

Intelligent Control of
Robotic Systems

http://taylorandfrancis.com

Intelligent Control of
Robotic Systems

Laxmidhar Behera
Swagat Kumar

Prem Kumar Patchaikani
Ranjith Ravindranathan Nair

Samrat Dutta

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-59771-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has
not been obtained. If any copyright material has not been acknowledged please write and let us
know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro-
duced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying, microfilming, and recording, or in any infor-
mation storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center,
Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a variety of users. For organizations that
have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Behera, Laxmidhar, author.
Title: Intelligent control of robotic systems / Laxmidhar Behera, Swagat
Kumar, Prem Kumar Patchaikani, Ranjith Ravindranathan Nair and
Samrat Dutta.
Description: First edition. | Boca Raton, FL : CRC Press/Taylor & Francis
Group, 2019. | Includes bibliographical references.
Identifiers: LCCN 2019015139| ISBN 9781138597716 (hardback : acid-free
paper) | ISBN 9780429486784 (ebook)
Subjects: LCSH: Robots--Control systems. | Intelligent control systems.
Classification: LCC TJ211.35 .B46 2019 | DDC 629.8/92--dc23
LC record available at https://lccn.loc.gov/2019015139

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov/2019015139
http://www.copyright.com/
http://www.copyright.com

Contents

Preface xvii

Acknowledgment xxi

Authors xxiii

1 Introduction 1
1.1 Vision-Based Control . 3
1.2 Kinematic Control of a Redundant Manipulator 6

1.2.1 Redundancy Resolution using Null Space of the
Pseudo-inverse . 8

1.2.2 Extended Jacobian Method 8
1.2.3 Optimization Based Redundancy Resolution 9
1.2.4 Redundancy Resolution with Global Optimization . . 9
1.2.5 Neural Network Based Methods 10

1.3 Visual Servoing . 11
1.3.1 Image Based Visual Servoing (IBVS) 12
1.3.2 Position Based Visual Servoing (PBVS) 12
1.3.3 2-1/2-D Visual Servoing 13

1.4 Visual Control of a Redundant Manipulator: Research
Issues . 13

1.5 Learning by Demonstration 16
1.5.1 DS-Based Motion Learning 19

1.6 Stability of Nonlinear Systems 21
1.7 Optimization Techniques . 22

1.7.1 Genetic Algorithm . 24
1.7.2 Expectation Maximization for Gaussian Mixture

Model . 25
1.8 Composition of the Book . 27

I Manipulators 29

2 Kinematic and Dynamic Models of Robot Manipulators 31
2.1 PowerCube Manipulator . 31
2.2 Kinematic Configuration of the Manipulator 32
2.3 Estimating the Vision Space Motion with Camera Model . . 35

2.3.1 Transformation from Cartesian Space to Vision
Space . 36

v

vi Contents

2.3.2 The Camera Model . 38
2.3.3 Computation of Image Feature Velocity in the Vision

Space . 39
2.4 Learning-Based Controller Architecture 40
2.5 Universal Robot (UR 10) . 41

2.5.1 Mechatronic Design 41
2.5.1.1 Platform . 41
2.5.1.2 End-Effector 43
2.5.1.3 Perception Apparatus 43

2.5.2 Kinematic Model . 43
2.6 Barrett Wam Manipulator 45

2.6.1 Overview of the System 45
2.6.2 Experimental Setup 46
2.6.3 Dynamic Modeling . 47
2.6.4 System Description and Modeling 49
2.6.5 State Space Representation 53

2.7 Summary . 54

3 Hand-eye Coordination of a Robotic Arm using KSOM
Network 55
3.1 Kohonen Self Organizing Map 56

3.1.1 Competitive Process 57
3.1.2 Cooperative Process 57
3.1.3 Adaptive Process . 58

3.2 System Identification using KSOM 60
3.3 Introduction to Learning-Based Inverse Kinematic Control . 66

3.3.1 The Network . 68
3.3.2 The Learning Problem 69
3.3.3 The Approach . 69
3.3.4 The Formulation of Cost Function 69
3.3.5 Weight Update Laws 70

3.4 Visual Motor Control of a Redundant Manipulator using
KSOM Network . 89
3.4.1 The Problem . 92

3.5 KSOM with Sub-Clustering in Joint Angle Space 94
3.5.1 Network Architecture 95
3.5.2 Training Algorithm . 96
3.5.3 Testing Phase . 97
3.5.4 Redundancy Resolution 98
3.5.5 Tracking a Continuous Trajectory 99

3.6 Simulation and Results . 100
3.6.1 Network Architecture and Workspace Dimensions . . . 100
3.6.2 Training . 101
3.6.3 Testing . 101

Contents vii

3.6.3.1 Reaching Isolated Target Positions in the
Workspace 103

3.6.3.2 Tracking a Straight Line Trajectory 105
3.6.3.3 Tracking an Elliptical Trajectory 107

3.6.4 Real-Time Experiment 108
3.6.4.1 Redundant Solutions 109
3.6.4.2 Tracking a Circular and a Straight Line

Trajectory 110
3.6.4.3 Multi-Step Movement 111

3.7 Summary . 111

4 Model-based Visual Servoing of a 7 DOF Manipulator 113
4.1 Introduction . 113
4.2 Kinematic Control of a Manipulator 113

4.2.1 Kinematic Control of Redundant Manipulator 114
4.3 Visual Servoing . 115

4.3.1 Estimating the Vision Space Motion with Camera
Model . 116

4.3.2 Transformation from Cartesian Space to Vision
Space . 117

4.3.3 The Camera Model . 119
4.3.4 Computation of Image Feature Velocity in the Vision

Space . 120
4.4 Kinematic Control of a Manipulator Directly from Vision

Space . 121
4.5 Image Moments . 122
4.6 Image Moment Velocity . 126
4.7 A Pinhole Camera Projection 128
4.8 Image Moment Interaction Matrix 132
4.9 Experimental Results using a 7 DOF Manipulator 139
4.10 Summary . 141

5 Learning-Based Visual Servoing 145
5.1 Introduction . 145
5.2 Kinematic Control using KSOM 148

5.2.1 KSOM Architecture 149
5.2.2 KSOM: Weight Update 149
5.2.3 Comments on Existing KSOM Based Kinematic

Control Schemes . 150
5.3 Problem Definition . 151
5.4 Analysis of Solution Learned Using KSOM 151

5.4.1 KSOM: An Estimate of Inverse Jacobian 152
5.4.2 Empirical Verification 152

5.4.2.1 Inverse Jacobian Evolution in Learning
Phase . 153

viii Contents

5.4.2.2 Testing Phase: Inverse Jacobian Estimation
at each Operating Zone 153

5.4.2.3 Inference . 154
5.5 KSOM in Closed Loop Visual Servoing 156

5.5.1 Stability Analysis . 157
5.6 Redundancy Resolution . 159
5.7 Results . 160

5.7.1 Learning Inverse Kinematic Relationship using
KSOM . 160

5.7.2 Visual Servoing . 161
5.7.3 Redundancy Resolution 164

5.7.3.1 Tracking a Straight Line 165
5.7.3.2 Tracking an Elliptical Trajectory 168

5.8 Summary . 172
5.9 Reinforcement Learning-Based Optimal Redundancy

Resolution Directly from the Vision Space 172
5.10 Introduction . 172
5.11 Redundancy Resolution Problem from the Vision Space . . . 174
5.12 SNAC Based Optimal Redundancy Resolution from Vision

Space . 175
5.12.1 Selection of Cost Function 176
5.12.2 Control Challenges . 177

5.13 T-S Fuzzy Model-Based Critic Neural Network for Redundancy
Resolution from Vision Space 179
5.13.1 Fuzzy Critic Model . 179
5.13.2 Weight Update Law 181
5.13.3 Selection of Fuzzy Zones 182
5.13.4 Initialization of the Fuzzy Network Control 183

5.13.4.1 Remark . 184
5.14 KSOM Based Critic Network for Redundancy Resolution from

Vision Space . 185
5.14.1 KSOM Critic Model 185
5.14.2 KSOM: Weight Update 188
5.14.3 Initialization of KSOM Network Control 188

5.15 Simulation Results . 190
5.15.1 T-S Fuzzy Model . 190
5.15.2 Kohonen’s Self-organizing Map 191

5.16 Real-Time Experiment . 195
5.16.1 Tracking Elliptical Trajectory 196

5.16.1.1 T-S Fuzzy Model 196
5.16.1.2 KSOM . 199

5.16.2 Grasping a Ball with Hand-manipulator Setup 201
5.17 Summary . 202

Contents ix

6 Visual Servoing using an Adaptive Distributed
Takagi-Sugeno (T-S) Fuzzy Model 205
6.1 T-S Fuzzy Model . 206
6.2 Adaptive Distributed T-S Fuzzy PD Controller 208

6.2.1 Offline Learning Algorithm 209
6.2.2 Online Adaptation Algorithm 212
6.2.3 Stability Analysis . 214

6.3 Experimental Results . 216
6.3.1 Visual Servoing for a Static Target 220
6.3.2 Compensation of Model Uncertainties 222
6.3.3 Visual Servoing for a Moving Target 223

6.4 Computational Complexity 225
6.5 Summary . 225

7 Kinematic Control using Single Network Adaptive Critic 229
7.1 Introduction . 229

7.1.1 Discrete-Time Optimal Control Problem 230
7.1.2 Adaptive Critic Based Control 231

7.1.2.1 Training of Action and Critic Network 232
7.1.3 Single Network Adaptive Critic (DT-SNAC) 234
7.1.4 Choice of Critic Network Model 235

7.1.4.1 Costate Vector Modeling with MLN Critic
Network . 235

7.1.4.2 Costate Vector Modeling with T-S Fuzzy
Model-Based Critic Network 236

7.2 Adaptive Critic Based Optimal Controller Design for
Continuous-time Systems . 241
7.2.1 Continuous-time Single Network Adaptive Critic

(CT-SNAC) . 242
7.2.2 Critic Network: Weight Update Law 243
7.2.3 Choice of Critic Network 245

7.2.3.1 Critic Network using MLN 245
7.2.3.2 T-S Fuzzy Model-Based Critic Network with

Cluster of Local Quadratic Cost Functions . 246
7.2.4 CT-SNAC . 248

7.3 Discrete-Time Input Affine System Representation of Forward
Kinematics . 257

7.4 Modeling the Primary and Additional Tasks as an Integral
Cost Function . 259
7.4.1 Quadratic Cost Minimization (Global Minimum Norm

Motion) . 260
7.4.2 Joint Limit Avoidance 260

7.5 Single Network Adaptive Critic Based Optimal Redundancy
Resolution . 261

x Contents

7.5.1 T-S Fuzzy Model-Based Critic Network for Closed
Loop Positioning Task 262

7.5.2 Training Algorithm . 263
7.6 Computational Complexity 264
7.7 Simulation Results . 265

7.7.1 Global Minimum Norm Motion 266
7.7.2 Joint Limit Avoidance 272

7.8 Experimental Results . 276
7.8.1 Global Minimum Norm Motion 276
7.8.2 Joint Limit Avoidance 278

7.9 Conclusion . 280

8 Dynamic Control using Single Network Adaptive Critic 283
8.1 Introduction . 283
8.2 Optimal Control Problem of Continuous Time Nonlinear

System . 284
8.2.1 Linear Quadratic Regulator 285
8.2.2 Hamilton-Jacobi-Bellman Equation 287
8.2.3 Optimal Control Law for Input Affine System 288
8.2.4 Adaptive Critic Concept 289

8.3 Policy Iteration and SNAC for Unknown Continuous Time
Nonlinear Systems . 291
8.3.1 Policy Iteration Scheme 291
8.3.2 Optimal Control Problem of an Unknown Dynamic . . 292
8.3.3 Model Representation and Learning Scheme 295

8.3.3.1 TSK Fuzzy Representation of Nonlinear
Dynamics . 295

8.3.3.2 Learning Scheme for the TSK Fuzzy Model . 295
8.3.4 Critic Design and Policy Update 296

8.3.4.1 Construction of Initial Critic Network using
Lyapunov Based LMI 296

8.3.4.2 Lyapunov Function 297
8.3.4.3 Conditions for Stabilization 298
8.3.4.4 Design of Fitness Function 301

8.3.5 Learning Near-Optimal Controller 301
8.3.5.1 Update of Critic Network 304
8.3.5.2 Fitness Function for PI Based Training . . . 305

8.3.6 Examples . 307
8.3.6.1 Simulated Model 307
8.3.6.2 Example using Real Robot 310

8.4 Summary . 317

Contents xi

9 Imitation Learning 319
9.1 Introduction . 319
9.2 Dynamic Movement Primitives 320

9.2.1 Mathematical Formulations 321
9.2.1.1 Choice of Mean and Variance 322
9.2.1.2 Spatial and Temporal Scaling 322

9.2.2 Example . 323
9.3 Motion Encoding using Gaussian Mixture Regression 324

9.3.1 SED: Stable Estimator of Dynamical Systems 326
9.3.1.1 Learning Model Parameters 326
9.3.1.2 Log-likelihood Cost 327

9.4 FuzzStaMP: Fuzzy Controller Regulated Stable Movement
Primitives . 327
9.4.1 Motion Modeling with C-FuzzStaMP 328

9.4.1.1 Fuzzy Lyapunov Function 329
9.4.1.2 Learning Fuzzy Controller Gains 331
9.4.1.3 Design of Fitness Function 333
9.4.1.4 Example . 333

9.4.2 Motion Modeling with R-FuzzStaMP 335
9.4.2.1 Stability Analysis of the Motion System . . . 339
9.4.2.2 Design of the Fuzzy Controller 342

9.4.3 Global Validity and Spatial Scaling 346
9.4.3.1 Examples . 348

9.5 Learning Skills from Heterogeneous Demonstrations 354
9.5.1 Stability Analysis . 357

9.5.1.1 Asymptotic Stability in the Demonstrated
Region . 361

9.5.1.2 Ensuring Asymptotic Stability outside
Demonstrated Region 363

9.5.2 Learning Model Parameters from Demonstrations . . . 364
9.5.2.1 Motion Modeling using GMR 364
9.5.2.2 Motion Modeling using LWPR 367
9.5.2.3 Motion Modeling using ε-SVR 368
9.5.2.4 Complete Pipeline 370

9.5.3 Spatial Error Calculation 371
9.5.4 Examples . 371

9.5.4.1 Example of Monotonic and Non-monotonic
State Energy 372

9.5.4.2 Example of Multitasking with Single and
Multiple Task-equilibrium 375

9.5.5 Summary . 382

xii Contents

10 Visual Perception 385
10.1 Introduction . 385
10.2 Deep Neural Networks and Artificial Neural Networks 386

10.2.1 Neural Networks . 387
10.2.1.1 Multi-layer Perceptron 389
10.2.1.2 MLP Implementation using Tensorflow . . . 392

10.2.2 Deep Learning Techniques: An Overview 395
10.2.2.1 Convolutional Neural Network (Flow and

Training with Back-propogation) 395
10.2.3 Different Architectures of Convolutional Neural

Networks (CNNs) . 399
10.3 Examples of Vision-Based Object Detection Techniques . . . 404

10.3.1 Automatic Annotation of Object ROI 405
10.3.1.1 Image Acquisition 407
10.3.1.2 Manual Annotation 407
10.3.1.3 Augmentation and Clutter Generation 407
10.3.1.4 Two-class Classification Model using Deep

Networks . 409
10.3.1.5 Experimental Results and Discussions 411

10.3.2 Automatic Segmentation of Objects for Warehouse
Automation . 412
10.3.2.1 Network Architecture 413
10.3.2.2 Base Network 416
10.3.2.3 Single Shot Detection 416

10.3.3 Automatic Generation of Artificial Clutter 417
10.3.4 Multi-Class Segmentation using Proposed Network . . 417

10.4 Experimental Results . 417
10.4.1 System Description . 417

10.4.1.1 Server . 418
10.4.2 Ground Truth Generation 418
10.4.3 Image Segmentation 419

10.5 Summary . 421

11 Vision-Based Grasping 423
11.1 Introduction . 423
11.2 Model-Based Grasping . 425

11.2.1 Problem Statement . 425
11.2.2 Hardware Setup . 426
11.2.3 Dataset . 427
11.2.4 Data Augmentation 427
11.2.5 Network Architecture and Training 428
11.2.6 Axis Assignment . 428
11.2.7 Grasp Decide Index (GDI) 428
11.2.8 Final Pose Selection 431
11.2.9 Overall Pipeline and Result 431

Contents xiii

11.3 Grasping without Object Models 433
11.3.1 Problem Definition . 433
11.3.2 Proposed Method . 434

11.3.2.1 Creating Continuous Surfaces in 3D Point
Cloud . 434

11.3.3 Finding Graspable Affordances 438
11.3.4 Experimental Results 443

11.3.4.1 Performance Measure 443
11.3.5 Grasping of Individual Objects 445
11.3.6 Grasping Objects in a Clutter 446
11.3.7 Computation Time . 451

11.4 Summary . 452

12 Warehouse Automation: An Example 453
12.1 Introduction . 453
12.2 Problem Definition . 456
12.3 System Architecture . 457
12.4 The Methods . 459

12.4.1 System Calibration . 459
12.4.2 Rack Detection . 460
12.4.3 Object Recognition . 462
12.4.4 Grasping . 465
12.4.5 Motion Planning . 466
12.4.6 End-Effector Design 469

12.4.6.1 Suction-based End-effector 469
12.4.6.2 Combining Gripping with Suction 470

12.4.7 Robot Manipulator Model 471
12.4.7.1 Null Space Optimization 473
12.4.7.2 Inverse Kinematics as a Control Problem . . 474
12.4.7.3 Damped Least Square Method 475

12.5 Experimental Results . 476
12.5.1 Response Time . 477
12.5.2 Grasping and Suction 478
12.5.3 Object Recognition . 478
12.5.4 Direction for Future Research 480

12.6 Summary . 482

II Mobile Robotics 483

13 Introduction to Mobile Robotics and Control 485
13.1 Introduction . 485
13.2 System Model: Nonholonomic Mobile Robots 486
13.3 Robot Attitude . 487

13.3.1 Rotation about Roll Axis 487
13.3.2 Rotation about Pitch Axis 488
13.3.3 Rotation About Yaw Axis 489

xiv Contents

13.4 Composite Rotation . 490
13.5 Coordinate System . 491

13.5.1 Earth-Centered Earth-Fixed (ECEF) Co-ordinate
System . 491

13.6 Control Approaches . 492
13.6.1 Feedback Linearization 493
13.6.2 Backstepping . 495
13.6.3 Sliding Mode Control 496
13.6.4 Conventional SMC . 498
13.6.5 Terminal SMC . 499
13.6.6 Nonsingular TSMC (NTSMC) 500
13.6.7 Fast Nonsingular TSMC (FNTSMC) 501
13.6.8 Fractional Order SMC (FOSMC) 502
13.6.9 Higher Order SMC (HOSMC) 503

13.7 Summary . 505

14 Multi-robot Formation 507
14.1 Introduction . 507
14.2 Path Planning Schemes . 509
14.3 Multi-Agent Formation Control 518

14.3.1 Fast Adaptive Gain NTSMC 519
14.3.2 Fast Adaptive Fuzzy NTSMC (FAFNTSMC) 524
14.3.3 Fault Detection, Isolation and Collision Avoidance

Scheme . 527
14.4 Experiments . 530
14.5 Summary . 535

15 Event Triggered Multi-Robot Consensus 537
15.1 Introduction to Event Triggered Control 537
15.2 Event Triggered Consensus 539

15.2.1 Preliminaries . 541
15.2.2 Sliding Mode-Based Finite Time Consensus 544

15.3 Event Triggered Sliding Mode-based Consensus Algorithm . 544
15.3.1 Consensus-based Tracking Control of Nonholonomic

Multi-robot Systems 549
15.4 Experiments . 552
15.5 Summary . 554

16 Vision-Based Tracking for a Human Following Mobile
Robot 555
16.1 Visual Tracking: Introduction 555

16.1.1 Difficulties in Visual Tracking 555
16.1.2 Required Features of Visual Tracking 555
16.1.3 Feature Descriptors for Visual Tracking 556

Contents xv

16.2 Human Tracking Algorithm using SURF Based Dynamic
Object Model . 558
16.2.1 Problem Definition . 559
16.2.2 Object Model Description 560

16.2.2.1 Maintaining a Template Pool of Descriptors 561
16.2.3 The Tracking Algorithm 562

16.2.3.1 Step 1: Target Initialization 563
16.2.3.2 Step 2: Object Recognition and Template

Pool Update 563
16.2.3.3 Step 3: Occlusion Detection, Target Window

Prediction 564
16.2.4 SURF-Based Mean-Shift Algorithm 564
16.2.5 Modified Object Model Description 565
16.2.6 Modified Tracking Algorithm 566

16.3 Human Tracking Algorithm with the Detection of Pose Change
due to Out-of-plane Rotations 567
16.3.1 Problem Definition . 567
16.3.2 Tracking Algorithm 568
16.3.3 Template Initialization 569
16.3.4 Tracking . 570

16.3.4.1 Scaling and Re-positioning the Tracking
Window . 571

16.3.5 Template Update Module 571
16.3.6 Error Recovery Module 572

16.3.6.1 KD-tree Classifier 572
16.3.6.2 Construction of KD-Tree 573
16.3.6.3 Dealing with Pose Change 573
16.3.6.4 Tracker Recovery from Full Occlusions . . . 574

16.4 Human Tracking Algorithm Based on Optical Flow 576
16.4.1 The Template Pool and its Online Update 577

16.4.1.1 Selection of New Templates 578
16.4.2 Re-Initialization of Optical Flow Tracker 580
16.4.3 Detection of Partial and Full Occlusion 580

16.5 Visual Servo Controller . 581
16.5.1 Kinematic Model of the Mobile Robot 582
16.5.2 Pinhole Camera Model 582
16.5.3 Problem Formulation 582
16.5.4 Visual Servo Control Design 583
16.5.5 Simulation Results . 584

16.5.5.1 Example: Tracking an Object which Moves in
a Circular Trajectory 584

16.6 Experimental Results . 585
16.6.1 Experimental Results for the Human Tracking

Algorithm Based on SURF-based Dynamic Object
Model . 585

xvi Contents

16.6.2 Tracking Results . 586
16.6.3 Human Following Robot 589
16.6.4 Discussion on Performance Comparison 590
16.6.5 Experimental Evaluation of Human Tracking Algorithm

Based on Optical Flow 591
16.7 Summary . 593

Exercises 595

Bibliography 603

Index 645

Preface

Robots are artificial agents that exhibit some aspect of sentient behavior.
They come in all forms, shapes and sizes. Some may even be form-less, e.g.,
software-bots that filter out spam in your email boxes or a chat-bot that
answers to queries on websites. In this book, we will primarily look into phys-
ical robots that cannot only perceive their environment but also alter it by
manipulating objects around it. These robots are no more confined to the
cages on a factory shop floors and are moving to other places of human habi-
tation such as home, offices and hospitals where they work alongside humans,
sharing each other’s workspace. These robots are becoming smarter with each
passing day and someday, they will replace humans in all kinds of dull, dirty
and dangerous jobs, relieving them for more creative pursuits. Industry 4.0
paints an optimistic future of smart and flexible factories where the production
pipeline can change in real-time in response to variations arising from factors
like weather, socio-economic and political changes. This would be made pos-
sible by having robots that can independently take local decisions based on
global cues provided by a centralized ERP1/ WMS2 decision maker. Such
robots can work in unstructured and dynamic environments and can learn to
cooperate and collaborate with humans and other robots, while learning new
skills from and sharing knowledge with them. Such intelligent robots could
then be rented cheaply by small and medium enterprises (SMEs) who can-
not afford to buy these robots, thereby allowing them to reap the benefits
of robot-based automation at an affordable cost. Such changes will give rise
to new business opportunities in the form of “Robotics-as-a-Service” where
the end-users will pay for the services offered and not for robots which will
be managed and maintained by the service provider. It is also envisaged that
such changes will make it possible to achieve mass personalization in contrast
to mass standardization that is being offered by today’s industries. These
aspirations of Industry 4.0 can be realized through advancement in multiple
fields such as additive manufacturing, machine learning, artificial intelligence,
signal processing, computer vision, cloud computing, embedded systems, and
mechatronics etc.

Historically, Robotics and AI have grown in parallel ways complementing
and enriching each other. This book is the outcome of our sincere endeavor to
show the synergy between the two disciplines while asking the hard questions
on naturalization of human intelligence that make robots mimic humans in

1Enterprise Resource Planner
2Warehouse Management System

xvii

xviii Preface

complex tasks such as warehouse automation, surveillance, imitation learning,
and multi-robot systems.

Traditionally, methods for robot control relied heavily on physics-based
models which benefited from strong mathematical foundations available in
the control literature. However, these methods had limited ability to deal
with uncertainty associated with non-deterministic factors like parameter vari-
ation, sensor noise, extraneous disturbances, model nonlinearity, and model
approximation. In contrast, machine learning-based methods relied on data
generated by the system to understand the underlying model and then use
it to develop necessary control strategies for systems. The latter approach is
more commonly known as a “data-driven” approache which was pioneered by
computer science researchers who had neither any background nor any inter-
est in physics-based models. On the other hand, researchers and engineers
from Electrical and Mechanical Engineering were more comfortable with tra-
ditional methods based on physics-based models and took casual interest in
learning-based approaches. Over the years, the authors of this book have tried
to marry these two schools by augmenting physics-based models with learning-
based control approaches. This approach has the following benefits:
• Imprecise machines guided by learning-based algorithms can achieve high

level precision which has the advantage of reducing the cost of robotic
systems.

• Elimination of manual programming of the robots: In the proposed scheme,
robots autonomously localize themselves, they learn to adaptively inter-
act with the environment, and these programs are mostly independent
of robotic platforms. Hence there is significant reduction of customized
programming of each robot in different contexts.

• In transfer learning, most of the learning models are developed in simu-
lation environments. The fine-tuning of these models in physical robots
requires very little data. Thus the process reduces the robot cycle time
significantly as huge number of robots can learn their own kinematics and
dynamics in simulation environment only.

• Usually researchers work only on specifics-kinematic control or visual per-
ception or dynamic control or reinforcement learning. In this book, we
take an approach which will guide readers to build a complete integrated
robotic system that combines kinematics, dynamics, visual perception, and
manipulation.
In this book, we will focus on five major aspects of robotics. First being

the perception where we will describe various computer vision techniques for
object detection, recognition, and tracking, etc. In the process, we will provide
an overview of deep learning-based methods and demonstrate their impact on
the performance of these algorithms. The second aspect is related to manip-
ulation and motion planning which aims at solving the inverse kinematics
of a manipulator in the Cartesian as well as image plane. In the process,

Preface xix

we will describe several methods for solving the hand-eye coordination and
visual servoing problem. The third aspect is related to mobile robots which
will demonstrate vision-based algorithms for mobile robot navigation. The
fourth aspect will focus on vision-based techniques for grasping where we will
describe a model-free approach for computing graspable handles directly from
3D point cloud. The fifth and final aspect will be multi-robot coordination
which becomes essential when one has to deal with multiple robots. In this
context, we will describe several methods to achieve formation control in a
group of robots which is resource optimal and fault-tolerant.

The precise and lucid presentation of tools, techniques, and associated
engineering science as provided in this book will help scientists, researchers and
practicing engineers to get an in-depth understanding of techniques required
for developing integrated robotic systems for various applications, such as
robots for automating pick and place tasks, automated mobile robots for
movement of goods in warehouses, a robot for assisting patients, drones for
infrastructure monitoring, and surveillance, etc. In the process, the researchers
will get exposed to some of the niche areas such as deep learning, program-
ming by demonstration (PbD), visual servoing, and multi-robot control. The
accompanied source codes and examples will help the readers in getting a
good grasp of the concept.

Scientists, researchers, and graduate students alike will benefit from both
machine learning and control theoretic frameworks as presented in this book.
We have tried to make every chapter self-contained by including introductory
primers and examples. We provide an introductory chapter that includes back-
ground material on robotics covering topics such as kinematics, dynamics, and
control. Simultaneously, the readers are expected to have a basic background
in machine learning techniques such as back-propagation networks, Kohonen
self-organizing map, adaptive critic networks, and deep learning. Readers can
refer to the book on Intelligent Systems and Control by Laxmidhar Behera
and Indrani Kar, which is published by Oxford University Press as a good
primer for the subjects dealt with in this book.

A repository of colour images can be downloaded from https://www.crcpress.
com/9781138597716

MATLAB® is a registered trademark of The MathWorks, Inc. For product
information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com
https://www.crcpress.com/
https://www.crcpress.com/

http://taylorandfrancis.com

Acknowledgment

Most of the works as presented in this book were done in the Intelligent Sys-
tems and Control Lab at IIT Kanpur. All authors gratefully acknowledge the
contributions of funding agencies such as DST, DEITY, UKIERI, ADNOC-
GRC and TCS that helped to carry out the underlying research and experi-
mentation.

All of us gratefully acknowledge the contributions from our colleagues who
all worked, in some way or another, in the lab. Special thanks are due to Dr.
Indrazno Siradjuddin, Dr. Meenakshi Gupta, and Dr. Anima Mazumder for
their significant contribution to Chapters 4 and 6, 16, and 10, respectively.

Laxmidhar Behera thanks all his family members, specifically his parents
for their blessings, his wife Gopali Priyadarsini, who has been such a brilliant
companion, and his three daughters, Yamuna, Lalita, and Visakha for bringing
aesthetics into his life. Last, but not least, he acknowledges the association of
Bhakti-Vedanta club at IIT Kanpur which inspires him to inculcate the ideal
human values.

Swagat Kumar would like to acknowledge the contribution of Ms. Olyvia
Kundu toward providing the content for the Chapter 14 on “Vision-based
Grasping.” In addition, he would like thank his friends and colleagues who
have always been a source of motivation and encouragement for him.

Prem Kumar Patchaikani would like to thank his parents and family mem-
bers for their constant support in all his endeavors. He would also like to thank
Prof. Behera for giving him the opportunity to work on this book, and also
the fellow authors; without their support and cooperation, this book couldn’t
have been completed successfully on time.

Ranjith Ravindranathan Nair would like to express his sincere gratitude to
all the co-authors of this book, especially Prof. Behera, and all the colleagues
of intelligent systems and control lab at IIT Kanpur for their support. He
would also like to extend his heartfelt thanks to his beloved parents, for their
endless support, prayers, and blessings, his soulmate Devika for her fathomless
support, patience, and care, sister and family for their constant support, and
last but not least, he would like to thank his son Samarth, who made him feel
more fulfilled than he has ever imagined.

Samrat Dutta would like to extend his deep gratitude to Prof. Laxmidhar
Behera for giving him the opportunity to be a co-author of this book. He is
extremely grateful to his parents for their love and support, his wife Anima

xxi

xxii Acknowledgment

for making his life a beautiful journey and his beloved daughter Ahana for
giving the feeling of completeness. He is also thankful to his friends in Intelli-
gent Systems and control Lab (IITK), colleagues in TCS Innovation Lab for
their encouragement and last but not the least, he expresses his gratitude to
publication team for their effort.

Authors

Laxmidhar Behera is working as Poonam and Prabhu Goel Chair Professor
at IIT Kanpur having research and teaching experience of more than 24 years.
He has received his BSc (engineering) and MSc (engineering) degrees from NIT
Rourkela in 1988 and 1990, respectively. He received his PhD degree from IIT
Delhi in 1996. He pursued his postdoctoral studies in the German National
Research Center for Information Technology, GMD, Sank Augustin, Germany,
during 2000–2001. Previously, he has worked as an assistant professor at BITS
Pilani during 1995–1999 and as a reader at Intelligent Systems Research Cen-
ter (ISRC), University of Ulster, UK during 2007–2009. He has also worked as
a visiting researcher/professor at FHG, Germany and ETH, Zurich, Switzer-
land. His research work lies in the convergence of machine learning, control
theory, robotic vision, and heterogeneous robotic platforms. He has received
more than INR 170 million research grants to support his research activi-
ties. He has established industrial collaboration with TCS, Renault Nissan,
BEL, Bangalore, and ADNOC, Abu Dhabi while making significant techno-
logical development in areas such as robotics-based ware-house automation,
vision and drone-guided driver assistance systems, and drone-guided pipeline
inspection systems. He has published more than 250 papers in journals and
conference proceedings. He has supervised 16 PhD theses to completion. He is
a Fellow of INAE and Senior Member of IEEE. He is a Technical Committee
member on IEEE SMC on Robotics and Intelligent Systems. His other research
interests include intelligent control, semantic signal/music processing, neural
networks, control of cyber-physical systems, and cognitive modeling.

Swagat Kumar obtained his Bachelor’s degree in Electrical Engineering
from North Orissa University in 2001 and his Master’s and his Ph.D. degree
in Electrical Engineering from IIT Kanpur in 2004 and 2009 respectively. He
was a postdoctoral researcher at Kyushu University in Japan during 2009-10.
He, then, worked as an assistant professor at IIT Jodhpur for about two years
before joining TCS Research in 2012. He currently heads the robotics research
group at TATA Consultancy Services in New Delhi. His research interests
include Robotics, Computer Vision and Machine Learning. He is a member
of IEEE Robotics and Automation Society. He has co-authored about forty
articles in peer-reviewed conferences and journals and filed several patents.

xxiii

xxiv Authors

Prem Kumar Patchaikani received the B.E. degree in Electrical and Elec-
tronics Engineering from Thiagarajar College of Engineering, Madurai, India,
in 2003, the M.Tech. degree in Power and Control from IIT Kanpur, Kanpur,
India, in 2005, and the Ph.D. degree from the Department of Electrical Engi-
neering, IIT Kanpur, in 2012. He was a Design Engineer with Larsen & Toubro
Ltd., Chennai, India, from 2005 to 2006. He was a Visiting Researcher with the
Intelligent System Research Center, University of Ulster, Londonderry, U.K.,
from 2008 to 2009, and in 2011. He is currently a Lead Engineer with General
Electric, Bengaluru, India. His current research interests include visual servo-
ing, redundant manipulators, neural networks and fuzzy logic-based control,
adaptive critic, system identification, and IC engine controls.

Ranjith Ravindranathan Nair received the Master’s degree in Guidance
and Navigational Control from the College of Engineering, Thiruvananthapu-
ram, Kerala, India. He received his Ph.D in Control and Automation from the
Department of Electrical Engineering, Indian Institute of Technology (IIT)
Kanpur, Kanpur, India. After completing his Ph.D, he was working as a post
doctoral research fellow in Intelligent Systems and Control Lab at IIT Kan-
pur. Currently, he is working as an Assistant Professor in the Department
of Electronics & Communication Engineering at Indian Institute of Informa-
tion Technology Pune, India. His primary research interests include multia-
gent systems, formation control, Intelligent control, nonlinear control systems,
cyber-physical systems, and multi-robot/ multi-vehicle systems.

Samrat Dutta received the B.Tech. degree in Electrical and Electronics
Engineering from the Siliguri Institute of Technology, Siliguri, India, in 2005,
and the M.Tech. degree in Electrical Engineering with a specialization in con-
trol system from the Department of Electrical Engineering, Jadavpur Uni-
versity, Kolkata, India, in 2010. He has received his Ph.D. degree in Control
and Automation from the Department of Electrical Engineering, IIT Kanpur,
Kanpur, India in 2018. He was a Cluster Head with Sterling Communications
Ltd., Chennai, India, from 2005 to 2007, where he was involved in Tata Tele-
services mobile network infrastructure projects in India. He is currently work-
ing as a research scientist with TCS innovations Labs, Bangalore, India. His
current research interests include Imitation learning, Reinforcement Learning,
Intelligent Robots, Robotic Vision, Deep Learning, neural networks and fuzzy
logic-based control, and system identification.

1
Introduction

Robot-assisted applications in warehouse, agriculture and health care are
highly multi-disciplinary. Mechanical design, robot dynamics and control,
kinematics and control, visual servoing, visual perception, motor skill learn-
ing, grasping, machine learning and AI and sensors are some of the key areas
that contribute to the development of a wholesome robotic product. Often
researchers work on a specific area – an approach that lead to the neglect of
systemic integration. Amazon Picking Challenges (APC-2015 and APC-2016)
and Amazon Robotics Challenge – ARC-2017 – have motivated researchers
to look at the problem of of developing autonomous robots at the systemic
integration level as well. Based on this approach, the first part of the book will
take an integrative approach to the design of three key areas – visual control,
motor skill learning and visual perception – to build autonomous manipulation
systems using control theoretic framework.

Development of intelligent autonomous robots that can assist humans in
their daily needs or can be used as replacement for human labor in various
tasks, has always been a challenging and interesting problem in the field of
robotics. These applications require robots to have human-like learning capa-
bility. Starting from turning off the alarm clock using our hand when we wake
up in the morning, to switching off the light before going to bed at night, we
perform uncountable number of tasks consciously or unconsciously through
out the day while making use of our limbs. These tasks, such as moving an
object, playing an instrument, writing a letter, and playing soccer require skill
and dexterity which we have been acquiring through rigorous training since
the day we are born. Initial abrupt movements of the limbs of a child, interact
with the environment and get rewarded by the consequence. This works as
the reinforcement signal in the learning process. The temporal error between
the expected and the received rewards are encoded in the dopamine signal of
the mammalian brain [1–3]. In the training process, children learn indepen-
dent and controlled movement of their limbs. These movements are adaptive
enough to deal with the dynamically changing environment. Generally, the
training could be either independent or supervisory. The former is about cor-
recting one’s own actions continuously to optimize a performance index based
on the reinforcement signal as received for an arbitrary action performed in
the environment and the latter is about improving one’s own actions based on
the expert’s instructions. In this way, we learn to control our limbs at the joint
level and eventually we learn higher level motions in the task space. In fact,

1

2 Introduction

FIGURE 1.1: The Mobile Manipulator System for warehouse automation at
IIT Kanpur.

like humans, many life-forms on this planet have this capability of learning
from experience. Thus, when we think of a robotic system co-existing with
humans in society, it must have human-like adaptability in its behavior. They
should also be able to learn from their experience as humans do.

Our team IITK-TCS participated in Amazon Picking Challenge 2016 and
Amazon Robotics Challenge 2017. The team secured fifth position in ARC
2016. The team secured fifth, third, and 4th position in stow task, pick task,
and stow-cum-pick task respectively in ARC 2017. The robotic system that
was used in APC 2016 is shown in Figure (1.1). The system consisted of
Barrett Arm mounted on a mobile platform that could automatically adjust
its height to reach any box within the shelf. The robot arm was mounted with
a Kinect camera. The suction was used to grasp the desired object. RCNN was
used to learn the object categories and to identify the centroid of 2-d image
of the desired object where the suction gripper is guided with help of cloud
data to grasp the object.

The system consisted of UR ten robot manipulators, a server with eight
GPUs, Suction gripper, RGB-D sensor, and Ensenso Camera. A customized
deep network was designed that is capable of semi-supervised leveling, auto-
matic cluttering, and semantic segmentation as shown in Figure (1.2). Among
all teams, our algorithm had the highest grasp rate.

Vision-Based Control 3

FIGURE 1.2: Visual perception using deep neural network.

1.1 Vision-Based Control
The schematic of the various components associated with the warehouse
automation system can be given as in Figure 1.3. The target item is seg-
mented using a vision system comprising of a RGB-D sensor. The goal config-
uration is used to generate a dynamic trajectory from a library of previously
demonstrated trajectories to reach the item. The controller then finds an opti-
mal control to execute the motion. The grasping is finally accomplished using
feedback-based reinforced training and learning in a physics-based simulator.

An automated precision agriculture system – for example, a mobile manip-
ulator employed for pruning, spraying and plucking in horticulture – will have
similar functional blocks as shown for the automated warehouse system as
shown above. The same is true for an automated system for manufacturing.

FIGURE 1.3: The proposed robot assisted ware-house automation system.

4 Introduction

In practical applications of a robotic manipulator such as an automated
warehouse, the robotic movements are controlled in two stages in the control
hierarchy:

• There is an inner loop controller (also called dynamic controller) that
converts the joint space command to the joint torque command as the
manipulators are controlled in joint space. The electrical controller, that is
a part of the robot’s hardware, converts this joint torque to electrical signal
and subsequently the robot moves. The controller here we are interested
in, is not just any but from a specific class of controllers that help the robot
to achieve the desired joint states while optimizing a certain performance
index.

• There is an outer loop controller (also called kinematic controller) that
plans and executes the robot’s movement in the Cartesian space of the
robot. This movement is defined by the task assigned to the robot. Design
of these controllers has always been an intriguing and challenging control
engineering problem.

The core of such an automated system is the dynamic and kinematic con-
trol of the manipulator while guaranteeing the closed loop stability. In this
book, we will be concerned with data-driven learning frameworks that enable
the robot to learn controllers in the inner loop which is dynamic control and
outer loop of the control hierarchy (see Fig. 1.4) that is referred to kinematic
control. The controller in the inner loop involves robot’s dynamics and is

Robot
Dynamic

Controller

ForwardKinematic

Kinematics

KinematicsController

Inner Loop Control

Outer Loop Control

Inverse θd u

(P,O)(Pd,Od)

θ(Pc,Oc)

FIGURE 1.4: The inner loop controller converts the joint space command
to the joint space torque and the outer loop controller plans the robot’s end-
effector trajectory in the task space. The robot’s joint position θ is converted to
Cartesian position and orientation (P,O) using forward kinematics. The outer
loop controller provides position and orientation command (Pc,Oc) based on
the current P,O. The inverse kinematics algorithm finds corresponding joint
position command θd based on Pc,Oc. The inner loop controller converts θd
to joint torque u.

Vision-Based Control 5

responsible for providing joint torques which are required for the robot to
achieve commanded joint positions while optimizing some performance index.

Classical techniques, for decades, have given us the ability to solve prob-
lems associated with nonlinear systems and its control. These techniques have
been efficiently used in industrial robots with a high accuracy of task com-
pletion. However, they reflect strong dependence upon precise mathematical
modeling of the entire process [4, 5]. With the increasing diversified applica-
tions of robots, in many real-life situations it becomes difficult to work with
these techniques as the precise mathematical description of the process is not
available. They have limited ability to incorporate effects of the dynamically
changing environment interacting with the robot. Additionally, one needs to
possess good technical knowledge and skill to work with these techniques. It is
very difficult for a general user, who lacks in-depth knowledge in this domain,
to make use of these techniques in order to prepare the robotic system for the
assigned task.

Given the progress in AI and machine learning, researchers have been inter-
ested to emulate human learning processes in robots. We will thus present
learning-based kinematic and dynamic control strategies in this book while
well positioning with the state of the art techniques available in the litera-
ture. As the outer loop controller, we will discuss various data-driven motion
planners that plan reaching motions for the manipulator in the Cartesian
space. Besides neural network-based schemes, one of the approaches is to
develop a motion planner in terms of movement primitives [6], which can
be combined to produce more complicated robotic motions. The movement
primitives are represented by a dynamical system (DS). A learning by demon-
stration (LbD) based approach is adopted to identify the movement primi-
tives from the demonstrations given by a user. As we learn DS using real data
from the robot, ensuring stability of the learned system is challenging. Using
learning-based approaches, both the dynamic and kinematic controllers have
been designed. In this sense, techniques developed, work can make a robot
learn its own kinematic and dynamic controllers as it performs from simple
to complex tasks.

It is presumed that the dextrous manipulation is achieved by continu-
ous learning with the reinforcement signal obtained from the environment.
It is argued in [7–9] that the temporal error between the expected and the
received rewards is encoded in the dopamine signal of the mammalian brain.
The successful implementation of the robotic systems to assist the human
beings in real-life requires adaptability to the dynamic environment by con-
tinuous learning and robustness to the model and sensor inaccuracies. Hence,
learning-based control schemes which could adapt according to the rewards
are imperative in the robotic systems to operate in a dynamic cluttered envi-
ronment. These observations have led to the development of learning-based
visual automation of robotic arms, which enables the robotic systems to serve
well in both structured and unstructured environments. To achieve the excel-
lence similar to humans, the redundant manipulator guided through visual

6 Introduction

feedback must necessarily work in a dynamically changing environment. Vision
can provide continuous information about a dynamic environment, and kine-
matic redundancy is introduced in the manipulator for handling complex tasks
which occur in changing environments.

Vision-based control of a redundant manipulator is a challenging task
which involves two sub-tasks: (i) visual servoing [10, 11] and (ii) redundant
manipulator control [12, 13]. In general, visual servoing computes the end-
effector velocity required to reach the desired position from the image features
obtained through the visual feedback. It basically assumes that there exists
a non-redundant manipulator which can generate the desired end-effector
velocity with its own inverse kinematic algorithm. A non-redundant manip-
ulator can achieve the end-effector velocity estimated from visual servoing
with unique joint angle configuration. In a dynamic environment, the avail-
able unique joint angle configuration may become infeasible to position the
end-effector due to the presence of obstacles and the physical constraints.
This necessitates the use of redundant manipulators for vision-based control
in dynamic environments, which have excess DOF than that required for the
given task. Theoretically infinite choices of joint angle configuration exist for
redundant manipulators to achieve the estimated end-effector velocity. The
excess DOF can be effectively utilized in performing additional constraints
introduced by the dynamic environment. An optimal joint angle configura-
tion needs to be selected, while satisfying these additional constraints. This is
popularly known as redundancy resolution.

1.2 Kinematic Control of a Redundant Manipulator
The position of the end-effector and the associated joint angle configuration
are coupled with forward and inverse kinematic relationship of the manipula-
tor. The forward kinematic map expresses the Cartesian space position of the
end-effector x for the given joint angle configuration θ, as,

x = fx(θ) (1.1)

where the dimension of the task space x is n, and that of the joint angle space θ
is m. In case of redundant manipulators n < m and the degree of redundancy
is given by m−n. fx(θ) is highly nonlinear and is obtained from the geometry
of the manipulator using Denavit-Hartenberg (D-H) parameters [14].

The inverse kinematic relation computes the joint angle space configura-
tion θ which is required to reach the desired position xd. The closed form
inverse kinematic relationship exists only for simple manipulator configura-
tions. The problem becomes much more difficult for redundant manipulator
since infinite number of solutions exist to reach the given workspace position.
The control of a kinematically redundant manipulator to reach the object is a

Kinematic Control of a Redundant Manipulator 7

highly challenging task owing to the one-to-many inverse kinematic relation-
ships. The redundancy resolution schemes discuss about different methodolo-
gies to exploit the available redundancy for performing the additional tasks
which occur in real-time.

In general inverse kinematic control is achieved with forward differential
kinematic relationship, since it expresses a linear relationship between the joint
angular velocity θ̇ and the Cartesian space velocity ẋ. The forward differential
kinematic relationship between θ̇ and ẋ is represented as,

ẋ = Jθ̇ (1.2)

where J = ∂fx
∂θ is the kinematic Jacobian of the manipulator. In case of redun-

dant manipulators, J is not a square matrix and theoretically infinite joint
angular velocity θ̇ exists to generate the given end-effector velocity. The joint
angular velocity required for the given end-effector velocity is computed using
inverse Jacobian. Inverse Jacobian does not exist in case of redundant manip-
ulators since the associated Jacobian is not square and hence, the pseudo-
inverse has been employed. Inverse kinematic control of the redundant manip-
ulator using generalized pseudo-inverse was first proposed by Whitney [15].
The pseudo-inverse method computes the value of θ̇ as,

θ̇ = J+ẋd (1.3)

where J+ is the pseudo-inverse of the kinematic Jacobian, and ẋd is the desired
end-effector velocity. Henceforth, the notation (.)+ will be used to indicate the
generalized pseudo-inverse of (.). The open-loop solution obtained using the
above equation unavoidably leads to solution drift due to numerical integration
and hence, results in task space error e = xd−x. To overcome this drawback in
open-loop control, the closed loop kinematic control is proposed with the task
space error e. In closed loop kinematic control the joint velocity is computed
as,

θ̇ = kpJ+e (1.4)

where kp > 0 is proportional gain which controls the speed of the convergence
to the desired position xd. The pseudo-inverse based solution results in lazy
arm movement, i.e., it minimizes the joint angular velocity in least square
sense. Baillieul showed in [16] that the pseudo-inverse solution may reach a
singular configuration when implemented without any modification.

Pseudo-inverse based kinematic control is widely popular since the rela-
tionship between the various joint angular velocities, which can generate the
desired end-effector velocity can be established using the pseudo-inverse of
Jacobian J. J+ obeys the property that the matrix (I − J+J) projects onto
the null space of J and, hence, the vector J(I− J+J)φ = 0 for all vectors φ.
A joint angular velocity computed as θ̇ = (I− J+J)φ for any vector φ ∈ Rm
does not generate any end-effector motion but only changes the internal joint
angle configuration of the manipulator. The internal reconfiguration of the

8 Introduction

manipulator is popularly known as self-motion of the manipulator. The differ-
ent joint angular velocities which can generate the given end-effector velocity
are given by the relationship,

θ̇ = J+ẋ + kn(I− J+J)φ (1.5)

where I is the identity matrix of order m, and kn is the gain which determines
the magnitude of the self-motion.

1.2.1 Redundancy Resolution using Null Space of the
Pseudo-inverse

The self-motion of the redundant manipulator is used to achieve the additional
tasks required in the dynamic environment by optimizing certain performance
measure Ji. In general φ is chosen as −∂Ji∂θ to minimize Ji and as ∂Ji

∂θ to max-
imize Ji. Liegeois [17] used equation (1.5) to resolve the redundancy by using
the null space of the Jacobian for avoiding the kinematic limits. The self-
motion has been exploited to perform additional tasks such as satisfying kine-
matic constraints [18], maximizing the manipulability index [19], minimizing
the infinity norm of the joint angular velocity [20] and obstacle avoidance [21].

The value of gain kn determines the speed of convergence to the optimal
joint angle configuration. It is clear from equation (1.5) that the manipulator
may exhibit self-motion even after ẋd = 0 because of improper choice of the
gain kn. A high value of gain kn results in undesirable oscillation and a low
value of gain kn may end up with sub-optimal solutions. The value of gain
kn is to be properly chosen to avoid oscillations. Li et al. [22] proposed an
analytical method to calculate the limiting values of kn, while constraining
the manipulator within its kinematic limits. The Jacobian null space based
redundancy resolution schemes optimize an instantaneous cost function for
resolving the redundancy and results in local optimum [23]. A detailed discus-
sion about various pseudo-inverse based redundancy resolution methods and
the associated challenges are available in [12,24].

Pseudo-inverse based methods are widely used in the literature but they
perform poor near singularities due to numerical instability. The damped least
square method avoids problems associated with singularities by not exactly
following the desired trajectory [25,26]. Damped least square method has been
tested on redundant manipulators to achieve torque minimization [27] and
obstacle avoidance [28]. The challenges associated with various damped-least
square based control schemes are available in [29].

1.2.2 Extended Jacobian Method
The solution obtained with the null space projection methods is not periodic,
i.e., the closed trajectory in the Cartesian space does not result in a peri-
odic joint angle space trajectory. Hence, the null space projection methods
are not suitable for repetitive tasks. Extended Jacobian methods [16, 30, 31]

Kinematic Control of a Redundant Manipulator 9

are proposed to achieve closed joint angle space trajectories. Extended Jaco-
bian methods form a square Jacobian matrix by augmenting the kinematic
Jacobian with the additional task space constraints. The inverse kinematic
solution is obtained by computing the inverse of the augmented Jacobian.
Though extended Jacobian methods result in cyclic trajectories, the methods
suffer from algorithmic singularity, i.e., the augmented Jacobian may become
singular even if the kinematic Jacobian is not rank-deficient.

English et al. [32] discussed a single framework integrating both the null
space projection and the extended Jacobian based kinematic control schemes.

1.2.3 Optimization Based Redundancy Resolution
The null space projection methods and the extended Jacobian methods require
the computation of inverse of the Jacobian. Alternatively optimization based
methods are developed which resolve the redundancy without explicit com-
putation of the inverse of the Jacobian. In optimization based methodolo-
gies [33,34], the redundancy resolution scheme is formulated as a time-varying
optimization task with equality and inequality constraints and the necessary
condition for the optimality is derived. Various dynamic neural network (NN)
architectures are proposed such that the equilibrium point of the dynamic neu-
ral network (DNN) corresponds to the necessary condition of the optimality.
At each instant the DNN is presented with the desired end-effector velocity
and the network evolves from the initial joint angle configuration to the opti-
mal solution of the redundant manipulator. Quadratic program formulation
has been used for kinematic limit avoidance [35], torque optimization [36],
obstacle avoidance [37], and acceleration level resolution [38]. Infinity norm
minimization [39, 40] is achieved by formulating the control task as a lin-
ear program and by minimizing the convex energy function with a recurrent
neural network (RNN). The major drawback with DNN based optimization
approaches is that the convergence speed of the network to the optimal solu-
tion is not known and, hence, the approaches are computationally intensive.

1.2.4 Redundancy Resolution with Global Optimization
All the aforementioned approaches minimize an instantaneous cost function
and achieve local optimum. The solution obtained is locally optimum since it
may not be optimum for the whole trajectory. Local optimization may lead
to control instabilities, which result in high torque and joint angular velocity
for relatively long trajectories which cover the whole workspace [41]. Instan-
taneous cost minimization is generally preferred since it is computationally
simple in terms of the current joint angle configuration. Global optimiza-
tion with an integral cost function over the entire trajectory is developed
to cope up with the instabilities occurring for long trajectories. Kinematic
and dynamic redundancy resolution by minimizing a global cost function is
discussed using Pontryagin’s maximum principle in [42]. Kazerounian and

10 Introduction

Wang [43] analytically showed that the local minimization of the joint angu-
lar acceleration is equivalent to the global minimization of the joint angular
velocity in least square sense. Suh and Hollerbach achieved global torque min-
imization [44] using the principles of calculus of variation. Minimum time
control is discussed for redundancy resolution in [45]. The integral cost based
optimization has been implemented for path planning in [46]. The redundancy
resolution is formulated as an optimal control problem in [47], and the 2n
first order partial differential equations with boundary conditions have been
derived. It has been shown that it is equivalent to n second order differential
equations resolving the redundancy in acceleration level.

The major drawback with the global cost optimization is that the accu-
rate knowledge of the forward kinematics is required and the optimal solu-
tion is obtained by solving the associated two-point boundary value problem
numerically for individual trajectories. Hence, all the aforementioned global
optimization methods are offline processes and cannot be implemented in real-
time over the whole workspace.

1.2.5 Neural Network Based Methods
All the above local and global optimization schemes require the accurate for-
ward kinematic model to resolve the redundancy and perform poorly with
inaccurate models. Model inaccuracies pose a major challenge for pseudo-
inverse computation since the pseudo-inverse is sensitive to parameter varia-
tions, and the parameter variation may eventually result in controller insta-
bility. The universal function approximation property of NN is used to learn
either the inverse kinematic map or the forward kinematic map to control the
manipulator without the complete knowledge of the kinematic model. The
major challenge associated in learning inverse kinematic map of the redundant
manipulator is that it is a one-to-many relationship. Existing NN architectures
learn only a single joint angle configuration for the given end-effector position
by converging toward the arithmetic mean of all the joint angle configurations
available in the data. Such convergence results in poor positioning accuracy
and the redundancy available in the data is lost.

Ahmad and Guez [48] learned the inverse kinematic map with multi-layer
perceptron (MLP) and the map is used as a seed generator for redundancy
resolution with pseudo-inverse method. The method to learn an exact joint
angle configuration is not discussed and, hence, the learned map is a poor
approximation of the inverse kinematics. Martin and Millan [49] suggested the
distal learning approach to learn the inverse map with an NN approximating
the forward kinematic map. Though a self-motion network is suggested in
addition to inverse network for redundancy resolution, the method requires
the geometric knowledge of the manipulator configuration, and it is difficult to
generalize for n-link manipulator. Two neural networks are used for resolving
the redundancy in [50]. The first network learns the null space projection
vector φ which optimizes the chosen additional task. The second network is

Visual Servoing 11

used to compute the output of the damped least square pseudo-inverse. The
method requires the computation of pseudo-inverse during the training phase.

All the aforementioned redundancy resolution strategies compute the joint
angular velocity from the end-effector. Apart from neural network approaches,
accurate kinematic model is needed for control and require computation-
ally intensive pseudo-inverse. Global optimal solution has been achieved only
through offline methods.

1.3 Visual Servoing
Vision is employed in robotics owing to its flexibility during manipulation.
Visual feedback gives dynamic information about the environment and the
object. Typically, vision-based manipulator control is executed in open loop
fashion, “looking” and then “moving.” [51] This results in poor positioning
accuracy due to the model inaccuracies. An alternative approach is to use a
visual control loop which is generally referred to as visual servoing. A detailed
survey on visual servoing can be found in [10], [11], and [52]. Vision-based
manipulator control use either single camera or multiple cameras to give
visual feedback to the manipulator system. Visual servoing systems use one
of two camera configurations: eye-in-hand or eye-to-hand. In the eye-in-hand
configuration [53, 54], a camera is mounted on the end-effector while in the
eye-to-hand configuration [55, 56], the cameras are fixed in the workspace.
Eye-to-hand configuration is also known as stand-alone camera system [52].

Visual servoing schemes use the image features u to represent the position
of the end-effector and the object in the vision space. The desired position
xd and the current position x of the end-effector are observed through the
camera as the desired image feature vector ud and the current image feature
vector u respectively. In general, visual servoing uses the linear relationship
between the change in the image feature vector u and the change in the
Cartesian space position of the end-effector x for controlling the manipulator.
The image Jacobian L, represents the relationship between the end-effector
motion and the image feature motion as,

u̇ = Lẋ (1.6)

where u, u̇ ∈ Rp. L is a p × n matrix and is also referred to as interaction
matrix in literatures. The control task is to compute the necessary Cartesian
space velocity motion such that the end-effector will reach the desired position
in vision space asymptotically.

The simple proportional control law which results in asymptotic stabiliza-
tion is expressed as,

ẋd = kp.L+(ud − u) (1.7)

12 Introduction

where kp is a proportional gain, L+ is the pseudo-inverse of L and ud − u
is the error between the desired and the current image features. Here after-
wards, the error vector in the visions space is expressed as eu and, hence,
eu = ud − u : ∈ Rp. The above controller requires the exact knowledge of
L and its pseudo-inverse though it ensures global stability. The exact knowl-
edge of L requires the complete knowledge of the 3 D Cartesian space which
may not be available in a dynamic environment. The depth information of
the object has to be estimated for visual control of the manipulator [57–59].
Hence, the image Jacobian L is to be estimated at each instant. To reduce
the computational complexity, the image Jacobian is estimated at the desired
position and then the pseudo-inverse is evaluated for the estimated image
Jacobian to implement the controller. This eliminates the continuous estima-
tion of L and the computation of the pseudo-inverse L+ in real-time. But, this
results in a locally stabilizing controller since the sufficient positivity condi-
tion of stability is valid in local region only [60]. The learning-based servoing
scheme proposed in [61] for non-redundant manipulator focusses on learning
the inverse Jacobian at the chosen operation point only.

Visual servoing systems are classified based on the method of using the
visual information as follows:

1.3.1 Image Based Visual Servoing (IBVS)
In image based visual servoing, the 2 dimensional image features are used to
estimate the motion of the manipulator directly. The error signal is specified
in the 2 dimensional image plane as the difference between the actual and the
desired features. IBVS is also known as 2-D visual servoing [62–65] since the
control input is computed directly from 2-D image features. Since the control
input is generated from the vision space directly, IBVS may result in poor
Cartesian space trajectories [60,66].

1.3.2 Position Based Visual Servoing (PBVS)
In position based visual servoing [67, 68], features extracted from the image
are used to estimate the position and orientation of the object with respect to
the camera (or world) coordinate system. Using these values, an error between
the current and the desired pose of the robot manipulator is defined in the
task space to compute the necessary end-effector motion. In this scheme, the
control task is completely separated from the estimation process involved
in computing the Cartesian pose from the image data. Since the control is
actuated using the Cartesian pose information, it is also called 3-D visual
servoing. Position based visual servoing for eye-in-hand configuration is dis-
cussed in [67, 69, 70], and the stand-alone camera configuration is discussed
in [71–73]. Position based visual servoing for hybrid eye-in-hand and eye-to-
hand multi-camera system is discussed in [74]. In contrast to IBVS, desirable

Visual Control of a Redundant Manipulator: Research Issues 13

Cartesian space velocity is obtained in PBVS, since the joint angular velocity
is computed from the estimated current pose of the robot manipulator in the
Cartesian space. But the algorithm suffers with poor positioning accuracy, if
the accurate camera model is not known, since there is no closed loop control
over the pose estimation.

1.3.3 2-1/2-D Visual Servoing
The combination of both image and position based approaches are developed
to avail the benefit of both the methods [75,76] in the visual control process.
The error is defined by combining both the vision space and the Cartesian
space information, and then the end-effector velocity is computed. It is known
as 2-1/2-D visual servoing since both the image and the Cartesian space fea-
tures are used to control the manipulator. Such hybrid schemes [77–79] decou-
ple the translation and rotation velocity of the end-effector with proper feature
selections which results in desirable Cartesian space trajectories and accurate
positioning. Hybrid visual servoing is proposed for both the eye-to-hand and
eye-in-configuration using homography in [80].

1.4 Visual Control of a Redundant Manipulator:
Research Issues

As discussed in previous sections, classical approaches estimate the Carte-
sian space velocity of the end-effector from the vision space with the visual
servoing schemes, and then the redundancy is resolved for the chosen addi-
tional task while following the Cartesian space trajectory generated by the
visual servoing scheme. The schematic diagram of the two stage control pro-
cess for vision-based redundant manipulator control is shown in Figure 1.5.
The visual servoing scheme uses the image features ud, u and the Carte-
sian space information x to compute the end-effector velocity ẋ. Redun-
dancy resolution schemes compute the joint angular velocity from the end-
effector velocity ẋ, using the current joint angle θ and the environmental
constraints.

Alternatively the vision space trajectories can be directly controlled from
the joint angle space by combining visual servoing with redundancy resolu-
tion in a single framework. The redundancy is achieved for the trajectories
specified in the vision space while satisfying the additional constraints intro-
duced by the environment. The schematic diagram of visual controller with
integrated visual servoing and redundancy resolution is shown in Figure 1.6.
The controller computes the joint angle configuration directly from the visual
feedback resulting in a direct and efficient control over the vision space.

14 Introduction

Redundant

Manipulator+ −

Redundancy ResolutionVisual Servoing

ud ẋ

θ

θ/θ̇ xVisual

Control Resolution

AlgorithmLaw

Camera(s)

Redundancy

Environmental Constraints

u

FIGURE 1.5: Classical vision-based redundant manipulator control scheme.

+ −

ud
x

u

Camera(s)

θ/θ̇

Redundancy Resolution

Redundant

Manipulator

Integrated

Visual Servoing

and

Environmental Constraints

θ

FIGURE 1.6: Visual control: Integrated visual servoing and redundancy res-
olution.

The relationship between image feature velocity and joint angular velocity
is obtained by combining equations (1.2) and (1.6) as,

u̇ = LPJθ̇
= Jθ̇ (1.8)

where P is the transformation matrix representing the coordinate transforma-
tion between the world coordinate frame and the camera coordinate frame,
and J = LPJ is a p ×m Jacobian matrix from the joint angle space to the
vision space. Here afterwards, the notation J will be used to represent the
Jacobian from the joint angle space to the vision space.

Visual Control of a Redundant Manipulator: Research Issues 15

The closed loop proportional controller resulting in asymptotic stabiliza-
tion is given as,

θ̇ = kp J+eu. (1.9)
Since the pseudo-inverse of the Jacobian J is used in the control law, the
controller would result in “lazy-arm movement.” The null space of J can be
used to satisfy the additional constraints required in the dynamic environment.

In this context, model-based redundancy resolution for visually controlled
manipulator is proposed in [81] for trajectories defined in vision space. The
trajectories are defined in vision space from a single camera in eye-in-hand
configuration, and then task sequencing is used to prioritize the task for
achieving kinematic limit avoidance. Mansard and Chaumette [82] achieved
obstacle avoidance by task sequencing while following vision space trajectories
in eye-in-hand configuration. Later the approach is extended for multiple-task
considering occlusion and kinematic limit avoidance together in [83]. These
approaches need accurate knowledge of the model and pseudo-inverse of the
Jacobian at each instant.

The redundancy can be resolved either for the Cartesian space end-effector
velocity estimated from visual servoing scheme or for the trajectories directly
defined in vision space. Both of these control schemes can be implemented in
model-based control framework. Development of learning-based visual control
schemes is motivated due to following the drawbacks of model-based control
paradigm.

1. Visual servoing requires the exact computation of image Jacobian L, and
kinematic Jacobian J is needed for the redundancy resolution. The accu-
rate knowledge about the workspace is required to compute L, which may
not be available in the dynamic environment and, hence, image Jaco-
bian is to be estimated at each instant in real-time. In addition, classi-
cal approaches need pseudo-inverse of both image and kinematic Jaco-
bian at each instant, which is computationally intensive. As degree-of-
freedom increases, the pseudo-inverse computation poses a major chal-
lenge in real-time implementation. Thus the efficient combined estimate
of pseudo-inverse of J and L using learning methodologies is an interesting
research problem within a learning-based paradigm.

2. Existing redundancy resolution schemes minimize an instantaneous cost
function and achieve local optimum in real-time. Minimizing an instan-
taneous cost function leads to instabilities resulting in high torque and
joint angular velocity, for long trajectories spanning the entire workspace.
Optimization of a global cost function as an integral cost function over
the entire trajectory leads to an offline optimal control problem. Such
global optimization schemes are robust to instabilities but cannot be imple-
mented in real-time as required in a visual servoing situation. Hence the
development of real-time optimal redundancy resolution schemes for global
cost function is one of the unsolved research problems in this area and
worth investigating within the learning paradigm.

16 Introduction

3. Just like kinematic visual control, optimality plays an important role in
dynamic visual servoing. Optimization in dynamic visual servoing results
in minimization of torque effort while avoiding the obstacles and kinematic
limits. An optimal control strategy which is computationally efficient and
robust to model inaccuracies and adaptive to environmental changes is
highly desirable. A learning-based paradigm for dynamic visual servoing
also poses an interesting research problem.

These challenges necessitate developing computationally efficient visual con-
trol schemes which are robust to model inaccuracies and could directly affect
the error in vision space from joint space. These goals can be achieved through
learning-based approaches. Learning-based control schemes can adapt their
behavior according to the feedback received from the environment and are
robust to model inaccuracies. An autonomous system which can improve its
performance with time, using the available feedback and cope up with model
inaccuracies and changes occurring in a dynamic environment is highly pre-
ferred for real-life implementation of the robotic systems. Robots are active
agents and are amenable for learning-based schemes, which do not require the
complete knowledge of the camera, manipulator, and the environment model.

This book is thus concerned with development of learning-based
approaches for controlling the redundant manipulators kinematically and
dynamically, directly from the vision space. Learning-based algorithms are
developed to resolve the redundancy while controlling the manipulator directly
from the vision space. Learning-based approaches are developed to resolve the
redundancy either by minimizing a local or a global performance index. NN
architectures which model the nonlinear controller as a cluster of local linear
controllers are used for redundancy resolution. The joint angle configuration
required to reach the desired position is computed as the output of the neural
networks using the positioning error in vision space and the additional environ-
mental constraints. The proposed learning-based control algorithms are tested
on a 7 DOF kinematically redundant PowerCube manipulator controlled with
stereo vision in eye-to-hand configuration.

1.5 Learning by Demonstration
Learning by demonstration (LbD) is also known as programming by demon-
stration (PbD) or imitation learning (IL). As we have already mentioned,
classical approaches of robot motion planning involves hard-coded program-
ming or pre-programming of robotic motions for predefined tasks, which in
fact limits the adaptability of the robotic motion in an dynamic environment.
Such manual motion planning also requires in-depth technical skill. With the
increasing degrees of freedom (DOF) in new generation robotic manipulators,

Learning by Demonstration 17

FIGURE 1.7: Learning by demonstration in human life: a) a child observes
how to kick a football; b) she kicks the football as demonstrated.

the robotic motion is expected to be more adaptive and intuitive while accom-
plishing a wide variety of tasks as the humans do. Given the scenario, manual
coding based solution is not viable anymore. In contrast, the learning-based
approaches are more intuitive. By making the robot capable of learning to
perform a task from instances such as watching the expert’s movement of
limbs, the rigorous manual programming can be avoided.

Learning in robotics is fundamentally motivated by the biological systems.
In motion learning, the robot is expected to learn new task-oriented policies1.
The learning could be solely trial-and-error basis where the policy is improved
based on the reward collected for performing an action. This reward based
learning is independent and falls under the category of reinforcement learning
(RL) [84–86] where an agent mainly learns suitable policies to achieve the
goal. In contrast, in LbD or IL the agent learns the policies by observing the
demonstrations given by the teacher to accomplish a specified task [87,88]. In
this case the policies are learned such that the error between the demonstrated
and the executed profile is minimized. In other words, policies are learned
under the supervision of the demonstrator.

LbD is a data-driven learning technique which humans use very frequently
in their life time. As a child grows up, LbD or IL plays a vital role in his/her
learning of numerous behaviors/skills such as communicating through ges-
ture, movements of limbs during various sports, common social behaviors,
playing an instrument (Figure 1.7 presents such examples). LbD being a pow-
erful alternative to classical motion planning techniques, it is employed in
both symbolic and trajectory level. In the symbolic level planning, the high-
level representation or the concept is encoded, i.e., the robot learns what the
demonstrator is trying to achieve, whereas in the trajectory level planning, the
robot encodes the trajectory itself, provided during human demonstrations.

1A policy is a map between the state-space and the action-space.

18 Introduction

FIGURE 1.8: A robotic manipulator is given kinesthetic demonstrations for
pick and place task.

It learns the nonlinear relationship between the sensory information and the
motor action. LbD at trajectory level is intended to reproduce demonstrated
trajectories as similar as possible. By the word similar it is meant that the pat-
tern of the demonstrated trajectory is preserved in the reproduced trajectory.
In both the cases, ultimately the intended task is accomplished. Therefore,
LbD based motion planning is implemented in two stages:

• Collecting data from demonstrations

• Learning a model from the data

The robot collects the relevant data during the demonstrations. The data
is generally recorded in the form of state-action-pair2. In the LbD paradigm,
the demonstrations can be provided to the robot by the following ways [89]:

• Kinesthetic
In kinesthetic teaching, the demonstrations are provided to the robot by
physically holding the robotic arm while guiding through the intended tra-
jectory to accomplish a task (see Figure 1.8). The main advantage of this
approach is that each point in the demonstrated trajectory is associated
with a joint space measurement. For instance, if the demonstrations involve
end-effector trajectories, then the associated inverse kinematic solutions
always exist.

2The state-action-pair is defined as the combination of the current state and commanded
action. For example, suppose a robotic manipulator is demonstrated a picking task; the
state-action-pair could be the position of the robot (joint/Cartesian space) and the velocity
at each sampling interval during the demonstrations.

Learning by Demonstration 19

• Teleoperation
Teleoperation is another technique of providing demonstrations to the
robot. It is quite popular in medical/surgical robots. The demonstration
is given to the robot by operating it using some joystick-like device for
a particular task. However, demonstrations through teleoperation are not
very accurate in the case of robots with high degrees of freedom.

• Observation
Demonstrations through observation is the most used technique in human
learning. Humans learn various limb movements by observing others. In
robots, when a demonstrator provides demonstrations, the activities are
recorded using a motion tracking system. The robot uses the data to learn
the motion profiles.

We mainly focus on kinesthetic demonstrations as the motion tracking sys-
tem is not required to record the data and these are more realistic than the
teleoperated demonstrations.

The trajectories are encoded in nonlinear functions represented by regres-
sive models (learned using Gaussian mixture regression, Gaussian processes,
support vector regression, etc.). The parameters of these regressive models
are learned from the demonstration data. These nonlinear functions are in
fact referred to as dynamical systems (DS) when represented as differential
equations, as they evolve through time to reproduce the robot’s trajectory.

1.5.1 DS-Based Motion Learning
Classical approaches of motion planning for robots divide a particular task
in two separate parts as planning and execution [90]. The planning part is
responsible for exploring the robot’s trajectory in the workspace and the exe-
cution part realizes the planned path as a trajectory tracking problem, which
employs various control theories to minimize the tracking error. Using DS-
based approach, these two parts are integrated in a single generalized model
[91–94]. The tedious manual programming part is avoided as the DS actu-
ally encodes the demonstrations in the form of movement primitives (MPs).
MPs are the building blocks of a motion learning system. In LbD approach
of motion learning, MPs are identified by learning the parameters of the DS
from demonstrations. Figure: 1.9 presents an example of such representation.
A DS-based system is represented as follows:

ẋ = ζ(x,θ) (1.10)

x is the state of the system (for example, it could be position when the DS
is modeled for reaching motion), θ is the parameter and ζ learns the map
between two spaces. Equation (1.10) is learned from demonstrations where the
expert shows how to accomplish an assigned task. To learn the DS, optimiza-
tion techniques are employed, which search for the appropriate parameters
that fit the demonstrations.

20 Introduction

FIGURE 1.9: This plot is an example of movement primitives in a demon-
strations. The dots as a whole represent the demonstrated trajectory (could
be in the joint or Cartesian space of a robotic a manipulator). All the trajec-
tories end at the black ’*’. The grey regions can be regarded as the movement
primitives learned from the demonstrations. These movement primitives are
learned in the form of dynamical systems which are locally linear and valid in
their neighborhood. The weighted combination of these local linear systems
represents complex motion profiles. The trajectory here is encoded using a
Gaussian mixture model where the ’+’ in the grey regions represents mean of
the Gaussian function.

DS-based systems are not guaranteed to be stable as they are learned
in unconstrained optimization process from the demonstration data which
includes sensor noise. An unstable system is never guaranteed to end up to
the target / equilibrium state while unfolding in time. On the other hand, a
globally stable DS is guaranteed to reach the the target state anywhere from
the state space even if the trajectory is perturbed. Hence, like human, a glob-
ally stable DS-based motion model has the capability of providing spontaneous
directional command to the robot to reach its goal anywhere in the reachable
workspace. The main advantage of using a DS-based system is that it can be
easily modulated as desired with resilience to perturbation and instant adapt-
ability [95]. During the last decade, DS-based techniques have been found
to be useful for many applications such as discrete motions [96–98], rhyth-
mic motions [99–101], and hitting motions [102]. DS models are learned from
multiple demonstrations to encode a specific behavior. Due to the modular
nature of the DS-based approach, many formulations have been suggested in
the recent past such as Vector Integration To Endpoint (VITE) model for
arm reaching movements [103–105], Central Pattern Generators (CPGs) to
model rhythmic behaviors [106–109], Reservoir Computing [110], and Recur-
rent Neural Network (RNN) [111–113].

In this context, another class of DS-based formulation is presented in
[92, 114] which can be modulated as per the task requirement. The Dynamic
Movement Primitive (DMP) is proposed to learn the DS from demonstration.
DMP consists of a PD controller and a nonlinear term that actually captures

Stability of Nonlinear Systems 21

the features of the demonstration. DMP is quite fast as it learns from a single
demonstration and is globally stable due to the PD controller. DMP has an
explicit dependence on time (which is its own clock) which in fact controls the
switching between the nonlinear term and the PD controller.

1.6 Stability of Nonlinear Systems
While designing a controller for a nonlinear system3 such as a robot, the
foremost priority is to analyze whether the overall system is stable or not. Any
dynamical system is associated with equilibrium point/state(s). The behavior
of the system in the neighborhood of the equilibrium state defines the system’s
stability.

Definition 1.1. A state x∗ is called as an equilibrium state of a dynamical
system if once the state of the system x(t) reaches at x(t) = x∗, it remains
there for all the future time.

The equilibrium state of a dynamical system can be calculated by setting
the state equation to zero at x(t) = x∗. We shall define a few terms those are
defined to analyze the stability of the dynamical systems. These definitions
are in frequent use in this thesis.

First, let us define a few notations: BR represents the ball given by ‖x‖ < R
in the state space defined by SR with ‖x‖ = R. The basic definition of stability
is given as follows [115]:

Definition 1.2. The equilibrium state x = 0 is said to be stable in the sense
of Lyapunov if, for any R > 0 there exists r > 0, such that if ‖x(0)‖ < r, then
‖x‖(t) < R for all t ≥ 0. Otherwise the equilibrium point is unstable.

Definition 1.2 essentially states that the equilibrium state is called stable
if a state starting within the radius r, remains in the ball BR with arbitrarily
chosen R. However, for the kind of problem we are interested in, it requires the
states of the system not only remain in a region, but also attain the desired
value. This type of requirement is addressed by the concept of asymptotic
stability which is defined as [115]:

Definition 1.3. The equilibrium state x = 0 is said to be locally asymptoti-
cally stable if it is stable, and if there exists r > 0, such that ‖x(0)‖ < r and
eventually x(t) = 0 as t→∞.

Definition 1.3 states the asymptotic stability of a dynamical system locally
in the state space. The global asymptotic stability of the dynamical system is
given as follows:

3In this thesis we work with autonomous systems. Any system we mention here should
be considered an autonomous system unless it is explicitly described otherwise.

22 Introduction

Definition 1.4. The equilibrium state x = 0 is said to be globally asymptot-
ically stable if the asymptotic stability holds for any initial state x(0) = x0.
It is also termed as asymptotically stable in the large.

Lyapunov stability theorems are used in this thesis to determine the sta-
bility criteria of the learned DS and are given as follows [115]:

Theorem 1.1. If there exists a scalar function V (x) associated with (1.10)
has continuous first order partial derivatives in a ball BR and such that

• V (x) is positive definite in BR

• V̇ (x) is negative semi-definite in BR

then the equilibrium point x = 0 is locally stable. If V̇ (x) is negative definite
in BR, then the equilibrium point is locally asymptotically stable.

Theorem 1.2. If there exists a scalar function V (x) associated with (1.10)
has continuous first order partial derivatives such that

• V (x) is positive definite

• V̇ (x) is negative definite

• V (x)→∞ as ‖x‖ → ∞
then the equilibrium point x = 0 is globally asymptotically stable.

Theorem 1.2 essentially suggests that if the dynamical system is globally
asymptotically stable, BR spans over the entire state space. Let V : S → < is
a continuously differentiable positive definite function in S where S contains
the origin of the state space. We can note the following on stability of the
system.

• If ∂V
∂x ζ is negative semi-definite in BR, then the equilibrium state of the

system (1.10) is stable in BR.

• If ∂V∂x ζ is negative definite in BR, then the equilibrium state of the system
(1.10) is asymptotically stable in BR.

• If ∂V
∂x ζ is negative definite in BR and BR spans the entire state space,

then the equilibrium state of the system (1.10) is globally asymptotically
stable.

1.7 Optimization Techniques
Optimization has been used as an important tool in this thesis to learn the
parameters of the data-driven models. The role of the optimization algorithm

Optimization Techniques 23

FIGURE 1.10: The optimization algorithm searches for a solution from the
white region with minimum associated cost. The solutions from the grey region
may promise a lower objective values but they are not useful as they do not
satisfy the constraints. The black circle represents the global optimal solution
in this case.

in the context is to minimize the error between the model prediction and the
actual measurement by searching appropriate set of parameters in the model.
As we have already discussed that an unconstrained search process does not
guarantee stability of the models, the search space needs to be constrained by
imposing the desired criteria. In general, an optimization problem is formu-
lated as follows:

minimize
w

P (w)

subject to Cceqality(w) = 0 c = 1, ..., n
Ccineqality(w) ≤ 0 c = 1, ...,m

(1.11)

where, w is called the design parameter and P (w) is called the performance
index or objective function of the system parameterized by w. The inten-
tion is to find a w (= woptimal) that is associated with the minimum value
of P (w). Cceqality(w) and Ccineqality(w) represent the equality and inequality
constraints respectively. The solution to this problem must satisfy these con-
straints. Figure 1.10 explains the constrained optimization where the solutions
from the grey region do not satisfy the constraints in (1.11). The optimization
algorithm is expected to find a solution from the white region of the solution
space, associated with minimum value of P (w).

In general optimization problems can be categorized as convex and non-
convex problems. An optimization problem is convex when both its objective
and the constraints are convex function. The characteristic of a convex opti-
mization problem is if there exists an optimal solution to the problem, it
is associated with the global optima [116]. But the same is not true about

24 Introduction

the non-convex optimization problems. A non-convex optimization problem is
that, which has at least one non-convex function as the objective or as con-
straint. A non-convex optimization problem suffers from local optima problem
and thereby making it difficult to solve [117].

Techniques have been developed to find the optimal solution of the non-
convex problems. Interior-point methods, active-set techniques, sequential
quadratic programming, etc., [118–120] are quite efficient and fast to find solu-
tions which are locally optimal. Being local optimization techniques, these
approaches end up as different solutions with different initial guesses. The
chances of finding the global optima is high if the initial guess is close to the
global optima. On the other hand genetic algorithm (GA) [121, 122], particle
swarm optimization [123], and simulated annealing [124] reaches global optima
(ideally) given a non-convex optimization problem. However, this achievement
comes with expensive computation when the variable size is high. In this the-
sis work we mostly deal with non-convex constrained optimization problems
as the work involves finding of appropriate means and covariances of nonlin-
ear membership functions, matrices with certain sign, vectors having certain
angles with some arbitrary vector, etc. GA has been frequently used in this
thesis as it is good at handling such constraints while minimizing the objective
value.

1.7.1 Genetic Algorithm
Genetic algorithm (GA) is a heuristic search approach applicable to a wide
range of optimization problems. The algorithms have the capability of discov-
ering the global minimum in an optimization problem if it is run for sufficient
number of generations. The GA is motivated by the natural evolution of the
living creatures, which makes them able to adapt the changing environment
by creating complex structure over generations. Hence, evolution is the funda-
mental policy in GA. Mating of two different individuals and getting different
offspring is the key to success of the natural evolution. GA also comprises sim-
ilar steps. In this section we briefly discuss all these steps to give an overview
of GA. A GA is driven by a few genetic operator such as crossover, mutation

Algorithm 1 Basic architecture of GA
1: Create a set of initial population
2: for Each generation do
3: for Each chromosome do
4: Perform crossover
5: Perform mutation
6: Compute fitness
7: end for
8: Select parent chromosomes for mating based on fitness
9: end for

Optimization Techniques 25

FIGURE 1.11: The creation of the offspring in a new generation is depicted
here. The chromosomes in the new generation have the possibility to retain
better fitness value than the previous generation as the genes are shuffled
between parents.

which play the pivotal role in creating better offspring. Algorithm 1 presents
the basic architecture of the GA.

Crossover: Crossover is a genetic operator that amalgamates the genes
of two chromosomes from the parents in order to create new chromosome. In
GA, a chromosome is represented by a bit string. In n-point crossover, n is
selected randomly. The strings are split up in two segments at the n position
and the segments are exchanged to create two new strings as shown in the
Fig. 1.11. Mutation: Mutation is another genetic operator. It brings random
changes in a chromosome with a hope that the change will give good fitness
to the new chromosome. Mutation is performed based on a probability factor.
This sometimes saves the algorithm from being stuck in the local minima.
Fitness: The fitness of a chromosome is evaluated based on a fitness function.
The fitness function defines the optimization problem. After the crossover and
mutation, the new chromosome goes through the fitness test. The fitness tells
how close the chromosome is to the optimal solution. Selection: The elite
offsprings are selected based on the fitness values of the chromosomes. These
elites are considered the parental population for the new generation.

Termination: The algorithm is terminated based on some termination
criteria such as number of generations, minimum cost achieved, number of
stall generations. The chromosome with the best fitness gives the solution to
the optimal problem.

1.7.2 Expectation Maximization for Gaussian Mixture
Model

Gaussian mixture model (GMM) is efficient in capturing the underlying dis-
tribution of real datasets as it uses linear superposition of Gaussian com-
ponents [125]. Such superposition can be developed as probabilistic models
known as mixture distributions [126, 127]. By tuning the means, covariances,

26 Introduction

and the priors in a GMM of sufficient number of Gaussian components, almost
any continuous density can be estimated with arbitrary precision. The Gaus-
sian mixture distribution is given by superimposing K Gaussian components
and is represented as follows:

p(x) =
K∑
k=1

πkN (x|µkΣk) (1.12)

where, each N (x|µkΣk) is the Gaussian component with their own mean µk
and covariance Σk. The superposition of the components is parameterized by
the prior (mixing coefficient) πk. In order to capture the data distribution,
the parameters µk, Σk and πk need to be properly adjusted.

Expectation maximization (EM) is a sophisticated and powerful optimiza-
tion technique to find maximum log-likelihood solutions for models with latent
variables [128,129]. For a dataset X = [x1 x2 ... xN]T , xi ∈ <d, with the cor-
responding latent variable Z = [z1 z2 ... zN]T , zi ∈ <K , the log-likelihood
associated with the Gaussian mixture distribution of K components is given
by

ln p (X|π, µ,Σ) =
N∑
n=1

ln
[
K∑
k=1

πkN (xn|µkΣk)
]

(1.13)

where πk is the mixing coefficient and µk and Σk are the mean and co-
variance of the associated Gaussian. The expression for the mean and the
covariance matrix can be obtained by applying the optimality condition to
the log-likelihood and are given as follows:

µk = 1
Nk

N∑
n=1

γ(znk)xn (1.14)

γ(zk) = πkN (xn|µkΣk)
K∑
j=1

πjN (xn|µjΣj)
(1.15)

Nk =
N∑
n=1

γ(znk) (1.16)

and

Σk = 1
Nk

N∑
n=1

γ(znk) (xn − µk) (xn − µk)T (1.17)

Composition of the Book 27

and finally,

πk = Nk
N

(1.18)

Algorithm 2 describes the steps in the EM algorithm for finding the optimal
set of parameter in GMM.

Algorithm 2 Steps in EM algorithm
1: Initialize µk, Σk and πk.
2: while EM has not converged do
3: E step: Evaluate γ(zk) as given in (1.15).
4: M step: Re-estimate the parameters µk, Σk and πk (as given in

(1.14),(1.17) and (1.16)) that maximize the log-likelihood.
5: Compute the log-likelihood as given in (1.13)
6: end while

1.8 Composition of the Book
The remaining chapters are organized as follows. The kinematic and dynamic
models of the robot manipulator used for experimentations are included in
Chapter 2. Chapter 3 deals with the hand-eye coordination of a Robotic
Arm using KSOM Network. The Model-based visual servoing of a 7 DOF
manip- ulator is detailed in Chapter 4. Chapter 5 focuses on development
of optimal redundancy resolution scheme for visually controlled redundant
manipula- tor. Visual servoing using an adaptive distributed Takagi-Sugeno
(T-S) fuzzy model has been detailed in Chapter 6. The kinematic control
of the robotic manipulator using Single Network Adaptive Critic (SNAC)
has been briefed in Chapter 7. Chapter 8 deals with the dynamic control
of manipulators using SNAC. Imitation learning techniques and their appli-
cation in robotic systems are detailed in Chapter 9. Chapter 10 deals with
the deep learning-based visual perception techniques. Chapter 11 deals with
visual grasping techniques. Warehouse automation, an experimental example
for intelligent control of robotic systems, has been detailed in Chapter 12.
Chapter 13 gives an introduction to the mobile robotics and control. The var-
ious multi-robot formation coordination and control techniques are given in
Chapter 14. Chapter 15 deals with the event triggered-based multi-robot con-
sensus. Various vision-based tracking algorithms for a human following mobile
robot and their experimental demonstrations are detailed in Chapter 16.

http://taylorandfrancis.com

Part I

Manipulators

http://taylorandfrancis.com

2
Kinematic and Dynamic Models of Robot
Manipulators

There are many available benchmark robot manipulators which are used in the
laboratory for research purposes. Three such robot manipulators have been
selected for experimentations. All appropriate control algorithms as presented
in this book are tailormade for these three sets of manipulators. These are as
follows:
• Seven degrees of freedom PowerCube manipulator from Schunk

• Six degrees of freedom Manipulator - UR10 - from Universal Robotics

• Seven degrees of freedom Manipulator - direct drive whole arm Manipu-
lator (WAM) from Barrett
It is important that readers become familiar with these models in terms

of both kinematics and dynamics before reading subsequent chapters.
The vision-based redundant manipulator control strategies as presented in

Chapters 3 and 4 have been implemented on a 7 DOF PowerCube™ robot
manipulator supplied by SCHUNK [130, 131], whose end-effector is visually
seen through a stereo-vision setup fixed on the workspace. A brief introduction
of this experimental set-up is given in this chapter for easier understanding
of the simulation and the experimental results presented in the book. The
kinematic model of this manipulator, along with the model and the image
Jacobian of the stereo-vision setup is presented in this chapter as well.

The dynamic control using SNAC as presented in Chapter 8 uses the Bar-
rett Arm. The complete dynamic model has been presented in this chapter
as well. The vision-based picking and stowing using UR10 arm has been pre-
sented in Chapter 12. The kinematic model of this UR10 manipulator has
been briefly described in this chapter as well.

2.1 PowerCube Manipulator
The 7 DOF PowerCube™ manipulator and the workspace comprising the
stereo-vision set-up are shown in Figure 2.1. The end-effector of the manip-
ulator is seen through the two Fire-i™ digital cameras [132] fixed in the

31

32 Kinematic and Dynamic Models of Robot Manipulators

(a)

Camera2

Camera1

PowerCube

(b)

FIGURE 2.1: Experimental setup: (a) PowerCube™ Manipulator (b) Workspace
with stereo vision

workspace. The cameras are located at the top corners of the Figure 2.1(b) and
the two cameras are mounted such that a large workspace is available for real-
time implementation. The end-effector is identified in vision space with a red
tape wrapped around it, and the desired position is represented using a yellow
ball during experimentation. The manipulator and the workspace are observed
through the cameras with an image frame of dimension 320 × 240 pixels.
The current position of the end-effector gets projected in the image plane and
the regions of interest are extracted using image processing techniques such
as thresholding and filtering. The centroid of the identified region is used to
identify the current position of the end-effector and the desired position. The
image processing and the learning-based control scheme are implemented on
a PC (personal computer) with Intel Core 2 Duo E7300 CPU with 2.66 GHz
clock and 4GB RAM. The computer is operated with Debian 4.02 operating
system running in multi-user graphics mode with all the services enabled. The
proposed learning-based schemes are to be tested in the Cartesian space vis-
ible in both the cameras. Typical workspace visible through stereo-vision is
shown in Figure 2.2. A cubic volume is chosen within the workspace to learn
the inverse kinematic solution, so that it will be easier to choose the desired
position in real-time implementation.

2.2 Kinematic Configuration of the Manipulator
The coordinate frames of individual joint of the PowerCube manipulator is
shown in Figure 2.3. The forward kinematic relationship of 7 DOF PowerCube
manipulator is obtained from D-H parameters [14] given in Table 2.1, where

Kinematic Configuration of the Manipulator 33

(a) (b)

FIGURE 2.2: View of the workspace from stereo-vision. The robot manipulator
end-effector is identified with red tape (a) Left Camera (b) Right Camera.

TABLE 2.1: D-H Parameters of PowerCube™

link (i) αi ai di θi
1 −900 0 d1 θ1
2 900 0 0 θ2
3 −900 0 d3 θ3
4 900 0 0 θ4
5 −900 0 d5 θ5
6 −900 0 0 θ6
7 1800 0 d7 θ7

the dimensions of the manipulator links are: d1 = 0.368m, d3 = 0.3815m,
d5 = 0.3085m, and d7 = 0.2656m.

D-H parameter computes the position of the end-effector with respect to
the world coordinate frame, whose origin O0 is located at the base of the
manipulator. The end-effector position is obtained using the aforementioned
D-H parameters as follows:

x = −d7((−(c1c2c3 − s1s3)s4 − c1s2c4)c6 − ((−c1c2s3 − s1c3)s5

+((c1c2c3 − s1s3)c4 − c1s2s4)c5)s6)
+d5((c1c2c3 − s1s3)s4

+c1s2c4) + d3c1s2

y = −d7((−(c1s3 + s1c2c3)s4 − s1s2c4)c6
−((c1c3 − s1c2s3)s5 + ((c1s3 + s1c2c3)c4 − s1s2s4)c5)s6)
+d5((c1s3 + s1c2c3)s4

+s1s2c4) + d3s1s2

34 Kinematic and Dynamic Models of Robot Manipulators

O3

O6

O7

O2

x1

z2

x2

x3

z4

x4

x5

x6

x7

O4

z6

y7

y6

y5

y3

y1

x0

O0

O1

d1

d3

d5

d7

O5
z5

y4

z3

y2

z1

y0

z7

z0

FIGURE 2.3: Assignment of DH frames for the UR10 robot associated to table
above. Except for x2 and x3, all other xi points inside the sheet.

z = −d7((s2c3s4 − c2c4)c6 − (s2s3s5 + (−c2s4 − s2c3c4)c5)s6)
+d5(c2c4 − s2c3s4)
+d3c2 + d1 (2.1)

where ci = cos θi, si = sin θi, i = 1, 2, . . . 6. The end-effector position is inde-
pendent of θ7 since the seventh link generates roll motion for the manipulator

Estimating the Vision Space Motion with Camera Model 35

TABLE 2.2: Kinematic limits of the manipulator

Joint angle Joint Velocity (rad/sec)
−160◦ ≤ θ1 ≤ 160◦ 1.7e− 5 ≤ θ̇1 ≤ 2.618
−95◦ ≤ θ2 ≤ 95◦ 1.7e− 5 ≤ θ̇2 ≤ 2.618
−160◦ ≤ θ3 ≤ 160◦ 1.7e− 5 ≤ θ̇3 ≤ 2.618
−90◦ ≤ θ4 ≤ 90◦ 1.7e− 5 ≤ θ̇4 ≤ 2.618
−160◦ ≤ θ5 ≤ 160◦ 1.7e− 5 ≤ θ̇5 ≤ 2.618
−120◦ ≤ θ6 ≤ 120◦ 1.7e− 5 ≤ θ̇6 ≤ 4.189
−720◦ ≤ θ7 ≤ 720◦ 1.7e− 5 ≤ θ̇7 ≤ 6.283

configuration. We mainly focus on the positioning the end-effector at a desired
location. The orientation of the end-effector is not considered and, hence,
x ∈ R3 in all the experiments is carried out in this thesis. Since θ7 does not
contribute to a change in the position, θ7 will not be shown while discussing
the experimental results and it is assumed as to be 0.

The physical kinematic limits of the manipulator are tabulated in Table
2.2. These limits constrain the implementation of kinematic control scheme
and the control schemes can be physically realized only if they generate joint
angle trajectories which satisfy the tabulated physical limits.

2.3 Estimating the Vision Space Motion with Camera
Model

The positional coordinates of the end-effector in the Cartesian space get pro-
jected as pixel coordinates in the frame buffer of the image plane. The position
x = [x y z]T in the Cartesian space gets projected into the camera frame buffer
as (xf , yf), which corresponds to the x− y coordinates of the camera frame
buffer respectively.

The positions of the end-effector in both the Cartesian and the vision
space are used during learning phase and in simulations. The position of the
end-effector in the vision space is obtained through series of transformations.
These transformations are computed as a camera model, which computes the
position of the point in the vision space, from the point’s position in the
Cartesian space. This necessitates a camera model to compute u from x in
simulations.

36 Kinematic and Dynamic Models of Robot Manipulators

2.3.1 Transformation from Cartesian Space to Vision Space
The transformation associated with computing a point’s position in the vision
from the Cartesian space is shown in Figure 2.4. The origin of the world
coordinate frame and that of the camera coordinate frame are shown as Ow
and Oc respectively. The origin of the camera coordinate frame is located at
[Tx Ty Tz]T in the world coordinate frame and the orientation is represented
using Rc. The origin of the camera coordinate frame (xc, yc, zc) coincides with
front nodal point of the camera and the zc axis coincides with the camera’s
optical axis. The image plane is assumed to be parallel to the (xc, yc) plane
at a distance of f from the origin, where f is the effective focal length of the
camera. The position (xf , yf) of a point P in the camera plane is obtained
from the point’s position x = [x y z]T in the world coordinate frame as follows:

The position x = [x y z]T is transformed from the world coordinate frame
to the position xc = [xc yc zc]T in the camera coordinate frame through
rotation Rc and translation Tc. The transformation is expressed in the form

x

z

y

f

yc

zc
zc

(cx, cy)

(xu, yu)

ow

oc

P

(Rc, Tc)

FIGURE 2.4: Transformation from Cartesian space to vision space.

Estimating the Vision Space Motion with Camera Model 37

of equation as,xcyc
zc

 = Rc

xy
z

+

TxTy
Tz

 , where Rc =

r1 r2 r3
r4 r5 r6
r7 r8 r9

 . (2.2)

In the above equation, Rc describes the orientation of the camera in the world
coordinate frame, and Tc = [Tx Ty Tz]T is the translational position of the
camera in the world coordinate frame. The projected position of the point P
in the image plane is computed using an ideal pinhole camera model. This
transformation is obtained by perspective projection as follows:

xu = f
xc
zc

yu = f
yc
zc
. (2.3)

The position (xu, yu) is computed with the assumption of an ideal pinhole
camera. But, there exists distortion and the position obtained with ideal pin-
hole model is not accurate. This is compensated by using the lens distortion
coefficient κ. The true position of the point’s image (xd, yd) in the sensor
plane is computed from the ideal undistorted position as,

xu = xd(1 + κρ2)
yu = yd(1 + κρ2) (2.4)

where ρ =
√
x2
d + y2

d. Finally the image of the point is transformed from the
sensor plane to its coordinates in the camera’s frame buffer (xf , yf) as,

xf = sxxd
dx

+ cx

yf = yd
dy

+ cy (2.5)

where

cx, cy : Pixel coordinates of optical center;

sx : Scale factor to account for any uncertainty due to imperfections in
hardware timing for scanning and digitization;

dx : Dimension of camera’s sensor element along x coordinate direction
(in mm/sel);

dy : Dimension of camera’s sensor element along y coordinate direction(in
mm/sel).

The computation of a point’s position in the frame buffer requires the geo-
metric and camera parameters used in the aforementioned transformations.

38 Kinematic and Dynamic Models of Robot Manipulators

The parameters which specify the position and the orientation of the camera
relative to the world coordinate frame are commonly known as extrinsic or
external parameters. The camera parameters which project the point from the
camera coordinate frame to the frame buffer are known as intrinsic or internal
parameters. The camera calibration is the process of estimation of a model
for camera overlooking a workspace.

2.3.2 The Camera Model
Tsai’s algorithm [133] is a popularly known camera calibration technique, and
an online implementation of the Tsai calibration algorithm is proposed by R.
Willson [134]. The Tsai model is based on the pinhole perspective projection
discussed above and estimates eleven parameters: f , κ, cx, cy, sx, Tx, Ty, Tz,
Rx, Ry, and Rz. Tsai model represents the rotation angles for the transfor-
mation between the world and camera coordinates with (Rx, Ry, Rz). The
elements of the rotation matrix Rc is computed from [Rx, Ry, Rz] as follows:

r1 = cβcγ

r2 = cγsαsβ − cαsγ
r3 = sαsγ + cαcγsβ

r4 = cβsγ

r5 = sαsβsγ + cαcγ

r6 = cαsβsγ − cγsα
r7 = −sβ
r8 = cβsα

r9 = cαcβ

(2.6)

where cα = cos(Rx), cβ = cos(Ry), cγ = cos(Rz), sα = sin(Rx), sβ = sin(Ry),
sγ = sin(Rz).

In addition to the above eleven variable camera parameters, Tsai’s model
uses the following six fixed intrinsic camera constants:

dx : Size of camera’s sensor element in x coordinate direction (in mm/sel),

dy : Size of camera’s sensor element in y coordinate direction (in mm/sel),

Ncx : Number of sensor elements in camera’s x direction (in sels),

Nfx : Number of pixels in frame grabber’s x direction (in pixels),

dpx : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel), and

dpy : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel).

These six parameters can be obtained from the manufacturer’s data sheet.

Estimating the Vision Space Motion with Camera Model 39

The chess board based calibration algorithm available in OpenCV [135] is
used to obtain the data points over the workspace seen through the stereo-
vision setup.

The image feature vector u is obtained using the estimated model for
stereo-vision as u = (u1 u2 u3 u4)T where (u1, u2) and (u3, u4) are the x− y
coordinates of the first and the second camera respectively. Hence, (u1, u2) is
the (xf , yf) of the first camera, and (u3, u4) corresponds to the (xf , yf) of
the second camera respectively. Hence, the control vectors ud and u belong
to R4 in the all the experiments presented in this thesis.

2.3.3 Computation of Image Feature Velocity in the Vision
Space

The image Jacobian which represents the motion of the image features with
respect to the motion in the Cartesian space is given by,

L =
[
kcx
zc

0 −kcx(xf−cx)
zc

0 kcy
zc

−kcy(yf−cy)
zc

]
(2.7)

where (kcx, kcy) are the gains associated to transform the Cartesian space
position to the x-y coordinate of the vision space, and zc is the distance
between the image plane and the object in the camera coordinate frame. The
camera gains (kcx, kcy) are computed using the camera parameters as follows:

kcx = fsx
dx

kcx = f

dy
. (2.8)

The vision space velocity is computed from the Cartesian space velocity as,
u̇1
u̇2
u̇3
u̇4

 =
[

L1 0
0 L2

] [
ẋc1
ẋc2

]
(2.9)

where Li is the image Jacobian of the ith camera, ẋci =
[
ẋci ẏci żci

]T
represents the velocity of the end-effector in the coordinate frame of the ith
camera.

The end-effector velocity in the coordinate frame of the ith camera is
computed as, ẋciẏci

żci

 = Rci

ẋẏ
ż


ẋci = Rci ẋ (2.10)

40 Kinematic and Dynamic Models of Robot Manipulators

where Rci is the rotational transformation between the robot coordinate frame
and the camera coordinate frame. The parameters (kcx, kcy), (cx, cy), and Rc

are obtained from the camera model estimated with Tsai algorithm.

2.4 Learning-Based Controller Architecture
The kinematic and camera model described above are used during the training
phase of the proposed learning-based control methodologies, and the learned
controller is then tested in both simulations and real-time experiments. The
schematic of a typical vision-based manipulator control scheme in learning
paradigm is shown in Figure 2.5. It consists of a stereo-vision system and a

Controller

Learning-
based Processing

Image

Unit

Servo

Unit

(u3, u4)

(u1, u2)

Robot Manipulator

7DOF PowerCube

Driving

Target

Camera2

u

ud

Camera1

θ/θ̇

PC - Intel Core 2 Duo E7300 CPU with 2.66GHz clock and 4GB RAM

FIGURE 2.5: Schematic of visual servo control i) u1, u2, u3, u4 : Camera coor-
dinates seen through stereo-vision system ii) ud : Desired position (object) iii)
u: Current position of end-effector iv) Control input θ - joint angle, θ̇ - joint
angular velocity.

Universal Robot (UR 10) 41

robot manipulator. Image processing as well as the learning-based controller
are executed on a personal computer. The image processing unit is used to
extract 4-dimensional image coordinate vectors to represent the current end-
effector position u, and the desired position ud. The learning-based controller
generates either the joint angle θ or the joint angular velocity θ̇, which is
given to the servo unit to drive the robot manipulator so that the end-effector
reaches the desired position.

2.5 Universal Robot (UR 10)
Amazon Robotics Challenge 2017:
ARC’ 17 posed a simplified version of the task that humans face in ware-
houses across the globe, namely, stowing items from tote into a storage sys-
tem and then picking items from storage system and putting those items into
Amazon packing boxes. Each team was asked to design a fully autonomous
robot to perform such task. A set of forty items was provided, referred to as
known-set. In addition, a set of novel items was also provided before forty-
five minutes from the start of task. Each task involved picking or stowing of
a set of items referred as competition-set, having equal numbers of known
and novel items, and have a maximum physical volume of 95, 000 cm3, and
ii) Design a visual perception system which can perform object recognition in
the presence of cluttered known and novel items. Sixteen teams were selected
worldwide for this challenge. In the stow task, twenty items were provided, all
of which had to be stowed into the designed storage system. In the pick task,
thirty-two items were given and ten of them had to be picked and placed in a
tote. Top eight teams, based on the combined performance in previous tasks,
were selected for the final stow-pick task in which a total of thirty-two items
was provided. In this task, the teams were required to first perform a stow task
and then a pick task. This task was relatively challenging as the errors of the
stow task could propagate to the pick task. Apart from this, an item dropping
from above a specified height or any item protruding from the storage system
by more than 2.5 cm was penalized. Moreover, reporting incorrect location of
the items in the storage systems also contributed to penalty.

2.5.1 Mechatronic Design
2.5.1.1 Platform

Our robot platform setup shown in Figure 2.6 consists of a UR10 robot
manipulator with its controller box/internal computer and a host PC/exter-
nal computer. The UR10 robot manipulator is a 6 DOF robot arm designed
to safely work alongside and in collaboration with a human. This arm can

42 Kinematic and Dynamic Models of Robot Manipulators

FIGURE 2.6: Our robotic system workspace for ARC’17. Image courtesy:
Amazon Robotics.

follow position commands like a traditional industrial robot, as well as take
velocity commands to apply a given velocity in/around a specified axis. The
low level robot controller is a program running on UR10’s internal computer
broadcasting robot arm data, receiving and interpreting the commands and
controlling the arm accordingly. There are several options for communicating
with the robot low level controller to control the robot including the teach
pendent or opening a TCP socket (C++/Python) on a host computer. We
used open source C++ based UrDriver wrapper class integrated with ROS
on a host PC (Intel i7 processor with 16 GB of system RAM) to implement
our proposed velocity based kinematic control scheme. The host PC streams
joint velocity commands via URScript to the robot real-time interface over
Ethernet at 125Hz. The driver was configured with necessary parameters like
IP address of the robot at startup using ROS parameter server.

Universal Robot (UR 10) 43

2.5.1.2 End-Effector

Amazon provided a large variety of items most of which could be grasped
using suction, few of which were deformable, transparent, book, etc. There-
fore, our end-effector design is suction based grasp. It has a rectangular suction
hose followed by a nozzle which can rotate between 0◦ to 90◦. The nozzle tip
contains a bellow and its angle is governed by a linear actuator. The suction
hose and nozzle are connected through a flexible rubber tube. The two vac-
uum cleaners were employed to generate required suction to grasp an item. A
custom designed bleed valve with linear actuation was used to ensure instant
release of a grasped item, otherwise the item remains attached to the end-
effector until the suction pressure drops entirely. Furthermore, a manifold
air pressure sensor, is also inserted near the vacuum cleaners to reflect the
air pressure as an analog voltage which is converted to a digital value and
provides feedback for a firm grasp. To close the loop for sensing grasped
items, we used flow meter reading to sense pressure difference and force-
torque sensor mounted on end-effector (wrist-3-link for UR10) for force
feedback.

2.5.1.3 Perception Apparatus

We used eye-in-hand approach, i.e., the vision hardware consisting of RGB-D
Ensenso camera with a HD Foscam camera was mounted on the manipulator
itself in contrast to the other teams which used the vision hardware exter-
nally. This offered us an advantage of an extremely simplified system with
minimal external components while relegating the need of complex external
sensor calibration procedures. However, for the proper realization of the eye-
in-hand approach, the vision and manipulator system should be calibrated.
We achieved this by developing a semi-autonomous procedure based on which
the system can self-calibrate itself while requiring minimal human effort.

2.5.2 Kinematic Model

TABLE 2.3: DH parameters (in mm or rad), with the value of θ ∈ R6 in the
shown configuration below

Link i αi ai di θi
1 −π2 0 d1 = 128 θ1 = 0
2 0 a2 = −612.7 0 θ2 = π

2
3 0 a3 = −571.6 0 θ3= 0
4 π

2 0 d4 = 163.9 θ4 = −π2
5 −π2 0 d5 = 115.7 θ5= 0
6 0 0 d5 = 92.2 θ6= 0

44 Kinematic and Dynamic Models of Robot Manipulators

FIGURE 2.7: Assignment of DH frames for the UR10 robot associated to table
above. Except for x2 and x3, all other xi points inside the sheet.

The homogeneous transformation matrix (arm matrix) T0n for an n
DOF manipulator, which represents the final position and orientation of
end-effector with respect to the base coordinate system, can be obtained by
chain product of successive coordinate transformation matrices using standard
Denavit–Hartenberg(D-H) parameters [14]. Let Ti1,i for i = 1, 2...., n be the
transformation matrices between successive arms, the final arm matrix can be
expressed as T0n =

∏n
i=0 Ti1,i.

Jacobian of a Robotic Structure, which can be derived directly from the
relation between joint positions and end-effector position, is the mapping
between velocities in each coordinate system. It is a very useful relation espe-
cially in kinematic control. The velocity space is easier to operate in when
we want to determine the inverse kinematics iteratively. In practical terms
this implies what end-effector velocities will occur, relative to the base-frame,

Barrett Wam Manipulator 45

corresponding to certain joint velocities. This relationship is established
through the Jacobian [14].

Consider forward kinematics of an n DOF robot manipulator with task
workspace configuration consisting of position and orientation with respect
to base coordinate system and designated as X ∈ RNw , where Nw represents
number of independent variables in robot task space. We represent a manipu-
lator joint configuration with variable θ ∈ RNc , where Nc represents number
of independent variables in robot joint configuration space.

The kinematic relationship of a robotic structure can be represented by
following sets of equations.

x1 = f1(θ1, θ2,θNc)
x1 = f2(θ1, θ2,θNc)

...
xNw = fNw(θ1, θ2,θNc)

The forward kinematic model for the manipulator for a given joint config-
uration θ̂ can be written as,

X = f(θ̂) (2.11)

Here, θ̂ ∈ RNc is the vector of joint configuration involved in the forward
kinematic model and X ∈ RNw is the vector of position and orientation with
respect to base coordinate system.

The derivative of X w.r.t. time t is

Ẋ = ∂f(θ̂)
∂θ̂

˙̂
θ = J˙̂

θ (2.12)

where, J = ∂f(θ̂)
∂θ̂

is the Nw ×Nc manipulator Jacobian matrix. Formally, the
Jacobian is a set of partial differential equations - a multidimensional form of
a derivative. We can split the Jacobian into a linear velocity contribution Jv
and an angular velocity contribution Jv [14].

J =
[
Jv
Jw

]
(2.13)

2.6 Barrett Wam Manipulator
2.6.1 Overview of the System
The proposed dynamic motion generation module along with the developed
control scheme to generate motor skills for novel situation was demonstrated
using a basic ball hitting experiment. We employed a 4 DOF Barrett WAM

46 Kinematic and Dynamic Models of Robot Manipulators

FIGURE 2.8: System overview.

robot manipulator for the same. The ball was suspended from a fixed height
with a string. Vision system consisted of two off the shelf Basler’s cameras.
The ball is detected using standard segmentation techniques and an extended
kalman filter (EKF) was employed to predict the ball interception point. Since
at the ball interception point there is a discrete jump in the dynamics of
the moving ball, an interim system is employed to take care of this hybrid
dynamics and ensure the convergence of the EKF. Once the ball prediction
touches the ball interception plane the goal parameters (θg, θ̇g) corresponding
to the predicted ball interception point is passed to the trajectory generation
module in real time. Then a novel trajectory is generated by mixing the a
priori demonstrated primitives in the library. This trajectory is then fed to
the control scheme for accurate and stable execution. Once the ball is returned
the follow up DMP trajectory from the ball interception point to the home
position is joined with the striking trajectory and and the robot returns to
the home position. Execution foe of the entire system is depicted in Figure
(2.8). In the next section the background of DMPs and FSMC is discussed.

2.6.2 Experimental Setup
Experimental hardware setup consists of a 4 DOF Barrett Wam robot manip-
ulator, a hanging ball, and two off the shelf Basler’s acA800− 550uc cameras
at 200 frames per second (FPS) and 800X600 resolution. The ball is detected
using standard segmentation techniques and EKF was employed to predict the

Barrett Wam Manipulator 47

FIGURE 2.9: Hardware setup consisting of two off the shelf cameras, a hanging
ball and 4 DOF Barrett Wam Robot Manipulator.

ball interception point. Since at the ball interception point there is a discrete
jump in the dynamics of the moving ball, an interim system is employed to take
care of this hybrid dynamics and ensure the convergence of the EKF. There
are two phases of the robot motions, hitting phase and follow up phase. In the
hitting phase, the robot starts from a fixed home position to the ball inter-
ception point and then the follow up phase proceeds in which robot returns
from the ball interception point to the home position. The robot motions are
initiated in accordance with the different phases and dynamic goal parameters
(e.g. ball position and velocity at the interception point).

2.6.3 Dynamic Modeling
Precise model-based control necessitates the requirement of an accurate model
of the robotic system. This section focuses on the development of a dynamic
model for an n− DOF operation of the Barrett Whole Arm Manipulator
(WAM). We use the recursive Newton-Euler technique to achieve the same. A
detailed description of the parameters required for implementing the Newton-
Euler algorithm is presented next.

The Newton-Euler formulation is based on three important laws of
mechanics:

• Every action has an equal and opposite reaction. Thus, if link i exerts a
force f and a torque τ on link i+ 1, then link i+ 1 in turn exerts a force
−f and a torque −τ on link i.

48 Kinematic and Dynamic Models of Robot Manipulators

• The rate of change of linear momentum equals the total force applied to
the link.

• The rate of change of angular momentum equals the total torque applied
to the link.

Based on these basic principles, the governing equations for this technique can
be derived [14]. We present the main steps of implementation of the Newton-
Euler algorithm.

Algorithm 3 Newton-Euler Algorithm

Forward Recursion : Computing ωi, αi and ac,i
Initial Conditions: ω0 = 0, α0 = 0, ac,0 = 0 and ae,0 = 0
for each i := 1 to n do
ωi ← Rii−1ωi−1 + biq̇i ; where bi = Rii−1z0
αi ← Rii−1αi−1 + biq̈i + ωi × biq̇i
ae,i ← Rii−1ae,i−1 + ω̇i × ri,i+1 + ωi × (ωi × ri,i+1)
ac,i ← Rii−1ae,i−1 + ω̇i × ri,ci + ωi × (ωi × ri,ci)

end for
Backward Recursion : Computing fi and τi
Terminal Conditions: fn+1 = 0, τn+1 = 0
for each j := n to 1 do
gi ← Ri0g0
fi ← Rii+1fi+1 +miac,i −migi
τi ← Rii+1τi+1 − fi × ri,ci +

(
Rii+1fi+1

)
× ri+1,ci + Iiαi + ωi × (Iiωi)

end for

As can be seen from Algorithm 3, there are two key steps in the Newton-
Euler technique: The Forward Recursion, which involves the computation of
the angular velocity, angular acceleration and linear acceleration of each link,
starting from the first link and moving outwards, and the Backward Recursion,
which involves computation of the forces and torques at each link, starting
from the n-th link and moving inwards. Figure 2.10 shows a random link and
the forces and torques acting on it.

FIGURE 2.10: Forces and torques acting on a random link [14].

Barrett Wam Manipulator 49

Notation : The notation used is described as follows:
ac,i — Acceleration of center of mass of link i in frame i.
ae,i — Acceleration of end of link i in frame i.
ωi — Angular velocity of frame i w.r.t frame i.
αi — Angular acceleration of frame i w.r.t frame i.
gi — Acceleration due to gravity in frame i.
fi — Force exerted by link i− 1 on link i in frame i.
τi — Torque exerted by link i− 1 on link i in frame i.
Ri+1
i — Rotation matrix from frame i+ 1 to frame i.

mi — Mass of link i.
Ii — Inertia matrix of link i, about a frame parallel to frame

i, whose origin is at the center of mass of link i.
ri,ci — Vector from joint i to the center of mass of link i.
ri+1,ci — Vector from joint i+ 1 to the center of mass of link i.
ri,i+1 — Vector from joint i to joint i+ 1.

2.6.4 System Description and Modeling
Barrett, the leader in advanced robotic manipulators, provides information
about the D-H parameters of the WAM and also about its inertial specifi-
cations in its data sheets. However, a dynamic model of the WAM is not
disclosed. In our work, we have derived a dynamic model of the Barrett WAM
for 4 degree-of-freedom operation. The parameters required for obtaining this
model are detailed in this section. Schematics of the Barrett WAM with its
seven revolute joints are shown in Figure 2.11 (copyright has been obtained
from Barrett). The necessary D-H parameters of the Barrett WAM are pro-
vided in Table 2.4.

For obtaining the necessary rotation matrices, we use the generalized D-H
transform matrix

Ti−1
i =


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1

 (2.14)

TABLE 2.4: D-H Parameters for the 4-DOF Barrett WAM Manipulator

k ak (m) αk (rad) dk (m) θk
1 0 −π/2 0 θ1
2 0 π/2 0 θ2
3 0.045 −π/2 0.55 θ3
4 -0.045 π/2 0 θ4

50 Kinematic and Dynamic Models of Robot Manipulators

FIGURE 2.11: WAM 7-DOF dimensions and D-H frames.

It should be noted that we follow the convention of [14] in our work. c
denotes the cos function and s denotes the sin function. The lengths in the
D-H specifications are in meters.

Using equation (2.14) and the D-H parameters of the WAM, we derive the
following rotation matrices

R0
1 =

cθ1 0 −sθ1
sθ1 0 cθ1
0 −1 0

 (2.15)

R1
2 =

cθ2 0 sθ2
sθ2 0 −cθ2
0 1 0

 (2.16)

Barrett Wam Manipulator 51

FIGURE 2.12: Vectors associated with link i.

R2
3 =

cθ3 0 −sθ3
sθ3 0 cθ3
0 −1 0

 (2.17)

R3
4 =

cθ4 0 sθ4
sθ4 0 −cθ4
0 1 0

 (2.18)

Figure 2.12 shows the different vectors associated with link i. Specifi-
cally, we need the link vectors rii,i+1, r

i
i,ci

and rii+1,ci for i = 1, 2, 3 and 4.
The superscript i indicates that the vectors need to be expressed in frame
i. From the definition of transformation matrices, we know that the vector
v = [aicθi, aisθi, di]T represents the vector pointing from Joint i to Joint i+ 1
expressed in frame i − 1. We need to express this vector in frame i. From
Figure 2.12, we can see that

rii,i+1 = P iA − P iB , (2.19)

where P iA and P iB represent the position vectors of points A and B in frame
i. Now, we know that any random point P i−1

R in frame i − 1 is transformed
to frame i via the relation[

P iR
1

]
= Ti

i−1

[
P i−1
R

1

]
(2.20)

Now, we have

Ti
i−1 = (Ti−1

i)−1 =
[

RT −RTv
0 1

]
, (2.21)

52 Kinematic and Dynamic Models of Robot Manipulators

TABLE 2.5: Link Vectors

i rii+1,ci (in mm) rii,ci (in mm) rii,i+1 (in mm)
1 [0.3506, 132.6795, 0.6286]T [0.3506, 132.6795, 0.6286]T [0, 0, 0]T
2 [−0.223,−21.3924, 13.3754]T [−0.223,−21.3924, 13.3754]T [0, 0, 0]T
3 [−38.7565, 217.9078, 0.0252]T [6.2435,−332.0922, 0.0252]T [45,−550, 0]T
4 [6.2895,−0.001, 111.0633]T [−38.7105,−0.001, 111.0633]T [−45, 0, 0]T

where R = Ri−1
i . Here, we have used the property that rotation matrices are

orthogonal. Clearly, P i−1
B = [0, 0, 0]T and P i−1

A = v. Using equations (2.20)
and (2.21), we get

[
P iB
1

]
=
[

RT −RTv
0 1

]
0
0
0
1

 =
[
−RTv

1

]
(2.22)

and [
P iA
1

]
=
[

RT −RTv
0 1

] [
v
1

]
=
[

0
1

]
(2.23)

Using equations (2.19), (2.22) and (2.23), we get the desired result

rii,i+1 = RTv = [ai, disαi, dicαi]T (2.24)

The inertial specifications of the WAM provides the rii+1,ci vector, i.e., the
position vector of the center of mass of link i w.r.t to frame i. From Figure
2.12, we see that the following relation holds

rii,ci = rii,i+1 + rii+1,ci (2.25)

Equations (2.24) and (2.25) can be used to find the necessary link vectors.
Using these equations, the link vectors so obtained are tabulated in Table
2.5. The link masses are - m1 = 8.3936 kg, m2 = 4.8487 kg, m3 = 1.7251 kg
and m4 = 1.0912 kg. It should be noted that the masses of the electrical and
mechanical cables are not included in the inertial specifications. This data is
obtained from the inertial specifications of the Barrett WAM. We also obtain
the following inertia matrices from the same source-

I1 = 10−6

95157.4294 246.1404 −95.0183
246.1404 92032.3524 −962.6725
−95.0183 −962.6725 59290.5997

 (2.26)

I2 = 10−6

29326.8098 −43.3994 −129.2942
−43.3994 20781.5826 1348.6924
−129.2942 1348.6924 22807.3271

 (2.27)

Barrett Wam Manipulator 53

I3 = 10−6

56662.2970 −2321.6892 8.2125
−2321.6892 3158.0509 −16.6307

8.2125 −16.6307 56806.6024

 (2.28)

I4 = 10−6

18890.7885 −0.8092 −1721.2915
−0.8092 19340.5969 17.8241
−1721.2915 17.8241 2026.8453

 (2.29)

It should be noted that the unit of each entry of the above matrices is kg-
mm2. This completes the necessary system description. Armed with this data,
one can implement Algorithm 3. Two other points need to be mentioned in
this regard. For forward recursion, the vector z0 = [0, 0, 1]T and for backward
recursion, the vector g0 = [0, 0,−g]T , where g is the acceleration due to gravity.
These results follow directly from the way in which the frames are assigned.

The implementation of the Newton-Euler algorithm has been done using
the software Maple. The choice was justified by the ability of Maple to carry
out heavy symbolic calculations. The Maple code used for deriving the model
can be accessed through the following link: https://drive.google.com/file/d/
0B1SCfVjLdPjZekFMLXJpUnRJTzg/view?usp=sharing. The M , C and G
matrices necessary for state-space representation are also derived using this
code. For testing our control laws in a simulation environment, we have used
the Matlab platform. Thus, the model derived in Maple has been imported
to Matlab. The Maple to Matlab conversion has also been demonstrated in
the Maple code. It should be noted that this code can be used to derive rigid
body models for a generalized n-link manipulator with revolute joints.

Note

• The D-H specifications can be obtained from the following link:
http://www.me.unm.edu/~starr/research/WAM_UsersGuide_AE-00.pdf .

• The Barrett Arm Inertial Specifications are available from the following
https://www.cs.rpi.edu/twiki/pub/RoboticsWeb/WamTrackingSystem/Arm
_InertiaSpecifications.pdf.

2.6.5 State Space Representation
The standard model representing the dynamics of the robotic system as
obtained via the Newton Euler technique is

M(q)q̈ + C(q, q̇) + G(q) = τ (2.30)

where q ∈ <4 represents the joint position vector, q̇ ∈ <4 is the joint velocity
vector, q̈ ∈ <4 is the joint acceleration vector, M(q) ∈ <4×4 is the symmetric,
positive definite inertia matrix, C(q, q̇) ∈ <4 is the Coriolis and Centrifugal
vector and G(q) ∈ <4 is the Gravity vector. τ represents the vector of applied
joint torques to the system.

https://www.cs.rpi.edu/
https://www.cs.rpi.edu/
http://www.me.unm.edu/
https://drive.google.com/
https://drive.google.com/

54 Kinematic and Dynamic Models of Robot Manipulators

For applying the control techniques, we need to express the model given
by (2.30) in the standard nonlinear control affine form. To this end, we define
the following

x , [q1, q2, q3, q4]T

z , [q̇1, q̇2, q̇3, q̇4]T

f(x, z) , −M−1(C + G)
g(x) ,M−1

u , τ

Based on these notations, the state space model for (2.30) becomes

ẋ = z
ż = f(x, z) + g(x)u (2.31)

2.7 Summary
Models of PoweCUBE 7 DOF manipulator, Barrett 7 DOFWAM, and UR10 6
DOF manipulator have been introduced. The integration of camera with the
system and the corresponding kinematics have been presented. The exper-
imental setup along with these manipulators have been introduced in this
chapter.

3
Hand-eye Coordination of a Robotic Arm
using KSOM Network

Hand-eye coordination is a process by which biological organisms manipulate
objects of interests. Some of the interesting examples of hand-eye coordination
are as follows:

• Eagles spot their potential prey from a very long distance and catch the
prey with amazing visual control of their speed.

• The great football player Diego Maradona had the amazing ability to pass
the ball with accuracy; he had the almost perfect control of the ball as he
dribbled past multiple opposing players on a run; and his amazing reaction
time to score a goal given an opportunity astounded every one. The key
here is again the eye-leg coordination - the precise visual control that he
exerted.

• The sand artist Mr. Patel depicts the pastimes of Lord Krishna on the
sand by dexterous manipulation of his fingers.

• Such hand eye coordinations are visible when one plays computer games,
instruments, and when one is typing or cooking.

In a human brain there are billions of motor neurons that actuate muscles
which in turn helps one to manipulate one’s hands or legs through visual feed-
back. We cannot possibly make a mathematical model of human visual motor
control mechanisms. However, persons like Maradona and Sudarshan Patnaik
have excelled in this through learning and practice. This is the motivation
that drives us to present this chapter where we will show many examples of
robotic systems that learn to manipulate using visual feedback. We call this
as visual motor coordination.

Although humans deal with billions degrees of freedom, a robot manip-
ulator has a considerably lower number of degrees of freedom. A redundant
manipulator has a minimum of seven degrees of freedom. To manipulate an
object, a robot needs three degrees of freedom in Cartesian task space and
three degrees of freedom for orientation - pitch, yaw and roll. With six degrees
of freedom, a robot arm can manipulate an object properly. But if one increases
this by one, i.e., a seven-degrees of freedom robot manipulator becomes redun-
dant because this can reach a reachable target in theoretically infinite possible

55

56 Hand-eye Coordination of a Robotic Arm using KSOM Network

kinematic configurations. Thus with redundancy, comes the challenge of deal-
ing with infinite choices. This chapter will explain the process of learning
hand-eye coordination using Kohonen’s Self Organizing Map for robots with
different degrees of freedom. We will start with a simple 2-d planar manip-
ulator to illustrate the learning principle lucidly. Then we will deal with a
seven-degrees of freedom Robot Manipulator.

3.1 Kohonen Self Organizing Map
Kohonen [136] proposed an unsupervised learning algorithm that can form
clusters for a given data set while preserving topology. A simple configuration
of Kohonen self-organizing feature map is illustrated in Fig. 3.1(a). The promi-
nent feature of this network is a lattice that can be m dimensional. Although
the dimension of the lattice is a priori fixed, this dimension usually refers to
the topology of the real-world data. Another prominent feature is the concept
of excitatory learning with a neighborhood around the winning neuron. The
size of the neighborhood slowly decreases as learning progresses as shown in
Figure 3.1(a). To be precise, in the initial phase, almost all neurons partici-
pate in the learning as the network is excited by an input pattern x. But there

Winning Neuron

Connections between

Neighborhood

Input x (N X 1)

Two Dimensional Lattice

input and each neuron

of Neurons

(a)

-50 0 50

d
γ

0

0.2

0.4

0.6

0.8

1

h
γ

(b)

FIGURE 3.1: (a) A two dimensional self organizing feature map. By updating
all the weight connecting to a neighborhood of the target neurons, it enables
the neighboring neuron to become more responsive to the same input pattern.
Consequently, the correlation between neighboring nodes can be enhanced.
Once such a correlation is established, the size of a neighborhood can be
decreased gradually based on the desire for having a stronger identity of
individual nodes. (b) The Neighborhood Function hγ . This function value
decreases as the lattice distance dγ of the γth neuron from the winning neu-
ron increases.

Kohonen Self Organizing Map 57

is a unique winning neuron associated with this input pattern x, which will
have a maximum say in the decision making. Other neurons will contribute to
the decision making according to their lattice distance dγ from the winning
neuron. This function is shown in Figure 3.1(a)(b).

The basic idea is to discover patterns in the input data in a self-organizing
way while similar data are represented by a weight vector wγ associated with
the γth neuron. This clustering takes place in following three steps:

• Competition: For each input pattern, the neurons in the network compute
their respective values of a discriminant function. The neuron with the
largest value of that function is declared the winner. This discriminant
function is usually a measure of Euclidean distance.

• Cooperation: The winning neuron determines the spatial location of a
topological neighborhood of excited neurons, i.e., cooperative neighboring
neurons.

• Synaptic Adaptation: The excited neurons which are situated in the neigh-
borhood of the winning neuron adjust their synaptic weights in relation
to the input pattern.

3.1.1 Competitive Process
Let n be the dimension of the input (data) space and weight vector. Let a
randomly chosen input pattern (vector) be

x = [x1, x2, ..., xn]T

Let the synaptic weight vector of neuron γ be denoted by

wγ = [wγ1, wγ2, ..., wγn]T , γ = 1, 2, ..., N

where N=total number of neurons in the network.
Finding the best match of the input vector x with the synaptic weight

vectors wγ is mathematically equivalent to minimizing the Euclidean distance
between the vectors x and wj .
Let i(x) = index to identify the neuron that best matches x,

i(x) = arg min
γ
||x− wγ ||, γ = 1, 2, ..., N (3.1)

3.1.2 Cooperative Process
The winner neuron tends to excite the neurons in its immediate neighborhood
more than those farther away from it. Let hγ denote the topological neigh-
borhood centered on winning neuron i(x) and dγ denote the lattice distance
between winning neuron i(x) and the excited neuron γ.

58 Hand-eye Coordination of a Robotic Arm using KSOM Network

• The topological neighborhood hγ is symmetric about the maximum point
defined by dγ= 0. In other words, it attains its maximum value at the
winning neuron i(x) for which the distance dγ is zero. For the winning
neuron γ = i(x).

• The amplitude of the topological neighborhood hγ decreases monotonically
with increasing lattice distance dγ .

