed by induction on k.

Base case: When k = 1, the statement to be proven is that for every
positive integer m1 and every integer a1, there is an integer r such
that 1 ≤ r ≤ m1 and r ≡ a1 (mod m1). This is true because {1, 2, . . . ,
m1} is a complete residue system modulo m1.

Induction step: Suppose that the statement holds for lists of k
pairwise relatively prime positive integers, and let m1, m2, . . . , mk+1
be a list of k + 1 pairwise relatively prime positive integers. Let M′ =
m1 m2 · · · mk and M = m1 m2 · · · mk+1 = M′ mk+1. Let a1, a2, . . . ,
ak+1 be arbitrary integers. By the inductive hypothesis, there is an
integer r′ such that for all i ∈ {1, 2, . . . , k}, r′ ≡ ai (mod mi). By
exercise 13, gcd(M′, mk+1) = 1, so by Lemma 7.4.7 there is some
integer r such that 1 ≤ r ≤ M, r ≡ r′ (mod M′), and r ≡ ak+1 (mod



mk+1). By exercise 14, for every i ∈ {1, 2, . . . , k}, r ≡ r′ (mod mi),
and therefore r ≡ ai (mod mi).

(b) Suppose that 1 ≤ r1, r2 ≤ M and for all i ∈ {1, 2, . . . , k}, r1 ≡ ai (mod
mi) and r2 ≡ ai (mod mi). Then for all i ∈ {1, 2, . . . , k}, r1 ≡ r2 (mod
mi), so by exercise 14, r1 ≡ r2 (mod M). Therefore r1 = r2.

17. Suppose m and n are relatively prime. Let the elements of D(m) be a1,
a2, . . . , as, and let the elements of D(n) be b1, b2, . . . , bt. Then σ(m)
= a1 + a2 + · · · + as and σ(n) = b1 + b2 + · · · + bt. Using the function f
from part (b) of exercise 16, we see that the elements of D(mn) are all
products of the form ai bj, where 1 ≤ i ≤ s and 1 ≤ j ≤ t. Thus we can
arrange the elements of D(mn) in a table with s rows and t columns,
where the entry in row i, column j of the table is ai bj; every element
of D(mn) appears exactly once in this table. To compute σ(mn), we
must add up all entries in this table. We will do this by first adding up
each row of the table, and then adding these row sums.

For 1 ≤ i ≤ s, let ri be the sum of row i of the table. Then

Therefore

Section 7.5
2. (a) n = 5893, φ(n) = 5740, d = 2109.

(b) c = 3421.
5. (a) n = 17 · 29.

(b) d = 257.
(c) m = 183.
7. (a) c = 72.

(b) d = 63.
(c) 288.
(d) φ(n) = 144, d = 47, 18.



9. We use strong induction. Suppose that a is a positive integer, and for
every positive integer k < a, the computation of Xk uses at most 2 log2
k multiplications.

Case 1. a = 1. Then Xa = X1 = X, so no multiplications are needed,
and 2 log2 a = 2log2 1 = 0.

Case 2. a is even. Then a = 2k for some positive integer k < a, and
to compute Xa we use the formula Xa = Xk · Xk. Let m be the number
of multiplications used to compute Xk. By the inductive hypothesis, m
≤ 2log2 k. To compute Xa we use one additional multiplication (to
multiply Xk by itself), so the number of multiplications is

Case 3. a > 1 and a is odd. Then a = 2k + 1 for some positive
integer k < a, and to compute Xa we use the formula Xa = Xk · Xk · X.
As in case 2, if we let m be the number of multiplications used to
compute Xk then we have m ≤ 2log2 k. To compute Xa we use two
additional multiplications, so the number of multiplications is

12. Since  And since gcd(n, a) = 1, [a]n has a
multiplicative inverse.

(a) Suppose x ∈ R1. Then 2 ≤ x ≤ n − 1 and  Since {0, 1, . .
. , n − 1} is a complete residue system modulo n, there is a unique y
such that 0 ≤ y ≤ n − 1 and ax ≡ y (mod n), so [a]n · [x]n = [y]n. We
must prove that y ∈ R2. If y = 0 then  

 which contradicts the fact that 2 ≤ x ≤
n − 1. Therefore 1 ≤ y ≤ n − 1. And  

 Therefore yn−1 ≢ 1 (mod n). It follows
that y ≠ 1, so 2 ≤ y ≤ n − 1.

