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I initiated my journey into cryptography while studying for my undergrad. Most 
of the cryptography concepts I learned were based on what one would need for 
their CISSP or Security+ exams. Most of my understanding was at a high level, 
and it was difficult to remember the more intricate aspects until cryptography 
became a primary focus.

It wasn’t until I started my master’s in cybersecurity that I began applying 
cryptographic features within a scripting environment. The concepts in this 
book will help you advance your knowledge and experience as you dig deeper 
into understanding the use of cryptography in Python.

Over the past few years, several governments have discussed legislation that 
will ensure that any form of communication, whether it’s an email, text message, or 
video chat, can always be read by the police or intelligence services if they have a 
warrant. Governments are putting pressure on technology companies to give them 
backdoor access or the keys to the kingdom so that they can keep the country safe.

The fight between lawmakers and encrypted messaging platforms has entered 
new territory. Imagine a world where the government has seized the oppor-
tunity to scan every electronic message by government-approved scanning 
software. The privacy and security of all users will suffer if law enforcement 
agencies achieve their dream of breaking cryptosystems. Proponents of end-to-
end encryption, like Microsoft, Facebook, and Google, may lose their campaign 
to maintain user security as a priority.

We have all heard of times when it would be beneficial for encrypted data 
to magically become readable; this is often related to criminal cases. Should 
criminals be allowed to plot their plans in secret? Where does the right to our 
privacy start? In reality, there are technical and legal issues with allowing gov-
ernments to do this; this of course will be strongly opposed by technology and 
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privacy advocates. The world is at war on what can be encrypted, what should be 
encrypted, and who should have the keys to unlock someone else’s encryption.

Whether you agree or disagree with what powers a nation-state should have 
over encrypted communications in their country, you should understand what 
encryption is, how to apply it when needed, and how to ensure that the data 
you are receiving is authentic and confidential. Over the course of this book, 
you will get a basic understanding of how to cryptographically secure your 
messages, files, or Internet traffic using easy-to-understand Python recipes that 
have been created or updated to support Python 3.

What This Book Covers

This book focuses on helping you pick the right Python environment for your 
needs so that you can hit the ground running. You will get an understanding 
of what algorithms are and explore the basics of Python.

Once you have an idea of where you are starting from, you will get an over-
view of what cryptography is, what perfect secrecy means, and the history of 
cryptography and how its use changed our world.

To get a full understanding of some of the cryptographic concepts, a little 
math is needed. You will get an understanding of how prime numbers, basic 
group theory, and pseudorandom number generators help build cryptographic 
solutions. This will build the foundation for understanding various stream and 
block ciphers and highlight some of their encryption modes and weaknesses.

Every cryptographic discussion is better with pictures, so we will spend a 
chapter focusing on how image cryptography and steganography work. We’ll also 
highlight a few issues that you will need to be aware of while dealing with images.

Message integrity is just as important as message secrecy. Knowing who sent 
the message to you directly relates to whether the message is credible. You will 
learn how to generate message authentication codes to ensure integrity during 
transit.

The strength of encryption will be shown at the end of the book when you 
will learn about PKI schemes and explore how to implement elliptic curve cryp-
tography in an application. The application you build will exchange data in a 
highly secure format over an unsecure channel, thus ensuring that you are able 
to control your own end-to-end encryption scheme that no one will be able to 
decrypt without the keys you create. I hope you find the journey as fun as I did.
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What You Need to Know

This book assumes that you are fairly new to cryptography. While there is a 
brief introduction to how to set up and use Python, you will get the most out of 
the book if you have experience in another programming or scripting language.

What You Need to Have

The concepts presented in this book can be executed on Microsoft Windows, 
Linux, Chromebook, or iOS. Your choice of editor will most likely depend on 
the underlying operating system, although most of the Python recipes presented 
here will execute in online editors as well as most shells that are using a Python 
interpreter that is 3.0 or greater.

How to Use This Book

The topics in this book get more advanced as you progress through it, so you 
can work through the material from front to back and build your skills as you 
go. You can also use this book as a reference that you can consult when you 
need help with the following situations:

■■ You’re stuck while trying to figure out how to secure your data.

■■ You need to do something using cryptography that you’ve never  
done before.

■■ You have some time on your hands, and you’re interested in learning 
something new about Python and cryptography.

The index is comprehensive, and each chapter typically focuses on a single 
broad topic. Don’t be discouraged if some of the material is over your head. 
As you work through the coding samples and build out the final solution, the 
concepts should become easier to understand.

What’s on the Website

Nearly everything discussed in this book has examples with it. You can (and 
should) download the many useful examples included with this book. We have 
verified that each file will run in environments that are Python version 3.0 and 
higher.

The files are located at github.com/braycrypto/cryptography, as well as at 
www.wiley.com/go/cryptographywithpython.
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Cryptography is one of the most important tools we have at our disposal as 
information security professionals. It provides us with the ability to protect 
sensitive information from unauthorized disclosure through encryption. Cryp-
tography is the use of mathematical algorithms that can be used to transform 
data either into an encrypted form (ciphertext) or into its decrypted form (plain-
text). The purpose of these algorithms can be quite complicated. The goal of this 
book is to help simplify the use of cryptography using the available libraries 
in Python, so you will begin your journey into cryptography by setting up a 
Python environment. You’ll also get a review of using Python, and then you’ll 
write your first cipher using Python. Specifically, you’ll do the following:

■■ Gain an understanding of algorithms

■■ Explore various Python installations

■■ Set up Python 3 on various machines

■■ Explore the basics of the Python language

■■ Write your first cipher using Python

Introduction to Cryptography 
and Python

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Exploring Algorithms

The algorithms you will explore in this book can be quite sophisticated, but 
most of the logic is encapsulated into little black boxes that allow you to inter-
face with the algorithms using functions. In the programming or mathematical 
world, a function is merely a way to enter values and receive output. When using 
algorithms in cryptography, we generally have two inputs for encryption and 
two inputs for decryption:

■■ The encryption process will take the plaintext message (P) along with an 
encryption key (K) and then run the plaintext through encryption algo-
rithms, which will return ciphertext (C).

■■ On the decryption side, the ciphertext (C) will be supplied along with the 
encryption key (K), which will produce the plaintext (P) message.

As you study various encryption themes throughout this book, you will find 
that they are described by three algorithms: GEN for key generation, ENC for 
the encryption algorithm, and DEC for the decryption algorithm. You’ll revisit 
this concept at the end of this chapter when you learn how to create a Python 
function.

Why Use Python?

Using Python for cryptography is simpler than using languages such as C or 
C++; while free libraries such as OpenSSL are available, their use can be quite 
complex. Python removes these complexities with many built-in libraries that 
aid in cryptography scripting. It is also a great choice because Python is free in 
terms of license. Python can be described as an open-source, general-purpose 
language that is object oriented, functional, and procedural, and it allows for 
the interface with C/ObjC/Java/Fortran and even .NET. A number of versions 
are available, from 2.5.x through 3.x. Currently, 3.x is becoming more popular 
as new libraries are introduced. Python comes preinstalled with Linux and 
macOS, and you can install it on Windows as well. You will learn how to install 
Python in each of these environments later in this chapter.

Because Python is available for Windows, Linux/Unix, Mac, and Chrome-
books, among others, the lessons you learn here will be portable to several 
environments. Python has proven to be quite powerful in information security 
and can be used to quickly script solutions to help you become a better secu-
rity practitioner. If you are using Ubuntu Linux, every command you see in 



	 Chapter 1 ■ Introduction to Cryptography and Python	 3

this book will work. If you are on a Mac, you can use the Terminal app found 
inside the Utilities folder. On a Windows machine, you have several options 
as well: you can install a number of tools such as Cygwin, Visual Studio, or 
PyCharm; use the Windows 10 Linux subsystem; or just install Ubuntu Linux 
from the Microsoft Store. If you are new to Linux, I recommend practicing your 
command-line skills a bit to help get you comfortable.

When you start the Python shell (by typing python or python3 at the command 
line), you will see the version and the date associated with the version. For in-
stance, if you install and run Python in a Linux environment, you should see 
something similar to the following:

Python 3.7.4+ (default, Sep  4 2019, 08:03:05) 
[GCC 9.2.1 20190827] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

The majority of Python interpreters use >>> as a prompt to accept user input; 
one notable exception is IPython, which is discussed briefly in a moment. Once 
you are in a Python shell, exit by pressing CTRL+D or typing exit(). Python 
files use a .py extension, and we start their execution in Linux environments 
by typing python3 filename.py; (keep in mind that you still need to chmod 
+x the file).

	 N OT E     In Unix-like operating systems, the chmod command sets the permissions 
of files or directories.

As you will learn later in this chapter, a large number of modules are avail-
able for Python, many of which we will use along your journey of learning 
cryptography. One of the more notable modules you will learn more about is 
NumPy. NumPy offers numerical operations to Python, including fast multi-
dimensional array operations, random number generation, and linear algebra. 
Another module that you will be introduced to is Matplotlib, which is an excel-
lent library for plotting. In Chapter 6, you will learn more about PyFITS, which 
is a module that provides access to Flexible Image Transport System (FITS) files. 
FITS is a portable file standard that is widely used throughout the astronomy 
community to store images and tables. We will be combining it with our cryp-
tography techniques to encrypt and decrypt image files.

Downloading and Installing Python

You can download the Python interpreter from www.python.org/python, where 
you’ll find versions for Ubuntu, macOS, and Windows. Be sure to download 
version 3.7 or higher, since Python 2 is now unsupported.
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Installing on Ubuntu
If you are running Ubuntu, install Python from the Ubuntu Software Center 
using these steps:

1.	 Open the Ubuntu Software Center.

2.	 In the search box in the top-right corner of the window, type Python.

3.	 Select IDLE.

4.	 Click Install.

Installing on macOS
If you are using macOS, download the .dmg file for your version of macOS and 
execute it. When the DMG package opens, do the following:

1.	 Double-click the Python package file (.mpkg).

2.	 Click Continue through the Welcome section and click Agree to accept 
the license.

3.	 Select HD Macintosh and click Install.

Installing on Windows
If you are using Windows, download and run the Python installer; it should 
have an .msi extension. Then follow these steps:

1.	 Click Install Now to begin the installation.

2.	 When the installation completes, click Close.

Notice the mention of upgrading. You can upgrade a package by clearing out 
the Search PyPI and Installed Packages search box. This will show you all of 
the installed packages. Any package that has an update will have an up arrow 
next to it along with the newer version number (see Figure 1.1). You may have 
to elevate your privileges.

Installing on a Chromebook
New Windows and Chrome OS computers give you the ability to install Linux. 
The Chrome OS, which is becoming more popular, enables you to install a Linux 
container that you can interact with but also keeps the rest of the environment 
isolated so that you do not have to worry about messing up your system.
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To get started with Python 3 on a Chromebook, click the time in the lower-
right corner. If you have the appropriate permissions on the Chromebook, you 
should see a Settings button that looks like a flower with a dot in the middle 
of it. Once you are in Settings, you can scroll down until you find Linux (Beta) 
and then enable it by clicking Turn On. It may take several minutes, but once 
it is complete, you will be able to run Linux tools, editors, and IDEs on your 
Chromebook. To continue with the Chromebook installation, see the next sec-
tion for instructions on how to install NumPy and Matplotlib.

Installing Additional Packages
Many of the coding recipes that you will find in this book require additional 
packages or modules to help reduce the amount of code you need to write to 
ensure message security. Most Python interpreters use a command-line approach 
of loading the packages. Integrated development environments (IDEs) may have 
unique ways of loading packages for each interpreter available.

Figure 1.1:  Upgrading packages
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Installing Pip, NumPy, and Matplotlib

Ensure you are in a command shell environment with a prompt. In the follow-
ing example installation, you will get an update to the packages that come with 
your Python version.

Pip, or Pip3 in this case, is the package management system for Python; it is 
used to install and manage software packages written in Python. Pip is similar 
to tools like Bundle, NPM, and Composer in other programming languages. 
NumPy, which stands for Numerical Python, is a Python package that is the 
core library for scientific computing. It contains a powerful n-dimensional array 
object, and provides tools for integrating C, C++, and many other languages. 
Matplotlib is an excellent solution for scientific plotting; it has the ability to be 
automated and produce a wide variety of customizable high-quality plots.

Once the shell is open, type the following commands:

~$ sudo apt-get update
~$ sudo apt install python-pip
~$ pip3 install numpy
~$ pip3 install matplotlib
 
~$ $ python3 -c "import numpy as np; import matplotlib.pyplot as plt; x 
= np.linspace(0, 2 * np.pi); y = np.sin(x); plt.plot(x, y); plt.show()"

	 N OT E     Depending on your environment, you may need to install python3-pip to 
get Pip3 to work. On installs such as Ubuntu 16.04 on Windows, you will not be able to 
install version 3 when you install python-pip.

To start the Python 3 shell, type the following:

~$ python3

You should see something similar to the following depending on the version 
that is installed:

Python 3.X.X (default, date)
[GCC 6.3.0 20170516] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

To test whether you have the additional packages installed correctly, open 
your favorite Python editor. If you don’t have one, you can elect to use Nano in 
a Linux environment or even Notepad in a Windows environment. Type the 
following:

#!/usr/bin/env python
 
import numpy as np
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import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
mu, sigma = 100, 15
x = mu + sigma*np.random.randn(10000)
# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green',
alpha=0.75)
# add a 'best fit' line
y = mlab.normpdf( bins, mu, sigma)
l = plt.plot(bins, y, 'r--', linewidth=1)
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

Save the file as matplot.py and execute the file. The preceding Python recipe 
will generate a plot using NumPy and the Matplotlib library (see Figure 1.2).

Installing the Cryptography Package

Python has a Cryptography package that provides cryptographic recipes and 
primitives to Python developers. It is designed to be your “cryptographic stan-
dard library.” As of this writing, it supports Python 2.7, Python 3.4+, and PyPy 
5.4+. You can install the Cryptography package by using Pip3. The syntax is 
as follows:

$ pip3 install cryptography

Figure 1.2:  Matplot.py test
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The Cryptography package includes both high-level recipes and low-level 
interfaces to common cryptographic algorithms such as symmetric ciphers, mes-
sage digests, and key derivation functions. For example, to encrypt something 
with Cryptography’s high-level symmetric encryption recipe, use this:

>>> from cryptography.fernet import Fernet
>>> # Put this somewhere safe!
>>> key = Fernet.generate_key()
>>> f = Fernet(key)
>>> token = f.encrypt(b"A really secret message. Not for prying eyes.")
>>> token
'...'
>>> f.decrypt(token)
'A really secret message. Not for prying eyes.'

Installing Additional Packages

IPython is available through many providers; it is an enhanced, interactive 
version of Python. IPython offers a combination of convenient shell features, 
special commands, and a history mechanism for both input and output. IPython 
offers a vastly improved set of functionality and flexibility; it is a fully compat-
ible replacement for the standard Python interpreter. You can install IPython 
by typing the following:

sudo  apt install IPython3
apt-get install python3-IPython

To use IPython, type IPython3 -h at the system command line. You can start 
the shell by typing this:

~$ IPython3

You should see something similar to the following:

Python 3.5.3 (default, Sep 27 2018, 17:25:39)
Type "copyright", "credits" or "license" for more information.
 
IPython 5.1.0 -- An enhanced Interactive Python
 
In [1]:

Please note that you will need to pay attention to the version of Python; this 
example is using Python 3.5.3, but you may see something like Python 2.x if you 
did not specify IPython3. When Python 3 first came out, many libraries didn’t 
exist, so many people stayed with 2.x. Python 3 has caught up and is now a 
great language. There are, however, a few differences between Python 2.x and 
Python 3, so if you find that some of your scripts fail, try running them using 
an alternate version.
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Testing Your Install

Once you have selected the platform of your choice, open the Python IDE. Find 
the Python console panel and type the following:

>>> print('Hello World')
Hello World
>>> x = 100
>>> x*(1 + 0.5)**10
5766.50390625
>>> import math
>>> math.sqrt(49)
7.0

If everything goes as expected, you should see the output shown in Figure 1.3.

Diving into Python Basics

Prior to getting into the variables, spacing, strings, and loops, I will cover a few 
of the basics you will need to know. Names in Python are case sensitive and 
cannot start with a number. They can contain letters, numbers, and underscores. 
Some examples include:

■■ alice

■■ Alice

■■ _alice

■■ _2_alice_

■■ alice_2

The language includes a number of reserved words, such as and, assert, 
break, class, continue, def, del, elif, else, except, exec, finally, for, from, 
global, if, import, in, is, lambda, not, or, pass, print, raise, return, try, while.

Figure 1.3:  Python installed successfully
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The goal of this book is not to teach Python from the ground up; it is, how-
ever, logical that you may be coming from another scripting or programming 
language and may need a brief overview of the nuances of Python. While keep-
ing it as short as possible, in this section I discuss variables, operators, strings, 
loops, and files. The hope is to give you enough information that you can debug 
your Python code in the case of a typo.

One major difference between Python and many other languages is that 
whitespace is meaningful, and many of your early errors probably will be a 
result of indentation being misused. A newline in Python ends the line of code 
unless you use the backslash (\) character. You will find that you need to use 
consistent indentation throughout your code. The first line of code with less 
indentation is outside a code block, whereas the lines with more indentation 
start a nested block.

As with other languages, Python allows you to comment your code. Com-
menting your code should be considered a must. Some of the comments in the 
code used in this book have been removed to shorten the code examples, but 
you will be well-served by comments as you revisit previously written code. 
In Python, comments start with #; everything following the pound sign will 
be ignored.

Using Variables
The programs you write throughout this book will need to store values so 
they can be used at a later time. Values are stored in variables; the use of a var-
iable is signified by the = sign, which is also known as the assignment operator.  
For example, if you wanted to store the value 21 in a variable named age, enter 
age = 21 into the shell:

>>> age = 21

Variables can be overwritten or used in calculations. Explore the following 
by typing it into your shell:

>>> age + 9
30
>>> age
21
>>> age = age + 9
>>> age
30

Python doesn’t enforce any variable naming conventions, but you should use 
names that reflect the type of data that is being stored. It is important to know 
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that in Python, variable names are case sensitive, so age and Age represent two 
different variables. This overview shows the use of variables with numbers; we 
will examine the use of variables and strings next.

Using Strings
Strings allow you to use text in programming languages. In cryptography, you 
use strings a great deal to convert plaintext to ciphertext and back. These values 
are stored in variables much like the numeric examples used in the preceding 
section. Strings in Python are stored using the single quote (‘) or double quote 
(“); it does not matter which quote you use as long as they are matching. To see 
an example, type the following into the shell:

>>> name = 'John'
>>> name
'John'

The single quotes are not part of the string value. Python only evaluates the 
data between the quotes. If you wanted to set a variable to an empty string, you 
would use the following:

>>> name = ''

In Python, you can concatenate multiple strings together by using the plus 
(+) operator. See the following example:

>>> first = 'John'
>>> last = 'Doe'
>>> name = first + last
>>> name
'JohnDoe'

Notice that the strings concatenate exactly the way they store values; if you 
need a word separation, plan for the use of spaces.

Introducing Operators
You have now seen the + operator used in both numeric and string variables. 
Other operators can be broken down into the following categories: arithmetic, 
comparison, logical, assignment, bitwise, membership, and identity.

Understanding Arithmetic Operators

Arithmetic operators perform mathematical calculations (see Table 1.1).
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Most of these operators work precisely the way you expect from other 
programming languages. It is critical to our exploration to examine modular 
(%) arithmetic in detail as it plays an essential role in cryptography. We write 
things like 28≡2(mod26), which is read out loud as “28 is equivalent to 2 mod 
26.” While not entirely accurate, modular arithmetic focuses on the remainder. 
In our example, 26 divides into 28 one time with two remaining, or x(mod p) 
as the remainder when x divides into p. We can say that a≡b(mod q) when 
a−b is a multiple of q. So 123≡13(mod 11) because 123−13=110=11⋅10. Now I’ve 
heard folks describe the remainder of x mod p, which does refer to the unique 
number between 0 and p−1, which is equivalent to x. An infinite sequence of 
numbers are equivalent to 53(mod13), but out of that continuous sequence, there 
is precisely one number that is positive and smaller than 13. In this case, it’s 1. 
In a math setting , I would call 1 the canonical representative of the equivalence 
class containing 53 modulo 13.

Table 1.2 shows some examples to help you wrap your head around the 
concepts; they will be presented again when you examine ciphers and explore 
finding the modular inverse in cryptographic math.

One additional feature of Python is the use of the multiplication operator with 
strings. The feature can be advantageous when you need to create specifically 

Table 1.1:  Arithmetic Operators

OPERATOR DESCRIPTION EXAMPLE

+ Addition 10 + 20 will give 30

- Subtraction 10 - 5 will give 5

* Multiplication 10 * 10 will give 100

/ Division 10 / 2 will give 5

% Modulus 20 % 10 will give 0

** Exponent 10**2 will give 100

// Floor Division 9//2 is equal to 4 and 9.0//2.0 is equal to 
4.0

Table 1.2:  Arithmetic Operator Examples

EXPRESSION DESCRIPTION SYNTAX

28 (mod 26) 28 is equivalent to 2 mod 26 28 % 26

29 (mod 26) 29 is equivalent to 3 mod 26 29 % 26

30 (mod 26) 30 is equivalent to 4 mod 26 30 % 26
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formatted strings that may be used in some attacks such as buffer overflows. 
One example can be examined using the print function, as shown here:

>>> # Python 2.7
>>> print 'a' * 25
aaaaaaaaaaaaaaaaaaaaaaaaa
 
>>> # Python 3.5
>>> print ('a' * 25)
aaaaaaaaaaaaaaaaaaaaaaaaa

	 N OT E     Python 3 and higher require you to use Print() as a function. You must 
include the parentheses.

Understanding Comparison Operators

The comparison operators, also known as relational operators, compare the oper-
ands (values) on either side and return true or false based on the condition (see 
Table 1.3).

Understanding Logical Operators

The logical operators include and, or, and not (see Table 1.4).

Table 1.3: Comparison Operators

OPERATOR DESCRIPTION EXAMPLE

== Compares two operands to see if they are equal; 
if the values are equal, it returns true.

(10 == 20) is not 
true

!= Compares two operands to see if they are not 
equal; if the values are not equal, it returns true.

(10 != 20) is true

<> Compares two operands to see if they are not 
equal; if the values are not equal, it returns true.

(10 <> 20) is true

> If the operand on the left is greater than the 
operand on the right, the operation returns true.

(10 > 5) is true

< If the operand on the right is greater than the 
operand on the left, the operation returns true.

(10 < 20) is true

>= If the operand on the right is equal to or less than 
the value on the left, the condition returns true.

(10 >= 5) is true

<= If the operand on the left is equal to or less than 
the value on the right, the condition returns 
true.

(5 <= 10) is true
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Understanding Assignment Operators

You first explored the assignment operators when we covered variables. In 
addition to using the equal sign, Python offers many assignments that work 
as a shorthand for more extended tasks. To get an understanding of how this 
works, examine Table 1.5.

Table 1.4:  Logical Operators

OPERATOR DESCRIPTION EXAMPLE

and (logical AND) If both the operands evaluate to 
true, then condition becomes true.

(a and b) is true.

or (logical OR) If any of the two operands are non-
zero, then condition becomes true.

(a or b) is true.

not (logical NOT) Used to reverse the logical state of 
its operand.

Not(a and b) is false.

Table 1.5:  Assignment Operators

OPERATOR DESCRIPTION EXAMPLE

= Assigns values from right-side operands to 
left-side operands.

c = a + b assigns 
value of a + b into c

+= (add AND) Adds the right operand to the left operand 
and assigns the result to the left operand.

c += a is equivalent 
to c = c + a

-= (subtract 
AND)

Subtracts the right operand from the left 
operand and assigns the result to the left 
operand.

c -= a is equivalent 
to c = c - a

*= (multiply 
AND)

Multiplies the right operand with the left 
operand and assigns the result to the left 
operand.

c *= a is equivalent 
to c = c * a

/= (divide 
AND)

Divides the left operand with the right 
operand and assigns the result to the left 
operand.

c /= a is equivalent 
to c = c /

%= (modulus 
AND)

Takes modulus using two operands and 
assigns the result to the left operand.

c %= a is equivalent 
to c = c % a

**= 
(exponent 
AND)

Performs exponential (power) calculation on 
operators and assigns the value to the left 
operand.

c **= a is equivalent 
to c = c ** a

//= (floor 
division)

Performs floor division on operators and 
assigns the value to the left operand.

c //= a is equivalent 
to c = c // a
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Understanding Bitwise Operators

The bitwise operators work on bits and perform bit-by-bit operations (see Table 1.6). 
Assuming a = 60 and b = 13, the binary format of a and b will be as follows:

a = 0011 1100

b = 0000 1101

Understanding Membership Operators

Membership operators test for membership in a sequence, such as strings, lists, 
or tuples. There are two membership operators, in and not in, as shown in 
Table 1.7.

Table 1.6:  Bitwise Operators

OPERATOR DESCRIPTION EXAMPLE

& (binary AND) Copies a bit to the result if it exists in 
both operands.

(a & b) (means 0000 
1100)

| (binary OR) Copies a bit if it exists in either 
operand.

(a | b) = 61 (means 
0011 1101)

^ (binary XOR) Copies the bit if it is set in one operand 
but not both.

(a ^ b) = 49 (means 
0011 0001)

~ (binary One 
Complement)

This operator is unary and has the 
effect of “flipping” bits.

(~a ) =-61 (means 1100 
0011 in two’s 
complement form due to 
a signed binary number.

<< (binary Left 
Shift)

The left operand’s value is moved left 
by the number of bits specified by the 
right operand.

a << 2 = 240 (means 
1111 0000)

>> (binary Right 
Shift)

The left operand’s value is moved 
right by the number of bits specified 
by the right operand.

a >> 2 = 15 (means 
0000 1111)

Table 1.7:  Membership Operators

OPERATOR DESCRIPTION EXAMPLE

in Evaluates to true if it finds a variable in 
the specified sequence and false 
otherwise.

x in y; here in results in a 
1 if x is a member of 
sequence y.

not in Evaluates to true if it does not find a 
variable in the specified sequence and 
false otherwise.

x not in y; here not in 
results in a 1 if x is not a 
member of sequence y.
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Understanding Identity Operators

Identity operators compare the memory locations of two objects. There are two 
identity operators, is and is not, as shown in Table 1.8.

Using Conditionals
You will need to evaluate various conditions as you are writing your code; 
conditional statements in Python perform different actions or computations and 
decide whether a condition evaluates to true or false. We use the IF statement 
for our Boolean test. The syntax is as follows:

If expression
    Statement
Else
    Statement

To use it in an actual program, type the following:

>>> # Python 3.5
>>> for i in range(1,5):
>>>     if i == 2:
>>>          print ('I found two')
>>>     print (i)

In addition to the IF statement, Python also makes use of ELSE and ELIF. ELSE 
will capture the execution if the condition is false. ELIF stands for else if; this 
gives us a way to chain several conditions together. Examine the following:

>>> # Python 3.5
>>> for i in range(1,5):
>>>     if i == 1:
>>>          print ('I found one')
>>>     elif i == 2:
>>>          print ('I found two')
>>>     elif i == 3:

Table 1.8:  Identity Operators

OPERATOR DESCRIPTION EXAMPLE

is Evaluates to true if the variables on either 
side of the operator point to the same 
object and false otherwise.

x is y; here is results in 
1 if id(x) equals id(y).

is not Evaluates to false if the variables on either 
side of the operator point to the same 
object and true otherwise.

x is not y; here is not 
results in 1 if id(x) is not 
equal to id(y).
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>>>        Print ('I found three')
>>>     else
>>>        Print ('I found a number higher than three')
>>>     print (i)

Using Loops
When you use scripting or programming languages, you can perform a set of 
statements in multiple repetitions. Loops give us the ability to run logic until a 
specific condition is met. For the sake of what you use in this book, this section 
shows the for loop, the while loop, the continue statement, the break statement, 
and the else statement. Unlike other programming languages that signify the end 
of the loop by using keywords or brackets, Python uses line indentations. You 
need to focus on how your syntax is spaced when writing and testing your code.

for

The for loop is used to iterate over a set of statements that need to be repeated 
n number of times. The for statement can be used to execute as a counter in a 
range of numbers. The following syntax prints out the values 1, 2, 3, 4, 5, 6, 7, 8, 9:

>>> # Python 3.5
>>> for i in range(1, 10):
>>>     print (i)

The for loop can also execute against the number of elements in an array. 
Examine the following snippet, which produces the result 76:

>>> # Python 3.5
>>> numbers = [1, 5, 10, 15, 20, 25]
>>> total = 0
>>> for number in numbers:
>>>     total = total + number
>>> print (total)

As with numbers, the same technique is useful against string arrays. The 
following outputs three names—Eden, Hayden, and Kenna:

>>> # Python 3.5
>>> all_kids = ["Eden&", "Hayden&", "Kenna&"]
>>> for kid in all_kids:
>>>     print kid
Eden
Hayden
Kenna
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while

The while loop is used to execute a block of statements while a condition is true. 
As with the for loop, the block of statements may be one or more lines. The 
indentation of the following lines defines the block. Once a condition becomes 
false, the execution exits the loop and continues. Before printing the final state-
ment, the following snippet prints 0, 1, 2, 3, 4:

>>> # Python 3.5
>>> count = 0
>>> while (count < 5):
>>>      print count
>>>      count = count + 1
>>> print ("The loop has finished.")

continue

The continue statement is used to tell Python to skip the remaining statements 
in the current loop block and continue to the next iteration. The following snip-
pet will produce an output of 1, 3, 4. The continue statement skips printing 
when i equals 2:

>>> # Python 3.5
>>> for i in range(1,5):
>>>     if i == 2:
>>>          continue
>>>     print (i)

break

The break statement exits out from a loop. The following snippet produces an 
output of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. Once i = 12, the loop is abandoned:

>>> # Python 3.5
>>> for i in range(1,15):
>>>      if i == 12:
>>>          break
>>>     print (i)

else

You can use the else statement in conjunction with the for and while loops to 
catch conditions that fail either of the loops. Notice that since the count variable 
equals 10 in the following example, the while loop does not execute. You should 
only see the two final print messages:

>>> # Python 3.5
>>> count = 10
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>>> while (count < 5):
>>>     print (count)
>>>     count = count + 1
>>> else:
>>>     print ("The count is greater than 5")
>>> print ("The loop has finished.")

Using Files
In this book, we will be using external files to both read and write. We will 
be using the file function, which takes the file location and then performs an 
operation. Table 1.9 shows the operations available.

An example we will be using later in this chapter is the following:

>>> # Python 2.7
>>> f=file('dictionary.txt', 'r')
>>> words = [word.strip() for word in f]
>>> f.close()
 
>>> # Python 3.5
>>> f = open('dictionary.txt', 'r')
>>> words = [word.strip() for word in f]
>>> f.close()

Table 1.9:  File Operations

OPERATOR DESCRIPTION

R Open text file for reading. The stream is positioned at the beginning of 
the file.

r+ Open for reading and writing. The stream is positioned at the beginning 
of the file.

W Truncate file to zero length or create text file for writing. The stream is 
positioned at the beginning of the file.

w+ Open for reading and writing. The file is created if it does not exist, 
otherwise it is truncated. The stream is positioned at the beginning of the 
file.

Append Open for writing/appending to the file. The file is created if it does not 
exist. The stream is positioned at the end of the file. Subsequent writes to 
the file will always end up at the current end of file.

a+ Open for reading and writing. The file is created if it does not exist. The 
stream is positioned at the end of the file. Subsequent writes to the file 
will always end up at the current end of file.
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Understanding Python Semantics
Assume you have assigned y an object. Examine the following:

x = y does not make a copy of the object y references.

x = y creates a reference to the object that y references.

This may be confusing but it is an important concept, so let’s look at an example:

>>> # Python 3.5
>>> a = [1, 2, 3]     # a is a reference to the list [1, 2, 3]
>>> b = a        # b now references a
>>> a.append(4)    # appends the number 4 to the list a references
>>> print (b)        # print what b references
[1, 2, 3, 4]

Why does this happen? When you type a command such as x = 3, an integer 
is created and stored in memory. A variable named x is created and references 
the memory location storing the value, which in this case is 3. When you say 
that the value of x is 3, what you are really saying is that x now refers to the 
integer 3 at a specific memory location. The data type that is created when you 
assign the reference to x is of type integer.

In Python, the data types include integer, float, and string (and tuple) and 
are immutable. You can change the value that is referenced by the memory 
location. Here is an example:

>>> # Python 3.5
>>> x = 4
>>> x = x + 1
>>> print x
5

In the preceding example, when you increment x, you are actually looking up 
the reference of the name x and the value that it references is retrieved. When you 
add 1 to the value, you are producing a new data element 5, which is assigned 
to a fresh memory location with a new reference. The name x is then changed 
to point to the new reference. The old data, which contained 4, is then garbage 
collected if no name refers to it.

Sequence Types

Python has a number of sequence types. These include str, Unicode, list, tuple, 
buffer, and xrange. You were previously introduced to string literals, so let’s 
examine the other ones. Unicode strings are similar to strings but are indicated 
in the syntax using a preceding “u” character: u'abc', u"def". Lists are assembled 
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with square brackets, separating list items with commas: [1, 2, 3]. Tuples are 
constructed with the comma operator (not within square brackets), with or 
without enclosing parentheses, but an empty tuple must have the enclosing 
parentheses, such as a, b, c or (). A single-item tuple must have a trailing 
comma, such as (d,). A tuple is a simple immutable ordered sequence of items 
that can be of mixed types. An immutable object is an object that often repre-
sents a single logical structure of data. Lists in Python are a mutable ordered 
sequence of list items that can be of mixed types as well. Mutable objects are 
those that allow their state (i.e., data that the variable holds) to change. In Python, 
only dictionaries and lists are mutable objects.

Buffer objects are not directly supported by Python syntax, but can be cre-
ated by calling the built-in function buffer(). They don’t support concatenation 
or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to cre-
ate them, but they are created using the xrange() function. They don’t support 
slicing, concatenation, or repetition, and using in, not in, min(), or max() on 
them is inefficient.

Most sequence types support the following operations. The in and not in 
operations have the same priorities as the comparison operations. The + and *  
operations have the same priority as the corresponding numeric operations:

■■ Tuples are defined using parentheses (and commas):

        >>> tu = (23, 'abc', 4.56, (2,3), 'def')

■■ Lists are defined using square brackets (and commas):

        >>> li = ["abc", 34, 4.34, 23]

■■ Strings are defined using quotes (", ', or """):

        >>> st = "Hello World"
        >>> st = 'Hello World'
        >>> st = """This is a multi-line
        string that uses triple quotes."""

You can access individual members of a tuple, list, or string using square 
bracket “array” notation. All of the objects are zero-based, which means that 
the first element in the group is in the zero position:

>>> tu = (23, 'abc', 4.56, (2,3), 'def')
>>> tu[1] # Second item in the tuple.
'abc'
>>> li = ["abc", 34, 4.34, 23]
>>> li[1] # Second item in the list.
34
>>> st = "Hello World"
>>> st[1] # Second character in string.
'e'



22	 Chapter 1 ■ Introduction to Cryptography and Python

One of the most interesting operations in Python that we will make use of is 
how the indices work. You can use both positive and negative indices to work 
with the element you need:

>>> t = (23, 'abc', 3.14, (2,3), 'def')

With a positive index, you count from the left, starting with 0:

>>> t[1]
'abc'

With a negative index, you count from the right, starting with –1. Examine the 
t assignment shown previously. You will notice that 3.14 is in the 3rd position 
on the right. Using the negative number, you are able to start with the right side 
and work your way left. Examine how the -3 works next:

>>> t[-3]
3.14

You can use a similar technique to parse a range of data:

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Return a copy of the container with a subset of the original members. Start 
copying at the first index, and stop copying before the second index:

>>> t[1:4]
('abc', 4.56, (2,3))

You can also use negative indices when slicing:

>>> t[1:-1]
('abc', 4.56, (2,3))

You can omit the first index to make a copy starting from the beginning of 
the container:

>>> t[:2]
(23, 'abc')

You can omit the second index to make a copy starting at the first index and 
going to the end of the container:

>>> t[2:]
(4.56, (2,3), 'def')

To make a copy of an entire sequence, you can use [:]:

>>> t[:]
(23, 'abc', 4.56, (2,3), 'def')
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Note the difference between these two lines for mutable sequences:

>>> list2 = list1      # 2 names refer to 1 ref
                       # Changing one affects both
>>> list2 = list1[:]   # Two independent copies, two refs

To examine the content within lists, you use the in operator. Some examples 
include the following:

■■ Boolean test whether a value is inside a container:

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False

■■ For strings, tests for substrings:

>>> a = 'abcde'
>>> 'c' in a
True
>>> 'cd' in a
True
>>> 'ac' in a
False

■■ Be careful: the in keyword is also used in the syntax of for loops and list 
comprehensions.

The + operator produces a new tuple, list, or string whose value is the con-
catenation of its arguments:

>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)
>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> "Hello" + " " + "World"
'Hello World'

The * operator produces a new tuple, list, or string that repeats the original 
content:

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> "Hello" * 3
'HelloHelloHello'
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We will now take another look at tuples. As stated previously, tuples are 
immutable, which means you cannot change them. You can only make a fresh 
tuple and assign its reference to a previously used name:

>>> t = (23, 'abc', 4.56, (2,3), 'def')
>>> t[2] = 3.14
 
Traceback (most recent call last):
File "<pyshell#75>", line 1, in -topleveltu[
2] = 3.14
TypeError: object doesn't support item assignment
 
>>> t = (23, 'abc', 3.14, (2,3), 'def')

Lists, on the other hand, are mutable; this means we can change the lists 
without having to reassign them. The variable will continue to point to the same 
memory reference when the assignment is complete. The downside is that lists 
are not as fast as tuples:

>>> li = ['abc', 23, 4.34, 23]
>>> li[1] = 45
>>> li
['abc', 45, 4.34, 23]

The following examples are operations that only apply to list objects:

>>> li = [1, 11, 3, 4, 5]
>>> li.append('a') # Our first exposure to method syntax
>>> li
[1, 11, 3, 4, 5, 'a']
>>> li.insert(2, 'i')
>>>li
[1, 11, 'i', 3, 4, 5, 'a']

Python has an extend() method that operates on lists in place; this operation 
is different than the plus (+) operator, which creates a fresh list with a new 
memory reference.

>>> li.extend([9, 8, 7])
>>>li
[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7]

You may find this a bit confusing as the extend() method takes a list as an 
argument, whereas the append() method takes a singleton as an argument:

>>> li.append([10, 11, 12])
>>> li
[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7, [10, 11, 12]]
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Additionally, Python list objects can also use the index(), count(), remove(), 
reverse(), and sort() methods as shown here:

>>> li = ['a', 'b', 'c', 'b']
>>> li.index('b') # index of first occurrence
1
>>> li.count('b') # number of occurrences
2
>>> li.remove('b') # remove first occurrence
>>> li
['a', 'c', 'b']
 
>>> li = [5, 2, 6, 8]
>>> li.reverse() # reverse the list *in place*
>>> li
[8, 6, 2, 5]
>>> li.sort() # sort the list *in place*
>>> li
[2, 5, 6, 8]
>>> li.sort(some_function) # sort in place using user-defined comparison

One thing to keep in mind when you are debating between using tuples 
versus lists is that the list objects are slower but are more powerful than tuples. 
Lists can be modified and have many operations that can be used on them. You 
can convert between tuples and lists by using the list() and tuple() functions, 
as shown here:

li = list(tu)
tu = tuple(li)

Dictionaries provide a way to store a mapping between a set of keys and a set 
of values. The keys can be any immutable type, whereas the values can be any 
type. A single dictionary can store a range of different types and allow you to 
define, modify, view, look up, and delete a key-value pair within the dictionary. 
Here is an example of a dictionary:

>>> d = {'user':'bozo', 'pswd':1234}
>>> d['user']
'bozo'
>>> d['pswd']
1234
>>> d['bozo']
Traceback (innermost last):
File '<interactive input>' line 1, in ?
KeyError: bozo
>>> d = {'user':'bozo', 'pswd':1234}
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>>> d['user'] = 'clown'
>>> d
{'user':'clown', 'pswd':1234}
>>> d['id'] = 45
>>> d
{'user':'clown', 'id':45, 'pswd':1234}
 
>>> d = {'user':'bozo', 'p':1234, 'i':34}
>>> del d['user'] # Remove one.
>>> d
{'p':1234, 'i':34}
>>> d.clear() # Remove all.
>>> d
{}
>>> d = {'user':'bozo', 'p':1234, 'i':34}
>>> d.keys() # List of keys.
['user', 'p', 'i']
>>> d.values() # List of values.
['bozo', 1234, 34]
>>> d.items() # List of item tuples.
[('user','bozo'), ('p',1234), ('i',34)]
Introducing Python Functions

Introducing Custom Functions
Now that you understand strings, let’s examine reusable code. In Python, you cre-
ate a new function and assign it a name by using the def keyword. All functions 
in Python return results to the calling statement. Arguments are passed by 
assignment, and arguments and return types are not declared. When you pass 
arguments to a function, the values are assigned to locally scoped names. The 
assignment to argument names will not affect the caller since they are passed 
by assignment and not by reference. You will, however, affect the caller if you 
change a mutable argument.

Create a new file in your editor of choice and type the following:

def myEnc(plaintext, key):
    return "ciphertext"

Save the file as MyFunctions.py. In the command line, type MyFunctions.py. 
You should notice that nothing happens. Now type the following:

myEnc('hello','secret key')

The output should be ciphertext.
The script you created is an example of a function. The def keyword is used 

to define the function; as you might have guessed, myEnc is the name of the 
function. It takes two parameters or inputs and returns an output. We use 
functions to build logic we intend to use multiple times. The benefit of using 
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functions is that if you decide you need to change the script, you can change it 
in one place and not have to search for other areas in which you performed the 
same logic. This will help in both troubleshooting and code maintenance. We 
will be using functions quite a bit throughout this book.

In Python, you can declare some arguments as optional. Examine the fol-
lowing segment of code, paying attention to the third and fourth arguments:

def func(a, b, c=10, d=100):
! print (a, b, c, d)
>>> func(1,2)
1 2 10 100
>>> func(1,2,3,4)
1,2,3,4 

Something to watch out for is that all functions have a return value even if 
you do not provide a return line inside the code. Functions that do not provide 
a return line will return the special value of None. Note also that, unlike other 
languages, Python does not provide a way to overload a method, so you are not 
allowed to have two different functions with the same name and a different 
list of arguments. Some benefits to functions include that they can be used as 
arguments to functions, return values of functions, and be assigned to variables, 
and may contain parts of tuples, lists, and other objects.

Downloading Files Using Python
You can download files and content in Python in a number of ways. One of the 
preferred ways in Python 3 is to use the requests module. The get method of 
the requests module is used to download the file contents in binary format. You 
can then use the open method to open a file on your system. Here’s an example 
of downloading files using the requests module:

>>> import requests
>>> print('Beginning file download with requests')
>>> url = 'https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/secret.txt'
>>> r = requests.get(url)
>>>
>>> # Windows Path - C:\Users\ShannonBray\Downloads\
>>> with open('/Users/ShannonBray/Downloads/secrets.txt', 'wb') as f:
>>>    f.write(r.content)
>>>
>>> # Retrieve HTTP meta-data
>>> print(r.status_code)
>>> print(r.headers['content-type'])
>>> print(r.encoding)
>>>
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>>> url = 'https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/dictionary.txt'
>>> r = requests.get(url)
>>> with open('/Users/ShannonBray/Downloads/dictionary.txt', 'wb') as f:
>>>    f.write(r.content)
>>>
>>> # Retrieve HTTP meta-data
>>> print(r.status_code)
>>> print(r.headers['content-type'])
>>> print(r.encoding)

In this script, the open method is used once again to write binary data to 
a local file. If you execute the script and go to your Downloads directory, you 
should see your newly downloaded text file named secrets.txt.

Utilizing the requests module, you can also easily retrieve relevant metadata 
about your request, including the status code, headers, and much more. In the 
preceding script, you can see how we access some of this metadata.

You can also elect to use the curl bash command, such as in the following 
example:

curl -O https://raw.githubusercontent.com/noidentity29/AppliedCryptoPython/ 
master/secret.txt
curl -O https://raw.githubusercontent.com/noidentity29/AppliedCryptoPython/ 
master/dictionary.txt

Introducing Python Modules
Python modules are special packages that extend the language. You saw your 
first module when you used the import math call shown previously. You can 
examine the modules that are loaded by typing dir(). As shown with the math 
module, when a module is preinstalled, we can use the import command to 
upload it. To examine the modules that are preinstalled on your system, type 
the following:

>>> help()
help> modules
help> modules hashlib
q

The hashlib is a built-in module that is preinstalled that will allow you to 
run hash functions. We will discuss hashing in detail throughout this book, but 
for now, we will explore the use of hashlib as a module. Type import hashlib, 
then in the terminal type hashlib. (enter the dot after hashlib), and press the 
Tab key. You should see a list of methods, as shown in Figure 1.4. You can explore 
these methods by typing the module and method followed by a question mark, 
such as hashlib.sha256?.
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Now that you understand the importance of Python modules, let’s import 
the hashlib library and then use the MD5 and SHA message digests. Type the 
following in Python:

>>> import hashlib
>>> hashlib.md5('hello world'.encode()).hexdigest()
'5eb63bbbe01eeed093cb22bb8f5acdc3'
>>> hashlib.sha512('hello world'.encode()).hexdigest()
'309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f 
989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f'

	 N OT E     Python 3 and higher require that Unicode objects be encoded before they 

are hashed.

Creating a Reverse Cipher

For this next exercise, we build on what we have learned in this chapter by cre-
ating a function named reverseCipher that accepts one parameter: plaintext. 
We can then call our function and pass the plaintext into it and print out the 
return ciphertext. Our method modifies the plaintext so that the ciphertext is 
the complete reverse:

def reverseCipher(plaintext):
    ciphertext = ''
    i = len(plaintext) - 1
    while i >= 0:
        ciphertext = ciphertext + plaintext[i]
        i = i - 1
    return ciphertext
plaintext = 'If you want to keep a secret, you must also hide it from 
yourself.'
ciphertext = reverseCipher (plaintext)
print(ciphertext)

This code should produce the following result:

.flesruoy morf ti edih osla tsum uoy ,terces a peek ot tnaw uoy fI

Figure 1.4:  Module methods
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Summary

In this chapter, you were introduced to the use of cryptographic algorithms. 
Most of the functions that you will construct throughout the course of this book 
will follow the format of having functions to GEN (generate a key), ENC (encrypt 
plaintext to ciphertext), and DEC (decrypt ciphertext to plaintext). This chapter 
also offered a few options on building your Python. You also were given an 
overview of the Python concepts that you will need to know prior to taking on 
complicated applications. The chapter concluded with you writing your first 
cipher code that took plaintext and returned the reverse.
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Cryptography has been used since 1900 BC to ensure message secrecy. Up until 
the 1970s, the use of cryptography was primarily found in government and 
military applications; the use expanded to telecommunication and financial 
industries over the following decade. In today’s world, we find cryptography 
in cell phones, emails, web browsers, and bank cards. Over the next few years, 
we can expect cryptography to play a role in how we communicate with our 
refrigerators, cars, and other devices connected through the Internet of Things.

It is important to ensure the use of strong encryption of sensitive data and 
that we provide integrity and confidentiality of the data. In this chapter, we will 
look at the study of cryptology and its components and then dive into perfect 
secrecy. Claude Shannon, often regarded as the father of information theory, 
defined perfect secrecy for secret-key systems and showed that perfect secrecy 
exists. Basically, perfect secrecy is the idea that no matter how much ciphertext 
you have, it will not convey anything about the contents of the plaintext or key. 
It can be proved that any such scheme must use at least as much key material as 
there is plaintext to encrypt. In terms of probabilities, this means that the prob-
ability distribution of the possible plaintexts is independent of the ciphertext.

In this chapter, you will continue your journey into understanding the impor-
tance of message perfect secrecy. Specifically, you will do the following:

■■ Gain an understanding of cryptology and the various attack methods

■■ Explore key lengths and their importance for long-term security

Cryptographic Protocols 
and Perfect Secrecy

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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■■ Gain an understanding of the one-time pad

■■ Create message secrecy using the binary XOR operator

■■ Gain an understanding of cryptographic hashes

■■ Explore the basics of Claude Shannon’s theorem

■■ Explore the concepts of perfect forward secrecy

The Study of Cryptology

The term cryptology, which was first used in 1844, means the study of codes and 
the practice or art of writing or solving them. The word originates from the 
Greek words kryptós, meaning “hidden secret”; graphein, meaning “to write”; and 
logia, meaning “to study.” It has become a much-researched field that focuses 
on techniques for securing communications from eavesdroppers.

Cryptology’s focus is in the construction and analysis of protocols that  
prevent any person or system from decrypting messages without authorization. 
Cryptology helps ensure the core tenets of cybersecurity by providing confiden-
tiality, integrity, authentication, and nonrepudiation. We will explore how we 
use cryptology for each of these using Python as we move through this book. 
For now, the important takeaway is that the study of cryptology is broken down 
into two fields: cryptography and cryptanalysis.

Understanding Cryptography
Specifically, cryptography is the science of secret writing with the goal of hid-
ing the meaning of the message. Cryptography is further broken down into 
cryptographic protocols, symmetric algorithms, and asymmetric (or public-key) 
algorithms.

Cryptographic protocols, also known as security or encryption protocols, 
consist of a well-defined series of steps and message exchanges between several 
entities in order to achieve a specific security objective. Cryptographic protocols 
should encapsulate a number of properties in order to be viable:

■■ The protocol must be known by each party involved, and each party must 
know the well-defined steps to follow in advance of the protocol’s use.

■■ The protocol must be unambiguous; every step is well-defined and easy 
to understand.

■■ The protocol must be followed by each party involved.

■■ The protocol must also be complete.

■■ The protocol must not give away any details about the message.
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Cryptographic protocols are used in secure application-level data transport 
such as Transport Layer Security (TLS), which is used to secure HTTPS web 
connections. Another protocol that we will explore later in the chapter is the 
Diffie-Hellman key exchange, which is also used by TLS in its secure com-
munications. Other applications include secret splitting, secret sharing, time-
stamping, key escrow, zero-knowledge proofs, blind signatures, electronic money, 
and securing elections. The data integrity of the message exchange process is 
a critical aspect of the selected protocols; data integrity is a building block for 
cryptographic protocols.

Cryptography’s Famous Family: Alice and Bob

Alice and Bob are the world’s most famous cryptographic couple; you will see 
references to the dynamic couple through a wide variety of examples inside 
this book (see Figure 2.1). Since their inception in 1978, Alice and Bob have at 
once been called “inseparable” and been subject of numerous travels, torments, 
and even divorces. In the ensuing years, other characters have joined their 
cryptographic family. There’s Eve, the passive and submissive eavesdropper; 
Mallory, the malicious attacker; and Trent, trusted by all, just to name a few. 
Alice and Bob, along with their extended family, were first used to explain how  
cryptography works but now have become widely used across engineering and 
scientific domains. Alice and Bob have become an archetype of digital exchange 
and a lens through which to view broader digital culture.

EVE

FILE ENCRYPT

SOURCE

ALICE
BOB’S

PUBLIC KEY

DECRYPT FILE

DESTINATION

ALICE’S
PUBLIC KEY BOB

Figure 2.1:  Alice and Bob



34	 Chapter 2 ■ Cryptographic Protocols and Perfect Secrecy

Alice and Bob are fictional characters originally invented to make research in 
cryptology easier to understand. In a now-famous paper (“A method for obtain-
ing digital signatures and public key cryptosystems”), authors Ron Rivest, Adi 
Shamir, and Leonard Adleman described exchanges between a sender and 
receiver of information as follows: “For our scenarios we suppose that A and B 
(also known as Alice and Bob) are two users of a public key cryptosystem.” In 
that instant, Alice and Bob were born.

Diffie-Hellman

One of the most critical aspects of cryptography is safely exchanging secret 
keys without being compromised. During the 1960s, key exchange was cost-
ing the government, banks, and big businesses a fortune as they exchanged 
keys using heavily guarded couriers who traveled around in person to deliver 
cryptographic keys. Fortunately, the Diffie-Hellman protocol was introduced 
to handle the growing issues with key exchange.

As with any other protocol that only covers key exchange, the Diffie-Hellman 
protocol does not perform any authentication. Therefore, neither Alice nor Bob 
knows with whom they are exchanging the message after the protocol is run. 
The Diffie-Hellman exchange cannot guarantee the privacy of a communi-
cation following the exchange; it has to be combined with an authentication 
mechanism. The protocol design does offer an advantage, however; it allows 
the protocol to guarantee the property of perfect forward secrecy (PFS), which 
protects the message from a compromise of any data that has been protected 
with other keys prior to the compromise.

To explain further, imagine that Alice and Bob both sign the data exchanged 
to compute the shared key (SK) with their private keys. Even if one of the private 
keys is compromised in the future, it will not allow a third party to decrypt 
the data that has been protected with the SK. Authentication can be broken 
down into two security service categories: data origin authentication and entity 
authentication.

Data Origin Authentication

Data origin authentication, also known as data integrity, is the security ser-
vice that enables entities to verify that a message has been originated by a 
particular entity and that it has not been altered after the message was created. 
One approach can be conjectured by assuming that everyone knows Alice’s 
public key, and that Alice can ensure data integrity of her messages by using 
her private key to encrypt them. Additionally, Alice can compute a modifica-
tion digest code (MDC) over her message and append the MDC encrypted with 
her private key to the message. MDC is an encryption algorithm that produces  
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a one-way cryptographic function. With message integrity being critical to mes-
sage security, cryptographic protocols often provide data origin authentication 
services as a building block of the protocols.