A typical choice of hγ that satisfies these requirements is the Gaussian
function as shown in Figure 3.1(a)(b). The expression of a Gaussian neigh-
borhood function is given as:

hγ = exp
(
− d2

γ

2σ2

)
, (3.2)

where σ is the width of neighborhood function. This width is varied in
such a manner so that all neurons participate in the weight update pro-
cess in the beginning and the width significantly reduced as the training gets
completed.

3.1.3 Adaptive Process
Weights associated with the winning neuron and its neighbors are updated as
per a neighborhood index hγ . The winning neuron is allowed to be maximally
benefited from this weight update while the neuron that is farthest from the
winner is minimally benefited. The Kohonen law by which weights are updated
is given as

wγ = wγ + ηwhγ(x− wγ) (3.3)

where ηw is the learning rate. The width of the neighborhood function σ and
the learning rate ηw are updated as:

η = ηi

(
ηf
ηi

)t/tmax
(3.4)

where η ∈ {ηw, σ}. The width of the neighborhood σ is kept usually large
initially. This would imply that all neurons in the lattice will be covered by
the neighborhood function hγ in the beginning, allowing all neurons to get
excited. They will all participate in the decision making. As learning pro-
gresses, this width gets reduced until the neighborhood of the winning neuron
shrinks substantially. The learning rate ηw is assigned a large value - usu-
ally 1.0 - in the beginning. This value decreases as the learning progresses
almost to zero. This implies that once the learning is over, this parameter
becomes inactive.

Kohonen Self Organizing Map 59

Example 3.1. 1 − D SOM learns 2 − D topology: Select a 1-d lattice and
excite the neurons with the data coming from a 2 − d plane. Show that the
network preserves the topology of the data.

Solution 3.1. In the simulation a neural network is chosen with 100 neu-
rons organized in one dimensional lattice. The network is trained with a two-
dimensional input vector x.

• Input data are generated randomly from a 2−D topology.

• Since each data point is two-dimensional, x = [x1 x2]T , where
x1 represent x coordinate, x2 represent y coordinate

• wγ associated with each neuron is also two-dimensional.

The training is done for 6,000 iterations.

n = 2
x = [x1, x2]T

wγ = [wγ , wγ]T ; γ = 1, 2, ..., 100

The weight vectors of the network are initialized from a random set (−0.04 <
wj,1 < 0.04 and − 0.04 < wj,2 < 0.04). The input x is uniformly distributed
in the region (0 < x1 < 1 and 0 < x2 < 1). Figure 3.2.a shows the input data
space. Figure 3.2.b shows the network weights before training and Figure 3.2.c
shows that the weights of the network preserve the topology of the input space.
As can be seen in this Figure 3.2, although initial weights have no correlation
with the input space, the final weight vector as plotted shows that the data are
coming from a 2 − d space although neurons are assigned to a 1 − d lattice.
This example illustrates that KSOM network learns the clusters in the data
while preserving the topology.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

FIGURE 3.2: (a)Input space for training; (b)Initialization of weight for train-
ing; (c) Weights after the completion of training

60 Hand-eye Coordination of a Robotic Arm using KSOM Network

3.2 System Identification using KSOM
We learned how a Kohonen self-organizing map works. In this section, we will
learn how this network can be used for learning any arbitrary map f : x→ y.
That is, given data {x, y}, we can build a neural architecture around KSOM
that will learn the unknown map f(). The KSOM network that learns this
map f(.) is shown in Figure 3.3.

Let’s assume that the following nonlinear map is given:

y = f(x), x ∈ <n, y ∈ <m

We will express this nonlinear function as aggregation of linear functions using
first order Taylor series expansion. Given any input vector x0,

y0 = f(x0)

Using first order Taylor series expansion, the output y can be expressed lin-
early around x0 as follows:

y = y0 + ∂f

∂x
|x=x0(x− x0)

1

2

3
4

5

1

2

3

4

5

KSOM Lattice

wγ

Aγ

x

yγ

y

Input space Output spacef

y =
∑

hγ(yγ+Aγ(x−wγ))∑
hγ

x

y

FIGURE 3.3: KSOM network for system identification.

System Identification using KSOM 61

Let’s consider the following Kohonen lattice where each neuron is associated
with the following linear model:

yγ = yγ +Aγ(x− wγ)

where given x, yγ is the linear response of the γth neuron. This neuron is
associated with three parameters: wγ , the natural weight vector; yγ which
should converge to f(wγ); and Aγ which is equivalent of ∂f∂x |x=wγ .

The linear response of each neuron given x has a weight of hγ where hγ
is the neighborhood function with respect to the winning neuron. Thus the
nonlinear map y = f(x) can be approximated as:

y =
∑
hγy

γ∑
hγ

where hγ = e−d
2
γ/2σ

2 and dγ is the lattice distance between the winning neuron
i and the γth neuron.

The final expression for the network response can be given as:

y =
∑
hγ(yγ +Aγ(x− wγ))∑

hγ

As shown in Figure 3.3, the network has a collective response y when
excited by the input pattern x where each neuron computes its own response
linearly. The readers must know that parameters associated with each neuron
wγ , Aγ and yγ are unknown and are randomly initialized with very small
values. We will now derive the update laws for these parameters. Given that
wγ is the natural weight vector, its update will follow the same Kohonen
weight update algorithm:

wγ = wγ + ηhγ(x− wγ) (3.5)

Let the cost function be E = 1
2 ỹ
T ỹ, ỹ = yd − y and yd is the desired

response given x while y is the network response. The update law for the yγ
can be derived using gradient descent:

∂E

∂yγ
= −ỹT ∂y

∂yγ

= −ỹT
(

hγ∑
hγ

)
Thus the update law for yγ becomes:

yγ ← yγ + η

(
hγ∑
hγ

)
ỹ (3.6)

For the update law of Aγ , the gradient term is derived as:

∂E

∂Aγ
= −ỹT ∂y

∂Aγ

62 Hand-eye Coordination of a Robotic Arm using KSOM Network

= −ỹT hγ∑
hγ

(x− wγ)

= − hγ∑
hγ

(x− wγ)ỹT

Thus the update law becomes:

Aγ ← Aγ + ηỹ(x− w)T
(

hγ∑
hγ

)
(3.7)

It is important to learn that KSOM based system identification makes use of
both unsupervised and supervised learning, which we will call a type of hybrid
learning. The following example will demonstrate this idea.

Example 3.2. Let’s consider the following map:

y1 = ex
2
1+x2

2 (3.8)
y2 = e‖x1+x2‖2 (3.9)

Generate input data x = [x1 x2]T uniformly distributed in [0,1]. Compute the
corresponding output y = [y1 y2]T . Take a 2 − d lattice of size 5 × 5. Update
weights wγ , yγ and Aγ as given in equations (3.5), (3.6) and (3.7) respectively.

Solution 3.2. The KSOM network has 25 sets of parameters - each set of
parameters associated with each neuron is wγ , yγ and Aγ . These parameters
are initially uniformly randomly distributed in [0, 1]. The network is excited
by x which is uniformly randomly generated in [0,1]. Using the corresponding
desired response yd and the network response y, weights are updated.

The plot of the functional map is given in Figure 3.4.
Five hundred training data sets are generated from this map and these

data are used to train the network over 200 epochs. The error convergence
over epochs is shown in Figure 3.5(a). During the testing, the input data is
generated as x1 = 0.5 + 0.5 ∗ cos(kπ40) and x2 = 0.5 + 0.5 ∗ sin(kπ40). The test

1
0.8

0.6
0.4

x
1

0.2
00

x
2

0.5

0

5

10

1

y
1

1
0.8

0.6
0.4

x
1

0.2
00

x
2

0.5

0

20

40

60

1

y
2

(a) (b)

FIGURE 3.4: (a) The plot of y1 versus input x; (b) The plot of y2 versus x.

System Identification using KSOM 63

epoch

0 50 100 150 200

R
M

S

E

r
r
o

r

0

0.02

0.04

0.06

0.08

0.1

Sampling instants

0 50 100 150 200 250

y
d 1
,
y

1

1

2

3

4

5
y

1

y
1

d

Sampling instants

0 50 100 150 200 250

y
d 2
,
y

2

0

5

10

15

20
y

2

y
2

d

(a) (b) (c)

FIGURE 3.5: (a) Error convergence during the training; (b) y1 versus yd1
during the testing; (c)y2 versus yd2 during the testing.

results yd versus y are plotted in Figures 3.5 (b) and (c) respectively. One
can see from these figures that the actual network response is very accurately
following the desired response. The rms tracking error for y1 and y2 are 3.5.b
and 3.5.c respectively. These results confirm that the KSOM network can be
used for learning any unknown map.

MATLAB CODE FOR SYSTEM IDENTIFICATION

%% Definitions
clc; clear all; close all; format long;
n=100; % No. of dataset
Xt = rand(n,2); nip=size(Xt ,2);
for i=1:n

Ydt(i,1)=exp((Xt(i,1)^2)+(Xt(i,2)^2));
Ydt(i,2)=exp((Xt(i,1)+Xt(i,2))^2);

end
nop=size(Ydt ,2); N=5; %No. of neurons/side in the 2-

↪→ Dlattice
Ylambda =0.1* rand(nop ,N,N); Alambda=rand(nop ,nip ,N,N);
Wlambda =0.1* rand(nip ,N,N); Ylambdanew=rand(nop ,N,N);
Alambdanew=rand(nop ,nip ,N,N); Wlambdanew=rand(nip ,N,N);
% Parameters
etah0 =10; tauh =0.70; etaw0 =0.1; tauw =5;
etaa0 =2; taua =50; etay0 =2; tauy =50;

%% KSOM Training
N_epoch =20;
for epoch =1: N_epoch
etah=etah0*exp(-epoch/tauh); etaw=etaw0*exp(-epoch/tauw);
etaa=etaa0*exp(-epoch/taua); etay=etay0*exp(-epoch/tauy);
RDPM=randperm(n,n);

64 Hand-eye Coordination of a Robotic Arm using KSOM Network

for shuffle =1:n
Xtr(shuffle ,:)=Xt(RDPM(shuffle) ,:);
Ydtr(shuffle ,:)=Ydt(RDPM(shuffle) ,:);
end
for ndata =1:n

a=100;
for i=1:N

for j=1:N
Dx(i,j) = norm(Xtr(ndata ,:) ’-Wlambda(:,i,j));
if(a>Dx(i,j))

a=Dx(i,j);
ai=i;
aj=j;

end
end

end
for i=1:N

for j=1:N
H(i,j) = exp(-((ai-i)^2+(aj-j)^2) /(2* etah*etah));

end
end
s=sum(sum(H));
Ytemp=zeros (2,1);
for i=1:N

for j=1:N
Y(:,i,j)=H(i,j)*(Ylambda(:,i,j)+Alambda(:,:,i,j)
*((Xtr(ndata ,:) ’)-Wlambda(:,i,j)));

Ytemp=Ytemp+Y(:,i,j);
end

end
Ypred(ndata ,:)=Ytemp/s; Ytilde(ndata ,:)=Ydtr(ndata ,:)
-Ypred(ndata ,:);

for i=1:N
for j=1:N

Ylambda(:,i,j)=Ylambda(:,i,j)+etay*H(i,j)
*(Ytilde(ndata ,:) ’)/s;
Alambda (:,:,i,j)=Alambda (:,:,i,j)+(1/s)*etaa*H(i,j)
(Ytilde(ndata ,:) ’)(((Xtr(ndata ,:) ’)-Wlambda(:,i,j))’);
Wlambda(:,i,j)=Wlambda(:,i,j)+etaw*H(i,j)
*((Xtr(ndata ,:) ’-Wlambda(:,i,j)));

end
end

end
Error(epoch)=norm(Ytilde)/(size(Ytilde ,1)*size(Ytilde ,2));
end
%% Error Plot
figure (1)
plot (1: N_epoch ,Error ,’LineWidth ’,2);

System Identification using KSOM 65

%% Testing
Xte=zeros (1,1); Ydte=zeros (1,1); Y=zeros(nop ,N,N); n2 =

↪→ 250;
for i=1:n2

Xte(i,1) =0.5* cos(i*pi/40) +0.5;
Xte(i,2) =0.5* sin(i*pi/40) +0.5;

end
for i=1:n2

Ydte(i,1)=exp((Xte(i,1) ^2)+(Xte(i,2) ^2));
Ydte(i,2)=exp((Xte(i,1)+Xte(i,2))^2);

end
Ypredte=zeros(n2 ,2);
for ndata =1:n2

a=100;
for i=1:N

for j=1:N
Dx(i,j) = norm(Xte(ndata ,:) ’-Wlambda(:,i,j));
if(a>Dx(i,j))

a=Dx(i,j);
ai=i;
aj=j;

end
end

end
for i=1:N

for j=1:N
H(i,j) = exp(-((ai-i)^2+(aj-j)^2) /(2* etah*etah));

end
end
s=sum(sum(H)); Ytemp=zeros(nop ,1);
for i=1:N

for j=1:N
Y(:,i,j)=H(i,j)*(Ylambda(:,i,j)+Alambda(:,:,i,j)
*((Xte(ndata ,:) ’)-Wlambda(:,i,j)));
Ytemp=Ytemp+Y(:,i,j);

end
end

Ypredte(ndata ,:)=(Ytemp/s)’; Ytilde(ndata ,:)
=Ydte(ndata ,:)-Ypredte(ndata ,:);
end

figure (5)
plot (1:n2 ,Ypredte (:,1) ,’--’,’Color ’,[0,0,0],’LineWidth ’,4);
hold on;
plot (1:n2 ,Ydte (:,1) ,’Color ’,[0,0,0],’LineWidth ’,2);

figure (6)
plot (1:n2 ,Ypredte (:,2) ,’--’,’Color ’,[0,0,0],’LineWidth ’,4);
hold on;

66 Hand-eye Coordination of a Robotic Arm using KSOM Network

plot (1:n2 ,Ydte (:,2) ,’Color ’,[0,0,0],’LineWidth ’,2);

%% Function Approx Plot
X1funt =0:0.01:1; X2funt =0:0.01:1;
for i=1: size(X1funt ,2)

for j=1: size(X2funt ,2)
Y1funt(i,j)= exp((X1funt(i)^2)+(X2funt(j)^2));
Y2funt(i,j)= exp((X1funt(i)+X2funt(j))^2);

end
end
figure (7); surf(X1funt ,X2funt ,Y1funt)
figure (8); surf(X1funt ,X2funt ,Y2funt)

3.3 Introduction to Learning-Based Inverse Kinematic
Control

We will learn how to use KSOM network to learn inverse kinematics of a
robot manipulator. The human arm has 7 degrees of freedom (DOF). The five
fingers have 21 degrees of freedom. If we consider two arms with two hands,
then we are talking of 56 degrees of freedom. These degrees of freedom help
a sculpturer to give an aesthetic shape to a statue. Although with degrees of
freedom, the dexterity of manipulation enhances as choices in terms of kine-
matic configurations also increase manifold times. A sculpturer is in general
ignorant of scientific characterization of forward and inverse kinematics, but
he is expert in manipulation simply through learning. This section will teach
you how to learn inverse kinematics of a robot manipulator. To make it easy
for the learners, we will start with a planar two link manipulator. Referring
to Figure 3.6, it has two links of link lengths l1 and l2 respectively. The angle
of the first link with respect to the horizontal x axis is θ1 and the angle of the
second link with respect to the link 1 axis is θ2 as shown in the figure. From
the figure, we can derive the following forward kinematics:

x = l1cos(θ1) + l2cos(θ1 + θ2); y = l1sin(θ1) + l2sin(θ1 + θ2) (3.10)

In general, for a robot manipulator, it is very easy to find out the for-
ward kinematics. Given a forward kinematic equation, we can find out the tip
position of the robot manipulator in the Cartesian space if we are given joint
angles of each link. However, in practice, the robot has to know its own joint
angles given a target defined in the Cartesian space. It is usual for a robot to
reach a target, i.e., the desired tip position is known and the robot has to find
out its own joint angles. For the above planar manipulator, let’s find out the

Introduction to Learning-Based Inverse Kinematic Control 67

x

y

θ2
θ1

l1

θ1

l2

FIGURE 3.6: Two link planar manipulator.

inverse kinematics:

cosθ2 = x2 + y2 − l21 − l22
2l1l2

(3.11)

θ2 = cos−1x
2 + y2 − l21 − l22

2l1l2
(3.12)

θ1 = tan−1 y

x
− tan−1 l2sinθ2

l1 + l2cosθ2
(3.13)

You can note that although forward kinematics has simple expressions,
the inverse kinematics is not that simple. In fact, as the degrees of freedom
will increase, the inverse kinematic solution cannot be obtained in closed form
equations as derived above. We will show you how to learn this inverse kine-
matic solutions using KSOM network.

In general the forward kinematics is given as

x = f(θ); x ∈ Rm; θ ∈ Rn (3.14)

The inverse kinematic relation can be expressed as

θ = g(x); x ∈ Rm; θ ∈ Rn; g = f−1 (3.15)

The above inverse kinematic equation can be linearized around θ0 using
first order Taylor series expansion:

θ = θ0 +A0(x− x0)

where A0 = g
x |x=x0 which is called inverse Jacobian at x0. It should be noted

that θ0 = g(x0).

68 Hand-eye Coordination of a Robotic Arm using KSOM Network

6

5

4

3 2

1

100

4
2

1

3

100
5

Robot Workspace

θ

θ = 1
s

∑
γ hγ(θγ + Aγ(x− wγ))

θγ = θγ + Aγ(x− wr)

xKSOM Lattice

x
θ

FIGURE 3.7: KSOM network for kinematic control of 2-d planar manipulator.

3.3.1 The Network
Please refer to the KSOM network as shown in Fig 3.7. Here the input is the
Cartesian space coordinate vector x. Since it is a planar manipulator, the 2-d
lattice of size 10× 10 has been taken. It is assumed that l1 = 1m; l2 = 1m. If
you look at the planar manipulator, you will see that its workspace covers a
circle of radius 2m. The lattice has 100 neurons and each neuron represents a
discrete cell in this circle of 2m radius. We associate a linear model with each
of these neurons:

θ = θγ +Aγ(x− wγ)

where wγ is the weight associated with the γth neuron where γ ∈ [1, 100]. Aγ
is the inverse Jacobian at x = wγ . θγ = g(wγ) is the local joint angle vector
around which the above liner model is valid.

Just like in the previous section, the network response to input x is given
in terms of collective response model:

θ = 1
s

∑
γ

hγ(θγ +Aγ(x− wγ)) (3.16)

where s = 1∑
γ
hγ

. This is a normalizing factor. As said earlier, each neuron
contributes according to its lattice distance from the winning neuron - this is
represented by the neighborhood function hγ .

Introduction to Learning-Based Inverse Kinematic Control 69

3.3.2 The Learning Problem
In the previous section on system identification, we are given the vector pairs
{x, y}, i.e., input vector x and desired vector y. It is desired to learn the
network parameters given both input and output vectors. But in the inverse
kinematic learning problem, we are given only the input vector x, the target at
which the manipulator is desired to reach. With reference to equation (3.16),
all parameters θγ , Aγ , wγ are unknown. Since there are 100 neurons as
shown in Figure, there are 300 sets of parameters that have to be learned
based on a given set of random targets within the circular robot workspace of
2m radius. This is even more difficult than the previous system identification
problem.

3.3.3 The Approach
We need to generate error corrector terms to be able to update the parameters.
In the beginning, all 100 sets of parameters - θγ , Aγ , wγ are randomly
initialized and these random values are made as small as possible to test the
efficacy of the update algorithms. The coarse action is initiated first. This
action is the network response with the current set of network parameters.
Given x, the network response is

θout0 = 1
s

∑
γ

hγ(θγ +Aγ(x− wγ)) (3.17)

where θout0 is the coarse action that is actuated to take the robot to some
point in Cartesian space. If we feed these angles to equation (3.10), we will
get v0 = [x y]T . This course action θout0 will take the robot to Cartesian
point in the task space v0. This pair θout0 , v0 will help us to generate the error
corrector term. But this v0 is absolutely random. Hence we need to create a
fine action that will take the robot toward the actual target x. The fine action
is generated as:

θout1 = θout0 + s−1
∑
γ

hγAγ(x− v0) (3.18)

In this expression, the pair θout0 , v0 is an inverse kinematic pair, i.e., θout0 =
g(v0). Hence this fine action will surely take the manipulator tip position closer
to the target position x. If we feed this angle vector θout1 to equation (3.10),
we will get v1 = [x y]T . That is, the fine action θout1 will take the robot
to Cartesian position in the task space v1. Through the fine action, we get
another inverse kinematic pair θout1 , v1, i.e. θout1 = g(v1). These informations
will help us to formulate the cost function.

3.3.4 The Formulation of Cost Function
Since wγ will be updated as per the Kohonen law (3.5), we need to formulate
the cost function for the update of parameters Aγ and θγ . During the coarse

70 Hand-eye Coordination of a Robotic Arm using KSOM Network

and fine control actions, we obtained the following two inverse kinematic pairs:
θout0 = g(v0) and θout1 , v1. Using these pairs, following two expressions can be
written as:

θout0 = 1
s

∑
γ

hγ(θγ +Aγ(v0 − wγ)) (3.19)

θout1 = 1
s

∑
γ

hγ(θγ +Aγ(v1 − wγ)) (3.20)

If we assume that all network parameters are exact, then equations (3.19)
and (3.20) are correct as v0 will initiate the joint actuation θo0ut and v1 will
initiate the joint actuation θout1 .

By subtracting (3.19) from (3.20), we obtain:

∆θout = 1
s

∑
γ

hγAγ∆v (3.21)

where ∆θout = θout1 − θout0 and ∆v = v1 − v0. The equation (3.21) is valid
if the network parameters are exact. However, they are not exact. Hence the
cost function for the update of Aγ naturally becomes:

EA = 1
2‖∆θ

out − 1
s

∑
γ

hγAγ∆v‖2 (3.22)

The cost function for the update of θγ can be obtained using the same
logic from equation (3.19) as

Eθ = 1
2‖θ

out
0 − 1

s

∑
γ

hγ(θγ +Aγ(v0 − wγ)‖2 (3.23)

3.3.5 Weight Update Laws
Using gradient descent, we can update the parameter matrices as

θγ ← θγ − ηθ
∂Eθ
∂θγ

(3.24)

Aγ ← Aγ − ηA
∂EA
∂Aγ

(3.25)

We can thus write the weight update algorithms as

wγ ← wγ + ηwhγ(x− wγ) (3.26)
θγ ← θγ + ηθ∆θγ (3.27)
Aγ ← Aγ + ηA∆Aγ (3.28)

Introduction to Learning-Based Inverse Kinematic Control 71

where

∆θγ = hγ
s

[
θout0 − s−1

∑
γ

hγ(θγ +Aγ(v0 − wγ))
]

(3.29)

∆Aγ = hγ
s‖∆v‖2

[
∆θout − s−1

∑
γ

hγAγ∆v
]

∆vT (3.30)

Although we started with the description of the two link planar manipu-
lator, the update laws are valid for any n-link manipulator. The only change
will be the network lattice. Since the workspace of any n-link manipulator will
have 3-D structure, the lattice has to be that 3-d size.

Example 3.3. Let’s consider the two-link planar manipulator as shown in
Fig 3.6. The link lengths are l1 = 1m and l2 = 1m. As shown in the corre-
sponding Kohonen network (Figure 3.7), to learn its inverse kinematics, the
workspace of the manipulator is a planar circle with radius 2m. The network
lattice is a 2d lattice of size 10×10. This network is presented with as a random
target position from this circle. Through coarse and fine learning, we construct
the cost functions EA and Eθ as given in equations (3.22), and (3.23) respec-
tively. Write a MATLAB code to update weights as given in (3.26)-(3.28).
After training is over, draw the following graphs:

• Draw the final weight vectors associated with 100 neurons in the same
plot.

• Test your trained network for five random target positions and verify using
exact kinematic inverse equations.

• Make the manipulator to track a straight line.

• Make the manipulator to track a circle.

Solution 3.3. Please look at the MATLAB code. All initial weights are
assigned a random number uniformly distributed in [0, 0.1]. That is, the robot
is absolutely ignorant about its own kinematics as well as its own workspace.
The objective is to start from no knowledge to complete knowledge by updat-
ing weights of KSOM network as shown in Figure 3.7. To compute hγ , σ is
updated as

σ = σi

(
σf
σi

)(t/tmax)
(3.31)

where σi = 2.5 and σf = 0.01. The large initial value of σ implies that as
weights wγ are updated as per the Kohonen law, all neurons participate in
the decision making in the beginning. This value is gradually reduced to 0.01
which implies that mostly the winning neuron makes the decision as training
comes to an end. The learning rate ηw of the Kohonen law starts with a value
1.0 and ends with a value 0.05 following the similar tuning law for σ. The

72 Hand-eye Coordination of a Robotic Arm using KSOM Network

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b) (c)

FIGURE 3.8: (a) Final weights, (b) Tracking a line, (c) Tracking a circle.

learning rate ηA for Aγ and the learning rate ηθ for θγ are both assigned to
0.9. The number of maximum iterations is fixed at 3000. To train the network,
we use 2-d lattice of dimension 10 × 10 where 3000 samples (random target
positions) are used for training which are generated using a forward kinematic
model. After the training is over, the weights of each neuron are plotted in
Figure 3.8a.

We can see from Figure 3.8(a) that each neural weight has taken position
within the robot workspace which is a circle of radius 2m. This signifies that
the network has captured the topology of the input data x as expected.

The trained network is tested for three cases. First, this trained network
was given some random target positions. Five such target positions in the task
space are [x1 x2] = [0 1.414], [1.414 0], [1 1], [-1 -1] and [0.8 1.2]. The network
response θ is given in Table 3.1. For a given target position (x1 = x, x2 = y) in
task space, the joint angles θ1 and θ2 are calculated using the inverse kinematic
equations (3.11). We find that the network responses are consistent with the
exact inverse kinematics results.

Next, the KSOM network is tested to track a line y = 1.2 while x ∈
[−1,+1] and a circle of radius 1.5m. The results are shown in Figure 3.8(b)

TABLE 3.1: Two-link manipulator reaches five target positions

KSOM based inverse
kinematics results

Exact inverse
kinematics results

x y θ1 θ2 x y θ1 θ2
0.0167 1.4161 45.76◦ 89.84◦ 0.0167 1.4161 44.41◦ 89.863◦
1.4186 -0.0394 -46.39◦ 89.60◦ 1.4186 -0.0394 -46.39◦ 89.60◦
1.0210 1.0371 2.14◦ 86.61◦ 1.0210 1.0371 2.14◦ 86.62◦
-0.9995 -0.9980 -180.11◦ 90.14◦ -0.9995 -0.9980 -180.11◦ 90.14
0.7898 1.1894 11.96◦ 88.90◦ 0.7898 1.1894 11.97◦ 88.90◦

Introduction to Learning-Based Inverse Kinematic Control 73

and (c) respectively which show that two-link manipulator properly follows
the desired paths.

Figures 3.8(b) and (c) show the tracking of a line and circle with respective
kinematic configurations as well. The rms error for the line tracking is 0.0175m
and the rms error for the tracking a circle is 0.0223m.

The complete MATLAB code - for training, for testing on random targets,
for tracking a line and a circle are provided:

MATLAB CODE FOR TRAINING

clear all;
%% Initialization of Model parameters
sig_i =2.5; sig_f =0.01;
etaw_i =1; etaw_f =0.05;
etaA_i =0.9; etaA_f =0.9;
l1=1;l2=1; % link length
A_g =0.1* rand (2,2 ,100)
w_g =0.1* rand (2,1 ,100)
th_g =0.1* rand (2,1,100)
%% 2d Lattice formation of size 10x10
[lx ,ly]= ind2sub ([10 ,10] ,1:100);
lattice =[lx;ly]; iterations =6000;
%% Iterations and update
for i=1: iterations
th1=(rand -0.5) *2*pi;th2=(rand -0.5) *2*pi;
x=l1*cos(th1)+l2*cos(th2+th1);
y=l1*sin(th1)+l2*sin(th2+th1);
u=[x;y];

for j=1:100
dist(j)=norm(u-w_g(:,:,j));

end
[~,win_val]=min(dist);
win=[lx(win_val),ly(win_val)];% Winning Neuron
sig(i)=sig_i *((sig_f/sig_i)^(i/iterations));
eta_wg(i)=etaw_i *((etaw_f/etaw_i)^(i/iterations));
eta_Ag(i)=etaA_i *((etaA_f/etaA_i)^(i/iterations));
d=repmat(win ’,1,100)-lattice;
H_g=exp(-(sum(d.^2))/(2*(sig(i)^2)));
% Coarse action:
s=sum(H_g);s2=0;s3=0;

for k=1:100
s1=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(u-w_g(:,:,k)));
s2=s2+s1;

end
th_o=s2/s;
x_o=l1*cos(th_o (1))+l2*cos(th_o (2)+th_o (1));
y_o=l1*sin(th_o (1))+l2*sin(th_o (2)+th_o (1));
v_o=[x_o;y_o];
% Fine action

74 Hand-eye Coordination of a Robotic Arm using KSOM Network

for k=1:100
s4=H_g(k)*(A_g(:,:,k)*(u-v_o));
s3=s3+s4;

end
th_1=th_o+s3/s;
x_1=l1*cos(th_1 (1))+l2*cos(th_1 (2)+th_1 (1));
y_1=l1*sin(th_1 (1))+l2*sin(th_1 (2)+th_1 (1));
v_1=[x_1;y_1];
% Update equations
del_v = v_1 -v_o;del_th = th_1 -th_o;s5=0;s7=0;
for k=1:100

s6=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(v_o -w_g(:,:,k)));
s5=s5+s6;

end
for t=1:100

deltheta_g (:,:,t) = (H_g(t)/s)*(th_o -(s5/s));
end
for k=1:100

s8=H_g(k)*(A_g(:,:,k)*del_v);s7=s8+s7;
end

for t=1:100
deltaA_g (:,:,t)=(H_g(t)/(s*norm(del_v)^2))
(del_th -s7/s)(del_v ’);
w_g(:,:,t)=w_g(:,:,t)+eta_wg(i)*H_g(t)
*(u-w_g(:,:,t)); % Update Weights
th_g(:,:,t)=th_g(:,:,t)+eta_Ag(i)
*deltheta_g (:,:,t); % Update Theta_g
A_g(:,:,t)=A_g(:,:,t)+eta_Ag(i)
*deltaA_g (:,:,t); % Update A_g

end
end
% Plot final Weights
figure (1); hold on;
for t = 1:100
plot(w_g(1,1,t),w_g(2,1,t) ,’*’)
end;

MATLAB CODE FOR POINT TRACKING

% Tracking of given five points

u1=[0 1.414 ; 1.414 0 ; 1 1 ; -1 -1 ; 0.8 1.2] ’;

for m=1: size(u1 ,2)

u=u1(:,m)

for j=1:100

dist(j)=norm(u-w_g(:,:,j));

Introduction to Learning-Based Inverse Kinematic Control 75

end

[~,win_val]=min(dist);

win=[lx(win_val),ly(win_val)];

d=repmat(win ’,1,100)-lattice;

H_g=exp(-(sum(d.^2) /(2*(sig_f ^2))));

% Corse action:

s=sum(H_g);s2=0;s3=0;

for k=1:100

s1=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(u-w_g(:,:,k)));

s2=s2+s1;

end

theta=s2/s

th_degree=theta *180/(pi)

x=l1*cos(theta (1))+l2*cos(theta (2)+theta (1));

y=l1*sin(theta (1))+l2*sin(theta (2)+theta (1));

v=[x;y] % Tracked point

end

MATLAB CODE FOR LINE TRACKING

% Track the line

x = linspace (-1,1,41);y = 1.2* ones(size(x));

test2 = [x;y];t=size(x,2);

for m=1:t

u1=test2(:,m);

76 Hand-eye Coordination of a Robotic Arm using KSOM Network

for j=1:100

dist(j)=norm(u1 -w_g(:,:,j));

end

[~,win_val]=min(dist);

win=[lx(win_val),ly(win_val)];

d=repmat(win ’,1,100)-lattice;

H_g=exp(-(sum(d.^2))/(2*(sig_f ^2)));

s=sum(H_g);s2=0;

for k=1:100

s1=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(u1 -w_g(:,:,k)));

s2=s2+s1;

end

theta=s2/s;

x_o=l1*cos(theta (1))+l2*cos(theta (2)+theta (1));

y_o=l1*sin(theta (1))+l2*sin(theta (2)+theta (1));

v_o=[x_o;y_o];

th(:,m) = theta;

end

for i = 1:t

x_Position(i,:) = [0 l1*cos(th(1,i))
l1*cos(th(1,i))+l2*cos(th(2,i)+th(1,i))];

y_Position(i,:) = [0 l1*sin(th(1,i))
l1*sin(th(1,i))+l2*sin(th(2,i)+th(1,i))];

end

figure; plot(test2 (1,:),test2 (2,:) ,’-ok ’);hold on;

for i = 1:t

Introduction to Learning-Based Inverse Kinematic Control 77

plot(x_Position(i,:),y_Position(i,:) ,’k’)

end

axis equal

MATLAB CODE FOR CIRCLE TRACKING

% Track the Circle

t=0:pi /15:2* pi;test1 =[1.5* cos(t);1.5* sin(t)];

for m=1: length(t)

u2=test1(:,m);

for j=1:100

dist(j)=norm(u2 -w_g(:,:,j));

end

[~,win_val]=min(dist);

win=[lx(win_val),ly(win_val)];

d=repmat(win ’,1,100)-lattice;

H_g=exp(-(sum(d.^2))/(2*(sig_f ^2)));

s=sum(H_g);s2=0;

for k=1:100

s1=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(u2 -w_g(:,:,k)));

s2=s2+s1;

end

theta=s2/s;

x_o=l1*cos(theta (1))+l2*cos(theta (2)+theta (1));

y_o=l1*sin(theta (1))+l2*sin(theta (2)+theta (1));

v_o=[x_o;y_o];

78 Hand-eye Coordination of a Robotic Arm using KSOM Network

th(:,m) = theta;

end

for i = 1: length(t)

x_Position(i,:) = [0 l1*cos(th(1,i)) l1*cos(th(1,i))
+l2*cos(th(2,i)+th(1,i))];

y_Position(i,:) = [0 l1*sin(th(1,i)) l1*sin(th(1,i))
+l2*sin(th(2,i)+th(1,i))];

end

figure; plot(test1 (1,:),test1 (2,:) ,’-ok ’);hold on;

for i = 1: length(t)

plot(x_Position(i,:),y_Position(i,:) ,’k’)

end

axis equal

Example 3.4. Let’s consider a CRS PLUS manipulator as shown in Figure
3.9. The link lengths are taken from its service manual. The kinematics are
simplified by assuming the wrist (joint 4) to be rigid. Actually, the wrist is
servoed to maintain its pose with respect to the base plane. This ensures that
the manipulator behaves as a 3 DOF manipulator.

The forward kinematics are given as:

z = l2sin(θ2) + l3sin(θ3) + l1 (3.32)
x = Rcos(θ1) (3.33)
y = Rsin(θ1) (3.34)

where R = l2cos(θ2)+ l3cos(θ3)+t and l1, l2, l3 are the respective link lengths,
and t is the length of the rigid portion of the wrist.

For the CRS PLUS Manipulator, l1 = l2 = l3 = 254mm, t = 50mm. It
is assumed that the wrist of the manipulator is rigid, assured by locking the
joint for our purpose, and always holds the end-effector parallel to the work
table (the xy plane).

The exact inverse kinematics of this manipulator is given as:

θ1 = tan−1
(y
x

)
(3.35)

θ2 = cos−1(p) (3.36)

Introduction to Learning-Based Inverse Kinematic Control 79

FIGURE 3.9: CRS Plus manipulator.

θ3 = sin−1
(
b− l2sin(θ2)

l3

)
(3.37)

Here p is the solution of Ap2 +Bp+C = 0, where a =
√
x2 + y2−t, b = z− l1,

K = b + l22 − l23 + a2, A = 4a2l22 + 4b2l22, B = −4al2K, and C = K2 − 4b2l22.
It is desired that these inverse kinematic solutions are derived using the

KSOM network. Since the robot task-space is 3 dimensional, a 3-d lattice of
size 12×7×4 is selected. The maximum training iterations are fixed at 30000.
This implies that the network is presented with 30000 random target positions
sample from its workspace. Train the KSOM network and test the network
for tracking a straight line and circle.

Solution 3.4. Please look at the MATLAB code. All initial weights are
assigned a random number uniformly distributed in [0, 0.1]. That is, the robot
is absolutely ignorant about its own kinematics as well as its own workspace.
The objective is to start from no knowledge to complete knowledge by updating
weights of KSOM network as shown in Fig 3.7. The learning parameters are
updated during the training as:

η = ηi

(
ηf
ηi

)(t/tmax)
(3.38)

where η ∈ {ηw, ηθ, ηA, σ. σi = 2.5 and σf = 0.01. The large initial value of σ
implies that as weights wγ are updated as per the Kohonen law, all neurons
participate in the decision making in the beginning. This value is gradually
reduced to 0.01 which implies that mostly the winning neuron makes the deci-
sion as training comes to an end. The learning rate ηw of the Kohonen law
(3.5) starts with a value 1.0 and ends with a value 0.05. The learning rate

80 Hand-eye Coordination of a Robotic Arm using KSOM Network

0.40.350.30.250.20.15

X-axis

0.10.050
0.4

Y-axis

0.2

0.4

0.3

0.2

0.1

0

0.5

0

Z
-a

x
is

End-effector position

Desired Trajectory

Manipulator Link

FIGURE 3.10: CRS manipulator tracks a line.

ηA for Aγ and the learning rate ηθ for θγ are fixed at 0.9. The number of
maximum iterations is fixed at 30000. To train the network, we use 3− d lat-
tice of dimension 12 × 7 × 4 where 30000 samples (random target positions)
are used for training which are generated using the forward kinematic model
(3.32). After the training, the robot is asked to follow a straight line. The
tracking results are shown in Figure 3.10 along with the kinematic configura-
tions. Readers should note that the network has effectively learned the inverse
kinematics where all network parameters are initialized randomly and the net-
work is presented with the random target positions without the corresponding
joint space solutions. The coarse and fine actions are used to build the effective
cost functions gradients of which helped to derive the weight update laws. The
MATLAB code will help you to understand these concepts even better.

MATLAB CODE -KSOM TRAINING -3 LINK MANIPULATOR

clear all;
format long; kstar =1000; Xmin =0.15; Xmax =0.35;
Ymin =0.15; Ymax =0.35; Zmin =0.15; Zmax =0.35;
Xmiddle =(Xmax+Xmin)/2; Ymiddle =(Ymax+Ymin)/2;
Zmiddle =(Zmax+Zmin)/2; ndsD =200; %No. of datasets
l1 =0.254; l2 =0.254; l3 =0.254; t=0.05;
% Lattice dimensions
p=12; q=7; r=4; nip =3;% Input dimension
nop =3;% Output dimension
W(1,:,:,:)=(Xmax -Xmin)*rand(1,p,q,r)+Xmin;
W(2,:,:,:)=(Ymax -Ymin)*rand(1,p,q,r)+Ymin;
W(3,:,:,:)=(Zmax -Zmin)*rand(1,p,q,r)+Zmin;
A=rand(nop ,nip ,p,q,r); Y_lambda=zeros(nop ,p,q,r);
Theta_lambda =2*pi*(rand(nop ,p,q,r) -0.5* ones(nop ,p,q,r));
D=zeros(p,q,r); sigini =2.5; sigfin =0.01;
etaini =0.5; etafin =0.9; etaWini =0.5; etaWfin =0.05;
epoch =300; a=0;

Introduction to Learning-Based Inverse Kinematic Control 81

for ep=1: epoch
ep
if(a>1)

fprintf(’More than one min distance values ’);
break;

end
Xd(1,:)=(Xmax -Xmin)*rand(1,ndsD)+Xmin;
Xd(2,:)=(Ymax -Ymin)*rand(1,ndsD)+Ymin;
Xd(3,:)=(Zmax -Zmin)*rand(1,ndsD)+Zmin;
for nds=1: ndsD

etaW=etaWini *(etaWfin/etaWini)^((ep/(epoch)));
eta=etaini *(etafin/etaini)^((ep)/(epoch));
etaT=eta;

sigma=sigini *(sigfin/sigini)^(ep/epoch);
for i=1:p

for j=1:q
for k=1:r

Dis(i,j,k)=norm(W(:,i,j,k)-Xd(:,nds));
end

end
end
Dis_min=min(min(min(Dis)));
a=0;
for i=1:p

for j=1:q
for k=1:r

if(Dis(i,j,k)== Dis_min)
a=a+1;ai=i;aj=j;ak=k;

end
end

end
end
if(a>1)

fprintf(’More than one min distance values ’);
break;

end
for i=1:p

for j=1:q
for k=1:r

H(i,j,k)=exp(-((ai-i)^2+(aj-j)^2+(ak-k)^2) /(2* sigma*sigma))
↪→ ;

end
end

end
Y_temp=zeros (3,1);
for i=1:p

for j=1:q
for k=1:r

Y_lambda(:,i,j,k)=H(i,j,k)*(Theta_lambda (:,i,j,k)

82 Hand-eye Coordination of a Robotic Arm using KSOM Network

+A(:,:,i,j,k)*(Xd(:,nds)-W(:,i,j,k)));
Y_temp=Y_temp+Y_lambda(:,i,j,k);

end
end

end
s=(sum(sum(sum(H))));Theta_0 =(Y_temp)/s;
R=(l2*cos(Theta_0 (2,1)))+(l3*cos(Theta_0 (3,1)))+t;
V_0(1,1)= R*cos(Theta_0 (1,1));V_0(2,1)= R*sin(Theta_0 (1,1))

↪→ ;
V_0(3,1)=(l2*sin(Theta_0 (2,1)))+(l3*sin(Theta_0 (3,1)))+l1;
Y_temp_Theta_0=zeros(nop ,1);
Y_lambda_Theta_0=zeros(nop ,p,q,r);
for i=1:p
for j=1:q
for k=1:r
Y_lambda_Theta_0 (:,i,j,k)=H(i,j,k)*(Theta_lambda (:,i,j,k)
+A(:,:,i,j,k)*(V_0 -W(:,i,j,k)));
Y_temp_Theta_0=Y_temp_Theta_0+Y_lambda_Theta_0 (:,i,j,k);

end
end

end
Y_temp_Theta_0=Y_temp_Theta_0/s;
Co_act=zeros(nop ,p,q,r);

Corr_action=zeros(nop ,1);
for i=1:p

for j=1:q
for k=1:r

Co_act(:,i,j,k)=H(i,j,k)*A(:,:,i,j,k)*(Xd(:,nds)-V_0);
Corr_action=Corr_action+Co_act(:,i,j,k);

end
end

end
Theta_1=Theta_0 +(Corr_action/s);
R=(l2*cos(Theta_1 (2,1)))+(l3*cos(Theta_1 (3,1)))+t;
V_1(1,1)= R*cos(Theta_1 (1,1));
V_1(2,1)= R*sin(Theta_1 (1,1));
V_1(3,1)=(l2*sin(Theta_1 (2,1)))+(l3*sin(Theta_1 (3,1)))+l1;
del_V=V_1 -V_0;
del_Theta=Theta_1 -Theta_0;
YA_up=zeros(nop ,p,q,r);
YA_update=zeros(nop ,1);

for i=1:p
for j=1:q

for k=1:r
YA_up(:,i,j,k)=H(i,j,k)*A(:,:,i,j,k)*(V_1 -V_0);
YA_update=YA_update+YA_up(:,i,j,k);

end
end

end

Introduction to Learning-Based Inverse Kinematic Control 83

for i=1:p
for j=1:q

for k=1:r
Theta_lambda (:,i,j,k)=Theta_lambda (:,i,j,k)+(etaT*(Theta_0
-Y_temp_Theta_0)*H(i,j,k)/s);
W(:,i,j,k)=W(:,i,j,k)+etaW*H(i,j,k)*(Xd(:,nds)-W(:,i,j,k));

end
end

end
for i=1:p

for j=1:q
for k=1:r

A(:,:,i,j,k)=A(:,:,i,j,k)+eta*H(i,j,k)*(del_Theta -
(YA_update/s))*(del_V ’)/(s*norm(del_V)*norm(del_V));

end
end

end
valA(nds)=A(1,1,5,6,4);

valW(nds)=W(1,5,6,4);
valT(nds)=Theta_lambda (1,5,6,4);

end
end
%% Testing 1
a=0;
Xmiddle =(Xmax+Xmin)/2;
Ymiddle =(Ymax+Ymin)/2;
Zmiddle =(Zmax+Zmin)/2;
Rp =0.08;
Xt=0;
Xdt=0;
for j=0:0.1:1

a=a+1;
Xdt(1,a)=Xmin*(1-j)+Xmax*j;
Xdt(2,a)=Ymax*(1-j)+Ymin*j;
Xdt(3,a)=Zmin*(1-j)+Zmax*j;
end
ndsT=a;
for nds=1: ndsT

nds
for i=1:p

for j=1:q
for k=1:r

Dis(i,j,k)=norm(W(:,i,j,k)-Xdt(:,nds));
end

end
end
Dis_min=min(min(min(Dis)));
a=0;
for i=1:p

84 Hand-eye Coordination of a Robotic Arm using KSOM Network

for j=1:q
for k=1:r

if(Dis(i,j,k)== Dis_min)
a=a+1;

ai(a)=i;
aj(a)=j;

ak(a)=k;
end

end
end

end
if(a>1)

fprintf(’More than one min distance values ’);
break;

end
for i=1:p

for j=1:q
for k=1:r

H(i,j,k)=exp(-((ai-i)^2+(aj-j)^2+(ak-k)^2)/
(2* sigfin*sigfin));

end
end

end
Y_temp=zeros (3,1);
for i=1:p

for j=1:q
for k=1:r

Y_lambda_Theta_0 (:,i,j,k)=H(i,j,k)*(Theta_lambda (:,i,j,k)
+A(:,:,i,j,k)*(Xdt(:,nds)-W(:,i,j,k)));
Y_temp=Y_temp+Y_lambda_Theta_0 (:,i,j,k);

end
end

end
s=(sum(sum(sum(H))));
Theta(:,nds)=(Y_temp)/s;
R=(l2*cos(Theta(2,nds)))+(l3*cos(Theta(3,nds)))+t;
V_0= R*cos(Theta(1,nds));
V_0= R*sin(Theta(1,nds));
V_0=(l2*sin(Theta(2,nds)))+(l3*sin(Theta(3,nds)))+l1;

lol =0;
error =10;
while(error >0.001)

lol=lol+1;
Co_act=zeros(nop ,p,q,r);
Corr_action=zeros(nop ,1);

for i=1:p
for j=1:q

for k=1:r
Co_act(:,i,j,k)=H(i,j,k)*A(:,:,i,j,k)*(Xdt(:,nds)-V_0);

Introduction to Learning-Based Inverse Kinematic Control 85

Corr_action=Corr_action+Co_act(:,i,j,k);
end

end
end

Theta_1=Theta_0 +(Corr_action/s);
R=(l2*cos(Theta_1 (2,1)))+(l3*cos(Theta_1 (3,1)))+t;
Xt(1,nds)= R*cos(Theta_1 (1,1));
Xt(2,nds)= R*sin(Theta_1 (1,1));
Xt(3,nds)=(l2*sin(Theta_1 (2,1)))+(l3*sin(Theta_1 (3,1)))+l1;

error=norm(Xt(:,nds)-Xdt(:,nds));
Theta_0=Theta_1;

V_0=Xt(:,nds);
if(lol >100)

break;
end
end

Teeta(:,nds)=Theta_1;
pts1(:,nds)=[0;0;0];
pts2(:,nds)=[0;0; l1];
pts3(:,nds)=[l2*cos(Theta_1 (2,1))*cos(Theta_1 (1,1));
l2*cos(Theta_1 (2,1))*sin(Theta_1 (1,1));
l2*sin(Theta_1 (2,1))+l1];
pts4(:,nds)=[(R-t)*cos(Theta_1 (1,1));
(R-t)*sin(Theta_1 (1,1));Xt(3,nds)];
pts5(:,nds)=[Xt(1,nds);Xt(2,nds);Xt(3,nds)];
end
figure (1)
grid on;
scatter3(Xt(1,:) ’,Xt(2,:) ’,Xt(3,:) ’,50,’b’,’o’);
grid on;
hold on;
legend(’End effector position ’,’Desired Trajectory ’,
’Manipulator Link ’)
plot3(Xdt(1,:),Xdt(2,:),Xdt(3,:) ,’k’,’lineWidth ’,2);
hold on;
xlabel(’X-axis ’);
ylabel(’Y-axis ’);
zlabel(’Z-axis ’);
for ii=1:nds
% scatter3(pts1(1,ii),pts1(2,ii),pts1(3,ii));
line([pts1(1,ii),pts2(1,ii)],[pts1(2,ii),pts2(2,ii)]
,[pts1(3,ii),pts2(3,ii)],’LineWidth ’,4)
% scatter3(pts2(1,ii),pts2(2,ii),pts2(3,ii));
line([pts3(1,ii),pts2(1,ii)],[pts3(2,ii),pts2(2,ii)]
,[pts3(3,ii),pts2(3,ii)],’LineWidth ’,4)
% scatter3(pts3(1,ii),pts3(2,ii),pts3(3,ii));
line([pts3(1,ii),pts4(1,ii)],[pts3(2,ii),pts4(2,ii)]
,[pts3(3,ii),pts4(3,ii)],’LineWidth ’,4)
% scatter3(pts4(1,ii),pts4(2,ii),pts4(3,ii));

86 Hand-eye Coordination of a Robotic Arm using KSOM Network

line([pts5(1,ii),pts4(1,ii)],[pts5(2,ii),pts4(2,ii)]
,[pts5(3,ii),pts4(3,ii)],’LineWidth ’,4)
% scatter3(pts5(1,ii),pts5(2,ii),pts5(3,ii));
end
hold on;
% legend(’Manipulator Link ’)
e=norm(Xt-Xdt)/size(Xt ,2);
for i=1:p

for j=1:q
for k=1:r

figure (3)
scatter3(W(1,i,j,k),W(2,i,j,k),W(3,i,j,k))

hold on;
end

end
end

MATLAB COODE FOR TESTING -3 LINK MANIPULATOR

%% Testing 1

load(’ksom_3dof_weights ’);
a=0;
Xmiddle =(Xmax+Xmin)/2;
Ymiddle =(Ymax+Ymin)/2;
Zmiddle =(Zmax+Zmin)/2;
Rp =0.08;
Xt=0;
Xdt=0;
for j=0:0.1:1

a=a+1;
Xdt(1,a)=Xmin*(1-j)+Xmax*j;
Xdt(2,a)=Ymax*(1-j)+Ymin*j;
Xdt(3,a)=Zmin*(1-j)+Zmax*j;
end
ndsT=a;
for nds=1: ndsT

nds
for i=1:p

for j=1:q
for k=1:r

Dis(i,j,k)=norm(W(:,i,j,k)-Xdt(:,nds));
end

end
end
Dis_min=min(min(min(Dis)));
a=0;
for i=1:p

for j=1:q
for k=1:r

Introduction to Learning-Based Inverse Kinematic Control 87

if(Dis(i,j,k)== Dis_min)
a=a+1;

ai(a)=i;
aj(a)=j;
ak(a)=k;

end
end

end
end
if(a>1)

fprintf(’More than one min distance values ’);
break;

end
for i=1:p

for j=1:q
for k=1:r

H(i,j,k)=exp(-((ai-i)^2+(aj-j)^2+(ak-k)^2)/
(2* sigfin*sigfin));

end
end

end
Y_temp=zeros (3,1);
for i=1:p

for j=1:q
for k=1:r

Y_lambda_Theta_0 (:,i,j,k)=H(i,j,k)*(Theta_lambda (:,i,j,k)
+A(:,:,i,j,k)*(Xdt(:,nds)-W(:,i,j,k)));
Y_temp=Y_temp+Y_lambda_Theta_0 (:,i,j,k);

end
end

end
s=(sum(sum(sum(H))));

Theta(:,nds)=(Y_temp)/s;
R=(l2*cos(Theta(2,nds)))+(l3*cos(Theta(3,nds)))+t;
V_0= R*cos(Theta(1,nds));

V_0= R*sin(Theta(1,nds));
V_0=(l2*sin(Theta(2,nds)))+(l3*sin(Theta(3,nds)))+l1;
lol =0;

error =10;
while(error >0.001)

lol=lol+1;
Co_act=zeros(nop ,p,q,r);

Corr_action=zeros(nop ,1);
for i=1:p

for j=1:q
for k=1:r

Co_act(:,i,j,k)=H(i,j,k)*A(:,:,i,j,k)*(Xdt(:,nds)-V_0);
Corr_action=Corr_action+Co_act(:,i,j,k);

end

88 Hand-eye Coordination of a Robotic Arm using KSOM Network

end
end

Theta_1=Theta_0 +(Corr_action/s);
R=(l2*cos(Theta_1 (2,1)))+(l3*cos(Theta_1 (3,1)))+t;
Xt(1,nds)= R*cos(Theta_1 (1,1));
Xt(2,nds)= R*sin(Theta_1 (1,1));
Xt(3,nds)=(l2*sin(Theta_1 (2,1)))+(l3*sin(Theta_1 (3,1)))+l1;
error=norm(Xt(:,nds)-Xdt(:,nds));
Theta_0=Theta_1;
V_0=Xt(:,nds);

if(lol >100)
break;

end
end

Teeta(:,nds)=Theta_1;
pts1(:,nds)=[0;0;0];
pts2(:,nds)=[0;0; l1];
pts3(:,nds)=[l2*cos(Theta_1 (2,1))*cos(Theta_1 (1,1));
l2*cos(Theta_1 (2,1))*sin(Theta_1 (1,1));
l2*sin(Theta_1 (2,1))+l1];
pts4(:,nds)=[(R-t)*cos(Theta_1 (1,1));(R-t)*sin(Theta_1 (1,1)

↪→)
;Xt(3,nds)];
pts5(:,nds)=[Xt(1,nds);Xt(2,nds);Xt(3,nds)];
end
figure (1)
grid on;
scatter3(Xt(1,:) ’,Xt(2,:) ’,Xt(3,:) ’,50,’b’,’o’);
grid on;
hold on;
legend(’End effector position ’,’Desired Trajectory ’,
’Manipulator Link ’)
plot3(Xdt(1,:),Xdt(2,:),Xdt(3,:) ,’k’,’lineWidth ’,2);
hold on;
xlabel(’X-axis ’);
ylabel(’Y-axis ’);
zlabel(’Z-axis ’);
for ii=1:nds
% scatter3(pts1(1,ii),pts1(2,ii),pts1(3,ii));
line([pts1(1,ii),pts2(1,ii)],[pts1(2,ii),pts2(2,ii)],
[pts1(3,ii),pts2(3,ii)],’LineWidth ’,4)
% scatter3(pts2(1,ii),pts2(2,ii),pts2(3,ii));
line([pts3(1,ii),pts2(1,ii)],[pts3(2,ii),pts2(2,ii)],
[pts3(3,ii),pts2(3,ii)],’LineWidth ’,4)
% scatter3(pts3(1,ii),pts3(2,ii),pts3(3,ii));
line([pts3(1,ii),pts4(1,ii)],[pts3(2,ii),pts4(2,ii)],
[pts3(3,ii),pts4(3,ii)],’LineWidth ’,4)
% scatter3(pts4(1,ii),pts4(2,ii),pts4(3,ii));
line([pts5(1,ii),pts4(1,ii)],[pts5(2,ii),pts4(2,ii)],

Visual Motor Control of a Redundant Manipulator using KSOM Network 89

[pts5(3,ii),pts4(3,ii)],’LineWidth ’,4)
% scatter3(pts5(1,ii),pts5(2,ii),pts5(3,ii));
end
hold on;
e=norm(Xt-Xdt)/size(Xt ,2);
for i=1:p

for j=1:q
for k=1:r

figure (3)
scatter3(W(1,i,j,k),W(2,i,j,k),W(3,i,j,k))

hold on;
end

end
end

3.4 Visual Motor Control of a Redundant Manipulator
using KSOM Network

In the previous section, it is discussed how to make use of KSOM based
network to learn the inverse kinematics of a robot manipulator. In this section
we consider a 7 degrees of freedom manipulator as shown in figure 3.11. This
robot manipulator is a modular power PowerCube manufactured by Schunk.
The kinematic model of this manipulator is given in Chapter 2. The visual
feedback is provided by the two overhead cameras. The integration of the
camera model with the kinematic model is also provided in Chapter 2.

The KSOM network for visual motor control (VMC) using the standard
model given in the previous section is given in Figure 3.12.

The input to this network is ut which is the target position in the visual
space. A 3-d lattice has been taken as the task space is always that of 3-d
even if the manipulator considered here has 7 DOF. Each camera gives the
centroid of the target object as xc, yc. Thus ut = [xrcyrcxlcylc]T . r and l refer to
right and left overhead cameras. In this network the coarse and fine actions
are given as:

θout0 = 1
s

∑
γ

hγ(θγ +Aγ(ut − wγ)) (3.39)

θout1 = θout0 + s−1
∑
γ

hγAγ(ut − v0) (3.40)

One can notice that the only change that has happened here is that x has
been replaced by ut. The weight update laws for the visual motor control are
thus given as

wγ ← wγ + ηwhγ(ut − wγ) (3.41)

90 Hand-eye Coordination of a Robotic Arm using KSOM Network

Image
Processing
Unit

Running on Computer

Target

Camera2

Camera1

(x2, y2)

(x1, y1)

Joint
angle
vector

Neural
Network

Driving
Servo

Unit

θ

ut

7DOF PowerCube
Robot Manipulator

u

FIGURE 3.11: Schematic of a visual motor control system. ut and ur are the
4-dimensional image coordinate vectors for target point and robot end-effector
respectively.

1

2

3

4

5

1

2

3
4

5

KSOM Lattice

Aγ

Vision space Joint spaceg

θ

ut

θ = 1
s

∑
γ hγ(θγ +Aγ(ut −wγ))

ut θ

(θγ,wγ,Aγ)

FIGURE 3.12: KSOM network for visual motor control.

Visual Motor Control of a Redundant Manipulator using KSOM Network 91

θγ ← θγ + ηθ∆θγ (3.42)
Aγ ← Aγ + ηA∆Aγ (3.43)

where

∆θγ = hγ
s

[
θout0 − s−1

∑
γ

hγ(θγ +Aγ(v0 − wγ))
]

(3.44)

∆Aγ = hγ
s‖∆v‖2

[
∆θout − s−1

∑
γ

hγAγ∆v
]

∆vT (3.45)

The above standard SOM-based VMC scheme has following limitations which
restrict its applicability to redundant manipulators:

• It is found that for a redundant manipulator with 6 or higher degrees of
freedom, although the SOM lattice neurons preserve topology of the input
space as shown in Fig. 3.13, the lattice fails to preserve the topology of
output (joint angle) space as shown in Fig. 3.14. In Fig. 3.13, it can be seen
that the weight vectors (wγ) represented by square ‘boxes’ are spread out
uniformly over the input space. On the other hand, in Fig. 3.14, we find
that the clusters in joint angle space (θγ) represented by square ‘boxes’
are concentrated at one location. It would be shown in the simulation
section that because of the fact that the network fails to capture the
output topology, the positioning accuracy attained using standard SOM
algorithm is sensitive to initial conditions.

-1 -0.5 0 0.5 1

X - Pixel

-1

-0.5

0

0.5

1

Y
 -

 P
ix

el

Training Data

Lattice Neuron vector (w
γ
)

-1 -0.5 0 0.5 1

X - Pixel

-1

-0.5

0

0.5

1

Y
 -

 P
ix

el

Training Data

Lattice neuron vector (w
γ
)

(a) (b)

FIGURE 3.13: Clustering in image-coordinate (input) space. Lattice neurons
capture the topology of input space during training. The circular dots denote
the actual input data generated during training and the square represent the
cluster centers wγ .

92 Hand-eye Coordination of a Robotic Arm using KSOM Network

-1
-0.5

 0
 0.5

 1 -1
-0.5

 0
 0.5

 1

-1

-0.5

 0

 0.5

 1

θ3
Training data

Lattice neuron vector θγ

θ1

θ2

θ3

(a) Space formed by first 3 joint angles

-1 -0.5 0 0.5 1

-1
-0.5

 0
 0.5

 1-1

-0.5

 0

 0.5

 1

θ6

Training data
Lattice neuron vector θγ

θ4

θ5

θ6

(b) Space formed by last 3 joint angles

FIGURE 3.14: The topology of output space is not captured by the original
VMC algorithm during the evolution of parameters (training phase). While
the training data shown by ‘+’ signs are distributed across the entire volume,
the cluster centers θγ are collected at one location.

• The standard SOM algorithm returns a unique inverse kinematic solution
for any target in the manipulator workspace. This might not be desirable
in case of redundant manipulators where one would like to choose a dif-
ferent configuration to satisfy some additional requirements. Even though
the training data sets are replete with redundant solutions, there is no
provision to preserve this redundancy during the evolution of parameters.

3.4.1 The Problem
In case of 2-d and 3-d manipulators, during the training, the robot is asked to
reach 3000 and 6000 random target positions. But in case of 7 DOF manip-
ulator, the number of training examples required may increase significantly.
During the training, we actuate a random joint angle vector within given joint
constraints to the forward kinematics. This will make the robot tip position
to reach a random target position. This random position as seen by the two
overhead cameras becomes the input for the KSOM network to actuate a joint
angle vector. If we select ten random angles for each joint, then for seven joints,
the total number of target positions generated will be 107. This is surely a
very large number of training data set. In stead we generate 50,000 random
joint angle vectors. Using the integrated kinematic-camera model, 50,000 tar-
get positions in the visual space are obtained. It will be shown in this section
that these many training examples are sufficient to train the network.

There is another problem associated with redundancy. A redundant manip-
ulator can reach a target position in infinite possible kinematic configurations.
In practice, many joint angle vectors will make the robot tip position which is
also called as the end-effector to reach the same target positions. So the robot
will reach same target position in many possible kinematic configurations.

Visual Motor Control of a Redundant Manipulator using KSOM Network 93

�
�
�

�
�
�

�
�
�
�

�
�
�
�

3-dimensional KSOM lattice

γ

A2
γ

A1
γ

A3
γ

θ1
γ

θ2
γ

θ3
γ

wγ

FIGURE 3.15: Sub-clustering in joint angle space: Each node γ is associated
with one weight vector wγ and several θ vectors.

Earlier we associated only one linear model with each neuron. But each neuron
has to be associated with multiple linear models for a redundant manipulator
as shown in figure 3.15.

The idea is to associate each lattice neuron with several joint angle vectors.
Each joint angle vector is a linear expression in terms of θγ , Agamma and wγ .
The advantage is that for every target position, it is possible to have several
configurations, and one can choose a suitable configuration based on some task
oriented criterion. In this approach, clustering is carried out independently in
the task space as well as in the configuration space and a linearized inverse
kinematic relationship is learned between each pair of input-output clusters.
Since each cluster in task space is associated with more than one cluster
in configuration space, redundancy is resolved in real time using different
criteria. This approach is different from PSOM based methods proposed by
Walter and Ritter [137–139], where constraints are included in forming a map
manifold over which the training is carried out. This in turn, necessitates a
priori knowledge of the task at hand.

Another problem associated with the redundant manipulator is that the
number of kinematic configurations in which the robot can reach a target
position will get reduced as the target position varies from the interior of
the workspace toward the external boundary of the workspace. So we can-
not assign a fixed number of linear models with each neuron. Thus following
modifications have been done to the network architecture.

• Instead of fixing the number of sub-clusters a priori, the number is decided
adaptively during on-line training process. A new sub-cluster is created
whenever the incoming data vector is far away from the currently existing

94 Hand-eye Coordination of a Robotic Arm using KSOM Network

sub-clusters. Through simulations, it is shown that this scheme helps
in preserving the topology in joint angle space by avoiding creation of
outliers.

• The smoothness of joint angle trajectories can be preserved by using
the neighborhood concept where the network output is taken as the
weighted average of individual neuron outputs. The weighting coefficients
are obtained from a neighborhood function. Since each input cluster is
associated with more than one output cluster, the conventional neighbor-
hood concept as used by Martinetz et al. [140, 141] cannot be used. A
modified neighborhood concept is proposed to preserve the conservative
property of the inverse kinematic solution. The concept explained in detail
later in this chapter.

3.5 KSOM with Sub-Clustering in Joint Angle Space
Any point within the 3-dimensional Cartesian workspace of the manipula-
tor may be reached using only 3 degrees of freedom. The presence of higher
degrees of freedom provide dexterity in performing the task at hand. In other
words, apart from reaching the point, the extra degrees of freedom may be
used to perform some additional tasks like avoiding obstacles, meeting joint
angle limits or satisfying other motion constraints. The proper utilization of
available degrees of freedom has been an interesting problem for researchers.

In the context of visual motor control using KSOM networks, redundancy
resolution has been dealt with by many authors. For instance, Martinetz et
al. [142] applied KSOM algorithm to a 5 DOF manipulator and argued that
because of neighborhood function, the redundancy is resolved ‘naturally’ by
using ‘lazy arm method.’ Han et al. [143] and Zha et al. [144] used SOM for
avoiding obstacles. Zheng et al. [145] resolved redundancy by optimizing some
task oriented criteria. Most of these methods have been applied to 3, 4 or 5
DOF manipulators and each method resolves redundancy in only one way.
The redundancy resolution scheme is learned during the training phase itself.
Hence once the network is trained, it is not possible to change the redun-
dancy resolution criterion while computing the inverse kinematic solution.
Since most of the current VMC schemes involve time consuming training pro-
cess, retraining the network for a new redundancy resolution criterion is not
desirable.

In case of redundant manipulators, several sets of joint angle vectors may
lead to same end-effector position. Thus, the data generated during training
phase consists of redundant data sets. The current VMC algorithms explained
in the beginning of the Section 3.4 do not have provisions to preserve this
redundancy in the solution space. In the previous chapter, a concept called

KSOM with Sub-Clustering in Joint Angle Space 95

θ1
γ

θ2
γ

θ3
γ

A2
γ

A3
γ

A1
γ

γ

wγ

3-dimensional KSOM Lattice

FIGURE 3.16: Sub-clustering in joint-angle space. Each lattice neuron γ is
associated with one weight vector wγ and several joint angle vectors θλγ , λ =
1, 2, . . . , Nγ . Here Nγ = 3.

‘sub-clustering in joint angle space’ is introduced to preserve this redundancy
in a useful manner. The idea is to associate multiple angle vectors with each
lattice neuron as shown in Fig. 3.16. Since the number of redundant solutions
available for a target point varies across the manipulator workspace, the num-
ber of sub-clusters to be associated with each neuron is decided on-line based
on the distribution of generated data points.

3.5.1 Network Architecture
The network architecture for sub-clustering is reproduced here for conve-
nience. It consists of a 3-dimensional SOM lattice where each lattice neuron γ
is associated with a 4-dimensional weight vector wγ and several 6-dimensional
joint angle vectors as shown in Fig. 3.16. Let us assume that each lattice
neuron γ is associated with Nγ numbers of angle vectors given by θjγ , j =
1, 2 . . . , Nγ and an equal number of Jacobian matrices Ajγ j = 1, 2, . . . , Nγ
of dimension 6 × 4. The number Nγ varies with each γ and is decided on-
line based on the actual data distribution. When lattice neuron γ becomes a
winner for a given input vector ut, this network architecture can actuate Nγ
kinematic configurations by which the robot manipulator can reach the same
target as per following relation:

θj = θjγ +Ajγ(ut − wγ); j = 1, 2 . . . , Nγ (3.46)

For this network architecture, the parameters θjγ and Ajγ cannot be learned
using standard SOM algorithm. Unlike standard SOM algorithm, we propose

96 Hand-eye Coordination of a Robotic Arm using KSOM Network

an on-line clustering algorithm to learn θjγ while the error-correcting gradient
learning for Aγ in standard SOM algorithm has been adapted to learn Ajγ .

3.5.2 Training Algorithm
The training phase consists of following steps:
1. Set the iteration counter k = 1.

2. Data generation: A training data set (θt,ut) is generated using robot and
camera models during simulation. The robot manipulator is commanded
a movement in joint angle space by generating a random vector θt within
physical limits while the input vector ut is recorded from camera output.

3. Clustering in input space: For each 4-dimensional target input ut, a winner
neuron µ is selected based on minimum Euclidean distance as shown in
equation (3.1). The weight vectors corresponding to the winner neuron µ
and the neighboring neurons are updated as per equation (3.41) for the
given target vector ut.

4. Clustering in output space: Let’s assume that this winner neuron µ is
associated with Nµ number of θ vectors given by θjµ, j = 1, 2, . . . , Nµ. The
incoming target angle vector θt is used to create a new angle vector or
update the existing angle vectors as per following conditions:

• Case I: IfNµ = 0, i.e., there is no θ vector associated with this neuron,
then assign the target joint angle vector θt as its first center. That
is, θNµ+1

µ = θ1
µ = θt.

• Case II: If Nµ > 0, following steps are followed:
– Find the angle vector θjµ which is nearest to the incoming angle

vector θt. Let’s call the winner among these angle vectors be θβµ
where

β = arg min
j
‖θjµ − θt‖, j = 1, 2, . . . , Nµ (3.47)

– If the minimum distance dmin = ‖θβµ − θt‖ < K, where K is
a user-defined threshold, the angle vectors are updated using a
competitive rule given by

θjµ(k + 1) = θjµ(k) + ηhβj(θt − θjµ(k)) (3.48)

where hβj = e
−(β−j)2

2σ2
t is the neighborhood function used for sub-

clustering. A suitable value of spread of Gaussian function σt is
selected for this purpose.

– If dmin > K, create a new centre and assign the incoming θt
vector to it and increment the count of angle centers associated
with this winner neuron µ from Nµ to Nµ + 1. In other words,
θNµ+1
µ = θt.

KSOM with Sub-Clustering in Joint Angle Space 97

5. Coarse Movement: Because of sub-clustering, the winner neuron µ is
associated with Nµ sub-clusters in joint angle space given by θjµ, j =
1, 2, . . . , Nµ. For the given target point ut, the network has Nµ outputs
given by

θj0 = θjµ +Ajµ(ut −wµ); j = 1, 2, . . . , Nµ. (3.49)
These are called coarse movements. These coarse movements lead to end-
effector positions vj0, j = 1, 2, . . . , Nµ as recorded by the cameras.

6. Fine movement: Based on the current positioning accuracy for each end-
effector position vj0, a fine movement may also be carried out as follows:

θj1 = θj0 +Ajµ(ut − vj0) (3.50)

The new end-effector positions are recorded as vj1, j = 1, 2, . . . , Nµ.

7. The difference ∆vj = vj1−vj0 is used to update the corresponding Jacobian
matrix Ajµ so as to minimize the error

Ej = 1
2(∆θj −Ajµ∆vj)2 (3.51)

This gives following update law for Jacobian matrices:

Ajµ(k + 1) = Ajµ(k) + η

‖∆vj‖2 (∆θj −Ajµ∆vj)∆vjT (3.52)

8. Increment the iteration counter k = k + 1 and go to step 1.

Note that during training phase, the output of the network is not an weighted
average of all the neurons as was previously done. It is because of the fact
that the number of θ clusters associated with neurons are not same and hence
the usual neighborhood concept cannot be used in this case.

3.5.3 Testing Phase
• For a given target point ut, the winner neuron µ is computed based on its

minimum Euclidean distance from the target in input space as given by
(3.1). This winner neuron is associated with several, say, Nµ sub-clusters
in joint angle space.

• One can choose among these sub-clusters based on some criterion. The
redundancy is resolved using three criteria namely, lazy arm movement,
minimum angle norm and minimum condition number of Jacobian matrix.
Let the winning joint angle sub-cluster be β. Once the winner indices µ
and β are computed, coarse and fine joint angle outputs are given by

θ0 = θβ0 = θβµ +Aβµ(ut −wµ) (3.53)
θ1 = θβ1 = θ0 +Aβµ(ut − v0) (3.54)

98 Hand-eye Coordination of a Robotic Arm using KSOM Network

where v0 is the end-effector position recorded after coarse movement. Mul-
tiple steps may be taken to improve the positioning accuracy further.

3.5.4 Redundancy Resolution
Sub-clustering gives rise to multiple configurations for every target position.
Let the index of winner neuron in input space be µ and this winner neuron is
associated with Nµ sub-clusters. One can select a suitable configuration based
on different criteria. In this chapter, the following three criteria are used for
resolving redundancy:

• Lazy arm movement: The angle sub-cluster which is closest to the current
robot configuration is selected as the winner. The winning sub-cluster for
these criteria is given by

β = arg min
j
‖θjµ − θc‖ (3.55)

where θc is the current robot configuration.

• Minimum angle norm: The angle sub-cluster whose norm is minimum is
selected as the winner. The winning sub-cluster for this criteria is given
by

β = arg min
j
‖θjµ‖ (3.56)

• Minimum condition number: The matrix Ajµ represents a local inverse
image Jacobian matrix associated with each joint angle vector θjµ. For
visual motor control, it is desirable to have low condition number for image
Jacobian matrices to improve the robustness and numerical stability of the
system [146]. Sometimes the condition number of image Jacobian matrix
is used as measure of perceptibility of motion [147,148]. The perceptibility
is a quantitative measure of the ability of a camera setup to observe the
changes in image feature due to motion of robot end-effector. It is used to
evaluate the ease of achieving vision-based control and steering away from
singular configurations [147].
Since several joint angle configurations are available for a given winner
neuron, each associated with an inverse Jacobian matrix, one can choose a
particular configuration based on the minimum condition number of these
matrices. The winning sub-cluster based on minimum condition number
is given by

β = arg min
j

[cond(Ajµ)] (3.57)

where cond(Ajµ) is the condition number of the matrix Ajµ.

KSOM with Sub-Clustering in Joint Angle Space 99

3.5.5 Tracking a Continuous Trajectory
Unlike original VMC algorithm, the neighborhood function is not used during
the training phase. This might not be of concern when the task is to reach
isolated points in the workspace. However, one would like to have a continuous
trajectory in joint angle space for a continuous trajectory in image coordinate
space. In other words, the conservative property [149] of inverse kinematic
solution is desirable and needs to be preserved.

Use of neighborhood helps in maintaining a continuous trajectory in the
joint angle space by avoiding abrupt changes in the joint motion. This happens
because the network output is obtained by taking the weighted average of
individual neuron outputs within a neighborhood around the winner neuron.
In order to facilitate further discussion, we divide the available configurations
into following two classes:

• Each joint angle sub-cluster represents a particular robot configuration.
Two configurations, θiγ and θjλ, are said to be similar if ‖θiγ − θjλ‖ <
K, i 6= j, γ 6= λ and K is an arbitrarily small constant. Otherwise, they
would be called dissimilar configurations.

• All angle sub-clusters associated with each neuron γ are dissimilar. In
other words, ‖θiγ − θjγ‖ > K for i 6= j. Note that K is the threshold that
was used for creating a new sub-cluster during training phase. Refer to
the discussion under section “clustering in output space”.

The concept of neighborhood in a sub-clustered environment employed
in this paper is explained in Fig. 3.17. In this figure, wγ and wλ are two
neighboring neurons, represented by their respective weight vectors. The angle
sub-clusters associated with them are represented by θiγ , i = 1, 2, . . . , Nγ and
θjλ, j = 1, 2, . . . , Nλ respectively. For simplicity, it is assumed that Nγ = Nλ =
5. Let’s assume that the lazy-arm criterion (LA) selects the angle vector ‘2’
in case of γ neuron and ‘5’ in case of λ neuron (refer to (3.55)). On the other
hand, the minimum-angle norm criterion (MA) selects angle vector ‘4’ in case
of γ and ‘3’ in case of λ neuron (refer to (3.56)). The dotted lines show that the
configurations corresponding to these sub-clusters are similar. In other words,
the configurations (γ, 2) and (λ, 5) are similar and so are the configurations
(γ, 4) and (λ, 3).

The network output is obtained as a weighted average over all similar joint
angle vectors. The coarse and fine joint angle movements, after incorporating
neighborhood, are given by following two equations

θ0 =

∑
γ

hγ(θβ(γ)
γ +Aβ(γ)

γ (ut −wγ))∑
γ

hγ
(3.58)

100 Hand-eye Coordination of a Robotic Arm using KSOM Network

Neighboring nodes
in image coordinate plane

wλ

θ1
λ θ2

λ θ3
λ θ4

λ θ5
λ

LA MA
Angle sub-clusters

LAMA

θ1
γ θ2

γ θ3
γ θ4

γ θ5
γ

wγ

FIGURE 3.17: Defining neighborhood in sub-clustered environment. (wγ ,θ
2
γ)

and (wλ,θ
5
λ) are similar configurations for lazy-arm criterion when γ and λ

are neighboring neurons in input space.

θ1 = θ0 +

∑
γ

hγA
β(γ)
γ (ut − v0)∑
γ

hγ
(3.59)

where hγ = e−
‖γ−µ‖2

σ2 is the neighborhood function defined in input space. µ
is the winner neuron in input (image coordinate) space. β(γ) is the index of
the winning angle sub-cluster associated with the neuron γ. The winning sub-
cluster for each neuron γ is obtained using the same criterion which was used
for winner neuron µ. In the simulation section, it would be shown that the
use of neighborhood results in a smooth trajectory in the joint angle space.

3.6 Simulation and Results
3.6.1 Network Architecture and Workspace Dimensions
A 3-dimensional neural lattice with 7× 7× 7 neurons is selected for the task.
Note that 10× 10× 10 nodes were used for least square based method in the
previous chapter. With the current scheme, this smaller network is found to be
adequate for obtaining better accuracy. Training data is generated using for-
ward kinematic model (2.1) and camera model (4.12). A Cartesian workspace
of dimension of 600 mm × 500 mm × 500 mm is considered for both simula-
tion as well as experiment. All points within this workspace are visible through
both the cameras of the stereo-vision system. Joint angle values are generated

Simulation and Results 101

randomly within the physical limits of the manipulator and only those input-
output pairs are retained where the end-effector positions are visible by both
the cameras simultaneously. The ranges of input and output spaces are given
in Table 2.2. Since end-effector positions in camera plane and joint angles have
different range of values, data points are normalized within ±1.

3.6.2 Training
The network is trained offline using 50,000 data generated using forward kine-
matic model (2.1) and (4.12). Again, it is to be noted that this data size is
one-tenth the size of the training set used in the least-square based method
discussed in the previous chapter. The training can be carried out ‘on-line’
which would necessitate generating data by moving the robot continuously.
Generating such a large number of data on a real system might not be con-
venient. Hence we follow the hybrid approach proposed by Behera et al. [150]
where, a network is trained offline using approximate models and then it is
fine-tuned during online operation.

A new θ sub-cluster is formed whenever the distance of incoming θt from
the existing nearest sub-cluster exceeds the threshold K = 1.0. The distribu-
tion of sub-clusters for lattice neurons is shown in Fig. 3.18(a). The number
of sub-clusters associated with each neuron varies between 10 to 35. The dis-
tribution of joint angle sub-clusters in 3-dimensional manipulator workspace
is shown in Fig. 3.18(b). It is seen that the points with less number of redun-
dant solutions lie toward the boundary of the workspace as shown by ‘+’
symbols (no. of solutions < 19). The number of points with very large num-
ber of redundant solutions is also less as shown by circles (no. of solutions >
30). The square symbols represent points with number of solutions in between
19 and 30. It is a common observation that the number of inverse kinematic
solutions for a given target position varies across the manipulator workspace.
This distribution of redundant solutions is captured effectively by the pro-
posed architecture as shown in the Figure 3.18(b).

The discretization of input and output spaces by the lattice neurons is
shown in Fig. 3.19. It is seen that the topology is captured by the lattice
neurons both in input and output spaces. Since the number of sub-clusters for
each neuron is decided based on the input data distribution, the outliers are
automatically avoided. Outliers are the neurons which do not represent input
data. In Fig. 3.19(a)-3.19(b), it is seen that all sub-clusters are surrounded
by training data points and they do not lie in an empty region. These results
are in contrast to that of a standard SOM algorithm as shown in figure 3.14
where clusters are localized and some of them are outliers.

3.6.3 Testing
The following tasks were performed to demonstrate the efficacy and usefulness
of the proposed schemes.

102 Hand-eye Coordination of a Robotic Arm using KSOM Network

0 100 200 300

Lattice index (γ)

10

15

20

25

30

35

40

N
u
m

b
e
r

o
f

S
u
b
-c

lu
st

e
rs

 (
N

γ)

(a)

-1
-0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1 -2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

-1

-0.5

 0

 0.5

 1

Z (m)

X (m)
Y (m)

Z (m)

(b)

FIGURE 3.18: (a) The number of sub-clusters for lattice neurons. The num-
ber of sub-clusters vary from one neuron to another. The number of sub-
clusters for a neuron is decided on-line based on the training data distribution.
(b) Distribution of joint angle sub-clusters in the 3-dimensional manipulator
workspace. The number of solutions available for a given target point varies
across the workspace. There are very few points where the number of available
solutions are too high. The number of solutions decreases toward boundary
of workspace. In this figure, ‘+’ represents the points where the number of
sub-clusters Nγ < 18, squares represent the points with Nγ is between 19 to
30 and circles represent points with Nγ > 30. A typical robot configuration is
shown in solid line.

-1
-0.8

-0.6
-0.4

-0.2
 0
 0.2

 0.4
 0.6

 0.8
 1 -1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

θ3

Input data Sub-cluster center

θ1

θ2

θ3

(a) First 3 joint angles

-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1

-1
-0.8

-0.6
-0.4

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1

θ6

Input data Sub-cluster center

θ4

θ5

θ6

(b) Last 3 joint angles

FIGURE 3.19: KSOM-SC architecture captures the topology in the output
space thereby eliminating the limitations of standard KSOM-based architec-
tures. Since the number of joint angle sub-clusters are decided on-line based
on the actual data distribution, the outliers are automatically avoided. It’s
because a new sub-cluster is created only when the new training data is far
away from current sub-clusters.

Simulation and Results 103

3.6.3.1 Reaching Isolated Target Positions in the Workspace

The joint angle vectors were computed for 20,000 target positions located
randomly within the manipulator workspace. Only one step is used to compute
the necessary joint angles. The performance of the proposed sub-clustering
based scheme is compared with the standard SOM-based scheme [141, 150].
The performance comparison is provided in Table 3.2. Since the performance
of standard SOM-based schemes is found to depend on initial values of network
parameters, the test results are averaged over twenty different runs. Each run
starts with a different random initialization.

As discussed earlier, sub-clustering based scheme preserves the redundancy
available in training data and provides a finite number of joint angle vec-
tors for every target position in the manipulator workspace. The redundancy
is resolved using three criteria namely, “lazy-arm method (LA),” “minimum
angle norm (MA),” and “minimum condition number (MC).” Various solu-
tions obtained for a given target point after resolving redundancy is shown in
Fig. 3.20.

From the Table 3.2, it is clear that sub-clustering based methods give
better positioning accuracy than the standard SOM-based schemes proposed
by Martinetz [140] and Schulten [141]. It is seen in Table 3.2 that standard
SOM algorithm gives rise to very large joint angle variation as reflected in the
magnitude of joint angle norm.

It is said earlier that the joint angle vectors associated with lattice neurons
do not capture the topology of output space. This makes the convergence of
standard SOM-based schemes sensitive to initial values of network parameters
as shown in Fig. 3.21(a). In this figure, average positioning error over 20,000
isolated target positions are shown for different runs, where each run starts
with a different random initialization and includes a training and a testing
phase. It is observed in Fig. 3.21(a) that the average positioning error varies
widely across different runs and can be as high as 100 mm. On the contrary,
the performance of sub-clustering based scheme using lazy-arm redundancy
resolution technique is comparatively less sensitive to initial conditions and

TABLE 3.2: Performance comparison for reaching isolated points

Scheme Average positioning error Angle norm
(normalized)

learning
parameters
(ηw, ηt, ηa, σ)

Cartesian
space (mm)

Image space
(pixels)

Standard
SOM

24.93 7.87 1.54 0.1, 0.2, 0.9, 0.1

SC + LA 3.83 1.22 0.83 0.1, 0.5, 0.9, 1.5
SC + MA 3.0 0.95 0.76 0.1, 0.5, 0.9, 1.5
SC + MC 18.67 6.33 1.38 0.1, 0.9, 0.9, 0.2

104 Hand-eye Coordination of a Robotic Arm using KSOM Network

-0.3
-0.2

-0.1
 0

 0.1
 0.2

 0.3

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Z (m)

base

Target
Lazy Arm

Minimum angle norm
Minimum condition number

Previous robot configuration

X (m)

Y (m)

Z (m)

FIGURE 3.20: Redundancy resolution using various criteria. Different criteria
give different configurations for the same target point.

performance remains constant across different runs. The average positioning
accuracy over all runs is below 4 mm implying that the proposed scheme is
very accurate in position tracking.

The advantage of an on-line incremental learning scheme is that one can
execute multiple fine movements (refer (3.54)) to improve the positioning
accuracy as shown in Fig. 3.21(b). This figure plots the number of fine move-
ment steps required to achieve a given average positioning error over 1000

0 4 8 12 16 20

Runs

0

10

20

30

40

50

60

70

80

90

100

A
v
er

ag
e

p
o
si

ti
o
n
in

g
 e

rr
o
r

(m
m

)

Standard KSOM
KSOM + SC

(a)

00.30.60.91.21.51.82.12.42.733.33.63.9

Positioning error (mm)

0

5

10

15

20

N
u
m

b
er

 o
f

fi
n
e

m
o
v
em

en
ts

Standard KSOM
KSOM + SC

(b)

FIGURE 3.21: (a) Dependence of convergence on initial conditions. Standard
SOM algorithm is sensitive to initial conditions and hence varies widely for
different runs. The performance of sub-clustering based scheme is indepen-
dent of initial conditions. (b) Improving positioning accuracy using multiple
fine movements. The results are obtained by averaging over 1000 test points.
Standard SOM algorithm requires very large number of fine movements to
attain accuracy below 1 mm as compared to sub-clustering based method.

Simulation and Results 105

test points. Since the standard SOM algorithm is sensitive to initial network
parameters, we have taken initial network parameters corresponding to run
14 where both standard SOM and proposed algorithm have same level of
performance. This figure shows that the standard SOM algorithm requires
seventeen fine movement steps to attain the average positioning accuracy of
0.1 mm while the proposed sub-clustering based method takes three steps to
attain the same accuracy. The result shown in this figure is in sharp contrast
to those reported by Angulo et al. [151] where authors take more than 1000
steps to attain that level of accuracy even when they use orientation infor-
mation to compute the inverse kinematic solution. Note that in Fig. 3.21(b),
the result for standard SOM is shown for those initial conditions for which
the network performance is comparable with the proposed scheme. Otherwise,
the performance of the standard SOM will further deteriorate for other initial
conditions.

3.6.3.2 Tracking a Straight Line Trajectory

The desired straight line trajectory in Cartesian space is given by

y = 5
6x+ 11

20
z = 5

6(x+ 0.3) (3.60)

where −0.3 m ≤ x ≤ 0.3 m. Six hundred points are generated sequentially
on this line and the joint angles for each point are computed using only one
fine movement. Since learning algorithm has been designed so that it can be
used on-line, the parameters are updated even during the testing phase. This
helps in improving tracking accuracy. A typical tracking result obtained using
sub-clustering scheme is shown in Fig. 3.22(a). In this case, the redundancy is
resolved using lazy-arm criterion. The corresponding joint angle trajectory is
shown in Fig. 3.22(b). It is seen that for a continuous trajectory in Cartesian
space, the joint angle movement is continuous and hence the inverse kinematic
solution is conservative in nature. Performance comparison among various
redundancy resolution schemes is provided in Table 3.3. The solution based on
minimum condition number (MC) criterion does not give rise to continuous
joint angle movement. While the joint angle trajectory obtained using MA
criterion is unique for a given task space trajectory, the joint angle trajectory
obtained using LA criterion depends on current robot configuration. If all the
joint angles of the manipulator are reset to zero prior to robot movement,
then the solution for lazy arm movement converges to that of minimum angle
norm movement. Different criteria give rise to different trajectories in the
configuration space as shown in Fig. 3.23. This figure shows the solutions
obtained using two LA and MA criteria. The purpose of this figure is to show
that different criteria lead to different solution trajectories.

106 Hand-eye Coordination of a Robotic Arm using KSOM Network

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Z (m)
Robot movement

Desired Trajectory

X (m)

Y (m)

Z (m)

(a) Robot configuration

-0.1
-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25

-0.2
 0

 0.2
 0.4

 0.6
 0.8

 1

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

θ3,θ6 First 3 angles
Last 3 angles

θ1,θ4

θ2,θ5

θ3,θ6

(b) Joint angle trajectories

FIGURE 3.22: Tracking a straight line using lazy-arm criterion. A continuous
trajectory in task-space gives rise to a continuous trajectory in joint angle
space.

TABLE 3.3: Performance comparison for tracking a straight line trajectory

Criterion Average positioning error Angle norm
(normalized)

learning
parameters
(ηw, ηt, ηa, σ)

Cartesian
space (mm)

Image space
(pixels)

SC + LA 2.91 0.75 0.89 0.9, 0.9, 0.9, 1.4
SC + MA 2.70 0.63 0.77 0.9, 0.9, 0.9, 1.4
SC + MC 34.78 9.74 1.361 0.9, 0.9, 0.9, 1.4

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Z (m)

Minimum angle norm motion
Desired trajectory
Lazy Arm Motion

Previous configuration

X (m)

Y (m)

Z (m)

FIGURE 3.23: Redundancy resolution while tracking a straight line trajectory.
The minimum angle norm (MA) solution is independent of initial configura-
tion. The lazy arm (LA) solution depends on initial condition.

Simulation and Results 107

3.6.3.3 Tracking an Elliptical Trajectory

The desired trajectory to be traversed is given by

x = 0.2 sin t; y = 0.5 + 0.2 cos t; z = 5
6(x+ 0.3) (3.61)

where t varies from 0 to 2π. A total of 628 points are generated sequentially
on this trajectory, the joint angles are computed in one step for each point. A
typical trajectory obtained using lazy-arm criterion and sub-clustering tech-
nique is shown in Fig. 3.24(a). The corresponding trajectories for joint angles
is shown in Fig. 3.24(b). This reaffirms our previous assertion that the inverse
kinematic solution obtained is conservative. The performance comparison for
different schemes is provided in Table 3.4. Similar references can be drawn
from this table as it was done in case of a straight line trajectory.

-0.2
-0.15

-0.1
-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Z (m)

Desired Trajectory
Robot configurations

X (m)

Y (m)

Z (m)

(a) Robot configuration

-0.1
 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9

-0.1
 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

θ3, θ6

Normalized Values

First 3 angles
Last 3 angles

θ1, θ3

θ2, θ5

θ3, θ6

(b) Joint angle trajectories

FIGURE 3.24: Tracking an elliptical trajectory using lazy arm movement.
The inverse kinematic solution is conservative in the sense that a closed loop
trajectory in task space gives rise to a closed trajectory in configuration space.

TABLE 3.4: Performance comparison for tracking an elliptical trajectory

Criterion Average positioning error Angle norm
(normalized)

learning
parameters
(ηw, ηt, ηa, σ)

Cartesian
space (mm)

Image space
(pixels)

SC + LA 1.44 0.42 1.0 0.9, 0.9, 0.9, 2.0
SC + MA 1.28 0.42 0.82 0.9, 0.9, 0.9, 2.0
SC + MC 22.78 6.82 1.55 0.9, 0.9, 0.9, 2.0

108 Hand-eye Coordination of a Robotic Arm using KSOM Network

FIGURE 3.25: Experimental setup for VMC experiment.

3.6.4 Real-Time Experiment
The actual setup used for experiment is shown in Figure 3.25. The Cartesian
workspace visible by both cameras has a dimension of 600 mm × 600 mm ×
500 mm. The image frame has a dimension of 320 × 240 pixels. A yellow
ball is taken as a target and robot tip is identified using pink color. The
regions of interest are extracted using thresholding and filtering operations.
The centroid of the region is used by the VMC algorithm to compute necessary
joint angles. All image processing tasks are carried out using OpenCV library
[135]. The algorithm is implemented using C/C++ on a computer with Intel
Pentium 4 1.8 GHz processor. The cameras are calibrated using Reg Wilson’s
C implementation of Tsai algorithm [134]. In order to reduce positioning error
in real-time experiment, LEDs are used to detect end-effector position as well
as target position in a dark environment. The time required for manipulator
to execute a given joint angle command is approximately 80 milliseconds. The
image processing unit must provide the coordinates of the target within this
time interval. During closed loop operation, the synchronization between the
image processing unit and robot arm motion is carried out using software
timers.

The Cartesian workspace visible by both cameras has a dimension of
600 mm× 600 mm× 500 mm. The image frame has a dimension of 320× 240
pixels. The target and the robot tip are identified with yellow and pink colors
respectively. The initial location of robot end-effector and target in the image
plane is shown in Figure 3.26(a). The regions of interest are extracted using
thresholding and filtering operations. The centroid of the region is used by
the VMC algorithm to compute necessary joint angles. These joint angles are
applied to the robot and it moves to a position as shown in Figure 3.26(b). This
figure shows the final state of manipulator obtained after robot movement. The

Simulation and Results 109

(a) Initial state (b) Final state

FIGURE 3.26: Extraction of pixel coordinates for robot end-effector and tar-
get. Initial state is the state before robot movement. The final state refers to
state obtained after robot movement.

error is computed after making corrections for the pixel width of the robot
end-effector as well as the target object. The accuracy in detecting tip position
is further improved by using LEDs against a dark background.

The proposed scheme can be implemented on-line as was done by Schulten
[140, 141]. However, we used a hybrid approach as suggested by Behera et
al. [150] where the SOM network is trained offline by generating data from
the model rather than from the actual system. This reduces the demand on
on-line data generation.

The trained network was used on-line to compute joint angle vectors for
20 random locations in the manipulator workspace. Since it was not possible
to accurately measure the manipulator tip positions in world coordinate, the
distance error was measured directly in pixel coordinates. Only one fine step
was used to compute the necessary joint angle vector for each point. The
average distance error in the image plane is computed to be 12 pixels. This
error can be reduced by taking multiple fine steps. It takes fifteen steps, on
an average, for reaching an accuracy of about 1 pixel for a given target point
in the image plane.

3.6.4.1 Redundant Solutions

Although a redundant manipulator can reach a target point using more than
one joint angle configuration, existing learning algorithms can provide only a
unique inverse kinematic solution. However, the proposed redundancy preserv-
ing network provides multiple solutions simultaneously for any given target
position. Fig. 3.27 shows some of these inverse kinematic solutions for a given
target position represented by a yellow ball. Readers should be able to appre-
ciate that the yellow ball has been reached by many kinematic configurations.
Although the network provides multiple solutions, a particular configuration
can be selected based on the task requirement.

110 Hand-eye Coordination of a Robotic Arm using KSOM Network

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3

(d) Configuration 4 (e) Configuration 5 (f) Configuration 6

FIGURE 3.27: Redundant solutions for a given target position: The target
is a yellow ball which is reached by the manipulator using various kinematic
configurations. Six such kinematic configurations are shown in this figure.

(a) Camera 1 (b) Camera 2

FIGURE 3.28: Tracking a circular trajectory as observed in the image plane.
Thin line represents the desired trajectory and the thick line is the trajectory
of actual end-effector position. The end-effector is detected using an LED in a
dark environment. The image has been processed to ensure visibility on paper.

3.6.4.2 Tracking a Circular and a Straight Line Trajectory

The real-time experimental results for tracking a circular trajectory are shown
in Fig. 3.28 and the results for tracking a straight line trajectory are shown
in Fig. 3.29. The desired trajectories are specified directly on the image plane
using a camera model. In Fig. 3.28, the desired trajectory is shown as a thin
line and the actual end-effector trajectory is shown in thick points. In Fig. 3.29,
the desired and actual positions are shown in red and blue colors respectively.
Due to the overlap of colors, the actual trajectory appears discontinuous. The
end-effector position is detected using an LED against a dark background.
The average positioning error in both cases is 8 pixels.

Summary 111

(a) Camera 1 (b) Camera 2

FIGURE 3.29: Tracking a straight line trajectory as observed in the image
plane. The actual and the desired trajectories of the end-effector position
are demonstrated. The end-effector is detected using an LED against a dark
background.

(a) Initial State (b) Coarse Move-
ment

(c) Fine Movement -
Step 5

(d) Fine Movement -
Step 15

FIGURE 3.30: Multi-step Movement: The rectangular box with solid bound-
ary is the target specified on image plane that is to be reached. The current
end-effector position is shown with a box with dashed boundary. (a) shows
the initial state. The end-effector LED appears as black dot. (b) shows the
state after coarse movement. (c) shows the end-effector position after five fine
movement steps, and (d) shows the final end-effector position obtained after
15 fine movement steps. The final positioning error is less than 1 pixel. The
images have been processed to ensure visibility on paper.

3.6.4.3 Multi-Step Movement

In order to improve positioning accuracy of end-effector, multiple fine move-
ment steps are applied to the manipulator, and the corresponding results
are shown in Fig. 3.30. The first step is a coarse movement as shown in Fig.
3.30(b). The positioning error is approximately 15 pixels after the coarse move-
ment. This error has been further reduced to 7 pixels and 1 pixels respectively
after five and fifteen fine movements as shown in Fig. 3.30(c) and Fig. 3.30(d).

3.7 Summary
This chapter shows that existing KSOM-based visual motor control algo-
rithms are inefficient for applications in redundant manipulators. The existing

112 Hand-eye Coordination of a Robotic Arm using KSOM Network

learning architectures do not preserve topology of the output space (refer Fig.
3.14). Thus such algorithms become sensitive to initial network parameters
as shown in Fig. 3.21(a). Since existing learning architectures do not preserve
redundancy, the redundant manipulator cannot perform dexterous tasks using
these VMC algorithms.

Thus a KSOM based redundancy preserving network proposed in the pre-
vious chapter is used to provide several kinematic configurations for a given
target position. A real-time algorithm to learn network parameters has been
proposed. Since each lattice neuron is associated with multiple solutions in
joint angle space, an online adaptive clustering algorithm has been proposed
to learn these joint angle vectors. It is shown that this adaptive sub-clustering
in output space leads to the preservation of topology in both input and out-
put spaces by the KSOM lattice neurons. It is also shown that the proposed
KSOM network is insensitive to initial network parameters unlike the stan-
dard KSOM network. The smoothness of joint angle trajectories is maintained
through a modified neighborhood concept thereby preserving the conservative
property of the inverse kinematic solution.

These modifications lead to following improvements over existing methods:

• It is possible to attain a positioning error less than 1 mm in real-time
experiment. In simulation, it is even possible to reach less than 0.1 mm
error.

• It leads to a ten-fold reduction in the amount of data needed for training
the network. A smaller sized network (with 7× 7× 7 nodes) gives rise to
an accuracy of 1 mm when it is trained with only 50,000 data points. The
training can be carried out on-line.

• The inverse kinematic solution is conservative. In other words, the joint
angle trajectories are smooth and continuous for a continuous task space
trajectory.

• The positioning accuracy attained is less dependent on initial conditions
of the network as compared to the standard SOM-based algorithms.

• In a multi-step movement, the number of steps needed for obtaining lesser
positioning error increases very slowly as compared the existing SOM-
based algorithms.

Three criteria namely, lazy-arm movement, minimum angle-norm move-
ment, and minimum condition number of Jacobian matrices, are used to
resolve redundancy. Apart from providing dexterity, it is shown that the pro-
posed scheme provides the best positioning accuracy as compared to standard
SOM-based schemes. Finally, simulation results are validated through exper-
iments on a 7 DOF PowerCube ™ robot manipulator.

4
Model-based Visual Servoing of a 7 DOF
Manipulator

4.1 Introduction
This chapter presents the theoretical development of the MBVS control law
using image moments. It is focused on determining the analytical form of
the interaction matrix related to selected image moment features from a seg-
mented image. A real-time experimental results using a 7 DOF PowerCube
robot manipulator are presented to validate the system convergence.

This chapter starts the discussion by reviewing the basic image moment
definitions and computations as presented Section 4.5. The following Section
4.6 gives detail derivation of the first order of the image moments with respect
to the time using Green’s theorem. A fundamental pinhole camera model
is described in Section 4.7 which then is used for further development to
determine the interaction matrix. Section 4.8 presents the interaction matrix
derivation of the selected image moment features. The real-time experimental
results are presented in Section 4.9 and followed by the summary of this
chapter as described in Section 4.10.

4.2 Kinematic Control of a Manipulator
The position of the end-effector and the associated joint angle configuration
are coupled with forward and inverse kinematic relationship of the manipula-
tor. The forward kinematic map expresses the Cartesian space position of the
end-effector x for the given joint angle configuration θ, as

x = fx(θ), (4.1)

where the dimension of the task space x is n, and that of the joint angle
space θ is m. In the case of redundant manipulators n < m and the degree of
redundancy is given by m− n. fx(θ) is highly nonlinear and is obtained from
the geometry of the manipulator using Denavit-Hartenberg (D-H) parameters
[152].

113

114 Model-based Visual Servoing of a 7 DOF Manipulator

The inverse kinematic relation computes the joint angle space configuration
θ which is required to reach the desired position xd. The closed form inverse
kinematic relationship exists only for simple manipulator configurations. In
general inverse kinematic control is achieved with forward differential kine-
matic relationship, since it expresses a linear relationship between the joint
angular velocity θ̇ and the Cartesian space velocity ẋ. The forward differential
kinematic relationship between θ̇ and ẋ is represented as

ẋ = Jθ̇, (4.2)

where J = ∂fx
∂θ is the kinematic Jacobian of the manipulator. The joint angular

velocity required for the given end-effector velocity is computed using inverse
Jacobian. The pseudo-inverse method computes the value of θ̇ as

θ̇ = J−1ẋd, (4.3)

where J−1 is the pseudo-inverse of the kinematic Jacobian, and ẋd is the
desired end-effector velocity. The open-loop solution obtained using the above
equation, unavoidably leads to solution drift due to numerical integration and,
hence, results in task space error e = xd − x. To overcome this drawback in
open-loop control, the closed loop kinematic control is developed with the task
space error e. In closed loop kinematic control the joint velocity is computed
as

θ̇ = kpJ−1e, (4.4)

where kp > 0 is proportional gain which control the speed of the convergence
to the desired position xd.

4.2.1 Kinematic Control of Redundant Manipulator
Kinematic control is difficult for a redundant manipulator since infinite num-
ber of solutions exist to reach the given workspace position. The control of a
kinematically redundant manipulator to reach the object is a highly challeng-
ing task owing to the one-to-many inverse kinematic relationship.

In the case of redundant manipulators, J is not a square matrix and theo-
retically infinite joint angular velocity θ̇ exist to generate the given end-effector
velocity. Inverse Jacobian does not exist in case of redundant manipulators
since the associated Jacobian is not square and, hence, the pseudo-inverse
has been employed. Inverse kinematic control of the redundant manipulator
using generalized pseudo-inverse. Joint velocity is computed for redundant
manipulator in closed loop as

θ̇ = kpJ+e, (4.5)

where J+ is the pseudo-inverse of the kinematic Jacobian, and ẋd is the desired
end-effector velocity. Henceforth, the notation (.)+ will be used to indicate the
generalized pseudo-inverse of (.). The pseudo-inverse based solution results in

Visual Servoing 115

lazy-arm movement, i.e., it minimizes the joint angular velocity in least square
sense.

Pseudo-inverse based kinematic control is widely popular since the rela-
tionship between the various joint angular velocities, which can generate the
desired end-effector velocity can be established using the pseudo-inverse of
Jacobian J. J+ obeys the property that the matrix (I − J+J) projects onto
the null space of J and, hence, the vector J(I− J+J)φ = 0 for all vectors φ.
A joint angular velocity computed as θ̇ = (I− J+J)φ for any vector φ ∈ Rm
does not generate any end-effector motion but only changes the internal joint
angle configuration of the manipulator. The internal reconfiguration of the
manipulator is popularly known as self-motion of the manipulator. The differ-
ent joint angular velocities which can generate the given end-effector velocity
are given by the relationship,

θ̇ = J+ẋ + kn(I− J+J)φ, (4.6)

where I is the identity matrix of order m, and kn is the gain which determines
the magnitude of the self-motion.

4.3 Visual Servoing
Vision is employed in robotics owing to its flexibility during manipulation.
Visual feedback gives dynamic information about the environment and the
object. Typically, vision-based manipulator control is executed in open loop
fashion, “looking” and then “moving.” This results in poor positioning accu-
racy due to the model inaccuracies. An alternative approach is to use a visual
control loop which is generally referred as visual servoing. Vision-based manip-
ulator control uses either single camera or multiple cameras to give visual
feedback to the manipulator system. Visual servoing systems use one of two
camera configurations: eye-in-hand or eye-to-hand. In eye-in-hand configura-
tion, a camera is mounted on the end-effector while in eye-to-hand configu-
ration, the cameras are fixed in the workspace. Eye-to-hand configuration is
also known as stand-alone camera system.

Visual servoing schemes use the image features u to represent the position
of the end-effector and the object in the vision space. The desired position
xd and the current position x of the end-effector are observed through the
camera as the desired image feature vector ud and the current image feature
vector u, respectively. In general, visual servoing uses the linear relationship
between the change in the image feature vector u and the change in the
Cartesian space position of the end-effector x for controlling the manipulator.
The image Jacobian L, represents the relationship between the end-effector
motion and the image feature motion as

u̇ = Lẋ, (4.7)

116 Model-based Visual Servoing of a 7 DOF Manipulator

where u, u̇ ∈ Rp. L is a p×n matrix and is also referred as interaction matrix
in literatures. The control task is to compute the necessary Cartesian space
velocity motion such that the end-effector will reach the desired position in
vision space asymptotically.

The simple proportional control law which results in asymptotic stabiliza-
tion is expressed as

ẋd = kp L+(ud − u), (4.8)
where kp is a proportional gain, L+ is the pseudo-inverse of L and ud−u is the
error between the desired and the current image features. Here afterwards, the
error vector in the visions space is expressed as eu and, hence, eu = ud − u :
∈ Rp. The above controller requires the exact knowledge of L and its pseudo-
inverse though it ensures global stability. Hence, the image Jacobian L is to be
estimated at each instant. To reduce the computational complexity, the image
Jacobian is estimated at the desired position and then the pseudo-inverse is
evaluated for the estimated image Jacobian to implement the controller. This
eliminates the continuous estimation of L and the computation of the pseudo-
inverse L+ in real-time. But, this results in a locally stabilizing controller since
the sufficient positivity condition of stability is valid in local region only.

4.3.1 Estimating the Vision Space Motion with Camera
Model

The camera acts as a sensor and gives visual feedback about the position of
the object and the environment. The feature extracted from the camera must
give enough information such that the manipulator can be controlled to reach
the object located in a 3-D workspace.

Two cameras fixed in the workspace can be used to give visual feedback
about the environment. The position of the centroid of the object in the image
plane of the stereo-vision is used as the feedback to locate the position of
the object. If a single fixed camera is used instead of two cameras, the depth
information about the environment will not be available while identifying only
the centroid of the object. To control the manipulator in 3-D workspace, more
features are to be extracted with single camera. Typically, area of the object
gives a good information about the distance between the camera and the
object. Hence, the manipulator can be controlled to reach the object in a
3-dimensional workspace with the image features area, and position of the
object in the image plane. Alternatively, multiple non-coplanar points can be
identified in the object to get the information about the position of the object.
But such an approach demands the knowledge of the relative position of the
feature points in the 3-D workspace, for effective control.

The position of the object is estimated by extracting the image feature as
follows: the positional coordinates of the end-effector in the Cartesian space
get projected as pixel coordinates in the frame buffer of the image plane. The
position x = [x y z]T in the Cartesian space gets projected into the camera
frame buffer as (xf , yf), which corresponds to the x − y coordinates of the

Visual Servoing 117

FIGURE 4.1: Transformation from Cartesian space to vision space.

camera frame buffer, respectively. The position of the end-effector in the vision
space is obtained through series of transformations. These transformations are
computed as a camera model, which computes the position of the point in the
vision space, from the point’s position in the Cartesian space. This necessitates
a camera model to compute u from x in simulations.

4.3.2 Transformation from Cartesian Space to Vision Space
The transformation associated with computing a point’s position in the vision
from the Cartesian space is shown in Figure 4.1. The origin of the world
coordinate frame and that of the camera coordinate frame are shown as Ow
and Oc, respectively. The origin of the camera coordinate frame is located at
[Tx Ty Tz]T in the world coordinate frame and the orientation is represented
using Rc. The origin of the camera coordinate frame (xc, yc, zc) coincides with
front nodal point of the camera and the zc axis coincides with the camera’s

118 Model-based Visual Servoing of a 7 DOF Manipulator

optical axis. The image plane is assumed to be parallel to the (xc, yc) plane
at a distance of f from the origin, where f is the effective focal length of the
camera. The position (xf , yf) of a point P in the camera plane is obtained
from the point’s position x = [x y z]T in the world coordinate frame as follows:

The position x = [x y z]T is transformed from the world coordinate frame
to the position xc = [xc yc zc]T in the camera coordinate frame through
rotation Rc and translation Tc. The transformation is expressed in the form
of equation asxcyc

zc

 = Rc

xy
z

+

TxTy
Tz

 , where Rc =

r1 r2 r3
r4 r5 r6
r7 r8 r9

 . (4.9)

In the above equation, Rc describes the orientation of the camera in the world
coordinate frame, and Tc = [Tx Ty Tz]T is the translational position of the
camera in the world coordinate frame. The projected position of the point P
in the image plane is computed using an ideal pinhole camera model. This
transformation is obtained by perspective projection as follows:

xu = f
xc
zc

yu = f
yc
zc
. (4.10)

The position (xu, yu) is computed with the assumption of an ideal pinhole
camera. But, there exists distortion and the position obtained with ideal pin-
hole model is not accurate. This is compensated for by using the lens distortion
coefficient κ. The true position of the point’s image (xd, yd) in the sensor plane
is computed from the ideal undistorted position as

xu = xd(1 + κρ2)
yu = yd(1 + κρ2), (4.11)

where ρ =
√
x2
d + y2

d. Finally the image of the point is transformed from the
sensor plane to its coordinates in the camera’s frame buffer (xf , yf) as

xf = sxxd
dx

+ cx

yf = yd
dy

+ cy, (4.12)

where
cx, cy : Pixel coordinates of optical center;

sx : Scale factor to account for any uncertainty due to imperfections in
hardware timing for scanning and digitization;

dx : Dimension of camera’s sensor element along x coordinate direction
(in mm/sel);

dy : Dimension of camera’s sensor element along y coordinate direction(in
mm/sel).

Visual Servoing 119

The computation of a point’s position in the frame buffer requires the geo-
metric and camera parameters used in the aforementioned transformations.
The parameters which specify the position and the orientation of the cam-
era relative to the world coordinate frame is commonly known as extrinsic or
external parameters. The camera parameters which project the point from the
camera coordinate frame to the frame buffer are known as intrinsic or internal
parameters. The camera calibration is the process of estimation of a model
for camera overlooking a workspace.

4.3.3 The Camera Model
Tsai’s algorithm is a popularly known camera calibration technique which is
based on the pinhole perspective projection discussed above and estimates
eleven parameters: f , κ, cx, cy, sx, Tx, Ty, Tz, Rx, Ry, and Rz. The Tsai
model represents the rotation angles for the transformation between the world
and camera coordinates with (Rx, Ry, Rz). The elements of the rotation
matrix Rc is computed from [Rx, Ry, Rz] as follows:

r1 = cβcγ

r2 = cγsαsβ − cαsγ
r3 = sαsγ + cαcγsβ

r4 = cβsγ

r5 = sαsβsγ + cαcγ

r6 = cαsβsγ − cγsα
r7 = −sβ
r8 = cβsα

r9 = cαcβ ,

(4.13)

where cα = cos(Rx), cβ = cos(Ry), cγ = cos(Rz), sα = sin(Rx), sβ = sin(Ry),
sγ = sin(Rz).

In addition to the above eleven variable camera parameters, Tsai’s model
uses the following six fixed intrinsic camera constants:

dx : Size of camera’s sensor element in x coordinate direction (in
mm/sel),

dy : Size of camera’s sensor element in y coordinate direction (in
mm/sel),

Ncx : Number of sensor elements in camera’s x direction (in sels),

Nfx : Number of pixels in frame grabber’s x direction (in pixels),

120 Model-based Visual Servoing of a 7 DOF Manipulator

dpx : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel), and

dpy : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel).

These six parameters can be obtained from the manufacturer’s data sheet.
The image feature vector u is obtained using the estimated model for

stereo-vision as u = [u1 u2 u3 u4]T where (u1, u2) and (u3, u4) are the x− y
coordinates of the first and the second camera, respectively. Hence, (u1, u2) is
the (xf , yf) of the first camera, and (u3, u4) corresponds to the (xf , yf) of
the second camera, respectively. Hence, the control vectors ud and u belong
to R4 in the all the experiments presented in this chapter.

4.3.4 Computation of Image Feature Velocity in the Vision
Space

The image Jacobian which represents the motion of the image features with
respect to the motion in the Cartesian space is given by

L =
[
kcx
zc

0 −kcx(xf−cx)
zc

0 kcy
zc

−kcy(yf−cy)
zc

]
, (4.14)

where (kcx, kcy) are the gains associated to transform the Cartesian space
position to the x-y coordinate of the vision space, and zc is the distance
between the image plane and the object in the camera coordinate frame. The
camera gains (kcx, kcy) are computed using the camera parameters as follows:

kcx = fsx
dx

kcx = f

dy
. (4.15)

The vision space velocity is computed from the Cartesian space velocity as
u̇1
u̇2
u̇3
u̇4

 =
[

L1 0
0 L2

] [
ẋc1
ẋc2

]
, (4.16)

where Li is the image Jacobian of the ith camera, ẋci =
[
ẋci ẏci żci

]T
represents the velocity of the end-effector in the coordinate frame of the ith
camera.

The velocity of the end-effector in the coordinate frame of the ith camera
is ẋciẏci

żci

 = Rci

ẋẏ
ż



Kinematic Control of a Manipulator Directly from Vision Space 121

ẋci = Rci ẋ, (4.17)

where Rci is the rotational transformation between the robot coordinate frame
and the camera coordinate frame. The parameters (kcx, kcy), (cx, cy), and Rc

are obtained from the camera model estimated with Tsai algorithm.

4.4 Kinematic Control of a Manipulator Directly from
Vision Space

As discussed in previous sections, classical approaches estimate the Cartesian
space velocity of the end-effector from the vision space with the visual servoing
schemes, and then the joint velocity is computed to follow the Cartesian space
trajectory generated by the visual servoing scheme. Visual servoing scheme
uses the image features ud, u, and the Cartesian space information x to
compute the end-effector velocity ẋ. Inverse kinematic schemes compute the
joint angular velocity from the end-effector velocity ẋ, using the current joint
angle θ and the environmental constraints.

Alternatively, the vision space trajectories can be directly controlled from
the joint angle space by combining visual servoing with redundancy resolution
in a single framework. The redundancy is achieved for the trajectories specified
in the vision space while satisfying the additional constraints introduced by the
environment. The controller computes the joint angle configuration directly
from the visual feedback resulting in a direct and efficient control over the
vision space.

The relationship between image feature velocity and joint angular velocity
is obtained by combining equations (4.2) and (4.7) as

u̇ = LPJθ̇
= Jθ̇, (4.18)

where P is the transformation matrix representing the coordinate transforma-
tion between the world coordinate frame and the camera coordinate frame,
and J = LPJ is a p ×m Jacobian matrix from the joint angle space to the
vision space. Here afterwards, the notation J will be used to represent the
Jacobian from the joint angle space to the vision space.

The closed loop proportional controller resulting in asymptotic stabiliza-
tion is given as

θ̇ = kp J+eu. (4.19)

Since the pseudo-inverse of the Jacobian J is used in the control law, the
controller would result in “lazy-arm movement.” The null space of J can be
used to satisfy the additional constraints required in the dynamic environment.

122 Model-based Visual Servoing of a 7 DOF Manipulator

4.5 Image Moments
One of the basic problems in the design of an imagery pattern recognition
system relates to the selection of a set of appropriate numerical attributes of
features to be extracted from the object of interest for the purpose of classifi-
cation. The recognition of objects from imagery may be achieved with many
methods by identifying an unknown object as a member of a set of known
objects. Efficient object recognition techniques abstracting characterizations
uniquely from objects for representation and comparison are crucially impor-
tant for a given pattern recognition system. One of the popular techniques to
characterise an object in the image space is to use image moments.

Image moments are mathematical entities whose inferred values can
describe objects in the image space defined either from closed contour or a set
of points in a segment or within the boundary. Image moment descriptors are
related to geometrical properties of a segment, e.g., position, orientation or size
of a segment in the image space. The mathematical concept of moments has
been around for many years and has been used in many diverse fields ranging
from mechanics and statistics to pattern recognition and image understand-
ing. In [153] the mathematical concept of image moments was first introduced
in 1962, it also proved that the image moment functions are insensitive to a
particular segment’s changes, such as translation, rotation and scaling, based
on the theory of algebraic invariant. Since then, the moment invariants theory
has been applied in several applications, such as character recognition [154],
pose estimation [155], [156], [157], and object matching [158]. At the same
time of widespread use of image moments for such applications, the theoreti-
cal developments of the moment invariants have also been presented. In [159]
detecting objects using n-fold rotation symmetry was presented to resolve the
limitation of the moment invariant to detect objects which present symme-
tries. A formulation of image moments which reduces the computational time
was proposed in [160], by defining image moments as a function of image coor-
dinates of the points lying on the boundary of the considered segment, instead
of taking into account the whole points of an object’s image. A survey of the
theoretical developments of image moments was presented in [161].

The objective of this section is to introduce image moments and to illus-
trate the usefulness in visual servoing. The usefulness of the image moments
approach in the visual servoing is because of their key feature. The key feature
of the image moments is that they can be used as a generic representation
of an object in the image space in the form of an image segment. The image
moments’ descriptors are computed using information of all image points lying
on a segmented image. Image moments approach does not consider an indi-
vidual point as a descriptor but a global information of a segmented image,
therefore, they are robust in the presence of image noise. Image moments
are potential entities that can be used as a feedback signal vector in visual

Image Moments 123

FIGURE 4.2: Image segment on an image plane Π.

servoing systems since they consider the shape of the object which has more
geometric meaning compared with the image points.

It is well known that the key solution for visual servoing controller devel-
opment is to construct the interaction matrix associated with selected visual
features. A visual servoing controller is developed to have smooth and contin-
ues velocity control trajectories to follow the movement of the target object.
Therefore, the interaction matrix that maps the camera kinematic screw into
visual feature velocity is needed. To develop the interaction matrix, the visual
feature properties have to be modeled and to be derived. Firstly the geometric
moments and its definitions are presented in the following discussion.

The 2D geometric moment of order i+ j of a density distribution function
f(x, y) is defined in terms of the surface integral as

mij =
∫ ∞
−∞

∫ ∞
−∞

xiyjf(x, y)dxdy (4.20)

where f(x, y) could be related to the pixel intensity value, color or other pixel
image properties, e.g., f(x, y) is the grey level of a point P at coordinate
(x, y) lying on the image segment in the orthogonal frame (u, v) (see Figure
4.2). Therefore, it can be deduced that moments are strongly correlated to the
shape of the image segment, as it is formulated in the product term of xiyj .
In [153], Hu stated that f(x, y) is piecewise continous and has nonzero values
only in a finite region of Π plane, then the moment sequence mij is uniquely
determined by f(x, y), and the other way around that f(x, y) is uniquely
determined by the moment sequence mij . Therefore, complete moments can
be computed and used to uniquely describe an object image if moments of all

124 Model-based Visual Servoing of a 7 DOF Manipulator

orders exist and the image segment has finite area. But, it requires an infinite
number of moment descriptors to obtain all information contained in an image
segment. Thus, it becomes very important to select a meaningful subset of
the moment descriptors which contains minimal information to characterize
an object image uniquely for a specific application.

The fundamental geometric properties contained in the image segment can
be represented by the lower order moment functions. Those geometric prop-
erties are called: area, center of gravity, centered moments, and orientation.
The definition of the zeroth order moment m00 of the function f(x, y)

m00 =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy (4.21)

represents the total mass of the given function or image f(x, y). The zeroth
order moment is basically the total area for the case of a binary image. The
first two order moments determine the position of the center of gravity or the
center of the area, defined as

m10 =
∫ ∞
−∞

∫ ∞
−∞

xf(x, y)dxdy (4.22)

m01 =
∫ ∞
−∞

∫ ∞
−∞

yf(x, y)dxdy (4.23)

The center of gravity is the point where all the mass of the image f(x, y)
concentrated without changing the first moment of the image about any axis.
In the 2D case, the moment values of the center of gravity coordinates are
denoted as

xg = m10

m00
, yg = m01

m00
(4.24)

Generally, it is common practice that the center of gravity is chosen to rep-
resent the position of an object image in the field of view, since it defines a
unique location of an image segment f(x, y) that can be used as a reference
point.

The centered moments of f(x, y) are defined as

µij =
∫ ∞
−∞

∫ ∞
−∞

(x− xg)i(y − yg)jf(x, y)dxdy (4.25)

The centered moments µij are invariant under the translation of coordinates
[153].

x′ = x+ cx (4.26)
y′ = y + cy (4.27)

where x′, y′ are new position coordinates of centered moments after those are
translated by constants cx and cy. Given the center of the gravity and the

Image Moments 125

moments mkl the centered moments can be described as a binomial function
as

µij =
i∑

k=0

j∑
l=0

(
i

k

)(
j

l

)
(−xg)i−k(yg)j−lmkl (4.28)

where the binomial coefficients(
i

k

)
= i!
k!(i− k)! (4.29)

The reciprocal relationship to (4.28) which describes mkl by giving the cen-
tered moments is computed as

mkl =
k∑
i=0

l∑
j=0

(
k

i

)(
l

j

)
(xg)k−i(yg)l−jµij (4.30)

The second order moments m02,m11,m20 are known as the moment of iner-
tia. These descriptors are used to define another important geometric image
feature, the orientation of an image segment. The description of the image
segment orientation is generally measured in the direction of the principal
axes, describing how the image lies in the field of view. In terms of moments,
the orientation of the principal axis α (see Figure 4.3) is described as

α = 1
2 tan−1

(
2µ11

µ20 − µ02

)
(4.31)

where

µ11 =
∫ ∞
−∞

∫ ∞
−∞

(x− xg)(y − yg)f(x, y)dxdy (4.32)

FIGURE 4.3: Image segment of an ellipse-shaped object.

126 Model-based Visual Servoing of a 7 DOF Manipulator

µ20 =
∫ ∞
−∞

∫ ∞
−∞

(x− xg)2f(x, y)dxdy (4.33)

µ02 =
∫ ∞
−∞

∫ ∞
−∞

(y − yg)2f(x, y)dxdy (4.34)

In (4.31) the principal axis angle α is in the range of −π4 ≤ α ≤ π
4 . The

following discussion will be focused on the determination of the relationship
between the camera movement and the time variation of the image moment
mij .

4.6 Image Moment Velocity
The system modeling objective is to determine the linear relationship between
the camera movement ẋc = (vc,ωc) and the time variation ṁij of image
moment mij . Recall equation (2.2) for the case of the image moments as a
image feature set

ṁij = Lmij ẋc (4.35)
where Lmij is the interaction matrix determined by the image moments. Let’s
recall Green’s theorem which gives the relationship between a line integral
around a simple closed contour C and a double integral over the segment
region D [162]. Figure 4.4 shows an image segment D and its contour C, the
line integral of the vertical component of the tangential component of vector
field F along C as the double integral of the vertical component curl F over
the region D enclosed by C.∮

C
F · dr =

∫∫
D

(curlF) · k dA (4.36)

where k is a unit vector perpendicular to the segment D. The contour C can
be described by vector equation

x(t) = x(t)i + y(t)j (4.37)

while the unit tangent vector t is given by

t(t) = x(t)
|r(t)| i + y(t)

|r(t)| j (4.38)

then the normal vector n(t) is described by

n(t) = y(t)
|r(t)| i−

x(t)
|r(t)| j (4.39)

Developing (4.36), another version of Green’s theorem can be derived which
says that the line integral of the normal component of F along C is equal to

Image Moment Velocity 127

FIGURE 4.4: Image segment D enclosed by contour C.

double integral of the divergence of F over the segment D enclosed by C [162].∮
C

F · n ds =
∫∫
D

divF(x, y) dxdy (4.40)

In relation to the definition stated in Green’s theorem, the image moment
function can be defined as

mij(t) =
∫∫
D(t)

h(x, y)dxdy (4.41)

where h(x, y) = xiyjf(x, y). It can be seen in the right side of (4.41) that
the only part that varies on t is the image segment D(t). Therefore the image
moment velocity ṁij can be obtained by analyzing the variation of C(t), since
there is a relationship between a segment and its contour (4.40). Figure 4.5
shows the variation of contour C(t), the variation ofmij is computed usingmij

on segmented area between C(t + 1) and C(t). The segmented area between
C(t+ 1) and C(t) can be obtained by integrating every point x =(x, y) along
C(t) until it reaches C(t+ 1) by the scalar product between point’s velocity ẋ
and the normal vector n. Thus using (4.40), the image moment velocity can
be written as [163,164]

ṁij =
∫∫
D(t)

div[h(x, y)ẋ]dxdy

=
∫∫
D(t)

(
∂h(x, y)ẋ

∂x
+ ∂h(x, y)ẋ

∂y

)
dxdy

=
∫∫
D(t)

(
∂h(x, y)
∂x

ẋ+ ∂h(x, y)
∂y

ẏ + h(x, y)
(
∂ẋ

∂x
+ ∂ẏ

∂y

))
dxdy

(4.42)

128 Model-based Visual Servoing of a 7 DOF Manipulator

FIGURE 4.5: Variation of contour C(t).

In (4.42), the term ẋ, ẏ, ∂ẋ∂x and ∂ẏ
∂y can be described as the kinematic screw

of the camera. Similarly, by applying Green’s theorem, the variation of the
centered image moments can be defined as

µ̇ij =
∫∫
D(t)

∂hµ(x, y)
∂x

(ẋ− ẋg) + ∂hµ(x, y)
∂y

(ẏ − ẏg)

+hµ(x, y)
(
∂ẋ

∂x
+ ∂ẏ

∂y

)
dxdy (4.43)

where hµ(x, y) = (x − xg)i(y − yg)jf(x, y). To continue the development of
the visual servoing model using image moment mij and µij , the relationship
between the camera kinematic screw and the corresponding point velocity
expressed in the camera frame has to be known. This relationship can be
obtained using a pinhole camera model as explained in the following section.

4.7 A Pinhole Camera Projection
To model the visual servoing system, the projection of the object with respect
to the pinhole camera system must be described [165,166]. A pin hole camera
projection is shown in Figure 4.6 as the position of a point p with respect
to the camera frame ocxcyczc and pπ is a projection point of p on the image
plane. The coordinate pπ(xπ, yπ, fc) is expressed relative to the camera frame
ocxcyczc. The origin of a 2D local coordinate of the image plane is denoted
as (u0, v0) and it is also called the principal point, measured in pixels. The
pixel coordinate of pπ is represented by (xi, yi). The transformation of the

A Pinhole Camera Projection 129

FIGURE 4.6: A pinhole camera projection.

camera frame ocxcyczc with respect to the reference frame owxwywzw is given
by [Rw

c , dwc]. The normalized projection coordinate p into pπ can be expressed
as

xπ = fc
xp
zp
, yπ = fc

yp
zp

(4.44)

In order to relate the 3D coordinate into 2D pixel coordinate we determine
the projection relationship between (xπ, yπ) and (xi, yi) as follows

xπ = (xi − u0)
ku

, yπ = (yi − v0)
kv

(4.45)

where (ku, kv) are the conversion factors from meters to pixels for the hori-
zontal and vertical camera axis, respectively.