(b) Suppose f(x1) = f(x2) = y. Then [a]n · [x1]n = [y]n = [a]n · [x2]n, so 
 and therefore x1 = x2.

(c) By part (b), R1 has the same number of elements as Ran(f). Since
Ran(f) ⊆ R2, R2 has at least as many elements as R1. So at least half



the elements of R are in R2.



Chapter 8

Section 8.1

1. (a) Define f: Z+ → N by the formula f(n) = n − 1. It is easy to check
that f is one-to-one and onto.

(b) Let E = {n ∈ Z | n is even}, and define f: Z → E by the formula f(n)
= 2n. It is easy to check that f is one-to-one and onto, so Z ∼ E. But
we already know that Z+ ∼ Z, so by Theorem 8.1.3, Z+ ∼ E, and
therefore E is denumerable.

4. (a) No. Counterexample: Let A = B = C = Z+ and D = {1}.

(b) No. Counterexample: Let A = B = N, C = Z−, and D = ∅.

6. (a) We prove that ∀n ∈ N∀m ∈ N(In ∼ Im → n = m) by induction
on n.

Base case: n = 0. Suppose that m ∈ N and there is a one-to-one,
onto function f: In → Im. Since n = 0, In = ∅. But then since f is onto,
we must also have Im = ∅, so m = 0 = n.

Induction step: Suppose that n ∈ N, and for all m ∈ N, if In ∼ Im
then n = m. Now suppose that m ∈ N and In+1 ∼ Im. Let f: In+1 → Im
be a one-to-one, onto function. Let k = f(n + 1), and notice that 1 ≤ k
≤ m, so m is positive. Using the fact that f is onto, choose some j ≤ n
+ 1 such that f(j) = m.

We now define g: In → Im−1 as follows:

We leave it to the reader to verify that g is one-to-one and onto. By
the inductive hypothesis, it follows that n = m − 1, so n + 1 = m.



(b) Suppose A is finite. Then by the definition of “finite,” we know that
there is at least one n ∈ N such that In ∼ A. To see that it is unique,
suppose that n and m are natural numbers, In ∼ A, and Im ∼ A. Then
by Theorem 8.1.3, In ∼ Im, so by part (a), n = m.

8. (a) We use induction on n.
Base case: n = 0. Suppose A ⊆ In = ∅. Then A = ∅, so |A| = 0.
Induction step: Suppose that n ∈ N, and for all A ⊆ In, A is finite,

|A| ≤ n, and if A ≠ In then |A| < n. Now suppose that A ⊆ In+1. If A =
In+1 then clearly A ∼ In+1, so A is finite and |A| = n + 1. Now suppose
that A ≠ In+1. If n+1 ∉ A, then A ⊆ In, so by the inductive
hypothesis, A is finite and |A| ≤ n. If n + 1 ∈ A, then there must be
some k ∈ In such that k ∉ A. Let A′ = (A ∪ {k}) \ {n + 1}. Then by
matching up k with n + 1 it is not hard to show that A′ ∼ A. Also, A′
⊆ In, so by the inductive hypothesis, A′ is finite and |A′ | ≤ n.
Therefore by exercise 7, A is finite and |A| ≤ n.

(b) Suppose A is finite and B ⊆ A. Let n = |A|, and let f: A → In be one-
to-one and onto. Then f(B) ⊆ In, so by part (a), f(B) is finite, |f(B)| ≤
n, and if B ≠ A then f(B) ≠ In, so |f(B)| < n. Since B ∼ f(B), the desired
conclusion follows.

10. Hint: Define g: B → In by the formula

and show that g is one-to-one.
12. Notice first that either i + j − 2 or i + j − 1 is even, so f(i, j) is a

positive integer, and therefore f is a function from Z+ × Z+ to Z+, as
claimed. It will be helpful to verify two facts about the function f.
Both of the facts below can be checked by straightforward algebra:

(a) For all j ∈ Z+, f(1, j + 1) − f(1, j) = j.
(b) For all i ∈ Z+ and j ∈ Z+, f(1, i +j − 1) ≤ f(i, j) < f(1, i + j). It follows

that i + j is the smallest k ∈ Z+ such that f(i, j) < f(1, k).



To see that f is one-to-one, suppose that f(i1, j1) = f(i2, j2). Then by
fact (b) above,

Using the definition of f, it follows that

But then since i1 = i2 and i1 + j1 = i2 + j2, we must also have j1 = j2, so
(i1, j1) = (i2, j2). This shows that f is one-to-one.