Entity Authentication

Entity authentication is a security service that is used between peer entities 
to verify the identity of each party involved. Each application that contains 
sensitive information should be built around entity authentication and verify 
the entity; authentication is typically performed using various means, such as:

■■ Something you know (e.g., passwords)

■■ Something you have (e.g., physical keys, cards, or tokens)

■■ Something you are (e.g., biometric properties such as fingerprint or retinal 
scans)

■■ Someplace you are (e.g., geolocation)

Entity authentication is more than an exchange of messages. It must also pro-
vide timeliness. One cannot guarantee that any party involved in the message 
exchange is actively participating at the specific moment the message is received. 
Most authentication protocols establish a secret session key for security of the 
session following the authentication exchange. Two main categories of protocols 
are used for entity authentication:

■■ Arbitrated authentication: A trusted third party (TTP), also known as 
an arbiter, is directly involved in every authentication exchange. The pri-
mary advantage is that it allows two parties (Alice and Bob) to authenticate 
to each other without knowing any pre-established secret. Even if Alice 
and Bob do not know each other, the same cryptographic key can be used. 
This type of key is known as a symmetric key. One disadvantage of arbi-
trated authentication is that the TTP can become a bottleneck to the pro-
cess, therefore violating the availability of the CIA Triad. Another 
disadvantage is that the TTP can monitor all authentication activity.

■■ Direct authentication: Alice and Bob directly authenticate to each other. 
The primary advantage is that no online participation of a third party is 
required; therefore, the two drawbacks mentioned in arbitrated authen-
tication do not apply. The major drawback is that it requires asymmetric 
cryptography or pre-established secret keys.

	 N OT E     The CIA Triad is the implementation of confidentiality, integrity, and avail-
ability, which are important aspects to how we view the security of our solutions. 
The security model is designed to guide policies for information within our systems, 
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solutions, and applications. You may also see the model referred to as the AIC Triad 
(availability, integrity, and confidentiality) to avoid confusion with the United States 
Central Intelligence Agency. The three elements of the triad are considered the most 
crucial components of security, although you may see other elements introduced. The 
CIA Triad, in this context, defines confidentiality as a set of rules that limit who has 
access to information, integrity as the assurance that the information is accurate and 
trustworthy, and availability as the guarantee that the data can be reliably accessed 
when needed by authorized personnel or systems.

Symmetric Algorithms

Symmetric algorithms are the simplest and fastest way to encrypt and decrypt 
messages. They typically involve two parties, with each member having an 
identical key. As a memory mnemonic, think of the “S” in symmetric as the 
word same.

We will be diving into many of the symmetric key algorithms such as DES, 
3DES, IDEA, Blowfish, Skipjack, and AES in Chapter 6, but we mention them 
now to help prepare you for our discussion on historical ciphers later in this 
chapter. Other examples of symmetric algorithms include IPSec, Kerberos, and 
Point to Point.

Asymmetric Algorithms

Asymmetric algorithms are more complex and typically slower. In fact, many 
systems use asymmetric algorithms simply to swap symmetric keys and then 
use symmetric algorithms for the rest of the encryption operation. The key point 
to take away for now is that the asymmetric algorithm requires the use of two 
different keys: one public and one private. Messages that are encrypted with 
one key can only be decrypted with the other. This offers many advantages, 
such as nonrepudiation and the use of digital certificates.

We will explore asymmetric algorithms and the use of public and private keys 
using Python in Chapter 7. An example of an asymmetric encryption algorithm 
is ElGamal, which is used in OpenPGP. Other examples include Elliptic curve 
cryptography, RSA, Diffie-Hellman key exchange, and DSA.

The Needham-Schroeder Protocols

In 1978, Roger Needham and Michael Schroeder invented two protocols. The first 
is their symmetric key protocol, which later formed the basis for the Kerberos 
protocol invented by MIT. This protocol aims to establish a session key between 
two parties on a network to protect communications.

The second protocol was their public-key protocol, which is based on public-
key cryptography. The goal of the second Needham-Schroeder protocol is to 



	 Chapter 2 ■ Cryptographic Protocols and Perfect Secrecy	 37

establish mutual authentication between two parties, A and B; the protocol 
assumes that an adversary may intercept, delay, read, copy, or forge the mes-
sage in transit. The protocol also assumes that each party (Alice and Bob) has 
received secret keys from a trusted third party (TTP). The protocol uses shared 
keys for both the encryption and decryption process.

Use Table 2.1 to analyze the following exchange:

Let us assume that Alice needs to send a communication to Bob. Alice will 
need to generate a random number RA and send a message to the TTP: 
A➔ TTP(A, B, rA)

The TTP generates a session key KA,B for secure communications between Alice 
and Bob and responds to Alice: TTP ➔ A: {rA , B, KA,B, {KA,B, A}KB, TTP}KA, TTP

Alice decrypts the message and extracts KA,B. She confirms that rA is identical 
to the number generated by her in the first step; this informs her that the 
reply from the TTP is fresh.

Alice sends the message to Bob: A➔B: {KA,B, A}KB, TTP

Bob decrypts the message and obtains KA,B. He then generates a random 
number rB and replies to Alice: B ➔ A: {rB} KA,B

Alice decrypts the message and verifies that it contains rB-1.

Table 2.1:  Notation of Cryptographic Protocols

NOTATION MEANING

A Name of A, analogous to B, E, TTP, CA

CA‑
A The certification authority for A

RA A random value chosen by A

tA The timestamp generated by A

(m1, . . . ,mn) The concatenation of messages m1, . . . , mn

A ➔ B: m A sends message m to B

KA,B The secret key, only known to A and B

+KA The public key of A

-KA The private key of A

{m}K The message m encrypted with the key K, synonym for E(K, m)

H(m) Modification detection code (MDC) over message m, computed with 
function H

A[m] Shorthand notation for (m, {H(m)}–KA

Cert -CK CA(+KA) The certification authority certificate for public key +KA of A, signed with 
the private certification key -CKCA

CA<<A>> Shorthand notation for Cert -CK CA(+KA)
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The protocol exchanges rB and rB-1 in an effort to ensure that an attacker, 
Eve, cannot impersonate Bob by replaying messages from Alice. However, as 
old session keys KA,B remain valid, Eve may manage to get to a known session 
key KA,B and impersonate Alice:

E ➔ B: {KA,B, A}KB, TTP

B ➔ A: {rB}K(A, B) *Eve has to intercept this message

E ➔ B: {rB-1}K(A, B)

In short, even if Eve does not know KA,TTP or KB, TTP, she can impersonate Alice.

The Otway-Rees Protocol

The Needham and Schroeder public-key solution has a number of similarities 
to a protocol proposed by Otway and Rees. Use Table 2.1 to analyze the follow-
ing exchange:

Alice generates a message containing an index number iA, her name (A), and 
Bob’s name (B), plus an additional random number RA encrypted with the 
key KA, TTP she shares with the TTP, and sends the following message to Bob:

A➔B: (iA, A, B, {rA, iA, A, B}K(A,TTP) ) 

Bob generates a random number, rB, and uses it to encrypt iA, A, and B using 
the key KB, TTP. Bob shares the message with the TTP:

B ➔ TTP(iA, A, B, {rA, iA, A, B}K(A,TTP) , {rB, iA, A, B}K(B,TTP) ) 

The TTP generates a new session key KA,B and creates two encrypted mes-
sages, one for Alice and one for Bob. The TTP sends them both to Bob:

TTP ➔ B: (iA, {rA, KA,B}KA,TTP , {rB, KA,B}K(B,TTP) )

Bob then decrypts his part of the message and verifies RB. Bob sends part of 
the message to Alice:

B ➔ A: (iA, {rA, KA,B}K(A, TTP))

Alice decrypts the message and checks iA and RA to verify that they have not 
been modified since the message exchange started. If they have not changed, 
she can be sure that the TTP has sent her a fresh session key KA,B for commu-
nications with Bob. If she uses the key in an encrypted communication with 
Bob, she can be sure of his authenticity.

A benefit of the Otway-Rees protocol is that the index number, iA, further 
protects against replay attacks. However, this requires that the TTP checks if 
iA is bigger than the last iA he received from Alice. The TTP will generate the 
two messages if both parts of the message contain the same index number iA 
and names A, B. If both are true, then Alice and Bob can be sure that they have 
authenticated to the TTP during the encrypted communication.
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Kerberos

Kerberos, an open-source security protocol developed by MIT in the late 1980s, is 
an authentication and access control service for workstation clustering. Its design 
goals include security, reliability, transparency, and scalability. The underlying 
cryptographic primitive of Kerberos is symmetric encryption; Kerberos V4 uses 
DES, while V5 allows for other algorithms.

Assume that Alice wants to access one or more different services that are 
provided by different servers: Server 1, Server 2, etc. Each server is connected 
over an insecure network. The Kerberos protocol will handle the authentication, 
access control, and key exchange:

■■ Authentication: Alice will authenticate to an authentication server, which 
will provide a temporary permit to demand access for services. The permit 
is called a Ticket-Granting ticket (TicketTGS); the ticket can be thought of 
like a temporary passport.

■■ Access Control: Alice is able to present her ticket (TicketTGS) to a Ticket 
Granting Server (TGS) to obtain access for a service provided by a specific 
server; in this example, we will call it Server 1. The TGS decides if the 
access will be permitted and answers Alice with a ticket for Server 1, 
TicketS1.

■■ Key Exchange: The authentication server provides a session key for com-
munication between Alice and the TGS; the TGS will provide a session 
key for communication between Alice and Server 1. The session key also 
serves Alice for authentication purposes.

Alice begins the process by logging in to her workstation and requests access 
to a service. The first message is sent to the authentication server AS, contain-
ing her name, the name of the appropriate Ticket Granting Server TGS, and a 
timestamp tA:

A ➔ AS: (A, TGS, tA)

The authentication server verifies that Alice may authenticate to access ser-
vices, generates the key KA out of Alice’s password (which is known to the 
AS), extracts the workstation address AddrA from the request, creates a Ticket 
Granting Ticket TicketTGS and a session key KA, TGS, and sends the following 
message to Alice:

AS ➔ A: {KA, TGS, TGS, tAS, LifetimeTicketTGS, TicketTGS}KA with TicketTGS = {KA, 

TGS, A, AddrA, TGS, tAS, LifetimeTicketTGS}KAS, TGS

Once the workstation receives the message, it will ask Alice to type in her 
password. The workstation will compute the key KA and use this key to decrypt 
the message. If Alice does not provide her correct password, the extracted values 
will be garbage and the rest of the protocol will fail.
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Alice creates an authenticator and sends it together with the Ticket Granting 
Ticket and the name of the server to TGS:

A ➔ TGS: (S1, TicketTGS, AuthenticatorA, TGS) with AuthenticatorA, TGS = {A, 
AddrA, t̀ A}KA, TGS

Once the TGS receives the message, it will decrypt TicketTGS, extract the key 
KA, TGS from the message, and use the key to decrypt AuthenticatorA, TGS. If the 
name, ticket, and address of the authenticator matches, the TGS will ensure  
the timestamp is still valid, check if Alice may access the service S1, and  
create the following message:

TGS ➔ A: {KA, S1}, S1, tTGS, LifetimeTicketS1}KA, TGS with TicketS1 = {KA, S1, A, 
AddrA, S1, tTGS, LifetimeTicketS1}KTGS, S1

Alice decrypts the message and holds a session key for secure communica-
tion between her and S1. She sends a message to S1 to show her ticket and a 
new authenticator:

A➔ S1: (TicketS1, AuthenticatorA, S1) with AuthenticatorA,S1 = {A, AddrA, t̀ À}KA, S1

Once the ticket from Alice is received by Server 1, the server decrypts the 
ticket with the key KTGS, S1 and shares with TGS the session key KA, S1 for secure 
communication with A. Using the obtained key, the S1 checks the authenticator 
and responds to A:

S1➔ A: {t̀ À + 1}KA, S1

Alice is able to verify that she is communicating with S1 and only S1 and the 
TGS knows the key KTGS, S1 to decrypt TicketS1, which contains the session key 
KA, S1 and so only S1 is able to decrypt AuthenticatorA, S1 and to answer with 
t̀ À+1 encrypted with KA, S1.

Multiple-Domain Kerberos

In many environments, an organization may be required to establish secure 
communications with a service that is located inside another domain. If both 
locations use their own Kerberos servers and user databases, then there are in 
fact two different domains; in this context, we will refer to them as realms to 
keep consistent with Kerberos terminology.

In an effort to avoid user duplication in both domains, Kerberos allows you 
to perform an inter-realm authentication. Inter-realm authentication requires 
that the Ticket Granting Servers of both domains share a secret key KTGS1, TGS2. 
The basic concept that is presented is that the TGS service of another realm 
(domain) can be viewed as a normal server for which the TGS of the local realm 
can hand out a ticket.
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After obtaining the ticket from the remote realm, Alice requests a service 
granting ticket from the remote TGS. This sets up a dependency that the remote 
realm must trust the Kerberos authentication service of the home domain of a 
“visiting” user. Scalability becomes a problem as n realms require n × (n – 1) / 
2 secret keys. The message exchange in a multiple domain protocol run would 
look as follows:

A ➔ AS1: (A, TGS1, tA)

AS1 ➔ A: {KA, TGS1, TGS1, tAS, LifetimeTicketTGS1, TicketTGS1}KA with TicketTGS1 
= {KA, TGS1, A, AddrA, TGS1, tAS, LifetimeTicket TGS1}KAS, TGS1

A ➔ TGS1: (TGS2, TicketTGS1, AuthenticatorA, TGS1) with AuthenticatorA, TGS1 
= {}A, AddrA, t̀ A}KA, TGS1

TGS1 ➔ A:{KA, TGS2, TGS2, tTGS1, TicketTGS2}KA, TGS1 with TicketTGS2 = {KA, TGS2,A, 
AddrA, TGS2, tTGS1, LifetimeTicketTGS2} KTGS1, TGS2

A ➔ TGS2: (S2, TicketTGS2, AuthenticatorA, TGS2) with AuthenticatorA, TGS2 = 
{A, AddrA, t̀ À}KA,TGS2

TGS2 ➔ A: {KA,S2, S2, tTGS2, TicketS2}KA,TGS2 with TicketS2 = {KA,S2, A, AddrA, 
S2, tTGS2, LifetimeTicketS2}KTGS2,S1

A ➔ S2: (TicketS2, AuthenticatorA,S2) with AuthenticatorA,S2 = {A, AddrA, t̀ `̀A}KA,S2

S1 ➔ A: {t̀ `̀ A + 1}KA,S1

X.509

X.509 is an international recommendation of ITU-T and is part of the X.500-
series defining directory services. It is the standard that defines the format of the 
public-key certificate. The X.509 certificates are used in many internet protocols 
that include TLS/SSL. The X.509 certificates are also used in offline applications 
such as electronic signatures. The certificate contains a public key and an iden-
tity (server name, host name, organization, or individual) and is either signed 
by a certificate authority (CA) or self-signed using an internal process.

The first version of X.509 was standardized in 1988. The second version, which 
resolved several security concerns, was standardized in 1993. The third version 
was drafted in 1995. When a certificate is signed by a trusted CA or validated 
by other processes, someone holding the certificate can be assured that the 
public key can establish a secure communication session with another party or 
validate documents that are digitally signed by the corresponding private key.

X.509 defines a framework for the provisioning of authentication services 
that comprise the certification of public keys and certificate holding and three 
different dialogues for direct authentication. The certification of public keys 
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and certificate handling include processes that define the certificate format, the 
certificate hierarchy, and the certificate revocation lists. The three dialogues that 
are provided for direct authentication include:

■■ One-way authentication: Requires synchronized clocks

■■ Two-way mutual authentication: Also requires synchronized clocks

■■ Three-way mutual authentication: Based on random numbers

	 N OT E     Clock synchronization on a network is important to a number of technol-
ogies, including Kerberos and X.509 certificates. The maximum tolerance for com-
puter clocks should be 5 minutes. This helps limit that amount of time that a replay 
attack can happen. The most common way to synchronize clocks automatically is to 
use the Network Time Protocol (NTP). NTP is a hierarchical protocol. The source clock 
is called Stratum 1. Clocks that synchronize from the original source are called Stratum 
2. Clocks that synchronize from Stratum 2 are called Stratum 3, and so on.

Public-Key Certificates

Public-key certificates essentially act as a passport that certifies that a public-key 
belongs to a specific name or organization. Certificates are issued by certificate 
authorities, more commonly known as CAs. One of the properties of using 
public-key certificates is that they allow all users to know without question 
that the public-key of the CA can be checked by each user. In addition, certifi-
cates do not require the online participation of a TTP. One thing that you must 
remember is that the security of the private key is crucial to the security of all 
users. The following represents the notation of a certificate binding a public key 
+KA to user A issued by a certificate authority CA using its private key -CKCA:

Cert-CKCA(+KA) = CA[V, SN, AI, CA, TCA, A, +KA] where:
V = version number
SN = serial number
AI = algorithm identifier of signature algorithm used
CA = name of certification authority
TCA = period of validity of this certificate
A = name to which the public key in this certificate is bound
+KA = public to be bound to a name

Certificate Chains and Certificate Hierarchy

Consider communication between our two users: Alice and Bob. Each user lives 
geographically apart. Each user may have public keys from different CAs. For 
simplicity, designate Alice’s certificate authority as CAA and Bob’s certificate 
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authority as CAB. If Alice does not know or trust CAB, then Bob’s certificate is 
useless to her; the same will hold true for Bob and his knowledge or trust of 
Alice’s CAA. In order to provide a solution to this issue, you can construct a 
certificate chain. If CAA certifies CAB with a certificate CAA<<CAB>> and CAB 
certifies CAA’s public key with a certificate CAB<<CAA>>, then both Alice and 
Bob can check their certificates by checking a certificate chain. Assume Alice 
is presented with CAB<<Bob>> and attempts to look up if there is a certificate 
CAA<<CAB>>. She checks the chain: CAA<<CAB>>, CAB<<Bob>>. Certificate 
chains are not limited to just the two certificates.

You can use Python to create X.509 certificates. The following code will gen-
erate two certificates: rsakey.pem and csr.pen. The rsakey.pem is a private key 
that is encrypted using the super-secret password Ilik32Cod3 and will then use 
the private key to generate a public key. We then generate a certificate signing 
request (CSR) using a number of custom attributes. Feel free to change these 
up as they will not affect the example.

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography import x509
from cryptography.x509.oid import NameOID
from cryptography.hazmat.primitives import hashes
#Generate Key (RSA,DSA,EC)
encryptedpass = b"Ilik32Cod3"
key = rsa.generate_private_key(
public_exponent=65537,
key_size=2048,
backend=default_backend()
)
with open("rsakey.pem", "wb") as f:
    f.write(key.private_bytes(
    encoding=serialization.Encoding.PEM,
    format=serialization.PrivateFormat.TraditionalOpenSSL,
    encryption_algorithm=serialization.BestAvailableEncryption(encrypted
pass),
))
# Generate CSR
csr = x509.CertificateSigningRequestBuilder().subject_name(x509.Name([
x509.NameAttribute(NameOID.COUNTRY_NAME, u"US"),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, u"NC"),
x509.NameAttribute(NameOID.LOCALITY_NAME, u"Raleigh"),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, u"Python Cryptography"),
x509.NameAttribute(NameOID.COMMON_NAME, u"shannonbray.us"),
])).add_extension(
x509.SubjectAlternativeName([
x509.DNSName(u"shannonbray.us"),
]),
critical=False,
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# Sign the CSR with our private key.
).sign(key, hashes.SHA256(), default_backend())
with open("csr.pem", "wb") as f:
    f.write(csr.public_bytes(serialization.Encoding.PEM))
print('Operateion Completed.')

Certificate Revocation

If we continue to examine the situation presented, you can see that communi-
cations between Alice and Bob rely on the trust of the certificate authority and 
each party must keep their private key secure. Should one of their keys become 
compromised, the certificate needs to be nullified or revoked. If Alice’s key was 
compromised in an attack, the attacker (Trent) can continue to impersonate 
Alice up to the end of the certificate’s validity period. If Alice detects the com-
promise, she can ask for revocation of the corresponding public-key certificate. 
Certificate revocation is performed by maintaining a list of compromised cer-
tificates; these lists are known as certificate revocation lists, or CRLs. CRLs are 
stored in the X.500 directory; when a user or process is checking a certificate, 
it must not only confirm that the certificate exists but also make sure the cer-
tificate is not on a CRL. The certificate revocation process is quite slow and can 
be costly and ineffective.

If you’ve used the previous example to generate a key, you will be able to 
load it using the following code. Examine the use of load_pem_private_key(), 
as shown here:

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography import x509
from cryptography.x509.oid import NameOID
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.serialization import load_pem_
private_key
encryptedpass = b"Ilik32Cod3"
key = load_pem_private_key(open('rsakey.pem', 'rb').read(),encryptedpass, 
default_backend())
# Generate CSR
csr = x509.CertificateSigningRequestBuilder().subject_name(x509.Name([
x509.NameAttribute(NameOID.COUNTRY_NAME, u"US"),
x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, u"CA"),
x509.NameAttribute(NameOID.LOCALITY_NAME, u"San Francisco"),
x509.NameAttribute(NameOID.ORGANIZATION_NAME, u"Python Cryptography"),
x509.NameAttribute(NameOID.COMMON_NAME, u"8gwifi.org"),
])).add_extension(
x509.SubjectAlternativeName([
x509.DNSName(u"mysite.com"),
]),
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critical=False,
# Sign the CSR with our private key.
).sign(key, hashes.SHA256(), default_backend())
with open("csr.pem", "wb") as f:
     f.write(csr.public_bytes(serialization.Encoding.PEM))

You can use the openssl command to view the CSR, as shown here:

$ openssl req -text -in csr.pem
 
Certificate Request: Data: Version: 0 (0x0) Subject: C=US, ST=CA, 
L=San Francisco, O=Python Cryptography, CN=8gwifi.org Subject Public 
Key Info: Public Key Algorithm: rsaEncryption RSA Public Key: (2048 
bit) Modulus (2048 bit): Encrypted RSA key generated with the code 
$ cat /tmp/rsakey.pem -----BEGIN RSA PRIVATE KEY----- Proc-Type: 
4,ENCRYPTED DEK-Info: AES-256-CBC,EA2EB61CCC7A2FFD9D83D9D103B74F69 
nuslMfQNj17cAdwCKWtWhcXCtOqpk6ii0SmxcuUgJWg5iUujN4p6LYHbWkalUTvi 
...... -----END RSA PRIVATE KEY----- Generated CSR in the PEM 
format $ cat /tmp/csr.pem -----BEGIN CERTIFICATE REQUEST----- 
MIIC0jCCAboCAQAwZTELMAkGA1UEBhMCVVMxCzAJBgNVBAgMAkNBMRYwFAYDVQQH 
DA1TYW4gRnJhbmNpc2NvMRwwGgYDVQQKDBNQeXRob24gQ3J5cHRvZ3JhcGh5MRMw 
EQYDVQQDDAo4Z3dpZmkub3JnMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKC 
..................... -----END CERTIFICATE REQUEST-----

Generating a Self-Signed Certificate

In cryptography and computer security, a self-signed certificate is an identity 
certificate that is signed by the same entity whose identity it certifies.

Examine the following Python code. In the example, you will create a self-
signed certificate named certificate.pem. When generating the self-signed 
certificates, the issuer and the signer are the same:

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa
from cryptography import x509
from cryptography.x509.oid import NameOID
from cryptography.hazmat.primitives import hashes
import datetime
 
# Generate Key (RSA,DSA,EC)
encryptedpass = b"Ilik32Cod3"
key = rsa.generate_private_key( public_exponent=65537, key_size=2048, 
backend=default_backend() )
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with open("rsakey.pem", "wb") as f:
    f.write(key.private_bytes( encoding=serialization.Encoding.PEM,
       format=serialization.PrivateFormat.TraditionalOpenSSL,
       encryption_algorithm=serialization.BestAvailableEncryption(encryp
tedpass), ))
 
# In Self Signed Certificate Issuer and Signer are Same
subject = issuer = x509.Name([ x509.NameAttribute(NameOID.COUNTRY_NAME, 
u"US"),
    x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME, u"NC"),
    x509.NameAttribute(NameOID.LOCALITY_NAME, u"Apex"),
    x509.NameAttribute(NameOID.ORGANIZATION_NAME, u"Python Cryptography"),
    x509.NameAttribute(NameOID.COMMON_NAME, u"shannonbray.us"), ])
 
cert = x509.CertificateBuilder().subject_name(
        subject
    ).issuer_name(
        issuer
    ).public_key(
        key.public_key()
    ).serial_number(
        x509.random_serial_number()
    ).not_valid_before(
        datetime.datetime.utcnow()
    ).not_valid_after(
        datetime.datetime.utcnow() + datetime.timedelta(days=10)
    ).add_extension(
        x509.SubjectAlternativeName([x509.DNSName(u"localhost")]), 
critical=False,
    ).sign(key, hashes.SHA256(), default_backend())
 
with open("certificate.pem", "wb") as f:
    f.write(cert.public_bytes(serialization.Encoding.PEM))

Formal Validation of Cryptographic Protocols

There are several formal validation methods for cryptographic protocols; these 
include expert system-based approaches, algebraic approaches, and special 
logic-based approaches:

■■ Expert system-based approaches: The knowledge of experts is formalized 
into deductive rules that can be used by a protocol designer to investigate 
different scenarios. The main drawback is that it is not well suited for 
finding flaws in cryptographic protocols that are based on unknown 
attacking techniques.

■■ Algebraic approaches: Cryptographic protocols are specified as algebraic 
systems. The analysis is generally conducted by examining algebraic 
term-rewriting properties of the model; the approaches then inspect if 
the model can attain certain wanted or undesirable states.
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■■ Specific logic-based approaches: These approaches define a set of pred-
icates and provide a mapping of messages exchanged during a protocol 
run into a set of formulas. A generic set of rules allows them to analyze 
the knowledge and understand that it is obtained by the peer entities of 
a cryptographic protocol during a protocol run.

Configuring Your First Cryptographic Library

You will create your own code in many areas of this book, but you will also learn 
about a number of Python libraries that will help you get an understanding 
of cryptography by using their code that is encapsulated in defined methods.

In this section, you will install the pyca/cryptography library. The cryptog-
raphy library includes both a high-level set of recipes and a low-level set of 
interfaces that will help with many cryptographic algorithms such as message 
digests, symmetric ciphers, and key derivation functions. You will need this 
library to examine the X.509 certificate code studied later in this chapter. You 
can install the cryptography library using pip. Type the following in your shell:

pip3 install cryptography

Understanding Cryptanalysis
Cryptanalysis is the study of restoring an encrypted message back to plaintext. 
Cryptanalysis is a critical aspect of cryptography as it helps ensure that current 
cryptography schemes are secure. We will be performing cryptanalysis on sev-
eral of the historical ciphers presented in this chapter to show how encryption 
schemes once thought secure are now breakable with just a little effort.

Brute-Force Attacks

In a brute-force attack, the advisory attempts to decrypt the ciphertext by using 
every possible key. If the key is small enough, a brute-force attack can be suc-
cessful in a matter of minutes. In fact, if the keys are around 222, we can write a 
Python script to crack the password utilizing brute force. For your estimation 
purposes, when it comes to brute-force attacks, the following helps you ballpark 
the amount of security you get for various size problems:

■■ A key space/message space of 264 is enough for a couple hours of 
security.

■■ A key space/message space of 2128 is enough for several decades of pre-
quantum security.

■■ A key space/message space of 2256 is enough for several decades of post-
quantum security.
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The following is an example of code that will generate a four-digit PIN and 
then loop through the iterations using brute force to determine the password:

import random
# generate a password
generated_password = str(random.randint(0,9999)) 
 
# check values 0 - 9999
for i in range(10000):
   Trial = str(i)  
   if Trial == generated_password:  
       print('Found password: ' + generated_password)

Side-Channel Attacks

A side-channel attack is performed when the advisory has awareness of the 
physical implementation of the code to leak information. This could be done 
by observing the power usage of the CPU during the encryption or decryption 
process, or examining the amount of shared memory consumption of processes 
in virtual machines that are encrypting or decrypting messages.

Social Engineering

Social engineering is a nontechnical attack that is often quite successful. It 
relies on exploiting people with human interactions and often involves tricking 
people into breaking normal security procedures. Some common social engi-
neering attacks include phishing, pretexting, baiting, quid pro quo, tailgating, 
or shoulder surfing.

Analytical Attacks

Analytical attacks in cryptography are attacks against the underlying encryp-
tion scheme to find weaknesses that can be exploited. This will be the corner-
stone of our examination of many of the historical ciphers introduced in the 
previous sections.

Frequency Analysis

Frequency analysis will be a critical aspect of our ability to break ciphers using 
Python. Frequency analysis is the study of the frequency with which letters or 
groups of letters appear in ciphertext. In examining the English language, the 
most common letters are E, T, A, and O. In addition to examining single letters, 
we also examine common pairs of letters, which are referred to as digraphs. 
Examples of digraphs in the English language include TH, ER, ON, and AN. 
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There are also letters that are often repeated, which include SS, EE, TT, and FF. 
In addition, the sum of the frequencies squared is always going to be near .065 
when the text has the same distribution as most English language text. So, if 
you check for that squared sum on the frequencies of characters in encrypted 
text, you’ll know if your text has been substituted in some way or another.

Attack Models

No matter what type of encryption you choose, encryption ciphers are functions 
that require you to enter a message along with a secret key to produce the cipher-
text. In symmetric encryption, each party uses the same key. In asymmetric 
encryption, one party uses a public key while the other uses a private key. The 
term message space is used to describe all possible messages that might have 
produced a specific ciphertext. The term key space is used to refer to all sets of 
possible permutations of a secret key. Finally, the term cipher space refers to all 
possible encrypted texts that were created. Typically, with cryptographic hashes 
the size of the cipher space is the number that matters the most for security; once 
the attacker can find a second input that matches the hash of a password, the 
identity of the account is compromised. When analyzing a brute-force attack, 
you need to estimate the number of inputs that have to be checked to reverse 
the output.

In the case of a hash function there is no secret key. Everyone needs to be 
able to verify that the same string hashes to the same value. A brute-force attack 
on a hash function requires trying every considered input, while a brute-force 
decryption requires trying every possible key. For your estimation purposes 
when it comes to brute-force attacks, you can use the following to ballpark the 
amount of security you get for various size problems:

■■ A key space/message space of 264 is enough for a couple hours of 
security.

■■ A key space/message space of 2128 is enough for several decades of pre-
quantum security.

■■ A key space/message space of 2256 is enough for several decades of post-
quantum security.

Several common attack models can be used for cryptanalysis; each requires 
a different portion of the message. The common attack models include the fol-
lowing:

■■ Ciphertext Only (COA) is used when the malicious user only has access 
to the ciphertexts and does not have access to the plaintext prior to encryp-
tion. Frequency analysis is critical when using COA.
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■■ Known-Plaintext (KPA) is used when the malicious user has access to 
both the plaintext and its encrypted version (ciphertext). Historical ciphers 
were very susceptible to this type of attack.

■■ Chosen-Plaintext (CPA) is an attack that occurs when the malicious users 
are able to define their own plaintext and have it encrypted, resulting in 
ciphertext that can be analyzed to determine how to decrypt other mes-
sages. A good example is the attacks on the German Enigma machine; 
once the Allies captured an Enigma machine, the CPA was used to deter-
mine how the encryption scheme worked.

■■ Chosen-Ciphertext (CCA) is an attack used where the cryptanalyst can 
gather information by obtaining the decryptions of chosen ciphertexts. 
One way to think about this type of attack is that you can test a slightly 
adjusted encryption. Change a bit and see if the decrypted message turns 
to gibberish. For instance, if you are a server on the internet and you 
change an encrypted packet in some way, you can see how the target 
reacts to your change when they go to decrypt.

Shannon’s Theorem

Claude Shannon (1916–2001) was often regarded as the father of modern cryp-
tology and information theory. After receiving his Ph.D. in mathematics, Shannon 
contributed to the field of cryptanalysis for national defense during World War 
II. He is also credited for the founding of digital circuit design theory in 1937. 
He published a paper in 1949 entitled “Communication Theory and Secrecy 
Systems.” In this revolutionary paper, Shannon defines perfect secrecy for 
secret-key systems and shows that they exist. A secret-key cipher obtains perfect 
secrecy if for all plaintexts x and all ciphertexts y, it holds that Pr(x) = Pr(x|y). In 
other words, a ciphertext y gives no information about the plaintext. Shannon’s 
principle states, “The enemy knows the system.”

Known as the gold standard of security in cryptography, “perfect security” 
is a special case of information-theoretic security wherein for an encryption 
algorithm, if there is ciphertext produced that uses it, no information about the 
message is provided without knowledge of the key. Examine the definition of 
perfect security as defined by Shannon.

Let ε = (E,D) be a Shannon cipher defined over (K,M,C). Consider a probabi-
listic experiment in which the random variable k is uniformly distributed over 
K. If for all m0, m1∈ M, and all c ∈ C, we have: Pr[E(k, m0) = c] = Pr[E(k, m1) = c];  
then we say that ε is a perfectly secure Shannon cipher.

To explain the definition in words, if the probability that a ciphertext c is m0 is 
the same as the probability that the same ciphertext c is m1, then the cipher ε is 
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a perfectly secure Shannon cipher. That is, the perfectly secure Shannon cipher 
ε has produced a ciphertext that has equal probability of being any message, i.e., 
the ciphertext c gives no information about the plaintext m.

We will explore perfect security more as we explore the one-time pad in the 
next section.

One-Time Pad

Perfect secrecy is the concept that given a ciphertext (an encrypted message) from 
a cipher or perfectly secure encryption system, nothing will be revealed about 
the plaintext (unencrypted message) by the ciphertext.

A perfectly secret cipher has a couple of other equivalent properties:

■■ There is a key that encrypts every possible plaintext to every possible 
ciphertext (perfect key ambiguity). However, this is true only if the keys 
used are the same size as the messages.

■■ Even if given a choice of two plaintexts, one the real one, for a ciphertext, 
you cannot distinguish which plaintext is the real one (perfect message 
indistinguishability).

What perfect secrecy means in practice is that no amount of computation 
applied to the ciphertext will give you any advantage in knowing anything 
about the plaintext or key. This is obviously a desirable property of a cipher, 
and perfectly secret ciphers do exist. For example, a one-time pad (OTP) is a 
perfectly secret cipher.

When you examine the OTP, you may decide that it is the basis of modern 
cryptography or you may determine it does not accomplish what we need. 
Still, it is important that you understand the scheme and its subtleties. In this 
section, you will gain a formal description of the algorithm and will explore 
the OTP from Python; the goal is to show that it can be broken when used in 
a repetitive scenario.

XOR, AND, and OR
The bitwise operators work on bits and perform bit-by-bit operations. Assume 
a = 60 and b = 13. The binary format of a and b will be as follows:

a = 0011 1100

b = 0000 1101

Table 2.2 explains each bitwise operator and gives an example.
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The bin() function in Python can be used to convert our integers 60 and 13 
to their binary format. Type the following into the Python shell:

>>> a = 60
>>> b = 13
 
>>> print (bin(a))
0b111100
>>> print (bin(b))
0b1101
>>> print (bin(a &amp; b))
0b1100
>>> print (bin(a | b))
0b111101
>>> print (bin(a ^ b))
0b110001
>>> print (bin(~a))
-0b111101
>>> print (bin(a<<2))
0b11110000
>>> print (bin(a>>2))
0b1111

Each value maps as shown. Alphanumeric characters, such as A, B, C, can 
also be converted to a binary format. The use of the ordinal function, ord(), 
will give a numerical value to an ASCII letter. Examine the following example:

Table 2.2:  Bitwise Operators

OPERATOR DESCRIPTION EXAMPLE

& (Binary AND) Operator copies a bit to the result if it 
exists in both operands.

(a & b) (means 0000 
1100)

| (Binary OR) Operator copies a bit if it exists in either 
operand.

(a | b) = 61 (means 
0011 1101)

^ (Binary XOR) Operator copies the bit if it is set in one 
operand but not both.

(a ^ b) = 49 (means 
0011 0001)

~ (Binary Ones 
Complement)

Operator is unary and has the effect of 
“flipping” bits.

(~a ) = -61 (means 
1100 0011 in 2’s 
complement form due to a 
signed binary number)

<< (Binary Left 
Shift)

The left operand’s value is moved left 
by the number of bits specified by the 
right operand.

a << 2 = 240 (means 
1111 0000)

>> (Binary Right 
Shift)

The left operand’s value is moved right 
by the number of bits specified by the 
right operand.

a >> 2 = 15 (means 
0000 1111)
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>>> print (ord('A'))
65
>>> print (bin(ord('A')))
0b1000001

You will find that the use of XOR is critical to cryptography. The power of 
XOR is that it is self-decrypting. If you encrypt a value using XOR, you can 
easily reverse it with the same operation. We will show this with a simple 
integer solution first by typing the following into the shell. The following code 
takes two integers (240, 115) and gets their XOR value (131). You can then XOR 
131 with either 240 or 115 and get the other value:

>>> x = 240 
>>> y = 115 
>>> z = (x ^ y) #131
 
>>> print (z ^ 115)
240
>>> print (z ^ 240)
115

To XOR a whole string with another string, we should convert plaintext into 
an integer, then XOR the integer and reverse that. The print() function will 
work in either scope. One of the biggest differences between the two code sam-
ples is the way we encode and decode hexadecimal values.

The following example shows how the encode method is used on the string:

def text2int(msg):
    print (msg)
    
    # convert string to hex
    hexstr = msg.encode('hex')
    print (hexstr)
    
    # convert hex to integer
    integer_m = int(hexstr, 16)
    print (integer_m)
    
    # convert integer back to hex
    back2hex = format(integer_m, 'x')
    print (back2hex)
    
    # convert back to string
    evenpad = ('0' * (len(back2hex) % 2)) + back2hex
    plaintext = evenpad.decode('hex')
    print (plaintext)

text2int("Hello World")



54	 Chapter 2 ■ Cryptographic Protocols and Perfect Secrecy

Hello World
48656c6c6f20576f726c64
87521618088882533792115812
48656c6c6f20576f726c64
Hello World

While examining the following code, notice the use of binascii along with 
the hexlify() and unhexlify() methods. The hexlify() method returns the 
hexadecimal representation of binary data. Each byte of the data is converted 
into a two-digit hex representation. The resulting output will be twice as long 
as the length of the data. The unhexlify() method returns the binary repre-
sentation of the data. As you may have guessed, the unhexlify() method is the 
inverse of the hexlify() method:

import binascii
 
def text2int(msg):
    print (msg)
    
    # convert string to hex
    #hexstr = msg.encode('hex')
    msg = msg.encode()
    hexstr = binascii.hexlify(msg)
    print (hexstr)
    
    # convert hex to integer
    integer_m = int(hexstr, 16)
    print (integer_m)
    
    # convert integer back to hex
    back2hex = format(integer_m, 'x')
    print (back2hex)
    
    # convert back to string
    evenpad = ('0' * (len(back2hex) % 2)) + back2hex
    #plaintext = evenpad.decode('hex')
    plaintext = binascii.unhexlify(evenpad)
    
    print (plaintext)
 
text2int("Hello World")
 
Hello World
b'48656c6c6f20576f726c64'
87521618088882533792115812
48656c6c6f20576f726c64
b'Hello World'
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Armed with this information, you can now encrypt plaintext to an encrypted 
value and retrieve it only with a secret password, as shown here:

import binascii
 
def xorKey(secret):
    secret = secret.encode()
    hexstr = binascii.hexlify(secret)
    key = int(hexstr, 16)
    print ("key: ", key)
    return key
 
 
def xorEnc(msg, key):
    msg = msg.encode()
    hexstr = binascii.hexlify(msg)
    print ("hexstr: ", hexstr)
    ciphertext = int(hexstr, 16) ^ key
    print ("ciphertext: ", ciphertext)
    return ciphertext
    
def xorDec(msg, key):
    xorMsgKey = msg ^ key
    back2hex = format(xorMsgKey, 'x') 
    print ("back2hex: ", back2hex)
    evenpad = ('0' * (len(back2hex) % 2)) + back2hex
    plaintext = binascii.unhexlify(evenpad)
    print ("plaintext: ", plaintext)
    return plaintext
    
 
key = xorKey("mysecret")
key2 = xorKey("wrongpass")
cipher = xorEnc('Hello world',key)
plain = xorDec(cipher,key)
wrongplain = xorDec(cipher, key2)

As you can see, only using the right key will result in the correct message. 
The preceding should return the following:

key:  7888463101613466996
key:  2203408475604721431411
hexstr:  48656c6c6f20776f726c64
ciphertext:  87521610353724475878410512
back2hex:  48656c6c6f20776f726c64
plaintext:  Hello world
back2hex:  48651b73793d757c617a63
plaintext:  Hey=u|azc
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One-Time Pad Function
Now that you have seen how XOR works, it will be easier to understand the 
one-time pad. OTP takes a random sequence of 0s and 1s as the secret key and 
will then XOR the key with your plaintext message to produce the ciphertext:

GEN: choose a random key uniformly from {0,1}ℓ {0,1}ℓ (the set of binary strings 
of length ℓℓ)

ENC: given k∈{0,1}ℓ k∈{0,1}ℓ and m∈{0,1} ℓ m∈{0,1}ℓ then output is c:=k⊕m c:=k⊕m

DEC: given k∈{0,1} ℓ k∈{0,1}ℓ and c∈{0,1} ℓ c∈{0,1}ℓ, the output message is m:=k⊕c 
m:=k⊕c

The output given by the OTP satisfies Claude Shannon’s notion of perfect 
secrecy (see “Shannon’s Theorem”). Imagine all possible messages, all possible 
keys, and all possible ciphertexts. For every message and ciphertext pair, there 
is one key that causes that message to encrypt to that ciphertext. This is really 
saying that each key gives you a one-to-one mapping from messages to cipher-
texts, and changing the key shuffles the mapping without ever repeating a pair.

The OTP remains unbreakable as long as the key meets the following criteria:

■■ The key is truly random.

■■ The key the same length as the encrypted message.

■■ The key is used only once!

When the key is the same length as the encrypted message, each plaintext 
letter’s subkey is unique, meaning that each plaintext letter could be encrypted 
to any ciphertext letter with equal probability. This removes the ability to use 
frequency analysis against the encrypted text to learn anything about the cipher. 
Brute-forcing the OTP would take an incredible amount of time and would 
be computationally unfeasible, as the number of keys would equal 26 raised 
to the power of the total number of letters in the message. In Python 3.6 and 
later, you will have the option to use the secrets module, which will allow you 
to generate random numbers. The function secrets.randbelow() will return 
random numbers between zero and the argument passed to it:

>>> import secrets
>>> secrets.randbelow(10)
3
>>> secrets.randbelow(10)
1
>>> secrets.randbelow(10)
7

You can generate a key equal to the length of the message using the follow-
ing in the Python shell:
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>>> msg = "helloworldthisistheonetimepad"
>>> key = ''
>>> for i in range(len(msg)):
>>>      key += secrets.choice('ABCDEFGHIJKLMNOPQRSTUVWZYZ')
 
>>> print (key) 
CDHHCYIINAQHKMVOVAAYDPELIRNRU

In some ciphers, you can use language detectors. When the OTP is constructed 
properly, there may be a condition that the wrong key will produce English text, 
so there is no guarantee that using a language detector will offer the original 
message. The next example demonstrates that two possible messages may occur: 
Attack at Midnight! or Retreat Do Not Attack.

If you use the correct key, you will see the real message, while using the decoy 
key will present the other. If an attacker is trying to brute-force this scheme, it 
is possible they will find the wrong message.

The following code recipe introduces using from ... import. To refer to 
items from a module within your program’s namespace, you can use the 
from ... import statement. When you import modules this way, you can 
refer to the functions by name rather than through dot notation. Using the 
from ... import construction allows us to reference the defined elements of 
a module within our program’s namespace, letting us avoid dot notation. In 
this case, we use hexlify and unhexlify:

from binascii import hexlify, unhexlify
 
def otpSuperMsg(msg1, msg2):
    hex1 = hexlify(msg1)
    hex2 = hexlify(msg2)
    cipher1 = int(hex1, 16)
    cipher2 = int(hex2, 16)
    msg = cipher1 ^ cipher2
    return msg
    
def otpEnc(msg, key):
    superKey = int(msg, 16) ^ key
    return superKey
    
def otpDec(msg, key):
    xorMsgKey = msg ^ key
    back2hex = format(xorMsgKey, 'x') 
    evenpad = ('0' * (len(back2hex) % 2)) + back2hex
    plaintext = unhexlify(evenpad)
    return plaintext
 
realMessage = b"attackthematmidnight!"
decoyMessage= b"retreatanddonotattack"
msg = otpSuperMsg(realMessage, decoyMessage)
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realMsg = hexlify(realMessage)
decoyMsg = hexlify(decoyMessage)
realKey = int(realMsg, 16) ^ msg
decoyKey = int(decoyMsg, 16) ^ msg
 
print ("The secret message is: ", msg)
print ("The real key is: ", realKey)
print ("The decoy key is: ", decoyKey)
print ()
# choose either the decoy key or the real key
key = realKey
plain = otpDec(msg, key)
print (plain)
print ()
key = decoyKey
plain = otpDec(msg, key)
print ()
print (plain)

The output using the keys should resemble the following:

The secret message is:  27865585609579580086126129250694423149352332105546
The real key is:  167190391575317824697301565359800501773353221186411
The decoy key is:  142430497120678699528160795125823853486446056338465
 
attackthematmidnight!
 
retreatanddonotattack

Once you use the same key more than once, you open the key to vulnerabil-
ities as now the same key will convert more than one ciphertext to plaintext. 
Since there is most likely only one key that will decrypt two different messages, 
the key would be compromised. Using the real key in the preceding example 
again would tip the advisories of your encryption methods.

One-Way Hashes

You were briefly introduced to hashes in the previous chapter. As a reminder, 
a hash function is an algorithm that changes the input or changes the data of an 
arbitrary or random length into a fixed-sized output.

In our previous example, you saw passwords that were hashed using the 
SHA-512 algorithm. Storing passwords as hashes provides a level of security 
in the event that the password storage database is compromised. Hashes can 
be used as a more advanced version of checksums. When we move a file from 
one drive to another, we have a checksum on frames called a Frame Check 
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Sequence (FCS). It is important to note that not all hash algorithms are suitable 
for cryptography; those that are, are referred to as cryptographic hash functions.

Cryptographic One-Way Hashes
For a one-way hash to be used in cryptographic systems, the algorithm must 
provide preimage resistance, secondary resistance, and collision resistance:

■■ Preimage resistance means that an attempt to find the original message that 
produces a hash is computationally unrealistic or for a given h in the 
output space of the hash function, it is hard to find any message x with 
H(x) = h.

■■ Secondary resistance means that an attempt to find a second message that 
produces the same hash is computationally unrealistic or for a given mes-
sage x2≠x1 with H(x1)=H(x2).

■■ Collision resistance means that finding any two messages that will produce 
the same hash is computationally unrealistic for the message pair or s 
x1≠x2 with H(x1)=H(x2).

In examining the rules, while the secondary resistance and collision resistance 
may appear very similar, they are slightly different. From a (second) preimage 
attack we also get a collision attack. The other direction doesn’t work as easily, 
though some collision attacks on broken hash functions seem to be extensible 
to be almost as useful as second preimage attacks (i.e., we find collisions where 
most parts of the message can be arbitrarily fixed by the attacker).

The strength of the hash function does not equal the hash length. The strength 
of the hash is about half the length of the hash due to the probability produced 
by the birthday attack. The birthday attack exploits the mathematics behind the 
birthday problem in probability theory. Consider the scenario in which a teacher 
with a class of 30 students (n = 30) asks for everybody’s birthday to determine 
whether any two students have the same birthday. The birthday attack treats 
our birthdays as uniformly distributed values out of 365 days. The general intu-
ition is that it takes √N samples from a space of size N to have 50% chance of 
collision. Imagine selecting some value (k) at random from N. Then out of the 
k values you picked there are k(k − 1)/2 pairs. For any given pair there is a 1/N 
chance of collision. This gives k(k − 1)/2N chance of collision. Therefore, k ~√N 
will lead to around 50% chance of collision.

The birthday attack relies on any match coming from within a set and not a 
specific match to a specific value. That intuition should guide us as we approach 
Message Authentication Codes (MACs). This birthday attack gives us a generic 
approach for finding two messages that hash to the same value in far less time 
than brute force. The size that matters is the output size of the hash function, too.
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Message Authentication Codes
Hash-based Message Authentication Code (HMAC) is a key-based message 
digest algorithm that can be used for verifying the integrity of the message, to 
verify the authenticity of the sender of the message, or both. HMAC has been 
widely adopted for use in various systems and domains, such as server-to-
server communications, Web Service APIs, etc. A well-known use of HMAC 
is in Amazon’s AWS API calls where the signature is generated using HMAC.

HMAC can use a variety of hashing algorithms, like MD5, SHA1, SHA256, 
etc. The HMAC function is not process intensive, so it has been widely accepted, 
and it is easy to implement in mobile and embedded devices while maintaining 
decent security. The following code example shows how to generate an HMAC-
MD5 digest with Python:

import hmac
from hashlib import md5
 
key = b'DECLARATION'
 
h = hmac.new(key,b'',md5)
 
# add content
h.update('We hold these truths to be self-evident, that all men are 
created equal')
 
# print the HMAC digest
print (h.hexdigest())

Perfect Forward Secrecy

In our exploration of cryptography, perfect forward secrecy (PFS), also known 
as forward secrecy (FS), is a set of key agreement protocols that gives the par-
ticipants in the message exchange assurances that their session keys will not be 
compromised even if the private key of the server is compromised. PFS protects 
past cryptographic sessions against future compromises of passwords or secret 
keys. The compromise of a single session key will not affect any data other than 
that exchanged in the particular session by generating a unique session key for 
each individual session; PFS further protects data on the transport layer of a 
network that uses common SSL/TLS protocols such as OpenSSL. In the past, 
OpenSSL was affected by the Heartbleed exploit. If PFS is used, encrypted 
communications and sessions recorded that may have become compromised 
cannot be used to decrypt future communications.
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A public-key system has the property of PFS if it generates one random secrecy 
key per session to complete a key agreement, without using a deterministic 
algorithm. In essence, this guarantees that the compromise of one session cannot 
compromise others in the future. To examine an example, let us assume that 
Alice and Bob each generate a pair of long-term asymmetric private and public 
keys; they then verify the public-key fingerprints in person or out of band 
using an authenticated channel. The only thing the keys will be used for is 
authentication; these keys will not be used for encryption. Alice and Bob use 
the Diffie-Hellman key exchange algorithm to securely agree on an ephemeral 
session key. Alice sends Bob a message, encrypting it with a symmetric cipher. 
Bob decrypts Alice’s message using the key negotiated previously. The process 
repeats for each message sent between the two parties.

PFS is designed to prevent the compromise of a long-term secret key from 
affecting the confidentiality of past conversations. PFS cannot defend against 
a successful cryptanalysis of the underlying ciphers being used, since a crypt-
analysis consists of finding a way to decrypt an encrypted message without 
the key, and PFS only protects keys, not the ciphers themselves. If an attacker 
can capture a conversation whose confidentiality is protected through the use 
of public-key cryptography and wait until the underlying cipher is broken, this 
would allow the recovery of old plaintexts even if a system is employing PFS.

PFS is present in a number of protocol implementations such as IPSec 
(optional), SSH, STARTTLS, ATS, and Off-the-Record Messaging. Off-the-Record  
Messaging is a cryptographic protocol that is used for instant-messaging clients. 
PFS is a significant security used by several large internet information providers 
such as Google. Since late 2011, Google provided forward secrecy with TLS by 
default to users of its Gmail service, Google Docs service, and encrypted search 
services. Facebook, as of May 2014, supports STARTTLS. TLS 2.4 (released in 
August 2018) dropped support for ciphers that did not support PFS. ATS, which 
stands for App Transport Security, is a security that is used by Apple on iOS 
apps; it became mandatory on all its iOS devices after January 1, 2017.

We will explore PFS in more detail as we dig into the Diffie-Hellman key 
exchange and elliptic curve Diffie-Hellman in Chapter 8.

Published and Proprietary Encryption Algorithms

In the late 19th century, Auguste Kerckhoffs stated:

The cipher method must not be required to be secret, and it must be able 
to fall into the hands of the enemy without inconvenience.

Security must rely solely on secrecy of the key.
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In today’s age, keeping one’s proprietary algorithm secret would be almost 
impossible. Information about the algorithm could be leaked by a disgruntled 
employee or obtained by an attacker and then reverse-engineered. In general, 
it is much easier for two parties to change their shared secret as opposed to 
having to re-create new cryptographic algorithms. For enterprise deployments, 
it would be much easier for all systems to use a standardized, well-proven 
cryptographic scheme.

Kerckhoffs’ principle is accepted industry wide by making cryptographic 
schemes completely public as opposed to hoping systems stay secure by keep-
ing the algorithms secret or “security by obscurity.” It can be quite costly to an 
organization to create its own algorithms that may be broken without the orga-
nization ever finding out about it. The encryption schemes used publicly have 
all been publicly scrutinized, and studied, and have no known weaknesses.

Summary

Cryptology is broken down into the two fields of cryptography and crypt-
analysis. Cryptography is the science of secret writing with the goal of hiding 
the meaning of the message. Cryptography is further broken down into cryp-
tographic protocols, symmetric algorithms, and asymmetric (or public-key) 
algorithms. You were introduced to cryptographic protocols that include the 
works of Needham-Schroeder and Otway-Rees. You saw examples of how 
the key lengths are important to how long a cryptographic solution may be 
viable. You were introduced to the common attack models. These included the 
Ciphertext only (COA), Known-Plaintext (KPA), Chosen-Plaintext (CPA), and 
Chosen-Ciphertext (CCA).