Substituting (4.44) into (4.45), we have

xi = fcku
xp
zp

+ u0, yi = fckv
yp
zp

+ v0 (4.46)

Thus, once the values of the intrinsic camera parameters fc, ku, kv, u0, v0 are
determined the mapping of a point in a 3D coordinate system to image the

130 Model-based Visual Servoing of a 7 DOF Manipulator

coordinate system can be computed. In the matrix form, we have xi
yi
1

 =

 fcku 0 u0
0 fckv v0
0 0 1

 Xp

Yp
1

 (4.47)

xi = Axp (4.48)

where Xp = xp
zp

and Yp = yp
zp

denote normalized coordinates.
To continue the derivation of the velocity relationship of a point p between

coordinate frames in Figure 4.6, we need to introduce a Skew symmetric
matrix S(ω) [152]. It is expressed as

S(ω) =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (4.49)

where ω is the angular velocity vector of the rotating frame with respect to
the reference frame. The transpose of S(ω) can be easily derived as

ST (ω) = S(−ω) (4.50)

In relation with the first derivative of a rotation matrix R, the Skew symmetric
matrix can be defined as

S(ω) = Ṙ RT (4.51)

furthermore, the transpose of S(ω) can also be derived as

ST (ω) = (Ṙ RT)T = ṘT R (4.52)

By multiplying the right term and the left term of (4.52) with RT , we have

ST (ω)RT = ṘTRRT (4.53)

Let’s remark the orthogonality property of a rotation matrix R

R RT = I (4.54)

where I ∈ R3 is an identity matrix. Substituting (4.54) into (4.53)

ṘT = ST (ω)RT (4.55)

The Skew symmetric matrix properties in (4.51) and (4.55) are important
properties for the next derivation of the velocity relationship of a point p
between coordinate frames in Figure 4.6. The representation of the coordinate
point p with respect to reference frame owxwywzw is given as

pw = Rw
c pc + dwc (4.56)

A Pinhole Camera Projection 131

Since the relative position of a point p with respect to the camera frame is
considered, we have

pc = (Rw
c)T (pw − dwc) (4.57)

The velocity vector of a point p is then derived as

ṗc =
(
Ṙw
c

)T (pw − dwc)− (Rw
c)T ḋwc (4.58)

Note, a point p is static and the camera frame is moving, thusṗw = 0. Rear-
ranging (4.57) and substituting into (4.58)

ṗc =
(
Ṙw
c

)T Rw
c pc − (Rw

c)T ḋwc (4.59)

Using Skew symmetric properties (4.54) and (4.55) yields

ṗc = ST (ω) (Rw
c)T Rw

c pc − (Rw
c)T ḋwc (4.60)

= S(−ω) I pc −Rc
wḋwc (4.61)

= S(−ω)pc − ḋcw (4.62)

where ḋcw is the camera frame translational velocity. In the matrix form, it is
expressed as ẋp

ẏp
żp

 =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 xp
yp
zp

−
 ẋc
ẏc
żc

 (4.63)

then we have

ẋp = ypωz − zpωy − ẋc (4.64)
ẏp = zpωx − xpωz − ẏc (4.65)
żp = xpωy − ypωx − żc (4.66)

The first derivative of (4.46) is derived as

ẋi = fcku
ẋpzp − xpżp

(zp)2 (4.67)

ẏi = fckv
ẏpzp − ypżp

(zp)2 (4.68)

Note, we assume an ideal camera model where the principal point (u0, v0)
is centered (0, 0) and the image is undistorted ku

kv
= 1. The velocity of the

projected point on the image plane associated with the camera movement is
then derived by substituting (4.64), (4.65), (4.66) into (4.67) and (4.68)

ẋi=fcku
(ypωz − zpωy − ẋc)zp − xp(xpωy − ypωx − żc)

(zp)2

132 Model-based Visual Servoing of a 7 DOF Manipulator

=fcku

((
yizp
fckv

)
ωz − zpωy − ẋc

)
zp −

(
xizp
fcku

)((
xizp
fcku

)
ωy −

(
yizp
fckv

)
ωx − żc

)
(zp)2

=−fcku
zp

ẋc + xi
zp
żc + xiyi

fckv
ωx −

f2
c k

2
u + x2

i

fcku
ωy + yiωz (4.69)

ẏi=fckv
(zpωx − xpωz − ẏc)zp − yp(xpωy − ypωx − żc)

(zp)2

=fckv

(
zpωx −

(
xizp
fcku

)
ωz − ẏc

)
zp −

(
yizp
fckv

)((
xizp
fcku

)
ωy −

(
yizp
fckv

)
ωx − żc

)
(zp)2

=−fckv
zp

ẏc + yi
zp
żc + f2

c k
2
v + y2

i

fckv
ωx −

xiyi
fcku

ωy − xiωz (4.70)

It can be composed in the matrix form as follows

[
ẋi
ẏi

]
=


−fcku
zp

0 xi
zp

xiyi
fckv

−f
2
c k

2
u + x2

i

fcku
yi

0 −fckv
zp

yi
zp

f2
c k

2
v + y2

i

fckv
− xiyi
fcku

−xi



ẋc
ẏc
żc
ωx
ωy
ωz


(4.71)

At this step, without loss generality and to simplify the model, (4.71) can be
expressed as

ẋ =
[
− 1
Z 0 x

Z xy −1− x2 y
0 − 1

Z
y
Z 1 + y2 −xy −x

]
ẋc (4.72)

where the depth Z = zp, fc = ku = kv = 1, ẋ = [xi, yi] and ẋc = [vc,ωc]. Note
that the camera parameters obtained from camera calibration can be easily
replugged into the final model of the IBVS using image moments. However, the
camera parameters described in (4.72) are sufficient to be applied in practice.
The robustness of the IBVS in the presence of camera calibration errors is
described in Appendix C.

4.8 Image Moment Interaction Matrix
In [167], the projection analysis of the 3D geometric primitive (lines, cylin-
drical, spherical, etc.) parameters into the image plane has been discussed.
Figure 4.7 shows the projection of a 3D object into the planar limb surface
and the image plane [168]. The projection of 3D geometric parameters of an
object into its planar limb surface is expressed as

h(X,P) = 0 (4.73)

Image Moment Interaction Matrix 133

FIGURE 4.7: Projection of the geometric primitive points and parameters
into the image plane and the planar limb surface.

and its projection into the image plane is expressed as

g(x,p) = 0 (4.74)

where P and p are the geometric primitive parameters. The link between the
3D geometric parameters and the 2D image is described as

1
Z

= µ(x,P) (4.75)

As an example, if a line in space is represented by the intersection of two
planes, then

h(X,P) = { h1 = A1X +B1Y + C1Z +D1 = 0
h2 = A2X +B2Y + C2Z = 0 (4.76)

Using the perspective projection (a pinhole camera projection), the function
µ(x,P) can be described as

µ(x,P) = 1
Z

= Ax+By + C (4.77)

For the case of h1 the projected geometric primitive parameters are defined
as A = −A1

D1
, B = −B1

D1
and C = −C1

D1
. The geometric primitive parameter of

h2 projected in the image plane can be expressed as

ax+ by + c = 0 with a = A2, b = B2, c = C2

134 Model-based Visual Servoing of a 7 DOF Manipulator

In this case, the depth any 3D points belonging to an object is in the continous
form which expressed as [163]:

1
Z

=
∑

q≥0,r≥0
Aqrx

qyr (4.78)

In this study, a planar object is used. The degenerated analysis of the 3D geo-
metric of a non planar object’s properties from the projected image is beyond
the scope of this chapter. For a planar object A00 = C, A10 = A, A01 = B
and all other terms Aqr equal to 0. Using (4.72) and (4.77), the relationship
between the camera kinematic screw and the velocity of the image feature in
the image plane involving the 3D geometric primitive can be expressed as

ẋ = −(Ax+By + C)vx + x(Ax+By + C)vz
+ xyωx − (1 + x2)ωy + yωz (4.79)

ẏ = −(Ax+By + C)vy + y(Ax+By + C)vz
+ (1 + y2)ωx − xyωy − xωz (4.80)

The partial derivative of (4.79) and (4.80) can be derived as

∂ẋ

∂x
= −Avx + (2Ax+By + C)vz + yωx − 2xωy (4.81)

∂ẏ

∂y
= −Bvy + (Ax + 2By + C)vz + 2yωx − xωy (4.82)

Substituting (4.79), (4.80), (4.81) and (4.82) into the developed image moment
velocity using Green’s theorem (4.42) and arrange the derivation in the
form of

ṁij = Lmij ẋc (4.83)
and the interaction matrix components are denoted as

Lmij = [mvxmvymvzmωxmωymωz] (4.84)

Knowing that h(x, y) = xiyjf(x, y), ∂h(x,y)
∂x = ixi−1yjf(x, y), ∂h(x,y)

∂x =
jxiyj−1f(x, y) the result of the derivation can be written as

mvx = −i(Amij +Bmi−1,j+1 + Cmi−1,j)−Amij (4.85)
mvy = −j(Ami+1,j−1 +Bmij + Cmi,j−1)−Bmij (4.86)
mvz = (i+ j + 3)(Ami+1,j +Bmi,j+1 + Cmij)− Cmij (4.87)
mωx = (i+ j + 3)mi,j+1 + jmi,j−1 (4.88)
mωy = −(i+ j + 3)mi+1,j − imi−1,j (4.89)
mωz = imi−1,j+1 − jmi+1,j−1 (4.90)

Equations (4.85) - (4.90) are general forms for further derivation of any par-
ticular image moment mij defined by the value of i and j. Let’s start with

Image Moment Interaction Matrix 135

image moment area a = m00. The interaction matrix for image moment area
can be derived from the general forms using i = j = 0.

mvx = −Amij (4.91)
mvy = −Bmij (4.92)
mvz = 3(Am10 +Bm01 + Cm00)− Cm00 (4.93)
mωx = 3m01 (4.94)
mωy = −3m10 (4.95)
mωz = 0 (4.96)

Considering that 1
Zg

= Axg +Byg +C, xg = m10
m00

and yg = m01
m00

(see equation
(4.24)), the interaction matrix of the image moment area can be simplified as

La =
[
−aA −aB a

(
3
Zg
− C

)
3ayg −3axg 0

]
(4.97)

A special case of the camera-object position configuration is used to know
the behavior of the camera kinematic screw in relation with the given set of
image features. This special case simplifies the parameters described in the
system by assuming that the object plane is parallel to the image plane and
the object center (xg, yg) is in the optical axis of the camera frame. It can
be seen from (4.97) that when the object image is centered and parallel to
the image plane where A = B = xg = yg = 0, ṁ00 is only affected by the
translation movement along z axis, vz (expressed in the camera frame).

Image points are other geometric properties that are useful in the visual
servoing. In term of the image moment, the variables that can be computed
by image moment descriptors and represent a point coordinates are the image
moment centroid xg = m10

m00
and yg = m01

m00
. Similar to the previous development

of La, the interaction matrix of the image moment centroid coordinates xg
and yg can be obtained by knowing that

ẋg = ṁ10m00 − ṁ00m10

m2
00

(4.98)

ẏg = ṁ01m00 − ṁ00m01

m2
00

(4.99)

The final result of the interaction matrix of the image centroid coordinates
are expressed as

Lxg =
[
− 1
Zg

0 xgvz xgωx xgωy yg
]

(4.100)

Lyg =
[

0 − 1
Zg

ygvz ygωx ygωy −xg
]

(4.101)

where

xgvz = xg
Zg

+ 4(An20 +Bn11) (4.102)

136 Model-based Visual Servoing of a 7 DOF Manipulator

ygvz = yg
Zg

+ 4(An11 +Bn02) (4.103)

xgωx = −ygωy = xgyg + 4n11 (4.104)
xgωy = −(1 + x2

g + 4n20) (4.105)
ygωx = 1 + y2

g + 4n20 (4.106)

and the normalized centered moments n11, n02 and n20 are expressed as

n11 = m11 − axgyg
a

(4.107)

n02 =
m02 − ay2

g

a
(4.108)

n20 =
m20 − ax2

g

a
(4.109)

Again by assuming that the object image is centered and parallel to the image
plane where A = B = xg = yg = 0, the interaction matrix Lxg and Lyg
obtained as

Lxg =
[
− 1
Zg

0 0 0 −1 0
]

(4.110)

Lyg =
[

0 − 1
Zg

0 1 0 0
]

(4.111)

which deducing that the motion of xg is mostly affected by the camera trans-
lational motion along camera x axis (vx) and the rotational motion about
camera y axis (ωy). Similarly, vy and ωx are the main variables that cause the
motion of yg.

Using (4.43) and the relationship between mij and µij which has been
described in (4.28) and (4.30), the interaction matrix associated with µij can
be derived in the following form

Lµij =
[
µvx µvy µvz µωx µωy µωz

]
(4.112)

where matrix components of the general form interaction matrix Lµij are
denoted as

µvx = −(i+ 1)Aµij − iBµi−1,j+1 (4.113)
µvy = −jAµi+1,j−1 − (j + 1)Bµij (4.114)
µvz = −Aµωy +Bµωx + (i+ j + 2)Cµij (4.115)
µωx = (i+ j + 3)µi,j+1 + ixgµi−1,j+1

+(i+ 2j + 3)ygµij − 4in11µi−1,j − 4jn02µi,j−1 (4.116)
µωy = −(i+ j + 3)µi+1,j − (2i+ j + 3)xgµij

−jygµi+1,j + 4in20µi−1,j − 4jn11µi,j−1 (4.117)
µωz = iµi−1,j+1 − jµi+1,j−1 (4.118)

Image Moment Interaction Matrix 137

An interesting image moment feature that can be selected using image
moment in the second order is the object orientation α as described in (4.31),
for convenient analysis, it is rewritten as follows

α = 1
2 tan−1

(
2µ11

µ20 − µ02

)
(4.119)

Using d(1/2) tan−1(2u)
dt = u̇

1+4u2 , the first derivative of α can be derived as

α̇ =

µ̇11(µ20 − µ02)− µ11(µ̇20 − µ̇02)
(µ20 − µ02)2

1 + 4(µ11

µ20 − µ02
)2

= µ̇11(µ20 − µ02)− µ11(µ̇20 − µ̇02)
∆ (4.120)

where ∆ = (µ20−µ02)2 +4µ2
11. By deriving µ̇11, µ̇20 and µ̇02 using the general

form of the interaction matrix associated with the image centered moments
(substituting i, j combinations using i = j = 1, i = 2; j = 0 and i = 0; j = 2
into equation (4.112)), the interaction matrix that relates the camera kine-
matic screw ẋc with the velocity of α can be obtained as

Lα =
[
αvx αvy αvz αωx αωy −1

]
(4.121)

where

αvx = aαA+ bαB (4.122)
αvy = −cαA− aαB (4.123)
αvz = −Aαωy +Bαωx (4.124)
αωx = −bαxg + aαyg + dα (4.125)
αωy = aαxg − cαyg + eα (4.126)

and

aα = µ11(µ20 + µ02)
∆ (4.127)

bα = 2µ2
11 + µ02(µ02 − µ20)

∆ (4.128)

cα = 2µ2
11 + µ20(µ20 − µ02)

∆ (4.129)

dα = 5(µ12(µ20 − µ02) + µ11(µ03 − µ21))
∆ (4.130)

eα = 5(µ21(µ02 − µ20) + µ11(µ30 − µ12))
∆ (4.131)

Let’s assume a special case of the camera-object position configuration where
the object plane is parallel and centered along the camera optical axis (A = 0,

138 Model-based Visual Servoing of a 7 DOF Manipulator

B = 0). When the special case is considered, it can be noted that from
(4.121), the motion of α does not depend on any translational camera motion
(vx,vy, vz). It also can be deduced that there is a strong association between
the camera rotation motion ωz and the motion of α, which can be seen from
the last column’s value of Lα.

The visual features xg, yg, a, and α have been derived using the image
moments up to second order. As it has been discussed, the selected visual
features (xg, yg, a, and α) have a strong relationship with particular compo-
nent of the camera kinematic screw and invariant to the rest. For example,
the motion of a is strongly affected by the camera motion along the camera
optical axis (vz) and invariant to the other camera kinematic screw com-
ponents (vx, vy, ωx, ωy, ωz). Using image moment features (xg, yg, a, α),
4-DOF movement of the robot in the task space can be controlled, specifically
the translational movements (vx, vy, vz) and the rotational movement about
the camera optical axis (ωz). A full 6-DOF task space robot control requires
the image moments derivation up to third order and the computation of the
image moment invariants [164]. In this chapter, 4-DOF robot movement in the
task space is considered, focusing the discussion on how to use the learning
algorithm to reduce the computational complexity of the traditional visual
servoing scheme in next chapters.

Let’s consider developing visual servoing algorithm using four visual fea-
tures (xg, yg, a, α). A new form of the combined interaction matrix Ls
can be obtained by stacking together the obtained interaction matrices of
La,Lxg ,Lyg and Lα (represented in (4.97) (4.100) (4.101) (4.121), respec-
tively), it is described as

Ls =
[

Lxg Lyg La Lα
]T

=


− 1
Zg

0 xgvz xgωx xgωy yg
0 − 1

Zg
ygvz ygωx ygωy −xg

−aA −aB a
(

3
Zg
− C

)
3ayg −3axg 0

αvx αvy αvz αωx αωy −1

 (4.132)

Since the visual servoing controller is designed to control (vx, vy, vz, ωz) and
by making ωx and ωy are equal to zero, the fourth and fifth column of the Ls
can be cancelled. Thus, the interaction matrix Ls can be simplified as

Ls =


− 1
Zg

0 xgvz yg
0 − 1

Zg
ygvz −xg

−aA −aB a
(

3
Zg
− C

)
0

αvx αvy αvz −1

 (4.133)

In the following section, the experimental results of the MBVS of a 7 DOF
manipulator using the selected image moment features and the developed
interaction matrix are presented.

Experimental Results using a 7 DOF Manipulator 139

4.9 Experimental Results using a 7 DOF Manipulator
The experimental set up consists of a 7 DOF PowerCube robot manipulator
as shown in Figure 4.8. A specific detail about the kinematic derivation of
the 7 DOF PowerCube robot manipulator is given in Appendix A. In this
experiment, a firewire CCD camera is mounted at the robot end-effector so
that the camera frame coincided with the robot end-effector frame, xc = xe. In
the presented experimental results, the visual servoing control law is described
as

ẋc = −κL−1s∗ e
where ẋc is the camera velocity, κ is a positive gain and L−1s∗ is the inverse of
the interaction matrix Ls∗ and e =(s−s∗). Ls∗ is the interaction matrix which
is computed using the desired value of s. The relationship between the image
feature velocity vector ṡ and the joint angle velocity vector θ̇ is obtained as

ṡ = Ls∗Jeθ̇ (4.134)

Ensuring an exponential decrease of the error ė = −κe, the final eye-in-hand
MBVS control law is obtained as

θ̇ = κJ†eL−1
s∗ (s∗ − s) (4.135)

where J†e is the pseudo-inverse of the robot kinematic Jacobian Je expressed in
the robot end-effector frame. In this experiment scenario, the desired camera

FIGURE 4.8: Experiment setup.

140 Model-based Visual Servoing of a 7 DOF Manipulator

pose is parallel with an offset (Z∗) to the target object plane where the object
segment center is on the camera optical axis. Therefore, the object segment
geometric parameters A and B are set to zero. Immediately, the interaction
matrix can be expressed as

Ls∗ =


− fc
Z∗g

0 x∗g
Z∗g

y∗g

0 − fc
Z∗g

y∗g
Z∗g

−x∗g
0 0 a∗

(
2
Z∗g

)
0

0 0 0 −1

 (4.136)

where fc = 0.0053 is the camera focal length given by the camera manufac-
turer’s specification. The image feature s and the corresponding components
of Ls∗ are expressed in meter. The desired centroid coordinates were set as
the center coordinates of the camera image view. A firewire camera with the
resolution of 320× 240 was used in this experiment, therefore, the image view
center coordinates (x∗gi, y∗gi) = (160, 120). The corresponding coordinates point
on the camera frame are (x∗g, y∗g) = (0, 0). The desired depth Z∗g and area a∗
can be obtained by bringing the camera into the desired pose with respect to
the target object position.

The final pose of the robot end-effector was set to be 20 cm of distance
from the object, Z∗g = 20 cm, with α∗ = 0. In this final pose the desired image
area was computed as a∗image = 5046 pixels2, using (4.45), it can be deduced
that a = f2aimage. The numerical value of the interaction matrix from the
desired image feature values was computed as

Ls∗ =


−0.0265 0 0 0

0 −0.0265 0 0
0 0 0.1417 0
0 0 0 −1

 (4.137)

At the desired image feature values s∗, the interaction matrix Ls∗ has a perfect
decoupling property since it is a diagonal matrix.

The initial robot joint configuration of θ = [0o, 60o, 0, 30o, 0o, 90o, 30o] dis-
placed the camera pose from its desired pose which was approximately com-
posed of the translation of 50, 15,10 cm along x, y, z axes, and the rotation of
0o, 0o, 30o rotation about x, y, z axes, respectively. The result realized from
the MBVS control law measured in the joint space is depicted in Figure 4.9.
The joint velocities converged to zero in 2 s when the desired camera pose
was reached. At t > 2 s, the MBVS controller maintained the camera pose
at the desired values by giving the error signal between the desired and the
current image feature sets. Small joint velocity fluctuations as shown in the
Figure 4.9 were caused by the small image noise captured by the camera. The
corresponding image feature error trajectories are shown in Figure 4.10.

It can be seen from Figure 4.10(a), the error of the image centroid coordi-
nate is more sensitive to the image noise compared to the other image feature

Summary 141

FIGURE 4.9: Joint velocity results of the MBVS.

errors, since small pixels’ noise would affect less in the computation result of
the image area a and α (see Figure 4.10(b) and 4.10(c)). As an example, 2 pix-
els noise will not significantly affect the area of a segmented image of 70× 70
pixels. This condition also applies to the computation of α which involves
the computation of the second order centered image moments. Figure 4.11
shows segmented target images captured at initial and desired camera posi-
tions. OpenCV 2.0 [135, 169] library was used to preprocess images from the
camera’s raw data to the obtained binary segmented images which included
image color converter (RGB to greyscale image), blurring, Canny edge detec-
tor and contour finder functions.

4.10 Summary
This chapter has presented a detail development of the MBVS of a 7 DOF
manipulator using image moments. The visual features xg, yg, a, and α
have been derived using the image moments up to second order. These
image moment features were chosen to have nice decoupling property of the

142 Model-based Visual Servoing of a 7 DOF Manipulator

(a) esx and esy

(b) esa

(c) esα

FIGURE 4.10: Results for the image feature errors.

Summary 143

(a) Initial (b) Final

FIGURE 4.11: Segmented target images at initial and desired camera position.

interaction matrix, e.g., the movement of the centroid coordinates (xg, yg) are
significantly affected by the movement of the camera in x and y camera axes,
the changes of the segmented image area a is caused by the movement of the
camera along the camera optical axis, and the orientation α of the segmented
image is significantly affected by the orientation of the camera about the cam-
era optical axis. As a result, the interaction matrix of the desired image is a
diagonal matrix which has perfect decoupling property.

The presented MBVS control law has been validated in a real-time exper-
iment using 7 DOF PowerCube robot manipulator. By giving four image
moment features, the MBVS controlled each joint of the robot manipulator
using velocity command, to position the attached camera on the robot end-
effector from the initial pose to the desired pose. The system convergence was
reached when the current image moment feature set s was approximately the
same with the desired image moment feature set s∗. In the real-time experi-
ment, image noises cannot be avoided; as a result the joint velocity trajectories
fluctuated in a small region near zero, in order to keep the camera pose at
the desired position. The development of the presented MBVS in this chap-
ter is important for further analysis and comparison in the next following
contribution chapters.

Readers may refer [15] for inverse kinematic control of the redundant
manipulator using generalized pseudo-inverse. Vision-based manipulator con-
trol in open loop fashion is discussed in [51]. A detailed survey on visual ser-
voing can be found in [10], [11] and [52]. Vision-based control in eye-in-hand
configuration is discussed in [53, 54]. Visual servoing in eye-to-hand config-
uration is discussed in [52, 55, 56]. Model-based redundancy resolution for a
visually controlled manipulator is discussed in [81] for trajectories defined in
vision space. The trajectories are defined in vision space from a single cam-
era in eye-in-hand configuration, and then task sequencing is used to prioritize
the task for achieving kinematic limit avoidance. Mansard and Chaumette [82]
achieved obstacle avoidance by task sequencing while following vision space
trajectories in eye-in-hand configuration. Later the approach is extended for

144 Model-based Visual Servoing of a 7 DOF Manipulator

multiple-task considering occlusion and kinematic limit avoidance together in
[83]. The learning-based servoing scheme proposed in [61] for a non-redundant
manipulator focuses on learning the inverse Jacobian at the chosen operation
point only. Tsai’s algorithm to calibrate the camera is discussed in [133], and
an online implementation of the Tsai calibration algorithm is available by
R. Willson [134].

5
Learning-Based Visual Servoing

Kohonen’s self-organizing map has been used to kinematically control the
redundant manipulator but the type of solution learned with the associated
map is not discussed in the literature. This chapter analyzes the map learned
with the KSOM based kinematic control algorithm. It is experimentally shown
that the learned KSOM actually approximates the pseudo-inverse of the Jaco-
bian with a linear map in every local zone. A globally asymptotically stable
visual servoing method is proposed with the learned map, and it is shown that
the proposed scheme is Lyapunov stable, if the approximation is accurate. A
KSOM based global positioning scheme is further generalized for redundancy
resolution using a weighted norm solution method [170].

5.1 Introduction
Real-life implementation of the redundant manipulator control requires the
ability to control the manipulator over the entire workspace to reach the
objects scattered in the environment. Model-based schemes compute the joint
angular velocity from the vision space as,

θ̇ = kp J+eu. (5.1)

Such model-based approaches are inefficient while implementing in a dynamic
environment in the following aspects:
• The model-based visual control schemes require the exact Cartesian depth

information between the camera and the environment for the computation
of the interaction matrix L, which may not be available over the entire
workspace in a dynamic environment.

• The pseudo-inverse of Jacobian J is required at each instant to control
the manipulator. The computation of pseudo-inverse is computationally
intensive. The method may lead to instability in dynamic environment
due to sensor and model inaccuracies since the method is sensitive to
parameter variations.

These problems are circumvented in model-based paradigm, by computing
L only at a given operating point during the control process. In general the

145

146 Learning-Based Visual Servoing

desired position ud is chosen to estimate the image Jacobian, which is denoted
as Lud . Then the pseudo-inverse is computed for the Jacobian estimated at ud
as Jud = LudPJ. If the camera and the kinematic model are not available, then
P and J are also estimated. Such methodology is computationally cost effec-
tive but results in local stabilization. Model-based locally stabilizing schemes
cannot be used in the real-world since the objects are scattered over the envi-
ronment. The image Jacobian L has to be estimated for every object and the
position of the objects will be continuously changing in dynamic environment.
Hence a local estimation of the Jacobian is ineffective. The global stabilization
can be achieved by estimating J over the entire workspace and then computing
the pseudo-inverse at each operating point. The Jacobian from the joint space
to the vision space is estimated at every instant and then an adaptive control
strategy is proposed visual servoing in [171,172]. The global Jacobian from the
joint space to the vision space is estimated using a K-nearest neighbor network
in [173] and receptive field weighted regression neural network in [174, 175].
The learned map is used to compute the pseudo-inverse at each instant to
control the manipulator. All the above discussed approaches require the com-
putation of the pseudo-inverse at each instant and, hence, the approaches are
computationally intensive. An alternative approach is to estimate the pseudo-
inverse J+ directly over the entire workspace, which reduces the computation
complexity associated with the pseudo-inverse. The learning-based visual ser-
voing scheme discussed in [61] computes the pseudo-inverse of L at a chosen
operating point and achieves local stabilization. The pseudo-inverse of the
image Jacobian L is estimated with an online update algorithm in [176] while
realizing task sequencing. Hence, the control is a two stage process, and the
redundancy is resolved while following the Cartesian space trajectory gener-
ated from the estimate of the image Jacobian’s pseudo-inverse.

On the other hand, model-free control of the redundant manipulator
from vision space has been addressed using KSOM based kinematic con-
trol schemes [177]. KSOM based learning schemes compute the joint angles
directly from the vision space but mostly tested on non-redundant manipu-
lators [51]. In [178], it has been shown through experimentation that KSOM
learns a smooth map for redundant manipulators owing to its topology pre-
serving nature, and yet a detailed analysis about the type of solution is not
studied. KSOM has been used for obstacle avoidance in [179]. The algorithm
presumes that the KSOM approximates the pseudo-inverse of the Jacobian
and the Jacobian is estimated by computing the pseudo-inverse of the learned
map. The null space of the Jacobian is then used to achieve obstacle avoid-
ance, but the assumption is not confirmed with any analysis. The discussed
experimental results also show that the redundant manipulator is tested for
end-effector collision avoidance only and the method suffers from positioning
inaccuracy due to open loop mode of operation. Asuni et al. [180] used a
growing neural gas architecture to learn the inverse kinematics of a redundant
manipulator. The approach does not resolve the redundancy for any particu-
lar task. It has been shown through the experimental results that the learned

Introduction 147

map is robust to model inaccuracies and it can adapted to environmental
changes such as clamped links and extended tool tips. A detailed survey of
KSOM based kinematic control schemes is discussed in [181]. The implemen-
tation of the learning-based control schemes is constrained by the number of
data generated to train the network. Angulo and Torras [182] suggested func-
tion decomposition for manipulators with last three joints crossing at a point
to improve the speed of the learning process. This method can be used for
both non-redundant and redundant manipulators provided that the last three
joints cross at a point. Kumar et al. [183] suggested an inverse-forward adap-
tive scheme to reduce the required number of training data during the learning
stage. The approach approximates the forward map with a radial basis func-
tion network and then the inverse kinematic solution is obtained with a KSOM
based hint generator for redundancy resolution. The learned forward map is
updated online while controlling the manipulator to improve the positioning
accuracy. Alternatively, Behera and Kirubanandan [51] suggested learning an
approximate inverse kinematic map with the available kinematic and camera
models and then the learned map is improved in real-time. Such an approach
uses the model to train the network and the learned model is adapted during
the operational phase.

Kumar et al. [184], proposed a KSOM network with joint angle space sub-
clustering which allows to learn multiple solutions for each end-effector posi-
tion. The network acts as a look-up table for redundant solutions and it works
based on the principle of “look and move.” Though KSOM based approaches
control the manipulator over the entire workspace, there is no proper study
associated with the relationship between the learned KSOM and the type of
resulting solution. This thesis work analyzes the learned map with experimen-
tal studies. It is empirically proved that the learned map approximates the
inverse Jacobian as a linear map in each operating zone. With such experi-
mental verification, a globally asymptotically stable visual control scheme is
proposed for redundant manipulators. In addition, KSOM based kinematic
control scheme is generalized to learn a particular solution to resolve the
redundancy for the chosen additional task.

Initially a KSOM based neural network is used to learn the inverse kine-
matics of the redundant manipulator offline. The input to the network is 4
dimensional image coordinate vector viewed from two cameras while the out-
put is 7 dimensional joint angle vector. Each neuron in KSOM approximates
the inverse kinematics relation from the vision space to the joint angle space
within a local operating zone. The output of KSOM neuron lattice consists
of a joint angle configuration required to reach near the corresponding input
vision space position, and a local first order map to move closer to the desired
position. This thesis work mainly focuses on the learned local linear model
of the KSOM network. It is shown experimentally that KSOM approximates
the pseudo-inverse of the Jacobian matrix with the local linear map. This
observation motivated us to use the learned KSOM for closed loop visual ser-
voing. The classical proportional feedback [164] is chosen for the closed loop

148 Learning-Based Visual Servoing

control. Further experiments revealed that a globally stabilizing controller
can be obtained by using conventional proportional feedback in conjunction
with the inverse kinematic map learned using KSOM. Since the approximate
inverse kinematic relationship is learned offline over the entire workspace,
a simple proportional controller results in global stability. Lyapunov analy-
sis shows that the global stability can be achieved if the learned map accu-
rately approximates the local inverse Jacobian. The obtained inverse Jacobian
approximation also eliminates the necessity of online pseudo-inverse compu-
tation required in visual servoing and makes the proposed scheme computa-
tionally efficient. With the empirical observations of convergence to pseudo-
inverse, the KSOM based kinematic control is extended for redundancy res-
olution under weighted norm formulation. KSOM is learned to resolve the
redundancy directly from the vision space while minimizing an instantaneous
cost function.

The remaining portion of this chapter is organized as follows. The follow-
ing section briefly introduces the KSOM based kinematic control scheme. The
problem is defined in Section 5.3, and the proposed control strategy is pre-
sented in Section 5.4. The simulations and the experiments performed for con-
trolling the robotic system discussed in Chapter 2 are presented in Section 5.7.
The contributions made in this chapter are finally summarized in Section 5.8.

5.2 Kinematic Control using KSOM
The forward map from 7 dimensional joint angle space to 4 dimensional image
coordinate space can be derived using manipulator forward kinematic model
(2.1) and camera model obtained through the Tsai algorithm. This forward
mapping is represented as,

u = fux(θ) (5.2)

where fux represents the nonlinear map from the joint angle space to the
vision space. In robotic manipulation, the inverse relationship plays a key
role, since the knowledge of the joint angle configuration which can reach the
desired position ud is necessary, for manipulating the objects scattered in the
workspace. The inverse kinematic relationship is given by,

θ = f−1
ux (ud) = r(ud). (5.3)

In KSOM based visual control, a smooth solution is learned over the entire
workspace and the learned map is used to reach any desired position in the
workspace. A brief discussion about KSOM based NN architecture for kine-
matic control is presented in the following subsection to aid understanding.

Kinematic Control using KSOM 149

5.2.1 KSOM Architecture
The inverse kinematic relationship of the redundant manipulator (5.3) is a
nonlinear relationship and, hence, it is difficult to learn. One easier approach
to this problem involves the discretization of both the input as well as the
output spaces into several small cells so that a linear map from the input to
output space holds good within each cell. KSOM discretizes the input vision
space into number of cells and associates a vector and a linear map in the
output joint angle space for each region.

In this thesis work, a 3 dimensional KSOM lattice is used to discretize
the input and output spaces. Lattice node indices are represented by γ and
each such node is associated with a vision space vector wγ ∈ Rp, a joint angle
vector θγ ∈ Rm, and a linear map Aγ : Rp → Rm. The vectors wγ and
θγ discretize the input and output space respectively. Aγ approximates the
inverse kinematic relationship in each region with a linear map. The joint angle
required to reach any desired position is computed using KSOM as follows:

Given a desired position ud, a winner neuron µ is selected based on its
Euclidean distance metric in the input space. The neuron whose weight vector
is closest to the desired position is declared winner as shown below.

µ = min
γ
‖ud −wγ‖2. (5.4)

The arm is given a coarse movement θout0 given by,

θout0 = s−1
Nn∑
γ=1

hγ(θγ + Aγ(ud −wγ)) (5.5)

where s =
Nn∑
γ=1

hγ , hγ = e(−‖µ−γ‖
2σ2), and Nn is the number of neurons located in

the KSOM lattice. Because of this coarse movement, the end-effector reaches
a position u0 in vision space. A correcting fine movement θout1 is evaluated as
follows:

θout1 = θout0 + s−1
Nn∑
γ=1

hγAγ(ud − u0). (5.6)

This corrective movement results in a final movement of the end-effector to
u1. Although one can use several such corrective movements to increase the
accuracy of tracking, usually one corrective movement is used.

5.2.2 KSOM: Weight Update
The parameters of the KSOM network are updated as,

Anew
γ = Aold

γ + s−1 η hγ ∆Aγ (5.7)
wnew
γ = wold

γ + s−1 η hγ ∆wγ (5.8)

150 Learning-Based Visual Servoing

θnewγ = θoldγ + s−1 η hγ ∆θγ . (5.9)

The change in the network parameters ∆Aγ , ∆θγ and ∆wγ are computed
as follows:

The local linear map Aγ is updated similar to gradient descent rule, by
minimizing the function,

E = 1
2 ‖∆θ01 −Aγ∆u01 ‖2 (5.10)

where ∆θ01 = θ1 − θ0 and ∆u01 = u1 − u0. The value of ∆Aγ is obtained
from equation (5.10) as,

∆Aγ =‖∆u01 ‖−2 (∆θ01 −Aγ∆u01) ∆uT01. (5.11)

The change in the value of θγ is computed as,

∆θγ = θ0 − θγ −Anew
γ (u0 −wγ), (5.12)

such that θγ → θ0.
The value of ∆wγ is computed with the basic KSOM based clustering

algorithm to identify a center around the desired position ud as,

∆wγ = ud −wγ . (5.13)

5.2.3 Comments on Existing KSOM Based Kinematic
Control Schemes

The above approach has been used for visual motor coordination of non-
redundant manipulators [51] as well as redundant manipulators [178], [185].
While the application of KSOM to kinematic control of the non-redundant
manipulators has been analyzed extensively, it has not been applied much
to the redundant manipulators, since the redundancy is lost in the learning
phase. It is demonstrated in [178] that, the above control algorithm is capable
of resolving the redundancy by minimizing the variations of joint angles, in
the case of manipulators with higher degrees of freedom. Han et al. [179] used
KSOM to avoid obstacles with multiple camera setup for a 4 DOF manipula-
tor, but the approach involves the computation of the pseudo-inverse during
learning phase.

The learned map is generally used in open loop mode which suffers from
positioning inaccuracy. KSOM based kinematic control algorithm considers
only the desired position and the current end-effector position is ignored dur-
ing the coarse movement. Hence, the path traversed during coarse movement
from the current position to the desired position is not controlled. Since the
manipulator is controlled with joint angle reference, it is difficult to resolve
redundancy with existing approaches for different subtasks.

Analysis of solution learned using KSOM 151

5.3 Problem Definition
As discussed in previous sections, existing visual servoing techniques are
model-dependant and computationally intensive. Though model-free strate-
gies are analyzed for position level control, they are inaccurate and not suit-
able for redundancy resolution. Considering these challenges associated in the
visual control of the redundant manipulators, the problem is formulated as
follows:

“Given a redundant manipulator with stereo vision overlooking the
workspace in eye-to-hand configuration, develop a model-free visual con-
trol technique which can control the redundant manipulator over the entire
workspace while resolving the redundancy for the chosen additional task. With
any initial manipulator configuration θ0 resulting in end-effector position u,
and the desired end-effector position ud in vision space, identify the control
law θ̇ = f(θ, eu), where eu = ud − u, such that the manipulator end-effector
asymptotically reaches the desired position from the initial position.”

The main focus of the proposed approach is to achieve global positioning
of the end-effector through visual servoing, and it is achieved by analyzing
the linear map learned using the KSOM based kinematic control algorithm.
Following are the prime issues addressed in this thesis work:

• A computationally less intensive model-free architecture for visual servo-
ing.

• Global positioning of the redundant manipulator without the computation
of pseudo-inverse at each instant.

• Redundancy resolution from vision space while minimizing an instanta-
neous cost function under learning paradigm.

5.4 Analysis of Solution Learned Using KSOM
As discussed in Section 5.2, KSOM learns to control the redundant manipula-
tor with a linear map in each operating zone. In case of redundant manipula-
tors, it is shown through simulation [178] that the KSOM resolves the redun-
dancy by learning a smooth movement in the workspace. A smooth solution is
learned since it tries to minimize the joint angle variation due to its topology
conserving nature. In this thesis work, the solution learned with KSOM is
analyzed using eigenvalue approach, and it is experimentally shown that the
pseudo-inverse of Jacobian matrix is learned locally. In such a case it is argued
that the KSOM can be considered as an approximation of the pseudo-inverse
of the Jacobian matrix for the learned joint angle configuration θγ . In the

152 Learning-Based Visual Servoing

following sections, it is empirically confirmed through experiments that the
KSOM actually approximates the inverse Jacobian.

5.4.1 KSOM: An Estimate of Inverse Jacobian
The correcting fine movement (5.6) can be rewritten as,

θout1 − θout0 = s−1
Nn∑
γ=1

hγAγ(ud − u0)

∆θout = s−1
Nn∑
γ=1

hγAγ(∆u) (5.14)

where ∆θout represents the estimated change in the joint angle to generate
the end-effector position change of ∆u in the vision space. The above equation
can be represented in velocity form by actuating a joint angular velocity, θ̇out

for a duration of ∆t as follows,

∆θout

∆t = s−1
Nn∑
γ=1

hγAγ(∆u
∆t)

θ̇
out = s−1

Nn∑
γ=1

hγAγu̇. (5.15)

By comparing equations (5.1) and (5.15), it is easy to infer that KSOM may
approximate the inverse of the Jacobian from the joint angle space to the
vision space as,

J+ ' s−1
Nn∑
γ=1

hγAγ . (5.16)

This thesis work proposes that the KSOM approximates the inverse Jacobian
as a linear map in each operating zones. The linear map is valid within its
local zone and the global nonlinear inverse is obtained by clustering in the
lattice space. To verify the proposition, empirical experiments are performed.
For simplicity, the simulations are performed for inverse kinematic relation
from the Cartesian space to the joint angle space. The same experiments can
also be extended to the vision space which also requires the computation of
image Jacobian at every point in the visible workspace.

5.4.2 Empirical Verification
If KSOM approximates the pseudo-inverse of the kinematic Jacobian J while
controlling from the Cartesian space, then the following relationships are valid.

Analysis of solution learned using KSOM 153

• Around non-singular points,

J
Nn∑
γ=1

hγAγ ≈ I (5.17)

• Around singular points,

J
Nn∑
γ=1

hγAγ ≈ I
′

(5.18)

where
Nn∑
γ=1

hγAγ is the linear approximation of the inverse Jacobian learned by

KSOM. I is the identity matrix of order n and I′ is a positive definite matrix
of order n. The I′ matrix of rank r will have n− r eigenvalues as 0. Consider-
ing these relationships, following simulations are performed to check whether
above properties are satisfied with KSOM. The simulations are performed
with the kinematic model of the PowerCube™ manipulator discussed in Sec-
tion 2.2. The parameters are taken the same as an actual setup in simulation
so that it matches with the experimental result.

A 3 dimensional neural lattice with 7×7×7 neurons is selected to learn the
inverse kinematics. The inverse kinematic relation from the Cartesian space
to the joint angle space is learned with 5, 00, 000 training patterns. The input
to KSOM network is 3 dimensional Cartesian position of the end-effector and
the output is 6 dimensional joint angle coordinates.

5.4.2.1 Inverse Jacobian Evolution in Learning Phase

It is observed from the inverse kinematic solutions that KSOM learns a smooth
motion. This learned mapping improves as the number of patterns increases.
It is easier to infer then, that, as the learning progresses, KSOM approaches
the pseudo-inverse. To validate this assumption, a typical neuron is selected

and I′ = J
Nn∑
γ=1

hγAγ is computed in regular intervals of learning. If KSOM

learns the generalized pseudo-inverse, then eigenvalues of I′ converge to 1.
The neuron located at (4, 4, 4) of neuron lattice is considered to check

the eigenvalue evolution in the learning phase. The eigenvalues are computed
at regular interval of 200 data points. The simulation results are shown in
Figure 5.1. It is clear from the figure that the eigenvalues approach 1 with the
learning, which confirms the proposition.

5.4.2.2 Testing Phase: Inverse Jacobian Estimation at each
Operating Zone

The inverse Jacobian relationship at every nodes of KSOM network is checked
after learning. The results are shown in Figure 5.2. It is clear from the figure

154 Learning-Based Visual Servoing

0 500 1000 1500 2000 2500
0.6

0.8

1

1.2

1.4

E
ig

en
 V

al
u

e
:

1

0 500 1000 1500 2000 2500
0.6

0.8

1

1.2

1.4

E
ig

en
 V

al
u

e
:

2

0 500 1000 1500 2000 2500
Instant

0.6

0.8

1

1.2

1.4

E
ig

en
 V

al
u

e
:

3

FIGURE 5.1: Evolution of eigenvalue.

that KSOM approximates the pseudo-inverse in most of the centers of net-
works, and in some of the nodes the eigenvalues have not yet converged to
1 which belongs to the neurons located at the corner of lattice. To conclude
further, the positioning accuracy at each center is checked and the result is
shown in Figure 5.3, which clearly shows that learning is not accurate at the
corresponding centers where eigenvalues have not yet converged to 1. Hence,
the eigenvalues may converge to 1, if the learning is extended further.

5.4.2.3 Inference

It is clear from the above two experiments that KSOM approximates the
pseudo-inverse of Jacobian and the approximation improves with learning.
Though the above experiments are performed from the Cartesian space to the
joint angle space for simplicity, it can be extended to the vision space too.

It is claimed that the KSOM learns the pseudo-inverse of kinematic rela-
tionship as a cluster of locally valid inverse maps, and the claim is corroborated
with the empirical results. KSOM reaches the pseudo-inverse, since the linear
approximation of inverse Jacobian is learned by minimizing equation (5.10),
which is equivalent to,

θ̇ = J+ẋ. (5.19)

Analysis of Solution Learned Using KSOM 155

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

E
ig

en
 V

al
u

e
:

1

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

E
ig

en
 V

al
u

e
:

2

0 50 100 150 200 250 300 350
Center

0

0.2

0.4

0.6

0.8

1

E
ig

en
 V

al
u

e
:

3

FIGURE 5.2: Eigenvalues at centers of KSOM.

Hence, KSOM based kinematic control algorithm estimates the inverse Jaco-
bian with average value of locally valid linear inverse Jacobian maps in each
operating zone. This inverse Jacobian is required in the visual servoing control
algorithm (5.1). This is one of the major contribution achieved in this thesis
work.

With these observations, the learned KSOM is considered to be an approx-
imation of the inverse Jacobian from the vision space to the joint angle space.
These observations play a significant role in the visual control of a kinemati-
cally redundant manipulator as follows:

• The map learned with KSOM based kinematic control algorithm is an
estimate of the inverse Jacobian for the global workspace. A globally stable
visual servoing algorithm can be formulated with this estimated map.

• The KSOM based kinematic control algorithm can be generalized to
approximate a particular solution which satisfies the desired additional
task by learning an appropriate inverse Jacobian map.

It will be shown in subsequent sections of this chapter that it is indeed possible
to achieve global visual servoing while satisfying the desired additional task
with the KSOM based kinematic control scheme. Global positioning scheme
is achieved by using the KSOM in conjunction with the proportional gain,
while redundancy is resolved by expressing the instantaneous cost function in
weighted norm formulation.

156 Learning-Based Visual Servoing

0 50 100 150 200 250 300 350
Center

0

0.02

0.04

0.06

0.08

0.1

E
rr

o
r

(m
)

FIGURE 5.3: Positioning error at centers of KSOM.

5.5 KSOM in Closed Loop Visual Servoing
Through experimental analysis, it is shown that the inverse Jacobian is
approximated as a linear map in each operation zone with KSOM based kine-
matic control algorithm. This learned map can be used as an approximate
inverse Jacobian for visual servoing. With the learned KSOM based approxi-
mation of the inverse Jacobian, image based visual servoing can be performed
from the joint angle space. The KSOM based visual servoing simplifies the
following issues:

• With the learned KSOM map, the approximate pseudo-inverse from the
vision space to the joint angle space is known over the entire space. This
eliminates the computation of the pseudo-inverse during servoing. It is
known that only the winner neuron contributes to the learned map after
learning phase. Hence, the computation cost of real-time servoing reduces
to a simple matrix multiplication.

• Since KSOM learns a unique relationship between the vision space and
the joint angle space, it resolves the redundancy in learning phase itself.
This facilitates to analyze the visual servoing and redundancy resolution

KSOM in Closed Loop Visual Servoing 157

in a simple integrated framework with direct computation of joint angle
space trajectories from vision space.

The conventional proportional controller with pseudo-inverse computation at
the desired location ensures local asymptotic stability only. The global asymp-
totic stability can be achieved by either estimating the forward Jacobian at
each instant and then computing the pseudo-inverse of the forward Jacobian
or estimating the pseudo-inverse of the Jacobian over the entire workspace. As
discussed in the previous section, KSOM approximates the inverse kinematic
Jacobian from the vision space to the joint angle space at discrete operating
points. Hence, KSOM based learning approach is a holistic methodology to
learn the inverse kinematic relationship over the entire workspace.

In this thesis work, this KSOM based approximation of the inverse Jaco-
bian is used to achieve global stabilization with conventional proportional
controller. KSOM eliminates the computation of pseudo-inverse along the tra-
jectory, since the inverse kinematic relationship is learned offline. With this
control scheme, the input to KSOM network is given as,

∆u = kp eu. (5.20)

The global stabilizing controller can be obtained only if the inverse adaptively
changes along the path. In conventional KSOM algorithm, the winner neuron
is selected based on the position of the object and, hence, the inverse will be
fixed for a given desired location. This approach results in a local stabilizing
controller. In this work, the winner neuron is selected based on the current
end-effector position such that the inverse Jacobian changes as the end-effector
traverses along the path. The desired joint angular velocity is then computed
with the above input as,

θ̇
out = kp s

−1
Nn∑
γ=1

hγAγeu. (5.21)

After training, the winner neuron is the major contributor to the joint angular
velocity. Hence, the computation reduces to a simple matrix multiplication
in real-time which makes the algorithm computationally efficient. This is a
major improvement in case of visual servoing, where currently the computation
poses a constraint in real-time implementation due to the computation cost
associated with the image processing techniques.

5.5.1 Stability Analysis
It is clear from the empirical observation that the KSOM approximates the
pseudo-inverse of the Jacobian. In this section, Lyapunov stability of the pro-
posed control scheme is analyzed. Let’s consider the Lyapunov candidate as
the quadratic position error,

V = eTueu (5.22)

158 Learning-Based Visual Servoing

where the error, eu = ud−u and ud is constant for positioning task. The time
derivative of the Lyapunov function is given by,

V̇ = eTu ėu
= −eTu u̇
= −eTu Jθ̇

= −eTu J kps−1
Nn∑
γ=1

hγAγeu

= −kps−1eTu J.
Nn∑
γ=1

(hγAγ)eu

= −kps−1eTu J{J+ − J+ + (
Nn∑
γ=1

hγAγ)}eu

= −kps−1eTu JJ+eu − kps−1eTu J{J+ − (
Nn∑
γ=1

hγAγ)}eu

= −kps−1eTu I
′
eu − kps−1eTu J(Ã)eu

= −kps−1eTu I
′
eu − kps−1eTu Ĩeu (5.23)

where I′ = JJ+, Ã = {J+−(
Nn∑
γ=1

hγAγ)} is the approximation error of KSOM

network and Ĩ = JÃ. It is well known that, I′ > 0 and Ĩ is sign indefinite.
The above equation can be further simplified as,

V̇ < −kps−1eTu I
′
eu + kps

−1 ‖ Ĩ ‖ ‖ eu ‖ . (5.24)
It is clear from the above equation that V̇ is negative definite, if,

eTu I
′
eu >‖ Ĩ ‖ ‖ eu ‖ . (5.25)

Empirical observation has clearly shown that the linear map of KSOM
approaches the local pseudo-inverse of the kinematic Jacobian with train-
ing and, hence, Ĩ ≈ 0. Thus equation (5.25) is true, which implies that the
stability condition given by equation (5.24) is also satisfied. To make the algo-
rithm robust, one can increase the number of neurons which would increase
the discretization of the workspace and, hence, ‖ Ĩ ‖ will be bounded. The
global Lyapunov stability of the proposed scheme is thus guaranteed, with
accurate offline learning of KSOM network. A globally asymptotically sta-
ble visual servoing scheme can be designed with the inverse kinematic map
learned using the KSOM based kinematic control algorithm. Visual servoing
does not require the estimation of the Jacobian and the computation of its
pseudo-inverse at each instant, which makes the proposed KSOM based visual
servoing scheme computationally efficient. The KSOM based visual servoing
simplifies the development of global visual servoing scheme with offline learn-
ing process.

Redundancy Resolution 159

5.6 Redundancy Resolution
The proposed KSOM based closed loop control strategy is further extended
for resolving the redundancy. As discussed in section 5.4.2.3, KSOM generates
a smooth minimum joint angle space motion since the linear map is updated
by minimizing the equation (5.10). KSOM based kinematic control algorithm
is generalized to resolve the redundancy by minimizing weighted norm as dis-
cussed in [18]. Weighted norm solution penalizes the joint angle space motion
for achieving the desired additional task. The joint angular velocity θ̇ which
minimizes the weighted norm, ‖ θ̇TWRθ̇ ‖ is given as,

θ̇ = W−1/2
R J+

wu̇ (5.26)

where WR ∈ Rm×m is the weight matrix which penalizes the joint angle
space motion to achieve the additional task, Jw = JW−1/2

R and J+
w =

W−T/2
R JT (JW−1

R JT)−1. The detailed discussion about weighted least norm
solution is available in [18]. Comparing equations (5.19) and (5.26), the Jaco-
bian matrix of KSOM is updated to minimize,

1
2 ‖∆θ01 −W−1/2

R Ai∆u01 ‖2 . (5.27)

The above equation is analogous to equation (5.10), which converges to the
minimum norm solution (5.19). The above cost function, is same as equation
(5.10), if WR = I, where I is the identity matrix. Hence, the existing KSOM
based learning method [51] is a particular case of the proposed generalized
update law. The change in the value of Aγ with the proposed generalization
is computed to be,

∆Aγ =‖∆u01 ‖−2
(
∆θ01 −W−1/2

R Aγ∆u01

)
∆uT01. (5.28)

The change in the joint angle vector θγ is evaluated as,

∆θγ = θ0 − θγ −W−1/2
R Anew

γ (u0 −wγ), (5.29)

such that θγ → θ0 while minimizing ‖ θ̇TWRθ̇ ‖. The update law for wγ is
chosen as same as equation (5.13), since the weights are penalizing the joint
angle space only.

The manipulator has to be actuated with generalized KSOM based kine-
matic control scheme to move near the desired position ud with a coarse
movement. The coarse movement is generalized as,

θout0 = s−1
Nn∑
γ=1

hγ(θγ + W−1/2
R Aγ(ud −wγ)). (5.30)

160 Learning-Based Visual Servoing

The manipulator moves to the position u0 in the vision space, with the joint
angle configuration θout0 computed for the joint penalization WR. The posi-
tioning error in the vision space after the coarse movement is given by ud−u0.

The positioning accuracy can be further improved with a fine movement
defined as,

θout1 = θout0 + s−1W−1/2
R

Nn∑
γ=1

hγAγ(ud − u0). (5.31)

The manipulator reaches the position u1, when it is commanded with the
joint angle vector θout1 . The positioning accuracy can be further improved with
multi-steps similar to the existing KSOM based kinematic control schemes.

The above algorithm penalizes the joint angle space motion based on
the additional task and, hence, it is expected to resolve the redundancy
during learning phase. The learned map is expected to converge to J+

w =
W−T/2

R JT (JW−1
R JT)−1 with the proposed generalization of the KSOM based

learning scheme. It will be further corroborated with empirical results that
the proposed generalized scheme indeed resolves the redundancy by penal-
izing the joint angle space motion with weight matrix WR. Thus, the pro-
posed generalization of KSOM based kinematic control algorithm resolves the
redundancy during learning phase, provided the additional task is expressed in
weighted norm formulation. Such generalization is highly desirable in vision-
based redundant manipulator control, since the accurate model of the system
is not known, and the redundancy of the manipulator can be resolved only by
estimating the Jacobian with a learning algorithm.

5.7 Results
The performance of the proposed controller scheme is tested from the vision
space to control the PowerCube manipulator, in both simulation and real time.
The controller is tested for positioning task first within the learned workspace.
The performance of the redundancy resolution scheme is then analyzed for
tracking a straight line and elliptical trajectory in simulation.

5.7.1 Learning Inverse Kinematic Relationship using KSOM
A 3 dimensional neural lattice with 7×7×7 nodes is selected for learning the
inverse kinematic map from the vision space to the joint angle space. Each
node in the KSOM lattice is associated with an input weight vector, wγ of
dimension 4 × 1 which represents the pixel coordinates of the object in the
stereo vision system.

Results 161

TABLE 5.1: Cartesian workspace limit

Cartesian workspace
−0.4 m ≤ x ≤ 0.4 m
0.3 m ≤ y ≤ 0.8 m
−0.15 m ≤ z ≤ 0.38 m

Training data is generated using the forward kinematic model (2.1), and
the camera model obtained using Tsai algorithm [134] discussed in section
2.3.2. The dimension of the workspace, visible through the stereo-vision is
tabulated in Table 5.1. Random end-effector positions are estimated from
the randomly generated joint angle values within the manipulator kinematic
bounds, and only those end-effector positions are retained which lie within
the visible workspace volume.

The inverse kinematic relationship is learned with 50, 000 random points,
which resulted in an average positioning accuracy of 0.12m over the entire
workspace.

5.7.2 Visual Servoing
The learned map is used for closed loop control of the redundant manipula-
tor. The initial and the final positions are considered same in both simulation
and real-time experiment. The chosen initial and final positions of the object
in Cartesian space are tabulated in Table 5.2. The learned map is used as
an approximation of the inverse Jacobian in closed loop visual servoing. The
joint angular velocity computed using equation (5.21) are applied to the robot
manipulator. The proportional gain is chosen as kp = 0.05. The sampling rate
is chosen as 0.1s in simulation, to match the experimental setup. The end-
effector motion in the vision space is shown in Figure 5.4. The trajectory is
smooth in simulation, however it is noisy in real-time. There is noise in the
trajectory measurement during real-time implementation, due to the inaccu-
racies in image processing method. It is clear from the figure that the real-time
and the simulation results are much similar, indicating that the controller is
performing good though the learning is approximate.

The joint angular velocity is shown in Figure 5.5. In real-time, joint angular
velocity is noisy due to noisy measurement of the end-effector position and
numerical differentiation. It is clear from Figure 5.5 and Table 2.2, that in both

TABLE 5.2: Initial and final end-effector positions

Position x(m) y(m) z(m)
Initial -0.1 0.55 0.15
Final 0.1 0.75 0.35

162 Learning-Based Visual Servoing

100 120 140 160 180 200

x-pixel

50

100

150

y
-p

ix
el

Right Camera

Left Camera

(a) Simulation

100 120 140 160 180 200

x-pixel

50

100

150

y
 -

 p
ix

el

Left Camera
Right Camera

(b) Real-time

FIGURE 5.4: End-effector motion in the vision space: Both right and left cam-
era views are shown (pixel). Smooth end-effector motion is generated from initial
position to final position.

0 5 10 15

time (s)

-0.4

-0.2

0

0.2

Jo
in

t
v
el

o
ci

ty
 (

ra
d
/s

)

θ
1

.

θ
2

.

θ
3

.

θ
4

.

θ
5

.

θ
6

.

(a) Simulation

0 5 10 15 20

time(s)

-0.4

-0.2

0

0.2

0.4

Jo
in

t
v
el

o
ci

ty
 (

ra
d
/s

)

θ
1

.

θ
2

.

θ
3

.

θ
4

.

θ
5

.

θ
6

.

(b) Real-time

FIGURE 5.5: Joint angular velocity of all links (rad/s). The joint angular velocity
is within the limit and smooth resulting a smooth motion. Joint angular velocity
converges to zero as the end-effector reaches the desired position.

simulation and real-time the velocity of each joints are within their physical
limit and finally go to zero as the end-effector reaches the desired position,
indicating the stability of the proposed algorithm. The joint angle trajectory of
each links, while moving toward the desired position, are shown in Figure 5.6

Results 163

 0
 2

 4
 6

 8
 10

 12
 14

 16 -2.2

-2.1

-2

-1.9

-1.8

-1.7

-1.6

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

θ
3

θ
1

θ
2

θ
3

(a)

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

θ
6

θ
4

θ
5

θ
6

(b)

FIGURE 5.6: Joint angle space motion for positioning task in simulation: (a) Joint
angle: Link 1,2 and 3 (rad), (b) Joint angle: Link 4,5 and 6 (rad).

-2.6
-2.5

-2.4
-2.3

-2.2
-2.1

-2
-1.9

-1.8
-1.7

-1.6
 1.2

 1.22

 1.24

 1.26

 1.28

 1.3

 1.32

 1.34

 1.36

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

θ
3

θ
1

θ
2

θ
3

(a)

 0.7
 0.8

 0.9
 1

 1.1
 1.2

 1.3
 1.4

 1.5
 1.6

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-0.0305

-0.0304

-0.0303

-0.0302

-0.0301

-0.03

-0.0299

-0.0298

θ
4

θ
4

θ
5

θ
4

(b)

FIGURE 5.7: Joint angle space motion for positioning task in real-time: (a) Joint
angle: Link 1, 2 and 3 (rad), (b) Joint angle: Link 4, 5 and 6 (rad).

and 5.7 respectively for simulation and real-time. The joint angle variation is
smooth and the angles are within the limit.

The end-effector motion in Cartesian space in a real-time experiment is
presented in Figure 5.8. It is observed that the end-effector reaches the final
position with 2mm accuracy. In simulation, it is observed that the desired
position can be reached with an accuracy of 0.24 pixel error. This accuracy
can be further increased by executing the simulation for longer intervals. In
real-time a minimum of 1 pixel error can be achieved due to the image pro-
cessing limitation, which resulted in 2mm error. The real-time performance
is influenced by the measurement noise, which affects the positioning accu-
racy. The response is slightly sluggish in real-time compared to simulations.
The sluggish response is due to the image processing noise which would be
comparable as the end-effector approaches the desired position.

164 Learning-Based Visual Servoing

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Z Axis Robot configuration
Initial Position
Final position

X Axis

Y Axis

Z Axis

FIGURE 5.8: End-effector motion in Cartesian space from the initial position to
the final position (m).

5.7.3 Redundancy Resolution
This section discusses about the simulations performed to analyze the pro-
posed redundancy resolution scheme. The simulation is performed with the
end-effector trajectories defined in Cartesian space. The trajectories are
defined in Cartesian space, and are projected to the vision space with the
available camera model. The resulting vision space position is given as the
input to the learned Kohonen’s self-organizing map. The main purpose of this
simulation is to show that KSOM network learns the inverse kinematic map
over the entire workspace and, hence, it guarantees global stability. To confirm
the proposition that a particular solution can be learned with the proposed
generalization of the KSOM based kinematic control scheme, the learned con-
troller is tested to track two trajectories in Cartesian space: (i) a straight line
and (2) an ellipse.

The trajectories are tracked with KSOMs learned with the existing algo-
rithm and the proposed generalized learning algorithm. The weighted norm
solution is learned with the weight matrix, WR = diag(1, 1, 100, 1, 1, 1, 1),
which constrains the motion of the third joint of the manipulator. In case of
the weighted norm, the manipulator is expected to track the trajectory with
constrained motion of the third joint.

Results 165

5.7.3.1 Tracking a Straight Line

The proposed scheme is tested first for tracking a straight line in Cartesian
space. The straight line is particularly chosen since it is well known that
tracking a straight line is much more difficult than a smooth curved trajectory,
with a revolute joint manipulator. The desired end-effector position in the
vision space is obtained for the straight line, using the camera model and
is given as input to the controller. A straight line passing across the entire
workspace can be tracked only if the inverse Jacobian J+ is learned accurately
around each operating point.

The line connecting the points [0.3, 0.7, 0.05]T and [−0.2, 0.6, 0.28]T is
considered for tracking. The end-effector trajectory while moving along the
line is shown in Figure 5.9. The corresponding vision space trajectory is shown
in Figure 5.10. The r.m.s. tracking errors with the minimum norm and the
weighted minimum norm solution are 0.7mm and 1.3mm respectively. The
corresponding errors in the vision space are observed as 0.067 and 0.27 pixels,
respectively.

The instantaneous tracking error in the vision space is shown in Figure
5.11 which shows that controller tracks the trajectory with an accuracy of ±4
pixel. The tracking error is lesser than ±1 pixel along the major portion of
the trajectory. The large deviation is observed in a small section of the line
indicating that the learning is not complete at those locations.

The joint angle trajectory of each links are shown in Figure 5.12 and it is
clear that the trajectory of the individual link is smooth while moving along

-0.15
-0.05

 0.05
 0.15

 0.25
 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

z

desired
Weighted Norm
Minimum Norm

x

y

z

FIGURE 5.9: End-effector motion in Cartesian space while tracking the line (m).

166 Learning-Based Visual Servoing

160 180 200
u

1
 (pixel)

100

120

140

160

180

200

220
 u

2
 (

p
ix

el
)

Desired
Minimum Norm
Weighted Norm

(a)

60 80 100 120 140 160
u

3
 (pixel)

130

140

150

160

170

180

190

 u
4

 (
p
ix

el
)

Desired
Weighted Norm

Minimum Norm

(b)

FIGURE 5.10: Manipulator end-effector position in the vision space while tracking
the line: (a) Camera: 1, (b) Camera: 2.

0 5 10 15 20
time (s)

0

1

2

3

4

E
rr

o
r

(p
ix

el
)

u
1

u
2

u
3

u
4

(a)

0 5 10 15 20
time (s)

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
rr

o
r

(p
ix

el
)

u
1

u
2

u
3

u
4

(b)

FIGURE 5.11: Vision space error while tracking the line: (a) Minimum norm, (b)
Weighted norm.

the line due to topology preserving nature of the KSOM network. The angular
configuration of the third joint is less in case of the weighted norm solution.
To analyze the effect of redundancy resolution on the third joint, its trajectory
is shown separately in Figure 5.13. It is clear from the figure that the motion
of the third joint is constrained in the case of a weighted norm solution.

Results 167

-2.2
-2

-1.8
-1.6

-1.4
-1.2 0.8

 1
 1.2

 1.4
 1.6

 1.8

-0.4

-0.2

 0

 0.2

 0.4

 0.6

θ3

weighted norm
Minimum Norm

θ1

θ2

θ3

(a)

-2.2
-2

-1.8
-1.6

-1.4
-1.2 0.8

 1
 1.2

 1.4
 1.6

 1.8

-0.4

-0.2

 0

 0.2

 0.4

 0.6

θ3

weighted norm
Minimum Norm

θ1

θ2

θ3

(b)

FIGURE 5.12: Joint angle space motion while tracking the line: (a) Joint angle
configuration: Link 1, 2, and 3 (rad), (b) Joint angle configuration: Link 4, 5, and 6
(rad).

0 5 10 15 20
time (s)

-0.4

-0.2

0

0.2

0.4

θ
3

(r
ad

)

Minimum Norm
Weighted Norm

FIGURE 5.13: Motion of third joint while tracking the line. Minimum change is
observed in the case of a weighted norm solution.

168 Learning-Based Visual Servoing

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Robot Configuration
Initial Position

x

y

z

(a)

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

z

Robot Configuration
Initial Position

x

y

z

(b)

FIGURE 5.14: Manipulator configuration while tracking the line: (a) Minimum
norm solution (m), (b) Weighted norm solution (m).

The manipulator configuration while moving along the straight line is
shown in Figure 5.14 which shows the effect of weighted norm on each joints.

5.7.3.2 Tracking an Elliptical Trajectory

An elliptical trajectory is further tested to check the performance along the
closed path. The tracking result is shown in Figure 5.15. The demonstrated
result shows the controller performance while tracking the elliptical trajectory

-0.2-0.1 0 0.1 0.2

 0.4
 0.45

 0.5
 0.55

 0.6

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

z

Desired
Weighted Norm
Minimum Norm

x

y

z

FIGURE 5.15: End-effector motion in Cartesian space from initial position to final
position (m).

Results 169

150 175 200 225
u

1
 (pixel)

140

145

150

155

160

165

170
u

2
 (

p
ix

el
)

Desired
Minimum Norm
Weighted Norm

(a)

80 100 120 140
u

3
 (pixel)

150

155

160

165

170

175

180

u
4
 (

p
ix

el
)

Desired
Minimum Norm
Weighted Norm

(b)

FIGURE 5.16: Manipulator end-effector position in the vision space, while tracking
the ellipse: (a) Camera: 1, (b) Camera: 2.

given by,

x = 0.2 sin(t)
y = 0.5 + 0.1 cos(t)
z = 0.05.

The r.m.s. tracking errors in Cartesian space are observed as 0.68mm and
0.62mm for minimum norm and weighted minimum norm solutions respec-
tively. The end-effector trajectory in the vision space is shown in Figure 5.16.
The r.m.s. tracking errors in the vision space are observed as 0.165 pixels in
case of minimum norm and 0.164 pixels for weighed minimum norm solution.

The instantaneous tracking error in the vision space is shown in Figure
5.17 which shows that controller tracks the trajectory with an accuracy of ±1
pixel.

The joint angle trajectories are shown in Figure 5.18 and the motion of
the third joint is presented in Figure 5.19. It is clear from the figures that
the weighed norm constrains the motion of the third joint and the joint angle
trajectory is also following the closed path.

The manipulator configuration while tracking the ellipse is shown in Fig-
ure 5.20 which clearly shows that the weighted norm solution constrains the
motion of the third joint which in turn effects the larger movement of the
other joints.

170 Learning-Based Visual Servoing

0 1 2 3 4 5 6 7
time (s)

-0.5

0

0.5

1

E
rr

o
r

(p
ix

el
)

u
1

u
2

u
3

u
4

(a)

0 1 2 3 4 5 6 7
time (s)

-0.5

0

0.5

1

E
rr

o
r

(p
ix

el
)

u
1

u
2

u
3

u
4

(b)

FIGURE 5.17: Vision space error while tracking the elliptical path: (a) Minimum
norm, (b) Weighted norm.

-1.9
-1.8

-1.7
-1.6

-1.5
-1.4

-1.3
-1.2

 1

 1.1

 1.2

 1.3

 1.4

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

θ3

weighted Norm
Minimum Norm

θ1

θ2

θ3

(a)

 0.8
 1

 1.2
 1.4

 1.6
 1.8

 2
 2.2-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0.6
-0.4
-0.2

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

θ6

weighted Norm
Minimum Norm

θ4

θ5

θ6

(b)

FIGURE 5.18: Joint angle space motion in simulation: (a) Joint angle configuration:
Link 1, 2, and 3 (rad), (b) Joint angle configuration: Link 4, 5, and 6 (rad).

Results 171

0 1 2 3 4 5 6 7
time (s)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

θ
3

(r

ad
)

Weighted Norm

Minimum Norm

FIGURE 5.19: Motion of third joint while tracking the ellipse. Minimum change is
observed in case of weighted norm solution.

-0.4
-0.3

-0.2
-0.1

 0
 0.1

 0.2
 0.3

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Ellipse:Robot Configuration

x

y

z

(a)

-0.2
-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

z

Ellipse:Robot Configuration

x

y

z

(b)

FIGURE 5.20: Manipulator configuration while tracking the ellipse: (a) Minimum
norm solution (m), (b) Weighted norm solution (m).

172 Learning-Based Visual Servoing

5.8 Summary
A learning-based scheme to estimate the inverse Jacobian from the joint angle
space to the vision space has been proposed. It has been shown experimentally
that the KSOM approximates the pseudo-inverse of the Jacobian over the
entire workspace as a cluster of locally valid linear inverse Jacobian maps. This
eliminates the computation of the pseudo-inverse over the entire workspace
during visual servoing. With this observation, a generalized learning algorithm
is proposed for KSOM based kinematic control to resolve the redundancy in
the learning phase by minimizing an instantaneous cost function. The learned
KSOM is used in conjunction with the proportional controller in real-time, for
closed loop visual servoing. It is shown through the Lyapunov stability analysis
that the proposed controller guarantees global stability, if the learned map is
sufficiently accurate.

5.9 Reinforcement Learning-Based Optimal
Redundancy Resolution Directly from the Vision
Space

The adaptive critic based redundancy resolution is proposed for the trajec-
tories defined in the Cartesian space in the previous chapter. In real-world
applications, the trajectories are defined in the vision space and the robot
manipulation becomes efficient if the joint angle space motion is deduced
directly from the vision space so that the effect of the sensor noise can be
directly controlled in the closed loop operation. This chapter proposes SNAC
based redundancy resolution for the trajectories defined in the vision space.

5.10 Introduction
The single network adaptive critic based redundancy resolution scheme has
been proposed in the previous chapter for the Cartesian space trajectories. In a
dynamic environment the manipulator is guided with the visual feedback and,
hence, it is desirable to define the trajectories in the vision space compared to
the Cartesian space. Hence, the SNAC based redundancy resolution approach
is extended to the vision space, and the redundancy resolution is achieved
while tracking the trajectory defined in the vision space. The advantage of
resolving the redundancy for visual trajectory is that the inaccuracies in the

Introduction 173

vision system are incorporated during the redundancy resolution which makes
the approach more robust to the model inaccuracies. The state space is defined
in the vision space and the change in the joint angle is considered as the
input. Similar to the Cartesian space approach proposed in Section 7.4, the
primary and the additional tasks are expressed as an integral cost function
which facilitates to achieve optimal solution with single network adaptive critic
architecture.

The optimal redundancy resolution from the vision space with the critic
based approach is not as simple as that from the Cartesian space since the
associated forward Jacobian depends on the joint angle configuration of the
manipulator and the position of the end-effector in both the Cartesian space
and vision space. The end-effector positioning accuracy is poor, if the given
end-effector position is not associated with a unique joint angle configuration.
The redundancy can be effectively resolved from the vision space only if the
exact correspondence between the joint angle space and the vision space is
known a priori and the control process is initiated with a unique joint angle
configuration.

To circumvent these challenges, two novel neural network architectures are
proposed to learn the costate vector from the vision space, while the corre-
spondence between the vision space and the joint angle space is also identified.
The first neural architecture is a T-S fuzzy model-based critic network. The
vision space is clustered with fuzzy boundaries and a linear relationship is
learned between the costate vector and the positioning error in the vision
space. In addition, a joint angle configuration is learned in each fuzzy zone
for initializing the control process with a unique joint angle. The second critic
network is based on KSOM, which spatially orders the vision space in a 3-D
lattice, and thereby learns the relationship between the costate vector and the
positioning error. It is observed in our studies, that the KSOM based critic
network performs similarly to the human way of operation by clustering and
ordering the input space on a lattice space, with fewer parameters to be tuned
during the training phase. Since the input space is clustered with the neigh-
borhood defined in the lattice space the training algorithm is robust to the
changes occurring in the topology of the workspace. The algorithm is tested
for grasping the ball in real-time with the PowerCube manipulator integrated
with Barrett Hand [186]. The manipulator is visually guided to grasp the ball
located in the workspace, with the optimal control policy obtained from the
adaptive critic.

This chapter is organized as follows: The redundancy resolution problem
from the vision space is discussed in the next section. The optimal SNAC
based redundancy resolution scheme from the vision space and the associated
challenges in learning the costate vector are discussed in Section 5.12. The
proposed T-S fuzzy model-based critic network architecture and KSOM based
critic network architecture are discussed in Sections 5.13 and 5.14 respectively.
The simulation results are presented in Section 5.15. The real-time perfor-
mance analyses for moving along the simulated trajectory and the grasping of

174 Learning-Based Visual Servoing

a ball with the learned critic based controller are discussed Section 5.16. The
discussion is finally summarized in Section 5.17.

5.11 Redundancy Resolution Problem from the Vision
Space

Consider the forward kinematic relationship from the joint angle space to the
vision space,

u̇ = J(u,θ)θ̇ (5.32)

where J(u,θ) = LPJ is a 4× 7 Jacobian matrix from the joint angle space to
the vision space.

Adaptive critic based redundancy resolution from the vision space is
achieved by formulating the positioning task as a discrete-time input affine
system in vision space. The approach follows the Cartesian space formulation
discussed in Section 7.3.

The forward difference kinematics in the vision space is represented as,

∆u = J∆θ (5.33)

where ∆u =
[

∆u1 ∆u2 ∆u3 ∆u4
]T , represents the change in the posi-

tion of the end-effector in the vision space due to the change in the joint angle
∆θ.

Following the Cartesian space formalism, the forward difference kinematics
is expressed as a set of discrete-step motion of the end-effector in the vision
space at different instants as,

∆u = J∆θ
u(k + 1)− u(k) = J∆θ(k) (5.34)

where ∆θ(k) is the change in the joint angle at the kth instant, u(k+ 1) and
u(k) are the end-effector positions at (k + 1)th and kth instants respectively.
The aforementioned discrete motion results in the dynamic evolution of the
end-effector’s position in the vision space as,

u(k + 1) = u(k) + J∆θ(k). (5.35)

The closed loop error dynamics which moves the end-effector from the current
position u to the desired position ud is obtained as,

eu(k + 1) = eu(k)− J∆θ(k) (5.36)

where eu(k) = ud(k)− u(k), and ud(k + 1) = ud(k). The assumption ud(k +
1) = ud(k) means that the position of the object is fixed in the vision space.

SNAC Based Optimal Redundancy Resolution from Vision Space 175

The manipulator reaches the object located at the desired position in multi-
step movement.

The aforementioned dynamical system representation of the positioning
task is in nonlinear input affine form with state vector x(k) = eu(k), input
vector u(k) = ∆θ(k), f(x) = I and g(x) = −J. The control task is to
compute the optimal input ∆θ∗(k) such that the desired position defined in
the vision space is reached, while performing the chosen additional task. The
major challenge associated with the redundancy resolution from the vision
space is that the input matrix g(x) depends on the image Jacobian L(u,x),
the projection matrix P, and the kinematic Jacobian J(θ). The current joint
angle configuration θ is not known and the optimal joint configuration has to
be evaluated from the redundancy resolution scheme. The projection matrix
P depends on the pose of the cameras in the world coordinate frame.

The above formalism defines the state space in the task space, i.e., the
vision space. Hence, the SNAC based redundancy resolution scheme proposed
in Section 7.5 can be directly extended to the trajectories defined in the vision
space with this formalism.

5.12 SNAC Based Optimal Redundancy Resolution
from Vision Space

The discrete-time input affine formulation of the closed loop positioning task
discussed in equation (5.36) is suitable for SNAC based redundancy resolution
if the primary and the additional tasks are modeled in the form of quadratic
cost functions as discussed in Section 7.1.3. It will be shown in further dis-
cussions that such formulation is indeed possible by following the strategy
discussed in Section 7.5.

The dynamical system representation of the closed loop positioning task
considers the positioning error in the vision space as the system state, i.e.,
x(k) = eu(k). The state eu(k) of the closed loop positioning task depends on
both the desired and the current positions of the end-effector. The input u(k)
to the dynamical system is ∆θ(k).

The joint angle input ∆θ is computed in SNAC based control methodology
as,

∆θ(k) = R−1JT λ̂(k + 1) (5.37)

where λ̂(k + 1) ∈ R4 is the costate vector defined from the vision space, for
the chosen cost function and is estimated using a critic network. The input to
the manipulator depends on the current joint angle θ and the position of the
end-effector in the vision space u. The schematic of the optimal redundancy
resolution scheme with SNAC based reinforcement learning is shown in Figure
5.21. The current position and the positioning error in the vision space is

176 Learning-Based Visual Servoing

− +
Vision

StereoRedundant

Manipulator

Law
Update
Weight

Critic

Network

z−1

z−1

Optimal Control

∆θ(k) = R−1JT λ̂(k + 1)

ud(k + 1)u(k + 1)∆θ(k)

u(k)

u(k)

eu(k)

eu(k)

eu(k + 1)

λ̂(k + 1)

FIGURE 5.21: Optimal redundancy resolution from the vision space with
adaptive critic.

given as input to the critic network to estimate the costate vector. The input,
i.e., the change in the joint angle is computed using equation (5.37). The
cost function has to be appropriately chosen to achieve the additional task
so that the redundancy can be resolved optimally in SNAC framework. The
formalism discussed in the Cartesian space is used to model the cost function
for the vision space too. Hence, the primary positioning task is achieved with
the state weight matrix, and the joint angle space motion is penalized based
on the additional task requirement.

5.12.1 Selection of Cost Function
As discussed in previous section, the redundancy can be resolved in real-time
using SNAC, if the primary positioning task and the additional task can be
specified in the form of quadratic cost. The cost function is chosen as,

Jc = 1
2

∞∑
k=0

(eTu (k)Qeu(k) + ∆θT (k)R∆θ(k)) (5.38)

where the primary positioning task is defined in the vision space. Hence Q is
a 4 × 4 positive semi-definite matrix. The input weight matrix R has to be
chosen to penalize the individual joints based on the additional task.

As discussed in the previous chapter, the state weight matrix Q is always
chosen as an identity matrix to ensure uniform convergence toward the desired
position in every coordinate direction. The input weight matrix R is chosen

SNAC Based Optimal Redundancy Resolution from Vision Space 177

to penalize individual joints based on the desired additional task. The redun-
dancy is resolved directly from the vision space by satisfying the additional
tasks:

• Global weighted norm minimization

• Kinematic limit avoidance

The cost function is defined similarly to the previous chapter and the redun-
dancy is resolved for the trajectories defined directly in the vision space. Such
formalism extends all the merits discussed for the Cartesian space to the vision
space too.

5.12.2 Control Challenges
The T-S fuzzy model-based critic network was used for SNAC based redun-
dancy resolution from the Cartesian space. The critic network discussed in
section 7.5.1 can be extended to the vision space as follows:

The workspace spanned by the end-effector in the vision space is to be
fuzzified, similar to the Cartesian space control. Then, the ith rule of the
critic network to model the costate vector from the vision space is defined as,

IF u1(k) is F i1 AND u2(k) is F i2 AND u2(k) is F i3 AND u4(k) is F i4 THEN,

λ̂i(k + 1) = Wieu(k)

where Wi ∈ R4×4 is the linear map to approximate the costate vector in the
ith fuzzy zone. The fuzzy space is defined along individual coordinate direction
of the vision space as,

µiu1
(u1) = e

(
−(u1−ciu1)2

2(σiu1
)2

)
µiu2

(u2) = e

(
−(u2−c

i
u2)2

2(σiu2
)2

)
µiu3

(u3) = e

(
−(u3−ciu3)2

2(σiu3
)2

)
µiu4

(u4) = e

(
−(u4−ciu4)2

2(σiu4
)2

)
. (5.39)

The fuzzy membership value µi(u) is computed from the product rule as,

µi(u) = µiu1
µiu2

µiu3
µiu4

. (5.40)

The nonlinear costate vector can be computed similar to the Cartesian space
with the weighted average method. The critic model similar to the Cartesian
space suffers with following shortcomings in the vision space:

178 Learning-Based Visual Servoing

• The positioning accuracy achieved with the critic network is poor. In [187],
the costate vector is learned from an initial position with a joint angle vec-
tor θ0 in the chosen fuzzy zone xf0. It is observed in the experiments that
such initialization results in accurate positioning, only around the operat-
ing point xf0, in case of visual control. As the operating zone increases, the
closed loop system may become unstable. The discussion in Section 5.11
shows that the input matrix of the dynamical system (5.36) depends on θ,
x and u. Initially θ, and x are unknown, and u is received from the visual
feedback. The same end-effector position can be reached with many joint
angle configurations in case of redundant manipulators. Without initial
knowledge of the joint angle configuration, the same end-effector position
may get represented by different θ while training the critic. This results in
the computation of different Jacobians J for the same vision space posi-
tion. This effect becomes predominant as the system moves away from the
initial θ0. The experimental results presented in sections 7.7.1 and 7.7.2
have shown that the same end-effector position is reached with different
joint angles based on the initial joint configuration. Hence, the network
may get trained for different Jacobians for the same end-effector position
as the initial operating point changes.
Experimental analysis shows that the inaccuracies in the computation of
L and J affect the stability during training phase and, hence, the critic
network does not move toward the optimality. The variation in J due to
the availability of multiple joint configurations may affect the stability
during the training phase. This instability affects the convergence of the
network. The change in the value of J is not deteriorating the positioning
accuracy in case of the Cartesian space control. But it plays a significant
role while learning the costate vector from the vision space.
The visual control requires a unique initial joint angle to compute J for
effective control over the entire vision space. Hence, the correspondence
between the joint angle and the end-effector position in the vision space is
necessary in visual control. It will be shown through experiments, that the
critic actually moves toward the optimality by learning the correspondence
between the joint angle space and the vision space.

• The Cartesian space was fuzzified into equally spaced fuzzy zones in the
previous chapter. The fuzzy space was pre-initialized, and the network
was trained to update only the linear map of the costate vector. This
approach simplified the learning process, since the critic network is linear
relative to the parameter Wi. The vision space cannot be fuzzified with
equi-distant fuzzy zones similar to the Cartesian space, since there is a
nonlinear transformation from the Cartesian space to the vision space. If
the fuzzy centers are placed at equal distance in the vision space, then
the corresponding discretization in the Cartesian space is not uniform.
The number of fuzzy zones will be more in some portion of the Cartesian
space and the remaining portion will be represented with fewer numbers

T-S Fuzzy Model-Based Critic Neural Network 179

of fuzzy zones, if fuzzy zones are created by partitioning the vision space
with equal intervals. Hence, the fuzzification of the workspace is not direct
in case of the visual control. The vision space can be fuzzified by either
choosing the fuzzy centers from equally spaced Cartesian points or using
clustering schemes such as Fuzzy c-means clustering algorithm [188]. If
the fuzzy zones are chosen from the equally spaced points in the Cartesian
space, then the fuzzy zones are not equi-distant in the vision space, but a
uniform convergence over the entire workspace can be achieved. Clustering
techniques create fuzzy zones based on the data distribution and, hence,
it is expected to give better approximation over the entire workspace. In
addition, the spread of the fuzzy zone σ has to be initialized such that
at least one fuzzy zone is effective at every operating point during the
training phase.

In these contexts, two novel critic network architectures are discussed to
learn the costate vector which learns the correspondence between the joint
angle space and the vision space, while learning the costate vector. The first
network architecture extends the T-S fuzzy model proposed for the Carte-
sian space. The second network is based on KSOM. The structure of the
individual neuron is same for both T-S fuzzy model and KSOM based critic
networks. The individual neuron structures and the proposed T-S fuzzy model
and KSOM based critic networks are presented in subsequent sections.

5.13 T-S Fuzzy Model-Based Critic Neural Network for
Redundancy Resolution from Vision Space

The T-S fuzzy model-based critic network proposed for the redundancy resolu-
tion from the Cartesian space in Section 7.5.1 is extended to the vision space.
The network includes a joint angle vector in the output section to incorporate
the correspondence between the joint angle space and the vision space.

5.13.1 Fuzzy Critic Model
The T-S fuzzy model-based critic network for redundancy resolution from the
vision space is shown Figure 5.22. The input space is discretized into local
operating zones by fuzzification. Each fuzzy zone is defined using a Gaussian
function with mean ci ∈ R4 and standard deviation σi ∈ R4.

The output section of every fuzzy zone is associated with a joint angle
vector θi ∈ Rm and a linear matrix Wi ∈ R4×4 to compute the local costate
vector. The joint angle vector θi is used to initialize the control process, with
an initial guess of joint angle θ(0). The output of the ith fuzzy zone while

180 Learning-Based Visual Servoing

θ2

W2

θNn

WNn

θ1

W1

cNn ,σNn

c1,σ1

c1,σ1

π

π

π

π

π

π

λ̂(1) =
Nn∑
i=1

σiWi(ud − ci)

Initialization

θ(0) =
Nn∑
i=1

σiθi

Network Output

θ(k + 1) = θ(k) +R−1JT λ̂(k + 1)

λ̂(k + 1) =
Nn∑
i=1

σiλ̂i(k + 1)

Neuronal Output

λ̂i(k + 1) = Wieu(k)

Fuzzifier

Neurons

eu(k)

ud(k)

µ1

µ2

µNn

µ1

µ2

µNn

λ̂2(k + 1)

λ̂1(k + 1)

θ2

θ1

λ̂Nn(k + 1)

µNnλ̂Nn

µ2λ̂2(k + 1)

µ1λ̂1(k + 1)

µNnθNn

µ2θ2

µ1θ1

θNn

Initialization

Control

FIGURE 5.22: T-S Fuzzy critic network.

controlling the manipulator at kth instant is given by,

λ̂i(k + 1) = Wieu(k). (5.41)

The costate vector is computed from the input vision space as,

λ̂(k + 1) =

Nn∑
i=1

µiλ̂i(k + 1)

Nn∑
i=1

µi

=
Nn∑
i=1

σiλ̂i(k + 1) (5.42)

T-S Fuzzy Model-Based Critic Neural Network 181

+

− +
Vision

StereoRedundant

Manipulator

Law
Update
Weight

z−1

z−1

Optimal Control

∆θ(k) = R−1JT λ̂(k + 1)

ud(k + 1)u(k + 1)

u(k)

u(k)

eu(k)

eu(k)

eu(k + 1)

λ̂(k + 1)

θ(k + 1)

∆θ(k)

θ(k)

Network

Critic
T-S Fuzzy

FIGURE 5.23: Visual control using fuzzy critic network.

where µi is computed for the current end-effector position u and σi = µi∑Nn

i=1
µi
.

The change in the joint angle is computed using equation (5.37), and the
manipulator is actuated with,

θ(k + 1) = θ(k) + R−1JT λ̂(k + 1) (5.43)

where Jacobian J is computed for the current end-effector position
(u(k),θ(k)).

The schematic diagram of visual control of the redundant manipulator
with the proposed T-S fuzzy model-based critic network is shown in Figure
5.23. The positioning error is given as input to the critic network to compute
the costate vector with the fuzzy membership value computed for the cur-
rent position u(k). The required change in the joint angle is computed using
equation (5.37), and the manipulator is commanded to move to θ(k + 1).

5.13.2 Weight Update Law
The fuzzy zones are pre-initialized using the available camera model. After
initialization, the fuzzy zones are not updated, and only the output parameters
(θi, Wi) are updated during the training process. The update law for the
output parameters is defined as,

Wnew
i = Wold

i + η σi ∆Wi (5.44)
θnewi = θoldi + η σi∆θi. (5.45)

182 Learning-Based Visual Servoing

The linear map of the local costate vector Wi is updated by minimizing,

E = 1
2 ‖ λd(k + 1)− λ̂i(k + 1) ‖2 (5.46)

where λd(k + 1) is computed by substituting λ̂(k + 2) and eu(k + 1) in the
costate vector (7.12). λ̂(k + 2) is estimated from the critic as,

λ̂(k + 2) =
Nn∑
i=1

σiWieu(k + 1). (5.47)

θi is updated to represent the current joint configuration of the manipulator.
It is updated by minimizing,

E = 1
2 ‖ θ(k)− θi ‖2 . (5.48)

The generalized update algorithm for multi-step movement is obtained as,

∆Wi(k) =‖∆u(k) ‖−2
(
λd(k + 1)− λ̂i(k + 1)

)
∆uT (k) (5.49)

∆θi = θ(k)− θi
−R−1JT (θ(k),u(k))Wnew

i (u(k)− ci). (5.50)

5.13.3 Selection of Fuzzy Zones
The network is pre-initialized with the fuzzy zones such that the fuzzy
workspace spans over the vision space. The fuzzy zones are selected such
that the Cartesian space is discretized in equal intervals. The Cartesian space
is divided into equal intervals in all the coordinate direction, and then, the
centers of the fuzzy zone c are computed using the camera model with the
Cartesian space centers. Though the fuzzy zones are not equi-distant in the
vision space, but they are arranged in regular interval in the Cartesian space.
The spread of the fuzzy zone σ is to be initialized such that at least one fuzzy
zone is effective at every operating point.

The spatial distance between each fuzzy zones varies in the vision space,
since the Cartesian to vision space mapping is nonlinear. In general, the fuzzy
membership value of each zone is computed either using minimum fuzzification
method or the product method. Hence, the fuzzy membership value depends
on the entity uj of the vision space which is farther from the given fuzzy center
ci.

The distance di between the ith fuzzy zone and its closest neighbor is
computed as,

di = min
k,k 6=i

max
j
dikj (5.51)

T-S Fuzzy Model-Based Critic Neural Network 183

where dikj = |xij − xkj | where j = 1, 2, 3, 4. The maximum overlap of the
closest neighbor at the fuzzy center of ith fuzzy zone is assumed, and then the
standard deviation of the Gaussian function is computed from the distance di
as,

σi =

√
d2
i

2 log(µceni) (5.52)

where µceni is the overlap of the closest neighbor at the fuzzy center ci. The
standard deviation of the fuzzy sets are chosen as same value in all coordinate
directions for the ith fuzzy zone in the experiments for simplicity, i.e, σi =
[σi σi σiσi]T .

Initially, the contribution of closest fuzzy zone is taken as a large value
during the training phase, and then gradually reduced with training, i.e., the
variance is gradually decreased from a larger value. A larger variance is chosen
initially so that the entire network will get trained together which ensures the
learning of a smoother joint configuration map over the entire workspace. The
maximum overlap at the fuzzy center is varied as,

µcen(i) = µceni

(
µcenf
µceni

)(i/Nε)

(5.53)

where µceni and µcenf are the initial and the final contribution of the closest
neighbors at the fuzzy centers respectively, and then the standard deviation
is computed using equation (5.52). Nε represents the maximum number of
training patterns used to update the critic during the learning phase. As the
variance of the Gaussian function reduces the local nature of the costate vector
is captured better.

5.13.4 Initialization of the Fuzzy Network Control
As discussed in previous section, the knowledge of the current joint configura-
tion is not available initially and, hence, it is to be estimated. The initial joint
configuration is estimated with the proposed T-S fuzzy model-based critic
network as follows:

Given the desired position ud, the critic network internally estimates the
joint angle vector, θ(0) as,

θ(0) =

Nn∑
i=1

µiθi

Nn∑
i=1

µi

(5.54)

where µi is computed with fuzzifier for the position ud. The end-effector is
actuated to move near to the desired position with the joint angle θ(1) as,

θ(1) = θ(0) + R−1JT λ̂(1). (5.55)

184 Learning-Based Visual Servoing

Since, the error vector eu is not available initially, λ̂(1) is computed as,

λ̂(1) =

Nn∑
i=1

µiWi(ud − ci)
Nn∑
i=1

µi

=
Nn∑
i=1

σiWi(ud − ci). (5.56)

Jacobian J is computed as a function of (ud,θ(0)), and σi = µi∑Nn

i=1
µi
. The

end-effector reaches the position u(1) with the joint angle θ(1). After the ini-
tial movement θ(1), the knowledge about a corresponding pair from the joint
space to the vision space (u(1),θ(1)) is available, which gives the complete
information about the current configuration of the manipulator. The position
of the manipulator end-effector in the Cartesian space x(1), and the kinematic
Jacobian J can be computed from θ(1) using the forward kinematic relation-
ship discussed in equation (2.1). The positioning error corresponding to the
initial movement is given as eu(1) = ud − u(1).

The manipulator is further actuated with the critic network by computing
the costate vector as,

λ(2) =
Nn∑
i=1

σiWieu(1) (5.57)

where σi is computed from the membership value obtained for the current end-
effector position u(1). The input to the manipulator is computed as ∆θ(1) =
R−1JTλ(2), where J is computed using (θ(1),u(1)). The end-effector reaches
the position u(2) with θ(2) = θ(1) + ∆θ(1). The end-effector can be guided
to reach the desired position with arbitrary accuracy by computing the input
using equations (5.42) and (5.43).

Hence, the initialization differs from the normal control process as follows:

• Fuzzy membership value is computed for ud, while it is computed for the
current position u during the control process.

• Initial value of the Jacobian J is computed for (ud,θ(0)), since the corre-
sponding joint angle and vision space positions are not available.

5.13.4.1 Remark

The pre-initialization of the fuzzy zones plays a key role in learning the critic
network, and it requires the camera model for initializing the fuzzy centers.
The procedure is not complex for critic based redundancy resolution from
the Cartesian space since the fuzzy zones were equally spaced in the task
space [187]. In contrast, the fuzzy zones are not equally spaced in the vision,
since the map from Cartesian space to the vision space is nonlinear, and

KSOM Based Critic Network for Redundancy Resolution from Vision Space 185

equally spaced Cartesian centers are not equi-distant is the vision space. The
pose of the camera in the world frame determines the topology of the vision
space. It is observed in experimental analysis that the pose of the camera in
the world coordinate frame affects the choice of σi during the training phase,
since the topology of the input space changes.

It is observed in brain cortex that the visual features closer to each other
are spatially ordered [189] for efficient processing. The KSOM proposed by
Kohonen [190] spatially orders the input vectors by defining the neighborhood
in the lattice space. The neurons are ordered in the lattice space, in spite of the
nonlinearities in the input space. The topology of the input space is learned
with KSOM using the neighborhood defined in the lattice space. Considering
the constraints discussed above in learning the T-S fuzzy model-based critic
network, a KSOM based critic network is proposed for parameter-free optimal
learning of the costate vector.

5.14 KSOM Based Critic Network for Redundancy
Resolution from Vision Space

KSOM critic network architecture is similar to the T-S fuzzy model-based
critic network proposed in previous section. The outputs of the individual
neurons are same in both the cases. The neighborhood is defined in the lattice
space in KSOM, while it is defined through fuzzification of the vision space in
the T-S fuzzy model-based critic network.

5.14.1 KSOM Critic Model
The architecture of the proposed KSOM based critic network to resolve the
redundancy from the vision space is shown in Figure 5.24. In this work, a
3 dimensional KSOM lattice is considered to define the neighborhood. Each
neuron consists of an input weight vector wi ∈ R4, which discretizes the input
vision space. The output side of the individual neurons consists of a joint angle
vector θi ∈ Rm, and a linear map Wi ∈ R4×4 which learns the relationship
between the costate vector and the input vision space within the local zone
defined by wi. Hence, the structure of the individual neuron is same for both
T-S fuzzy model and KSOM based network. In case of T-S fuzzy model the
input space is fuzzified around the center ci, while it is discretized around wi

in KSOM based critic network.
KSOM based critic network discretizes the vision space with the neighbor-

hood defined in the lattice space, and associates a joint angle vector and local
costate vector in every operating zone. The neighborhood is defined in the
lattice space by identifying a winner neuron µ for the end-effector position u.
Winner neuron µ is selected based on the Euclidean distance metric between

186 Learning-Based Visual Servoing

λ̂i(k + 1) = Wieu(k)

Neuronal Output

Initialization

θ(0) =
Nn∑
i=1

hn(µ, i)θi

λ̂(1) =
Nn∑
i=1

hn(µ, i)Wi(ud −wi)
θi, wi, Wi

Network Output

θ(k + 1) = θ(k) +R−1JT λ̂(k + 1)

eu(k)

ud(k)KSOM Lattice

λ̂(k + 1) =
Nn∑
i=1

hn(µ, i)λ̂i(k + 1)

FIGURE 5.24: KSOM based critic network.

the vision space position u and the input weight vector wi. The winner neuron
is declared as follows:

µ = min
i
‖u−wi‖2. (5.58)

The neighborhood between neuron i and the winner neuron µ is defined as

h(µ, i) = e
(−‖µ−i‖)

2σ2 (5.59)

where σ defines the spread of the neighborhood in the lattice space which
is chosen same for all the neurons at each instant. The individual neuron
in KSOM lattice computes the costate vector similar to the neurons in T-S
fuzzy model. The local costate vector is computed with the ith neuron, at kth
instant as,

λ̂i(k + 1) = Wieu(k). (5.60)
The overall nonlinear costate vector is computed as,

λ̂(k + 1) = s−1
Nn∑
i=1

h(µ, i)λ̂i(k + 1)

=
Nn∑
i=1

hn(µ, i)λ̂i(k + 1) (5.61)

KSOM Based Critic Network for Redundancy Resolution from Vision Space 187

where the neighborhood h(µ, i) is defined for the current end-effector position
u, s =

∑Nn
i=1 h(µ, i), and hn(µ, i) = s−1h(µ, i), is the normalized neighborhood

between the ith neuron and the winner µ. The manipulator is moved to θ(k+1)
from θ(k), by computing the control input ∆θ(k) using equation (5.37) as

θ(k + 1) = θ(k) + R−1JT λ̂(k + 1). (5.62)

Similar to the T-S fuzzy model, the Jacobian J is computed for the current
end-effector position. Joint angle vector θi will be used to guess the initial
joint angle configuration, just like the T-S fuzzy model. Hence, the individual
neurons behave in same manner for both T-S fuzzy model and KSOM. The
nonlinear costate vector is computed using the fuzzy clusters in case of T-S
fuzzy model, while it is computed in KSOM using the neighborhood defined
in lattice space.

The schematic diagram of SNAC based redundancy resolution scheme
while following the trajectories defined in the vision space, using the pro-
posed KSOM based critic network is shown in Figure 5.25. A KSOM based
critic network behaves similarly to the T-S fuzzy model as shown in Figure
5.23, except that the neighborhood is defined in the lattice space. The critic
network computes the necessary change in the joint angle input ∆θ(k) using
the estimated value of the costate vector λ̂(k+ 1). The costate vector is com-
puted for the current positioning error eu(k) in the vision space with the
neighborhood defined in the lattice space for the current position u(k).

+

− +
Vision

StereoRedundant

Manipulator

Law
Update
Weight

z−1

z−1

Optimal Control

∆θ(k) = R−1JT λ̂(k + 1)

ud(k + 1)u(k + 1)

u(k)

u(k)

eu(k)

eu(k)

eu(k + 1)

λ̂(k + 1)

θ(k + 1)

∆θ(k)

θ(k)

Network

Critic

KSOM

FIGURE 5.25: Visual control using KSOM based critic network.

188 Learning-Based Visual Servoing

5.14.2 KSOM: Weight Update
The network weight update law is derived similar to the T-S fuzzy model-
based critic network, since the individual neurons behave in identical manner
in both the networks. The input vector is initialized randomly in KSOM, and
has to be updated in contrast to the fuzzy network where the fuzzy centers are
pre-initialized. The pre-initialization of the input weight is not need in KSOM
network and hence, the camera model is not required to learn the critic with
KSOM based network.

The update law for the parameters of the KSOM based critic network is
given by,

wnew
i = wold

i + η hn(µ, i) ∆wi (5.63)
Wnew

i = Wold
i + η hn(µ, i) ∆Wi (5.64)

θnewi = θoldi + η hn(µ, i) ∆θi. (5.65)

The above update law is similar to the update proposed for the T-S fuzzy
model except that the parameters are updated based on the neighborhood
defined in the lattice space. The width of the neighborhood is initially taken
large and gradually reduced with training to learn a smoother map. The initial
and the final value of the width depends on the size of the KSOM lattice and
it is independent of the input space.

Similar to T-S fuzzy model Wi is updated to minimize,

E = 1
2 ‖ λd(k + 1)− λ̂i(k + 1) ‖2

and θi is updated by minimizing,

E = 1
2 ‖ θ(k)− θi ‖2 .

The cost function of the T-S fuzzy model itself is chosen to update the network
since the parameters serve the same purpose in both the networks. Hence, ∆θi
and ∆Wi are computed using equation (5.50) and equation (5.49) respec-
tively.

The update law for the output joint angle vector θi and the costate vec-
tor Wi is similar to the fuzzy network with the fuzzy membership function
replaced by the neighborhood in the lattice space. ∆wi is defined to cluster
the vision space as,

∆wi = u−wi. (5.66)

5.14.3 Initialization of KSOM Network Control
The initialization of the control process with unique joint angle configuration
poses a challenge in case of KSOM based visual control also. The optimal
control is initialized with KSOM as follows:

KSOM Based Critic Network for Redundancy Resolution from Vision Space 189

Given the desired position ud, the winner µ is selected for the desired
position using equation 5.58. Then, the critic network estimates the initial
joint angle vector θ(0) as,

θ(0) = s−1
Nn∑
i=1

h(µ, i)θi

=
Nn∑
i=1

hn(µ, i)θi (5.67)

where h(µ, i) represents the neighborhood between the ith neuron and the
winner µ in the lattice space for the desired position ud.

The end-effector is moved to the position u(1) with the joint angle θ(1)
computed as,

θ(1) = θ(0) + R−1JTλ(1) (5.68)

where

λ(1) =
Nn∑
i=1

hn(µ, i)Wi(ud −wi). (5.69)

Jacobian J is computed as a function of (ud,θ(0))T similar to the T-S fuzzy
model-based critic network. After the initial movement with θ(1), we get cor-
responding pairs (u(1),θ(1)) from joint space to vision space. Then the manip-
ulator can be controlled by generating a series of θ(k+1), by computing J with
the corresponding pair (u(k),θ(k)) and defining the neighborhood using the
current position u(k), where k = 1, 2, The arbitrary positioning accuracy
can be achieved similar to the T-S fuzzy model.

The functioning of the KSOM based critic network differs from the T-S
fuzzy model in the following aspects:

• The neighborhood is defined in the lattice space in contrast to the input
vision space as in the T-S fuzzy model. This makes the network train-
ing robust to the variations in the topology of the input space. Hence,
a network designed with Nn neurons on a KSOM lattice can be easily
retrained for various camera positions without any change in the training
parameters (neighborhood).

• The input vector wi plays a role similar to the fuzzy center ci. But the
pre-initialization is needed in case of fuzzy centers, while the input weight
vector is learned through self-organization in case of KSOM during the
learning stage.

190 Learning-Based Visual Servoing

5.15 Simulation Results
The redundancy resolution is tested with the proposed neural architectures on
the experimental setup discussed in Chapter 2. The kinematic model discussed
in Section 2.2, and the camera model discussed in Section 4.3.1 are used to
learn the critic network initially. The networks are trained for 10,000 random
positions and the learning rate is varied from 1 to 0.005 for both the networks
during training phase as,

η(i) = ηi

(
ηf
ηi

)(i/Nε)

where i corresponds to the training instant, ηi and ηf are the initial and the
final learning rates respectively. The costate vector is learned to resolve the
redundancy for three additional tasks,

• Minimum norm movement,

• Weighted norm movement,

• Kinematic limit avoidance.

In weighted norm movement, the entry corresponding to the fourth joint in R
matrix is chosen as 1.5 and the rest is chosen as 1. The kinematic limit avoid-
ance is implemented on all the joints with the physical constraints tabulated
in Table 2.2.

The trained network is tested by following an elliptical trajectory,

x = 0.55 + 0.15 cos(0.05tk)
y = 0.4 sin(0.05tk)
z = 0.2. (5.70)

The trajectories are drawn for a sampling time of 200ms to match with the
real-time results. The ellipse is tracked by computing the joint angle input
∆θ(k) with the available kinematic model as discussed in section 7.7.1.

5.15.1 T-S Fuzzy Model
The T-S fuzzy model-based critic network is initialized with 7×7×7 neurons
to compare the performance. The Cartesian workspace is fuzzified into seven
fuzzy zones in x, y and z directions and the corresponding vision space feature
vector is computed using the camera model to initialize the input vector. The
initial and final overlap of the closest neighbor at the fuzzy centers are chosen
as 0.6 and 0.1 respectively. This contribution of the neighborhood is obtained
with trial and error method and it is observed in the simulation that the initial

Simulation Results 191

 0.3

 0.4

 0.5

 0.6 -0.2
-0.1

 0
 0.1

 0.2
 0.046

 0.048

 0.05

 0.052

 0.054

z

desired
minimum
weighted

Joint Limit

x
y

z

(a)

0 5 10
time (s)

0

1

2

3

E
rr

o
r

(m
m

)

minimum
weighted

Joint Limit

(b)

FIGURE 5.26: Simulation: Tracking an elliptical trajectory from vision space using
T-S fuzzy model-based critic network (a) Trajectory (m), (b) Tracking error.

and the final value changes with the change in the camera pose respective to
the world coordinate frame.

The elliptical trajectory traversed by the end-effector with T-S fuzzy model
and the corresponding tracking error are shown in Figure 5.26. The figure
clearly shows that the elliptical trajectory is tracked effectively within an
accuracy of 3mm while performing the additional tasks too.

The corresponding joint angle trajectories are shown in Figure 5.27 and the
vision space trajectories are shown in Figure 5.28. The effect of the weighted
norm on the fourth link is clearly visible from Figure 5.27(d) indicating that
the effectiveness of added weight 1.5. The weight 1.5 for the fourth link is
computed iteratively and the kinematic limits of the other joints are not guar-
anteed always. The joint angle trajectory of the fourth link is closer to its
physical limits in case of kinematic limit avoidance than the weighted norm.
But the kinematic limit avoidance scheme ensures that all the links are well
within their kinematic limit and the weighted norm may violate the limit for
some other trajectory. Figure 5.28 shows that the position is reached with
sub-pixel accuracy in simulation which is not possible in real-time implemen-
tation. Hence the real-time accuracy will be slightly lower than that in the
simulation.

5.15.2 Kohonen’s Self-organizing Map
A 7×7×7 neuron lattice is used in the KSOM so that the number of neurons
will be same as the T-S fuzzy model. The initial and final standard deviation, σ
of the Gaussian neighborhood function is chosen as 3 and 0.01 respectively. It
is observed in our experiments, that the choice of σ depends on the dimension

192 Learning-Based Visual Servoing

0 5 10
time (s)

-0.1

0

0.1

0.2

0.3
Jo

in
t

A
n
g
le

θ

1

(r

ad
)

minimum
weighted

Joint Limit

(a)

0 4 8 12
time (s)

1.05

1.1

1.15

1.2

1.25

Jo
in

t
A

n
g
le

θ

2
 (

ra
d
)

minimum
weighted

Joint Limit

(b)

0 4 8 12
time (s)

-0.3

-0.2

-0.1

0

0.1

Jo
in

t
A

n
g
le

θ

3
 (

ra
d
)

minimum
weighted

Joint Limit

(c)

0 4 8 12
time (s)

1

1.2

1.4

1.6

Jo
in

t
A

n
g
le

θ

4
 (

ra
d
)

minimum
weighted

Joint Limit

(d)

0 4 8 12
time (s)

-0.15

-0.1

-0.05

0

0.05

Jo
in

t
A

n
g

le

θ

5
 (

ra
d

)

minimum
weighted

Joint Limit

(e)

0 4 8 12
time (s)

0.8

1

1.2

Jo
in

t
A

n
g
le

θ

6
 (

ra
d
)

minimum
weighted

Joint Limit

(f)

FIGURE 5.27: Simulation: Joint angle configuration while tracking the elliptical
trajectory from the vision space using T-S fuzzy model-based critic network.

Simulation Results 193

120 140 160 180 200
x - axis (pixel)

60

70

80

90

y
-a

x
is

 (
p
ix

el
)

desired
minimum
weighted

Joint Limit

(a)

100 120 140 160
x - axis (pixel)

60

65

70

75

80

85

90

y
-a

x
is

 (
p
ix

el
)

desired
minimum
weighted

Joint Limit

(b)

FIGURE 5.28: Simulation: Image space elliptical trajectory from the vision space
using T-S fuzzy model-based critic network (a) Left camera, (b) Right camera.

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55 -0.2

-0.1
 0

 0.1
 0.2 0.048

 0.049

 0.05

 0.051

 0.052

z

desired
minimum
weighted

Joint Limit

x y

z

(a)
0 4 8 12

time (s)

0.08

0.1

0.12

0.14

0.16

E
rr

o
r

(m
m

)

minimum
weighted

Joint Limit

(b)

FIGURE 5.29: Simulation: Tracking an elliptical trajectory from vision space using
KSOM based critic network (a) Trajectory (m), (b) Tracking error.

of the lattice, and it is independent of the position of the camera. The standard
deviation of the neighborhood is varied as,

σ(i) = σi

(
σf
σi

)(i/Nε)

where σi and σf are the initial and the final value of the standard deviation
of the neighborhood defined on the lattice space respectively. The elliptical
trajectory and the tracking error with the SOM are shown in Figure 5.29.
The figure clearly shows that the SOM performs better than the T-S fuzzy
model with a maximum tracking error of 0.16 mm. The joint angle trajectory

194 Learning-Based Visual Servoing

0 4 8 12
time (s)

-0.1

0

0.1

0.2

0.3

0.4
Jo

in
t

A
n
g
le

θ

1

(r

ad
)

minimum
weighted

Joint Limit

(a)

0 4 8 12
time (s)

1.05

1.1

1.15

1.2

1.25

Jo
in

t
A

n
g
le

θ

2
 (

ra
d
)

minimum
weighted

Joint Limit

(b)

0 4 8 12
time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Jo
in

t
A

n
g
le

θ

3
 (

ra
d
)

minimum
weighted

Joint Limit

(c)

0 4 8 12
time (s)

1

1.2

1.4

1.6

1.8

Jo
in

t
A

n
g
le

θ

4
 (

ra
d
)

minimum
weighted

Joint Limit

(d)

0 5 10
time (s)

-0.2

-0.1

0

Jo
in

t
A

n
g
le

θ

5
 (

ra
d
)

minimum
weighted

Joint Limit

(e)

0 4 8 12
time (s)

0.8

1

1.2

1.4

Jo
in

t
A

n
g
le

θ

6
 (

ra
d
)

minimum
weighted

Joint Limit

(f)

FIGURE 5.30: Simulation: Joint angle configuration while tracking the elliptical
trajectory using KSOM.

Real-Time Experiment 195

TABLE 5.3: Simulation: Average number of iterations with SNAC to reach
the desired position in the vision space

Critic Minimum Weighted Joint
Network Norm Norm Limit

T-S 11 11 18
KSOM 16 17 24

while tracking the ellipse is shown in Figure 5.30, which clearly shows that the
learned trajectories shows similar trend with the T-S fuzzy model. It is clear
from Figure 5.30(d) that the initial angle of the fourth link is more in case of
kinematic limit avoidance than the weighted norm, and it gradually reduces as
the joint approaches its limit. The effect of avoidance scheme is predominant as
the joint moves near to its limit and it provides an automatic weighing which
allows the manipulator to move freely if the joints are away from kinematic
limits and gets constrained near the limits. In case of weighted norm, the
weight on the joint is constant irrespective of its position relative to its limits.
The performance is further compared with the average number of iterations
to reach the desired position in 1mm accuracy in Table 5.3. The number of
iterations required by the KSOM is typically more than that required by the
T-S fuzzy model-based critic network. The costate vector given by the SOM is
constant for a winner neuron irrespective of the end-effector position while it
varies smoothly from one neuron to the other neuron in T-S fuzzy model-based
critic network. The slower performance of the KSOM critic network may be
due to the inaccuracy in modelling the costate vector compared to T-S fuzzy
model-based critic network. The end-effector position in the vision space is
not shown since it exactly follows the desired trajectory, and the performance
is similar to that of T-S fuzzy model-based critic network.

5.16 Real-Time Experiment
The networks trained in sections 5.15.1 and 5.15.2 are used in real-time experi-
ment on PowerCube manipulator setup shown in Figure 5.31. The end-effector
is identified with the red tape wrapped around it. The centroid of the identified
region of the red tape is used as the feedback from the stereo-vision. The
proposed critic based neural network controllers are tested in real-time in
two phases: (a) Tracking the elliptical trajectory defined in equation (5.70),
(b) Ball is grasped with the PowerCube manipulator integrated with Barrett
Hand. The elliptical trajectory (5.70) is used to compare the real-time perfor-
mance with the simulation results and analyze the effect of the sensor noise
on positioning accuracy. A learning rate η = 0.01 is used during real-time
experiment to adapt to the inaccuracies in the system model.

196 Learning-Based Visual Servoing

FIGURE 5.31: 7 DOF PowerCube manipulator with Barrett Hand.

5.16.1 Tracking Elliptical Trajectory
The desired position of the end-effector along the trajectory is computed using
the camera model at each instant, and is given as input to the network ud(tk).
The position of the end-effector u(tk) observed through the stereo-vision is
used as feedback to the critic network while moving along the trajectory.

5.16.1.1 T-S Fuzzy Model

The position of the end-effector u(tk) is used to compute the membership
function in real-time. The elliptical trajectory traversed by the end-effector
with T-S fuzzy model and the corresponding tracking error are shown in Figure
5.32. The figure clearly shows that the tracking error shows a similar trend as
the simulation but with a maximum tracking error of 2.2mm.

There is an increase in the tracking error in real-time due to the inac-
curacies associated with the camera model which is predominantly visible in
Figure 5.33. The tracking error in the vision space is around 5 pixels which
is higher than the simulation. The large vision space error has contributed
for the Cartesian space tracking error 2.2mm. The critic based redundancy
resolution follows the primary positioning task well, in spite of noisy feedback
from the camera which clearly shows the robustness of the proposed scheme
to model inaccuracies.

The joint angle trajectories while tracking the ellipse are shown in Figure
5.34 which clearly shows that the real-time trajectory follows a similar trend
as the simulation results. The trajectory is not exactly same due to the model
inaccuracy but the network could track the desired trajectory by adapting to
the model inaccuracies. To check the robustness of the control scheme, the fifth

Real-Time Experiment 197

 0.3

 0.4

 0.5

 0.6 -0.2
-0.1

 0
 0.1

 0.2
 0.046

 0.048

 0.05

 0.052

 0.054

z

desired
minimum
weighted

Joint Limit

x
y

z

(a)

0 4 8 12
time (s)

0

0.5

1

1.5

2

2.5

E
rr

o
r

(m
m

)

minimum
weighted

Joint Limit

(b)

FIGURE 5.32: Tracking of elliptical trajectory from the vision space using T-S
fuzzy model-based critic network in real-time experiment (a) Trajectory (m), (b)
Tracking error.

140 160 180 200
x - axis (pixel)

60

70

80

90

y
-a

x
is

 (
p

ix
el

)

desired
minimum
weighted

Joint Limit

(a)

100 120 140 160
x - axis (pixel)

60

70

80

90

y
-a

x
is

 (
p

ix
el

)

desired
minimum
weighted

Joint Limit

(b)

FIGURE 5.33: Image space trajectory while tracking the ellipse using T-S fuzzy
model-based critic network in real-time experiment (a) Left camera, (b) Right
camera.

link is clamped at the initial position and then the controller is executed. The
critic network adapts to this new constraint and tracks the desired trajectory
effectively. The manipulator configurations while tracking the trajectory with
minimum norm, weighted norm, and kinematic limit avoidance are shown in
Figure 5.38(a), Figure 5.38(b) and Figure 5.38(c) respectively.

198 Learning-Based Visual Servoing

0 4 8 12
time (s)

-0.2

-0.1

0

0.1

0.2
Jo

in
t

A
n

g
le

θ

1

(r

ad
)

minimum
weighted

Joint Limit

(a)

0 4 8 12
time (s)

1.15

1.2

1.25

Jo
in

t
A

n
g
le

θ

2
 (

ra
d
)

minimum
weighted

Joint Limit

(b)

0 4 8 12
time (s)

-0.2

-0.1

0

0.1

0.2

0.3

Jo
in

t
A

n
g
le

θ

3
 (

ra
d
)

minimum
weighted

Joint Limit

(c)

0 4 8 12
time (s)

1

1.1

1.2

1.3

1.4

Jo
in

t
A

n
g
le

θ

4
 (

ra
d
)

minimum
weighted

Joint Limit

(d)

0 4 8 12
time (s)

-0.05

0

0.05

0.1

0.15

0.2

Jo
in

t
A

n
g

le

θ

5
 (

ra
d

)

minimum
weighted

Joint Limit

(e)

0 4 8 12
time (s)

1

1.1

1.2

1.3

1.4

Jo
in

t
A

n
g
le

θ

6
 (

ra
d
)

minimum
weighted

Joint Limit

(f)

FIGURE 5.34: Joint angle configuration while tracking the elliptical trajectory
from the vision space using T-S fuzzy model in real-time experiment.

Real-Time Experiment 199

5.16.1.2 KSOM

The elliptical trajectory and the tracking error with the KSOM are shown in
Figure 5.35, which clearly shows that the trajectory is tracked with an error
of 1 mm which is slightly more than the simulation. The corresponding vision
space trajectory is shown in Figure 5.36 which is similar to the T-S fuzzy
model. The joint angle trajectory while tracking the ellipse is shown in Figure
5.37. It is clear from the figure that the trajectory is similar to the T-S fuzzy

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6 -0.2
-0.1

 0
 0.1

 0.2 0.048

 0.049

 0.05

 0.051

 0.052

z

desired
minimum
weighted

Joint Limit

x y

z

(a)

0 5 10
time (s)

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

(m
m

)

minimum
weighted

Joint Limit

(b)

FIGURE 5.35: Tracking an elliptical trajectory from the vision space using KSOM
based critic network in real-time experiment (a) Trajectory (m), (b) Tracking error.

140 160 180 200
x - axis (pixel)

60

70

80

90

y
-a

x
is

 (
p

ix
el

)

desired
minimum
weighted

Joint Limit

(a)

100 120 140 160
x - axis (pixel)

60

70

80

90

y
-a

x
is

 (
p

ix
el

)

desired
minimum
weighted

Joint Limit

(b)

FIGURE 5.36: Image space trajectory while tracking the ellipse from the vision
space using KSOM based critic network in real-time experiment (a) Left camera,
(b) Right camera.

200 Learning-Based Visual Servoing

0 4 8 12
time (s)

-0.1

0

0.1

0.2
Jo

in
t

A
n
g
le

θ

1

(r

ad
)

minimum
weighted

Joint Limit

(a)

0 4 8 12
time (s)

1.15

1.175

1.2

1.225

1.25

1.275

Jo
in

t
A

n
g
le

θ

2
 (

ra
d
)

minimum
weighted

Joint Limit

(b)

0 4 8 12
time (s)

-0.2

-0.1

0

0.1

0.2

Jo
in

t
A

n
g
le

θ

3
 (

ra
d
)

minimum
weighted

Joint Limit

(c)

0 4 8 12
time (s)

1.1

1.2

1.3

1.4

Jo
in

t
A

n
g
le

θ

4
 (

ra
d
)

minimum
weighted

Joint Limit

(d)

0 4 8 12
time (s)

-0.1

-0.05

0

0.05

Jo
in

t
A

n
g

le

θ

5
 (

ra
d

)

minimum
weighted

Joint Limit

(e)

0 4 8 12
time (s)

1

1.2

1.4

Jo
in

t
A

n
g
le

θ

6
 (

ra
d
)

minimum
weighted

Joint Limit

(f)

FIGURE 5.37: Joint angle configuration while tracking the elliptical trajectory
from the vision space using KSOM based critic network in real-time.

Real-Time Experiment 201

 0 0.1 0.2 0.3 0.4 0.5 0.6-0.2
-0.1

 0
 0.1

 0.2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Minimum norm configuration
Elliptical Trajectory

x
y

z

(a)

 0 0.1 0.2 0.3 0.4 0.5 0.6-0.2
-0.1

 0
 0.1

 0.2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Weighted norm configuration
Elliptical Trajectory

x
y

z

(b)

 0 0.1 0.2 0.3 0.4 0.5 0.6-0.3
-0.2

-0.1
 0

 0.1
 0.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Joint limit avoidance configuration
Elliptical Trajectory

x
y

z

(c)

 0 0.1 0.2 0.3 0.4 0.5 0.6-0.2
-0.1

 0
 0.1

 0.2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Minimum norm configuration
Elliptical Trajectory

x
y

z

(d)

 0 0.1 0.2 0.3 0.4 0.5 0.6-0.2
-0.1

 0
 0.1

 0.2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Weighted norm configuration
Elliptical Trajectory

x
y

z

(e)

 0 0.1 0.2 0.3 0.4 0.5 0.6-0.2
-0.1

 0
 0.1

 0.2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

Joint Limit avoidance configuration
Elliptical Trajectory

x
y

z

(f)

FIGURE 5.38: Real-time experiment: Manipulator configuration while tracking the
elliptical trajectory (a)-(c) T-S fuzzy model, (d)-(f) KSOM.

model indicating that both architectures are effective in adapting to the model
inaccuracies which occur in real-time.

The manipulator configurations while tracking the trajectory with mini-
mum norm, weighted norm and kinematic limit avoidance are shown in Figure
5.38(d), Figure 5.38(e), and Figure 5.38(f) respectively.

5.16.2 Grasping a Ball with Hand-manipulator Setup
The proposed SNAC based redundancy resolution scheme is further used to
grasp a ball in the workspace. The ball is seen through the stereo-vision and is
identified based on the color. The centroid of the identified ball is considered
as the desired position and is given as the input to the trained network. Ball
grasping is achieved with an integrated PowerCube manipulator and Barrett
Hand setup shown in Figure 5.31. In the experimental setup the Barrett Hand
increases the length of d7 by 0.18 m. The critic network is retrained considering
the increased length with the parameters discussed in section 5.15.2. KSOM
based critic network proposed in section 5.14, is used in the experiment for
grasping the ball seen through the stereo-vision.

The experimental views of the manipulator while grasping the ball in dif-
ferent positions in the workspace are shown in Figure 5.39. The sub-figures
5.39(a), 5.39(d) and 5.39(g) show the positions of the ball seen through the
left camera, and the corresponding views from the right camera are shown

202 Learning-Based Visual Servoing

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 5.39: Real-time experiment: Grasping a ball with integrated manipulator
and Barrett Hand Setup from various positions - first column: left camera view,
second column: right camera view, third column: manipulator configuration.

in Figures 5.39(b), 5.39(e) and 5.39(h). The manipulator configurations while
grasping the ball are shown in figures 5.39(c), 5.39(f) and 5.39(i). It is observed
in the experiment that the physical limit of the second joint is violated for
positions closer to the base of the manipulator for the global minimum norm
and the weighted norm movement. The joint angle configurations generated
with the kinematic limit avoidance scheme are observed to be within the
kinematic limit. The centroid of the ball as seen from the stereo-vision gives a
noisy position information about the position of the ball. It is clear from the
figures that the proposed controller is robust to noise and can grasp the ball
successfully.

5.17 Summary
This chapter focused on developing an optimal redundancy resolution scheme
for visually controlled redundant manipulator. The redundancy is resolved
optimally while reaching the positions defined in the vision space. The SNAC
based redundancy resolution scheme proposed in the previous chapter has
been extended to the vision space with similar dynamical system formula-
tion. The redundancy resolution directly from the vision is difficult, since the
exact correspondence between the joint angular space and the vision space
is required for accurate global positioning, and also the initialization of the

Summary 203

fuzzy zones is not simple. Two novel neural network architectures have been
proposed to cope with the challenges occurring while defining the control tra-
jectories in the vision space. The first neural network extends the T-S fuzzy
model proposed in section 7.5.1, which discretizes the input vision space with
fuzzy boundaries. The consequent portion of each fuzzy zone is associated
with a joint angle configuration to learn the correspondence between the joint
angle space and the vision space, and a linear map to represent the rela-
tionship between the costate vector and the positioning error in the vision
space. The T-S fuzzy model requires the camera model for the initialization
of the center of the fuzzy zones. In addition, the training requires the proper
selection of the spread of the fuzzy zones, since it varies with the pose of the
camera in the world frame. KSOM based critic network is proposed following
the architecture of T-S fuzzy model, to circumvent the initialization problems
that occur while training the fuzzy model. KSOM based critic network does
not require a priori initialization of the input centers, as they are learned dur-
ing the training phase by spatially ordering the input in the lattice space. The
training parameters of the KSOM based network are independent of the cam-
era position, since neighborhood is defined in the lattice space. The proposed
neural network architectures are tested both in simulation and real-time on
the PowerCube manipulator for trajectory spanning the entire vision space.
Finally the critic based redundancy resolution scheme is successfully used to
control the PowerCube manipulator mounted with Barrett Hand, to grasp the
ball located in various positions within the workspace.

http://taylorandfrancis.com

6
Visual Servoing using an Adaptive Distributed
Takagi-Sugeno (T-S) Fuzzy Model

This chapter is concerned with the design and implementation of a distributed
proportional-derivative (PD) controller for a 7 degrees of freedom (DOF)
robot manipulator using the Takagi-Sugeno (T-S) fuzzy framework. Existing
machine learning approaches to visual servoing involve system identification of
image and kinematic Jacobians. In contrast, the proposed approach actuates a
control signal primarily as a function of the error and derivative of the error in
the desired visual feature space. This approach leads to a significant reduction
in the computational burden compared with model-based approaches, as well
as existing learning approaches to model inverse kinematics. The simplicity of
the controller structure will make it attractive in industrial implementations
where PD/PID type schemes are in common use. While the initial values
of PD gain are learned with the help of a model-based controller, an online
adaptation scheme has been proposed that is capable of compensating for
local uncertainties associated with the system and its environment.

Firstly, the T-S fuzzy PD parameters are initialized by the offline learning
of the MBVS. Thereafter the pseudo-inverse robot Jacobian and the inverse
interaction matrix are not computed during servoing implementation using
T-S fuzzy PD. This estimated model is applied in a straightforward manner
in order to map the image error vector to the joint velocities vector of the
robot. This chapter also proposes an online adaptation scheme whereby the
PD parameters are updated during servoing such that the local uncertain-
ties associated with the system and its environment can be compensated. In
the following, Section 6.1 provides a general review of the T-S fuzzy model.
Section 6.2 discusses in detail the development of the adaptive T-S fuzzy PD
visual servoing which includes the development of the offline and online learn-
ing algorithms as well as the stability analysis of the proposed visual servoing
control law. Real-time experiments using a 7 DOF robot manipulator have
been carried out to validate and measure the performance of the proposed
approach; the experimental results are provided in Section 6.3. The compu-
tational complexity analysis of the algorithm is given in Section 6.4. Finally,
this work is summarized in Section 6.5.

205

206 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

6.1 T-S Fuzzy Model
Fuzzy inference systems have been widely used in many applications such
as robotics, control systems and system modeling. In control systems, fuzzy
techniques are used to emulate human deductive thinking to infer conclu-
sions [191]. In contrast, traditional control approaches require formal model-
ing of the physical reality. Therefore, fuzzy control approaches become more
practical to be used than traditional control approaches when the mathe-
matical model representations of the physical systems are too complex to be
formalized.

There are two typical types of fuzzy control approaches: Mamdani and
Takagi-Suge no types. The Mamdani type fuzzy controller is a direct approach
and a language-driven type fuzzy inference system where the controllers are
based on the fuzzy rule base. The behavior of the system is adjusted by the
expert operator knowledge and experiences. In this approach an explicit sys-
tem representation cannot be identified. The T-S fuzzy controller is an indi-
rect approach and a data-driven type fuzzy inference system where an explicit
system model can be approximated. Therefore the T-S fuzzy model presents
systemic understanding [191].

General fuzzy rule representations of Mamdani and T-S types are defined
by (6.1) and (6.2), respectively:

Ri :if x1 is Ai1 and x2 is Ai2 · · · and xM is AiM
then yi is Yi (6.1)

Ri :if x1 is Ai1 and x2 is Ai2 · · · and xM is AiM

then yi =
M∑
m=1

cimxm + ci0 (6.2)

where Ri is the i-th fuzzy rule, x = [x1, x2, · · · , xM]T is a fuzzifier input
vector which is known as the premise variable or the antecedent variable and
yi is the fuzzy output which is also known as the consequent variable. Yi
represents a linguistic fuzzy set of the i-th Mamdani type rule consequent and
ci = [ci0, ci1, · · · , ciM]T is the consequent parameter vector of the i-th T-S
type rule consequent.

T-S fuzzy approach provides a general class representation of a nonlin-
ear dynamical system [191–193]. The consequent variables in each fuzzy rule
is a linear function of a nonlinear dynamical local region. Thus, a complete
model of nonlinear dynamical system can be approximated by merging dif-
ferent operating linear fuzzy regions. T-S fuzzy models can be catagorized
into three types based on their consequent function: affine T-S fuzzy model,
homogenous T-S fuzzy model, and singleton T-S fuzzy model.

The affine T-S fuzzy model is the general representation of the T-S
fuzzy (6.2) where the consequent part is a linear regression model [194].

T-S Fuzzy Model 207

A homogenous T-S fuzzy model is defined at the offset ci0 = 0 and can be
represented as

Ri :if x1 is Ai1 and x2 is Ai2 · · · and xM is AiM

then yi =
M∑
m=1

cimxm (6.3)

Singleton T-S fuzzy model is also known as the zero-order T-S fuzzy model
where the consequent variable in each fuzzy rule is constant. The i-th fuzzy
rule of a singleton type can be expressed as

Ri :if x1 is Ai1 and x2 is Ai2 · · · and xM is AiM
then yi = ci0 (6.4)

The nonlinear dynamic system is then estimated by finding the approximation
of the consequent parameters ci of the T-S fuzzy local linear function yi.