To see that f is onto, suppose n ∈ Z+. It is easy to verify that f(1, n
+ 1) > n, so we can let k be the smallest positive integer such that f(1,
k) > n. Notice that f(1, 1) = 1 ≤ n, so k ≥ 2. Since k is smallest, f(1, k
− 1) ≤ n, and therefore by fact (a),

Adding 1 to all terms, we get

Thus, if we let i = n − f(1, k − 1) + 1 then 1 ≤ i < k. Let j = k − i, and
notice that i ∈ Z+ and j ∈ Z+. With this choice for i and j we have



15. (a) If B\{f(m) | m ∈ Z+, m < n} = ∅ then B ⊆ {f(m) | m ∈ Z+, m <
n}, so by exercises 8 and 10, B is finite. But we assumed that B
was infinite, so this is impossible.

(b) We use strong induction. Suppose that ∀m < n, f(m) ≥ m. Now
suppose that f(n) < n. Let m = f(n). Then by the inductive hypothesis,
f(m) ≥ m. Also, by the definition of f(n), m = f(n) ∈ B \ {f(k) | k ∈
Z

+, k < n} ⊆ B \ {f(k) | k ∈ Z+, k < m}. But since f(m) is the smallest
element of this last set, it follows that f(m) ≤ m. Since we have f(m) ≥
m and f(m) ≤ m, we can conclude that f(m) = m. But then m ∉ B \
{f(k) | k ∈ Z+, k < n}, so we have a contradiction.

(c) Suppose that i ∈ Z+, j ∈ Z+, and i ≠ j. Then either i < j or j < i.
Suppose first that i < j. Then according to the definition of f(j), f(j) ∈
B \ {f(m) | m ∈ Z+, m < j}, and clearly f(i) ∈ {f(m) | m ∈ Z+, m < j}.
It follows that f(i) ≠ f(j). A similar argument shows that if j < i then
f(i) ≠ f(j). This shows that f is one-to-one.

To see that f is onto, suppose that n ∈ B. By part (b), f(n + 1) ≥ n +
1 > n. But according to the definition of f, f(n + 1) is the smallest
element of B \ {f(m) | m ∈ Z+, m < n + 1}. It follows that n ∉ B \
{f(m) | m ∈ Z+, m < n + 1}. But n ∈ B, so it must be the case that
also n ∈ {f(m) | m ∈ Z+, m < n + 1}. In other words, for some
positive integer m < n + 1, f(m) = n.

17. Suppose B ⊆ A and A is countable. Then by Theorem 8.1.5, there is a
one-to-one function f: A → Z+. By exercise 13 of Section 5.2, f ↾ B is
a one-to-one function from B to Z+, so B is countable. (See exercise 7
of Section 5.1 for the definition of the notation used here.)

19. Following the hint, we recursively define partial orders Rn, for n ∈ N,
so that R = R0 ⊆ R1 ⊆ R2 ⊆ · · · and

 (∗)

Let R0 = R. Given Rn, to define Rn+1 we apply exercise 2 of Section
6.2, with B = {ai | i ∈ In+1}. Finally, let  Clearly T is
reflexive, because every Rn is. To see that T is transitive, suppose that



(a, b) ∈ T and (b, c) ∈ T. Then for some natural numbers m and n, (a,
b) ∈ Rm and (b, c) ∈ Rn. If m ≤ n then Rm ⊆ Rn, and therefore (a, b)
∈ Rn and (b, c) ∈ Rn. Since Rn is transitive, it follows that (a, c) ∈
Rn ⊆ T. A similar argument shows that if n < mthen (a, c) ∈ T, so T
is transitive. The proof that T is antisymmetric is similar. Finally, to
see that T is a total order, suppose x ∈ A and y ∈ A. Since we have
numbered the elements of A, we know that for some positive integers
m and n, x = am and y = an. But then by (∗) we know that either (am,
an) or (an, am) is an element of Rn, and therefore also an element of T.