Perfect secrecy is the concept that states that nothing from the ciphertext 
reveals anything useful about the plaintext. In this chapter, you were able to 
explore the Python syntax that allows you to convert a message to hexadecimal 
and binary. You found that the use of XOR is critical to cryptography. The power 
of XOR is that it is self-decrypting. If you encrypt a value using XOR, you can 
easily reverse it with the same operation. You were also introduced to crypto-
graphic hashing using Python.
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Authentication protocols need to employ encryption to protect the session from 
exposure to intruders; over the past few years, we have heard time and time 
again of data breaches that have left user data vulnerable and passwords in the 
hands of bad actors. In a secure world, passwords are typically hashed, salted, 
and stretched, and electronic communications should be encrypted to ensure 
secrecy. Just hashing or encrypting data may not be enough, though. The best 
encryption schemes will not protect data from poorly constructed passwords. In 
this chapter, you’ll be introduced to password practices, get an understanding 
of some common historical cryptography schemes, and learn the Python code 
that will bring all the topics together. Specifically, you will gain cryptographic 
knowledge as you do the following:

■■ Explore best practices for passwords

■■ Explore the basics of encryption schemes

■■ Explore the use of historical ciphers and their cryptanalysis

■■ Gain an understanding of why it is critical to use well-established  
encryption algorithms

Classical Cryptography

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
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Password Best Practices

Throughout this book, your purpose is to gain an understanding of how to use 
strong cryptographic schemes and how to identify and attack weak schemes. 
If you work as a security professional, you will also need to help people in 
your organization protect their data from themselves. You may be required 
to define policies, procedures, and controls regarding passwords. Even if our 
systems or cell phones are encrypted, once the password is entered, the system 
becomes vulnerable. In truth, the password is the only secret to the kingdom, 
and depending on the type of user account the person has, the more vulnerable 
the data. No system, encrypted or not, is safe with poor password management.

The following are some things to keep in mind regarding passwords:

■■ Users should sign an agreement with the system or data owners to keep 
their passwords confidential and safe. Passwords should not be written 
down.

■■ Temporary passwords should be used only once and immediately changed 
once a user logs in.

■■ Passwords should have length requirements and require the use of special 
characters to meet a defined complexity.

■■ Passwords should never be stored in clear text.

■■ A password for one system should not be used for another.

■■ Passwords should be changed regularly.

■■ Corporate policies must be in place to lock accounts that have excessive 
failed password attempts.

■■ Users should not be able to reuse passwords.

■■ Passwords should never be shared with support staff.

Most modern-day systems are getting better at forcing users to use stronger 
passwords, but for those systems that do not, it is critical that you understand 
password hashing, salting, stretching, and storage.

Password Storage
As just stated, as a security-minded professional, whether you are working as 
a security architect or a software designer, it is vital that you do not store user 
passwords in clear text. Doing so gives anyone who has access to the file, data-
base, or server direct access to the users’ passwords. One way to combat this is 
by hashing passwords that need to be stored.
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Hashing Passwords
Python, like many other languages, provides you a way to call hashing functions 
that accept a message of any length and return a fixed-length result that is 
referred to as a message digest or hash code. Hashing functions use specific hash-
ing algorithms but do not use secret keys. If the exact message is entered into 
a hashing function, the same hash code will be produced.

There are several reasons to use hash codes in communications. They can 
assist in ensuring the confidentiality and the integrity of the message. You can 
use a number of hashing algorithms, including MD5, SHA-3, SHA-512, HAVAL, 
and RIPEMD-160, just to name a few. The most important properties of hash 
algorithms are that the output is not predictable, different messages do not 
produce the same hash code, messages are not reversible, and given the same 
value, a hash algorithm should always produce the same result.

The following example shows the SHA-512 hash values for the words password 
and Password. Notice that even though only the first letter was capitalized, the 
entire message digest is different.

Here is the hash value for password:

b109f3bbbc244eb82441917ed06d618b9008dd09b3befd1b5e07394c706a8bb980b1d778 
5e5976ec049b46df5f1326af5a2ea6d103fd07c95385ffab0cacbc86

Here is the hash value for Password:

e6c83b282aeb2e022844595721cc00bbda47cb24537c1779f9bb84f04039e1676e6ba857 
3e588da1052510e3aa0a32a9e55879ae22b0c2d62136fc0a3e85f8bb

To examine the hashed password using SHA-512, type the following into 
Python:

import hashlib
plaintext_password = b'Password'
hashed_sha512 = hashlib.sha512(plaintext_password).hexdigest()
print(hashed_sha512)

There are two primary ways to attack hash functions: through cryptanalysis 
and through brute force. Storing passwords in the database in their hash code 
form still offers malicious users a way to figure out passwords. A rainbow table, 
which is a precomputed table for reversing cryptographic hash functions, can 
be used to crack password hashes. Rainbow tables are used in recovering a 
plaintext password up to a certain length consisting of a limited set of charac-
ters. This is where salting and stretching come in.

Salting Passwords
You have learned that you need to use cryptographic hashing to minimize 
readability when storing passwords, but just hashing alone isn’t enough. Salting 
is the process of adding or concatenating a random chunk of bits to the end of 
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the password before it goes through the hashing process. You would then save 
that random chunk of bits along with the hashed password. The reason salting 
is effective is that if bad actors attack your hashing scheme, they are unable to 
scale their attack to a large number of users or launch brute-force attacks across 
the enterprise.

Salting means that a rainbow attack must be recomputed for each individual 
user. That makes an attacker spend a lot more money per user, which is the 
way I tend to analyze security. As a fun exercise, you can type hashed values 
straight into the Google search engine. Try to get the plaintext for 161ebd7d-
45089b3446ee4e0d86dbcf92.

To examine salting in Python, type the following:

import hashlib
def saltPassword_sha512(password):
    salt = b'cHp3'
    hashed = hashlib.sha512(salt + password).hexdigest()
    print ("%s:%s" % (salt, hashed)) # Store these
    return hashed
 
plaintext_password = b'Password'
hashed_sha512 = saltPassword_sha512 (plaintext_password)

Stretching Passwords
Our next defense is the concept of key or password stretching. Stretching is a 
technique used to make a weak key, passphrase, or password more secure against 
brute-force attacks by increasing the time it takes to test each possible iteration. 
Key stretching works by accepting input that is fed into an algorithm, and the 
return result is an enhanced key. The enhanced key should be of a sufficient size 
to make it impractical to break using brute-force techniques. The key-stretching 
process may be repeated several times to consume a longer amount of processing 
time. The idea is that if the user knows the correct key, the additional second or 
two it takes to verify it doesn’t impact the user; however, if the system is under 
attack, it should slow down the attacker significantly.

Password Tools
A number of Python libraries offer you ways to perform password functions 
without having to develop your own; you will probably be better served by 
using a library instead of rolling your own as it will keep your code simpler. 
One of the most popular libraries is bcrypt. You can install bcrypt by using the 
following statement:

pip3 install bcrypt
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The bcrypt library may have dependencies on pycparser and cffi. A few alterna-
tives are worth mentioning, but bcrypt is one of the more popular choices. Some 
alternatives include scrypt either using the hashlib or cryptography libraries. 
Simplecrypt also provides libraries for encryption, decryption, and salting.

To add a salt to your hashed password, examine the following Python code:

>>> import bcrypt
>>> passwd = b's$cret12'
>>> salt = bcrypt.gensalt()
>>> hashed = bcrypt.hashpw(passwd, salt)
>>>
>>> print(salt)
>>> print(hashed)
 
b'$2b$12$qfG2n5l4PG51LD5X0d/a8u'
b'$2b$12$qfG2n5l4PG51LD5X0d/a8unGLJxQJ8KbVppzf0yGbtk7aE6xjqPHO'

The generated output should look similar to what is shown here, but will not 
match completely because the salt is generated each time the code is executed. 
Even though the hashed password will be identical each time, the added salt 
ensures that the hashed password remains secure.

Obfuscating Data

Before jumping into cryptographic schemes to encrypt and decrypt data, we 
will examine various ways to obfuscate data. Data obfuscation (DO) is a tech-
nique used to mask data; it scrambles data to prevent unauthorized access to 
sensitive information.

There are two types of DO encryption: network security DO and cryptographic 
DO. Network security DO deals with payload attacks that are purposely used to 
avoid detection by network protection systems. Cryptographic DO is the input 
of data encoding prior to being transferred to another encryption scheme. Here, 
we will look at the latter. Using any of the schemes mentioned will remove the 
ability to use frequency analysis; we will explore frequency analysis in great 
depth in the next chapter.

You were first introduced to DO in the previous chapter when you learned 
about the XOR function. Here, we will continue examining techniques to mask 
data using ASCII encoding, Base64 encoding, binary data, and decoding. ASCII, 
abbreviated from American Standard Code for Information Interchange, is a 
character-encoding standard for electronic communication. ASCII codes rep-
resent text in computers, telecommunications equipment, and other devices. 
Most modern character-encoding schemes are based on ASCII, although they 
support many additional characters.
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ASCII Encoding
In ASCII encoding, each letter is converted to one byte. Look at the following 
examples:

A = 65 or 0b01000001

B = 66 or 0b01000010

C = 67 or 0b01000011

ABC = 0b01000001 0b01000010 0b01000011

Base64 Encoding Text
Base64, also known as privacy enhanced electronic mail (PEM), is the encoding 
that converts binary data into a textual format; it can be passed through com-
munication channels where text can be handled in a safe environment. PEM is 
primarily used in the email encryption process. To use the functions included 
in the Base64 module, you will need to import the library in your code. Base64 
offers a decode and encode module that both accepts input and provides output.

To break ASCII encoding into Base64-encoded text, each sequence of six bits 
encodes to a single character. The characters used can be seen in the following 
examples:

A–Z: 0–25

a–z: 26–51

0, 1, 2, ..., 9: 52–61

+, /: 62 and 63

Examine the 24 bits from the previous section:

0b01000001 0b01000010 0b01000011

Break the line into 6-bit groups:

0b010000 010100 001001 000011

When you convert the four groups to decimal, you will see that they are 
equal to the following:

16 20 9 3

You now convert the numbers to Base64:

Q U J D
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Therefore, when you encode “ABC” to Base64, you should end up with QUJD, 
as shown here:

>>> import base64
>>> value = 'ABC'.encode()
>>> print(base64.b64encode(value))
b'QUJD'

In the previous example, we used Python to encode three bytes at a time. 
When performing Base64 encoding, the text is broken down into groups of 
three. In the event that the text cannot be broken down into groups of three, 
you will see the padding character, which is shown using the equal sign (=). 
If the example had four bytes, then the output would look like the following:

>>> value = 'ABCD'.encode()
>>> print(base64.b64encode(value))
b'QUJDRA=='
 
>>> value = 'ABCDE'.encode()
>>> print(base64.b64encode(value))
b'QUJDREU='
 
>>> value = 'ABCDEF'.encode()
>>> print(base64.b64encode(value))
b'QUJDREVG'

The preceding padding uses null bytes, which equals A. The capital A is the 
first character you have in Base64; it stands for six bits of zero (000000). You can 
prove that with the following:

>>> value1 = 'ABCD'.encode()
>>> value2 = 'ABCD\x00”.encode()
>>> value3 = 'ABCD\x00\x00”.encode()
>>> print(base64.b64encode(value1))
b'QUJDRA=='
>>> print(base64.b64encode(value2))
b'QUJDRAA='
>>> print(base64.b64encode(value3))
b'QUJDRAAA'

Once you start evaluating Base64, it may become confusing to tell Base64 and 
ASCII apart. One of the major differences between the two is the encoding pro-
cess. When you encode text in ASCII, you first start with a text string, and it is 
converted into a sequence of bytes. When you encode Base64, you are starting 
with a sequence of bytes and converting the bytes to text.
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Binary Data
We will now examine binary data. The file types on your computer are com-
posed of binary data. ASCII data always begins with a first bit of zero. When 
you open a file using Python, you can convert binary data to Base64:

With open('file.exe','rb') as f:
        data = f.read()
        data.encode()

Decoding
In this section, we will take what you have learned using the encode() methods 
and get the inverse using the decode() method. Examine the following syntax:

>>> # encode ABCD
>>> value1 = 'ABCD'.encode()
>>> value1
B'ABCD'
 
>>> #decode ABCD
>>> value1.decode()
'ABCD'

Once you have the binary values, you can use the base64 library to encode 
the values using b64encode. The inverse is the b64decode:

>>> myb64 = base64.b64encode(value1)
>>> myb64
B'QUJDRA=='
 
>>> my = base64.b64decode(myb64)
>> my
B'ABCD'
 
>>> print (my.decode())
ABCD
>>>

Historical Ciphers

Since the invention of writing, there has been the need for message secrecy. 
While most of the historical ciphers you will learn about in this chapter have 
been broken, it is important to understand their encryption scheme so that you 
have a better understanding of how to break them.
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In fact, all historical codes used prior to 1980 have been broken except for 
the one the Native American code talkers used in World Wars I and II. During 
World War I, the Choctaw Indian language was used, and during World War 
II, the Navajo language was used. The US Marine Corps recruited Navajo men 
to serve as Marine Corps radio operators. Both languages served perfectly as 
they were unwritten and undecipherable due to their complexities.

Scytale of Sparta
One of the oldest cryptographic tools was the Spartan scytale, which was used 
to perform a transposition cipher. We will examine transposition ciphers in 
greater detail both later in this chapter and throughout the book. The scytale 
consisted of a cylinder with a strip of parchment; the parchment would wrap 
around the cylinder and then the message would be written lengthwise on the 
parchment. The key in this case would be the radius of the cylinder itself. If the 
parchment were wrapped around a cylinder of a different radius, the letters 
would not align in the same way, making the message unreadable.

Substitution Ciphers
The substitution cipher simply substitutes one letter in the alphabet for another 
based upon a cryptovariable. The substitution involves shifting positions in the 
alphabet. This includes the Caesar cipher and ROT-13, which will be covered 
shortly. Examine the following example:

Plaintext: WE HOLD THESE TRUTHS TO BE SELF-EVIDENT, THAT ALL 
MEN ARE CREATED EQUAL.

Ciphertext: ZH KROG WKHVH WUXWKV WR EH VHOI-HYLGHQW, WKDW 
DOO PHQ DUH FUHDWHG HTXDO.

The Python syntax to both encrypt and decrypt a substitution cipher is pre-
sented next. This example shows the use of ROT-13:

 
key = 'abcdefghijklmnopqrstuvwxyz'
 
def enc_substitution(n, plaintext):
    result = ''
    for l in plaintext.lower():
        try:
            i = (key.index(l) + n) % 26
            result += key[i]
        except ValueError:
            result += l
    return result.lower()
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def dec_substitution(n, ciphertext):
    result = ''
    for l in ciphertext:
        try:
            i = (key.index(l) - n) % 26
            result += key[i]
        except ValueError:
            result += l
 
    return result
    
origtext = 'We hold these truths to be self-evident, that all men are 
created equal.'
ciphertext = enc_substitution(13, origtext)
plaintext = dec_substitution(13, ciphertext)
 
print(origtext)
print(ciphertext)
print(plaintext)

Caesar Cipher

The Caesar cipher is one of the oldest recorded ciphers. De Vita Caesarum, Divus 
Iulis (“The Lives of the Caesars, the Deified Julius), commonly known as The 
Twelve Caesars, was written in approximately 121 CE. In The Twelve Caesars, 
it states that if someone has a message that they want to keep private, they can 
do so by changing the order of the letters so that the original word cannot be 
determined. When the recipient of the message receives it, the reader must sub-
stitute the letters so that they shift by four positions.

Simply put, the cipher shifted letters of the alphabet three places forward so 
that the letter A was replaced with the letter D, the letter B was replaced with E, 
and so on. Once the end of the alphabet was reached, the letters would start over:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

The Caesar cipher is an example of a mono-alphabet substitution. This type 
of substitution substitutes one character of the ciphertext from a character in 
plaintext. Other examples that include this type of substitution are Atbash, 
Affine, and the ROT-13 cipher. There are many flaws with this type of cipher, 
the most obvious of which is that the encryption and decryption methods are 
fixed and require no shared key. This would allow anyone who knew this 
method to read Caesar’s encrypted messages with ease. Over the years, there 
have been several variations that include ROT-13, which shifts the letters 13 
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places instead of 3. We will explore how to encrypt and decrypt Caesar cipher 
and ROT-13 codes using Python.

For example, given that x is the current letter of the alphabet, the Caesar 
cipher function adds three for encryption and subtracts three for decryption. 
While this could be a variable shift, let’s start with the original shift of 3:

Enc(x) = (x + 3) % 26
Dec(x) = (x - 3) % 26 

These functions are the first use of modular arithmetic; there are other ways 
to get the same result, but this is the cleanest and fastest method. The encryp-
tion formula adds 3 to the numeric value of the number. If the value exceeds 26, 
which is the final position of Z, then the modular arithmetic wraps the value 
back to the beginning of the alphabet. While it is possible to get the ordinal 
(ord) of a number and convert it back to ASCII, the use of the key simplifies 
the alphabet indexing. You will learn how to use the ord() function when we 
explore the Vigenère cipher in the next section. In the following Python recipe, 
the enc_caesar function will access a variable index to encrypt the plaintext 
that is passed in.

key = 'abcdefghijklmnopqrstuvwxyz'
def enc_caesar(n, plaintext):
    result = ''
    for l in plaintext.lower():
        try:
            i = (key.index(l) + n) % 26
            result += key[i]
        except ValueError:
            result += l
    return result.lower()
    
plaintext = 'We hold these truths to be self-evident, that all men are 
created equal.'
ciphertext = enc_caesar(3, plaintext)
print (ciphertext)

The output of this should result in the following:

zh krog wkhvh wuxwkv wr eh vhoi-hylghqw, wkdw doo phq duh fuhdwhg htxdo.

The reverse in this case is straightforward. Instead of adding, we subtract. 
The decryption would look like the following:

key = 'abcdefghijklmnopqrstuvwxyz'
def dec_caesar(n, ciphertext):
    result = ''
    for l in ciphertext:
        try:
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            i = (key.index(l) - n) % 26
            result += key[i]
        except ValueError:
            result += l
    return result
    
ciphertext = 'zh krog wkhvh wuxwkv wr eh vhoi-hylghqw, wkdw doo phq duh 
fuhdwhg htxdo.'
plaintext = dec_caesar(3, ciphertext)
print (plaintext)
 

ROT-13

Now that you understand the Caesar cipher, take a look at the ROT-13 cipher. 
The unique construction of the ROT-13 cipher allows you to encrypt and decrypt 
using the same method. The reason for this is that since ROT-13 moves the letter 
of the alphabet exactly halfway, when you run the process again, the letter goes 
back to its original value.

To see the code behind the cipher, take a look at the following:

key = 'abcdefghijklmnopqrstuvwxyz'
def enc_dec_ROT13(n, plaintext):
    result = ''
    for l in plaintext.lower():
        try:
            i = (key.index(l) + n) % 26
            result += key[i]
        except ValueError:
            result += l
    return result.lower()
    
plaintext = 'We hold these truths to be self-evident, that all men are 
created equal.'
ciphertext = enc_dec_ROT13(13, plaintext)
print (ciphertext)
 
plaintext = enc_dec_ROT13(13, ciphertext)
print (plaintext)

jr ubyq gurfr gehguf gb or frys-rivqrag, gung nyy zra ner perngrq rdhny.
we hold these truths to be self-evident, that all men are created equal.

Whether we use a Caesar cipher or the ROT-13 variation, brute-forcing an 
attack would take at most 25 tries, and we could easily decipher the plaintext 
results when we see a language we understand. This will get more complex as 
we explore the other historical ciphers; the cryptanalysis requires frequency 
analysis and language detectors. We will focus on these concepts in upcoming 
chapters.
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Atbash Cipher

The Atbash cipher is one of many substitution ciphers you will explore. Similar 
to ROT-13, the Atbash cipher is also its own inverse, which means you can 
encode and decode using the same key; this also means we need to have only 
one function to perform both the encryption and decryption processes. The 
original cipher was used to encode the Hebrew alphabets but, in reality, it can be 
modified to encode or decode any alphabet. The Atbash cipher is often thought 
to be a special case of the Alphine cipher that we will be exploring next.

The following is the Atbash key as it maps to the English alphabet:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Z Y X W V U T S R Q P O N M L K J I H G F E D C B A

The Python code that implements the Atbash cipher is as follows:

def toAtBash(text):
    characters = list(text.upper())
    result = ""
    for character in characters:
        if character in code_dictionary:
            result += code_dictionary.get(character)
        else:
            result += character # preserve non-alpha chars found
    return result
 
alphabet = list("ABCDEFGHIJKLMNOPQRSTUVWXYZ")
reverse_alphabet = list(reversed(alphabet))
code_dictionary = dict(zip(alphabet, reverse_alphabet))
plainText= "we hold these truths to be self-evident"
print(plainText)
cipherText = toAtBash(plainText)
print(cipherText)
cipherText = toAtBash(cipherText)
print(cipherText)

we hold these truths to be self-evident
DV SLOW GSVHV GIFGSH GL YV HVOU-VERWVMG
WE HOLD THESE TRUTHS TO BE SELF-EVIDENT

Vigenère Cipher
The Vigenère cipher consists of using several Caesar ciphers in sequence with 
different shift values. To encipher, a table of alphabets can be used, termed a 
tabula recta, Vigenère square, or Vigenère table. It consists of the alphabet writ-
ten out 26 times in different rows, each alphabet shifted cyclically to the left 
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compared to the previous alphabet, corresponding to the 26 possible Caesar 
ciphers. At different points in the encryption process, the cipher uses a differ-
ent alphabet from one of the rows. The alphabet used at each point depends on 
a repeating keyword.

Here’s an example:

Keyword: DECLARATION

D E C L A R A T I O N

3 4 2 11 0 17 0 19 8 14 13

Plaintext: We hold these truths to be self-evident, that all men are created equal.

Ciphertext: zi jzlu tamgr wvwehj th js fhph-pvzdxvh, gkev llc mxv oeh gtpakew 
mehdp.

To create a numeric key such as the one shown, use the following syntax. You 
should see the output [3, 4, 2, 11, 0, 17, 0, 19, 8, 14, 13]:

def key_vigenere(key):
    keyArray = []
    for i in range(0,len(key)):
        keyElement = ord(key[i]) - 65
        keyArray.append(keyElement)
    return keyArray
    
secretKey = 'DECLARATION'
key = key_vigenere(secretKey)
print(key)

Once you have created the key, you can use it to create ciphertext. You should 
see the output dpnemvnmifrwgtpakewbsdxen:

def shiftEnc(c, n):
    return chr(((ord(c) - ord('A') + n) % 26) + ord('a'))
 
def enc_vigenere(plainttext, key):
    secret = "".join([shiftEnc(plainttext[i], key[i % len(key)]) for i 
in range(len(plainttext))])
    return secret    
secretKey = 'DECLARATION'
key = key_vigenere(secretKey)
plaintext = 'ALL MEN ARE CREATED EQUAL'
ciphertext = enc_vigenere(plaintext, key)
print(ciphertext)
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When you know the key, such as in this case, you can decrypt the Vigenère 
cipher with the following:

def shiftDec(c, n):
    c = c.upper()
    return  chr(((ord(c) - ord('A') - n) % 26) + ord('a'))
    
def dec_vigenere(ciphertext, key):
    plain = "".join([shiftDec(ciphertext[i], key[i % len(key)]) for i in 
range(len(ciphertext))])
    return plain
    
secretKey = 'DECLARATION'
key = key_vigenere(secretKey)
decoded = dec_vigenere(ciphertext, key)

We will examine how to brute-force the Vigenère cipher in a later chapter. 
We will do this by creating a random key that will use the same encryption 
function, and then we will use frequency analysis to help find the appropriate 
key. For now, it is more important to understand how the Python code works 
with this cryptography scheme.

Playfair
The Playfair cipher was used by the Allied forces in World War II; it is the most 
common digraphic system, and was named after Lord Playfair of England. With 
this scheme, the sender and the receiver use a shared keyword. The keyword 
is then used to construct a table that consists of five rows and five columns; the 
shared word is then populated into the table followed by the rest of the alphabet. 
As the table is being built out, letters that already appear in the key are skipped. 
In addition, the letters I and J use the same letter. For this example, we will use 
the word DECLARATION, as shown here:

D E C L A

R T I O N

B F G H K

M P Q S U

V W X Y Z

The Playfair table is read by looking at where the two letters of the blocks 
intersect. For example, if the first block, TH, were made into a rectangle, the 
letters at the other two corners of the rectangle would be OF. To see a graphical 
interpretation of this, examine the next table:
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D E C L A

R T I O N

B F G H K

M P Q S U

V W X Y Z

When you have two letters that fall in the same column such as WE, you will 
need to incorporate the next lower letter, and wrap to the top of the column if 
necessary. This would form a block around the letters ET. The block WE would 
be encrypted as ET. The same rule applies if letters fall in the same row.

D E C L A

R T I O N

B F G H K

M P Q S U

V W X Y Z

Using the preceding table, examine the following plaintext and ciphertext:

Plaintext: He has obstructed the Administration of Justice by refusing his 
Assent to Laws for establishing Judiciary Powers

Ciphertext: flklyhhmitqafterfldeqrropondionrthazpogiawhvvntpmuorkxgouylu-
plriwnnyadypwkntwapodkcoysorkxazcrigdnzystetom

To create a function in Python that encrypts plaintext using Playfair, type 
the following:

def Playfair_box_shift(i1, i2):
    r1 = i1/5
    r2 = i2/5
    c1 = i1 % 5
    c2 = i2 % 5
    out_r1 = r1
    out_c1 = c2
    out_r2 = r2
    out_c2 = c1
    if r1 == r2:
        out_c1 = (c1 + 1) % 5
        out_c2 = (c2 + 1) % 5
    elif c1 == c2:
        out_r1 = (r1 + 1) % 5
        out_r2 = (r2 + 1) % 5
    return out_r1*5 + out_c1, out_r2*5 + out_c2
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def Playfair_enc(plain):
    random.shuffle(words)
    seed = "".join(words[:10]).replace('j','i')
    alpha = 'abcdefghiklmnopqrstuvwxyz'
    suffix = "".join( sorted( list( set(alpha) - set(seed) ) ) )
    seed_set = set()
    prefix = ""
    for letter in seed:
        if not letter in seed_set:
            seed_set.add(letter)
            prefix += letter
    key = prefix + suffix
    secret = ""
    for i in range(0,len(plain),2):
        chr1 = plain[i]
        chr2 = plain[i+1]
        if chr1 == chr2:
            chr2 = 'X'
        i1 = key.find(chr1.lower())
        i2 = key.find(chr2.lower())
        ci1, ci2 = Playfair_box_shift(i1, i2)
        secret += key[ci1] + key[ci2]
    return secret, key

As with the other historical ciphers presented in this chapter, the Playfair 
cipher can be cracked given enough text. Playfair has a weakness; it will decrypt 
to the same letter pattern in the plaintext for digraphs that are reciprocals of each 
other. Examine the next table. Notice how the letters DT and ER form a block. 
The letters ER (and their reverse RE) form a common digraph in the English 
language. Digraphs are often used for phonemes that cannot be represented 
using a single character, like the English sh in ship and fish. When using the 
English language, there are many words that contain these digraphs, such as 
receiver; notice how receiver contains both an RE and the reciprocal ER; these 
two letter combinations would encrypt to letter combinations that are easy to 
identify such as TD and DT. This weakness gives you additional foresight into 
the cryptographic scheme.

D E C L A

R T I O N

B F G H K

M P Q S U

V W X Y Z

Other digraphs in the English language include sc, ng, ch, ck, gh, py, rh, sh, ti, 
th, wh, zh, ci, wr, qu. Identifying nearby reversed digraphs in the ciphertext and 
matching the pattern to a list of known plaintext words containing the pattern 
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is an easy way to generate possible plaintext strings with which to begin con-
structing the key.

Another way to break the Playfair cipher is with a method called shotgun 
hill climbing. This starts with a random square of letters. Then minor changes 
are introduced (i.e., switching letters, or rows, or reflecting the entire square) 
to see if the candidate plaintext is more like standard plaintext than before the 
change. The minor changes are examined through frequency analysis and lan-
guage detectors. For now, here is the Python that decrypts the ciphertext using 
Playfair with a known shared key:

def Playfair_box_shift_dec(i1, i2):
    r1 = i1/5
    r2 = i2/5
    c1 = i1 % 5
    c2 = i2 % 5
    out_r1 = r1
    out_c1 = c2
    out_r2 = r2
    out_c2 = c1
    if r1 == r2:
        out_c1 = (c1 - 1) % 5
        out_c2 = (c2 - 1) % 5
    elif c1 == c2:
        out_r1 = (r1 - 1) % 5
        out_r2 = (r2 - 1) % 5
    return out_r1*5 + out_c1, out_r2*5 + out_c2
 
def Playfair_dec(ciphertext, sharedkey):
    seed = "".join(sharedkey).replace('j','i')
    alpha = 'abcdefghiklmnopqrstuvwxyz'
    suffix = "".join( sorted( list( set(alpha) - set(seed) ) ) )
    seed_set = set()
    prefix = ""
    for letter in seed:
        if not letter in seed_set:
            seed_set.add(letter)
            prefix += letter
    key = prefix + suffix
    plaintext = ""
    for i in range(0,len(ciphertext),2):
        chr1 = ciphertext[i]
        chr2 = ciphertext[i+1]
        print chr1, chr2
        if chr1 == chr2:
            chr2 = 'X'
        i1 = key.find(chr1.lower())
        i2 = key.find(chr2.lower())
        ci1, ci2 = Playfair_box_shift_dec(i1, i2)
        plaintext += key[ci1] + key[ci2]
    return plaintext



	 Chapter 3 ■ Classical Cryptography	 83

Hill 2x2
The Hill 2x2 cipher is a polygraphic substitution cipher based on linear algebra. 
The inventor, Lester S. Hill, created the cipher in 1929. The cipher uses matrices 
and matrix multiplication to mix the plaintext to produce the ciphertext. To 
fully understand the Hill cipher, it helps to be familiar with a branch of math-
ematics known as number theory. The Hill cipher is often covered in depth in 
many textbooks on the number theory topic. The key used here is HILL, which 
corresponds to the numbers 7, 8, 11, and 11:

Key: 7, 8, 11, 11

Plaintext: SECRETMESSAG

Ciphertext: CIUBYTMUKGWO

To create a Python function that will create the Hill 2x2 encryption, type the 
following:

import sys
import numpy as np
 
def cipher_encryption(plain, key):
 
    # if message length is an odd number, place a zero at the end.
    len_chk = 0
    if len(plain) % 2 != 0:
        plain += "0"
        len_chk = 1
        
    # msg to matrices
    row = 2
    col = int(len(plain)/2)
    msg2d = np.zeros((row, col), dtype=int)
    
    itr1 = 0
    itr2 = 0
    for i in range(len(plain)):
        if i%2 == 0:
            msg2d[0][itr1]= int(ord(plain[i]) - 65)
            itr1 += 1
        else:
            msg2d[1][itr2] = int(ord(plain[i]) - 65)
            itr2 += 1
    
    
    # key to 2x2
    key2d = np.zeros((2,2), dtype=int)
    itr3 = 0
    for i in range(2):
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        for j in range(2):
            key2d[i][j] = ord(key[itr3]) - 65
            itr3 += 1
            
    print (key2d)
            
    # checking validity of the key
    # finding determinant
    deter = key2d[0][0] * key2d[1][1] - key2d[0][1] * key2d[1][0]
    deter = deter % 26
    
    # finding multiplicative inverse
    for i in range(26):
        temp_inv = deter * i
        if temp_inv % 26 == 1:
            mul_inv = i
            break
        else:
            continue
    
    if mul_inv == -1:
        print("Invalid key")
        sys.exit()
    
    encryp_text = ""
    itr_count = int(len(plain)/2)
    if len_chk == 0:
        for i in range(itr_count):
            temp1 = msg2d[0][i] * key2d[0][0] + msg2d[1][i] * key2d[0]
[1]
            encryp_text += chr((temp1 % 26) + 65)
            temp2 = msg2d[0][i] * key2d[1][0] + msg2d[1][i] * key2d[1]
[1]
            encryp_text += chr((temp2 % 26) + 65)
    else:
        for i in range(itr_count-1):
            temp1 = msg2d[0][i] * key2d[0][0] + msg2d[1][i] * key2d[0]
[1]
            encryp_text += chr((temp1 % 26) + 65)
            temp2 = msg2d[0][i] * key2d[1][0] + msg2d[1][i] * key2d[1]
[1]
            encryp_text += chr((temp2 % 26) + 65)
    
    print("Encrypted text: {}".format(encryp_text))
    return encryp_text
    
    
    
def cipher_decryption(cipher, key):
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    # if message length is an odd number, place a zero at the end.
    len_chk = 0
    if len(cipher) % 2 != 0:
        cipher += "0"
        len_chk = 1
        
    # msg to matrices
    row = 2
    col = int(len(cipher)/2)
    msg2d = np.zeros((row, col), dtype=int)
    
    itr1 = 0
    itr2 = 0
    for i in range(len(cipher)):
        if i%2 == 0:
            msg2d[0][itr1]= int(ord(cipher[i]) - 65)
            itr1 += 1
        else:
            msg2d[1][itr2] = int(ord(cipher[i]) - 65)
            itr2 += 1
 
    
    # key to 2x2
    key2d = np.zeros((2,2), dtype=int)
    itr3 = 0
    for i in range(2):
        for j in range(2):
            key2d[i][j] = ord(key[itr3]) - 65
            itr3 += 1
 
    # finding determinant
    deter = key2d[0][0] * key2d[1][1] - key2d[0][1] * key2d[1][0]
    deter = deter % 26
 
    # finding multiplicative inverse
    for i in range(26):
        temp_inv = deter * i
        if temp_inv % 26 == 1:
            mul_inv = i
            break
        else:
            continue
    
    # adjugate matrix
    # swapping
    key2d[0][0], key2d[1][1] = key2d[1][1], key2d[0][0]
    
    #changing signs
    key2d[0][1] *= -1
    key2d[1][0] *= -1
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    key2d[0][1] = key2d[0][1] % 26
    key2d[1][0] = key2d[1][0] % 26
    
    # multiplying multiplicative inverse with adjugate matrix
    for i in range(2):
        for j in range(2):
            key2d[i][j] *= mul_inv
    
    # modulo
    for i in range(2):
        for j in range(2):
            key2d[i][j] = key2d[i][j] % 26
            
    # cipher to plaintext
    decryp_text = ""
    itr_count = int(len(cipher)/2)
    if len_chk == 0:
        for i in range(itr_count):
            temp1 = msg2d[0][i] * key2d[0][0] + msg2d[1][i] * key2d[0]
[1]
            decryp_text += chr((temp1 % 26) + 65)
            temp2 = msg2d[0][i] * key2d[1][0] + msg2d[1][i] * key2d[1]
[1]
            decryp_text += chr((temp2 % 26) + 65)
        # for
    else:
        for i in range(itr_count-1):
            temp1 = msg2d[0][i] * key2d[0][0] + msg2d[1][i] * key2d[0]
[1]
            decryp_text += chr((temp1 % 26) + 65)
            temp2 = msg2d[0][i] * key2d[1][0] + msg2d[1][i] * key2d[1]
[1]
            decryp_text += chr((temp2 % 26) + 65)
        # for
    # if else
    
    print("Decrypted text: {}".format(decryp_text))
    
 
plaintext = "Secret Message"
plaintext = plaintext.upper().replace(" ","")
key = "hill"
key = key.upper().replace(" ","")
ciphertext = cipher_encryption(plaintext, key)
cipher_decryption(ciphertext, key)
    
[[ 7  8]
[11 11]]
Encrypted text: CIUBYTMUKGWO
Decrypted text: SECRETMESSAG
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To examine the cryptanalysis of a Hill 2 x 2 cipher, you attack it by measuring 
the frequencies of all the digraphs that occur in the ciphertext. In standard 
English, the most common digraph is th, followed by he. If you know that the 
Hill cipher has been employed and the most common digraph is kx, followed 
by vz, you would guess that kx and vz correspond to th and he, respectively. 
Once you have a better understanding of frequency analysis, you will revisit 
this cipher and break it without a key.

Column Transposition
The column transposition cipher is based on a geometric arrangement. While 
relatively insecure as a standalone cipher, columnar transposition can be a pow-
erful enhancement to other systems. A keyword is chosen as a permutation of 
N columns. The message is then written in a grid with N columns. Finally, in 
the order of the permutation, the columns are taken as the ciphertext. The key-
word in this case is 11 characters long. The columns are read off in the letters’ 
numerical order. The order is represented by the numbers under the keyword 
to give you a visual representation. See Figure 3.1.

The following code reworks the example to be a shorter (it is really long) and 
removes some debug and fairly self-evident comments in the code. Note that 
this code works only on Python 3:

def cipher_encryption(plain_text, key):
 
    keyword_num_list = keyword_num_assign(key)
    num_of_rows = int(len(plain_text) / len(key))
 
    # break message into grid for key
    arr = [[0] * len(key) for i in range(num_of_rows)]
    z = 0
 

Figure 3.1:  Column transposition table
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    for i in range(num_of_rows):
        for j in range(len(key)):
            arr[i][j] = plain_text[z]
            z += 1
 
    num_loc = get_number_location(key, keyword_num_list)
 
    cipher_text = ""
    k = 0
    for i in range(num_of_rows):
        if k == len(key):
            break
        else:
            d = int(num_loc[k])
 
        for j in range(num_of_rows):
            cipher_text += arr[j][d]
        k += 1
    return cipher_text
 
def get_number_location(key, keyword_num_list):
    num_loc = ""
    for i in range(len(key) + 1):
        for j in range(len(key)):
            if keyword_num_list[j] == i:
                num_loc += str(j)
    return num_loc
 
def keyword_num_assign(key):
    alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    keyword_num_list = list(range(len(key)))
    init = 0
    for i in range(len(alpha)):
        for j in range(len(key)):
            if alpha[i] == key[j]:
                init += 1
                keyword_num_list[j] = init
    return keyword_num_list
 
def print_grid(plain_text, key):
 
    keyword_num_list = keyword_num_assign(key)
 
    for i in range(len(key)):
        print(key[i], end = " ", flush=True)
 
    print()
    for i in range(len(key)):
        print(str(keyword_num_list[i]), end=" ", flush=True)
    print()
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    print("-------------------------")
 
    # in case characters don't fit the entire grid perfectly.
    extra_letters = len(plain_text) % len(key)
 
    dummy_characters = len(key) - extra_letters
 
    if extra_letters != 0:
        for i in range(dummy_characters):
            plain_text += "."
 
    num_of_rows = int(len(plain_text) / len(key))
 
    # Converting message into a grid
    arr = [[0] * len(key) for i in range(num_of_rows)]
    z = 0
 
    for i in range(num_of_rows):
        for j in range(len(key)):
            arr[i][j] = plain_text[z]
            z += 1
 
    for i in range(num_of_rows):
        for j in range(len(key)):
            print(arr[i][j], end=" ", flush=True)
        print()
 
def cipher_decryption(encrypted, key):
 
    keyword_num_list = keyword_num_assign(key)
    num_of_rows = int(len(encrypted) / len(key))
 
    num_loc = get_number_location(key, keyword_num_list)
 
    # Converting message into a grid
    arr = [[0] * len(key) for i in range(num_of_rows)]
 
    # decipher
    plain_text = ""
    k = 0
    itr = 0
 
    for i in range(len(encrypted)):
        d = 0
        if k == len(key):
            k = 0
        else:
            d: int = int(num_loc[k])
        for j in range(num_of_rows):
            arr[j][d] = encrypted[itr]
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            itr += 1
        if itr == len(encrypted):
            break
        k += 1
 
    print()
 
    for i in range(num_of_rows):
        for j in range(len(key)):
            plain_text += str(arr[i][j])
    return plain_text
 
plain_text = "Attack by sea and land at dawn!"
key = "fleet"
 
msg = plain_text.replace(" ","").upper()
msgkey = key.upper()
 
encrypted = cipher_encryption(msg, msgkey)
decrypted = cipher_decryption(encrypted, msgkey)
 
print ("Plain Text: " + plain_text)
print ("Encrypted Text: " + encrypted)
print ("Decrypted Text: " + decrypted)
print ()
print_grid(msg, key)

Affine Cipher
Next on our list is the Affine cipher. The Affine cipher is a mono-alphabetic 
substitution cipher. The difference with the Affine cipher is that each letter is 
mapped to a numeric equivalent, encrypted using a mathematical function, 
and then converted back to a letter. While using the mathematical function may 
sound difficult, the process is fundamentally a standard substitution cipher with 
a set of rules that govern which letters map to other letters. The mathematical 
function makes use of the modulo m, where m is the length of the alphabet. 
Each letter is mapped to a number as shown in the following grid where A = 
0, B = 1, . . . , Y = 24, Z = 25:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

The encryption process of the Affine cipher uses modular arithmetic to trans-
form letters into their corresponding integers and then converts the integer into 
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another number, which in turn is converted back into a letter. The encryption 
function for a single letter would look like the following:

Encrypt ( x ) = (a x + b) mod m

where x is the integer represented by the letter and m is the number of letters 
in the alphabet.

To decrypt the Affine cipher, you must find the inverse function. The first step 
is to convert the encrypted letter into an integer, use a mathematical function 
to convert the number to another number, and then convert the number back 
into a letter. The decryption process would look like the following:

Decrypt ( x ) = a^-1 (x - b) mod m

where x is the integer represented by the letter, m is the number of letters in the 
alphabet, and a^−1 is the modular multiplicative inverse of a modulo m . We 
will explore the multiplicative inverse of a modulo in more detail in the next 
chapter. If you find yourself having a hard time understanding the code, feel 
free to review the next chapter and come back to this cipher.

For now, you will see a working example of the Affine cipher in practice. 
Let’s re-examine the formula for the encryption process: E(x) = (a x + b). You can 
use the previous table to find the letter in the top row and the corresponding 
integer in the second row. You are left needing to know what the value is for 
both a and b. This is the key for the cipher. In this case, we will set the value of  
a = 17 and b = 20:

Plaintext C O D E B O O K

Value of x 02 14 03 04 01 14 14 10

ax + b % 26 02 24 19 10 11 24 24 8

Encrypted C Y T K L Y Y I

Examine the letter E in the table. The letter maps to integer 04. You can use 
Python to validate the math using the following:

>>>  print ((17 * 4 + 20) % 26)
10

The multiplicative inverse for the Affine cipher is D(x) = 23 * (x − b) % 26. You 
will learn how it is derived in the next chapter. You should find that you are 
able to decode the cipher using the following table.

Encrypted C Y T K L Y Y I

Encrypted x 02 24 19 10 11 24 24 8

23 * (x-b) % 26 02 14 03 04 01 14 14 10

Plaintext C O D E B O O K



92	 Chapter 3 ■ Classical Cryptography

To prove the previous encryption and decryption scheme, examine the decryp-
tion of the letter K. The letter maps to integer 04. You can use Python to validate 
the math using the following:

>>>  print ((23 * (10 - 20) % 26))
4

This explanation should give you a bit of insight as you examine the following 
Python script for implementing the Affine cipher:

# Extended Euclidean Algorithm for finding modular inverse 
# eg: modinv(7, 26) = 15 
def egcd(a, b): 
    x,y, u,v = 0,1, 1,0
    while a != 0: 
        q, r = b//a, b%a 
        m, n = x-u*q, y-v*q 
        b,a, x,y, u,v = a,r, u,v, m,n 
    gcd = b 
    return gcd, x, y 
  
def modinv(a, m): 
    gcd, x, y = egcd(a, m) 
    if gcd != 1: 
        return None  # modular inverse does not exist 
    else: 
        return x % m 
  
  
# affine cipher encryption function  
# returns the cipher text 
def encrypt(text, key): 
    ''' 
    E = (a * x + b) % 26 
    '''
    return ''.join([ chr((( key[0]*(ord(t) - ord('A')) + key[1] ) % 26)  
                  + ord('A')) for t in text.upper().replace(' ', '') ]) 
  
  
# affine cipher decryption function  
# returns original text 
def decrypt(cipher, key): 
    ''' 
    D = (a^-1 * (x - b)) % 26 
    '''
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    return ''.join([ chr((( modinv(key[0], 26)*(ord(c) - ord('A') - 
key[1]))  
                    % 26) + ord('A')) for c in cipher ]) 
  
  
# Test the encrypt and decrypt functions 
def main(): 
    # declaring text and key 
    text = 'CODEBOOK'
    key = [17, 20] 
  
    # calling encryption function 
    encrypted_text = encrypt(text, key) 
  
    print('Encrypted Text: {}'.format(encrypted_text )) 
  
    # calling decryption function 
    print('Decrypted Text: {}'.format
    (decrypt(encrypted_text, key) )) 
  
  
if __name__ == '__main__': 
    main() 

Summary

Maintaining password best practices will help mitigate against brute-force 
attacks on your data. If you are responsible for creating your own authentication 
system, it is highly recommended that you hash, salt, and/or stretch passwords 
. As you have learned, just encrypting the data is not enough. In fact, in the next 
chapter, you will learn how to use Python to crack historical ciphers. We will 
be building on the mathematical concepts that will enable you to determine the 
language and encryption scheme of several historical ciphers and determine 
methods toward their cryptanalysis.
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By now, you have a basic understanding of historical ciphers and their cryptanal-
ysis using Python. In this chapter, you’ll turn your attention to the mathematics 
that is essential to understanding cryptography through the remainder of this 
book. This chapter introduces basic group theory and the Chinese remainder 
theorem, shows how to solve systems of linear equations, and gives a more 
in-depth look at modular arithmetic. You’ll learn the proper importance of 
secure pseudorandom number generators and their use in cryptography. This 
chapter is the basis for the remainder of this book as you explore public-key 
cryptography. Finally, you’ll start to construct a frequency analysis (FA) module 
that has a wide range of cryptanalysis functions. Through this chapter, you’ll 
gain cryptographic knowledge as you do the following:

■■ Gain an understanding of modular arithmetic

■■ Understand the importance of the greatest common divisor (GCD)

■■ Gain an understanding of group theory

■■ Gain an understanding of pseudorandom numbers

■■ Create a Python script for frequency analysis

Cryptographic Math 
and Frequency Analysis

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Modular Arithmetic and the Greatest Common Devisor

You witnessed briefly in the previous chapter how Python uses modular arithmetic 
in cryptography. In this chapter, you’ll gain a greater understanding of it. The 
logic of modular arithmetic began with the quotient-remainder theorem. The 
quotient-remainder theorem states that for every integer A and positive B there 
exist different integers Q and R such that: A = B * Q + R, 0 = < r = < b. When  
a = 95 and b = 10, what is the unique value of q (quotient) and r (remainder)? 
You find that the quotient equals 9 and the remainder equals 5.

Once you understand the quotient-remainder theorem, it is easier to under-
stand our first bit of cryptographic math: modular arithmetic.

Here is an example: 23 ≡ 2(mod7), which reads as “23 is equivalent to 2 mod 
7.” You can also type it into a search engine as 23 mod 7 to see the answer. You 
can further examine the modulo by stating that a ≡ b (mod q) when a minus 
b is a multiple of q. Another way to state it numerically would be: 123 ≡ 13  
(mod 11) because 123 – 13 = 110 = 11 * 10. An alternative way to think about it is to 
examine 53 (mod 13), which would be to say that 53 is equivalent to 53 − 13 = 40,  
which is equivalent to 27, which is equivalent to 14, which is equivalent to 
1, which is equivalent to −12, which is equivalent to −25, and so on. In fact, 
53 ≡ {53 + k⋅13|∀ k ∈Z} (you can read that as “is equivalent to the set of all numbers 
of form 53 plus an integer multiple of 13”). As shown in the previous chapter, 
we take the modulus by using the % sign.

To illustrate this example in Python, type the following:

>>> 53 % 13
1
>>> 40 % 13
1
>>> 27 % 13
1
>>> 14 % 13
1
>>> -12 % 13
1

Now that you understand modular arithmetic, we turn our attention to the 
greatest common divisor (GCD). The GCD is the largest number that perfectly 
divides two integers: a and b. For example, the GCD of 12 and 18 is 6. This is 
an excellent opportunity to introduce Euclid’s algorithm, which is a technique 
for finding the GCD of two integers with negligible effort. To find the GCD of 
two integers A and B, use the following rules:

If A = 0 then GCD(A, B) = B

If B = 0 then GCD(A, B) = A
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A = B * Q + R and B ≠ 0 then GCD(A, B) = GCD(B,R)

Therefore, write A using the quotient remainder form: A = B * Q + R

Find GCD(B, R)

Euclid’s algorithm works by continuously dividing one number into another 
and calculating the quotient and remainder at each step. Each phase produces a 
decreasing sequence of remainders, which terminate at zero, and the last non-
zero remainder in the sequence is the GCD. You will revisit Euclid’s algorithm 
shortly when you examine the modular inverses; for now, you can use the 
algorithm to write a GCD function in Python:

def gcd(a,b):
  if b == 0:
    return a
  else:
    return gcd(b, a % b)
    
print(gcd(12,18))

Now that you know how to create your own GCD function, note that it is 
very inefficient due to its use of recursion. Prefer using Python’s built-in GCD 
function, which is part of the standard Python math library. You will see an 
example of this when you explore Euler’s totient function later in this chapter.

Prime Numbers

Prime numbers in cryptography are vital to the security of our encryption 
schemes. Prime factorization, also known as integer factorization, is a mathematical 
problem that is used to secure public-key encryption schemes. This is achieved 
by using extremely large semiprime numbers that are a result of the multi-
plication of two prime numbers. As you may remember, a prime number is 
any number that is only divisible by 1 and itself. The first prime number is 2. 
Additional prime numbers include 3, 5, 7, 11, 13, 17, 19, 23, and so on. An infinite 
number of prime numbers exist, and all numbers have one prime factorization. 
A semiprime number, also known as biprime, 2-almost prime, or a pq number, 
is a natural number that is the product of two prime numbers. The semiprimes 
less than 50 are 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, and 49.

Prime numbers are significant in cryptography. Here is a simple Python script 
that tests if an integer value is prime:

def isprime(x):
    x = abs(int(x))
    if x < 2:
        return "Less 2", False
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    elif x == 2:
        return True
    elif x % 2 == 0:
        return False    
    else:
        for n in range(3, int(x**0.5)+2, 2):
            if x % n == 0:
                return n, False
        return True
        
print (isprime(100000007))

Computationally speaking, it is easy to generate large prime numbers that 
will require most humans to either perform math on paper or use a computer. 
You can calculate a fairly large number and then check if there are any available 
factors. Take, for example, 19 × 13 = 589. Both 19 and 13 are prime numbers as 
their only factors are themselves and 1; the product of the two numbers results 
in a semiprime. Multiplying 19 and 13 together is straightforward. However, 
finding the factors of 589 is a bit more challenging. To find all factors, you will 
need to examine all of the primes that are less than 589 until you find which 
prime numbers are used. You can achieve this reasonably quickly for smaller 
numbers, but once you start dealing with larger numbers, the amount of pos-
sible numbers that are required to check becomes so large that even modern 
computers are not able to calculate them within a reasonable time frame.

Prime Number Theorem
To estimate the generation of prime numbers, you can use the prime number 
theorem. The prime number theorem returns an approximate value for the 
number of primes less than or equal to a provided positive real number x. The 
usual notation for this number is π(x), so that π(2) = 1, π(3.5) = 2, and π(10) = 4. 
To generate large prime numbers, you will need to take an approximation and 
then use a primality test to verify the number. You will see how this works at 
the end of this section when you review the code listing for generating large 
prime numbers.

You can write a number of primality tests in Python. Some of the examples 
provided in this chapter include the school primality test, Fermat’s little the-
orem, and the Miller-Rabin primality test.

School Primality Test
The school primality test solves the problem of whether an integer is prime or 
not by iterating through all of the numbers starting from 2 to (n/2) using a loop 
for every number check to see if it divides n. If the program finds any number 
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that divides n, the program will return false. In the reverse, if no numbers are 
found between 2 and (n/2) that divides n, the value is prime.

Here’s a school primality test method:

# A school primality test method 
def isPrime(n): 
    # Corner case 
    if n <= 1: 
        return False
  
    # Check from 2 to n-1 
    for i in range(2, n): 
        if n % i == 0: 
            return False; 
  
    return True
  
print(isPrime(11)) 
print(isPrime(14))

For a little cleaner execution, you can optimize the preceding code by observing 
that all primes are of the form 6k ± 1, with the exception of 2 and 3. This is due 
to the fact that all integers can be expressed as (6k ± i) for some integer k and 
for i = −1, 0, 1, 2, 3, or 4; 2 divides (6k + 0), (6k + 2), (6k + 4); 3 divides (6k + 3). 
Therefore, a more efficient method is to test if n is divisible by 2 or 3, then to 
check through all the number of the form 6k ± 1.

# A optimized school method based 
def isPrime(n): 
    # Corner cases 
    if (n <= 1): 
        return False
    if (n <= 3): 
        return True
 
    # This is checked so that we can skip 
    # middle five numbers in below loop 
    if (n % 2 == 0 or n % 3 == 0) : 
        return False
 
    i = 5
    while(i * i <= n): 
        if (n % i == 0 or n % (i + 2) == 0): 
            return False
        i = i + 6
 
    return True
 
print(isPrime(11))
print(isPrime(15))    
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Fermat’s Little Theorem
Fermat’s little theorem is used in number theory to compute the powers of inte-
gers modulo prime numbers. The theorem is a special case of Euler’s theorem. 
(We explore Euler’s theorem later in this chapter.) Fermat’s little theorem states 
let p be a prime number, and a be any integer.