The T-S fuzzy model is constructed based on the selection of some param-
eters: the membership function shapes and its positions, the distribution of
the membership functions, the rule based model, the logical operations and
the consequent functions. It is difficult to develop a unique method capable of
determining all of the parameters simultaneously. However, in general, at least
the type of the membership functions, the logical operations, and the conse-
quent function models have to be selected in advance based on some criteria,
e.g., differentiability of the consequent functions and membership functions.
The logical “AND” operation is used since it provides an analytical expres-
sion which is differentiable based on the given optimization cost function. The
remaining T-S fuzzy parameters can be adjusted from the input-output data
set. There are several techniques for adjusting the T-S fuzzy parameters; in
general those techniques are based on optimization approaches which mini-
mize the error cost function between the real output values from the data set
and the approximated values from the T-S fuzzy output. In general, based on
the adjusted parameters, T-S fuzzy techniques can be categorized as

1. Lookup table method [195]

2. Gradient descent [191,194]

3. Clustering [196]

4. Evolutionary [197,198]

The lookup table method fixes the T-S fuzzy parameters except the consequent
function parameters C = [c1, c2, · · · , cr]T is adjusted where r is the number
of the T-S fuzzy rule. The T-S fuzzy method using gradient descent defines
the type and the number of the membership function in advance whereas the
membership function parameters and their position as well as the consequent
function parameters C are tuned. In the clustering method, the membership

208 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

TABLE 6.1: T-S fuzzy learning methods

Method MF’s type MF’s number MF’s parameters C
Table lookup fixed fixed fixed refined

Gradient Descent fixed fixed refined refined
Clustering fixed refined refined refined

Evolutionary refined refined refined refined

functions parameters are defined by a clustering algorithm in advance, the
membership function position and the consequence function parameters C
are refined during the learning process. Evolutionary strategies can optimize
all the T-S fuzzy parameters. However the complexity of the algorithm is
increased. A summary of the T-S fuzzy techniques based on its learning is
shown in Table 6.1.

This chapter focuses on the development of an uncalibrated visual servo-
ing control where the T-S fuzzy with the gradient descent technique is used.
The T-S fuzzy parameters will be optimized online. In this case, the gradi-
ent descent technique is more suitable than other T-S fuzzy learning method
(see Table 6.1) to be implemented for an online learning approach for the
highly nonlinear and realtime control system. The differentiable cost function
for online T-S fuzzy learning is designed such that the T-S fuzzy parameters
being tuned are optimal. In clustering and evolutionary methods, the member-
ship function type and the membership function number are not differentiable
given the cost function for an online T-S fuzzy learning scheme.

6.2 Adaptive Distributed T-S Fuzzy PD Controller
The adaptive distributed T-S fuzzy PD controller is designed such that the
visual servoing control system actuates a control signal primarily as a func-
tion of the error and the derivative of the error in the visual feature space.
The T-S fuzzy offline and online learning algorithms are required in this pro-
posed approach. The T-S fuzzy offline learning is needed to initialize the T-S
fuzzy PD parameters with the help of model-based controller. Then, the T-S
fuzzy online algorithm is applied to adaptively compensate local uncertain-
ties associated with the system model and its environment. Figure 6.1 shows
the closed-loop controller diagrams of the T-S fuzzy PD visual servoing and
MBVS.

Using T-S fuzzy approach (see Figure 6.1(a)), the controller output ̂̇θ is
computed directly from the error signal e. In contrast, MBVS requires the
computation of the pseudo-inverse of the coupled robot-image Jacobian J†eL

†
s∗

which depends upon both system input states, the image error e and the robot

Adaptive Distributed T-S Fuzzy PD Controller 209

(a) TS-fuzzy closed-loop controller

(b) MBVS closed-loop controller

FIGURE 6.1: T-S fuzzy PD visual servoing and MBVS controller approaches.

joint angles θ. The MBVS controller law described in the previous chapters
can be rewritten as

θ̇ = κJ†e(θ)L†s∗(s∗ − s) (6.5)

The T-S fuzzy PD visual servoing model will be designed and explained in
the following sections.

6.2.1 Offline Learning Algorithm
Figure 6.2 depicts the architecture of the T-S fuzzy PD for jth joint. There
are four functionality layers in the T-S fuzzy architecture. In layer-1 the cur-
rent image features vector s = [s1, s2, · · · , sM]T is presented as input to the
fuzzifier, whereM is the total number of fuzzifier inputs. The error rate in the
image space is denoted ∆e(k) = e(k) − e(k − 1) where k indicates the index
of the time step. The ith fuzzy rule of the T-S fuzzy PD system is defined as

Rj
i :if s1 is Ajn11 and s2 is Ajn22 · · · and sM is AjnMM

then yji =
M∑
m=1

(
P jimem

)
+

M∑
m=1

(
P jim∆em

)
(6.6)

where j = 1, 2, · · · , N represents the joint’s number, N is the number of robot
degrees of freedom (DOF) and f ji = wjiy

j
i represents the output function in the

ith fuzzy zone. Anmm represents the fuzzy linguistics variable vector, where

210 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

FIGURE 6.2: T-S fuzzy PD architecture for j-th joint.

nm is the index of the membership function in the m-th fuzzifier input.

M∑
m=1

(
P jimem

)
(6.7)

is the proportional term, and the derivative term can be represented as

M∑
m=1

(
P jim∆em

)
(6.8)

where Pj and Dj represent the proportional gain vector and the derivative
gain vector of the jth joint velocity model, respectively. The number of rules
associated with the jth joint is given by rj =

∏M
m=1N

j
m, where N j

m is the
number of fuzzy membership functions describing the mth fuzzifier input and
M is the total number of image features. In 6.6, it is observed that the control
actuation is only a function of the error and the derivative of the error. This
way of learning the controller map is novel as well as simple in structure.

The complete expression of this fuzzy PD controller can be given as

̂̇
θ ≈ f(s,w, P̂, D̂φ)(e) (6.9)

Adaptive Distributed T-S Fuzzy PD Controller 211

where φ is the differential operator d
dt . The term φe is approximated as a nor-

malized term ∆e. P̂ and D̂ are some estimates of the T-S fuzzy PD parameters.
This equation shows that the control action is only a function of error in the
visual feature space. Since the map is not a function of model dynamics such
as inverse kinematic and image Jacobians, the structure is simple and easy to
compute. As shown in Figure 6.2, for layer-1 the computation of the Gaus-
sian membership function values associated with every node corresponding to
individual inputs are calculated using

µjnmm = e

−
1
2

(
sm − cjnmm
σjnmm

)2

(6.10)

where cjnmm and σjnmm denote the jth vector of the mean and the variance of
the nmth Gaussian membership function in the mth fuzzifier input. In layer-
2, the product of membership values of all input variables is used to make
the model differentiable with respect to the parameters of the fuzzifier. For
simplicity we assume the number of fuzzy memberships in each input are all
the same and the product can be described as

wji =
M∏
m=1

µjnmm (6.11)

where
nm = b (i− 1)

(Nm)m−1 c mod Nm + 1 (6.12)

In layer-3, the ith node calculates the normalized firing strengths:

wji = wji
rj∑
i=1

wji

(6.13)

In layer-4, every node i is calculated as the product of the normalized firing
strength and the function of the input and the consequent parameter set,
wjiy

j
i , i = 1, 2, .., rj . Finally, the modeled joint velocity ̂̇θj can be obtained

from the summation of all the outputs from layer-4:

̂̇θj = fj =
rj∑
i=1

f ji (6.14)

The gradient descent adaptation algorithm is implemented to tune the param-
eters used in the T-S fuzzy PD control system. This algorithm seeks to decrease
the value of the cost function of the error:

Ej = 1
2(θ̇∗j − ̂̇θj)2

212 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

where θ̇∗j is the desired velocity output of the jth joint. Thus the iterative
gradient descent learning algorithm to update the consequent parameter set
and the Gaussian function parameters can be described as

P jim(k + 1)
Dj
im(k + 1)

cjnmm(k + 1)
σjnmm(k + 1)

 =


P jim(k)
Dj
im(k)

cjnmm(k)
σjnmm(k)

− η

∂Ej/∂P

j
im

∂Ej/∂D
j
im

∂Ej/∂c
j
nmm

∂Ej/∂σ
j
nmm

 (6.15)

where η is the learning rate parameter. The partial derivatives of Ej with
respect to the change of the consequent parameters are described as follows

∂Ej

∂P jim
= −(θ̇∗j − ̂̇θj)wjiem (6.16)

∂Ej

∂Dj
im

= −(θ̇∗j − ̂̇θj)wji∆em (6.17)

The partial derivatives of Ej with respect to the change of the Gaussian
function parameters are derived as

∂Ej

∂cjnmm
= B

(
sm − cjnmm

)
(σjnmm)2

(6.18)

∂Ej

∂σjnmm
= B

(
sm − cjnmm

)2
(σjnmm)3

(6.19)

where

B = −(θ̇∗j − ̂̇θj)f ji


wji
µjnmm

rj∑
i=1

wji − wjiC

(
rj∑
i=1

wji)2

µjnmm (6.20)

and

C =
rj∑
i=1

M∏
a=1

µjnma, for a 6= m (6.21)

6.2.2 Online Adaptation Algorithm
The T-S fuzzy PD controller architecture is given in Figure 6.1. The estimated
controller parameters P̂ and D̂ were used to control the robot using the esti-
mated joint velocity θ̇ = ̂̇

θ. To make the controller more generic in terms
of adaptability in a locally changing environment, these parameters must be
adapted online. In this section, a simple yet elegant structure of an online
parameter adaptation scheme is presented. For further analysis following nota-
tions are used: f to represent f(s,w,P,Dφ) and f̂ to represent f(s,w, P̂, D̂φ).

Adaptive Distributed T-S Fuzzy PD Controller 213

In online learning, the distributed T-S fuzzy PD parameters should thus be
updated such that f̂ → f . Given Figure 6.1, during the realtime operation, the
controller parameterized by P and D actuates joint velocity vector θ̇. This
joint velocity vector guides the robot to a new position, s‡, in the image space.

This data observation can be interpreted as follows: if P and are actual
parameters of the controller f then θ̇ = f(s‡ − s) = fe, i.e is s‡. It should
be noted that in the presence of the ideal controller f , s∗ = s‡ will make
the robot end-effector move from s to s‡ as shown in Figure 6.1. Since the
controller is f̂ , it can be seen in retrospective that e = s‡ − s is the input and
θ̇ is the desired output for the fuzzy controller f̂ . In essence, θ̇ = f(s‡−s) is the
observed and ̂̇θ = f̂(s‡−s) is the estimated in real-time. This requires that the
online update algorithm be derived in such a way that the instanteneous cost
function ‖θ̇−fe‖ be minimized. It is interesting to note that the instantaneous
cost function is a function of data observed in real-time, i.e., θ̇ is the actuated
joint velocity vector and s‡ is the position reached by the robot in the image
space. The adaptation algorithm is derived based on the Lyapunov stability
condition. The Lyapunov candidate function is given as

V =
7∑
j=1

1
2(θ̇j − fje)2 (6.22)

where fj = f(s,w, P̂, D̂φ), e = s‡ − s and θ̇j = fj(s∗ − s). The derivative of
the Lyapunov function for the j-th manipulator joint can be written as

V̇ = −(θ̇j − f̂je)
([

∂fje
∂Pj

]T
Ṗj +

[
∂fje
∂Dj

]T
Ḋj

)
(6.23)

where

∂fje
∂Pj

=
[
∂f j1e
∂Pj

1

∂f j2e
∂Pj

2
· · · ∂f ji e

∂Pj
i

]T

=



[
∂f j1e
∂P j11

∂f j1e
∂P j12

∂f j1e
∂P j13

]T
[
∂f j2e
∂P j21

∂f j2e
∂P j22

∂f j2e
∂P j23

]T
...[

∂f ji e
∂P ji1

∂f ji e
∂P ji2

∂f ji e
∂P ji3

]T


=


wj1eT
wj2eT

...
wjieT

 (6.24)

and

∂fje
∂Dj

=
[
∂f j1e
∂Dj

1

∂f j2e
∂Dj

2
· · · ∂f ji e

∂Dj
i

]

214 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

=



[
∂f j1e
∂Dj

11

∂f j1e
∂Dj

12

∂f j1e
∂Dj

13

]T
[
∂f j2e
∂Dj

21

∂f j2e
∂Dj

22

∂f j2e
∂Dj

23

]T
...[

∂f ji e
∂Dj

i1

∂f ji e
∂Dj

i2

∂f ji e
∂Dj

i3

]T


=


wj1∆eT
wj2∆eT

...
wji∆eT

 (6.25)

The adaptive laws of P jim and Dj
im are designed as

Ṗ jim = ηp(θ̇j − fje)wjiem (6.26)
Ḋj
im = ηd(θ̇j − fje)wji∆em (6.27)

where ηp, ηd > 0 are the adaptation rates. By substituting 6.26 and 6.27 into
(6.24) and (6.25), respectively, the results are written as[

∂fje
∂Pj

]T
Ṗj = ηp(θ̇j − fje)

r∑
i=1

(
M∑
m=1

(wji em)2

)
(6.28)

[
∂fje
∂Dj

]T
Ḋj = ηd(θ̇j − fje)

r∑
i=1

(
M∑
m=1

(wji∆em)2

)
(6.29)

By substituting (6.28) and (6.29) into (6.23), the derivative of the Lyapunov
candidate function is described as

V̇ = −(θ̇j − fje)2

 ηp
∑r
i=1

(∑M
m=1(wji em)2

)
ηd
∑r
i=1

(∑M
m=1(wji∆em)2

) (6.30)

where V̇ is negative definite. Thus the proposed updates (6.26) and (6.27) of
the PD parameters ensures convergence in tracking errors.

6.2.3 Stability Analysis
The stability of the T-S fuzzy PD closed loop system can be verified in terms
of Lyapunov stability. Let us consider the Lyapunov function candidate as

V = 1
2 ‖ e ‖2 (6.31)

where e = s−s∗ and s∗ is constant. The derivative of the Lyapunov candidate
function V is derived as

Adaptive Distributed T-S Fuzzy PD Controller 215

V̇ = eT ė
= eTLs∗Jê̇θ
= eTLs∗Jef̂(s,w,P,Dφ)e (6.32)

Assuming the universal approximation capability of the T-S fuzzy model, the
T-S fuzzy function using the trained data set can be described as

f̂(s,w,P,Dφ)e = −κĴ†eL̂
†
s∗e + ε (6.33)

where ε = θ̇ − ̂̇θ is the approximation error. Substituting (6.33) into (6.32),
the derivative of the Lyapunov candidate function V is redefined as

V̇ = eTA(−κÂ†e + ε)
= −κeTAÂ†e + eTAε (6.34)

where A = Ls∗Je and Â† = Ĵ†eL̂
†
s∗ .

Initially, if ε = 0, there is no approximation error, then Â = A. The rank
of matrix A ∈ Rm,n cannot be greater than m nor n. The rank of A can be
written as rank(A) = min(m,n). In this case m < n therefore A has full rank
of m. If A is full rank then ATA is invertible. Thus, the left inverse of A
can be applied which is defined as A† = (ATA)−1AT . For the case where
no approximation error is assumed, it can be said that (AÂ†) = I, where I
is an identity matrix. In this case, the derivative of the Lyapunov candidate
function

V̇ = −κ ‖ e ‖2 is negative definite (6.35)
and the system is globally asymptotically stable.

If Â 6= A and A is full rank then (AÂ†) = I′ and

V̇ = −κeT I′e (6.36)

For a positive definite matrix I′, a matrix definiteness can be described as

λmin(I′) ‖ e ‖2≤ eT I′e ≤ λmax(I′) ‖ e ‖2 (6.37)

where λmin(·) and λmax(·) denote the minimum and the maximum eigenvalues
of a matrix, respectively. Thus the derivative of Lyapunov candidate function
can be derived as

V̇ ≤ −κλmin(I′) ‖ e ‖2 (6.38)
The derivative of the Lyapunov candidate function will be negative definite if
λmin(I′) > 0 and I′ is positive definite. Hence the system is locally stable. If
ε 6= 0 is considered then (6.34) can be described as

V̇ ≤ −κ ‖ e ‖ (λmin(I′) ‖ e ‖ −σmax(A)εmax)

≤ −κ ‖ e ‖
λmin(I′)

(
‖ e ‖ −σmax(A)εmax

λmin(I′)

)
(6.39)

216 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

where ‖ ε ‖≤ εmax and σmax(·) denotes the largest singular value of a matrix.
V̇ is negative definite if λmin(I′) > 0 and if

‖ e ‖> σmax(A)εmax
λmin(I′)

Hence the system is locally uniformly ultimately bounded (U.U.B) with the
approximation error. It immediately follows that

V̇ (e) < 0, ∀ ‖ e ‖> δ (6.40)

where δ = σmax(A)εmax
λmin(I′) . In other words, the derivative of the Lyapunov

candidate function is negative outside of the compact set Bδ = {‖ e ‖≤ δ},
all the solutions that start outside Bδ will enter this set within a finite time,
and will remain inside the set for future times [199].

6.3 Experimental Results
The experimental setup (see Figure 6.3) consists of a 7 DOF robot manipula-
tor, a firewire camera which is placed on the robot end-effector, and a PC. The
distributed fuzzy PD controller based on the T-S fuzzy model learns the map-
ping between the velocity of the image feature s and the joint angle velocity θ̇.
The camera is interfaced through a firewire port to the PC and the images are
processed using an OpenCV library. The camera provides color images at a
resolution of 320× 240 pixels. An image histogram back projection algorithm
and image moments computation are used to identify the target object. Verifi-
cation of the trajectories of an object and the robot end-effector are obtained

(a) Vicon system
working space

(b) Vicon markers on
the target and the end-
effector

FIGURE 6.3: Experimental setup.

Experimental Results 217

using a Vicon system. A ball is used as the target in an uncluttered envi-
ronment in these experiments. Figure 6.3(b) shows that Vicon markers are
positioned on the robot end-effector and on the target ball in order for each
to be tracked by the Vicon system.

Experiments using MBVS were conducted to obtain data variables that
are required for the learning process. For a defined working space, a number
of trials were carried out using different initial positions of the robot end-
effector such that the initial target would generate a wide range of data for
joint velocities θ̇, current image feature vector s = [sx, sy, sa]T = [s1, s2, s3]T ,
image feature error vector e = [esx , esy , esa]T = [e1, e2, e3]T and the rate
of image feature error vector ∆e = [∆e1,∆e2,∆e3]T . The experiment was
comprised of the following steps:

1. Each of the fuzzifier inputs in a vector s have three Gaussian membership
functions described by its mean and variance (c, σ). Initially, the Gaussian
functions were distributed within a normalised range [−1, 1] such that the
overlapped area between two Gaussian functions was 25%, approximately.
The consequent parameters P and D in each joint velocity model were
initialized with random numbers within the range of [−1, 1]

2. The offline learning of the T-S fuzzy PD model was verified using previ-
ously collected data. As suggested in [200], the offline learning reduces the
demand on online data generation. The offline training data was obtained
by moving the target object by hand to get a sufficient data set of the
joint velocities and the image features in the workspace.

3. The implementation of the T-S fuzzy PD model in real-time was con-
sidered to compare the performance between the adaptive learning and
non-adaptive learning.

Seven T-S fuzzy PD models of joint velocity ̂̇θj have been obtained in the
training process, and every joint velocity model contains 27× 3 proportional
gain parameters in a vector of Pj ∈ R81 and 3×3 Gaussian membership func-
tions’ parameters (cjnmm, σ

j
nmm), where nm,m ∈ [1, 2, 3] and j ∈ [1, 2, · · · , 7].

Additionally there are 27 × 3 derivative gain parameters in a vector of
Dj ∈ R81. The identified Gaussian membership functions and consequent
parameters of the modeled joint velocities ̂̇θ = [̂̇θ1,

̂̇θ2...,
̂̇θ7]T may vary since

the algorithm depends on random initialized values of consequent parameters,
a learning rate η, a stopping condition and the data set. Using the learning
rate η = 0.1 and 200 iterations, the RMSE of ̂̇θ is shown in Figure (6.4).

In this chapter we are primarily interested in the real-time implementation
results rather than the presentation of identified T-S fuzzy PD parameters.
However the identified consequent parameters ̂̇θ1 and ̂̇θ2 of the T-S fuzzy
PD model are considered to give a more detailed explanation of the proposed
schemes, as shown in Table 6.2. The consequent parameters identified for joint
velocity ̂̇θ1 of the T-S fuzzy PD are:

218 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

FIGURE 6.4: RMSE of ̂̇θj Vicon markers on the target and the end-effector.

TABLE 6.2: The updated membership function of the T-S fuzzy PD controller
of ̂̇θ1 and ̂̇θ2

Gaussian parameterŝ̇θj Membership functions s1 s2 s3
c σ c σ c σ̂̇θ1 µ1m 0.00 1.39 0.00 1.95 0.00 1.49

µ2m 1.00 0.54 0.46 0.10 1.90 1.99
µ3m 1.00 0.20 0.00 2.00 1.00 0.20̂̇θ2 µ1m -0.50 1.39 0.00 1.95 0.00 1.49
µ2m 0.00 0.46 0.56 1.90 0.10 1.73
µ3m -0.27 1.42 1.00 1.87 1.00 0.20

R1
1 :if s1 is A1

11 and s2 is A1
12 and s3 is A1

13

then y1
1 = 1.60974(e1)− 0.0378469(e2) + 1.70716(e3)

+ 0.902445(∆e1)− 0.0506251(∆e2) + 1.78611(∆e3)
R1

2 :if s1 is A1
21 and s2 is A1

22 and s3 is A1
23

then y1
2 = 2.55031(e1)− 0.437355(e2) + 3.26196(e3)

+ 1.45803(∆e1)− 0.43672(∆e2) + 3.2049(∆e3)
...

...
R1

27 :if s1 is A1
31 and s2 is A1

32 and s3 is A1
33

then y1
27 = 2.4745(e1)− 0.487684(e2)− 0.208851(e3)

+ 1.41299(∆e1)− 0.499181(∆e2)− 0.223516(∆e3)

Experimental Results 219

The consequent parameters identified for joint velocity ̂̇θ2 of the T-S fuzzy
PD are:

R2
1 :if s1 is A2

11 and s2 is A2
12 and s3 is A2

13

then y2
1 = −1.338(e1) + 2.49029(e2)− 8.50078(e3)

− 2.48748(∆e1)− 5.46609(∆e2)− 10.217(∆e3)
R2

2 :if s1 is A2
21 and s2 is A2

22 and s3 is A2
23

then y2
2 = −3.26182(e1) + 12.1912(e2)− 3.42069(e3)

− 3.67392(∆e1) + 1.22814(∆e2)− 5.77275(∆e3)
...

...
R2

27 :if s1 is A1
31 and s2 is A1

32 and s3 is A1
33

then y2
27 = 2.84481(e1) + 12.743(e2) + 2.50398(e3)

+ 0.439647(∆e1) + 2.34862(∆e2) + 0.119995(∆e3)

The identified parameters are used to verify the system using the same data as
used in the training process. Given the identified T-S fuzzy PD parameters, the
data set of the current image feature vector and the image feature error vector,
the T-S fuzzy PD joint velocity models are tested. Comparisons between the
MBVS joint velocity of θ̇1 and θ̇2 of the T-S fuzzy PD scheme are shown in
Figure (6.5(a)) and Figure 6.5(b), respectively. It can be seen from Figure
(6.5(a)) and Figure 6.5(b) that the T-S fuzzy PD schemes of ̂̇θ1 and ̂̇θ2 are
very similar to the model-based joint velocities. The average error ‖θ̇1 − ̂̇θ1‖
and ‖θ̇2 − ̂̇θ2‖ of the T-S fuzzy PD during the offline learning process was
computed to be 0.160◦/s and 0.905◦/s, respectively.

(a) (b)

FIGURE 6.5: Input-output data verification of the learned T-S fuzzy param-
eters (a) Comparison between θ̇1 and ̂̇θ1, (b) Comparison between θ̇2 and ̂̇θ2.

220 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

6.3.1 Visual Servoing for a Static Target
We provide real-time implementation results for visual servoing using the
model-based, adaptive and non-adaptive T-S fuzzy PD controllers for a static
target. Ten experiments for each scheme have been carried out. In each exper-
iment either the position of the target or the position of the end-effector was
placed in an arbitrary position. Once those positions were decided each of
the controller schemes was run; this procedure was needed in order to make
a fair comparison of the performances between all of those schemes. In each
experiment, the new updated T-S fuzzy parameters were used by the adaptive
T-S fuzzy PD; in contrast, the non-adaptive T-S fuzzy PD used the same T-S
fuzzy PD parameters which had been obtained during offline learning. In the
experiments, the orientation of the robot end-effector has not been consid-
ered. Thus, given three image features, the MBVS scheme will not change the
orientation of the robot end-effector.

Figures 6.6(a) - 6.6(c) show the image feature tracking percentage error
between the desired features and the current features in the final experiment.
These figures show that the adaptive T-S fuzzy PD can dynamically change
the parameters to reduce the modeling error.

(a) (b)

(c) (d)

FIGURE 6.6: Input-output data verification of the learned T-S fuzzy param-
eters (a) θ̇1, (b) θ̇1, (c) area, (d) normalized error.

Experimental Results 221

The steady state was reached at t ≥ 2s, the average percentage errors
of image area e3 were computed as 1.59%, 4.40% and 3.07% for MBVS, T-S
fuzzy PD non-adaptive and adaptive, respectively. The image centroid error
was relatively small between 2 and 10 pixels which would not significantly
change the robot end-effector’s desired position. Image noise caused error in
the image space. Once the error of the image features is decreased, as an
example, the joint velocities θ̇1 and θ̇2 go to zero as shown in Figure 6.7(a)
and Figure 6.7(b), respectively, which means the desired position of the robot
end-effector is reached. The controller will maintain the robot end-effector
position in the desired position as long as the targeted object remains in the
same position. For 2s ≤ t ≤ 5.6s, the velocities of joint-1 were computed as:
θ̇1 ≤ |0.11|◦/s, ̂̇θ1 ≤ |0.40|◦/s, and for MBVS, T-S fuzzy PD non-adaptive
and adaptive, respectively. Whereas, the velocities of joint-2 were computed
as: θ̇2 ≤ |0.70|◦/s, ̂̇θ2 ≤ |0.99|◦/s, and ̂̇θ2 ≤ |0.77|◦/s for MBVS, T-S fuzzy
PD non-adaptive and adaptive, respectively. Figure 6.8 depicts the initial and
final robot end-effector position with respect to the ball position.

(a) (b)

FIGURE 6.7: Comparison of the joint velocities between MBVS, non-adaptive
and adaptive T-S fuzzy PD controller (a) θ̇1, (b) θ̇2.

(a) Initial robot end-effector position (b) Final robot end-effector position

FIGURE 6.8: T-S fuzzy PD visual servoing for a static target.

222 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

6.3.2 Compensation of Model Uncertainties
An experiment for the adaptive T-S fuzzy PD controller introducing model
uncertainties has been conducted. In offline learning, the T-S fuzzy PD param-
eters were learned using the centered camera configuration with respect to the
end-effector frame. To demonstrate the capability of the adaptive T-S fuzzy
PD controller in the presence of model uncertainty, the camera position was
altered. The camera pose on the end-effector was displaced at xcam = ox−7cm,
ycam = oy + 4cm and αcam = 30◦ where (xcam, ycam) is the center coordinate
of the optical axis of the camera, (ox, oy) is the origin of the end-effector frame
and αcam is the orientation of the camera optical axis with respect to the z-
axis of the end-effector frame. Even though the position of the camera was
not in an accurate position (center of the end-effector frame), convergence was
achieved and the error e decreased as shown in Figure 6.9.

(a) (b)

(c) (d)

FIGURE 6.9: Compensation of model uncertainties: camera position has been
altered (a) The centroid image coordinate error in x-axis, (b) The centroid
image coordinate error in y-axis, (c) The image area error, (d) The norm of
the error e.

Experimental Results 223

6.3.3 Visual Servoing for a Moving Target
An experiment for tracking a moving target for both schemes has also been
conducted. The Vicon system has been used in this experiment to verify the
trajectory of the target object and the robot end-effector. The Vicon system
that is used in this experiment has nine infrared cameras which are able to
detect the position of the marker in a 64 m3 working area (8 m in length, 4
m in width, 2 m in height) with 1 mm precision. The markers were placed on
the target object and the robot end-effector. The minimum number of markers
is three in order to create a segment model in the Vicon system. The target
object was moved by a demonstrator in a circular motion. It was difficult
to maintain the same circular trajectory of the target in every experiment.
However, Figure 6.10 shows that the movement of the target can be followed

(a)

(b)

(c)

FIGURE 6.10: Target and robot end-effector trajectories of model-based, non-
adaptive and adaptive T-S fuzzy PD controller (a) MBVS, (b) Non-Adaptive
T-S Fuzzy PD, (c) Adaptive T-S Fuzzy PD.

224 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

by the robot end-effector which has an attached camera on top of the gripper.
The desired features were measured from a distance of 25 cm along the z-axis
between the camera and the target object. T1 and E1 denote the starting
position of the target object and the robot end-effector, respectively. T2 and
E2 denote the final positions. The corresponding performance of non-adaptive
and adaptive distributed T-S fuzzy PD can be seen in Figure 6.10(b) and
Figure 6.10(c) respectively.

At the end of the measurement, T2 and E2, the image features error of the
adaptive and non-adaptive T-S Fuzzy PD are presented in Table 6.3.

A snapshot of the video files have been recorded and can be seen in Figure
6.11 to show the movement of the robot end-effector and the target object as

TABLE 6.3: Image features error: MBVS, adaptive, and non-adaptive
ditributed T-S fuzzy PD controller

Scheme
Target error

Centroid Areax y
MBVS 1 2 80

Adaptive 2 5 100
Non Adaptive 4 12 461

(a) snapshot-1 (b) snapshot-2 (c) snapshot-3 (d) snapshot-4

(e) snapshot-5 (f) snapshot-6 (g) snapshot-7 (h) snapshot-8

FIGURE 6.11: Snapshot pictures of T-S fuzzy PD visual servoing for tracking
a circular trajectory of the object.

Summary 225

well as the last three joint configurations. Figure 6.11(a) shows the starting
position of the robot end-effector before the object was moved in a circular
trajectory using a white circle plate as a guide. One can see in the snapshots
in Figure 6.11(a) - Figure 6.11(h) that the last three joint configurations were
changed to follow the target during servoing while the system was maintain-
ing the offset between the target object and the robot end-effector and also
maintaining the center of the target object image in the center of the image
plane.

6.4 Computational Complexity
MBVS for a redundant manipulator requires the computation of the pseudo-
inverse Jacobian. Singular value decomposition is used to compute this. In
[201], the computational cost of the pseudo-inverse has been evaluated and it
has been determined that this involves a total of 3NM2 +M3 +N2M floating
point operations (flops). In the offline learning process, the parameters of the
distributed T-S fuzzy system are learned. Given the input vectors of s, e
and ∆e in the image space, the learned T-S fuzzy is used to compute the
joint velocity ̂̇θ in real-time. In this work, the total number of the Gaussian
membership functions in each fuzzifier inputs are the same, therefore the total
number of rules rj for every joint is the same and is denoted as r.

The computation of the normalised weight vector w for j-th T-S fuzzy
network requires rM + r flops. The computation of ̂̇θj requires 2r(M + 1)
flops approximately. Therefore, total computation of ̂̇θ requires N{rM + r +
2r(M+1)} = 3Nr(M+1) flops. The computational complexity for the forward
computation of the T-S fuzzy network is in the order of O(N). Similarly, the
computational complexity of the online adaptation algorithm is computed in
the order of O(N). The total computation of the adaptive distributed fuzzy
PD controller is linear with the number of DOF of a robot manipulator while
the computation of the pseudo-inverse Jacobian is in the order of O(N2. The
computation of the adaptive distributed fuzzy PD controller is significantly
more efficient than MBVS for robot manipulators with greater DOF.

6.5 Summary
A simple yet elegant approach to a visual servoing control scheme has been
presented in this chapter. The control action has been learned as a function of
the error in the visual space using a T-S fuzzy framework. Thus the parametric

226 Visual Servoing using an Adaptive Distributed T-S Fuzzy Model

space of the controller consists of locally valid PD gains in a distributed fash-
ion. The initial values of these parameters are learned while mimicking the
model-based controller in the first phase. An online adaptation scheme has
been proposed that can fine-tune the controller parameters to compensate
the uncertainities associated with the system model and environment. The
conceptual novelty in this proposed scheme is that the manipulator can be
controlled without having to compute its own inverse Jacobians. Thus the
model reflects a more cognitive learning architecture just like a child learns
to actuate his/her hands and legs without the need for understanding the
complexities of the involved kinematics.

The proposed scheme has been validated through exhaustive experimen-
tation on a 7 DOF robot manipulator. The robot has been actuated using the
model-based controller given in Eq. (6.9). The controller input-output data
have been used to learn the intial parameters of the distributed fuzzy PD
controller which has been termed as a non-adaptive fuzzy controller in this
chapter. These controller parameters have been fine tuned using the proposed
adaptation scheme. It has been shown that the controller is effective in visual
servoing for both static and moving targets. During experimentation, tracking
errors are always less than five pixel counts in the x and y visual features.

The proposed controller works efficiently within the offline trained
workspace. The online update will expand this workspace locally but will
not be able to function globally. Given an initial joint configuration for which
the T-S fuzzy network has been trained offline, the online update scheme
ensures tracking in the local neighborhood. If a new initial joint configuration
demanded by a specific application is far away from this initial joint configu-
ration, then further offline training of the T-S fuzzy network will be necessary.
The main purpose of the adaptive tuning is to ensure compensation for uncer-
tainties in the model as well as in the environment. However a set of initial
joint configurations that will span the entire workspace can be selected. A
T-S fuzzy controller for each of these configurations can be trained offline. In
that case, given a situation, a specific T-S fuzzy network is selected for online
update.

The readers may refer [11, 77, 152] for methods of computing the Jaco-
bian matrix include closed-form solutions and [202–205] for adaptive schemes.
More recently, approaches to visual servoing have been developed that do not
rely on the computation of both the robot Jacobian matrix and the image
Jacobian matrix. In [206], the robot-image Jacobian is estimated using a non-
linear optimization algorithm [207]. Similarly, in [208] Broyden’s method is
generalized. However like other nonlinear optimisation algorithms [209], the
approaches are sensitive to noise as well as the initial robot-image Jacobian
matrix approximation.

There are also approaches to estimate the robot-image Jacobian using
learning algorithms for example, self organising maps are used in [200, 210].
Two calibrated static cameras were used to learn the inverse kinematics rela-
tionship of a 7 DOF robot manipulator while redundancy resolution was also

Summary 227

addressed. The obtained inverse robot-image Jacobian approximation elimi-
nates the necessity for online pseudo-inverse computation. In [211], iterative
learning was proposed to approximate the Jacobian given a set of sample
points of the demonstrated trajectory. An eye-to-hand configuration was used
so that the system could compute the difference between the demonstrated
trajectory and the current position of the robot end-effector in every iteration.
Fuzzy modeling techniques have become increasingly popular. System iden-
tification using inverse fuzzy modeling has been proposed in [212]. In [213],
fuzzy clustering and inverse fuzzy models are derived; this method learned the
inverse model of the system where the robot-image Jacobian was estimated
and has also been applied in an eye-to-hand image based visual servoing sys-
tem. The experimental results show convergence of a 6 DOF robot manipulator
can be reached in a two dimensional trajectory (X-Z axes). The fuzzy model
suggested by Takagi-Sugeno (1985) [192] can represent a general class of static
or dynamic nonlinear systems [214]. In [212] the integration of learning algo-
rithms such as neural-fuzzy model and genetic algorithms was proposed to
solve the inverse dynamic model of a two-axis pneumatic manipulator system.
As the robotic manipulator, together with the visual system, is a nonlinear
system, it is advantageous to use the T-S fuzzy model in the system [192].

http://taylorandfrancis.com

7
Kinematic Control using Single Network
Adaptive Critic

7.1 Introduction
Consider the problem of a robot cutting out a circular sheet from a large met-
alic sheet. The objective is to complete the task in minimum time while mini-
mizing the jerks in joint movements. Thus the control policy must optimize a
global cost function. Consider another example. Any government tries to pre-
serve its forest resources. There are many takers for forest resources. Humans
require woods for making houses and furnitures. Jungle habitats depend on
the density of trees. So new trees must be planted while old trees are allowed to
be cut. If one cuts trees without any policy, then soon the forest will evaporate
as it requires some incubation period for new trees to grow. Again we must
learn the art of optimal control policy that defines the rate of cutting trees
and the rate of planting new trees. Such optimal control policy can be derived
using Pontryagin’s maximum principle (a necessary condition also known as
Pontryagin’s minimum principle or simply Pontryagin’s Principle) [2] or by
solving the Hamilton–Jacobi–Bellman equation (a sufficient condition).

In general such dynamical systems are represented by n-dimensional vector
differential equation which is usually nonlinear. For such nonlinear systems,
there is no closed loop solution to an optimal control problem. Moreover, the
iterative solution is obtained by offline computation.

In applications related to robotic systems, we require real-time solutions.
The Approximate Dynamic Programming (ADP) has become very popular
to find near-optimal solution. Most of the robotic systems can be presented
as input-affine nonlinear systems. Thus among many variants of ADP, single
network adaptive critic (SNAC) [215] based schemes are effective to design
optimal control policy for robotic systems.

This chapter will introduce the concept of SNAC and its application to
simple nonlinear systems, kinematic control, and visual kinematic control of
robot manipulators.

229

230 Kinematic Control using Single Network Adaptive Critic

7.1.1 Discrete-Time Optimal Control Problem
Consider the nonlinear dynamical system,

x(k + 1) = f(x(k),u(k)) (7.1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the input to the system. The
control task is to stabilize the plant while minimizing the cost function,

Jc =
∞∑
k=0

L(x(k),u(k)) (7.2)

where Jc is the cost function. The main interest of this thesis work is on the
optimal control problem with boundary condition x(k) = 0 as k →∞.

The cost function Jc can be expressed as,

Jc(k) = L(x(k),u(k)) +
∞∑

k̃=k+1

L(x(k̃),u(k̃))

= L(x(k),u(k)) + Jc(k + 1) (7.3)

where L(x(k),u(k)) is the utility function at instant k, Jc(k) and Jc(k+1) are
the cost-to-go functions at the instants k and k + 1 respectively. The above
equation is known as Bellman’s equation and it evaluates the value of the
current policy u(k) in terms of the value Jc(k + 1).

The optimal value is obtained using Bellman’s equation as,

J∗c (k) = max
u(k)

(L(x(k),u(k)) + Jc(k + 1)) . (7.4)

Bellman’s optimality condition [216] states that “An optimal policy has the
property that no matter what the previous decisions (i.e. controls) have been,
the remaining decisions must constitute an optimal policy with regard to
the state resulting from those previous decisions.” It is expressed in terms of
equation as,

J∗c (k) = max
u(k)

(L(x(k),u(k)) + J∗c (k + 1)) . (7.5)

Bellman’s optimality condition is known as discrete-time HJB equation.
The optimal control problem is solved by defining the costate vector λ(k)

as,
λ(k) = ∂Jc(k)

∂x(k) (7.6)

where,
∂Jc(k)
∂x(k) =

[
∂Jc(k)
∂x1(k)

∂Jc(k)
∂x2(k) . . ∂Jc(k)

∂xn(k)

]
(7.7)

Introduction 231

Here, Jc(k) ∈ R and x(k) ∈ Rn. Consider f(x) : Rn ⇒ Rm. Then,

∂f

∂x
=


∂f1
∂x1

∂f1
∂x2

. . ∂f1
∂xn

.

.
∂fm
∂x1

∂fm
∂x2

. . ∂fm
∂xn

 (7.8)

It is clear that ∂f
∂x ∈ Rn×m. Using the same idea, λ(k) ∈ R1×n The optimal

control law is derived from the necessary condition of optimality,

∂Jc(k)
∂u(k) = 0. (7.9)

∂Jc(k)
∂u(k) is evaluated using the Bellman’s equation (7.3) as,

∂Jc(k)
∂u(k) = ∂L

∂u(k) + ∂Jc(k + 1)
∂u(k)

Optimal cost Jc(k) at any instant k is a function of the state at that instant
x(k). Hence, simplifying the above equation by applying the necessary condi-
tion of optimality (7.9) results in,

∂L

∂u(k) + ∂Jc(k + 1)
∂x(k + 1)

∂x(k + 1)
∂u(k) = 0. (7.10)

The above equation gives the optimal control policy in terms of λ(k+ 1). The
costate vector λ(k) is evaluated as,

∂Jc(k)
∂x(k) = ∂L

∂x(k) + ∂Jc(k + 1)
∂x(k)

= ∂L

∂x(k) + ∂Jc(k + 1)
∂x(k + 1)

∂x(k + 1)
∂x(k) (7.11)

Along the optimal path, the costate vector is simplified to,

λ(k) = ∂L

∂x(k) + λ(k + 1)∂x(k + 1)
∂x(k) (7.12)

The optimal control policy is obtained using equations (7.12) and (7.10). The
costate vector λ(k) is computed in backward direction of time with the ter-
minal condition λ(k =∞) = 0.

7.1.2 Adaptive Critic Based Control
The optimal control policy u∗(k) depends on λ(k+1) and, hence, it depends on
future instances. The costate vector λ(k) is computed in backward direction
of time using equation (7.10). The major issue in implementing the optimal

232 Kinematic Control using Single Network Adaptive Critic

−

+

−

x(k+1)=f(x(k),u(k))

Eq. 7.10/ Eq. 7.16

Weight update law Weight update law

Action Network Critic Network
x(k) u(k) x(k+1)

+

Eq. 7.12/ Eq. 7.17
λd(k + 1)

λ̂(k + 1)

u∗(k)

FIGURE 7.1: Adaptive critic-based optimal control scheme.

control is that the analytic expression is not available for many cases and it
is to be computed backward in time.

Adaptive critic [217] has been proposed to learn the optimal control for-
ward in time. Adaptive critic approximates the optimal controller in state-
feedback form with two neural networks: (i) action network (ii) critic net-
work. Action network approximates the control input, u(k) as a function of
the system state, x(k). The performance of the control input generated by
the action network is evaluated using the critic network. The critic network
approximates either the value function Jc(k) or the costate vector, λ(k) as a
function of the system state, x(k). The value function is approximated using
(7.10) while the costate vector is approximated with the critic network using
(7.12). The control policy is learned with an action network using equation
(7.10). λ(k + 1) required in equation (7.10) is obtained either modeling the
value function using equation (7.3) or the costate vector using equation (7.12)
with a critic network. Both action and critic networks are usually modeled by
a MLN with single hidden layer, where the output layer remains linear. The
block schematic of the proposed scheme is shown in Figure 7.1.

7.1.2.1 Training of Action and Critic Network

The near-optimal solution is obtained online through learning in critic based
methodology. As the learning progresses, the control policy from AC method-
ology converges to the optimality. The training of action and critic network is
explained with an example as shown below. Consider the example:

ẋ1 = x2

ẋ2 = α(1− x2
1)x2 − x1 + (1 + x2

1 + x2
2)u (7.13)

This represents the dynamics of the Vanderpol oscillator system. Discretizing
(7.14), we get

x1(k + 1) = x1(k) + Tx2(k)
x2(k + 1) = x2(k) + T (α(1− x1(k)2)x2(k)− x1(k) +

(1 + x1(k)2 + x2(k)2)u(k)) (7.14)

Introduction 233

where, T is the sampling time. Now, the optimal control policy and the
costate vector for this system may be found using (7.10) and (7.12) respec-
tively. Here, x(k) = [x1(k) x2(k)]T . Let the cost function to be minimized
be Jc =

∑∞
k=0 L(x(k),u(k)), where L(k) = 1

2 (x(k)Tx(k)+u(k)Tu(k)). Then,
(7.10) may be invoked and re-written as,

∂L

∂u(k) + ∂Jc(k + 1)
∂x(k + 1)

∂x(k + 1)
∂u(k) = 0

ud
T (k) + λ(k + 1)g = 0 (7.15)

where, g = [0 T (1 + x1(k)2 + x2(k)2)]T . Therefore, optimal control policy
may be written as,

ud(k) = −gTλ(k + 1)T (7.16)
Now, (7.12) may be re-written for this system to find out the desired costate
vector which may be used to tune the critic weights.

λd(k) = x(k)T + λ(k + 1)f (7.17)

where,

f =
[

1 T
2Tx1(k)(u(k)− αx2(k)) 1 + T (α− αx1(k)2 + 2u(k)x2(k)

]
.

Given below is the algorithm for training of action and critic network for
the system (7.14).

1. Input x(k) to the action network and get u(k).

2. Compute x(k+1) using the system dynamics (7.14) with the control input
u(k).

3. Compute λ(k + 1) from the critic network with the input x(k + 1).

4. Compute the desired input ud(k) using the optimal control law equation
(7.16) with x(k) and λ(k + 1).

5. Update the action network by minimizing ‖ ud(k)− u(k) ‖.
The critic network which represents the relationship between the costate

λ(k) and the state x(k) is trained as follows:

1. Compute the costate vector λ(k) and the input u(k) with x(k) using the
critic and the action network respectively.

2. Obtain the system state at (k+1)th instant for u(k) using equation (7.14).

3. Compute λ(k + 1) with x(k + 1) using the critic network.

4. Compute λd(k) using λ(k + 1) and x(k) in the costate equation (7.17).

5. Update the critic network by minimizing ‖ λd(k)− λ(k) ‖.

234 Kinematic Control using Single Network Adaptive Critic

Adaptive critic learns the optimal solution in the forward direction of time
using the action and the critic networks. The action and the critic networks
are updated alternatively. The critic network is updated assuming that the
action network is giving an admissible control input. The action network is
trained assuming that the output of the critic network is optimal. The critic
network is used only during the training phase to learn the action network. It
is not required in the real-time control process.

There exists a class of systems for which the analytic expression for the
optimal controller is available in terms of the costate vector. In such cases,
the action network is not necessary during both the training and the imple-
mentation stages. It is enough to learn the costate vector during the training
phase. The costate vector estimated with the critic can be used to implement
the optimal control policy in real-time. Such adaptive critic architecture is
computationally efficient since the computation associated with the action
network is not required. In addition, the control architecture would be robust
due to the absence of inaccuracies in modeling the action network. Considering
this simplicity, single network adaptive critic has been proposed for optimal
control problems whose optimal control policy can be analytically represented
in terms of the costate vectors. A brief introduction of SNAC is presented fur-
ther in the context of optimal control of input affine systems with quadratic
cost function, since the global optimal redundancy resolution problem is to be
formulated in this framework.

7.1.3 Single Network Adaptive Critic (DT-SNAC)
Consider an input affine dynamical system,

x(k + 1) = f(x(k)) + g(x(k)) u(k) (7.18)

with a quadratic cost function,

Jc = 1
2

∞∑
k=0

(xT (k) Q x(k) + uT (k) R u(k)) (7.19)

where Q ∈ Rn×n is a positive semi-definite matrix and R ∈ Rm×m is a
positive definite matrix which penalizes the states and inputs respectively.

The analytical expression for the optimal control input can be obtained
using equation (7.10) as,

u∗(k) = −R−1gT (x(k)) λ?(k + 1) (7.20)

where λ?(k + 1) = ∂J?c (k+1)
∂x(k+1) is the optimal costate vector of the system. The

optimal control policy can be implemented in real-time, if either the optimal
costate vector λ?(k+1) or the estimate of the optimal costate vector λ̂(k+1)
is known. The closed loop control with adaptive critic is possible for the above
optimal control problem, if the costate vector λ∗(k + 1) is estimated with a

Introduction 235

critic network in contrast to λ∗(k). In such cases, there is no need for an
action network since the closed form solution exists in terms of λ̂(k+ 1). The
methodology is computationally efficient and robust due to the absence of the
action network.

In this context, a single network adaptive critic has been proposed in [215]
for optimal control problem with a closed form solution to the control input
u∗(k) in terms of the costate vector λ∗(k + 1). In SNAC, the costate vector
at (k + 1)th instant is modeled as λ̂(k + 1) = fN (x(k)).

In case of LTI systems, a critic network of architecture λ̂(k+ 1) = Wx(k)
was considered in [215]. The optimal value of W is known for LTI system as
given by,

W = (I + PBR−1BT)−1PA (7.21)

where P is the solution of discrete-time algebraic Riccati equation (DARE).
It has been shown that the critic network converges to the solution of the
ARE, if the update converges. For a nonlinear system, this critic network can
be modeled as feedforward network or a T-S fuzzy model-based architecture.
There are other possible neural architectures that can be used to model the
critic network.

7.1.4 Choice of Critic Network Model
7.1.4.1 Costate Vector Modeling with MLN Critic Network

Here, the costate vector is estimated using a MLN from the present states as
given by, λ(k+ 1) = f(W,x(k)), where W represents the weights of the critic
network. Usually, MLN has a single hidden layer with a nonlinear activation
function and the output of the MLN is taken to be linear. The steps for
training the critic network which captures the relationship between x(k) and
λ(k + 1) using the architecture shown in Figure 7.2 are as follows:

−

+
Weight update law

Critic Network

Eq. 7.12
λd(k + 1)

λ̂(k + 1)

u∗(k) = −R−1gT λ̂(k + 1)
λ̂(k + 2)

z−1

z−1

x(k+1)=f(x(k),u(k))
x(k+1)u(k)

FIGURE 7.2: Control scheme with discrete-time single network adaptive critic
(DT-SNAC).

236 Kinematic Control using Single Network Adaptive Critic

1. Generate state x(k) in the domain of interest.

2. For each element x(k), follow the steps below:
(a) Input x(k) to the critic network to obtain λ(k + 1) = λa(k + 1).
(b) Calculate the optimal control u(k) using (7.20).
(c) Get the next state x(k + 1) from (7.18) using x(k) and u(k).
(d) Input x(k + 1) to the critic network to obtain λ(k + 2).
(e) Using x(k+ 1) and λ(k+ 2), calculate λd(k+ 1) from the costate

equation.

3. Train the critic network for all states x(k) in the domain of operation; the
output being corresponding λd(k + 1).

4. Check the convergence of the critic network. If the convergence is achieved,
revert to step 2 with n = n+ 1. Otherwise repeat steps 2-3.

5. Continue steps 2-4 until the convergence is achieved.

7.1.4.2 Costate Vector Modeling with T-S Fuzzy Model-Based
Critic Network

T-S fuzzy model is used to model the nonlinear costate vector in equation
(7.12) as a fuzzy cluster of the costate vector of the local linear models. With
such architecture, the individual zones of the T-S fuzzy model correspond to
the optimal weights of the local linear model within its fuzzy boundary.

The ith rule of the T-S fuzzy model-based critic network for nonlinear
system with the current state vector x(k) is defined as,

IF x1(k) is F i1 AND · · · AND xn(k) is F in THEN

λ̂i(k + 1) = Wix(k)
where F ij , j = 1, 2, · · · , n, is the jth fuzzy set of the ith rule. Wi ∈ Rn×n
is the linear map associated with the ith fuzzy zone to model the costate
vector. Fuzzy zone F ij is defined using Gaussian function. It is associated with
mean cij and the standard deviation σij to define the fuzzy space. The fuzzy
membership value associated with F ij is computed as,

µji (xj) = e

(
−(xj−c

i
j
)2

2(σi
j
)2

)
. (7.22)

Let,

µi(x) =
n∏
j=1

µji (xj) (7.23)

where i = 1, 2, · · · , Nn and µi(x) is the membership value of the ith fuzzy
zone. The ith fuzzy rule is defined with fuzzy center ci = [ci1 ci2 . . . cin]T , and
standard deviation σi = [σi1 σi2 . . . σin]T .

Introduction 237

The standard deviation of the Gaussian function is chosen such that at
least one fuzzy zone is active at every operating point. The maximum overlap
between two fuzzy zones at the center of the fuzzy set is assumed and then
the standard deviation of the Gaussian function is computed. Let dij be the
distance to the center of the adjacent fuzzy set from center of the fuzzy set
F ij , then the standard deviation is computed as,

σij =

√
(dij)2

2 log(µcen) (7.24)

where µcen is the overlap of the closest neighbor at the fuzzy center cij . The
above method of computing the standard deviation of the Gaussian function
to estimate the spread of the fuzzy sets is known as nearest neighbor heuristic.

Given the current state vector x(k), the fuzzy model around the operating
point is constructed as the weighted average of the local models and has the
form,

λ̂(k + 1) =

Nn∑
i=1

µiWix(k)

Nn∑
i=1

µi

. (7.25)

In case of a linear system, only one fuzzy zone is considered to represent the
entire workspace, and then the T-S fuzzy model gets simplified to the critic
network suggested in [215]. It should be noted that the costate vector in each
fuzzy zone is learned with a network similar to that of the costate vector of a
linear system. It is shown in [215] that the weights would converge to optimum
value for linear systems, if the iteration converges. Hence, with the proposed
T-S fuzzy model-based critic network, it is expected that the network would
converge to the optimal value corresponding to the local linear model of each
fuzzy zone.

The control scheme is shown in Figure 7.3. In general, any network archi-
tecture can be chosen to model the co-state vector. The critic network approx-
imates the costate vector using the current state x(k), and the output of the
critic network is used to compute the input u(k) using equation (7.20). T-S
fuzzy model is used in this thesis work, to decompose the global nonlinear
costate vector as a fuzzy cluster of the costate vector of the local linear sys-
tems. Such a model gives a meaningful insight about the costate vector in
terms of the local linear model.

The critic network is updated using equation (7.12) with x(k + 1) and
λ(k + 2) as explained below. The network is to be trained such that the
weights converge to the optimal value in each fuzzy zone. The critic network is
learned within a fuzzy zone initially, and then the zone of learning is expanded
gradually toward the entire universe by including the neighbor zones. In this
work, the network is learned initially in the fuzzy zone defined around the

238 Kinematic Control using Single Network Adaptive Critic

Update
Law

of

Optimal
Control

Z−1
λ̂(k + 1)

∆w

Weight

System
Input Affine
Discrete-time

Linear Critic
Networks

x(k + 1)

x(k)

x(k)

x(k + 1)u(k)

u(k) = −R−1gT λ̂

Fuzzy cluster

FIGURE 7.3: Control scheme with discrete-time single network adaptive
critic(DT-SNAC) using T-S Model.

origin of the state space. To achieve uniform network convergence over the
entire workspace, the learning zones Si = {x(k) : ‖ x(k) ‖< Ci} are defined,
where Ci is a positive constant and i = 1, 2, . . . , I. Ci is chosen such that
Ci < Ci+1. Initially C1 is chosen a small value such that the network learns
the optimal weights corresponding to the fuzzy zone around the origin. Then
the region of learning is gradually increased. With such training, the network
weights would vary smoothly from one zone of operation to another zone of
operation.

The critic network is learned as follows:

1. Generate ND random initial operating points for Si as explained above
for each learning stages. Initialize i = 1 and k = 0. Repeat the following
steps for each member of x(k) in Si.

2. Compute λ̂(k + 1) with x(k) using the critic network (7.25).

3. Compute the control input u(k) using equation (7.20) with λ̂(k + 1).

4. Give the input u(k) and obtain the next state x(k + 1).

5. Compute λ̂(k + 2) with x(k + 1) using the T-S fuzzy model-based critic
network (7.25).

6. Compute λd(k + 1) using x(k + 1) and λ̂(k + 2) in equation (7.12).

7. Update the weights of the critic network by minimizing ‖ λd(k+1)−λ̂(k+
1) ‖.

8. Increment k and repeat from step (2) for Nmax instants.

9. Repeat from step (2) for ND random points in Si with k = 0.

Introduction 239

10. Check for the convergence of the weights of the critic network. If conver-
gence is achieved, go to step 1) with i = i + 1. Otherwise, repeat steps
(2)− (8) for all the members of Si.

11. Repeat steps (1)− (9) till i = I.

Nmax represents the number of evolutions in time from the initial state x(k)
defined in Si. If the system is unstable with the initial critic network, then
the system is not evolved to instability, and Nmax is initialized as Nmax = 1.
The generation of training data with learning zones Si is known as telescopic
method [215].

The weights of the sub-critic networks in the T-S fuzzy model represent
the costate vector corresponding to the local zone defined by fuzzification.
The weights of the critic network vary smoothly from the optimal value at
the origin and, hence, the weights of the critic network are initialized with the
optimal value at the origin. The optimal weights corresponding to the origin is
computed for the linearized model at the origin using discrete-time algebraic
Riccati equation (DARE). It will be shown in experimental results, that the
weights gradually change from the optimal values at the origin, as the system
states move away from the origin.
Example 7.1. Consider the first order nonlinear system dynamics given by,

ẋ = −x3 + u (7.26)

where x is the system state and u is the input to the system. The objective is
to stabilize the system such that the input would minimize the cost function,

Jc = 1
2

∫ ∞
0

(x2 + u2)dt. (7.27)

The analytic expression of the optimal controller is known for the system and
is given by,

u∗ = x3 −
√
x6 + x2. (7.28)

The main objective of this simulation is to show that the T-S fuzzy model-
based SNAC approximates the costate vector effectively for discrete-time sys-
tems, and converges to global optimal solution. The discrete-time SNAC pro-
posed in 7.1.3 can be applied to this optimal control problem by discretizing
the dynamics and the cost function.
Solution 7.1. The discrete-time representation of the dynamics is given by,

x(k + 1) = x(k) + ∆T (−x3(k) + u(k)) (7.29)

where x(k) is the system state, and u(k) is the input to the system at the
instant k, and ∆T is the sampling time. The objective is to stabilize the
system such that the input would minimize the cost function,

Jc = 1
2

∞∑
0

(x2 + u2)∆T. (7.30)

240 Kinematic Control using Single Network Adaptive Critic

-1 -0.5 0 0.5 1
x

0

0.2

0.4

0.6

0.8

1

M
em

b
er

sh
ip

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
9

FIGURE 7.4: T-S fuzzy model with nine equally spaced fuzzy zones in the
workspace (−1, 1).

The operating zone is considered as (−1, 1), and the costate vector is approx-
imated with nine equally spaced fuzzy zones. The standard deviation of the
Gaussian function is chosen using the first nearest neighbor heuristic with a
maximum overlap of 0.01 between two adjacent fuzzy sets. The fuzzy zones
are shown in Figure 7.4. The mean value of the fuzzy membership functions
are c = [−1 − 0.75 − 0.5 − 0.25 0 0.25 0.5 0.75 1.0]T and the standard
deviation corresponding to the overlap 0.01 is computed using equation (7.24)
as 0.0824. The system is simulated with a sampling time of 0.1s for a dura-
tion of 10s and, hence, Nmax = 100. The critic network is trained with 5,000
random points in the operating zone, and the evolution of weights at different
fuzzy zone during training is shown in Figure 7.5(a). It is clear from the figure
that the weights are converging and are varying smoothly from the costate
vector at the origin. The controller performance is tested from different initial
states and compared with the optimal control policy. The performance com-
parison of the discrete-time SNAC with the optimal control policy is shown
in Figure 7.6, which shows that the critic performs closer to the optimal cost.
The corresponding control cost is tabulated in Table 7.1. It is evident that,
the cost incurred with the T-S fuzzy model-based SNAC is closer to that
of the optimal control policy. The cost incurred from various initial state x0
in the operating zone is shown in Figure 7.5(b). The figure clearly shows that
the fuzzy clustering with the linear costate model approximates the global
costate effectively.

TABLE 7.1: First order system controlled with DT-SNAC and optimal control
policy: Control cost at simulated points

x0 -0.4248 0.464 -0.8348 0.5690 -0.5696
Critic 0.1048 0.1222 0.3147 0.1730 0.1733

Optimal 0.1046 0.1222 0.3147 0.1731 0.1734

Adaptive Critic Based Optimal Controller Design 241

0 1250 2500 3750 5000
Iteration

4

6

8

10

12

14

W
ei

g
h

ts

w(-1)

w(-0.75)

w(-0.5)

w(-0.25)

w(0)

w(0.25)

w(0.5)

w(0.75)

w(1)

(a)

-1 -0.5 0 0.5 1
x

0

0

0.1

0.2

0.3

C
o

st

Adaptive critic

Optimal Control

(b)

FIGURE 7.5: First order system with DT-SNAC: (a) Evolution of weights of
the critic network during the training phase, (b) Control cost from different
initial states for DT-SNAC and optimal control policy.

0 10 20 30 40 50
time (s)

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

x

Adaptive critic

Optimal control

(a)

0 10 20 30 40 50
time (s)

-0.4

-0.2

0

0.2

0.4

0.6

u

Adaptive critic

Optimal Control

(b)

FIGURE 7.6: First order system controlled with DT-SNAC and optimal con-
trol policy: Controller performance: (a) State, (b) Input.

7.2 Adaptive Critic Based Optimal Controller Design
for Continuous-time Systems

The real-time implementation of the optimal control policy for a discrete
time nonlinear system is constrained by computational complexity, absence of
closed form solution and offline numerical computation. These challenges are
equally valid for continuous-time systems also and, hence, AC based method-
ologies have been proposed for the optimal control of continuous time non-
linear systems [218]. Baird [219] proposed AC based controller for continuous
time systems using advantage updating and discussed the effect of sampling
time on training. Similar to the discrete-time systems, AC methodologies use
dual network architecture to learn the optimal solution of continuous-time
systems. SNAC has been proposed for continuous-time input affine systems

242 Kinematic Control using Single Network Adaptive Critic

in [220,221]. The convergence to optimality is shown for input affine systems
with initial stabilizing control policy in [222, 223]. The convergence to opti-
mality for a general nonlinear system with constrained input is shown in [224].

This chapter aims to develop adaptive critic based control strategy for visu-
ally controlled manipulator, whose nonlinear dynamics occur in input affine
form. Such systems can be optimally controlled using SNAC, with a critic net-
work modeling either the value function or the costate vector of the optimal
control problem. The major intent of this thesis work is to model the value
function of the optimal control policy with a critic network. Hence, further
discussion primarily focuses on SNAC based optimal control methodology for
input affine systems, where the critic network approximates the value function.

7.2.1 Continuous-time Single Network Adaptive Critic
(CT-SNAC)

The dynamics of a continuous-time nonlinear input affine system is repre-
sented as,

ẋ = f(x) + g(x)u. (7.31)
The task is to find a control input u∗ which stabilizes the system, while
minimizing the quadratic cost function,

Jc =
∫ ∞

0

1
2(xTQx+ uTRu)dt

=
∫ ∞

0
ψ(x,u)dt (7.32)

where Q is a positive semi-definite matrix, R is a positive-definite matrix, and
ψ(x,u) is the utility function of the continuous-time optimal control problem.
The optimal control problem with boundary conditions tf =∞ and xf = 0 is
analyzed in this thesis work. The optimal control policy is derived by defining
the Hamiltonian of the control problem as,

H(x,λ,u) = ψ(x,u) + λẋ (7.33)

where λ = ∂Jc
∂x ∈ R1×n is the costate vector of the system.

The optimal control law satisfies the necessary condition of extremum given
by,

∂H

∂u
= 0. (7.34)

The above condition gives the optimal control policy as a function of x and
λ. The closed form solution to the above condition does not exist for general
nonlinear systems. But, the closed form solution can be obtained as a function
of λ∗, in case of input affine systems. The necessary condition of optimality
(7.34) reduces to,

∂ψ

∂u
+ λ∗ ∂

∂u
(f(x) + g(x)u) = 0. (7.35)

Adaptive Critic Based Optimal Controller Design 243

The above condition gives the optimal control policy,

u∗ = −R−1gT (x)λ∗T . (7.36)

The optimal cost satisfies the HJB equation,

∂J∗c
∂t

+ min
u
H(x,λ∗,u) = 0. (7.37)

The costate vector λ∗ is computed using HJB equation for the optimal control
policy u∗. The HJB equation gives the solution to the optimal control problem
for any class of systems. However, the analytical solution to the HJB equation
is difficult to obtain in most of the cases.

Adaptive critic methodology solves the above optimal control problem with
action and critic networks. Action network solves equation (7.34) and approx-
imates the relationship between the input u and the system state x. Critic
network solves HJB equation (7.37) and estimates either the value function
Jc or the costate vector λ as a function of system state x.

This chapter explains the SNAC based approaches for continuous-time
system (CT-SNAC) by approximating the value function with a critic network
V (x,w), where w is the parameter vector of the critic network. After learning
the optimal value function J∗ with the critic network, the costate vector ∂J∗c

∂x ,
is calculated from the network as λ = ∂Jc

∂x , to compute the control input using
equation (7.36).

Action network is not necessary for input affine systems since the analytic
expression for the input is available in terms of the costate vector. Any param-
eterized model Jc(w,x) can be used to learn the optimal cost, provided that
Jc(w,0) = 0 and ∂Jc

∂x exists.

7.2.2 Critic Network: Weight Update Law
The critic network has to be updated such that it satisfies the HJB equation
(7.37). HJB requires the costate vector λ, and the system dynamics (7.31) to
compute the value function V . Exact knowledge of the system dynamics is
required to update the critic network with equation (7.37). If the dynamics
is unknown, the critic network can be updated using the derivative of the
system states. This thesis work proposes an alternative approach which does
not require either the exact knowledge of the model or the derivatives of the
state to update the critic network. The update methodology for the critic
network is derived as follows:

The critic network must satisfy the HJB equation since it approximates
the value function. It is expressed in terms of equation as,

∂V (x)
∂t

+ min
u
H(x,λ,u) = 0. (7.38)

244 Kinematic Control using Single Network Adaptive Critic

The above equation is rewritten by substituting equation (7.33) for input
affine system as,

∂V (x)
∂t

+ ψ(x,u) + λ(f(x) + g(x)u) = 0

∂V (x)
∂t

+ ψ(x,u) +
(
∂V

∂x

)
(f(x) + g(x)u) = 0. (7.39)

The aforementioned equation simplifies to,

V̇ (x) = −ψ(x,u) (7.40)

where

V̇ (x) = ∂V (x)
∂t

+
(
∂V

∂x

)
ẋ

= ∂V (x)
∂t

+
(
∂V

∂x

)
(f(x) + g(x)u). (7.41)

The above equation gives the expression for change in the value function as
the system moves along the optimal path. ∂V (x)

∂t represents the explicit time
dependence of the value function on time, which occurs due to the evolution
of weights during the training phase. Hence, a weight update law has to be
proposed which ensures that the critic network satisfies equation (7.40).

In [220] a continuous-time weight update has been proposed with the min-
imum norm solution to equation (7.39) which requires either the dynamics of
the system or the derivative of the system state. The major drawback is that
the convergence to optimality is not guaranteed with the minimum norm solu-
tion. A discrete-time weight update is proposed in this work by discretizing
equation (7.40) and then the weights are updated with gradient descent rule.
Hence, further discussions will be continued in discrete-steps of sampling time
∆T . The proposed approach is motivated by the relationship,

J(x(t0),u(t0)) =
∫ ∞
t0

ψ(x(τ),u(τ))dτ

=
∫ t1

t0

ψ(x(τ),u(τ))dτ

+
∫ ∞
t1

ψ(x(τ),u(τ))dτ

=
∫ t1

t0

ψ(x(τ),u(τ))dτ + J(x(t1),u(t1))

= ψ(x(t0),u(t0))∆T + J(x(t1),u(t1)) (7.42)

where ∆T = t1− t0. Such discrete-time approximations are always valid with
high sampling rate. The discrete-time form of equation (7.40) is written as,

∆V (x(k)) = −ψ(x(k),u(k))∆T. (7.43)

Adaptive Critic Based Optimal Controller Design 245

Following equation (7.42), the equation (7.40) is expanded as,

V (x(k)) = ψ(x(k),u(k))∆T + V (x(k + 1)) (7.44)

where ∆V (x(k)) = V (x(k+1))−V (x(k)), k and k+1 are sample instants. The
above equation is analogous to the Bellman’s equation (7.3) of the discrete-
time system. Value function has been updated using Bellman’s equation for
discrete-time systems, and the convergence has been proved in [225]. Hence
a weight update with equation (7.43) is expected to converge to the optimal
values, if the Euler approximation is valid.

With such analogy, the weight update law is further derived as follows.
At any instant the weights of the critic network must satisfy equation (7.44).
The weights are updated such that the above equation is satisfied. The optimal
value function V d(k) is predicted with the weight vector w(k) as,

V d(w(k),x(k)) = ψ(x(k),u(k))∆T + V (w(k),x(k + 1)) (7.45)

where V d(w(k),x(k)) is the predicted optimal cost. The weights are updated
using gradient descent law, to minimize ‖ V d(w(k),x(k))− V (w(k),x(k)) ‖,
where V (w(k),x(k)) is the actual value estimated from the critic network.
Thus, the CT-SNAC can be updated to optimality without the complete knowl-
edge of the system with the proposed Euler approximation based weight update
scheme. This is one of the key contributions achieved. The accurate model of
the system is not available in real-time and, hence, the proposed approach can
be executed to tune the controller parameters in real-time.

This approach is similar to the approach proposed in [219]. But the advan-
tage of the action is computed at each stage in [219] and then the critic network
is updated. In our approach there is no need for separate computation of the
advantage and the critic network is updated directly by predicting the desired
value function (7.45).

The control scheme with SNAC for continuous-time system is shown in
Figure 7.7.

7.2.3 Choice of Critic Network
7.2.3.1 Critic Network using MLN

Just as in DT-SNAC, here also we can use a MLN to model the value function
or the costate vector. Usually we take MLN with single hidden layer with non-
linear activation function. The ouput is usually linear. Considering the MLN
to estimate the value function, the steps for training are:

1. Generate state x(k) in the domain of interest.

2. For each element x(k), follow the steps below:
(a) Input x(k) to the critic network to obtain V (k+ 1). Compute the

costate vector λ(k + 1) from V (k + 1).

246 Kinematic Control using Single Network Adaptive Critic

Update
Law

of

Z−1

∆w

Control
Optimal

Weight

V

λ

Input Affine
System

Continuous-time

Networks
Linear Critic

u x(k + 1)

u(t) = −R−1gTλ

λ = ∂V
∂x

x(k)

x(k)

x(k + 1)

Fuzzy cluster

FIGURE 7.7: Control scheme with continuous-time single network adaptive
critic (CT-SNAC).

(b) Calculate the optimal control u(k) using (7.20).
(c) Get the next state x(k + 1) by giving the input u(k).
(d) Input x(k+1) to the critic network to obtain V (k+2) and compute

λ(k + 2).
(e) Using x(k + 1),u(k + 1), compute ψ(k + 1). Using ψ(k + 1) and

V (k + 2), calculate V d(k + 1) using (7.45).

3. Train the critic network for all states x(k) in the domain of operation.

4. Check the convergence of the critic network. If the convergence is achieved,
revert to step 2 with n = n+ 1. Otherwise repeat steps 2-3.

5. Continue steps 2-4 until the convergence is achieved.

7.2.3.2 T-S Fuzzy Model-Based Critic Network with Cluster of
Local Quadratic Cost Functions

In this section, T-S fuzzy model-based critic network is proposed to model the
value function. The sub-critic networks in each fuzzy zone, model the value
function with a quadratic cost function.The optimal cost of the LTI system
with quadratic cost function (7.32), is given by,

J∗c = 1
2x

TPx (7.46)

where P is a symmetric positive definite matrix, computed from ARE,

ATP + PA− PBR−1BTP + Q = 0. (7.47)

Nonlinear system behaves like a linear system in a small operating zone. It is
intuitive and reasonable that a quadratic cost is a valid value function in a

Adaptive Critic Based Optimal Controller Design 247

small zone of operation. The nonlinear dynamics can be represented with fuzzy
cluster of local linear models in global operating zone and, hence, the global
value can be better approximated with cluster of quadratic cost functions by
fuzzifying the system states. With this motivation, T-S fuzzy model with a
quadratic cost function in every fuzzy zone is chosen as the critic network to
approximate the value function.

The ith zone of the T-S fuzzy model-based critic network to approxi-
mate the value function of the continuous-time nonlinear dynamical system is
defined as,

IF x1(t) is F i1 AND · · · AND xn(t) is F in THEN

Vi(x) = 1
2x

TWP
i x

where F ij , j = 1, 2, · · · , n, is the jth fuzzy set of the ith zone. WP
i is a

symmetric matrix which represents the linear map associated with the ith
fuzzy zone to model the local value function. The fuzzy membership value µi
associated with the ith zone is defined as,

µi =
n∏
j=1

µji (xj) (7.48)

where µji (xj) is the membership function of the fuzzy set F ij , i = 1, 2, · · · , Nn
and Vi(x) represents the value corresponding to the operating zone defined
by the ith fuzzy zone. Gaussian membership is used to define the fuzzy space
associated with F ij similar to the discrete-time systems. µij(xj) and µi(x) are
computed as discussed in section 7.1.4.2.

The fuzzy model around the operating point x(t) is constructed as the
weighted average of the local models as,

V (x) = 1
2

Nn∑
i=1

µix
TWP

i x∑Nn
i=1 µi

(7.49)

where V (x) is the control cost to stabilize from the state x(t).
The T-S fuzzy model approximates the value function with a fuzzy cluster

of the value function of the linear models. Hence, T-S fuzzy model explains
the relationship between the value function of the local linear models and that
of the global nonlinear model. It is expected that such an architecture would
converge to optimality of the local models in each fuzzy zone.

The network should be trained such that the weights converge to the opti-
mal values in each fuzzy zone. The network is trained by defining the training
zones of increasing size, with the telescopic method discussed for discrete-time
system in section 7.1.4.2.

248 Kinematic Control using Single Network Adaptive Critic

The critic network is learned as follows:

1. Generate ND random initial operating points for Si where i = 1, 2, . . . , I,
as explained in section 7.1.4.2 for each zone of operation. Initialize i = 1
and k = 0. Repeat the following steps for each member of x(k) in Si.

2. Compute the control input u(t) = u(k) using equation (7.36) with the
costate vector estimated from the T-S fuzzy model-based critic network
(7.49).

3. Give the input u(k) and obtain the next state x(k + 1).

4. Compute ψ(x(k),u(k)), V (x(k + 1)) and V (x(k)), with current instant
weight vector w(k).

5. Compute V d(w(k),x(k)) from V (w(k),x(k+ 1)) and ψ(x(k),u(k)) using
equation (7.45).

6. Update the weights to minimize, ‖ V d(w(k),x(k))− V (w(k),x(k)) ‖.

7. Increment k and repeat from step (2) for Nmax instants.

8. Repeat from step (2) for ND random points in Si, with k = 0.

9. Check for convergence of the weights of the critic network. If convergence
is achieved, go to step (1) with i = i+ 1. Otherwise, repeat steps (2)− (8)
for all the members of Si.

10. Repeat steps (1)− (9) till i = I.

Since the T-S fuzzy model represents the value function, it must be a positive
definite function. Hence, the weight is to be properly initialized such that the
T-S fuzzy model is positive definite from the beginning of the training. In
this approach, the weights in each fuzzy zone are initialized to the weights
corresponding to the optimal weights of the linearized model around the ori-
gin, which can be easily obtained from ARE. It will be shown further in the
experiments that the weights gradually change from the optimal values at the
origin as the system states move away from the origin. If the system is not
stable initially, then Nmax is chosen as 1.

7.2.4 CT-SNAC
This section discusses the simulation results obtained with the continuous-
time single network adaptive critic (CT-SNAC) proposed in 7.2. The proposed
continuous-time adaptive critic is tested on four systems. At first, a second
order LTI system is selected to show that the critic network converges to the
optimal cost of the LTI system with the proposed learning scheme. Then the
first order nonlinear system considered in the section 7.2.1 is considered, and it
is shown through the simulation that the weights of each zone finally settle to

Adaptive Critic Based Optimal Controller Design 249

a value, which closely approximates the optimal cost of the nonlinear system.
Finally, the control scheme is tested on benchmark systems-Vanderpol oscilla-
tor and single link manipulator. The controller performance is compared with
linear quadratic regulator (LQR) obtained for the linearized model around the
origin, since the optimal cost is not known for the aforementioned benchmark
systems.
Example 7.2. Consider an LTI system [220] with dynamics,[

ẋ1
ẋ2

]
=
[

0 1
0.4 0.1

] [
x1
x2

]
+
[

0
1

]
u. (7.50)

The task is to find the control law u, which minimizes the cost (7.32), where

Q =
[

1 0
0 1

]
and R = 1.

The optimal cost (7.46) of the system is obtained from ARE (7.47) as,

P =
[

2.10456 1.4722
1.4722 2.09112

]
. (7.51)

The critic network with only one fuzzy zone is considered since the system
dynamics is linear. The critic network is expressed as,

V = 1
2(w1x

2
1 + w2x

2
2 + 2w3x1x2). (7.52)

Solution 7.2. The critic network is trained from 200 random initial states
with sampling instant 0.01s and Nmax = 200. The weight evolution during the
training phase is shown in Figure 7.8(a). The critic network has converged to
w1 = 2.0889, w2 = 2.051 and w3 = 1.449, which clearly demonstrates that
the weights of the critic network converge to the optimum values of the LTI
system with the proposed weight update.

0 50 100 150 200

iteration

0.5

1

1.5

2

2.5

3

w
ei

g
h
t

w
1

w
2

w
3

(a)

0 5000 10000 15000 20000
iterations

0.5

0.75

1

1.25

1.5
w(-1)

w(-0.75)

w(-0.5)

w(-0.25)

w(0)

w(0.25)

w(0.5)

w(0.75)

w(1)

(b)

FIGURE 7.8: Evolution of the weights of the critic network during training
phase: (a) LTI system controlled with CT-SNAC, (b) First order system with
CT-SNAC.

250 Kinematic Control using Single Network Adaptive Critic

Example 7.3. The first order nonlinear system discussed in Section 7.2.1 is
considered to analyze the performance of the proposed SNAC based control
methodology for continuous-time systems. The cost function is chosen same
as the discrete-time case so that the results can be compared. DT-SNAC was
designed for the discretized system in Section 7.5. In this simulation the actual
continuous-time dynamics is considered while learning the optimal control
policy with SNAC based methodology. The main objective of this simulation
is to show that the nonlinear optimal cost can be modeled better with the
fuzzy cluster of the cost function of the local linear model.

Solution 7.3. The operating zone is considered as (−1, 1) similar to Sec-
tion 7.5, and the value function is approximated with nine equally spaced
fuzzy zones over the workspace. The fuzzy zones are chosen as same as that
of discrete-time system, as discussed in Section 7.5. The fuzzy zones shown in
Figure 7.4 are valid for this experiment too. The system is simulated with a
sampling time of 0.1s for a duration of 10s. The weight of the critic network
in every fuzzy zone is initialized to the weight corresponding to the fuzzy zone
around the origin. The critic network is trained with 20,000 random points in
the operating zone. The evolution of the weights in different zones during the
training phase is shown in Figure 7.8(b) which clearly shows that the weights
of the critic network converge with the proposed update scheme.

The final value of the weights in different operating zone are tabulated
in Table 7.2. It is clear from the table that the weights in individual zone
smoothly vary from the optimal weights corresponding to the origin. The
learned weight around the fuzzy zone x1 = 0 is 1.0009, which is closer to the
optimal cost P = 1 of the linearized system. This corroborates the claim that
the fuzzy clustering with local linear system modeling gives meaningful insight
of relation between the local and the global optimal costs. After initial train-
ing, the system is controlled from different initial states and the controller
performance is compared with the optimal control policy. The comparative
performance of the proposed CT-SNAC based controller and the optimal con-
troller is shown in Figure 7.9. The corresponding control cost is tabulated in
Table 7.3. It is evident that, the fuzzy cluster of linear costs approximate the
nonlinear optimal value function effectively and performs closer to the optimal
controller.

To evaluate further, the optimal cost from various initial operating points
x0 in the operation zone is shown in Figure 7.10. The figure clearly shows
that the nonlinear optimal cost is effectively approximated using T-S fuzzy
model-based critic network. Comparing Figure 7.10 and Table 7.2, it is easy
to infer that the weight in individual fuzzy zones approaches the cost of the

TABLE 7.2: First order system with CT-SNAC: Estimated optimal weights

Zone -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Weights 0.745 0.818 0.941 1.052 1.00 1.051 0.938 0.821 0.747

Adaptive Critic Based Optimal Controller Design 251

0 10 20 30 40 50
time (s)

-0.2

-0.1

0

0.1

0.2

x
(t

)

Adaptive critic

Optimal control

(a)

0 10 20 30 40 50
time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

u
(t

)

Adaptive critic

Optimal control

(b)

FIGURE 7.9: First order system controlled with CT-SNAC and optimal con-
trol policy: Controller performance (a) State, (b) Input.

TABLE 7.3: First order system controlled with CT-SNAC and optimal con-
troller: Control cost at simulated points

x0 0.2915 0.2221 0.0762 -0.1237 -0.0149
Critic cost 0.0563 0.0415 0.0044 0.01248 0.00013

Optimal cost 0.0540 0.0400 0.0046 0.01244 0.00014

corresponding operating zone. Figure 7.6 and and Figure 7.10 show that the
DT-SNAC has approached optimality better than the CT-SNAC. In addition,
this performance is observed after training with 20,000 random points in CT-
SNAC, while DT-SNAC has used 5,000 initial points only. It may be due to the
choice of sampling time to collect the data. If the sampling time is too small,
then the data may not carry enough information about the system dynamics
and, hence, the learning is slow. The effect of the sampling time on the network
convergence has been analyzed in [219] and it has been demonstrated that a
high sampling rate may reduce the rate of the convergence.

-1 -0.5 0 0.5 1
x

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
o
st

Adaptive critic

Optimal control

FIGURE 7.10: First order system with CT-SNAC: Control cost from various
initial states in the workspace.

252 Kinematic Control using Single Network Adaptive Critic

Example 7.4 (Vanderpol oscillator). The objective of this simulation is to
show that an improved cost can be obtained using the fuzzy cluster of the
linear models to approximate the value function of the nonlinear system. The
performance of the T-S fuzzy model-based critic network is compared to the
conventional LQR controller obtained for the linearized model around the
origin. The optimal controller obtained from LQR is locally valid and may
be unstable for wide range of operation. With T-S fuzzy model-based critic
network, the controller guarantees the stability and optimality for a wide range
of operation.

The Vanderpol oscillator system is a benchmark system with unstable
equilibrium point at the origin and exhibits limit cycle too. The dynamics of
the system is given by,

ẋ1 = x2

ẋ2 = α(1− x2
1)x2 − x1 + (1 + x2

1 + x2
2)u (7.53)

where α = 0.5 is considered in the simulation. The control task is to compute
the input u to asymptotically stabilize the system around the origin while
minimizing the quadratic cost function (7.32), where R = 1 and Q is chosen
as Identity matrix.

Solution 7.4. The CT-SNAC proposed in section 7.2.1 is employed, and the
optimal cost is approximated by training a T-S fuzzy model-based critic net-
work with nine equally spaced fuzzy zones for both the states in the operating
zone [−1, 1]. The standard deviation of the Gaussian membership function
zone is chosen by considering the maximum overlap between the adjacent
zones as 0.01. The fuzzy sets defined along the state x1 and x2 are shown in
Figure 7.11(a) and Figure 7.11(b) respectively. The mean and the standard
deviation of the Gaussian function are same as chosen in Section 7.5. The fuzzy
sets defined on x1 and x2 create 81 fuzzy zones within the workspace. The
system is simulated with a sampling time ∆T = 5ms and it is evolved from

-1 -0.5 0 0.5 1
x

1

0

0.2

0.4

0.6

0.8

1

M
em

b
er

sh
ip

F
1

1

F
2

1

F
3

1

F
4

1

F
5

1

F
6

1

F
7

1

F
8

1

F
9

1

(a)

-1 -0.5 0 0.5 1
x

2

0

0.2

0.4

0.6

0.8

1

M
em

b
er

sh
ip

F
1

2

F
2

2

F
3

2

F
4

2

F
5

2

F
6

2

F
7

2

F
8

2

F
9

2

(b)

FIGURE 7.11: Fuzzy zones for Vanderpol oscillator system (a) x1, (b) x2.

Adaptive Critic Based Optimal Controller Design 253

0 10 20 30 40
time (s)

-0.6

-0.3

0

0.3

0.6
S

ta
te

s

x
1

x
2

(a)

0 10 20 30 40
time (s)

-1

-0.5

0

0.5

1

In
p

u
t

(u
)

(b)

-1 -0.5 0 0.5 1
x

1

0

0.2

0.4

0.6

0.8

1

co
st

LQR
Adaptive critic

(c)

FIGURE 7.12: Vanderpol oscillator controlled with CT-SNAC: Controller per-
formance (a) State, (b) Input, (c) Control cost from different initial states.

the initial state for Nmax = 500. The critic network is trained with 50, 000
random points in the operating zone, and then the controller performance is
analyzed. The closed loop control performance from different initial operating
points is shown in Figure 7.12. It is easy to infer that the T-S fuzzy model-
based SNAC stabilizes the system in the considered operating zone. The cost
incurred from various initial states are computed and analyzed to evaluate
further. The cost incurred with LQR and T-S fuzzy based SNAC is compared
in Figure 7.12(c). The figure shows the cost incurred from the initial state
x = [x1, 0] in the chosen universe of operation. These initial states are chosen
in particular, because LQR is designed for origin, i.e., x = [0, 0]. Hence, the
figure clearly shows the improvement in the controller performance obtained
using the fuzzy cluster of the critic networks corresponding the linear model,
as the system state x1 varies around the origin. The optimal cost modeling
with T-S fuzzy model-based critic network results in a solution better than
the LQR based control, and the observed improvement is more as the zone of
operation increases. The improvement is more as the initial state moves away
from the origin since the effect of nonlinearity in the dynamics increases for
the initial state far away from the origin. The control cost near the origin is
closer to the optimal cost of the linearized model around x = [0, 0], which
shows that the T-S fuzzy model-based critic network converges to the value
function of the local linear models within each fuzzy zone.

Example 7.5 (Single link manipulator). The dynamics of the single link
manipulator is given by,

ẋ1 = x2

ẋ2 = −10sin(x1) + u. (7.54)

254 Kinematic Control using Single Network Adaptive Critic

-1 0 1
x

1

0

2.5

5

7.5

10

C
o

st

LQR Closed Loop

Adaptive Critic

(a)

-1 0 1
x

2

0

0.5

1

C
o

st

LQR Closed Loop

Adaptive Critic

(b)

0 3 6 9 12
time (s)

-2

0

2

4

In
p

u
t(

τ)

(c)

FIGURE 7.13: Single link manipulator with CT-SNAC: (a) Control cost: x1,
(b) Control cost: x2, (c) Control input.

The task is to find the control law u, which minimizes the cost (7.32), with
the following parameters:

Q =
[

1 0
0 1

]
and R = 1.

Solution 7.5. The region of operation is chosen as [−π/2, π/2] for both x1
and x2. The optimal cost is learned with a T-S fuzzy model with nine equally
spaced fuzzy zones for both the states, similar to the critic network chosen
for Vanderpol system in the previous section. Gaussian function is chosen
similar to the previous simulation, to define the fuzzy membership functions.
The critic is learned initially with 50,000 random points in the operating
universe with a sampling time 0.01s, and the performance is compared with
LQR gains. The closed loop control performance with the critic is shown
in Figure 7.13(c), which shows that the critic network effectively stabilizes
the system. The cost incurred with the LQR and the T-S fuzzy model-based
critic network is compared in Figure 7.13. Figure 7.13(a) shows the control
cost incurred from initial states x = [x1, 0.0], and Figure 7.13(b) shows the
control cost incurred from initial states x = [0.0, x2]. It is easy to note from
the figures that the SNAC minimizes the performance index better than the
LQR in most of the region, but the improvement is not as significant as in
Vanderpol oscillator system. This performance can be improved by updating
the critic network further.

Example 7.6 (3 link manipulator). The dynamics of the 3 link manipulator
is given by,

x1 = Rcosθ1

x2 = Rsinθ1

x3 = l2sinθ2 + l3sinθ3 + l1 (7.55)

Adaptive Critic Based Optimal Controller Design 255

where x(k) = [x1(k) x2(k) x3(k)]T and θ(k) = [θ1(k) θ2(k) θ3(k)]T .
Also, R = l2cosθ2 + l3cosθ3 + t. The respective link lengths are l1, l2, l3 and t
is the length of the rigid portion of the wrist. Here, we take the parameters
from CRS PLUS manipulator, l1 = l2 = l3 = 254mm and t = 50mm. It is
assumed that the wrist of the manipulator is rigid, assured by locking the
joint for our purpose, and always holds the end-effector parallel to the work
table (the XY plane).

The task is to find the control law u(k) = ∆θ(k), which minimizes the
cost (7.32) and the critic is to be modeled using a MLN. The parameters to
be used are:

Q =

1 0 0
0 1 0
0 0 1

R = Q.

Solution 7.6. The workspace is chosen as 200 × 200 × 200 mm3, with
x1 ∈ [150 350]mm, x2 ∈ [150 350]mm and x3 ∈ [150 350]mm. The critic
is a MLN with a single hidden layer. The hidden layer has a sigmoidal activa-
tion function and the output layer is linear. The critic is trained initially with
500 random points in the operating universe. Each point is iterated twenty
times with a sampling time 0.01s. Then, it is tested for a fixed desired point
and a time-varying circular reference trajectory. The results of the simula-
tion for testing are given in the Figure 7.16 and 7.14. Figure 7.14 shows the
end-effector position, end-effector position error and joint angle throughout
time whereas Figure 7.15 shows the same for an initial period of 0.5 seconds.
Figure 7.16 shows the end-effector position, end-effector position error, joint
angles and joint angle control input throughout time respectively whereas

Time Instances
0 2 4 6 8 10 12 14 16

E
n

d
-e

ff
ec

to
r

P
o

si
ti

o
n

 (
m

)

1.5

2

2.5

3

3.5
x

d

x
y

d

y

z
d

z

(a)
Time Instances

0 2 4 6 8 10 12 14 16E
n

d
-e

ff
ec

to
r

P
o
si

ti
o

n
 E

rr
o

r
(m

)

-1

-0.5

0

0.5

1

1.5

x

y

z

(b)

Time Instances
0 2 4 6 8 10 12 14 16

Jo
in

 A
n

g
le

 θ
 (

ra
d

)

0

2

4

6

θ
1

θ
2

θ
3

(c)
Time Instances

0 5 10 15Jo
in

 A
n
g
le

 C
o
n
tr

o
l

In
p
u
t
∆
θ

 (
ra

d
)

-15

-10

-5

0

5

∆θ
1

∆θ
2

∆θ
3

(d)

FIGURE 7.14: Simulation: End-effector motion while reaching a fixed desired point:
(a) End-effector position (m), (b) End-effector position error (m), (c) Joint angles
(rad), (d) Joint angle control input (rad).

256 Kinematic Control using Single Network Adaptive Critic

Time Instances
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
n

d
-e

ff
ec

to
r

P
o

si
ti

o
n

 (
m

)

1.5

2

2.5

3

3.5
x

d

x
y

d

y
z

d

z

(a)
Time Instances

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5E
n
d
-e

ff
ec

to
r

P
o

si
ti

o
n

 E
rr

o
r

(m
)

-1

-0.5

0

0.5

1

1.5

x

y

z

(b)

Time Instances

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Jo
in

 A
n

g
le

 θ
 (

ra
d

)

0

2

4

6

θ
1

θ
2

θ
3

(c)
Time Instances

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5Jo
in

 A
n

g
le

 C
o
n
tr

o
l

In
p
u
t
∆
θ
 (

ra
d

)

-15

-10

-5

0

5

∆θ
1

∆θ
2

∆θ
3

(d)

FIGURE 7.15: Simulation: End-effector motion while reaching a fixed desired point:
(a) End-effector position (m), (b) End-effector position error (m), (c) Joint angles
(rad), (d) Joint angle control input (rad).

4
3

X

2
11

2

Y

3

5

0
4

Z

Desired

Actual

(a)
Time Instances

0 5 10 15 20 25 30 35 40E
n
d
-e

ff
ec

to
r

p
o
si

ti
o
n

 e
rr

o
r

(m
)

-1.5

-1

-0.5

0

0.5

x

y

z

(b)

Time Instances

0 5 10 15 20 25 30 35 40

Jo
in

t
A

n
g
le

 θ
 (

ra
d
)

0

2

4

6

8

θ
1

θ
2

θ
3

(c)
Time Instances

0 5 10 15 20 25 30 35

Jo
in

t
A

n
g
le

 I
n
p
u

t
∆
θ
(r

ad
)

-6

-4

-2

0

2

4
∆θ

1

∆θ
2

∆θ
3

(d)

432
Y-axis

100
2

X-axis

4

0

2

4

6

Z
-a

x
is

End-effector position

Desired Trajectory

Manipulator Link

(e)

FIGURE 7.16: End-effector tracking a time-varying reference trajectory (a) Desired
and actual end-effector positions, (b) End-effector position error (m), (c) Joint angle
(rad), (d) Joint angle control input (rad), (e) Manipulator link position.

Discrete-time input affine system representation of forward kinematics 257

Time Instances

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

E
n
d
-e

ff
ec

to
r

p
o
si

ti
o
n

 e
rr

o
r

(m
)

-1.5

-1

-0.5

0

0.5

x

y

z

(a)
Time Instances

0 5 10 15 20 25 30 35 40

E
n
d

-e
ff

ec
to

r
p
o

si
ti

o
n

 e
rr

o
r

(m
)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

x

y

z

(b)

Time Instances

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Jo
in

t
A

n
g

le
 θ

 (
ra

d
)

0

2

4

6

θ
1

θ
2

θ
3

(c)
Time Instances

0 5 10 15 20 25 30 35 40

Jo
in

t
A

n
g
le

 θ
 (

ra
d
)

0

2

4

6
θ

1

θ
2

θ
3

(d)

Time Instances
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Jo
in

t
A

n
g

le
 I

n
p

u
t
∆
θ
(r

ad
)

-6

-4

-2

0

2

4

∆θ
1

∆θ
2

∆θ
3

(e)
Time Instances

0 5 10 15 20 25 30 35

Jo
in

t
A

n
g

le
 I

n
p

u
t
∆
θ
(r

ad
)

-0.2

-0.1

0

0.1

0.2

∆θ
1

∆θ
2

∆θ
3

(f)

FIGURE 7.17: End-effector tracking a time-varying reference trajectory (a)(b) End-
effector position error (m), (c)(d) Joint angle (rad), (e)(f) Joint angle control input
(rad).

Figure 7.17 shows the end-effector error, joint angles and joint angle control
input once the end-effector starts tracking the time-varying reference trajec-
tory. As for tracking a time-varying reference trajectory, Figure 7.16(e) shows
the manipulator link position once the manipulator starts tracking the time-
varying reference trajectory.

7.3 Discrete-Time Input Affine System Representation
of Forward Kinematics

Global optimal redundancy resolution can be achieved through adaptive critic
formalism only if the redundancy resolution is formulated as an optimal

258 Kinematic Control using Single Network Adaptive Critic

control problem. An optimal control problem involves an integral cost func-
tion which defines the performance measure, and a dynamical system which
explains the evolution of the state x with time due to the control input u.
Hence, the redundancy resolution during closed loop positioning task has to
be expressed as a dynamical system with an integral cost function to compute
the optimal solution with adaptive critic methodologies. In this thesis work,
the forward kinematic relationship of the redundant manipulator is formulated
as a discrete-time input affine system, and the environmental constraints are
modeled as an integral cost function to solve the redundancy resolution as an
optimal control problem.

Consider the velocity level forward kinematic relationship from the joint
angle space to the end-effector position in the Cartesian space,

ẋ = Jθ̇. (7.56)

The dynamical system representation of the positioning task is obtained by
considering the forward differential kinematics,

∆x = J∆θ (7.57)

where ∆x =
[

∆x ∆y ∆z
]T ,

and ∆θ =
[

∆θ1 ∆θ2 ∆θ3 ∆θ4 ∆θ5 ∆θ6 ∆θ7
]T . The forward

differential kinematics can be expressed as a set of discrete motion of the
end-effector at different instants as follows:

∆x = J∆θ
x(k + 1)− x(k) = J∆θ(k) (7.58)

where x(k+1), x(k) are the end-effector position at (k+1)th and kth instants
respectively and ∆θ(k) is the change in the joint angle at the kth instant. In
the above equation, the instant k represents the number of steps taken by the
manipulator to reach the current position, and it is not specifying a fixed time
duration. The discrete motion can be expressed as a dynamical system as,

x(k + 1) = x(k) + J∆θ(k). (7.59)

The above equation represents the positioning task as a discrete-time input
affine system. The closed loop error dynamics which move the end-effector
from the current position x to the desired position xd is derived as,

e(k + 1) = e(k)− J∆θ(k)
= Ae(k) + Bu(k) (7.60)

where e(k) = xd(k) − xc(k), A = I, B = −J and u(k) = ∆θ(k). It is
assumed in the dynamical system formulation, that xd(k+1) = xd(k), i.e. the
position of the object is fixed and the manipulator reaches the object at the

Modeling the Primary and Additional Tasks as an Integral Cost Function 259

desired position in multi-step movement. The number of steps taken to reach
the desired position depends on the required accuracy, training, and also the
distance between the initial and final positions of the end-effector.

The error dynamics (7.60) represents the closed loop kinematic control
of the manipulator as a discrete-time input affine system. In discrete-time
dynamical system formulation of the closed loop positioning task, the system
states and the inputs are taken as x(k) = e(k), and u(k) = ∆θ(k) respec-
tively. The above formulation enables to address the redundancy resolution
problem as an optimal control problem, if the additional cost is represented
as an integral cost function. Existing global optimal redundancy resolution
schemes [44, 45] focus on a particular Cartesian space trajectory only. In
contrast, the end-effector positioning task over a workspace is targeted in
this work. Model-based global optimal redundancy resolution schemes [46,47]
define the state space in the joint angle space by using the generalized inverse
kinematic relationship (1.5), and φ is considered as the input. In contrast,
the state space is defined on the task space x, and the change in the joint
angle is considered as the input, in the proposed approach. Such formalism
fits better to the real-world implementation, since the end-effector is moved
in the Cartesian space by controlling the joint angle input. It will be shown
that such a formulation really simplifies the controller design and allows to
improve the performance in real-time.

7.4 Modeling the Primary and Additional Tasks as an
Integral Cost Function

The primary positioning task and the additional tasks introduced by the envi-
ronment act as constraints on the motion of the manipulator. The cost function
has to be appropriately chosen such that both the primary and the additional
tasks are achieved. In this thesis work, the primary and the additional tasks
are represented as a quadratic cost function,

Jc = 1
2

∞∑
k=0

(eT (k)Qe(k) + ∆θT (k)R∆θ(k)). (7.61)

It has been demonstrated that an input affine system stabilized while mini-
mizing a quadratic cost function can be optimally controlled with SNAC, and
an action network is not required to learn the optimal control policy. Hence,
the redundancy can be resolved optimally using SNAC without an action net-
work, if the primary positioning task and the additional task is specified in the
form of a quadratic cost. Such formalism simplifies the critic implementation
and it is computationally efficient.

The state weight matrix Q specifies the primary task. An infinite-time
optimal control problem results in zero terminal condition, which indicates

260 Kinematic Control using Single Network Adaptive Critic

the successful completion of the primary positioning task. In the current work,
the state weight matrix Q is chosen as an identity matrix to ensure uniform
convergence toward the desired position in every coordinate direction. The
input weight matrix R has to be chosen to penalize the individual joints
based on the additional task.

7.4.1 Quadratic Cost Minimization (Global Minimum Norm
Motion)

Quadratic cost measure has been used to design the controller which mini-
mizes the variation of the system state and input. R is chosen to control the
variation in the input. In this study, a diagonal matrix with constant entry
Rgain for all the joints is chosen, which uniformly weighs the motion of all
the joints. The speed of convergence to the desired position can be controlled
by varying Rgain. Hence, a simple quadratic cost minimization results in the
global minimization of the Euclidean norm of the joint angular velocity.

7.4.2 Joint Limit Avoidance
The joint limit avoidance is one of the key additional tasks expected from
the redundant manipulator due to its physical limitation. In this chapter, the
performance criterion proposed by Zghal et al. [226] is used to constrain the
joints within the kinematic limits. The performance criterion is expressed as,

H(θ) =
m∑
i=1

1
4

(θimax − θimin)2

(θimax − θi)(θi − θimin) (7.62)

The input weight matrix R of the quadratic cost function is defined with the
above performance criterion as,

R(θ) =


R1 0 0 . . . 0
0 R2 0 . . . 0

.
.

0 0 0 . . . R7

 . (7.63)

R(θ) is a diagonal matrix with ith diagonal entry defined as,

Ri(θ) =


1 +

∣∣∣∂H(θ)
∂θi

∣∣∣ if ∆
∣∣∣∂H(θ)
∂θi

∣∣∣ ≥ 0

1 if ∆
∣∣∣∂H(θ)
∂θi

∣∣∣ < 0.
(7.64)

The input weight Ri(θ) penalizes the individual joints based on its position
relative to its limits. The joint angle space motion is penalized less if the
current joint angle configuration is in the middle of the physical limits and

Single Network Adaptive Critic Based Optimal Redundancy Resolution 261

the penalization increases as the link moves toward its limit. Individual joints
are penalized only for its relative position with respect to its own limits, i.e.,
ith joint is not penalized for the relative position of the jth joint with its
limit. Since R(θ) is defined as a diagonal matrix its inverse can be computed
with the reciprocal of the corresponding elements which makes the chosen
performance criterion computationally efficient.

7.5 Single Network Adaptive Critic Based Optimal
Redundancy Resolution

The discrete-time input affine system formulation of the closed loop posi-
tioning dynamics discussed in equation (7.60) is suitable for single network
adaptive critic based control since the primary and the additional tasks are
expressed as a quadratic cost function. The optimal redundancy resolution
scheme with single network adaptive critic is shown in Figure 7.18. With
SNAC based redundancy resolution scheme, the joint angle input ∆θ is com-
puted as

∆θ(k) = R−1JT λ̂(k + 1) (7.65)

where λ̂(k+ 1) is obtained from the critic network, which optimizes the given
cost. The advantage of such an approach is that the optimal closed loop posi-
tioning of the redundant manipulator is achieved in real-time without the
computation of pseudo-inverse of the forward Jacobian. Hence, a computa-
tionally efficient global optimal control strategy is obtained with critic based
approach. This claim will be further confirmed with computational complexity
analysis.

− +

Law
Update
Weight

Critic

Network

z−1

z−1

Redundant

Manipulator

Optimal Control

∆θ(k) = R−1JT λ̂(k + 1)

x(k + 1) xd(k + 1)

e(k + 1)

e(k)

x(k)

x(k)

e(k)

∆θ(k)

λ̂(k + 1)

FIGURE 7.18: Schematic diagram: Optimal redundancy resolution scheme
with SNAC.

262 Kinematic Control using Single Network Adaptive Critic

7.5.1 T-S Fuzzy Model-Based Critic Network for Closed
Loop Positioning Task

The T-S fuzzy model-based critic network proposed in Section 7.1.4.2 is used
to learn the costate vector. The critic network is designed for the stabilization
of the states, and in general the states are fuzzified to learn the costate vector.
Hence, the critic network should be fuzzified with end-effector position error
e(k) for closed loop positioning task. But, it is always desired to achieve
a global positioning where the end-effector can be moved from any initial
position to arbitrary desired position over the entire workspace. The global
positioning depends on both the current and the desired positions of the end-
effector. The performance of the critic network will be poor if the error is
considered as the input to the fuzzifier, since the error changes based on both
the current and desired positions. The current position of the end-effector
specifies the kinematic state of the manipulator better than the positioning
error since the forward Jacobian changes as the end-effector moves along the
trajectory.

To achieve a better global positioning the current position of the end-
effector x is given as the input to the fuzzifier, instead of the error e. As
the manipulator changes its joint angle configuration along the trajectory,
different fuzzy zones of the critic get activated and the corresponding weights
are trained accordingly. The current position of the end-effector has been
suggested in [170] and [10] for better dynamic performance.

With above modification, the ith rule of the T-S fuzzy model-based critic
network for manipulator end-effector positioning task is given by,

IF x(k) is F i1 AND y(k) is F i2 AND z(k) is F i3 THEN,

λ̂i(k + 1) = Wie(k)

where Wi ∈ R3×3 is the linear map to learn the costate vector from the Carte-
sian space, in the ith fuzzy zone. The fuzzy space is defined along individual
coordinate direction of the Cartesian space as,

µix(x) = e

(
−(x−cix)2

2(σix)2

)
µiy(y) = e

(
−(y−ciy)2

2(σiy)2

)
µiz(z) = e

(
−(z−ciz)2

2(σiz)2

)
. (7.66)

The fuzzy membership value of the ith rule is computed using the product
rule,

µi(x) = µix µ
i
y µ

i
z. (7.67)

Single Network Adaptive Critic Based Optimal Redundancy Resolution 263

7.5.2 Training Algorithm
The critic network is trained similar to the DT-SNAC training algorithm
discussed in Section 7.2.2. To achieve the smooth network convergence, the
network is learned from a selected fuzzy zone xf0, to the entire workspace
such that the weights would converge to optimal values in each zone. The
successive learning zones are defined as Si = {xd(k) :‖ xd(k)−xf0 ‖< Ci, i =
1, 2, . . . , I}, where Ci is a positive constant, and Ci < Ci+1. Initially C1 is
chosen a small value so that the network would learn the optimal weights
corresponding to the selected zone. Then, the operating zone is gradually
increased.

The critic network is learned as follows:

1. Generate ND random desired positions for each Si. Initialize i = 1.

2. Set k = 0 and n = 0. Choose a random initial point x(k).

3. Compute the initial state e(k) = xd(n) − x(k). Give error e(k) as the
input to compute the costate vector and x(k) as the input to the fuzzifier
to compute λ̂(k + 1).

4. Compute the input ∆θ(k), from equation (7.65), using λ̂(k + 1).

5. Give the input to the dynamical system representation equation (7.60)
of the manipulator, and compute the next instant end-effector position
x(k + 1) and the positioning error e(k + 1).

6. Compute λ̂(k + 2) from the critic network using e(k + 1).

7. Compute λd(k+1) using λ̂(k+2) and e(k+1) in the costate vector equation
(7.12). Consider λd(k + 1) as the desired costate vector and update the
network weights to minimize ‖ λd(k + 1)− λ̂(k + 1) ‖.

8. Check if ‖ e(k + 1) ‖< εe. If ‖ e(k + 1) ‖> εe then repeat from step (3)
with k = k + 1 till Nmax iterative steps.

9. If the desired position is reached with chosen accuracy, set n = n+ 1 and
repeat from step (2) for ND random points.

10. Check ‖ λd(k+1)− λ̂(k+1) ‖< ελ for ND points in Si. If no, repeat steps
(2)− (9). Otherwise, set i=i+1 and repeat steps 2− 9 till i = I.

The optimal weights in each zone will vary smoothly from the optimal value
of the fuzzy zone xf0, since the system dynamics gradually deviate from the
linear behavior as the zone of operation increases. Considering this fact, the
weights of the critic network are always initialized with optimal value corre-
sponding to the fuzzy zone xf0 which can be computed using ARE with the
linearized model. The Cartesian position xf0 is reached with the joint angle
configuration θ0, and the computation of the input requires the computation

264 Kinematic Control using Single Network Adaptive Critic

of the Jacobian J. Hence, the network training is initiated from the joint
angle configuration θ0 which results in x(0) = xf0, if n = 0 and x(0) = xn−1

d

if n > 0, where xn−1
d is the desired position of the (n − 1)th point in Si. If

the end-effector moves outside the workspace during the training phase then
the training is initialized from xf0. The evolution of state with multi-step
movement i.e., Nmax > 1 is necessary in case of SNAC based control of the
redundant manipulator so that the Jacobian J can be estimated with θ(k).

The network has to be trained by penalizing the joint angle space motion
based on the additional task requirement. Hence, a smooth joint angle space
motion is necessary so that the links are penalized from the initial position.
To achieve such a smooth motion the input to the critic network is given as
Ke(k), where K is the feedback gain which is typically chosen as K ≤ 1. The
smaller gain value results in a slower motion and the movement will not be
jerky due to the large value of initial error. A small value of K reduces the
error presented to the critic network. A smaller error indicates that the desired
position is closer to the current position. In such a case, the manipulator moves
slowly, and more iterations are taken to reach the desired position. With a
slower motion, the Jacobian will be evaluated at more number of positions
resulting in an effective redundancy resolution.

7.6 Computational Complexity
The optimal costate vector is learned during the training phase with the kine-
matic model given in equation (2.1), and the trained network is used to com-
pute the input in real-time. It will be shown that the computational require-
ment of the T-S fuzzy model-based critic network is low since the nonlinear
costate vector is approximated with clusters of local linear models.

The local costate vector is represented by n × n, where n = 3 is the
dimension of the task space. The computation of the local costate vector
requires n2 order flops, where an individual flop represents an addition and a
multiplication operation. If Nr rules are firing at each operating point then
the local costate vectors are computed with Nrn2 order flops and further Nrn
order flops are required for computing the overall costate vector. It is clearly
evident that the computation of the costate vector is independent of the DOF
of the manipulator and in general, Nr � Nn.

The computation of the input from the costate vector requires nm order
flops for computing JT λ̂ and m order flops for R−1JT λ̂, since R is a diagonal
matrix. The proposed adaptive critic based redundancy resolution scheme
requires a total of Nr(n2 + n) +m(n+ 1) order flops for computing the input
which is linear with the DOFs of the manipulator.

The pseudo-inverse based redundancy resolution scheme [18] involves the
computation of the minimum norm motion for the primary task and the

Simulation Results 265

self-motion for accomplishing the additional task. The redundancy resolu-
tion requires computation of Moore-Penrose pseudo-inverse. The computation
of Moore-Penrose pseudo-inverse [227] involves singular value decomposition
(SVD) and matrix multiplications for inverse computation. The SVD compu-
tation is of order O(mn2) and requires 2mn2 + n3 flops approximately. The
multiplications involve mn2 +m2n order flops and, hence, the pseudo-inverse
computation requires a total of 3mn2 + n3 + nm2 order flops. The minimum
norm input computation involves nm order flops. The self motion is computed
withm(m−1)n/2+m2 order flops wherem(m−1)n/2 is required for comput-
ing (I−J+J) and m2 is for (I−J+J)φ respectively. The total computational
cost of the pseudo-inverse based technique is (3mn2 + n3 + 3/2m2n−mn/2)
order flops which is more than the adaptive critic based method.

The computational requirement increases in the order O(m2) for the
pseudo-inverse based technique, while it is linear with DOF for the critic
based approach which makes it a better approach for real-time implementa-
tion. In addition to low computational requirements, critic based methodology
guarantees a global optimal solution while optimality is not ensured with the
pseudo-inverse based technique. In addition, the analysis shows that the com-
putational load increases in cubic order of the dimension of the workspace,
in the case of pseudo-inverse based methods while it is of quadratic order in
the critic based approach. Hence, the proposed SNAC based approach is com-
putationally cost effective than the pseudo-inverse based method, even if the
dimension of the task space increases. This is an another key finding in this
thesis work.

7.7 Simulation Results
The forward kinematic model discussed in Chapter 2 is used to train the
network. The critic network is trained within a cubic volume of workspace
with diagonal vertices (0.2, −0.25, 0.0) and (0.7, 0.25, 0.3). The workspace
is fuzzified with five equally spaced fuzzy zones in each coordinate direction.
The standard deviation of the fuzzy membership function is selected such that
the effect of two fuzzy zones will be predominant at each operating point, and
the effect of neighboring fuzzy zones at the fuzzy center will be less than
5%. The fuzzy sets defined on the coordinate directions x, y, z are shown
in Figure 7.19(a) and Figure 7.19(b) and Figure 7.19(c) respectively. The
mean value of the Gaussian functions which defines the fuzzy sets along x-
axis are chosen as (0.2, 0.325, 0.45, 0.575, 0.7) and the standard deviation
corresponding to the 5% overlap is computed as to be 0.0511. The fuzzy
sets are defined along the y coordinate direction with Gaussian functions of
mean (−0.25, −0.125, 0.0, 0.125, 0.25) and standard deviation 0.0511. The
fuzzy centers are at (0.0, 0.075, 0.15, 0.225, 0.30) along the z coordinate
direction, and the standard deviation is computed using equation (7.24) as to

266 Kinematic Control using Single Network Adaptive Critic

0.2 0.3 0.4 0.5 0.6 0.7 0.8
x

0

0.2

0.4

0.6

0.8

1

M
em

b
er

sh
ip

F
1

x

F
2

x

F
3

x

F
4

x

F
5

x

-0.2 -0.1 0 0.1 0.2 0.3
y

0

0.2

0.4

0.6

0.8

1

M
em

b
er

sh
ip

F
1

y

F
2

y

F
3

y

F
4

y

F
5

y

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
z

0

0.2

0.4

0.6

0.8

1

M
em

b
er

sh
ip

F
1

z

F
2

z

F
3

z

F
4

z

F
5

z

FIGURE 7.19: Fuzzy sets for positioning task: (a) x-axis, (b) y-axis, (c)z-axis.

be 0.0306. The critic network totally comprises 125 fuzzy zones with a linear
weight matrix Wi to model the local costate vector in each fuzzy zone. The
number of fuzzy zones effective at each operating point for the critic network
is Nr = 23 = 8. The critic network is trained with 5,000,000 random points
with a learning rate of 0.01, εe = 0.5mm and Nmax = 50. The seventh link
does not contribute to any position change and ∆θ7 remains zero throughout
the simulations. Hence, the joint angle input to the seventh link is not shown
while discussing the results obtained in the following experiments.

7.7.1 Global Minimum Norm Motion
In this simulation, the state weight matrix Q and the input weight matrix R
are chosen as identity matrices as discussed in 7.4.1. Rgain is chosen as 1 and
the feedback gain K is chosen as 0.5 in the experiment.

After critic training, the network is analyzed in two stages. In first stage,
the desired position of the end-effector is fixed as xd = (0.4, 0.1, 0.2)m and the
robot manipulator is started from random initial positions. The position of
the end-effector at successive instants and the corresponding errors are shown
in Figure 7.20. The initial random points are explicitly shown with ? in the
figures. It is observed in simulation that the end-effector reaches the desired
position with an accuracy of 0.1mm in 20 iterative steps indicating that the
network is trained adequately. An instant in the figures corresponds to one
iterative step taken by the manipulator to move from the current position
toward the desired position.

The corresponding joint angle movement is shown in Figure 7.21. The
initial joint angle corresponding to the random initial positions are represented
as ?, and show that the manipulator starts from random initial joint angle
and reaches the desired position with smooth joint movements. The figure
also shows that the final joint angle depends on the initial joint configuration
of the manipulator.

Since global positioning is desired from random initial position to arbi-
trary desired position, the controller performance is further analyzed for var-
ious desired positions over the entire workspace. The successive position of

Simulation Results 267

0 10 20 30 40 50 60
Step (k)

0

0.1

0.2

0.3

0.4

0.5

E
n

d
-e

ff
ec

to
r

P
o

si
ti

o
n

 (
m

)

x
d

y
d

z
d

x
y
z

(a)

0 10 20 30 40 50 60
Step (k)

-0.05

0

0.05

0.1

E
n
d
-e

ff
ec

to
r

P
o
si

ti
o
n
 E

rr
o
r

(m
)

x
y
z

(b)

FIGURE 7.20: Simulation: Closed loop positioning at the desired position
(0.4, 0.1, 0.2)m with global minimum norm motion: (a) Position, (b) Error.

0 10 20 30 40 50 60
Step (k)

-0.5

0

0.5

1

1.5

2

Jo
in

t
A

n
g
le

θ

 (
ra

d
)

θ
1

θ
2

θ
3

(a)

0 10 20 30 40 50 60
Step (k)

1

1.5

2

2.5

3

Jo
in

t
A

n
g

le

θ

 (
ra

d
)

θ
4

θ
5

θ
6

(b)

FIGURE 7.21: Simulation: Joint angle θ during positioning at the desired position
(0.4, 0.1, 0.2)m with global minimum norm motion: (a) (θ1, θ2, θ3), (b) (θ4, θ5, θ6).

the end-effector and the corresponding errors are shown in Figure 7.22. The
instant at which the desired position changes is shown with ?. The end-effector
reaches the various desired positions with an average accuracy of 0.1mm in
20 iterative steps and stays within an error of 1mm after ten iterative steps.
The positioning accuracy varies over the workspace since the uniform conver-
gence is possible only with exhaustive training. As discussed in section 7.1.3,
the adaptive critic based approaches guarantee the performance improvement
with time, and the controller approaches the optimal value with continuous
weight update. Hence, a better positioning accuracy and optimality is feasible
with further weight update which makes the critic based approach superior
than the existing sub-optimal approaches.

Figure 7.22(a) shows that the closed loop positioning exhibits an oscillatory
behavior for the chosen Q and R. It is well-known that a non-oscillatory
performance can be achieved in optimal control based strategies, by choosing
appropriate Q and R which is an iterative process. The corresponding joint

268 Kinematic Control using Single Network Adaptive Critic

0 10 20 30
Step (k)

0

0.1

0.2

0.3

0.4

0.5

E
n
d
-e

ff
ec

to
r

P
o
si

ti
o
n
 (

m
)

x
d

y
d

z
d

x
y
z

(a)

0 10 20 30
Step (k)

-0.05

0

0.05

0.1

E
n
d
-e

ff
ec

to
r

P
o
si

ti
o
n
 E

rr
o
r

(m
)

x
y
z

(b)

FIGURE 7.22: Simulation: Closed loop positioning at the arbitrary desired position
from random initial position, with global minimum norm motion: (a) Position, (b)
Error.

0 10 20 30
Step (k)

0

0.5

1

Jo
in

t
A

n
g
le

θ

 (
ra

d
)

θ
1

θ
2

θ
3

(a)

0 10 20 30
Step (k)

0

0.5

1

1.5

Jo
in

t
A

n
g
le

θ

 (
ra

d
) θ

4

θ
5

θ
6

(b)

FIGURE 7.23: Simulation: Joint angle θ during positioning at the arbitrary desired
position from random initial position, with global minimum norm motion: (a)
(θ1, θ2, θ3), (b) (θ4, θ5, θ6).

angle movement for random positioning task is shown in Figure 7.23. It is clear
from the ? mark in the figures that initially there is a large change in the joint
angle due to huge error and the movement slows down with decreasing error.
The performance of the controller is tested with a closed elliptical trajectory.
A complex closed trajectory is particularly chosen to test the performance
of the controller over the entire workspace. The critic based methodology
is devised for closed loop positioning task with the assumption that xd(k +
1) = xd(k), i.e., the manipulator is moving to reach a stationary object. The
above assumption is valid at each sampling instant while tracking a continuous
trajectory such as ellipse, where the desired position has to be reached at each
time instant, as explained in the following steps. Let the position of the end-
effector at tkth time instant is x(tk) owing to a joint angle configuration θ(tk)
and the desired position at the (tk + 1)th time instant is xd(tk + 1).

Simulation Results 269

Kinematic

Model

∆θk = ∆θtk

Redundant

Manipulator

θtk = θ0

∆θtkxd(tk + 1)
xd(tk)

θtk

∆θk

+

-

θk

Controller

Critic

Controller

x̂(k)

FIGURE 7.24: Schematic diagram: Controlling the manipulator to track the
ellipse.

• The desired position to estimate the control law is fixed as xdesired =
xd(tk + 1). The initial position and joint angle are taken as x(0) = x(tk)
and θ(0) = θ(tk) respectively.

• The adaptive critic is iterated with the kinematic model (4.1) until the
end-effector reaches the position x̂(k) with the joint angle θ(k) such that
the positioning error ‖xdesired − x̂(k)‖ < εmax where εmax is the desired
positioning error tolerance and k is the number of steps as discussed in
section 7.3. The end-effector position x̂(k) is predicted using the forward
kinematic model with θ(k).

• The control input is calculated as ∆θ(tk) = θ(k)− θ(0) and is applied to
the manipulator.

• The end-effector moves to the position x(tk + 1) with the given input
∆θ(tk). In real-time, x(tk+1) differs from x̂(k) due to model inaccuracies.

• The critic is then presented with the next desired position to move along
the trajectory.

The schematic diagram of controlling the manipulator to follow the elliptical
trajectory is shown in Figure 7.24. The kinematic model is used to compute the
optimal joint angle input iteratively, and then the manipulator is presented
with the computed input in both simulation and real-time. To analyze the
controller performance, the number of steps taken by the critic at each instant
to reach within the chosen accuracy is computed in the following simulations.
The desired elliptical trajectory is taken as,

x = 0.45 + 0.15 cos(0.05tk)
y = 0.15 sin(0.05tk)
z = 0.15. (7.68)

270 Kinematic Control using Single Network Adaptive Critic

 0.3 0.4 0.5 0.6 0.7-0.2
-0.1

 0
 0.1

 0.2
 0

 0.1

 0.2

 0.3

z

Desired
Actual

x
y

z

(a)

 0 0.1 0.2 0.3 0.4 0.5 0.6-0.2
-0.1
 0
 0.1
 0.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

x

y

z

(b)

0 5 10 15 20 25
time (s)

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

E
n
d
-e

ff
ec

to
r

p
o
si

ti
o
n
 e

rr
o
r

(m
)

x
y
z

(c)

FIGURE 7.25: Simulation: End-effector motion while tracking the elliptical tra-
jectory with global minimum norm motion: (a) Trajectory (m), (b) Manipulator
configuration (m), (c) Position error.

where tk is the sampling instant and the r.m.s. positioning error tolerance, εmax
is chosen as 1.0cm to iterate the critic based optimal control law before apply-
ing to the robot manipulator. The experiment is performed in real-time with
a sampling time of 200ms. Hence, the simulation results are shown with the
same sampling time for easier comparison with the real-time results. The end-
effector trajectory and its corresponding manipulator configuration is shown
in Figure 7.25. It is clear from the figure that the closed loop system tracks
the trajectory with smooth joint angle space motion. The positioning error
shown in Figure 7.25(c) indicates that the manipulator tracks the trajectory
with an accuracy of 7mm. The corresponding joint angle input and the joint
angle configurations are shown in Figure 7.26 and Figure 7.27 respectively
to demonstrate the smoothness of the learned solution. It is observed that
the manipulator tracks the ellipse after 1.03 iterative steps on average. The
number of iterations can be reduced and also the speed of the tracking can be
increased by increasing the feedback gain K but it may result in an oscillatory
behavior.

The computation time requirement for the critic based approach is further
analyzed during simulation. The computation time for drawing the elliptical
trajectory for 100 cycles is measured. The complete cycle of the elliptical tra-
jectory (7.68) is represented by 126 points and, hence, the end-effector moves
in between 12,600 operating points over the experiment. The simulation is
run on the personal computer discussed in section 2.1. The simulations are
performed at different time of the day with various CPU load conditions.
The average and standard deviation of the computation time at each operat-
ing point over various runs is presented in Table 7.4. The computation time is
compared with the minimum norm motion from the pseudo-inverse based tech-
nique and it is clear from the table that the proposed approach takes approx-
imately 75% time that is required with pseudo-inverse based control for 7
DOF robot manipulator. The critic based approach takes approximately 33µs
at each operating point to compute the input which is negligible compared

Simulation Results 271

0 5 10 15 20 25
time (s)

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

Jo
in

t
In

p
u

t
∆

 θ
 (

ra
d

)

∆θ
1

∆θ
2

∆θ
3

(a)

0 5 10 15 20 25
time (s)

-0.004

-0.002

0

0.002

0.004

Jo
in

t
In

p
u

t
∆

 θ
 (

ra
d

)

∆θ
4

∆θ
5

∆θ
6

(b)

FIGURE 7.26: Simulation: Joint angle input ∆θ while tracking the ellipse with
global minimum norm motion: (a) (∆θ1,∆θ2,∆θ3), (b) (∆θ4,∆θ5,∆θ6).

0 5 10 15 20 25
time (s)

0

0.5

1

Jo
in

t
A

n
g
le

θ

 (
ra

d
) θ

1

θ
2

θ
3

(a)

0 5 10 15 20 25
time (s)

0

0.5

1

1.5
Jo

in
t

A
n
g
le

θ

 (
ra

d
)

θ
4

θ
5

θ
6

(b)

FIGURE 7.27: Simulation: Joint angle θ while tracking the elliptical trajectory
with global minimum norm motion: (a) (θ1, θ2, θ3), (b) (θ4, θ5, θ6).

TABLE 7.4: Computation time requirement for global minimum norm motion

critic (µs) Pseudo-inverse (µs)
Average Std. Deviation Average Std. Deviation
32.54 16.25 41.92 20.27
32.14 16.55 40.91 21.06
32.14 15.57 40.04 20.20
31.35 17.11 40.91 19.81
32.54 15.25 40.91 21.06

to the sampling time 200ms of the redundant manipulator. This confirms the
claim that the adaptive critic based method results in an optimal redundancy
resolution which can be implemented in real-time. As discussed earlier, the
pseudo-inverse based technique results in local optimal solution and the opti-
mality over the entire trajectory is not guaranteed. Hence, the proposed SNAC

272 Kinematic Control using Single Network Adaptive Critic

based redundancy resolution scheme results in a computationally efficient con-
trol strategy to obtain global optimal solution.

7.7.2 Joint Limit Avoidance
The control task considered is to compute the input u(k) = ∆θ(k) to position
the end-effector, which minimizes the cost function,

Jc = 1
2

∞∑
k=0

(eT (k)Qe(k) + ∆θT (k)R(θ)∆θ(k)) (7.69)

where R(θ) is computed as discussed in section 7.4.2. In this simulation, the
kinematic constraint is applied to the fourth joint with limit given as,

−1.25 < θ4 < 1.25 rad. (7.70)

The above operating range is chosen based on the observations from the global
minimum norm motion. The joint angle of the fourth link varies in the range
of (1.04, 1.53) radian, while tracking the elliptical trajectory chosen in (7.68).
Global minimum norm motion violates the above kinematic limit. The critic
network is trained with feedback gain K = 0.1 to accurately learn the cost
penalization.

After initial training, the network is analyzed in two stages as discussed
in Section 7.7.1. Initially, the desired position of the manipulator is chosen as
same as that of the global minimum norm motion, and then the manipulator
is started from different initial positions. The end-effector position at succes-
sive instants and the corresponding positioning error are plotted in Figure
7.28. The joint angle while moving toward the desired position are shown in
Figure 7.29. Then the controller is checked for arbitrary positioning from var-
ious initial position over the entire workspace. The corresponding positioning
results are shown in Figure 7.30 with joint angles in Figure 7.31. The initial
random point is explicitly shown with ? in the figures. The results are sim-
ilar to that of quadratic cost minimization with two major differences. It is
observed that the desired position is reached with an accuracy of 0.1mm in
fifty iterative steps in contrast to twenty steps. More iterative steps are taken
since the feedback gain is chosen as K = 0.1 so that the joints are penalized
properly. In addition, the joint angle of the fourth link is within the chosen
limits. The performance of the controller is tested with the closed elliptical
trajectory (7.68). The same trajectory is chosen so that the performance can
be compared with the results obtained for the global minimum norm motion.
The end-effector trajectory and the corresponding manipulator configuration
are shown in Figure 7.33. The tracking error shown in Figure 7.33(c) indi-
cates that the end-effector tracks the trajectory smoothly within an accuracy
of 7.4mm with the proposed adaptive critic based kinematic limit avoidance
scheme. It is observed in experiments that the critic required 1.508 iterative
steps in each instant on average along the trajectory. The average number of

Simulation Results 273

0 10 20 30 40 50 60 70
Step (k)

0

0.1

0.2

0.3

0.4

E
n

d
-e

ff
ec

to
r

P
o

si
ti

o
n

 (
m

) x
d

y
d

z
d

x
y
z

(a)

0 10 20 30 40 50 60 70
Step (k)

-0.05

0

0.05

0.1

E
n
d
-e

ff
ec

to
r

P
o
si

ti
o
n
 E

rr
o
r

(m
)

x
y
z

(b)

FIGURE 7.28: Simulation: Closed loop positioning at the desired position
(0.4, 0.1, 0.2)m with kinematic limit avoidance: (a) Position, (b) Error.

0 10 20 30 40 50 60 70
Step (k)

0

0.5

1

1.5

Jo
in

t
A

n
g

le

θ

 (
ra

d
)

θ
1

θ
2

θ
3

(a)

0 10 20 30 40 50 60 70
Step (k)

0

0.5

1

1.5

2

2.5

Jo
in

t
A

n
g

le

θ

 (
ra

d
)

θ
4

θ
5

θ
6

(b)

FIGURE 7.29: Simulation: Joint angle θ during positioning at the desired position
(0.4, 0.1, 0.2)m with kinematic limit avoidance: (a) (θ1, θ2, θ3), (b) (θ4, θ5, θ6).

0 50 100 150
Step (t)

0

0.1

0.2

0.3

0.4

0.5

0.6

E
n

d
-e

ff
ec

to
r

P
o

si
ti

o
n

 (
m

) x
d

y
d

z
d

x
y
z

(a)

0 50 100 150
Step (k)

-0.1

0

0.1

E
n
d
-e

ff
ec

to
r

P
o
si

ti
o
n
 E

rr
o
r

(m
)

x
y
z

(b)

FIGURE 7.30: Simulation: Closed loop positioning at the arbitrary desired position
from random initial position with kinematic limit avoidance: (a) Position, (b) Error.

274 Kinematic Control using Single Network Adaptive Critic

0 50 100 150
Step (k)

0

0.5

1

1.5

Jo
in

t
A

n
g

le

θ

 (
ra

d
)

θ
1

θ
2

θ
3

(a)

0 50 100 150
Step (k)

0

0.5

1

1.5

2

Jo
in

t
A

n
g

le

θ

 (
ra

d
)

θ
4

θ
5

θ
6

(b)

FIGURE 7.31: Simulation: Joint angle θ during positioning at arbitrary desired
point from random initial point with kinematic limit avoidance: (a) (θ1, θ2, θ3), (b)
(θ4, θ5, θ6).