22. (a) We follow the hint.
Base case: n = 0. Suppose A and B are finite sets and |B| = 0. Then

B = ∅, so A × B = ∅ and |A × B| = 0 = |A| · 0.
Induction step: Let n be an arbitrary natural number, and suppose

that for all finite sets A and B, if |B| = n then A × B is finite and |A ×
B| = |A| · n. Now suppose A and B are finite sets and |B| = n + 1.
Choose an element b ∈ B, and let B′ = B \ {b}, a set with n elements.
Then A × B = A × (B′ ∪ {b}) = (A × B′)∪(A × {b}), and since b ∉ B′,
A × B′ and A × {b} are disjoint. By the inductive hypothesis, A × B′
is finite and |A × B′ | = |A|·n. Also, it is not hard to see that A ∼ A ×
{b} – just match up each x ∈ A with (x, b) ∈ A × {b} – so A × {b} is
finite and |A × {b}| = |A|. By Theorem 8.1.7, it follows that A × B is
finite and |A × B| = |A × B′| + |A × {b}| = |A| · n +|A| = |A| · (n + 1).

(b) To order a meal, you name an element of A × B, where A = {steak,
chicken, pork chops, shrimp, spaghetti} and B = {ice cream, cake,
pie}. So the number of meals is |A × B| = |A| · |B| = 5 · 3 = 15.

24. (a) Base case: n = 0. If |A| = 0 then A = ∅, so F = {∅}, and |F | = 1
= 0!.

Induction step: Suppose n is a natural number, and the desired
conclusion holds for n. Now let A be a set with n + 1 elements, and
let F = {f | f is a one-to-one, onto function from In+1 to A}. Let g: In+1
→ A be a one-to-one, onto function. For each i ∈ In+1, let Ai = A\
{g(i)}, a set with n elements, and let Fi = {f | f is a one-to-one, onto
function from In to Ai}. By the inductive hypothesis, Fi is finite and
|Fi | = n!. Now let  Define a function 



 by the formula h(f) = f ∪ {(n + 1, g(i))}. It is not hard to
check that h is one-to-one and onto, so  is finite and 

 Finally, notice that  and 
 It follows, by exercise 21,

that F is finite and 
(b) Hint: Define h: F → L by the formula h(f) = {(a, b) ∈ A × A | f−1 (a)

≤ f−1 (b)}. (You should check that this set is a total order on A.) To
see that h is one-to-one, suppose that f ∈ F, g ∈ F, and f ≠ g. Let i be
the smallest element of In for which f(i) ≠ g(i). Now show that (f (i),
g(i)) ∈ h(f) but (f (i), g(i)) ∉ h(g), so h(f) ≠ h(g). To see that h is
onto, suppose R is a total order on A. Define g: A → In by the
formula g(a) = |{x ∈ A | xRa}|. Show that ∀a ∈ A∀b ∈ A(aRb ↔
g(a) ≤ g(b)), and use this fact to show that g−1 ∈ F and h(g−1) = R.

(c) 5! = 120.
27. Base case: n = 1. Then In = {1}, P = {{1}}, and A{1} = A1. Therefore 

 and 
Induction step: Suppose the inclusion-exclusion principle holds for

n sets, and suppose A1, A2, . . . , An+1 are finite sets. Let Pn = P(In) \
{∅} and Pn+1 = P(In+1) \ {∅}. By exercise 26(a), exercise 23(a) of
Section 3.4, and the inductive hypothesis,

Now notice that for every S ∈ Pn,

Therefore, by another application of the inductive hypothesis,



Thus

Finally, notice that there are three kinds of elements of Pn+1: those
that are elements of Pn, the set {n + 1}, and sets of the form S ∪{n +
1}, where S ∈ Pn. It follows that the last formula above is just 

 as required.

Section 8.2
1. (a) By Theorem 8.1.6, Q is countable. If R \ Q were countable then,

by Theorem 8.2.1, Q ∪ (R \ Q) = R would be countable,
contradicting Theorem 8.2.6. Thus, R \ Q must be uncountable.

(b) Let  It is not hard to see that A and Q are
disjoint, since  is irrational, and A is denumerable. Now apply
Theorems 8.1.6 and 8.2.1 to conclude that A ∪ Q is denumerable,
and therefore A∪Q ∼ A. Finally, observe that R = (R\
(A∪Q))∪(A∪Q) and R \ Q = (R \ (A ∪ Q)) ∪ A, and apply part 2 of
Theorem 8.1.2.

5. Suppose that A ∼ P(A). Then there is a function f: A → P(A) that is
one-to-one and onto. Let X = {a ∈ A | a ∉ f(a)} ∈ P(A). Since f is
onto, there must be some a ∈ A such that f(a) = X. But then according
to the definition of X, a ∈ X iff a ∉ f(a), so X ≠ f(a), which is a
contradiction.