If n is a prime number, then for every a, 1 < a < p − 1,

ap − 1 ≡ 1 (mod p)

or

ap − 1 % p = 1
To ensure this makes sense, let’s look at an example:

p = prime integer number

a = integer which is not a multiple of p

According to Fermat’s little theorem,

2(17 − 1) ≡ 1 mod (17)

65,536 % 17 ≡ 1

This means (65,536 – 1) is a multiple of 17. This is proven by multiplying 17 * 
3,855, which equals (65,536 – 1) or 65,535. If you know the modulo m is prime, 
then you can also use Fermat’s little theorem to find the inverse. We will cover 
this in more detail later in this chapter.

Here is a quick and easy function that will return whether an integer is 
prime or not:

>>> def CheckIfProbablyPrime(x):
...     return pow(2, x-1, x) == 1
 
>>> CheckIfProbablyPrime(19)
True
>>> CheckIfProbablyPrime(31)
True
>>> CheckIfProbablyPrime(589)
False

Miller-Rabin Primality Test
Similar to the other tests featured in this section, the Miller-Rabin primality 
test is a primality test; it was first discovered by M. M. Artjuhov in 1967. It was 
later rediscovered in 1976 by Gary L. Miller. Miller’s version of the test is deter-
ministic. Michael Rabin further modified the algorithm in 1980 to obtain an 
unconditional probabilistic algorithm.
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In computer science, a deterministic algorithm is one that will always produce 
the same output when given a particular set of inputs. Deterministic algorithms 
are the most studied. To get a better understanding of how the Miller-Rabin 
primality test works, enter the following Python code:

# Miller-Rabin primality test 
import random 
 
# Utility function to do modular exponentiation. 
# Returns (x^y) % p 
def power(x, y, p): 
    
    # Initialize result 
    res = 1; 
    
    # Update x if it is more than or equal to p 
    x = x % p; 
    while (y > 0): 
        
        # If y is odd, multiply x with result 
        if (y & 1): 
            res = (res * x) % p; 
 
        # y must be even now 
        y = y>>1; # y = y/2 
        x = (x * x) % p; 
    
    return res; 
 
# This function is called for all k trials. It returns 
# false if n is composite and returns false if n is 
# probably prime. d is an odd 
# number such that d*2<sup>r</sup> = n-1 for some r >= 1 
 
def millerTest(d, n): 
    
    # Pick a random number in [2..n-2] 
    # Corner cases make sure that n > 4 
    a = 2 + random.randint(1, n - 4); 
 
    # Compute a^d % n 
    x = power(a, d, n); 
 
    if (x == 1 or x == n - 1): 
        return True; 
 
    # Keep squaring x while one of the following doesn't happen 
    # (i) d does not reach n-1 
    # (ii) (x^2) % n is not 1 
    # (iii) (x^2) % n is not n-1
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    while (d != n - 1): 
        x = (x * x) % n; 
        d *= 2; 
 
        if (x == 1): 
            return False; 
        if (x == n - 1): 
            return True; 
 
    # Return composite 
    return False; 
 
# It returns false if n is composite and returns true if n 
# is probably prime. k is an input parameter that determines 
# accuracy level. Higher value of k indicates more accuracy. 
def isPrime(n, k): 
    
    # Corner cases 
    if (n <= 1 or n == 4): 
        return False; 
    if (n <= 3): 
        return True; 
 
    # Find r such that n = 
    # 2^d * r + 1 for some r >= 1 
    d = n - 1; 
    while (d % 2 == 0): 
        d //= 2; 
 
    # Iterate given nber of 'k' times 
    for i in range(k): 
        if (millerTest(d, n) == False): 
            return False; 
 
    return True; 
 
# Main Program 
# Number of iterations 
k = 4; 
 
print("All primes smaller than 1000: ");
print();
for n in range(1,1000): 
    if (isPrime(n, k)): 
        print(n , end=" ")
 
# print 3 blank lines
print ('\n' * 3)
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Figure 4.1 shows the use the Miller-Rabin primality test to display all prime 
numbers between 1 and 1000.

Now that you have a better understanding of primality tests, you can use 
the Miller-Rabin primality test to verify if much larger numbers are prime. In 
the next code listing, you can test to make sure that a specific prime satisfies 
a specific set of bits such as 1,024 or 2,048; large primes such as these will be 
used in stronger encryption that will be introduced in Chapter 8. In the next 
section, you will see the is_prime() function used to ensure that the numbers 
being generated are prime.

The code will use the prime number theorem to generate an approximation 
of π(n) because when n tends to infinity, π(n)/(n/ln(n)) = 1. The probability that 
a randomly chosen number is prime is 1/ln(n). This is due to the fact that there 
are n positive integers ≤ n and approximately n/ln(n) primes, and (n/ln(n))/ 
n = (1/ln(n)). To get an understanding of what the theorem states, examine the 
probability of finding a prime number of 1,024 bits. Using the prime number 
theorem, you will see that the probability is 1/(ln(21,024)) = (1/710). Prime numbers 
have to be odd since 2 will divide into any even number; the single exception 
is the number 2. When attempting to generate a large prime, you can increase 
the probability by 2, so on average, to generate a 1,024-bit prime number, you 
may need to test 355 randomly generated numbers.

Examine the following Python code to test large prime numbers:

def is_prime(n, k=128):
    """ Test if a number is prime
        Args:
            n -- int -- the number to test
            k -- int -- the number of tests to do
        return True if n is prime
    """
    # Test if n is not even.
    # But take care, 2 is prime !
    if n == 2 or n == 3:
        return True

Figure 4.1:  Miller.py test
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    if n <= 1 or n % 2 == 0:
        return False
    # find r and s
    s = 0
    r = n - 1
    while r & 1 == 0:
        s += 1
        r //= 2
    # do k tests
    for _ in range(k):
        a = randrange(2, n - 1)
        x = pow(a, r, n)
        if x != 1 and x != n - 1:
            j = 1
            while j < s and x != n - 1:
                x = pow(x, 2, n)
                if x == 1:
                    return False
                j += 1
            if x != n - 1:
                return False
    return True

Generate Large Prime Numbers
Now that you have the code listings and knowledge to test large prime  
numbers, you can use the next block of code to generate the semiprime of the 
two large prime numbers. The security of many public-key cryptography algo-
rithms is based on the fact that it is difficult to generate extremely large primes. 
Extremely large primes are used in one of the most popular and secure encryption  
algorithms, known as the RSA algorithm; you will learn more about RSA encryp-
tion in Chapter 8.

In the next example, you will generate two prime numbers, p and q, and cal-
culate their semiprime (product) n where n = p * q. The larger the values p and 
q need to be, the harder it will be to find them given only the value of n. Review 
Figure 4.2 to see the output of the following code, which generates the value of 
n using two prime numbers p and q.

# Generate two large prime numbers 
 
from random import randrange, getrandbits
 
def is_prime(n, k=128):
    """ Test if a number is prime
        Args:
            n -- int -- the number to test
            k -- int -- the number of tests to do
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        return True if n is prime
    """
    # Test if n is not even.
    # But take care, 2 is prime !
    if n == 2 or n == 3:
        return True
    if n <= 1 or n % 2 == 0:
        return False
    # find r and s
    s = 0
    r = n - 1
    while r & 1 == 0:
        s += 1
        r //= 2
    # do k tests
    for _ in range(k):
        a = randrange(2, n - 1)
        x = pow(a, r, n)
        if x != 1 and x != n - 1:
            j = 1
            while j < s and x != n - 1:
                x = pow(x, 2, n)
                if x == 1:
                    return False
                j += 1
            if x != n - 1:
                return False
    return True
 
def generate_prime_candidate(length):
    """ Generate an odd integer randomly
        Args:
            length -- int -- the length of the number to generate, in bits
        return a integer
    """
    # generate random bits
    p = getrandbits(length)
    # apply a mask to set MSB and LSB to 1
    p |= (1 << length - 1) | 1
    return p
 
def generate_prime_number(length=1024):
    """ Generate a prime
        Args:
            length -- int -- length of the prime to generate, in bits
        return a prime
    """
    p = 4
    # keep generating while the primality test fails
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    while not is_prime(p, 128):
        p = generate_prime_candidate(length)
    return p
 
print('Generate the value of n using two prime numbers p and q:')
print('\n')
print(generate_prime_number())
print('\n')

Basic Group Theory

In abstract algebra and other fields of mathematics, group theory studies the 
algebraic structures known as groups. The concept of a group is central to abstract 
algebra: other familiar algebraic structures, such as vector spaces, rings, and fields, 
can all perform as groups endowed with additional operations and axioms. Group 
theory comes into play as you explore the Diffie-Hellman and RSA encryption 
systems in Chapter 8. For now, consider the idea that elements in groups (e.g., 
integers) have orders (i.e., cycle lengths), and this lets you use modular arithmetic 
to speed up significant computations. Group theory is exploited to build cryp-
tographic schemes and the associated cryptanalysis.

To start your exploration into the basics of group theory, we define a group 
as a set, G, together with a binary operation * (called the group law of G) that 
combines any two elements to form another element. The operation may be mul-
tiplication, addition, rotation, composition, or any other action that consumes 
two elements and returns one.

To be eligible as a group, the set and operation (G, *) requires four properties, 
known as the group axioms.

■■ Closure: a, b ∈ G implies a * b ∈ G

■■ Identity: There exists e ∈ G such that a * e = e * a = a for all a ∈ G 

■■ Inverse: For each a ∈ G, there exists a−1 ∈ G such that a * a−1 = a−1 * a = e

■■ Associativity: a, b, c ∈ G implies (a * b) * c = a* (b * c)

Figure 4.2:  Generate_large_primes.py
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Additionally, a group is said to be abelian if it satisfies the commutativity 
property, as shown here:

A * b = b * a for all a, b ∈ G

This is simply stating that a group in which the result of applying the group 
G operation to two elements (a, b) has no dependency on the order in which 
they are written.

Furthermore, in an additive group, you write 0 instead of e; in a multiplicative 
group, you write 1 instead of e.

An example of this is shown in modular arithmetic. Suppose you have the 
group G = {0, 1, 2, 3, 4}; the group falls under the operation of addition modular 
5. Review the following examples: 0 + 0 = 0, 0 + 4 = 4, 1 + 4 = 0, 2 + 4 = 1, 3 + 3 
= 1. You will notice that adding any two elements in G together makes another 
element in G. This example has an identity 0: x + 0 = 0 + x for each x. You should 
also notice that every element has an inverse that will return it to 0: 4 + 1 = 0, 3 + 
2 = 0. The group example can be written as Z5 (which reads “Z five” or “Z mod 
5”). Modular arithmetic is also known as clock arithmetic; if you are struggling 
with the concept, think of a clock but instead of starting with 1, use 0. This will 
give you the group G = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}; when you add an hour 
to 11 (11 + 1), you return to 0. Therefore, 11 + 2 = 1, 11 + 3 = 2.

To continue, in a multiplicative group of numbers, the set {0, 1, 2, 3, 4} is not 
a group under multiplication modulo 5 since 1 is the identity element but 0 ◦ 
x = 0 and there can’t be any element that would send 0 to 1; there is no inverse 
for 0 under multiplication modulo 5, but the group G = {1, 2} is a group multi-
plication modulo 3 (2⋅2 = 1, 2 is its inverse).

Orders of Elements
Suppose you have a group G with an identity element e. The order of x ∈ G 
is the smallest positive integer n such that xn = e. In abstract algebra, this is 
expressed as |x| = n. If there is no such n, then x has infinite order. Review the 
following example.

	 N OT E     While this looks like the same notation as the absolute value, remember 
that in abstract algebra it is different.

The nonzero real numbers form a group under multiplication. You must 
omit zero since you cannot divide by zero; zero does not have a multiplicative 
inverse. In abstract algebra, you indicate that you are omitting zero with the 
symbol Rx. As briefly mentioned earlier, the identity element in any group is 1. 
Incidentally, the order of |1| = 1; this is because 11 = 1. Furthermore, the order 
of −1 is 2, notated as |−1| = 2; this is because −12 = 1. Other than 1 and −1, no 
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other nonzero real number can be raised to a positive integer power to get 1. 
Therefore, all other real numbers have an infinite order in this group.

Now suppose you have a group G; it is possible to have a subset of G that is 
also a group. In abstract algebra, this is called a subgroup, and it is typically 
represented by the letter H. You specify that H is a subgroup of G by using the 
notation H ≤ G. Technically, you can use the notation H < G but G is also con-
sidered to be a subset of G and H could equal G.

When working with groups, you typically use additive notation (+) or 
multiplicative notation ( ); this is true even when the elements of the group are 
not numbers, and the group operation is not numerical but is function com-
positions or geometrical transformations. A group G is considered a “cyclic” 
group if it can be generated by a single element: G = < >. Review the following 
definition for cyclic groups:

Let G be a group with operation x

Pick x ∈ G

Think about the smallest subgroup of G that contains x. First, you have x, but 
any group that contains x must also contain its inverse: x−1. It also must con-
tain the identity element, which you should remember is 1 for a multiplicative 
group. It must also contain all powers of x: x2, x3, x4. Don’t forget all powers of 
the inverse of x: x−1, x−2, x−3, x−4. Therefore, a set of all integral powers of x would 
be the smallest subgroup of G; it would look as follows: {. . . x−4, x−3, x−2, x−1, 1, x, 
x2, x3, x4, . . .}. This is an example of a group generated by x.

<x> = {. . . x−4, x−3, x−2, x−1, 1, x, x2, x3, x4, . . .} = Group generated by x

If G = <x> for some x, then G is a cyclic group.

It is probably worth reviewing the same definition using additive notation:

Let H be a group with operation +

Pick y ∈ H.

The group generated by y is the smallest subgroup of H containing y. It must 
contain y, its inverse (−y), and the identity element 0. It must also contain all 
multiples of y:

<y> = {. . . , − 3y, − 2y, − y, 0, y, 2y, 3y, . . .} = Group generated by y.

If H = <y> for some y, then we call H a cyclic group.

There are two types of cyclic groups: infinite and finite. The infinite group 
contains all integers. The finite group contains the integers mod n. Cyclic groups 
are essential because of the fundamental theorem of finitely generated abelian 
groups. It states that any abelian group that is finitely generated can be broken 
apart into a finite number of cyclic groups and every cyclic group is the inte-
gers Z or the integers mod n. Cyclic groups are the building blocks for finite 
numbered abelian groups.
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Ideally, you now have a general idea of groups and subgroups. Enter “cosets”; 
these are objects in abstract algebra that help you find subgroups using Lagrange’s 
theorem. The theorem uses a simple rule that dramatically narrows down the 
possible list of subgroups.

Recall that the notation for group H is a subgroup of group G: H ≤ G. Every 
group has at least two subgroups. These include G itself and the trivial group = 
{e}. The trivial group consists of only the identity element. The idea of Lagrange’s 
theorem is to find if a group has more than these two subgroups. The theorem 
states: if H ≤ G, then the order of H divides the order of G.

Recall that the order of a group G is the number of elements in the group 
and it is denoted using the absolute value symbol |G|. This notation allows 
you to write Lagrange’s theorem by stating: H ≤ G ➜ |H| divides |G|. What 
the theorem is stating is that the subgroup H cannot be just any size and that 
there are strong restrictions on the subsets of G. Here is a simplified example:

Let G be a group with |G| = 323 = 17 × 19

Divisors of 323: 1, 17, 19, 323

The results of the theorem present the possible orders of the subgroups include 
1, 17, 19, and 323.

Every group has at least two subgroups: G (itself) and {e} (trivial group):

|G| = 323

|{e}| = 1

This means that if G has any other subgroups, their orders are 17 or 19. It is essential 
to understand that the theorem is not stating that there are indeed subgroups of 
order 17 and 19. In this case, it does, but there are many cases where it will not.

The proof of this is not that difficult. Mostly, a subgroup is closed under the 
operation in question, so if you have some element that is not in the subgroup, 
you can multiply or add it to the elements in the subgroup and get another set 
not equal to the subgroup that has the same size. Repeat the process, and you’ll 
chunk all the elements in G into “cosets” of H.

Modular Inverses

You’ll now turn your focus to modular inverses. For an integer a and a modulus 
m you want to find a number n; the notation looks like the following: a−1 such 
that n ° a ≡ 1 (mod m).

That is, it is the multiplicative inverse in the ring of integers modulo m. The 
multiplicative inverse of a modulo m exists if and only if a and m are coprime 
(i.e., if gcd(a, m) = 1).

For every number a and a prime p that ap − 1 ≡ 1 (mod p). If you need to com-
pute the inverse of a modulo p since a * ap − 2 = ap − 1 ≡ 1, when the modulus is 
prime, you can compute ap − 2 (mod p).
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If the modulus is prime, Python provides an internal function called pow that 
takes a, p − 2, and p to compute the inverse modulo. Consider the following 
example:

>>> a = 14
>>> p = 101
>>> a_inv = pow(a, p-2, p)
>>> a_check = a * a_inv % p 
>>> print("The modular inverse is ", a_inv)
The modular inverse is  65
>>> print("The check value should equal 1. It equals ", a_check)
The check value should equal 1. It equals 1

Fermat’s Little Theorem to Find the Inverse
As mentioned earlier in this chapter, we can use Fermat’s little theorem to cal-
culate the inverse if we know that m is prime:

a(m − 1) ≡ 1 (mod m)

a−1 ≡ am − 2 (mod m)

Here’s the Python code to calculate the inverse if we know that m is prime:

# Fermat's little theorem. 
# modular inverse of a under modulo m using 
# Assumption: m is prime 
  
def gcd(a,b): 
    if (b == 0): 
        return a 
    else: 
        return gcd(b, a % b) 
      
# To compute x^y under modulo m 
def power(x,y,m): 
  
    if (y == 0): 
        return 1
    p = power(x, y // 2, m) % m 
    p = (p * p) % m 
   
    return p if(y % 2 == 0) else  (x * p) % m 
 
# Function to find modular inverse of a under modulo m 
 
def modInverse(a,m): 
    if (gcd(a, m) != 1): 
        print("Inverse doesn't exist") 
   
    else:
        # If a and m are relatively prime, then 
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        # modulo inverse is a^(m-2) mode m 
        print("Modular multiplicative inverse is ", 
             power(a, m - 2, m)) 
  
a = 3
m = 11
modInverse(a, m) 

	 N OT E     In the preceding code listing, the code uses a gcd() function instead of 
using the built-in math library to help you understand how to code the GCD. You will 
find this helpful when you use the extended GCD.

Extending the GCD

To find the inverse when you have a nonprime modulus, you need to add a new 
trick: the extended Euclidean algorithm. The extended Euclidean algorithm is 
useful when two integers (a, b) are coprime; two numbers are said to be coprime 
if the only positive number that divides both numbers is 1.

The next example returns the inverse using the extended Euclidean algorithm:

def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    else:
        g, y, x = egcd(b % a, a)
        return (g, x - (b // a) * y, y)
 
def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('modular inverse does not exist')
    else:
        return x % m
        
a = 102721840089015263978980446 
p = 6768924473842051155435121
 
print modinv(a, p)
 
4751454584755824717584097

Euler’s Theorem

Earlier in this chapter, you were introduced to Fermat’s little theorem. We will 
now examine a generalization of Fermat’s theorem known as Euler’s theorem. 
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Both Fermat’s and Euler’s theorems play an important role in public-key cryp-
tography, which will be explored in greater detail in Chapter 8.

In number theory, Euler’s theorem, also known as Euler’s totient theorem or 
the Fermat–Euler theorem, states that if n and a are coprime positive integers, 
then aφ(n) ≡ 1 mod n where φ(n) is Euler’s totient function. In 1736, Leonhard 
Euler published his proof of Fermat’s little theorem, which Fermat had presented 
without proof. Subsequently, Euler presented other proofs of the theorem, cul-
minating with “Euler’s theorem” in his paper of 1763, in which he attempted to 
find the smallest exponent for which Fermat’s little theorem was always true.

Euler investigated the properties of numbers; he specifically studied the 
distribution of prime numbers. One crucial function he defined is named the 
PHI function; the PHI function measures the breakability of a number. Assume 
you have the number n; the function calculates the number of integers that are 
less than or equal to n and do not share any common factor with n; you see it 
in the following notation: ɸ [n]. For example, if you wanted to examine ɸ [8], 
you would examine all values from 1 to 8 and count all integers with which 8 
does not share a factor greater than 1; the numbers are 1, 3, 5, 7. The function 
produces 4. As it turns out, calculating the PHI of a prime number P is simple. 
ɸ [P] = P − 1. To calculate ɸ [7], you count all integers except 7 since none of the 
integers share a factor with 7; therefore, ɸ [7] = 6. Assume a larger prime such 
as 21,377. ɸ [21,377] = 21,376. The equation looks like the following:

ap − 1 ≡ 1 mod p

To take full advantage of this trick, which helps when you explore RSA, you 
need to see the general version. If you know the prime factorization of a mod-
ulus, then computing the Euler’s totient works as follows:

ɸ(p1
K1 ... pn

Kn) = ɸ(p1
K1) ... ɸ(pn

Ki − 1) where ɸ(pi
Ki) – pi

Ki − 1 = pKi – 1 ◦ (pi – 1)

We extend the ideas presented in this chapter into some classical number 
theory that also happens to be practical for cryptographers. Euler totient functions 
offer benefits to speed up modular inverse computations. You also learn why 
raising numbers to substantial powers is not expensive when you are working 
with modular arithmetic.

For instance:

ɸ(3 ◦ 5 ◦ 23) = ɸ(3) ◦ ɸ(5) ◦ ɸ(23) = 2 ◦ 4 ◦ 22 = 32

Euler’s totient function Φ(n) for an input n is the count of numbers in the 
format of {1, 2, 3, 4, 5, n} that are relatively prime to n, i.e., the numbers whose 
GCD with n is 1. Examine the following six examples, which calculate the Euler’s 
totient function Φ (n) in respect to the inputs 1 through 6. The output will be 
the number of positive integers that do not exceed n and also have no common 
divisors with n other than the common divisor 1:

Φ (1) = 1

gcd (1, 1) is 1
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Φ(2) = 1

gcd (1, 2) is 1, but gcd (2, 2) is 2

Φ (3) = 2

gcd (1, 3) is 1 and gcd (2, 3) is 1

Φ (4) = 2

gcd (1, 4) is 1 and gcd (3, 4) is 1

Φ (5) = 4

gcd (1, 5) is 1, gcd (2, 5) is 1,

gcd (3, 5) is 1, and gcd (4, 5) is 1

Φ (6) = 2

gcd (1, 6) is 1 and gcd (5, 6) is 1

Use the following Python to test Euler’s totient function on integers 1 through 
20. The output should resemble Figure 4.3.

 
import math
 
def phi(n):
    amount = 0        
    for k in range(1, n + 1):
        if math.gcd(n, k) == 1:
            amount += 1
    return amount
 
for n in range(1,20) :
    print("Φ(",n,") = ",phi(n))

To add a little pizzazz to your Python program, you can use the matplotlib 
library and create a graph, as shown here:

import math
import numpy as np 
from matplotlib import pyplot as plt
 
def phi(n):
    amount = 0        
    for k in range(1, n + 1):
        if math.gcd(n, k) == 1:
            amount += 1
    return amount
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for i in range (500): 
    phi_n = phi(i)
    #print (i ,phi_n)
    plt . plot (i ,phi_n , 'o ') 
    
plt.xlabel("Value of x") 
plt.ylabel("Value of y") 
plt.title("Euler's Theorem") 
plt.show()

Figure 4.4 shows the output of using Euler’s theorem and the MatPlot library 
to create a graph.

Figure 4.3:  Euler.py test

Figure 4.4:  EulerPlot.py test



	 Chapter 4 ■ Cryptographic Math and Frequency Analysis	 115

Pseudorandomness

You will now examine pseudorandom number generation (PRNG) and why it 
is insecure for use in cryptography. The goal of PRNG is to have a reproduc-
ible sequence of random-feeling numbers. PRNG offers benefits when running 
simulations that need to be consistent between each execution. Some examples 
of simulation that benefit from the consistency of a PRNG generator include 
testing stock market predictions, testing scientific experiments, rolling dice in 
games, and generating symmetric-key encryption.

In the early days of computing, when applications needed to simulate nuclear 
reactions but also needed to be reproducible in the case of an error in the program, 
John von Neumann generated one of the first pseudorandom generators using 
the middle-square method. The method generates a sequence of n-digit numbers 
based on the digits in the middle of the number and then squares them. For 
example, if you have a seed number of 682117, you square it to get 465283601689. 
The middle numbers are 283601. Square this number and repeat. So while the 
number appears random, you can reproduce the generated numbers as long as 
you start with the same seed.

Take a look at how this can be done using Python:

n = int(input("Please enter a six-digit number: "))
for i in range(1,10):
    n = int(str(n * n).zfill(12)[3:9])
    print(n)
 
Please enter a six-digit number: 682117
283601
429527
493443
485994
190168
163868
852721
133103
716408

PRNG in encryption needs to have two properties that ensure its security. 
When the properties exist, the PRNG is known as a cryptographically secure 
pseudorandom number generator (CSPRNG). A CSPRNG must have the following 
properties:

■■ Next-bit test: You should not be able to guess the next bit with no better 
than 50% probability. This means given Si + 1, Si + 2, Si + 3, . . . , Si + n you 
should not be able to guess Si + n + 1.

■■ State compromised extension: You should not be able to calculate  
Si, Si − 1, . . . , given Si + 1, . . . , Si + n.
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Breaking C’s rand() Function
In the C programming language, and most other software languages, the 
compiler implements pseudorandom number generators. Almost all module 
functions depend on the basic function random(), which generates a random 
float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne 
Twister algorithm as the core generator. It produces 53-bit precision floats and 
has a period of 2**19937 − 1. The underlying implementation in C, the rand() 
function, is both fast and thread safe. The Mersenne Twister is one of the most 
extensively tested random number generators in existence. However, being 
completely deterministic, it is not suitable for all purposes and is completely 
unsuitable for cryptographic purposes. The random module also provides the 
SystemRandom class, which uses the system function os.urandom() to generate 
random numbers from sources provided by the operating system:

def crand(seed):
    r=[]
    r.append(seed)
    for i in range(30):
        r.append((16807*r[-1]) % 2147483647)
        if r[-1] < 0:
            r[-1] += 2147483647
    for i in range(31, 34):
        r.append(r[len(r)-31])
    for i in range(34, 344):
        r.append((r[len(r)-31] + r[len(r)-3]) % 2**32)
    while True:
        next = r[len(r)-31]+r[len(r)-3] % 2**32
        r.append(next)
        yield (next >> 1 if next < 2**32 else (next % 2**32) >> 1)
 
my_generator = crand(123)
for i in range(5):
    print (next(my_generator))

The output for the program will match the “random” numbers produced 
here. If the numbers are predictable, then they are not random:

128959393
1692901013
436085873
748533630
776550279
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Solving Systems of Linear Equations

In this section, you will learn how to solve systems of linear equations using 
Python. Linear equations can increase the level of difficulty in breaking cryp-
tographic schemes by using large matrices to encode and decode messages. The 
first matrix is typically referred to as an encoding matrix. While we could start 
writing programs from scratch, linear equations have been made much sim-
pler using the NumPy library. NumPy also provides methods that will allow 
you to multiply matrices without having to worry about how the rows and 
columns are being multiplied. NumPy also provides linear algebra libraries to 
find inverses and determinates quickly. The inverse of a matrix is known as the 
decoding matrix. For our example, we examine the following:

1a + 1b = 35

2a + 4b = 94

These two equations will look like the following. Notice that the values from 
the first equation fill in the top row, while the values from the second fill the 
second row:

A X B
11
2 4

35
94

a

b

When we write this in matrices form, it should be in the form of AX = B.  
To solve this equation (and solve for X), you multiply both sides of the equation 
for the inverse of A (shown as A−1). A−1 multiplied by A will produce the iden-
tity matrix: A−1 AX = A−1B. This will allow us to isolate X such that X = A−1B. 
Completed, it should resemble the following:

	

1 1
2 4

35
94

a

b 	
Here is the Python code that will produce the matrices shown previously:

import numpy as np
 
# solve the following linear equation
print ('1a + 1b = 35')
print ('2a + 4b = 94')
 
A = np.matrix([[1,1],[2,4]])
B = np.matrix([[35],[94]])
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# find the inverse of A
A_inverse = np.linalg.inv(A)
print (A_inverse)
 
# solve for X
X = A_inverse * B
print (X)

You can alternatively use the NumPy array method to accomplish the same 
task, as shown here:

import numpy as np
 
# solve the following linear equation
print ('1a + 1b = 35')
print ('2a + 4b = 94')
 
# create equations
a = np.array([[1, 1],[2,4]])
b = np.array([35, 94])
 
# print answers
print (np.linalg.solve(a, b))

Now we will examine a practical example to show how matrices can be used 
for encryption.

In this example, we will encrypt the message “prepare to negotiate.”

Message = “prepare to negotiate”
The encoding matrix for this example is as follows:

– – –3 3 4
0 1 1
4 3 4

Assign a number to each letter in the alphabet much like you did for a Caesar 
cipher. The letters do not have to map to the same numbers as long as both the 
sender and receiver know the assignments. Python uses the ord() function to 
assign a letter to a numerical value. You can convert the number back to a letter 
using the chr() function.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

This message that we want to encrypt will look like the following:

P R E P A R E T O N E G O T I A T E

16 18 05 16 01 18 05 27 20 15 27 14 05 07 15 20 09 01 20 05
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Because we started with a 3 × 3 encoding matrix, we will break the enumerated 
message into a sequence of 3 x 1 vectors:

16
18
05

16
01
18

05
27
20

15
27
14

05
07
15

20
09
01

20
05
27

There are only 20 characters in the message; since we have a matrix with 21 
positions, we need to populate the last position with a space (27) to complete 
the last vector. We may now encode the message by multiplying each of the 
preceding vectors by the original encoding matrix:

– – –3 3 4
0 1 1
4 3 4

16 16 05 15 05 20 20
18 01 27 27 07 09 05
05 18 20 14 115 01 27

This will produce the following encoded message that can be transmitted 
in a linear form:

−122, 23, 138, −123, 19, 139, −176, 47, 181, −182, 41, 197, −96, 22, 101, −91, 10, 111, 
−183, 32, 203

To decrypt the message, the recipient writes the message as a sequence of a 
3 × 3 matrices and uses the inverse of the encoding matrix:

	

1 0 1
4 4 3
4 3 3– – – 	

With the inverse, you can perform matrix multiplication on the received 
message:

1 0 1
4 4 3
4 3 3

122 123 176 182 96 91 183
23 19 47 41 22

– – –

– – – – – –
110 32

138 139 181 197 101 111 203

The matrix multiplication should produce the following:

	

16 16 05 15 05 20 20
18 01 27 27 07 09 05
05 18 20 14 15 01 27

	
Once you have the matrix calculated, you should be able to expand the mes-

sage and map the numbers back to their original letters:

P R E P A R E T O N E G O T I A T E

16 18 05 16 01 18 05 27 20 15 27 14 05 07 15 20 09 01 20 05
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Frequency Analysis

The primary focus of this section is to teach the computer to recognize when 
a set of letters matches the frequency distribution of plaintext English. You 
can apply the information in this section in a number of different ways. The 
ultimate goal is to give you the tools you need to be able to crack a number of 
classical ciphers.

Frequency analysis is the study of the frequency of letters or the combination 
of letters. It is based on the fact that, within any written language, certain letters 
and combinations of letters will occur with varying frequencies. When you 
examine the frequency of letters used in the English language, you find that the 
letters E, T, A, and O are the most common, while Z, Q, and X are found with 
much less frequency. Examine Figure 4.5 to see the occurrence of each letter.

We will also find higher frequency of letter combinations such as TH, ER, ON, 
and AN. These combinations are known as bigrams or digraphs. There are also 
common pairs of repeating letters such as SS, EE, TT, and FF. When you encrypt 
English plaintext into ciphertext using many historical ciphers, these same 
properties will be preserved and can be exploited in a ciphertext-only attack.

As you will recall, historical substitution ciphers replace each letter in the 
plaintext with an alternate letter. If you use the Caesar cipher to encrypt the 
letter E with a key of 3, then each occurrence of E will now be H. If you have 
enough text to determine that H is the letter with the most frequency, then you 
may determine that the key is the difference between the letters H and E. This 

Figure 4.5:  FA.py
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would give you enough details to attempt to break the cipher. With the Caesar 
cipher, you will be able to brute-force a solution within 25 rounds. More advanced 
substitution ciphers, like the Vigenère cipher, offer a little more of a challenge.

We will first take a look at understanding how frequency analysis works; we 
will then apply the analysis to both the Caesar and the Vigenère cipher so that 
you can truly understand the power of frequency analysis. Frequency analysis 
isn’t always helpful. Take the case of the novel Gadsby. Gadsby is a 1939 novel 
by Ernest Vincent Wright written as a lipogram, which does not include words 
that contain the letter E. Our first example will take a small set of text and count 
the occurrence of each letter, as shown here:

# initializing string 
test_str = "We hold these truths to be self-evident, that all men are 
created equal, "
test_str += "that they are endowed by their Creator with certain 
unalienable Rights, "
test_str += "that among these are Life, "
test_str += "Liberty and the pursuit of Happiness."
 
# get count of each element in string 
all_freq = {} 
 
for i in test_str: 
    if i in all_freq: 
        all_freq[i] += 1
    else: 
        all_freq[i] = 1
 
# printing result 
print()
print ("Count of all characters in the provided text is :\n " + str(all_freq)) 
 
# frequency using collections.Counter() 
from collections import Counter 
 
# initializing string 
test_str = "We hold these truths to be self-evident, that all men are created equal, "
test_str += "that they are endowed by their Creator with certain unalienable Rights, "
test_str += "that among these are Life, "
test_str += "Liberty and the pursuit of Happiness."
 
# using collections.Counter() to get 
# count of each element in string 
res = Counter(test_str) 
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# printing result 
print()
print ("Count of all characters in the provided text is :\n " + str(res)) 

Figure 4.6 shows the occurrence of letters that are present in the test _ str 
value. The first part of the execution shows the letters as they appear in the mes-
sage, while the second part of the execution sorts the letters by their occurrence.

Frequency analysis works best in situations where you have a great deal of text. 
In our next example, you will open a copy of the Declaration of Independence 
and then process the frequency analysis for it. A number of books are available 
at the Gutenberg project (gutenberg.org) that you can use to try a variety of 
texts in a number of languages. One of the techniques you are going to want to 
implement is the removal of unwanted characters, numbers, and spaces; we also 
typically make the letter case uniform, such as making each letter lowercase. 
The reason we do this is so that we can use modular arithmetic on a group of 
letters from a to z and when we reach z, we start back over with a like a typical 
Caesar cipher.

Review the following code to examine the frequencies of the letters:

import urllib.request, ssl
 
# get the text of the Declaration of Independence
response = urllib.request.urlopen("https://raw.githubusercontent.com/
noidentity29/AppliedCryptoPython/master/declaration.txt", context=ssl._
create_unverified_context())
originalText = response.read()
 
# Strip out all non-alphabet characters
# There are a number of ways to do this but this is the simplest to understand
modifiedText = str(originalText.strip())
modifiedText = modifiedText.replace(" ", "")
modifiedText = " ".join(modifiedText.split())

Figure 4.6:  Frequency.py
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modifiedText = modifiedText.lower()
 
plaintext = ""
for c in modifiedText:
    if (c.isalpha()):
        plaintext = plaintext + c
 
 
# Determine the frequency analysis of the plaintext
frequency = {}
for ascii in range(ord('a'), ord('a')+26):
    frequency[chr(ascii)] = float(plaintext.count(chr(ascii)))/
len(plaintext)
 
sum_freqs_squared = 0.0
for ltr in frequency:
    sum_freqs_squared += frequency[ltr]*frequency[ltr]
 
# Results
print()
print ("The frequency should be near .065 if plaintext in English: " + 
str(sum_freqs_squared))

Figure 4.7 shows the frequency analysis of the text of the Declaration of 
Independence. Since the document is in English, the frequency analysis should 
be near the value .065. When you are checking to see if your cryptanalysis is 
complete, your result should be similar.

Cryptanalysis with Python

Now that you understand the importance of frequency analysis (FA), you can 
start to explore how to use FA to start cracking classical ciphers. The techniques 
you learn here can be applied to a number of substitution-type ciphers such as 
the Caesar, ROT-13, and Vigenère ciphers. As your understanding grows, you 
will also be able to apply these techniques to the other classical ciphers that are 
outlined in Chapter 3.

The next cryptanalysis code listing we will examine will take the Declaration 
of Independence and encrypt it using a randomly generated key. It will then use 
FA to examine all key possibilities; remember that when using a letter-shifting 
cipher such as the Caesar cipher, there are only 26 possible keys. The code listing 

Figure 4.7:  declaration_freq.py
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will brute-force the decryption by examining the frequency analysis of each 
attempt. You will know you have the correct key once you have a frequency 
analysis of .065:

import urllib.request, ssl, random
 
# get the text of the Declaration of Independence
response = urllib.request.urlopen("https://raw.githubusercontent.com/
noidentity29/AppliedCryptoPython/master/declaration.txt", context=ssl._
create_unverified_context())
originalText = response.read()
 
# Strip out all non-alphabet characters
# There are a number of ways to do this but this is the simplest to 
understand
modifiedText = str(originalText.strip())
modifiedText = modifiedText.replace(" ", "")
modifiedText = " ".join(modifiedText.split())
modifiedText = modifiedText.lower()
 
plaintext = ""
for c in modifiedText:
    if (c.isalpha()):
        plaintext = plaintext + c
 
 
# Encrypt the plaintext using a random Caesar shift
def shiftBy(c, n):
    return chr(((ord(c) - ord('a') + n) % 26) + ord('a'))
 
caesar_key = random.randint(1,25)
print ("shhh the secret caesar key is: ", caesar_key)
encrypted = list(map(lambda x: shiftBy(x, caesar_key), plaintext))
 
# Use FA to determine Caesar key for encrypted text
normal_freqs = {'a': 0.080642499002080981, 'c': 0.026892340312538593, 
'b': 0.015373768624831691, 
'e': 0.12886234260657689, 'd': 0.043286671390026357, 'g': 0.019625534749730816, 'f': 
0.024484713711692099, 'i': 0.06905550211598431, 'h': 0.060987267963718068, 'k':
0.0062521823678781188, 'j': 0.0011176940633901926, 'm': 0.025009719347800208, 'l': 
0.041016761327711163, 'o': 0.073783151266212627, 'n': 0.069849754102356679, 'q': 
0.0010648594165322703, 'p': 0.017031440203182008, 's': 0.063817324270355996, 'r':  
0.06156572691936394, 'u': 0.027856851020401599, 't': 0.090246649949305979, 'w': 
0.021192261444145363, 'v': 0.010257964235274787, 'y': 0.01806326249861108, 'x': 
0.0016941732664605912, 'z': 0.0009695838238376564}
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frequency = {}
for ascii in range(ord('a'), ord('a')+26):
    frequency[chr(ascii)] = float(encrypted.count(chr(ascii)))/len(plaintext)
 
sum_freqs_squared = 0.0
for ltr in frequency:
    sum_freqs_squared += frequency[ltr]*frequency[ltr]
 
print ("Will be near .065 despite Caesar: " + str(sum_freqs_squared))
 
for possible_key in range(1, 26):
    sum_f_sqr = 0.0
    for ltr in normal_freqs:
        caesar_guess = shiftBy(ltr, possible_key)
        sum_f_sqr += normal_freqs[ltr]*frequency[caesar_guess]
    if abs(sum_f_sqr - .065) < .005:
        print ("Key is probably: ", possible_key, " f_sqr is ",sum_f_sqr)
 

Figure 4.8 shows the key that was randomly generated to encrypt the text. 
The code will then return the FA of the encrypted code, which will be relatively 
close to .065 since it is a substitution cipher. The code looks for which key gets 
the closest to .065 and will then recommend that result as a key. Each time you 
execute your solution, you will generate a new key.

Using an Online Word List
One useful technique to help identify when you have successfully decrypted a 
historical cipher is to use known word lists. In the following example, we simply 
load a text file containing 10,000 common English words. In the technique shown 
we will read in the words using the .split() method to break them into a list 
of words. Additionally, you will see that we are interested only in the words 
that are at least three letters long. The quickest way to filter these words is to 
use a filter with the lambda function. Lambda functions are functions that do not 
require a name like the defined functions do. The lambda function returns a 
function object that can be assigned to a variable. In Python, the most common 
use for lambda functions is for a simple one-line function. You will typically 
see the lambda functions used in conjunction with a map or filter function.

Figure 4.8:  Cearsar_FA.py
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Here's the example code to read in the words using the .split() method 
to break them into a list of words. Using the following Python code, you will 
download a file from the Internet called common_en_words.txt, which contains 
10,000 common words in the English language. The output will show each of 
these words on their own line:

import urllib.request, ssl
 
# URL to Common English Words
commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common_en_words.txt"
 
# create URL request
response = urllib.request.urlopen(commonWordsPath, context=ssl._create_
unverified_context())
readText = response.read()
 
# the file is in a binary format, decode
fileOfWords = readText.decode('utf-8')
 
# create an array for each word
words = fileOfWords.split()
 
# print word list
for word in words:
    print (word)
 
# filter out the shorter words
longerwords = list(filter(lambda x: len(x)> 2, words))
 
# print out longer words
for word in longerwords:
    print (word)

Determining the Frequency
The trick to decrypting historical ciphers using cryptanalysis relies on being 
able to determine the frequency of letters regardless of their encryption state. 
In the next example, you will see how to examine the frequency of letters 
used in text. The online provided file, ch4_encrypted.txt, is encrypted with 
a computer-generated key that represents the letters of the alphabet. From our 
previous lessons, you learned that the most common letters include E, T, A, O, 
I, N. Armed with this, you can start examining the frequency of letters in text 
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and if the words are not readable in English, you can start swapping the most 
common letters with the frequency key of letters produced by the following code:

import urllib.request, random, ssl
import operator
 
 
def getLetterFreqs(text):
    frequency = {}
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] = float(text.count(chr(ascii)))/len(text)
 
    sum_freqs_squared = 0.0
    for ltr in frequency:
        sum_freqs_squared += frequency[ltr]*frequency[ltr]
    return sum_freqs_squared
    
def getFitnessScore(message):
    lower = message.lower()
    score = 0.0
    for word in longerwords:
        wordWeight = lower.count(word)
        if wordWeight>0:
            score += wordWeight * 50 * len(word)
    return score
 
def getFreqKey(text):
    frequency = {}
    message = text.lower()
    normal_freqs = {'a': 0.080642499002080981, 'c': 0.026892340312538593, 'b': 
    0.015373768624831691, 'e': 0.12886234260657689, 'd': 0.043286671390026357, 'g': 
    0.019625534749730816, 'f': 0.024484713711692099, 'i': 0.06905550211598431, 'h': 
    0.060987267963718068, 'k': 0.0062521823678781188, 'j': 0.0011176940633901926, 'm': 
    0.025009719347800208, 'l': 0.041016761327711163, 'o': 0.073783151266212627, 'n': 
    0.069849754102356679, 'q': 0.0010648594165322703, 'p': 0.017031440203182008, 's': 
    0.063817324270355996, 'r': 0.06156572691936394, 'u': 0.027856851020401599, 't': 
    0.090246649949305979, 'w': 0.021192261444145363, 'v': 0.010257964235274787, 'y': 
    0.01806326249861108, 'x': 0.0016941732664605912, 'z': 0.0009695838238376564}
    
    tolerance = .013
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] =  message.count(chr(ascii))    
    sorted_x = sorted(frequency.items(), key=operator.itemgetter(1), 
reverse=True)
    print (sorted_x)
    sortedkey = ""
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    for i in range(0, len(sorted_x)):
        sortedkey += sorted_x[i][0]
    return sortedkey
 
def getTextOnly(text):
    # Strip out all non-alphabet characters
    # There are a number of ways to do this but this is the simplest to 
understand
    modifiedText = str(text.strip())
    modifiedText = modifiedText.replace(" ", "")
    modifiedText = " ".join(modifiedText.split())
    modifiedText = modifiedText.lower()
    return modifiedText
 
 
encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master//ch4_encrypted.txt"
commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common_en_words.txt"
ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 
response = urllib.request.urlopen(encryptedFilePath, context=ssl._
create_unverified_context())
readText = response.read()
cipherText = getTextOnly(readText)
 
# create URL request
response = urllib.request.urlopen(commonWordsPath, context=ssl._create_
unverified_context())
readText = response.read()
 
# the file is in a binary format, decode
fileOfWords = readText.decode('utf-8')
 
# create an array for each word
words = fileOfWords.split()
 
# filter out the shorter words
longerwords = list(filter(lambda x: len(x)> 2, words))
 
 
keys = []
frequency = {}
frequency = getLetterFreqs(cipherText)
 
print ("Frequency of the cipherText: ", frequency)
print ()
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keys = getFreqKey(cipherText)
print ()
print ("Frequency key: ", keys)
print ()

Figure 4.9 shows the frequency analysis of an encrypted file that is downloaded 
from a specific location. Using the common English words as a decryption tool, 
the code listing will use the frequency occurrence of the letters to build a fre-
quency key that can be used to decrypt the file.

Breaking the Vigenère Cipher
When it comes to using cryptanalysis on historical crypto schemes, such as the 
Vigenère cipher, frequency analysis is essential. Here is a trick that program-
matically detects when your text looks plain.

The sum of the frequencies squared is always going to be near .065 when 
the text has the same distribution as most English language text. In symbols, 
that is ∑25

i = 0 p2
i ≈ 0.065, where pi is the rate of character i in standard English 

text. When you check for the squared sum of the frequencies of characters in 
encrypted text, you’ll know if your text has been substituted in some way or 
another.

The following program will build on what you have already learned and will 
download an encrypted file. You should find that the frequency score for the 
text is around .04. Without opening the file, you would know that it is either 
not in English or that the contents have been encrypted:

import urllib.request, random, ssl
import operator
 
 
def getLetterFreqs(text):
    frequency = {}
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] = float(text.count(chr(ascii)))/len(text)
 

Figure 4.9:  online_example_fa.py
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    sum_freqs_squared = 0.0
    for ltr in frequency:
        sum_freqs_squared += frequency[ltr]*frequency[ltr]
    return sum_freqs_squared
 
def getTextOnly(text):
    # Strip out all non-alphabet characters
    # There are a number of ways to do this but this is the simplest to 
understand
    modifiedText = str(text.strip())
    modifiedText = modifiedText.replace(" ", "")
    modifiedText = " ".join(modifiedText.split())
    modifiedText = modifiedText.lower()
    return modifiedText
 
def getEncryptedData():
    encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/encryptedmoby.txt"
    
    response = urllib.request.urlopen(encryptedFilePath, context=ssl._
create_unverified_context())
    readText = response.read()
    textOnly = getTextOnly(readText)
    return textOnly
 
cipherText = getEncryptedData()
freqScore = getLetterFreqs(cipherText)
print ()
print ("The frequency score for this file is: ", freqScore)
print ()

In something like this Vigenère cipher with a key length of 10, you won’t get 
the nice 0.065 number from the text because there are 10 distinct shifts going on. 
But if you only look at every 10th character, you should see the 0.065 squared 
frequency property! When you isolate your search to every tenth character the 
problem is reduced to your first shift cipher attack (which we can even detect 
using the pi x qi+j analysis).

Now what if you didn’t know the key length? Well, if you know that this 
polyalphabetic cipher is the one being used, then you can start testing poten-
tial key lengths looking for the 0.065 rate along the subsequences. Pretend the 
key length is 1 and check for .065, then try looking in every other character for 
.065, then every third character, and so on until you find the key length. After 
that, you can find the shift sequence/key.
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Examine the following program, which will predict the length of the key 
used to encrypt the text using the Vigenère cipher:

import urllib.request, random, ssl
import operator
 
 
def getLetterFreqs(text):
    frequency = {}
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] = float(text.count(chr(ascii)))/len(text)
 
    sum_freqs_squared = 0.0
    for ltr in frequency:
        sum_freqs_squared += frequency[ltr]*frequency[ltr]
    return sum_freqs_squared
 
def getTextOnly(text):
    # Strip out all non-alphabet characters
    # There are a number of ways to do this but this is the simplest to 
understand
    modifiedText = str(text.strip())
    modifiedText = modifiedText.replace(" ", "")
    modifiedText = " ".join(modifiedText.split())
    modifiedText = modifiedText.lower()
    return modifiedText
 
def getEncryptedData():
    encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/encryptedmoby.txt"
    
    response = urllib.request.urlopen(encryptedFilePath, context=ssl._
create_unverified_context())
    readText = response.read()
    textOnly = getTextOnly(readText)
    return textOnly
 
def getFitnessScore(message, longerwords):
 
    score = 0.0
    for word in longerwords:
        wordWeight = message.count(word)
        if wordWeight>0:
            score += wordWeight * 50 * len(word)
    return score
 
def getDictionary():
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    commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common_en_words.txt"
    ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 
    
    # create URL request
    response = urllib.request.urlopen(commonWordsPath, context=ssl._
create_unverified_context())
    readText = response.read()
 
    # the file is in a binary format, decode
    fileOfWords = readText.decode('utf-8')
 
    # create an array for each word
    words = fileOfWords.split()
 
    # filter out the shorter words
    longerwords = list(filter(lambda x: len(x)> 2, words))
 
    return longerwords
 
def getKeyLength(encryptedText):
    highest = 0;
    highCtr = 0;
    encryptedText = encryptedText.lower()
    for KeyLength in range(1,26):
        sampling = encryptedText[::KeyLength]
        freqCheck =  getFreqs(sampling)
        if highest < freqCheck:
            highest = freqCheck
            highCtr = KeyLength
 
    return highCtr
 
def getFreqs(text):
    frequency = {}
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] = float(text.count(chr(ascii)))/len(text)
 
    sum_freqs_squared = 0.0
    for ltr in frequency:
        sum_freqs_squared += frequency[ltr]*frequency[ltr]
    return sum_freqs_squared
 
myDictionary = getDictionary()
cipherText = getEncryptedData()
freqScore = getLetterFreqs(cipherText)
fitScore = getFitnessScore(cipherText, myDictionary)
keyLength = getKeyLength(cipherText)
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print ()
print ("The frequency score for this file is: ", freqScore)
print ()
print ("The fitness score for this file is: ", fitScore)
print()
print ("The key length for this file is: ", keyLength)
print ()

Figure 4.10 shows the initial frequency and fitness score of the file; based 
on this the output specifies the determined key length that should be used to 
crack the encryption.

Now that we can determine the length of the key, we can use the knowledge 
we gained on cracking Caesar ciphers and apply it to cracking the Vigenère 
cipher. When we examine every letter that is in a specific position, we can use 
frequency analysis to find the best letter for each position.