0 5 10 15 20 25
time (s)

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

Jo
in

t
In

p
u

t
∆

 θ
 (

ra
d

)

∆θ
1

∆θ
2

∆θ
3

(a)

0 5 10 15 20 25
time (s)

-0.004

-0.002

0

0.002

0.004

Jo
in

t
In

p
u

t
∆

 θ
 (

ra
d

)

∆θ
4

∆θ
5

∆θ
6

(b)

FIGURE 7.32: Simulation: Joint angle input ∆θ while tracking the elliptical tra-
jectory with kinematic limit avoidance : (a) (∆θ1,∆θ2,∆θ3), (b) (∆θ4,∆θ5,∆θ6).

iterative steps is higher than the global minimum norm motion since K = 0.1.
The joint angle input and the joint angle trajectory are shown in Figure 7.32
and Figure 7.34 respectively. It is clear from the figures that the joint angle of
the fourth link is within the kinematic limit. The joint angle of the fourth link
is separately shown in Figure 7.34(c) for better understanding of the effect of
kinematic limit avoidance scheme on the fourth link. It is clear from the figure
that the manipulator avoids the kinematic limit while tracking the elliptical
trajectory, with the proposed SNAC based redundancy resolution scheme.
The computation time is then compared with the pseudo-inverse based joint
limit avoidance scheme. The manipulator is simulated to draw the elliptical
trajectory defined by equation (7.68) for 100 cycles, similar to the analysis
performed for global minimum norm motion. The average and standard devi-
ation of the computation time taken at each operating point over various runs
is tabulated in Table 7.5. It is clear from the table that the proposed approach

Simulation Results 275

 0.3 0.4 0.5 0.6-0.2
-0.1

 0
 0.1

 0.2
 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

z

Desired
Actual

x

y

z

(a)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7-0.2
-0.1

 0
 0.1

 0.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

z

x

y

z

(b)

0 5 10 15 20 25
time (s)

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

E
n

d
-e

ff
ec

to
r

p
o

si
ti

o
n

 e
rr

o
r

(m
)

x
y
z

(c)

FIGURE 7.33: Simulation: End-effector motion while tracking the elliptical trajec-
tory with kinematic limit avoidance: (a) Trajectory (m), (b) Manipulator configura-
tion (m), (c) Position error.

0 5 10 15 20 25
time (s)

0

0.5

1

1.5

Jo
in

t
A

n
g
le

θ

 (
ra

d
) θ

1

θ
2

θ
3

(a)

0 5 10 15 20 25
time (s)

0

0.5

1

1.5

2

2.5

Jo
in

t
A

n
g
le

θ

 (
ra

d
)

θ
4

θ
5

θ
6

(b)

0 5 10 15 20 25
time (s)

0

0.5

1

1.5

 θ
4

(r

a
d
)

Quadratic

Joint Limit

(c)

FIGURE 7.34: Simulation: Joint angle θ while tracking the elliptical trajectory
with kinematic limit avoidance: (a) (θ1, θ2, θ3), (b) (θ4, θ5, θ6), (c) Joint angle of the
fourth link with and without kinematic limit avoidance.

TABLE 7.5: Computation time requirement for joint limit avoidance

critic (µs) Pseudo-inverse (µs)
Average Std. Deviation Average Std. Deviation
33.33 6.57 44.44 5.73
34.13 5.89 44.29 5.88
33.33 6.57 44.13 6.78
32.94 5.93 44.29 6.66
32.94 7.8 44.76 6.27

276 Kinematic Control using Single Network Adaptive Critic

takes 33µs to compute input for kinematic limit avoidance while the pseudo-
inverse based technique requires 44µs. The computation time with SNAC
is 25% less than the pseudo-inverse based method, which matches with the
result of global minimum norm simulations presented in Section 7.7.1. These
observations corroborate the claim that critic based redundancy resolution is
computationally efficient than pseudo-inverse based methods, while ensuring
global optimal solution.

7.8 Experimental Results
The real-time experiment is performed on the PowerCube manipulator dis-
cussed in Chapter 2. The real-time experiments have been performed for the
elliptical trajectory (7.68). The tip of the end-effector and the manipulator
configuration are observed with stereo-vision while tracking the ellipse. As
mentioned in the simulation, the critic is iterated with the model at each
sampling instant and then the final control law is given to the manipulator.
The sampling interval is chosen as 200ms based on the computational require-
ments for image acquisition and processing, as well as the manipulator speed.
A smaller sampling interval would result in a jerky motion of the manipulator
without reaching the commanded position.

7.8.1 Global Minimum Norm Motion
The network trained in Section 7.7.1 is used in the experiment and the forward
kinematic model is used to compute the output during iteration. The end-
effector of the robot manipulator is observed using stereo vision over the entire
trajectory.

The end-effector position while tracking the trajectory and the tracking
error in real-time experiment is shown in Figure 7.35. It is clear from the figure
that the manipulator tracks the trajectory with an error of 1.4cm which is more
than that of the simulation results. The increase in the error is observed due
to model inaccuracies. This performance can be further improved by updating
the critic in real-time. The corresponding input and the joint angle configura-
tions are shown in Figure 7.36 and Figure 7.37 respectively which clearly show
that the real-time performance is closer to the simulation results in spite of
model inaccuracies. The end-effector trajectory in the vision space is shown
in Figure 7.38. The trajectory is noisy due to the image processing inaccuracy
associated with the identification of the end-effector using the centroid of the
red tape.

Experimental Results 277

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7-0.15

-0.1
-0.05

 0
 0.05

 0.1
 0.15

 0.2

 0.1
 0.12
 0.14
 0.16
 0.18

 0.2

z

Desired
Actual

x y

z

(a)

0 5 10 15 20 25
time (s)

-0.02

-0.01

0

0.01

0.02

E
n
d
-e

ff
ec

to
r

p
o
si

ti
o
n
 e

rr
o
r

(m
)

x
y
z

(b)

FIGURE 7.35: End-effector motion in real-time experiment with global minimum
norm motion: (a) Trajectory (m), (b) Position error.

0 5 10 15 20 25
time (sec)

-0.01

-0.005

0

0.005

Jo
in

t
In

p
u

t
∆

 θ
 (

ra
d

)

∆θ
1

∆θ
2

∆θ
3

(a)

0 5 10 15 20 25
time (s)

-0.005

0

0.005

Jo
in

t
In

p
u

t
∆

 θ
 (

ra
d

)

∆θ
4

∆θ
5

∆θ
6

(b)

FIGURE 7.36: Joint angle Input ∆θ in real-time experiment with global minimum
norm motion: (a) (∆θ1,∆θ2,∆θ3), (b) (∆θ4,∆θ5,∆θ6).

0 5 10 15 20 25
time (s)

0

0.5

1

Jo
in

t
A

n
g
le

θ

 (
ra

d
) θ

1

θ
2

θ
3

(a)

0 5 10 15 20 25
time (s)

0

0.5

1

1.5

Jo
in

t
A

n
g
le

θ

 (
ra

d
)

θ
4

θ
5

θ
6

(b)

FIGURE 7.37: Joint angle θ in real-time experiment with global minimum norm
motion: (a) (θ1, θ2, θ3), (b) (θ4, θ5, θ6).

278 Kinematic Control using Single Network Adaptive Critic

0 5 10 15 20 25
time (s)

100

150

200

250

L
ef

t
C

am
er

a
(p

ix
el

)

u
1

u
2

(a)

0 5 10 15 20 25
time (s)

60

80

100

120

140

160

180

200

R
ig

h
t

C
am

er
a

(p
ix

el
) u

3
u

4

(b)

FIGURE 7.38: Trajectory of the end-effector in the vision space during global
minimum norm motion: (a) Left camera x-y coordinates (u1, u2), (b) Right camera
x-y coordinates (u3, u4).

 0.3
 0.4

 0.5
 0.6

-0.2
-0.1

 0
 0.1

 0.2 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

z

Desired
Actual

xy

z

(a)

0 5 10 15 20 25
time (s)

0

0.01

0.02

E
n

d
-e

ff
ec

to
r

p
o

si
ti

o
n

 e
rr

o
r

(m
)

x
y
z

(b)

FIGURE 7.39: End-effector motion in real-time experiment with kinematic limit
avoidance: (a) Trajectory (m), (b) Error.

7.8.2 Joint Limit Avoidance
The elliptical trajectory is tracked considering the kinematic limits with the
network obtained in Section 7.7.2. The kinematic limit of the fourth joint
due to engineering design is [−900, 900] as tabulated in Table 2.2. The addi-
tional constraint (7.70) is considered and the critic network is learned. The
learned network is used in real-time experiment. The end-effector trajectory
and its corresponding manipulator configuration are shown in Figure 7.39. It
is observed that the end-effector tracks the trajectory with an accuracy of
2.55cm in a small operating zone which is more than the theoretical accu-
racy of 7mm indicating that the network has to be updated more in those
operating zones. The corresponding input and joint angle configurations are
shown in Figure 7.40 and Figure 7.41 respectively. It is clear from the figures
that the joint angle of the fourth link is within the kinematic limit as similar

Experimental Results 279

0 5 10 15 20 25
time (s)

-0.0005

0

0.0005

0.001

0.0015

0.002

Jo
in

t
In

p
u
t

∆
 θ

 (
ra

d
)

∆θ
1

∆θ
2

∆θ
3

(a)

0 5 10 15 20 25
time (s)

-0.0005

0

0.0005

Jo
in

t
In

p
u
t

∆
 θ

 (
ra

d
)

∆θ
4

∆θ
5

∆θ
6

(b)

FIGURE 7.40: Real-time experiment: Joint angle input ∆θ while tracking
an elliptical trajectory with kinematic limit avoidance: (a) (∆θ1,∆θ2,∆θ3), (b)
(∆θ4,∆θ5,∆θ6).

0 5 10 15 20 25
time (s)

0

0.5

1

1.5

Jo
in

t
A

n
g
le

θ

 (
ra

d
)

θ
1

θ
2

θ
3

(a)

0 5 10 15 20 25
time (s)

0

0.5

1

1.5

2

2.5

Jo
in

t
A

n
g
le

θ

 (
ra

d
)

θ
4

θ
5

θ
6

(b)

0 5 10 15 20 25
time (s)

0.5

1

1.5
 θ

4

 (
ra

d
)

Quadratic

Joint Limit

(c)

FIGURE 7.41: Real-time experiment: Joint angle θ while tracking an elliptical
trajectory with kinematic limit avoidance: (a) (θ1, θ2, θ3), (b) (θ4, θ5, θ6), (c) Joint
angle of the fourth link with and without kinematic limit avoidance.

to the simulation results. The fourth joint angle is separately shown in Fig-
ure 7.41(c) for better comparison of simulation and experimental results. The
experimental result is similar to the simulation and the manipulator avoids the
kinematic limit with single network adaptive critic based approach effectively.
The trajectory of the end-effector as seen through the vision space is shown
in Figure 7.42. It is easy to note that the trajectory is similar to that of the
quadratic cost minimization shown in Figure 7.38 due to accurate tracking.

280 Kinematic Control using Single Network Adaptive Critic

0 5 10 15 20 25
time (s)

100

150

200

250

L
ef

t
C

am
er

a
(p

ix
el

)

u
1

u
2

(a)

0 5 10 15 20 25
time (s)

60

80

100

120

140

160

180

200

R
ig

h
t

C
am

er
a

(p
ix

el
) u

3
u

4

(b)

FIGURE 7.42: Trajectory of the end-effector in the vision space during kinematic
limit avoidance: (a) Left camera x-y coordinates (u1, u2), (b) Right camera x-y
coordinates (u3, u4).

7.9 Conclusion
In this chapter, we first introduced the concept of Discrete Time Adap-
tive Critic Networks. The concept of Discrete Time Adaptive Critic is first
explained using an example given in (7.14). Later, we moved on to the intro-
duction of Single Network Adaptive Critic (SNAC). It was shown that SNAC
approach may be used to find out the optimal control law of discrete time
systems as well as continuous time systems. The costate vector is modeled
by using a critic network which may be a MLN or a T-S Fuzzy based model.
Example 7.1 demonstrates the application of a T-S Fuzzy Model-based DT-
SNAC to a a first order system to evaluate the optimal control policy. Exam-
ples 7.2, 7.3 and 7.4 discussed the simulation results obtained with CT-SNAC.
Example 7.5 and 7.6 demonstrated the Single network Adaptive Critic-based
kinematic control of single link and 3-link Robot Manipulator respectively.
Here, the critic that models the costate vector is a MLN. It is seen that it
achieves the tasks of reaching a fixed desired end-effector position as well
as tracking a desired time-varying reference trajectory with optimal con-
trol input to the joints which eventually minimizes the selected global cost
function.

Later, we discussed a SNAC based redundacy solution schemes for redun-
dant manipulators. For demonstration, the optimal redundancy resolution is
implemented in real-time in single network adaptive critic framework. The
computational cost of the proposed SNAC based scheme is analyzed and com-
pared with the pseudo-inverse based redundancy resolution. It is shown that
the computational requirement of the critic based method is linear with the
degree of redundancy, while the pseudo-inverse based technique is in quadratic
order. SNAC is trained with the available kinematic model and tested in both

Conclusion 281

simulation and real-time. Simulations show that the arbitrary accuracy can
be achieved with multi-step movement and an accuracy of ±1cm is achieved
with two step movements for smooth trajectories.

The optimal controllers for a general class of nonlinear system is not known
and demand high computational cost. This chapter introduces optimal con-
troller design for input affine nonlinear systems in adaptive critic framework.
The T-S fuzzy model critic network has been used for both the continuous-
time (CT-SNAC) and discrete-time (DT-SNAC) input affine systems. The
optimal controller for a nonlinear system has been obtained as a fuzzy cluster
of the optimal controllers of the local linear models, establishing the relation-
ship between the local linear dynamics and the global nonlinear dynamics. In
case of discrete-time system, SNAC proposed in [215] has been used to learn
the optimal costate vector as a fuzzy cluster of local linear costate vectors.
A Euler approximation based weight update is proposed for continuous-time
systems controlled with SNAC. The approach approximates the value func-
tion with a critic network, by discretizing continuous-time cost function in a
form similar to the Bellman’s equation of the discrete-time system. The opti-
mal kinematic control using this SNAC architecture has been introduced for
a 3-link robot manipulator. This architecture is further extended for optimal
kinematic control of a 7 DOF robot manipulator where optimal redundancy
resolution becomes a key factor.

The global optimal redundancy resolution is achieved by formulating an
optimal control problem for the positioning task. The proposed scheme focuses
on resolving the redundancy while the end-effector moves in discrete steps
toward the desired position. The proposed scheme formulates the end-effector
closed loop positioning task as a discrete-time nonlinear input affine system,
by defining the state space in the task space. The primary positioning task
and the desired additional task is modeled as an integral quadratic cost func-
tion. With such simplicity, the global optimal solution is achieved over the
workspace by minimizing an integral cost function. The optimal redundancy
resolution is implemented in real-time in single network adaptive critic frame-
work. The computational cost of the proposed SNAC based scheme is ana-
lyzed and compared with the pseudo-inverse based redundancy resolution. It
is shown that the computational requirement of the critic based method is lin-
ear with the degree of redundancy, while the pseudo-inverse based technique
is in quadratic order. SNAC is trained with the available kinematic model and
tested in both simulation and real-time. Simulations show that the arbitrary
accuracy can be achieved with multi-step movement and an accuracy of ±1cm
is achieved with two step movements for smooth trajectories.

http://taylorandfrancis.com

8
Dynamic Control using Single Network
Adaptive Critic

8.1 Introduction
The intention behind designing a controller is to generate stable control actions
associated to a linear or nonlinear dynamical system. These controllers work
in the inner loop of the control hierarchy of nonlinear systems such as robotic
manipulators. It is often desired that the control action to be the best or opti-
mal in terms of effectiveness. This is achieved by minimizing some performance
index while maintaining the stability of the closed loop system. Performance
index is a numerical value, associated with the quality of the control action.
The idea is that the desired quality of the system’s performance improves as
the performance index minimizes. Our task as a control engineer is to design
an admissible controller that minimizes the performance index while fulfilling
the system objective. In this chapter we will discuss about the design of such
a controller applicable to control robotic manipulators.

Let us review few definitions which are in use in the following sections.

Definition 8.1. A real n× n symmetric matrix Q is called positive (Q > 0)
if and only if xTQx > 0, ∀ x ∈ <n, where x is a real vector.

Definition 8.2. A real n × n symmetric matrix Q is called positive semi-
definite (Q ≥ 0) if and only if xTQx ≥ 0, ∀ x ∈ <n, where x is a real vector
of non-zero numbers.

Definition 8.3. A real n × n matrix Q̄ is called negative (Q̄ < 0) if −Q̄ is
positive.

Definition 8.4. (Zero-State Observability [228]) System (8.40) with measured
output y = h(x) is zero-state observable if y(t) ≡ 0 ∀t ≥ 0 implies that x(t)
≡ 0 ∀t ≥ 0.

Definition 8.5. The fuzzy system (8.52) would be called asymptotically stable
if the equilibrium state xe of the system is Lyapunov stable and there exists
δ̄ > 0 such that for an initial state x(0), if ‖x(0)−xe‖ < δ̄, then lim

n→∞
‖x(0)−

xe‖ = 0.

283

284 Dynamic Control using Single Network Adaptive Critic

Definition 8.6. A control action ui(x(t)) is said to be an admissible policy
for ith iteration where, i = 1, 2, 3, ...∞ if it is continuous on Z̄, stabilizes
system (8.40) on Z̄ where ∀x0 on Z̄, ui(x(t) = 0) = 0 and J0 is finite.

8.2 Optimal Control Problem of Continuous Time
Nonlinear System

Selection of the performance index is very important for optimal performance
of the controller. The design of the performance metric can be considered as a
part of the system modelling. Here, we shall discuss some of the performance
indices in the following.

Consider an autonomous continuous nonlinear system is represented by
the following equation

ẋ(t) = f(x(t),u(t)) with x(t0) = x0 (8.1)

y(t) = Cx(t) (8.2)

where, x ∈ <n and u ∈ <m are the state and the control input vector respec-
tively. As an optimal control problem, we intend to design the control action
u(t) such that the following performance index is minimized.

J(x) =
∫ T

t0

L(x)dτ (8.3)

where φ(x(T)) is the terminal cost and L(x) is the utility / instantaneous
cost1. Minimizing (8.3) ensures that the system in (8.1) performs optimally
in the interval [t0, T]. Here the utility cost defines what optimal feature we
want in our system. If we desire the system state to be small, an appropriate
utility cost could be

L1(x) = xTx (8.4)

This is intuitive from the above expression that ensuring minimization the
performance index (8.3) would keep the states small. By selecting

L2(x) = xTQx (8.5)

(where, Q = CTC) the output state can be kept small. If one wish to keep
the magnitude of the control action small, the utility function can be of the
following form

L3(x) = uTRu (8.6)

1The utility function can be L(x,u).

Optimal Control Problem of Continuous Time Nonlinear System 285

Here, R is a symmetric positive definite matrix, to weight the components of
control action u. This should be noted here that performance indices made
by (8.4) (or (8.5)) and (8.6) are conflicting objectives and cannot be achieved
simultaneously. To keep the states small in the duration [t, T], the control
action has to be large. If the control action is kept small in the duration [t, T],
the state becomes large. Hence, a trade off has to be made between these
objectives and can be obtained by taking convex combination to embed in a
single performance index. The more generic form of the utility cost function
can be given as follows.

L(x,u) = 1
2
[
xTQx + uTRu

]
(8.7)

Here Q and R can selected to make the trade off between the conflicting
objectives. The introduction of 1

2 is to simplify to subsequent algebraic manip-
ulations.

Certain control applications such as position control of robotic arm require
the final state x(T) to be as close to 0 as possible. It suggests the control action
also needs to minimize terminal cost Φ(x(T)). This can be achieved by adding
the term Φ(x(T)) in the performance index as follows.

J(x) = Φ(x(T)) +
∫ T

t0

L(x)dτ (8.8)

A suitable choice for Φ(x(T)) is 1
2xTFx which helps to keep the terminal state

as close to 0. Here, F is a symmetric positive definite matrix. The problem
of minimizing (8.8) subject to (8.1) is termed as linear quadratic regulator
(LQR) problem.

8.2.1 Linear Quadratic Regulator
Consider a linear time invariant system

ẋ = Ax + Bu, x(t0) = 0 (8.9)

The linear quadratic regulator (LQR) problem of the system (8.9) is about
designing a control law

u = −Kx (8.10)

such that the system (8.9) is asymptotically stable in the closed loop while
the performance index

J(x) =
∫ ∞
t0

[
xTQx + uTRu

]
dτ (8.11)

is minimized. The optimal control law is represented as u∗. The asymptotic
stability is ensured by finding a Lyapunov function V = xTPx where P is

286 Dynamic Control using Single Network Adaptive Critic

a positive definite matrix, such that, dV
dt is negative definite on closed loop

trajectory. It can be noted here that the significance of the terminal cost
Φ(x(T)) is lost as T →∞.

The feedback gain K in (8.10) is designed such that

min
u

(
dV

dt
+ xTRx + xTQu

)
= 0 (8.12)

subject to existence of a Lyapunov function V = xTPx. The application of
such control action u∗ results to the optimal cost

J(u∗) = xT0 Px0 (8.13)

where x0 is the initial state. The appropriate P is found by solving

∂

∂u

[
dV

dt
+ xTRx + xTQu

] ∣∣∣∣
u=u∗

= 0 (8.14)

Replacing dV
dt , the above can be written as

∂

∂u
[
2xTPAx + 2xTPBu + xTRx + xTQu

]∣∣
u=u∗ = 0

After differentiation w.r.t. u, the above becomes,

2
[
xTPB + uTR

]∣∣
u=u∗ = 0 (8.15)

The optimal control law u∗ can be derived from (8.15) as

u∗ = −R−1BTPx (8.16)

By relating the above equation with (8.10), it can be noted that the optimal
gain,

K = R−1BTP (8.17)

It can be easily investigated that the second order sufficiency condition for
the optimal control problem is also true by differentiating the left hand side
of the equation (8.15). The derivation of the control law u∗ was under the
assumption that there exists an appropriate symmetric positive definite matrix
P which governs the Lyapunov function of the system. Now we shall see how
an “appropriate” P can be found.

Under the influence of the optimal control law u∗, the closed loop system
(8.9) can be represented as

ẋ =
(
A−BR−1BTP

)
x (8.18)

and also the optimal controller satisfies the fact

dV

dt

∣∣∣∣u=u∗

+ xTRx + u∗TQu∗ = 0

Optimal Control Problem of Continuous Time Nonlinear System 287

By expanding dV
dt

∣∣u=u∗ and u∗, the above equation can be further written as

x
(
ATP + PA + Q−PBR−1BTP

)
x = 0 (8.19)

Since, (8.19) holds for any x, the following has to be true

ATP + PA + Q−PBR−1BTP = 0 (8.20)

The equation (8.20) is known as Algebraic Riccati Equation (ARE). Therefore,
the optimal control law u∗ is found by solving the ARE.

8.2.2 Hamilton-Jacobi-Bellman Equation
In this subsection we shall discuss the analytic solution to the optimal con-
trol problem for a general nonlinear dynamical system. The solution can be
achieved by solving the Hamilton-Jacobi-Bellman equation.

Consider a nonlinear dynamical system

ẋ(t) = f(t,x(t),u(t)) with x(t0) = x0 (8.21)

and the performance index to be minimized

J(t0,x(t0),u(t)) = φ(tf ,xf) +
∫ tf

t0

L(τ,x(τ),u(τ)) dτ (8.22)

Defining the performance index for any time t

J(t,x(t),u(τ)) = φ(tf ,xf) +
∫ tf

t

L(τ,x(τ),u(τ)) dτ (8.23)

where t ≤ τ ≤ tf and the optimal cost (performance index)

J∗(t,x(t)) =min
u

J(t,x(t),u(τ)) (8.24)

Therefore, the optimal cost can be rewritten as

J(t,x(t),u(τ)) = φ(tf ,xf) +
∫ tf

t

L(τ,x(τ),u(τ)) dτ (8.25)

where t ≤ τ ≤ tf and the optimal cost (performance index)

J∗(t,x(t)) =min
u

[∫ t+∆t

t

L(τ,x(τ),u(τ)) dτ

+
∫ tf

t+∆t
L(τ,x(τ),u(τ)) dτ + φ(tf ,xf)

] (8.26)

288 Dynamic Control using Single Network Adaptive Critic

Using the Principle of optimality,

J∗(t,x(t)) =min
u

[∫ t+∆t

t

L(τ,x(τ),u(τ)) dτ + J∗(t+ ∆t,x(t+ ∆t))
]
(8.27)

By expanding J∗(t+ ∆t,x(t+ ∆t)) about the point (t,x(t)) and considering
the fact that the optimal cost J∗ is independent of u

0 =min
u

[∫ t+∆t

t

L(τ,x(τ),u(τ)) dτ + ∂J∗

∂t
∆t+ ∂J∗

∂x ẋ∆t+H.O.T

]
(8.28)

where ẋ is approximately (x(t + ∆t) − x(t))/∆t and H.O.T refers to higher
order terms. As ∆t→ 0,

0 = ∂J∗

∂t
+ min

u

[
L(x,u) + ∂J∗

∂x f(x,u)
]

(8.29)

subject to the boundary condition

J∗(tf ,x(tf)) = φ(tf ,xf) (8.30)

In the above equation, H = L + ∂J∗

∂x f is called the Hamiltonian function.
To solve the optimal control problem, we need to solve the above equation for
a given system. In the optimal control literature, (8.29) is famous as Hamilton-
Jacobi-Bellman (HJB) equation. When the cost function is evaluated in infi-
nite time (tf = ∞) for a time invariant system dynamics, then the terminal
cost looses its significance and the performance index becomes

J(t0,x(t0),u(t)) =
∫ ∞
t0

L(τ,x(τ),u(τ)) dτ (8.31)

The HJB equation for the infinite time cost function becomes

min
u

(
L(x,u) + ∂J∗

∂x f(x,u)
)

= 0 (8.32)

8.2.3 Optimal Control Law for Input Affine System
Solution of (8.29) defines the optimal control policy that incurs the optimal
cost. The problem can be simplified if we are able to represent the system
dynamics in input affine form i.e. ẋ = f(x) + g(x)u and the optimal control
problem is to minimize the performance index

J(t0,x,u) =
∫ ∞
t0

L(τ,x,u) dτ (8.33)

where L = xTQx + uTRu, subject to the constraint

ẋ(t) = f(x(t)) + g(x(t))u(t) (8.34)

Optimal Control Problem of Continuous Time Nonlinear System 289

Then the optimal control policy u∗ can be written as

u∗ =arg min
u

[
1
2
(
xTQx + uTRu

)
+ ∂J∗

∂x (f(x) + g(x)u)
]

(8.35)

Differentiating the RHS of (8.35) w.r.t u and setting it to zero, we can write

u∗R + ∂J∗

∂x g(x) = 0

u∗ = −R−1gT (x)
(
∂J∗

∂x

)T
(8.36)

The optimal cost J∗ can be found by replacing the u∗ in the HJB equation. We
can see that the solution to the optimal control problem depends upon the opti-
mal cost of the system as the optimal control law comes from HJB equation of
the system [229]. Analytical computation of the optimal cost J∗ (or the costate
vector ∂J∗

∂x) requires valid mathematical models of the system dynamics f(x)
and the input matrix g(x). Even for known nonlinear systems, the solution to
the optimal control problem is non-trivial. The solution is obtained offline and
is computed backward in time for finite time optimal control problems. If one
wants to implement optimal policy in real-time, then the approximate solu-
tions to the HJB equation using reinforcement learning have been proven to be
efficient. Approximate dynamic programming (ADP) [191] on the other hand
provides solution forward in time. ADP employs adaptive critic (AC) based
methodologies [230] where the critic is trained to estimate the optimal cost
J∗. Next, we shall discuss about the adaptive critic techniques.

8.2.4 Adaptive Critic Concept
The optimal control policy u∗ which is obtained by solving the HJB equa-
tion, depends on the future cost. It also requires a known plant model in
continuous or discrete time. Traditional solutions considered entire episodes
of state evolution and the optimal control law was computed going backward
in time. However, the major issue in implementing the optimal control is that
the analytic expression of plant is not available in many cases. Systems with
input affine form alleviate this problem as we can obtain an analytic solu-
tion for the optimal control law but one needs to know the future cost at
any given instant. Adaptive critic [217] has been proposed to learn the opti-
mal control forward in time. This technique utilizes an approximation of the
future cost / value function for computing the optimal control law. Various
architectures in adaptive critic methodology have been proposed by Werbos
in early 1990s. An AC architecture generally employs two networks [231]: one
to approximate the optimal cost (called critic) and the other to approximate
the optimal policy (called action). The performance of the control input gen-
erated by the action network is evaluated using the critic network. The critic
network approximates either the value function V (x(t)) or the costate vector,

290 Dynamic Control using Single Network Adaptive Critic

FIGURE 8.1: Adaptive dynamic programming (ADP) architecture using
critic-action network. The action network provides optimal control action
based on the current estimate of the optimal cost by the critic network, and the
current state. The critic network corrects itself based on the reward received
from the environment while evaluating the performance of the action network.
The action network is also simultaneously trained based on the performance
evaluation made by the critic.

∂J
∂x as a function of states of the system. The two networks are simultaneously
trained until convergence to achieve the near optimal solution [232]. Figure
8.1 presents a simple ADP architecture using critic and action networks. AC
methodologies include Heuristic Dynamic Programming (HDP), Dual Heuris-
tic Programming (DHP), and Global Dual Heuristic Programming (GDHP).
Each of the techniques has their action dependent and independent versions.

Critic architectures can be categorized based on the input to the system,
output of the system and requirement of number of networks. In action inde-
pendent architectures, only the states of the system is provided as input.
Whereas action dependent architectures are provided with control signal as
input along with the states of the system. An HDP architecture, the output of
the critic network is the approximated value function and the gradient of the
value function is available as output of a DHP architecture. The GDHP archi-
tecture provides both the value function and its gradient as output. When the
system model is in input affine form, only one network is sufficient to imple-
ment the critic architecture. This kind of architecture is called single network
adaptive critic (SNAC) [233] which requires the critic network to approximate
the value function. The optimal control law can be obtained by solving the
HJB equation. The SNAC architecture discards the use of action network as
it is sufficient to know the optimal cost when the system is in input affine
form. Figure 8.2 presents a basic SNAC architecture to learn a near optimal
controller for a robot.

Policy Iteration and SNAC 291

Error

Instanteneous
Utility /

Cost

Control Law

Critic Network

Critic Network

Optimal

Robot

x(t)

xnew

J(x(t + T))

u∗(t)

x(t + T)

J(x)

∂J
∂x

FIGURE 8.2: SNAC architecture for robot control employs only the critic
network. The optimal control law is computed from the HJB equation using
the costate derived from the optimal cost J(Xt) at Xt, predicted by the critic.
The critic network is updated to minimize the difference between target cost
and the predicted cost.

8.3 Policy Iteration and SNAC for Unknown
Continuous Time Nonlinear Systems

Policy iteration (PI) scheme is very powerful for implementing real-time learn-
ing in designing optimal controller. We next show how to exploit PI to learn
a SNAC based optimal controller for an unknown nonlinear continuous time
system.

A single network adaptive critic can be employed to control a continuous
time nonlinear input affine system similar to the discrete-time case, since the
analytic expression for the optimal control is known. The critic network should
approximate either the value function J or the costate vector ∂J

∂x . to improve
the control policy. In this approach the value function J is approximated with
a critic network as V (x), and the costate vector is computed as ∂V

∂x from
the critic network, to compute the control input in (8.36). It can be noted
that SNAC needs the information of the system input matrix to compute the
optimlal control signal. Later in this section we show how this information
can be extracted from an unknown system.

8.3.1 Policy Iteration Scheme
Consider an initial stabilizing controller u0, and V0(xt) is the positive def-
inite function identified with the critic network which satisfies the HJB

292 Dynamic Control using Single Network Adaptive Critic

equation (8.29), then V0(x) is the value function associated with control policy
u0 [222]. Let us define a new policy

u1 =min
u

(L(xt,u0) + V0(xt+1)) (8.37)

The justification is presented in [234], where it is shown that the new policy
u1 is improved as it results V1(xt) ≤ V0(xt). The above scheme gives an
improved policy. This suggests an iterative scheme known as policy iteration
which discovers the optimal controller. The scheme is given as follows:

Initialization step: Select an admissible / stabilizing control policy ui.
Evaluation step: Evaluate the current value function associated to the

policy ui as follows:

Vi(x(t0)) =
∫ t0+T

t0

(xTQx+ u− iTRui) dt+ Vi(x(t0 + T)), (8.38)

where T is the sampling time to compute the cost function. It should be noted
that T is different from the system sampling time ∆T , and need not to be fixed.
The value of T is chosen such that the reinforcement signal

∫ t0+T
t0

(xTQx +
uTRu) dt carries enough information about the system dynamics. The above
equation is analogous to the fixed point equation used in the reinforcement
learning for the discrete-time system [234].

Policy improvement step: Determine the improved policy based on the
HJB equation as follows:

ui+1(x) = −1
2R−1gT (x)∂Vi

∂x
, (8.39)

i = 0, 1, 2, . . . ,∞. This scheme is independent of f(x) in contrast to HJB
equation. The aforementioned policy iteration scheme for nonlinear input
affine system does not require the knowledge of f(x) during the training
phase but the input matrix g(x) is needed to compute the input.

8.3.2 Optimal Control Problem of an Unknown Dynamic
Let us consider the following nonlinear system

ẋ = f (x(t),u(t)) (8.40)

where, x ∈ <n is measurable state vector of the system and u ∈ <m is the
control input to the system. Assume that f (x(t),u(t)) = 0 when x(t) = 0 and
u(t) = 0 and f (x(t),u(t)) is Lipschitz continuous on a set Ŝ ∈ <n, containing
the origin.

Assumption 8.1. System (8.40) has equilibrium state xe(t) on a set Ŝ ∈ <n,
containing the origin, under the influence of control action u(t) = 0 and is
controllable in a sense that there exist a continuous control law on set Ŝ that
can stabilize the system asymptotically.

Policy Iteration and SNAC 293

We formulate the optimal control problem as the following. Given a contin-
uous time nonlinear system (8.40), design a control architecture u = ḡ(x(t))
that stabilizes the system while minimizing the infinite-horizon cost (8.41)
without the knowledge of system dynamics.

J(x(t0),u(t0)) =
∫ ∞
t0

(xTQx + uTRu) dt

=
∫ ∞
t0

ϕ(x,u) dt, (8.41)

where, Q ∈ <n×n, Q ≥ 0 and R ∈ <m×m, R > 0 . Here, ϕ(x,u) is called the
utility function that indicates a measure of the performance of the controller.

Assumption 8.2. The performance index (8.41) satisfies zero-state observ-
ability [235].

As we have seen earlier the Hamiltonian of system (8.40) related to infinite
horizon cost (8.41) is given by

H(x, J,u) = ϕ(x,u) + ∂J

∂x

T

ẋ (8.42)

An control policy that minimizes cost (8.41) can be found using the stationary
condition of optimization yet the control action is a function of input matrix of
the system. The optimal control law u∗ satisfies the Hamilton-Jacobi-Bellman
(HJB) equation

∂J∗

∂t
+ min

u
H(x, J∗,u) = 0. (8.43)

Solution to the HJB equation depends on optimal cost J∗ of the system. Single
network adaptive critic can be used to estimate the optimal cost and is given
by

J∗(x(t))⇐ Ξ(x(t)), (8.44)

where Ξ is a fuzzy function that maps the states of the system to the optimal
cost.

Assumption 8.3. Unknown dynamical system (8.40) can be estimated using
Takagi-Sugeno-Kang (TSK) fuzzy model with arbitrary precision.

In the policy iteration framework the control policy in each iteration is
dependent on system input matrix. TSK fuzzy representation of the system
gives the flexibility to represent the system in input affine form. The TSK
fuzzy representation of system (8.40) can be given by

ẋ = A(x)x + B(x)u, (8.45)

where A and B are fuzzy approximation of system and input matrix respec-
tively.

294 Dynamic Control using Single Network Adaptive Critic

Policy iteration can result a fuzzy network to approximate the optimal
cost in subsequent updates, given the network is initialized by stable weights
which in turn make first policy admissible. One way of searching initial weights
could be learning an initial value function by a TSK fuzzy network if an initial
controller exists but the method fails for highly nonlinear systems. Instead of
learning an initial value function, the first policy can be made admissible if
the weight matrices follow certain properties in relation to the system. These
features of weight matrices also help to keep subsequent policies admissible
during network updates.

It is experienced that approximating the initial value function for a highly
nonlinear system is very difficult since, there exist multiple solution to the
critic network parameters. During the search process, the parameters of the
network change in a certain direction where it only minimize the training error
and hence it do not care about the control policy to be admissible. The given
approach selects those parameters/weights that lead to a stable control policy
for system (8.45).

Since the dynamic model of the system is completely unknown, a TSK
fuzzy approximation of the original dynamics as in (8.45) is considered as the
design model to formulate the optimal control problem. The Hamiltonian of
the above optimal control problem can be rewritten as

H(x,λ,u) = ϕ(x,u) + λT (Ax + Bu), (8.46)

where λ = ∂J
∂x is the costate vector of the system. The control law u is optimal

when u = u∗ where u∗ needs to satisfy the necessary condition,

∂H(x,λ∗,u)
∂u = ∂ϕ

∂u + λ∗T ∂

∂u (Ax + Bu) = 0. (8.47)

The solution of above expression gives the definition of the optimal control
law and is stated as

u∗ = −1
2R−1BTλ∗, (8.48)

where costate vector λ∗ = ∂J∗

∂x is along the optimal trajectory in the state
space. It’s well known that the optimal cost satisfies the HJB equation (8.43).
Since λ∗ being a function of the network (8.44), (8.48) can be rewritten as

u∗ = −1
2R−1BTf∗(P∗,x(t)), (8.49)

where f∗ is the functional representation of λ∗. P∗ ∈ P̄ represents the optimal
network weights which has a significant role in keeping u∗ admissible. Thus,
the search process for P∗ needs to discover those regions in P̄ where the
solutions not only provide minimum network training error but also maintain
u∗’s admissibility.

Policy Iteration and SNAC 295

8.3.3 Model Representation and Learning Scheme
A TSK fuzzy model represents a nonlinear complex function through a set of
rules with linear consequent part which gives the insight of human reasoning in
function approximation. TSK fuzzy modeling approach tries to decompose the
input space into subspaces and then approximate the system in each subspace
by a simple linear regression model [236]. This feature of TSK fuzzy model
gives an efficient way to deal with nonlinear complexities.

8.3.3.1 TSK Fuzzy Representation of Nonlinear Dynamics

The nonlinear dynamics of the robotic manipulator (8.40) is represented in
n− dimensional state space model where states of the system are controlled
by m dimensional input. The model is identified as fuzzy combinations of
local linear models from input-output data. In general, fuzzy rules in the rule
base that represents the model, contain all the possible combinations of fuzzy
zones in the states space. This approach is highly computationally expensive
for nonlinear MIMO systems. We incorporate a rule base that does not use
all possible combinations of fuzzy zones in the states space. Instead, effective
and efficient rules are searched that better represent the system. Thus, the
following TSK fuzzy system of L rules represents the system (8.40).

lth rule:
IF x1(t) is Γl1 AND · · · AND xn(t) is Γln THEN

ẋ(l) = A(l)x + B(l)u (8.50)

where A(l) ∈ <n×n, B(l) ∈ <n×m and overall model is given by

ẋ = ΣLl=1ω
lAl

ΣLl=1ω
l

x + ΣLl=1ω
lBl

ΣLl=1ω
l

u (8.51)

= Ax + Bu (8.52)

where Γlj = exp(− 0.5(xj−clj)
2

sl
j
2), clj and slj

2 are the mean and variance of lth
fuzzy zone of state xj , j = 1, 2, .., n, is the jth fuzzy set of the lth rule. The
rule membership degree ωl, associated with the lth rule is defined as

ωl =
n∏
j=1

µlj(xj), (8.53)

where µlj(xj) is the membership function related to the fuzzy set Γlj , l =
1, 2, · · · , L.

8.3.3.2 Learning Scheme for the TSK Fuzzy Model

We invoke a TSK fuzzy logic based parametric system identification technique
[237] that efficiently approximate the dynamic model and simultaneously keeps

296 Dynamic Control using Single Network Adaptive Critic

the rule base small. The technique uses genetic algorithm to find suitable
fuzzy zones and least square method to find consequent parameter for a good
representation of the unknown dynamical model. The rule base of the fuzzy
network has L rules where L = Fz and Fz is the number of fuzzy zones by
which each state of the system is divided in the state space.

The parameters of the fuzzy model are learned in two steps from the
input-output data set. First, GA finds out suitable mean and variance of the
Gaussian membership functions which are used as fuzzy sets. And in the next
step, least square technique is used to find consequent parameters given those
means and variances and the data set. Thus, (8.52) can be written as

ẋT =
[
σ1xT σ2xT . . . σLxT

]



A(1)T

B(1)T

A(2)T

B(2)T

...
A(L)T

B(L)T


(8.54)

where, σl = ωl

ΣL
l=1ω

l is the normalized rule membership. Equation (8.54) is
solved for N number of data points in the data set. The search continues until
the TSK model satisfactorily represents the dynamic model.

8.3.4 Critic Design and Policy Update
Obtaining an analytical solution of the optimal control problem of such a
system (8.40) is a difficult task since the solution depends upon J∗. If the
complete knowledge of the system is available, one can arrive at the solution
by going backward in time. Another approach is adaptive critic that obtains
an approximate solution forward in time but still the system information is
needed while the critic network is being trained. Instead of searching for an
analytical solution, we opt for an near optimal solution by using a single critic
network. The critic learns the optimal cost J∗(x,u) while maintaining the
stability of the closed loop system. The critic is represented by a Takagi-
Sugeno-Kang fuzzy model with a small rule base.

8.3.4.1 Construction of Initial Critic Network using Lyapunov
Based LMI

Initial critic network is constructed in such a way that it results in a stable
control law (8.49). The same fuzzy zones, those are found during the dynamic
model identification, are chosen for constructing the rule base for the critic.
As we learn the optimal controller by updating the critic weights, there has
to be a set of starting weights, assigned to the network, for which the system
(8.52) is stable in closed loop.

Policy Iteration and SNAC 297

Let us consider a fuzzy state feedback controller [238] that can stabilize
the system (8.52)

us = Kx (8.55)
Control law (8.55) gives the close loop system dynamics as following

ẋ =
L∑
l=1

σl

(
A(l) + B(l)K

)
x (8.56)

Here σl is the membership grade of lth rule that follows
L∑
l=1

σl = 1 and is

defined by

σl = ωl(
L∑
l=1

ωl

) (8.57)

It should be noted that in this formulation, the total number of rules in the
fuzzy rule base are same as the number of fuzzy zones for a state in the state
space. This approach makes the rule base compact.

8.3.4.2 Lyapunov Function

From the theory of physics we know

Work = [Force] · [Distance]

Here, (·) indicates the dot product between two quantities. In the literature
[229] of stability of nonlinear systems, the Lyapunov function is described as
energy like function. In the same way, we select an energy like fuzzy function
(8.58) [239]

V (x(t)) = 2
∫ x0

0
Ω(s) · ds (8.58)

which is essentially a line integral function over the trajectory of system
state evolution where x0 is a generic state. Here, s ∈ <n and Ω(s) =
[Ω1(s) Ω2(s) ... Ωn(s)]T . However, V (x(t)) to be considered as a Lyapunov
function, it should be independent of state trajectory [239], i.e.,

∂Ωi(x)
∂xj

= ∂Ωj(x)
∂xi

(8.59)

for i, j=1,2,...,n ; Let us choose a fuzzy function Ω(s) such that
lth rule:
IF x1(t) is Γl1 AND · · · AND xn(t) is Γln THEN

Ω(l)(x) = P(l)x (8.60)

298 Dynamic Control using Single Network Adaptive Critic

For l=1,2,...,L. Here, P(l) ∈ <n×n is symmetric positive definite matrix and
fuzzy aggregation of (8.60) is given as

Ω(x) = P(x)x = ΣLl=1w
(l)P(l)

ΣLl=1w
(l) x (8.61)

To define the structure of the Lyapunov function, we invoke the following
theorem [239].

Theorem 8.1. V (x) is a Lyapunov function candidate if there exists a P(l) =
P̂ + δ(l) > 0 such that

P̂ =


0 p12 . . . p1n
p12 0 . . . p2n
...

...
p1n p2n . . . 0

 (8.62)

and

δ(l) =


d

(l)
11 0 . . . 0
0 d

(l)
22 . . . 0

...
...

0 0 . . . d
(l)
nn

 (8.63)

The off diagonal terms of P(l) matrices will remain same for all the rules.
The diagonal elements construct different P for each rule. It can be shown
that (8.58) is a generic form of conventional Lyapunov candidate function
V (x) = xTPx.

8.3.4.3 Conditions for Stabilization

We search for the P(l) matrices [240] such that (8.58) is a Lyapunov function
of the system (8.56).

Lemma 8.1. The system described in (8.45) is asymptotically stable with the
controller (8.55) if there exists P̂, δ(l), and K such that

P(l) = P̂ + δ(l) > 0 (8.64)

P(l)A(l) + P(l)B(l)K + A(l)TP(l) + KTB(l)TP(l) < 0 (8.65)

P(i)A(j) + P(i)B(j)K + A(j)TP(i) + KTB(j)TP(i)+

P(j)A(i) + P(j)B(i)K + A(i)TP(j) + KTB(i)TP(j) < 0 (8.66)

where, l = 1, 2, ..., L i = 1, 2, ..., L− 1 and j = i+ 1,, L

Policy Iteration and SNAC 299

Proof. Time derivative of Lyapunov function of the close loop system (8.56)
can be given by

V̇ (x(t)) = xTPẋ + ẋTPx

= xT
 L∑
i=1

σiP(i)

 L∑
j=1

σj

(
A(j) + B(j)K

)
+
(

L∑
i=1

σi

(
A(i)T + KTB(i)T

)) L∑
j=1

σjP(j)

x

= xT
 L∑
i=1

L∑
j=1

σiσj

((
P(i)A(j) + P(i)B(j)K

)

+
(
A(j)TP(i) + KTB(j)TP(i)

))x (8.67)

during the system identification, the algorithm ensures that σiσj ≥ 0 ∀ x
and at least one rule is fired for any x ∈ D. Therefore, V̇ (x) is negative if(
P(i)A(j) + P(i)B(j)K

)
+
(
A(j)TP(i) + KTB(j)TP(i)

)
< 0 for x 6= 0 where

all i ∈ L, j ∈ L. Equation (8.67) is rearranged in equation (8.64) – (8.66)

Lemma 8.2. Consider V0(x) as the Lyapunov function computed as in (8.58)
of system (8.45) with stabilizing control input u0. Then, u1 in (8.68) also
stabilizes the system (8.45)

u1 = −1
2R−1BT ∂V0

∂x
(8.68)

if the following conditions are satisfied.

P(l) = P̂ + δ(l) > 0, R > 0 (8.69)

P(l)A(l) −P(l)
(
B(l)R−1B(v)TP(k)

)
+ A(l)TP(l)−(

B(l)R−1B(v)TP(k)
)T

P(l) < 0 (8.70)

P(i)A(j) −P(i)
(
B(j)R−1B(v)TP(k)

)
+ A(j)TP(i)−(

B(j)R−1B(v)TP(k)
)T

P(i) < 0 (8.71)

where l, i, j, k, v = 1, 2, ..., L. Here i, j, k and v iterates through all possible
combinations of rules that can be fired simultaneously and i 6= j 6= k 6= v.

300 Dynamic Control using Single Network Adaptive Critic

Proof. Let us replace the fixed gain matrix K by −R−1
L∑
v=1

L∑
k=1

σvσkB(v)TP(k)

in Lemma 8.1. The close loop system (8.56) can be written as

ẋ =
L∑
l=1

σl

(
A(l) −B(l)

L∑
v=1

L∑
k=1

σvσkB(v)TP(k)

)
x (8.72)

Derivative of the Lyapunov function of the close loop system (8.72) can be
written by

V̇ (x(t)) = xT
 L∑
i=1

σiP(i)

 L∑
j=1

σj

(
A(j) −B(j)

L∑
v=1

L∑
k=1

σvσk

R−1B(v)TP(k)
))

+
(

L∑
i=1

σi

(
A(i)T −

(
B(i)

L∑
v=1

L∑
k=1

σvσk

R−1B(v)TP(k)
)T)) L∑

j=1
σjP(j)

x

= xT
 L∑
i=1

L∑
j=1

L∑
v=1

L∑
k=1

σiσjσvσk

(
P(i)A(j) + A(j)TP(i)−

P(i)
(
B(j)R−1B(v)TP(k)

)
−
(
B(j)R−1B(v)TP(k)

)T
P(i)

))
x (8.73)

Since σiσjσvσk ≥ 0 ∀ x and at least one rule is fired for any x ∈ D, V̇ (x) is
negative provided

(
P(i)A(j) + A(j)TP(i) −P(i)

(
B(j)R−1B(v)TP(k)

)
−(

B(j)R−1B(v)TP(k)
)T

P(i)
)

< 0 which leads to the constraints (8.69) –

(8.71). Thus (8.68) is a stable control law if the constraints are satisfied.

Remark 1. If u1(x, t) = u∗ is a policy that gives minimum cost J∗ in (8.44)
and V (x(t)) in (8.58) can be represented as the value function of the system
(8.45), then V ∗(x) is also minimum and V ∗(x) ≤ V (x). When the critic is
modeled as TSK fuzzy network, parametrized in terms of matrix P(l), the value
of P(l) plays an important role in the stability of the closed loop system. In this
work, we have found a set of initial P(l) matrices by solving (8.69) – (8.71)
for which the closed loop system will remain stable. Simultaneously, we have
found the range of P(l) matrices during critic update, for which the closed loop
system will remain stable. The given structure and constraints on Pl matrices
ensure stability of the closed loop system. Since u1 is an admissible policy,
it can be used as the first policy in the policy iteration scheme. In essence,
this work for the first time provides a comprehensive method to design a critic

Policy Iteration and SNAC 301

as well as keeps its parameter updates in the stable zone. Please note, u1 is
selected as the first policy in the PI scheme, since it makes the closed loop
system Lyapunov stable. Thus the algorithm provides a way to solve for the
initial stable control policy.

8.3.4.4 Design of Fitness Function

Fitness function assigns a fitness value to each genome and the reproductive
ability of a genome is decided by the fitness value. Selection and preservation
of good genomes depend on the fitness function design. Algorithm 4 shows
the design of fitness function which is used in the Genetic Algorithm to select
initial weights.

Algorithm 4 Fitness function for initial weight selection

P(l) ← P̂ + D(l), P0 ← 0
for each l ∈ L do

Λmin ← min eigenvalue of P(l)

if Λmin < 0 then
P0 ← P0 − Λmin ×N0 [N0 is a large positive number]

end if
end for
if P0 > 0 then
return P0

else
for each l ∈ L, i ∈ L1 and j ∈ L2 do

Λmax ← max eigen value of M [M represents the left hand side of equation
(8.69) - (8.71)]

end for
P1 ← max of Λmax

return P1
end if

8.3.5 Learning Near-Optimal Controller
This section presents the steps that eventually learn a near-optimal controller
when the critic is iteratively updated. In general, a critic network is used to
approximate the value function or the co-state vector λ(x) on the optimal
state trajectory. In our work we use SNAC to approximate J(x) as V (x) in
(8.58) that represents cost-to-go in (8.74) for current state of the system.

Vc(x(t), tc) =
∫ tc+T

tc

(
xT (t)Qx(t) + uT (x)Ru(x)

)
dt

+ Vc(x(t), tc + T). (8.74)

302 Dynamic Control using Single Network Adaptive Critic

Lemma 8.3. Vc can be considered as a value function of nonlinear system
(8.40) for a given cost function (8.41) where u is any stable control law and
Vc is positive.

Proof. its complete derivative along the system state trajectory can be
described as

V̇c(x, t) = ∂Vc(x, t)
∂t

dt

dt
+
(
∂Vc(x, t)
∂x

)T
dx
dt

= ∂Vc(x, t)
∂t

+
(
∂Vc(x, t)
∂x

)T
[Ax + Bu]

(8.75)

Again, since Vc represents cost (8.41), derivative of cost-to-go is given by

V̇c(x, t) = −ϕ(x,u) (8.76)

This leads (8.75) to

∂Vc(x, t)
∂t

= −ϕ(x,u)−
(
∂Vc(x, t)
∂x

)
[Ax + Bu] (8.77)

It follows from the above fact that (8.77) satisfies the Hamilton-Jacobi-
Bellman equation (8.43) with a stable control law. Thus Vc(x(t)) in (8.74)
is a value function for system (8.45).

Lemma 8.4. Given a nonlinear system (8.40) with associated cost (8.41)
while V0(x) is the value function related to any stabilizing control policy u0 and
V1(x) is the value function related to control policy u1 where u1 is computed
as in (8.68), it can be stated that V1(x) < V0(x).

Proof. Using equation (8.76), the following can be written

V̇0(x) = −(xTQx + uT0 Ru0) (8.78)
V̇1(x) = −(xTQx + uT1 Ru1) (8.79)

Combining above equations, it can be written that,

V̇1(x) = V̇0(x) + uT0 Ru0 − uT1 Ru1

= V̇0(x) + (u0 − u1)TR(u0 − u1) (8.80)

Since (u0−u1)TR(u0−u1) > 0 for u1 6= u0, (8.80) leads to the inequality

V̇1(x(t)) ≥ V̇0(x(t))

Integrating both sides of the above equation, we get∫ ∞
t0

V̇1(x(t))dt ≥
∫ ∞
t0

V̇0(x(t))dt

Policy Iteration and SNAC 303

V1(x(∞))− V1(x(t0)) ≥ V0(x(∞))− V0(x(t0)) (8.81)

Since V1(x(∞)) = V0(x(∞)) = 0, equation (8.81) can be rewritten as

V1(x(t0)) ≤ V0(x(t0)) (8.82)

A solution to the optimal control law u∗ can be obtained analytically by
solving the optimal cost J∗ from HJB equation (8.43) for the system which
is explicitly modeled and simple. However, no analytic solution exists for sys-
tems with unknown dynamics. We exploit a learning technique by which we
train the critic network to approximate optimal cost. The initial controller
in Lemma: 8.2 eventually learns the optimal control law as we update the
weights of the critic network through policy iteration. The critic learns to
approximate the optimal cost as the training progresses. The policy iteration
scheme is presented in the following.

Vi(x(t0)) =
∫ t0+T

t0

(xTQx + uTi Rui) dt+ Vi(x(t0 + T)) (8.83a)

ui+1(x) = −1
2R−1BT ∂Vi

∂x (8.83b)

Here, subscript i denotes iteration number. At ith iteration, critic network
estimates Vi(x(t)) in (8.83a) and policy is renewed to ui+1(x) (8.83b) in (i+
1)th iteration.

Theorem 8.2. There exists an optimal control law u∗ given in (8.84) for
a nonlinear system (8.40) with completely unknown dynamics and associated
cost (8.41)

u∗ = −1
2R−1BT ∂V

∗

∂x (8.84)

where the optimal cost V ∗ is approximated by a critic network. The optimal
weights of the critic network can be obtained through policy iteration scheme
given in (8.83). Here V ∗ = V i where iteration i→∞

Proof. It is evident from Lemma 8.4 that if the control policy follows (8.83b),
the cost value is smaller than the previous control policy i.e. Vi ≥ Vi+1 where
i = 0, 1, 2, ...,∞. Therefore, the following relation can be drawn

V0 ≥ V1 ≥ V2 ≥ ... ≥ Vn ≥ Vn+1 ≥ ...V∞ (8.85)

Since, V (x) is a decreasing function with an updated control policy, even-
tually Vi falls on the optimal trajectory and converges to V ∗ as i→∞ .

304 Dynamic Control using Single Network Adaptive Critic

Remark 2. In this scheme, ∂V/∂x is calculated analytically from (8.58) and
B is fuzzy aggregated form of system input matrix. According to Lemma 8.4,
the cost associated with ui is always lower than the cost associated with ui−1
and any ui is a stable policy for system (8.45) as long as it follows (8.69) to
(8.71) as in Lemma 8.2. Hence, the critic network can be updated each time
whenever a new policy is available. Essentially, Lemma 8.2 gives the flexibility
to update the weights in real-time as it always ensures stable policy.

8.3.5.1 Update of Critic Network

Using Bellman’s Principle of Optimality the cost-to-go can be represented as
summation of cost accumulated in time t0 to T and cost-to-go at time T while
staying on optimal trajectory. Thus the incremental cost can be given by the
following

∆V (x(t0)) =
∫ t0+T

t0

(xTQx + u∗TRu∗) dt (8.86)

Since, the critic network is used to approximate the cost-to-go of the system
at a given time, the difference of cost estimated by critic network at t0th and
(t0 + T)th instant should be same as ∆V (x(t0) in (8.86) when the network
is trained properly. Hence, the weight matrices of the network is learned in
such a way, so that ‖∆V (x(k))− (V (P(k)− V (P(k+ T))‖ is minimized. This
must be noted that the constraints should be maintained while minimizing
the error norm. Therefore, the error minimization problem can be given as
the following

minimize
P(l)

‖∆V (x(k))− (V (P(k))− V (P(k + T))‖

subject to Υc holds, c = 1, 2, 3
(8.87)

Here, Υc represents constraints given in equations (8.69) to (8.71) and
l = 1, 2, ..., L. The methodology is summarized in Algorithm 6. The block
schematic of the overall control scheme is shown in Fig. 8.3.

Remark 3. Training of the critic network is performed on a finite number of
samples, collected when the system is influenced by policy ui. The incremen-
tal cost ∆V carries the information related to system dynamics. The algo-
rithm tries to find a new set of Pl matrices in ith iteration of PI scheme
that minimizes the difference between actual and network predicted incremen-
tal cost while enforcing Lyapunov stability to the system. With each update,
the critic network weights are directed toward optimality. Genetic algorithm
(GA) proves to be useful to search for more optimal Pl; the fitness function of
the GA implements (9.23). Since, GA returns weight matrices which are more
optimal and stable by Lemma 8.2, one can update the network while keeping
the system running thereby enabling online update of the critic network.

The approach presented here is also computationally efficient since it uses
a small rule base. The number of rules in the rule base is equal to the number

Policy Iteration and SNAC 305

of fuzzy zones of a state in the state space (if a state xj is divided in Fz fuzzy
zones, the number of rules in the rule base is also Fz). Thus the computa-
tional complexity of a n states system is O(n×Fz) in this method whereas the
burden is O(n× (Fz)n) for existing methods [241] [242] where all the possible
combinations of fuzzy zones are considered in the rule base, which makes this
algorithm at least (Fz)n−1 times faster than the existing methods. Moreover, a
common set of fuzzy zones are used in calculation of B and in approximation
of the optimal value function in (8.44), which results less computations and
fast update of the network. However, the computational burden in GA is not
addressed in this paper, since GA is used here as a toolbox and its compu-
tational burden will not be reflected on real-time implementation as it works
offline.

Algorithm 5 Fitness function for PI based training

P(l) ← P̂ + D(l), P0 ← 0, P1 ← 0
for each l ∈ L do

Λmin ← min eigenvalue of P(l)

if Λmin < 0 then
P0 ← P0 − Λmin ×N0 [N0 is a large positive number]

end if
end for
if P0 > 0 then
return P0

else
for each l ∈ L, i ∈ L1 and j ∈ L2 do

Λmax ← max eigen value of M [M represents the left hand side of equation
(8.69) - (8.71)]
if Λmax > 0 then
P1 ← P1 + Λmax ×N1[N1 < N0, is a large positive number]

end if
end for
if P1 > 0 then
return P1

end if
P2 ← ‖∆V (x(k))− (V (P(k)− V (P(k + T))‖
return P2

end if

8.3.5.2 Fitness Function for PI Based Training

A fitness value is assigned to each genome by the fitness function, based on
the output of the function. The fitness function that is used in this phase
of learning, by the GA is in fact some augmentation of the previous fitness
function. Algorithm 5 shows the design of the fitness function.

306 Dynamic Control using Single Network Adaptive Critic

Algorithm 6 Steps for discovering near-optimal weights.
1: Collect an input-output data set L ∈ U with permissible random control

torque or using any existing controller.
2: Learn TSK fuzzy model (8.45) of L rules that represent the original non-

linear model (8.40) from the data set. The algorithm can be found in [237]

3: Find out P̂ and δ(l) satisfying the inequality conditions given in (8.69) to
(8.71), where, l=1, 2, ..., L while P̂ and δ(l) follow the definitions given
in (8.62) and (8.63).

4: Assign P(l) as initial or starting weight matrix of the critic network where,
l=1, 2, ..., L.

5: Take any initial position and velocity state x0 = x(t0) within the discourse
of learning.

6: Get the fuzzy input matrix B from TSK fuzzy model.
7: Calculate λ∗ using the output of the critic network.
8: Evolve the original system (8.40) using (8.83b).
9: Store x(t0), x(t0 + T) and ∆V (x(t0)) in (8.86) with time stamp t0.

10: Collect critic network output for x(t0) and x(t0 + T) as approximated
cost-to-go at t0th and (t0 + T)th instant.

11: Store the difference υ = V (P(k))− V (P(k + T)) with time stamp t0.
12: Collect N0 number of such points.
13: Search new set of P(l), l = 1, 2, .., L that minimizes ‖∆V (x(k) − υ‖ over
N0 points as given in (9.23).

14: Select those P(l) where constraints (8.69) to (8.71) are satisfied.
15: Renew the policy with new set of P(l) and evolve the system.
16: Repeat from Step 5.

Critic Network

Fuzzy Rule Base

TSK Fuzzy Model

Robotic Manipulator

B

ui+1 = −1
2R

−1BT δVi

δx

∆V (t)

Data Store

x

u

FIGURE 8.3: Overall control scheme.

Policy Iteration and SNAC 307

Ẑ0,1

O,O1

Ŷ1

Ŷ 2

C2

O2

X̂2

lC2

lC1

E

Ẑ2

X̂0

C1

X̂1

q2

q1

q1

FIGURE 8.4: A manipulator with 2-DOF.

8.3.6 Examples
8.3.6.1 Simulated Model

In this section, the simulation results are presented. Let us consider a manip-
ulator of two DOFs given in Fig. 8.4 [243]. Where the mass of link 1 & 2 are
given by m1 and m2 respectively and the inertia matrices at the center of
mass of both the links are given by

IC1 =

Ixx1 0 0
0 Iyy1 0
0 0 Izz1

, and IC2 =

Ixx2 0 0
0 Iyy2 0
0 0 Izz2


For the given manipulator configuration the torque model of the system

can be represented as[
m11 m12
m21 m22

] [
q̈1
q̈2

]
+
[
c11 c12
c21 c22

] [
q̇1
q̇2

]
=
[
u1
u2

]
(8.88)

where mij and cij , i = 1, 2; j = 1, 2 are the elements of M and C respectively.
q = [q1 q2]T and u = [u1 u2]T is the control torque at the joints. The
dynamic model in Euler-Lagrange form is derived for WAM arm in a two DOF
configuration. Joints two and four have been considered active and the rest of
the joints are set to zero to reduce computational burden while deriving the
model. It should be noted here that the gravity related torque is not considered
here. It is assumed that the gravity term is compensated externally.

The dynamic model (8.88) of the manipulator is presented here to generate
an input-output data set for system identification. The system model informa-
tion is not used during the controller design. Training data can be generated
using the existing controller. Though random input-output data points can
also be used for system identification. It should be noted that the data set
should cover all operating regions of the manipulator workspace. The design

308 Dynamic Control using Single Network Adaptive Critic

-6

-4

-2

 0

 2

 4

 6

 0 100 200 300 400 500 600 700

Jo
in

t
ac

ce
le

ra
ti

o
n
 1

data points

(a)

-4

-2

 0

 2

 4

 6

 8

 0 100 200 300 400 500 600 700

Jo
in

t
ac

ce
le

ra
ti

o
n
 2

data points

(b)

FIGURE 8.5: Validation with test data set: The empty squares represent desired
acceleration and the filled squares are predicted by the model.

methodology is described in three steps. Step 1. The nonlinear manipulator
model is identified as a TSK fuzzy model (8.45) in state space form where
each joint position and velocity are the system states. Thirty thousand data
points with sampling rate of 5ms are used to learn the system dynamics. We
represent the fuzzy model by seven rules. The Gaussian functions are chosen
as fuzzy set in the rule base. GA finds proper mean and variance of the fuzzy
sets. GA runs for 500 generations with 150 population size. The procedure is
given in [237]. Fig 8.5 shows the estimated output from TSK fuzzy model for
testing data.

Step 2. The identified TSK fuzzy model is used to select the initial stable
weights of the critic network. The procedure involves finding stable Lyapunov
P(l), l = 1, 2, .., L matrices. Algorithm 4 shows the fitness function design
which is used by GA to find initial weights. GA searches for suitable P(l) and
K for which equation (8.64) to (8.66) satisfy. Algorithm 4 is coded as the
fitness function of the search problem. For this example, we take N0 = 1025.
The controller in (8.49) is a stabilizing controller where λ∗ is associated with
stable P(l) matrices and R = I ∈ <2. Fig. 8.6 shows the state evolution when
stabilizing controller is used. Results are presented for both the cases of known
and unknown system dynamics.

Since we have a mathematical model of the system, we can use it to eval-
uate the performance of the algorithm. In this experiment we also learn the
optimal controller using the information provided by (8.88). In the Fig. 8.6,
trajectory ‘a’ is associated with known model information and trajectory ‘b’
is associated with unknown model parameters. It is evident that almost similar
controller performance can be obtained using this technique without knowing
the system dynamics.

Step 3. Finally, the critic weights are updated by improving the policy to
approximate optimal cost-to-go from a given state. In this example we select
T = 0.5 sec, R = I ∈ <2 and Q = 10 ∗ I ∈ <4 where I represents identity
matrix. The manipulator is operated to collect data points for optimal training

Policy Iteration and SNAC 309

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7

x
1

time (sec)

a
b

(a) Joint 2 position

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0 1 2 3 4 5 6 7

x
2

time (sec)

a
b

(b) Joint 2 velocity

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7

x
3

time (sec)

a
b

(c) Joint 4 position

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0 1 2 3 4 5 6 7

x
4

time (sec)

a
b

(d) Joint 4 velocity

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0 1 2 3 4 5 6 7

u
1

time (sec)

a
b

(e) Control effort at joint 2

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0 1 2 3 4 5 6 7

u
2

time (sec)

a
b

(f) Control effort at joint 4

FIGURE 8.6: Performance of the initial stabilizing controller with both the cases
of known and unknown system dynamics: Trajectory “a” is the case when the exact
model dynamics is known and trajectory “b” is related to the to the case when the
dynamics is unknown.

of the critic network. The system is left to evolve from some initial joint
positions to desired positions under the influence of controller (8.83b). All the
states, control inputs and associated cost are stored with corresponding time
stamp at each T time. The critic network is updated when 1000 such data
points are collected. GA finds another set of P(l) matrices that minimize the
error norm. Fitness function for this part of training is given in Algorithm 5
where N1 = 1015. The policy is renewed by the solution provided by GA and
the process continues. The results are shown after five such updates.

Fig. 8.7 shows time evolution of system states and controller output after
the critic is iteratively trained with updated policy. Since states are penalized
more during the training with optimal control law, the driving input is relaxed
to increase in magnitude. All the simulations are done for seven seconds and
with same initial points, so that a good comparison can be made and the con-
clusion can be obtained easily. Fig. 8.8 depicts convergence of cost on optimal
trajectory. In the Fig. 8.8, cost trajectory ‘c’ denotes the cost that is gener-
ated by the initial control law before the critic is trained to estimate optimal
cost. cost trajectory ‘a’ indicates the cost when the original input matrix B
in (8.40) is used to generate control input in (8.83b) and cost trajectory ‘b’
shows the cost when the control input is generated using fuzzy estimated input
matrix B from (8.45). It’s evident from the results that optimal performances
in both the cases are comparable.

310 Dynamic Control using Single Network Adaptive Critic

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7

x
1

time (sec)

a
b

(a) Joint 2 position

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0 1 2 3 4 5 6 7

x
2

time (sec)

a
b

(b) Joint 2 velocity

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7

x
3

time (sec)

a
b

(c) Joint 4 position

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 1 2 3 4 5 6 7

x
4

time (sec)

a
b

(d) Joint 4 velocity

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0 1 2 3 4 5 6 7

u
1

time (sec)

a
b

(e) Control effort at joint 2

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0 1 2 3 4 5 6 7

u
2

time (sec)

a
b

(f) Control effort at joint 4

FIGURE 8.7: Performance of controller after policy update: Trajectory “a” is the
case when the exact model dynamics is known and trajectory “b” is related to the
to the case when the dynamics is unknown.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7

C
o
s
t

time (sec)

c
b
a

FIGURE 8.8: Comparison of cost accumulated in three cases: “a” represents
cost after the critic is trained with known system dynamics; “b” represents
cost after the critic is trained with unknown system dynamics, and “c” is the
cost with the initial critic parameters.

8.3.6.2 Example using Real Robot

In earlier section we test our algorithm on a simulated model of the commercial
robotic manipulator Barrett WAM. Now we test the algorithm on the real
robotic manipulator given in Fig. 8.9. Robotic manipulators are inherently
nonlinear and involve multi-body dynamics. Dynamic model of a general n-
Degree of Freedom (DOF) manipulator can be represented by the following

Policy Iteration and SNAC 311

FIGURE 8.9: Experimental setup: Barrett Arm.

nonlinear equation:

M(θ)θ̈ + C(θ, θ̇)θ̇ + g(θ) = τ . (8.89)

Here M(θ) ∈ <n×n represents the mass matrix which is real and positive
definite for a n-joints manipulator, C(θ, θ̇) ∈ <n×n contains centrifugal and
Coriolis force related terms, g(θ) ∈ <n represents the gravitational pull on
the arms, τ ∈ <n represents the controlling torque applied to the joints and
θ ∈ <n represents the joint angles of the arm.

Considering the fact that the gravitational force on the arm can be com-
pensated for quite efficiently, and hence the manipulator could be made unaf-
fected by the gravitational pull. Assuming the joint angles and joint velocities
as states of the system, equation (8.89) can be written in the following state
space form,

ẋ =
[
0 1
0 −M−1(θ)C(θ)

]
x +

[
0

M−1(θ)

]
[τ − g(θ)]

= Ax + Bu (8.90)

Here A ∈ <2n×2n, B ∈ <2n×n and x = [θ θ̇]T defines the system states and
u = (τ−g) represents effective torque at the joints after gravity compensation.
The algorithm is implemented on two joints of the robot, and hence the
manipulator is represented as a 2-link configuration. Let us redefine the system
states as x1 = θ1, x2 = θ̇1, x3 = θ2 and x4 = θ̇2 where θ1 and θ2 represent
joint positions of 2nd and 4th joint respectively.

We formulate the optimal control problem of a two degree of freedom
manipulator as the following. Given a manipulator with the performance index

J =
∫ ∞
t0

(xTQx + uTRu) dt (8.91)

312 Dynamic Control using Single Network Adaptive Critic

where R ∈ <2×2, Q ∈ <4×4, design a optimal controller that minimizes the
infinite-horizon cost (8.91).

Overall control scheme is given in Fig. 8.3. The methodology is discussed
in the following steps.

Step 1. The manipulator dynamics are represented as a TSK fuzzy model,
based on the input-output data set that is collected for model identification.
Joint positions, joint velocities and applied joint torques are considered as the
input to the TSK fuzzy model and joint acceleration is taken as the output of
the fuzzy model (8.45) where joint positions and joint velocities are the states
of the system. A data set of 35,000 random data points is generated with
in the range of

[
0.8 0.5 0.8 0.5

]T and
[
−0.8 −0.5 −0.523 −0.5

]T in
radian and rad/sec. The sampling rate of the system is 5 ms. The state space
is divided in nine fuzzy zones which gives a rule base of nine rules. The mem-
bership functions are chosen to be Gaussian functions. We search for proper
mean and variance of the Gaussian functions using genetic algorithm toolbox
in Matlab. The detailed procedure can be found in [237]. The affine term is
not considered due to the requirement of our problem. Table 8.1 contains all
the means and variances for nine rules, searched by GA. The population size
is taken as 250 and the GA runs for 1000 generations.

A(1) =


0 1 0 0
0 −67.59 0 3.36
0 0 0 1
0 −8.20 0 −11.28

 , B(1) =


0 0

3.36 5.59
0 0

−11.28 1.06



A(2) =


0 1 0 0
0 39.79 0 −45.81
0 0 0 1
0 11.87 0 −27.18

 , B(2) =


0 0

−45.81 5.87
0 0

−27.18 1.26


TABLE 8.1: Mean and standard deviation of fuzzy sets associated to nine
rules that represent the manipulator dynamics.

Mean SD
x1 x2 x3 x4 x1 x2 x3 x4

Rule 1 0.272 -0.091 -0.072 0.062 0.290 0.532 0.349 0.220
Rule 2 0.179 0.527 0.478 0.203 0.633 0.478 0.339 0.175
Rule 3 2.149 -0.356 0.468 0.077 1.683 0.263 0.434 0.608
Rule 4 -0.411 0.316 0.506 0.202 0.632 0.176 0.475 0.422
Rule 5 -0.041 0.328 0.684 -0.081 0.340 0.537 0.413 0.228
Rule 6 0.280 0.030 -0.261 -0.202 0.149 0.362 0.476 0.148
Rule 7 0.309 -0.015 0.805 -0.462 0.723 0.415 0.448 0.132
Rule 8 -0.117 -0.089 0.437 0.092 0.036 0.475 0.571 1.139
Rule 9 -0.774 0.394 0.723 -0.314 0.255 0.076 0.659 0.822

Policy Iteration and SNAC 313

A(3) =


0 1 0 0
0 −11.62 0 −69.33
0 0 0 1
0 −18.13 0 6.53

 , B(3) =


0 0

−69.33 5.11
0 0

6.53 0.47



A(4) =


0 1 0 0
0 −96.62 0 11.51
0 0 0 1
0 −17.74 0 5.6

 , B(4) =


0 0

11.51 5.48
0 0

5.6 0.85



A(5) =


0 1 0 0
0 −65.79 0 19.67
0 0 0 1
0 −5.53 0 −16.16

 , B(5) =


0 0

19.67 5.38
0 0

−16.16 0.73



A(6) =


0 1 0 0
0 −12.96 0 −0.02
0 0 0 1
0 7.77 0 −28.19

 , B(6) =


0 0

−0.02 5.88
0 0

−28.19 1.25



A(7) =


0 1 0 0
0 −0.11 0 4.97
0 0 0 1
0 −1.43 0 −1.91

 , B(7) =


0 0

4.97 5.50
0 0

−1.91 0.91



A(8) =


0 1 0 0
0 −23.93 0 28.79
0 0 0 1
0 0.48 0 1.31

 , B(8) =


0 0

28.79 5.62
0 0

1.31 1.00



A(9) =


0 1 0 0.00
0 −4.38 0 −5.80
0 0 0 1.00
0 −1.08 0 −8.10

 , B(9) =


0 0

−5.80 5.39
0 0

−8.10 0.79



Step 2. Weights of the critic network are initialized in such a way that the
controller (8.49) is an admissible policy to the system (8.45). In our approach,
we find out Lyapunov P(l), l = 1, 2, .., L (L = 9 in the experiment) as in step
3 of Algorithm 6, for which closed loop system is asymptotically stable. This
technique successfully avoids learning of initial value function and guarantees
stability of closed loop system by satisfying equation (8.69) to (8.71). The
fuzzy zones those are identified during the TSK modeling, are also used to
represent critic network. GA finds out Lyapunov P(l), l = 1, 2, .., L related to
those specified fuzzy zones. In our work, GA toolbox in Matlab is used where
each genome carries a set of P(l), l = 1, 2, .., L and the reproductive ability
of the genome is decided by its fitness value. It should be noted that in our
experiment the fuzzy rule base has only nine rules as nine fuzzy zones, were

314 Dynamic Control using Single Network Adaptive Critic

identified in the states space during TSK modeling. In this experiment, R
is considered as identity matrix and is kept constant during the experiment.
The gravity compensation algorithm that comes with robot operation library,
keeps the joints at floating condition. However, it does not eliminate the static
friction in the joints, which affects the learning of the model dynamics. In our
experiment, the static friction term is learned during training to boost up
gravity compensation in order to tackle static frictional force. Step 3. This
step involves learning the optimal network parameters to approximate cost-
to-go on optimal state trajectory. In this experiment we select T = 0.8 sec,
and Q = 10 ∗ I ∈ <4 where I represents identity matrix. The manipulator
is operated within the discourse of learning for collecting data. Starting from
an initial joint position within the manipulator workspace, we let the states
to reach its desired values. The control torque is computed using equation
(8.83b). Required data for optimal learning of the critic network is collected
at each T interval as described in step 9 and 11 of Algorithm 6. The training
is performed on 300 such points using (9.23) and the policy in (8.83b) is
renewed after the critic network is updated. GA is used for this part of training
where each genome contains a new set of P(l) and the reproductive ability
is evaluated based on (9.23). The results are shown after seventy-five such
updates. Fig. 8.10 and Fig. 8.11 shows the state evolutions and related torques
of joint one and two respectively from initial state

[
−0.78 0 −0.52 0

]T to[
0 0 0 0

]T under the influence of controller (8.68). It should be noted that
the a reference trajectory is provided from initial position to desired position

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.5 1 1.5 2 2.5 3 3.5

x
1

time (sec)

(a) Before training: Joint
Position 1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.5 1 1.5 2 2.5 3 3.5

x
2

time (sec)

(b) Before training: Joint
Velocity 1

-1

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5

u
1

time (sec)

(c) Before training: Joint
torque 1

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.5 1 1.5 2 2.5 3 3.5

x
1

time (sec)

(d) After training: Joint
Position 1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.5 1 1.5 2 2.5 3 3.5

x
2

time (sec)

(e) After training: Joint
Velocity 1

-1

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5

u
1

time (sec)

(f) After training: Joint
torque 1

FIGURE 8.10: States and torque profiles of Joint Position.

Policy Iteration and SNAC 315

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.5 1 1.5 2 2.5 3 3.5

x
3

time (sec)

(a) Before training: Joint
Position 2

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2 2.5 3 3.5

x
4

time (sec)

(b) Before training: Joint
Velocity 2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.5 1 1.5 2 2.5 3 3.5

u
2

time (sec)

(c) Before training: Joint
torque 2

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0 0.5 1 1.5 2 2.5 3 3.5

x
3

time (sec)

(d) After training: Joint
Position 2

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.5 1 1.5 2 2.5 3 3.5

x
4

time (sec)

(e) After training: Joint
Velocity 2

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.5 1 1.5 2 2.5 3 3.5

u
2

time (sec)

(f) After training: Joint
torque 2

FIGURE 8.11: States and torque profiles of Joint Position 2.

by creating trapezoidal velocity profile to tackle huge initial acceleration which
could damage the robotic arm severely. First row of the figures show states
and torques before the critic was trained by policy iteration and second row
contains the results after the iterative training. Since the states were penalized
more than the control action by selecting Q = 10 ∗ I and R as Identity, the
velocity profile of both the joints becomes smoother than the untrained case.
Thus by selecting Q and R, system state response can be customized based
on the requirement.

Fig. 8.14 presents cost-to-go w.r.t time on the state trajectory. Here, Initial
cost represents the cost-to-go, estimated by the critic network before the critic
was iteratively trained. The time evolution of the near-optimal cost is given by
Near-optimal cost. It is quite evident that the infinite horizon cost predicted
by the critic is much lower that the untrained case, which essentially means
that the critic network parameters converge toward optimal trajectory with
such updates.

Fig. 8.12 and 8.13 show convergence of critic network parameters to the
optimal trajectory. In the experiment, the parameters of the critic network
have been updated seventy-five times. It is interesting to know that the critic
network parameters at instant during the update, constitute a stable controller
which is more optimal than the previous update.

316 Dynamic Control using Single Network Adaptive Critic

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

w
ei

g
h
t

iterations

(a) Diagonal elements:
Rule:1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80

w
ei

g
h
t

iterations

(b) Diagonal elements:
Rule:2

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 10 20 30 40 50 60 70 80

w
ei

g
h
t

iterations

(c) Diagonal elements:
Rule:3

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

w
ei

g
h
t

iterations

(d) Diagonal elements:
Rule:4

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

w
ei

g
h
t

iterations

(e) Diagonal elements:
Rule:5

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80

w
ei

g
h
t

iterations

(f) Diagonal elements: Rule:6

FIGURE 8.12: Convergence of weights to the optimal trajectory.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70 80

w
ei

g
h

t

iterations

(a) Diagonal elements: Rule:7

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

w
ei

g
h

t

iterations

(b) Diagonal elements: Rule:8

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80

w
ei

g
h

t

iterations

(c) Diagonal elements: Rule:9

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

w
ei

g
h

t

iterations

(d) Off-diagonal terms of the
weight matrix

FIGURE 8.13: Convergence of weights to the optimal trajectory.

Summary 317

 0

 20

 40

 60

 80

 100

 120

 0 0.5 1 1.5 2 2.5 3 3.5

c
o

st

time (sec)

Initial cost

Near-optimal cost

FIGURE 8.14: Comparison of costs.

8.4 Summary
We have seen the challenges of designing an optimal controller for a nonlinear
system. AC methodologies help to overcome these challenges. In that con-
nection, we have applied the adaptive critic both in discrete and continuous
time systems. A TSK fuzzy model has been used as the critic network. The
optimal controller for a nonlinear system has been obtained as a fuzzy cluster
of the optimal controllers of the local linear models, establishing the relation-
ship between the local linear dynamics and the global nonlinear dynamics. In
discrete time SNAC, the costate vector has been approximated to design the
optimal controller. Optimal control problem of continuous time systems with
unknown dynamics is solved using policy iteration with SNAC architecture.
The work analyzes the effect of critic network parameter variation on stabil-
ity of the closed loop system. The algorithm learns stable weight matrices of
a fuzzy critic network. The computational complexity is greatly reduced by
incorporating a novel critic architecture. The continuous time dynamic model
of the system is represented in state feedback form using TSK fuzzy model.
Adaption of such a system identification technique leads to a small rule base
which proves to be helpful for real-time implementation of the proposed algo-
rithm. The algorithm also provides a way to solve for the initial stable control
policy in the PI scheme. The critic weights are learned in such a way, that
(8.49) is always a stable controller during the parameter update. The uncon-
ventional fuzzy Lyapunov function eases the stability analysis of the closed
loop system and leads to simple stability criteria. It is shown analytically that

318 Dynamic Control using Single Network Adaptive Critic

the system is asymptotically stable through out the learning phase. In the pro-
cess of learning optimal control policy, the weights eventually move toward
optimal trajectory after each iteration, which is in harmony with Theorem
8.2. The algorithm is validated through real-time experiments on a commer-
cial robotic manipulator whose dynamic model is unknown and involves highly
nonlinear dynamics. Real-time experimental results, supported by the analyt-
ical proofs, suggest that the proposed algorithm can discover near-optimal
critic network parameters in the presence of multiple solutions in the PI
scheme for a nonlinear continuous time system where dynamic information
is missing. However, the model uncertainties that may arise due to TSK fuzzy
model representation will be dealt as a future scope of this work.

9
Imitation Learning

9.1 Introduction
Industrial evolution toward automation has opened the door to intelligent
robots in order to reduce human labor at its minimum level. In the era of
automation, robots have not only discarded the human intervention in repet-
itive tasks, also they are being considered as suitable replacement of human
workers for complex jobs where decision making abilities related to motion
planning are essential according to task requirements. Such a futuristic setup
may also require sharing of workspace between humans and robots in a coop-
erative manner. Hence, robots which are able to learn skills from the human
co-worker by only watching them accomplishing a task, would be quite useful
for this purpose. As the modern intelligent robots come with complex archi-
tecture (both in hardware and software), challenges of operating these robots
are also emerging. A demand of specially trained manpower is becoming high
since the robots are needed to be programmed manually for different applica-
tions. To deal with the situation, current research concentrates on simplified
skill learning for the robots. The skill learning is realized in the form of a
robotic motion planner that plans/controls robot’s motion in the workspace.
The research problem here is to design the motion planner such that the user’s
expertise can be easily induced/encoded into the motion planner. In this chap-
ter we present such a motion encoding system. The motion encoding system
is a kinematic controller which works in the outer loop of the control hierarchy
of the robotic manipulator.

In order to develop an efficient motion encoding system, the following cri-
teria are desirable from an user’s perspective: 1) Reproduction of tasks: The
motion encoding system is capable of reproducing the demonstrated tasks (by
task here we mean a particular motion profile). 2) Stability and robustness
to perturbations: It is very important to design a system that can command
a stable direction while meeting the first criteria and at the same time it is
robust to perturbations. The perturbations can be spatial/temporal or exter-
nal/internal. Robustness to perturbation feature will ensure that even if the
end-effector trajectory is deviated from the desired path due to collision or
something else, the end-effector still reaches the target point. 3) Adaptivity:
The encoding system is adaptive to the changes in a dynamic environment,
i.e., the motion model is capable of providing immediate directional command

319

320 Imitation Learning

to the robot based on the current feedback from the environment. This is very
important as the motion planner is expected to handle uncertainties in the
environment. 4) Generalization and re-usability: the advantage of a generic
motion encoding system is that it can be reused any where in the workspace.
It avoids manual hard coding when ever a new task arrives. 5) Effortless learn-
ing: the model learning is effortless, i.e., the skills of a non-expert (in the field
of robotics) user can be easily transferred to the encoding model.

Earlier approaches of learning robotic motions are mostly based on the
principle of dividing a task in two parts [90]: a) path planning and b) tra-
jectory tracking. Path planning involves generation of end-effector trajectory
in the Cartesian space or joint space. As the robotic manipulator interacts
with the environment in the Cartesian space, the Cartesian space motion
planner demands significant attention for desired and safe robot operation.
A Cartesian space motion planner or kinematic controller should be capable
of generating suitable and feasible end-effector trajectory for the manipulator
meeting all the specified criteria. The trajectory tracking algorithms use only
local information from the environment as feedback to the robot to generate
required control signal to execute the trajectory. The trajectory tracking con-
troller generally provides joint level torques involving robot’s dynamics. This
enables the robot to track the desired trajectory [244]. However, the earlier
approaches available for motion learning have failed to transfer skills from
human to robots. In contrast, imitation learning provides flexibility to acquire
skills from the human expert. Earlier we have discussed various elements of
imitation learning. In this chapter, we’ll discuss about various imitation learn-
ing / learning by demonstrations techniques. We’ll mainly concentrate on IL
through kinesthetic teaching.

9.2 Dynamic Movement Primitives
It is believed that complex motor actions can be represented as a sequence of
simpler actions or action primitives. These action primitives are the building
blocks that constitute higher level complex motions. The mathematical repre-
sentation of these building blocks are known as dynamic movement primitives
(DMPs) [92,114]. The main idea behind DMPs is they fuse a stable dynamical
system and a nonlinear function follows some interesting trajectories. There
are two categories of DMP: a) discrete and b) rhythmic. Discrete DMPs are
generally used for learning point to point motions, whereas, rhythmic DMPs
are good for learning tasks which involve repetitive motions such as walking.
In discrete DMP, the base system is asymptotically stable, however, in the
second category, a limit cycle is used as the base system. Here, we’ll mainly
consider the discrete type.

Dynamic Movement Primitives 321

9.2.1 Mathematical Formulations
The DMPs employ a second order dynamics which learns the acceleration
profile from the given demonstrations. The base system is a PD controller
that provides all the trajectories a stable behavior and is given as follows:

ẍ = kp(g− x)− kdẋ (9.1)

where, g and x are the goal and current states. kp and kd are two positive
scalers which are the gains of the PD controller. Being a stable system, (9.1)
will always yield a stable trajectory and the properties of the trajectory can be
manipulated to certain extent by playing with the gains. However, this system
will always end up with a trivial trajectory. Real-life demonstrations comprise
complex trajectories which cannot be encoded into the base system. To obtain
a non-trivial trajectory from such models, we need an extra component that
can hold the non-trivial characteristics of the trajectory. In this pursuit, the
base system (9.1) is modulated by using a nonlinear function f and is given
as follows:

ẍ = kp(g− x)− kdẋ + f (9.2)

Here, f is a kind of forcing function that forces the PD signal to follow a
desired trajectory. The nonlinear function f is defined over a canonical system
which is represented by

τ̇ = −ατ (9.3)

where, α is a positive scaler. The canonical system is a normalized state which
starts from 1 and exponentially reaches to zero. The function f is defined as
bellow

f(τ) =
N∑
i=1

wiψiτ(g− x0) (9.4)

x0 in the above equation is the initial state. ψi is basis function weighted by
wi and is given by

ψi = exp(− 1
σ2
i

(ci − τ)2) (9.5)

Here, we can see that the Gaussian function has been chosen as the basis
function where, ci is the mean and σi is the variance. The Gaussian function
is defined over the trajectory of τ . As the value of τ decreases, the basis
functions are activated based on their locations. The forcing function uses the
normalized basis function multiplied with the spatial scaling. One can observe
that the forcing term is diminishing as the time progresses. The canonical
system trajectory starts at 1.0 and ends at 0.

322 Imitation Learning

9.2.1.1 Choice of Mean and Variance

τ in the canonical system (9.3) decays exponentially from its initial value.
Therefore, for a set of equally spaced means, all the basis functions are acti-
vated during the early stage of evolution of τ . This would not have happened,
if τ reached linearly to its target. To alleviate this problem, the means and
the associated variances are chosen in time and projected back to τ . The steps
are given in Algorithm 7.

Algorithm 7 Selection of mean and variance
1: Decide the number of basis functions (BFs) and tolerance ε.
2: Get the desired means (cd) in time by equally segmenting the total time

of evolution (tf) by BFs.
3: ith mean in τ can be given by

ci = exp(−log(ε) ∗ cd
tf

) (9.6)

4: The associated variance σi can be given by

σi = (BFs)1.5

ci
(9.7)

9.2.1.2 Spatial and Temporal Scaling

One important advantage of DMP based motion planner is the learned tra-
jectory can be scaled spatially and temporally. The spatial scaling property
enables the trajectory to be expanded or contracted based on the distance
between the initial and target/goal positions. If the goal position is far away
from the initial position (irrespective of the initial and goal positions in the
demonstrations), then the executed trajectory by the motion planner must
reach the target/goal while maintaining the same demonstrated profile; or if
the goal is very close to the initial position, then also the planner must main-
tain the demonstrated profile in its planned trajectory. In DMP model the
spatial scaling is taken care by the term (g− x0) in the forcing function (see
equation 9.4). As the distance between the initial and goal position changes,
the forcing function is spatially scaled accordingly.

Similarly, the temporal scaling property enables the robot to reach the
a target point with different speeds while tracking the same trajectory. This
property is achieved by introducing a scaling term st in the DMP model

Dynamic Movement Primitives 323

(9.2). Now the DMP model and the canonical system is given by the following
equations.

ẍ = s2
t (kp(g− x)− kdẋ + f) (9.8)

τ̇ = st (−ατ) (9.9)

Here in (9.8) we use s2
t since the DMP dynamics is a second order differential

equation. By selecting st between 0 to 1, we can achieve different speeds with
same trajectory.

9.2.2 Example
Here, we shall discuss the implementation of the DMP based approach of
motion learning through an example. Let us consider a 4−DOF manipulator
which learns ball-hitting motions using a bat mounted as its end-effector. A
human expert provides the kinesthetic demonstrations by guiding the robot
to hit the ball. The joint positions are recorded during the hitting motion.
Assume that the recorded joint positions are represented as θ and the dataset
to train the DMP model is represented by D = {θt, θ̇t, θ̈t}Kt=1. θ̇t and θ̈t in
the data set are the joint velocities and acceleration respectively at tth instant.
The joint velocity and acceleration can be achieved by differentiating the joint
positions and velocities respectively.

The joint acceleration in the dataset can be regarded as the desired accel-
eration which the the DMP model must generate. Hence, we can write

θ̈ = kp(g− θ0)− kdθ̇ + f

As we have discussed earlier that the forcing function f in fact encodes the
trajectory. Thus the above equation can be rewritten as

f = θ̈ −
(
kp(g− θ0)− kdθ̇

)
= fref

fref is the target function for f . Therefore the we need to learn wi such that∑
t

‖f tref −
∑
i

ψiwiτ(t)(g − θ0)‖ is minimized.

We have chosen fifty Gaussian kernels as basis functions. 3,589 time steps
were considered with 2 ms sampling time. The tolerance is chosen as 0.01. First
we decided the means (ci) and sigmas (σi) for the total time 7.18 seconds. The
weights are then learned using least square optimization. After the training of
the DMP model, we generate a hitting motion trajectory by selecting random
initial and goal positions, which are not included in the demonstration. The
results are plotted in Figure: 9.1. We can see the trajectories have been scaled
according to the goal and initial positions.

324 Imitation Learning

0 50 100 150 200 250

-0.6

-0.4

-0.2

0

0.2

(a)

0 50 100 150 200 250

-0.5

0

0.5

1

1.5

(b)

0 50 100 150 200 250

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c)

0 50 100 150 200 250

0.6

0.8

1

1.2

1.4

1.6

1.8

(d)

FIGURE 9.1: Four joint angles have been plotted here. The trajectory with
circle (thick line) is the demonstrated joint motion profile during the hitting
motion. The other trajectory (thin line) is generated by the DMP model.

9.3 Motion Encoding using Gaussian Mixture
Regression

The point-to-point motion of the robotic system is represented as a continuous
time nonlinear system and is given as follows:

ẋ = f(x) (9.10)

where x ∈ <n is the state of the robotic system and f is the map. The func-
tion f(x) bears all characteristics of the trajectory that is executed by the
motion model. The parameters of the nonlinear function are learned through
an optimization process. In the IL paradigm, the map f is learned from the
demonstrations, where the robot is shown reaching motions of particular pat-
tern by the a human demonstrator. The map f in (9.10) can be represented
as a nonlinear regressive function. Gaussian mixture regression has been very

Motion Encoding using Gaussian Mixture Regression 325

successful in modeling demonstrations, where the parameters of the mixture
model are optimized using expectation maximization algorithm. Given a data
set D = {[xi,j , ẋi,j]Nij=1}Di=1, where xi,j is the position state of the robot in ith
instant of jth demonstration, the joint probability distribution of the demon-
strations can be estimated using L Gaussian probability distribution functions
and is given by

P (x, ẋ|µ,Σ) =
L∑
k=1

P (k)P (x, ẋ|k), (9.11)

where P (k) is termed as the prior and P (x, ẋ|k) is the conditional probability
density function which is given by

P (x, ẋ|k) = Gk
(
x, ẋ;µk,Σk

)
= exp−

1
2

(
([x;ẋ]−µk)T (Σk)−1([x;ẋ]−µk)

)
√

2π2n ∣∣Σk∣∣ , (9.12)

where µk and Σk are given by

µk =
[
µkx
µkẋ

]
and Σk =

[
Σkxx Σkxẋ
Σkxẋ Σkẋẋ

]
. (9.13)

The posterior probability P (ẋ|x) gives the desired mean estimate using (9.12)

f(x) =
K∑
k=1

P (k)P (x|k)
P (x)

(
µkẋ + ΣkẋxΣkxx

−1 (x− µkx)
)

(9.14)

Comparing (9.13) with (9.24) with zero control input, the following can be
written.

Ak = ΣkẋxΣkxx
−1

bk = µkẋ − ΣkẋxΣkxx
−1
µkx

σk = P (k)P (x|k)
P (x) (9.15)

Hence, (9.10) can be rewritten as

ẋ =
K∑
k=1

σk(bk + Akx) (9.16)

Here, each (bk +Akx) is the local representation of the demonstrated motion
profiles and the overall encoding is given by the contribution of each local sub-
system when weighted by σk. However, model (9.14) is not stable by default.
To ensure the motion trajectory reaches to the target, additional measures
have to be taken. In other words, the dynamical system (9.14) must have an
stable equilibrium point. Addressing this challenge has led to various algo-
rithms using the above mentioned technique in recent times. Here, we shall
discuss some of such important methods.

326 Imitation Learning

9.3.1 SED: Stable Estimator of Dynamical Systems
SED is a Gaussian mixture regression based motion encoding technique to
learn point-to-point motion from user demonstrations. This technique was
proposed by Khansari-Zadeh et al. [245]. The model ensures asymptotic sta-
bility of the predicted end-effector trajectory.

SED uses the dynamical system structure as given in (9.16). In general,
even for simple motions, the learned motion model is not stable. It means
that the model does not know where to stop while unfolding in time. As the
characteristics of a dynamical system depends on its parameters, one needs to
be careful while selecting those parameters in order to ensure stability. SED is
motivated to that idea where the learning algorithm ensures that the learned
model obeys the Lyapunov stability criteria.

9.3.1.1 Learning Model Parameters

As we have discussed earlier that the characteristics of the dynamical system
depends on its parameters. In case of (9.16), Ak and bk decide how the system
unfold in time. The following theorem [245] presents the constraints on Ak

and bk during update.
Theorem 9.1. The system (9.16) is globally asymptotically stable at target
x∗ ∈ <d if {

(i) bk + Akx∗ = 0
(ii) Ak + (Ak)T < 0, ∀k = 1 · · ·K (9.17)

where, (Ak)T is the transpose of Ak and “< 0” implies the negative definite-
ness of the left hand side.
Proof. The above theorem directly comes from the stability analysis of system
(9.16). Consider a Lyapunov function V (x)

V (x) = 1
2(x− x)T (x− x) (9.18)

V in the above equation in fact represents the error energy during the state
evolution. For an asymptotically stable system, the error energy eventually
diminishes as the state reaches to the target. Hence we have,

V̇ (x) = (x− x)T
K∑
k=1

σk(bk + Akx) (9.19)

= (x− x)T
K∑
k=1

σk(Ak(x− x∗) + Akx∗ + bk) (9.20)

=
K∑
k=1

σk(x− x)TAk(x− x∗) (from (9.17)) (9.21)

< 0 (from (9.17)) (9.22)

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 327

i.e., the motion model (9.16) is an asymptotically stable system in the sense of
Lyapunov. Theorem 9.1 says, during the search of the motion model param-
eters, one has to ensure the constraints given by (9.17) are maintained.
The model parameters are selected through an optimization process where
a cost is minimized. Optimization of model parameters is in fact determining
θ = {π1 · · ·πK , µ1 · · ·µK , Σ1 · · ·ΣK , }. Maximizing Log-Likelihood function
in the constrained environment is an efficient way to determine the the model
parameters.

9.3.1.2 Log-likelihood Cost

Maximization of log-likelihood is equivalent to minimization of negative log-
likelihood. Hence the cost function of the optimization problem is given by

minimize
θ

− 1
N∑
n=1

Tn

N∑
n=1

Tn∑
m=1

logP (xm,n, ẋm,n|θ)

subject to bk + Akx∗ = 0
Ak + (Ak)T < 0
Σk > 0 ∀k = 1 · · ·K
0 < πk ≤ 1
K∑
k=1

πk = 1

(9.23)

where P (xm,n, ẋm,n|θ) is the joint probability of the demonstration given the
parameters θ. The last three constraints are added to ensure that the model is
a mixture of Gaussians. The constrained optimization problem can be solved
a as a nonlinear programming (NLP).

9.4 FuzzStaMP: Fuzzy Controller Regulated Stable
Movement Primitives

Fuzzy controller regulated stable movement primitives (FuzzStaMP) is
another attempt to learn movement primitives in the imitation learning frame-
work. It overcomes the limitation of the SED technique. As we have seen that
the SED method imposes an equality constraint involving the target point x∗.
Satisfying an equality constraint is sometimes difficult from the optimization
algorithm’s perspective. The methods also learns a model which is valid for x∗.
In FuzzStaMP, the motion model is represented as a weighted summation of
local linear models with a fuzzy controller. FuzzStaMP combines the statistical

328 Imitation Learning

learning and the fuzzy reasoning for better encoding of demonstrations. The
model is given as follows:

ẋ =
L∑
k=1

σk(bk + Akx︸ ︷︷ ︸
fk(x)

+Bkuk) (9.24)

Here, (9.24) has the form of standard state space representation of a nonlinear
dynamical system in closed loop, where fk(x) bears the local properties of the
demonstrated motion profiles and rest is the control input u ∈ <n multiplied
by system input matrix B of appropriate dimensions. B1 = B2 = ... = Bk =
I ∈ <n×n is chosen in this case. σk is the weightage of the kth local model.
Parameters Ak and bk are learned for the demonstration data as discussed
in section 9.3. u is chosen as a TSK fuzzy controller of the following form: lth
rule:

IF x is Gl THEN
ul = kl0 + Klx (9.25)

Here, Gl is a Gaussian probability distribution function that creates the lth
fuzzy rule for the controller. The selection of the parameters k0 ∈ <n and
K ∈ <n×n in consequent part is made in a constrained optimization process
to achieve the desired performance of the model. FuzzStaMP comes with two
variants based on strictness of the constraints during parameter update. First
a conservative motion model is presented which is known as C-FuzzStaMP.
Then a relaxed version of the algorithm is presented which is known as R-
FuzzStaMP.

9.4.1 Motion Modeling with C-FuzzStaMP
C-FuzzStaMP model is conservative in a sense that the learning algorithm
imposes strict asymptotic stability constraints during the update of the model
parameters. Let us represent the system (9.10) as a fuzzy system and is given
as follows:

ẋ =
L∑
i

σiAix (9.26)

where Ai ∈ <n×n and x ∈ <n represent system matrix and the state of
the system (9.26). σi gives the firing strength of the ith rule. The following
theorem [238] can be used to deal with the asymptotic stability of the system
(9.26).
Theorem 9.2. The equilibrium of the continuous fuzzy system (9.26) is glob-
ally asymptotically stable if there exists a common positive definite matrix P
such that

ATi P + PAi < 0, i = 1, 2, ..., L (9.27)

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 329

That means, there should be a common P matrix of appropriate dimension
for the system (9.26) to be asymptotically stable. But it is sometimes difficult
to find a common P for all the subsystems specially when the motion dynamics
is complex. A fuzzy Lyapunov function in fact helps to deal with the situation.

9.4.1.1 Fuzzy Lyapunov Function

A fuzzy Lyapunov function is introduced to learn stable motion. Lyapunov
function is described as energy like function. Thus, a Lyapunov function can-
didate is defined as (9.28) [246] which shares the same rule antecedent. The
fuzzy Lyapunov function is given as follows:

V (x(t)) = 2
∫ x

0
Ω(s) · ds (9.28)

which is essentially a line integral function over the trajectory of any state x
of the system. Here, s ∈ <n and Ω(s) = [Ω1(s) Ω2(s) ... Ωn(s)]T .

Let us choose a fuzzy Lyapunov P matrices such that
lth rule:

IF x is Gl THEN
P(l)(x) = P(l) (9.29)

For l=1,2,...,L.
Here, P(l) ∈ <n×n is symmetric positive definite matrix and From (9.29),

we can write

Ω(x) = P(x)x =
L∑
l=1

σ(l)P(l)x (9.30)

where, σ(l) is the normalized rule membership of lth rule. The following the-
orem [239] defines the structure of P(l).

Theorem 9.3. V (x) is a Lyapunov function candidate if there exists a P(l) =
P̂ + D(l) > 0 such that

P̂ =

 0 . . . p1n
...
p1n . . . 0

 , D(l) =


d

(l)
11 . . . 0
...
0 . . . d

(l)
nn

 (9.31)

The off diagonal terms of P(l) matrices will remain same for all the rules.
The diagonal elements construct different P for each rule. It can be shown
that (9.28) is a generic form of conventional Lyapunov candidate function
V (x) = xTPx, where P = P̂ + D and D = D(1) = D(2) = ... = D(L).

330 Imitation Learning

Using equation (9.28), V̇ of the system (9.24) with u = 0, can be written
as

V̇ = xT
 L∑
i=1

L∑
j>i

σiσjVi,j2 +
L∑
i=1

σ2
i Vi1

x

+ 2xT
L∑
i=1

σ2
i

(
Pibi

)
+ 2xT

L∑
i=1

L∑
j>i

σiσj
(
Pjbi + Pibj

)
(9.32)

where

Vi1 =
(
Ai
)T Pi + PiAi (9.33)

Vi,j2 =
(
Ai
)T Pj +

(
Aj
)T Pi + PiAj + PjAi (9.34)

Lemma 9.1. V̇ in (9.32) is strictly negative outside the ball α around the
origin of system (9.24) with u = 0 if there exist Pl > 0, l = 1, 2, ..., L that
agree with the following constrains

λmax(Vi1) + 2
α
‖Pibi‖ < 0, i = 1, ..., L (9.35)

λmax(Vi,j2) + 2
α

(‖Pibj‖+ ‖Pjbi‖) < 0, i < j = 1, ..., L. (9.36)

where λmax(.) represents the maximum eigenvalue and α is a positive scalar.

Proof. From the properties of matrices, it can be written that

‖x‖2λmin(Vi1) ≤ xTVi1x ≤ ‖x‖2λmax(Vi1) (9.37)
xT
(
Pibi

)
≤ ‖Pibi‖|x| (9.38)

and similarly,

‖x‖2λmin(Vi,j2) ≤ xTVi,j2 x ≤ ‖x‖2λmax(Vi,j2) (9.39)
xT
(
Pjbi + Pibj

)
≤
(
‖Pibj‖+ ‖Pjbi‖

)
‖x‖ (9.40)

V̇ in (9.32) is negative for any x outsize the ball α if (9.35) and (9.36) are
true.

The following minimization problem searches Pi, i = 1, ..., L which make
the fuzzy Lyapunov function as in (9.28) for the system (9.24).

minimize
Pi

ρ1, ρ2

subject to Vi1 − ρ1I < 0
Vi,j2 − ρ2I < 0
Pi > 0, i = 1, ..., L

(9.41)

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 331

Here, I is the identity matrix of appropriate dimensions and ρ1 and ρ2 are
small scalars. The parameters Ak and bk in (9.24) are learned from the demon-
stration data in an unconstrained optimization process. it is highly probable
that the model learned through GMR is unstable and hence, it is possible that
there does not exist such Pi, i = 1, ..., L that satisfy (9.35) and (9.36). In that
scenario the intention is to find Pis such that the L.H.S of (9.35) and (9.36)
have a value close to zero. These Pis subsequently help to design an associated
stabilizing controller which has the least impact on motion regeneration.

9.4.1.2 Learning Fuzzy Controller Gains

After solving the LMIs in (9.41), the asymptotic stability of the system (9.24)
can be ensured by choosing Ki and k0i properly. The following theorem
defines the global asymptotic stability of the motion model

Theorem 9.4. The motion model given in (9.24) is globally asymptotically
stable if the fuzzy controller gains Ki and k0i in (9.25) are chosen as the
following.

λmax(ViK1) + 2
α
‖Pi

(
bi − k0i

)
‖ < 0, i = 1, ..., L (9.42)

λmax(Vi,jK2) + 2
α

(‖Pi
(
bj − k0j

)
‖+ ‖Pj

(
bi − k0i

)
‖) < 0,

i < j = 1, ..., L. (9.43)
and

k0i = bi, ∀i ∈ Lα (9.44)

where

ViK1 =
(
Ai −Ki

)T Pi + Pi
(
Ai −Ki

)
(9.45)

Vi,jK2 =
(
Ai −Ki

)T Pj +
(
Aj −Kj

)T Pi + Pi
(
Aj −Kj

)
+ Pj

(
Ai −Ki

)
(9.46)

and Lα is the set of rules which are fired inside the ball α around origin.

Proof. According to Lemma 9.1 V̇ is always negative outside the ball α around
the origin if the constrains (9.35) and (9.36) are satisfied. It is possible to
find Ki and k0i such that (9.42)-(9.44) are true. Therefore, V̇ of the system
(9.24) is always negative on or outside the ball α around the origin. Since,
2
α‖Pi

(
bi − k0i

)
‖ ≥ 0 and 2

α (‖Pi
(
bj − k0j

)
‖ + ‖Pj

(
bi − k0i

)
‖) ≥ 0, the

optimization algorithm finds Ki and k0i such that, ViK1 < 0 and Vi,jK2 < 0
while satisfying (9.42)-(9.44). Therefore, V̇ takes the following form inside the
ball α around origin.

332 Imitation Learning

V̇ = xT
 L∑
i=1

L∑
j>i

σiσjVi,jK2 +
L∑
i=1

σ2
i ViK1

x

< 0, ∀x 6= 0
= 0, x = 0 (9.47)

Hence, system (9.24) is globally asymptotically stable.

The fuzzy controller gains Ki and k0i are searched in the following opti-
mization problem:

minimize
Ki,k0j

Emodel, Ereg

subject to λmax(ViK1) + 2
α
‖Pi

(
bi − k0i

)
‖ < 0, i ∈ Lr

λmax(Vi,jK2) + 2
α

(‖Pi
(
bj − k0j

)
‖+

‖Pj
(
bi − k0i

)
‖) < 0, i < j ∈ Lr.

k0i = bi, i ∈ Lα

(9.48)

where the terms Emodel and Ereg are defined as

Emodel = 1
D

D∑
i

1
Ni

Ni∑
j

‖ẋ− ˙̂x‖ (9.49)

Ereg = 1
L

∑
i∈Lr

‖Ki‖+ 1
L− lα

∑
j /∈Lα

‖k0j‖ (9.50)

Here, lα is the number of element in Lα and Lr is the set of rules in the
rule base. D represents the number of demonstrations and Ni represents the
number of samples in ith demonstration. The optimization problem is solved
using GA, where the parameters Ki and k0i are searched in a constrained
search space. Ereg is called the weight regularization cost which we shall discuss
later.

Theorem 9.4 helps to design a globally asymptotically stable motion model
that learns to generate stable human-like motion for a robotic manipulator.
Fuzzy controller gains Ki and k0i are searched based on the fuzzy Lyapunov
function, defined in (9.28), such that the motion model has always a negative
V̇ for nonzero states. However, mere finding of the controller gains satisfying
the constrains (9.42) to (9.44) may lead to poor performance of the motion
model in regard to reconstruction of demonstrated motion profile, though the
executed trajectory is globally asymptotically stable. Therefore, the selected
gains should be from the feasible region of the search space, where it also
minimizes the model reconstruction error. It is interesting to note here that if
the existence of Pi matrices is discovered in the minimization problem (9.41),

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 333

then the solution to Ki and k0i can be simply set to zero. This means the
GMR model that is learned from the demonstrations, is itself asymptotically
stable. This will reduce the computation time of the learning problem.

9.4.1.3 Design of Fitness Function

The design of the fitness function is such that the parameters Ki and k0i
evolve in a direction, where the function approximation error is minimized
while satisfying the constraints (9.42) to (9.44). The detailed design of the
fitness function is given in algorithm 8.

Algorithm 8 Design of fitness function
1: for Each generation do
2: for Each chromosome do
3: Set k0l|l∈Lα = bl.
4: Formulate ViK1 and Vi,jK2, i, j = 1, ..., L, i > j as in (9.45) and (9.46).
5: Check all the constraints (9.42) to (9.44) and if constraints are satis-

fied, set flag = 1.
6: if (flag) then
7: Calculate model error as given in (9.49).
8: Calculate weight regularization cost as in (9.50).
9:

10: return Emodel + ρEreg (Here ρ is a positive scalar that sets the
priority between two costs.)

11: end if
12: end for
13: end for

9.4.1.4 Example

Learn a C-FuzzStaMP motion encoding system from the real demonstrations
D = {[xi,j , ẋi,j]Nij=1}Di=1, where xi,j is the position state of the robot end-
effector in ith instant of jth demonstration.

An initial model is learned as per (9.14) that can encode point to point
motion of the robotusing GMR of 5 Gaussians. Parameters of the model as
in (9.15) are learned using expectation maximization (EM) algorithm. A fuzzy
Lyapunov function is searched for the motion model learned in (9.14). The asso-
ciated Lyapunov function is searched by searching Pi, i = 1, ..., L in a mini-
mization problem as given in (9.41). The rule base of the fuzzy Lyapunov func-
tion is created by assigning the weighting function of the motion model as in
(9.14) as the antecedent part of the rule base. The problem of finding Pi is
solved using semi definite programming in YALMIP [247]. A fuzzy controller
that shares the same rule antecedent part, is learned in another optimization
process as in (9.48). The controller parameters Ki and k0i are searched using
GA where the fitness function is implemented as in Algorithm 8. The penalty ρ

334 Imitation Learning

Algorithm 9 Steps for execution
1: Training: Show user demonstration to the robot and create database D =
{[xi,j , ẋi,j]Nij=1}Di=1, where xi,j is the position state of the robot end-effector
in a shifted coordinate system whose origin coincides with the target point
of the demonstration.

2: Learn the underlying nonlinear function f(x) as in (9.14) from the
database D using EM.

3: Learn the Lyapunov function (Pi) and associated fuzzy controller gains
Ki and k0i.

4: Execution:Select an initial end-effector state and compute the velocity
command from the motion model (9.24).

5: Use inverse kinematics to get the joint space solutions.
6: Evolve the system until the trajectory reaches the target state.

is chosen as 0.01 since our main priority is to minimize the function approxima-
tion error. The ball α is chosen as α = 0.1 for this experiment. Please note that
the parameter α is trade off in model performance between the regions inside
and outside the ball. A bigger α gives better model performance outside the
ball, where as a smaller α may distort the model outside the ball but gives a
smaller area inside the ball. The chromosome size is taken as 500 and the param-
eters are evolved for 1000 generations. GA searches for nL(n+ 1)− n(L− lα)
variables, where n = 3 and lα is the number of rules in L0.

In all the figures, the human demonstration is shown in grey trajectories
and executed trajectory by the motion model is given in black color. Fig-
ure 9.2 and Figure 9.3 are the plots of executed trajectories for an initial state
starting inside the RoD. (Associated trajectory in each coordinate is given
in Figure 9.4). The initial end-effector position is taken as [0.4 0.47 0.074]T

0.2

0.3

0.4

0.5

0.6

−0.6
−0.5

−0.4
−0.3

−0.2
−0.1

−0.1

0

0.1

0.2

(a)

0.3 0.4 0.5 0.6 0.7
−0.5−0.4−0.3−0.2

−0.1

0

0.1

0.2

0.3

0.4

(b)

FIGURE 9.2: The grey trajectories represent the human demonstrations and
the black one is the output of the learned motion model which is to be glob-
ally asymptotically stable. The initial state and the equilibrium state (black
square) is chosen in side RoD for this experiment. The C-FuzzStaMP model
is learned with (a) 3 demonstrations, and (b) 5 demonstrations.

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 335

0 2 4 6
0

0.2

0.4

0.6

0.8

(a) Position on x coordinate

0 2 4 6
−0.8

−0.6

−0.4

−0.2

0

(b) Position on y coordinate

0 2 4 6
−0.2

−0.1

0

0.1

0.2

0.3

(c) Position on z coordinate

0 2 4 6
−0.2

0

0.2

0.4

0.6

(d) Velocity on x coordinate

0 2 4 6
−0.2

0

0.2

0.4

0.6

(e) Velocity on y coordinate

0 2 4 6
−0.2

−0.1

0

0.1

0.2

(f) Velocity on x coordinate

FIGURE 9.3: Projection plots of position and velocity of Figure 9.2(a). In this
experiment, the initial state is chosen inside the RoD. The output trajectory
is spatially similar with the demonstrated trajectories as the learned motion
primitives are properly fired.

and the target position is taken as [0.7 − 0.18 − 0.17]T . Figure 9.5(a) and
Figure 9.6 show how the C-FuzzStaMP model behaves when the initial posi-
tion is chosen as [−0.32 0.53 − 0.4] which is a state outside the RoD with
the target point [0.7 − 0.18 − 0.17]T . (The associated error trajectories in
each coordinate are given in Figure 9.7). The motion model generates tra-
jectory as it was taught by the demonstrator when the end-effector started
within the region of learning however, a different pattern is executed when
the trajectory starts outside RoD. It happens as the motion primitives are
not properly fired, since the region where the trajectory starts, is unexplored
to the motion model.

9.4.2 Motion Modeling with R-FuzzStaMP
The C-FuzzStaMP scheme presented in the previous section sometimes may
fail to encode subtle features of the demonstrations specially when the demon-
strated trajectory is not simple. In such scenario, the executed trajectory is
not precise reproduction of the demonstration, even though the target posi-
tion (equilibrium point) of the trajectory is globally asymptotically stable

336 Imitation Learning

0 2 4 6 8 10
0.2

0.4

0.6

0.8

1

(a) Position on x coordinate

0 2 4 6 8 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

(b) Position on y coordinate

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

(c) Position on z coordinate

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

(d) Velocity on x coordinate

0 2 4 6 8 10
−0.05

0

0.05

0.1

0.15

0.2

(e) Velocity on y coordinate

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

(f) Velocity on x coordinate

FIGURE 9.4: Projection plots of position and velocity of Figure 9.2(b). In this
experiment, the initial state is chosen inside the RoD. The output trajectory
is spatially similar with the demonstrated trajectories as the learned motion
primitives are properly fired.

0

0.2

0.4

0.6

−0.5

−0.4

−0.3

−0.2

0

0.2

0.4

(a)

−0.8
−0.6

−0.4
−0.2

0

−0.4

−0.2

0

0

0.2

0.4

0.6

(b)

FIGURE 9.5: The C-FuzzStaMP model is used to generate trajectory starting
outside RoD. (a) is the end-effector positions in the workspace, and (b) is
evolution of the error state in 3D. The reason for the output of the motion
model being different from the demonstrations is, the learned local models are
not fired properly as the states start outside the domain of learning.

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 337

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

(a) Position on x-axis

0 2 4 6 8 10
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

(b) Position on y-axis

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

(c) Position on z-axis

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

(d) Velocity on x-axis

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

(e) Velocity on y-axis

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

(f) Velocity on z-axis

FIGURE 9.6: Positions and the velocities of the end-effector in the experiment
using C-FuzzStaMP model with initial state starting outside RoD.

0 2 4 6 8 10
−1

−0.5

0

0.5

(a) Error on x coordinate

0 2 4 6 8 10
−0.6

−0.4

−0.2

0

0.2

(b) Error on y coordinate

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

0.8

(c) Error on z coordinate

FIGURE 9.7: Position error state of the robot end-effector in each coordinate
is presented in the figure.

338 Imitation Learning

0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

0.2

0.4

−0.1

0

0.1

FIGURE 9.8: A C-FuzzStaMP model is learned from complex demonstrations.
The initial end-effector position is chosen in RoD, where the local models have
maximum firing. It is evident that the conservative model performs poorly as
the optimization process compromises between the function approximation
capability and the global asymptotic stability of the motion model.

0 2 4 6 8

0.4

0.5

0.6

0.7

(a) Position on x-axis

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

(b) Position on y-axis

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

(c) Position on z-axis

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

(d) Velocity on x-axis

0 2 4 6 8
−0.4

−0.3

−0.2

−0.1

0

0.1

(e) Velocity on y-axis

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

(f) Velocity on z-axis

FIGURE 9.9: Positions and velocities of complex task execution by the C-
FuzzStaMP model. The grey trajectories represent the original demonstrations
and the black one is the output of the learned motion model.

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 339

−0.6−0.4−0.200.20.40.60.81

−1

0

1

−1

−0.5

0

0.5

1

FIGURE 9.10: The grey and black lines represent the eigen vectors of M
corresponding to positive and negative eigen values respectively. The region
in black is spanned extremely on the subspace of two eigen vectors of different
sign. m(x) is positive inside the region. The replica of the region (is not shown
here) also represent the same in the opposite direction of positive eigen vector.

(see Figures 9.8 and 9.9). The reason for such behavior is that, in order to
learn a globally asymptotically stable motion model by imposing strict con-
straints, the poles of the closed loop system is pushed far negative on the real
axis, such that, V̇ of the system (9.24) is negative at any circumstances over
the entire state space. Theoretically, the region of stability of closed loop sys-
tem is expanded over the whole state space. In this process, local information
encoding by the motion model is deprioritized over the global asymptotic sta-
bility and hence the performance is poor in the local perspective. In many of
the applications of learning by demonstrations, such globally asymptotically
stable model is redundant and moreover, a robot’s workspace may not include
the entire workspace. Considering the fact, a locally stable model is suffi-
cient for producing stable trajectories if we can restrict the execution inside
the stable region. R-FuzzStaMP is the relaxed version of the previous model,
where the stability constraints are redefined to encode subtle feature of the
demonstrations. Relaxing the stability constraints in fact broadens the solu-
tion space which helps minimizing the trajectory reconstruction error. To make
the motion model more generalized, i.e., making it free from the restriction
that model’s operation is limited within the certain region of the workspace, a
state translation technique is use. The methodology presented in this section
can encode more complex demonstrations and makes the model globally valid.

9.4.2.1 Stability Analysis of the Motion System

For the system (9.24), the state evolution through time remains bounded in
the region, where V̇ of the system is negative. The states become unbounded,
when V̇ of the system is positive. Henceforth, we call the region stable, where
V̇ is negative; we call the region unstable otherwise.

340 Imitation Learning

Stable Region in the State Space

Stable region is the region of the state space where the time derivative of the
Lyapunov function is negative, i.e., the states are bounded. For a negative
definite matrix M ∈ <n×n, the following can be written

m(x) =
{

xTMx < 0, ∀x 6= 0
0, at x = 0

(9.51)

The entire state space can be regarded as the stable region in this case. But such
conclusions cannot be drawn when M is sign indefinite. However, the region
in the state space can be identified for which the sign of the function m(x) is
known. Any state x falling on the eigen vector of matrix M, is maximally scaled
after the dot product with M to the direction of the eigen vector. Therefore,
for a symmetric sign indefinite matrix M the function m(x) changes its sign
(goes +ve to −ve or vice versa) in the region between eigen vectors associated
with the eigen values of different signs. The region expands up to certain angle
with the eigen vectors in <n, where the sign of them(x) is the sign of the corre-
sponding eigen value. This can be visualized in Figure 9.10. In fact, the region
can be represented by a cone in <2 for a 2D-space. However for n > 2, the
boundary of the stable/unstable region is not of a cone due to the asymmetric-
ity in the dominance of eigen values. The minimum and maximum span of the
stable/unstable region happens on the subspace created by two eigen vectors
corresponding to two eigen values of different sign. Thus, m(x) is positive for
x around the positive eigen vector/s. Relating this phenomenon to V̇ in (9.32),
we can say x will go away from the equilibrium point around the positive eigen
vector/s, if we assume the bias term to be zero for this moment.

Maximum Span of Stable/Unstable Region

The span of the stable/unstable region depends on the dominance of the eigen
values of M if we consider (9.51). The maximum span occurs for the unstable
region on the plane created by the eigen vectors of maximum positive and
negative eigen values. The span can be computed as follows.

Let x0 is on the subspace created by eigen vectors associated with maxi-
mum positive and negative eigen values of M in (9.51), such that m(x0) = 0.
Also assume that the maximum positive and negative eigen values are λ+

max

and λ−max respectively and corresponding eigen vectors are vλ+ and vλ− . Then
x0 can be written as the linear combination of vλ+ and vλ− .

x0 = cos(θ)vλ+ + sin(θ)vλ− , ∀θ ∈ [0, π2] (9.52)

Therefore,

xT0 Mx0 = λ+
maxcos

2(θ) + λ−maxsin
2(θ), ∀ ‖x0‖ = 1 (9.53)

We are looking for the x0 for which xT0 Mx0 = 0. Therefore,

λ+
maxcos

2(θ) + λ−maxsin
2(θ) = 0

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 341

sin(θ)
cos(θ) =

√
−λ

+
max

λ−max

θ = arctan

√−λ+
max

λ−max

 (9.54)

The maximum span of the unstable region is defined by the angle S between
x0 and the corresponding positive eigen vector, i.e.,

S = cos−1
(

xT0 λ+
max

‖x0‖‖λ+
max‖

)
(9.55)

Therefore,

xTMx > 0, ∀x Sx0 < S (9.56)
xTMx < 0, ∀x Sx0 > S (9.57)

where Sx0 is the absolute value of the angle between x0 and the corresponding
positive eigen vector. It is interesting to note that λ+

max

λ−max
< 0 since there does

not exist such x for which xTMx = 0 when M is positive definite or negative
definite. The region may be termed as unstable region1.

Effect of Bias Term on Stability

The bias term bk acts as a disturbance to the model (9.24). The effect of
the disturbance will differ in terms of stability depending upon the region of
the state space, where the model is currently operated. Here the effect of bias
component is analyzed in terms of the sign of V̇ in (9.32). From (9.32), we
can see bk contributes to V̇ through the term Pibi (where i, j = 1, 2, .., L).
Thus, in this analysis the component Pibi is treated as the bias term. Its
effect is the strongest for a state near to the origin of the system since the
contours of stable region shrinks significantly in this region. Therefore, any
small disturbance that makes positive contribution to V̇ , can lead to instability
of the system.

Definition 9.1. A wining eigen vector is defined as the closest eigen vector
to the mean demonstration for a local model.

Definition 9.2. Region of demonstrations (RoD) is a connected subset con-
taining all the positions in the demonstrations and its neighborhood consider-
ing the robot’s workspace as set.

Definition 9.3. Region of operation (RoO) is a connected subset containing
all the positions in the region, where the robot is operated.

1The bias term contributes positively to V̇ only when it has an angle < π
2 with the

state x.

342 Imitation Learning

Lemma 9.2. The bias term Pibj associated with the active local model has
a negative contribution to V̇ in (9.32) if the bias or disturbance falls on the
negative of the wining eigen vector of the corresponding models.
Proof. For any state x,

xTPibj = ‖x‖‖Pibj‖cos(θ) ≤ 0, π

2 ≥ θ ≤
3π
2 (9.58)

where θ is the angle between x and Pibj . Regions of the state space, where the
states are at least π

2 radians away from the bias term, have zero or negative
contribution to V̇ . Since the wining eigen vector is the closest eigen vector
to the neighborhood states (locally), any vector having an angle of π radians
with the wining eigen vector, will have an angle within the range π

2 and 3π
2

with those states. Hence, Pibj falling on negative of the wining eigen vector,
will always have negative contribution to V̇ .

Lemma 9.2 is an ideal scenario. In practice, we try to maximize the angle
between the bias term and the wining eigen vector of the firing local model
without effecting the trajectory regeneration accuracy of the motion model
significantly. The idea is to put the bias term at least π

2 radians away from
the RoD. It is observed that the bias terms of the learned local models are
generally stay π

2 radians away from the RoD, since the demonstrations are
itself stable motion.

9.4.2.2 Design of the Fuzzy Controller

The fuzzy controller plays a significant role in motion stability. The gains
Ki and k0i in (9.24) are chosen such that it can shrink the unstable region.
The parameter k0i is chosen to handle the bias term as per the requirement
of stability. The fuzzy controller makes the zeroth local models (models that
include the equilibrium state of the system) asymptotically stable by reducing
the unstable region to zero, since the region near the origin is less spacious in
regard to the stable region. Therefore, the fuzzy controller is given by

rth rule:

IF x is Gr THEN
ur = kr0 + Krx (9.59)

where

k0r|r∈L0 = br (9.60)

where L0 is the set of rules that include the origin. The following theorem
ensures the local stability of the motion model
Theorem 9.5. The motion model (9.24) is locally stable with the controller
(9.59) if RoO ⊆ RoD while the following constraints are true.

Si < SiRoD (9.61)

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 343

Si,j < Si,jRoD (9.62)
π

2 + ξµi ≤ ψiPb ≤
3π
2 + ξµi (9.63)

π

2 + ξµi,j ≤ ψi,jPb ≤
3π
2 + ξµi,j (9.64)(

Ak −Kk
)T Pk + Pk

(
Ak −Kk

)
< 0 (9.65)(

Ak −Kk
)T Pl +

(
Al −Kl

)T Pk + Pk
(
Al −Kl

)
+ Pl

(
Ak −Kk

)
< 0 (9.66)

where i < j /∈ L0 and k < l ∈ L0

Here, S(·) is the maximum span of the unstable region of the learned model
for the corresponding rules. S(·)

RoD
2 is the minimum angle between the demon-

strations for that rule and the corresponding positive eigen vector. ψ(·)
Pb is the

angle between the bias term P(·)b(·) and the mean demonstration µ
(·)
x

3 for
the corresponding rules. ξµ(·) is the maximum angle between the µ(·)

x and the
demonstration for the corresponding local model or rule.

Proof. S(·)
RoD can be interpreted as the boundary of the region of demonstra-

tion for the robot, i.e., there is no state that has an absolute angle around the
unstable eigen vector, less than S(·)

RoD in RoD. Since we are considering local
stability, let us assume for now that the region of operation RoO ⊆ RoD.
The controller gains are selected such that S(·) < S(·)

RoD. As S(·) is the max-
imum angle (absolute) or span of the unstable region for the local models /
rules, using (9.57), the following can be written.

xT
[(

Ai −Ki
)T Pi + Pi

(
Ai −Ki

)]
x < 0 i /∈ L0, ∀x ∈ RoO (9.67)

xT
[(

Ai −Ki
)T Pj +

(
Aj −Kj

)T Pi + Pi
(
Aj −Kj

)
+ Pj

(
Ai −Ki

)]
x < 0, i < j /∈ L0, ∀x ∈ RoO (9.68)

Using Lemma 9.2, (9.63), (9.64) and the above equations with (9.32), it can
be said that

V̇ < 0, i, j /∈ L0, ∀x ∈ RoO (9.69)

2S(·)
RoD is computed from the neighboring data associated with the local model. It is

defined as

S(·)
RoD , min

x∈RoD
∠
(

x,v(·)
eig

)
where v(·)

eig is the corresponding eigen vector.
3µix is the mean demonstration for the ith local model and can be regarded as the mean of

the ith Gaussian projected on the position space. Similarly, µi,jx is the mean demonstration
for ith and jth local models, which can be found from the means of the corresponding
Gaussians weighted by their priors.

344 Imitation Learning

If the controller parameters Ki and k0i are selected as in (9.65), (9.66) and
(9.60) for rules in L0,

V̇ < 0, k, l ∈ L0 (9.70)

Hence, the motion model (9.24) is stable in RoO ⊆ RoD.