8. Hint: Define f: P(A)×P(B) → P(A∪B) by the formula f(X, Y) = X ∪
Y, and prove that f is one-to-one and onto.

10. For each positive integer n, let An = {x ∈ A | x ≥ 1/n}. Clearly 
 Now suppose x ∈ A. Then x ∈ R+, so x > 0. Let n be a

positive integer large enough that n ≥ 1/x. Then x ≥ 1/n, so x ∈ An.
We conclude that  and therefore 

Suppose a1, a2, . . . , ak are distinct elements of An. Then

so k ≤ bn. Therefore An is finite, and in fact |An | ≤ bn. By Theorem
8.2.2, it follows that  is countable.

13. Hint: First note that if F = ∅ then g can be any function. If F ≠ ∅,

then since F is countable, we can write its elements in a list: F = {f1,

f2, . . .}. Now define g: Z+ → R by the formula g(n) = max{|f1 (n)|, |f2
(n)|, . . . , |fn (n)|}.

15. (a) If Q is countable, then by part 2 of Theorem 8.2.1, P ∪ Q is
countable. But P ∪ Q = P(Z+), which is uncountable by
Cantor’s theorem. Therefore Q is uncountable.

(b) Suppose A ∈ Q. For every n ∈ Z+, A ∩ In ⊆ In, so by exercise 8(a)
in Section 8.1, A ∩ In is finite. Therefore SA ⊆ P. Now suppose SA is
finite. Then there is some positive integer n such that SA = {A ∩ I1, A
∩ I2, . . . , A ∩ In}. We claim now that A ⊆ In; this will complete the
proof, because it implies that A is finite, contradicting our assumption
that A ∈ Q. To prove this claim, suppose that m ∈ A. Then A∩Im ∈
SA, so there is some k ≤ n such that A∩Im = A∩Ik ⊆ Ik ⊆ In. But m ∈
A ∩ Im, so we conclude that m ∈ In, as required.

(c) Suppose A ∈ Q, B ∈ Q, and A ≠ B. Then there is some positive
integer n such that either n ∈ A and n ∉ B or n ∈ B and n ∉ A. We
will assume n ∈ A and n ∉ B; the proof for the other case is similar.
We claim now that SA ∩SB ⊆ {A∩I1, A∩I2, . . . , A∩In−1}; this will



complete the proof, because it implies that SA ∩ SB is finite. To prove
the claim, suppose that X ∈ SA ∩ SB. Then there are positive integers
nA and nB such that  and  If nA ≥ n then

which is a contradiction. Therefore nA < n, so X = A ∩ InA ∈ {A ∩ I1,
. . . , A ∩ In−1}, as required.

(d) If A ∈ Q then SA ⊆ P, so since g: P → Z+, g(SA) ⊆ Z+. Also, since
SA is infinite and g is one-to-one, g(SA) is also infinite. This proves
that F ⊆ P(Z+) and every element of F is infinite. To see that F is

pairwise almost disjoint, suppose X, Y ∈ F and X ≠ Y. Then there are

sets A, B ∈ Q such that X = g(SA) and Y = g(SB). Since X ≠ Y, A ≠ B,
so by part (c), SA ∩ SB is finite, and therefore g(SA ∩SB) is finite. By
Theorem 5.5.2, g(SA ∩SB) = g(SA)∩g(SB) = X ∩ Y, so X and Y are
almost disjoint. Finally, define h: Q → F by the formula h(A) =

g(SA). It is easy to check that h is one-to-one and onto, so F ∼ Q and

therefore, by part (a), F is uncountable.

Section 8.3
1. (a) The function iA: A → A is one-to-one.

(b) Suppose A ≾ B and B ≾ C. Then there are one-to-one functions f: A
→ B and g: B → C. By part 1 of Theorem 5.2.5, g ◦ f: A → C is one-
to-one, so A ≾ C.

5. Let g: A → B and h: C → D be one-to-one functions.
(a) Since A ≠ ∅, we can choose some a0 ∈ A. Notice that g−1: Ran(g) →

A. Define j: B → A as follows:

We let you verify that j is onto.