The following program may take up to 20 minutes but should reveal the secret 
key used to encrypt the file:

import urllib.request, random, ssl
import operator
from itertools import cycle
from functools import reduce
 
 
def shiftBy(c, n):
    shift = chr(((ord(c) - ord('a') + n) % 26) + ord('a'))
    return shift
 
def getLetterFreqs(text):
    frequency = {}
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] = float(text.count(chr(ascii)))/len(text)
 
    sum_freqs_squared = 0.0
    for ltr in frequency:
        sum_freqs_squared += frequency[ltr]*frequency[ltr]
    return sum_freqs_squared
 

Figure 4.10:  Vigenere_break.py
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def getTextOnly(text):
    # Strip out all non-alphabet characters
    # There are a number of ways to do this but this is the simplest to 
understand
    modifiedText = str(text.strip())
    modifiedText = modifiedText.replace(" ", "")
    modifiedText = " ".join(modifiedText.split())
    modifiedText = modifiedText.lower()
    return modifiedText
 
def getEncryptedData():
    encryptedFilePath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/encryptedmoby.txt"
    
    response = urllib.request.urlopen(encryptedFilePath, context=ssl._
create_unverified_context())
    readText = response.read()
    readText = readText.decode('utf-8')
    textOnly = getTextOnly(readText)
    return textOnly
 
def getFitnessScore(message, longerwords):
 
    score = 0.0
    for word in longerwords:
        wordWeight = message.count(word)
        if wordWeight>0:
            score += wordWeight * 50 * len(word)
    return score
 
def getDictionary():
    
    commonWordsPath = "https://raw.githubusercontent.com/noidentity29/
AppliedCryptoPython/master/common_en_words.txt"
    ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 
    
    # create URL request
    response = urllib.request.urlopen(commonWordsPath, context=ssl._
create_unverified_context())
    readText = response.read()
 
    # the file is in a binary format, decode
    fileOfWords = readText.decode('utf-8')
 
    # create an array for each word
    words = fileOfWords.split()
 
    # filter out the shorter words
    longerwords = list(filter(lambda x: len(x)> 2, words))
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    return longerwords
 
def getKeyLength(encryptedText):
    highest = 0;
    highCtr = 0;
    encryptedText = encryptedText.lower()
    for KeyLength in range(1,26):
        sampling = encryptedText[::KeyLength]
        freqCheck =  getFreqs(sampling)
        if highest < freqCheck:
            highest = freqCheck
            highCtr = KeyLength
 
    return highCtr
 
def getFreqs(text):
    frequency = {}
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] = float(text.count(chr(ascii)))/len(text)
 
    sum_freqs_squared = 0.0
    for ltr in frequency:
        sum_freqs_squared += frequency[ltr]*frequency[ltr]
    return sum_freqs_squared
 
def decryptIndex(keys, ciphertext):
    """Decrypt the string and return the plaintext"""
    key = ""
    ALPHA = 'abcdefghijklmnopqrstuvwxyz'
    ciphertext = ciphertext.upper()
    ALPHA = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
    for i in range(len(keys)):
        key = key + chr(keys[i] + 65)
 
    pairs = list(zip(ciphertext, cycle(key)))
    result = ''
 
 
    for pair in pairs:
        total = reduce(lambda x, y: ALPHA.index(x) - ALPHA.index(y), 
pair)
        result += ALPHA[total % 26]
 
    return result
 
def findKeyPos(message, keyLength, keyPos):
    frequency = {}
    allKeys = []
    return_key = 0
    tolerance = .01
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    normal_freqs = {'a': 0.080642499002080981, 'c': 0.026892340312538593, 'b': 
    0.015373768624831691, 'e': 0.12886234260657689, 'd': 0.043286671390026357, 'g': 
    0.019625534749730816, 'f': 0.024484713711692099, 'i': 0.06905550211598431, 'h': 
    0.060987267963718068, 'k': 0.0062521823678781188, 'j': 0.0011176940633901926, 'm': 
    0.025009719347800208, 'l': 0.041016761327711163, 'o': 0.073783151266212627, 'n': 
    0.069849754102356679, 'q': 0.0010648594165322703, 'p': 0.017031440203182008, 's': 
    0.063817324270355996, 'r': 0.06156572691936394, 'u': 0.027856851020401599, 't': 
    0.090246649949305979, 'w': 0.021192261444145363, 'v': 0.010257964235274787, 'y': 
    0.01806326249861108, 'x': 0.0016941732664605912, 'z': 0.0009695838238376564}
 
 
    lowerMessage = message.lower()
    sampling = lowerMessage[keyPos::keyLength]
 
    for ascii in range(ord('a'), ord('a')+26):
        frequency[chr(ascii)] = float(sampling.count(chr(ascii)))/
len(sampling)
        
    sum_freqs_squared = 0.0
    for ltr in frequency:
        sum_freqs_squared += frequency[ltr]*frequency[ltr]
 
    for possible_key in range(1, 26):
        sum_f_sqr = 0.0
        for ltr in normal_freqs:
            caesar_guess = shiftBy(ltr, possible_key)
            freqCalc = normal_freqs[ltr]*frequency[caesar_guess]
            sum_f_sqr += freqCalc
            
            engValue = abs(sum_f_sqr - .065)
            if engValue < tolerance:
                allKeys.append(possible_key)
 
    return allKeys
 
def getKey(encrypted, kl, dictionary):
 
    keys = []
    testKey = []
    defaultKey = []
 
    for i in range (0,kl):
        keyPos = findKeyPos(encrypted,16,i)
        answerLen =  len(keyPos)
        answerIndex = 0
        if answerLen > 1:
            defaultKey = keys[:]
            testKey = keys[:]
            defaultKey.append(keyPos[0])
            decrypted = decryptIndex(defaultKey,encrypted)
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            defaultScore = getFitnessScore(decrypted, dictionary)
            for a in range(1,answerLen):
                testKey.append(keyPos[a])
                decrypted = decryptIndex(testKey,encrypted)
                testScore = getFitnessScore(decrypted, dictionary)
                if testScore > defaultScore:
                    answerIndex = a
                    defaultKey = testKey
                
        keys.append(keyPos[answerIndex])
        fullKey = ""
        for i in range(len(keys)):
            fullKey = fullKey + chr(keys[i] + 65)
 
    fullKey = ""
    for i in range(len(keys)):
        fullKey = fullKey + chr(keys[i] + 65)
 
    return (fullKey)
 
 
myDictionary = getDictionary()
cipherText = getEncryptedData()
freqScore = getLetterFreqs(cipherText)
fitScore = getFitnessScore(cipherText, myDictionary)
keyLength = getKeyLength(cipherText)
decryptKey = getKey(cipherText, keyLength, myDictionary)
    
 
print ()
print ("The frequency score for this file is: ", freqScore)
print ()
print ("The fitness score for this file is: ", fitScore)
print()
print ("The key length for this file is: ", keyLength)
print ()
print ("The decryption key for this file is: ", decryptKey)
print ()

Figure 4.11 shows the output of an encrypted Moby Dick file and uses frequency 
analysis to find the frequency, fitness score, and key length to decrypt the file.

Figure 4.11:  Vigenere_crypto.py
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Summary

This chapter was fairly heavy on the important mathematical concepts you 
need to break classical ciphers. You may find yourself referring to this chapter 
several times as you progress through the remaining chapters. Before moving 
on to the next chapter, make sure you have a pretty good understanding of 
modular arithmetic and how to find the inverse. In addition, you should have 
an understanding of basic group theory, the Chinese remainder theorem, and 
solving linear equations. A number of Python libraries are available that will 
simplify a great deal of the concepts offered in this chapter. It is vital that you 
remember the importance of using cryptographically secure pseudorandom 
generators and also understand how to determine the random number gen-
eration that is offered using C’s rand() function. Frequency analysis will be 
your greatest ally. As you generate decryption keys, knowing how frequency 
analysis works will help you decrypt many of these ciphers without knowing 
the keys or key lengths.

We will be continuing our exploration of cryptanalysis as you progress through 
the remaining chapters, but you should have a good understanding of how to 
decrypt a wide variety of cryptographic schemes.
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In this chapter, you’ll learn the means of support of the entire cryptographic 
world. You will learn how to encrypt and decrypt messages with a shared secret, 
which is how the vast majority of today’s encryption on the Internet functions. In 
fact, encryption is used every day using techniques you’ll learn in this chapter. 
This chapter introduces you to the development of stream ciphers, block ciphers, 
and cryptographically secure pseudorandom number generators. You’ll gain 
an understanding of some of the analyses of the underlying algorithms and the 
best attacks that exist in the real world. You’ll also learn the amount of security 
you must build in, based on the client you are serving, and how long it needs to 
stay secure. You’ll walk away with being able to randomize every message you 
send, which will help you build a solid career in cryptography. Through this 
chapter, you’ll gain cryptographic knowledge as you do the following:

■■ Learn how to convert between hexdigest and plaintext

■■ Gain an understanding of stream ciphers and CSPRNGs

■■ Learn about block ciphers

■■ Explore various modes of encryption and their weaknesses

■■ Gain an understanding of blocks as streams

Stream Ciphers and Block Ciphers

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Convert between Hexdigest and Plaintext

Before we dive into stream and block ciphers, I will show you some of the harder 
bits that involve the conversion between hexdigest and plaintext. To perform the 
conversions in Python, you’ll use the binascii library. The binascii module pro-
vides several methods to convert between ASCII-ended binary expressions and 
binary. It comprises low-level functions written in C for superior performance.

In this section, you will learn about hexlify and unhexlify, modules in the 
binascii library. Hexlify returns the hexadecimal representation; each byte 
of data converts into a two-digit hex representation. The output results in the 
returned hexadecimal being twice the length of the data passed into the hex-
lify function. The following code converts the string “apples are red” to its 
hexadecimal representation. You will find that the length of the value referenced 
by passhex is twice the size of the value referenced by the password variable.

import binascii
password = b"apples are red"
print(password)
 
apples are red
 
>>> passhex =  binascii.hexlify(password)
>>> print(passhex)
b'6170706c65732061726520726564'
 
>>> print(len(password))
14
>>> print(len(passhex))
28

You probably noticed that the first two digits of the passhex variable equal 
61; you can look up the code, hex, and characters in an ASCII table. To demon-
strate how to convert from characters, code, and hex, examine the following 
Python code:

>>> passhex
b'6170706c65732061726520726564'
>>> print(ord('a'))
97
>>> print(hex(97))
0x61
>>> print(format(ord('a'), 'x'))
61

The binascii function unhexlify, which takes a hexadecimal string as a 
parameter, is the inverse. As you might imagine, the hexadecimal string must 
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contain an even number of hexadecimal digits. Since the output of the hexlify 
function returns twice the length, unhexlify returns half the length. Here’s 
an example of using unhexlify to convert back to binary from hexadecimal:

>>> unpasshex = binascii.unhexlify(passhex)
>>> unpasshex
b'apples are red'

Furthermore, Python allows you to use an x escape character to convert from 
hexadecimal back to plaintext, as shown here:

>>> hx = '\x61'
>>> hx
'a'

Use Stream Ciphers

Let’s now start exploring private-key cryptography by looking at what stream 
ciphers are and then examine them as a combination of the one-time pad (OTP) 
and cryptographically secure pseudorandom number generators (CSPRNGs). 
The concepts of the OTP that make it perfectly secure are what you capitalize 
on to make a more robust cipher. As you may recall from Chapter 2, the one-
time pad takes a message of n bits and a uniformly random secret key of the 
same length and generates a ciphertext by bitwise XOR. The encryption and 
decryption methods are identical operations.

When you examine the elegance of the OTP, you will undoubtedly see its 
weaknesses as well:

■■ You must arrange a key exchange between the sender and receiver of the 
message; this is true in all symmetric schemes.

■■ You can use the key only once.

■■ The key length is equal to the message length; if you have a way to send 
the key securely, then perhaps you could have just sent the message.

You could resolve one of the most significant OTP problems if both parties 
could generate keys on the fly with the other party. Ideally, both parties would 
use an unpredictable pseudorandom number generator that would start from 
the same seed and generate a uniformly random stream of noise that acts like 
the one-time pad key. As you witnessed in the previous chapter, PRNGs can 
be predictable and therefore can be cracked. Thus, we need to find improved 
cryptographically secure pseudorandom number generators.

The goal of this section is to guide you through the creation of your first 
“do it yourself” stream cipher. We will utilize an insecure stream cipher as an 
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experiment to gain an understanding of the underlying mechanics. Once you 
complete it, you should feel comfortable with the use of XOR, seeds, and the 
general structure of a stream cipher. This section builds the base in which we 
add improvements with true security in mind.

In building your first stream cipher, you take the idea of the one-time pad 
mixed with the convenience of PRGNs to create an encryption scheme. Since 
we haven’t explored any nonbreakable PRNGs yet, we will work with an inse-
cure one, but the mechanics are identical when you have a more secure source 
of pseudorandom bits. It is important to know that since you want to use the 
stream cipher to work on real-world data, it is going to have to encrypt ASCII 
characters, which means you need to think about the use of random bytes more 
than the use of random bits. It is not much of a change, but it is worth mentioning.

To start, we select the C rand() function as our PRNG since we have code for 
it from Chapter 4. It generates 31 bits at a time (the numbers are mod 231), and 
you want 8 bits at a time. For the sake of this example, use the lowest 24 bits of 
each number that comes out and generate three bytes of randomness for our 
stream. Using these guidelines, this should allow you to generate a convention 
that matches the partner with which you are communicating. A rand()-generated 
number might look like temp = 2158094741372. If you want three bytes of ran-
domness from that, you could follow these steps:

>>> temp = 2158094741372
>>> temp % 2**8
124
>>> (temp >> 8) % 2**8
111
>>> (temp >> 16) % 2**8
120

The code should produce three numbers uniformly chosen between 0 and 
255. Now let’s write our own simple PRNG function. It should produce four 
output numbers, [1471611625, 1204518815, 463882823, 963005816]:

def crand(seed):
    r=[]
    r.append(seed)
    for i in range(30):
        r.append((16807*r[-1]) % 2147483647)
        if r[-1] < 0:
            r[-1] += 2147483647
    for i in range(31, 34):
        r.append(r[len(r)-31])
    for i in range(34, 344):
        r.append((r[len(r)-31] + r[len(r)-3]) % 2**32)
    while True:
        next = r[len(r)-31]+r[len(r)-3] % 2**32
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        r.append(next)
        yield (next >> 1 if next < 2**32 else (next % 2**32) >> 1)
 
mygen = crand(2018)
firstfour = [next(mygen) for i in range(4)]
print firstfour
[1471611625, 1204518815, 463882823, 963005816]

Now that you have your PRNG producing a predictable output, let’s take the 
message “Hello world!” using the secret seed of 2018. We’ll take the bytes in 
largest to smallest order for convenience, as shown here:

import binascii
def crand(seed):
    r=[]
    r.append(seed)
    for i in range(30):
        r.append((16807*r[-1]) % 2147483647)
        if r[-1] < 0:
            r[-1] += 2147483647
    for i in range(31, 34):
        r.append(r[len(r)-31])
    for i in range(34, 344):
        r.append((r[len(r)-31] + r[len(r)-3]) % 2**32)
    while True:
        next = r[len(r)-31]+r[len(r)-3] % 2**32
        r.append(next)
        yield (next >> 1 if next < 2**32 else (next % 2**32) >> 1)
 
mygen = crand(2018)
rands = [next(mygen) for i in range(4)]
plaintext = b"Hello world!"
 
hexplain = binascii.hexlify(plaintext)
hexkey = "".join(map(lambda x: format(x, 'x')[-6:], rands))
 
cipher_as_int = int(hexplain, 16) ^ int(hexkey, 16)
cipher_as_hex = format(cipher_as_int, 'x')

Armed with what you have learned thus far, can you find the original mes-
sage to the following?

Hex: e5d8443c6ac32d3ee5c7398ecf7f9e03f619
Seed: 54321

If you get stuck, you can find the solution in the ch5_decrypt file on this 
book’s website.

One crucial concept you’ll now explore is the use of the nonce, also called 
the initialization vector (IV). These concepts, which would have been monu-
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mental during World War II, are the encryption version of a salt and save us 
from the inherent risks of a user sending the same message several times. You 
have explored how to fix one flaw of the one-time pad by generating a key that 
is the same length as the message; you still cannot use the same key multiple 
times. Two possible fixes could include the following:

■■ Do not restart the PRNG: Not restarting the PRNG requires both sides 
to carefully coordinate with each other so that they stay at the same part 
of the communication stream on the encryption and decryption side; this 
could offer challenges if some messages are lost in transit or if there are 
parallel message-sending channels.

■■ Use some public randomness to change the secret key effectively: This 
idea is that you generate, from a true entropy source, a nonce. A nonce is 
a one-time set of random bytes that mingles with the private key to change 
the output of the encryption scheme.

The ultimate goal of this is to allow you to send the same message 100 times 
in a row, with the same private key, and each time it would look entirely random 
and uncorrelated. From here on out, your goal is to use a nonce/IV so that the 
same message is never encrypted the same way twice. Most computers have a 
source of randomized bytes from entropy that we can pull data from to build 
random bytes. They pool sources of entropy like temperature, user actions, tim-
ings, and other unique factors. This information is then used by CSPRNGs to 
turn that entropy into uniform random bytes. A poorly generated key or initial 
seed will cripple even the most secure CSPRNG.

In the previous encryption scheme, you created a PRNG function along with a 
secret seed. Now we begin by generating a nonce so that when you are encrypt-
ing a message, you first generate some entropy bytes that pass along with the 
ciphertext. The nonce should be sent in the clear, so it should look random. To 
generate six bytes of noise, use the following Python code:

import os
nonce = os.urandom(6)
print(nonce)

Ideally, you need a convention to translate the nonce and your secret key 
(54321) into a new seed or key. Other schemes may have their ways of letting 
the nonce interact with the scheme; in this case, changing the seed is excellent 
for learning the concepts. The method presented here will be to concatenate 
the nonce and the secret key (as hex), then to apply the SHA256 hash function 
to those bytes (not hex), and take the lowest 32 bits as the new seed.

Here is what the Python looks like:

import os, hashlib, binascii
nonce = os.urandom(6)
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hexnonce = binascii.hexlify(nonce)
oursecret = 54321
concatenated_hex = hexnonce + format(oursecret, 'x')
even_length = concatenated_hex.rjust(len(concatenated_hex) + 
len(concatenated_hex) % 2, '0')
hexhash = hashlib.sha256(binascii.unhexlify(even_length)).hexdigest()
newseed = (int(hexhash, 16)) % 2**32
 
print(newseed)

To get a consistent key on both the sending and receiving side, we directly 
pass the nonce. To test this, replace the previous nonce with “cc4304c09aee” and 
keep the original seed of 54321. The new seed that generates should equate to 
“3336748862.” Now you need a system for sending the nonce in your ciphertext. 
If you have the first six bytes as nonce bytes and the remaining bytes as the 
ciphertext, you can pass everything in the same message. Since the underlying 
generator is C’s rand function, the encryption is still not strong enough to pro-
tect any secrets, but it is much stronger than it was.

Knowing the first six bytes are nonce bytes, here is a new challenge for you:

Secret Key: 61983
Message: 3e08816f1377f89f1c596fc197dd52946c92577bfd7c25c3

If you get stuck, you can find the solution in the ch5_decrypt2 file on this 
book’s website.

Answer: Seed is 42847799; the message is 'this is a message.'
Ideally, by now, you are gaining an understanding of how stream ciphers 

work. Stream ciphers are generally not as secure or well-understood as block 
ciphers (which we study next). In software, you will most likely deal with 
block ciphers, though there are tools such as Wireguard which will use stream 
ciphers. Wireguard is a software VPN protocol that uses the ChaCha20 stream 
cipher; you will learn more about ChaCha20 later in this chapter. So, while some 
tools may use stream ciphers, stream ciphers play a more significant role in the 
hardware ecosystem. With space-constrained devices that need encrypted data 
streams, we need fast hardware implementations that encrypt bit-by-bit. So, 
as you code these, imagine the hardware version. As outlined in the previous 
section, the encryption schemes are still not strong enough to protect any clas-
sified data. In this part, you examine a full-strength encryption scheme called 
Trivium. Bart Preneel and Christophe De Cannière created it and submitted 
it to the eSTREAM competition. eSTREAM is a project that was organized by 
the EU Ecrypt network to help identify new stream ciphers that may be suit-
able for widespread adoption. The project began in November 2004 and com-
pleted in April 2008. It is designed to provide a reasonably efficient software 
encryption implementation and is specified as an International Standard under 
ISO/IEC 29192-3.
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In Chapter 4, you first learned about pseudorandomness. A linear-feedback 
shift register (LFSR) is an algorithm for generating pseudorandom numbers. 
The sequence of pseudorandom numbers generated by an LFSR can be used as 
the one-time pad for an encryption algorithm. However, it has a major weak-
ness: the numbers generated are periodic, and an attacker can figure out the key 
using a known plaintext attack. In the previous section, you used a PRNG to 
make a stream cipher. The next level of complexity that you can utilize would 
be something similar to the Trivium stream cipher, which uses a CSPRNG that 
generates one bit at a time. It tries to make the LFSR idea more secure by hav-
ing multiple registers that interfere with each other. The intuitive notion is that 
LFSRs yield to linear algebra, so let’s add just enough complexity to be nonlinear. 
Figure 5.1 represents a schematic of a three-register Trivium implementation.

When looking at Figure 5.1, you see it as three separate registers that each 
produce their own output. The final output bit is the XOR of all three output bits. 
The output of each register is also used to help form the input of another register.

For the initialization, to kick-start Trivium, it accepts two inputs: an 80-bit 
key and an 80-bit IV. The 80-bit key is loaded into the leftmost 80 bits of the first 
register. The 80-bit IV is loaded into the leftmost 80 bits of the second register. 
Finally, the final 3 bits of the third register are set to 1 (the rightmost bits).

The stream is then run 4 × 288 times with the output discarded; this is now 
the opening state.

Let’s do the first (tossed-out) run using an all 1 key and an all 1 IV, to show the 
idea. Bits 1−80 are all 1, bits 94−173 are all 80, and bits 286−288 are all 1; every-
thing else is 0. The first output bit is an XOR of three different bits, so let’s look 

Cell 1
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Cell 1 Cell 111

Output

87 109110111

Cell 93

Cell 84

1

1

1 66

66 69

69 78 82 83 84

91 92 93

Figure 5.1:  Three-register representation of Trivium
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at the first register. The output of register 1 is the XOR of bit 66 (1) and bit 93 
(0), which is 1. Register 2’s output is bit 162 XOR bit 177, which is also 1. Finally, 
register 3 is the XOR of bit 288 (1) and bit 243 (0), so also a 1. Thus, the first 
output is 1. Now everything must slide, so let’s look at the feedback. The input 
to register 2 is the XOR of bit 171 (1) and the XOR of that first register’s output 
bit (1) and the product of bits 91 and 92 (0), so 1 + 1 + 0 = 0 is the new input bit 
to register 2. All the other bits in register 2 slide one to the right. (Register 2 is 
now 0 in bit 94, 1 in bits 95−174, and 0 everywhere else.) Likewise, you can trace 
that the new input bit of register 3 is a 1. The new input bit for register 1 is a 0.

Now that we have introduced stream ciphers, you can examine some addi-
tional stream ciphers, namely, ARC4, Vernam, Salsa20, and the ChaCha20 ciphers. 
Both the Salsa20 and the ChaCha20 are similar in nature as they were created 
by the same author.

ARC4
The RC4 stream cipher was created by Ron Rivest in 1987. RC4 was classified as 
a trade secret by RSA Security but was eventually leaked to a message board 
in 1994. RC4 was originally trademarked by RSA Security so it is often referred 
to as ARCFOUR or ARC4 to avoid trademark issues. ARC4 would later become 
commonly used in a number of encryption protocols and standards such as SSL, 
TLS, WEP, and WPA. In 2015, it was prohibited for all versions of TLS by RFC 
7465. ARC4 has been used in many hardware and software implementations. 
One of the main advantages of ARC4 is its speed and simplicity, which you will 
notice in the following code:

"""
Implement the ARC4 stream cipher. - Chapter 5
 
"""
 
def arc4crypt(data, key):
    x = 0
    box = range(256)
    for i in range(256):
        x = (x + box[i] + ord(key[i % len(key)])) % 256
 
        # swap range objects
        box = list(box)
        box[i], box[x] = box[x], box[i]
    x = 0
    y = 0
    out = []
    for char in data:
        x = (x + 1) % 256
        y = (y + box[x]) % 256
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        box[x], box[y] = box[y], box[x]
        out.append(chr(ord(char) ^ box[(box[x] + box[y]) % 256]))
    
    return ''.join(out)
 
key = 'SuperSecretKey!!'
origtext = 'Dive Dive Dive'
ciphertext = arc4crypt (origtext, key)
plaintext = arc4crypt (ciphertext, key)
 
print('The original text is: {}'.format(origtext))
print()
print('The ciphertext is: {}'.format(ciphertext))
print()
print('The plaintext is {}'.format(plaintext))
print()
 

The ARC4 example should produce the same output that you see in Figure 5.2.

Vernam Cipher
The Vernam cipher was developed by Gilbert Vernam in 1917. It is a type of one-
time pad for data streams and is considered to be unbreakable. The algorithm 
is symmetrical, and the plaintext is combined with a random stream of data of 
the same length using the Boolean XOR function; the Boolean XOR function is 
also known as the Boolean exclusive OR function. Claude Shannon would later 
mathematically prove that it is unbreakable. The characteristics of the Vernam 
cipher include:

■■ The plaintext is written as a binary sequence of 0s and 1s.

■■ The secret key is a completely random binary sequence and is the same 
length as the plaintext.

■■ The ciphertext is produced by adding the secret key bitwise modulo 2 to 
the plaintext.

Figure 5.2:  ARC4 stream cipher
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One of the disadvantages of using an OTP is that the keys must be as long as 
the message it is trying to conceal; therefore, for long messages, you will need 
a long key:

def VernamEncDec (text, key):
      result = "";
      ptr = 0;
      for char in text:
            result = result + chr(ord(char) ^ ord(key[ptr]));
            ptr = ptr + 1;
            if ptr == len(key):
                  ptr = 0;
      return result
                      
key = "thisismykey12345";
 
while True:
      input_text = input("\nEnter Text To Encrypt:\t");
      ciphertext = VernamEncDec(input_text, key);
      print("\nEncrypted Vernam Cipher Text:\t" + ciphertext);
      plainttext = VernamEncDec(ciphertext, key);
      print("\nDecrypted Vernam Cipher Text:\t" + plainttext);
 

Salsa20 Cipher
The Salsa20 cipher was developed in 2005 by Daniel Bernstein, and submitted to 
eSTREAM. The Salsa20/20 (Salsa20 with 20 rounds) is built on a pseudorandom 
function that is based on add-rotate-xor (ARX) operations. ARX algorithms are 
designed to have their round function support modular addition, fixed rotation, 
and XOR. These ARX operations are popular because they are relatively fast and 
cheap in hardware and software, and because they run in constant time, and 
are therefore immune to timing attacks. The rotational cryptanalysis technique 
attempts to attack such round functions.

The core function of Salsa20 maps a 128-bit or 256-bit key, a 64-bit nonce/IV, 
and a 64-bit counter to a 512-bit block of the keystream. Salsa20 provides speeds of 
around 4–14 cycles per byte on modern x86 processors and is considered accept-
able hardware performance. The numeric indicator in the Salsa name specifies 
the number of encryption rounds. Salsa20 has 8, 12, and 20 variants. One of the 
biggest benefits of Salsa20 is that Bernstein has written several implementations 
that have been released to the public domain, and the cipher is not patented.
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Salsa20 is composed of sixteen 32-bit words that are arranged in a 4×4 matrix. 
The initial state is made up of eight words of key, two words of the stream posi-
tion, two words for the nonce/IV, and four fixed words or constants. The initial 
state would look like the following:

Constant Key Key Key

Key Constant Nonce Nonce

Stream Stream Constant Key

Key Key Key Constant

The Salsa20 core operation is the quarter-round that takes a four-word input 
and produces a four-word output. The quarter-round is denoted by the following 
function: QR(a, b, c, d). The odd-numbered rounds apply QR(a, b, c, d) to each 
of the four columns in the preceding 4×4 matrix; the even-numbered rounds 
apply the rounding to each of the four rows. Two consecutive rounds (one for a 
column and one for a row) operate together and are known as a double-round. 
To help understand how the rounds work, let us first examine a 4×4 matrix 
with labels from 0 to 15:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The first double-round starts with a quarter-round on column 1 and row 
1. The first QR round examines column 1, which contains 0, 4, 8, and 12. The 
second QR round examines row 1, which contains 0, 1, 2, 3. The second double-
round picks up starting at the second column and second row position (5, 9, 
13, 1). The even round picks up 5, 5, 7, 4. Notice that the starting cell is the same 
for each double-round:

DOUBLE-ROUND 1 DOUBLE-ROUND 3

QR(0, 4, 8, 12) QR(10, 14, 2, 6)

QR(0, 1, 2, 3) QR(10, 11, 8, 9)

DOUBLE-ROUND 2 DOUBLE-ROUND 4

QR(5, 9, 13, 1) QR(15, 3, 7, 11)

QR(5, 6, 7, 4) QR(15, 12, 13, 14)

A couple libraries are available that will help simplify the Salsa20 encryption 
scheme. You can access the salsa20 library by doing a pip install salsa20.
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Once you have the library installed, you can use the XSalsa20_keystream 
to generate a keystream of the desired length, or you can pass any message 
(plaintext or ciphertext) to have it XOR'd with the keystream. All values must 
be binary strings that include str for Python 2 or the byte for Python 3. Here, 
you will see a Python implementation of the salsa20 library:

from salsa20 import XSalsa20_xor
from os import urandom
IV = urandom(24)
KEY = b'*secret**secret**secret**secret*'
ciphertext = XSalsa20_xor(b"IT'S A YELLOW SUBMARINE", IV, KEY)
print(XSalsa20_xor(ciphertext, IV, KEY).decode())
 
 
IT'S A YELLOW SUBMARINE

One of the reasons why you should be familiar with Salsa20 is that it is con-
sistently faster than AES. It is recommended to use Salsa20 for encryption in 
typical cryptographic applications.

ChaCha Cipher
ChaCha is a modification of Salsa20 published by Bernstein in 2008. It uses a 
new round function that increases diffusion and increases performance on 
some architectures. The ChaCha cipher is a stream cipher that uses a 256-bit 
key and a 64-bit nonce/IV. Currently the AES block cipher has a dominant role 
in secret key encryption; in addition, many systems have started to implement 
hardware acceleration for AES, thus adding to its growing adoption. With AES 
owning the market share for secret key encryption, it would cause major issues 
if AES becomes cryptographically insecure. AES has been shown to be weak 
around cache-collision attacks; therefore, Google has proposed ChaCha20 as 
an alternative and actively uses it within TLS connections. Currently ChaCha is 
three times faster than software-enabled AES and, like Salsa20, is not vulnerable 
to timing attacks. ChaCha operates by creating a keystream that is then XOR’d 
with the plaintext and has been standardized with RFC 7539.

Some of the key differences between ChaCha and Salsa include improved dif-
fusion per round, which offers an enhanced resistance to cryptanalysis. ChaCha, 
like Salsa20, builds a 4×4 matrix and adds the results to the original matrix to 
obtain a 16-word or 64-byte output block. Three additional differences should 
be noted. First, the ChaCha series permutes the order of words in the output 
block to match the permutation; this is designed to save time on SIMD (single 
instruction, multiple data) platforms but does not make any difference on speed 
in other platforms. SIMD is a class of parallel computers that can perform the 
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same operation on multiple data points simultaneously. Most modern-day CPU 
designs include SIMD instruction to improve the performance of multimedia.

The second difference is that ChaCha builds the initial matrix with all attacker-
controlled input words at the bottom:

Constant Constant Constant Constant

Key Key Key Key

Key Key Key Key

Input Input Input Input

These constants are the same as in Salsa20. The first round of ChaCha adds 
keys into the constants. The key words are copied in order; the input words are 
the block counter followed by the nonce.

The third difference is that ChaCha processes through rows in the same order 
in every round. The first round modifies first, fourth, third, second, first, fourth, 
third, second along columns, and the second round modifies first, fourth, third, 
second, first, fourth, third, second along southeast diagonals:

quarter_round (x0,x4,x8,x12)

quarter_round (x1,x5,x9,x13)

quarter_round (x2,x6,x10,x14)

quarter_round (x3,x7,x11,x15)

quarter_round (x0,x5,x10,x15)

quarter_round (x1,x6,x11,x12)

quarter_round (x2,x7,x8,x13)

quarter_round (x3,x4,x9,x14)

The four quarter-round words are always in top-to-bottom order in the matrix. 
A couple libraries are available that will offer ChaCha as an encryption scheme. 
You may also elect to use a pure Python implementation. To implement ChaCha 
using Python, use the following recipe:

"""
Implement the ChaCha20 stream cipher.
"""
 
import struct
import sys, os, binascii
from base64 import b64encode
 
def yield_chacha20_xor_stream(key, iv, position=0):
  # Generate the xor stream with the ChaCha20 cipher."""
  if not isinstance(position, int):
    raise TypeError
  if position & ~0xffffffff:
    raise ValueError('Position is not uint32.')
  if not isinstance(key, bytes):
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    raise TypeError
  if not isinstance(iv, bytes):
    raise TypeError
  if len(key) != 32:
    raise ValueError
  if len(iv) != 8:
    raise ValueError
 
  def rotate(v, c):
    return ((v << c) & 0xffffffff) | v >> (32 - c)
 
  def quarter_round(x, a, b, c, d):
    x[a] = (x[a] + x[b]) & 0xffffffff
    x[d] = rotate(x[d] ^ x[a], 16)
    x[c] = (x[c] + x[d]) & 0xffffffff
    x[b] = rotate(x[b] ^ x[c], 12)
    x[a] = (x[a] + x[b]) & 0xffffffff
    x[d] = rotate(x[d] ^ x[a], 8)
    x[c] = (x[c] + x[d]) & 0xffffffff
    x[b] = rotate(x[b] ^ x[c], 7)
 
  ctx = [0] * 16
  ctx[:4] = (1634760805, 857760878, 2036477234, 1797285236)
  ctx[4 : 12] = struct.unpack('<8L', key)
  ctx[12] = ctx[13] = position
  ctx[14 : 16] = struct.unpack('<LL', iv)
  while 1:
    x = list(ctx)
    for i in range(10):
      quarter_round(x, 0, 4,  8, 12)
      quarter_round(x, 1, 5,  9, 13)
      quarter_round(x, 2, 6, 10, 14)
      quarter_round(x, 3, 7, 11, 15)
      quarter_round(x, 0, 5, 10, 15)
      quarter_round(x, 1, 6, 11, 12)
      quarter_round(x, 2, 7,  8, 13)
      quarter_round(x, 3, 4,  9, 14)
    for c in struct.pack('<16L', *(
        (x[i] + ctx[i]) & 0xffffffff for i in range(16))):
      yield c
    ctx[12] = (ctx[12] + 1) & 0xffffffff
    if ctx[12] == 0:
      ctx[13] = (ctx[13] + 1) & 0xffffffff
 
def chacha20_encrypt(data, key, iv=None, position=0):
  # Encrypt (or decrypt) with the ChaCha20 cipher.
  if not isinstance(data, bytes):
    raise TypeError
  if iv is None:
    iv = b'\0' * 8
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  if isinstance(key, bytes):
    if not key:
      raise ValueError('Key is empty.')
    if len(key) < 32:
      key = (key * (32 // len(key) + 1))[:32]
    if len(key) > 32:
      raise ValueError('Key too long.')
 
  return bytes(a ^ b for a, b in
      zip(data, yield_chacha20_xor_stream(key, iv, position)))
 
def main():
    #key = os.urandom(32)
    key = b'superSecretKey!!'
    print('The key that will be used is {}'.format(key))
    print()
    plaintext = b'We all live in a yellow submarine.'
    print('The plaintext is {}'.format(plaintext))
    
    iv = b'SecretIV'
    print()
    enc = chacha20_encrypt(plaintext, key, iv)
    decode_enc = b64encode(enc).decode('utf-8')
    print('The encrypted string is {}. '.format(decode_enc))
    print()
    dec = chacha20_encrypt(enc,key, iv)
    print('The decrypted string is {}. '.format(dec))
    print()
 
if __name__ == "__main__":
    sys.exit(int(main() or 0))

The preceding code should produce output that looks similar to Figure 5.3.

If you would like to use a prepackaged implementation, you can install 
the chacha20ploy1305 library; you will need to perform a pip install 
chacha20poly1350. Once you do, you can implement ChaCha20 using the fol-
lowing code:

import os
from chacha20poly1305 import ChaCha20Poly1305
 

Figure 5.3:  Python implementation of ChaCha20



	 Chapter 5 ■ Stream Ciphers and Block Ciphers	 155

# generate a random key that has 32 bits
key = os.urandom(32)
 
print('The key that will be used is {}'.format(key))
print()
plaintext = b'Attack the yellow submarine.'
print('The plaintext is {}'.format(plaintext))
print()
 
# generate a random IV that has 12 bits
iv = os.urandom(12)
cip = ChaCha20Poly1305(key)
 
ciphertext = cip.encrypt(iv, plaintext)
print(ciphertext)
print()
 
plaintext = cip.decrypt(iv, ciphertext)
print(plaintext)
print()
 

The preceding use of the ChaCha20Poly1305 library should produce output 
similar to Figure 5.4.

An alternative library that you may find helpful as well is the Crypto library. 
You can import ChaCha20 from the Crypt.Cipher library:

 
 
import json
from base64 import b64encode
from Crypto.Cipher import ChaCha20
from Crypto.Random import get_random_bytes
plaintext = b'Attack at dawn'
key = get_random_bytes(32)
cipher = ChaCha20.new(key=key)
ciphertext = cipher.encrypt(plaintext)
nonce = b64encode(cipher.nonce).decode('utf-8')
ct = b64encode(ciphertext).decode('utf-8')

Figure 5.4:  ChaCha20Poly1305
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result = json.dumps({'nonce':nonce, 'ciphertext':ct})
print(result)
 
{"nonce": "IZScZh28fDo=", "ciphertext": "ZatgU1f30WDHriaN8ts="}

Use Block Ciphers

Stream ciphers work by generating pseudorandom bits and XORing them with 
your message. Block ciphers take in a fixed-length message, a private key, and 
they produce a ciphertext that is the same length as the fixed-length plaintext 
message. Now we will examine the construction of block ciphers.

AES and Triple DES are the most common block ciphers in use today. From 
the student’s point of view, DES is still interesting to study, but due to its small 
56-bit key size, it is considered insecure. In 1999, two partners, Electronic Frontier 
Foundation and distributed.net collaborated to publicly break a DES key in 22 
hours and 15 minutes. Here, we will use the PyCrypto library to demonstrate 
how to use DES to encrypt a message. The following recipe is using the ECB 
block mode; you will learn about the various modes later in this chapter. To 
execute the following recipe, perform a pip install PyCrypto:

 
from Crypto.Cipher import DES
 
key = b'shhhhhh!'
origText = b'The US Navy has submarines in Kingsbay!!'
des = DES.new(key, DES.MODE_ECB)
ciphertext = des.encrypt(origText)
 
plaintext = des.decrypt(ciphertext)
 
print('The original text is {}'.format(origText))
print('The ciphertext is {}'.format(ciphertext))
print('The plaintext is {}'.format(plaintext))
print()
 

This should produce the following output:

The original text is b'The US Navy has submarines in Kingsbay!!'
The ciphertext is b'\xf6\x0bb\xf9L\x15I\xf9\x0f\xe2\xee_^\xdaQX\xe1y\
xe5\xea\xd3Z\xc8y\xee\xd3\x86H\xf0Nn\x83\x93\nOd@6H\xd4'
The plaintext is b'The US Navy has submarines in Kingsbay!!'
 
Press any key to continue . . .

The key was 'shhhhhh!' and the message was 'The US Navy has submarines 
in Kingsbay!!'. The ciphertext was 40 bytes long; 40 mod 8 = 0, so there is no 



	 Chapter 5 ■ Stream Ciphers and Block Ciphers	 157

need to pad this example. If you were to implement a block cipher in reality, 
you should use a padding function that ensures the block length.

	 N OT E     If you are following along in the code, you will note that DES.key_size 
and DES.block_size are both 8. This outdated scheme takes 64-bit keys (really 56 
bits for the key and 8 bits for parity error checking) and 64-bit message blocks and 
encrypts them into 64-bit ciphertexts.

There are a few things you need to be aware of when using block ciphers. 
First, block ciphers only encrypt a fixed number of bytes at a time. If you played 
around with the preceding example, you noticed that the message had to have 
a length in multiples of 8; therefore, the message would need to be 8, 16, 24, 32, 
and so on. If your message is more than one block length, you would have to 
handle it; padding the message, or adding extra bytes to the end, is the most 
common option.

Second, block ciphers are considered a cryptographic primitive, or a basic 
building block to a more useful cryptographic message system. If you needed 
to handle larger blocks of arbitrary length, you would use a block cipher mode 
of operation, which describes how to apply a single-block operation to securely 
transform data chunks that are larger than blocks. You may have also noted that 
the example did not provide a nonce. That is another task of the mode you select. 
The block cipher itself has one job only: straight encryption with a single key and 
a fixed-length message. It is the cryptographic version of software engineering.

Third, block ciphers are pseudorandom shuffles that can be encrypted and 
decrypted; every input has one and only one output. In mathematics, this is called 
a function. An invertible function is one that also has a unique input for every 
output. Imagine a block cipher with a block length of 512. It takes in a 512-bit 
binary string and maps it to another 512-bit binary string. Since you can decrypt 
a 512-bit binary ciphertext, the decryption process is considered invertible to the 
encryption process. This relationship allows us to conclude that a block cipher 
is a permutation. The strength of the cipher is the extent to which its shuffling 
is indistinguishable from random shuffling. If a block cipher does its job well, 
then specifying a key should be like grabbing a random permutation from the 
set of all possible permutations. If we can determine that a particular scheme 
has some pattern in it that we can use to distinguish the cipher from genuinely 
random permutations, then the block cipher is considered weak. You explore 
various modes such as the CTR (counter) and OFB (output feedback) in the next 
chapter as they relate to various modes and which ones are recommended for 
image encryption. For now, all you need to know is the following:

■■ CTR style: If the nonce is 6, then get the random stream out of our per-
mutation done in CTR style.

■■ OFB style: If the IV is 6, then get the random stream out of our permuta-
tion in OFB mode.
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Note that the length of the permutation cycles has something to do with the 
strength of OFB as a CSPRNG. CTR is more resistant to this issue as a CSPRNG.

Block Modes of Operations
In the cryptography world, a block cipher mode of operation is an algorithm that 
uses a block cipher to provide encryption. A block cipher, when used alone, is 
only appropriate for the encryption or decryption of one fixed-length group of 
bits called a block. A mode of operation describes how to repeatedly apply a 
cipher’s single-block operation to securely encrypt or decrypt amounts of data 
that are larger than a block.

A block cipher mode of operation uses an IV to ensure distinct ciphertexts even 
when the same key and plaintext are used for the encryption. Block ciphers can 
operate on more than one block size, though the block size is required to be fixed. 
Therefore, any blocks that may be smaller than the required size will require pad-
ding to ensure that the block size is full. (There are, however, modes that do not 
require padding because they effectively use a block cipher as a stream cipher.)

The earliest modes of operation include the ECB, CBC, OFB, and CFB, which 
were all specified in FIPS 81 (1981), DES Modes of Operation. The US National 
Institute of Standards and Technology (NIST) revised the list of approved modes 
of operation by including AES as a block cipher and adding the CR mode in 
2001 as specified in NIST SP800-38A. In January 2010, NIST added XTS. While 
there are other modes of operations, they have not been approved by NIST.

The block cipher modes ECB, CBC, OFB, CFB, CTR, and XTS provide con-
fidentiality, but they fail to protect against malicious tampering or accidental 
modification. Tampering or modification can be detected with a digital certif-
icate or using a separate message authentication code such as CBC-MAC. We 
will cover CBC-MAC in Chapter 7.

ECB Mode

The ECB mode, formally named Electronic Codebook, divides the message 
into blocks and each block is encrypted separately. In Chapter 6, you will see 
visual examples of the weakness of encryption using ECB. Hint: you may still 
be able to determine what the original image is when using ECB mode even 
with strong encryption. ECB mode is typically used as an example of how to 
use block ciphers incorrectly. In Figure 5.5, you will see that plaintext enters the 
ECB block mode cipher encryption mode, which accepts a key and produces 
the encryption. Each block is encrypted the same, thus decreasing the scheme’s 
effectiveness.
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In Figure 5.6, you will see that ciphertext enters the block cipher decryption 
mode, which accepts a key and produces the decryption.

CBC Mode

The CBC mode, formally named Cipher Block Chaining, was created in 1976 
by Ehrsam, Meyer, Smith, and Tuchman. When using CBC mode, each block 
of plaintext is XOR’d with the previous ciphertext block. This ensures that each 
ciphertext block depends on all plaintext blocks processed up to that point. As 
shown in Figure 5.4, the IV is used on the initial block and then the produced 
ciphertext is used to encrypt the plaintext of the next block. Figure 5.7 shows 
the inverse operation.

CBC is the dominant mode of operation. Its major drawback is that encryp-
tion must be performed sequentially as opposed to encrypting in parallel. A 
second drawback is that the message must be padded to a multiple of the cipher 
block size.

Plaintext Plaintext Plaintext

KeyKey

Ciphertext Ciphertext Ciphertext
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Figure 5.5:  ECB mode encryption
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Decrypting using the CBC mode with an incorrect IV causes the first block 
of generated plaintext to be corrupt, but subsequent plaintext blocks will be 
corrected. Examine Figure 5.8. Do you see why this is true? You may have noticed 
that each block is XOR’d with the ciphertext of the previous block and not the 
resulting plaintext. Therefore, a plaintext block can be recovered from two con-
tiguous blocks of ciphertext. Consequently, decrypting with CBC mode can be 
performed in parallel. This also means that a one-bit change to the ciphertext in 
that particular block causes corruption of the corresponding blocks of plaintext 
and inverts the corresponding bit in the subsequent block of plaintext, but the 
remaining blocks should remain intact. This may make the CBC mode vulner-
able to different padding oracle attacks such as POODLE.

	 N OT E     In cryptography, an oracle is a black box that responds to queries.

CFB Mode

We now explore a close relative to the CBC. The CFB, more formally known 
as the Cipher Feedback mode, makes a block cipher into a self-synchronizing 
stream cipher. While the CFB encryption and decryption modes are very similar, 
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some small differences exist. As you examine Figure 5.9, you will notice that an 
initialization vector (IV) is only used to encrypt the first block. After the first 
block, the encrypted blocks are used in place of the IV; this continues until the 
end of the process.

Self-synchronizing protects the cipher if part of the ciphertext is lost; this helps 
recover data due to transmission errors. If an error occurs, the receiver will only 
lose part of the original message and should still be able to continue decrypting 
correctly. CFB also allows for operations that do not include a self-synchronizing 
process, in which synchronizing will only occur if an entire block of ciphertext 
is lost. If only a single bit or byte is lost, the decryption will be corrupt. If you 
need to make a self-synchronizing stream cipher that will work for any multiple 
of x bits, you will need to initialize a shift register of the size of the block with 
the IV; this process will provide an encrypted block cipher with the x bits of 
the results XOR’d with x bits of the plaintext to produce x bits of the ciphertext.

Similar to the CBC mode, any changes that propagate from the plaintext will 
affect the ciphertext, and encryption cannot be performed in parallel. You can, 
however, parallelize the decryption procedure, which is shown in Figure 5.10.
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CFB offers two advantages over CBC mode with the stream cipher modes 
OFB and CTR: first, the block cipher is only used in the encryption process, 
and second, the message does not need to be padded to a multiple of the cipher 
block size.

OFB Mode

The OFB mode, formally named Output Feedback, makes a block cipher into 
a synchronous stream cipher. OFB mode generates keystream blocks that are 
XOR’d with plaintext blocks to get the ciphertext. See Figure 5.11 for a visual 
representation. As with other stream ciphers, modifying a bit in the ciphertext 
will result in a flipped bit in the produced plaintext at the same location. This 
characteristic allows many error-correcting codes to function normally. The 
encryption and decryption methods are the same.

As with the CBC mode, the OFB cipher operation depends on the previous 
blocks and therefore cannot be performed in parallel. One notable difference 
is that because the ciphertext and plaintext are only used for the final XOR, 
the block cipher operations may be performed in advance. This property will 
allow the final step to be performed in parallel once the cipher or plaintext is 
available. See Figure 5.12 for a review of OFB mode decryption.

One thing to note is that you can obtain an OFB mode keystream by using 
CBC mode with a constant string of zeros as input. This property can be useful 
as it allows the usage of fast hardware implementations of CBC mode for OFB 
mode encryption.
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Figure 5.11:  Output Feedback (OFB) mode encryption
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CTR Mode

CTR mode, also known as Integer Counter mode or Segmented Integer Counter 
mode, turns a block cipher into a stream cipher. CTR mode was introduced in 
1979 by Whitfield Diffie and Martin Hellman. These are two names we will 
explore in the following chapters. You will see in Figure 5.13 that the CTR gen-
erates the keystream block by encrypting successive values of a counter that can 
be any function that generates a sequence that is guaranteed not to repeat; typ-
ically, the simplest counter is to increment by one, although some critics believe 
using the counter is considered a risk. However, CTR mode is widely accepted 
and is recommended along with CBC by Niels Ferguson and Bruce Schneier.

CTR mode allows a random-access property during the decryption process. 
CTR mode is considered well-suited to operate on a multiprocessor computer 
where blocks can be encrypted in parallel. If you generate a random IV, it can 
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be combined with the counter using any invertible operation (XOR, addition, 
or concatenation) to produce a unique counter block for encryption. If the IV 
is not random, such as a packet counter, the IV and counter should be concate-
nated. Figure 5.14 illustrates how the counter block is incremented during the 
decryption process.

Take caution with how you implement the counter; adding or XORing the 
IV and counter into a single value could break the security under a chosen-
plaintext attack; this is due to the attacker being able to manipulate the entire 
IV–counter pair to cause a collision. Once an attacker controls the IV–counter 
pair and plaintext, XOR of the ciphertext with the known plaintext would yield 
a value that, when XOR’d with the ciphertext of the other block sharing the same 
IV–counter pair, would decrypt that block. An example using the CTR mode 
would look similar to the following:

from Crypto.Util import Counter
     Counter.new(128, initial_value = int(binascii.hexlify('Not very 
random.'), 16))

Tricks with Stream Modes

Notice that both the CTR and OFB modes act like stream ciphers (the “infinite 
one-time pad” concept). That is, the block cipher is used to generate a sequence 
of pseudorandom blocks that are XOR’d with the message. This ensures that  
the message does not impact the random blocks.

These modes have some strengths and some weaknesses:

Strengths:

■■ The random stream can be precomputed on the encryption side

■■ We never have to decrypt a block cipher (so any one-way function can do 
the job)
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■■ Encryption is decryption (just pass in the IV)

■■ We don’t have to pad the message, just use the bits we need (saves band-
width on small messages)

■■ CTR can be efficiently parallelized both for encryption and decryption

Weaknesses:

■■ OFB might have short permutation cycles (more in a minute on that)

■■ Using the same IV twice is deadly (not great in CBC but worse here)

■■ Tampering with the ciphertext can lead to tampered plaintext (and not 
just noise)

DIY Block Cipher Using Feistel Networks

In this next section, I want to show you a slick method to use one-way function, 
like hashes, to create block ciphers using the Feistel network. A Feistel cipher/
Feistel network implements a series of iterative ciphers on a block of data and 
is generally designed for block ciphers that encrypt large quantities of data. 
A Feistel network works by splitting the data block into two equal pieces and 
applying encryption in multiple rounds.

The input block is split in the middle to create equal-sized sub-blocks. Examine 
Figure 5.15; let’s call the initial left-hand side sub-block L0, and the initial 
right-hand side sub-block R0. Let the function Fki be the round function that 
uses the i th round key, ki. These round keys are generated by the key schedule, 
which is unspecified. If we have r rounds, then for 1 ≤ i < r.

Li = Ri−1

Ri = Li−1 ⊕ Fki(Ri−1)

and for i = r

Lr = Rr−1 ⊕ Fkr(Lr−1)
Rr = Lr−1

The idea is to split your message into two halves, with one half to make 
something that looks like noise. Then XOR the other half with the noise. Finally, 
pass the XOR’d result and the unmodified half. This gives you everything you 
need to know to go backward, which is the same exact process. In Figure 5.16 
you will see an illustration of how the Feistel network decryption works.

Next, convince yourself that reversing one step of the Feistel network is doable 
by hashing the part that passed in the clear, XORing with the other half, and 
reversing their spots. Now we want to have our output have the same bit length 
as our input, which was not true for a hash function.

Use the super-hash as the one-way function in a Feistel network. Our output 
is a 256-bit hexadecimal number. The input should be 512 bits. Eight bits is 
enough to encode one ASCII character. The secrets should be 64 characters long.
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To build the encryption scheme, write a function that consumes a length 64 
string and a salt that now acts like a key. Have your scheme do four rounds of 
a Feistel network and return a hex string of the 512-bit output. For now, you can 
use 5,000 iterations per super-hash.
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Figure 5.16:  Feistel Network decryption
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Advanced Encryption Standard (AES)
AES stands for Advanced Encryption Standard, and it is the only public encryp-
tion scheme that the NSA approves for confidential information. We focus on 
its use as our main block cipher from now on. AES is the current de facto block 
cipher, and it works on 16 bytes at a time. It has three possible key lengths: 
16-byte, 24-byte, or 32-byte. We know that a block cipher is effectively a deter-
ministic permutation on binary strings, like a fixed-length reversible hash. Given 
a proper-length key and a 16-byte input we should always get the same 16-byte 
output. Note that there are typically three ways to work with bytes: plain ASCII, 
hex digest, and base64 (we haven’t played with this yet but we will). A good 
chunk of your bugs come from transferring between hex and raw. You explore 
AES in the next chapter as you manipulate images.

Using AES with Python

Earlier in this chapter, you were introduced to PyCrypto as a Python module 
that enables block ciphers using DES; it also has methods for encrypting AES. 
The PyCrypto module is similar to the Java Cryptography Extension (JCE) that 
is used in Java.

The first step we will take in our AES encryption is to generate a strong key. 
As you know, the stronger the key, the stronger the encryption. The key we use 
for our encryption is oftentimes the weakest link in our encryption chain. The 
key we select should not be guessable and should provide sufficient entropy, 
which simply means that the key should lack order or predictability. The fol-
lowing Python code will create a random key that is 16 bytes:

import os
import binascii
 
key = binascii.hexlify(os.urandom(16))
print ('key', [x for x in key] )
 
 
key [97, 53, 99, 97, 102, 99, 102, 102, 50, 101, 98, 57, 97, 51, 50, 50, 
51, 52, 102, 49, 101, 51, 102, 52, 100, 49, 48, 51, 51, 49, 56, 51]

Now that you have generated a key, you will need an initialization vector. 
The IV should be generated for each message to ensure a different encrypted 
text each time the message is encrypted. The IV adds significant protection in 
case the message is intercepted; it should mitigate the use of cryptanalysis to 
infer message or key data. The IV is required to be transmitted to the message 



168	 Chapter 5 ■ Stream Ciphers and Block Ciphers

receiver to ensure proper decryption, but unlike the message key, the IV does 
not need to be kept secret. You can add the IV to process the encrypted text. 
The message receiver will need to know where the IV is located inside the mes-
sage. You can create a random IV by using the following snippet; note the use 
of random.randint. This method of generating random numbers is less effective 
and it has a lower entropy, but in this case we are using it to create the IV that 
will be used in the encryption process so there is less concern with the use of 
randint here:

iv = ''.join([chr(random.randint(0, 0xFF)) for i in range(16)]) )]) 

The next step in the process is to create the ciphertext. In this example, we 
will use the CBC mode; this links the current block to the previous block in 
the stream. See the previous section to review the various AES block modes.