Theorem 9.5 relaxes the constrains on learning of the motion model (9.24)
as imposed by Theorem 9.4. The previous theorem makes the entire state space
asymptotically stable which may not be required in most of the applications.
The goal of this theorem is to learn a locally asymptotically stable model, i.e.,
to discover a region in the state space where the the V̇ is always negative. The
local region is considered here is the region of demonstrations. Theorem 9.5
ensures that the predicted trajectory by the motion model (9.24) is stable when
the system is operated inside the region of demonstration, i.e., RoO ⊆ RoD.

Controller Parameters Selection:

The controller parameters Ki and k0i, i = 1, ...L are learned in an constrained
optimization process, where an objective cost is minimized. The objective
function is chosen here such that minimization of such function would help
reconstruct the demonstrated motion profile. Emodel represents the objective
function in the minimization problem. The constraints are taken from theorem
9.5 and is given by equation (9.60) to (9.66). The minimization problem is
given in the following.

minimize
Ki,k0j

Emodel (9.71)

subject to Si < SiRoD (9.72)
Si,j < Si,jRoD (9.73)
π

2 + ξµi ≤ ψiPb ≤
3π
2 + ξµi (9.74)

π

2 + ξµi,j ≤ ψi,jPb ≤
3π
2 + ξµi,j (9.75)(

Ak −Kk
)T Pk + Pk

(
Ak −Kk

)
< 0 (9.76)(

Ak −Kk
)T Pl +

(
Al −Kl

)T Pk+
Pk
(
Al −Kl

)
+ Pl

(
Ak −Kk

)
< 0 (9.77)

k0l|l∈L0 = bl (9.78)

where i < j /∈ L0 and k < l ∈ L0
Here, Emodel is the model reconstruction error as given in (9.49). The above

minimization problem is a constrained optimization problem and can be solved
using evolutionary approaches. We use genetic algorithm (GA) to solve the
problem. In GA, a chromosome represents a set of controller parameters Ki

and k0i, i = 1, ...L. In each generation, many such chromosomes are checked
for their fitness which is evaluated by their cost minimization capability. The
evaluation is done using a fitness function.

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 345

Weight Regularization:

The above minimization problem does not include an weight regularization
term, which may result the model to end up with high controller gain. Regular-
ization is used to prevent over fitting problem of data-driven models. In other
words, regularization of weight improves model generalization. The objective
of the learning problem is accurate prediction of the end-effector velocity of
the robot for a given position. Generally the learning is performed on a small
subset of the input and output space. Additionally, the subset includes ran-
dom noise due to the measurement errors. Unbounded search in the function
space increases complexity in the model and leads to a over fitted model that
works well on the training subspace, but fails to perform efficiently when the
input does not belong to the training set. The regularization cost is given in
the following using (9.50).

R (K,k0) = pregEreg (9.79)

Here preg is a positive scalar that acts as a trade off between the regularization
cost and the main objective. The regularization cost is added to the main
objective and the optimization problem is solved.

Design of the Fitness Function:

The efficient design of fitness function creates selection pressure on chromo-
some that can evolve toward the favorable region of the search space. The
main objective is to find Ki and k0i, i = 1, ...L that give minimum motion
regeneration error (9.49) while the solution is constrained by (9.72) to (9.78).
The hard constraints are solved by modifying (9.72) to (9.78) in the following
manner.

Si − SiRoD + ε1 ≤ 0 (9.80)
Si,j − Si,jRoD + ε2 ≤ 0 (9.81)

ψiPb −
3π
2 − ξµi + ε3 ≤ 0 (9.82)

π

2 + ξµi − ψiPb + ε4 ≤ 0 (9.83)

ψi,jPb −
3π
2 − ξµi,j + ε5 ≤ 0 (9.84)

π

2 + ξµi,j − ψi,jPb + ε6 ≤ 0 (9.85)(
Ak −Kk

)T Pk + Pk
(
Ak −Kk

)
+ ε7I ≤ 0 (9.86)(

Ak −Kk
)T Pl +

(
Al −Kl

)T Pk + Pk
(
Al −Kl

)
+

Pl
(
Ak −Kk

)
+ ε8I ≤ 0 (9.87)

k0l|l∈L0 = bl (9.88)

where i < j /∈ L0 and k < l ∈ L0

346 Imitation Learning

Here, εc, c = 1, ..., 8 are positive scalars and I represents the identity matrix
of appropriate dimensions. Each chromosome is first checked for its feasibility.
A set of parameters from the feasible region is then checked for the motion
regeneration accuracy. Chromosomes with minimum cost participate in repro-
duction and generate another set of parameters for the next generation.

The Algorithm 10 presents the fitness function for learning the controller
gains.

Algorithm 10 Fitness function
1: for Each generation do
2: for Each chromosome do
3: Set k0l|l∈L0 = bl.
4: Formulate ViK1 and Vi,jK2, i, j = 1, ..., L, i > j as in (9.45) and (9.46).
5: Calculate the maximum span of the region of instability Si, Si,j ,

i, j = 1, ..., L, i > j as in (9.55).
6: Calculate ψiPb, ψ

i,j
Pb, ξµi , and ξµi,j .

7: Check all the constraints (9.80) to (9.87) and if constraints are satis-
fied, set flag = 1.

8: if (flag) then
9: Calculate model error as given in (9.49).

10: Calculate weight regularization cost as in (9.79).
11:
12: return Emodel +R (K,k0)
13: end if
14: end for
15: end for

9.4.3 Global Validity and Spatial Scaling
Earlier in this section, we have presented the motion model to be stable and
valid when RoO ⊆ RoD. But in practical applications, the motion model
would be more useful if it is stable and valid over the entire robot workspace.
We adopt an algorithmic approach to include the entire workspace in RoO.
Let us assume that IG is the spatial indexing of MPs in terms of demon-
strations. IkG, k = 1, ..., L is an element of IG, represents the index of MP
that is activated in the kth region of RoD. Region 1 (k = 1) is the sub-
space where the demonstrations start. Region 2 (k = 2) comes second and so
on. Similarly, region L (k = L) is the end of demonstrations, which includes
origin. These local models are associated with Gaussian distributions which
are learned from the demonstrations. To maintain the similar characteristics
of the demonstration in the executed trajectory, the execution also needs to
maintain the order of the motion primitives. The spatial scaling properties

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 347

in the executed trajectories can only be retained by maintaining the spatial
order of the motion primitives.

Let us define two parameters β and κ to represent the RoD, where each
element βk is associated with kth motion primitive representing the maximum
angle of the demonstration with the mean demonstration projected on the
position space and κk is the maximum scaling factor of the farthest point in
the RoD with respect to mean demonstration associated with kth motion
primitive. βk and κk are given as follows.

βk(xang) = cos−1

(
xTangµkx
‖xang‖‖µkx‖

)
(9.89)

κk(xdist) = ‖xdist‖‖µkx‖
(9.90)

where xang is the farthest state in the demonstration in terms of the angle
with the mean demonstration µkx and xdist is the farthest state with maximum
length in the demonstration.

Rotational Transformation Matrix:

Let the mean demonstration is m and a given state x and also ‖m‖ = 1 and
‖x‖ = 1. Also assume the x is rotated by angle θ from m. Since the rotation
occurs only on a 2D plane with normal m × x, a rotation matrix can be
written in the following form

Rang =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (9.91)

As the angle between the vectors are unknown, (9.91) can be rewritten as

Rang =

 m · x −‖m × x‖ 0
‖m × x‖ m · x 0

0 0 1

 (9.92)

Rang in (9.92) represents the rotation matrix from m to x in the coordinate
frame [i j k] and is given by

i = m; j = m − (m · x)m
‖m − (m · x)m‖ ; k = x ×m (9.93)

The basis transformation matrix for the orthogonal basis [i j k] is given by

Tb =
[
m m−(m·x)m

‖m−(m·x)m‖ x ×m
]−1

(9.94)

348 Imitation Learning

The rotational transformation matrix in the base coordinate system can be
written by

Tr = Tb
−1RangTb (9.95)

Here Tr represents the rotational transformation matrix between vector m
to x in the base frame such that Trm = x. It is interesting to note that Tb

being a orthonormal matrix, Tb
−1 = Tb

T .

Generation of Trajectory anywhere in the State Space:

By relaxing the stability constraints, we have learned a locally asymptoti-
cally stable system. The method works as the following: each properly learned
motion primitive pushes the trajectory toward the next local model / motion
primitive in the RoD with the order given in IG. During the trajectory evolu-
tion one motion primitive is chosen as the motion primitive in charge (MPiC)
at any given state in the state space. MPiC is the local model which has the
maximum weight for a given state. Any state that starts outside RoD, is
translated in RoD. The state evolves in side RoD and translated back to its
original domain. At each instant, it is checked whether β(x) and κ(x) of the
state is within βMPiC and κMPiC

4. Corrective actions are taken when it fails.
The procedure is explained in detail in Algorithm 11.

9.4.3.1 Examples

For this example, we shall consider complex demonstrations where the trajec-
tories approach multiple directions before reaching to the target state. Let us
take those demonstrations where the C-FuzzStaMP model failed.

An initial dynamical model (9.15) is first learned from the demonstrations
using EM algorithm. As this initial model is not stable, the R-FuzzStaMP
takes feedback based corrective measures to render the closed loop motion
model as a stable system. The corrective actions are generated by the fuzzy
controller which is learned using evolutionary optimization as given in Algo-
rithm 10.

We have seen earlier that the simple demonstrations are easy to encode
but subtle features of complex demonstrations are not efficiently captured in
the model since the model parameters are chosen from a fully constrained
space. EM algorithm is iterated over 5 such trajectories and the parameters in
(9.15) are identified for 5 Gaussians. Pi, i = 1, ..., L are searched for a fuzzy
Lyapunov function as given by the minimization problem (9.41). This is done
as the previous experiment. The fuzzy controller gains Ki and k0i, i = 1, ..., L
are selected using GA, where the fitness function is designed as the Algorithm
10. GA toolbox of Matlab is used for this purpose. The number of variables
need to be searched is nL(n + 1) − n(L − l0), where n = 3 and l0 is number
of rules in L0, which is 1 in this case. εc = 0.0001, c = 1, .., 8 are chosen for

4βMPiC and κMPiC are in fact βk(xang) and κk(xdist), where k=MPiC.

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 349

Algorithm 11 Globally stable trajectory and spatial scaling
1: Let the initial position is x after translation of the target position to the

origin of the state space.
2: Set MPiC as the first model from the list IG.
3: Calculate βx(x) and κx(x) for x based on the MPiC.
4: if (βx(x) > βMPiC or κx(x) > κMPiC) then
5: Define the translated state x̂ = µMPiC

x , where µMPiC
x is the mean of

the local model chosen as the MPiC or in other words it is the mean
demonstration related to MPiC local model.

6: else
7: Define the translated state x̂ = x.
8: end if
9: Get the rotational transformation Tr and the scaling factor Tκ between

the translated state x̂ and the initial state x.
10: while (‖x̂‖ > 0) do
11: Calculate ˙̂x using the motion model (9.24).
12: Evolve the state as the following

x̂ = x̂ + dt ∗ ˙̂x, (9.96)

where dt is the sampling time.
13: The current state x in the original coordinate frame can be obtained as

the following

x = TκTrx̂ (9.97)

14: Update MPiC.
15: Calculate βx(x) and κx(x) for x based on the MPiC.
16: if (βx(x) > βMPiC or κx(x) > κMPiC) then
17: Set MPiC as the next model in the list IG.
18: Update the translated state as x̂ = µ

(MPiC)
x .

19: Update the rotational transformation Tr and the scaling factor Tκ

between the translated state x̂ and the current state x.
20: end if
21: end while

constraint handling. The chromosome size is taken as 500 and the parameters
are evolved for 1,000 generations. Figure 9.11 and 9.12 show the trajectory
plots of this experiment.

Performance inside RoD

To test the model’s performance, we first assign a task to the robot with an
end-effector initial state inside RoD. As in Figure 9.11, the model learns the
demonstrations very well. The pattern in the demonstrated motion profiles

350 Imitation Learning

0.35 0.4 0.45 0.5 0.55 0.6 0.65

0

0.2

0.4−0.15

−0.1

−0.05

0

0.05

0.1

FIGURE 9.11: R-FuzzStaMP model is learned from complex demonstrations
as the technique presented in Section 9.4.2. The initial end-effector position
is chosen in RoD, where the local models have maximum firing. It is evident
that performance of the R-FuzzStaMP model has a large improvement over
the C-FuzzStaMP model.

0 2 4 6 8 10

0.4

0.5

0.6

0.7

(a) Position on x-axis

0 2 4 6 8 10
−0.2

0

0.2

0.4

0.6

(b) Position on y-axis

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

(c) Position on z-axis

0 2 4 6 8 10
−0.2

−0.1

0

0.1

0.2

(d) Velocity on x-axis

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

(e) Velocity on y-axis

0 2 4 6 8 10
−0.2

−0.15

−0.1

−0.05

0

0.05

(f) Velocity on z-axis

FIGURE 9.12: Positions and velocities of complex task execution by the
R-FuzzStaMP model are here. The grey trajectories represent the original
demonstrations and the black one is the output of the learned motion model.

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 351

is perfectly replicated. Figure 9.12 shows how the position and velocity are
evolving on each coordinate.

Performance outside RoD

It is interesting to see the models performance outside the demonstrated region
since it shows the generalization capability of model in the global perspective.
In this case, the model generates trajectories in a region of the workspace
where the demonstrator never explored. As Figure 9.13 shows, the end-effector
trajectory exactly follows the demonstrated profile. In Figure 9.13(a) only the
initial position is taken outside RoD and in Figure 9.13(b), both the initial
and target positions are chosen outside RoD. The associated trajectories in
each coordonate are given in Figures 9.14 and 9.15 respectively.

Spatial Scaling

The R-FuzzStaMP framework is able to spatially scale up and scale down the
end-effector trajectory as per the requirement of the task. Let us first examine
the performance of the motion model in scaling up the learned profiles. The
initial and target states are chosen such that the length of the initial error state
is significantly bigger than the demonstrations. The motion model executes
an expanded trajectory generated by the Algorithm 11. Figure 9.16(a) shows
the trajectory plots of the experiment. It is evident that the motion model has
generated a bigger pattern than the demonstrated profile. Figure 9.17a-9.17c
show how the trajectory in each axis has scaled up.

Another set of initial and target state is chosen, where the length of the
initial error state is substantially smaller than the demonstrations. The end-
effector motion is executed as earlier and the trajectory plots are given in the
Figure 9.16(b) and Figure 9.17d-9.17f. It can be observed that the executed
trajectory maintains the similar pattern as the demonstrations but in a smaller
version. It is interesting to note that the special scaling on trajectories are
performed outside RoD.

0.1
0.2

0.3
0.4

0.5
0.6 −0.2

0

0.2

0.4
−0.1

0

0.1

0.2

(a)

0.3
0.4

0.5
0.6

−0.4

−0.2

0

0.2

0.4

−0.1

0

0.1

(b)

FIGURE 9.13: The end-effector trajectories in the workspace in complex task
execution by the R-FuzzStaMP is shown. In this experiment, the initial end-
effector state starts in the region outside RoD. (a) is the plot of trajectory
when the target point is chosen from the demonstrations and (b) presents the
trajectory when the target point is arbitrarily chosen outside RoD.

352 Imitation Learning

0 2 4 6 8
0

0.2

0.4

0.6

0.8

(a) Position on x coordinate

0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

(b) Position on y coordinate

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

0.3

(c) Position on z coordinate

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

(d) Velocity on x coordinate

0 2 4 6 8
−0.3

−0.2

−0.1

0

0.1

(e) Velocity on y coordinate

0 2 4 6 8
−0.2

−0.15

−0.1

−0.05

0

0.05

(f) Velocity on x coordinate

FIGURE 9.14: Position and velocity of the end-effector in each axis during
complex task execution by the R-FuzzStaMP motion model is shown here.
The equilibrium position is kept same as seen during the demonstrations.

0 2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

(a) Position on x coordinate

0 2 4 6 8
−0.5

0

0.5

1

(b) Position on y coordinate

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

(c) Position on z coordinate

FIGURE 9.15: Position of the end-effector in each axis during complex task
execution by the R-FuzzStaMP motion model is shown here. In this experi-
ment, a different equilibrium position is chosen, which is not seen during the
demonstrations.

FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives 353

0
0.2

0.4
0.6

0.8
−0.5

0

0.5

1
−0.1

0

0.1

0.2

(a)

0.4

0.5

0.6
0

0.2

0.4

−0.1

0

0.1

(b)

FIGURE 9.16: End-effector trajectories are spatially scaled depending on the
length of the initial state. Here, grey trajectories are the demonstrated to
the robot and black trajectories are executed by the motion model. (a) The
trajectory is spatially scaled to create a larger pattern, and (b) shows a smaller
pattern than the demonstrations.

0 2 4 6 8
−0.5

0

0.5

1

(a) Position on x-axis

0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

(b) Position on y-axis

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

0.3

(c) Position on z-axis

0 2 4 6 8

0.4

0.5

0.6

0.7

(d) Position on x-axis

0 2 4 6 8
−0.2

0

0.2

0.4

0.6

(e) Position on y-axis

0 2 4 6 8
−0.2

−0.1

0

0.1

0.2

(f) Position on z-axis

FIGURE 9.17: Position error evolution of the end-effector by the motion model
is shown here. (a)-(c) refer to Figure 9.16(a) and (d)-(f) refer to the Figure
9.16(b).

354 Imitation Learning

9.5 Learning Skills from Heterogeneous
Demonstrations

In the previous section we have seen how the demonstrated trajectories can be
encoded in a dynamical regressive model known as FuzzStaMP. The asymp-
totic stability of the motion model has been ensured by imposing stability con-
straints during model parameter estimation. FuzzStaMP models are designed
to encode demonstrations of a single task. However, many practical applica-
tions of robots require executing multiple task-trajectories. To be able to do
that, a robot needs multiple motion encoders which are trained with different
demonstrated skills. The kinematic controller must offer the features such as
multitasking capability, additional information processing. Multitasking capa-
bility is another term for generic re-usability of the encoding system. A motion
estimator is capable of multitasking, i.e., the motion model should is able to
execute multiple task profiles based on the environmental input. The source
of environmental input is either sensory information or the user’s instruction
to the robot. Additional information processing feature is in fact enables the
controller to process additional sensory information (from the environment)
and act accordingly to guide the robot.

The motion encoding algorithm discussed in this section is useful for learn-
ing multiple skills in a single model. Let us introduce the following definitions
which are frequently used in the rest of this section.
Definition 9.4. A dynamical system is represented as a tuple (S, T,R) where
S is the state space, T is a set of times and R is the rule that governs the
state evolution through time, such that R : S × T → S which means S × T
and S are domain and co-domain of R.
Definition 9.5. The energy dissipation rate (EDR) is defined as the rate at
which the energy of the states of a dynamical system changes while evolving
through time.
Definition 9.6. Γ(x, τ) ∈ {0, 1} is a switching function and is defined as the
following:

Γ(x, τ) = sign

(
τ − x
|x− τ | + 1

)
for x 6= τ (9.98)

= 1 at x = τ

assuming sign(0) = 0 and τ is the limiting value.
Definition 9.7. The task-trajectory is defined by the end-effector trajectory
which is generated during a task execution.
Definition 9.8. Given the robot end-effector trajectory in a human demon-
stration, the task-equilibrium state is defined as the end position B of the task
trajectory that starts from arbitrary position A.

Learning Skills from Heterogeneous Demonstrations 355

Let x ∈ <n and ẋ ∈ <n are respectively position and velocity vectors
associated with the end-effector of a robotic arm in the Cartesian coordinate
frame. Consider ν as an arbitrary target position of the end-effector, where the
user wants the end-effector to reach while executing an intended task/motion
profile. Given repeated human demonstrations, corresponding motion profiles
are captured as the temporal evolutions both in terms of x and ẋ of the end-
effector. Let Df =

{
[xij , ẋij]Nij=1

}D
i=1

is the database that contains all such
temporal evolutions duringD demonstrations given by a human demonstrator.
These temporal data can be modeled as

ẋ(t) = f(x(t)) (9.99)

such that ν, the desired target position, is the equilibrium state. The mapping
f(x(t)) can be learned using Gaussian mixture regression or any other function
approximation technique. In Figure 9.18, we categorize the tasks performed
by the robot, based on the task trajectories. A task, performed by the robot,
when makes the end-effector move from the position A to B, has a single task-
equilibrium state νB with single-task trajectory as shown in Figure 9.18(a).
Whereas, the task, performed by the robot, that makes the end-effector move
from position A to B and C to B with different motion profiles, is an example
of multi-task profile having a single task-equilibrium state νB as shown in
Figure 9.18(b). It is also possible that the task requires movement of the
end-effector from position A to B and C to D, which is the case of multiple
task-equilibrium states (νB and νD) with multi-task profiles as shown in
Figure 9.18(c). In the literature, system (9.99) has been used to model single-
task trajectories having a single task-equilibrium state as shown in Figure
9.18(a). In this chapter, we propose to use system (9.99) to model multi-task
trajectories/profiles with multiple task-equilibrium states. Essentially, a single
dynamic system model (9.99) is expected to capture both multi-task profiles
as well as multiple equilibrium states - this is the novel contribution of this
work that is not available in the literature. However, the system model (9.99)

A

B

A

B

C

A

B

D

C

FIGURE 9.18: Task categorization: (a) single-task demonstrations with sin-
gle task-equilibrium state νB , (b) multi-task demonstration with single task-
equilibrium state νB , and (c) multi-task demonstration with multiple task-
equilibrium state νB and νD.

356 Imitation Learning

requires some structural refinements to accommodate additional information
from the environment and stable dynamical behavior. In the first step, the
model (9.99) is recasted as

ẋ(t) = f(x(t), ξ), (9.100)

where, x is redefined as the position vector in a translated coordinate system
whose origin coincide with the target position ν of a particular demonstra-
tion. ξ is a real valued parameter vector that contains information from the
environment in the robot’s workspace.

When the system (9.100) is learned using any function approximation
technique, it is not guaranteed that the system will be dynamically stable.
In addition, the learned system (9.100) can include spurious attractors that
will generate trajectories without regarding human demonstrations. Thus to
make desired equilibrium points globally stable, in the second step, an external
guiding signal is introduced:

ẋ = f(x(t), ξ) + ug(x(t)), (9.101)

where, ug(x(t)) is called the guiding input that stabilizes the system (9.100).
However, ug is so designed that the EDR of the evolving dynamical sys-
tem matches with the EDR of the demonstrations. This ensures faithful gen-
erations of human-like trajectories. The energy function for the system is
defined as

Êx = 1
2xTx (9.102)

The change in energy with respect to time can be given as:
˙̂
Ex = xT ẋ

= xT f(x(t), ξ) + xTug(x(t)) (9.103)

EDR of the system (9.101) is thus represented by (9.103). By defining Ex as
the energy associated with the demonstration states, EDR of the demonstra-
tion states Ėx is computed from the recorded position and velocity vectors of
the end-effector. In this chapter, we propose a learning scheme that ensures
that EDR of the system follows the EDR of the demonstration. The intention
behind this proposed learning from demonstrations is to produce motions such
that the end-effector moves from an initial position to the target position as
per the demonstrations; which also includes the fact that, the state energy
dissipation of the end-effector is similar to the demonstrations.
Assumption 9.1. There exists an underlying function β that represents the
EDR of the demonstrations and can be identified as weighted combination of
local models as

β =
L∑
l=1

σl(M l), (9.104)

where σl is the weight or confidence of the lth local model MD.

Learning Skills from Heterogeneous Demonstrations 357

Let us consider a database Dβ =
{

[xij , ξi, Ėxij]Nij=1

}D
i=1

that contains the
EDR ofD demonstrations given to the robot, where Exij represents the energy
of the ith sample in jth demonstration. Dβ is modeled in β(x, ξ)5 which is
a nonlinear function that encodes the EDR of all the demonstrations with
arbitrary precision. By designing ug, the evolution of the dynamical system
can be guided so that the dissipation rate of energy of the evolving system
matches β(x, ξ). However, the learning of β(x, ξ) is crucial for determining
appropriate ug that keeps the states on the desired path. Thus, the following
relationship is learned along the trajectory of the system.

β(x, ξ) =
{
Ėx, ∀x 6= 0
0, at x = 0

(9.105)

Here, Ėx refers to the energy dissipation rate in the demonstrations.

9.5.1 Stability Analysis
The dynamical system f(x, ξ) that encodes motions, and the function β(x, ξ)
that represents energy dissipation rate, are learned from the demonstrations.
Regression models like Gaussian mixture regression (GMR), support vector
regression (SVR), locally weighted projection regression (LWPR), etc., can
be used to learn the function mapping. However, since the learned dynamical
system (9.100) is not inherently stable, the guiding input ug is introduced to
maintain the closed loop stability. The guiding input is designed in such a
way, that it helps the system (9.101) to stay on the intended trajectory while
avoiding spurious attractors.

Lemma 9.3. System in (9.101) exhibits motion that has energy dissipation
rate β(x, ξ) as in (9.105) when the guiding input ug is selected as

ug =
x
[
β(x, ξ)− xT f(x, ξ)

]
ϑ(x) − e−K xTx f(x, ξ) (9.106)

where, ϑ(x) is a positive scalar and is given as ϑ(x) = xTx + ε with ε being
a very small positive value at x = 0 and is zero for nonzero x. Here K is a
large positive scalar.

Proof. Replacing ug in (9.103) the EDR of the evolving system (9.101) can
be written as

˙̂
Ex =xT

[
f(x, ξ) +

x
[
β(x, ξ)− xT f(x, ξ)

]
ϑ(x)

]
− e−K xTxxT f(x, ξ)

5Please note, the functions are in fact β(x, ξ, θβ) and f(x, ξ, θf) where θβ and θf are
the parameters of the models. We omit θβ and θf at this stage as these are not explicitly
required. θβ and θf will reappear in the later part of this chapter.

358 Imitation Learning

=
(

1− e−K xTx
)

xT f(x, ξ) + β(x, ξ)− xTxxT f(x, ξ)
ϑ(x) (9.107)

In (9.107) the term exp(−K xTx) ≈ 0 for large K and nonzero x; at x = 0,
exp(−K xTx) = 1. Thus (9.107) can be rewritten as

˙̂
Ex = β(x, ξ) (9.108)

which suggests that when the trajectory reaches x = 0, the error energy Ê
of the system (9.101) becomes zero and since ˙̂

E is also zero at x = 0 (as
β(x, ξ) = 0 according to (9.105)) and also ẋ = 0 as ug nullifies the affect of
f(x, ξ) at the equilibrium, the system stays at x = 0.

Remark 9.1. Lemma 9.3 defines an external signal which helps the closed
loop system to attain the desired energy dissipation rate β(x, ξ). Please note
that with application of the control law (9.106), ẋ becomes zero at x = 0,
which is an important requirement for the equilibrium state to be stable.

We are required to show that the closed loop system (9.101) is asymptot-
ically stable so that, the trajectory reaches x = 0 and stays there for ever.
According to Lemma 9.3 application of ug causes the energy of the system
(9.101) to dissipate at a rate β(x, ξ). In practice, there could be two situa-
tions related to the energy function of the system during the demonstrations.
To analyze the demonstration, the workspace is divided in three regions (S1,
S2 and S3) based on the energy dissipation rate. The region S1 represents
the neighborhood of the initial state in the workspace. S2 is the intermediate
region in a demonstration and S3 is the neighborhood of the target state of
the demonstration. These are explained case wise in the following.

Case 1: Let us assume ||x||2 is monotonically decreasing for all the demon-
strations as in Figure 9.19(a). In this case, the demonstration starts at x0 in
S1 and the energy of the system decreases monotonically until it reaches the
target ν in S3. In all the demonstrations, the energy function is a decreasing
monotone. Thus, the energy function of the evolving system (9.101) can be
considered as the Lyapunov function V (x). The derivative of the Lyapunov
function can be written using (9.108) as

V̇ = ˙̂
Ex =

{
β(x, ξ) < 0, ∀x 6= 0
0, at x = 0

(9.109)

Thus the equilibrium state of the dynamical system (9.101) is asymptotically
stable and the system has a Lyapunov function with very simple structure.
Case 2: The other scenario that needs to be considered is when demonstrations
include motions where ||x||2 is diverging in certain regions of the workspace
as in Figure 9.19(b). In this case, a demonstration starts in region S1 and
the state energy decreases monotonically before reaching region S2. In S2, the
states move away from the equilibrium state and enters in region S3. Energy

Learning Skills from Heterogeneous Demonstrations 359

①✵

✗

❙✷

❙✶

❙✸

(a)

✗

①✵

❙✶

❙✸

❙✷

(b)
FIGURE 9.19: (a) Demonstration with monotonically decreasing error energy,
(b) Demonstration with non-monotonous error energy dissipation.

is decrescent in S3 as states move toward the equilibrium state in this region.
Thus, in the evolving system (9.101), we have β ≤ 0 in S1, β ≥ 0 in S2 and β <
0 in S3. Since the algorithm learns β(x, ξ) from stable demonstrations which
ultimately converge to the equilibrium state x = 0; application of ug, defined
in (9.106), will exhibit similar energy dissipation rate that of demonstrations.
If the system is operated within the domain of learning, the state x will
eventually reach x = 0 since the EDR follows β. The application of ug also
causes ẋ = 0 at x = 0. Which suggests, the state x stays at x = 0 once
it reaches here. Thus, x = 0 is a stable equilibrium state. However, finding
a Lyapunov function for such a system may not be trivial, since it has a
complicated structure [248,249].

Example of non-monotonic Lyapunov function

Let us take an autonomous system

ẋ =
[
−3 −7
2 0

]
x (9.110)

where, x ∈ <2 and the Lyapunov function of the system is V = 0.5 ∗ xTPx
and the state trajectory is given in Fig: 9.20(a) & 9.20(a). Instead of searching
for a Lyapunov function, if we simply consider the energy function along the
state trajectory as the Lyapunov function (i.e. P is chosen as identity), the
value of such positive definite function along the trajectory of the system is
non-negative as given in Fig: 9.20(c). It can be seen that the function first
decreases over a period of time, then it increases for some time and again
decreases.

Now consider

P =
[
3.7736 1.1787
1.1787 14.4693

]
(9.111)

The trajectory of V along the state trajectory, given in Fig: 9.20(d), shows that
V is monotonically decreasing. This Lyapunov function has a more complex

360 Imitation Learning

-1.5

-1

-0.5

 0

 0.5

 1

 0 500 1000 1500 2000 2500 3000

x
1

time (ms)

(a) State trajectory: x1

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 500 1000 1500 2000 2500 3000

x
2

time (ms)

(b) State trajectory: x2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 500 1000 1500 2000 2500 3000

V
1

time (ms)

(c) Time evolution of V1

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 500 1000 1500 2000 2500 3000

V
2

time (ms)

(d) Time evolution of V2

FIGURE 9.20: An example of linear autonomous system.

structure than the earlier as it provides monotonic response. Finding such
Lyapunov functions is described by the following theorem [248].

Theorem 9.6. Consider the continuous time dynamical system (9.101). If
there exists scalars τ1 ≥ 0 and τ2 ≥ 0, and a three times differentiable Lya-
punov function V (x), such that

τ2
...
V (x) + τ1V̈ (x) + V̇ (x) < 0 (9.112)

∀x 6= 0, then for any x(0), V (x) → 0 as t → ∞ and the origin of (9.101) is
globally asymptotically stable.

It can be noted that the original Lyapunov theorem can be achieved by
setting τ1 = 0 and τ2 = 0. It is also intuitive that if the higher order derivatives
of the Lyapunov function is bounded and it is negative for x 6= 0, eventually it
will result V̇ (x) to be negative. Thus, Theorem 9.6 tells that even though the
quadratic Lyapunov function does not satisfy the condition V̇ (x) < 0, one can
find parameters τ1 and τ2 along with the parameters of a standard Lyapunov
function to ensure stability. Theorem 9.6 essentially relaxes the search process
for the Lyapunov function. Stability criterion is further relaxed in [249] and
the search process for the parameters is made easier by convexifying sufficient
condition for stability using higher order derivatives of Lyapunov function and
is given as

W (x) = V̈3(x) + V̇2(x) + V1(x) (9.113)

Learning Skills from Heterogeneous Demonstrations 361

where, the Lyapunov stability criteria is stated as

W (0) = 0 (9.114)
W (x) = V̈3(x) + V̇2(x) + V1(x) > 0 ∀x 6= 0 (9.115)
Ẇ (x) =

...
V 3(x) + V̈2(x) + V̇1(x) < 0 ∀x 6= 0 (9.116)

It is further shown that when different functions V1(x) and V2(x) are used for
stability analysis, exploration of first and second derivative of the functions
alone is not vacuous. This implies that the stability criteria (9.114)-(9.116)
can be relaxed as:

W (0) = 0 (9.117)
W (x) = V̇2(x) + V1(x) > 0 ∀x 6= 0 (9.118)
Ẇ (x) = V̈2(x) + V̇1(x) < 0 ∀x 6= 0 (9.119)

It is interesting to note here that there is no sign condition on V1(x) and V2(x)
individually. In order to analyze stability of the system (9.101), we select V1(x)
and V2(x) as quadratic functions parameterized by P1 and P2 respectively.
P1 here is chosen to be an identity matrix of appropriate dimension, such that
V1(x) represents the energy of the system as given in (9.102).

9.5.1.1 Asymptotic Stability in the Demonstrated Region

Let us design a Lyapunov candidate for the system (9.101) according to (9.118)
and is given as

W (x) = xTP2ẋ + Ex (9.120)

where, Ex = V1(x) = xTP1x with P1 = I ∈ <n×n (I is identity matrix) and
P2 ∈ <n×n.

The asymptotic stability of the motion learning system in the regionWD6
is defined by the following theorem.

Theorem 9.7. W (x) in equation (9.120) is a Lyapunov function of the system
(9.101) in the region WD subjected to the following constraints:

xTP2ẋ + Ex > 0 (9.121)
ẋTP2ẋ + xTP2ẍ + β(x, ξ,θβ) < −η0, (9.122)
∀x : {x ∈ WD,x 6= 0}

There exist parameters θβ and a matrix P2 ∈ <n×n for which the guiding
input ug in Lemma 9.3 stabilizes the system (9.101) within the domain of

6Here, WD refers to the region in the robot’s workspace where the demonstrations
are given. It is also called the domain of learning as the motion model, learned from the
demonstrated data, is only valid in this region of the workspace.

362 Imitation Learning

learning and also maintains the desired EDR β(x, ξ,θβ) along the system’s
trajectory.

Here η0 is is a positive number that decays as the states move closer to the
equilibrium point x = 0 and becomes zero as the states reach to the equilibrium
point. It is given as follows:

η0 = c0(1− e−d0‖x‖) (9.123)

where, c0 and d0 are small positive constants and can be selected experimen-
tally.

Proof. First part of the proof deals with W (x) in (9.120) being a valid Lya-
punov function. We search for a P2 for which W (x) > 0 in the region WD,
x 6= 0 and at the equilibrium state x = 0,

x = 0 and ẋ = 0 as ug = −f(x, ξ)

which gives, W (0) = 0. Therefore, W (x) is a valid Lyapunov candidate func-
tion.

The derivative of the Lyapunov function w.r.t time is given by

Ẇ = ẋTP2ẋ + xTP2ẍ + β(x, ξ,θβ) (9.124)

Again at x = 0, ḟ(x, ξ) = ∂f
∂x ẋ = 0 and u̇g = 0, which gives ẍ = 0. Here,

β(x, ξ,θβ) is a nonlinear map that is learned from the demonstrations. The
parameter θβ is tuned over all the data points in a minimization problem such
that β(x, ξ,θβ) represents the EDR of the demonstrations and simultaneously,
a P2 is also searched for which constraints (9.121)-(9.122) are true. Hence,
using (9.124)

Ẇ < 0, ∀x : {x ∈ WD, x 6= 0}
Ẇ = 0 at x = 0

Therefore, the system (9.101) is asymptotically stable in WD.

Remark 9.2. During the training of the motion encoding system, the function
β(x, ξ,θβ) is learned such that it obeys (9.122). The optimization algorithm
finds θβ, such that, there exists P2 for an exponentially decaying positive
scalar η0. The choice of the parameter η0 is a trade off between the robustness
on system stability and the ability of the motion model to closely mimic the
demonstrations. The parameters of the motion model are learned from the
locally generated demonstrations. Thus, a globally asymptotically stable system
can only be learned when the demonstrations cover the whole state space. It
is interesting to note that there is no sign constraint on P2 which essentially
relaxes the search process.

Learning Skills from Heterogeneous Demonstrations 363

9.5.1.2 Ensuring Asymptotic Stability outside Demonstrated
Region

The learning approach presented in the earlier section ensures stability in
the region WD. However, ensuring global stability requires the region WD
to be spanned over the entire state space. Providing demonstrations covering
the entire state, which is not practically feasible. Hence, during run time
when a state arrives from the non-demonstrated region, the models generate
erroneous output which may result to an unstable state. To avoid this problem,
the control input ug (9.106) is modified. This modification ensures a stable
motion of the robot and helps to reach the equilibrium state.

The EDR of the demonstrations is modeled as the weighted summation
of the local models, where the weights come from the firing strength of the
local models. We use this firing strength as the confidence or reliability of the
models. In this work, all these models are created under Assumption 9.1 where
the firing strength of the local models is calculated using Gaussian distribution
as follows

ψl = exp

(
−1

2(x− µl)TΣl−1(x− µl)
)
, (9.125)

where, x is the state, µl and Σl are the mean and covariance matrix of the
lth Gaussian distribution function related to lth local model. The desired
EDR is selected based on the maximum firing strength ψmax which is the
confidence of the local model closest to the current state x. Hence, ψmax
actually tells whether a state has occurred outside the demonstrated region
WD. It is defined as:

ψmax(x) , max(ψl)
l∈[1...L]

(9.126)

where L is the total number of local models.
Thus the guiding input in (9.106) is modified as the following:

ug =x [(1− Γ(ψmax, τ))β(x, ξ)− Γ(ψmax, τ)η̄]
ϑ(x)

− xxT f(x, ξ)
ϑ(x) − exp(−K xTx)f(x, ξ) (9.127)

where, Γ(ψmax, τ) is a switching function as defined in (9.98) with the switch-
ing limit τ is a constant positive scalar. If the maximum firing strength over
all the local models drops bellow τ (which implies that the robot trajectory is
away from the demonstrated region), Γ(·) modifies the input signal such that
the state trajectory is pushed toward the equilibrium state. η̄ has the same
functional form as given in (9.123). Thus, outside demonstrated region the
effective control signal becomes:

ug =
x
[
−η̄ − xT f(x, ξ)

]
ϑ(x) − e−K xTx f(x, ξ) (9.128)

364 Imitation Learning

and the EDR of the system (9.101) takes the form as follows:

˙̂
Ex =− xTxη̄

ϑ(x) < 0, ∀x : {x /∈ WD}

=0 at x = 0 (9.129)

Remark 9.3. ˙̂
Ex in (9.129) of the closed loop system (9.101) is negative

outside theWD region. Thus, during the execution, if the state appears outside
the demonstrated region, the control law makes it sure that the energy of the
state decays monotonically such that the equilibrium state is reached.

9.5.2 Learning Model Parameters from Demonstrations
Proper learning of the functions f(x, ξ,θf) and β(x, ξ,θβ) is important since
they hold the characteristics of the demonstrated motion profiles and also they
are responsible for stabilization of the system (9.101). Here, we present learn-
ing architectures using three regression techniques as listed in the following:
1. Gaussian mixture regression (GMR)

2. Locally weighted projection regression (LWPR)

3. Support vector regression (SVR)

The detailed learning methodology using above mentioned regression tech-
niques is given as follows.

9.5.2.1 Motion Modeling using GMR

Gaussian mixture regression is a powerful tool for function approximation.
The dynamical system in (9.100) and the energy dissipation rate in (9.105)
are approximated using GMR. However, to deal with the instability issues,
careful measures need to be taken while learning the function β(x, ξ,θgmrβ).

Regression model for f(x, ξ,θgmrf)

The joint probability distribution of the demonstration dataset Df =
{[xi,j , ξi, ẋi,j]Nij=1}Di=1 is given by

P (x, ξ, ẋ|µ,Σ) =
K∑
k=1

P (k)P (x, ξ, ẋ|k), (9.130)

where P (k) is termed as the prior and P (x, ξ, ẋ|k) is the conditional proba-
bility density function which is given by

P (x, ξ, ẋ|k) = Gk
(
x, ξ, ẋ;µk,Σk

)
= exp−

1
2

(
([x;ξ;ẋ]−µk)T (Σk)−1([x;ξ;ẋ]−µk)

)
√

2π(2n+nξ)
∣∣Σk∣∣ , (9.131)

Learning Skills from Heterogeneous Demonstrations 365

where nξ is the dimension of ξ. µk and Σk are given by

µk =

µkxµkξ
µkẋ

 and Σk =

Σkxx Σkxx∗ Σkxẋ
Σkxx∗ Σkξξ Σkξẋ
Σkxẋ Σkξẋ Σkẋẋ

 . (9.132)

The posterior probability P (ẋ|x, ξ) gives the desired mean estimate using
(9.131)

f(x, ξ,θgmrf) =
K∑
k=1

P (k)P (x, ξ|k)
P (x, ξ)

(
µkẋ +

[
Σkẋx Σkẋξ

]
[
Σkxx Σkxξ
Σkxξ Σkξξ

] [
x− µkx
ξ − µkξ

])
(9.133)

Approximation of EDR

The joint probability distribution of the demonstration dataset Dβ ={
[xi,j , ξi, Ėxij]Nij=1

}D
i=1

is given by

P (x, ξ, Ėx|µ,Σ) =
K∑
k=1

P (k)P (x, ξ, Ėx|k), (9.134)

where P (k) is termed as the prior and P (x, ξ, Ėx|k) is the conditional prob-
ability density function. Similarly, the posterior mean of the EDR is given
by

β(x, ξ,θgmrβ) =
K∑
k=1

P (k)P (x, ξ|k)
P (x, ξ)

(
µk
Ėx

+
[
Σk
Ėxx Σk

Ėxξ

]
[
Σkxx Σkxξ
Σkxξ Σkξξ

] [
x− µkx
ξ − µkξ

])
(9.135)

The parameter θgmrβ in (9.105) is learned in two steps. The first step is called
pre-training where expectation maximization (EM) is used to learn the initial
values of θgmrβ . In the next step, the parameters are fine-tuned to ensure
stability of the closed loop system (9.101). A cost function is minimized in the
optimization process. We select Negative Log-Likelihood as the cost function
which is minimized to ensure propoer learning of β(x, ξ,θgmrβ). The steps are
given in the Algorithm 12.

Cost function

The parameters of β(x, ξ,θgmrβ) are searched in a direction where the like-
lihood of the random variable maximizes over all the data points. However,

366 Imitation Learning

since the maximization of the likelihood function p(x, ξ, Ėx|θgmrβ) suffers from
numerical underflow problem due to small likelihood values, log-likelihood is
maximized instead. Moreover, from the calculus’s perspective, natural loga-
rithm is a monotone transformation. Thus, the log-likelihood function is given
by

L(x, ξ, Ėx,θ
gmr
β) = log p(x, ξ, Ėx|θgmrβ) (9.136)

The function L(x, ξ, Ėx,θ
gmr
β) in (9.136) is maximized in the following opti-

mization problem where the parameter θgmrβ is learned during the process.

minimize
θ2

−

D∑
i=1

Ni∑
j=1
L(xi,j , ξi, Ėxi,j ,θ

gmr
β)

D∑
i=1

Ni

subject to Constraints (9.121)− (9.122)

(9.137)

The procedure is described in Algorithm 12.

Algorithm 12 Steps to learn parameter θgmrβ .

1. Prepare Dβ =
{

[xij , ξi, ẋij , ẍij , Exij , Ėxij]Nij=1

}D
i=1

during the demonstra-
tions. Here, D represents the number of demonstrations and Ni is the
number of samples in each demonstration.

2. Run EM over the dataset D̄β =
{

[xij , ξi, Ėxij]Nij=1

}D
i=1

to get an initial
estimate for all πkβ , µkβ and Σk

β .
3. initialize: πβ0 ← ∅ µβ0 ← ∅, Σβ0 ← ∅

for k=1:K do
πβ0 ← [πβ0;πkβ]
µβ0 ← [µβ0;µkβ]
for i=1:d+1 do
for j=i:d+1 do

Σβ0 ← [Σβ0; Σk
β i,j]

end for
end for

end for
4. Set initial values θ̂ ← [πTβ0 µ

T
β0 ΣT

β0].
5. Run optimization algorithm over Dβ .
6. Find new θ̂ that minimizes the cost (9.137) while maintaining the con-

straints (9.121)-(9.122).
7. Return: θgmrβ ← θ̂

Learning Skills from Heterogeneous Demonstrations 367

9.5.2.2 Motion Modeling using LWPR

LWPR is an incremental learning framework for nonlinear function approxi-
mation in high dimensional space. The algorithm is widely used to learn the
functional relationship between the input and output data where the input has
irrelevant and redundant dimensions. The algorithm assumes that there exists
a lower dimensional distribution of the input space. The idea is to learn piece
wise local linear models from a given nonlinear function. The overall function
is represented as the weighted sum over the local models. The weightage of
the kth local region is given by [250],

wk = exp
(
−0.5(x− ck)TDk(x− ck)

)
where, x ∈ <n is the input of the system and ck ∈ <n is the center of kth
local region, called receptive field (RF) which is parameterized by a distance
metric Dk.

Regression model for f(x, ξ,θlwprf)

The underlying function of the demonstrations is learned using LWPR tech-
nique and is given as follows.

f(x, ξ,θlwprf) =
Kf∑
k=1

(
wkb0

k + Aksk
)

(9.138)

Here, b0
k is the bias term in the kth local model and is given by the weighted

mean of the velocities ẋ, seen during the demonstrations. For a n dimensional
state vector, Ak ∈ <n×R is the regression parameter for the projections sk ∈
<R in kth local model, where R is the number of projections in the input
space.

Approximation of EDR

The energy dissipation rate is approximated using LWPR and can be written
as

β(x, ξ,θlwprβ) =
Kβ∑
k=1

(
wkβ0

k + Bkvk
)

(9.139)

Here, β0
k is the bias term in the kth local model and is given by the weighted

mean of the energy dissipation rates, seen during the demonstrations. Bk ∈ <R
is the regression parameter for the projections vk ∈ <R in kth local model,
where R is the number of projections in the input space.

The parameters θlwprf and θlwprβ are learned in two separate optimization
processes. In pre-training, the initial models are learned where the distance
metric Dk is updated using stochastic gradient descent. In the next phase,
the parameters are fine-tuned in a constrained optimization process, where a
cost function is minimized.

368 Imitation Learning

Cost function

The optimization problem is formulated to minimize a cost function using
leave-one-out cross validation error of each local model and is given by

Jk(Dk) = 1
Wk

D∑
i=1

Ni∑
j=1

wki,j
(
Ėxi,j − βki,j,−j

)2 (9.140)

+ γ

d

d∑
i,j=1

(Dk)2
ij

whereWk =
D∑
i=1

Ni∑
j=1

wki,j is a normalization term. Here,D denotes the number

of demonstrations and Ni is number of samples in ith demonstration. The
second term in the cost function is the regularization term weighted by γ.
Thus, the optimization problem is given as

minimize
Dk

Jk(Dk) in (9.140)

subject to Constraints (9.121)− (9.122)
(9.141)

The detailed description of the learning methodology using LWPR is given in
Algorithm 13.

Algorithm 13 Steps to learn parameter θlwprβ .
1. Perform step 1 of Algorithm 12
2. Run LWPR algorithm [250] over the dataset D̄β =

{
[xij , ξi, Ėxij]Nij=1

}D
i=1

to get an initial estimate for all ck Dk, β0
k, Bk and vk.

3. initialize: θ̂ ← ∅
for k=1:Kβ do
θ̂ ← [θ̂ cTk diag(Dk)]

end for
4. Run optimization algorithm over Dβ .
5. Recalculate β0

k, Bk and vk for new θ̂.
6. Find new values θ̂ that minimizes the cost (9.141) while maintaining the

constraints (9.121)-(9.122)
7. Return: θlwprβ ← θ̂

9.5.2.3 Motion Modeling using ε-SVR

Support vector regression is a powerful tool for nonlinear function approx-
imation. The algorithm learns the support vectors from the input data
space. The dynamical system and the energy dissipation rate are learned

Learning Skills from Heterogeneous Demonstrations 369

as a regression problem from the demonstration data. For a given data set
D = {(x1, y1), ...(xZ , yZ)} where x ∈ <n and y ∈ <, the underlying function
g(x,w) is learned by optimizing the following cost function over the training
dataset [251].

Lε(yi, g(xi,w)) =
{

0, ∀|yi − g(xi,w)| ≤ ε
|yi − g(xi,w)| − ε, otherwise (9.142)

Here, ε is a small positive scalar that gives the boundary of deviation of
g(xi,w) from the target yi. The problem is solved as a constrained optimiza-
tion problem and the following cost is maximized

J(αi, αi∗) =
l∑
i=1

αi∗(yi − ε)− αi(yi + ε)

− 1
2

l∑
i=1

l∑
j=1

(αi∗ − αi)(αj∗ − αj)K(xi,xj) (9.143)

where, αi and αi∗ are the Lagrange multipliers and K(xi,xj) is a kernel for
the input space. Therefore, the optimization problem is posed as

maximize
αi
i
,αi∗

J(αi, αi∗)

subject to 0 ≤ αi, αi∗ ≤ C i = 1, 2, ..., l
l∑
i=1

(αi − αi∗) = 0

(9.144)

where C > 0 is the penalty parameter that determines trade off between the
flatness of the learned function and the deviation from the target state.

Regression model for f(x, ξ,θsvrf)

The function that preserves the characteristics of the demonstrations Df =
{[xi,j , ξi, ẋi,j]Nij=1}Di=1 is learned using ε-SVR and is given by

fj(x, ξ,θsvrfj) =
Kfj∑
i=1

(ᾱij − ᾱi∗j)Kfj (x̄i, x̄) + b̄fj ; j = 1, ..., n (9.145)

where, Kfj is the number of support vectors, ᾱij and ᾱi∗j are the optimal
Lagrange multipliers and θsvrfj represents the parameters of the model and x̄
is the concatenation of x and ξ . Here, b̄fj is given by

b̄fj = ẋvj −
TN∑
i=1

(ᾱij − ᾱi∗j)Kfj (x̄i, x̄v) + ε; s.t. 0 < αv∗ < Cf

where, TN is the total number of samples and Cf is a penalty parameter.

370 Imitation Learning

Approximation of EDR

The relation between the present states of the system and energy dissipation
rate of the demonstrations is learned as regression function. ε-SVR is used to
learn the map from the dataset Dβ =

{
[xij , ξi, Ėxij]Nij=1

}D
i=1

and is given by

β(x, ξ,θsvrβ) =
Kβ∑
i=1

(µ̄i − µ̄i∗)Kβ(x̄i, x̄) + b̄β (9.146)

where, Kβ is the number of support vectors, µ̄i, µ̄i∗ are the optimal Lagrange
multipliers and θsvrβ represents the parameters of the model. Here, b̄β is given
by

b̄β = Ėvx −
TN∑
i=1

(µ̄i − µ̄i∗)Kβ(x̄i, x̄v) + ε; s.t. 0 < µv∗ < Cβ

where, TN is the total number of samples and Cβ is a penalty parameter.
The kernel is taken as the Gaussian function such that K(x̄, x̄′) = e−

(x̄−x̄′)
γ ,

where x̄ and x̄′ are the samples and γ > 0 is the variance parameter of the
Gaussian kernel. Algorithm 14 provides step by step procedure of learning the
EDR.

Algorithm 14 Steps to learn parameter θsvrβ .
1. Perform step 1 of Algorithm 12
2. Run SVR algorithm [251] over the dataset D̄β =

{
[xij , ξi, Ėxij]Nij=1

}D
i=1

to
get an initial estimate for Cβ , γβ , µ̄ and µ̄∗

3. initialize: θ̂ ← Cβ , γβ , µ̄i, µ̄i∗
4. Run optimization algorithm over Dβ

5. Find new θ̂ that minimizes the cost (9.144) while maintaining the con-
straints (9.121)-(9.122)

6. Return: θsvrβ ← θ̂

The model f(x, ξ,θsvrf) and the pre-model of β(x, ξ,θsvrf) in SV based
regression are learned using LibSVM [252] library which is publicly available
on their web page.

9.5.2.4 Complete Pipeline

We have seen three regression techniques for encoding the demonstrations
and also formulated the learning conditions for the models. In the following
Algorithm 15 we shall describe the entire procedure including the execution
on a robotic manipulator.

Learning Skills from Heterogeneous Demonstrations 371

Algorithm 15 Steps for encoding heterogeneous profiles
0: Collect data samples during demonstrations as shown in Figure 9.21 and

prepare the datasets Df and Dβ

0: Learn f(x, ξ,θf) and β(x, ξ,θβ) from the dataset using any of the methods
described above and keep memory of the environmental information ξi
in ξ̄ . In our experiment, ξi is the concatenation of target position νi
(can be referred as object’s picking position) and initial positions for ith
demonstration.

0: Get the initial position and desired target ν within the domain of learning
in task space.

0: Select the nearest ξ from the store ξ̄ and consider it as the environmental
input ξ to the models.

0: Evaluate velocity command as in (9.101) using the learned models.
0: Get the desired position of the end-effector and apply inverse kinematics

to obtain corresponding joint positions.
0: Send the joint command to the robot.
0: Repeat until the target is reached.

9.5.3 Spatial Error Calculation
We introduce an error metric that gives a measure of the performance of
the motion encoding system. Since the generated trajectory differs in reach-
ing time with the demonstration, the mean square error cannot be applied
directly to check the error at each sample point. Moreover, only observing
the difference between states will not provide the entire picture regarding the
performance of the encoding system. Hence, we develop an algorithm that
essentially calculates two types of errors: one is related to the positions and
other is related to the velocity of the overall trajectory. Let us define few vari-
ables: Tx

D and Tẋ
D contain all points in the demonstrated trajectory; Tx

h and
Tẋ
h contain all data points of the trajectory generated by the motion encoding

system; ex and eẋ are the errors related to position and velocity respectively.
(The unit of the errors are same as position and velocity respectively). Algo-
rithm 16 describes the computation of spatial error.

9.5.4 Examples
Let us see some examples of learning multiple task profiles in a single model
using the approaches we have learned in the previous section. In this exam-
ple we shall use 7 DOF robotic manipulator. First, the manipulator is given
kinesthetic demonstrations of heterogeneous task. The data in terms of end-
effetor position, velocity, target point and EDR in the Cartesian space is filled
in the datasets Df = {[xi,j , ξi, ẋi,j]Nij=1}Di=1 and D̄β =

{
[xij , ξi, Ėxij]Nij=1

}D
i=1

.

372 Imitation Learning

Algorithm 16 Steps to calculate spatial error.
1: for each data in Tx

h do
2: Get the nearest data xi in Tx

D forward in time.
3: Store it in Ox such that, O← [O xi]
4: Extract associated ẋi from Tẋ

D and store it in Oẋ such that, Oẋ ←
[Oẋ ẋi]

5: end for
6: Calculate Ex = (Ox −Tx

h)/mean(abs(Ox)).
7: Calculate Eẋ = (Oẋ −Tẋ

h)/mean(abs(Oẋ)).
8: Get the mean square value along the rows of Ex and Eẋ such that,
9: ex

j = meansqr(Ex[j, :])
10: eẋ

j = meansqr(Eẋ[j, :])
10: Return mean(ex) and mean(eẋ).

Then we use the previously described algorithms to learn the parameters of
the motion model.

9.5.4.1 Example of Monotonic and Non-monotonic State Energy

The robot is introduced with two kinds of demonstration. Half of the demon-
strations are such that the energy of the evolving system is always decreasing,
i.e., the EDR is always negative. This kind of situation occurs when a robot
simply picks an object and places it away from the picking point. For rest of
the demonstrations, the energy increases in certain region of the workspace -
in this case the EDR is sometimes positive as well. These type of motion pro-
files are common when a robot picks an object and place it into a deep bucket
where the target point is not far away from the picking point. The system
models as given in (9.101) with the control input (9.127) are learned from the
datasets Df and Dβ using three regression techniques described earlier. The
learned models are tested by letting the dynamical system evolve for the spec-
ified tasks. The performance of these models are compared with the original
demonstrations for those tasks. The training dataset contains ten demonstra-
tions of which five are such that the EDR is always negative and in the rest,
the EDR attains positive values in certain region of the workspace. An initial
set of Gaussian parameters for the EDR model is first learned from the data.
The optimization algorithm then finds new parameters in the neighborhood
of the initial values satisfying the stability constraints. Matlab’s Optimization
toolbox (fmincon) with interior-point algorithm is used to find stable param-
eters. The learned model is used for end-effector trajectory generation. An
initial end-effector position (marked by the black circle in Figure 9.21) is cho-
sen within the domain of learning from which the robot moves toward the
target position (marked by black square in Figure 9.21). The motion encoding
model provides new end-effector position at each control loop and related joint
positions are computed using IKfast [253]. The PID controller of the robot
produces required torque for the joints. Figure 9.21 presents the trajectories

Learning Skills from Heterogeneous Demonstrations 373

✵�✁

✵�✂

✵�✄

✵�☎

✲✵�✁
✲✵�✆

✲✵�✝
✲✵�✞

✲✵�✞

✵

✵�✞

✵�✝

✵�✆

✵�✁

(a) End-effector positions

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.85
time(sec)

0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0.02

β

(b) Rate of change of energy

FIGURE 9.21: In this experiment the EDR is always negative. Output of
all the three models (GMR, LWPR and SVR) with the demonstrations are
shown here. The trajectory starts from the black circle and reaches to the
target marked by black square.

when the EDR is always negative during the task execution and Figure 9.23
presents the trajectories with positive EDR. Figure 9.22 and 9.24 present cor-
responding position and velocities on each coordinate in both the cases.

GMR models:

In this experiment, we first use Gaussian mixture regression to model
f(x, ξ,θf) and β(x, ξ,θβ) (as in Algorithm 12). 11 Gaussians are used to
capture the data distribution for both the models. Standard EM algorithm is
used to estimate the Gaussian parameters. The output trajectory of the GMR
model is given in Figure 9.21 with the associated demonstration for that tar-
get position. Figure 9.23 represents the output of the model when the actual
demonstration has positive EDR.

LWPR models:

LWPR algorithm is useful for incremental learning. Here, the models
f(x, ξ,θf) and β(x, ξ,θβ) (as in Algorithm 13) are learned offline, using the
entire dataset. The algorithm learns 102 local models to represent f(x, ξ,θf)
and 86 local models to represent β(x, ξ,θβ). The output trajectory of the
LWPR model is given in Figure 9.21. Figure 9.23 represents the output of the
model when the actual demonstration had positive EDR.

SVR models:

Support vector regression technique is also used to learn the underlying
dynamical systems that represent the demonstrations. First, the initial model
parameters of f(x, ξ,θβ) and β(x, ξ,θβ) are learned using standard SVR algo-
rithm. These initial parameters are then used to learn the final model that sat-
isfy stability criterion. The procedure is elaborated in the Algorithm 14. The
end-effector related trajectories by the SVR model are shown in Figure 9.21
where the EDR remains negative during the task. Figure 9.23 shows a different
task where the EDR reaches positive values during the task execution.

374 Imitation Learning

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.85
time(sec)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.85
time(sec)

0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.85
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.85
time(sec)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.85
time(sec)

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.85
time(sec)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.22: The trajectory of the original demonstration in Cartesian coor-
dinate is such that the energy of the states monotonically decreases to zero,
thereby making β always negative. Here, three trajectories, produced by GMR,
LWPR and SVR models along with associated demonstrations are presented.
The trajectory starts from the black circle and reaches to the target marked
by black square. (a) (b), (c), (d), (e), (f) show the positions and velocities of
the end-effector on x, y, and z coordinate respectively. Positions and velocities
are in m and m/sec.

✵�✁✂
✵�✁✄

✵�✁☎
✵�✁✆

✵�☎
✵�☎✂

✲✵�✝
✵

✵�✝
✵�✂

✵�✞
✵�✄

✲✵�✝

✵

✵�✝

✵�✂

✵�✞

(a) End-effector positions

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.15

0.10

0.05

0.00

0.05

β

(b) Rate of change of energy

FIGURE 9.23: In this experiment the EDR attains positive values. Trajecto-
ries are produced by GMR, LWPR, and SVR models.

Learning Skills from Heterogeneous Demonstrations 375

9.5.4.2 Example of Multitasking with Single and Multiple
Task-equilibrium

Let us divide multitasking in two categories in a dynamical system’s per-
spective. Category one contains a set of tasks where the end-effector of a
manipulator starts from different locations in the workspace and reaches at
a single task-equilibrium. And the other category includes tasks where the
end-effector starts from a fixed / different initial location(s) in the workspace
and ends at different task-equilibrium positions while executing different type
of motions.

For this example, the robot is given twenty demonstrations which include
four type of tasks. First ten demonstrations represent two tasks with one task-
equilibrium and different initial positions and the rest of the demonstrations
are about two more tasks where the end-effector starts from different initial
locations and ends at different task-equilibrium positions. Essentially, in this
experiment the robot is demonstrated complex task profiles with multiple
initial and target locations. The demonstrations are logged in datasets Df and
Dβ and the algorithm learns the motion encoding model using three regression
techniques. To test the model an initial position is chosen within the domain
of learning, from which the end-effector starts moving to the desired location.

Multi-task trajectories with single task-equilibrium:

In this part let us evaluate the performance of the algorithms in executing
multiple tasks (multi-task trajectories) for a single task-equilibrium position.
Task-1 and the task-2 are shown in the figures. The end-effector starts from
black circles and ends at black square (task-equilibrium) which is the target for
that task. Figures 9.25 and 9.26 shows performance of the Gaussian mixture
regression models. The results related to LWPR and support vector regression
models are given in Figures 9.27 and 9.29 respectively. The associated trajec-
tories in each coordinate are given in Figures 9.28 and 9.30 respectively. These
results show that the model is able to generate two different task-trajectories
while reaching for the single target. In addition, the model generated trajec-
tories are very closely following the human demonstrations.

Multi-task trajectories with Multiple task-equilibrium:

The demonstrated tasks are learned using three regression techniques men-
tioned earlier. The task execution starts at black circles and ends at squares
in black (task-equilibrium). Figures 9.31 and 9.32 shows performance of the
Gaussian mixture regression models. The results related to LWPR and sup-
port vector regression models are given in Figures 9.33 and 9.35 respectively.
The associated trajectories in each coordinate are given in Figures 9.34 and
9.36 respectively. The figures show that multi-task trajectories with multiple
task-equilibria are efficiently learned using a single dynamical system based
motion model.

376 Imitation Learning

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.10
0.08
0.06
0.04
0.02
0.00
0.02
0.04
0.06
0.08

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.24: The trajectory of the original demonstration in Cartesian coor-
dinate is such that the energy of the states increases in certain regions of
the workspace, thereby making β positive during task execution. Here, three
trajectories, produced by GMR, LWPR and SVR models along with associ-
ated demonstrations are presented. The trajectory starts from the black circle
and reaches to the target marked by black square. (a), (b), (c), (d), (e), (f)
show the positions and velocities of the end-effector on x, y, and z coordinate
respectively. Positions and velocities are in m and m/sec.

✵�✁

✵�✂

✵�✄

✵�☎

✵�✆

✲✵�✄

✵

✵�✄

✵

✵�✝

✵�✂

(a) end-effector trajectory

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

β

(b) Rate of change of energy

FIGURE 9.25: Multi-task trajectories by GMR model with single task-
equilibrium and different initial positions for the task-1 and task-2 with the
associated demonstrations have been shown. Two demonstrations out of five
demonstrations for each task have been presented here.

Learning Skills from Heterogeneous Demonstrations 377

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.26: Position and velocity on each axis from Figure 9.25.

✵�✁

✵�✂

✵�✄

✵�☎

✵�✆

✲✵�✄

✵

✵�✄

✵

✵�✝

✵�✂

(a) End-effector positions

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

β

(b) Rate of change of energy

FIGURE 9.27: Multi-task trajectories by LWPR model with single task-
equilibrium position. Task-1 and task-2 are shown here with the associated
demonstration.

378 Imitation Learning

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.28: Position and velocity on each axis from Figure 9.27.

✵�✁

✵�✂

✵�✄

✲✵�✁
✲✵�☎

✵
✵�☎

✵�✁

✵

✵�☎

✵�✁

(a) End-effector positions

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.95
time(sec)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

β

(b) Rate of change of energy

FIGURE 9.29: Multi-task trajectories by SVR model with single task-
equilibrium position. Task-1 and task-2 trajectories, generated by the SVR
model are shown here.

Learning Skills from Heterogeneous Demonstrations 379

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.6

0.4

0.2

0.0

0.2

0.4

0.6

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.25
0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
time(sec)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.30: Position and velocity on each axis from Figure 9.29.

✵�✁
✵�✂

✵�✄
✵�☎

✵�✆
✵�✝

✲✵�✝

✲✵�☎

✲✵�✂

✲✵�✁

✵

✵�✁

✵�✂

✵�✄

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.08.14
time(sec)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

β

(b) Rate of change of energy

FIGURE 9.31: Multi-task trajectories by GMR model with different task-
equilibria.

380 Imitation Learning

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.83
time(sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.83
time(sec)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.83
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.08.14
time(sec)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.08.14
time(sec)

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.08.14
time(sec)

0.20

0.15

0.10

0.05

0.00

0.05

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.32: Projections of positions and velocities on individual axis from
Figure 9.31 are given in (a), (b), (c), (d), (e), (f) where the model outputs are
plotted alongside human demonsrtions. The motion encoding system generates
trajectories from different initial points and ends at different targets. Tasks
are selected based on the targets.

✵�✁
✵�✂

✵�✄
✵�☎

✵�✆
✵�✝

✲✵�✝

✲✵�☎

✲✵�✂

✲✵�✁

✵

✵�✁

✵�✂

✵�✄

(a) End-effector positions

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

β

(b) Rate of change of energy

FIGURE 9.33: This figure depicts the performance of the motion encoding
model in an multitasking environment using LWPR technique.

Learning Skills from Heterogeneous Demonstrations 381

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.20

0.15

0.10

0.05

0.00

0.05

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.34: Projections of positions and velocities on individual axis from
Figure 9.33 are given in (a), (b), (c), (d), (e), (f). The motion encoding system
generates trajectories from different initial points and ends at different targets.
Tasks are selected based on the targets.

✵�✁

✵�✂

✵�✄

✵�☎

✵�✆

✵�✝

✲✵�✞
✲✵�✝

✲✵�✆
✲✵�☎

✲✵�✄
✲✵�✂

✲✵�✁

✲✵�✁

✵

✵�✁

✵�✂

✵�✄

(a) End-effector positions

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05

β

(b) Rate of change of energy

FIGURE 9.35: Multi-task trajectories by SVR model with different task-
equilibrium positions.

382 Imitation Learning

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
-a
xi
s

(a) Position on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

y-
ax

is

(b) Position on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

z-
ax

is

(c) Position on z coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

x
-a
xi
s

(d) Velocity on x coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.20
0.15
0.10
0.05
0.00
0.05
0.10
0.15
0.20
0.25

y-
ax

is

(e) Velocity on y coordinate

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.89
time(sec)

0.20

0.15

0.10

0.05

0.00

0.05

z-
ax

is

(f) Velocity on z coordinate

FIGURE 9.36: Projections of positions and velocities on individual axis from
Figure 9.35 are given in (a), (b), (c), (d), (e), (f). The motion encoding system
generates trajectories from different initial points and ends at different targets.
Tasks are selected based on the targets.

9.5.5 Summary
In this chapter we have discussed various imitation learning techniques based
on kinesthetic teaching where the expert (teacher) provides demonstrations of
certain task while holding the robotic manipulator and guiding it through the
task trajectory. The dynamic movement primitives (DMPs) presented here,
have been shown to learn task in joint space and the other methods which
use Gaussian mixture model, learn the task in the Cartesian space. The task
trajectory is asymptotically stable in DMP models as it uses an inbuilt PD
controller. Parameters of DMP based model are learned from single demon-
stration in an unconstrained optimization process which make them compu-
tationally efficient. But the main disadvantage of this technique is that is has
a strong time dependency and cannot exploit multiple demonstrations. Multi-
ple demonstrations are useful in many cases as the quality of demonstrations

Learning Skills from Heterogeneous Demonstrations 383

cannot be ensured by a single demonstration. Another problem with DMP
based motion encoders is that they are generally learned for every singe dimen-
sion of the task space / joint space. It is assumed that each dimension / DoF
is decoupled from each other. However, it is not true for complex tasks. Hence
the efficiency of DMP based system is little lesser that the the Gaussian mix-
ture model-based imitation learning methods.

Asymptotic stability of the models imitating human motion has been an
important concern of this chapter. SEDmotion encoders which are great at gen-
erating asymptotically stable trajectories have been presented in this chapter.
The parameters of the SED models are learned in a constrained optimization
process. The constraints are formulated using Lyapunov stability criteria. The
reader should note that when we learn the parameters of the model in a con-
strained search space, the model accuracy in regards to input-output data map-
ping is hampered. Handling equality constraints while learning a highly accu-
rate model is very difficult. FuzzStaMP models alleviates this problem by com-
bining statistical learning and Fuzzy logic. Since the stability is a great concern
for DS based motion estimators, we have presented rigorous stability analysis
of the motion system. A fuzzy Lyapunov function is searched for stability anal-
ysis as it is difficult to find a common Lyapunov function for all demonstra-
tions. An associated fuzzy controller is designed using GA. The motion learning
architecture C-FuzzStaMP presented in this chapter is conservative in nature
since it imposes strict stability constraints during the controller gain selection
and thereby giving more weightage on learning a globally asymptotically sta-
ble motion model. This approach sometimes may ignore complex features of the
demonstratedmotion profiles. However its performance is good in case of simple
motion learning. By relaxing the asymptotic stability constraints on learning,
R-FuzzStaMP learns the complex attributes of the demonstrations. Rather than
making the V̇ in (9.32) negative over the entire workspace, the algorithm ensures
that the V̇ is negative at least inside RoD. During the execution of the motion
model, whenever a new state appears outside the RoD, which is quite typical,
the state is translated inside the RoD. The translated state is made to evolve
through time and translated back to its original domain. This also endows the
motion model to spatially scale the trajectory as required. The spatial scaling
is realized by using a space transformation technique, which prevents exagger-
ation of the scaled trajectory.

The multitask learning framework exploits additional information to
enhance multitasking capability of the proposed technique. Three algorithms
are presented to describe learning using different regression techniques namely
GMR, LWPR and SVR. The model f(x, ξ) holds the characteristics of the
demonstrations, where ξ bears the information from the environment in the
robot’s workspace. The information can be either in the form of sensory feed-
back to the robot or the instructions to the robot, provided by the user. In this
work, the target (task-equilibrium) positions of the end-effector is represented
as ξ which is in fact the camera feedback of an object to be grasped. The
guiding input ug proves to be quite helpful in avoiding spurious attractors
and at the same time it also pushes the system on the desired path where the
EDR matches with the demonstrations. Instead of constraining the learning

384 Imitation Learning

of f(x, ξ), a matrix P2 in (9.120) is searched during the parameter estima-
tion of β(x, ξ), which essentially relaxes the stability constraints on parameter
estimation, since there is no sign constraint on P2.

Task requirements may vary based on various environmental conditions.
Since we have considered target positions of the objects (to be grasped) as
environmental input in our experiments, we have defined tasks based on target
positions, by demonstrating different motion profiles to the robot. In that
perspective, multitasking has been generalized by dividing it in two different
categories. In the first category, the robot is demonstrating two tasks with a
single task-equilibrium position and two more different tasks based on target
position are demonstrated in the second category. Essentially, a single motion
model learns and execute multi-task trajectories for different task-equilibrium
positions.

10
Visual Perception

10.1 Introduction
Recent success in the area of object recognition, segmentation, and graspable
region identification using deep learning techniques has intrigued robotics
researchers to bring new improvements in visual perception techniques. These
enormous improvements in both the deep learning techniques and high perfor-
mance computing devices, like GPU machines have motivated many organi-
zations to conduct various events, such as Amazon Picking Challenge (APC)
in the year 2015-2016, Amazon Robotics Challenge (ARC) in 2017, and Scene
Parsing Challenge during 2015-2017 in order to encourage the research in
visual perception for real-time robotics applications. One such application,
includes automation of warehouses, where thousands of wheeled mobile robots
are deployed to move objects within the warehouses. In existing scenarios, it
still requires several hundred people in each warehouse to do things like pulling
items from shelves and placing them into packaging boxes to be shipped to
the user. Robots that can automatically pick and place items would boost the
efficiency of operation by reducing the reliance on human workers which is
very expensive in highly competitive e-commerce markets with very narrow
profit margins. A perception module can be developed to accurately recog-
nize a specific instance of the objects to be picked and keep a record of it
for further use. Until recently, such vision-based techniques have been consid-
ered as very challenging task and it is due to the current progresses in the
field of deep learning, that makes the implementation of such a complicated
task possible. This chapter mainly focuses on the vision-based deep learning
techniques for automatic recognition of an object class and accurate detec-
tion of object boundary for localizing graspable region. The existing deep
learning-based state-of-the-art object detection and segmentation techniques,
such as Faster RCNN [254,255], Single-shot-detection [256], PSPNet [257], and
Mask-RCNN [258] are designed to perform well only when they are rigorously
trained using a large set of images. However, all these deep learning techniques
are mostly supervised in nature, i.e, they need a large amount of manually
labeled ground-truth or image-masks for training the detection model. Man-
ual generation of annotated image sets of such large size need a lot of human
intervention, which is very tedious and are often prone to error due to fatigue.
Taking this above challenge into consideration, this chapter first demonstrates

385

386 Visual Perception

some techniques of automatically generating annotated images and then is fol-
lowed by deep learning-based object detection and instances segmentation for
pick and place task. It is desirable to have some prerequisites, such Artificial
Neural Networks (ANNs), linear algebra, and basics of machine learning and
optimization techniques, for the readers to understand all the aforesaid deep
learning techniques. It may not be in the scope of this chapter to cover all these
prerequisites. However, inclusion of some of the basics, like a brief overview
of the Artificial Neural Networks (ANNs), Convolutional Neural Networks
(CNNs), and its sub-blocks and a brief evolutionary history of CNNs, we have
tried to make this chapter more readable and easier to understand even for a
newbie. We thus start with an introduction of deep learning techniques and
the prerequisites needed to implement a deep network. The Section 10.3.1
and Section 10.3.2 then demonstrates two different deep learning-based auto-
matic annotation techniques for warehouse applications, and finally it presents
a deep learning-based object detection and semantic segmentation technique
for objects in a densely populated, completely unconstrained environment.

10.2 Deep Neural Networks and Artificial Neural
Networks

Deep Neural Networks (DNNs) have created new bench mark in almost all the
vision-based applications. Some of these include object instances and category
recognition, semantic segmentation, and graspable region identification. On
the other hand, the conventional classification techniques, like Support Vector
Machines [259] which had sustained almost a decade, is in no way closer to
any of the current deep learning techniques for the performance measures in
terms of recognition accuracy. The improvements made in recognition results
using DNNs compared to the conventional techniques are mostly in the order
of 2, which is astonishing. Certainly, a basic question sticks in our mind,
what is unique in DNNs which makes them so different from Artificial Neural
Networks (ANNs)? Deep learning is one kind of supervised machine learning
technique where the model is provided with a big training set of examples to
learn a complex non-learning function. Each example in the training set is a
pair of input and output from the function. The more complex the task is,
the bigger the training set has to be. Deep learning is based on the concept of
ANNS that is designed to mimic the way the human brain learns. This section
provides a clear explanation about the distinct features present in DNNs.
However, before that we familiarize the readers with some prerequisites for
better understanding of the underlying concepts. We will hence start with a
brief history and explanation of those neural networks.

Deep Neural Networks and Artificial Neural Networks 387

10.2.1 Neural Networks
Neural networks (NN) or Artificial Neural Network (ANN) is an informa-
tion processing technique inspired from the way our biological nervous system
works. It is the structural combination of the neurons which makes the ANN a
unique processing system. It is composed of a large number of interconnected
neurons. As the brain adjusts synaptic connections between the neurons, a
similar fundamental strategy is also applied in ANN to learn the parameters
during the training process. Warren McCulloch, a neurophysiologist, and logi-
cian Walter Pits first introduced the concept of artificial neuron in the year
1943 [260]. However, due to unavailability of high processing devices at that
time, the researchers were not able to explore more in this direction, and the
work was almost stagnant for a couple of years. The advancements in compu-
tational devices have motived researchers to explore more in the area of ANNs
and lots of improvements have been made during the last few decades [261].
A few remarkable advantages of using ANNs are given in the following.

1. The ANN, has a remarkable ability of deriving vital information or mean-
ing from very complicated or imprecise data. The ANN can be used to
extract patterns and detect trends which are usually very complex to be
noticed by either bare eyes or through other computerized techniques.

2. Adaptive learning: An ANN can learn a model-based on the training data.

3. Self-Organization: An ANN has the ability to create its own organization
or representation of the information it gets while learning or updating the
parameters.

4. Real-time operation: Computationally efficient devices like, GPU can be
used for real time operation of complex ANN models.

Let us give a brief architectural overview of a simplest ANN with only
one neuron, where the input feature vector is x ∈ R4. The labeled training
example is given as (xi, yi). The NN defines a complex nonlinear form of
hypothesis hw,b to approximate the output function. Figure 10.1 shows an
example of such ANN structure. The neuron is a computational unit which
takes x = [x1, x2, x3, x4] as input feature vector and a bias term b = +1. The
neuron outputs hw,b is given as

hw,b(x) = f(WTx) (10.1)

= f
(3∑
i=1

Wixi + b

)
(10.2)

where f : R → R is known as the activation function which maps input and
output via (generally) a nonlinear function. Mostly, it is chosen as activation
function. The is given as

f(z) = 1
1 + e−z

(10.3)

388 Visual Perception

❤✇❀�✭①✮

①✶

✰✁

①✷

①✸

①✹

FIGURE 10.1: An example of a ANN with a single neuron.

FIGURE 10.2: Example of activation functions: Sigmoid function and tanh
function.

Hyperbolic tangent or tanh function is also used as activation function.
The tanh function is defined as

f(z) = tanh(z) = ez − e−z
ez + e−z

(10.4)

Figure 10.2 gives examples of sigmoid function and tanh function respectively.
The tanh function is re-scaled version of the sigmoid function. The range of
outputs of the sigmoid and tanh functions are [0, 1] and [−1, 1]. A sample

Deep Neural Networks and Artificial Neural Networks 389

code written in python for plotting activation functions, such as sigmoid and
hyperbolic tangent is also given below in this section.

Required Python Packages
import numpy as np
import matplotlib.pyplot as plt
FONT_SIZE = 20
plt.rc(’xtick’, labelsize=FONT_SIZE)
plt.rc(’ytick’, labelsize=FONT_SIZE)
def sigmoid(inputs):

y1 = [1 / float (1 + np.exp(- x)) for x in inputs]
return y1

def tanh(inputs):
y2 = [(1-np.exp(-2*x)) / float (1 + np.exp(- 2*x)) for x

↪→ in inputs]
return y2

x = range(-20, 21)
sig_a = sigmoid(x)
tanh_a = tanh(x)

fig = plt.figure ()
plt.xlabel(’x’, fontsize=FONT_SIZE)
plt.ylabel(’f(x)’, fontsize=FONT_SIZE)

ax = fig.add_subplot (111)
ax.plot(x, sig_a , c=’b’, label=’Sigmoid(x)’, marker =’o’,

↪→ linewidth =6.0)
ax.plot(x, tanh_a , c=’r’, label=’Hyperbolic␣Tangent␣(x)’ ,

↪→ marker =’o’, linewidth =4.0)
leg = plt.legend ()
plt.show()

Many simple neurons are combined together to give a structure of NN.
Output of one neuron can be the input for another neuron. One such archi-
tecture is Multi-layer perceptron (MLP). The following section gives a detailed
architectural overview of MLP.

10.2.1.1 Multi-layer Perceptron

The multi-layer perceptron (MLP) [261] is a feed forward NN which can input
feature vector to the output class using a nonlinear function. It has multiple
layers of neurons. Each neuron is associated with an activation function at
its output. The training method used in MLP is supervised and the learning
approach is called backpropagation method. MLP is a improvement over the
standard linear perceptron which can classify the data that are not linearly
separable [261]. Figure 10.3 gives a basic network architecture of an MLP

390 Visual Perception

❛✷✹

❛✷✸

❛✷✷

❛✷✶

❖✉t♣✉t ❧�②❡r

■♥♣✉t ❧�②❡r ❍✐❞❞❡♥ ❧�②❡r

❤✇❀✁✭①✮

①✶

①✷

①✸

①✹

✰✂
✰✂

FIGURE 10.3: A basic architecture of a multilayer perceptron.

with only three layers. The leftmost layer of the network is called input layer
which connects the input features xi ∈ (x1, x2, x3, x4) to each neuron. The
middle layer of the neurons is called hidden layer as its values are not directly
observed in the training set. The outermost layer is known as output layer.
The output layer connects all the activation outputs of the hidden layer.

a
(2)
1 = f(W (1)

11 x1 +W
(1)
12 x2 +W

(1)
13 x3 +W

(1)
14 x4 + b

(1)
1) (10.5)

a
(2)
2 = f(W (1)

21 x1 +W
(1)
22 x2 +W

(1)
23 x3 +W

(1)
24 x4 + b

(1)
2) (10.6)

a
(2)
3 = f(W (1)

31 x1 +W
(1)
32 x2 +W

(1)
33 x3 +W

(1)
34 x4 + b

(1)
3) (10.7)

a
(2)
4 = f(W (1)

41 x1 +W
(1)
42 x2 +W

(1)
43 x3 +W

(1)
44 x4 + b

(1)
4) (10.8)

where ali denotes the activation of neuron i in layer l,W (l)
ij gives the parameters

or the weights associated with the connection between neuron j in layer l and
neuron i in layer l+ 1 and the term b

(l)
i is the bias associated with the neuron

i in the layer l+1. The output of the entire network is given by the hypothesis
hW,b which can be expressed as

hW,b(x) = a
(3)
1 = f(W (2)

11 a
(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 +W

(2)
14 a

(2)
4 + b

(2)
1)
(10.9)

Backpropagation algorithm:
Backpropagation (BP) is an abbreviation for backward propagation of

errors. The BP method calculates the gradient of a cost function with respect
to all the weights associated with the network. The gradients with respect
to the parameters (weights) are given to the optimization method (usually

Deep Neural Networks and Artificial Neural Networks 391

Algorithm 17 Backpropagation algorithm
1: %Given a training data (x, y) there are broadly two step: First run forward

pass to calculate all the activation output in entire network including the
final output hW,b(x) and then calculate the error term δ

(l)
i for each neuron

i in layer l. It gives how much the neuron is responsible for any error in
the output.

2: Carry out a feed-forward pass to compute all the activations in layer L2,
L3 till Lnl.

3: For each output neuron i in layer nl calculate the cost

δ
(nl)
i = ∂

∂z
(nl)
i

1
2‖y − hW,b(x)‖2 = −(yi − a(nl)

i)f
′
(z(nl)
i). (10.10)

4: for l = nl − 1, to 2 do
5:
6: for neuron i = 1 to sl do
7:

δ
(l)
i =

(
sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

)
f
′
(z(l)
i). (10.11)

8: end for
9: end for

10: Compute the partial derivatives as

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i , (10.12)

∂

∂b
(l)
i

J(W, b;x, y) = δ
(l+1)
i . (10.13)

gradient descent method) to update the weights, which in an attempt mini-
mizes the cost function. To train a feature vector x ∈ Rn with output vector
y ∈ Rm, we need training examples (xi, yi). Given m training examples, i.e., a
set of {(x(1), y(1)), . . . , (x(m), y(m))} the ANN is trained using batch gradient
descent method. The batch gradient descent computes the gradient using the
whole dataset.

For instance (x, y), the cost function for a particular sample can be given
as

J(W, b;x, y) = 1
2‖hW,b(x)− y‖2 (10.14)

392 Visual Perception

The overall cost function for the entire training set (for batch gradient descent)
with weight regularization term is given as

J(W, b) =
[

1
m

m∑
i=1

J(W, b;x(i), y(i))
]

+ λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W (l)
ji)2, (10.15)

=
[

1
m

m∑
i=1

(
1
2‖hW,b(x

(i))− y(i)‖2
)]

+ λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W (l)
ji)2.

(10.16)

The term in the above equation (10.16) is an average sum of squared
error and the second term is a regularization term also known as weight decay
term. The term tends to decrease the magnitude of the weights to prevent over-
fitting. λ is the weight decay parameter, which controls the relative importance
of the two terms. The goal of the backpropagation algorithm is to minimize
J(W, b) which is a function of the parameters W and b. As J(W, b) is non-
convex in nature, use of simple gradient descent may lead to trapping into local
minima and thus, batch gradient descent is suggested for use. The parameters
update rules are as follows:

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b), (10.17)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b). (10.18)

where α is the learning rate which decays as the number of iteration increases.
The backpropagation algorithm is applied in this stage to efficiently calculate
the partial derivatives. Using the equation 10.16, the partial derivatives for
overall cost function are given as

∂

∂W
(l)
ij

J(W, b) =
[

1
m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i)

]
+ λW

(l)
ij

∂

∂b
(l)
i

J(W, b),

(10.19)
∂

∂b
(l)
i

J(W, b) = 1
m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)). (10.20)

10.2.1.2 MLP Implementation using Tensorflow

Since all neural networks need a sufficiently larger amount of data to train
the network, it becomes a concern in the neural network community to opti-
mize the network for faster implementation. In the year 2015, Google group
open-sourced a new library called Tensorflow for numerical computations,
which is computationally the most efficient library presently available. In this
chapter, most of the example codes are given in python based tensorflow.

Deep Neural Networks and Artificial Neural Networks 393

Readers can follow basic tensorflow APIs to get accustomed with the ten-
sorflow implementation. In this section, we are providing an implementation
of MLP using tensorflow for better understanding of the architecture and
back-propagation. In machine learning, every newbie is recommended to start
working with MNIST dataset that has a total of 70,000 images of size 28×28
(flattened to 784 dimensional vector) containing handwritten digits. Let’s say,
we have a MLP with two hidden layers, one input layer and one output layer.
As we have seen from the data that the input is of dimension 784 while the
output has 10 nodes (0 − 9, total numbers). The network parameters can be
defined as follows.

Initialize the network parameters and learning parameters
n_hidden1 = 256
n_hidden2 = 256
n_input = 784
n_output = 10
learning_constant = 0.001
number_epochs = 10000
batch_size = 200

where, the two hidden layers have 256 neurons each, input layer contains 784
nodes and the output layer has 10 nodes. The learning rate is defined as
α = 0.01. Number of epochs is set to 1000 and the batch size (number of
images the network train in each epoch) to 100. Tensorflow implementation
is very simple and compact. Initially, it defines the variables called tensor to
store the data during runtime. The tensor X has size of the input vector and
Y has the size of the output vector.

create variable for input X and output Y
X = tf.placeholder("float", [None , n_input])
Y = tf.placeholder("float", [None , n_output])

Each neuron in the network is associated with a bias and each pair of
neurons in the neighboring layer has a weight, which is defined as follows.

Create variables for bias and weights at each layer.
Bias at first hidden layer
b1 = tf.Variable(tf.random_normal ([n_hidden1]))
Bias at second hidden layer
b2 = tf.Variable(tf.random_normal ([n_hidden2]))
Bias at output layer
b3 = tf.Variable(tf.random_normal ([n_output]))
weights between first input data layer to first hidden

↪→ layer
w1 = tf.Variable(tf.random_normal ([n_input , n_hidden1]))

394 Visual Perception

weights between first hidden layer layer to second hidden
↪→ layer

w2 = tf.Variable(tf.random_normal ([n_hidden1 , n_hidden2]))
weights between second hidden layer to output layer
w3 = tf.Variable(tf.random_normal ([n_hidden2 , n_output]))

Once the weights w and biases b are assigned, the network becomes ready
to perform multiplication followed by addition operation x·W+u. It is further
applied to a nonlinear activation function, like sigmoid or relu.

def multilayer_perceptron(input_data):
operation at hidden layer 1 for input data
layer_1 = tf.nn.relu(tf.add(tf.matmul(input_data , w1),

↪→ b1))
operation at hidden layer 2 for input data of layer 1
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1 , w2), b2)

↪→)
operation at output layer for input data of layer 2
out_layer = tf.add(tf.matmul(layer_2 , w3),b3)
return out_layer

#loss function for training the mlp
loss_func = tf.reduce_mean(tf.nn.

↪→ softmax_cross_entropy_with_logits(
logits=multilayer_perceptron(X),

↪→ labels=Y))
optimize the losses using gradient descent
optimizer = tf.train.GradientDescentOptimizer(

↪→ learning_constant)
.minimize(loss_func)

Once the network is defined and optimizer is set, the next step is to train the
network in an iterative manner. All the aforesaid operations will be performed
only when it is called within the tensorflow session. For that we need to create
and run a session after initializing the parameters.

Initialization
init = tf.global_variables_initializer ()
Create a session
with tf.Session () as sess:

sess.run(init)
Perform training operation for every epoch
for epoch in range(number_epochs):

#load training data for a batch
batch_x , batch_y = mnist.train.next_batch(

↪→ batch_size)

Deep Neural Networks and Artificial Neural Networks 395

#Run the optimizer feeding the network with the
↪→ batch

sess.run(optimizer , feed_dict ={X: batch_x , Y:
↪→ batch_y })

Display the epoch (just every 100)
if epoch % 100 == 0:

print("Epoch:", ’%d’ % (epoch))

Model evaluations can be done as follows.

Evaluate the trained model using test data
pred = tf.nn.softmax(neural_network) # Apply softmax to

↪→ logits
correct_prediction = tf.equal(tf.argmax(pred , 1), tf.argmax

↪→ (Y, 1))
Calculate the prediction accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction , "

↪→ float"))
print("Accuracy:", accuracy.eval({X: mnist.test.images , Y:

↪→ mnist.test.labels }))

10.2.2 Deep Learning Techniques: An Overview
Over the years, deep learning techniques have taken various shapes. They can
be broadly categorized into two different kinds: unsupervised (generative mod-
els) and supervised approaches [254, 262, 263]. As there have been enormous
research in the area of deep learning in recent years, it may not be practi-
cally possible to cover the entire literature in this chapter. We have limited
it to basic building blocks of deep neural networks, such as Convolutional
Neural Network (CNNs), which have been proven to be performing well in
vision-based applications. We have also demonstrated a few examples of deep
learning-based techniques for automatic annotation of objects, localization of
a given instance, and accurate segmentation of objects. The following section
gives a clear description for Convolutional Neural Networks.

10.2.2.1 Convolutional Neural Network (Flow and Training with
Back-propogation)

Convolutional Neural Networks (CNN/ConvNets) are cascaded layers of neu-
ral networks mainly designed to classify images (name the object), localize
the region of the object, and perform each object recognition within scenes.
It has given eyes to the machine which enables it to perceive and predict like
a human, at times even more powerful than what human eyes can actually
perceive. The proficiency of the convolutional neural networks has woken up
the world to dig a lot more into this area. It is used in all the vision-based
applications.To name a few, detection and recognition of objects in a scene,

396 Visual Perception

FIGURE 10.4: A basic CNN architecture is shown with different building
blocks: Convolutional layer, max-pooling and fully connected layer.

identify faces, individuals, street signs, eggplants, diagnosis of medical images,
remote image analysis, self-driving cars, robotics, drones, security, etc. Here
we are going to explain how CNNs are different from ANNs and why they is
so powerful.

A basic architectural overview of the CNN is shown in Figure 10.4. The
CNNs are very similar to ordinary Artificial Neural Networks (ANNs). Like
ANNs, the CNNs are also consisting of neurons which have learnable weights
and biases. Each neuron in the CNN network receives input data that per-
forms a dot product, often followed by nonlinear transformation. The entire
network finally expresses a single differentiable score function using the raw
image pixels at the input end to class recognition/detection scores at the final
layer. It also has a loss function in the last (fully-connected) layer and all
the tips/tricks which are mostly applied to NNs are applied to this network
too. In contrast to ANNs, the CNN architecture mostly comprises repetitive
blocks of neurons that are applied across 2D space (in case of an image input)
or time (for audio signals, etc.). These blocks of neurons can be interpreted
as 2D kernels to perform convolution operations incase of images which are
repeatedly applied over each patch of a given input image. The same can be
treated as 1D convolutional kernels for audio or speech data. As mentioned
previously, the CNN consists of repeated blocks connected in a cascaded man-
ner. One of the important differences of the CNN with other ANNs is that the
weights of each block are shared. The weight gradients learned over various
patches are averaged. The choice of using image patches, instead of the entire
image as input, helps to make the system invariant to temporal or spatial
changes for recognition of an object. On the other hand, the ANNs, such as
MLP must be trained for all the possible spatial locations of an object within
a scene in order to recognize it. Alongwith these differences, there are some
other specially designed techniques in CNN that makes it entirely different
from conventional ANNs. Some of those techniques are described later in this
chapter. As shown in the Figure 10.4, three main layers are being used to build

Deep Neural Networks and Artificial Neural Networks 397

FIGURE 10.5: An example of a convolutional operation. A 3× 3 kernel with
ones are used to convolve an image patch.

a CNN architecture: Convolutional layer, pooling layer, and fully connected
layer. Silent features of a basic CNN architecture are highlighted below:

1. Input layer: Raw image data, i.e, pixel values of an image is given as an
input. The format of the input data is [M × N × Z], where M × N is
the width and height of the image and Z is the depth (3 for R,G and B
channels).

2. Convolution layer: It computes output of neurons that are locally con-
nected to an image patch. Given a K number of filters, an image patch
of size M ×N computes dot product with each of the K filters, resulting
into a M ×N ×K volume of convolved data if all the filters are used. An
example for the convolution operation is shown in Figure 10.5.

3. Pooling layer: It basically performs downsampling of a convolved image
along the spatial dimensions. The technique is explained with an example
in Figure 10.6. The filter size is taken as 2 × 2 with the stride as 1. Max
pooling performs the operation max(x) within the 2× 2 window.
There are some other pooling approaches, such as min pooling, average
pooling. However, max pooling has been widely accepted over other tech-
niques, due to its better performance.

4. RELU layer: This is a nonlinear function which is operates on each of the
output neurons. Element-wise activation function, such as max (0, x) is
mostly used leaving the size of the volume unchanged. Figure 10.7 gives
an example of a RELU function using max(0, x) operation. A sample code
is also provided here to show a RELU function.

398 Visual Perception

FIGURE 10.6: Max pooling, an illustration.

FIGURE 10.7: RELU, an illustration.

Deep Neural Networks and Artificial Neural Networks 399

A sample code to plot activation function relu
import numpy as np
import matplotlib.pyplot as plt
FONT_SIZE = 20
plt.rc(’xtick’, labelsize=FONT_SIZE)
plt.rc(’ytick’, labelsize=FONT_SIZE)

def relu_func(input , zero):
y = np.max([zero , input], axis =0)
return y

def line_graph(x, y, x_title , y_title , title):
plt.plot(x, y, c=’b’, marker =’o’, linewidth =2.5)
plt.title(title , fontsize=FONT_SIZE)
plt.xlabel(x_title , fontsize=FONT_SIZE)
plt.ylabel(y_title , fontsize=FONT_SIZE)
plt.grid()
plt.show()

graph_x = range(-20, 21)
zero = np.zeros(len(graph_x))

graph_y = relu_func(graph_x , zero)

print "Graph␣X␣readings:␣{}".format(graph_x)
print "Graph␣Y␣readings:␣{}".format(graph_y)
line_graph(graph_x , graph_y , "Input␣x", "f(x)␣", "relu(x

↪→)")

5. Fully connected layer (FC): This is the final layer of a CNN architecture.
Each neuron of this layer gets connected to all the output neurons of
the previous layer and computes class scores at the end. The parameters,
such as weights and biases of the FC layer are trained with optimization
techniques, like gradient descent in order to align the network performance
with the labels given in the training image sets. An example of a fully
connected layer is shown in Figure 10.8.
The fully connected layer shown in the Figure 10.8 has an input layer of
features, a hidden layer, and an output layer. Each feature xi in the input
feature vector x is connected to all the neurons in the hidden layer and
each output node is connected to all the neurons in the hidden layer.

10.2.3 Different Architectures of Convolutional Neural
Networks (CNNs)

CNNs came into the limelight after they won the ImageNet challenge for
the first time in 2012. Since than, in every year variants of CNNs have been

400 Visual Perception

❛✷✹

❛✷✸

❛✷✷

❛✷✶

❖✉t♣✉t ❧�②❡r

■♥♣✉t ❧�②❡r ❍✐❞❞❡♥ ❧�②❡r

❤✇❀✁✭①✮

①✶

①✷

①✸

①✹

✰✂
✰✂

FIGURE 10.8: An illustration of a fully connected layer with only one hidden
layer and one output node.

introduced with promising improvements in recognition accuracy over its pre-
vious counterparts. A few of those winning architectures which have created
long lasting impacts are presented in this section.

LeNet-5 (1998)
LeNet-5 was a pioneering seven-level convolutional neural network developed
by LeCun et al. in the year 1998 [264]. The network was able to successfully
recognize handwritten numbers on cheques and was adopted by several banks
for this task as digitized in 32×32 pixels images. Images with higher resolution
demanded more convolutional layers with much higher computing resources,
which was unavailable at that time. An architectural overview of the LeNet-5
is shown in the Figure 10.9.

AlexNet (2012)
Long after the LeNet, another CNN called AlexNet was invented in the year
2012. The improvements in GPU based computational power enabled such
CNN networks with quite a large number of hidden layers to outperform all
the prior competitors. And it won the ImageNet challenge reducing the top-
5 error to 15.3%. The second place top-5 error rate, which was not a CNN
variation, was around 26.2%. The architectural framework of the AlexNet
was similar to LeNet [264]. The only difference was that AlexNet was much
deeper with more filters in each layer and had more stacked CNN layers. The
network has been split into two parts as it has used two parallel Nvidia Geforce
GTX 580 GPUs. It was designed by the SuperVision group, consisting of Alex
Krizhevsky, Geoffrey Hinton, and Ilya Sutskever. The architecture is shown
in the Figure 10.10.

Deep Neural Networks and Artificial Neural Networks 401

FIGURE 10.9: An architectural overview of LeNet [264].

FIGURE 10.10: An architectural overview of AlexNet [265].

ZFNet (2013)
ZFNet [266], another CNN framework, become a winner of ILSVRC 2013. The
network became famous for achieving a top-5 error rate of 14.8% which is half
of the prior mentioned non-neural error rate. Not surprisingly, the ILSVRC
2013 winner was also a CNN which became known as ZFNet. It achieved a
top-5 error rate of 14.8% which is now already half of the prior mentioned non-
neural error rate. It was mostly an achieved by tweaking the hyper-parameters
of AlexNet while maintaining the same structure with additional deep learning
elements as discussed earlier in this essay. The architectural overview of ZFNet
is shown in Figure 10.11.

GoogleNet/Inception(2014)
The winner of the ILSVRC 2014 competition was GoogleNet(Inception) [267]
from Google. It achieved a top-5 error rate of 6.67%! This was very close

402 Visual Perception

FIGURE 10.11: An architectural overview of ZFNet [266].

to human level performance which the organizers of the challenge were now
forced to evaluate. As it turns out, this was actually rather hard to do and
required some human training in order to beat GoogLeNets accuracy. After
a few days of training, the human expert (Andrej Karpathy) was able to
achieve a top-5 error rate of 5.1%. The network used a CNN inspired by LeNet
but implemented a novel element which is dubbed an inception module. This
module is based on several very small convolutions in order to drastically
reduce the number of parameters. Their architecture consisted of a 22-layer
deep CNN but reduced the number of parameters from 60 million (AlexNet)
to 4 million. A naive inception module is shown in the Figure 10.12 (a). It
performs convolution on an input, with three different sizes of filters (1x1, 3x3,
5x5). Apart from this, it also performs a max pooling operation. The outputs
are then concatenated and given to the next inception module. In a successive
work, dimensionality reduction is done by introducing a convolutional layer
with 1x1 filter before the convolution operations using 3x3, 5x5 and after
max-pooling operation using 3 x 3. The module is shown in Figure 10.12 (b).

VGG networks
The VGG Network [268] was introduced by the researchers at Visual Graphics
Group at Oxford (hence the name VGG). This network is specially charac-
terized by its pyramidal shape, where the bottom layers which are closer to
the image, are wide and the top layers are deep. There are certain remarkable
advantages of VGG network. One of the most significant advantage of the net-
work is that, the architecture is very good for benchmarking on a particular
task. Also, pre-trained networks for VGG are available freely on the internet,
so it is commonly used out of the box for various applications. However, it
also has an unavoidable disadvantage, that it is very slow to train if trained
from scratch. Even using a latest GPU machine, the computation goes for
weeks to properly train the network. A 16-layer VGG network is shown in
Figure 10.13.

Deep Neural Networks and Artificial Neural Networks 403

FIGURE 10.12: An architectural overview of naive inception modules ((a)
without, and (b) with dimensionality reduction).

FIGURE 10.13: An architectural overview of VGGnet [268] with sixteen layers.

ResNet
Residual Networks (ResNet) [269] is one of the largest deep architectures
which truly define how deep a deep learning architecture can be. One of the
main advantages of the ResNet over the previous deep networks is that it has
the ability to train extremely deep networks (150 layers or more) successfully
while ensuring no vanishing gradient problems. It consists of multiple sub-
sequent residual modules, which are the basic building blocks of the ResNet
architecture. An architectural overview of the ResNet block is given in the
Figure 10.14.

A residual module in the network has two options, i.e., either it can perform
a set of functions on the input, or it can skip this step altogether. There is

404 Visual Perception

FIGURE 10.14: A representation of a ResNet module [269].

an architectural similarity of ResNet with GoogleNet [267], in a sense, the
residual modules are stacked one over the other to form a complete end-to-
end network. The ResNet has following features:

1. It uses standard Stochastic Gradient Descent (SGD) instead of newly
introduced adaptive learning techniques, that claims to be performing bet-
ter. This is done along with a reasonable initialization function which keeps
the training intact.

2. The input is first divided into patches and then it is passed to the net-
work. The main advantage of the ResNet in contrast of other aforesaid
networks is that, we can use any number of residual layers, even hundreds
or thousands and the performance gets improved with increasing number
of layers, unlike other networks where it gets degraded with a higher num-
ber of layers. The residual blocks make sure that with the increase in layer,
the vanishing gradient problem will not arise.

10.3 Examples of Vision-Based Object Detection
Techniques

In this section we have presented some use cases of visual perception tech-
niques applied to automate warehouses. Amazon is one such organization
which has been constantly focusing on warehouse automation by organizing
various events, such as Amazon Picking Challenge (APC) in the year 2015,
2016 and Amazon Robotic Challenge (ARC) in 2017. ARC 2017 was asso-
ciated with three main tasks: the first task was to stow each object from a

Examples of Vision-Based Object Detection Techniques 405

overly populated tote into a partially crowded shelf; the second part involves
picking a given set of object instances from a densely populated shelf and
place it into a dispatching box, and the third part includes stow followed by
pick. The tasks were associated with various vision-based challenges. A few of
them include:

1. Generation of a training dataset such that it can handle new objects at
the time of training.

2. An approach of updating the recognition module to train newly introduced
objects within a short duration, so that the additional training set includes
almost all the possible combination of the total objects.

Here we address the above challenges with some deep learning-based
demonstration examples.

1. Automatic detection of ROI for any new object using Faster-RCNN based
deep learning framework

2. Detection of object ROI for eighty-three different classes of object.

3. Automatic segmentation of any new object boundary and class-wise seg-
mentation of objects.

All these examples are based on the objects given by Amazon for the
Amazon Robotic Challenge (ARC) 2017. A few images of those objects are
shown in the Figure 10.15.

10.3.1 Automatic Annotation of Object ROI
In the era of deep learning-based object recognition systems, where a large
number of annotated images are required for training, manual annotation of
each object is a challenging job. It is associated with a lot of human inter-
vention, which is very tedious and often prone to error due to fatigue. Thus,
development of an automatic annotation technique plays a very crucial role
for effective recognition of object category or instances. This section demon-
strates a technique for developing a completely automatic object annotation
technique by using a few manually annotated images. A very small set of
images of size 8000 is used to generate a big dataset of size 1,10,000 by using
affine transformation, multiple color augmentation and clutters generation
techniques, discussed later in the section. Color augmentations, affine trans-
formations, and cluttering increases the size of the training dataset which
is an essential requirement to train any deep convolutional neural network.
Introduction of affine transformation and color augmentation also makes the
model invariant change in color and object transformation due to rotation
and scaling. Training the network with synthetically generated clutters has
another significant advantage as it makes the model capable of annotating
multiple objects at a time even in a densely cluttered environment. The gen-
erated big data is then applied to train Faster RCNN for binary classification

406 Visual Perception

FIGURE 10.15: Example images of objects used in Amazon Robotics Chal-
lenge.

where the region proposal network suggests a set of bounding boxes followed
by regression to best fit the bounding box for effective ground truth genera-
tion. The models are developed using Faster RCNN as well as R-FCN for the
same pre-trained models. Semantic segmentation based techniques, such as
PSPNet [257] and MaskRCNN [258] are not used for the aforesaid purpose as
both the approaches need comparatively much more training time. An archi-
tectural overview of the annotation model is shown in the Figure 10.16.

1. Data augmentation technique to generate training set invariant to bright-
ness variation, colors, scale, and orientations. Introduction of contrast
enhancement and noises further increases the training data size.

2. Automatic generation of cluttered objects and the corresponding annota-
tions using the manually annotated image set.

3. Faster RCNN and RFCN are fine-tuned using pre-trained models for two-
class classification (either foreground or background) using a few man-
ually annotated images and a large number of automatically generated
augmented images.

4. The final model when tested on any new image generates bounding box
significantly close to the ground truth.

5. The detection model is invariant to change in background.

Examples of Vision-Based Object Detection Techniques 407

Manual Annotation

(Few images)

Train for two class

Test Images

Faster RCNN

(ResNet−50

/VGG16)

Annotated Images
Trained

Model

images

Bounding boxes

Images with

Foreground or

Background

with

Bounding boxes

Augmentation

and Clutter

Generation

Object and

background

FIGURE 10.16: Proposed network architecture for automatic annotation.

10.3.1.1 Image Acquisition

The model uses a set of forty different objects provided by Amazon for the
Amazon Robotic Challenge (ARC) 2017. Images are captured using different
cameras like, Foscam, Realtek and webcam for forty different objects at various
orientations. Images with multiple resolutions, such as (800×800), (600×600),
(1320×1080), (540×480) are used in training set and testing sets. This makes
the system capable to detecting new objects of any resolutions. Cameras are
mounted on a rotating platform. Background images (where the objects are
to be placed, tote in our case) are also captured at different directions.

10.3.1.2 Manual Annotation

The captured images are annotated manually to generate a training set for
modeling a two-class classifier (foreground and background). A widely used
software tool called LabelMe [270] is used for this task. Each training image
is thus having a corresponding annotated image containing the segmentation
region of the object in the image called mask image. We are able to manually
annotate 8000 images, 200 of images from each of the forty objects.

10.3.1.3 Augmentation and Clutter Generation

Augmentation of images and synthetic generation of clutters are done to auto-
matically generate sufficient data within a very short duration. Training data
of significantly large size is a prime requirement for training any deep network.
Another advantage of this approach is that it prevents the network from over
fitting and makes the network more generic for detecting new objects even
in an unknown environment. Data augmentation technique using affine trans-
formation is also introduced to generate numerous cluttered data within a
very short duration when images of individual objects with annotations are
provided to the system.

408 Visual Perception

FIGURE 10.17: Figure shows an example of augmentation results when affine
transformation is applied to an image.

The affine transformation is done by selecting ten combinations of rota-
tion(anti clockwise) using θ, scaling with λ, horizontal translation by Tx and
vertical translation by Ty. It hence generates ten new images for a given man-
ually annotated image. The transformation matrix (H) is thus given as:

H =

λcosθ −λsinθ Tx
λsinθ λcosθ Ty

0 0 1

 (10.21)

The annotation for the augmentated images are generated by using affine
transformation of the corresponding original image’s ground truth points
[xmin, ymin] and [xmax, ymax].

Some example images of the augmentation results obtained after using
affine transformation are shown in the Figure 10.17. It is to be noted that,
the affine transformation is applied to the object after it is detected using the
Faster RCNN. Color augmentation is also applied to every object around its
ROI, obtained from the mask image. The augmentation is done by combining
R,G,B channels. The three channels R, G and B are interchanged to generate
six new images. Color agumentation results of few images are demonstrated in
the Figure 10.18. The introduction of color augmentation technique increases
training data-size to five times of its original size, which is very significant.

Using the given set of object images, various combination of cluttered
images are generated within the boundary of the bin. Following method is
used for clutter generation.

Examples of Vision-Based Object Detection Techniques 409

FIGURE 10.18: Example images showing color augmentation results. Color
augmentation increase the data size five times to its original size.

1. The background image(tote image) is divided into grids. Cropped object
images using manually generated mask are randomly pasted pasted on
those grids.

2. The generated mask are associated with different binary value for different
objects in order to distinctly obtain object ROI.

The color augmentation and affine transformation are followed by a clutter
generation approach. Some of the resultant images generated after applying
our clutter creation technique are shown in the Figure 10.19.

The generated clutter includes all the possible occlusion, brightness vari-
ation, orientation, scale and combination of all the forty objects. Finally, a
total of 110,000 training images comprises of forty objects are generated after
applying affine transformation and color augmentation on the 8,000 manually
annotated images. For each of the forty objects, 200 images were captured to
maintain a balanced data distribution.

10.3.1.4 Two-class Classification Model using Deep Networks

The training dataset of size 110,000 generated using 8,000 manually anno-
tated images followed by color augmentation, affine transformation and clut-
tering generation is hence used to train the aforesaid detection framework

410 Visual Perception

FIGURE 10.19: Example images shows synthetically generated cluttered
objects using manually annotated images of single objects. Cluttered images
are used to train the proposed deep learning framework for foreground and
background detection.

FIGURE 10.20: An architectural overview of the proposed network. The net-
work first generates region proposals to get all possible foreground locations,
and then it is trained to identify the correct ROI from the proposed ROIs.

for detecting the foreground ROI in an image. Object detection frameworks:
Faster RCNN and R-FCN are used to fine-tune the VGG-16 and ResNet-101
respectively. The basic layout of the framework has already been explained in
the block diagram shown in Figure 10.20. The recognition performance of the
framework based on Faster RCNN is experimentally found to be much better
than R-FCNN in terms of mIOU.

The network is trained in two stages, in the first stage the network is
trained for generating region proposals to get all possible foreground locations,
while in the final stage the network is trained to identify the correct ROI
among proposed ROIs. The training can be done in either using alternate
optimization technique for training each stage individually or by end-to-end
training both stages at a time.

Examples of Vision-Based Object Detection Techniques 411

10.3.1.5 Experimental Results and Discussions

Some results of the annotation model when tested using an entirely new set
of objects are shown in the Figures 10.21 and 10.22.

Table 10.1 gives an overall summary of the experimental results. Five dif-
ferent sets are used to validate the annotation performance of the proposed
approaches. The performances are given in terms of mean Average Preci-
sion (mAP) which is standardized by Pascal VOC [271]. The observation
shows that, the performance of the proposed ResNet-101 model is slightly
higher than the Faster-RCNN based technique. However, the training time of
the former is comparatively much higher than the later approach. The user
can choose any of the network based on priorities. The validation is done
by using the automatically generated dataset including new set of objects
to train both Faster-RCNN and RFCN based based multi-class classifica-
tion network. Pre-trained models Vgg16 and RestNet-101 are used for Faster
RCNN (F-RCNN) and RFCN respectively. A mean Average Precision (mAP)
of 99.19% is achieved by using F-RCNN based multi-class object detector and
an mAP of 99.61% is achieved with RFCN based network. However, train-
ing time of the later approach is much higher than its previous counterpart.
The model is trained by using a single GPU machine (Quadro M5000M).
Training the entire dataset of size 1,10,000 takes around 8 hours for F-RCNN

FIGURE 10.21: Automatic annotation results of few images when tested on
same background using an entirely new set of objects. These objects were
never shown to the model previously.

412 Visual Perception

TABLE 10.1: Test results for new set of objects with multiple backgrounds.
Brown(1) stands for set of object images taken using rotating platform and
Brown(2) stands for the test set images taken from rack. The third column
shows number of images in each of the test sets, fourth column gives corre-
sponding count of new objects. Mean average Precision (mAP) for both Faster
RCNN (F-RCNN) and RFCN based approaches are presented for the given
test sets. Training has been done in two steps: first using object images with
red background only. The second part uses augmented background. BG stands
for background.

Test Set BG # Images # objects
mAP % (Trained with mAP % (Trained with

Red BG) Augmented BG)
Set F-RCNN RFCN F-RCNN RFCN

(VGG16) (ResNet-101) (VGG16) (ResNet-101)
1. Brown(1) 1760 13 38.62 40.14 92.34 94.36
2. Brown (2) 3855 23 21.38 26.42 70.34 73.12
3. Black (1) 6000 23 58.69 64.38 96.12 98.65
4. White (1) 5880 23 41.21 46.43 96.05 96.78
5. Red(1) 24900 83 98.96 99.05 - -

FIGURE 10.22: Automatic annotation results of few images when tested on
new a background using an entirely new set of objects. These objects were
never shown to the model previously.

and approximately 13 hours for RFCN based network. The precision values of
individual objects when tested with new set of data equivalent to 20% of the
training data size is presented in the Table 10.2. A few example images of the
automatic ground truth detection results when objects are placed in varying
degree of clutters are shown in Figure 10.23.

10.3.2 Automatic Segmentation of Objects for Warehouse
Automation

This example presents a semantic segmentation network, inspired by PSP-
Net [272] which is used for scene parsing applications where the macro
objects are semantically segmented by exploiting high inter-class variability.

Examples of Vision-Based Object Detection Techniques 413

FIGURE 10.23: A few example images of the automatic ground truth detection
results when objects are placed in varying degree of clutters. The annotation
model detects ROI and end-user can write a label on each detected ROI for
further categorization of objects. The clutters contain both a known set of
objects as well as unknown objects.

The presented framework is a customized deep architecture, for a specific task
of semantically segmenting objects mostly used in warehouses. In PSPNet,
the ambiguities in class label is resolved using contextual information which
is itself learned through training using a spatial pyramidal pooling [273] mod-
ule. While it learns to segment a ‘river’ from a ‘house,’ it also learns that a
house surrounded by a river could be a ‘boat house.’ Such contextual informa-
tion may not be useful in warehouse automation where the objects belong to
more or less one class (may be labeled as ‘household retail objects’ and are to
be segmented based on their intra-class variability. For instance, a ‘cup’ being
near to a ‘book’ does not make it a ‘pencil holder.’ All these three objects
are to be segmented based on how different they are to each other. Since the
extraction of such semantic contextual relationships requires more data and
time, the standard PSPNet may not be a suitable for this use case.

10.3.2.1 Network Architecture

Our approach is based on a semi-supervised deep convolutional network for
automatic generation of an annotated dataset using only few manually labeled
training images, artificial clutter generation, and finally pixel-wise 40-class
classification with the same framework.

An overview of the approach is shown Figure 10.24 as a flow diagram.
A ResNet based deep learning framework is designed to make use of low-
level features along with high level features.The same is used for both binary-
classification and multi-class classification. A rectangular ROI detector based
on Single Shot Detection (SSD) technique is used in parallel to the pixel-wise
binary classification to generate final mask. This helps to eliminate seman-
tic segmentation outside the object region and hence further enhances the

414 Visual Perception

TABLE 10.2: Multi-class object detection results for eighty-three classes. The
first column gives name of the object class followed by precision values in terms
of percentage for both Faster RCNN (F-RCNN) and RFCN based multi-class
object detectors. Vgg16 and RestNet-101 are used as pre-trained models for
Faster RCNN (F-RCNN) and RFCN respectively. A mean Average Precision
(mAP) of 99.19% is obtained in F-RCNN and the latter given an mAP 99.61%.
However, training time of the latter approach is much higher than its previous
counterpart.

Class Precision % Precision % Class Precision % Precision %
(F-RCNN) (RFCN) (F-RCNN) (RFCN)

allenkey-set 100 100 robot-dvd 98.17 100
augmentedReality-book 100 100 saffola-salt 100 100

barbie-book 100 100 selpak-tissue 100 100
bisleriSmall-bottle 95.1 95.35 semanticWeb-book 100 100
blackCap-bottle 97.53 97.67 teddyBear-toys 100 100

black-ball 100 100 tulsi-greenTea 100 100
black-tape 97.53 99.88 green-dumbell 100 100

blueCap-bottle 96.77 97.5 homefoil-aluminiumFoil 100 100
blueFeeding-bottle 87.75 90.5 introToRobotics-book 100 100

blueHandleToilet-brush 96.29 100 kiwiShoePolish-bottle 98.05 97.79
blue-dumbell 100 100 microfiber-clothWipes 100 100
blue-notebook 100 97.56 miltonBlue-bottle 100 100

brownBlack-TTbat 100 100 miltonSmall-bottle 100 100
brown-cup 100 100 multimediaOntology-book 100 100

camlin-colourPencil 100 100 nivea-deo 100 100
careTaker-swipes 100 100 origamiWhite-plates 100 100

circularBase-meshcup 100 100 paint-brush 94.28 98.25
cloth-clips 100 100 panteneShampoo-bottle 100 100

colgate4-toothbrushs 100 100 patanjali-toothpaste 100 100
colinBig-bottle 100 100 pink-scotchBite 100 100
deepBlue-bottle 99.16 98.34 plato-book 100 100
deepGreen-bottle 98.68 98.67 careTaker-napkin 100 100

dettol-bottle 100 100 green-battery 100 100
devi-coffeeBox 100 100 probablisticsRobotics-book 100 100

dove-soap 100 100 violet-bottle 100 100
fevicol-bottle 100 100 wet-wipes 100 100

fevikwik-tubePacket 100 100 whiteBoard-duster 100 100
fiama-loofa 100 100 whiteIron-brush 99.98 100

foundationRobotics-book 100 100 whiteVoiletCap-bottle 100 100
garnet-bulb 100 100 whiteWritten-cup 100 100
gillet-razor 90.6 95.92 whiteYellowCloth-brush 100 100

greenCapTransparent-bottle 100 100 whiteYellow-cup 100 100
redBig-scissor 97.6 100 white-cottonBalls 100 100
redBlack-socks 100 100 white-cup 100 100
redGreen-ball 100 100 white-gloves 100 100

redmi-mobilePhone 100 100 white-tape 100 100
redPlastic-spoons 98.23 100 wooden-brush 100 100

redWhiteSwiping-cloth 100 100 woolen-cap 100 100
red-bottle 95.05 100 yellowMagic-tape 100 100
red-feviquik 100 100 yellow-DSTape 100 100

restInPractice-book 97.7 100 yellow-ScrewDriver 100 100
roboticsManual-binder 94.34 100

segmentation accuracy. Unlike PSPNet, the spatial pyramidal pooling module
is replaced by a Feature Pyramid Network (FPN) that aggregates multi-level
features obtained from successive layers of the standard ResNet network to
provide better segmentation between the objects without needing additional
data and time, making it faster and better compared to PSPNet for this appli-
cation. First, the deep network is trained on a small set of manually annotated
datasets to act a binary classifier that can segment foreground objects from its
background. This binary classifier is used to automatically generate labeled

Examples of Vision-Based Object Detection Techniques 415

❈�✁✂✂✄☎ ✆✄✝✄☎✞✂✟✠✝

❇✟✝✞☎✡ ❈�✞☛☛✟☞✟✌✞✂✟✠✝

❙✟✝✍�✄ ☛✎✠✂

❞✄✂✄✌✂✟✠✝

✶

✷

✸

❯☛✟✝✍ ✏☎✠✑✠☛✄❞ ✒✄✂✓✠☎✔

❚☎✞✟✝✟✝✍ ❞✞✂✞☛✄✂

▼✁�✂✟✕❈�✞☛☛ ❙✄✍✖✄✝✂✞✂✟✠✝

✁☛✟✝✍ ✏☎✠✑✠☛✄❞

✒✄✂✓✠☎✔

❘✄☞✟✝✄✖✄✝✂ ✠☞

❆✁✂✠✖✞✂✟✌ ✗✞✂✞

❆✝✝✠✂✞✂✟✠✝

❙✄✍✖✄✝✂✞✂✄❞ ✘✖✞✍✄

�✞❧✄�✄❞ ✟✖✞✍✄☛

❋✄✓ ▼✞✝✁✞��✡

FIGURE 10.24: Flow diagram of the approach. (1) Semi-supervised technique
to automatically annotate training data set with Single Shot Detection run-
ning in parallel to refine the generated masks; (2) Automatic data generation
of cluttered environment; (3)Multi-class image segmentation trained on data
generated in (1) and (2).

FIGURE 10.25: Overall flow diagram of the proposed network: Base network is
Residual Network 50; major differences from Pyramid Scene Parsing Network:
(1) No dilation is used convolutional layers of the last two blocks; (2) Feature
Pyramid Network is used instead of Spatial Pyramid Pooling; (3) Each feature
space is smoothened before concatenation.

templates. The second step involves generating clutters synthetically by super-
imposing individual templates. The third step involves training the proposed
network using this machine generated dataset for multi-class segmentation.

The framework, specifically designed for objects in warehouses is an
improvement over the state of the art technique, PSPNet, both in terms of
faster computation and segmentation accuracy. Figure 10.25 gives an archi-
tectural overview of our proposed technique. Features from different layers are

416 Visual Perception

convolved followed by interpolation to generate equivalent dimensional feature
vector and then concatenated in three different steps. The final concatenated
feature vector z is then used for FCN based semantic segmentation.

10.3.2.2 Base Network

The base network used in the proposed framework is a popular deep architec-
ture, residual network consisting of fifty convolutional layers (ResNet50) [274].
Unlike PSPNet, this network is not using dilation in any of the convolutional
layers as shown in Figure 10.25. The main purpose of inclusion of dilation
in PSPNet was to increase the receptive field which makes it easier for the
network to detect large items [275]. As in the given use-case the distance
of the camera from all the objects is almost same, this was not very useful.
Since dilated convolution is much slower than normal convolution, this change
helped the network to increase the computation speed.

As shown in Figure 10.25, the presented architecture has five blocks of
Resnet 50. We use output of all the residual blocks {block 2, block 3, block 4,
and block 5} to make the final prediction. This part of the network is called
Feature Pyramid Network (FPN) [276] (Component 2 of Figure 10.25). These
blocks have strides of {4, 8, 16, 32 } pixels with respect to the input image.
We do not include the output from the first block, block 1 into the pyramid
because of increased memory requirement for the same. We chose the output
of the last layer of each stage as our reference set of feature maps because
the deepest layer of each block should have the strongest features [276]. This
ensured we used the information from primitive feature maps along with the
higher level features. Also, in the proposed architecture, all feature maps were
concatenated (Component 3 in Fig. 10.24) so as to retain more information
since concatenation does not require matching of number of channels. Before
concatenation of two feature maps, an interpolation layer is used to match
sizes of the feature maps. Smoothing the feature map before interpolation
by replacing each pixel with a linear combination of some of its neighbors is
very important. Thus the proposed network uses convolution to slow spatial
variations over abrupt changes before each interpolation layers. The motiva-
tion behind choosing FPN over Spatial Pyramid Pooling (SPP) [273] of PSP-
Net [272] were two fold: 1) The multi-scale feature map prediction was nearly
twice as fast as SPP, and 2) the SPP module [273] of PSPNet increases accu-
racy by bringing in contextual information to differentiate between confusing
categories. Since the objects in the bin or the stack are unrelated, contextual
information does not add much information.

10.3.2.3 Single Shot Detection

Single Shot Multibox Detector (SSD) [256] is a state-of-the-art technique for
object detection and localization. For 300 × 300 input, SSD achieves 74.3%
mAP1 on VOC2007 test at 59 FPS on a Nvidia TitanX and for 512 × 512
input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art

Experimental Results 417

Faster R-CNN model [256]. SSD is as accurate as slower techniques like Fast
RCNN [254] and Faster RCNN [255] that perform explicit region proposals but
is still faster because of the elimination of both bounding box proposals and
the subsequent pixel or feature resampling stage [256]. Thus, we chose SSD for
this network. We use SSD in combination with pixel-wise binary classification
for final mask creation. Thus no foreground detection by PSPNet outside
the bounding box provided by SSD is considered. This further enhanced the
accuracy of ground truth generation.

10.3.3 Automatic Generation of Artificial Clutter
After obtaining images with their corresponding ground truths from the semi-
supervised technique mentioned above, we generated synthetic clutters. This
was essential for ARC 2017 as the network was expected to perform in a
cluttered environment similar to that in a ware house. Using the dataset cre-
ated above with single object per image, we created images of a cluttered
environment consisting of four-sixteen items. Using the binary masks, more
objects could be artificially placed in the bin creating a cluttered environment
along with its ground truth. Objects were placed with some augmentation
like rotation, scaling, etc. Images with a clutter of different permutation and
combinations of items along with varying pose and orientation of that item
were created. This data augmentation results in a more robust system.

10.3.4 Multi-Class Segmentation using Proposed Network
The final dataset consisting of images with cluttered environment as well as sin-
gle object images was passed to the deep convolutional neural network for seg-
mentation task, that is a pixel-wise 40 class classification. For the picking or
stowing task of ARC 2017, one of the most important tasks to be performed
is image segmentation, a 40-class pixel-wise labeling of images. The proposed
architecture is trained on single object images as well on the artificially created
clutters. Here we have not used SSD in parallel because 1) our model showed
high accuracy without SSD so an additional computational overhead can be
avoided; and 2) instance segmentation was not required in this task since the
ARC 2017 dataset had only a single instance of every object at any given time.

10.4 Experimental Results
10.4.1 System Description
This vision system takes in RGB images from multiple views to train the algo-
rithm for ground truth generation followed by clutter creation. Then these

418 Visual Perception

images are given to a deep convolutional neural network that outputs seg-
mented images for the robot to complete the picking and stowing tasks. The
following components helped in completing the task of labeling of data-set
and training for the new items within thirty minutes in ARC 2017:

10.4.1.1 Server

As the architecture is residual networks with fifty convolutional layers, there
was a requirement of good GPU power to ensure that the training is completed
within the thirty-minute constraint posed by Amazon in the Challenge 2017.
Thus, training was run on a server with multiple GPU configurations. The
server used was NVIDIA Quadro P6000 with two 24GB GPUs. Half an hour
training on this server with a batch size of ten produced promising results in
the pick and place task of ARC 2017.

10.4.2 Ground Truth Generation
Generation of data along with its corresponding ground truth was the first
task. Using the rig, images of each item from the training list were obtained
at varying scales, positions, and orientations. All images were obtained on a
uniform red background to facilitate semantic background subtraction. First
we took about 200 images of these items. These images were then manually
annotated to be fed into our network. The data collected so far had only one
object per image, that is, there was no clutter environment making it easy
to manually annotate the images. Then these images along with their binary
masks were passed to the proposed architecture for training the pixel-wise
binary classifier. Apart from the softmax loss at the branch, an auxiliary loss
is applied at the fourth block of the architecture to train the final binary
classifier. Like PSPNet, we let the auxiliary loss backpropagate all previous
layers. As shown in [272], this deeply supervised learning strategy for ResNet-
based network optimizes the learning process. This auxiliary loss is not used in
the testing phase. For training phase, it is assigned 0.4 weight in this network.
Before feeding into the predictor, we make use of feature pyramid network of
low-level features along with the high-level features. A batch size of 10 and
e−3 learning rate was used for 1,200 iterations to fine-tune this network.

Once this training is done, 300 images per item of the training list pro-
vided in ARC 2017 were passed to this network. As output we obtained the
binary masks of each of these items. Figure 10.26 shows masks generated by
this network for some of the items. Now we had 300 images per item along
with their ground truths. But our system was expected to perform the task
of picking and stowing in a cluttered environment. Thus, in our next step
we artificially created cluttered environments by picking and placing items
with other items. This was made possible using the binary masks generated
in the previous stage. Their corresponding ground truth data was created
simultaneously in a similar manner. Figure 10.27 shows some images of the

Experimental Results 419

FIGURE 10.26: Figure illustrates a few examples of binary masks generated
using the proposed network. It can be observed that even for transparent
backgrounds the network can generate precise segmented regions.

FIGURE 10.27: A few examples of synthetically generated cluttered environ-
ments are shown here.

cluttered environment generated. This resulted in the final data set consisting
of 38,000 images of cluttered environments and 12,000 images with one object
at a time. These 50,000 images were used to fine-tune our network for image
segmentation in the next step.

10.4.3 Image Segmentation
For the picking and stowing task of ARC 2017, once the dataset along with its
ground truth is obtained, a deep convolutional neural network was trained for
image segmentation task. For this, images along with their ground truth were
passed to the modified structure of ResNet [274]. The ADE20k model was used
for initialization of the weights and then it was fine-tuned with the dataset

420 Visual Perception

FIGURE 10.28: A few examples of the automatic segmentation results when
tested in a real-world cluttered environment as shown here. It is important
to note here that the training dataset contains only synthetically generated
clutters.

TABLE 10.3: A comparison of the proposed network with the state-of-the-art
technique: PSPNet is given here.