Now define F: AC → BD by the formula F(f) = h ◦ f ◦ j. To see that
F is one-to-one, suppose that f1 ∈ AC, f2 ∈ AC, and F(f1) = F(f2),
which means h ◦ f1 ◦ j = h ◦ f2 ◦ j. Let a ∈ A be arbitrary. Since j is
onto, there is some b ∈ B such that j(b) = a. Therefore h(f1 (a)) = (h
◦ f1 ◦  j)(b) = (h ◦  f2 ◦  j)(b) = h(f2 (a)), and since h is one-to-one, it
follows that f1 (a) = f2 (a). Since a was arbitrary, this shows that f1 =
f2.

(b) Yes. (You should be able to justify this answer with a counter-
example.)

8. (a) Let n be arbitrary, and then proceed by induction on m. The base
case is m = n + 1, and it is taken care of by exercise 7. For the
induction step, apply exercise 2(b).

(b)  is an infinite set that is not equinumerous with An for any n
∈ Z+. In fact, for every positive integer  Can you
find even larger infinite sets?

10. (a) Note that E ⊆ P(Z+ × Z
+). It follows, using exercise 5 of

Section 8.1, that E ≾ P(Z+ × Z+) ∼ P(Z+).

(b) Suppose f(X) = f(Y). Then X ∪ {1} ∈ f(X) = f(Y) = {Y ∪ {1}, (A \ Y)
∪{2}}, so either X ∪{1} = Y ∪{1} or X ∪{1} = (A \ Y) ∪{2}. But
clearly 2 ∉ X ∪ {1}, so the second possibility can be ruled out.
Therefore X ∪ {1} = Y ∪ {1}. Since neither X nor Y contains 1, it
follows that X = Y.

(c) Clearly A is denumerable, and we showed at the end of Section 5.3
that P ∼ E. It follows that P(Z+) ∼ P(A) ≾ P ∼ E. Combining this

with part (a) and applying the Cantor-Schröder-Bernstein theorem
gives the desired conclusion.

14. (a) According to the definition of function,  and
therefore by exercise 12(b) and exercise 5 of Section 8.1, 

Clearly {yes, no} ≾ R, so by exercise 6(c) of Section 8.2 and
exercise 5, P(R) ∼ R{yes, no} ≾ R

R. Since we have both R
R ≾



P(R) and P(R) ≾ RR, by the Cantor-Schröder-Bernstein theorem,
R
R ∼ P(R).

(b) By Theorems 8.1.6 and 8.3.3, exercise 23(a) of Section 8.1, and
exercise 6(d) of Section 8.2, 

(c) Define F: C → Q
R by the formula F(f) = f ↾ Q. (See exercise 7 of

Section 5.1 for the meaning of the notation used here.) Suppose f ∈
C, g ∈ C, and F(f) = F(g). Then f ↾ Q = g ↾ Q, which means that
for all x ∈ Q, f(x) = g(x). Now let x be an arbitrary real number. Use
Lemma 8.3.4 to construct a sequence x1, x2, . . . of rational numbers
such that limn→∞ xn = x. Then since f and g are continuous, f(x) =
limn→∞ f(xn) = limn→∞ g(xn) = g(x). Since x was arbitrary, this shows
that f = g. Therefore F is one-to-one, so C ≾ Q

R. Combining this

with part (b), we can conclude that C ≾ R.

Now define G: R → C by the formula G(x) = R ×{x}. In other

words, G(x) is the constant function whose value at every real
number is x. Clearly G is one-to-one, so R ≾ C. By the Cantor-

Schröder-Bernstein theorem, it follows that C ∼ R.
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Summary of Proof Techniques

To prove a goal of the form:
1. ¬P:

(a) Reexpress as a positive statement.
(b) Use proof by contradiction; that is, assume that P is true and try to

reach a contradiction.
2. P → Q:

(a) Assume P is true and prove Q.
(b) Prove the contrapositive; that is, assume that Q is false and prove that P

is false.
3. P ∧ Q:

Prove P and Q separately. In other words, treat this as two separate
goals: P, and Q.

4. P ∨ Q:
(a) Assume P is false and prove Q, or assume Q is false and prove P.
(b) Use proof by cases. In each case, either prove P or prove Q.
5. P ↔ Q:

Prove P → Q and Q → P, using the methods listed under part 2.
6. ∀xP(x):

Let x stand for an arbitrary object, and prove P(x). (If the letter x
already stands for something in the proof, you will have to use a
different letter for the arbitrary object.)

7. ∃xP(x): Find a value of x that makes P(x) true. Prove P(x) for this value
of x.