Remember that for this implementation of AES using PyCrypto, you will need 
to ensure that you pad the block to guarantee you have enough data in the block:

aes = AES.new(key, AES.MODE_CBC, iv)
data = 'Playing with AES' # <- 16 bytes
encd = aes.encrypt(data)

To decrypt the ciphertext, you will need the key that was used for the encryp-
tion. Transporting the key, inside itself, can be a challenge. You will learn about 
key exchange in a later chapter. In addition to the key, you will also need the 
IV. The IV can be transmitted over any line of communication as there are no 
requirements to encrypt it. You can safely send the IV along with the encrypted 
file and embed it in plaintext, as shown here:

from base64 import b64encode
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
import binascii, os
import random
 
data = b"secret"
key = binascii.hexlify(os.urandom(16))
iv = ''.join(chr(random.randint(0, 0xFF)) for i in range(16))
#print ('key: ', [x for x in key] )
#print()
 
cipher = AES.new(key, AES.MODE_CBC)
ct_bytes = cipher.encrypt(pad(data, AES.block_size))
ct = b64encode(ct_bytes).decode('utf-8')
print('iv: {}'.format(iv))
print()
print('ciphertext: {}'.format(ct))
print()
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iv: öhLÒô™Ï2q]>°mâ
 
ciphertext: BDE+z8ME6r0QgkraNXLuuQ==

File Encryption Using AES

Next, you can encrypt a file using AES by implementing the following Python 
recipe. The primary difference is opening the file and passing the packs into 
blocks:

aes = AES.new(key, AES.MODE_CBC, iv)
filesize = os.path.getsize(infile)
with open (encrypted, ‘w’) as fout:
     fout.write(struct.pack(‘<Q’, filesize))
fout.write(iv)

File Decryption Using AES

To decrypt the previous example, use the following code to reverse the process:

with open(verfile, 'w') as fout:
    while True:
        data = fin.read(sz)
        n = len(data)
        if n == 0:
            break
        decd = aes.decrypt(data)
        n = len(decd)
        if fsz > n:
            fout.write(decd)
        else:
            fout.write(decd[:fsz]) # <- remove padding on last block
        fsz -= n

Summary

After completing this chapter, you should feel comfortable converting between 
hexdigest and plaintext using the binascii library. The binascii module pro-
vides several methods to convert between ASCII-ended binary expressions and 
binary. We then took a survey of how both stream ciphers and block ciphers 
work. You should understand that a stream cipher is a symmetric key cipher 
where plaintext digits are combined with a pseudorandom cipher digit stream. 
In a stream cipher, each plaintext digit is encrypted one at a time with the 
corresponding digit of the keystream, to give a digit of the ciphertext stream.
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While most stream ciphers are used at the hardware layer, you now under-
stand how to both create and use the Salsa20, ChaCha20, and Vernam ciphers. 
We then turned our focus on block ciphers and the various modes of opera-
tions. We concluded the block cipher exploration by examining which modes 
allow block ciphers to operate like stream ciphers. We also explored how to 
create a DIY cipher using a Feistel Network. We finished with an introduction 
to the Advanced Encryption Standard (AES) cryptosystem. You will explore 
more about block mode operations and AES in the next chapter as you learn 
to encrypt images.
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At this point, you should be feeling confident in your ability to encrypt and 
decrypt messages. In this chapter, you will expand on what you know to include 
the cryptography of images. Through exercises in this chapter, you will be able 
to identify problems with different modes of encryption and learn alternative 
ways to get results. To complete our study of image cryptography, we will close 
the chapter with steganography. Through this chapter, you will do the following:

■■ Gain an understanding of image and cryptography libraries

■■ Learn about AES modes of operations

■■ Explore various cryptography methods for images

■■ Hide and read media within an image using Python

Simple Image Cryptography

Before we get into various libraries that can be used for image cryptography, I 
wanted to share a simple method that will allow you to encrypt and decrypt a 
file. The entire process relies on looping through the bits of an image and then 
bitwise exclusive (XOR) them with the bit and the key. To decrypt the image, 
we simply reverse the XOR operation.

Using Cryptography with Images

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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In the following example and the subsequent ones in this chapter, we will be 
encrypting the original image and then saving it with an e in front of the name. 
When we decrypt the image, we save it with a d in front of the name. The reason 
we’re doing this is to be able to compare the original image with the decrypted 
image to see if there is any apparent data loss.

Figure 6.1 shows the original image we will use. Feel free to create your own 
for this exercise. It is a fairly small file, which is fine until we get to the end of 
the chapter. For hiding blob data, you may need a much larger file. Time for a 
little code.

print('The program is looking for a file named: ch6_secret_image.jpg')
fo = open("Chapter6\ch6_secret_image.jpg", "rb")
image = fo.read()
fo.close()
 
print()
print("The secret key is 42.")
image = bytearray(image)
key = 42
 
for index, value in enumerate(image):
   image[index] = value^key
 
print()
print('The image has been encrypted. Review e_ch6_secret_image.jpg')
fo = open("Chapter6\e_ch6_secret_image.jpg", "wb")
fo.write(image)
fo.close()
 
image = bytearray(image)
 
for index, value in enumerate(image):
   image[index] = key^value
 

Figure 6.1: Original ch6_secret_image.jpg file
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print()
print('The image has now been decrypted. Review d_ch6_secret_image.jpg')
fo = open("Chapter6\d_ch6_secret_image.jpg", "wb")
fo.write(image)
fo.close()

While the image is now unreadable, it may also throw an error depending 
on the software you are using (see Figure 6.2). This isn’t a showstopper, though, 
as you can still email the file anywhere and you will not have to worry about 
someone decrypting it without the key, which in this case is 42.

Decrypting will reproduce the image without data loss, as shown in Figure 6.3. 
This is important to examine as some modes will have some loss. The image 
on the left is the original, while the image on the right has been encrypted and 
then decrypted. Later, we will examine various encryption modes that work 
well on regular files but fail on images. One such example is the use of the ECB 
mode discussed shortly.

In the next section, we will start exploring more complex solutions using 
cryptographic libraries.

Figure 6.2: Error message for e_ch6_secret_image.jpg
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Images and Cryptography Libraries

Let’s change our focus to implementing libraries that will make our cryptography 
lives a little easier. We will revisit the Cryptography library that we introduced 
in Chapter 1, and we will introduce the Cryptosteganography library that will 
give us the ability to explore steganography using Python later in this chapter.

Understanding the Cryptography Library
Cryptography is the name of a Python package that provides cryptographic 
primitives and recipes. The library boasts to be your “cryptographic standard 
library,” and it currently supports various versions in Python. To install the 
library, perform a pip install cryptography.

The Cryptography library includes both high-level recipes and low-level 
interfaces to common cryptographic algorithms such as symmetric ciphers, 
message digests, and key derivation functions. The Fernet example shown next 
highlights an example of a high-level interface. Check out the following quick 
sample code to ensure that you have the Cryptography library installed:

from cryptography.fernet import Fernet
key = Fernet.generate_key()
f = Fernet(key)
print ("The key is %s", f)
print ()
ciphertext = f.encrypt(b"This is a secret message.")
print (ciphertext)
print ()

Figure 6.3: Side by side of ch6_secret_image.jpg and d_ch6_secret_image.jpg
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plaintext = f.decrypt(ciphertext)
print (plaintext)

If you have the Cryptography library installed correctly, you should be able 
to generate a new key and encrypt and decrypt ‘This is a secret message.’ 
Your output should look like Figure 6.4, except it will have a unique key.

Understanding the Cryptosteganography Library
Steganography is the art of concealing information within different types of media 
objects such as images or audio files, in such a way that no one, apart from the 
sender and intended recipient, suspects the existence of the message. By itself, 
steganography is a type of security through obscurity. In this section, we will 
not only explore how to hide unencrypted messages inside an image but also 
store encrypted media inside an image. If you choose to hide unencrypted data, 
you can find a number of freeware tools that can extract your message, so feel 
free to encrypt the data prior to adding it to the image.

The second library that we are going to examine is the Cryptosteganography 
library. The module allows you to store messages or files that are protected 
using AES-256 inside an image. To take advantage of the library, perform a 
pip3 install cryptosteganography inside your project or your working envi-
ronment. The Cryptosteganography library is designed to work in Python 3 
and higher.

Image Cryptography

We will explore image cryptography using a variety of formats and tools. We 
will first review file cryptography using the Fernet library. This will give you 
the basis of using the Fernet library to encrypt and decrypt image files. You will 
then explore how the AES block modes of operation affect how your images 
are encrypted.

Figure 6.4: Cryptography library test
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File Cryptography Using Fernet
In this section, we will explore image cryptography using Fernet, which is an 
implementation of symmetric authenticated cryptography. Symmetric encryp-
tion, which you may remember is synonymous for “same key,” means that we 
use the same key to both encrypt and decrypt. You will begin by generating 
a key and then saving it to a file. The generate_key() function will generate a 
new Fernet key each time it is called; if you lose this key, you will not be able 
to decrypt any data that you encrypted with this key. Therefore, once the key 
gets generated, you will save it to disk. Each time you have the system generate 
a key for you, you should save it; the alternative is to create your own key.

The Python code to generate the key and store it looks like the following:

key = Fernet.generate_key()
with open("ch6.key", "wb") as key_file:
    key_file.write(key)

To load the key file once it is stored, you can use the following Python code:

return open("ch6.key", "rb").read()

Once you have an encryption system and a key, you should be ready to 
encrypt your message. Do not forget to encode your message; this will convert 
the string to bytes suitable for encrypting. Your message assignment should 
look like the following:

plaintext = "I have a secret I want to share but only if you have the 
key.".encode()

From here, we are ready to start our encryption process:

f = Fernet(key)
ciphertext = f.encrypt(plaintext)
print (ciphertext)

Assuming you are playing along, you should have something similar to 
Figure 6.5.

Figure 6.5: Python output for Fernet
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Next, we will load a file with plaintext data and then encrypt the data using 
the encrypt() method. The file is then saved to storage:

    filename = “sometextfile.txt”    
    f = Fernet(key)
    with open(filename, "rb") as file:
        # read all file data
        file_data = file.read()
    # encrypt data
    encrypted_data = f.encrypt(file_data)
    # write the encrypted file
    with open(filename, "wb") as file:
        file.write(encrypted_data)

The decryption process is almost identical, but we use the decrypt() function 
of the Fernet object:

    $filename = “sometextfile.txt”
    f = Fernet(key)
    with open(filename, "rb") as file:
        # read the encrypted data
        encrypted_data = file.read()
    # decrypt data
    decrypted_data = f.decrypt(encrypted_data)
    # write the original file
    with open(filename, "wb") as file:
        file.write(decrypted_data)

Now that you have the concepts, you can wrap all these snippets up into 
something a little more flexible. The following Python code accepts a key, a file, 
and either a decryption or encryption flag:

from cryptography.fernet import Fernet
import os
 
def write_key():
    # Generates a key and save it into a file
    key = Fernet.generate_key()
    with open("ch6.key", "wb") as key_file:
        key_file.write(key)
 
def load_key():
    #Loads the key from the current directory named 'ch6.key'
    return open("ch6.key", "rb").read()
 
def encrypt(filename, key):
    # encrypts the file and writes it using filename and key
    f = Fernet(key)
    with open(filename, "rb") as file:
        # read all file data
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        file_data = file.read()
    # encrypt data
    encrypted_data = f.encrypt(file_data)
    # write the encrypted file
    with open(filename, "wb") as file:
        file.write(encrypted_data)
 
def decrypt(filename, key):
    # decrypts the file and writes it using the filename and key
    f = Fernet(key)
    with open(filename, "rb") as file:
        # read the encrypted data
        encrypted_data = file.read()
    # decrypt data
    decrypted_data = f.decrypt(encrypted_data)
    # write the original file
    with open(filename, "wb") as file:
        file.write(decrypted_data)
 
 
if __name__ == "__main__":
    import argparse
    parser = argparse.ArgumentParser(description="Simple File Encryptor 
Script")
    parser.add_argument("file", help="File to encrypt/decrypt")
    parser.add_argument("-g", "--generate-key", dest="generate_key", 
action="store_true",
                        help="Whether to generate a new key or use 
existing")
    parser.add_argument("-e", "--encrypt", action="store_true",
                        help="Whether to encrypt the file, only -e or -d 
can be specified.")
    parser.add_argument("-d", "--decrypt", action="store_true",
                        help="Whether to decrypt the file, only -e or -d 
can be specified.")
 
    args = parser.parse_args()
    file = args.file
    generate_key = args.generate_key
 
    if generate_key:
        write_key()
    # load the key
    key = load_key()
 
    encrypt_ = args.encrypt
    decrypt_ = args.decrypt
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    if encrypt_ and decrypt_:
        raise TypeError("Please specify whether you want to encrypt the 
file or decrypt it.")
    elif encrypt_:
        encrypt(file, key)
    elif decrypt_:
        decrypt(file, key)
    else:
        raise TypeError("Please specify whether you want to encrypt the 
file or decrypt it.")

Image Cryptography Using Fernet
Using our previous example, you can now write a solution that will allow you 
to specify the original image and change the encrypted file to a specific name; 
in this case, the ch6_secret_image.jpg file will be encrypted as e_ch6_secret_
image.jpg and then immediately decrypted to d_ch6_secret_image.jpg. The 
image resolution between the original file and the decrypted file is identical 
as the Fernet algorithm operates on the file itself and does not alter the pixels 
of the image.

In the following example, I removed the reading and writing key since the 
encryption and decryption are happening in the same process. The encryption 
process here is not specific to just images and can be used on a variety of data 
types. The takeaway from this program should be the full encryption at the file 
level and not the pixel level:

def encrypt(filename, newfile, key):
    """
    Given a plain image (str), the new file name,  and key (bytes), it 
encrypts the file and write it
    """
    f = Fernet(key)
    with open(filename, "rb") as file:
        # read all file data
        file_data = file.read()
    # encrypt data
    encrypted_data = f.encrypt(file_data)
    # write the encrypted file
    with open(newfile, "wb") as file:
        file.write(encrypted_data)
 
def decrypt(filename, newfile, key):
    """
    Given a encrypted file (str), the new file name, and key (bytes), it 
decrypts the file and write it
    """
    f = Fernet(key)
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    with open(filename, "rb") as file:
        # read the encrypted data
        encrypted_data = file.read()
    # decrypt data
    decrypted_data = f.decrypt(encrypted_data)
    # write the original file
    with open(newfile, "wb") as file:
        file.write(decrypted_data)
 
key = Fernet.generate_key()
 
enc = encrypt("ch6_secret_image.jpg", "e_ch6_secret_image.jpg", key)
dec = decrypt("e_ch6_secret_image.jpg", "d_ch6_secret_image.jpg", key)

AES and Block Modes of Operations
AES stands for Advanced Encryption Standard, and it is the only public encryp-
tion scheme that the NSA approves for confidential information. We focus on 
its use as our main block cipher from now on. AES is the current de facto block 
cipher, and it works on 16 bytes at a time. It has three possible key lengths: 16 
bytes, 24 bytes, or 32 bytes. A number of AES block cipher modes are part of the 
AES specification; in this section, we will examine ECB and CBC.

The following code examples will utilize the PyCrypto library that was 
discussed in the Advanced Encryption Standard (AES) section of Chapter 5. 
To install the library, you will need to perform a pip install PyCrypto; the 
library provides us with the following modes we can use:

■■ MODE_ECB: Electronic Code Book (ECB)

■■ MODE_CBC: Cipher-Block Chaining (CBC)

■■ MODE_CFB: Cipher Feedback (CFB)

■■ MODE_PGP: Pretty Good Privacy (PGP)

■■ MODE_OFB: Output Feedback (OFB)

■■ MODE_CTR: CounTer Mode (CTR)

■■ MODE_OPENPGP: Open Pretty Good Privacy (OPENPGP)

Each of the block sizes will need to equal 16 bytes, while the key sizes for 
each of the supported modes support 16, 24, and 32 bytes. The encryption for 
the majority of these modes will be identical to using the CBC mode. If you do 
not specify a mode, the Electronic Code Book (ECB) mode will be used. More 
recent libraries may require you to specify an encryption mode. Either way, you 
should specify a mode so that it is obvious which mode you are using.

The simplest block mode is ECB; the cipher mode processes each 128-bit 
block of data. Each block is then then independently encrypted using AES 
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with the same encryption key. The decryption process is the reverse. When 
using the ECB mode process, identical blocks of plaintext will be encrypted 
the same and will yield identical blocks of ciphertext or an encrypted image. 
While the weaknesses of the cipher mode may not be initially apparent, when 
we examine the mode in image cryptography, a major security vulnerability 
appears. In Figure 6.6, you will see the difference between the ECB mode 
versus the other modes that are available.

Exploring a Simple ECB Mode Example

For our first example, we will examine how to produce the ECB mode encrypted 
image. First, we start out with a bitmap file that has a distinct pattern, as shown 
in Figure 6.7.

The first step is to import the library and set a key. For this example, we will 
use a 16-byte key, although 24-byte and 32-byte keys are supported:

>>> from Crypto.Cipher import AES
>>> key = b"aaaabbbbccccdddd"
>>> cipher = AES.new(key, AES.MODE_ECB)

Figure 6.6: Image encryption modes

Figure 6.7: Plane image in BMP format
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The next step is to file read the plane.bmp image; we will store the binary file 
into a variable named byteblock:

>>> with open("plane.bmp", "rb") as f:
>>>   byteblock = f.read()

The byteblock will need to be in multiples of 16 bytes. If not, it will result in 
an error that states: Input strings must be a multiple of 16 in length. The byteblock 
value will depend on the size of the image. To examine the byteblock, you can 
examine the length of the variable:

>>> print (len(byteblock))
261654

Since the input string must be a multiple of 16, we will need to examine how 
many bytes are left over when we take the modulo. In this case, it is 6:

>>> print (len(byteblock)%16)
6

Our goal is now to move the bytes that are multiples of 16 into a variable that 
we can use to isolate the block while subtracting the overflow. Here, we will 
store the value in byteblock_trimmed:

byteblock_trimmed = byteblock[64:-6]
 
>>> print (len(byteblock_trimmed))
261584
>>> print (len(byteblock_trimmed)%16)
0

To ensure that the image can be encrypted and decrypted without a data loss, 
you will need to combine the two sets of byte blocks:

# byteblock_trimmed must not have extra bytes or an error will occur
ciphertext = cipher.encrypt(byteblock_trimmed)
ciphertext = byteblock[0:64] + ciphertext + byteblock[-6:]

Now, all that is needed for the image is to save it using the ciphertext:

with open("plane_ecb.jpg", "w") as f:
   f.write(ciphertext) 
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The resulting image will look like Figure 6.8.

Now we will reverse the process. The decryption process will look like the 
following:

with open("plane_ecb.bmp", "rb") as f:
     byteblock = f.read()
 
byteblock_trimmed = byteblock[64:-6]
 
plaintext = cipher.decrypt(byteblock_trimmed)
plaintext = byteblock[0:64] + plaintext + byteblock[-6:]
 
with open("dplane_ecb.bmp", "wb") as f:
     byteblock = f.write(plaintext)

The result, shown in Figure 6.9, will produce a decrypted version that matches 
the original version.

Depending on the image you choose, you will have a variable of bytes that 
will need to be captured. The following code stores the value in a pad variable. 
To simplify the code, I multiplied it by −1 to produce a negative number. The 

Figure 6.8: ECB encrypted plane

Figure 6.9: ECB decrypted plane
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following code will combine everything you have learned and encrypt our 
secret .bmp image:

from Crypto.Cipher import AES
key = b"aaaabbbbccccdddd"
 
cipher = AES.new(key, AES.MODE_ECB)
 
# encrypt using ECB mode
 
with open("chapter6/ch6_secret_image.bmp", "rb") as f:
    byteblock = f.read()
 
pad = len(byteblock)%16 * -1
 
byteblock_trimmed = byteblock[64:pad]
 
ciphertext = cipher.encrypt(byteblock_trimmed)
ciphertext = byteblock[0:64] + ciphertext + byteblock[pad:]
 
with open("e_ch6_secret_image.bmp", "wb") as f:
    f.write(ciphertext) 
 
# decrypt using the reverse process
 
with open("e_ch6_secret_image.bmp", "rb") as f:
    byteblock = f.read()
 
pad = len(byteblock)%16 * -1
byteblock_trimmed = byteblock[64:pad]
plaintext = cipher.decrypt(byteblock_trimmed)
plaintext = byteblock[0:64] + plaintext + byteblock[pad:]
with open("d_ch6_secret_image.bmp", "wb") as f:
    byteblock = f.write(plaintext)
 
print ("done")

One of the critical takeaways I want you to walk away with is to understand 
that bitmap files that have large uniform areas will not encrypt the way you 
want them to and can potentially expose information you want to hide. You 
saw in Figure 6.8 that the outline of the airplane was still visible. This next 
example does a little better at obfuscating the image but still provides too much 
information. Examine the output for the preceding code recipe in Figure 6.10. 
This vulnerability is unique to the ECB mode encryption and, in this case, is 
only an issue if the image is a .bmp file. Some image types, such as .jpg files, 
are not vulnerable to the same issue.
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Exploring a Simple CBC Mode Example

Now that you understand how to encrypt and decrypt using ECB block mode, 
we will examine the CBC mode. One important difference between the two 
modes is the use of an initialization vector (IV) and the specification of the block 
mode, which in this case is AES.MODE _ CBC:

from Crypto.Cipher import AES
 
iv = "1111222233334444"
key = "aaaabbbbccccdddd"
cipher = AES.new(key, AES.MODE_CBC, iv)
 
# encrypt using CBC mode
 
with open("plane.bmp", "rb") as f:
   byteblock = f.read()
 
pad = len(byteblock)%16 * -1
 
byteblock_trimmed = byteblock[64:pad]
 
ciphertext = cipher.encrypt(byteblock_trimmed)
ciphertext = byteblock[0:64] + ciphertext + byteblock[pad:]
 
with open("plane_cbc.bmp", "w") as f:
   f.write(ciphertext) 
 
# decrypt using the reverse process
 

Figure 6.10: ECB security issue
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with open("plane_cbc.bmp", "rb") as f:
   byteblock = f.read()
 
pad = len(byteblock)%16 * -1
byteblock_trimmed = byteblock[64:pad]
plaintext = cipher.decrypt(byteblock_trimmed)
plaintext = byteblock[0:64] + plaintext + byteblock[pad:]
with open("dplane_cbc.bmp", "w") as f:
   byteblock = f.write(plaintext)
 
print ("done")

The result, shown in Figure 6.11, will produce an encrypted version that does 
not show the same vulnerability as the ECB mode.

Applying the Examples

You have all the tools you need to create a solution that offers a number of AES 
block modes. The following code will allow you to specify a filename, key, and 
IV; it can be used to test a variety of block modes:

from Crypto.Cipher import AES
 
 
def Open_File(filename):
    with open(filename, "rb") as f:
        byteblock = f.read()
    return byteblock
 
def Save_File(filename, block):
    with open(filename,"wb") as f:
        f.write(block)
 
def Get_Padding(block):
    l = len(block) %16
    return (l * -1)
 

Figure 6.11: CBC encrypted plane
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def Encrypt(cipher,read_filename, save_filename):
    block = Open_File(read_filename)
    pad = Get_Padding(block)
    block_trimmed = block[64:pad]
    ciphertext = cipher.encrypt(block_trimmed)
    ciphertext = block[0:64] + ciphertext + block[pad:]
    Save_File(save_filename, ciphertext) 
 
def Decrypt(cipher,read_filename, save_filename):
    block = Open_File(read_filename)
    pad = Get_Padding(block)
    block_trimmed = block[64:pad]
    ciphertext = cipher.decrypt(block_trimmed)
    ciphertext = block[0:64] + ciphertext + block[pad:]
    Save_File(save_filename, ciphertext) 
 
def Init_Cipher(key, mode, iv):
    cipher = AES.new(key, mode, iv)
    return cipher
 
# set the key and iv values
key = "aaaabbbbccccdddd"
iv = "1111222233334444"
 
# Available AES Block Modes
# AES.MODE_ECB = 1
# AES.MODE_CBC = 2
# AES.MODE_CFB = 3
# AES.MODE_OFB = 5
# AES.MODE_CTR = 6
# AES.MODE_OPENPGP = 7
 
mode = AES.MODE_CBC
 
c = Init_Cipher(key,mode, iv)
 
Encrypt(c, "plane.bmp", "eplane.bmp")
Decrypt(c, "eplane.bmp", "dplane.bmp")

Steganography

Steganography, which means “concealed writing” in Greek, is the art of conceal-
ing data within another file, image, video, or message. The first recorded use of 
the term was by Johannes Trithemius in his book titled Steganographia in 1499. 
While his book was on the topics of cryptography and steganography, it was 
masqueraded as a book on magic; the book contains hidden cipher messages. 
After almost 500 years these cryptograms have been detected and solved. As a 



188	 Chapter 6 ■ Using Cryptography with Images

result, Steganographia can no longer be regarded as one of the main early modern 
demonological treatises, but instead stands unambiguously revealed as the first 
book-length treatment of cryptography in Europe.

Typically with steganography, the hidden messages appear as images, arti-
cles, lists, or other textual items. Hidden messages may be written between the 
lines of letters using invisible ink. The goal of steganography is to not attract 
attention to the article itself and for those messages without keys, apply the 
concept of security through obscurity. The primary difference between stegan-
ography and cryptography is that the latter focuses on protecting the contents 
of a message, whereas steganography is concerned with concealing both the 
message and its contents.

Steganography, today, includes the concealment of information or data within 
computer files or electronic communications. In this section, we will explore 
how to hide data within other electronic media using Python. Earlier in this 
chapter, you learned about the Cryptosteganography module. We will first start 
using this module to conceal data and then explore other methods. Some of the 
caveats of using this module is that the output is limited to PNG formatted files 
and it does not work if the file is greater than the original input file. You may 
need larger images to store big blocks of data.

Storing a Message Inside an Image
Let us turn our attention to storing data inside a digital image. Each image, no 
matter the format, is constructed of small digital values called pixels. Pixels 
are the equivalent to cells in the human body and are the smallest element that 
makes up an image. Each pixel value represents the brightness of a given color 
at any specific point. When you examine an image at the pixel level, you will 
find that the image is made up of a series of pixels that form rows and columns. 
Images that provide the most accurate representation of the original image 
require more pixels. In digital images, the color is represented by three or four 
component intensities such as cyan, magenta, yellow, and black (CMYK), or red, 
green, and blue (RGB). The RGB model is the combination of adding red, green, 
and blue in various ways to produce a wide variety of colors. The RGB value is 
composed of 3 values (red, green, blue) which are each 8-bit values that range 
from 0 to 255. When breaking down an RGB color digitally, you will see the colors 
represented with three numbers; an example would be [124, 196, 143], which is 
a variance of green. You can examine any number of arrangements by finding 
color pickers on the web. Each value in the RGB scale is represented by a binary 
code. The binary code is broken down into 8-bit binary digits. The leftmost bit 
is the most significant bit. The number 128 is represented by 10000000, whereas 
the number 177 is represented by 10110001. On the rightmost side of the digits, 
we have the least significant bit. If we change the rightmost value, it will have 
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less impact on the final value. Small changes to the least significant bit will not 
be noticeable to the naked eye. This will come into play when hiding data using 
the Least Significant Bit or LSB method of steganography. In an RGB image, an 
8-bit image means three 8-bit channels for the RGB data; each color has its own 
8-bit channel, which provides one byte for each red, green, and blue color; this 
mode is also known as 24-bit color depth. This gives an image a color palette of 
16.7 million colors. The LSB method replaces bits in the image, but not all these 
bits are needed to show the image. You can also use this same method to hide 
data in audio files. Another method of hiding data inside images is to append 
extra bytes to the end of the image, while still leaving the image file technically 
valid, or encoding the extra bytes in the image metadata fields. This method 
will increase the size of the image in most cases. When adding bits to a file, 
the secret message could appear in the file header portion, which contains the 
information such as file type, color depth, and resolution of the image. Each 
type of file also has an explicit end of file so data can be hidden after the end of 
the file without modifying the image data and corrupting the image.

Our goal here is to use the CryptoSteganography module to take a secret 
message and hide it in an image. Let’s jump into some code and we will explore 
some tools afterward to help discover hidden data inside our images.

The first thing that you need to do is import the CryptoSteganography library:

>>> from cryptosteganography import CryptoSteganography

The next step is to create a key and pass it into the CryptoSteganography 
object. The key is critical in order to extract the messages you conceal; the key 
you select can be a passphrase or any selected password:

>>> key = "1111222233334444!"
>>> crypto_steganography = CryptoSteganography(key)

Now, create three variables to specify the original image file, the altered 
or modified file, and the message you want to hide in the image. Use the  
crypto_steganography object to hide the details in the image using the hide() 
method:

>>> origfile = "ch6_secret_image.jpg"
>>> modfile = "steg_ch6_secret_image.png"
>>> message = "This is the secret message."
>>> crypto_steganography.hide(origfile, modfile, message)

Now that we have an image that contains a secret message, use the retrieve() 
method to extract the message. Once you have that, you can print it to the screen 
to verify that it is correct:

>>> secret = crypto_steganography.retrieve(modfile)
>>> print(secret)
This is the secret message.
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We now examine how the module works when you do not supply the 
correct key. Change the key to anything else and then pass the new key into 
the CryptoSteganography class:

>>> key = "AnotherKey"
>>> crypto_steganography = CryptoSteganography(key)

You can now use the retrieve() method to attempt to extract the message. 
This time, when you print the retrieved value, you will get the value None, 
indicating that the key is incorrect:

>>> secret = crypto_steganography.retrieve(modfile)
>>> print(secret)
None
 

Now that you have seen the components, let's put them all together and show 
how hiding information using steganography changes the original file:

from cryptosteganography import CryptoSteganography
 
key = "1111222233334444!"
crypto_steganography = CryptoSteganography(key)
 
print()
print('The program is looking for an image named ch6_secret_image.png\n')
origfile = "chapter6\steg\ch6_secret_image.png"
print('The image with the hidden message will be called steg_ch6_secret_
image.png\n')
modfile = "chapter6\steg\steg_ch6_secret_image.png"
 
secretMsg = ""
message1 = "Sympathy for the favorite nation, facilitating the illusion 
of an imaginary common "
message2 = "interest in cases where no real common interest exists, and 
infusing into one the "
message3 = "enmities of the other, betrays the former into a 
participation in the quarrels and "
message4 = "wars of the latter without adequate inducement or 
justification."
secretMsg = secretMsg.join([message1, message2, message3, message4])
 
 
crypto_steganography.hide(origfile, modfile, secretMsg)
secret = crypto_steganography.retrieve(modfile)
print("The secret that is hidden in the file is:\n")
print(secret)
print()
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print('Now we will try the wronge secret.\n')
key = "AnotherKey"
crypto_steganography = CryptoSteganography(key)
secret = crypto_steganography.retrieve(modfile)
print('The secret message is: {} \n'.format(secret))

The preceding code will hide a quote from George Washington in an image 
named ch6_secret_image.png. I converted the original file for this chapter to 
a PNG file so that we could examine the change in file size. The original file in 
this case does not need to be in a PNG format, but it makes it easier to compare 
the original with the modified version. Many times, when I have hidden data 
in pictures, the picture size has increased, but as you will see in Figure 6.12, 
the original image was 87 KB and the image with the hidden message is only 
75 KB. You are not able to guess which image has the secret hidden inside just 
by examining the file sizes.

Additionally, you will notice that without the proper key, the secret mes-
sage is not revealed. So, the next question is, how can you determine if there is 
hidden data inside an image? A number of free tools are available online that 
you can use to embed and extract data from images. One tool that I have used 
several times is Invisible Secrets. Now, we will explore a more complex setup 
with binary data.

Figure 6.12: Steganography example
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Storing a Binary File Inside an Image
For our next example, we will take a media file and hide it in an image. The file I 
am using for this example was retrieved from file-examples.com. The file is 747 
KB in size. If you would like to use the same file, you can find it here: https://
file-examples.com/index.php/sample-audio-files/sample-mp3-download/.

Our goal here is to use the CryptoSteganography module to take a secret mes-
sage and hide it in an image. The first thing that you need to do is reference the 
CryptoSteganography library. The larger the media file, the longer it will take 
to encrypt and decrypt. In this next example, I will also be using a much larger 
image file because the media file I’ve selected is too large for the secret image I 
used in the previous example. As you work through this example, you may be 
attempting to store more data than the image will support. In those cases, you 
will see an exception that states: The message you want to hide is too long. Here we 
will start breaking down the code you need:

>>> from cryptosteganography import CryptoSteganography

The next step is to open the file and assign the binary data to a variable; here 
we use 'message':

>>> mediafile = “file_example_MP3_700KB.mp3”
>>> message = None
>>> with open(mediafile, "rb") as f:
>>>    message = f.read()

Next, create a key and pass it into the CryptoSteganography object. The key 
is critical in order to extract the messages you conceal; the key you select can 
be a passphrase or any selected password:

>>> key = "1111222233334444!"
>>> crypto_steganography = CryptoSteganography(key)

You can now store the encrypted file inside the image. Assign the original 
file and modified file variables:

>>> origfile = "dogs.png"
>>> modfile = "steg_audio_dogs.png "
>>> crypto_steganography.hide(origfile, modfile, message)

Now that we have our media hidden, it is time to extract it. You can use the 
previous crypto_steganography object, but the code here will instantiate a new 
object. This will allow you to change or modify the key if you like. Here, we 
will use the same key. In addition, specify the steganography image and the 
name of the file you wish to store the MP3 as:

>>> key = "1111222233334444!"
>>> crypto_steganography = CryptoSteganography(key)
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>>> modfile = ‘stegaudio_dogs.png’
>>> decrypted = ‘decrypted_sample.mp3’

Use the retrieve() method to pull out the media file and write it to a new 
file that was specified in the decrypted variable:

>>> secret_bin = crypto_steganography.retrieve(modfile)
>>> with open(decrypted, 'wb') as f:
>>>    f.write(secret_bin)

Now we will put it together with a working example that will hide a media 
file inside an image of dogs named dogs.jpg. There is nothing special about 
this image shown in Figure 6.13. It is simply just a photo of my two dogs taken 
with my cell phone camera; it is, however, a large enough file in which to hide 
a 700 KB MP3 file.

The following code will take an MP3 file and hide it inside a large JPG file.

from cryptosteganography import CryptoSteganography
 
# open sound file
mediafile = 'chapter6/steg/file_example_MP3_700KB.mp3'
message = None
 
with open(mediafile, "rb") as f:
   message = f.read()
 

Figure 6.13: High-definition photo of dogs
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print()
print('The program is looking for an image named dogs.jpg\n')
origfile = "chapter6\steg\dogs.jpg"
print('The image with the hidden audio file will be called steg_audio_
dogs.png\n')
modfile = "chapter6\steg\steg_audio_dogs.png"
 
key = "1111222233334444!"
crypto_steganography = CryptoSteganography(key)
crypto_steganography.hide(origfile, modfile, message)
 
print('The extracted data will be called decrypted_sample2.mp3 \n')
decrypted = 'decrypted_sample2.mp3'
secret_bin = crypto_steganography.retrieve(modfile)
 
# Save the data to a new file
with open(decrypted, 'wb') as f:
    f.write(secret_bin)
 

In Figure 6.14, you will see the output from the preceding Python recipe. The 
code takes a media file and encrypts it inside the dogs.jpg image. You will see 
that the original size of the dogs image is 598 KB. Once you embed the media 
file, the outputted file is 4,983 KB. The previous example also extracts the media 
file from the image and stores it as decrypted_sample.mp3. You can compare 
the two MP3 files; you will find that they are identical.

Figure 6.14: Steganography with media
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Working with large images
While we are on the topic of images and the ability to hide data inside them, 
I want to introduce you to the FITS image type. FITS stand for Flexible Image 
Transport System; it is an open standard that defines a digital file format that 
is used for the transmission, processing, and storage of data within a single 
file. FITS is typically used for digital files produced in astronomical research 
or satellite data. The amount of data inside the file can be astronomical, pun 
intended. The data inside the file can be represented in several dimensional 
formats. The important aspect to understand about how this format works is 
that there is human-readable text stored in the header portion of the file format. 
The header details may list any parameters that could tell where the image was 
taken, which satellite or telescope produced it, and any number of pieces of 
metadata that the author wants to include; the only limit to the header metadata 
is that the label must be eight characters or less. A FITS file consists of one or 
more Header + Data Units; these are known as HDUs. The first HDU that is 
created is called the primary HDU or primary array. The primary HDU can 
be empty or contain an N-dimensional array of pixels such as a 1-D spectrum, 
a 2-D image, or a 3-D data cube. The best way to get an understanding of the 
FITS standard is to dive in with some Python code; in order to follow along 
with the following code, you will need to include the astropy library. Another 
library that you can use is PyFITS. The .io FITS module is identical to PyFITS 
except by name. PyFITS was ported into astropy. You can do this by typing pip 
install astropy. Let's create a FITS file that stores some random numpy array in 
a file named random_array.fits. The output of the file will give you the default 
header information along with the contents of the data.

import numpy as np
from astropy.io import fits
 
file_name = "chapter6/fits/random_array.fits"
hdu = fits.PrimaryHDU()
hdu.data = np.random.random((128,128))
# Note that setting the data automatically populates the header with 
basic information:
hdu.writeto(file_name, overwrite=True)
 
data = fits.getdata(file_name)
header = fits.getheader(file_name)
 
print(header)
print()
print(data)

Now that you understand the components that make up a FITS file, we can 
explore FITS for images where you might want to keep some of the header 
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information confidential. You already know how to encrypt strings, so here, I’ll 
just assume you’ve encrypted the data using your favorite algorithm. Since the 
labels are restricted to eight characters, the labels do not make great candidates 
for encryption but the actual data does. If there was data that you wanted to 
keep secret, the following Python code would do the trick.

import matplotlib.pyplot as plt
import numpy as np
 
from PIL import Image
from astropy.io import fits
from astropy.visualization import astropy_mpl_style
 
location_lat = "Encrypted latitude"
location_long = "Encrypted longitude"
author = "Encrypted name here"
satellite = "Encrypted satellite name"
 
# load image as pixel array
img_file = Image.open('chapter6/fits/ch6_secret_image.jpg')
xsize, ysize = img_file.size
print("Image size: {} x {}".format(xsize, ysize))
plt.style.use(astropy_mpl_style)
plt.imshow(img_file)
 
# split the image into color channels
r, g, b = img_file.split()
r_data = np.array(r.getdata())
g_data = np.array(g.getdata())
b_data = np.array(b.getdata())
print(r_data.shape)
 
r_data = r_data.reshape(ysize, xsize)
g_data = g_data.reshape(ysize, xsize)
b_data = b_data.reshape(ysize, xsize)
 
red = fits.PrimaryHDU(data=r_data)
red.header["AUTHOR"] = author
red.header["LATOBS"] = location_lat
red.header["LONGOBS"] = location_long
red.header["SATNAME"] = satellite
red.writeto('chapter6/fits/red.fits', overwrite=True)
 
green = fits.PrimaryHDU(data=g_data)
green.header["AUTHOR"] = author
green.header["LATOBS"] = location_lat
green.header["LONGOBS"] = location_long
green.header["SATNAME"] = satellite
green.writeto('chapter6/fits/green.fits', overwrite=True)
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blue = fits.PrimaryHDU(data=b_data)
blue.header["AUTHOR"] = author
blue.header["LATOBS"] = location_lat
blue.header["LONGOBS"] = location_long
blue.header["SATNAME"] = satellite
blue.writeto('chapter6/fits/blue.fits', overwrite=True)

The output of the previous code takes our secret image from the beginning 
of the chapter and creates three unique FITS files using red, green, and blue 
channels. You will see in Figure 6.15 that the header for green.fits contains our 
secret information. As you might expect, we could easily encrypt the image too.

Summary

In this chapter, you were introduced to a couple of libraries that perform cryp-
tographic and steganography tasks on images. It is important for you to under-
stand how various AES block modes work and how they apply to image files. 
We concluded the chapter by using the CryptoSteganography library to hide 
various types of files. Hiding messages inside an image could affect the prop-
erties of the image. This was obvious when we hid a 30-second MP3 file inside 
an image. The decryption process for each of these examples is dependent on 
the use of a secret key; if the recipient of the file does not have the secret key, 
your message will remain a secret even if the recipient can see that the visual 
properties of the file have changed. Finally, we explored the FITS file format. 
While the FITS format may not provide much value on the surface, the amount 
of data that can be stored and encrypted is incredible.

Figure 6.15: FITS Files
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You should be comfortable at this stage with symmetric key cryptography. In 
this chapter, you learn to generate message authentication codes to let message 
recipients validate that the message they are receiving has not been tampered 
with while it was in transit. In the context of message integrity, a hash function 
is used to produce a fixed-length message digest from a variable-size message. 
The most common message digests range in length from 160 to 512 bits. Any 
alteration to the input message produces a dramatically different message digest. 
The message digests help detect unauthorized alterations and message forg-
eries. The principles you learn and develop here continue in the next chapter 
as you explore public-key cryptography; throughout this chapter, you gain 
cryptographic knowledge as you:

■■ Learn about Message Authentication Codes (MACs)

■■ Ensure that your signature is not compromised and does not get forged

■■ Explore how to make forgeries when someone else failed to protect their 
signatures

■■ Explore sending encrypted data over nonsecure channels

Message Integrity

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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Message Authentication Codes

You were first introduced to hash functions and message authentication codes 
in Chapter 2. You now dive into those same concepts at a deeper level. Message 
Authentication Codes, also called tags, or MACs as they are more commonly 
known, play an essential role in ensuring messages are not tampered with while 
they are en route to their destination. MACs ensure message integrity in addition 
to validating the message authenticity by allowing the parties involved to verify 
the message using a shared secret. A MAC involves three separate functions:

■■ A key-generation function that returns a key k from an input

■■ A signing function that returns a MAC or tag t when given the key k

■■ A verifying function that verifies the authenticity of the message (m) given 
the value of k and t

The formal definition of the MAC is as follows:
A MAC relies on a secret key that both the sender and receiver know; there-

fore, it uses a symmetric key value. The MAC is built by taking the message 
(m) and the key (k) and using a defined algorithm where the tag (t) that gets 
returned. The recipient gets both the original message (m) and the tag (t). If 
the message and key produce the same tag, then the receiver has verified the 
message; if the tag cannot be verified, the message may have been altered by a 
reprehensible party.

The goal of your adversary is to generate a different message and tag that the 
receiver would verify as correct. No authentication at the receiving end could 
be achieved if both the message and its hash value are accessible to an adver-
sary wanting to tamper with the message. There are several ways in which one 
could incorporate message hashing.

■■ Concatenate message and MAC: In this scheme, the sender would use 
symmetric-key encryption and concatenate the message and its MAC to 
form a composite message that is then encrypted and sent to the recipient. 
The receiver then decrypts the message using the symmetric key and 
separates the message and the MAC. The MAC would then provide the 
authentication, and the encryption provides the confidentiality.

■■ MAC encryption: This scheme is a modification of the previous one 
outlined. In this scheme, only the MAC is encrypted. This scheme is effi-
cient to use when confidentiality is not the main concern, but message 
authentication is critical. Only the receiver with access to the secret key 
knows the real MAC; this ensures that the receiver can verify whether 
the message is authentic and remains tamper-free.

■■ Public-key MAC encryption: This scheme is similar to MAC encryption 
and uses public-key encryption to encrypt the MAC with the sender’s 
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private key. This means that anyone who has the sender’s public key can 
decrypt the MAC; this method is to ensure authentication. This scheme 
is the basic concept behind a digital signature.

■■ Symmetric public-key confidentiality: This scheme builds on the  
public-key MAC encryption where the message is concatenated with the 
encrypted public-key MAC, but then the concatenated message is encrypted 
again with a symmetric key. The scheme is frequently used when both 
authentication and confidentiality are needed.

■■ Hidden secret: In the next scheme, nothing is encrypted. The sender 
appends a secret string S, also known to the receiver, to the message before 
computing its MAC; the sender then removes the secret string. Before 
checking the MAC of the received message for its authentication, the 
receiver appends the same secret string S to the message and computes 
the MAC to confirm both matches.

■■ Symmetric key confidentiality: This scheme is similar to symmetric 
public-key confidentiality with the exception that instead of using a public 
key to encrypt the MAC, the sender uses a symmetric key. He then con-
catenates the MAC to the message and encrypts the message again.

You might wonder why we do not do something simple like H(K|m) for some 
secure hash function H. We do not explore the details of how hash functions 
compress large amounts of data down to something fixed length, but they use 
something analogous to a block cipher mode for compression, called the Merkle-
Damgård construction. The heart of most hash functions is a “compressor” that 
takes in two fixed-length inputs and spits out one output of that length. Then it 
concatenates the block compressions into the final hash. Knowing that, we can 
forge signatures with an unknown secret key. Next, you will learn how to gen-
erate your first cryptographically secure MAC, which is a clever application of 
hashing to generate a difficult-to-forge tag. The system is called the Hash-based 
Message Authentication Code, or HMAC.

Hash-based Message Authentication Code
A cryptographically secure MAC is known as a Hash-based Message 
Authentication Code (HMAC). For a hash function to be considered crypto-
graphically secure, it must satisfy two properties:

■■ One-way property: The one-way property refers to a hash function that 
makes it computationally infeasible to find a message that corresponds 
to a given MAC.

■■ Strong collision resistance property: The strong collision resistance 
property refers to a hash function that makes it computationally infeasible 
to find two different messages that hash to the same MAC.
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It is important to note that hash functions that are not collision resistant can 
be vulnerable to the birthday attack; you learn more about this attack shortly. 
First, you will explore the HMAC function and learn how to incorporate the 
same logic into a standard hash library. Open the Python interpreter and enter 
the first two lines of code to verify that you are getting the same tag:

import hmac, hashlib
print(hmac.new(b"secretkey", b"our secret message", hashlib.sha256).
hexdigest())
 
78c736db86abd16023a23355f4ad3005e77dec6d8c960d06ea3c4a9aba9c449f

SHA256 has a 64-byte block length; to build an HMAC by hand, you need to 
build K+, ipad, and opad:

import binascii, hashlib
k = b"secretkey"
msg = b"our secret message"
 
kplus = k + b"\x00"*(64-len(k))
ipad = b"\x36"*64
opad = b"\x5C"*64
 
def XOR(raw1, raw2):
  return binascii.unhexlify(format(int(binascii.hexlify(raw1), 16) ^ 
int(binascii.hexlify(raw2), 16), 'x'))
 
tag = hashlib.sha256(XOR(kplus, opad) + hashlib.sha256(XOR(kplus, ipad) 
+ msg).digest()).digest()
 
print(binascii.hexlify(tag))

Confirm that this manual computation matches the library implementation. 
In our next script, we will apply an HMAC digest to a signed message.

Using HMAC to Sign Message

The file that we are creating the message digest for is a simple text file that con-
tains only Hello. When run, the code reads a data file and computes an HMAC 
signature for it:

import hmac
 
myKey = b'this_is_my_secret'
digest_maker = hmac.new(myKey)
 
with open('test.txt', 'rb') as f:    
     while True:        
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          block = f.read(1024)        
          if not block:
              break                               
digest_maker.update(block)
digest = digest_maker.hexdigest()
print (digest)

The output should produce the following results:

 
c2b5ac0978608c196f6237ab3983ebd2

Message Digest with SHA

MD5 is one of the most common algorithms used for hashing, but over the years 
MD5 hashes have proven to have a number of weaknesses such as collisions 
and are vulnerable to length extension attacks. The SHA family of algorithms 
offer stronger options and should be used instead, but many of these algorithms 
are also susceptible to the length extension attack; we will review this later in 
the chapter.

The new() function on the hmac object takes three arguments. The first is the 
secret passphrase or key; this will be needed by both the sender and receiver. 
The second value is an initial message. If the message content that needs to be 
authenticated is small, such as a timestamp or HTTP POST, the entire body 
of the message can be passed to the function; if not, you will need to use the 
update() method. The last argument is the digest module to be used. The default 
is hashlib.md5. The following example will create a test.txt file that contains 
Hello and then checks if the hash is using SHA256:

import hmac
import hashlib
 
myKey = b'this_is_my_secret'
digest_maker = hmac.new(myKey, b'', hashlib.sha256,)
 
with open("chapter7/test.txt", "wb") as hello_file:
    hello_file.write(b'Hello')
    hello_file.close()
 
 
# the test.txt file contains the bytes 'Hello'
with open('chapter7/test.txt', 'rb') as f:
    while True:
        block = f.read(5)
        if not block:
            break
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        digest_maker.update(block)
        digest = digest_maker.hexdigest()
print(digest)
 
6833cebacb9495c1cccba617d4b5f3aefda3dc03fcb3f8d070d61a09a4084a02

Binary Digests

The previous examples used the hexdigest() method to produce a printable 
digest. The hexdigest() is a different representation of the value calculated by 
the digest() method, which is a binary value that may include unprintable 
characters, including NUL. Some web services such as Amazon S3 and Google 
checkout use the Base64-encoded version of the binary digest instead of the 
hexdigest(). To see the difference, I am using the same Hello text file from the 
previous example:

import base64
import hmac
import hashlib
 
myKey = b'this_is_my_secret'
with open('test.txt', 'rb') as f:
    body = f.read(5)
 
hash = hmac.new(myKey, body, hashlib.sha256,)
digest = hash.digest()
print(base64.encodebytes(digest))

The output generated should resemble the following:

b'aDPOusuUlcHMy6YX1LXzrv2j3AP8s/jQcNYaCaQISgI=\n'

HMAC authentication should be used for any public network service, and 
any time data is stored where security is important. For example, when sending 
data through a pipe or socket, that data should be signed, and then the signature 
should be tested before the data is used. We will explore how to do this later in 
this chapter when we explore secure channels.

The first step is to establish a function to calculate a digest for a string, and a 
simple class to be instantiated and passed through a communication channel:

import hashlib
import hmac
 
def make_digest(message):
    "Return a digest for the message."
    myKey = b'this_is_my_secret'
    hash = hmac.new(myKey, message, hashlib.sha3_256)
    return hash.hexdigest().encode('utf-8')
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# You must encode your message before it is hashed.
message = b'This is a test of the emergency broadcast system; it is only 
a test.'
rd = make_digest(message)
print (rd)

The preceding code listing should produce a digest for our intended message. 
Your output should look identical to the output shown in Figure 7.1.

NIST Compliance
In the FIPS PUB 180-4 (Federal Information Processing Standards Publication), 
the National Institute of Science and Technology (NIST) outlines a secure hash 
standard that can be used to generate digests of messages and specifies secure 
hash algorithms: SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, 
and SHA-512/256. Any change to a message results in a different message digest.

NIST provides a sample zip file that contains a file named HMAC.rsp. As you 
study the inner workings of hashing, you should know about a common prac-
tice with message authentication codes, which is to truncate the tag. In the NIST 
example, you may notice the TLen parameter, which is the number of bytes that 
the tag truncates. The truncating may benefit some applications that require a 
hash function with a message digest length different than those provided by the 
hash functions. In cases such as these, a truncated tag or digest should be used, 
whereby a hash function with a more considerable tag length is applied to the 
data to be hashed, and the resulting message digest is truncated by selecting an 
appropriate number of the leftmost bits. To learn more about the guidelines on 

Figure 7.1:  Binary digests
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choosing the length of the truncated message digest and information about its 
security implications for the cryptographic application that uses it, see SP 800-107.

import hashlib
hasher = hashlib.md5()
# from http://csrc.nist.gov/groups/STM/cavp/documents/mac/
hmactestvectors.zip
with open('hmactestvectors.zip', 'rb') as afile:
    buf = afile.read()
    hasher.update(buf)
print(hasher.hexdigest())

The preceding Python should produce the following HMAC:

054d8addf01353605068508266eb2f19

To examine a NIST-supported SHA256 hash, review the following. It has 
many similarities, but this example incorporates a BLOCKSIZE:

import hashlib
 
BLOCKSIZE = 65536
hasher = hashlib.sha256()
with open('hmactestvectors.zip', 'rb') as afile:
    buf = afile.read(65536)
    while len(buf) > 0:
        hasher.update(buf)
        buf = afile.read(BLOCKSIZE)
print(hasher.hexdigest())

The second example will produce the following HMAC:

418c3837d38f249d6668146bd0090db24dd3c02d2e6797e3de33860a387ae4bd

CBC-MAC
The cipher block chaining message authentication code (CBC-MAC) is used in 
cryptography to construct a MAC from a block cipher. The initial message gets 
encrypted with a block cipher algorithm in CBC mode. The CBC mode creates 
a chain of blocks such that each block depends on the proper encryption of the 
previous block. CBC sets up an interdependence that ensures that a change to 
any portion of the plaintext bit causes the last block to be encrypted in a way 
that cannot be predicted or counteracted without knowing the key to the block 
cipher. The CBC-MAC encryption process is shown in Figure 7.2.
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There are some security issues related to CBC-MAC; if the block cipher used 
is secure, the CBC-MAC is secure for the fixed-length message. It should be 
noted that CBC-MAC by itself is not a secured option for variable-length mes-
sages. A single key must be used for messages of a fixed length; this is because 
an attacker who knows the correct message-tag (i.e., CBC-MAC) pairs for two 
messages can generate a third message whose CBC-MAC would be the same 
as the produced tag. This weakness can be exploited by XORing the first block 
of m’ with t and then concatenating m with the modified m’. One solution is to 
include the length of the message in the first block.

Additionally, encrypting the last block has the advantage of not needing to 
know the length of the message until the end of the computation. One standard 
error is to reuse the same key k for CBC encryption and CBC-MAC. Reusing the 
same key for different purposes is a poor practice in general; in this particular 
case, the mistake leads to attacks against the encryption mode.

CBC-MAC is similar to the CBC mode for encryption with a few differences. 
The first difference is that the initialization vector (IV) is a fixed value. Secondly, 
the CBC-MAC only outputs the last block of the ciphertext. Additionally, CBC-
MAC can support a random IV but requires you to know the IV. If you had a 
safe place to store the IV, one could argue your message would be safe there as 
well. If nefarious users can change the CBC-MAC IV, they can also change the 
first block of the MAC message to produce a tag that would match the original 
hash. The attack can be made because one of the first steps to CBC-MAC is to 
XOR the IV with the message.