Criteria (per-
image)

PSPNet Proposed
Architecture

Accuracy 94.031% 94.851%

Forward pass 108.066 ms 63.622 ms

Backward pass 172.048 ms 82.650 ms

Forward-
Backward
pass

280.460 ms 146.598 ms

generated. A batch size of ten and a learning rate of e−3 was used for 3,000
iterations. Softmax loss was also added on the fourth block as an auxiliary
loss to optimize the learning process. The main branch loss along with the
auxiliary loss were used to train the classifier. Also feature maps form all blocks
are concatenated and sent to the classifier for the final prediction. Results
produced by this architecture is shown in Fig. 10.28. Table 10.3 compares the
performance of our architecture with PSPNet. Proposed architecture’s average
forward-backward pass is 1.91 times faster than PSPNet with a slightly better
accuracy than PSPNet. An overall accuracy of 94.85% was produced by our
network compared to 94.03 of PSPNet. Thus our system outperforms the
architectures of PSPNet in terms of both speed and accuracy on the same
dataset. Class-wise precision and recall produced by our network for forty
items from the training-list provided by Amazon are plotted in Figure 10.29.

Summary 421

FIGURE 10.29: Multi-class object recognition results in terms of precision
and recall. Test data contains entirely new set of objects.

10.5 Summary
This chapter is intended to provide some practical use cases of CNNs in
robotics using only visual data. The chapter began with a brief introduc-
tion of CNNs and their advantages over the conventional ANNs followed by
a detailed description of each of the sub-modules present in a standard CNN
architecture for better understanding of the subsequent applications. While
describing each and every module of the CNN architecture, we make sure
that some small example codes written in python are provided in this chap-
ter, which can help the reader understand the practical implementation of a
CNN network. Later, in this chapter, we demonstrated two different appli-
cations of CNNs toward warehouse automation. Automation of warehouses
demand accurate localization and segmentation of an object of interest which
is further to be picked and placed by a robotic arm from/in a given location.
These applications are involved with various visual challenges which make a
conventional vision-based technique almost impossible to segment and local-
ize an object of interest. We thus, demonstrate here two such CNN based
techniques for accurate localization and segmentation of object present in a
cluttered and partially occluded environment. The first application mainly
dealt with detection of a rectangular bounding box for an object of interest,
whereas, the second application was to precisely localize the object boundary
for a more accurate pick and place of an object. Training a CNN network
for multi-class object detection and semantic segmentation demands a large
amount of annotated data which is very tedious to obtain manually. To this
end, we developed two different automatic annotation techniques and demon-
strated their results for different degrees of clutters with varying backgrounds
and lighting conditions.

http://taylorandfrancis.com

11
Vision-Based Grasping

11.1 Introduction
A robot that can manipulate its environment is much more useful than one
that can only perceive. Such robots can act as active agents which will someday
replace humans from all types of dull, dangerous, and dirty works completely,
thereby, freeing them for more creative pursuits. Grasping is an important
capability necessary for realizing this end. Solving the grasping problem in-
involves two steps. This first step uses a perception module to estimate the
pose (position and orientation) of the object and hence, the gripper pose
needed for picking it. Then, the second step uses a motion planner to gener-
ate necessary robot and gripper movement to make contact with the object.
In this chapter, we are primarily interested in solving the first part of the
problem, namely, finding graspable regions and suitable grasp poses (together
known as graspable affordances) for a two-finger gripper. Visual grasping or
vision-based grasping solves the grasping problem by using 2D RGB images or
3D RGBD images obtained from normal cameras and depth cameras respec-
tively. Depending on whether the object model information is used or not,
the approaches for grasping are divided into two categories: Model-based and
Model-free methods.

In model-based grasping, we have the prior object information either in
the form of 3D CAD models or training dataset comprising 3D (RGBD) image
scans of the object and/or 2D perspective views of the objects. This informa-
tion is used for estimating the pose of the target object in the scene. This
object pose is, then used to determine the suitable gripper pose required for
grasping the object.

Let us consider an example of grasping a cup placed on a table. Even
though there are multiple ways to hold the cup, we would like to hold it by
only one way - by its handle. The pose of the object in the scene is determined
by fitting the target CAD model (or object scan) on the actual object visible in
the scene. This is done by rotating and scaling the template CAD model (or its
scan) on the actual object. Once the object pose is known, the corresponding
gripper pose could be determined to hold the cup by its handle. This process
of finding object pose is more commonly known as template matching method.
Template matching methods may make use of visual features in addition to its
geometric features to decide the object pose. While these methods are easy to

423

424 Vision-Based Grasping

implement, these methods are not known to be robust. Recent advancement in
machine learning, particularly deep learning, methods [278] have been shown
to be more robust and accurate however, at an increase computational cost.

Once the object pose is known, a stable grasping region or pose can be
calculated using the following three approaches:

1) In the first case, we try to find contact points on a 3D object surface that
ensure a stable grasp. At each contact location, the object is subjected to
normal/tangential forces and torsional moment about the normal. These
forces or wrenches form wrench matrix which can be used to decide the
stability of a grasp. The grasp is said to be stable if a small disturbance, on
the object position or finger force, generates a restoring wrench that tends
to bring the system back to its original configuration. Finding the contact
points requires the precise knowledge of the physical properties of objects
and gripper like mass distribution, friction coefficient, etc.

2) In the second case, we use simulators to predict the most suitable grasp
regions. For example, if you have a 3D model of the object and the gripper,
then in the simulator you can render the object and gripper, and calculate
the stability score for each feasible grasp pose. This score can be based on
stability against external disturbances, the area of contact between objects
and gripper, or any other geometric constraint. But the idea is to assign
some score to each grasp pose and then using that score, choose the best
grasp pose for the object. This strategy is very simple, but it could be
very time consuming for larger objects because we need to evaluate all the
possible grasp configurations.

3) In the third case, we use machine learning techniques to predict the grasp
regions. Generally, people train their network on synthetic data produced
in step 2 and fine-tune the network to work in real situations. Similar work
is done in [278] [279].

The above pipeline can be used for grasping isolated objects. Additional
constraints need to be imposed in order to grasp objects in a clutter to avoid
collision with neighboring objects around the target. There are several ways
to achieve this. For instance, one can use the local geometric properties of
the object and the gripper to constrain the motion of the robot to minimize
collisions with neighboring objects. Another option would be to render the
objects in a simulator using the computed object poses and then test all
possible gripper pose to select one that leads to minimum collisions. It is
also possible to generate such data by using actual robots as demonstrated
in [280] [281] and use reinforcement learning to learn optimal motion planning
required for grasping objects in a clutter. One of the model-based approach for
computing grasping handles from visual data will be explained in Section 11.2
below.

In many practical cases, it is impossible to have prior object model informa-
tion given the availability of large diversity of objects and in many cases, the

Model-Based Grasping 425

decision to grasp an objects needs to be taken on the fly making model-based
methods less suitable for such cases. Many of the recent approaches now try to
solve the grasping problem independent of the object identity by directly using
RGBD point cloud scans obtained using low cost depth and range sensors. The
advantage of this approach lies in its simplicity which allows real-time imple-
mentation and does not require any time-consuming and data-intensive train-
ing phase common in most of the learning-based methods [282] [283] [284].
The details of one such model-free method for grasp pose detection will be
described in Section 11.3 along with the implementation details and experi-
mental results. The example which we will present in Section 11.3 is inspired
by the approach presented in [285] [286] which uses surface curvature to local-
ize graspable regions in the point cloud.

11.2 Model-Based Grasping
In this section we will give an example to estimate the grasp region given
the clutter of objects. In this example, we assume that we have the object
information in advance, and we will use a neural network to estimate the pose
of the object. Please note that in this example we will use Mask RCNN [258]
for semantic segmetation, i.e., assign a label to each pixel and then we will
perform the axis assignment operation which gives the pose of the object.

In second step we will estimate the grasp regions. In this example we will
use a two-finger gripper. The advantage of using a two-finger gripper is that
its projection on image plane is a rectangle as shown in Figure 11.1. So to
decide if a grasp region is valid or not we need to consider the 3D point cloud
data corresponding to that rectanglar region in image plane. Each step will
be explained in subsequent sections.

11.2.1 Problem Statement
Given an image I and its corresponding point cloud P ⊂ R3 of a robot
workspace where O number of objects are placed separately or in clutter, the
goal is to find out the best pose (position and orientation of end-effector in
image plane) for picking the object.

Assumptions:

1. Robot gripper in the image plane is represented as a rectangle with its
shorter sides representing the fingers and longer sides representing the
opening of gripper.

2. Grasp pose estimation means the final end-effector orientation to grasp
the object. This assumption is valid as long as all the objects are placed
within the task space of robot.

426 Vision-Based Grasping

FIGURE 11.1: Projection of gripper in image plane.

3. Robot-camera extrinsic calibration is known to us.

11.2.2 Hardware Setup
The hardware consists of following main components:

1. Universal Robot 5 (UR5).

2. Kinect V1 and Foscam IP Cameras.

3. SAKE EZGripper- A two-finger single servo-controlled gripper. Grasp
Force (0-35N).

ROS drivers are used to communicate with robot hardware and camera
sensors. The real-world environment is created in Gazebo [287] for testing the
algorithm. MoveIt [288] is used to plan the trajectories of robot using OMPL
(Open Motion Planning Library) [289] plugin. Figure 11.2 show the envi-
ronment created in Gazebo and RViz (ROS Visualization). OMPL contains
so many path planning algorithms’ implementation. In all our experiments,
RRT (Rapidly-exploring Random Trees) is used.

Model-Based Grasping 427

(a) Workspace Set Up (b) Gazebo (c) ROS Visualizer

FIGURE 11.2: Workspace simulated in Gazebo and Ros Visualizer.

FIGURE 11.3: Data augmentation on one training example.

11.2.3 Dataset
Amazon Robotics Challenge 2017 objects dataset is used to train a deep
net. The dataset contains 600 × 600 RGB images of objects of forty classes
with corresponding binary masks and bounding boxes. Every image contains
exactly one object. The total dataset contains 12,000 images of 300 images
per class. The dataset contains versatile type of objects.

11.2.4 Data Augmentation
As the number of images in dataset is 12,000 and Mask-RCNN has millions
of parameters so to avoid the over-fitting, we did data augmentation and
increased the dataset four times the previous dataset. Data augmentation
includes increase in brightness, mean subtraction, scale the minimum dimen-
sion of image between 500 to 800 randomly and flip it horizontally. Figure
11.3 shows the effects of data augmentation to the original image.

428 Vision-Based Grasping

11.2.5 Network Architecture and Training
For segmenting the objects, we have used ResNet50 architecture with its head
modified as mentioned in the Mask R-CNN and Faster R-CNN [290] papers.
Input to the network is a 600 × 600 RGB image, ground truth bounding
box and corresponding binary mask. The loss function used for training is
combination of log loss for classification, smooth L1 loss for bounding boxes
(BBoxes) and average binary cross-entropy loss as described in Mask R-CNN
paper. Classification loss and bounding boxes loss are described in a same way
as described in the Fast R-CNN [254]. The detailed architecture is explained
in Figure 11.4.

Weights are initialized with MS-COCO pre-trained model. The reason
behind this initialization is to reduce the overfitting which is caused by pres-
ence of less data and the large number of learnable parameters. For fine tun-
ning we set batch size of 4, learning rate 0.00025, weights are updated using
SGD with momentum haveing momentum term 0.9081 and we run the net-
work for 180,000 number of iterations.

11.2.6 Axis Assignment
After binary mask prediction, an axis assignment step is performed. In this
step we try to find the major axis of the object so that we can grasp the object
along its major axis. In [291], it is mentioned that an axis is the major axis if
sum of perpendicular distances of contour point from that axis is minimum.
So given the binary mask (output of network) which has N contour points
and let kth contour point has pixel value represented by (Cxk,Cyk). Average
of these N contour points gives the value of C̄x and C̄y centroid co-ordinates
in image plane. So our objective function is

min(
N∑
k=1

[(Cxk − C̄x) ∗ sin(φ)− (Cyk − C̄y) ∗ cos(φ)]2)

C̄x =
∑N
k=1 Cx

k

N
, C̄y =

∑N
k=1 Cy

k

N

tan(2φ) = 2 ∗ (
∑N
k=1(Cxk − C̄x) ∗ (Cyk − C̄y)∑N

k=1[(Cxk − C̄x)2 − (Cyk − C̄y)2
])

φ := Angle of major axis with horizontal line.
After finding the major axis minor, axis is simply the perpendicular axis

in the image plane as shown in Figure 11.5.

11.2.7 Grasp Decide Index (GDI)
This index takes into account, the collision of gripper fingers with the other
objects [292]. It also ensures that the selected hand configuration corresponds

Model-Based Grasping 429

FIGURE 11.4: Network architecture for semantic segmentation.

to a least cluttered object. We define:

GDI = min(F ∩O)

Where, F be the fingers and 0 be the objects in the vicinity of target object.
Ideally GDI must be a null set [292]. However, just by looking at the image

(Figure 11.6), it can’t be inferred whether the gripper (rectangle) is colliding

430 Vision-Based Grasping

FIGURE 11.5: Major-minor axis assignment.

FIGURE 11.6: Pictorial representation of image with segmented objects and
rectangle with sampled points near the periphery. A, B, C, D, E, F showing
the segments of objects in the image plane.

with the surrounding objects. So, in order to cop up with this, we utilize
depth information and denote the gripper fingers by densely sampling inside
rectangle representation near its shorter edges in the image plane. Next, we
use the z-values of every sampled pixel and redefine it as follows:

GDI = max(∆Zr) ∀ rs,∆Zr = mean(Z − Zc),∆Zr ε r

(Zi − Zc) ε R+ 0 ≤ i ≤ Sp and Z ε RSp

Sp Set of all sampled pixels,

Zi Z-value (depth) of ith sampled pixel in Sp

Z Vector representation of all Zis

∆Z Mean of all positive deviation of Sp from center of the gripper after
removing univariate point outliers

Zc is rectangle (gripper in image plane) center pixel’s z-value

rs represents each rectangle and all rectangles in the image plane

Model-Based Grasping 431

In order to make the grasp with fingers, collision free, GDI (practically) must
be as large as possible. This is also the ideal case in practice. It also corresponds
to the case, when there is no clutter in the environment. In the case of dense
clutter as the case in real-time grasping situations, the GDI will automatically
adjust itself according to the surrounding z-values. In the case of clutter, the
most dominant cases for GDI are tabulated in Table 11.1, the possibilities can
even be more but these are the cases which affect the performance of grasping
systems dominantly.

11.2.8 Final Pose Selection
When objects are placed in isolation, to approach the centroid of the object for
grasping will lead to success in grasp. But in the case of clutter this approach
is not good. So in case of clutter, we discretize major axis of the object segment
and try to find out the best suited grasp. For every discrete point gripper con-
figuration a corresponding to axis angle is drawn. Inside each configurations’
periphery, pixels are sampled and on those pixels GDI is applied. The one
with highest GDI is selected for grasp planning. The GDI is applied on those
configurations which are ranked according to the large number of positive
deviations in Z-values.

11.2.9 Overall Pipeline and Result
Following are the steps for estimating the grasp region in a cluttered environ-
ment:

1. Feed the image into Mask-RCNN and the network will produce the seg-
mented output.

2. For each segment we will find major and minor axes.

3. For each major axis we will select multiple poses and for each pose we will
calculate the GDI.

4. Finally we will select the pose which has maximum GDI score.

A complete pipeline has been shown in Figure 11.7

432 Vision-Based Grasping

TABLE 11.1: Possible cases affecting Grasp Decide Index for different sur-
roundings

Cases GDI Sign

GDI > 0
Favorable

Partially Favorable
or Unfavorable

GDI ≤ 0 ∪ GDI ≥ 0
∪ is used to show
either of the sign is

possible

GDI < 0
Unfavorable

FIGURE 11.7: Overall pipeline.

Grasping without Object Models 433

11.3 Grasping without Object Models
In this section we will give a working example to estimate the grasp region
given the clutter of objects without any prior information of objects.

11.3.1 Problem Definition
In this section, we look into the problem of finding graspable affordances for a
two-finger parallel-jaw gripper in a 3D point cloud obtained from a single view
of a range or RGBD sensor. The affordances for objects are to be computed in
an extreme clutter scenario where many objects could be partially occluded.
A graspable affordance is the six-dimensional grasp pose required for grasping
(or holding) the object. The problem is solved by taking a geometric approach
where the geometry of the robot gripper is utilized to simplify the problem.

Various geometrical parameters corresponding to the gripper and the
object to be grasped are shown in Figure 11.8(a). The maximum hand aper-
ture is the maximum diameter that can be grasped by the robot hand and is
denoted by d. It should be greater than the diameter b of a cylinder encircling
the object. It is further assumed that each finger of the gripper has a width
w, thickness e and total length h. The minimum amount of length needed for
grasping an object successfully is assumed to be l. There has to be sufficient
clearance between objects so that a gripper can make contact with the tar-
get object without colliding with its neighbors. Let this minimum clearance
needed between two objects be g and it should be more than the width of
each finger, i.e., g > w to avoid collision with non-target objects while making

e

â

n̂

f̂

b

w

l

h

Minimum

Region

needed for

Grasping

Surface of
the object
to be grasped

b

e

O

Gripper
Closing Plane

n̂

â

l
f̂

Object 1

Object 2

b

w

w

Object 3

Two finger
Gripper

g

g

(a) Gripper Geometry (b) Grasping planes (c) Clearance between objects

FIGURE 11.8: Grasp configuration for a two-finger parallel jaw gripper. For a
successful grasp, the clearance between objects must be greater than the width
of each finger (g > w). The gripper approaches the object along a direction
opposite to the surface normal with its gripper closing plane coplanar with
the minor axis f̂ of surface segment as shown in (b). The objects 1 and 2 in
(c) are obstacles which are to be avoided by the gripper while grasping the
target object 3. The 6D pose detection problem becomes a 1-D linear search
for a volume of l × b× e along the major axis â.

434 Vision-Based Grasping

a grasping manoeuvre. This clearance is shown as blue ring in Figure 11.8(c).
Each object surface is associated with three principal axes, namely, n̂ normal
to the surface and two principal axes - major axis â orthogonal to the plane
of finger motion (gripper closing plane) and minor axis - f̂ which is orthogo-
nal to other two axes as shown in Figure 11.8(b). Readers can refer to [292]
to understand some of the terms which have been used here without being
defined to avoid repetitions.

The proposed grasp pose detection algorithm takes a 3D point cloud C ∈
R3 and a geometric model of the robot hand as input and produces a six-
dimensional grasp pose handle H ⊆ SE(3). The six-dimensional grasp pose
is represented by the vector p = [x, y, z, θx, θy, θz], where (x, y, z) is the point
where a closing plane of the gripper and object surface seen by the robot
camera intersect; and (θx, θy, θz) is the orientation of the gripper handle with
respect to a global coordinate frame. Searching for a suitable 6 DOF grasp
pose is a computationally intensive task and hence, a practical approach is
taken where the search space is reduced by applying several constraints. For
instance, it is assumed that the gripper approaches the object along a plane
which is orthogonal to the object surface seen by the robot camera. In other
words, the closing plane of the gripper is normal to the object surface as shown
in Figure 11.8(b). Since the mean depth of the object surface is known, the
pose detection problem becomes a search for three-dimensional (l×b×e) bands
along the major axis â where l is the minimum depth necessary for holding
the object. Hence, the grasp pose detection becomes a one-dimensional search
problem once an object surface is identified.

Hence, the problem of computing graspable affordances or grasp pose detec-
tion boils down to two steps: (1) creating surfaces in 3D point clouds and,
(2) applying geometric constrains of a two finger parallel jaw gripper to reduce
the search space for finding suitable gripper hand pose. The details of the pro-
posed method to solve these two problems is described in the next section.

11.3.2 Proposed Method
As explained in the previous section, the proposed method for finding gras-
pable affordances involves two steps: (1) Creating continuous surfaces in the
3D point cloud and then, (2) applying geometrical constraints to search for
suitable gripper poses on these surfaces. This is described next in the following
subsections.

11.3.2.1 Creating Continuous Surfaces in 3D Point Cloud

The method involves creating several surface patches in the 3D point cloud
using region growing algorithm [293] [294]. The angle between surface normals
is taken as the smoothness condition and is denoted by symbol θ. The process
starts from one seed point and the points in its neighborhood are added to the
current region (or label) if the angle between the surface normals of new point
and that of seed point is less than a user-defined threshold. Now the procedure

Grasping without Object Models 435

is repeated with these neighboring points as the new seed points. This process
continues until all points have been labeled to one region or the other. The
quality of segmentation heavily depends on the choice of this threshold value.
A very low value may lead to over segmentation and a very high value may
lead to under segmentation. The presence of sensor noise further exacerbates
this problem leading to spurious edges when only one threshold is used. This
limitation of the standard region growing algorithm is overcome by introducing
a concept called edge points and using a pair of thresholds instead of one. The
use of two thresholds is inspired by a similar technique used in a Canny edge
filter [295] [296] and is demonstrated to provide robustness against spurious
edges. This modified version of the region growing algorithm is described next
in the following section.

To begin, we first describe the concept of edge points and then, explain how
a pair of two thresholds on smoothness condition can improve the performance
of the standard region growing algorithm. Some of the notations which will be
used for describing the proposed method are as follows. Also refer to Figure
11.9 for a better understanding of these notations. Let us consider a seed
point s ∈ C with its own spherical neighborhood N (s) shown as a circle in
Figure 11.9. It is further assumed that this neighborhood consists of m points
(pi, i = 1, 2, . . . ,m) in the 3D point cloud. Mathematically, this neighborhood
may be written as follows:

N (s) = {pi ∈ C
∣∣∣ ‖s− pi‖ ≤ r}; i = 1, 2, . . . ,m (11.1)

where r is an user-defined radius of the spherical neighborhood. Each neigh-
boring point pi has an associated surface normal Ni which makes an angle of
θi with the normal associated with the seed Ns. As stated earlier, θi is the
smoothness condition for the region growing algorithm. In this context, we
define two thresholds θlow and θhigh which are used for defining the region
label for the neighboring point and creating new seed for further propagation.
Let Qs be the set of new seeds which will be used in the next iteration of

��
��
��

��
��
��

��
��
��

��
��
��

Ns

pi

θi

Ni

s

r

FIGURE 11.9: Defining an edge point. It is a point on the surface around
which the surface normals are widely scattered in different directions.

436 Vision-Based Grasping

the region growing algorithm. Before describing the modification to the stan-
dard region growing algorithm, it is necessary to introduce the concept of edge
points which is defined as follows:

Definition 11.1 (Edge Point). Let R(s) be a set of those neighbors pi of seed
point s for which θi > θhigh. In other words,

R(s) = {pi ∈ N (s) | θi > θhigh, i = 1, 2, . . . ,m} (11.2)

Let CR be the cardinality of the set R(s),i.e., CR = |R(s)|. Then, a seed point
will be called as an edge point if the following condition is satisfied:

CR
m

> k; 0 < k < 1.0 (11.3)

The set of all edge points for a given point cloud C be denoted by the symbol
E and E ⊂ C . �

The value of k = 0.4 is found to be empirically effective in providing better
segmentation of surfaces as will be shown later in this section. Essentially, an
edge point is a point on the edge of a surface where a majority of its neighbors
will have surface normals scattered in all directions and for such a seed point,
the neighboring points will have angles θi > θhigh as mentioned above. One
such edge point is shown in Figure 11.10 as point B. An edge point is different
from a non-edge point in the sense that the latter lies away from an edge and
its neighbors have surface normals more or less in the same direction. One such
non-edge point is shown as point A in Figure 11.10. Even with sensor noise,
the neighboring points around such a seed point will have surface normals
with smaller values of angles with respect to the surface normal of the seed
point, i.e., θi < θhigh.

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

���
���
���
���
���
���
���

���
���
���
���
���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

A

Action Taken

Included

Edge Point?

No

Yes

Act as a
Seed

(a) (d)

Ideal Data Actual Noisy data Box type object

B: An edge−point

A: A Non−edge point

B

θ

θhigh

θlow

(b) (c)

FIGURE 11.10: Update criteria of proposed region growing is illustrated here
a cuboid. Two cases are shown here- one on a face (A) and other on the
boundary (B). Noisy data leads to errors in normal directions as shown in
(c) compared to ideal input data, (b) resulting in either spurious boundary
or undetected boundary. Our method combines the boundary condition with
two thresholds (d) in order to achieve better performance.

Grasping without Object Models 437

Now, in the region growing algorithm starting with the seed point s, the
label L{pi} for a neighboring point pi ∈ N (s) is defined as follows:

if θi < θlow; then, L{pi} = L{s} ∧ pi → Qs
if θi > θhigh; then, L{pi} 6= L{s} ∧ pi 6→ Qs

(11.4)

where the notation pi → Qs indicates that the point pi is added to the list
of seed points which will be used by the region growing algorithm in the
next iteration. However, if the angle between normals lies between the above
two thresholds, i.e., θlow < θi < θhigh, the label to the neighboring point is
assigned as follows:

if s /∈ E then, L{pi} = L{s} ∧ pi → Qs

if s ∈ E then L{pi} = L{s} ∧ pi 6→ Qs (11.5)

The above equation only states that while the neighboring point pi is assigned
the same label as that of the seed point s, it is not considered as a new seed
point if the current seed is an edge point. This allows the region growing algo-
rithm to terminate at the edges of each surface where there is a sudden and
large change in the direction of surface normals thereby obtaining the natural
boundaries of the objects. The above process for deciding labels for neighbor-
ing points is demonstrated pictorially in Figure 11.10. It is also shown how
a pair of thresholds are effective in dealing with sensor noise, thereby elim-
inating spurious edges. The effect of this modified version of region growing
algorithm on the object segmentation can be seen clearly in Figure 11.11.
Figures 11.11(a) and (b) shows the case of segmentation obtained with only
one threshold. In the first case, a lower threshold cut-off value θlow is used
while in the later, upper cut-off threshold θhigh is used. As discussed earlier,
lower value of threshold leads to under-segmentation and may generate mul-
tiple patches even on the same surface. On the other hand, higher value of
thresholds leads to over-segmentation where different surfaces of a rectangular
box may be identified as a single surface patch. In contrast to these two cases,
the use of two thresholds provide better segmentation leading to creation of
two separate surfaces one for each face of the rectangular box.

This modified version of region growing algorithm allows us to find gras-
pable affordances for rectangular box-type objects which were hitherto diffi-
cult. For instance, authors in [285] [286] find graspable affordances only for
objects with cylindrical or spherical shapes as they relied on curve fitting
methods. In [292] [297], the authors use a trained SVM to identify rectangular
edges using HoG features and pre-defined hand poses were used for grasping
objects at these detected regions. Compared to these approaches, the above
proposed method is much simpler which does not require any training phase
and can be implemented in real-time. More details about real-time implemen-
tation will be provided in the experiment section later in this chapter. The
surfaces identified in this section are then used to find valid graspable regions
on the object as described in the next section.

438 Vision-Based Grasping

(a) θlow (b) θhigh (c) {θlow, θhigh}

(d) (e) (f)

FIGURE 11.11: Effect of double thresholds on smooth conditions in
region growing algorithm. (a) Using single threshold: θlow leads to under-
segmentation - multiple and discontinuous patches on the same surface (b)
Using single threshold: θhigh leads to over-segmentation where different sur-
faces (having different normals) are merge together into a single surface. (c)
using double boundary thresholds {θlow, θhigh} provides better surface seg-
mentation compared to the case when only one threshold is used. (d) Shows
the case when only one threshold is used. Two orthogonal surfaces of the
object gets merged into one continuous surface. (e) Shows the edge points in
blue color (f) Shows that the use of double thresholds lead to creation of two
surfaces for the rectangular object.

11.3.3 Finding Graspable Affordances
Once the surface segments are created, the grasping algorithm needs to find
suitable handles which could be used by the gripper for picking objects. This is
otherwise known as the problem of grasp pose detection [297] which essentially
aims at finding a 6 dimensional pose for the gripper necessary for making a
stable grasping contact with the object. However, this is a computationally

Grasping without Object Models 439

intensive task as one has to search in a 6-dimensional pose space. The searching
procedure is broadly handled in two ways. In one approach, the object to be
picked is matched with its CAD model. Once a match is found, then the
geometric parameters of the object model is used to compute the 6 DOF
gripper pose directly. As CAD models may not always be available, the objects
are generally approximated with some basic shape primitives [298] [299] [300]
or superquadric [301] models. While these methods take 3D point cloud as
input, other methods can work with RGBD data. They generally take color
and depth information as image and apply a sliding window based search with
different scale to find valid grasping regions [283] [284]. We simplify this search
problem at first by grouping similar type of points based on the boundaries
obtained in the previous step and, by making some practical assumptions
about the grasping task. As described earlier in section 11.3.1, the gripper is
assumed to approach the object in a direction opposite to surface normal of
the object. It is also assumed that the gripper closing plane coincides with
the minor axis of the surface segment under consideration as shown in Figure
11.8(b). In this way, the 6D pose problem is solved in a single step and can
be implemented in real-time. However, it is still necessary to identify suitable
regions on the surface segments that can fit within the fingers of the gripper
while ensuring that the gripper does not collide with neighboring objects. In
other words, one still needs to search for a three-dimensional cube of dimension
l×b×e around the centroid of the object segment as shown in Figure 11.8(b).
This requires carrying out a linear search along the three principal axes of the
surface to find regions that meet this bounding box constraint. These regions
are the graspable affordances for the object to be picked by the gripper. The
details of the search process is described next in this section.

Let us assume that the region growing algorithm, described in the previous
section, leads to the creation of S segments in the 3D point cloud C ∈ R3.
As a first step, we extract the following parameters for each of these segments
s = 1, 2, . . . , S:

• The centroid of the segment: µs = [µsx, µsy, µsz].

• The associated surface normal vector: n̂s ∈ R3.

• First two dominant directions obtained from Principle Component Analy-
sis (PCA) and their corresponding lengths. These two axes correspond to
vectors â and f̂ respectively in Figure 11.8(b).

The search for suitable handles starts from the centroid µs of the surface
and proceeds along the three principal axes, i.e., major axis â, minor axis
f̂ and surface normal n̂. In order to do this, the 3d point in the original
point cloud corresponding to the surface segment under consideration s are
projected onto these new axes (f̂ , â, n̂) as shown in Figure 11.12. So for every
point ~pO = (x1, y1, z1)O in the orginal coordinate system (x̂, ŷ, ẑ, O) that lies
within a sphere of radius d/2 results in a vector ~qO′ = (f1, a1, n1)O′ in the

440 Vision-Based Grasping

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

Surface
Segment

f̂

â

x̂

ŷ

O

a1

f1

~qO′ = (f1, a1, n1)O′

~pO = (x1, y1, z1)O



~p

~q

d/2

s

O′

FIGURE 11.12: Scalar Projection of 3D cloud points to a new coordinate
frame. The 3D point cloud points on the surface segment s represented by ~pO
within the sphere of radius d/2 is projected onto the axes of the new coordinate
frame (f̂ , â, n̂) represented by the vector ~qO′ . These projected points are used
for finding suitable graspable affordances for the object. The axes ẑ and n̂ are
perpendicular to the plane of the paper and point outward.

new coordinate system (f̂ , â, n̂, O′). The radius of the sphere is selected to be
half of the maximum hand aperture of the gripper to be used for picking the
object. The third axes n̂ and ẑ are normal to the surface of the chapter and
hence is not displayed in the figure.

Through this scalar projection, the three dimensional search problem is
converted into three one-dimensional search problems, which is computation-
ally much simpler compared to the former. The search is first performed along
the direction â and n̂ respectively. All the points that lie within the radius e/2
around the centroid µs is considered to be a part of the gripper handle. Sim-
ilarly, all points of the surface that lie within the radius of l along a direction
of −n̂ is considered to be part of the gripper handle. Please note that e and l
are the width and the length of gripper fingers needed for holding the object.
Once these two boundaries are defined, we get a horizontal patch of points
extending along the minor axis f̂ as shown in Figure 11.13 (c), (e) and (f).
So now, we need to find the boundary along the minor axis to see if it would
fit within the gripper finger gap. This is done by searching for a gap along
the minor axis f̂ which is at least bigger than a given user defined threshold
which itself depends on the thickness of the gripper finger. The idea is that
there should be sufficient gap between two objects to avoid collision with the
neighboring objects. This is illustrated in Figure 11.13. The working of the

Grasping without Object Models 441

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 11.13: Searching for suitable grasping handle. (a) Actual picture
for a case where objects are stacked very close to each other. (b) Segmented
point cloud obtained after applying region growing on surface normals; (c) -
(d) Suitable handle is not found as discontinuity is detected in the horizontal
axis. (e) - (f) Suitable handle is found for another patch on the same object;
(g)-(h) suitable handle found when objects are separate as a discontinuity is
detected along the red axis

442 Vision-Based Grasping

search process could be understood by analyzing this figure as explained in
the following paragraph.

The figure 11.13(a) shows two objects which have been kept adjacent to
each other such that their boundaries touch each other. The figure (b) shows
the surface segments obtained using the proposed region growing algorithm.
The objective is to find a suitable graspable handle for the cylinder object.
The figure (c) shows the horizontal patch obtained using the linear search as
explained above. Since there is no gap along the minor axis (shown in red),
the region belonging to both the objects within the yellow band gets included
into the graspable region. Total horizontal length of this band may exceed the
maximum hand aperture d of the gripper making it an invalid grasping handle
for the object. Now the next band of width e on the top of the last band is
taken into consideration. In this case, a gap is found immediately around the
boundary of the cylindrical surface along the minor axis as shown in Figure
11.13(e). Since this length along the red axis fits within the gripper handle,
it will be considered as a valid handle for the object. The figures 11.13(g)-(h)
shows the case when these two objects have been kept apart. In this case,
the gap is found along the minor axis and hence the handle for the bottle
is detected successfully without any further search. Hence the search process
involves four steps:

1. Project all the points on the surface segment within a spherical radius of
d/2 onto the axes â, f̂ and n̂.

2. Fix boundary along the major axis â at a distance of e/2 on either side of
the centroid the patch under consideration.

3. Fix boundary along the normal axis −n̂ at a distance of l from the top
surface.

4. Search for gap along the minor axis f̂ on either side of the centroid. If this
gap is greater than or equal to g, then search is stopped. The resulting
patch is considered a valid grasping handle for the object if the total length
of the patch along the minor axis is less than maximum hand aperture d
of the gripper.

A new patch along the major axis either side of the centre patch is analyzed
for validity in case the current one fails to satisfy the gripper constraints. So it
is possible to obtain multiple handles on the same object, which is very useful,
as the robot motion planner may not be able to provide a valid end-effector
trajectory for a given graspable affordance. The gripper approaches the object
at the centroid of the yellow patch shown in Figure 11.13(c) or (e) along the
direction of surface normal (shown in blue color in Figure 11.13 (d) or (f)
respectively, toward the object with its gripper closing plane coinciding with
the minor axis (show in red color). As one can appreciate, the pose detection
problem is solved by a simple method that converts a 6-D search problem
into a simple 1-D search problem. This is much faster computer other method

Grasping without Object Models 443

such as [301] that use complex optimization methods to arrive at the same
conclusion. The proposed provides remarkable improvement over the state-
of-the-art method [285] [286] which provides much inferior performance in a
cluttered environment as will be shown in the next section.

11.3.4 Experimental Results
In this section, we provide results of various experiments performed to estab-
lish the usefulness of the proposed algorithm in comparison to the existing
state-of-the-art methods. As explained before, our focus is to find suitable
graspable affordances for various household items. The input to our algorithm
is a 3D point cloud obtained from an RGBD or a range sensor and, the output
is a set of graspable affordances comprising graspable regions and gripper poses
required to pick the objects. We have particularly tested our algorithms on
datasets obtained using Kinect [302], realsense [303] and Ensenso [304] depth
sensors. An additional smoothing pre-processing step is applied to the Ensenso
point cloud which is otherwise quite noisy compared to that obtained using
either Kinect or realsense sensors. As we will demonstrate shortly, we have
considered the grasping of individual objects in an extremely cluttered envi-
ronment. The performance of the proposed algorithm is compared with other
methods on four different datasets, namely, (1) Big bird dataset [305], (2) Cor-
nell Grasping dataset [283], (3) ECCV dataset [306], (4) Kinect Dataset [307],
(5) Willow garage dataset [308], (5) the TCS Grasping Dataset-1, and (6)
TCS Grasping Dataset-2. The last two are created by us as a part of this
work and are made available online [309] along with the program source code
for the convenience of users. A snapshot of images for these two datasets is
shown in Figure 11.14. The first TCS dataset contains 382 frames each having
only single object in its view inside the bin of a rack where the view could
be slightly constrained due to poor illumination. Similarly, the second dataset
consists of forty frames with multiple objects in an extreme clutter environ-
ment. Each dataset contains RGB images, point cloud data (as .pcd files)
and annotations in the text format. These datasets exhibit more difficult real
world scenarios compared to what is available in the existing datasets. The
algorithm is implemented on a Linux laptop with a i7 processor and 16 GB
RAM.

11.3.4.1 Performance Measure

Different authors use different parameters to evaluate the performance of their
algorithm. For instance, authors in [297] use recall at high precision as a mea-
sure while few others as in [283] use accuracy as a measure. In some cases,
accuracy may not be a good measure for grasping algorithms because the
number of true negatives in a grasping dataset is usually much more than
the number of true positives. So, the accuracy could be high even when the
number of true positives (actual handles detected) are less (or the precision is

444 Vision-Based Grasping

(a) Snapshot of TCS Grasp Dataset 1

(b) Snapshot of TCS Grasp Dataset 2

FIGURE 11.14: Snapshot of frames in TCS Grasping datasets 1 and 2. Each
dataset consists of images and point cloud data files along with annotations
in text files.

less). There are other researchers as in [292] [298] [301] who use success rate
as a performance measure which is defined as the number of times a robot is
able to successfully pick an object in a physical experiment. The success rate is
usually directly linked to the precision of the algorithm as the false detections
or mistakes could be detrimental to the robot operation. In other words, a
grasping algorithm with high precision is expected to yield high success rate.
The precision is usually defined as the fraction of total number of handles
detected which are true. However, in a cluttered scenario, the precision may
not always provide an effective measure to evaluate the performance of the

Grasping without Object Models 445

grasping algorithm. For instance, it is possible to detect multiple handles for
some objects and no handles at all for some others, without affecting the total
precision score. In other words, the fact that no handles are detected for a set
of objects may not have any effect on the final score as long as there are other
objects for which more than one handle is detected.

In our case, the precision is considered to be 100% as any handle that does
not satisfy the gripper and the environment constraints is rejected. In order
to address the concerns mentioned above, we use recall at high precision as a
measure of the performance of our algorithm which is defined as the fraction
of total number of graspable objects for which at least one valid handle is
detected. Mathematically, it can be written as

recall % =
Number of objects for which at least
one handle is detected
Total number of graspable objects × 100 (11.6)

The total number of graspable objects includes objects which could be actually
picked up by the robot gripper in a real world experiment. It excludes the
objects in the clutter which cannot picked up due to substantial occlusion. This
forms the ground truth for the experiment. Note that the above definition is
slightly different from the conventional definition of recall in the sense that the
later may include multiple handles for a given object which are not considered
in our definition. We analyze and compare the performance of our algorithm
with an existing state-of-the-art algorithm using this new metric as described
in the next section.

11.3.5 Grasping of Individual Objects
First, we demonstrate the performance of the proposed algorithm in pick-
ing individual objects. Table 11.2 shows the performance of the proposed
algorithm on TCS dataset 1. This dataset has 382 frames along with the cor-
responding 3D point cloud data and annotations for ground truth. A snapshot
of objects present in these dataset is shown in Figure 11.14. The performance
of our proposed algorithm on this dataset is compared with Platt’s algorithm
reported in [285] [286]. As one can see in Table 11.2, the proposed algorithm
is able to find graspable affordances for objects in more number of frames and
hence it is more robust compared to the previous approach. On an average,
our algorithm is able to detect handles in 94% of the frames compared to
Platt’s approach which can detect handles only for 51% of frames. This could
be attributed to the fact that Platt’s algorithm primarily relies on surface
curvature to find handles and hence, cannot deal with rectangular objects
with flat surfaces. They try to overcome this limitation in [292] by training
a SVM classifier to detect valid grasp out of a number of hypotheses cre-
ated using HoG features. Compared to this approach, our proposed method
is much simpler to implement as it does not require any training and can be
implemented in real-time. It also does not depend on image features which are

446 Vision-Based Grasping

TABLE 11.2: Performance Comparison for TCS Grasping Dataset 1 - Indi-
vidual Objects

Object
Total

Number
of frames

% of frames where a
valid handle is

detected
Platt’s
Method
[286]

Proposed
Method

Toothpaste 40 38 90
Cup 50 70 96

Dove Soap 40 25 100
Fevicol 40 75 92
Battery 50 36 98
Clips 21 45 90

CleaningBrush 40 30 90
SproutBrush 21 63 95
Devi Coffee 40 76 93
Tissue Paper 40 40 96

Total 382 51 94

more susceptible to various photometric effects. Some of the handles detected
by our algorithm for individual objects are shown in Figure 11.15. Examples
(a)-(c) shows few instances of simple objects where it is easier to find affor-
dances while the (d)-(f) shows few difficult objects for which finding a suitable
handle is challenging.

11.3.6 Grasping Objects in a Clutter
In this section, we demonstrate the performance of our proposed algorithm in
a cluttered environment. A new dataset is created for this purpose. It is called
‘TCS Grasp Dataset 2’ and it contains forty frames, each one showing multiple
objects in extreme clutter situation. The objects in the clutter have different
shapes and sizes and, may exhibit partial or full occlusion. The performance
of our algorithm on some of these frames are shown in Figure 11.16. The
performance comparison with Platt’s algorithm [286] [285] is shown in Figure
11.17. As one can see in Figure 11.16, the proposed algorithm is successful in
finding graspable affordances for rectangular objects with flat surfaces such
as books in addition to objects with curved surfaces. It also shows multiple
handles detected for some of the objects. All those handles which do not
satisfy the geometric constraints of the gripper are rejected and hence not
shown in this figure. The maximum hand aperture considered for finding these
affordances is 8 cm. In contrast, Platt’s algorithm [286] [285] fails to detect
any handles for flat rectangular objects as shown in Figure 11.17. Table 11.3

Grasping without Object Models 447

(a) Toothpaste

(b) Fevicol

(c) Battery

(d) Sprout Brush

(e) Cup

FIGURE 11.15: Finding graspable affordances for few objects inside a rack.
The objects in (d), (e), and (f) show a few cases where it is difficult to find
graspable affordances.

provides a more quantitative comparison between these two algorithms. It
shows that the proposed algorithm is able to detect at least 86% of unique
handles in the dataset compared to 36% recall achieved with Platt’s algorithm.
The performance of these two algorithms on various publicly available datasets
is summarized in Table 11.4. Cornell Grasping Dataset [283] contains single

448 Vision-Based Grasping

(a) (b)

(c) (d)

(e) (f)

FIGURE 11.16: Finding graspable affordances in extreme clutter. The pro-
posed algorithm is capable of finding graspable affordances for rectangular
objects as well as objects with curved surface. The maximum hand aperture
(d) considered here is 8 cm.

Grasping without Object Models 449

(a) (b)

(c) (d)

(e) (f)

FIGURE 11.17: Visual comparison of the performance of the proposed algo-
rithm with Platt’s algorithm [285] on TCS Dataset 2. The cyan coloured
patches on left hand side figures are the handles detected using Platt’s algo-
rithm. The patches on right side figures along with gripper pose show affor-
dances obtained using the propose algorithm.

450 Vision-Based Grasping

object per frame and grasping rectangle as ground truth. Their best result
(93.7%) reported is in terms of accuracy whereas recall from our method is
96% at 100% precision. The Bird Bird dataset [305] consists of segmented
individual objects and yields a maximum recall of 99%. This high level of
performance is due to the fact that the object point cloud is segmented and
processed for noise removal. This dataset, as such, does not include clutter
and has been included in this section for the sake of completeness. The ECCV
dataset [306], Kinect Dataset [307] and the Willowgarage dataset [308] have
multiple objects in one frame and may exhibit low level of clutter. All of
these datasets are created for either segmentation or pose estimation purposes,
therefore ground truth for grasping is not provided. We have evaluated the
performance (as reported in Table 11.4) using manual annotation. The extent
of clutter in these datasets is not comparable to what one will encounter
in a real world scenario. This is one of the reasons why we had to create
our own dataset. As one can see in Figure 11.14(b), the TCS grasp dataset
2 exhibits extreme clutter scenario. As one can observe in Table 11.3, the

TABLE 11.3: Performance comparison for TCS dataset 2 - multiple objects
in a cluttered environment

Platt’s Method [285] [286] Proposed Method

Frame
No.

No. of
graspable
objects in
the frame

max no.
of handles
detected

%
Recall

max no.
of handles
detected

%
Recall

#1 8 2 25 6 75
#3 8 3 38 6 75
#5 6 3 50 6 100
#7 7 2 28 7 100
#10 6 3 50 5 83
#12 7 2 28 7 100
#13 7 2 28 7 100
#16 8 1 13 6 75
#20 8 2 25 6 75
#23 9 2 22 8 89
#24 6 3 50 5 83
#26 5 3 60 3 60
#28 5 2 40 5 100
#30 6 2 33 6 100
#32 6 2 33 5 83
#37 5 1 20 5 100
#38 2 2 100 2 100
#39 4 2 50 3 75
#36 5 1 20 4 80
Total 118 40 33 102 86

Grasping without Object Models 451

TABLE 11.4: Performance comparison on various publicly available datasets

% Recall

S.
No. Dataset Proposed

Method

Platt’s
Algorithm
[285] [286]

1 Big Bird [305] 99% 85% [297]

2 Cornell Dataset [283] 95.7% 93.7%
[283]

3 ECCV [306] 93% 53%
4 Kinect Dataset [307] 91% 52%
5 Willow Garage [308] 98% 60%
6 TCS Dataset-1 [309] 94% 48%
7 TCS Dataset-2 [309] 85% 34%

proposed algorithm provides better grasping performance compared to the
current state-of-the-art reported in literature.

11.3.7 Computation Time
The computational performance of the algorithm can be assessed by analyzing
Table 11.5. This table shows the average computation time per frame for
two TCS datasets. As one can observe, the bulk of the time is taken by the
region growing algorithm which is the first step of our proposed method. This
time is proportional to the size of the point cloud data. The second stage
of our algorithm detects valid handles by applying geometric constraints on
the surface segments found in the first step. This step is considerably faster
compared to the first step. Many of the segments created in the first step are
rejected in the second step to identify valid grasping handles as can be see
in the fourth and fifth columns in this table. The computation time for each
valid handle for the two datasets is 4 and 5 ms respectively.

TABLE 11.5: Average computation time per frame. All values are reported
per frame basis and are averaged over all frames.

Dataset
data in
point
cloud

Time for
Region
Growing
algorithm

(sec)

#
segments
detected

valid
handles
detected

Handle
detection

time
(sec)

TCS
Dataset 1 37050 0.729 77 10 0.055

TCS
Dataset 2 42461 0.82 182 43 0.171

452 Vision-Based Grasping

The total processing time for a complete frame with around 40K data
point is approximately 800 ms to 1 second. This is quite reasonable in the
sense that the robot can process around sixty frames per second which is very
good for most of the industrial applications. This time can be further reduced
by detecting a particular ROI within the image thereby reducing the number
of points to be processed in the frame. The computation time per frame can
also be reduced significantly by downsampling the point cloud. There is a limit
to the extent of downsampling allowed as it is directly linked to the quality
and quantity of handles detected. For high speed applications, one may use
FPGA or GPU based embedded computing platform.

11.4 Summary
This chapter focuses on finding graspable handles for objects in a clutter. We
describe two methods - one that requires prior knowledge of object model and
the other that does not require any such information. These two methods are
named model-based and model-free methods respectively. In the first case, the
grasp pose detection is carried out by performing semantic segmentation of
the object followed by the object axis assignment. These two steps provide the
object pose (position and orientation of the object) in the image plane. The
object pose information is then used to predict multiple grasp poses along the
major axis and select that the pose with maximum GDI score. In the second
case, the graspable affordances (or suitable grasp poses) are computed by first
creating surface segments by finding contiguous regions on the 3D point clouds
based on some smoothness condition and then apply the geometric constraints
of gripper to reduce the search space for possible gripper poses required for
grasping the object. The full implementation details of each of the method is
provided along with the experimental results for the benefit of readers. The
interested readers are referred to appropriate literature for further reading.

12
Warehouse Automation: An Example

In this chapter, we provide details of a robotic system that can automate the
task of picking and stowing objects from and to a rack in an e-commerce ful-
fillment warehouse. The system primarily comprises four main modules: (1)
Perception module responsible for recognizing query objects and localizing
them in the 3-dimensional robot workspace; (2) Planning module generates
necessary paths that the robot end-effector has to take for reaching the objects
in the rack or in the tote; (3) Calibration module that defines the physical
workspace for the robot visible through the on-board vision system; and (4)
Gripping and suction system for picking and stowing different kinds of objects.
The perception module uses a faster region-based Convolutional Neural Net-
work (R-CNN) to recognize objects. We designed a novel two-finger gripper
that incorporates a pneumatic valve based suction effect to enhance its abil-
ity to pick different kinds of objects. The system was developed by IITK-TCS
team for participation in the Amazon Picking Challenge 2016 event. The team
secured a fifth place in the stowing task in the event. The purpose of this
chapter is to share our experiences with students and practicing engineers
and enable them to build similar systems. The overall efficacy of the system
is demonstrated through several simulation as well as real-world experiments
with actual robots.

12.1 Introduction
Warehouses are important links in the supply chain between the manufactur-
ers and the end consumers. People have been increasingly adopting automa-
tion to increase the efficiency of managing and moving goods through ware-
houses [310]. This is becoming even more important for e-commerce indus-
tries like Amazon [311] that ships millions of items to its customers worldwide
through its network of fulfillment centers. These fulfillment centers are some-
times as big as nine football fields [312] employing thousands of people for
managing inventories. While these warehouses employ IoT and IT infrastrac-
ture [313, 314] to keep track of goods moving in and out of the facility, they
still require the staffs to travel several miles each day in order to pick or stow
products from or to different racks [312]. The problem related to the goods

453

454 Warehouse Automation: An Example

FIGURE 12.1: Amazon plans to employ robots to pick and stow things from
racks in retail warehouses.

movement was solved by the introduction of mobile platforms like KIVA sys-
tems [315] that could carry these racks autonomously to human ‘pickers’ who
would then, pick things from these racks while standing at one place. These
mobile platforms could then be programmed [316] [317] to follow desired paths
demarcated using visual [318] or magnetic markers [319]. However, it still
needs people to pick or stow items from or to these racks. Amazon hires sev-
eral hundred people during holiday seasons, like Christmas or New Year, to
meet this increased order demands. Given the slimmer operating margins, e-
commerce industries can greatly benefit from deploying robotic ‘pickers’ that
can replace these humans. This transition is illustrated in Figure 12.1. The
left hand side of this figures shows the current state of affairs where a human
picks or stows items from or to the racks, which are brought to the station by
mobile platforms. The right hand side of this figure shows the future where
robots will be able to do this task autonomously. In the later case, it won’t
be required to bring the racks to a picking station anymore if the robot arm
is itself mounted on a mobile platform [320]. However, building such robots
that can pick / stow items from / to these racks with the accuracy, dexter-
ity and agility of a human picker is still far too challenging. In order to spur
the advancement of research and development in this direction, Amazon orga-
nizes annual competition known as ‘Amazon Picking Challenge’ [321] every
year since 2015. In this competition, the participants are presented with a
simplified version of the problem where they are required to design robots
that can pick and stow items autonomously from or to a given rack.

The picking task involves moving items from a rack and placing them
into a tote while the stowing task involves moving items from the tote to the
rack. The objects to be picked or stowed are general household items that
vary greatly in size, shape, appearance, hardness, and weight. Since there is
no constraint on how the products are organized on the rack or the tote,
there are several possibilities of configuration one might encounter during the
actual operation. This uncertainty that may arise due to factors like occlu-
sion, variation in illumination, pose, viewing angle, etc., makes the problem
of autonomous picking and stowing extremely challenging.

Introduction 455

FIGURE 12.2: Schematic showing the important blocks of the system.

This chapter provides the details of the proposed system that can accom-
plish this task and share our experiences of participating in the APC 2016
event held in Leipzig, Germany. The proposed system primarily consists of
three main modules: (1) Calibration, (2) Perception, (3) Motion Planning as
shown in Figure 12.2. Some of the distinctive features of our implementa-
tion are as follows. In contrast to other participants, we took a minimalistic
approach making use of minimum number of sensors necessary to accomplish
the task. These sensors were mounted on the robot itself and the operation did
not require putting any sensor in the environment. Our motivation has been to
develop robotic systems that can work in any environment without requiring
any modification to the existing infrastructure. The second distinctive feature
of our approach was our lightweight object recognition system that could run
on a moderate GPU laptop. The object recognition system uses a trained
Faster RCNN based deep network [290] to recognize objects in an image.
Deep network requires large number of training examples for higher recogni-
tion accuracy. The training examples are generated and annotated through
a laborious manual process requiring considerable amount of time and effort.
Moreover, larger training set requires larger time for training the network
for a given GPU configuration. In a deviation to the usual trend, a hybrid
method is proposed to reduce the number of training examples required for
obtaining a given detection accuracy. Higher detection accuracy corresponds
to tighter bounding box around the target object while lesser training exam-
ples will result in a bigger bounding box around the target object. The exact
location for making contact with the object within this bounding box is com-
puted using an algorithm that uses surface normals and depth curvatures to
segment the target object from its background and finds suitable graspable

456 Warehouse Automation: An Example

affordance to facilitate its picking. In other words, the limitations of having
smaller training set is overcome by an additional step which uses depth infor-
mation to localize the targets within the bigger bounding box obtained from
the RCNN network. This is another step which helps us in maintaining our
minimalistic approach toward solving the problem. This approach allowed us
to achieve accuracy of about 90 ± 5% in object recognition by training the
RCNN network using only 5,000 images as opposed to other participants who
used more than 20,000 images and high end GPU machines. The third distinc-
tive feature of this chapter is the details that have been put in to explain the
system integration process which, we believe, would be useful for students,
researchers, and practicing engineers in reproducing and replicating similar
systems for other applications.

In short, the major hallmarks of the proposed algorithm can be summa-
rized as follows: (1) A novel hybrid perception method is proposed where
depth information is used to compensate for the lesser size of dataset required
for training a deep network based object recognition system. (2) The proposed
system uses minimal resources to accomplish the complete task. It essentially
uses only one Kinect sensor in an eye-in-hand configuration for all perception
tasks in contrast to others [322] who used expensive camera like Ensenso [304].
(3) An innovative gripper design is provided that combines both suction as
well as gripping action. (4) A detailed description of the system implementa-
tion is provided which will be useful for students, researchers, and practicing
engineers. The performance of the proposed system is demonstrated through
rigorous simulation and experiments with actual systems. The current system
can achieve a pick rate of approximately two-three objects per minute.

12.2 Problem Definition
As described before the objective of this work is to replace humans for picking
and stowing tasks in an e-commerce warehouse as shown in Figure 12.1. The
schematic block diagram of our proposed system which can accomplish this
objective is shown in Figure 12.2. The list of items to be picked or stowed
is provided in the form of a JSON file. The system comprises a rack, a tote,
and a 6 DOF robotic arm with appropriate vision system and end-effector for
picking items from the rack or the tote.

The task is to develop a robotic system that can automatically pick items
from a rack and put them in a tote and vice-versa. The reverse task is called
the stowing task. The information about the rack as well as the objects to
be picked or stowed are known a priori. The rack specified by APC 2016
guidelines had twelve bins arranged in a 4×3 grid. There were about forty
objects in total which were provided to each of the participating teams.

System Architecture 457

In the pick task, the robot is expected to move items from the shelves of a
rack to a tote. A subset of the forty objects (known a priori) were randomly
distributed in these twelve bins. Each bin would contain minimum of one
and maximum of ten items and the list of items at individual bins are known.
Multiple copies of the same item could be placed in the same bin or in different
bins. The bins may contain items which are partially occluded or in contact
with other items or the wall of the bin. In other words, there is no constraint
on how the objects would be placed in these bins. A JSON file is given prior
to start the task which contain the details about which item is in which bin
and what items are to be picked up from these bins. The task is to pick twelve
specified items, only one from each of the bin in any sequence and put it into
the tote.

In the stow task, the robot is supposed to move items from a tote and
place them into bins on the shelf. The tote contained twelve different items,
which are placed in such a way that some items are fully occluded or partially
occluded by other items. The rest of the items are placed in the bins so that
each bin can have minimum one item and maximum ten items. The task is
to stow twelve items from the tote one by one in any sequence and put them
into any bin.

The challenge was to get the robot to pick or stow autonomously as
many items as it could within fifteen minutes. Different objects carried differ-
ent reward points if they were picked or stowed successfully. A penalty was
imposed on making mistakes such as picking or stowing wrong items, dropping
them midway or damaging the items or the rack during robot operation, etc.

12.3 System Architecture
The schematic block diagram of the complete system is shown in Figure 12.2.
The system reads the query items one by one from a JSON file. The JSON file
also provides the bin location for each of these queried items. The robot has to
pick these items from their respective bins. Since there could be several other
objects in the bin, robot has to identify and localize the target object inside
these bins. The system consists of the following three main components: (1)
Calibration module, (2) Perception module, and (3) Motion planning module.
The calibration module is used for defining the workspace of the robot with
respect to the rack and the tote. It computes the necessary transformations
needed for converting image features into physical real world coordinates.
The perception module is responsible for recognizing queried items, localizing
them in the bin, and finding the respective physical coordinates which can be
used by robot for motion planning. The motion planning module generates
necessary robot configuration trajectories and motion to reach the object, pick
it using suction or gripping action, and move it to a tote. This module makes
use of several sensors to detect the completion of the task. Once the task is
completed, the system moves to the next item in the JSON query list.

458 Warehouse Automation: An Example

The system is implemented using Robot Operating System (ROS) frame-
work [323]. The operation of the complete system is divided into different
modules each performing a specific task. Each of these modules are made
available as a node which are the basic computation units in a ROS environ-
ment. These nodes communicate with each other using topics, services and
parameter servers. Readers are advised to go through basic ROS tutorials
available online in order to understand these concepts before proceeding fur-
ther. Topics are unidirectional streaming communication channels where data
is continuously published by the generating node and other nodes can access
this data by subscribing to this topic. In this case, nodes are required to receive
a response from other nodes; it can be done through services. The complete set
of modules which are required for building the entire system is shown in Fig-
ure 12.3. These modules or nodes run on different computing machines which
are connected to a common LAN. The dotted lines indicate service calls which
execute a particular task on a demand basis. All these modules are controlled
by a central node named “apc_controller.” Simulation environment and RVIZ
visualizer is also part of this system and is made available as an independent
node.

PC3

IR_Read

Service for
writing object
status

PC3

Toggle_LED

PC3

Vacuum_Pump

UR5_Controller

PC1

Kinect_Read

PC3
Topic for
reading
point cloud
data

object name
Service getting

motion planning
Service for

Service for
Rack Registration

PC3

JSON_RD_WR

PC3

JSON_RD_WR

PC2

RCNN_Object_Detect

Service for
sending joint
angles to robot
arm

reading IR
values

Service for

switching on
and off

Service for

vacuum pump

Topic to
toggle LED

Service for
localizing
object

PC3

apc_controller

/bin_corner

RVIZ

Service to show bin
markers in rviz

PC3PC3

PC3

Rack_Registration

Trajectory_RPT

/pick_object

/pick_object_status

/trajectory_rpt

/detect_object

/toggle_led
/rack_regn/ir_topic

/vacuum_topic

/camera/depth_registration

/ur5_single_goal

FIGURE 12.3: ROS architecture for pick and place application. Various nodes
and topics run on three different computers (PC1, PC2 and PC3). The solid
arrows indicate the topics which are either published or subscribed by a node.
The dotted lines represent service calls.

The Methods 459

12.4 The Methods
In this section, we provide the details of underlying methods for each of the
modules described in the previous section.

12.4.1 System Calibration
The calibration step is needed to define the workspace of the robot as seen
through a camera so that the robot can reach any visible location in the
workspace. The calibration is an important step in all robotic systems that
use camera as a sensor to perceive the environment. The purpose is to the
transform the points visible in the camera plane to the physical Cartesian
plane. A number of methods have been devised for calibration the normal RGB
cameras [324] [325] which try to estimate the camera parameters so that the
required transformation from pixel coordinates to 3D Cartesian coordinates
could be carried out. The depth estimation has been simplified with the advent
of RGBD camera such as Kinect [302] [326] which provides depth value for
each RGB pixel of the image frame.

In this work, a Kinect RGBD camera is used in eye-in-hand configuration
to detect as well as find the Cartesian coordinate of a query object with respect
to its frame FK . These coordinates are required to be transformed into robot
base frame coordinate FR so that it can be reached by the robot. In order
to do this, it is necessary to know the transformation between the Kinect
camera frame FK and the robot end-effector frame FE . The corresponding
frames are shown in Figure 12.4. The transformation between the frames FE

FIGURE 12.4: Cartesian coordinate frames for the robotic system. The trans-
formation matrix between the robot base frame Fb and the end-effector frame
Fe is known through robot forward kinematics. The transformation matrix
between the Kinect frame Fk and the end-effector frame Fe is estimated in
the calibration step.

460 Warehouse Automation: An Example

and FR is known through the forward kinematics of the robot manipulator.
Hence the calibration step aims at finding this transformation between the
robot end-effector frame Fe and the Kinect frame FK as explained below.

Let us consider a set of points {P iK , i = 1, 2, . . . , N} which are recorded
with respect to the Kinect frame FK . The same set of points as recorded with
respect to the robot base frame FB is represented by {P iB , i = 1, 2, . . . , N}.
These latter points are obtained by moving the robot so that the robot end-
effector touches these points which are visible in the Kinect camera frame.
Since these two sets refer to the same set of physical locations, the relation
between them may be written as

P iB = RP iK + t (12.1)

where {R, t} denotes the corresponding rotation and translation needed for
the transformation between the coordinate frames. These equations are solved
for {R, t} using least square method based on Singular Value Decomposition
(SVD) [327] [328] as described below.

The centroid of these points is given by

P̄K = 1
N

ΣNi=1P
i
K

P̄B = 1
N

ΣNi=1P
i
B

and the corresponding covariance matrix is given by

C =
N∑
i=1

(P iK − P̄K)(P iB − P̄B)T (12.2)

Given SVD of covariance matrix C = USV T , the rotation matrix R and
translation vector t are given by

R = V UT (12.3)
t = −RP̄K + P̄B (12.4)

The RMS error between the actual points and the points computed using
estimated {R, t} is shown in Figure 12.5 and the corresponding points are
shown in Figure 12.6. The points are shown with respect to the robot base
coordinate frame. The red points are the actual points and the yellow points
are computed using estimated values of {R, t}. It is possible to obtain an RMS
error of 1 cm with as small as 8 points.

12.4.2 Rack Detection
Rack detection involves finding the corners of the rack and the bin centers
automatically from an RGBD image recorded by the on-board Kinect camera.

The Methods 461

FIGURE 12.5: Plot of average RMS error (in meters) with the sample size N .

The bin corners information is useful for defining region of interest (ROI) for
identifying objects within the bin. The bin corners and centers are also useful
for planning motion to and inside the bins for picking objects. The bins in
the rack are in form of a grid structure consisting of four vertical and five
horizontal lines, and hence the bin corners can be identified by the intersection
of vertical and horizontal lines. The vertical and the horizontal lines on the
rack are detected using Hough line transform [329]. If (xv1, yv1), (xv2, yv2) are end
points of a vertical line and (xh1 , yh1), (xh2 , yh2) are end points of a horizontal
line then the equation to compute the intersection (xi, yi) of the two lines is

FIGURE 12.6: Checking the accuracy of calibration. Points in red color are
the robot end-effector points collected prior to calibration. The yellow points
are the points in the Kinect frame which are transformed into the robot base
frame using estimated {R, t}.

462 Warehouse Automation: An Example

(a) Line detection (b) Bin Centres

FIGURE 12.7: Rack Detection from the RGBD point cloud. (a) Vertical and
horizontal lines are detected using Hough line transform. Intersection of these
vertical and horizontal lines provide corners for bins. (b) The bin centers are
computed as the mean of bin corners.

given by

xi = (xv1y
v
2−y

v
1x
v
2)(xh1−x

h
2)−(xv1−x

v
2)(xh1 y

h
2−y

h
1 x

h
2)

(xv1−xv2)(yh1−yh2)−(yv1−yv2)(xh1−xh2)

yi = (xv1y
v
2−y

v
1x
v
2)(yh1−y

h
2)−(yv1−y

v
2)(xh1 y

h
2−y

h
1 x

h
2)

(xv1−xv2)(yh1−yh2)−(yv1−yv2)(xh1−xh2)

Once the corners are known, the bin center can be computed as the mean
of its centers. Figure 12.7(a) shows the vertical and horizontal lines detected
using an OpenCV [330] implementation for Hough transform. The intersection
points computed using above equations are shown in Figure 12.7(b) where the
bin corners are shown in red while the bin centers are shown in green. Note that
only three middle horizontal lines and two outer vertical lines are required to
be detected. The rest of the points can be estimated using the prior knowledge
of rack geometry.

12.4.3 Object Recognition
Recognition and localization of an object in an image has been a fundamen-
tal and challenging problem in computer vision in past decades [331–334].
In the era of deep learning, CNN has been widely used for object recogni-
tion task, and it has shown outstanding performance [256, 290, 335, 336] as
compared to the conventional hand-crafted feature based object recognition
techniques [333, 334]. Techniques, like deformable parts models (DPM) [337]
use a sliding window method where at every evenly spaced spatial locations
the classifier is trained. The approach hence fails to progress further due to
huge computational complexity. Eventually, in 2014 R-CNN was introduced
by Girshick et al. [338], which uses region proposal methods to generate poten-
tial bounding boxes at the first stage. Then the classifier is trained on each of

The Methods 463

these proposed boxes. The bounding boxes are fine-tunned by post-processing
followed by eliminating duplicate detection and re-evaluating the box based
on objects in the scene. There are other variants of R-CNN with improved
recognition accuracy and faster execution time. Some of theses are presented
in [254,290,339].

In a recent work Redmon et al. proposes you only look once (YOLO) [339],
where the object detection is transformed to a single regression problem. The
approach improves the performance in terms of computational cost, how-
ever, the recognition accuracy is slightly inferior as compared to the Faster
RCNN [290]. We use Faster RCNN as a base for our object recognition and
localization task, as it localizes the objects in an image in real-time with very
high recognition accuracy.

In APC 2016, object detection is considered to be a challenging problem
due to varying illumination conditions, placement of the objects in different
orientation, and depths inside the rack. In the case of stowing, the objects in
the tote can be fully or partially occluded by other objects. These, resulted in
a very complex object recognition task.

We have combined the deep learning approach and standard image process-
ing techniques for robust object detection. We are using Faster RCNN based
deep neural network to find the bounding box of the target object. A second
step verification of target object in the bounding box provided by RCNN is per-
formed using random forest classifier. We have done fine tuning of pretrained
object detection model with our own dataset. RCNN layer architecture used
for object detection is given in Figure 12.9. The details of the data preparation,
training, and verification steps are given in the below sections.

Annotation: We have prepared two different training datasets for pick-
ing and stowing tasks. We have annotated 150 RGB images per object with
different orientations and backgrounds for each task. A total of 6,000 images
were annotated for each task.

Training models: To do object detection tasks, which include classifica-
tion and localization, we are using VGG-16 layered classification network in
combination with region proposal networks. RPN are basically fully covolu-
tional network which takes an image as input and outputs a set of rectangular
object proposals, each with an objectness score. It is a sixteen-layered classi-
fication network which consists of thirteen convolution layers and three fully
connected layers. These RPNs share convolutional layers with object detection
networks because it does not add significant computations at run time(10ms
per image). We have fine tuned VGG-16 pretrained models of faster RCNN
for our own dataset of 6,000 images for forty different objects. Snapshot of
examples used for training the RCNN network is shown in Figure 12.8.

Object verification: We have added an additional step in object detec-
tion pipeline to verify objects in the window proposed by RCNN. It uses shape
and color information to verify the presence of the object. Both shape and color
informations are incorporated as a feature vector and a random forest is used
to classify each pixel inside the object box. After finding the most probable
region inside the window using random forest, we apply a meanshift algorithm

464 Warehouse Automation: An Example

FIGURE 12.8: Snapshot of examples used for training the RCNN network.

FIGURE 12.9: RCNN layer architecture used for object detection.

to obtain the suction point for that object. The details of the feature (shape
and color) and classifier used are explained below:

Shape and color information as a feature: As we know, any 3D
surface of the object is characterized by the surface normals at each point in
the point cloud. The angle between neighboring normals at interest points on
any suface can be used to the shape of any object. A shape histogram is created
for each object model which is used as a shape feature vector. Similarly, we
are incorporating color information in the feature using color and grayscale
histogram of the objects.

Random forest: After computing histograms, all three histograms are
concatenated as a 37 dimensional feature vector for each object. The training
data is prepared by extracting features from pointcloud and RGB data for
each object. A random forest classifier is trained for each object with one
versus all strategy. In one versus all, the target object features are trained
as positive class and rest all features are considered as negative class. The
number of trees and depth of the trees used in the random forest are one
hundred and thirty respectively.

The Methods 465

Algorithm 18 Algorithm for object detection technique
1: Calibrate and get the rack transformation matrix using kinect.
2: for each object i in the JSON file i← 1 to N do
3: Read JSON file. Get bin number and object identifier.
4: Take RGB image of the bin and corresponding 3d Point Cloud according

to transformation matrix.
5: Using trained Faster R-CNN model get the ROI of the object in the

RGB input image.
6: Select the object ROI with the highest (score) probability
7: Apply color and shape backprojection technique in the resultant object

ROI using corresponding 3d Point Cloud.
8: Classify each pixel inside the object ROI using Random Forest classifier

based on combined shape and color information.
9: Apply adaptive meanshift to find the most probable suction point.

10: Find normal at the suction point and the centroid of the object to be
picked.

11: Instruct motion planner to move to the given position.
12: Robot controller
13: end for

12.4.4 Grasping
Grasping involves two steps - finding a grasp pose for the target object then
making the actual motion to make physical contact with the object. The first
part is usually difficult and has attracted a lot of attention over the last couple
of decades. There are primarily two approaches to solve the grasping problem -
one of them makes use of known 3D CAD models [340] and the other one does
not require these CAD models [341] [342] [343]. The latter method directly
works on the partial depth point cloud obtained from a range sensor. Quite
recently, researchers are exploring the use of deep learning networks to detect
grasping directly from images [344] [345].

In this chapter, we follow the latter approach where we detect the gras-
pable affordance for the recognized object directly from the RGBD point cloud
obtained from the on-board Kinect camera. Figure 12.10 shows the schematic

FIGURE 12.10: Schematic block diagram for computing grasping affordances
for objects using RGBD images obtained from a Kinect Camera.

466 Warehouse Automation: An Example

block diagram of the method employed for grasp pose detection. Input to this
scheme is an RGBD point cloud of the bin viewed by the on-board robot cam-
era. The bounding box of the query object is obtained by the RCNN based
object recognition system. The bounding box returned by the RCNN module
may have a bigger size than the object itself depending on the amount of
training of the network used. This bounding box acts as the region of interest
(ROI) for finding graspable regions. This bounding box may contain parts
of the background as well other objects in the vicinity. Within this ROI, a
clustering method combined with region growing algorithm [346] [347] is used
to create several surface segments by identifying discontinuity in the space
of surface normals [348] [349] [294]. Apart from having different surfaces for
different objects and backgrounds, there can be multiple surface segments for
the same object. Then the background segments are separated from the fore-
ground target segments using a Gaussian Mixture Model (GMM) [350] [350]
of the identified object using both color (RGB) and depth curvature infor-
mation. Once the background segments are discarded, a primitive shape is
identified for the object using empirical rules based on surface normals, radius
of curvature, alignment of surfaces, etc. Once the shape is identified, the best
graspable affordance for the object is computed using a modified version of
the method presented in [350].

12.4.5 Motion Planning
In the case of industrial manipulators where one does not have access to inter-
nal motor controllers, motion planning refers to providing suitable joint angle
position (or velocity) trajectories needed for taking the robot from one pose to
another. In other words, motion planning becomes a path planning problem
which is about finding a way to point poses between the current pose and
the desired end-effector pose. The problem of generating collision free paths
for manipulators with increasingly larger number of links is quite complex
and has attracted considerable interest over last couple of decades. Readers
can refer to [351] for an overview of these methods. These methods could
be primarily divided into two categories - local and global. Local methods
start from a given initial configuration and step toward final configuration
by using local information of the workspace. Artificial potential field-based
methods [352] [353] [354] are one such category of methods where the search
is guided along the negative gradient of artificially created vector fields. On the
other hand, global methods use search algorithms over the entire workspace
to find suitable paths. Some of the examples of global methods are prob-
abilistic roadmaps (PRM) [355] [356]and cell-decomposition based C-Space
methods [357] [358]. Rapidly exploring random tree (RRT) [359] is one of
the most popular PRM method used for path planning. Many of these state-
of-the-art algorithms are available in the form of the open motion planning
library (OMPL) [289] which has been integrated into several easy-to-use soft-
ware packages like Moveit! [288], Kautham [360], and OpenRave [361].

The Methods 467

(a) Home Pose (b) Bin View Pose

(c) Desired Pose (d) End-effector pose
traversal

FIGURE 12.11: Simulating motion planning using Moveit and Gazebo. (a) In
idle state the robot stays at home pose; (b) on receiving queried bin number,
the robot moves to the bin view pose where it takes an image of the bin; (c)
the required desired for picking the can in picture is obtained after processing
the image to identify target item; and (d) the end-effector trajectory from
bin view pose to the desired pose is obtained using RRT motion planning
algorithm available with Moveit.

In this chapter, we have used Moveit! package available with ROS [323] for
building motion planning algorithms for UR5 robot manipulator. The simula-
tion is carried out using the Gazebo [362] environment. Some of the snapshots
of the robot are shown in Figure 12.11. The robot starts its operation from
its home pose which is shown in Figure 12.11(a). The pose is so selected so
that the entire rack is visible from the on-board Kinect camera (not shown in
the picture). This image is used for system calibration process as described in
Section 12.4.1 and 12.4.2 respectively. Once the bin number is obtained from
the JSON query file, the robot moves to the bin view pose shown in Figure
12.11(b). At this pose, a close up picture of the bin is taken by the Kinect
camera mounted on the wrist of the robot. Every bin has a pre-defined bin
view pose which is selected so as to get a good view of the bin. The desired
pose necessary for picking an item in the bin is obtained from the object
recognition and grasping algorithm. One such desired pose is shown in Figure
12.11(c). The robot configuration trajectory generated by the motion planning

468 Warehouse Automation: An Example

Tote Drop Pose

HOME POSE Bin View Pose
Desired Pose
for Grasping

1 2

3
4

Pre−Grasp motion

Post Grasp motion

FIGURE 12.12: Sequence of steps for motion planning for a picking task.

algorithm is shown in Figure 12.11(d). It also performs collision avoidance by
considering the rack (shown in green color) as an obstacle.

The sequence of steps involved in carrying out motion planning for the pick
task is shown in Figure 12.12. It primarily involves four steps. The motion
for segments 1 and 4 are executed using pre-defined joint angles as these
poses do not change during the pick task. However, the motion planning for
segment 2 (pre-grasp motion) and segment 3 (post-grasp motion) is carried
out using RRT algorithm during the run-time. This is because the desired
pose required for grasping the object will vary from one object to another
and hence, the paths are required to be determined in the run-time. The on-
line motion planning uses flexible collision library (FCL) [363] to generate
paths for robot arm that avoid collision with the rack as well as the objects
surrounding the target item. In order to avoid collision with the rack, the bin
corners obtained from the rack detection module, described in Section 12.4.2,
are used to define primitive boxes for each wall of the bin. These primitive
boxes, shown in green color in Figure 12.13(a), are then treated as obstacles
in the motion planning space. Similarly, the collision with other objects in the
bin is achieved by creating 3D occupancy map called OctoMap [364] which
converts point cloud into 3D voxels. This OctoMap feed is added to the Moveit

(a) Avoiding collision
with Rack

(b) Avoiding collision with
Objects using Octomap

FIGURE 12.13: Collision avoidance during motion planning. In (a), the green
color shows the obstacle created using primitive shapes. In (b) Octomap is
used to create 3D voxels for each object which are considered obstacles during
motion planning.

The Methods 469

FIGURE 12.14: Typical items that were to be picked or stowed in the Amazon
Picking Challenge.

motion planning scene and FCL is used for avoiding collision with the required
objects. The OctoMap output of a 3D point cloud is shown in Figure 12.13(b).

12.4.6 End-Effector Design
The Amazon Picking Challenge focuses on solving the challenges involved in
automating picking and stowing various kinds of retail goods using robots.
These items include both rigid as well as deformable objects of varied shape
and size. The maximum specified weight was about 1.5 Kgs. A snapshot of
typical objects that were specified for the APC 2015 event [321] is shown
in Figure 12.14. The authors in [365] provide a rich dataset for these objects
which can be used for developing algorithms for grasping and pose estimation.
It was necessary to design an end-effector which could grasp or pick all kinds
of objects. We designed two kinds of end-effectors to solve this problem which
are described below.

12.4.6.1 Suction-based End-effector

This end-effector essentially makes use of a vacuum suction system to pull the
objects toward it and hold it attached to the end-effector. Such a system was
successfully used by the TU-Berlin team [366] in the APC 2015 event where
they came out as clear winners. A normal household cleaner could be used
as the robot end-effector. It was sufficient only to make the nozzle end of the
vacuum suction to reach any point on the object to be picked irrespective of
its orientation. However, the suction can work only if it makes contact with
the object with sufficient surface area necessary to block the cross-section
of the suction pipe. One such system designed for our system is shown in
Figure 12.15. The cross section of the suction pipe should be big enough to
generate necessary force to lift the object. It cannot be used for picking small
objects having smaller cross section area, for instance, a pen or a pencil or a
metal dumbbell having narrow cylindrical surface. A more close-up view of the
suction cup is shown in Figure 12.15(b). A set of IR sensors is used inside the

470 Warehouse Automation: An Example

(a) Suction-based end-effector

(b) Close-up view of suction cup

FIGURE 12.15: The end-effector using a suction cup for picking objects. The
suction cup uses IR Sensor to detect if an object has been picked up success-
fully. The wire mesh prevents smaller or softer items getting sucked into the
system.

bellow cup in order to detect the successful pick operation for a given object.
A fine mesh is embedded inside the cup to prevent finer and soft materials like
cotton or clothes from getting sucked into the tube and thereby, damaging the
end-effector.

12.4.6.2 Combining Gripping with Suction

This particular design was employed by the MIT team [367] during the APC
2015 event. In this design, they combined a parallel jaw gripper with a suction
system. They also used a compliant spatula to emulate scooping action. In this
design, suction was used for picking only a very few items which could not
be picked by the parallel jaw gripper and hence, it employed a single bellow
cup capable of picking smaller items. Inspired by this design, we developed a
similar hybrid gripper by combining suction cups with a two-finger gripper as
shown in Figure 12.16. This gripper was designed to lift a weight of around
2 kgs. It uses a single actuator with rack pinion mechanism to achieve linear

The Methods 471

(a) Front Side (b) Back Side

(c) Right Side (d) Isometric View

FIGURE 12.16: Novel gripper design that combines gripping with suction.

(a) Actual Gripper (b) Gripper with pneumatic
valve assembly

FIGURE 12.17: Actual gripper after fabrication and assembly.

motion between the fingers. The stationary finger houses two bellow cups
while the moving finger houses one bellow cup. Hence, it is possible to pick
bigger objects through suction by increasing the space between the fingers.
The bellow cups are actuated by pneumatic valves that create suction by
diverting pressurized air through them. The actual gripper assembly with
pneumatic valves and pipes are shown in Figure 12.17(a) and (b) respectively.
The working of the gripper is demonstrated in the experiment section.

12.4.7 Robot Manipulator Model
In order to carry out simulation for the actual system, one may need the
forward kinematic model of the robot being used. This can be derived using the
D-H parameters [368] of the robot. The D-H parameters for UR5 robot [369]

472 Warehouse Automation: An Example

TABLE 12.1: D-H Parameters of UR5 robot

a (m) d (m) α (rad) θ

0 0.0895 1.5708 θ1
-0.425 0 0 θ2
-0.3923 0 0 θ3

0 0.1092 1.5708 θ4
0 0.0947 -1.5708 θ5
0 0.0823 0 θ6

is shown in Table 12.1 and the corresponding axes for deriving these values
are shown in Figure 12.18. The forward kinematic model thus obtained can be
used for solving inverse kinematics of the robot manipulator, developing visual
servoing and other motion planning algorithms. In the rest of this section, we
describe three popular methods for solving inverse kinematics. The readers
are referred to [368] [370] for more detailed treatment on the subject.

The forward-kinematic equation is given by the following equation:

x = f(q) (12.5)

Let us assume that q ∈ Rn and x ∈ Rm. For a redundant manipulator,
n > m. By taking time-derivative on both sides of the above equation, we get

ẋ = J(q)q̇ (12.6)

FIGURE 12.18: Axes for computing D-H parameters of UR5 robot manipu-
lator.

The Methods 473

where J is them×n dimensional Jacobian of the manipulator. The joint angles
for a given end-effector pose xd can be obtained using matrix pseudo-inverse
as shown below:

q̇ = J†(q)ẋd (12.7)

where J†(q) represents the inverse of the Jacobian matrix J . If (JTJ) is
invertible, the pseudo-inverse is given by the Moore-Penrose inverse equation:

J†(q) = (JTJ)−1JT (12.8)

This is otherwise known as the least square solution which minimizes the cost
function ‖ẋ − J q̇‖2. The equation (12.8) is considered as a solution for an
over-constrained problem where the number of equations (m) is less than the
number of variables n and rank(J) ≤ n.

If (JJT) is invertible, then pseudo-inverse is theminimum norm solution
of the least square problem given by the following equation:

J† = JT (JJT)−1 (12.9)

The equation (12.9) is considered to be a solution for an under-constrained
problem where the number of equationsm is less than the number of unknown
variables n. Note that the equation (12.9) is also said to provide the right
pseudo-inverse of J as JJ† = I. Note that, J†J ∈ Rn×n and in general,
J†J 6= I.

12.4.7.1 Null Space Optimization

Another property of the pseudo-inverse is that the matrix I − J†J is a
projection of J onto null space. Such that for any vector ψ that satisfies
J(I − J†J)ψ = 0, the joint angle velocities could be written as

q̇ = J†ẋ + (I − J†J)ψ (12.10)

In general, form < n, (I−J†J) 6= 0, and all vectors of the form (I−J†J)ψ
lie in the null space of J , i.e., J(I−J†J)ψ = 0. By substituting ψ = q̇0 in the
above equation, the general inverse kinematic solution may be written as

q̇ = J†ẋ + (I − J†J)q̇0 (12.11)

where (I −J†J) is a projector of the joint velocity vector q̇0 onto N (J). The
typical choice of the null space joint velocity vector is

q̇0 = k0

(
∂w(q)
∂q

)T
(12.12)

with k0 > 0 and w(q) is a scalar objective function of the joint variables
and

(
∂w(q)
∂q

)T
represents the gradient of w. A number of constraints could be

474 Warehouse Automation: An Example

imposed by using this objective function. For instance, the joint limit avoid-
ance can be achieved by selecting the objective function as

w(q) = 1
n

n∑
i

(
qi − q̄i

qiM − qim

)2
(12.13)

where q̄i is the middle value of joint angles while qiM (qim) represent maximum
(minimum) value of joint angles. The effect of the null space optimizing on
joint angle norm is shown in Figure 12.19(d). As one can see from this figure,
the null space optimization for joint limit avoidance leads to a solution with
smaller joint angle norm compared to the case when self motion is not used.

12.4.7.2 Inverse Kinematics as a Control Problem

The inverse kinematic problem may also be formulated as a closed-loop control
problem as described in [371]. Consider the end-effector pose error and its time
derivative be give as follows:

e = xd − x; ė = ẋd − ẋ = ẋd − J q̇ (12.14)

By selecting the joint velocities as

q̇ = J†(ẋd +Kp(xd − x)) (12.15)

-0.9
-0.8

-0.7
-0.6

-0.5
-0.4

-0.3
-0.2

-0.1
 0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12

Z(m)

target
actual

First Config
Last config

X (m)

Y (m)

Z(m)

(a) Initial and final robot
pose

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

J
o

in
t

A
n

g
le

s
 (

ra
d

)

Time (seconds)

’joint_angles.txt’ u 1
’’ u 2
’’ u 3
’’ u 4
’’ u 5
’’ u 6

(b) Joint angle values are
within physical limits of the
robot

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
rr

o
r

Time (seconds)

Position Error
Orientation Error

(c) End-effector position
error over time

The Methods 431

-0.9
-0.8

-0.7
-0.6

-0.5
-0.4

-0.3
-0.2

-0.1
 0

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

-0.06
-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12

Z(m)

target
actual

First Config
Last config

X (m)

Y (m)

Z(m)

(a) Initial and Final Robot
Pose

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

J
o

in
t

A
n

g
le

s
 (

ra
d

)

Time (seconds)

’joint_angles.txt’ u 1
’’ u 2
’’ u 3
’’ u 4
’’ u 5
’’ u 6

(b) Joint angle values are
within physical limits of the
robot

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

E
rr

o
r

Time (seconds)

Position Error
Orientation Error

(c) End-effector position er-
ror over time

Without
With Joint Limit Avoidance

Time (seconds)

‖θ
‖

2000180016001400120010008006004002000

10

9

8

7

6

5

4

3

2

1

0

(d) Effect of Null Space Op-
timization on Joint Angle
Norm

FIGURE 11.18: Computing Inverse kinematics for a given target pose using
conventional methods. Figure (a) shows the initial and final robot pose along
with the end-effector trajectory. The frame coordinates for desired and actual
end-effector pose is also shown.

The inverse kinematic solutions computed using these conventional meth-
ods are shown in Figure 11.18 11.19 respectively. Figure 11.18(a) shows the
inverse kinematic solution obtained for a given pose using null space optimiza-
tion method that avoids joint limits as explained above. The corresponding
joint angles are within their physical limits as shown in Figure 11.18(b). Figure
11.19 shows the joint configurations for reaching all bin centres of the rack.

(d) Effect of null space opti-
mization on joint angle norm

FIGURE 12.19: Computing inverse kinematics for a given target pose using
conventional methods. Figure (a) shows the initial and final robot pose along
with the end-effector trajectory. The frame coordinates for desired and actual
end-effector pose are also shown.

The Methods 475

the closed loop error dynamics becomes

ė +Kpe = 0

Hence the control law (12.15) stabilizes the closed loop error dynamics and
the error will converge to zero if Kp is positive definite. The homogeneous part
of the inverse kinematic solution in (12.10) could be combined with (12.15) in
order to obtained a generalized closed loop inverse kinematic solution.

12.4.7.3 Damped Least Square Method

The pseudo-inverse method for inverse kinematics is given by

∆q = J†e (12.16)

In damped least square method, the ∆q is selected so as to minimize the
following cost function

V = ‖J∆q − e‖2 + λ2‖∆q‖2 (12.17)

This gives us the following expression for joint angle velocities:

∆q = JT (JJT + λ2I)−1e (12.18)

The inverse kinematic solutions computed using these conventional meth-
ods are shown in Figure 12.19 and 12.20 respectively. Figure 12.19(a) shows

432 Warehouse Automation-An Example

Z(m)

Y (m)
X (m)

Init Config
actual
target

Z(m)

0.6
0.5
0.4
0.3
0.2
0.1

0
−0.1
−0.2
−0.3

0.40.30.20.10−0.1−0.2−0.3−0.4−0.50.40.20−0.2−0.4−0.6−0.8−1

FIGURE 11.19: Robot pose for the bin centres of the rack obtained by solving
inverse kinematics of the robot manipulator. The average error over 12 points
is about 6 mm.

11.5 Experimental Results
The actual system developed for accomplishing the task of automated picking
and stowing is shown in Figure 11.20. The system comprises of a 6 DOF UR5
robot manipulator with a suction based end-effector, a rack with 12 bins in
a 3 × 4 grid. The end-effector is powered by a household vacuum cleaner. It
uses a Kinect RGBD sensor in an eye-in-hand configuration for carrying out all
perception tasks. As explained in Section 11.3, the entire system runs on three
laptops connected to each other through ethernet cables. One of these laptops
is a Dell Mobile Precision 7710 workstation with a NVIDIA Quadro M5000M
GPU process with 8GB of GPU RAM. This laptop is used for running the
RCNN network for object detection. The other two laptops have a normal
Intel i7 processor with 16 GB of system RAM. The distribution of various
nodes on the machines are shown in Figure ??. It is also possible to run the
whole system on a single system having necessary CPU and GPU configuration
required for the task. The videos showing the operation of the entire system
using a suction end-effector [359] [360] and a two-finger gripper [361] is made
available on internet for the convenience of the readers. The readers can also
use the source codes [362] made publicly available under MIT license for their
own use.

FIGURE 12.20: Robot pose for the bin centers of the rack obtained by solving
inverse kinematics of the robot manipulator. The average error over 12 points
is about 6 mm.

476 Warehouse Automation: An Example

the inverse kinematic solution obtained for a given pose using null space opti-
mization method that avoids joint limits as explained above. The correspond-
ing joint angles are within their physical limits as shown in Figure 12.19(b).
Figure 12.20 shows the joint configurations for reaching all bin centers of
the rack.

12.5 Experimental Results
The actual system developed for accomplishing the task of automated picking
and stowing is shown in Figure 12.21. The system comprises a 6 DOF UR5
robot manipulator with a suction based end-effector, a rack with twelve bins
in a 3×4 grid. The end-effector is powered by a household vacuum cleaner. It
uses a Kinect RGBD sensor in an eye-in-hand configuration for carrying out all
perception tasks. As explained in Section 12.3, the entire system runs on three
laptops connected to each other through ethernet cables. One of these laptops
is a Dell Mobile Precision 7710 workstation with a NVIDIA Quadro M5000M
GPU process with 8GB of GPU RAM. This laptop is used for running the
RCNN network for object detection. The other two laptops have a normal
Intel i7 processor with 16 GB of system RAM. The distribution of various
nodes on the machines are shown in Figure 12.3. It is also possible to run the
whole system on a single system having necessary CPU and GPU configuration
required for the task. The videos showing the operation of the entire system

FIGURE 12.21: Experimental setup for automated pick and stow system.

Experimental Results 477

TABLE 12.2: Computation time for various modules of the robotic pick and
place system.

S. No. Compo-
nent Description Time

(seconds)

1 Reading
JSON file

For ID
extraction 0.01

2 Motion 1
Home position
to Bin View
Position

3.5

3
Object
recogni-
tion

using trained
RCNN model 2.32

4 Motion 2 Pre-grasp
motion 9.6

5 Motion 3 Post-grasp
motion 4.97

6 Motion 4
Motion from
Tote drop to
home position

3.41

Total loop time for each object 23.81

7 Rack
Detection 2.1

8 Calibra-
tion 13.1

using a suction end-effector [372] [373] and a two-finger gripper [374] is made
available on internet for the convenience of the readers. The readers can also
use the source codes [375] made publicly available under MIT license for their
own use.

12.5.1 Response Time
The computation time for different modules of the robotic pick and place sys-
tem is provided in Table 12.2. As one can see the majority of time is spent
in image processing as well as in executing robot motions. Our loop time for
picking each object is about 24 seconds which leads to a pick rate of approx-
imately 2.5 objects per minute. The rack detection and system calibration
is carried out only once during the whole operation and does not contribute
toward the loop time.

478 Warehouse Automation: An Example

(a) Gripping Action (b) Suction Action

FIGURE 12.22: The hybrid gripper in action. It uses two-finger gripper to
pick objects that can fit into its finger span. Suction is used for picking bigger
objects with flat surfaces.

12.5.2 Grasping and Suction
The working of our custom gripper is shown in Figure 12.22. The maximum
clearance between the fingers is about 7 cm and it has been designed to pick
up a payload of 2 kgs. The gripper can grasp things using an antipodal config-
uration [292] as shown in Figure 12.22(a). The suction is applied whenever it is
not possible to locate grasping affordances on the object. The bellow cups are
positioned normal to the surface of the object being picked as shown in Figure
12.22(b). For grasping, it is necessary to detect the grasp pose and compute
the best graspable affordance for a given object. This is done by using the
method as described in Section 12.4.4. Some of the results corresponding to
the grasping algorithm is shown in Figure 12.23. As explained before, a GMM
model comprising color (RGB) information and depth curvature information
is effective in segmenting the target object from its background as shown in
Figure 12.23(a) and 12.23(b) respectively. The outcome of the grasping algo-
rithm is shown in Figure 12.23(c) and 12.23(d) respectively. Figure 12.23(c)
shows the best graspable affordance for objects with different shapes while
Figure 12.23(d) shows the graspable affordance of objects in a clutter.

12.5.3 Object Recognition
Experiments on object recognition are performed using our APC dataset with
6,000 images for forty different objects. The images are taken at different
lighting conditions with various backgrounds. Pretrained VGG-16 model of
the Faster R-CNN is fine tuned using 80% of the whole dataset and remaining
20% is used to validate the recognition performance. Figure 12.24 presents
some object recognition results when tested with new images. Statistical anal-
yses have been carried out on the validation set. We have achieved a mean
Average Precision (mAP) of 89.9% for our validation set, which is a pretty

Experimental Results 479

(a) Segmenting ‘Fevicol’ tube from the clutter

(b) Use of GMM model using both color and depth curva-
ture information

(c) Primitive shape fitting and identifying best graspable
affordance for objects with different shapes

(d) Identifying shapes and computing graspable affordance
in a clutter

FIGURE 12.23: Computing graspable affordance of target object in a cluttered
environment. (a) Shows the use of GMM model comprising of RGB and depth
curvature information in segmenting the target object from clutter. (b) Shows
the GMM model used in (a). It shows the Gaussian corresponding to depth
curvature provides better discrimination compared to colors in identifying the
target. (c) Shows the detection of shape and best graspable affordance for
isolated objects. (d) Shows the detection of shape and graspable affordance in
a clutter.

good performance for such an unconstrained and challenging environment.
The individual precision of randomly picked twenty-nine objects and their
mAP are shown in Table 12.4. Observation shows that, when the objects are
deformable, such as cherokee t-shirt and creativity stems, the precision is rea-
sonably lower. In our case, the precisions are 74.7% and 73.65% respectively.

480 Warehouse Automation: An Example

FIGURE 12.24: Output of RCNN after training. The objects are detected
in different environments (different backgrounds). Each recognized object is
provided a label and a bounding box.

TABLE 12.3: Experimental details for object recognition task using Faster-
RCNN

System Training Validation Testing time mAP
configuration data size data size

GPU NVIDIA 4800 1200 0.125 89.9%
Quadro M5000M samples samples second

The performance can be boosted if the size of the dataset is increased with a
new set of images. Detailed information of the experimental setup are given
in the Table 12.3. GPU system NVIDIA Quadro M5000M is used to train the
Faster R-CNN VGG-16 model. Objects in an image are detected in just 0.125
second, which is in real-time. In order to compare the recognition performance
of VGG-16, we trained and validated the given dataset using ZF model. Object
recognition results using VGG-16 is observed to be slightly better than that of
ZF model (mAP is 89.3% in case of ZF model). Average precision of individual
objects for both the VGG-16 and the ZF model is shown in Figure 12.25.

12.5.4 Direction for Future Research
While the current system can carry out the picking and stowing tasks with
reasonable accuracy and speed, a lot of work still needs to be done before it
can be deployed in real world scenarios. Improving the system further forms

Experimental Results 481

TABLE 12.4: Mean average precision and per-class average precision

mAP per-class average precision
barkely bones bunny book cherokee tshirt clorox brush cloud bear

89.9

95.31 83.51 74.70 97.63 90.58
command hooks crayola 24 ct creativity stems dasani bottle easter sippy cup

93.52 90.57 73.65 91.21 91.13
elmers school glue expo eraser fitness dumbell folgers coffee glucose up bottle

90.36 95.27 95.64 88.45 94.34
jane dvd jumbo pencil cup kleenex towels kygen puppies laugh joke book
95.43 96.53 81.24 84.35 93.41
pencils platinum bowl rawlings baseball safety plugs scotch tape
83.93 96.54 97.39 92.77 94.75

staples cards viva white lightbulb woods cord
90.84 81.46 87.62 85.01

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

barkely bones

bunny book

cherokee tshirt

clorox brush

cloud bear

com
m

and hooks

crayola 24 ct

creativity stem
s

dasani bottle

easter sippy cup

elm
ers school glue

expo eraser

fitness dum
bell

folgers coffee

glucose up bottle

jane dvd

jum
bo pencil cup

kleenex tow
els

kygen puppies

laugh joke book

pencils

platinum
 bow

l

raw
lings baseball

safety plugs

scotch tape

staples cards

viva
w
hite light bulb

w
oods cord

P
re

c
is

io
n

Object class

Average Precision (AP)-VGG16 %
AP-ZF %

FIGURE 12.25: Plot showing average precision of individual objects obtained
using Faster RCNN for both VGG-16 and ZF model.

the direction of our future work. Some of the ways of improving the system
are as follows:

• The performance of the system relies on the performance of individual
modules, particularly perception module for object recognition and grasp-
ing. One of the future directions would be to carry out research toward
improving the performance of the perception module.

• One of the challenges of deep learning-based approaches for perception
and grasping is the amount of samples required for training such models.
Most of these training samples are created manually which is laborious
and slow. One of our future directions would be to automate the process

482 Warehouse Automation: An Example

of data generation and explore deep learning models that can be trained
incrementally [376] or through transfer learning [377] [378].

• The design of custom grippers that can pick all types of objects, including
soft and deformable objects, still remains a challenge. Picking items from
a closely packed stack of objects is another challenge which will be looked
into as a part of our future research.

• The real-time performance of the system needs to be improved further
without increasing the infrastructure cost. This can be done by paralleliz-
ing several modules, improving CPU utilization, and reducing network
latency. The use of state machine based software architecture [379] such
as ROS SMACH [380] [381] will be explored as a part of our future work.

• Even though the existing motion planning algorithms are quite mature, it
is still not possible to deal with all possible cases of failure. One possible
way to deal with these extreme cases would be to have a human in loop
that intervenes only when a failure is reported by the system. The human
operator can then teach the robot through demonstration [382] [383] to
deal with such situations. The robot, in turn, can learn from such human
inputs over a period of time to deal with such complex situations through
methods such as deep reinforcement learning [384] [385] [386]. Some of
these directions will be explored in the future.

• The real-world deployment of such systems will be explored through the
use of cloud robotics platforms like Rapyuta [387].

12.6 Summary
This chapter presents the details of a robot-arm based automatic pick and
place system for a retail warehouse. The two major tasks which are consid-
ered here include (1) picking items from a rack into a tote, and (2) stowing
items from a tote to a rack. These two tasks are currently done manually by
employing a large number of people in a big warehouse. This work was carried
out as a part of our preparation for participating in the Amazon Picking Chal-
lenge 2016 event held in Leipzig, Germany. The problem is challenging from
several perspectives. Identifying objects from visual images under conditions
of varying illumination, occlusion, scaling, rotation, and change of shape (for
deformable objects) is an open problem in the computer vision literature. This
problem is solved in this work by the use of deep learning networks (RCNN)
which gives reasonable accuracy suitable for real world operation. The aver-
age recognition accuracy is about 90 ± 5% for twenty-nine objects which is
obtained by training the RCNN network using 4,800 training samples.

Part II

Mobile Robotics

http://taylorandfrancis.com

13
Introduction to Mobile Robotics and Control

13.1 Introduction
As the name indicates, mobile robots have the capability to navigate from
one place to another. They can be broadly classified as ground robots, sur-
face water vehicles, underwater robots, and aerial robots. In this chapter we
are focusing on ground robots. The ground robots can be classified as front
wheel steering robots and differential-drive robots. In a front wheel steering
robot, viz., an ordinary car type robot, the right and left wheels cannot be
independently controlled. Hence, it can only be steered with a nonzero turn-
ing radius, depending on the physical dimensions of the robot. Whereas, in
differential-drive robots, the left and right wheels can be independently con-
trolled and they can do maneuvers with zero turning radius. Differential-drive
robots can again be classified as holonomic and nonholonomic robots. In non-
holonomic robots shown in Figure 13.1, lateral motion is not possible, and
the nonholonomic constraints hold good for the same, whereas in holonomic
vehicles, sideways motion is possible. In this chapter, we are dealing with two-
wheel differential-drive nonholonomic mobile robots.

FIGURE 13.1: Differential-drive nonholonomic mobile robot.

485

486 Introduction to Mobile Robotics and Control

13.2 System Model: Nonholonomic Mobile Robots
The nonlinear system model of a nonholonomic robot [388] is presented in this
section. Using Figure 13.2, the mathematical model of the robot [389], [390]
can be defined with respect to the center of gravity as follows:

ẋc = v cos θ (13.1)
ẏc = v sin θ (13.2)
θ̇ = ω (13.3)
v̇ = F/m (13.4)
ω̇ = τ/I (13.5)

where x = [x, y]T represents the position vector, θ denotes the turn angle;
and v, ω, F, τ represent the velocity, turn rate, force, and torque respectively.
Considering the off-axis point A as the handling point, as shown in Figure 13.2,
the equivalent kinematic model [388,391] of the differentially driven robot can
be defined as (

ẋ
ẏ

)
=
(

cos θ −L sin θ
sin θ L cos θ

)(
v
ω

)
(13.6)

Similarly, by differentiating (13.6), the dynamic model [388] of the robots can
be obtained as(

ẍ
ÿ

)
=
(
−vω sin θ − Lω2 cos θ
vω cos θ − Lω2 sin θ

)
+
(1

m cos θ −LI sin θ
1
m sin θ L

I cos θ

)(
F
τ

)
(13.7)

.
A

Y

L{

yic

xic

θi

FIGURE 13.2: Differential-drive mobile robot.

Robot Attitude 487

13.3 Robot Attitude
For the navigation of the robots in outdoor environments, the position and
orientation of them need to be monitored. The knowledge of coordinate frames
and their transformations are extremely important in transforming the motion
parameters from the robot fixed moving frame to a fixed frame or to another
moving frame. Hence, this section deals with the coordinate frames and their
transformations [392]. In the robot coordinate frame, X− axis is aligned along
the longitudinal axis of the robot, Y−axis along the lateral direction, and
the Z−axis aligned along the upward direction to complete a right-handed
co-ordinate system. The rotation about the longitudinal axis (X), lateral axis
(Y), and the Z-axis are termed as roll (R), Pitch (P), and yaw (Y) respectively.
In all the cases, the rotation in the anti-clockwise direction is taken as positive.

13.3.1 Rotation about Roll Axis
The frame rotation about the roll axis is shown in Figure 13.3, where the frame
is rotated about the x-axis by an angle θ. In this case, (X1, Y1, Z1) represents
the coordinates in the original frame, and (X2, Y2, Z2) represents coordinates
in the rotated frame . The location of any arbitrary point as marked by “X”
in the rotated frame can be expressed [392] in terms of the original frame as
follows:

X2 = X1

X

Z1

θ

Z2

Y1

Y2

FIGURE 13.3: Rotation about X-axis.

488 Introduction to Mobile Robotics and Control

Y2 = Y1 cos θ − Z1 sin θ (13.8)
Z2 = Y1 sin θ + Z1 cos θ

 X2
Y2
Z2

 =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 X1
Y1
Z1

 (13.9)

The rotation matrix for roll can be expressed as

R(θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (13.10)

Example 13.1. Consider a vector x = [1 2 4]T defined in robot coordinate
frame. Find the coordinates of the vector in a frame rotated by θ = π/3 about
the roll axis of the original frame.

Solution 13.1. The vector can be expressed in rotated frame as X2
Y2
Z2

 =

 1 0 0
0 cos(π/3) − sin(π/3)
0 sin(π/3) cos(π/3)

 1
2
4


=

 1
2.464
3.732


13.3.2 Rotation about Pitch Axis
The rotation matrix for the frame rotation about Y -axis can be derived in
the similar manner [392]. The respective rotation of the frame about the pitch
axis is shown in Figure 13.5 The location of any arbitrary point in the rotated
frame-2 can be expressed in terms of the original frame-1 as follows:

X2 = X1 cosψ − Z1 sinψ
Y2 = Y1

Z2 = −X1 sinψ + Z1 cosψ (13.11)

 X2
Y2
Z2

 =

 cosψ 0 − sinψ
0 1 0

− sinψ 0 cosψ

 X1
Y1
Z1

 (13.12)

The rotation matrix for Pitch can be expressed as

P (ψ) =

 cosψ 0 − sinψ
0 1 0

− sinψ 0 cosψ

 (13.13)

Robot Attitude 489

X

Z2 Z1

X2

X1

ψ

FIGURE 13.4: Rotation about Y-axis.

Example 13.2. Consider a vector x = [1 2 4]T defined in a rotated frame,
which has undergone a positive pitch rotation about the original robot frame,
by an amount, ψ = 2π/5. Find the coordinates of the vector in the original
robot coordinate frame.

Solution 13.2. The vector can be expressed in rotated frame as X1
Y1
Z1

 =

 cos(2π/5) 0 − sin(2π/5)
0 1 0

− sin(2π/5) 0 cos(2π/5)

−1  1
2
4


=

 1 0 −1.73
0 1 0

−1.73 0 1

 1
2
4


=

 −5.92
2

2.27


13.3.3 Rotation About Yaw Axis
The respective rotation of the frame about the yaw axis is shown in Figure 13.5
The location of any arbitrary point in the rotated frame-2 can be expressed
in terms of the original frame-1 as follows [392]:

X2 = X1 cosφ− Y1 sinφ
Y2 = X1 sinφ+ Y1 cosφ
Z2 = Z1 (13.14)

 X2
Y2
Z2

 =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 X1
Y1
Z1

 (13.15)

490 Introduction to Mobile Robotics and Control

X

X2 X1

Y2

Y1

φ

FIGURE 13.5: Rotation about Z-axis.

The rotation matrix for the rotation about the yaw axis can be expressed as

Y (φ) =

 cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 (13.16)

13.4 Composite Rotation
Consider a robot frame undergoing composite rotation, with roll followed by
yaw and pitch. Then, the location of any point in the rotated frame can be
obtained from the coordinates of the original frame as follows [392]: X2

Y2
Z2

 = P (ψ)Y (φ)R(θ)

 X1
Y1
Z1

 (13.17)

In this case, roll was the first rotation. Hence, it is first transformation matrix
to operate on the coordinates, followed by yaw and pitch.

Sometimes, the situation arises where the frame is subjected to rotation as
well as translation. Consider the case in which the the frame-B is rotated and
displaced with respect to frame-A. Hence, PT = [X0, Y0, Z0]T represents the
location of origin of frame-A relative to frame-B. The coordinates of any point
in frame-A can be transformed to frame-B using the following transformation.

Coordinate System 491

 XB

YB
ZB

 = RAB(θ, ψ, φ)

 XA

YA
ZA

+

 X0
Y0
Z0

 (13.18)

Example 13.3. Consider a vector x = [1 2 4]T defined in robot coordinate
frame.

Find the coordinates of the vector in a frame, which is rotated by 2π/3 rad
about the pitch axis, π/5 rad about the roll axis and π/3 rad about the yaw
axis, and if the coordinates of the origin of the original frame with respect to
the rotated frame be PT = [10, 20, 30]T .

Solution 13.3. The vector can be expressed in rotated frame, B, as XB

YB
ZB

 = Y (φ)R(θ)P (ψ)

 XA

YA
ZA

+

 X0
Y0
Z0


=

 cπ
3
c 2π

3
− sπ

5
sπ

3
s 2π

3
−cπ

5
sπ

3
−cπ

3
s 2π

3
+ sπ

5
sπ

3
c 2π

3
sπ

3
c 2π

3
+ sπ

5
cπ

3
s 2π

3
cπ

5
cπ

3
−sπ

3
s 2π

3
− sπ

5
cπ

3
c 2π

3
−cπ

5
s 2π

3
sπ

5
cπ

5
c 2π

3

 1
2
4


+

 10
20
30


=

 5.162
18.218
28.858



13.5 Coordinate System
The knowledge of coordinate system is also equally significant in extracting the
navigation data of the robot with respect to a known reference. This section
gives a brief outline on Earth-Centered Earth-Fixed co-ordinate systems, one
of the most commonly used coordinate systems in robot navigation.

13.5.1 Earth-Centered Earth-Fixed (ECEF) Co-ordinate
System

In a ECEF coordinate system [392] as shown in Figure 13.6, the positive
X-axis passes through the intersection of the equator with the prime meridian
in Greenwich, Z-axis is aligned along the North pole, and Y-axis complete
the right-handed coordinate system aligned along the equator, with the origin
fixed at the center of Earth. For any arbitrary point on the surface of the Earth
at a radial distance of r from the center, the positive longitude is measured

492 Introduction to Mobile Robotics and Control

r

Z

Y

X

φ

θ

FIGURE 13.6: Earth-Centered Earth-Fixed (ECEF) co-ordinate system.

from the prime meridian in Greenwich in the Eastward direction, and the
positive latitude is measured from the equator toward the positive Z-axis of
the ECEF frame. The ECEF coordinates [392] can be expressed in terms of
latitude (θ) and longitude(φ) as follows:

X = r cos θ cosφ
Y = r cos θ sinφ (13.19)
Z = r sin θ

(13.20)

The coordinates in any Earth-centered coordinate frame can be transformed
to ECEF frame in terms of longitude and latitude using respective rotation
matrices.

13.6 Control Approaches
A robust controller is needed for the smooth navigation of a robot track-
ing the desired trajectory in a cluttered environment, subjected to external
disturbances. The next sections deal with various types of nonlinear control
techniques, which can be applied to the wheeled mobile robots.

Control Approaches 493

13.6.1 Feedback Linearization
A feedback linearization-based control law can make the closed loop dynamics
of any system linear, by canceling out the nonlinearities in the system [191,
393].

Consider the system dynamics in input affine form

ẋ = f(x) + g(x)u (13.21)

where x ∈ <n is the state vector, u ∈ <m is the control input , and g(x) is
nonsingular. For the system states to track the reference trajectory given by
xd, the feedback linearization (FL) based tracking control law can be designed
as,

u = 1
g(x) (−f(x) + Ke + ẋd) (13.22)

where e = xd − x is the tracking error, K = diag{k1, k2}, k1, k2 > 0 are the
controller gains. The gains can be precomputed offline using trial and error
method. As we plug in the FL-based control law in the system dynamics given
by (13.21), the closed loop error dynamics becomes ė = −Ke, which is linear
and stable.

Example 13.4. Consider a two-wheel differential-drive mobile robot with
the kinematic model given by (13.6). Design and implement a feedback
linearization-based stable controller for the robot, starting from [0.5, 0.5]T
in the reference frame, to track a circular reference trajectory of radius 1 m
centered at the origin, with a desired linear velocity (v) of 0.1 m/s.

Solution 13.4. The kinematic model of the robot can be defined as ẋ = g(x)u,

where g(x) =
(

cos θ −L sin θ
sin θ L cos θ

)
. g(x) is nonsingular, since |g(x)| 6= 0.

Based on the desired specifications, the required angular velocity can be
obtained as ω = 0.1/1 = 0.1 rad/s, and the reference trajectories are derived
as xd = [cos 0.1t, sin 0.1t]T and ẋd = [−0.1 sin 0.1t, 0.1 cos 0.1t]T . The tracking
error is defined as e = xd − x.

The control input, u = [v, ω]T , can be designed as

u = 1
g(x) (Ke + ẋd) (13.23)

=
[

cos θ sin θ
− sin θ

L
cos θ
L

]([
k1 0
0 k2

] [
xd − x
yd − y

]
+
[
ẋd
ẏd

])
(13.24)

The controller can be realized through simulations, and the results are given
in Figure 13.7-13.8. The state as well as control trajectories indicate that the
robot starting at x = [0.5, 0.5]T is making a circular trajectory of 1 m radius
centered at the origin, with an angular velocity of 0.1 rad/s and linear velocity
of 0.1 m/s.

494 Introduction to Mobile Robotics and Control

-1 -0.5 0 0.5 1

x (m)

-1

-0.5

0

0.5

1

y
 (

m
) actual

Desired

FIGURE 13.7: Feedback lineariza-
tion: x-y positions.

0 20 40 60 80

time (s)

0

0.2

0.4

0.6

v
 (

m
/s

)

0 20 40 60 80

time (s)

-4

-2

0

2

ω
 (

ra
d

/s
)

FIGURE 13.8: Feedback lineariza-
tion: Control inputs.

MATLAB CODE

clear all;
x=0.5; y=0.5; v=0; omega =0; L=0.1; n=7000;
T=.01;t=0; theta =0;k1=1;k2=1;
for i=1:n

t=t+T; x_d=cos (.1*t); y_d=sin (.1*t);
xddot = -0.1*sin (.1*t); yddot= 0.1* cos (.1*t);
xdot=v*cos(theta)-L*omega*sin(theta);
ydot=v*sin(theta)+L*omega*cos(theta);
x=x+T*xdot; y=y+T*ydot; ex=x-x_d; ey=y-y_d;
v=-(k1)*cos(theta)*ex+(xddot)*cos(theta)-
(k2)*sin(theta)*ey+(yddot)*sin(theta);
omega =(k1/L)*sin(theta)*ex -(xddot/L)*sin(theta)
-(k2/L)*cos(theta)*ey+(yddot/L)*cos(theta);
theta=theta+omega*T; x_save(i)=x; y_save(i)=y;

xd_save(i)=x_d; yd_save(i)=y_d;v_save(i)=v; omega_save(i)=
↪→ omega;

end
time=T*(1:n);

figure
plot(x_save ,y_save); hold on
plot(xd_save ,yd_save);
figure
subplot (2,1,1); plot(time (1:n),v_save (1:n));
subplot (2,1,2); plot(time (1:n),omega_save);

Control Approaches 495

13.6.2 Backstepping
Backstepping is another control technique widely used in nonlinear systems
[191,393], in which the controller is having a recursive structure. Unlike feed-
back linearization, in back stepping approach, it is not essential to make the
closed loop dynamics linear. Hence, it doesn’t require the cancellation of all
useful nonlinearities in the system. In this method, by considering the state
variables as the virtual control inputs, stabilizing control laws are derived for
each intermediate subsystems in a progressive fashion. And, this process con-
tinues until the external control input is reached. It is suited for systems with
a strict feedback form given as follows:

ẋ1 = f1(x1) + g1(x1)x2 (13.25)
ẋ2 = f2(x1, x2) + g2(x1, x2)x3 (13.26)

... (13.27)
ẋn = fn(x1, x2 . . . xn) + g2(x1, x2 . . . xn)u (13.28)

where xi ∈ <m, i = 1 . . . n, and u ∈ <m denote the states and the control
inputs of the system; fi ∈ <mXm, i = 1 . . . n are nonlinear functions.

In this case, by considering x2 as the virtual control input for the sub-
system given by (13.25), a stabilizing control law can be derived to ensure
that x1 tracks x1d. This virtual control law acts as the reference input, x2d,
for the second subsystem, where the virtual control law is derived for x3, to
ensure that x2 tracks x2d. This process continues in a recursive manner until
a stabilizing control law is derived for the actual external control input, u.

Example 13.5. Consider a two-wheel differential-drive mobile robot with the
dynamic model given by (13.7). Design and implement a backstepping-based
stable controller for the robot starting from [0, 0.5]T of the reference frame
to track a lemniscates shape trajectory about the point [0.5, 0]T , with a lobe
length of 0.5 m, and a desired linear velocity (v) of 0.1 m/s.

Solution 13.5. For the lemniscates shaped desired trajectories with the given
specifications, the reference inputs can be obtained as

x1d = [0.5 + 0.5 sin(πt/50), 0.5 sin(2πt/50)]T .
Consider x1 = x, and x2 = ẋ. The dynamic model given by (13.7) can be

expressed in strict feedback form given by (13.25)-(13.28) as

ẋ1 = f1(x1) + g1(x1)x2 (13.29)
ẋ2 = f2(x1, x2) + g2(x1, x2)u (13.30)

where f1 = 02×2, g1 = I2×2,

f2 =
(
−vω sin θ − Lω2 cos θ
vω cos θ − Lω2 sin θ

)
, g2 =

(1
m cos θ −LI sin θ
1
m sin θ L

I cos θ

)
;

and u =
(
F
τ

)

496 Introduction to Mobile Robotics and Control

0 0.2 0.4 0.6 0.8 1 1.2

x (m)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

y
 (

m
)

actual

Desired

FIGURE 13.9: Back stepping: x-y
positions.

0 50 100 150

time (s)

-0.5

0

0.5

F
o

rc
e

(N
)

0 50 100 150

time (s)

-10

-5

0

5

T
o

rq
u

e
 (

N
-m

)

FIGURE 13.10: Backstepping:
Control inputs.

For the first subsystem given by (13.29), considering x2 as the virtual con-
trol input, the tracking error can be defined as, e1 = x1 − x1d, the stabilizing
control law is designed as x2 = −k1e + ẋ1d. This virtual control law acts as
the reference input, x2d, for the second subsystem.

Hence, the control input can be designed as

u = 1
g2(x1, x2) (−f2(x1, x2)− k1ė− k2e) (13.31)

The results are given in Figure 13.9-13.10.

13.6.3 Sliding Mode Control
Sliding mode control is a robust nonlinear technique [393] widely used in
robotic applications.

Consider a single input nonlinear system,

ẋ = f(x, u, t), (13.32)

in which the structure of the system varies according to the switching logic
[394],

u =
{
u+(t), if, S(x) > 0,
u−(t), if, S(x) < 0

(13.33)

where x ∈ <n is the state vector, and u is the control input; S(x) represents
the switching surface, and the motion along S(x) = 0 is termed as sliding
mode. The system trajectories can be directed to S(x) = 0 , and it can be
retained there for subsequent time, if the following conditions hold:

lim
S→−0

Ṡ > 0; lim
S→+0

Ṡ < 0 (13.34)

Control Approaches 497

so that SṠ ≤ 0, ie. the distance to the switching surface, and Ṡ should have
opposite signs [394]. Hence, the solution of the equations

ẋ = f(x, u+, t), S > 0; and ẋ = f(x, u−, t), S < 0

approach S(x) = 0 in finite time [395]. The motion of the trajectories along the
sliding surface is the average of the dynamics on both sides of the switching
surface.

For an nth order tracking problem in x, the equation for sliding surface
can be generalized as

S(t) =
(
d

dt
+ λ

)n−1
x̃ (13.35)

where x̃ = x − xd, x̃ ∈ <n, and xd is the reference state vector; and λ
is a positive constant. From (13.35), one can find that fulfilling the control
objective is equivalent to retaining the system trajectory on the sliding surface;
and the nth order tracking problem is converted to a first order stabilization
problem in S(t) [393].

This can be achieved by designing the control law such that following
condition holds [394]

1
2
d

dt
S(t)2 ≤ −η|S(t)| or S(t)Ṡ(t) ≤ −η|S(t)| (13.36)

This is known as reaching condition. The time taken by the trajectories to
reach the sliding surface is known as reaching time, and this phase is termed
as reaching phase. The motion of the trajectories along the sliding surface is
termed as sliding mode.

Consider a Lyapunov candidate

V = 1
2S(t)2 (13.37)

Taking the derivative,

V̇ = S(t)Ṡ(t)

If the control law is designed such that the following sliding condition is sat-
isfied,

S(t)Ṡ(t) ≤ −η|S(t)| (13.38)

then, V̇ ≤ −η|S(t)|

Since V̇ is negative definite and the system is asymptotically stable. The slid-
ing condition ensures the asymptotic stability of the system. That is, the sys-
tem trajectories can converge to the sliding surface from any initial condition
asymptotically; and the reaching time (tr) can be obtained as

tr ≤ |S(t = 0)|/η (13.39)

498 Introduction to Mobile Robotics and Control

Chattering is one of disadvantage of SMC [393, 394]. This is the condition in
which high frequency oscillations appear in the control signal due to the imper-
fections in the associated control switching, owing to disturbances/ model
uncertainties. Numerous chattering reduction techniques are available in liter-
ature, viz. fuzzy sliding mode technique, boundary layer technique and hyper-
bolic tangent function approach. Different variants of SMC are available in
literature. A few of them are detailed in the following subsections.

13.6.4 Conventional SMC
Consider the nonlinear system,

ẍ = f(x) + g(x)u

where x ∈ <n,u ∈ <m represent the state and control input vectors respec-
tively.

The tracking error can be defined as

x̃ = x− xd

For the given system, the conventional type sliding surface [393] can be defined
in terms of the tracking error as,

S = ˙̃x+ λx̃

To satisfy the sliding condition, the reaching law can be chosen as

Ṡ = −Ksign(S)

and the control input can be designed as

u = 1
g(x) [−f(x) + ẍd − λ ˙̃x−Ksign(S)] (13.40)

In this case, the finite time convergence cannot be theoretically proved. More-
over, the chattering phenomenon is also prevalent in this type of design. Finite-
time convergent SMC strategies are detailed in next sections.

Example 13.6. For a two-wheel differential-drive mobile robot with the
dynamic model given by (13.7), design a sliding mode controller for the robot
based on conventional SMC technique, to track a circular reference trajectory
of radius 1 m centered at the origin, with a velocity of 0.2 m/s.

Solution 13.6. Based on the desired specifications, the reference trajectories
can be defined as xd = [cos 0.1t, sin 0.1t]T and ẋd = [−0.1 sin 0.1t, 0.1 cos 0.1t]T .

The tracking error is defined as e = xd − x. The sliding surface is given
by

S = ˙̃x + λx̃

Control Approaches 499

-1 -0.5 0 0.5 1

x (m)

-1.5

-1

-0.5

0

0.5

1

1.5

y
 (

m
)

actual

Desired

FIGURE 13.11: Conventional
SMC: x-y positions.

0 50 100 150

time (s)

-1

-0.5

0

0.5

F
o

rc
e

(N
)

0 50 100 150

time (s)

-20

-10

0

10

T
o

rq
u

e
 (

N
-m

)

FIGURE 13.12: Conventional
SMC: Control inputs.

The control input is obtained as

u = 1
g(x) [−f(x) + ẍd − λ ˙̃x−Ksign(S)]

where

f(x) =
(
−vω sin θ − Lω2 cos θ
vω cos θ − Lω2 sin θ

)
,g(x) =

(1
m cos θ −LI sin θ
1
m sin θ L

I cos θ

)
(13.41)

and u =
(
F
τ

)
The controller gains, K = diag{1, 1}, and λ = 1 are

tuned using trial and error method. To reduce chattering inherent in SMC,
the signum function in the control law can be replaced by a hyperbolic tangent
function. The results are given in Figure 13.11-13.12

13.6.5 Terminal SMC
In a terminal sliding mode control [396, 397], nonlinear sliding surfaces are
employed, in which finite time convergence can be guaranteed.

The sliding surface is defined as

S = ˙̃x+ λx̃
p
q , q > p > 0 (13.42)

The settling time is given by

Ttsm = q

λ(q − p) |x̃(0)|
q−p
q

The control input is given by

u = 1
g(x) [−f(x) + ẍd −

(
λp

q

)
x̃

(p−q)
q ˙̃x−Ksign(S)] (13.43)

500 Introduction to Mobile Robotics and Control

Even though, finite time convergence can be guaranteed for TSMC, when
x̃ = 0, singularity will appear inside the control law, since q > p. Nonsingular
type terminal sliding surfaces can be utilized to avoid this situation.

13.6.6 Nonsingular TSMC (NTSMC)
In NTSMC [398–400], the nonlinear sliding surface and the parameters are
chosen such that for any given operating condition, the singularity won’t
appear in the control law. For the sliding surface given by

S = x̃+ λ| ˙̃x|αsign(˙̃x), λ > 0, 1 < α < 2, (13.44)

the control law can be obtained as

u = 1
g(x) [−f(x) + ẍd − (1/λα)| ˙̃x|(2−α)sign(˙̃x)−Ksign(S)] (13.45)

Since 1 < α < 2, from the control law, it is evident that the controller is free
from singularity issue, even if the tracking error/ error derivative goes to zero.

The settling time is given by

Tntsm = λ
1
α |x̃(0)|1−1/α

1− 1/α

Speed of convergence is also equally significant for a robust controller. For
faster convergence, fast TSMC techniques are available in literature.

Example 13.7. Design a nonsingular terminal sliding mode controller to
drive a mobile robot through a sinusoidal trajectory with a velocity of .2 m/s
using the dynamic model given by (13.7).

Solution 13.7. Based on the desired specifications, the reference trajectories
can be defined as yd = sin(0.1xd)

The tracking error is defined as e = xd − x. The sliding surface is given
by

S = x̃+ λ| ˙̃x|αsign(˙̃x)

Based on the dynamic model given by (13.7), the control input is obtained as

u = 1
g(x) [−f(x) + ẍd − (1/λα)| ˙̃x|(2−α)sign(˙̃x)−Ksign(S)]

The parameters can be chosen as follows: K = diag{1, 1}, α = 0.5 and
λ = 1. To reduce chattering inherent in SMC, the signum function in the
control law can be replaced by a hyperbolic tangent function. The trajectories
are shown in Figure 13.13-13.14.

Control Approaches 501

0 50 100 150 200

x (m)

-1.5

-1

-0.5

0

0.5

1

1.5

y
 (

m
)

actual

Desired

FIGURE 13.13: NTSMC: x-y posi-
tions.

0 50 100 150

time (s)

-0.5

0

0.5

1

F
o

rc
e

(N
)

0 50 100 150

time (s)

-20

-10

0

10

T
o

rq
u

e
 (

N
-m

)

FIGURE 13.14: NTSMC: Control
inputs.

13.6.7 Fast Nonsingular TSMC (FNTSMC)
In FNTSMC [399, 400], a sliding surface is designed such that it can ensure
fast and finite time convergence, avoiding singularity, and is given by

S = x̃+ λ1|x̃|γ1sign(x̃) + λ2| ˙̃x|γ2sign(˙̃x) (13.46)

where 1 < γ1, γ2 < 2, λ1, λ2 > 0.
The control law is given by

u = 1
g(x) [−f(x)− 1

λ2γ2
| ˙̃x|2−γ2sign(˙̃x)(1 + λ1γ1|x̃|γ1−1)−Ksign(S)]

(13.47)

The settling time can be computed as

Tfntsm = η2|x̃(0)|1−1/γ2

λ1(γ2 − 1) . f(1
γ2
,

γ2 − 1
(γ1 − 1)γ2

; 1 + γ2 − 1
(γ1 − 1)γ2

;−λ1|x̃(0)|γ1−1)

f(a, b; c;x) represents a convergent Gauss’ hypergeometric function [399].
From this, one can easily prove that Tfntsm < Tntsm.
Example 13.8. Design and implement a stable controller based on fast non-
singular terminal SMC technique for the robot starting from [0, 0.5]T of the ref-
erence frame to track a lemniscates shape trajectory about the point [0.5, 0]T ,
with a lobe length of 0.5 m, and a desired linear velocity (v) of 0.1 m/s.
Solution 13.8. For the lemniscates shaped desired trajectories with the given
specifications, the reference inputs can be obtained as

x1d = [0.5 + 0.5 sin(πt/50), 0.5 sin(2πt/50)]T . Based on the dynamic model
given by (13.7), the control input is obtained as

u = 1
g(x) [−f(x)− 1

λ2γ2
| ˙̃x|2−γ2sign(˙̃x)(1 + λ1γ1|x̃|γ1−1)−Ksign(S)]

(13.48)

502 Introduction to Mobile Robotics and Control

-0.5 0 0.5 1 1.5

x (m)

-1

-0.5

0

0.5

1

y
 (

m
)

actual

Desired

FIGURE 13.15: FNTSMC: x-y positions.

where f(x) and g(x) are defined by (13.41).
The parameters can be chosen as follows: λ1 = λ2 = diag{0.8, 0.8}, γ1 =

1.006, γ2 = 1.003. A hyperbolic tangent function-based reaching law is also
used to mitigate the chattering. The results are shown in Figure 13.15.

13.6.8 Fractional Order SMC (FOSMC)
The dynamics of a system can be represented more precisely in fractional order
mode. This is the main motivation for the development of FOSMC [401–403].
In this approach, the system dynamics is forced to follow a fractional order
sliding dynamics.

Consider a fractional order sliding surface given by

S = λx̃+Dα−1 ˙̃x (13.49)

where Dα−1 represents the fractional differential operator, and α is a fraction.
The control input can be computed as

u = 1
g(x) [(D1−α(λ ˙̃x))− f(x) + ẍd −Ksign(S)] (13.50)

Though, it can add robustness to the system, it may increase the complexity
of the design. Chattering is found to be slightly less with this architecture.
The fractional derivative can be computed using any one of the following three
methods: Grunwald-Letnikov approximation/ Riemann-Liouville approxima-
tion / Caputo approximation.

Grunwald-Letnikov Approximation

The αth order fractional derivative of a function f(x) can be computed as [404]

Dαf(x) = Lim∆t→0
1

∆tα
(x−β)/∆t∑

0
(−1)j

[
α
j

]
f(x− j∆t) (13.51)

Control Approaches 503

in which
[
α
j

]
represents the binomial coefficient, β is the the initial value,

and ∆t represents the sampling time.

Riemann-Liouville Approximation

Using Riemann-Liouville Approximation, the fractional derivative approxima-
tion for a function f(x) is given by [404]

Dαf(x) = 1
Γ(n− α)

dn

dxn

(∫ x

β

(x− t)(n−α−1)f(t)dt
)

(13.52)

where Γ is the Gama function, β is the initial value, and n is the nearest
integer, which is greater than α.