8. ∃! xP(x):



(a) Prove ∃xP(x) (existence) and ∀y∀z((P (y) ∧ P(z)) → y = z)
(uniqueness).

(b) Prove the equivalent statement ∃x(P(x) ∧∀y(P(y) → y = x)).
9. ∀n ∈ N P(n):

(a) Mathematical induction: Prove P(0) (base case) and ∀n ∈ N(P (n) →
P(n + 1)) (induction step).

(b) Strong induction: Prove ∀n ∈ N[(∀k < n P (k)) → P(n)].

To use a given of the form:
1. ¬P:

(a) Reexpress as a positive statement.
(b) In a proof by contradiction, you can reach a contradiction by proving P.
2. P → Q:

(a) If you are also given P, or you can prove that P is true, then you can
conclude that Q is true.

(b) Use the contrapositive: If you are given or can prove that Q is false,
then you can conclude that P is false.

3. P ∧ Q:
Treat this as two givens: P, and Q.

4. P ∨ Q:
(a) Use proof by cases. In case 1 assume that P is true, and in case 2

assume that Q is true.
(b) If you are also given that P is false, or you can prove that P is false,

then you can conclude that Q is true. Similarly, if you know that Q is
false then you can conclude that P is true.

5. P ↔ Q:
Treat this as two givens: P → Q, and Q → P.

6. ∀xP(x):
You can plug in any value, say a, for x, and conclude that P(a) is true.

7. ∃xP(x):



Introduce a new variable, say x0, into the proof, to stand for a particular
object for which P(x0) is true.

8. ∃! xP(x):
Introduce a new variable, say x0, into the proof, to stand for a particular
object for which P(x0) is true. You may also assume that ∀y(P(y) → y =
x0).

Techniques that can be used in any proof:
1. Proof by contradiction: Assume the goal is false and derive a

contradiction.
2. Proof by cases: Consider several cases that are exhaustive, that is, that

include all the possibilities. Prove the goal in each case.
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irreflexive, 214

key, 360
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truth table for, 15
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one-to-one, 240
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public-key cryptography, 359–371

quantifier, 58–67
bounded, 72
existential, 58
negation laws, 68, 70, 73, 135–136
unique existential, 71, 153–162
universal, 58

quotient, 305, 313, 325–330, 342

Rabin, Michael O., 371
range, 183, 191, 233, 242



rational number, 32, 171, 377, 393, 396
real number, 32
rearrangement inequality, 291
recursive

definition, 294
procedure, 288

refine, 228
reflexive, 194
relation, 182

antisymmetric, 200
binary, 193
compatible with an equivalence relation, 227
composition of, 183, 191, 192
domain of, 183, 191
identity, 193, 215, 230
inverse of, 183, 191
irreflexive, 214
range of, 183, 191
reflexive, 194
symmetric, 194
transitive, 194

relatively prime, 333
remainder, 146, 305, 313, 325–330, 342
restriction, 237, 247, 258
Rivest, Ron, 360
RSA, 360
rule of inference, 108, 120, 121, 149
Russell, Bertrand, 88
Russell’s paradox, 88

Schröder, Ernst, 390
set, 28, see also countable set; denumerable set; empty set (or null set);
family of sets; finite set; index set; infinite set; power set; subset; truth
set
Shamir, Adi, 360
σ, 358
∑-notation, 295



smallest element, 203
strict partial order, 214
strict total order, 214
strictly dominates, 390
strong induction, 304, 311
subset, 41
sufficient condition, 52
Sun Zi, 358
surjection, 240
symmetric, 194
symmetric closure, 214
symmetric cryptography, 360
symmetric difference, 38, 45, 150–152, 161

τ, 358
tautology, 22, 26

laws, 23
theorem, 90
total order, 201, 282, 381

strict, 214
transitive, 194
transitive closure, 214, 322
triangle inequality, 151
truth set, 27, 31, 38, 173, 179
truth table, 15–24
truth value, 15

uncountable set, 375, 382–389
union

of family of sets, 81, 82
of indexed family of sets, 84
of two sets, 35, 82

universal instantiation, 121
universal quantifier, 58
universe of discourse, 32
upper bound, 208



vacuously true statement, 74
valid argument, 9, 18
variable, 26

bound, 29, 59
dummy, 29
free, 29, 59

Venn diagram, 37, 41
vertex, 191

well-formed formula, 12
well-ordering principle, 309, 327

Zhang, Yitang, 6
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