Birthday Attacks
The birthday attack is based on the observation that finding equal random 
values is significantly more manageable when you check all pairs and do not 
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Figure 7.2:  CBC-MAC example
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preselect one value. When it comes to exploring hashing and MACs, you end 
up with an attack that is more efficient than brute-forcing a target. The con-
text is when someone is randomly selecting values from a range (which is one 
way of interpreting encryption, hashing, and authenticating). The attack treats 
our birthdays as uniformly distributed values out of 365 days. The following 
Python calculates the probability of students’ sharing a birthday within a spec-
ified class size:

import random
import decimal
classSize = 23
numTrials = 1000
dupeCount = 0
 
for trial in range(numTrials):
   year = [0]*365
   foundDupe = False
   for i in range(classSize):
       newBDay = random.randrange(365)
       year[newBDay] = year[newBDay] + 1
       if year[newBDay] > 1:
          foundDupe = True
 
   if foundDupe == True:
       dupeCount = dupeCount + 1
 
prob = float(dupeCount / (numTrials * 1.0))
print('The probability of a shared birthday in a class of', classSize, 
'is', prob)

The probability of a shared birthday in a class of 23 is 0.481.
You can import itertools and get a more condensed version. In the following 

Python script, you see that 35 students would offer closer to an 80% chance of 
a birthday collision:

import itertools
from functools import reduce
def alldifferent(k,n):
    '''The probability that k random selections from n possibilities
    are all different.'''
    assert(k<=n)
    nums = range(n,n-k,-1)
    dens = itertools.repeat(n)
    fracs = map(lambda x,y: float(x)/y, nums,dens)
    return reduce(float.__mul__, fracs)
 
def collide(k,n):



	 Chapter 7 ■ Message Integrity	 209

    '''The probability that, in k random selections from n 
possibilities,
    at least two selections collide.'''
    return 1 - alldifferent(k,n)
    
 
print(collide(35,365))

Crafting Forgeries
The biggest failure of a MAC scheme is that a nefarious user can generate a 
false message that the recipient accepts as authentic. These failures are made 
possible due to the CBC-MAC/birthday paradox.

Given a particular message, how many other messages would you expect to 
create message tags for before finding a collision? Imagine that you have found 
two messages m1, m2 such that MAC K (m1) = MAC K (m2); then MAC K (m1 + 
x) = MAC K (m2 + x). To prove that the vulnerabilities exist, a team at Google 
released the first concrete collision attack against SHA-1. The team has produced 
two files, shattered-1.pdf and shattered-2.pdf, that produce the same SHA-1 
tag. To learn more about the attack, review shattered.io.

The Length Extension Attack

Now that you have a little insight on how collisions happen, let’s examine the 
SHA-1 digest in a little more detail and then define a Python forgery for it. The 
Secure Hash Algorithms are a family of cryptographic hash functions published 
by the National Institute of Standards and Technology (NIST) as a U.S. Federal 
Information Processing Standard (FIPS), including SHA-0, SHA-1, SHA-2, and 
SHA-3. The SHA-1 is a 160-bit hash function, which is like the MD5 algorithm. 
The algorithm was designed by the NSA (National Security Agency) back in the 
early 1990s. All hashing algorithms, including SHA-1, produce a fixed-length 
message digest. The output for SHA-1 is 20 characters no matter how long the 
message was that was hashed.

In general, you should use MACs such as HMAC-SHA-256 over those that 
are not cryptographically secure such as MD5 and SHA-1. One of the primary 
reasons is that the plain hash functions are susceptible to length extension 
attacks. Many common hash functions use the Merkle-Damgård construction, 
which are built using a compression function, f, and preserve an internal state, 
s, which is initialized to a defined constant. Messages are produced by applying 
a compression function to the current block and current state to compute an 
updated internal state; the blocks are generated in fixed-sized blocks; i.e.,  
si+1 = f(sj, bi). One of the consequences of this design, which allows us to exploit 
it, is that if you know the hash of an n-block message, you may be able to find 
the hash of longer messages by applying the compression function for each 
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block that we want to add (bn+1, bn+2, . . .). This type of attack is known as length 
extensions and it can be applied to many applications of hash functions.

The hashing process in this case, MD5, produces a message in 512-bit blocks. 
This means, internally, the hash function pads the message, m, to a multiple 
of that length. The padding consists of the bit 1 followed by as many 0 bits as 
needed. The padding is then followed by a 64-bit count of the number of bits 
in the unpadded message. If the padding will not fit in the current block, the 
system adds an additional block. You can use the function padding(count) in 
the pymd5 module to compute the padding that will be added to a count-bit 
message.

Some of the code we will use as you explore this attack can be downloaded 
in an MD5 Python module known as pymd5. As of this writing, the project is 
available at pypi.org/project/pymd5/; the module is used by many universities 
to help cryptography students play with hashing functions. It was originally 
developed in 1991 by RSA Data Security. You can install it using a pip install 
pymd5, but your experience will be different. The module allows for a more 
condensed md5 call and exposes two low-level methods named md5 _ com-

press() and padding().
Depending on what you need, you may find the HashPump tool easier for 

your research. HashPump is a free tool that can be used to exploit the hash 
length extension attack on a number of algorithms including MD5, SHA-1, 
SHA-256, and SHA-512. You can install it using the following syntax to set it 
up on Debian or Ubuntu Linux distributions:

$ git clone https://github.com/bwall/HashPump.git
$ apt-get install g++ libssl-dev
$ cd HashPump
$ make
$ make install

Setting Up a Secure Channel

So far, you have explored only dealing with MACs in plaintext. Having a secure 
channel of communication that is secret and tamper-free would be ideal but 
as you are learning, secure communications can be tricky. If you wish to both 
encrypt data and authenticate the recipient, you must be careful. There are three 
possible ways to achieve this:

Encrypt and Authenticate  To encrypt and authenticate, you would com-
pute c = ENCk (M) and t = MACk2 (M) and send (c,t); on the other side of 
the conversation, the recipient must compute M = DECk(c) then check  
t == VRFYk2 (M) once they know M. The problem with this method is that 
most MACs are deterministic. There are some flaws with this method. 
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First, when you send the same message many times, any potential eaves-
dropper has the advantage. Additionally, the MAC is not designed for 
secrecy; there is no assurance that the upper byte of t isn’t identical to the 
first byte of M.

Authenticate Then Decrypt  In this world you compute t = MAC(M) then 
c = ENC(M||t). Your receiver computes M||t = DEC(c), then checks that  
t == VRFY(M). This next model is a bit stronger, but there is a bit of debate 
on the authenticate-then-decrypt model. Johnathan Katz recommends 
against this model while Bruce Schneier recommends it. Katz enjoys proofs 
of security and would recommend the next method.

Encrypt Then Authenticate  This is the recommended approach. First,  
c = ENCk (M), then t = MACk2(c) and send (c,t). On the other side, verify   
t == VRFYk2 (c) and if that computes, calculate M = DECk. If the MAC 
is cryptographically secure, then we are CCA-secure and unforgeable, 
provided the keys are random and independent.

Communication Channels
There are additional attacks that the security practitioner should be aware of, 
but they tend to border more on the network security side than cryptography 
best practices. In general, you should always encrypt the entire message. Ideally, 
you need to set up a channel for encrypted and authenticated messages between 
the two parties despite any malicious middlemen. Your crypto system cannot 
mitigate threats that are related to someone else controlling the network bet-
ween the communicating parties. These attacks include the replay attack, the 
reordering attack, and the reflection attack.

■■ Replay attack: Occurs when a middleman captures the encrypted mes-
sage and then has the ability to send it at a later time.

■■ Reordering attack: Occurs when an adversary takes encrypted messages 
and sends them out of order.

■■ Reflection attack: Occurs when a message is sent back to the sender and 
not passed along to the recipient.

None of these attacks would lead to a failure, and the messages would be 
decrypted correctly. To fight against reflection and replay attacks, you should 
include more than just the message in your MACs. In this case, you solve these 
problems by including some extra data with the encrypted messages, a message 
counter, and a direction bit (0 for A to B and 1 for B to A). Then both parties 
can maintain state and reject messages that don’t match up. Our next goal is to 
explore opening up a socket using Python in order to deliver a message that 
cannot be successfully read from an unauthorized user. This will be the basis 
of exploring secured sockets after we examine certificates in the next chapter.
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Sending Secure Messages Over IP Networks
Sockets are used to send messages across various networks that can be logical, 
local, or external. Sockets were introduced back in 1971 with the birth of ARPANET 
and then later became the Berkeley sockets, which is an API in the Berkeley 
Software Distribution OS that was released in 1983. Network programming 
started to boom in the 1990s as the use of the internet increased; the use of 
client-server applications of many types became widespread. The socket API 
in Python provides an interface to the Berkley sockets.

There are two types of sockets that you can experiment with. The first is a 
Transmission Control Protocol (TCP). TCP is used to produce reliability and has 
an in-order data delivery system. The second type of socket is the User Data-
gram Protocol (UDP). These sockets lack reliability and their data can be out 
of order; in fact, there is no guarantee that your data will reach the destination. 
Depending on the type of data you are sending, one type of socket will have 
advantages over the other. In the next two code samples provided, you will use 
Python to create a server listening for UDP communications and create a client 
server that will communicate with it.

Create a Server Socket

The following Python code will allow you to create a server that is listening 
on port 13000. Once this code executes, it will launch a command window that 
states Waiting to receive message. . . . See Figure 7.3.

Figure 7.3:  Output of Server.py



	 Chapter 7 ■ Message Integrity	 213

# Save as server.py 
# Message Receiver
import os
from socket import *
host = ""
port = 13000
buf = 1024
addr = (host, port)
UDPSock = socket(AF_INET, SOCK_DGRAM)
UDPSock.bind(addr)
print ("Waiting to receive messages...")
while True:
    (data, addr) = UDPSock.recvfrom(buf)
    print ("Received message: " + str(data,'utf-8'))
    if data == "exit":
        break
UDPSock.close()
os._exit(0)

Create a Client Socket

The next Python code will create the client that will send messages to the server 
over port 13000. Once the code executes, it will launch a command window 
that states Enter message to send or type ‘exit’. Messages entered here will be sent 
unencrypted to the server. We will explore how to encrypt and decrypt these 
messages using symmetric encryption. Once you complete the following script, 
you will be able to send messages from the client to the server, as shown in 
Figure 7.4.

# Save as client.py 
# Message Sender
import os
from socket import *
host = "127.0.0.1" # set to IP address of target computer
port = 13000
addr = (host, port)
UDPSock = socket(AF_INET, SOCK_DGRAM)
while True:
    data = input("Enter message to send or type 'exit': ").encode()
    UDPSock.sendto(data, addr)
    if data == "exit":
        break
UDPSock.close()
os._exit(0)
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Create a Threaded Server with TCP

You can expand on your socket knowledge by examining the next code listing. 
The following script will create a server that you can send messages to via TCP. 
This example, just like the previous communications, sends data unencrypted 
from one application to another:

import socket
import sys
from _thread import *
 
host = 'localhost'
port = 5555
print (host, port)
 
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 
try:
    s.bind((host, port))
except socket.error as e:
    print(str(e))
 
s.listen(5)
 
def threaded_client(conn):
    conn.send(str.encode('Welcome, type your info\n'))
 

Figure 7.4:  Messages entered here will be sent unencrypted to the server.
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    while True:
        data = conn.recv(2048)
        reply = 'Server output: '+ data.decode('utf-8')
        if not data:
            break
        conn.sendall(str.encode(reply))
    conn.close()
 
 
while True:
    conn, addr = s.accept()
    print('connected to: ' +addr[0] + ':' + str(addr[1]))
 
    start_new_thread(threaded_client, (conn,))

Adding Symmetric Encryption

There is nothing new here; we are now combining elements we learned in this 
chapter to send data from one application to another. Unlike our previous exam-
ples, we will use the Cryptography module’s Fernet implementation:

# Save as server.py 
# Message Receiver
import hashlib
import random
import os
from socket import *
from cryptography.fernet import Fernet
 
key = Fernet.generate_key()
f = Fernet(key)
 
print ("The key is :", str(key, 'utf-8'))
    
host = ""
port = 8080
buf = 1024
addr = (host, port)
UDPSock = socket(AF_INET, SOCK_DGRAM)
UDPSock.bind(addr)
print ("Waiting to receive messages...")
 
def decrypt(ciphertext):
    try:
        msg = f.decrypt(ciphertext)
    except:
        msg = ciphertext
    return msg
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while True:
    (data, addr) = UDPSock.recvfrom(buf)
    h = hashlib.md5(data)
    
    plaintext = decrypt(data)
    msg = str(plaintext, 'utf-8')
    print ("Received message: " + msg)
    if msg == "exit":
        break
    if msg == 'newkey':
        key = Fernet.generate_key()
        f = Fernet(key)
        print ("The key is :", str(key, 'utf-8'))
 
UDPSock.close()
os._exit(0)

The preceding code sample should generate a key for the session, as shown 
in Figure 7.5.

The previous implementation will present you with a key. To get both the 
client and server communicating with each other, you will need to copy and 
paste the provided key to the client window, as shown in Figure 7.5:

# Save as client.py 
# Message Sender
import os
from socket import *
from cryptography.fernet import Fernet
 
 
host = "127.0.0.1" # set to IP address of target computer
port = 8080
addr = (host, port)
UDPSock = socket(AF_INET, SOCK_DGRAM)

Figure 7.5:  server.py
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key = input("Enter the secret key: ")
f = Fernet(key)
 
def encrypt(plaintext):
    msg = f.encrypt(plaintext)
    return msg
 
while True:
    data = str(input("Enter message to send or type 'exit': ")).encode()
    ciphertext = encrypt(data)
    UDPSock.sendto(ciphertext, addr)
    if data == b'exit':
        break
    if data == b'newkey':
        key = input("Enter the secret key: ")
        f = Fernet(key)
UDPSock.close()
os._exit(0)

The preceding client code should open up a terminal window, as shown 
in Figure 7.6. Once you paste the server key, you will be able to communicate 
securely between the two applications.

Once the correct key is entered, messages from the client will be encrypted and 
then passed over an unsecured socket; the key is used to encrypt and decrypt 
the message and must be the same on both sides. The server will attempt to 
decrypt the message. If the key is wrong, the message will remain encrypted. 
As a special feature to this code, you can type newkey in the client. This will 
allow you to update the encryption key. Once you have the same key, the com-
munications can be recovered, as shown in Figure 7.7.

We now have a system that is more secure even though it is using an insecure 
network connection. In the next section, we will concatenate the message and 
the MAC to improve our system.

Figure 7.6:  client.py
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Concatenate Message and MAC

Now we are ready to incorporate a MAC into our messages to ensure that they 
have not been tampered with between the client and the server. We will do 
this by modifying the encryption and decryption methods from our previous 
examples. In this scheme, the sender would use symmetric-key encryption and 
concatenate the message and its MAC to form a composite message that is then 
encrypted and sent to the recipient. The receiver then decrypts the message 
using the symmetric key and separates the message and the MAC. The MAC 
would then provide the authentication, and the encryption provides the confi-
dentiality. This example builds on top of the previous one.

This particular implementation modifies the decrypt() function to decrypt  
the original message and message digest and then strips off the message digest; the  
next step is to hash the message and compare the message digests to ensure  
that the message is both secure and proven not to have been tampered with. 
In these two examples, I am using the MD5 hash, but if you feel like adding 
HMAC, it will help secure your implementation even further:

# Save as server.py 
# Message Receiver

Figure 7.7:  Secured communications
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import hashlib
import random
import os
from socket import *
from cryptography.fernet import Fernet
 
key = Fernet.generate_key()
f = Fernet(key)
 
print ("The key is :", str(key, 'utf-8'))
    
host = ""
port = 8080
buf = 1024
addr = (host, port)
UDPSock = socket(AF_INET, SOCK_DGRAM)
UDPSock.bind(addr)
print ("Waiting to receive messages...")
 
def decrypt(ciphertext):
    try:
        mmac = f.decrypt(ciphertext)
        mlen = len(mmac)
        m = (mmac[0:mlen - 32])
        h = (mmac[-32:])
        msg = m,h
    except:
        msg = ciphertext
    return msg
 
while True:
    (data, addr) = UDPSock.recvfrom(buf)
    
    plaintext = decrypt(data)
 
    h = hashlib.md5(plaintext[0])
    msg = str(plaintext[0], 'utf-8')
    hash = str(plaintext[1], 'utf-8')
    print ("Received message: " + msg)
    print ("Received digest: " + hash)
    print ("Calculated digest: " + h.hexdigest())
 
    if msg == "exit":
        break
    if msg == 'newkey':
        key = Fernet.generate_key()
        f = Fernet(key)
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        print ("The key is :", str(key, 'utf-8'))
 
UDPSock.close()
os._exit(0)

The preceding code should produce a server that will give you a secret key that 
can be used in your text client. The difference between the previous examples and 
this one is that this program will extract the message hash that is received and 
then generate its own hash to confirm message integrity, as shown in Figure 7.8.

The client implementation modifies the encrypt function and concatenates the 
original message digest to the message. The message hash is then displayed on 
the screen so that you can verify that the hash is making it through the system 
and is being evaluated correctly:

# Save as client.py 
# Message Sender
import os
import hashlib
from socket import *
from cryptography.fernet import Fernet
 
 
host = "127.0.0.1" # set to IP address of target computer
port = 8080
addr = (host, port)
UDPSock = socket(AF_INET, SOCK_DGRAM)
key = input("Enter the secret key: ")

Figure 7.8:  Message and MAC server
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f = Fernet(key)
 
def encrypt(plaintext):
    h = hashlib.md5(plaintext).hexdigest()
 
    print("Message hash: " + h)
   
    mmac = str(str(plaintext,'utf-8') + h).encode() 
    msg = f.encrypt(mmac)
    return msg
 
while True:
    data = str(input("Enter message to send or type 'exit': ")).encode()
    ciphertext = encrypt(data)
    UDPSock.sendto(ciphertext, addr)
    if data == b'exit':
        break
    if data == b'newkey':
        key = input("Enter the secret key: ")
        f = Fernet(key)
UDPSock.close()
os._exit(0)

The preceding code sample will generate the message digest and send it to 
the server so that the server can determine if the received message has been 
tampered with. Your result should appear similar to Figure 7.9.

Summary

In this chapter, we continued our exploration of hashing algorithms using 
Python. Hopefully, you understand how to effectively use message digests to 
protect the integrity of your messages. Algorithms such as SHA1 and MD5 have 
proven to be victims of birthday attacks and the length extension attack. One 

Figure 7.9:  Message and MAC client
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of the best ways to improve the security of your messages is to concatenate the 
message and the message digest in an encrypted form that the recipient can 
decrypt and verify the message integrity. The implementations in this chapter 
will help improve the successful tamper-free delivery of your message. In the 
next chapter, you will gain an understanding of the PKI infrastructure and will 
use it to add an additional layer of security beyond the network itself.

References

NIST. Aug. 2015. FIPS PUB 180-4. nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.180-4.pdf

Secure Hash Standard (shs) - Nist. (n.d.). Retrieved from nvlpubs.nist 
.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf



C H A P T E R

223

8

Encryption experts are pressed to find ever more effective encryption methods, 
measured by their security and performance, because the threats presented 
by hackers are increasingly greater. This is partly because the hackers have 
become more sophisticated in their attacks, but also because the fallout from 
an attack gets more severe as our use of data grows. In the previous chapter, we 
learned how to build a system to encrypt data and send it over an unsecured 
network. On the other side, a recipient can decrypt the data and verify that the 
message was not altered and that it was delivered in a secure manner. We will 
now expand our Python code by introducing public-key infrastructure or, as it 
is more commonly known, PKI. But what is PKI?

You have a highly classified letter that you need to send to a person on the 
other side of the world. You believe that the note can be intercepted, so you 
put the letter in a box, and you padlock it shut. Locking the letter in the box is 
essentially the same as encrypting the letter; it is another way to protect it. You 
can now send the letter on its way, but you still have the key. You also need to 
find a way to get the key to the other side of the world without it being compro-
mised. This is known as the key distribution problem, and it is the oldest problem 
in cryptography.

As you know, the key is the secret recipe for scrambling and unscrambling 
a secret message. By the 1960s, key distribution was costing a fortune; banks, 
governments, and big businesses used to pay heavily guarded couriers to travel 
around the world to deliver keys in person. By early 1970, it was clear that 
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something had to be done, which led to the development of the holy grail of 
cryptography. In this chapter, you will learn about a secret code so ingenious 
that it would change the way we communicate forever. Through this chapter, 
you gain cryptographic knowledge as you:

■■ Gain an understanding of the importance of PKI

■■ Learn how to implement a PKI solution in Python

■■ Gain an understanding of RSA

■■ Learn how to implement ElGamal

■■ Gain an understanding of Elliptic Curve Cryptography

■■ Learn how to implement a key exchange using Diffie-Hellman

The Public-Key Transformation

In 1975, Martin Hellman, Whitfield Diffie, and Ralph Merkle were working in 
the electrical engineering department at Stanford University; unlike most cryp-
tographers, they worked outside the classified world of military intelligence. The 
team proposed that, instead of the sender being responsible for encryption, the 
receiver of the message would be responsible. The proposal asks the receiver for 
their padlock to lock up the sender’s message. The system works because the 
participants are exchanging padlocks and not the keys themselves. The keys are 
always with the receiver; this mitigates the keys falling into the wrong hands. 
Since it is not practical to send physical padlocks, the team had to invent a way 
to create a mathematical padlock; these are often referred to as trapdoors. The 
mathematical padlock had to be easy to lock but difficult to unlock without the 
key. Developing the mathematical padlock was not a trivial process since most 
operations are easy to do one way and easy to reverse. An example is taking a 
number and then doubling it; for this example, if x = 20, and y = 2 * x, then y = 
40. To reverse the process, it is easy to find half of y: x = y/2. This is an example 
of two-way operation. To find the perfect mathematical padlock, it is necessary 
to find a one-way operation. Multiplication is the perfect tool. If you are given 
two four-digit numbers and asked to multiply the two numbers together, you 
can easily complete the task. However, if you are given the product and asked 
to work backward, that is a much harder problem to solve. To illustrate this 
example, let’s assume you start with the number 3,261,611. Can you provide 
the two numbers used to produce the number (aka factoring)? Where would 
you start?

Multiplying two large integers together creates a mathematical lock, but it is 
also a lock without a key. As such, it is an operation that is irreversible unless 
you have the mathematical equivalent of a key. Enter Clifford Cocks; Cocks 
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was a British mathematician and cryptographer. In 1973, while working with 
the GCHQ, the United Kingdom’s Government Communication Headquarters, 
Cocks invented the algorithm that would later be adopted into the RSA algorithm. 
After arriving at GCHQ, Cocks learned of James Ellis’s non-secret encryption 
idea, which was published in 1969 but never successfully implemented. While 
many other cryptographers attempted to find a one-way function that would 
serve as a mathematical lock, Cocks’s background in number theory led him 
to a solution. Because he was at home and not in a classified environment, he 
was not allowed to write anything down; however, he developed a solution in 
his head in about 30 minutes:

	 C M Ne mod 	

The function serves as both a mathematical padlock and a key. To gain an 
understanding of how it works, take two integers: x = 11; y = 17. These two 
numbers are your secret key. The numbers produce a product of 187, which 
you will use in the following equation, substituting 187 for N. This creates a 
mathematical padlock that is exclusive to you. You will need to keep the values 
11 and 17 secret. They are your key, and you will need them later:

	 C M 13 187mod 	

From this point, you can make the details of your mathematical padlock public:

From: You

To: Everyone

Subject: My public key example

Message: Please use this algorithm to send me secret messages:

M13 (mod 187) = C

To continue the example, assume that someone wants to send you a message. 
The message is simply the character x, which has an ASCII code of 88. Place 88 
into the algorithm in place of M:

8813 (mod 187) = C

165 = C

You have encrypted the value of x to 165. You would send the 165 to the 
message receiver. If the message is intercepted, it is still safe because it was 
encrypted with Cocks’s equation. To decrypt the message, you use the two 
integers you originally picked. Cocks developed another version of his equation 
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that uses the two secret numbers, 11 and 17, to unlock the mathematical 
padlock:

C1/e mod (p – 1) (q – 1) mod N = M

1651/13 mod (11 – 1) (17 – 1) = 88

With your algorithm being public, one could argue that someone can take the 
secret key and find the factors used to produce it. Remember, multiplying is a 
one-way operation, meaning it is difficult to go backward. Greater difficulty is 
introduced as the numbers become larger. It wouldn’t take very long to find that 
11 and 17 were the secret numbers when examining 187 since the only numbers 
that factor into 187 are 1, 11, 17, and 187.

If you come up with two larger numbers that are 300 digits long, then your 
padlock is secure. Factoring large numbers is hugely time-consuming. While 
the math can get tough, Cocks invented a super secure encryption system and, 
more importantly, he solved the key distribution problem. In the end, the Cocks 
equation was the most important breakthrough in the history of secret codes. 
The GCHQ was unable to implement the algorithm and classified it top secret, 
keeping it closely guarded. In fact, it would remain top secret for another 24 
years, even though a similar algorithm was published by Rivest, Shamir, and 
Adleman in 1977.

Ron Rivest, Adi Shamir, and Leonard Adleman, researchers at the Massa-
chusetts Institute of Technology (MIT), developed a similar equation to Cocks’s 
algorithm four years after Cocks. Their breakthrough was also attributed to 
Rivest’s knowledge of number theory. This time, the discovery was in the public 
arena. Knowing nothing about the British discovery, the team named their cipher 
Rivest, Shamir, Adleman, better known as RSA. RSA has become one of the most 
important ciphers ever introduced. Almost every time you transmit credit card 
details online, the data is encrypted using RSA, making RSA the cornerstone 
of a multi-billion-dollar e-commerce revolution. So, while the Americans were 
not the first to invent public-key cryptography, they were the first to bring it 
out into the public domain where anyone can use it. You can now communicate 
as privately as a nation-state. You can send messages that cannot be cracked 
even by the combined efforts of all the world’s secret services. For the first time 
ever, you have access to unbreakable code. Cryptography may be the science 
of secrecy, but through your continued practice, it is no longer a secret science.

Exploring the Basics of RSA
This first example is a simple implementation of the RSA algorithm that can 
encrypt and decrypt a message. Note that the keys here are far too small to be 
of practical use since they are still relatively easy to factor:

import random
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#Euclid's algorithm - Chapter 4
def gcd(a, b):
    while b != 0:
        a, b = b, a % b
    return a
 
#Euclid's extended algorithm - Chapter 4
def multiplicative_inverse(e, phi):
    d = 0
    x1 = 0
    x2 = 1
    y1 = 1
    temp_phi = phi
    
    while e > 0:
        temp1 = temp_phi//e
        temp2 = temp_phi - temp1 * e
        temp_phi = e
        e = temp2
        
        x = x2- temp1* x1
        y = d - temp1 * y1
        
        x2 = x1
        x1 = x
        d = y1
        y1 = y
    
    if temp_phi == 1:
        return d + phi
 
# Verify the number is prime - Chapter 4
def is_prime(num):
    if num == 2:
        return True
    if num < 2 or num % 2 == 0:
        return False
    for n in range(3, int(num**0.5)+2, 2):
        if num % n == 0:
            return False
    return True
 
def generate_keypair(p, q):
    if not (is_prime(p) and is_prime(q)):
        raise ValueError('Both numbers must be prime.')
    elif p == q:
        raise ValueError('p and q cannot be equal')
    #n = pq
    n = p * q
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    #Phi is the totient of n
    phi = (p–1) * (q–1)
 
    #Choose an integer e such that e and phi(n) are coprime
    e = random.randrange(1, phi)
 
    #Use Euclid's Algorithm to verify copprimes for e and phi(n)
    g = gcd(e, phi)
    while g != 1:
        e = random.randrange(1, phi)
        g = gcd(e, phi)
 
    #Use Extended Euclid's Algorithm to generate the private key
    d = multiplicative_inverse(e, phi)
    
    #Return public and private keypair
    #Public key is (e, n) and private key is (d, n)
    return ((e, n), (d, n))
 
def encrypt(pk, plaintext):
    key, n = pk
    #Convert each letter in the plaintext to numbers based on the 
character using a^b mod m
    cipher = [(ord(char) ** key) % n for char in plaintext]
    #Return the array of bytes
    return cipher
 
def decrypt(pk, ciphertext):
    key, n = pk
    #Generate the plaintext based on the ciphertext and key using a^b 
mod m
    plain = [chr((char ** key) % n) for char in ciphertext]
    #Return the array of bytes as a string
    return ''.join(plain)
    
 
if __name__ == '__main__':
 
    print ("Chapter 8 - Understanding RSA\n")
    # First 20 prime numbers include:
    # 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 
61, 67, 71
    p = int(input("Enter a prime number: "))
    q = int(input("Enter a second distinct prime number:"))
    print ("\nGenerating your public/private keypairs . . .")
    public, private = generate_keypair(p, q)
    print ("\nYour public key is {} and your private key is {}\n".
format(public, private))
    message = input("Enter a message to encrypt with your public key: ")
    encrypted_msg = encrypt(public, message)
    print ("Your encrypted message is: {}".format(''.join(map(lambda x: 
str(x), encrypted_msg))))
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    print ("\nDecrypting message with your personal private key ", 
private ," . . .")
    print ("\nYour message is: {}\n\n".format(decrypt(private, 
encrypted_msg)))

To produce the output in Figure 8.1, enter 11 as your first prime and 17 as 
your second.

Generating RSA Certificates
For our next example, we will utilize the PyCrypto library and import the RSA 
module. In the next code listing, you will generate a new RSA key and then 
export the private and public aspects of the key into variables that are then 
saved as certificates to disk. The keys here are much larger than used in the 
previous example, which makes them much harder to crack. You may notice 
that this program is also much slower due to the increased time it takes to find 
the coprime key pair as the key size increases:

#ch8_Generate_RSA_Certs.py
from Crypto.PublicKey import RSA
 
#Generate a public/private key pair using 4096 bits key length (512 
bytes)
new_key = RSA.generate(4096, e=65537)
 
#The private key in PEM format
private_key = new_key.exportKey("PEM")
 

Figure 8.1: Understanding RSA
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#The public key in PEM Format
public_key = new_key.publickey().exportKey("PEM")
 
print (private_key)
fd = open("private_key.pem", "wb")
fd.write(private_key)
fd.close()
 
print (public_key)
fd = open("public_key.pem", "wb")
fd.write(public_key)
fd.close()

To review the output of the generated keys, see Figure 8.2. The key is in a 
special encoded RSA file format. You can decode the file using the following 
command:

openssl rsa -in private_key.pem -text -noout

Figure 8.2: Generating RSA certs
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Constructing Simple Text Encryption and  
Decryption with RSA Certificates
In the next code listing, we’ll use the RSA certificates we created in the previous 
section to encrypt and decrypt a simple message: To be encrypted. The module 
uses the RSA encryption protocol according to PKCS#1 OAEP, and the scheme 
is more properly known as RSAES-OAEP. At the receiver side, decryption can 
be done using the private part of the RSA key:

from Crypto.Cipher import PKCS1_OAEP
from Crypto.PublicKey import RSA
 
message = b'To be encrypted'
key = RSA.importKey(open('public_key.pem').read())
cipher = PKCS1_OAEP.new(key)
ciphertext = cipher.encrypt(message)
 
print (ciphertext)
 
key = RSA.importKey(open('private_key.pem').read())
cipher = PKCS1_OAEP.new(key)
plaintext = cipher.decrypt(ciphertext)
 
print (plaintext)

Figure 8.3 shows the results of the previous code. The message entered is “To 
be encrypted.” You will see the RSA encrypted output followed by the decryp-
tion back to plaintext.

Figure 8.3: RSA decrypt
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If you try to encrypt larger messages, you will get an exception because the 
key length limits the maximum message length. In the next section, we will 
craft a more robust solution using the same concepts we just applied. Our next 
recipe will demonstrate how to encrypt and decrypt a wide variety of data 
using the PKI infrastructure.

Constructing BLOB Encryption and  
Decryption with RSA Certificates
In the previous section, you were able to encrypt and decrypt data using a PKI 
infrastructure, but the size of the message was limited. Examine the following 
Python demo, which will take an image and encrypt it using RSA and then 
decrypt it. It works with larger amounts of data by encrypting the image in 
key-size chunks. The resulting code will produce both an encrypted image and 
a decrypted image that should match the original:

#ch8_RSA_blob.py
import zlib
import base64
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
from pathlib import Path
 
# Generate new key pair function
def generate_new_key_pair():
    # Generate a public/private key pair using 4096 bits key length 
(512 bytes)
    new_key = RSA.generate(4096, e=65537)
 
    # The private key in PEM format
    private_key = new_key.exportKey("PEM")
 
    # The public key in PEM Format
    public_key = new_key.publickey().exportKey("PEM")
 
    private_key_path = Path('private.pem')
    private_key_path.touch(mode=0o600)
    private_key_path.write_bytes(private_key)
 
    public_key_path = Path('public.pem')
    public_key_path.touch(mode=0o664)
    public_key_path.write_bytes(public_key)
 
 
# RSA Encryption Function
def encrypt_blob(blob, public_key):
    #Import the public key and use for encryption using PKCS1_OAEP
    rsa_key = RSA.importKey(public_key)
    rsa_key = PKCS1_OAEP.new(rsa_key)
 



	 Chapter 8 ■ Cryptographic  Applications and PKI	 233

    #compress the data first
    blob = zlib.compress(blob)
    #In determining the chunk size, determine the private key length 
used in bytes
    #and subtract 42 bytes (when using PKCS1_OAEP). The data will be 
encrypted
    #in chunks
    chunk_size = 470
    offset = 0
    end_loop = False
    encrypted = bytearray()
 
    while not end_loop:
        #The chunk
        chunk = blob[offset:offset + chunk_size]
 
        #If the data chunk is less than the chunk size, then we need to 
add
        #padding with " ". This indicates that we reached the end of the 
file
        #so we end loop here
        if len(chunk) % chunk_size != 0:
            end_loop = True
            #chunk += b" " * (chunk_size - len(chunk))
            chunk += bytes(chunk_size - len(chunk))
        #Append the encrypted chunk to the overall encrypted file
        encrypted += rsa_key.encrypt(chunk)
 
        #Increase the offset by chunk size
        offset += chunk_size
 
    #Base 64 encode the encrypted file
    return base64.b64encode(encrypted)
 
# RSA Decryption Function
def decrypt_blob(encrypted_blob, private_key):
 
    # Import the private key and use for decryption using PKCS1_OAEP
    rsakey = RSA.importKey(private_key)
    rsakey = PKCS1_OAEP.new(rsakey)
 
    # Base 64 decode the data
    encrypted_blob = base64.b64decode(encrypted_blob)
 
    # In determining the chunk size, determine the private key length 
used in bytes.
    # The data will be decrypted in chunks
    chunk_size = 512
    offset = 0
    decrypted = bytearray()
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    # keep loop going as long as we have chunks to decrypt
    while offset < len(encrypted_blob):
        # The chunk
        chunk = encrypted_blob[offset: offset + chunk_size]
 
        # Append the decrypted chunk to the overall decrypted file
        decrypted += rsakey.decrypt(chunk)
 
        # Increase the offset by chunk size
        offset += chunk_size
 
    # return the decompressed decrypted data
    return zlib.decompress(decrypted)
 
 
# generate_new_key_pair() # run if you don't already have a key pair
 
print("This program is looking for an image named 'cloud.jpg'.")
 
private_key = open('private_key.pem').read()
 
print("The private key has been read.")
 
public_key = open('public_key.pem').read()
 
print("The public key has been read.")
 
unencrypted_file = Path('cloud.jpg')
encrypted_file = unencrypted_file.with_suffix('.dat')
encrypted_blob = encrypt_blob(unencrypted_file.read_bytes(), public_key)
 
print("The cloud has been encrypted.")
 
# Write the encrypted contents to a file
fd = open("e_cloud.jpg", "wb")
fd.write(encrypted_blob)
fd.close()
 
print("The encrypted image is named e_cloud.jpg")
 
# Our candidate file to be decrypted
fd = open("e_cloud.jpg", "r")
encrypted_blob = fd.read()
fd.close()
 
print()
print("The contents of the encrypted file is too long to print.")
print()
 
# Write the decrypted contents to a file
fd = open("d_cloud.jpg", "wb")
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fd.write(decrypt_blob(encrypted_blob, private_key))
fd.close()
 
# Decrypt the encrypted blob
decrypt_blob(encrypted_blob, private_key)
 
print("The cloud has been decrypted. Examine the d_cloud.jpg file.")

Figure 8.4 shows the output for the RSA BLOB program.

The El-Gamal Cryptosystem

El-Gamal encryption is a public-key cryptosystem. As with the previous use of 
RSA, El-Gamal uses asymmetric key encryption for communicating between 
two parties and encrypting the message. This cryptosystem is based on the 
difficulty of finding a discrete logarithm in a cyclic group. That is, even if we 
know ga and gk, it is extremely difficult to compute gak. In this section, we will 
examine the basic idea of the cryptosystem with an example using cryptogra-
phy’s favorite couple: Alice and Bob.

Suppose Alice wants to communicate to Bob.

■■ Bob generates a public and a private key:

■■ Bob chooses a very large number q and a cyclic group Fq.

■■ From the cyclic group Fq, he chooses any element g and an element a 
such that gcd(a, q) = 1.

■■ Then he computes h = ga.

Figure 8.4: Output for the RSA BLOB program
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■■ Bob publishes F, h = ga, q, and g as his public key and retains a as his 
private key.

■■ Alice encrypts data using Bob’s public key:

■■ Alice selects an element k from cyclic group F such that gcd(k, q) = 1.

■■ Then she computes p = gk and s = hk = gak.

■■ She multiplies s with M.

■■ Then she sends (p, M*s) = (gk, M*s).

■■ Bob decrypts the message:

■■ Bob calculates s′ = pa = gak.

■■ He divides M*s by s′ to obtain M as s = s′.

The following Python code will help you gain an understanding of these 
steps. You should notice many of the functions you have already learned about, 
but if you need a refresher, see Chapter 4.

# Chapter 8 - ElGamal encryption 
 
import random 
from math import pow
 
a = random.randint(2, 10) 
 
# Compute the GCD
def gcd(a, b): 
    if a < b: 
        return gcd(b, a) 
    elif a % b == 0: 
        return b; 
    else: 
        return gcd(b, a % b) 
 
# Generating large random numbers 
def gen_key(q): 
 
    key = random.randint(pow(10, 20), q) 
    while gcd(q, key) != 1: 
        key = random.randint(pow(10, 20), q) 
 
    return key 
 
# Compute the power
def power(a, b, c): 
    x = 1
    y = a 
 
    while b > 0: 
        if b % 2 == 0: 
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            x = (x * y) % c; 
        y = (y * y) % c 
        b = int(b / 2) 
 
    return x % c 
 
# Encrypt the message
def encrypt(msg, q, h, g): 
 
    en_msg = [] 
 
    k = gen_key(q)# Private key for sender 
    s = power(h, k, q) 
    p = power(g, k, q) 
    
    for i in range(0, len(msg)): 
        en_msg.append(msg[i]) 
 
    print("g^k used : ", p) 
    print("g^ak used : ", s) 
    for i in range(0, len(en_msg)): 
        en_msg[i] = s * ord(en_msg[i]) 
 
    return en_msg, p 
 
# Decrypt the message
def decrypt(en_msg, p, key, q): 
 
    dr_msg = [] 
    h = power(p, key, q) 
    for i in range(0, len(en_msg)): 
        dr_msg.append(chr(int(en_msg[i]/h))) 
        
    return dr_msg 
 
 
def main(): 
    
    msg = 'Please do not let the enemy know our position.'
    print("Original Message :", msg)
    print()
    
    q = random.randint(pow(10, 20), pow(10, 50)) 
    g = random.randint(2, q) 
 
    key = gen_key(q)# Private key for receiver 
    h = power(g, key, q) 
    print("g used : ", g) 
    print("g^a used : ", h) 
 
    en_msg, p = encrypt(msg, q, h, g) 
    dr_msg = decrypt(en_msg, p, key, q) 
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    dmsg = ''.join(dr_msg) 
    print ()
    print ("The encrypted message :", en_msg)
    print ()
    print("Decrypted Message :", dmsg); 
    print ()
 
 
if __name__ == '__main__': 
    main() 

The preceding recipe should take the message “Please do not let the enemy 
know our position.” and generate an ElGamal key that is used to encrypt and 
decrypt the message. Examine Figure 8.5. The program displays the ga and gk 
that is produced along with the gak.

Elliptic Curve Cryptography

Now that you have a better understanding of how the more traditional algo-
rithms work using Python, we will examine an alternative approach that is 
considered a more efficient type of public-key cryptography: elliptic curve 
cryptography, or as it is more simply known, ECC. The security of the cryp-
tosystem lies within the difficulty of solving discrete logarithms on the field 
defined by specific equations computed over a curve; the group of cryptographic 
algorithms were introduced in 1985 and were based on the esoteric branch 

Figure 8.5: ElGamal key
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of mathematics called elliptic curves. Although the system was introduced in 
the mid ’80s, it took another twenty years for the cryptosystem to gain wide 
acceptance. Several factors are contributing to its increasing popularity. First, the 
security of 1024-bit RSA encryption is degrading due to faster computing and 
a better understanding and analysis of encryption methods. While brute force 
is still unlikely to crack 1024-bit RSA keys, other approaches, including highly 
intensive parallel computing in distributed computing arrays, are resulting in 
more sophisticated attacks. These attacks have reduced the effectiveness of this 
level of security. Even 2,048-bit encryption is estimated by the RSA Security to 
be effective only until 2030. A second factor that is contributing to the adop-
tion of ECC is that many government entities have started to accept ECC as an 
encryption method. Third, the authentication speed of ECC is faster than RSA 
in terms of server authentication. Finally, certificate authorities have started 
embedding ECC algorithms into their SSL certificates.

ECC was independently suggested by Neal Koblitz (University of Washington) 
and Victor S. Miller (IBM) in 1985. After the introduction of Diffie-Hellman and 
RSA, cryptographers started exploring other mathematics-based cryptographic 
solutions looking for other algorithms that would offer easy one-way calculations 
that were hard to find an inverse for; these types of functions are referred to as 
trapdoors. A trapdoor function is a function that is easy to perform one way but 
has a secret that is required to perform the inverse calculation efficiently. That is, 
if f is a trapdoor function, then y = f(x) is easy to compute, but x = f − 1(y) is hard 
to compute without some special knowledge k. Unless you have a mathematical 
background, elliptic curves may be new to you; so what exactly is an elliptic 
curve and how does the elliptic curve trapdoor function work?

An elliptic curve is the set of points that satisfy a specific mathematical equation. 
The equation for an elliptic curve looks something like this:

	 y x ax b2 3
	

That graphs to something that looks like Figure 8.6.

Figure 8.6: An elliptic curve
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The most important takeaway for this section is that you understand that 
ECC produces encryption keys based on using points on a curve to define the 
public and private keys. An ECC key is very helpful for the current generation 
as more people are moving to the smartphone. As the utilization of smartphones 
continues to grow, there is an emerging need for a more flexible encryption for 
business to meet with increasing security requirements.

The elliptic curve cryptography certificates allow key size to remain small 
while providing a higher level of security. The ECC certificate key creation 
method is entirely different from previous algorithms, while relying on the 
use of a public key for encryption and a private key for decryption. By starting 
small and with a slow growth potential, ECC has a longer potential life span. 
Elliptic curves are likely to be the next generation of cryptographic algorithms, 
and we are seeing the beginning of their use now.

When you compare ECC with other algorithms like RSA, you will find the 
ECC key is significantly smaller yet offers the same level of security. One notable 
instance is that a 3,072-bit RSA key takes 768 bytes, whereas the equally strong 
NIST P-256 private key only takes 32 bytes (that is, 256 bits). PyCryptodome 
offers us an ECC module that provides mechanisms for generating new ECC 
keys, exporting and importing them using widely supported formats like PEM 
or DER. To install PyCryptodome, execute the following pip command:

pip install pycryptodome

If you’re worried about ensuring the highest level of security while maintain-
ing performance, it makes sense to adopt ECC.

Generating ECC Keys
ECC private keys are integers that represent the curve’s field size; the typical 
size is 256 bits. A 256-bit private key would look like the following:

0x51897b64e85c3f714bba707e867914295a1377a7463a9dae8ea6a8b914246319

Generating an ECC key requires generating a random integer within a spec-
ified range.

The public keys in the ECC are EC points—pairs of integer coordinates 
{x, y}, lying on the curve. Due to their special properties, EC points can be 
compressed to just one coordinate + 1 bit (odd or even). Thus the compressed 
public key, corresponding to a 256-bit ECC private key, is a 257-bit integer. 
An example of an ECC public key (corresponding to the preceding private 
key, encoded in the Ethereum format, as hex with prefix 02 or 03) is 0x02f5
4ba86dc1ccb5bed0224d23f01ed87e4a443c47fc690d7797a13d41d2340e1. In this 
format, the public key takes 33 bytes (66 hex digits), which can be optimized 
to exactly 257 bits.



	 Chapter 8 ■ Cryptographic  Applications and PKI	 241

The following example demonstrates how to generate a new ECC key, export 
it, and reload it back into your program. The code uses the NIST P-256 algorithm, 
which is the most-used elliptic curve, and there are no reasons to believe it’s 
insecure:

from Crypto.PublicKey import ECC
key = ECC.generate(curve='P-256')
f = open('myprivatekey.pem','wt')
f.write(key.export_key(format='PEM'))
f.close()
f = open('myprivatekey.pem','rt')
key = ECC.import_key(f.read())
print (key)

The key generated will look similar to the following:

EccKey(curve='NIST P-256',  
point_x=8551131792519309159153800555446728338631199151373724862622804721
0045098335773,  
point_y=6283402795854508034745449155320613311657026087929116481422492859
9382610602892,  
d=2063641786698337143130043788498991558397573514836970341582277689437768
1606808)

Key Lengths and Curves
The ECC algorithms have many strengths, including the variety of elliptic curves 
that can be used; each curve offers different levels of security, which extends a 
variable of cryptographic strength. Each type of curve also presents a variety of 
performance and key lengths. The ECC curves that are provided in our libraries 
provide the ability to have named curves such as Curve25519 or Secp256k1.

Curve25519 provides 128 bits of security and is designed for use with the 
Elliptic Curve Diffie-Hellman key scheme; it is considered one of the fastest 
ECC curves and is publicly available. Secp256k1 is an elliptic curve that is used 
in Bitcoin’s public-key cryptography and is defined in the Standards of Efficient 
Cryptography (SEC). Another benefit to Secp256k1 is that unlike the popular 
NIST curves, Secp256k1’s constants were selected in a predictable way, which 
significantly reduces the possibility that the curve’s creator inserted any sort 
of backdoor into the curve. ECC keys have length, which directly depends on 
the underlying curve. Following is a list of common ECC named curves and 
their key lengths:

■■ secp192r1: 192-bit

■■ sect233k1: 233-bit

■■ secp224k1: 224-bit

■■ secp256k1: 256-bit
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■■ NIST P-256: 256-bit

■■ Curve25519: 256-bit

■■ sect283k1: 283-bit

■■ p384: 384-bit

■■ secp384r1: 384-bit

■■ sect409r1: 409-bit

■■ Curve41417: 414-bit

■■ Curve448-Goldilocks: 448-bit

■■ M-511: 511-bit

■■ P-521: 521-bit

■■ sect571k1: 571-bit

Diffie-Hellman Key Exchange

The history of cryptography can be split into two eras: the classical era and 
the modern era. The turning point between the two occurred in 1977, when 
both the RSA algorithm and the Diffie-Hellman key exchange algorithm were 
introduced. These new algorithms were revolutionary because they represented 
the first viable cryptographic schemes where security was based on the theory 
of numbers; they were the first to enable secure communication between two 
parties without a shared secret. Cryptography went from being about securely 
transporting secret codebooks around the world to being able to have prov-
ably secure communication between any two parties without worrying about 
someone listening in on the key exchange.

The Diffie-Hellman algorithm was developed to create secure communi-
cations over a public network using ECC to generate points on the curve and 
get the secret key using parameters; for our exploration we will consider four 
variables that include P, G, A, B:

P: One prime number; publicly available.

G: A primitive root of P. You may remember that a primitive root of a prime 
is an integer such that the modulus has multiplicative order; publicly 
available.

A: A user (Alice) picks private values for A and B and use them to generate 
a key to exchange publicly with a second user (Bob).
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B: The second user (Bob), receives the key from Alice and uses it to generate 
a secret key; this gives both users the same secret key to encrypt.

Examine Figure 8.7x to see how the points intersect with the ECC.

To get a better understanding, review the following five steps:

1.	 Alice and Bob get public numbers P = 23, G = 9.

2.	 Each user selects a private key:

■■ Alice selected a private key a = 4

■■ Bob selected a private key b = 3

3.	 Each user computes public values:

■■ Alice: x = (9^4 mod 23) = (6561 mod 23) = 6

■■ Bob: y = (9^3 mod 23) = (729 mod 23) = 16

4.	 Alice and Bob exchange public numbers:

■■ Alice receives public key y = 16

■■ Bob receives public key x = 6

5.	 Alice and Bob compute symmetric keys:

■■ Alice: ka = y^a mod p = 65536 mod 23 = 9

■■ Bob: kb = x^b mod p = 216 mod 23 = 9

Figure 8.7: Point intersection of ECC curve
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The completed process generates 9, which is the shared secret. Notice this 
value was never shared between the two parties. Review the following code to 
see how to implement Diffie-Hellman in Python:

def power(a, b, p):
    if (b == 1):
        return a;
    else:
        return pow(a,b,p)
 
 
def main():
 
    P = 0; G = 0; x = 0; a = x;
    y = 0; b = 0;
    ka = 0; kb = 0;
  
    # Both the users will be agreed upon the public keys G and P  
    P = 23; # A prime number P is taken 
    print("The value of P:", P);  
  
    G = 9; # A primitive root for P, G is taken 
    print("The value of G:", G);  
  
    # Alice will choose the private key a  
    a = 4; # a is the chosen private key  
    print("The private key a for Alice:", a); 
    x = power(G, a, P); # gets the generated key 
      
    # Bob will choose the private key b 
    b = 3; # b is the chosen private key 
    print("The private key b for Bob:", b); 
    y = power(G, b, P); # gets the generated key 
  
    # Generating the secret key after the exchange of keys 
    ka = power(y, a, P); # Secret key for Alice 
    kb = power(x, b, P); # Secret key for Bob 
      
    print("Secret key for the Alice is:", ka); 
    print("Secret Key for the Bob is:", kb); 
      
 
if __name__ == '__main__':
    main()
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Your results should look like those shown in Figure 8.8.

Summary

In this chapter, you were able to expand on your knowledge of working with a 
public-key infrastructure using Python. The biggest secrets in our government 
and business entities are largely protected by two simple mathematical equations:

■■ C = Me (mod N)

■■ C1/e mod (p – 1) (q – 1) mod N = M

These equations provide the basis of creating very large keys that are easy 
to generate but difficult to crack, essentially creating mathematical locks or 
trapdoors.

After gaining an understanding of how PKI works, we then explored how to 
implement ElGamal, which is a cryptosystem based on the difficulty of finding 
a discrete logarithm in a cyclic group.

The use of large keys in cryptography could have limitations as the world 
moves to smaller mobile devices. You also learned about the elliptic curve cryp-
tography encryption system, which provides an alternative and more efficient 
type of public-key cryptography. The use of ECC is critical to how we implement 
key exchanges using the Diffie-Hellman algorithms.

In the next chapter, you will create a chat application that will incorporate 
many of the recipes and styles you have learned in this book.

Figure 8.8: Diffie-Hellman exchange example
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9

The time has come to put all you have learned into action; you should now under-
stand the concepts you need to secure communications between two parties. 
The chapter will focus on building an application that can send messages in 
plaintext, or encrypted using asymmetric public key infrastructure (PKI) and 
using the symmetric key method with an Elliptic Curve Diffie-Hellman key 
exchange. Implementing these techniques between two applications over an 
insecure UDP connection will help you think through how to send messages 
securely and ensure that they have not been tampered with. We will use Wire-
shark, a popular network analyzer, to verify that the messages are encrypted 
and cannot be distinguished from random noise. We will highlight using AES 
(Advanced Encryption Standard) in Counter (CTR) and Galouis/Counter (GCM) 
modes. We covered CTR in Chapter 5, and while the implementation of GCM is 
quite similar, it requires some special consideration as we design our encryption 
protocol. Our first task will be to build a small working application for plaintext 
communications, then adding the other cryptographic components to the mix. 
Throughout this chapter, you gain cryptographic experience as you:

■■ Construct an application that communicates in plaintext

■■ Install Wireshark and examine the communication traffic

■■ Implement a PKI into the application

■■ Implement RSA Digital Certificates

Mastering Cryptography 
Using Python

Implementing Cryptography Using Python®, First Edition. Shannon W. Bray.
© 2020 John Wiley & Sons, Inc. Published 2020 by John Wiley & Sons, Inc.
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■■ Encrypt the message using ECC

■■ Implement the Elliptic Curve Diffie-Hellman exchange

Constructing a Plaintext Communications Application

Our first task is to revisit the construction of a threaded server with unencrypted 
traffic, which was introduced in Chapter 7. In addition to building a server and 
client Python file, we will create a helper file here that will support the coding 
additions we will implement as we are building our Python solution.

The architecture for the application includes a server file (crypto _ server _ a.

py), a client file (crypto _ client _ a.py), and a helper file that will be used by 
both the client and server since they share many of the same components. One 
side encrypts, and the other one decrypts. For the sake of keeping this example 
simple, we will only do one-way communication. The same techniques used in 
this chapter can be used between any applications that transmit data over UDP.

Creating a Server
Our first step is to create an application that will use UDP sockets to accept 
packets from other programs. For our example we can use the localhost so that 
you can use the client application to send plaintext messages to the server. The 
server will then display the text as received.

Here’s the Python code:

# Message Receiver - crypto_chat_server.py
import hashlib, random, os, time
from binascii import hexlify
from socket import *
import Chapter9.ch9_crypto_chat as ct 
 
def get_dh_sharedsecret():
    return
 
def get_dh_sharedkey():
    return
 
def decrypt(ciphertext, usePKI, useDH, serverSecret):
    #msg = ct.decrypt(ciphertext, usePKI, useDH, serverSecret)
    try:
        msg = ct.decrypt(ciphertext, usePKI, useDH, serverSecret)
    except:
        msg = ciphertext
    return msg
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def main(): 
    # set variables used to determine scheme
    useClientPKI = False;
    useDHKey = False;
    serverSecret = 0
 
    # set the variables used for the server components
    key = ""
    host = ""
    port = 8080
    buf = 1024 * 2
    addr = (host, port)
    UDPSock = socket(AF_INET, SOCK_DGRAM)
    UDPSock.bind(addr)
 
    # welcome to the server message
    print ("Waiting to receive messages...")
 
    # listening loop
    while True:
        # read the data sent from the client
        (data, addr) = UDPSock.recvfrom(buf)
        
        # send the data packet for decryption
        plaintext = decrypt(data, useClientPKI, useDHKey, serverSecret)
 
        # check to see if the user typed a special command such as 
addPKI or addDH
        result = ct.check_server_command(plaintext)
       
        if result == 10: # encryption has been disabled so no message
            plaintext = b'PKI Encryption disabled!'
        elif result == 11: # encryption enabled
            plaintext = b'PKI Encryption enabled!'
        elif result == 20: # dh enabled
            clientKey = plaintext
            plaintext = b'Diffie-Hellman disabled!'
        elif result == 21: # encryption enabled
            plaintext = b'Diffie-Hellman enabled!'
 
        # messages are received encoded so you must decode the message 
for processing
        msg = str(plaintext, 'utf-8')
        
        # process any client special commands
        if result == 0:
            # no encryption
            break
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        # if any encryption is used, change the message to 'secure' 
message
        if useClientPKI == True or useDHKey == True:
            print ("Received secured message: " + msg)
        else:
            print ("Received message: " + msg)
        
 
    UDPSock.close()
    os._exit(0) 
 
if __name__ == '__main__': 
	 main() 

Creating the Client
The client file will largely stay the same as its original counterpart in Chapter 7. 
One of the main modifications added here is an encrypt method that is used 
to call the helper file.

Here’s the Python code:

# Message Sender - crypto_chat_client.py
import hashlib, random, os, time
from binascii import hexlify
from socket import *
import ch9_crypto_chat as ct
 
 
def get_dh_sharedsecret():
    return
 
def get_dh_sharedkey():
    return
   
def encrypt(plaintext, usePKI, useDH, clientSecret):
    msg = ct.encrypt(plaintext, usePKI, useDH, clientSecret)
    return msg
 
def main():
    host = "127.0.0.1" # set to IP address of target computer
    port = 8080
    addr = (host, port)
    UDPSock = socket(AF_INET, SOCK_DGRAM)
 
    # initiate the encryption variables
    sendUsingPrivate = False;
    sendUsingDH = False;
    skipEncryption = False;
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    # no matter what, get the ECC shared key, only use it if the user 
enables
    clientSecret = get_dh_sharedkey()
    
    print ("Welcome to Crypto-Chat! \n")
    print ()
   
    # sending loop
    while True:
        if sendUsingPrivate == True or sendUsingDH == True:
            data = str(input("Enter secure message to send or type 
'exit': ")).encode()
        else:
            data = str(input("Enter message to send or type 'exit': ")).
encode()
        
        # determine if the user initiated a special command
        result = ct.check_client_command(data)
 
        # handle any custom commands
        if data == b'exit':
            break
        if result == 0:
            break
 
 
        ciphertext = encrypt(data, sendUsingPrivate, sendUsingDH, 
clientSecret)
        if skipEncryption:
            ciphertext = data;
            skipEncryption = False;
 
        # send the packet over UDP
        UDPSock.sendto(ciphertext, addr)
 
    # close UDP connection
    UDPSock.close()
    os._exit(0)
 
if __name__ == '__main__': 
	  main() 

Creating the Helper File
To keep the code as consistent as possible between each step in our design, I 
will include various hooks that will be used later but, in this version, will not 
be cryptographically functional. The helper file will be the primary focus on 
most of our development tasks. Be sure to name this file ch9 _ crypto.py so 
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that the client and server files created earlier can find it. I will attempt to keep 
it as clear and concise as possible, so keep in mind that the code represented 
here is intended to be readable as opposed to using some Python shorthand:

# Chat Encryption Helper - ch9_crypto_chat.py
import os, base64, json
from Crypto.Cipher import PKCS1_OAEP, AES
from Crypto.PublicKey import RSA, ECC
from binascii import hexlify, unhexlify
from base64 import b64encode, b64decode
 
# encryption method used by all calls
def encrypt(message, usePKI, useDH, dhSecret):
    return message
 
# decryption method used by all calls
def decrypt(message, usePKI, useDH, dhSecret):
    return message
 
# decrypt using RSA
def decrypt_rsa(ciphertext):
    return ciphertext
 
# encrypt using RSA
def encrypt_rsa(message):
    return message
 
# check client commands
def check_client_command(data):
    return 1
 
# check server commands
def check_server_command(data):
    return 1

Execution
To execute this example, you can run the Python server and client in any order. 
This will hold true for the other implementations as well but in this example, 
you can start and stop either one and the program will continue to work once 
you put the missing component back in service. This will not always be true 
in the other examples if you have initiated encryption because the certificates 
get regenerated each time the files are executed. Your initial view should look 
similar to Figure 9.1.
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Installing and Testing Wireshark

Packet capture can provide a security professional or network administrator 
with information about individual packets such as transmit time, source, des-
tination, protocol type, and header data. Wireshark is an open-source tool for 
analyzing packets and profiling network traffic. These types of tools are often 
referred to as a network analyzer, a network protocol analyzer, or a sniffer. We 
will be using Wireshark to examine the content that is sent between the client 
and server applications; the tool is designed to examine the details of traffic at 
a variety of levels, ranging from connection-level information to the bits that 
make up a single packet. This information can be useful for evaluating security 
events and troubleshooting network security device issues. For our example, 
you will ensure that the various modes of the client/server application are 
working correctly.

Wireshark will typically display information in three panels (see Figure 9.2). 
The top panel lists frames individually with key data on a single line. Any single 
frame selected in the top pane is further explained in the tool’s middle panel. In 
this section of the display, the tool shows packet details, illustrating how var-
ious aspects of the frame can be understood as belonging to the data link layer, 
network layer, transport layer, or application layer. Lastly, Wireshark’s bottom 
pane displays the raw frame, with a hexadecimal rendition on the left and the 
corresponding ASCII values on the right.

Because Wireshark can also be used for eavesdropping, an organization 
using the tool should make sure it has a clearly defined privacy policy that 
spells out the rights of individuals using its network, grants permission to sniff 
traffic for security and troubleshooting issues, and states the organization’s pol-
icies for obtaining, analyzing, and retaining network traffic samples.

You can download Wireshark for free from www.wireshark.org for Windows 
and macOS. Wireshark is also likely available for Linux in your Linux distribution 

Figure 9.1:  Plaintext messaging
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package manager. As your installation requirements will be different for each 
OS, check out the Wireshark site for any specifics.

Once you have it installed, you can turn on the packet capture. If you have 
any web browsers or other network-intensive applications open, you may want 
to close them or disable capturing those packets. You can filter traffic to show 
only packets to a specific destination IP, from a specific source IP, and even to and 
from an entire subnet; as an example, if you want to filter out data except that 
which has a source or destination of 192.168.2.11, type ip.addr == 192.168.2.11 
in the filter bar. Once you are ready for a test, execute the following steps:

1.	 Start Wireshark.

2.	 Execute the server file.

3.	 Execute the client file.

4.	 Click the blue shark fin on the command bar to start capture.

5.	 In the client command window, type Hello World!

6.	 Click the stop button on the command bar to stop capture.

7.	 Examine the UDP packet. You should notice that the length of the packet 
is 12 bytes. The only time you should see a result that equals 12 is when 
the data is being submitted in plaintext.

8.	 Examine the bottom pane; you should see your plaintext message. The 
middle frame tells you the protocol (UDP), src port, and destination port 
(8080), along with the number of bytes (12).

Figure 9.2:  Wireshark overview



	 Chapter 9 ■ Mastering Cryptography Using Python	 255

If you have everything set up correctly, you should see the plaintext message 
appear within your Wireshark capture, as shown in Figure 9.3.

Once you have your packet capture working, it is time to encrypt the data so 
that you can communicate securely. We will implement a PKI solution in the 
next section.

Implementing PKI in the Application 
Using RSA Certificates

You should have a working solution that sends a plaintext message over a port 
using the UDP protocol from a client application to a server application. If you 
have Wireshark configured, you should be able to confirm that the message 
being sent is readable in plaintext. Since we are looking to encrypt the data, we 
will now implement public-key infrastructure algorithms to secure the data. As 
you will recall, this type of infrastructure requires the use of public and private 
keys. Usually the infrastructure in public-key infrastructure implies some sort of 
shared key server where clients and servers can share public keys. For the sake 

Figure 9.3:  Wireshark traffic
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of our example, this will simply be a shared file called client _ public _ key.

pem on the filesystem.
We will be using the PyCrypto library to generate client _ private _ key.

pem and client _ public _ key.pem on the filesystem where both the client and 
server can read them directly. As with any PKI arrangement, you will use one 
of these files for encryption and one for decryption. You will recall that if the 
sender uses a public key and sends it to someone with the private key, this offers 
confidentiality. If the sender uses a private key and sends it to someone with 
the public key, this offers nonrepudiation (meaning the message could have 
only come from the sender). In our example, we will be using the client private 
key for encryption and the client public key for decryption. The bulk of this 
development will take place in the ch9 _ crypto _ chat.py file. Remember that 
these files need to be created before the encryption process begins, so it will 
take place early in our process. To get a better understanding of how the PKI 
infrastructure works, examine Figure 9.4.

Modifying the Server
The primary change to the server file (ch9 _ crypto _ chat _ server.py) will 
be in constructing and utilizing the check _ server _ command() method to 
examine the plaintext and to modify the command sent with a result message. 

Sender Encrypt Decrypt Recipient

Recipient’s
Public
Key

Recipient’s
Private
Key

Plaintext PlaintextCiphertext

Different keys are used to encrypt and
decrypt message

Figure 9.4:  PKI overview
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The command being used in this example is addPKI:

# send the data packet for decryption
plaintext = decrypt(data, useClientPKI, useDHKey, serverSecret)
 
# check to see if the user typed a special command such as addPKI or 
addDH
result = ct.check_server_command(plaintext)
 
if result == 10: # encryption has been disabled so no message
    plaintext = b'PKI Encryption disabled!'
elif result == 11: # encryption enabled
    plaintext = b'PKI Encryption enabled!'
 
 
# messages are received encoded so you must decode the message for 
processing
msg = str(plaintext, 'utf-8')
 
# process any client special commands
if result == 0:
    # no encryption
    break
if result == 10:
    # turn off the use of PKI
    useClientPKI = False;
if result == 11:
    # turn on the use of PKI
    useClientPKI = True;
    # let the user know PKI is certs are found
    print ("Client certificate found ...")

Modifying the Client
The primary modifications to the client file capture the user commands, such 
as addPKI or addDH, and then configure the communications accordingly. Once 
we know which encryption method the user wants (plain, PKI, ECC), we pass 
the data, the type of encryption, and the required key or client secret. The client 
file will pass the heavy lifting over to the helper file:

# handle any custom commands
if data == b'exit':
    break
if result == 0:
    break
if result == 10:
    sendUsingPrivate = False;
if result == 11:
    sendUsingPrivate = True;
    skipEncryption = True;
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Modifying the Helper File
The helper file will be growing quite a bit now. In addition to using it to cre-
ate the private and public key files, we also use it for reading the key files and 
performing our encryption and decryption process. You’ve seen code examples 
of this in a number of chapters, but if you would like to review the topic again, 
check out Chapter 5.

PyCrypto is being used in this example to expose the PKCS1_OAEP module. 
The only difference between the encryption and decryption methods is the use 
of specific keys:

# Chat Encryption Helper - ch9_crypto_chat.py
import os, base64, json
from Crypto.Cipher import PKCS1_OAEP, AES
from Crypto.PublicKey import RSA, ECC
from binascii import hexlify, unhexlify
from base64 import b64encode, b64decode
 
# encryption method used by all calls
def encrypt(message, usePKI, useDH, dhSecret):
    if usePKI == True:
        message = encrypt_rsa(message)
    return message
 
# decryption method used by all calls
def ch9_decrypt(message, usePKI, useDH, dhSecret):
    if usePKI == True:
        message = ch9_decrypt_rsa(message)
    return message
 
 
# generate RSA certs
def gen_rsa_certs():
    #ch8_Generate_RSA_Certs.py
    from Crypto.PublicKey import RSA
 
    #Generate a public/private key pair using 4096 bits key length (512 
bytes)
    new_key = RSA.generate(4096, e=65537)
 
    #The private key in PEM format
    private_key = new_key.exportKey("PEM")
 
    #The public key in PEM Format
    public_key = new_key.publickey().exportKey("PEM")
 
    fd = open("client_private_key.pem", "wb")
    fd.write(private_key)
    fd.close()
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    fd = open("client_public_key.pem", "wb")
    fd.write(public_key)
    fd.close()
 
# decrypt using RSA
def decrypt_rsa(ciphertext):
    key = RSA.importKey(open('client_private_key.pem').read())
    cipher = PKCS1_OAEP.new(key)
    plaintext = cipher.decrypt(ciphertext)
    return plaintext
 
# encrypt using RSA
def encrypt_rsa(message):
    key = RSA.importKey(open('client_public_key.pem').read())
    cipher = PKCS1_OAEP.new(key)
    ciphertext = cipher.encrypt(message)
 
    plaintext = decrypt_rsa(ciphertext)
 
    return ciphertext
 
 
# check client commands
def check_client_command(data):
    if data == b'addPKI':
        gen_rsa_certs()
        return 11
    elif data == b'removePKI':
        usePKI = False
        return 10
    return 1
 
# check server commands
def check_server_command(data):
    if data == b'addPKI':
        return 11
    if data == b'removePKI':
        useDH = False
        return 10
 
    return 1

Execution
The execution of the PKI solution will appear to work just as the original version 
did. Once you type addPKI, the client sends the message to the server unen-
crypted and then modifies the data to state “PKI Encryption enabled!” This 
should pop up in the command window for the server, as shown in Figure 9.5.
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In addition, Wireshark should encrypt addPKI using the client private key. 
This will convert the message to 512 bytes. While you will be able to find the 
UDP packet just as you did in the previous section, this time, the data going over 
the wire is encrypted; your Wireshark output should look similar to Figure 9.6.

Figure 9.5:  PKI Encryption enabled

Figure 9.6:  Wireshark output
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The server file will then receive the encrypted message and then decrypt it 
using the client public key. If all works according to plan, instead of seeing the 
decrypted message of addPKI, you should see the enabled notification. You can 
turn off the use of PKI by typing removePKI. This should then produce read-
able traffic in Wireshark again. Play with this a few times to ensure that you 
can switch back and forth.

Implementing Diffie-Hellman Key Exchange

In Chapter 7, you learned about the concepts of hashing and how it can be utilized 
to ensure message integrity. AES-GCM was designed to preserve the integrity 
and the confidentiality of the message. This holds true even if the same nonce is 
used for each message. The function used for the encryption utilizes the nonce, 
the plaintext message, and optional associated data. If you elect to use the same 
nonce, nothing will be revealed except in the case that the same message is 
encrypted multiple times with the same nonce. When that happens, an eaves-
dropper (in our case, Wireshark) will be able to observe repeated encryptions 
in the message traffic. Beyond that, no further information will be available. In 
our example here, we will not use the same nonce for different messages, but 
this requires us to also send it over the wire to the server.

One obstacle identified with creating the client/server application that sends 
text encryption is that you will need to concatenate the nonce and possibly a 
message authentication tag. Because the UDP protocol does not specify anything 
regarding message format, one solution is to use Python’s JSON encoder and 
decoder to structure our messages. JSON, which stands for JavaScript Object 
Notation, is a lightweight data interchange protocol supported by many different 
applications and programming languages. We will use the json.dumps method 
to build a string that contains the nonce and message for a CTR example, and 
the nonce, message, and authentication tag for the GCM example. On the server 
side, the json module is used to extract the data using json.loads. Once we 
have the message and nonce on the server side, we can convert the data back to 
binary and decrypt the message. The use of the json module for both encryp-
tion and decryption is shown in Figure 9.7.

As you examine the helper file content, you will notice that the tag is passed 
into the decrypt _ and _ verify() method. This method checks the integrity 
of the message as well as the confidentiality. We will examine the data that is 
being sent from the client in the “Execution” section.

If you do not need message integrity, you can use the AES_CTR methods. 
These methods also use the JSON interchange to pass the nonce and the mes-
sage. The authentication tag would not be required.
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Modifying the Server File
Our goal now is to add the functionality we need to implement the Diffie-Hellman 
exchange. While it may not be completely obvious at first, the bulk of this is the 
creation of the Diffie-Hellman certificates for both the server and client. The 
server will call the gen _ server _ DH() method to generate the certificates when 
the application starts up. The certificates need to be in place prior to the client 
requiring them, which takes place when the user types addDH on the client.

In addition to the Diffie-Hellman certificates that get created, we also need to 
implement the Diffie-Hellman methods to examine the client’s public key and 
use it to create a shared secret using the server’s private key. The same process 
happens on the client.

The new code from this module should look like the following:

serverDH = crypto.gen_server_DH()
serverSecret = 0;
 
def get_dh_sharedsecret():
    key = int(open('client_public_dh_key.pem').read())
    serverDH.generateSharedKey(key)
    serverDH.getSharedKey()
 

Figure 9.7:  json module
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    serverDH.generateSharedKey(key)
 
    #serverDH.displayParameters()
    #serverDH.displayShared()
 
    return  (serverDH.sharedSecret)
 
def get_dh_sharedkey():
    key = int(open('client_public_dh_key.pem').read())
    serverDH.generateSharedKey(key)
    serverDH.getSharedKey()
 
    serverDH.generateSharedKey(key)
 
    #serverDH.displayParameters()
    #serverDH.displayShared()
 
    private_key = serverDH.key
 
    return  private_key

In the main method, you will also need to update the examination of the 
results so that you can set the correct Boolean operators:

# check to see if the user typed a special command such as addPKI or 
addDH
result = crypto.check_server_command(plaintext)
 
if result == 10: # encryption has been disabled so no message
    plaintext = b'PKI Encryption disabled!'
elif result == 11: # encryption enabled
    plaintext = b'PKI Encryption enabled!'
elif result == 20: # dh enabled
    clientKey = plaintext
    plaintext = b'Diffie-Hellman disabled!'
elif result == 21: # encryption enabled
    plaintext = b'Diffie-Hellman enabled!'
 
# messages are received encoded so you must decode the message for 
processing
msg = str(plaintext, 'utf-8')
 
# process any client special commands
if result == 0:
    # no encryption
    break
if result == 10:
    # turn off the use of PKI
    useClientPKI = False;
if result == 11:
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    # turn on the use of PKI
    useClientPKI = True;
    # let the user know PKI certs are found
    print ("Client certificate found ...")
if result == 20:
    # turn off Diffie-Hellman
    useDHKey = False;
if result == 21:
    # turn on Diffie-Hellman
    useDHKey = True;
    print ("DH Key Exchange ...")    
    serverSecret = get_dh_sharedkey()
 
# if any encryption is used, change the message to 'secure' message
if useClientPKI == True or useDHKey == True:
    print ("Received secured message: " + msg)
else:
    print ("Received message: " + msg)

Modifying the Client File
The client will call the gen _ client _ DH() method to generate the certificates 
when the application starts up. The certificates need to be in place prior to the 
client requiring them, which takes place when the user types addDH on the client.

In addition to the Diffie-Hellman certificates that get created, we also need to 
implement the Diffie-Hellman methods to examine the server’s public key and 
use it to create a shared secret using the client’s private key. The same process 
happens on the server.

The following code was added to the client file:

import Chapter9.ch9_crypto_chat as ct
 
clientDH = clientDH = ct.gen_client_DH()
clientSecret = 0;
 
def get_dh_sharedsecret():
    key = int(open('server_public_dh_key.pem').read())
    clientDH.generateSharedKey(key)
    clientDH.getSharedKey()
 
    clientDH.generateSharedKey(key)
 
    shared_key = clientDH.sharedSecret
 
    return (shared_key)
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def get_dh_sharedkey():
    key = int(open('server_public_dh_key.pem').read())
    clientDH.generateSharedKey(key)
    clientDH.getSharedKey()
 
    clientDH.generateSharedKey(key)
 
    private_key = clientDH.key
 
    return private_key

As with the server file, the client file needs to address the results determined 
by the message sent over UDP:

# determine if the user initiated a special command
result = ct.check_client_command(data)
 
# handle any custom commands
if data == b'exit':
    break
if result == 0:
    break
if result == 10:
    sendUsingPrivate = False;
if result == 11:
    sendUsingPrivate = True;
    skipEncryption = True;
if result == 20:
    sendUsingDH = False;
if result == 21:
    sendUsingDH = True;
    skipEncryption = True;

Prior to going into the loop, you will need to get the client secret by calling 
the get _ dh _ sharedkey() method:

# no matter what, get the ECC shared key, only use it if the user 
enables
clientSecret = get_dh_sharedkey()
 
print ("Welcome to Crypto-Chat! \n")
print ("    Enable PKI: type 'addPKI'")
print ("    Disable PKI: type 'removePKI'")
print ("    Enable Diffie-Hellman: type 'addDH'")
print ("    Disable Diffie-Hellman: type 'removeDH'")
print ()

We also make a number of changes to the client screen to show the user the 
special commands. These are nothing more than just print() calls. The final 
version should look similar to Figure 9.8.
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Modifying the Helper File
Now that you understand how the Diffie-Hellman protocol works, it is time to 
implement the processes into the helper file. Examine the helper file that you 
have created and implement the following code:

# encryption method used by all calls
def encrypt(message, usePKI, useDH, dhSecret):
    if usePKI == True:
        message = encrypt_rsa(message)
    if useDH == True:
        message = encrypt_dh(message, dhSecret)
    return message
 
# decryption method used by all calls
def decrypt(message, usePKI, useDH, dhSecret):
    if useDH == True:
        message = decrypt_dh(message, dhSecret)
    if usePKI == True:
        message = decrypt_rsa(message)
    return message
 
# delete all generated DH certs
def remove_dh_certs():
    try:
        os.remove("client_private_dh_key.pem")
        os.remove("client_public_dh_key.pem")
        os.remove("server_private_dh_key.pem")
        os.remove("server_public_dh_key.pem")

Figure 9.8:  Final version
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    except:
        return 0
 
 
# generate Diffie-Hellman certificates for client
def gen_client_DH():
    clientDH =  dh.DiffieHellman(2,17,1024)
    
    privateKey = str(clientDH.privateKey).encode()
    fd = open("client_private_dh_key.pem", "wb")
    fd.write(privateKey)
    fd.close()
 
    publicKey = str(clientDH.publicKey).encode()
    fd = open("client_public_dh_key.pem", "wb")
    fd.write(publicKey)
    fd.close()
 
    clientDHSet = clientDH
    return clientDH
 
# generate Diffie-Hellman certificates for server
def gen_server_DH():
    svrDH =  dh.DiffieHellman(2,17,1024)
 
    privateKey = str(svrDH.privateKey).encode()
    fd = open("server_private_dh_key.pem", "wb")
    fd.write(privateKey)
    fd.close()
 
    publicKey = str(svrDH.publicKey).encode()
    fd = open("server_public_dh_key.pem", "wb")
    fd.write(publicKey)
    fd.close()
 
    key = (open('server_public_dh_key.pem').read())
 
    serverDHSet = svrDH
    return svrDH
 
# encrypt using Diffie-Hellman - ECC
def encrypt_dh(plaintext, dhSecret):
    # encrypt using the shared secret from Client (Private) and Server 
(Public)
    ciphertext = encrypt_AES_GCM(plaintext,dhSecret)
    ciphertext = ciphertext.encode()
    #reverse = decrypt_AES_GCM(ciphertext, dhSecret)
    return ciphertext
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# decrypt using Diffie-Hellman - ECC
def decrypt_dh(ciphertext, dhSecret):
    # decrypt using the shared secret from Client (Private) and Server 
(Public)
    ciphertext = ciphertext.decode('utf-8')
    plaintext = decrypt_AES_GCM(ciphertext,dhSecret)
    #reverse = encrypt_AES_GCM(ciphertext, dhSecret)
    return plaintext
 
# generate ECC certs
def gen_ecc_certs():
    key = ECC.generate(curve='P-256')
    f = open('myprivatekey.pem','wt')
    f.write(key.export_key(format='PEM'))
    f.close()
    f = open('myprivatekey.pem','rt')
    key = ECC.import_key(f.read())
    print (key)
 
# encrypt using AES-GCM
def encrypt_AES_GCM(msg, secretKey):
    aesCipher = AES.new(secretKey, AES.MODE_GCM)
    ct, authTag = aesCipher.encrypt_and_digest(msg)
 
    ct = hexlify(ct)
    ct = ct.decode('utf-8')
    authTag = hexlify(authTag)
    authTag = authTag.decode('utf-8')
    noncea = hexlify(aesCipher.nonce)
    nonce = noncea.decode('utf-8')
    
    ciphertext = json.dumps({'nonce':nonce, 'ciphertext':ct, 
'tag':authTag})
 
    return ciphertext
 
# decrypt using AES-GCM
def decrypt_AES_GCM(encryptedMsg, secretKey):
   
    b64 = json.loads(encryptedMsg)
    
    nonce = str(b64['nonce'])
    nonce = nonce.encode()
    nonce = unhexlify(nonce)
    
    ct = str(b64['ciphertext'])
    ct = ct.encode()
    ct = unhexlify(ct)
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    authTag = str(b64['tag'])
    authTag = authTag.encode()
    authTag = unhexlify(authTag)
    
    aesCipher = AES.new(secretKey, AES.MODE_GCM, nonce)
    nonce = b64encode(aesCipher.nonce).decode('utf-8')
    plaintext = aesCipher.decrypt_and_verify(ct, authTag)
    return plaintext
   
# encrypt using AES-CTR
def encrypt_AES_CTR(msg, secretKey):
    cipher = AES.new(secretKey, AES.MODE_CTR)
    ct_bytes = cipher.encrypt(msg)
    nonce = b64encode(cipher.nonce).decode('utf-8')
    ct = b64encode(ct_bytes).decode('utf-8')
    ciphertext = json.dumps({'nonce':nonce, 'ciphertext':ct})
    return ciphertext
 
# decrypt using AES-CTR
def decrypt_AES_CTR(msg, secretKey):
    b64 = json.loads(msg)
    nonce = b64decode(b64['nonce'])
    ct = b64decode(b64['ciphertext'])
    cipher = AES.new(secretKey, AES.MODE_CTR, nonce=nonce)
    plaintext = cipher.decrypt(ct)
    return plaintext
 
# check client commands
def check_client_command(data):
    if data == b'addPKI':
        gen_rsa_certs()
        return 11
    elif data == b'removePKI':
        usePKI = False
        return 10
    elif data == b'addDH':
        return 21
    elif data == b'removeDH':
        usePKI = False
        return 20
    return 1
 
# check server commands
def check_server_command(data):
    if data == b'addPKI':
        return 11
    if data == b'removePKI':
        useDH = False
        return 10
    if data == b'addDH':
        return 21
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    if data == b'removeDH':
        useDH = False
        return 20
    return 1

Creating the Diffie-Hellman Class File
There are many cryptographic libraries that will handle the Diffie-Hellman 
exchange for you, and the DH primes listed in this section are a bit brutal to 
type; the code listed in this section is presented more to help you understand 
how the protocol works. This code, like all of the code in this book, is available 
on the book’s website. This section is mostly for students who need to under-
stand how to generate the Diffie-Hellman exchange in other languages that 
may not have libraries for it or for those of you in academia:

import hashlib
from binascii import hexlify
 
try:
    #Preferably using urandom (more secure)
    import os
    random_function = os.urandom
    random_provider = "OS random"
except (AttributeError, ImportError):
    import ssl
    random_function = ssl.RAND_bytes
    random_provider = "Python SSL"
 
 
class DiffieHellman():
    """
    Using standard primes from RFC 3526 MODP Groups 17 and 18. 
    Both are sufficient to generate AES 256 keys with a 540+ bit 
exponent.
    https://datatracker.ietf.org/doc/rfc3526/
    """
 
    def __init__ (self, generator = 2, group = 17, keyLength=2048):
        """
        Generate the public and private keys
        """
        
        #Length in bits
        min_keyLength = 1024
        default_keyLength = 2024
 
        default_generator = 2
        valid_generators = [2, 3, 7] #Must be primes
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        # Sanity check for generator
        if (generator not in valid_generators):
            print ("Error: Invalid generator. Default (2) will be used 
instead.")
            self.generator = default_generator
        else:
            self.generator = generator
 
        # Sanity check for keyLength
        if (keyLength < min_keyLength):
            print ("Error: keyLength is too small. Setting to minimum 
(",min_keyLength,").")
            self.keyLength = min_keyLength
        else:
            self.keyLength = keyLength
 
        #Getting prime
        self.prime = self.getPrime(group)
 
        #Generating Keys
        self.privateKey = self.generatePrivateKey(self.keyLength)
        self.publicKey = self.generatePublicKey()
 
 
    def getPrime(self, group = 17):
        """
        Returns the correspondent prime.
        To explore more primes: https://github.com/
RedHatProductSecurity/Diffie-Hellman-Primes
        """
 
        default_group = 17
 
        primes = {
            17:  
0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBE 
A63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C2 
45E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24 
117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF 
5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C 
08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52 
C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD3317 
0D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4 
C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602 
733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB 
3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327 
186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECA 
A6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD 
762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C9340284 
9236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9E530EE5DB38 
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2F413001AEB06A53ED9027D831179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB 
1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA 
15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8 
F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5E 
D20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D5 
5CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F9 
1E6DCC4024FFFFFFFFFFFFFFFF,
            18:  
0xFFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBE 
A63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C2 
45E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24 
117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF 
5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C 
08CA18217C32905E462E36CE3BE39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52 
C9DE2BCBF6955817183995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD3317 
0D04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4 
C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6BF12FFA06D98A0864D87602 
733EC86A64521F2B18177B200CBBE117577A615D6C770988C0BAD946E208E24FA074E5AB 
3143DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B2699C327 
186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECA 
A6287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED1F612970CEE2D7AFB81BDD 
762170481CD0069127D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C9340284 
9236C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406AD9E530EE5DB38 
2F413001AEB06A53ED9027D831179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB 
1BDB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA 
15D1721D03F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8 
F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AACC8F6D7EBF48E1D814CC5E 
D20F8037E0A79715EEF29BE32806A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D5 
5CDA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F9 
1E6DBE115974A3926F12FEE5E438777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD3 
00741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F5683423B4742BF1C978238F16 
CBE39D652DE3FDB8BEFC848AD922222E04A4037C0713EB57A81A23F0C73473FC646CEA30 
6B4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A062B3CF5B3A278A66D2A13 
F83F44F82DDF310EE074AB6A364597E899A0255DC164F31CC50846851DF9AB48195DED7E 
A1B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F924009438B481C6CD7889A00 
2ED5EE382BC9190DA6FC026E479558E4475677E9AA9E3050E2765694DFC81F56E880B96E 
7160C980DD98EDD3DFFFFFFFFFFFFFFFFF
        }
 
        if group in primes.keys():
            return primes[group]
        else:
            print("Error: No prime with group",group,"Using 
default,",default_group,".")
            return primes[default_group]
 
 
    def generateRandomNumber(self, bits):
        """
        Generate a random number with the specified number of bits



	 Chapter 9 ■ Mastering Cryptography Using Python	 273

(https://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_
number_generator)
        """
 
        randomNumber = 0
        _bytes = bits // 8 + 8
 
        while (randomNumber.bit_length() < bits):
            randomNumber = int.from_bytes(random_function(_bytes), 
byteorder='big')
        
        return randomNumber
 
 
    def generatePrivateKey(self, bits):
        """
        Generate the private key
        """
 
        return self.generateRandomNumber(bits)
 
 
    def generatePublicKey(self):
        """
        Generate public key with generator ** privateKey % prime
        """
        return pow(self.generator, self.privateKey, self.prime)
 
 
    def testReceiverPublicKey (self, receiverPublicKey):
        """
        Checks receiver Public Key to make sure it's valid.
        Since a safe prime is used, verify that the Euler's Criterion 
for the Legendre Symbol == 1
        Not super trustworthy tho, it has its limitations.
        (https://en.wikipedia.org/wiki/Legendre_symbol) 
(https://www.youtube.com/watch?v=o23itWTcEYw)
        """
 
        if (receiverPublicKey > 2 and receiverPublicKey < self.prime - 1):
            if(pow(receiverPublicKey, (self.prime - 1)//2, self.prime) == 1):
                #if it's a quadratic residue
                return True
        return False
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    def generateSharedSecret(self, privateKey, receiverPublicKey):
        """
        Generates the shared secret after checking if receiverPublicKey 
is valid.
        """
 
        if (self.testReceiverPublicKey(receiverPublicKey) == True):
            sharedSecret = pow (receiverPublicKey, privateKey, self.
prime)
            return sharedSecret
        else:
            raise Exception ("Invalid public key.")
 
 
    def generateSharedKey (self, receiverPublicKey):
        """
        Gets shared secret, then hash it to obtain the shared key.
        """
 
        self.sharedSecret = self.generateSharedSecret(self.privateKey, 
receiverPublicKey)
 
        try:
            _sharedSecretBytes = self.sharedSecret.to_bytes(self.
sharedSecret.bit_length() // 8 + 1, byteorder="big")
        except AttributeError:
            _sharedSecretBytes = str(self.sharedSecret)
 
        shared = hashlib.sha256()
        shared.update(bytes(_sharedSecretBytes))
        self.key = shared.digest()
 
 
    def getSharedKey (self):
        """
        Return shared secret Key
        """
        return self.key
 
 
    def displayParameters (self):
        """
        Display parameters used on the DH agreement.
        """
 
        print(">>>>>>> Parameters:")
        print("Prime[{0}]: {1}\n".format(self.prime.bit_length(), self.
prime))
        print("Generator:", self.generator, "\n")
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        print("Private Key[{0} bits]: {1}\n".format(self.privateKey.bit_
length(), self.privateKey))
        print("Public Key[{0} bits]: {1}\n".format(self.publicKey.bit_
length(), self.publicKey))
 
 
    def displayShared (self):
        """
        Display the results of the exchange.
        """
        print(">>>>>>> Results:")
        print("Shared Secret[{0}]: {1}\n".format(self.sharedSecret.bit_
length(), self.sharedSecret))
        print("Shared Key [{0}]: {1}\n".format(len(self.key), 
hexlify(self.key)))

Execution
Prior to typing your nonencrypted message, turn on Wireshark so that you can 
verify the unencrypted traffic. Once you type addDH, the client sends an unen-
crypted command to the server that will initiate the encryption synchronization 
on both sides. Once this is triggered, the server will know that the next message 
sent will be using a shared secret that was created using Diffie-Hellman key 
exchange. In the real world, these certificates, as with the RSA ones too, should 
be on different systems. The certificates are left on the same computer to keep the 
concept easy for you to test without having to have multiple computers. With the 
changes made to the client file, you should see something similar to Figure 9.9 
when you execute the server file and the client file on the same machine.

Figure 9.9:  Diffie-Hellman Exchange chat
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The message will be encrypted and passed over UDP along with the nonce 
and authentication tag; you will see those data labels in the UDP packet but 
will only see the encrypted versions. As you will see in Figure 9.10, the shared 
key is not passed over the connection.

Wrapping Up

You should now have a working Python application that sends encrypted mes-
sages over an unsecure network. Hopefully, this book has provided you a better 
understanding of how cryptographic protocols work at an academic level; 
However, I wouldn’t suggest trying to roll your own protocols in place of those 
that go under great scrutiny and testing. It is important that you still rely on 
protocols such as TLS and PKIs for securing your communications and your 
applications. With that being said, should laws be passed that allow people in 
the middle to be able to read your traffic, you can implement a number of tech-
niques here that will work on top of the public protocols to keep your messages 
secret. By now, you can perform end-to-end encryption that will provide both 
confidentiality and integrity.

Figure 9.10:  Shared key not passed
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SYMBOLS
\ (backslash), 10
- operator, 12
/ operator, 12
// operator, 12
//= (floor division) assignment operator, 14
_ (binary One Complement) bitwise 

operator, 15, 52
| (binary OR) bitwise operator, 15, 52
+ operator, 11, 12
+= (add AND) assignment operator, 14
+KA (notation in cryptographic protocols), 37
/= (divide AND) assignment operator, 14
= (subtract AND) assignment operator, 14
= assignment operator, 14
!= comparison operator, 13
== comparison operator, 13
% operator, 12
%= (modulus AND) assignment operator, 14
& (binary AND) bitwise operator, 15, 52
* operator, 12
** operator, 12
**= (exponent AND) assignment operator, 14
*= (multiply AND) assignment operator, 14
^ (binary XOR) bitwise operator, 15, 52
< comparison operator, 13
<< (binary Left Shift) bitwise operator, 15, 52
<= comparison operator, 13
<>= comparison operator, 13
> comparison operator, 13
>= comparison operator, 13
>> (binary Right Shift) bitwise operator, 15, 

52

A
A (notation in cryptographic protocols), 37
A → B: m (notation in cryptographic 

protocols), 37
A[m] (notation in cryptographic protocols), 

37
a+ file operator, 19
addition + operator, 12
Adleman, Leonard (researcher), 34, 226
AES (Advanced Encryption Standard), 36, 

156, 167, 180–187
AES-GCM, 261
Affine cipher, 90–93
algorithms

ARX algorithms, 149
asymmetric algorithms, 36
DEC algorithm, 2
deterministic algorithm, 101
ENC algorithm, 2
exploring, 2
GEN algorithm, 2
Mersenne Twister algorithm, 116
published and proprietary encryption, 

61–62
RSA algorithm, 104, 226–235, 242
Secure Hash Algorithms (SHAs), 203–204, 

205, 209
symmetric algorithms, 36

Alice and Bob, as most famous 
cryptographic couple, 33–34

analytical attacks, 48
AND, 50–55
and (logical AND), 14
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Append file operator, 19
arbiter, 35
arbitrated authentication, 35–36
ARC4 (ARCFOUR), 147–148
arithmetic operators, 11–13
Artjuhov, M. M., 100
ARX algorithms, 149
ASCII encoding, 70
assignment operator, 10, 14
associativity (as group axiom), 106
asymmetric algorithms, 36
Atbash cipher, 77
attack models, 49–50
attacks

analytical attacks, 48
birthday attack, 59, 207–209
brute-force attacks, 47–48
length extension attack, 209–210
reflection attack, 211
reordering attack, 211
replay attack, 211
side-channel attacks, 48
social engineering, 48

Authenticate Then Decrypt, 211
authentication

arbitrated authentication, 35
data origin authentication, 34–35
direct authentication, 35
entity authentication, 35–36
inter-realm authentication, 40
message authentication codes, 60

B
backslash (\), 10
Base64 encoding text, 70
bcrypt library, 69
Bernstein, Daniel, 149
bin() function, 52
binary data, 71
binary digests, 204–205
binascii library, 140
birthday attack, 59, 207–209
bitwise operators, 15, 52
blind signatures, 33
block cipher mode, 158
block ciphers

AES (Advanced Encryption Standard), 36, 
156, 167

block modes of operation, 158
CBC mode (formerly Cipher Block 

Chaining), 159–160
CFB mode (Cipher Feedback mode), 

160–162
CTR mode (Integer Counter mode or 

Segmented Integer Counter mode), 
162–164

DIY block cipher using Feistel networks, 
165–166

ECB mode (formerly Electronic Codebook), 
158–159

OFB mode (Output Feedback mode), 
162–163

overview, 156–158
tricks with stream modes, 164–165

block modes of operation, 180–187
Blowfish, 36
Bob and Alice, as most famous 

cryptographic couple, 33–34
Boolean test, 16
break loop, 18
brute-force attacks, 47–48
buffer sequence type, 20, 21
Bundle, Pip as similar to, 5

C
CA-A (notation in cryptographic protocols), 

37
CA<<A>> (notation in cryptographic 

protocols), 37
Caesar cipher, 74–76
CBC mode (formerly Cipher Block 

Chaining), 159–160, 180, 185–186
CBC-MAC (cipher block chaining message 

authentication code), 206–207
CCA (Chosen-Ciphertext), 50
Cert -CK CA(+KA) (notation in cryptographic 

protocols), 37
certificate, self-signed, 45–46
certificate authorities (CAs), 42
certificate chains, 42–44
certificate hierarchy, 42–44
certificate revocation, 44–45
CFB mode (Cipher Feedback mode),  

160–162
ChaCha cipher, 151–156
ChaCha20 stream cipher, 145
channels

adding symmetric encryption, 215–218
communication channels, 211
concatenate message and MAC, 218–221
creating client socket, 213–214
creating server socket, 212–213
creating threaded server with TCP, 214–215
sending secure messages over IP networks, 

212–221
setting up secure one, 210–221

chmod command, 3
Choctaw Indian language, as historical 

cipher, 73
Chosen-Ciphertext (CCA), 50
Chosen-Plaintext (CPA), 50
Chromebook, installing Python on, 4–5
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CIA Triad, 35–36
cipher block chaining message 

authentication code (CBC-MAC), 206–207
Cipher Block Chaining (now CBC mode), 

159–160
Cipher Feedback mode (CFB), 160–162
cipher space, use of term, 49
ciphers

Affine cipher, 90–93
ARC4 (ARCFOUR), 147–148
Atbash cipher, 77
block ciphers, 156–169
Caesar cipher, 74–76
ChaCha cipher, 151–156
column transposition, 87–90
Hill 2x2, 83–87
historical ones, 72–93
Playfair, 79–82
ROT-13, 76
Salsa20 cipher, 149–151
stream ciphers, 141–156
substitution ones, 73–77
Vernam cipher, 148–149
Vignère cipher, 77–79, 129–137

ciphertext (C)C, 2
Ciphertext Only (COA), 49
classical cryptography

data obfuscation (DO), 69–72
historical ciphers, 72–93
password best practices, 66–69

client
creating one for constructing plaintext 

communications application, 250–251
modifying of for implementing PKI in 

application using RSA certificates, 257
client file, modifying of in implementing 

Diffie-Hellman key exchange, 264–266
client socket, creating, 213–214
clock synchronization, 42
closure (as group axiom), 106
Cocks, Clifford (mathematician and 

cryptographer), 224–226
codes

commenting on, 10
message authentication codes, 60

collision resistance, 59
column transposition, 87–90
comments, on code, 10
“Communication Theory and Secrecy 

Systems” (Shannon), 50
comparison operators, 13
Composer, Pip as similar to, 5
concatenate message and MAC, for 

incorporating message hashing, 200
conditionals, use of, 16–17
continue loop, 18

count() method, 25
CPA (Chosen-Plaintext), 50
cryptanalysis

defined, 47
with Python, 123–137
understanding of, 47–49

cryptographic family, 33–34
cryptographic library, configuring your first, 

47
cryptographic one-way hashes, 59–60
cryptographic protocols, 32–33, 46–47. See 

also specific protocols
cryptographically secure pseudorandom 

number generator (CSPRNG), 115, 
141–144, 146

cryptography
history of, 31, 242
origin of term, 32
study of, 32–49
understanding of, 32–47

Cryptography library, 174–175, 189
Cryptography package, installing, 7–8
Cryptosteganography library, 175
cryptosteganography module, 175, 188, 

189, 192
CTR (counter) style, 157
CTR mode (Integer Counter mode or 

Segmented Integer Counter mode), 
162–164

custom functions, 26–27

D
data

binary data, 71
obfuscating of, 69–72

data obfuscation (DO), 69–72
data origin authentication, 34–35
De Cannière, Christophe, 145
De Vita Caesarum, Divus Iulis ("The Lives of 

the Caesars, the Deified Julius" 
commonly known as The Twelve 
Caesars), 74–76

DEC algorithm, 2
decode() method, 71
decoding, 71
decryption

Authenticate Then Decrypt, 211
constructing BLOB decryption with RSA 

certificates, 232–235
constructing simple text decryption with 

RSA certificates, 231–232
of files using AES, 169

def keyword, 26
DES, 36, 156
deterministic algorithm, 101
dictionaries, 25–26
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Diffie, Whitfield, 162, 224
Diffie-Hellman class file, creating,  

270–275
Diffie-Hellman key exchange

implementing of, 261–276
overview, 242–245
purpose of, 34
as used by TLS, 33

digest() method, 204
dir(), 28
direct authentication, 35
division / operator, 12
DO (data obfuscation), 69–72
double quote ("), 11
downloading and installing, Python, 3–8

E
ECB mode (formerly Electronic Codebook), 

158–159, 180, 181–185
ECC keys, generating, 240–241
Ehrsam, W. F., 159
Electronic Codebook (now ECB mode), 

158–159
electronic money, 33
elements, orders of, 107–109
El-Gamal encryption, 235–238
elliptic curve cryptography (ECC)

generating ECC keys, 240–241
key lengths and curves, 241–242
overview, 238–240

elliptic curves, 238–239
Ellis, James, 225
else loop, 18–19
ENC algorithm, 2
encode() methods, 71
encoding matrix, 117
Encrypt and Authenticate, 210–211
Encrypt Then Authenticate, 211
encryption

constructing BLOB encryption with RSA 
certificates, 232–235

constructing simple text encryption with 
RSA certificates, 231–232

El-Gamal encryption, 235–238
MAC encryption, 200–201
symmetric encryption, 8, 36, 39, 49, 176, 

215–218
encryption key (K), 2
encryption protocols, as another name for 

cryptographic protocols, 32
entity authentication, 35
eSTREAM, 145
Euler’s theorem, 100, 111–114
exponent ** operator, 12
extend() method, 24

F
FA (frequency analysis), 48–49, 120–123
FCS (Frame Check Sequence), 58–59
Federal Information Processing Standards 

Publication (FIPS PUB 180-4), 205
Feistel cipher/Feistel network, 165–166
Ferguson, Niels, 162
Fermat’s little theorem, 100, 110–111
Fernet

file cryptography using, 175–179
image cryptography using, 179–180

Fernet library, 175
file operations, 19
files

decryption of using AES, 169
downloading using Python, 27–28
encryption of using AES, 169
use of, 19

FIPS PUB 180-4 (Federal Information 
Processing Standards Publication),  
205

Flexible Image Transport System (FITS), 3, 
195–197

floor division// operator, 12
for loop, 17
forgeries, crafting of, 209–210
forward secrecy (FS), 60
Frame Check Sequence (FCS), 58–59
frequency, determination of, 126–129
frequency analysis (FA), 48–49, 120–123
functions, custom functions, 26–27

G
GEN algorithm, 2
greatest common divisor (GCD), 96–97,  

111
group axioms, 106
group law, 106
group theory

orders of elements, 107–109
overview, 106–107

groups, concept of, 106

H
hash code, 67
hash function, 58
Hash-based Message Authentication Code 

(HMAC)
binary digests, 204–205
CBC-MAC, 206–207
described, 60
message digest with SHA, 203–204
overview, 201–202
using HMAC to sign message, 202–203
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hashlib module, 28–29
Header + Data Units (HDUs), 195
Hellman, Martin, 162, 224
helper file

creating one for constructing plaintext 
communications application, 251–252

modifying of for implementing PKI in 
application using RSA certificates, 
258–259

modifying of in implementing Diffie-
Hellman key exchange, 266–270

hexdigest, conversion to plaintext, 140–141
hexdigest() method, 204
hexlify module, 140
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conversion of hexdigest to, 140–141
Playfair, 79–82
plus + operator, 11, 12
preimage resistance, 59



	 Index ■ Q–S	 283

Preneel, Bart, 145
prime factorization, 97
prime number theorem, 98
prime numbers

Fermat’s little theorem, 100
generating large ones, 104–106
Miller-Rabin primality test, 100–104
overview, 97–98
prime number theorem, 98
school primality test, 98–99

Print() function, 13
privacy enhanced electronic mail (PEM), 

70–71
protocols

cryptographic protocols, 32–33, 46–47
Kerberos protocol, 36, 39–40
multiple-domain Kerberos, 40–41
Needham-Schroeder protocols, 36–38
Network Time Protocol (NTP), 42
Otway-Rees protocol, 38
public-key protocol, 36–37
symmetric key protocol, 36
Transmission Control Protocol (TCP), 212
User Datagram Protocol (UDP), 212

pseudorandom number generation (PRNG), 
115, 141–144

pseudorandomness
breaking C’s rand() function, 116
overview, 115

public key MAC encryption, for 
incorporating message hashing, 200–201

public-key certificates, 42
public-key infrastructure (PKI)

described, 223–224
implementing of in application using RSA 

certificates, 255–261
public-key protocol

as second protocol of Needham-Schroeder 
protocols, 36–37

as similar to protocol proposed by Otway 
and Rees, 38

public-key transformation
constructing BLOB encryption and 

decryption with, 232–235
constructing simple text decryption with 

RSA certificates, 231–232
exploring basics of RSA, 226–229
generating RSA certificates, 229–230
overview, 224–226

PyFITS, described, 3
Python

basics of, 9–29
downloading and installing, 3–8
installing additional packages, 5
installing Cryptography package, 7–8
reasons to use, 2–3

upgrading packages, 5
using AES with, 167–169

Python 2, as unsupported, 3

Q
quotes

double quote ("), 11
single quote (’), 11

R
R file operator, 19
r+ file operator, 19
RA (notation in cryptographic protocols), 37
Rabin, Michael, 100
rainbow table, 67
RC4, 147
reflection attack, 211
relational operators, 13
remove() method, 25
reordering attack, 211
replay attack, 211
requests module, 27
reserved words, 9
reverse cipher, creating, 29
reverse() method, 25
reverseCipher function, 29
Rivest, Ron, 34, 226
ROT-13, 76
RSA algorithm, 104, 226–235, 242
RSA certificates

constructing BLOB encryption and 
decryption with, 232–235

constructing simple text encryption and 
decryption with, 231–232

generating, 229–231
implementing PKI in application using, 

255–261
RSAES-OAEP, 231

S
Salsa20 cipher, 149–151
Schneier, Bruce, 162
school primality test, 98
Schroeder, Michael, 36
SEC (Standards of Efficient Cryptography), 241
secondary resistance, 59
secret sharing, 33
secret splitting, 33
Secure Hash Algorithms (SHAs), 203–204, 

205, 209
securing elections, 33
security protocols, as another name for 

cryptographic protocols, 32
Segmented Integer Counter mode, 162–164



284	 Index ■ T–Z

self-signed certificate, 45–46
semantics, understanding Python semantics, 

20
sequence types, 20–26
server

creating one for constructing plaintext 
communications application, 248–250

modifying of for implementing PKI in 
application using RSA certificates, 
256–257

server file, modifying of in implementing 
Diffie-Hellman key exchange, 262–264

server socket, creating, 212–213
SHA, 203–204
Shamir, Edi, 34, 226
Shannon, Claude (father of information 

theory), 31, 50
Shannon’s theorem, 50–51
shared key (SK), 34
side-channel attacks, 48
SIMD (single instruction, multiple data), 

151–152
single quote (’), 11
Skipjack, 36
Smith, J. L., 159
social engineering, 48
sort() method, 25
Spartan scytale, 73
Standards of Efficient Cryptography (SEC),  

241
Steganographia (Trithemius), 187–188
steganography

overview, 187–188
storing binary file inside image, 192–194
storing message inside image, 188–191
working with large images, 195–197

str sequence type, 20
stream ciphers

ARC4, 147–148
ChaCha cipher, 151–156
overview, 141–147
Salsa20 cipher, 149–151
Vernam cipher, 148–149

stream modes, 164–165
stretching (of passwords), 68
strings

use of, 11
using quotes to define, 21

subtraction - operator, 12
symmetric algorithms, 36
symmetric encryption, 8, 36, 39, 49, 176, 215–218
symmetric key, 35
symmetric key confidentiality, for 

incorporating message hashing, 201
symmetric key protocol, 36

symmetric public key confidentiality, for 
incorporating message hashing, 201

T
tA (notation in cryptographic protocols),  

37
Ticket Granting Servers (TGS), 40
timestamping, 33
Transmission Control Protocol (TCP), 212, 

214–215
Transport Layer Security (TLS), 33
Triple DES, 156
Trithemius, Johannes (author), 

Steganographia, 187
Trivium, 145
trusted third party (TTP), 35
Tuchman, W. L., 159
tuple() function, 25
tuple sequence type, 20, 21, 24, 25
The Twelve Caesars, 74–76

U
Ubuntu, installing Python on, 4
unhexlify module, 140
Unicode sequence type, 20
User Datagram Protocol (UDP), 212

V
validation, formal validation of 

cryptographic protocols, 46–47
values, as stored in variables, 10
variables, use of, 10–11
Vernam, Gilbert, 148
Vernam cipher, 148–149
Vignère cipher, 77–79, 129–137

W
W file operator, 19
W+ file operator, 19
while loop, 18
whitespace, as meaningful, 10
Windows, installing Python on, 4
Wireguard, 145
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