Caputo Approximation

The Caputo approximation for the αth order fractional derivative of a function
f(x) is given by [404]

Dαf(x) = 1
Γ(n− α)

(∫ x

β

(x− t)(n−α−1)f (n)(t)dt
)

(13.53)

13.6.9 Higher Order SMC (HOSMC)
Contrary to the above mentioned approaches, A. Levant [405, 406] has intro-
duced a new technique called higher order SMC to reduce chattering and to
improve the control precision. In HOSMC, the system is enforced to follow
higher order sliding dynamics, ie., in an nth order HOSMC, the controller is
designed so as to satisfy the following conditions:

S = Ṡ = S̈ = . . . Sn−1 = 0

It gives a sliding precision of order n.
For example, in a second order sliding mode control, reaching laws are

designed so as to enforce second order sliding modes. ie. S = Ṡ = 0.
A few of the popularly used reaching law structures are listed below:

uR = −K1sgn(S)−K2sgn(Ṡ)

uR = −K1sgn[Ṡ −K2|S|1/2sgn(S)]

uR = −K1|S|1/2sgn(S) + v

v̇ = −K2sgn(S) (13.54)

504 Introduction to Mobile Robotics and Control

where (13.54) is termed as super-twisting structure. Studies [407, 408] show
that the finite time convergence and reduced chattering are the major advan-
tages of HOSM. Unlike other SMC approaches, HOSM doesn’t need the rela-
tive degree of the system to be strictly equal to one. But in a recent technical
note [409], Utkin has claimed that all such potential benefits of HOSM are
system dependent. The author has pointed out that the performance of an
HOSM depends upon the disturbance level, chosen modeling approach, etc.

Example 13.9. Design a kinematic controller for a mobile robot based on
super twisting SMC technique to track a circular reference trajectory of radius
1 m.

Solution 13.9. The kinematic model of the robot can be defined as ẋ = g(x)u,

where g(x) =
(

cos θ −L sin θ
sin θ L cos θ

)
. g(x) is nonsingular, since |g(x)| 6= 0. For

a circular reference trajectory, xd = [cos 0.1t, sin 0.1t]T . For the super twisting
controller, the sliding surface can be defined as S = x̃ = x − xd, where x̃ is
the tracking error. The control law is given by

uR = 1
g(x) (−K1|S|1/2sgn(S) + v + ẋd)

v̇ = −K2sgn(S) (13.55)

The values of K1 = diag{1, 1} and K2 = diag{1, 1} are chosen heuristically.
In this case, the control law is such that S = Ṡ = 0. The state trajectories
given by Figure 13.16 indicate that the sliding precision is more for super
twisting control.

-1 -0.5 0 0.5 1 1.5

x (m)

-1.5

-1

-0.5

0

0.5

1

y
 (

m
)

actual

Desired

FIGURE 13.16: Super twisting SMC: x-y positions.

Summary 505

13.7 Summary
This chapter gives an overview of the modeling and control of differential-
drive wheeled mobile robots. We have detailed the kinematic as well as the
dynamic modeling of the system. The coordinate frames, the robot attitude,
and the frame transformations are also presented with examples. The most
commonly used nonlinear control techniques such as feedback linearization,
backstepping, and sliding mode control with its different variants are also
discussed in detail. The numerical examples are solved in each section, which
can aid the readers to acquire a thorough understanding of the modeling and
control design aspects of a mobile robotic system.

http://taylorandfrancis.com

14
Multi-robot Formation

14.1 Introduction
The concept of cooperative infrastructure has received considerable atten-
tion among the robotic research community in recent years due to the diverse
applications including surveillance, search, rescue, security, survey, farm aerial
spraying, and disease detection and cooperative transportation. Compared to
single robotic system, multi-robotic platforms have numerous advantages such
as improved mission efficiency in terms of time and quality, high flexibility,
adaptability, accuracy, and energy efficiency. However, the success of these
types of missions greatly depends upon the distributed control module, and
its efficacy to overcome the detrimental effects due to unpredictable distur-
bances/ modeling uncertainties, and the faults in the system. This chapter
addresses the tracking control problem in a a multi-robotic system (MRS),
and the various implementation issues associated with it. The formation con-
trol architectures can be primarily categorized as follows:

• Leader-Follower-Based Approach. In a leader-follower-based approach
[410], [411], one or more agents are assigned as leaders and the rest of them
as followers, as shown in Figure 14.1. The follower will track the leader
with a desired offset. The desired trajectory of motion is determined by

FIGURE 14.1: Multi-robot formation.

507

508 Multi-robot Formation

the leader. The main advantage is that it is easy to add new members to
the formation. Though the approach is simple in its architecture, it has
the inherent disadvantage of not having any explicit feedback from the
followers to the leader.

• Virtual Leader-Based Approach. In a virtual-leader-based approach
[412], [413], the formation as a whole acts as a rigid structure. In this
architecture, a virtual point is defined in the rigid formation structure
termed as virtual leader, and the desired trajectories of each of the agents
are defined with respect to the virtual leader. It is difficult to do formation
reconfiguration with this architecture. It is usually a centralized approach,
hence, the communication/ computational cost will be more.

• Behavior-Based Approach. In a behavior-based approach [414], [415],
the agents will try to mimic the swarming behaviors, such as flock joining,
path following, collision avoidance, obstacle avoidance, reconfiguration,
etc. There is no priority in particular for any of the agents. The control
input is generally the weighted average of the inputs corresponding to the
assigned behaviors. The weightage depends upon the mission objective.

Among all these approaches, the leader-follower-based approach is widely
studied due to its simplicity in the architecture and the broad range of applica-
tions. A robust guidance and control module plays a crucial role in retaining
the stability of an MRS. A brief survey on the multi-agent formation con-
trol has been presented in [416], where the author has detailed the various
challenges in the control and co-ordination of formation. system. In an MRS,
speed of convergence, fault tolerance capability, robustness to perturbations,
adaptability to varying operating conditions, etc., are some of the major per-
formance measures to be considered in validating the efficacy of a control
module. In a generalized multi-robot formation problem, the major objectives
can be categorized as follows:

• Formation maintenance/ shape formation

• Formation reconfiguration

• Trajectory following

• Obstacle avoidance

• Fault detection and isolation

• Communication consensus-based formation

Owing to the simplicity in architecture and the immense scope in real time
applications, the leader-follower-based formation approach has been widely
explored in literature.

Path Planning Schemes 509

14.2 Path Planning Schemes
In MRS, the choice of the path planning scheme/ guidance scheme depends
upon the formation objectives.

Geometric Approach
For shape generation, path planning based on formation geometry has
been used in literature. In [391], two types of approaches, viz. separation-
separation and separation-bearing are used in a leader-follower-based frame-
work. In separation-separation approach, the formation objective is to main-
tain and control the desired relative position between the robots. Whereas, in
separation-bearing, the control objective is to maintain the relative separation
as well as orientation (bearing angle) between the robots. The schematic of
a two-robot system in a leader-follower-based formation is shown in fig. 14.2.
The kinematics of the two robot system is given by

żij = G1(zij , βij)uj + F1(zij)ui, β̇ij = ωi − ωj (14.1)

where zij = [lij , ψij]T is the system output, βij = θi − θj is the relative
orientation, ui = [vi, ωi] is the input to the leader and uj = [vj , ωj] is the
input to jth follower.

G1 =
[

cosγ dsinγ
−sinγ/l dcosγ/l

]
.

F1 =
[

−cosψij 0
sinψij/lij − 1

]
.

The formation can be maintained by controlling lij ans ψij .

vj, ωj

lij

(xj , yj, θj)

(xi, yi, θi)

X

Y
ψij

FIGURE 14.2: Two-robot system in leader-follower formation.

510 Multi-robot Formation

Example 14.1. Consider a two-robot formation in leader-follower-based
framework. Develop a feedback linearization-based controller for the trailing
robots to maintain a desired distance separation of 1 m with respect to the
leader.

Solution 14.1. Based on the kinematic model given by (14.1), and using the
feedback linearization technique depicted in Chapter 13, the control law can be
designed for the follower robots as

uj = G−1
1 (p1 − F1ui) (14.2)

p1 =
[

k1(ldij − lij)
k2(ψdij − ψij)

]
.

Therefore

vj = cosγk1(ldij − lij) + cosγcosψijvi

− lijsinγk2(ψdij − ψij) + sinγsinψijvi − lsinγωi (14.3)

ωj = sinγ

d
k1(ldij − lij) + cosψijvisinγ

d
+
lijk2(ψdij − ψij)

d
−cosγsinψvi

d
+ lijcosγωi

d
(14.4)

γij = βij + ψij (14.5)

βij = θi + θj (14.6)

lij =
√

(xi − (xj + dcosθj))2 + (yi − (yj + dsinθj))2 (14.7)

ψij = 180− (θi − tan−1 (yi − yj − dsinθj)
(xi − xj − dcosθj)

(14.8)

For a triangular formation with the given specifications, ψd = 120o for the left
follower and ψd = 240o for the right follower, ldij = 1m and d = 0.25m.

Example 14.2. Design and develop a sliding mode-based controller for a
three-robot system in triangular formation. Consider a desired distance sepa-
ration of 2 m between each of the robots.

Solution 14.2. The sliding surface can be defined as

S = e = x− xd (14.9)

Path Planning Schemes 511

where x = [lij , ψij]T . Using the sliding mode technique depicted in chapter 13,
the control law can be designed for the follower robots as

uj = G−1
1 (Ksign(s)− F1ui) (14.10)

where K = diag{k1, k2}. Therefore

vj = cosγk1sign(ldij − lij) + cosγcosψijvi

− lijsinγk2sign(ψdij − ψij) + sinγsinψijvi − lsinγωi (14.11)

ωj = sinγ

d
k1sign(ldij − lij) + cosψijvisinγ

d
+
lijk2sign(ψdij − ψij)

d
−cosγsinψvi

d
+ lijcosγωi

d
(14.12)

But, it is difficult to realize obstacle avoidance, along with target seeking
using geometric approaches. Moreover, the geometric framework will become
complex, if the number of robots is more. For realizing these schemes, agents
need to maintain the communication connectivity through out.

Potential Function-based Approach
The APF-based method proposed by Khatib [417] has already been proven
as a computationally efficient and a simple path planning scheme for obstacle
avoidance, target seeking and collision avoidance in robotic systems. In this
approach, the trajectory is determined by the computed net potential force
with respect to the obstacles, target, as well as with the other agents in the for-
mation. Depending upon the formation objectives, the potential function may
have attractive and repulsive parts, which are functions of the relative posi-
tions/ orientations. A potential function is a real valued differentiable energy
function, and its gradient is the force. In robot motion planning, the robot
velocities can be enforced to follow this gradient potential, where the robot
follows the path of the negative gradient of the potential, so that the motion
ceases, when the gradient reaches zero. In general, the potential function is
attractive/ repulsive in nature, where the agents are attracted to the goal/ far
distant agents for making the formation, due to the attractive part, and are
repelled away from the obstacles/ neighboring agents for collision avoidance,
due to the repulsive parts. For goal oriented motion of agents, avoiding the
obstacles, the potential function [418] can be expressed as

P = Pgoal + Pobst (14.13)

where Pgoal and Pobst represent the attractive potential toward the goal, and
the repulsive potential to avoid the obstacles respectively. The widely used

512 Multi-robot Formation

expressions for these potentials are given below: [418,419]

Pgoal = 1
2γ(x− xgoal)2 (14.14)

Pobst =

 1
2β
(

1
x − 1

ρ0

)2
, if x ≤ ρ0

0, if x >ρ0.
(14.15)

where γ and β represent the gains, and ρ0 represents the minimum distance
threshold to be maintained with respect to the obstacle. The force can be
computed using the gradient of these potential given by

F = −∇P (14.16)

The artificial potential function-based kinematic model for target tracking
proposed by Gazi [420–422] has been reproduced here for the completeness of
the discussion. This section addresses the path planning problem of a group
of agents in formation in an n− dimensional Euclidean space. The motion
dynamics of each of the swarm members can be represented as

ẋi =
N∑

j=1,j 6=i
g(xi − xj), i = 1....N (14.17)

where xi ∈ <n is the position vector of the ith agent, and g : <n → <n is the
function of attraction/repulsion between the swarm members.

The function g(.) can be represented by

g(y) = −y[ga(||y||)− gr(||y||)]

= −y
[
a− bexp

(
−||y||

2

c

)]
(14.18)

where a, b, and c are positive constants, ||y|| =
√
yT y and y ∈ <n.

Equation (14.17) can be represented also by

ẋi = −∇xiJ(x), i = 1, 2...N, (14.19)

where J is the potential function determining the inter agent interaction and
it has the following form

J(x) =
N−1∑
i=1

N∑
j=i+1

Jijar(||xi − xj ||) (14.20)

where Jijar(||xi−xj ||) represents the potential between the agents in the group.
With such a form, each agent will be forced to maintain the desired distance
dij with respect to its neighbors. The potential between ith and jth agent,
i.e., Jijar(||xi − xj ||), can be different for different pairs and it will satisfy the
following conditions [420].

Path Planning Schemes 513

Condition 14.1. The potential, Jijar(||xi−xj ||), is symmetric and it satisfies
the following condition,

∇xiJijar(||xi − xj ||) = −∇xjJijar(||xi − xj ||) (14.21)

Condition 14.2. [423] There exists corresponding functions Jija : <+ → <
and Jijr : <+ → < such that Jij(.) = Jija (.) − Jijr (.), ∇yJa(||y||) = ygija (||y||)
and ∇yJr(||y||) = ygijr (||y||), where Jija (||y||), the attractive potential, domi-
nates on long distances, and Jijr (||y||), i.e., the repulsive potential, dominates
on short distances. Then, the motion of agents toward each other is restricted
along the combined gradient of these potentials.

Condition 14.3. For any desired formation, which is uniquely defined by the
formation constraints ||xi − xj || = dij , 1 ≤ i, j ≤ N , the potential function
is chosen such that the unique minimum of Jijar(||xi − xj ||) occurs at dij and
∇xiJijar (||xi − xj ||) = 0, when ||xi − xj || = dij, i.e. gija (dij) = gijr (dij).

Note that, for the attraction/repulsion function,

Ja(y) = a

2‖y‖
2,

Jr(y) = −bc2 exp
(
−‖y‖

2

c

)
Assuming that the motion of the agents is given by (14.17), it can be shown
that if J(x) is bounded from below, i.e., J(x) > a for some finite a ∈ <,
then, for any initial condition x(0) ∈ <nN , as t → ∞, x(t) → σe, where
σe = {x : ẋ = 0} and xT = [x1TxNT]. It is inferred that, given the initial
positions of the individuals xi(0), i = 1, 2..N , the final configuration to which
the individuals will converge is unique. Since J(x), i.e., the formation function,
has unique minimum at the desired formation, the desired formation will be
asymptotically achieved. Once the desired formation is attained, the potential
gradient becomes zero, and the velocities of all the agents become equal. In
order to show the nature of function, the attraction/repulsion function for
a distance separation of 5 km is given in Figure 14.3. From this plot, one
can find that the gradient potential becomes zero at the respective distance
separations in both the directions.

But APF has the inherent drawback of local minima, if the parameters are
not chosen properly. In some of the related works, the region of operation is
constrained to avoid this. In [424], Jin and Pradeep have introduced a potential
field based on harmonic function to overcome the local minima problem. But
this type of harmonic potential function will work well in the case of non-point
robots. In [425], a fuzzy inferencing-based adaptive potential function has been
developed for obstacle avoidance and navigation of mobile robots in a cluttered
environment. Apart from the fact that this approach is constrained to obstacle
avoidance of a single robot, it also needs complex sensing requirements.

Another method to avoid the local minima problem is to introduce sep-
arate local and global path planners for navigation [426]. In this scenario,

514 Multi-robot Formation

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
4

−200

−150

−100

−50

0

50

100

150

200

y

g
(y

)

FIGURE 14.3: Attraction/repulsion function.

whenever the local path planner met with a local minima, a global path
planner comes into action, and it does the further path planning to reach
the goal, avoiding the local minima. But the global path planner will work
only in a predefined environment. Hence, this strategy cannot be extended
to complex systems working in a cluttered environment. Another approach is
to place virtual obstacles at local minima points [427], so that the obstacle
avoidance module will take care of them. But the accuracy of this depends
upon the choice of parameters of the residual signals utilized for placing the
virtual obstacles. Hence, this may not work well for all operating conditions.
Gazi and Passino [428] have discussed a class of attraction/repulsion poten-
tial functions for stable swarm aggregations. Similar to this technique, Izzo
and Pettazi [429] have developed a path planning technique for a system of
spacecrafts in a behavior-based framework with limited sensing, where the
individual responses are co-ordinated to achieve a common task.

Example 14.3. Design and implement an APF-based path planner for a
simple multi-agent system consisting of three members, to form a triangular
formation, with an inter-agent distance separation of 5 m.

Solution 14.3. Consider the dynamics of the ith agent as

ẋi = ui, i = 1, 2, 3, (14.22)

The attractive and repulsive potentials for ith can be defined as

Ja(xi − xj) = a

2‖x
i − xj‖2,

Jr(xi − xj) = −bc2 exp
(
−‖x

i − xj‖2
c

)

Path Planning Schemes 515

10 20 30 40

x(m)

10

15

20

25

30

y
 (

m
)

first agent
second agent
third agent

0 100 200 300 400

time(s)

0

5

10

15

20

25

30

35

S
e
p

a
ra

ti
o

n
(m

)

Distance b/w agent1 & agent2
Distance b/w agent2 & agent3
Distance b/w agent3 & agent1

FIGURE 14.4: Path of the agents (left); distance separation between the
agents (right).

where the parameters of the potential function can be chosen as a=0.00551819,
b=0.15, and c=0.302793. The path planner can be designed such that the agent
velocities need to follow the gradient of the respective net potential. [423]

Jx =
N−1∑
i=1

N∑
j=i+1

(Ja(xi − xj) + Jr(xi − xj)) (14.23)

ui = −∇xiJ(x) (14.24)

The gradient can be computed from the net potential, and the agents can be
commanded to follow these velocities. The results showing the path of the
agents and the respective distance separations are shown in Fig 14.4.

MATLAB CODE FOR APF - BASED SWARM AGGREGATION
--
clear all;
a =.01; b=20;c=1;n =40000; n1 =7000; m=1; u0 =25; beta =10;
xdot (: ,1) =[0;0;0]; ydot (: ,1) =[0;0;0]; t=0; T=.01;
x(: ,1) =10*[1 ;1;3.7]; y(: ,1) =10*[1.2;3;3];
for k=1:n

t=t+T;
for i=1:3

Jx =0; Jy =0;
for j=1:3
dist=sqrt ((x(i)-x(j))^2+(y(i)-y(j))^2);
Jx=Jx +(x(i)-x(j))*(a-b*exp (-(dist ^2/c)));
Jy=Jy +(y(i)-y(j))*(a-b*exp (-(dist ^2/c)));
end
u2=-Jx; u3=-Jy;xdot(i)=u2; ydot(i)=u3;x(i)=x(i)+T*xdot(i);
y(i)=y(i)+T*ydot(i); u_save (i,k)=u2; u1_save (i,k)=u3;

516 Multi-robot Formation

x_save (i,k)=x(i); y_save (i,k)=y(i);
end
xbar(k)=(x_save (1,k)+ x_save (2,k)+ x_save (3,k))/3;

ybar(k)=(y_save (1,k)+ y_save (2,k)+ y_save (3,k))/3;
center (k)=sqrt(xbar(k)^2+ ybar(k)^2);
d1(k)=sqrt ((x_save (1,k)-x_save (2,k))^2
+(y_save (1,k)-y_save (2,k))^2);
d2(k)=sqrt ((x_save (2,k)-x_save (3,k))^2
+(y_save (2,k)-y_save (3,k))^2);
d3(k)=sqrt ((x_save (3,k)-x_save (1,k))^2
+(y_save (3,k)-y_save (1,k))^2);

end
time = T*(1:n);

figure
plot (x_save (1,m:n),y_save (1,m:n)) hold on
plot(x_save (2,m:n),y_save (2,m:n)) hold on
plot(x_save (3,m:n),y_save (3,m:n))
xlabel (’x(m) ’); ylabel (’y (m) ’)
figure
plot(time (1:n),d1 (1:n)) hold on
plot(time (1:n),d2 (1:n)) hold on
plot(time (1:n),d3 (1:n))
xlabel (’time(s) ’); ylabel (’ Separation (m) ’)

Example 14.4. Consider a simple multi-agent system with three members.
Design an APF-based path planner for the system to navigate to the target
point at the location (2,2), keeping a triangular formation.
Solution 14.4. For an MAS moving to any goal position, the attractive part
of the potential function will have an additional term given by (16.27), to get
the system attracted to the goal position [430] .

Pgoal = −1
2γ(xi − xgoal)2 (14.25)

The attractive and repulsive potentials for ith agent can be defined as

Ja(xi − xj) = a

2‖x
i − xj‖2 − 1

2γ(xi − xgoal)2,

Jr(xi − xj) = −bc2 exp
(
−‖x

i − xj‖2
c

)
The parameters can be chosen as γ = 0.5, a=0.00551819, b=0.15, and
c=0.302793. For a multi-agent system with the dynamics of each agent defined
by (14.22), the control input can be obtained by computing the gradient of the
net potential.

Jx =
N−1∑
i=1

N∑
j=i+1

(Ja(xi − xj) + Jr(xi − xj)) (14.26)

ui = −∇xiJ(x) (14.27)

Path Planning Schemes 517

-10 -5 0 5 10 15

x(m)

0

5

10

15
y
 (

m
)

agent1
agent2
agent3

0 50 100 150 200 250

time(s)

0

5

10

15

20

S
e

p
a

ra
ti

o
n

(m
) Distance b/w agent1 & agent2

Distance b/w agent2 & agent3
Distance b/w agent3 & agent1

FIGURE 14.5: Path of the agents (left); distance separation between the
agents (right).

The results given by Figure 14.5 show that the agents are making the trian-
gular formation with the desired separation, and the center of the swarm is at
the desired final position [2, 2]T .

MATLAB CODE FOR APF - BASED TARGET TRACKING
--
clear all;
a =.01; b=20;c=1;n =25000; n1 =7000; m=1; u0 =25;
beta =10; xdot (: ,1) =[0;0;0]; ydot (: ,1) =[0;0;0];
x(: ,1) =5*[-.8;1;3]; y(: ,1) =5*[2.8;3;3];

t=0; T =.01; gama =0.8; x_g =2; y_g =2;
for k=1:n

t=t+T;
for i=1:3
Jx =0; Jy =0; c_n_x =0; c_n_y =0;
for j=1:3
c_n_x =c_n_x+x(j); c_n_y =c_n_y+y(j);
dist=sqrt ((x(i)-x(j))^2+(y(i)-y(j))^2);
Jx=Jx +(x(i)-x(j))*(a-b*exp (-(dist ^2/c)));
Jy=Jy +(y(i)-y(j))*(a-b*exp (-(dist ^2/c)));
end
Jx=Jx+gama *((c_n_x /3) -x_g);
Jy=Jy+gama *((c_n_y /3) -y_g);
u2=-Jx; u3=-Jy;xdot(i)=u2;ydot(i)=u3;
x(i)=x(i)+T*xdot(i);y(i)=y(i)+T*ydot(i); u_save (i,k)=u2;
u1_save (i,k)=u3; x_save (i,k)=x(i); y_save (i,k)=y(i);
end
xbar(k)=(x_save (1,k)+ x_save (2,k)+ x_save (3,k))/3;

ybar(k)=(y_save (1,k)+ y_save (2,k)+ y_save (3,k))/3;
center (k)=sqrt(xbar(k)^2+ ybar(k)^2);
d1(k)=sqrt ((x_save (1,k)-x_save (2,k))^2 +(y_save (1,k)-

↪→ y_save (2,k))^2);
d2(k)=sqrt ((x_save (2,k)-x_save (3,k))^2 +(y_save (2,k)-

↪→ y_save (3,k))^2);
d3(k)=sqrt ((x_save (3,k)-x_save (1,k))^2 +(y_save (3,k)-

↪→ y_save (1,k))^2);

518 Multi-robot Formation

end
time = T*(1:n);
figure
plot (x_save (1,m:n),y_save (1,m:n)) hold on
plot(x_save (2,m:n),y_save (2,m:n)) hold on
plot(x_save (3,m:n),y_save (3,m:n))
figure
plot(time (1:n),d1 (1:n)) hold on
plot(time (1:n),d2 (1:n)) hold on
plot(time (1:n),d3 (1:n))

14.3 Multi-Agent Formation Control
The APF-based schemes given in the previous section do not specify how
swarming can be achieved in engineering applications, with given agent
dynamics. To achieve the coordinated, smooth motion of agents, with gen-
eral fully actuated vehicle dynamics, even in the presence of disturbances and
uncertainties, robust control techniques can be utilized. The potential field
based guidance scheme promises a collision-free navigation and formation in
an optimal time period. Now, the aim is to design a control law, for individ-
ual agents with dynamic uncertainties, such that (14.19) is satisfied. In short,
the control inputs are to be designed such that the relative velocity of each
agent is enforced along the negative gradient of the respective net potential.
Owing to the simplicity and flexibility in the architecture, we have chosen the
leader-follower-based formation approach in this section. In a leader-follower-
based approach, the leader is free to navigate, and the followers have to track
the leader, maintaining a desired offset w. r. t each other as well as with the
leader. Once they are in formation, the followers (deputies) track the natural
dynamics of the leader.

The tracking control schemes can be designed for the deputies to ensure the
same, amid the unforeseen disturbances acting on the system. This is accom-
plished by using an SMC approach, which is one of the most powerful and
robust nonlinear control techniques, that enables separation of the overall sys-
tem motion into independent partial components of lower dimensions. Owing
to the robustness features and finite time convergence property, as discussed
in the preceding chapters, NTSMC is equally advisable in multi-robot system
also. The speed of tracking error convergence is extremely critical in the event
of system failure and reconfiguration, as well as with other changes in operat-
ing conditions. To ensure a faster convergence, and to overcome the singularity
issue inherent in conventional TSMC, a fast nonsingular type of nonlinear slid-
ing surface is highly preferable in this case. The speed of convergence and the

Multi-Agent Formation Control 519

singularity problem inherent in conventional TSMC have been addressed in
numerous literature [399,431–433].

Consider a group of agents with one leader and N number of followers.
The motion dynamics of the ith follower w. r. t leader can be represented as,

ẋi − ẋ` = −∇xiJ(x), i = 1....N (14.28)

where xi ∈ <n represents the position vector of ith follower; x` ∈ <n is
the position vector of the leader, and J is the net potential function [418]
determining the interaction between the agents and it has the following form:

J(x) =
N−1∑
i=1

N∑
j=i+1

J ija (‖xi − xj‖)− J ijr (‖xi − xj‖)

+
N∑
i=1

J i`a (‖xi − x`‖)− J i`r (‖xi − x`‖) (14.29)

The attractive potential J{.}a : <+ → < dominates on long distances, whereas
the repulsive potential J{.}r : <+ → < dominates on short distances. The
motion of each follower is restricted along the combined gradient of these
potentials.

Remark 14.1. The APF parameters are chosen such that the unique global
minimum of J(xi) occurs when ‖xi − xj‖ = dij , and ∇J ija (dij) = ∇J ijr (dij).
Hence, the desired formation can be asymptotically achieved [434]. Different
APF parameters can be chosen for different inter-agent distances. The choice
of the initial position determines the unique final position to which each agent
converges. Once they are in formation, the net gradient potential becomes zero
and each follower reaches a consensus with the leader.

Lemma 14.1. [398] For the system given by ẋ = f(x), f(0) = 0, x(0) = x0,
x ∈ U0 ⊂ <n, suppose that there exists a positive definite continuous function,
V (x), in the neighborhood of the origin, real numbers k > 0, η ∈ (0, 1), so
that V̇ (x)+kV η(x) ≤ 0, then the system is finite time stable, and the settling
time T is such that T ≤ V 1−η(x(0))

k(1−η) .

14.3.1 Fast Adaptive Gain NTSMC
In order to achieve the control objective, a novel formation error has been
defined [435] in terms of position measurements alone, and it is given by

ei = xi−x` +
∫ t

0
∇xiJ(x)dt︸ ︷︷ ︸
−xi

d

(14.30)

520 Multi-robot Formation

Surface
Path

Planning Law

+

Reaching
APF based

Follower

Module

+
− Sliding

ui
eq

ui
f

ui

Si

zi = [xi, yi]T
żℓ

ithzjzℓ

eizid

gi(z)−1

Adaptive
Update Laws

Fuzzifier
Fuzzy

Inference
Mechanism

Defuzzifier

Adaptive
AlgorithmBase

Fuzzy Rule

+

Adaptive
Tuning Law

−
+

Surface

Surface

NTSM

NTSM

(a)

(b)

δ

˙̂
Ki

˙̂ri

Λ

ui
f

α

ui
f-Kitanh(Si)−ΠiSi

˙̂Πi

Λ ˙̂Πi

Si

ΠiSi

Si

FIGURE 14.6: Block schematic of the proposed scheme; (a)-(b) adaptive
reaching laws.

In order to improve the speed of convergence, a fast nonsingular terminal slid-
ing surface [399], [432], [433] has been employed to design the tracking con-
troller. The block schematic of the proposed scheme is shown in Figure 14.6.
The proposed sliding surface utilizes only the relative position error. For the
ith member, it can be defined as

Si = ei +
∫ t

0

(
λi1|ei|1+ 1

β sign(ei) + λi2|ei|1−
1
β sign(ei)

)
dt (14.31)

where Si = [Six, Siy]T , ei = [eix, eiy]T , |ei|{.} = diag{|eix|{.}, |eiy|{.}},
sign(ei) = [sign(eix), sign(eiy)]T , λi1 = diag{λi1x, λi1y}, λi2 =

diag{λi2x, λi2y}, λi1x,1y, λi2x,2y > 0, ∀i = 1 . . . N ; and β > 1. To further improve
the speed of convergence, a fast reaching law given by,

Ṡi = −Kisign(Si)−ΠiSi, (14.32)

has been used.

Multi-Agent Formation Control 521

Remark 14.2. To reduce the chattering effect, sign function in the reaching
law can be replaced by tanh function. The time of convergence for the tracking
error, eix,y, to reach the origin is given by

tix,y = β

λi1x,1yλ
i
2x,2y

tan−1

(√
λi1x,1y
λi2x,2y

|eix,y(0)| 1β
)

The control law can be obtained as

ui = gi(x)−1
(
−∇xiJ(x) + ẋ` − λi1|ei|1+ 1

β sign(ei)

−λi2|ei|1−
1
β sign(ei)−Kitanh(µSi)−ΠiSi

)
(14.33)

where gi(x) =
(
cos(θi) −Lsin(θi)
sin(θi) Lcos(θi)

)
, ẋ` = [ẋ`, ẏ`]T ; Ki = diag{Ki

x,K
i
y},

and Πi = diag{Πi
x,Πi

y}, represent the controller gains, Πi
x,y,K

i
x,y > 0, ∀i;

tanh(µSi) = [tanh(µSix), tanh(µSiy)]T .
Since det (gi(x)) 6= 0, gi(x) is nonsingular and invertible.

Assumption 14.1. But in practical applications, disturbances will be acting
on the system. The lumped uncertainty in the system, say di, is assumed to
be bounded. Hence the motion dynamics can be modified as

ẋi = gi(x)ui + di (14.34)

Differentiating (14.31) w. r. t. time, and by successively substituting for ė,
ẋi, and ui using (14.30), (14.34) and (14.33) respectively yields,

Ṡi = −Kitanh(µSi)−ΠiSi + di (14.35)

Theorem 14.1. [435] For the given system, with a nonsingular terminal
sliding surface as given in (14.31), the control law defined by (14.33) can make
the system finite time stable, and the system error will converge to origin in
finite time without any singularity, if the controller gains are updated using
the following adaptive laws:

˙̂Ki = 1
δ
tanh(µSi)SiT

˙̂Πi = Λ−1SiSiT , α, Λ > 0.

Proof. Consider the Lyapunov function as

V i = 1
2SiTSi (14.36)

Taking the derivative, and substituting for Ṡi from (14.35),

V̇ i = SiT (−Kitanh(µSi)−ΠiSi + di) (14.37)

522 Multi-robot Formation

It has been assumed that, for any given operating condition, there exists finite,
nominal values for the gains, Ki∗ and Πi∗ respectively, such that the sliding
condition can be satisfied.

Let, K̃i = K̂i −Ki∗; Π̃i = Π̂i −Πi∗, (14.38)

where K̂i and Π̂i are the estimated values of the respective gains; and K̃i and
Π̃i are the adaptation errors.

The sliding condition (SṠ ≤ 0) can be satisfied, if the gains are chosen
such that

Ki ≥ di(tanh(µSi))−1 + η (14.39)
Πi ≥ −ηtanh(µSi)(Si)−1 + (SiT)−1[STS

+ nλmax(δK̃iK̃i) + nλmax(ΛΠ̃iΠ̃i)]σ(Si)−1 (14.40)

where λmax(.) represents the maximum eigen value; δ, Λ > 0; n is the order
of K̃; σ ∈ (0, 1); and η is a diagonal positive definite matrix. The involvement
of disturbance term makes it difficult to compute the gains using (14.39) and
(14.40). This is the motivation to develop adaptive update laws for tuning
these parameters.

Consider the modified Lyapunov function

V (S, K̃, Π̃) = 1
2SiTSi + tr{δK̃iK̃i}+ tr{ΛΠ̃iΠ̃i} (14.41)

where tr{.} represents the trace of a matrix.
Take the derivative, and substitute for Ṡi

V̇ (S, K̃, Π̃) = SiT Ṡi + tr{δK̃i ˙̂Ki}+ tr{ΛΠ̃i ˙̂Π
i

}
= SiT (−K̂itanh(µSi)− Π̂iSi + di)

+ tr{δK̃i ˙̂Ki}+ tr{ΛΠ̃i ˙̂Π
i

}
= SiT (−K̂itanh(µSi)− Π̂iSi + Ki∗tanh(µSi)
−Ki∗tanh(µSi) + Πi∗Si −Πi∗Si + di)

+ tr{δK̃i ˙̂Ki}+ tr{ΛΠ̃i ˙̂Π
i

}
= SiT (−K̃itanh(µSi)− Π̃iSi −Ki∗tanh(µSi)

−Πi∗Si + di) + tr{δK̃i ˙̂Ki}+ tr{ΛΠ̃i ˙̂Π
i

}

The nominal values of the gains are such that the conditions given by (14.39)-
(14.40) have to be satisfied.

Multi-Agent Formation Control 523

Using these conditions, one can find that

V̇ (S, K̃, Π̃) ≤ SiT
(
−K̃itanh(µSi)− Π̃iSi

)
− (STS + nλmax(δK̃iK̃i)

+ nλmax(ΛΠ̃iΠ̃i))σ + tr{δK̃i ˙̂Ki}+ tr{ΛΠ̃i ˙̂Π
i

}

From the properties of trace,

V̇ (S, K̃, Π̃) ≤ −(STS + nλmax(δK̃iK̃i) + nλmax(ΛΠ̃iΠ̃i))σ

+ tr{δK̃i ˙̂Ki − K̃itanh(µSi)SiT }+ tr{ΛΠ̃i ˙̂Π
i

− Π̃iSiSiT }

If,

˙̂Ki = 1
δ
tanh(µSi)SiT (14.42)

˙̂Πi = Λ−1SiSiT

then,

V̇ (S, K̃, Π̃) ≤ −(STS + nλmax(δK̃iK̃i) + nλmax(ΛΠ̃iΠ̃i))σ (14.43)

tr{δK̃iK̃i}+ tr{ΛΠ̃iΠ̃i}} ≤ n(λmax(δK̃iK̃i) + λmax(ΛΠ̃iΠ̃i))

Hence ,

V (S, K̃, Π̃) ≤ 1
2(STS) + n(λmax(δK̃iK̃i) + λmax(ΛΠ̃iΠ̃i))

V (S, K̃, Π̃) ≤ STS + n(λmax(δK̃iK̃i) + λmax(ΛΠ̃iΠ̃i)) (14.44)

Using (14.43) and (14.44), one can find that

V̇ (S, K̃, Π̃) ≤ −V σ(S, K̃, Π̃)

Since 0 < σ < 1, as per Lemma 14.1 for finite stability, the system is finite
time stable.

Hence, one can conclude that the system error will converge to origin in
finite time without any singularity, and the settling time is given by

T ≤ V 1−σ(S, K̃, Π̃)
(1− σ) (14.45)

From (14.42), it is clear that unlike conventional approaches, the knowledge
of the disturbance bound is not needed for tuning the controller gains.

524 Multi-robot Formation

14.3.2 Fast Adaptive Fuzzy NTSMC (FAFNTSMC)
As an alternative to reduce chattering in fast NTSMC, a fuzzy inference mech-
anism [435–437] has been employed to emulate the discontinuous term in the
fast reaching law defined in the previous Subsection. Here, the discontinu-
ous term, Kisign(Si), is being replaced by a fuzzy inference mechanism. The
input to the fuzzy system is the sliding surface Si, and the output is fuzzy
reaching control law represented by uid. The fuzzy sets for Si include positive,
zero and negative represented by P, Z and N respectively, whereas for uid, they
are positive effort, zero effort, and negative effort represented by PE, ZE and
NE respectively. The corresponding membership functions are given in Figure
14.7. Taking into account the computational simplicity as well as the feasibil-
ity factors, we have chosen the triangular type input membership functions,
singleton type output membership functions, and the center of gravity-based
defuzzification method. The parameters of the input membership functions,
Sa and Sb, are chosen heuristically considering the control constraints as well
as the stability requirements. Based on the reaching law, Kisign(Si), the rule
base can be developed as follows:

• If Si is P , then uid is PE.

• If Si is Z, then uid is ZE.

• If Si is N , then uid is NE.

Using the COG-based defuzzification, the fuzzy inferencing-based reaching
law [437], [436] can be defined as

uid =
3∑
j=1

wijr
i
j/

3∑
j=1

wj (14.46)

where wi1, wi2, wi3 are the firing strengths of the rules; 0 ≤ wi1, w
i
2, w

i
3 ≤ 1,

and wi1 + wi2 + wi3 = 1. The centers of the output membership functions are
ri1 = ri, ri2 = 0, and ri3 = −ri respectively, where ri is the width of the
output membership function. To cope with the uncertainties in the system,
an adaptive tuning algorithm can be utilized for updating ri.

(a)

ZE

r3 r2 r1
uid

(b)

1

0
Si

PENEN Z P

Sb Sa

FIGURE 14.7: (a) Input membership function; (b) output membership func-
tion.

Multi-Agent Formation Control 525

Remark 14.3. Computing the firing strengths and the control input, uid,
for all possible values of Si, one can find that sign(Sij) = sign((w1 − w3)ij),
where Sij and (w1 − w3)ij are the corresponding elements of Si and (w1 −w3)i

respectively. Si(w1−w3)i = |Si||(w1−w3)i| ≥ 0, and uid = ri(w1−w3)i. The
fast adaptive fuzzy reaching law can be obtained as follows:

uif = −ri(w1 −w3)i −ΠiSi (14.47)

The final FAFNTSMC law can be defined as

ui = gi(x)−1
(
−∇xiJ(x)− λi1|ei|1+ 1

β sign(ei) (14.48)

−λi2|ei|1−
1
β sign(ei) + ẋ` − ri(w1 −w3)i −ΠiSi

)
where ri ∈ <n×n is the fuzzy parameter matrix; and (w1 −w3)i ∈ <n is the
weight matrix.

Theorem 14.2. For the given MRS, the control law given by (14.48) can
make the system finite time stable, and the system error will converge to
origin in finite time without any singularity, if the parameters of the fuzzy-
based fast reaching law, given by (14.47), are updated using the following
adaptive tuning laws:

˙̂ri = 1
α

(w1 −w3)iSiT

˙̂Πi = Λ−1SiSiT α, Λ > 0

Proof. In this case,

Ṡi = −ri(w1 −w3)i −ΠiSi + di (14.49)

As in the proof for Theorem 14.1, taking the derivative of the Lyapunov
candidate given by (14.36), and substituting for Ṡi,

V̇ i = SiT (−ri(w1 −w3)i −ΠiSi + di) (14.50)

It has been assumed that, for any given operating condition, there exists finite,
nominal values for the gains, ri∗ and Πi∗ respectively, such that the sliding
condition can be satisfied.

Let, r̃i = r̂i − ri∗; Π̃i = Π̂i −Πi∗, (14.51)

where r̂i and Π̂i are the estimated values of the respective gains; and r̃i and
Π̃i are the adaptation errors. The sliding condition (SṠ ≤ 0) can be satisfied,
if the gains are chosen such that

ri ≥ di(w1 −w3)i−1 + η (14.52)

526 Multi-robot Formation

Πi ≥ −η(w1 −w3)i(Si)−1 + (SiT)−1(STS + nλmax(δr̃ir̃i)

+ nλmax(ΛΠ̃iΠ̃i))σ(Si)−1 (14.53)

where λmax(.) represents the maximum eigen value; δ, Λ > 0; n is the order of
r̃ and σ ∈ (0, 1); and η is a diagonal positive definite matrix. The involvement
of disturbance term makes it difficult to compute the gains using (14.52) and
(14.53). This is the motivation to develop adaptive update laws for tuning
these parameters. The rest of the proof proceeds in the same way as that of
Theorem 14.1, except that the terms Ki and tanh(µSi) are replaced by ri
and (w1 −w3)i respectively. Finally, when the parametric update laws are
chosen as follows:

˙̂ri = 1
α

(w1 −w3)iSiT

˙̂Πi = Λ−1SiSiT , α, Λ > 0 (14.54)

it can be found that

V̇ (S, r̃, Π̃) ≤ −(STS + nλmax(δr̃ir̃i) + nλmax(ΛΠ̃iΠ̃i))σ (14.55)

As in the proof for Theorem 14.1,

tr{δr̃ir̃i}+ tr{ΛΠ̃iΠ̃i}} ≤ n(λmax(δr̃ir̃i) + λmax(ΛΠ̃iΠ̃i))

Hence,

V (S, r̃, Π̃) ≤ 1
2(STS) + n(λmax(δr̃ir̃i) + λmax(ΛΠ̃iΠ̃i))

V (S, r̃, Π̃) ≤ STS + n(λmax(δr̃ir̃i) + λmax(ΛΠ̃iΠ̃i)) (14.56)

Using (14.55) and (14.56), it can be found that,

V̇ (S, r̃, Π̃) ≤ −V σ(S, r̃, Π̃)

Since 0 < σ < 1, as per Lemma 14.1 for finite stability, the system is finite
time stable. This completes the proof.

In a two-wheel differentially driven robotic system, even a single critical
actuator fault can lead to complete system failure. Hence, in an MRS, the
relevance is more for the control scheme, which is robust enough to retain the
stability of formation, even if the formation gets reconfigured owing to the
isolation of one or more critically faulty agents. The delay introduced by the
fault detection and isolation (FDI) module also affects the system stability.
In the case of all such detrimental, unforeseen situations, the speed at which
the system adapts to them is equally critical. In addition to this, chattering
is another issue to be addressed, while designing a controller based on TSMC
scheme.

Multi-Agent Formation Control 527

14.3.3 Fault Detection, Isolation and Collision Avoidance
Scheme

In this section, we have considered the case of critical actuator faults in mobile
agents, that can lead to complete agent failure, viz., short circuit faults, critical
rotor/stator faults, mechanical failures, insulation failure, etc., in the actua-
tors, such that there is reasonably a big difference between the measured and
the computed control inputs. The block schematic of the proposed fault toler-
ant FAGNTSMC scheme is shown in Figure 14.8. To isolate the agents in case
of any critical system fault, and to facilitate the formation reconfiguration
avoiding the possible collision between the healthy robots and the faulty ones,
the APF has been modified in terms of fault parameters. The fault parameters
are estimated using a residual-based synchronous fault detection strategy. In
the fault detection and isolation (FDI) [435] scheme given in [438], each agent
has to compute the residual signal for all the other agents at every instant.
It includes the computation of the velocity of each agent from the noisy posi-
tion data using conventional differentiation as well as the control inputs of all
other agents. This will increase the computational complexity, and can make
the system slow. Moreover, in a distributed fault detection system, the faulty
agent has to be identified and isolated at the same instant by all the other
agents. Otherwise, the asynchronous recovery behavior may lead to system
instabilities. To avoid this, we have devised the FDI protocol in such a way
that each member need to compute only its own residual signal and a fault
flag has to be set/ reset based on this residual value. The value of the fault
flag has to be communicated with all the other members. The fault flag, f i,
at every sampling instant can be computed as follows:

f i =
{

1, if ‖ui − uim‖ > (D + ξ‖ui‖)
0, otherwise.

(14.57)

FAGNTSM
Controller

Tuning Laws

Follower+
−

 Fault Detection
 Algorithm

Adaptive

APF based
Path Planning

ation

Reconfigur−

Isolation

Avoidance

Collision
ui

zi = [xi, yi]T

zj

˙̂Πi˙̂Ki

ith

zℓ

ei

f i

zid

FIGURE 14.8: Fault tolerant formation control using fast adaptive gain
NTSMC scheme.

528 Multi-robot Formation

where ui is the control input computed using (14.33), uim is the measured
input, D is the bound on the lumped uncertainty, and ξ is a constant. To
ensure the criticality of the fault, ξ can be set to a relatively high value.
Minor faults can be treated as disturbances, so that the FAGNTSMC can
handle them using adaptation. To isolate the jth faulty agent and to facilitate
the formation reconfiguration avoiding the collision between healthy robot
and the isolated faulty ones, the gradient potential to be computed by the ith
member is modified as

∇ziJ(z) =
N∑

j=1,j 6=i
[∇ziJ

ij(‖zi − zj‖)](1− f j) + f j∇ziF
i

+ ∇ziJ
il(||zi − zl||) (14.58)

where F represents the collision avoidance potential between the healthy
robots and the faulty ones. The structure of this term has been chosen as
similar to that of the repulsive potentials employed in obstacle avoidance-
based motion planning [419], and it is given by

F i =

 1
2γ
(

1
‖zi−zj‖ − 1

df

)2
, if ‖zi − zj‖ < df

0, otherwise.
(14.59)

where df is the distance of influence of the faulty robot, in other words,
the minimal distance to be maintained by the healthy robot with respect
to the faulty one. γ is a positive constant, which indicates the maximum
applicable potential. F i is a continuous differentiable function and its structure
is such that, for the ith agent, when the distance with respect to the jth faulty
agent falls below df , it gets repelled away, as we are enforcing the velocity
of the agent to follow the negative gradient of the respective net potential.
This potential will be triggered only when the fault flag f j is being set and
communicated with the neighboring agents. It has been assumed that there
are no communication faults in the system.
Example 14.5. Consider a system of five robots with one leader and the rest
of the followers making a square shaped formation, with an edge size of 1m.
Design and implement an APF-based path planner and an FAGNTSMC-based
control scheme for the robots to follow a circular trajectory.
Solution 14.5. The path planning scheme can be developed based on the
relative motion dynamics of the ith follower w. r. t leader, given by

ẋi − ẋ` = −∇xiJ(x), i = 1....N (14.60)

where xi ∈ <n represents the position vector of ith follower, and x` ∈ <n is
the position vector of the leader,

J(x) =
N−1∑
i=1

N∑
j=i+1

J ija (‖xi − xj‖)− J ijr (‖xi − xj‖)

Multi-Agent Formation Control 529

-10 0 10 20 30 40 50 60

x(m)

-15

-10

-5

0

5

10

15

20

y
(m

)
Chief
Deputy1
Deputy2
Deputy3
Deputy4

FIGURE 14.9: Path of the robots in formation.

+
N∑
i=1

J i`a (‖xi − x`‖)− J i`r (‖xi − x`‖) (14.61)

Ja(xi − xj) = a

2‖x
i − xj‖2,

Jr(xi − xj) = −bc2 exp
(
−‖x

i − xj‖2
c

)
The simulation parameters are chosen as: α = 10, L = 0.21 m, λ1 =
diag{0.1, 0.1}, λ2 = diag{0.1, 0.1}, β = 3, δ = 1000, Λ = 50000, Sa = 1,
Sb = −1. The values of the potential function parameters are chosen based on
the desired inter-agent distances. Based on the motion dynamics of the non-
holonomic robots given by (14.34), the control law for the ith follower can be
obtained as

ui = gi(x)−1
(
−∇xiJ(x) + ẋ` − λi1|ei|1+ 1

β sign(ei)

−λi2|ei|1−
1
β sign(ei)−Kitanh(µSi)−ΠiSi

)
(14.62)

where gi(x) =
(
cos(θi) −Lsin(θi)
sin(θi) Lcos(θi)

)
, ẋ` = [ẋ`, ẏ`]T ; Ki = diag{Ki

x,K
i
y},

and Πi = diag{Πi
x,Πi

y}, represent the controller gains, Πi
x,y,K

i
x,y > 0, ∀i;

tanh(µSi) = [tanh(µSix), tanh(µSiy)]T .
Since det (gi(x)) 6= 0, gi(x) is nonsingular and invertible. In the simula-

tions, the robots are indexed as follows: Leader→ 1, Deputy 1 → 2, Deputy
2 → 3, Deputy 3 → 4, Deputy 4 → 5. The separation distances are defined
according to these index representations. The results given by Figure 14.9–
14.11 indicate that the required formation is achieved within 5s.

530 Multi-robot Formation

0 10 20 30

time(s)

-12

-10

-8

-6

-4

-2

0

2

4

e
x

(a)

Deputy1

Deputy2

Deputy3

Deputy4

0 10 20 30

time(s)

-4

-3

-2

-1

0

1

2

e
y

(b)

Deputy1

Deputy2

Deputy3

Deputy4

FIGURE 14.10: Tracking error for
the follower robots.

0 10 20 30

time(s)

0

0.05

0.1

0.15

K
x

Deputy1 Deputy2 Deputy3 Deputy4

0 10 20 30

time(s)

0

0.05

0.1

0.15

K
y

0 10 20 30

time(s)

0

0.2

0.4

Π
x

0 10 20 30

time(s)

0

0.5

1

Π
y

×10
-4

FIGURE 14.11: Tuning response of
the gains.

14.4 Experiments
The real time experimentations are done using FireBird V I and Pioneer
P3 − DX robotic platforms. Both are two-wheel differentially driven robots
with a caster wheel support. FireBird VI robot is equipped with an onboard
computer with atom processor, running on Ubuntu 12.04 platforms, sonars,
position encoders etc., weighing around 7 kg. All the peripherals of the robot
are interfaced with the main microcontroller LPC1769 ARM cortex-M3 over
UART, I2C and SPI bus. The Pioneer P3-DX robot is also equipped with an
onboard PC running on Ubuntu platform, and other sensors as in FireBird
VI, weighing around 16 kg.

The robots are communicating through a local WIFI network, with which
static IPs are generated and assigned to the robots. The Player 3.0.2 robot
device server is running on all the platforms, which facilitates ultimate control
over all sensors and actuators. A static overhead low cost web cam has been
utilized to find the initial relative positions and orientations of the robots.
The camera is connected to an external PC, which will communicate with
the robots through WIFI. Different patterns of black and white markers are
fixed on the top of each robot, with which the platforms can be identified. The
markers are detected using ARUCO, an open source augmented virtual reality
library; and the initial relative positions and orientations can be computed
using the marker IDs. Once the robot starts moving, relative positions and
orientations are computed with the help of odometry data. The marker ID
based estimated data will serve as initial offset to the odometry readings.

The values of the experimental parameters are chosen as: Sa = 1, Sb = −1,
α = 10, L = 0.21 m, λ1 = diag{0.1, 0.1}, λ2 = diag{0.1, 0.1}, β = 3, δ = 1000,
Λ = 50000, a = 0.00551819, b = 0.15, and c = 0.302793. The APF parameters
are chosen based on the desired formation separation.

We have considered a system of three robots making a triangular forma-
tion, with one leader and two followers. The control graph is such that the
deputy − 1 has to follow only the chief, whereas the deputy − 2 has to follow

Experiments 531

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIGURE 14.12: Taped video images of robots in formation with: (a)-(e) two
similar robots; (f)-(i) three dissimilar robots; (a) and (f) images from the
overhead camera with the markers detected.

both the chief as well as deputy − 1 simultaneously, maintaining the respec-
tive desired offsets. The control graph determines the extent of computation
of the gradient potentials as well as the control inputs. In this case, one of the
Pioneer P3−DX robots has been assigned as the chief and the other one as
deputy−2, with a FireBird VI robot as the deputy−1. Here, the chief is free to
navigate, and it decides the formation trajectory, deputies have to follow the
chief with a desired distance separation of 0.7 m with respect to chief as well
as between themselves. Since it is APF-based path planning, the final configu-
ration to which the deputies converge, depends on the initial positions. Once
the robots are in formation, the deputies are lying along the circumference
of 0.7 m circle centered around the chief, maintaining the desired separation
of 0.9 m between themselves. Taped video images of robots in formation are
shown in Figure 14.12. The results given by Figure 14.13 − 14.15, show that
the the tracking errors are converging rapidly to the origin, and the desired

532 Multi-robot Formation

(a)

−1 0 1 2 3 4 5 6
−2

0

2

x(m)

y
(m

)

Chief Deputy1 Deputy2

(b)

0 5 10 15 20 25 30 35
0

1

2

time(s)s
e
p

a
ra

ti
o

n
 (

m
)

d23 d12 d13

FIGURE 14.13: Experimental results with FAGNTSMC (three robots): (a)
Position trajectories, (b) Separation distances.

0 5 10 15 20 25 30 35
−1

0

1

time(s)

e
x

Deputy1 Deputy2

0 5 10 15 20 25 30 35
−1

0

1

time(s)

e
y

Deputy1 Deputy2

FIGURE 14.14: Experimental results with FAGNTSMC (three robots): Track-
ing error.

0 20 40
0.02

0.04

0.06

(a)

time(s)

K
x

Deputy1 Deputy2

0 20 40
0

1

2
x 10

−3 (b)

time(s)

K
y

0 20 40
0

0.5

1
x 10

−4 (c)

time(s)

Π
x

0 20 40
0

1

2
x 10

−4 (d)

time(s)

Π
y

FIGURE 14.15: Experimental results with FAGNTSMC (three robots): Tun-
ing response of the gains.

Experiments 533

−1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

x(m)

y
(m

)

Chief

Deputy1

Deputy2

FIGURE 14.16: Experimental results with FAGNTSMC (fault case): Path of
the robots.

formation is achieved within 5s, even if the dissimilar platforms are used. The
taped video images of the formation are shown in Figure 14.12, with Fig-
ure 14.12 (a) and (f) showing the images captured by the overhead camera,
with the detected markers [435].

For demonstrating the robustness and fault tolerance capability of the pro-
posed scheme, the experiments are carried out using three robots, in which one
of the agents goes to a complete failure on runtime. FDI algorithm depicted in
Section IV B is utilized to identify and isolate the faulty member. In order to
study the effect of delay between fault occurrence and isolation on the system
performance, a delay of almost 3s has been induced in the FDI module. The
parameters of the residual signal are chosen as, D = 0.2 and ξ = 0.7 respec-
tively. The deliberate choice of the high value for ξ is to induce the necessary
delay in the FDI module, as well as to ensure the criticality of the fault. The
fast and finite sliding surface, together with an adaptive, fast reaching law
can save the system from possible instability, which may occur due to this
delay. The faster convergence along with gain adaptation, can empower the
system to adapt to such a situation upto a certain extent. In this case, the
deputy −1 goes to complete failure after 10s, and the deputy −2, which is
supposed to follow chief as well as deputy −1, reconfigures itself, maintaining
the desired formation separation. Based on the FDI output, the APF-based

0 5 10 15 20
0.02

0.021

time(s)

K
x

(a)

0 5 10 15 20
0

0.5

1

x 10
−3

time(s)

K
y

(b)

0 5 10 15 20
0

5

x 10
−5

time(s)

Π
x

(c)

0 5 10 15 20
0

1

x 10
−4

time(s)

Π
y

(d)

FIGURE 14.17: Experimental results with FAGNTSMC (fault case): Tuning
response of the gains for Deputy 2.

534 Multi-robot Formation

(a)

Post fault region

Induced delay

0 5 10 15 20
0

0.1

0.2

0.3

0.4

time(s)

v
 (

m
/s

)

Chief Deputy1 Deputy2

(b)

0 5 10 15 20
−1

−0.5

0

0.5

time(s)

θ
 (

r
a

d
)

Post fault region

(c)

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

time(s)

d
 (

m
)

d23 d12 d13

Fault flag

Induced

delay

Post fault region

FIGURE 14.18: Experimental results with FAGNTSMC (fault case): (a)
Velocity, (b) Turn angle, (c) Separation distances.

0 5 10 15 20
−4

−2

0

2

4

time(s)

e
r
r
o

r

(a)

e
x

e
y

0 5 10 15 20
−1

−0.5

0

0.5

time(s)

e
r
r
o

r

(b)

e
x

e
y

FIGURE 14.19: Experimental results with FAGNTSMC (fault case): Tracking
errors (a) Deputy 1, (b) Deputy 2.

Summary 535

path planning module will switch it to a two-robot formation. The path of the
robots are shown in Figure 14.16, where the circle shows the system failure
point, and the positions of the agents are represented by colored arrows. The
deflections observed at around 10s (region shown by ellipse) in all the results
are due to the formation switching owing to agent failure. From Figure 14.18.
c, it is evident that even though the fault occurs at around 10s, the fault
flag is being set only after 13s. The results given by Figure 14.19 indicate
that the error trajectories are converging again to the origin rapidly after the
faulty member is isolated. The controller gains settle down to their respective
optimal values far before the occurrence of the fault. Once the failed node is
identified and isolated, the formation reconfigures, and the system adapts to
this by re-updating the controller gains. This is evident from the tuning drifts
of these parameters shown in Figure 14.17. The Youtube link for the videos
recorded for all the experiments is given in [439].

14.5 Summary
This chapter gives an overview of different control and coordination schemes
for the formation control of multi-robot systems. We have detailed the geomet-
ric -based and artificial potential function-based path planning schemes with
examples. The fault adaptive nonsingular TSMC technique for the formation
control of multi-robot systems is also demonstrated with real-time experimen-
tal results. The numerical examples are solved in each section, which can aid
the readers to acquire a through understanding of various control and coordi-
nation schemes in the formation control of multi-robotic systems.

http://taylorandfrancis.com

15
Event Triggered Multi-Robot Consensus

15.1 Introduction to Event Triggered Control
Resource optimality is a significant design constraint in multi-robotic systems.
The major operation costs are for the resource requirements associated with
communication and sensing. In the last chapter, we have discussed different
types of control and co-ordination schemes for multi-robot systems. But, they
are all time triggered control protocols, i.e., control is triggered at all sam-
pling instants as shown in Figure 15.1(a), where resource requirements are not
optimal.

Event triggered control (ETC) is an effective technique to improve the
resource saving capability of the system. In this design, the control input is
updated, only when it is required. i.e., the control is triggered only when an
event occurs, as shown in Figure 15.1(b). Event triggered control designs con-
sist of two steps: first is the development of a controller to compute the control
inputs and the second one includes the design of triggering condition, which
decides when the control needs to be updated again. But ETC is based on the
assumption that all the parameteric measurements/ estimates are available at
all sampling instants. To optimize the sensing requirements, self triggered con-
trol (STC) techniques can be used, where the sensing is also event triggered as
given in Figure 15.2. In this case, the event instants are pre-computed based
on a predictive model or previous instant measurements. Hence, the accuracy
depends upon the precision of the estimation scheme. This chapter aims to

Clock

Controller

Sensor

System

Actuator

(a)

EventController

Actuator

System

Sensor

(b)

FIGURE 15.1: (a) Time triggered control, (b) Event triggered control.

537

538 Event Triggered Multi-Robot Consensus

SensorActuator

System

Event

Controller

FIGURE 15.2: Self triggered control.

give an overview of the implementation of event triggered control scheme in
the consensus-based formation of multi-robot systems.

Example 15.1. Consider a simple linear system with the dynamics given by

ẋ = Ax+Bu, (15.1)

where A =
[

1 −1
1 1

]
and B = [0 1]T .

Design and implement an event triggering based state feedback controller
for the system.

Solution 15.1. Let x(tk) be the state measurements at the event instants,
and t ∈ (tk, tk+1) be the inter-event time instant. Let the measurement error
be defined as

e = x(t)− x(tk)

The event triggering based state feedback control law can be designed as

u = −kx(tk) (15.2)

Consider a Lyapunov function

V = 1
2x(t)Tx(t)

(15.3)

Taking the derivative and substituting

V̇ = x(t)T ẋ(t)
= x(t)T (Ax(t)−Bkx(tk))
= x(t)T (Ax(t)−Bk(xt)−Bke)
= x(t)T (A−Bk)x(t)− x(t)TBke
≤ −A′‖x(t)‖2 −Bk‖x(t)‖‖e‖ (15.4)

where A′ = Bk −A.

Event Triggered Consensus 539

If the triggering condition is chosen as

e <= σ||x(t)||, σ > 0 (15.5)

and the controller gain, k, is chosen such that k ≥ B−1A,

V̇ ≤ −(A
′
+Bkσ)‖x(t)‖2 (15.6)

Since V̇ is negative definite, hence, one can conclude that with the triggering
condition given by (15.5), the state feedback controller, given by (15.2) can
make the system asymptotically stable.

MATLAB CODE FOR EVENT TRIGGERED CONTROL

clear all;
A=[1, -1;1 ,1];B=[0;1];x=[0;0]; x_pr =[0;0];
t=0,n=1000;k=[0.8 , 0;0 ,0.8];
for i=1:n
xdot=Ax+Bu;x=x+xdot*T;
e_nor=sqrt((x-x_pr) ’*(x-x_pr));x_nor=sqrt(x’*x); x_pr=x;
if(e_nor >= sigma*x_nor)
u=-k*x;
end
x_s(:,i)=x;u_s(:,i)=u;
end
time=T*(1:n);
figure;plot(time ,x_s)
figure;plot(time ,u_s)

Zeno phenomenon [440], i.e., infinite number of switchings / triggers hap-
pening in a finite time period, is a major drawback in an event triggered
approach. The event triggered strategy should be designed in such a way that
the zeno phenomenon should not occur.

15.2 Event Triggered Consensus
Communication cost is also a significant constraint in multi-robot formation
control. In the preceding chapter, the communication consensus has not been
considered. In this chapter, we are introducing a resource optimal multi-robot
formation control scheme through consensus-based path planning and event
triggered control technique. The event triggering technique can be extended
to multi-agent system with a consensus-based framework, so that the control
input to each agent, for the formation keeping, need to be triggered at its own
event instants/ neighboring agents.

540 Event Triggered Multi-Robot Consensus

Numerous event triggering-based multi-agent consensus algorithms are
available in literature [441–444]. In most of these works, only the asymptotic
convergence is proved, where the finite time consensus cannot be guaranteed.
Finite time convergence capability is extremely critical in a multi-agent sys-
tem (MAS). The performance of the control module depends upon it. In [445],
a nonlinear finite time event triggered consensus protocol has been developed
for both leader-following as well as leaderless cases. But it does not take into
account the practical disturbances existing in the system. The disturbance-
rejection capability is also equally significant in the design of consensus-based
MAS protocols.

In [446], an H∞-based control approach has been utilized for the consen-
sus of MAS with energy-bounded disturbances, in which an accurate model is
required to implement it successfully. Apart from this, finite time convergence
is also not guaranteed in this case. In [447], an ISMC-based strategy has been
considered to address the consensus problem of MAS with bounded distur-
bances. Similarly, in [448], Rao and Ghose have developed a sliding mode-
based algorithm for the leaderless consensus of UAVs. But, in both these
works, an event triggering based resource saving criterion addressed in the
preceding papers is not considered.

Sliding mode-based event triggered as well as self-triggered strategies
for generalized linear and nonlinear systems are depicted in [440] and [449]
respectively, in which a linear measurement error is defined. Though these
approaches are very robust, it is difficult to obtain the triggering condition for
the finite time consensus of MAS with a nonlinear consensus protocol using
these techniques. Moreover, in [440], it has been assumed that the nonlin-
ear function involved in the system dynamics has a unique equilibrium point,
and it is locally Lipschitz continuous. This cannot always be guaranteed in a
complex MAS.

Another issue is that most of the event triggered consensus protocols
depicted in literature are restricted to simulation based validations. The real
time implementation issues are not being addressed in these works.

The objectives of the chapter are as follows:

(i) To design a resource optimal consensus protocol for a multi-agent system
with bounded disturbances, in a leader-follower-based framework.

(ii) To develop a robust event triggered consensus protocol based on ISMC
technique to deal with the bounded disturbances.

(iii) The control protocol should be designed to ensure a faster convergence.

(iv) The triggering condition should be designed so as to guarantee the finite
time sliding mode stability as well as finite time consensus.

(v) Theoretically validate the zeno-free behavior of proposed ETC scheme.

Event Triggered Consensus 541

(vi) The consensus protocol should be designed in such a way that the
desired relative state deviation between the agents can be achieved with
a directed graph topology.

(vii) To implement the proposed strategies in nonholonomic robots and to
validate the robustness.

In this chapter, a novel integral sliding mode-based event triggering scheme has
been designed for the consensus-based tracking control of multi-robotic sys-
tems with modeling uncertainties / disturbances. A novel measurement error
has been defined, and the event triggering based robust consensus algorithm
has been derived based on this. A fast reaching law has been utilized in the
consensus protocol to improve the speed of convergence. The finite time con-
sensus convergence and the finite time sliding mode stability have been proved
for the proposed design using Lyapunov- based analysis. A lower bound for the
inter-execution time has been derived to ensure that the zeno behavior does
not exist. The event triggered consensus protocol is designed for the MAS in
a leader-follower-based framework such that the desired relative state devia-
tion between the agents can be achieved with a directed graph topology. The
implementation issues are studied through real time experimentations.

15.2.1 Preliminaries
Consensus algorithms are the rules for inter-agent interactions, so that all
the agents will reach an agreement regarding the quantity of interest, once
they are in consensus, and the information states of all the agents will con-
verge to a common value. Consider a multi-agent system (MAS) comprising
N members. The communication topology among the agents is represented
by a directed graph G = {V, E ,A}, in which the set of nodes is denoted by
V = {V1,V2,V3 . . .VN}, the set of edges by E ⊆ V×V. Let A = [aij] represents
the weighted adjacency matrix, in which aij = 1, if (Vi,Vj) ∈ E , otherwise
aij = 0. For Vi, the neighbor set is given by Ni = {Vj : (Vi,Vj) ∈ E}. The
Laplacian is represented by L = D −A, where D = diag{d1, d2, . . . dn} is the
degree matrix, and di =

∑n
j=1 aij .

For a leader-follower-based MAS, with one leader and N followers, the
leader is represented by node V0, and followers by {V1,V2,V3 . . .VN}. The
leader-follower connection weight matrix is defined as B = diag{b1, b2, . . . bn},
bi > 0, if the leader is connected to ith follower, otherwise bi = 0.

For a system of n agents with xi(t) as the information state [450] for the
ith agent, the most commonly used consensus protocol is given by

ẋi(t) = aij(xi(t)− xj(t)), i = 1 . . . n (15.7)
= −Lx (15.8)

where x = [x1, x2 . . . xn].

542 Event Triggered Multi-Robot Consensus

3 2 1

FIGURE 15.3: Graph.

Example 15.2. Consider a system of three agents communicating based on
a directed graph given in Figure 15.3. Develop a consensus protocol for the
MAS.

Solution 15.2. The consensus protocol is given by

ẋi(t) = aij ∗ (xi(t)− xj(t)), i = 1 . . . 3 (15.9)
= −Lx (15.10)

where x = [x1, x2, x3]T .

From the graph, the adjacency matrix can be obtained as A =

 0 1 0
0 0 1
1 0 0


and D =

 1 0 0
0 1 0
0 0 1

.
Laplacian can be computed as

L =

 1 −1 0
0 1 −1
−1 0 1

 (15.11)

For a leader-follower-based framework, the dynamics of the MAS can be
defined as

ẋi(t) = ui(t) + di(t), i = 1 . . . N (15.12)
ẋ0(t) = u0(t)

where xi(t) ∈ <n, ui(t) ∈ <n and di(t) ∈ <n represent the position vector,
the control input, and the bounded disturbance input for the ith follower
respectively; x0(t) ∈ <n and u0(t) ∈ <n are the position vector and control
input to the leader respectively. Our objective is to develop a finite time
event triggering based control law for achieving consensus in a multi-agent
system with a leader-follower-based framework, in spite of external bounded
disturbances.

Let x̃i(t) = xi(t)− x0(t) + δi, and ũi(t) = ui(t)− u0(t) (15.13)

where δi is the desired state deviation.

Event Triggered Consensus 543

The relative dynamics can be defined as

˙̃xi(t) = ũi(t) + di (15.14)

Lemma 15.1. [445] In the absence of any disturbances, the system can
achieve the consensus tracking in finite time, if the following protocol is chosen.

ũi(t) = χηi (t)
where,

χi(t) = − µi
ni + 1

∑
j∈Ni

aij [(xi(t) + x0(t) + δi)

− (xj(t) + x0(t) + δj)] + bi(xi(t)− x0(t) + δi)

= − µi
ni + 1

∑
j∈Ni

aij(x̃i(t)− x̃j(t)) + bi(x̃i(t)) (15.15)

where µi > 0, and η ∈ (0.5, 1) is strictly the ratio of positive odd numbers;
and 1 ≤ ni ≤ N is the number of neighboring agents for the ith member.

Lemma 15.2. [445], [451] For the system given by ẋ = f(x), f(0) = 0,
x(0) = x0, x ∈ U0 ⊂ <n, suppose that there exists a positive definite contin-
uous function, V (x), in the neighborhood of the origin, real numbers k > 0,
η ∈ (0, 1), so that V̇ (x) + kV η(x) ≤ 0, then V (x) approaches zero in finite
time, and the settling time T is such that T ≤ V 1−η(x(0))

k(1−η) .

Lemma 15.3. [451] − [452] For the system given by ẋ = f(x), f(0) = 0,
x ∈ U0 ⊂ <n, suppose that there exists a positive definite continuous
function, V (x), in the neighborhood of the origin, and the real numbers
C1, C2 > 0, η ∈ (0, 1), so that V̇ (x) + C1V

η(x) + C2V (x) ≤ 0, then
V (x) approaches zero in finite time, and the settling time T is such that
T ≤ 1

C2(1−η) ln
[
C2V

1−η(x(0))+C1
C1

]
.

Lemma 15.4. [445], [453] − [454] For any leader-follower-based MAS, with
the communication topology as defined in Section 15.2.1, if the graph contains
a directed spanning tree, then all the eigen values of L+ B have positive real
parts.

Lemma 15.5. [445], [453] For xi ∈ <n, i = 1 . . . n, α ∈ (0, 1], then(
n∑
i=1
|xi|
)α
≤

n∑
i=1
|xi|α ≤ n1−α

(
n∑
i=1
|xi|
)α

, and for |α| ∈ (0, 1), ‖xαi ‖ ≤

n1−α‖xi‖α.

Assumption 15.1. For the MAS, with the agent dynamics given by (15.14),
the the unmodelled dynamics/ disturbance has been lumped together to form
di, and it is assumed to be bounded, i.e., ‖di‖ < Di, where Di is the bound
on it.

544 Event Triggered Multi-Robot Consensus

15.2.2 Sliding Mode-Based Finite Time Consensus
Considering the disturbances in the system, the consensus protocol can be
modified employing sliding mode-based approach. The integral type sliding
surface is defined as

Si(t) = x̃i(t)− x̃i(0)−
∫ t

0
χηi (t)dt, i = 1 . . . n (15.16)

where Si(t) = [s1(t), s2(t), . . . sn(t)]T . Once sliding mode occurs, si(t) = 0,
ṡi(t) = 0

˙̃xi(t) = χηi (t) (15.17)

For faster convergence, we have chosen a fast reaching law [451], [455] given
by,

Ṡi(t) = −K1sign(Si(t))−K2Si(t) (15.18)

where K1 = diag{k11, k12 . . . k1n}, K2 = diag{k21, k22 . . . k2n}, kij > 0, ∀i, j,
and sign(Si(t)) = [sign(s1(t)), sign(s2(t)), . . . sign(sn(t))]T . The sliding mode-
based consensus protocol can be defined as,

ũi(t) = χηi (t)−K1sign(Si(t))−K2Si(t) (15.19)

The design of event triggering based control algorithm is detailed in the next
Section.

15.3 Event Triggered Sliding Mode-based Consensus
Algorithm

The integral sliding mode-based event triggered consensus protocol can be
defined as

ũi(t) = χηi (tik)−K1sign(Si(tik))−K2Si(tik) (15.20)

where t ∈ [tik, tik+1), and tik is the triggering time.
We have defined a novel measurement error, suited for the system, and it

is given by

ei(t) = χηi (tik)−K1sign(Si(tik))−K2Si(tik)
− (χηi (t)−K1sign(Si(t))−K2Si(t)) (15.21)

The triggering scheme is designed such that control will be triggered for each
agent at its own event time only. The control input remains piecewise constant
during the inter execution time. The block schematic of the proposed scheme
is shown in Fig. 15.4.

Event Triggered Sliding Mode-based Consensus Algorithm 545

Condition

Control

Chief

Disturbance

Sensor

Event

Triggered ZOH

Consensus

Based

Path

Planning

Triggering

Deputy
+ −

−

xi(t)

di(t)

ith

Si(t)

ũi(t) ũi(tk)

ũi(t)χη
i (t)

x0(t)∫

FIGURE 15.4: Proposed event triggering scheme.

Theorem 15.1. [450] Consider the leader-follower-based MAS with the
dynamics as given in (15.14), the event triggered control protocol defined
by (15.20) can make the system finite time stable, irrespective of the distur-
bances, if the triggering function is chosen as

fi(t) = ‖ei(t)‖ − ρi (15.22)

where, ρi < λmin(K1)−Di, λmin(K1) > Di.

Proof. consider the Lyapunov function as

V1(t) = 1
2STi (t)Si(t) (15.23)

V̇1(t) = STi (t)Ṡi(t)
Ṡi(t) = ˙̃xi(t)− χηi (t)
Ṡi(t) = χηi (tik)−K1sign(Si(tik))−K2Si(tik)

+ di(t)− χηi (t) (15.24)
= ei(t)−K1sign(Si(t))−K2Si(t) + di(t)

Hence,

V̇1(t) = STi (t)[ei(t)−K1sign(Si(t))−K2Si(t) + di(t)]
≤ ‖Si(t)‖‖ei(t)‖ − λmin(K1)STi (t)sign(Si(t))
− λmin(K2)STi (t)Si(t) + ‖Si(t)‖Di

≤ ‖Si(t)‖‖ei(t)‖ − λmin(K1)‖Si(t)‖
− λmin(K2)‖Si(t)‖2 + ‖Si(t)‖Di (15.25)

If, ‖ei(t)‖ ≤ ρi, where ρi < λmin(K1)−Di

V̇1(t) ≤ −(λmin(K1)−Di − ρi)‖Si(t)‖ − λmin(K2)‖Si(t)‖2

546 Event Triggered Multi-Robot Consensus

λmin(.) represents the smallest eigen value. Choosing λmin(K1) > Di+ρi, we
can apply Lemma 15.3.

V̇1(t) ≤ −C1V1(t) 1
2 − C2V1(t), (15.26)

where, C1 =
√

2(λmin(K1)−Di − ρi)
C2 = λmin(K2), C1, C2 > 0

The reaching time can be computed as

Ti ≤
2
C2
ln

[
C2
√
V1(0) + C1)
C1

]
(15.27)

Hence, we can conclude that the sliding mode-based event triggered control
law defined by (15.20), can make the system finite time stable, if f(t) < 0.
The control is triggered, whenever f(t) ≥ 0.

Theorem 15.2. [450] Consider the leader-follower-based MAS given by
(15.14), with the communication topology represented by connected graph
G. If the event triggered consensus protocol and the triggering function are
defined by (15.20) and (15.22) respectively, once the sliding mode is reached,
for any initial condition, the consensus can be reached in finite time, and the
settling time satisfies the following condition,

T2 ≤
2V 1−η

2 (x̃(0))
q(1− η) (15.28)

where, q = λmin(ξ ⊗ In)λmin((L+ B)⊗ In)2
1+η

2 ,

and ξ = diag{(µ1/n1 + 1)η, (µ2/n2 + 1)η . . . (µN/nN + 1)η}.

Proof. Let

Pi(t) =
∑
j∈Ni

aij(x̃i(t)− x̃j(t)) + bi(x̃i(t)) (15.29)

Consider a Lyapunov function as

V2(t) = (1/2)x̃T (t)((L+ B)⊗ In)T ((L+ B)⊗ In)x̃(t)
= (1/2)PTP (15.30)

where P = [P1,P2 . . .Pn]T . Substituting using (15.29), and taking the deriva-
tive,

V̇2(t) = PT ((L+ B)⊗ In) ˙̃x(t) (15.31)

Event Triggered Sliding Mode-based Consensus Algorithm 547

When the sliding mode is reached, i.e., Si(t) = 0, from (15.17), we can find
that ˙̃x(t) = χη(t). Since η is strictly the ratio of positive odd numbers,
sign(.) = sign((.)η). Using (15.15) and (15.29),

V̇2(t) = PT ((L+ B)⊗ In)χη(t) (15.32)
≤ −λmin(ξ ⊗ In)λmin((L+ B)⊗ In)‖P‖1+η

≤ −λmin(ξ ⊗ In)λmin((L+ B)⊗ In)(PTP)(1+η)/2

≤ −λmin(ξ ⊗ In)λmin((L+ B)⊗ In)(2V2(t))
1+η

2

≤ −qV2(t)
1+η

2 (15.33)

Using Lemma 15.2, we can conclude that V2(t) → 0 in finite time, and the
settling time is given by

T2 ≤
2V2(x̃(0))
q(1− η)

1−η
2

, (15.34)

where,q = λmin(ξ ⊗ In)λmin((L+ B)⊗ In)2
1+η

2 &x̃(0) = x̃0.

Then,V2(t) = 0,∀t ≥ T2, and xi(t) = x0(t)− δi, ∀i, t ≥ T2.

Hence, finite time consensus can be reached.

Theorem 15.3. [450] Consider the leader-follower-based MAS given by
(15.14), with the communication topology represented by the connected graph
G, and the event triggered consensus protocol defined by (15.20). If the trigger-
ing function is defined by (15.22), then, the inter-event time is lower bounded
by

Ti ≥
ρi
γi
, where, (15.35)

γi = 2
2η−1

2 ηn3−2η‖Ω⊗ In‖2η‖((L+ B)⊗ In)‖V2(0)
2η−1

2

+ (‖K1‖βn+ ‖K2‖)(‖χηi (tik)‖+ ‖K1sign(Si(tik))‖
+ ‖K2Si(tik)‖+Di + 2

η
2 n1−η‖Ω⊗ In‖ηV2(0)

η
2)

so that the zeno behavior can be avoided, where Ω = diag{µ1/(n1 +
1), µ2/(n2 + 1) . . . µN/(nN + 1)}

Proof. Let Ti be the inter-event time, i.e., the time required for the error
to grow from zero to ρi. At t = tik, the control is updated, hence the error
becomes zero, i.e., e(tik) = 0. During the inter-event interval, ‖e(t)‖ ≤ ρi,
so that the consensus condition holds. Employing Lemma 15.5, we can find
‖χ̇i(t)‖ ≤ ‖χ̇(t)‖ ≤ ‖Ω ⊗ In‖‖(L + B) ⊗ In‖‖χη(t)‖ ≤ ‖Ω ⊗ In‖‖(L + B) ⊗
In‖n1−η‖χ(t)‖η, and ‖χiη−1(t)‖ ≤ ‖χη−1(t)‖ ≤ n2−η‖χ(t)‖η−1. In practical

548 Event Triggered Multi-Robot Consensus

scenario, the system trajectory may deviate from the ideal sliding manifold.
But it will remain bounded, which depends on ρi.

d

dt
‖ei(t)‖ ≤ ‖

d

dt
ei(t)‖

≤ ‖ d
dt

[χηi (t)−K1sign(Si(t))−K2Si(t)]‖

For obtaining the derivative of a sign function, we can approximate it using
tanh function [456], i.e., sign(Si(t)) ≈ tanh(βSi(t)), where β >> 1. Using
Lemma 15.5 yields,

d

dt
‖ei(t)‖ ≤ ‖

d

dt
χηi (t)‖+ ‖ d

dt
K1tanh(βSi(t))‖

+ ‖ d
dt

K2Si(t)‖

≤ ηn3−2η‖χ(t)‖η−1‖Ω⊗ In‖‖(L+ B)⊗ In‖
‖χ(t)‖η + ‖K1‖‖[1− tanh2(βSi(t))]βṠi(t)‖
+ ‖K2‖‖Ṡi(t)‖

‖1n×n − tanh2(βSi(t))‖ ≤ ‖1n×n‖ = n, and using (15.24), we can find

d

dt
‖ei(t)‖ ≤ ηn3−2η‖Ω⊗ In‖‖((L+ B)⊗ In)‖‖χ(t)‖2η−1+

(‖K1‖βn+ ‖K2‖)(‖χηi (tik)‖+ ‖K1sign(Si(tik))‖
+ ‖K2Si(tik)‖+Di + ‖χηi (t)‖)

From the proof for Theorem 15.2, we can find that

‖χi(t)‖ ≤ ‖χ(t)‖ ≤ ‖Ω⊗ In‖‖P(t)‖
≤
√

2‖Ω⊗ In‖
√
V2(t) ≤

√
2‖Ω⊗ In‖

√
V2(0)

d

dt
‖ei(t)‖ ≤ 2

2η−1
2 ηn3−2η‖Ω⊗ In‖2η‖((L+ B)⊗ In)‖V2(0)

2η−1
2

+ (‖K1‖βn+ ‖K2‖)(‖χηi (tik)‖+ ‖K1sign(Si(tik))‖
+ ‖K2Si(tik)‖+Di + 2

η
2 n1−η‖Ω⊗ In‖ηV2(0)

η
2)

Solving this for t, with the initial condition, ‖ei(t)‖ = 0,

‖ei(t)‖ ≤ (t− tik)
[
2

2η−1
2 ηn3−2η‖Ω⊗ In‖2η‖((L+ B)⊗ In)‖

V2(0)
2η−1

2 + (‖K1‖βn+ ‖K2‖)(‖χηi (tik)‖
+‖K1sign(Si(tik))‖+ ‖K2Si(tik)‖+Di

+2
η
2 n1−η‖Ω⊗ In‖ηV2(0)

η
2)
]

Event Triggered Sliding Mode-based Consensus Algorithm 549

The event is triggered, when f(t) ≥ 0, i.e., ρi ≤ ‖ei(t)‖. Moreover, (t− tik) ≤
Ti. Hence,

ρi ≤ ‖ei(t)‖ ≤ Ti
[
2

2η−1
2 ηn3−2η‖Ω⊗ In‖2η‖((L+ B)⊗ In)‖

V2(0)
2η−1

2 + (‖K1‖βn+ ‖K2‖)(‖χηi (tik)‖
+‖K1sign(Si(tik))‖+ ‖K2Si(tik)‖+Di

+2
η
2 n1−η‖Ω⊗ In‖ηV2(0)

η
2)
]

where 1 > η > (1/2). Rearranging this equation yields the lower bound for
the inter-execution time given by (15.35). From this, we can ensure that it is
strictly a positive value.

Remark 15.1. By replacing the sign function by tanh function, the chat-
tering inherent in the sliding mode control can be reduced [423].

15.3.1 Consensus-based Tracking Control of Nonholonomic
Multi-robot Systems

The ISMC-based event triggered control algorithm can be validated using
nonholonomic robots. The kinematic model of the nonholonomic robot given in
(13.6) in Chapter 13 can be used here. Considering the kinematic disturbances
(dxi , d

y
i), acting on the system, (13.6) can be redefined as

ẋi = uxi − `ωi sin(θi) + dxi

ẏi = uyi + `ωi cos(θi) + dyi (15.36)

where uxi = vi cos(θi), and uyi = vi sin(θi). (15.36) can be approximated as a
single integrator model given by,

ẋi = ui + di (15.37)

where the unmodelled dynamics and the external disturbances are represented
as lumped uncertainty, given by di; and ui = [uxi , u

y
i]T is the control input,

which can be computed using (15.20). The dynamics looks similar to that of
(15.12).

Example 15.3. Consider a multi-agent system of four agents with one leader
and three followers making a rectangular formation with the agent dynamics
given by (15.12), and the relative state deviations of the followers w.r.t leader
are as follows: δ1 = (1,−1), δ2 = (1, 1) and δ3 = (2, 0).

Design and implement SMC-based event triggered consensus protocol for
the trailing agents, with a and the communication topology given by Fig-
ure 15.5. Consider that the leader is free to navigate, and the deputies will
reach a consensus tracking the leader, and there is no feedback from the fol-
lowers to the chief.

550 Event Triggered Multi-Robot Consensus

2

3

1

0 Chief

FIGURE 15.5: Communication topology.

Solution 15.3. Based on the graph topology, the Laplacian and the leader-
follower connection weight matrix can be obtained as

L =

 1 0 −1
−1 2 −1
0 0 0

 , and B =

 1 0 0
0 1 0
0 0 1

 respectively.

With the agent dynamics given by (15.12), the ISMC-based event triggered
control protocol can be obtained as

ũi(t) = χηi (tik)−K1sign(Si(tik))−K2Si(tik)

The values of the simulation parameters are as follows: ρi = 0.05, ∀i, K1 =
diag{0.25, 0.25, 0.25}, K2 = diag{0.0008, 0.0008, 0.0008}, δ1 = (1,−1), δ2 =
(1, 1), δ3 = (2, 0), Di = 0.195 and η = 5/7. The control is triggered at the
event instants only, where the triggering function is given by

fi(t) = ‖ei(t)‖ − ρi (15.38)

and the measurement error, e, can be computed as

ei(t) = χηi (tik)−K1sign(Si(tik))−K2Si(tik)
− (χηi (t)−K1sign(Si(t))−K2Si(t)) (15.39)

From the trajectories given by Fig. 15.6(a)-15.6(b), we can find that the
deputies are reaching a consensus with respect to the chief in finite time with
the desired state deviation. The event triggering instants and the corresponding
measurement errors for the first 30 s shown in Fig. 15.6(c)-15.6(d), indicate
that the condition for the lower bound for inter-execution time is well satisfied.
Hence, zeno behavior can be avoided.

Event Triggered Sliding Mode-based Consensus Algorithm 551

0 100 200 300 400 500 600

−10

−5

0

5

time(s)

x

(
m

)

x[0] x[1]+δ
1

x[2]+δ
2

x[3]+δ
3

(a)

0 100 200 300 400 500 600

−10

−5

0

5

time(s)

y
 (

m
)

y[0]

y[1]+δ
1

y[2]+δ
2

y[3]+δ
3

(b)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

time(s)

er
ro

r

Deputy1

Deputy2

Deputy3

threshold

(c)

0 5 10 15 20 25 30

time(s)

0

0.5

1

E
1

0 5 10 15 20 25 30

time(s)

0

0.5

1

E
2

0 5 10 15 20 25 30

time(s)

0

0.5

1

E
3

(d)

FIGURE 15.6: Example: (a) x position, (b) y position, (c) measurement error,
(d) Triggering instants.

552 Event Triggered Multi-Robot Consensus

15.4 Experiments
For validating the event triggered based algorithm, we have used the same
experimental set up as given in Section 14.4 in Chapter 14. For the experi-
ments, we have used three robots, in which we have assigned FireBird VI robot
as the chief and the two P3-DX robots as deputy 1 and deputy 2 respectively.
The robots are communicating through a local WIFI network, within which
static IPs are generated and assigned to the robots. The channel bandwidth
is 20 MHz, and the maximum data rate is of 80 Mbps. The Player 3.0.2 robot
device server is running on all the platforms, which facilitates ultimate control
over all sensors and actuators. The sensor rate is configured to be 10 Hz. For
the P3-DX robot, the accuracy of the odometry data lies in the range of ±
1.5 %, whereas, for the FireBird VI robot, it is of ± 6.2 %.

The experimental parameters are chosen as follows: ` = 0.21 m, ρi = 0.02,
∀i, K1 = diag{0.05, 0.05, 0.05}, K2 = diag{0.0008, 0.0008, 0.0008}, δ1 =
(0.7,−0.7), δ2 = (0.7, 0.7), and η = 5/7. From the path of the robots given
by Fig. 15.9(a) and the position as well as velocity trajectories shown in
Fig. 15.9(b)-15.9(d), it is clear that the deputies are reaching a consensus
with the chief with the desired state deviation. We have tested with different
velocities as well as turn maneuvers [450]. In order to confirm the robustness
of the algorithm, the chief’s trajectory is chosen such that the acceleration,
deceleration, right turn as well as left turn maneuvers are included. The con-
trol input, ‖u‖ (velocity), trajectories are given in Fig. 15.9(d). c. The sensor
noise is also predominant in the system. The results show that the controller

(a) (b) (c)

(d) (e) (f)

FIGURE 15.7: Taped video images of robots in formation.

Experiments 553

0 10 20 30 40

time(s)

0

0.5

1E
1

(a)

0 10 20 30 40

time(s)

0

0.5

1

E
2

(b)

FIGURE 15.8: Experimental results: (a) and (b) Triggering instants for deputy
1 and deputy 2 respectively.

−2 −1 0 1 2 3 4
−2

0

2

x(m)

y
(m

)

Chief Deputy1 Deputy2

(a)

0 5 10 15 20 25 30 35 40 45

−5

0

5

time (s)

x
 (

m
)

x[0] x[1]+δ
1

x[2]+δ
2

(b)

0 5 10 15 20 25 30 35 40 45

−0.5

0

0.5

time (s)

y
 (

m
)

y[0] y[1]+δ
1

y[2]+δ
2

(c)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

time(s)

v
el

o
ci

ty

Chief

Deputy1

Deputy2

(d)

FIGURE 15.9: Experimental Results: Path of the agents in formation.

554 Event Triggered Multi-Robot Consensus

0 5 10 15 20 25 30 35 40 45
0

0.5

1

time(s)

e
rr

o
r

Deputy 1 Deputy 2 threshold

FIGURE 15.10: Experimental results: Measurement error for different agents.

is robust enough to deal with the modeling uncertainties as well as other
disturbances.

The measurement error given in Fig. 15.10, indicates that the control is
triggered whenever the triggering condition is violated. The threshold chosen
based on the gains as well as the disturbance bound is also shown in the
Fig. 15.10. From the triggering instants of the deputies given in Fig. 15.8, we
can find that the control is triggered only at discrete event instants. Since
there is a lower bound for the inter-execution time, the zeno phenomenon
won’t occur. To verify the same, we have computed the lower bound on the
inter-execution time, using (15.35), at tik = 18.65 s, where the inter-event
interval attains the minimum value of 0.285 s, and it is found to be 0.0368 s.
The taped video images of the formation are given in Figure 15.7.

15.5 Summary
In this chapter, we have discussed an event triggering based resource optimal
control scheme. Through simulations as well as real-time experimentations, the
consensus based resource-optimal formation control of a multi-agent system in
a leader-follower framework, with bounded disturbances, has been explained
in sufficient detail. Numerical examples are solved for a simple linear system
as well as for a complex multi-agent system, so that the readers will get
a complete outlook regarding the real implementation aspects of the event
triggered control.

16
Vision-Based Tracking for a Human Following
Mobile Robot

16.1 Visual Tracking: Introduction
Object tracking in a video sequence is an important problem in computer
vision research with applications in areas like video surveillance, motion-based
recognition, video indexing, human computer interaction, assistive robotics,
and augmented reality. The field has witnessed an unprecedented advancement
owing to the availability of high quality cameras and inexpensive computing
power, commensurate with the development of ingenious techniques for image
and video processing. An overview of visual tracking is provided in Figure
16.1. In spite of the advancements made in this field, visual tracking is still
fraught with difficulties that can arise due to the following reasons.

16.1.1 Difficulties in Visual Tracking
• Abrupt object motion.

• Appearance pattern change including pose.

• Illumination variation.

• Non-rigid object structure.

• Partial/ full occlusion.

• Camera motion.

To develop a robust visual tracking system, these difficulties should be
addressed properly along with some basic requirements of visual tracking. The
basic requirements of visual tracking are described in the next subsection.

16.1.2 Required Features of Visual Tracking
• Robustness: The tracking algorithm should be able to follow the target

object even in adverse condition.

555

556 Vision-Based Tracking for a Human Following Mobile Robot

Problems

Tracking

Visual

Color

Texture

Generative

Discriminative

Gradients

Spatio−temporal

Optical flow

Abrupt object motion

Appearance pattern change

Illumination variation

Non−rigid object structure

Partial / full occlusions

Camera motion

Robustness

Adaptation

Real−time processing

Requirements

Online learning

methods

Feature descriptors

FIGURE 16.1: Visual tracking at a glance.

• Adaptation: The tracking algorithm should be adaptive to the changes in
the environment as well as to the changes in the target itself.

• Real-time processing: The algorithm should be computationally least
intensive to enable it to be implementable in real-time. This is one of
the primary concerns as the work is related to the navigation of the robot
while tracking a target human.

The first step for visual object tracking is to have a description of the
object to be tracked. Description can be anything like color, texture, shape or a
template image of the object. The details of the feature descriptors commonly
used for visual tracking are provided in the next subsection.

16.1.3 Feature Descriptors for Visual Tracking
In visual tracking, image feature selection plays a critical role. The most desir-
able property of a visual feature is its uniqueness so that the objects can be
easily distinguished in the feature space. The commonly used visual features
are as follows:

• Color :- The apparent color of an object is influenced primarily by two
physical factors, (i) the spectral power distribution of the illuminant and
(ii) the surface reflectance properties of the object. In image processing,
the RGB color space is usually used to represent color. However, the RGB
space is not a perceptually uniform color space. The L*u*v and L*a*b are

Visual Tracking: Introduction 557

perceptually uniform color spaces, while HSV is an approximately uniform
color space.
Recent advances divide the color descriptors into two categories (i)
histogram-based color descriptors, and (ii) SIFT-based color descriptors.
In [457], the hue histogram is made robust by weighing each sample of
the hue by its saturation. In [458], Gevers et al. used an rg-histogram
descriptor, which is based on a normalized RGB color model. In [457],
authors have introduced a concatenation of the hue histogram with the
SIFT descriptor, which is scale-invariant and shift-invariant.

• Texture :- Texture is a measure of the intensity variation of a surface which
quantifies properties such as smoothness and regularity [459,460]. A Gabor
wavelet [461] is the commonly used texture feature. In recent years, the
research is on investigating an image’s local patterns for better detec-
tion and recognition. Ojala et al. [462] developed a very efficient texture
descriptor Local Binary Patterns (LBP), which is defined as a gray-scale
invariant texture measure. The important properties of the LBP oper-
ator is its tolerance against illumination changes and its computational
simplicity.

• Optical Flow :- Optical flow is a dense field of displacement vectors which
defines the translation of each pixel in a region. It is computed by assuming
brightness constancy of corresponding pixels in consecutive frames [463].
Optical flow is commonly used as a feature in motion-based segmentation
and tracking applications. Popular techniques for computing dense optical
flow include methods by Horn and Schunck [1981] and Lucas and Kanade
[464].

• Gradient :- The gradient features are mainly divided into two categories.
The first category of gradient based methods is to use shape/contour to
represent objects, such as the human body [465]. The second category is
uses the statistical summarization of the gradients. In [466], Lowe intro-
duced the well known SIFT descriptor for object recognition. Later, Bay
et al. proposed SURF [467], which is a much faster scale and rotation
invariant interest point descriptor. Dalal and Triggs [468] used the His-
togram of Oriented Gradient (HOG) descriptor in training SVM classifier
for pedestrian detection.

• Spatio-temporal features :- Local space-time features capture characteristic
salient and motion patterns in video and provide relatively independent
representation of events with respect to their spatio-temporal shifts and
scales as well as background clutter and multiple motions in the scene [469].

Selecting a feature for an initial object model description is a crucial task,
as the quality of the description directly translates to the quality of the track-
ing. Even after having a good object description available a priori, contin-
ual adaptation to appearance change is necessary to achieve robust tracking.

558 Vision-Based Tracking for a Human Following Mobile Robot

Handling appearance variations of a target object is an essential task of
visual tracking. The appearance variations can be divided in two categories:
(i) intrinsic and (ii) extrinsic. Pose variation and shape deformation of a target
object are considered as the intrinsic appearance variations while the extrinsic
variations are due to the changes resulting from different illumination, camera
motion, and occlusion. These variations can only be handled with adaptive
methods which are able to incrementally update their representations. Thus,
there is a need for online algorithms that are able to learn continuously. A
brief description of the online learning algorithms is presented in the following
subsection.

This chapter aims at developing robust vision-based algorithms using
point-based features, like SURF, to track a human under challenging con-
ditions that include variation in illumination, pose change, full or partial
occlusion, and abrupt camera motion. Since, the point-based methods use
tracking-by-detection framework, the major problem lies in finding a sufficient
number of descriptors in subsequent frames, as the target undergoes some of
these variations. This chapter studies the problem of constructing an object
model, which evolves over the time to deal with short-term changes, while
maintaining stability on a longer term.

16.2 Human Tracking Algorithm using SURF Based
Dynamic Object Model

A human-following robot needs to track a human walking in front of the robot
using its on-board camera. The person may exhibit natural human motion
including pose changes due to out-of-plane rotations. In this chapter, SURF
is used as the visual feature, which is known to be robust to photometric and
geometric distortions, and computationally efficient compared to other point
features, like SIFT. The interest point based methods make use of object
recognition for detecting a target in a given frame and are less influenced by
abrupt object motion arising out of low frame rate or non-stationary camera.
SURF-based tracking methods usually consist of two steps: (i) To represent
the target or the reference model in terms of feature descriptors, and (ii) to
infer the best location by computing the correspondences between the source
frame and the target frame. The wrong correspondences are usually removed
using RANSAC algorithm [470,471].

The problem associated with interest-point based methods that use
tracking-by-detection framework are as follows [472]:

• The number of matching points obtained vary significantly from one frame
to another and may diminish over time, which leads to the failure of tracker
in a long run.

Human Tracking Algorithm using SURF Based Dynamic Object Model 559

• The computational complexity associated with computing SURF corre-
spondence between a pair of images.
In order to obtain a healthy number of matching points necessary for

object tracking, it is necessary to update the object model with time. In this
chapter, a tracking algorithm is proposed that uses a dynamic object model
description to detect a target in all subsequent frame, which consists of a set
of SURF descriptor points, which evolves over the time. This object model
derives its points from a template pool that helps in reinforcing the features,
which occur more frequently compared to others. In this process, it aims to
resolve the stability-plasticity dilemma in object tracking [472] without having
to learn the actual motion model of the object [473, 474] or creating bag-of-
words through clustering [471]. It is assumed that the human target is big
enough so that a few descriptors could be extracted from it.

The problem of computational complexity associated with computing
SURF correspondence between a pair of images is resolved by using tem-
poral coherence in a video to skip consecutive frames and carry out matching
only when a recognition step is warranted [473].

The proposed dynamic object model description is combined with the
SURF-based mean-shift algorithm, which guarantees tracking of a non-rigid
object with real-time computational power. The proposed approach uses the
concept of dynamic object model description [475] but does not require frame-
to-frame matching, therefore, can be implemented on a mobile robotic plat-
forms. However, this approach is prone to drifting error, which might arise
when background points get added to the pool. Therefore, a second approach
is proposed in which background descriptors are prevented from getting added
into an object template. In the second approach, a SURF-based human tracker
is proposed, which searches the human in the expanded rectangular region
around the last target location. The object model is updated over time by
selecting new templates and projecting the points from previous templates
using an affine transformation. A k-d tree [476] based classifier along with a
Kalman filter predictor is used to differentiate between a case of pose change
and a case of occlusion (partial/full). In this approach, a method is developed
to detect and avoid tracking failure due to out-of-plane rotations, which is
a very difficult problem to solve with point-based features. In order to deal
with the case of full occlusion, a simple auto-regression predictor AR(p) with
p = 5 is learned for predicting the location of the target when no match
points are obtained. The coefficients of the predictor are learned online using
a gradient-descent algorithm [477].

16.2.1 Problem Definition
Consider a set of frames Ii, i = 0, 1, 2, · · ·N of a video sequence, where
a human identified by a user in the first frame is to be tracked over all
the frames. The human is identified by a polygon P0 drawn by select-
ing the points on the boundary of the human silhouette. Let V (I) =
{(x1,v1), (x2,v2), · · · , (xn,vn)} be the set of SURF key-points of the image I,

560 Vision-Based Tracking for a Human Following Mobile Robot

where xi is a 2-dimensional key-point location of the 64-dimensional SURF
descriptor vi. The SURF key-points lying within a polygon Pt is represented
by the symbol VP (t) for any frame It. The corresponding rectangle bounding
these points is represented by Wt.

The SURF correspondence between two images is the set of best matching
key-points, which is defined as

ζ(It ∼ Ir) , {(x1,v1)t, · · · · · · , (xm,vm)t, (x1,v1)r, · · · · · · , (xm,vm)r},
(16.1)

where It is the current image, and Ir, r ∈ (0, t−1), is any other image encoun-
tered in the past. The set of SURF descriptors of the image It, which matches
with those of the image Ir, lying within its own polygon Pr, is represented by
ψv(t)r. The corresponding key-point locations are denoted by ψx(t)r. Mathe-
matically, it can be written as

(ψx(t), ψv(t))r = {(xi,vi)t|(xi,vi)t ∈ ζ(It ∼ Ir)∧xri ∈ Pr, i = 1, 2, . . . , p ≤ m}.
(16.2)

Hence, the set (ψx(t), ψv(t))r is a subset of ζ(It ∼ Ir). The tracking poly-
gon Pt, on an image It, is represented by Pt = (Bt, ct), where ct = (cx, cy) is
the center of the polygon, and Bt is the set of key-point locations enclosed by
the polygon defined as

B0 = {xi|(xi,vi) ∈ V0 ∧ xi ∈ P0}. (16.3)

Given I0, P0(B0, c0), and V0, the task is to compute Pt(Bt, ct) for all
frames t = 1, 2, . . . N .

The next subsection discusses the object model description that is used in
the proposed tracking algorithm.

16.2.2 Object Model Description
The object model description consists of three different sets of SURF key-
points and descriptors, as shown in Figure 16.2. The first set is obtained
by finding the SURF correspondences between the consecutive images repre-
sented by ζ(It ∼ It−1). The set of points (ψx(t), ψv(t))t−1, which is a subset
of ζ, obtained above constitutes the set M1(t).

The second set is obtained by finding the SURF correspondences between
the the first frame I0 and the current frame It, represented by ζ(I0 ∼ It).
The subset of key-points corresponding to the points within the polygon P0
constitute the set M2(t) = (ψx(t), ψv(t))0, as explained in Section 16.2.1.

The third set is obtained by finding the correspondence between the SURF
descriptors of a template pool with those of the current frame V (It). Only
those points of the current frame are retained in this set, which lie within the

Human Tracking Algorithm using SURF Based Dynamic Object Model 561

SURF keypoints M1(t) SURF keypoints M2(t) SURF keypoints M3(t)

Object model description

obtained by matching
current frame It with
previous frame It−1:
(ψx(t), ψv(t))t−1 (ψx(t), ψv(t))0

the first frame I0:
current frame It with
obtained by matching obtained by matching

current frame It with
template pool TP (t)

FIGURE 16.2: Object model description.

scaled reference window Wt. This set of point is represented by M3(t). This
window is centered at the center of the polygon formed by the key-points of
M1(t). Hence, the object model is described as

Om(t) = {M1(t) ∪M2(t) ∪M3(t)}. (16.4)

In order to obtain a reliable object model, it is important to eliminate
outliers while forming these sets of SURF descriptors. In this algorithm,
RANSAC based on homography is used to avoid outliers in set M1(t). For
the set M2(t), scaling [478] and k-nearest neighbor [472] are used to remove
outliers. RANSAC cannot be used in this case, as one can expect a significant
displacement of a target in these two images. For the third set M3(t), outliers
are avoided by putting a threshold on the similarity between the descriptors
of the template pool and the matching points obtained on the current frame
It within the window Wt.

It should be noted that an object model Om(t) is a function of the cur-
rent frame, therefore, it is dynamic in the nature. This model evolves over
time, and hence, accommodates the variations that may arise due to change
in poses or in motions. The set M1(t) provides high frequency temporal infor-
mation about the model change that can occur between consecutive frames.
The set M2(t) provides the stable information obtained from the first frame,
which is expected to vary little over the frames. On the other hand, the set
M3(t) obtained from the template pool of descriptors provides low frequency
temporal information about the model variation over all previous frames It−2
to I0.

16.2.2.1 Maintaining a Template Pool of Descriptors

The template pool consists of a set of SURF descriptors, which is updated
over the time. The number of descriptors in this set is limited to 5,000, which
can be varied by the user. Mathematically, this set can be written as

Tp(t) = {Tp(t− 1) ∪ ψv(t)t−1}. (16.5)

In order to keep a check on the size of the template pool, the oldest descriptors
are pushed out by the same number of incoming new descriptors.

562 Vision-Based Tracking for a Human Following Mobile Robot

Algorithm 19 Human tracking algorithm using SURF-based dynamic object
model
Input: n video frames I0 · · · , In

Polygon P0 of human in the first frame
Output: Polygon P1, · · · , Pn

Step 1: Initialization(for frame I0):

• Initialize the reference target model with V0 and push its descriptors
(ψv(0)) into Tp

Step 2: For each new frame It do:

• Obtain the set M1(t) by matching current frame It with previous frame
It−1: (ψx(t), ψv(t))t−1 and update template pool Tp(t)

• Obtain the set M2(t) by matching current frame It with the first frame
I0: (ψx(t), ψv(0))0

• Obtain the set M3(t) by matching current frame It with the template
pool Tp(t)

Step 3:
if OM (T) > threshold then
Fit polygon Pt on total matched points

else
Occlusion detected

end if

if Occlusion detected then
Predict target location

else
Update AR(p) predictor

end if

16.2.3 The Tracking Algorithm
The steps involved in the proposed method is given in Algorithm 19, and

the method is described pictorially in the flowchart, as shown in Figure 16.3.
The tracking algorithm consists of three modules, namely, target initialization,
object recognition and template pool update, and prediction of target location
in case of occlusion. These individual modules are explained in the following
subsections.

Human Tracking Algorithm using SURF Based Dynamic Object Model 563

recognition
Object

Select the human in
first frame using mouse

&

update
Target model

Update template pool

M3(t)

Matched points having
descriptor difference < 0.05

M2(t) M1(t)

Feature matching

ψv(t)t−1

I0

Extracted SURF featuers
Previous frame, Convex hull,Current frame,

Total matched points

No

Yes Fit convex hull Pt on

predict human center

If
Om(t) > Threshold

Occlusion detection & AR(p) prediction

Initialization
Target

Reference target model

Start

Capture new frame

Feature matching

Matched
points

Update Scale
factor

Feature matching

Scale the reference
window with scale factor

Predict

Update

total matched points
and get center

Occlusion detected
to previous frame

Copy current frame

Extraction of SURF features

scaled reference window

FIGURE 16.3: Block diagram of the human tracking algorithm using SURF-
based dynamic object model.

16.2.3.1 Step 1: Target Initialization

Target is initially selected in the first frame I0 by manually marking points
on the boundary of the human silhouette. The resulting polygon is denoted
by P0. The SURF key-points lying within this polygon VP (0) is taken as the
reference model, which is used for populating the set M2(t), as explained in
Section 16.2.2. This set is bounded by the rectangle W0 on the first frame.

16.2.3.2 Step 2: Object Recognition and Template Pool Update

In this module, the target is detected in the current frame It by finding all the
SURF key-points matching with those present in the object model Om(t). The
polygon Pt, bounding these matching points Bt, defines the target (object) in
the current frame It. The set of matching descriptors obtained between two
consecutive frames represented by the set (ψx(t), ψv(t))t−1, is used to update
the template-pool, as described in Section 16.2.2.1.

564 Vision-Based Tracking for a Human Following Mobile Robot

A part of this template pool is included to the object model description,
as the set M3(t), as described above. This set, in turn, contributes toward
defining the convex hull of the target in the current frame It. These matching
points again become the part of the template pool for the next frame. Thus,
the frequently matching descriptors survive in the pool for a longer period
of time, as compared to those insignificant features, which appear once in a
while during matching.

16.2.3.3 Step 3: Occlusion Detection, Target Window Prediction

In this algorithm, it is assumed that an occlusion may occur if the total number
of matching points between the current frame V (It) and the object model
Om(t) is less than a user-defined threshold. The threshold is defined as the
20% of the points present in the object model. In case of occlusion, the center
of the tracking polygon is predicted using a simple auto-regression model
AR(p), where p = 5. A search for the matching key-points with the object
model is done within a rectangular region around this center. The dimension
of the rectangular window is obtained after applying cumulative scaling on
the original window W0. If the number of matching points is less than the
threshold, the target is still occluded.

If matching is found, then the tracking is reinitialized by creating a polygon
around the match points. The parameters of the AR predictor are learned
using a gradient-descent algorithm, whenever a target is detected on an image
frame.

16.2.4 SURF-Based Mean-Shift Algorithm
Direct SURF correspondences between two consecutive frames cannot be used
for tracking because of the inherent image noise, which makes many of the
descriptors transient and will be thrown away when consecutive frames are
matched [473]. Secondly, computing SURF correspondences between complete
images to localize the target is computationally expensive as the number of
descriptors available for a given image may be quite large. Hence, it is pertinent
to carry out SURF matching only in a local region around the current location.

The best local search algorithm is mean-shift tracking, which is based on
color histogram matching [479]. Mean-shift tracking requires a histogram of
the object template, which is formed by creating a fixed number of clusters in
the SURF feature space. SURF histograms have been used for object recogni-
tion [480, 481], and place recognition [482] using bag-of-words approach. The
center of the new target window is computed by the mean-shift algorithm,
and given by

z =

n∑
i=1

wig

(∥∥∥∥x− xi
h

∥∥∥∥2
)

xi

n∑
i=1

wig

(∥∥∥∥x− xi
h

∥∥∥∥2
) , (16.6)

Human Tracking Algorithm using SURF Based Dynamic Object Model 565

where g(x) = −k′(x) is the derivative of the kernel profile and wi is the weight
associated with each key-point location xi of the source window, which has a
correspondence in the target window. The new center location depends on the
number of correspondences n between the source and the target window. The
SURF correspondences between windows are computed using the minimum
distance criterion, and RANSAC [470] is used for removing outliers.

Histogram creation requires availability of sufficient number of SURF key-
points for the object template, which may not be available if we start with a
single template. The problem is partially solved by using re-projection method,
where the source histogram is enriched by making homo-graphic projection
of matching points from the target window to the source window at the end
of each mean-shift convergence. The details of the algorithm are provided
in [483]. The approach properly works when there is no significant change
in the pose or shape, and sufficient matching SURF key-points are available
between any two consecutive frames. However, in case of a severe change in
the appearance of the target, the number of matching descriptors available
may fall drastically causing the tracker to fail. Therefore, instead of using a
single template, a template pool is used to create histogram. This template
pool is updated by a modified object model description in each iteration to
accommodate for the change in poses, and is explained in the following sub-
section.

16.2.5 Modified Object Model Description
The object model Om consists of three different sets of SURF key-points
and descriptors. The first set is obtained by the mean-shift tracker and is
represented asM1(t). The mean-shift tracker gives the SURF correspondences
between the object description Om(t − 1) and the descriptors of the window
Wt of image It as ζ(IOm(t−1)

t−1 ∼ IWt
t). The matched key-points and descriptors

of the IWt
t (i.e. V (IWt

t)) are directly added to the M1(t). Mathematically, it
can be written as

V (IWt
t) = {(xi,vi)t|(xi,vi)t ∈ ζ(IOd(t−1)

t−1 ∼ IWt
t), i = 1, 2, · · · ,m}. (16.7)

The matched key-points of Om(t − 1) are first projected on an image It by
replacing the xt−1

i by xti and then key-points and descriptors of the IOd(t−1)
t−1

(i.e.V (IOd(t−1)
t−1) ∈ ζ(IOd(t−1)

t−1 ∼ IWt
t)) are added to the M1(t).

The second set is obtained by applying nearest neighbor approach on the
setM1(t) and is represented asM2(t). To get the region, where nearest neigh-
bor approach has to be applied, the mean-shift tracker window of images It−1
and It are resized (increasing the window size to 120% of its original size) and
the SURF correspondences between the two resized window is obtained as
ζ(IW

R
t−1

t−1 , I
WR
t

t). The key-points lying in the region WR
t−1 −Wt−1 are obtained

and a polygon PR is formed by using their corresponding key-points on image

566 Vision-Based Tracking for a Human Following Mobile Robot

Matching with Tp

Om=M1(t) ∪M2(t) ∪M3(t)

approach around M1(t)
Mean-shift Tracker

M1(t)
M2(t)

M3(t)

Nearest neighbor

Make polygon
Pt from Om

histogram
Update Tp &

Initialize Om,Tp

Select the human
in 1st frame P0

Make histogram from Tp

Initialize mean-shift tracker

Capture New frame

FIGURE 16.4: Block diagram of the proposed tracking algorithm.

It. All the key-points and descriptors of IW
R
t

t (i.e. V (IW
R
t

t)), which lie inside
the polygon PR and have a distance less than a user specified threshold with
any point of the set M1(t), are added to set M2(t).

The third set is obtained by finding the correspondence between the SURF
descriptors of the template pool with those of the V (IWt

t) i.e. ζ(Tp(t) ∼ IWt
t).

Only those key-points and descriptors of the ζ(Tp(t) ∼ IWt
t) are retained in

this set that have a distance less than a user specified threshold with any point
of the set (M1(t) ∪M2(t)), and is represented by M3(t).

16.2.6 Modified Tracking Algorithm
The block diagram of the proposed algorithm is shown in Figure 16.4. The
bounding rectangle of the polygon P0 (drawn on the boundary of the human
silhouette in the first frame) is used, as the initial window W0 for the mean-
shift tracker. The object model is initialized as Vp(I0) and the template pool is
initialized with ψ(Vp(I0)). The histogram for mean-shift tracker is made using
the SURF descriptors of the template pool Tp. This histogram gets updated in
each iteration, as the template pool is updated. The mean-shift tracker gives
the best matched SURF correspondences between the object model (Om) and
the SURF descriptors of the window Wt of image It and constitutes the set
M1(t). The object description is populated with set M2(t), which is made by
using the nearest neighbor approach. The SURF matching of windowWt with
template pool results in the set M3(t). The new object model is calculated,
as per Equation (16.4). The template pool is updated in each iteration using
the set M2(t). The convex hull of the points of the object description gives
the desired polygon Pt.

Human Tracking Algorithm with Pose Change Detection 567

Visual Controller Mobile Robot Human detection
algorithm

V
image

H

yc
xc

yd

xd

ω

yr

xr

FIGURE 16.5: Schematic block diagram of a human following robot. Human
detection and tracking algorithm locates the target to be followed by the
robot. The location of the target in the image plane is used by the visual
controller block to generate necessary motion commands for the mobile robot
which allows it to follow the human. The depth value obtained from Kinect
allows the robot to maintain a constant distance from the target.

16.3 Human Tracking Algorithm with the Detection of
Pose Change due to Out-of-plane Rotations

In this section, a SURF-based human tracker is proposed which searches a
human in the expanded rectangular region around the last target location.
The object model is updated over time by selecting new templates and pro-
jecting points from previous templates using affine transformation. The pro-
posed approach seeks to detect and avoid tracking failure due to out-of-plane
rotations, which is a very difficult problem to solve with point-based features.
The pose change due to out-of-plane rotations is confirmed by using the aspect
ratio of the bounding region of points projected using affine transformation.
Whenever the SURF-based tracker fails to detect the target human, a k-d tree
based classifier is used to differentiate between a case of a pose change and an
occlusion.

16.3.1 Problem Definition
Consider a set of frames Ii, i = 0, 1, 2, · · ·N of a video sequence, where an
object identified by a user in the first frame is to be tracked over all the frames.
The object is identified by the user by selecting a rectangular region on the
first frame. Let this rectangular region be denoted by W0 corresponding to
the first image I0. Let V (Wi) = {(x1,v1, ω1), (x2,v2, ω2), · · · , (xn,vn, ωn)}
be the set of SURF features of an image Ii within the window Wi, where xi
is the 2-dimensional key-point location of the 64-dimensional SURF descrip-
tor vi, and ωi is the weight assigned to the SURF descriptor vi. The initial
weights are assigned so as to ensure that the descriptors survive at least for
few frames. In the proposed approach, the initial weight for the descriptors
are taken as 15. The set of key-point locations in a given window or a frame
is denoted by Vx and corresponding set of descriptors is denoted by Vv. The

568 Vision-Based Tracking for a Human Following Mobile Robot

SURF correspondence between a source window Ws and a target window Wt

is the set of best matching key-points and descriptors given by

V (Ws ∼Wt) , {(x1,v1, ω1)s, · · · , (xm,vm, ωm)s,(x1,v1, ω1)t, · · · ,
(xm,vm, ω1)t}, (16.8)

where superscript s represents source window and t represents target window.
The tracking windowW is represented byW = (c, w, h) where c = (cx, cy)

center of the window with width w and height h. Given I0, W0 and V (W0),
the task is to compute the tracking window Wi(ci, wi, hi) for all image frames
i = 1, 2, · · · , N .

16.3.2 Tracking Algorithm
The tracking problem could be described as follows. Consider a set of frames
Ii, i = 0, 1, 2, · · ·N of a video sequence, where an object identified by the user
in the first frame is to be tracked by a mobile robot over all the frames. The
block diagram of the proposed scheme is given in Figure 16.5. The object is
identified by the user by selecting a rectangular region on the first frame. Let
this rectangular region be denoted by W0 corresponding to the first image I0.
Let V (Wi) = {(x1,v1, ω1), (x2,v2, ω2), · · · , (xn,vn, ωn)} be the set of SURF
features of an image Ii within the window Wi, where xi is the 2-dimensional
key-point location of the 64-dimensional SURF descriptor vi and ωi is the
weight assigned to the SURF descriptor vi. Vx is used to denote the set of
key-point locations in a given window or a frame, and Vv is used to denote
the corresponding set of descriptors. The tracking window W is represented
by W = (c, w, h) where c = (cx, cy) center of the window with width w and
height h. Given I0,W0 and V (W0), the task is to compute the tracking window
Wi(ci, wi, hi) for all image frames i = 1, 2, · · · , N .

The proposed method for visual tracking of human using SURF is
explained in the flowchart provided in Figure 16.6. It primarily consists of four
parts: (1) Initialization, (2) Tracking, (3) Template Update, and (4) Error-
recovery. In the initialization part, an object model is defined for the target,
which is to be tracked in subsequent frames of the video. The initialization
is carried out once in the first frame for a given video sequence. In the track-
ing module, a SURF-based tracker is used to locate the target in the next
frame. A Kalman filter motion predictor is updated whenever the target is
successfully detected by the SURF-based tracker. The template update mod-
ule, selects a new template and updates the object model by projecting the
points from previous template to current template. The error recovery module
provides the way to deal with pose change and occlusion. All these modules
are described in detail in the following subsections.

Human Tracking Algorithm with Pose Change Detection 569

Update template by
projecting points from

previous templates

STOP

START

Classifier to Confirm

Use k−d tree based

Presence of Target

Update k−d tree

No

Yes

No

Yes

Yes

No

Yes No

Yes

No
Last Frame?

Parameters

Occlusion
Detected

Recovery

Occlusion?
from

repositioning

Scaling and

T
em

p
la

te
 U

p
d

a
te Select as New Template Matching to

locate Target

Scale Change > 20% ?
Is it a pose change?

Tracker Fails?
Predict Target

Location

Filter to
Use Kalman

Use SURF−Based Tracker
to Localize Target

First Frame? Define Object Model by

Manually selecting ROI

Capture New Framet = t+1

T
ra

ck
in

g

Initialization

Yes

Expanded box

Error Recovery

No

Update

FIGURE 16.6: Flowchart of the proposed human tracking algorithm.

16.3.3 Template Initialization
In this module, the target human to be tracked is selected manually by drawing
a rectangle box W0 around it in the first frame I0. The SURF descriptors
present in this box, represented by V (W0) also include some descriptors from
the background region. The inclusion of background descriptors into the object
template are most hazardous, since they increase the probability of negative
correspondence during the tracking phase. In order to remove the background
SURF descriptors from the object template, an ellipse that fits inside the
rectangle W0 is drawn, as shown in Figure 16.7(b). The SURF descriptors
present within this elliptical region (e0) is represented as V (e0). The set V (e0)
may still contain a few descriptors that belong to the background. In order
to remove these remaining background descriptors from the object template,
a region growing algorithm (flood-fill) is applied to the key-points that lie
outside the elliptical region [484]. The flood-fill algorithm fills the adjacent
cells having same pixel intensities with same color. In this way, the background
region is segmented from the foreground, as shown in Figure 16.7(c). All the
descriptors, which belong to this segmented background region (BR) are now

570 Vision-Based Tracking for a Human Following Mobile Robot

(a) (b) (c)

FIGURE 16.7: Object template selection - Set of SURF descriptors (a) in the
selected rectangle region, (b) after fitting the ellipse in rectangle region, (c)
after removing background inside the ellipse using region growing method.

removed from the object template. Mathematically, the object template (OT0)
can be defined as

OT0 = {(xi,vi, ωi)|(xi,vi, ωi) ∈ V (W0) ∧ xi ∈ e0 ∧ xi /∈ BR,
ωi = 15, i = 1, 2, . . . , p ≤ m} (16.9)

where m is the number of SURF descriptors present inside the window W0.
The object model (OM0) is initialized with the object template. All the SURF
descriptors of the object model are assigned an initial weight ωi. The initial
weight is selected so as to ensure that the descriptors survive at least for a
few frames. In this work, the initial weight for a descriptor is chosen as 15.
This step is repeated whenever a new template is selected. This is a crucial
step that helps in avoiding tracker drift for a longer duration.

16.3.4 Tracking
In this module, the target is localized in the next frame using direct SURF
matching. The SURF correspondences are computed between the current
object model and the new frame within a bounded rectangular region around
the last target location. The bounded region is 10% bigger than the last target
window. The wrong matches are removed by using Random Sample Consen-
sus (RANSAC) based on homography [470, 471]. The tracking is considered
successful if the percentage match between the source and destination region
is found to be greater than a user defined threshold (θ). The percentage match
is defined as,

Mp = Nm
Ns
× 100 (16.10)

Human Tracking Algorithm with Pose Change Detection 571

where Ns is the number of SURF key-points present in the last selected
template, and Nm is the number of matching key-points obtained through
SURF correspondence. The match threshold (θ) used in this work is 20. If
the tracking is successful, the weights of the descriptors of the object model
is updated as

ωi(t+ 1) =
{
ωi(t) + 2 if match is found
ωi(t)− 1 otherwise. (16.11)

The tracker window is scaled and repositioned, as described in the following
section. The new tracker location is used to train the Kalman filter motion
predictor.

16.3.4.1 Scaling and Re-positioning the Tracking Window

As the size of human being tracked may vary over time, the tracking window
needs to be scaled and re-positioned in order to avoid spurious background
descriptors being included into the template information. The bounding box
around the human is divided into three parts. The torso region having max-
imum number of matching descriptors is used for computing the scaling fac-
tor, as explained in [478]. The re-positioning of the tracker window is done by
obtaining the center of the points in the torso region and then shifting it by
using the body ratio of the human.

16.3.5 Template Update Module
The object model used for tracking the target by SURF-based tracker needs
to be updated in order to accommodate for the temporal changes that the
target may undergo during its motion. The update of object model in this
case includes two steps.

1. A new template is selected only when the current template is inadequate
to detect the target in the next frame using SURF correspondences. This
happens when substantial movement has accumulated over time render-
ing the current template unfit for detecting the target in the new frame.
Therefore, a new template is selected whenever the KD-tree based clas-
sifier confirms the pose change case in the predicted tracker window. To
avoid the frequent failure of the tracker, a new template is selected when-
ever the tracking window obtained from SURF-based tracker undergoes a
scale change of more than 20% or the target recovered from occlusion.

2. Selecting a new template can detect the target over short-term, it might
fail over longer run in the absence of stable descriptors, which matched
frequently in previous frames. Hence, to maintain stability over long run,
these stable features need to be incorporated into the new template so
as to resolve the stability-versus-plasticity dilemma [472]. All the SURF
descriptors, which have non-negative weight, along with their key-point

572 Vision-Based Tracking for a Human Following Mobile Robot

locations are added to the new template by using the affine transformation
(AT). AT reflects the displacement between the new template and the last
template. Although the human motion is non-affine in nature, the torso
region under the assumption of upright human position can be considered
as a rigid object and its motion can be considered, as an affine motion.
The AT [485] model is given by(

fx,k+1
fy,k+1

)
=
(
a0 a1
a3 a4

)(
fx,k
fy,k

)
+
(
a2
a5

)
(16.12)

The six parameters in the model is estimated using the least-square
method for the set of points obtained in the torso region through SURF
correspondence between the two templates.

Therefore, the updated object model can be defined as

OMn = {OTn ∪ (xi,vi, ωi) | (xi,vi, ωi) ∈ OTn−1

∧ xi ∈ g(Vxn−1) ∀ ωi ≥ 0, i = 1, 2, . . . ,m} (16.13)

where m is the number of SURF-descriptors present in the OTn−1 and g(.)
represents the affine transformation. Note that a subset of the past features,
which are occurring more frequently are projected onto the current template.
This reduces the computational and memory requirement by avoiding lin-
early increasing number of descriptors in the object model with the increasing
frames in a video. The computational and memory requirement of the pro-
posed algorithm is much less compared to methods reported in [475,486]. The
projected descriptors with their key-point locations lead to better matches in
subsequent frames.

16.3.6 Error Recovery Module
This module is executed whenever the SURF-based tracker fails to detect the
human. The tracker fails to localize the target in a frame, when the number
of matching points between the source and the target windows falls below
a certain threshold. Such a case might arise under two conditions: (1) the
target is present but its appearance has changed significantly from the current
object template due to pose change such as out-of-plane rotations, and (2)
the target is partially or fully occluded by other objects in the environment.
Compared to other effects like variation in illumination or scaling, the pose
change due to out-of-plane rotations lead to frequent tracking failures. In order
to differentiate a case of pose change from that of an occlusion, a KD-tree
based classifier is used is this algorithm.

16.3.6.1 KD-tree Classifier

In this algorithm, a KD-tree is used for feature matching or to classify a
tracker window whether its belongs to the foreground or to the background.

Human Tracking Algorithm with Pose Change Detection 573

Directly matching raw features extracted from the current tracker window
with the older templates represents an reasonable similarity measurement and
can be used for classification. The problem is that the direct feature matching
via linear search can soon become intractable with the increasing number
of templates to be processed and prevent its real-time implementation. In
contrast, a tree structure is an efficient data structure for feature matching
[487] and can provide online processing in classification due to its efficiency. In
the proposed algorithm, a KD-tree is built over all the template features and
a tree search is performed for the features extracted from the query tracker
window. The idea of using KD-tree for feature matching is inspired by the
following facts.

The KD-tree reduces the search complexity from linear to logarithmic
and compares one dimension of the high-dimensional features each time, and
thus, avoids the distance computations (the most time-consuming part in
finding the correct nearest neighbor for a query feature with linear search).
The second fact is that the distance ratio method [476] is an effective way for
verifying putative matches. In distance ratio method, a correct match requires
the ratio between the distances of the closest and second closest neighbor to
the query feature to be below some given threshold. This work focus more on
the applicability of the tree structure in identifying foreground descriptors by
using distance ratio technique.

16.3.6.2 Construction of KD-Tree

The KD-tree is initially built with the descriptors of the first template and
these descriptors are pushed into the feature poolD. Whenever a new template
is selected, its descriptors are inserted to the feature pool D and the KD-tree
is reconstructed over all the features in D. Hence, D always includes the
features extracted from all the templates and the tree is updated every time a
new template is selected. When the SURF-based tracker fails to converge due
to unavailability of sufficient number of matching points, the descriptors of the
tracker window, whose location is predicted by the Kalman filter is subjected
to a KD-tree based classifier to distinguish the above two situations. Let Q
be the set of SURF descriptors extracted from the current tracker window.
For each descriptor in Q, it will go through a tree search in the current KD-
tree and top two nearest neighbors are returned. Distance ratio is applied to
determine whether the closest one is a good match or not. If it is a good match,
then it is considered as a foreground descriptor, otherwise, it is considered as
a background descriptor. If the number of foreground descriptors is more than
1.5 times of background descriptors in the tracker window, then it is considered
a case of pose change, otherwise, it is considered a case of occlusion.

16.3.6.3 Dealing with Pose Change

Once the KD-tree based classifier confirms that the human is present in the
tracker window predicted by the Kalman filter, it is necessary to figure out that

574 Vision-Based Tracking for a Human Following Mobile Robot

using
Projection

Affine
Transformation

New templateLast template

FIGURE 16.8: Detecting out-of-plane rotations by using the aspect ratio of
points projected using affine transformation.

the pose change is due to in-plane-rotations or out-of-plane rotations. If the
target undergoes a significant amount of out-of-plane rotation (side pose) and
the object model is updated with this template, then a number of background
descriptors will get include into the object model, and results in failure of
the tracker. Therefore, the object model is only updated with the template, in
which pose change is either due to in-plane rotations or due to small amount of
out-of-plane rotations. The out-of-plane rotations can be checked by projecting
the points of the previous template onto the current template through the
affine transformation obtained between the two templates, as shown in Figure
16.8. As one can see, the projected points get concentrated on a line during
significant out-of-plane rotations and this information could be utilized to
avoid tracking failure.

To prove that the points get concentrated with increasing amount of out-
of-plane rotations, thirty points are taken on the boundary of a circle in x-y
plane, as shown in Figure 16.9 by red circles. In an image, the out-of-plane
rotation is the rotation about y-axis and its rotation matrix is given by

R(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (16.14)

In this experiment, a rotation of 0, 15, 30, 45, 60, 75 and 90 degrees is applied
on these points and these points are plotted, as shown in Figure 16.9. The
value of z-coordinate is taken as zero. One can see in Figure 16.9 that these
points get concentrated with increasing amount of rotations and finally at
90 degree rotation, these points get concentrated on a straight line. This is
pictorially demonstrated on dataset D6 in Figure 16.10.

16.3.6.4 Tracker Recovery from Full Occlusions

Once the occlusion is detected, the location of the tracker window is pro-
vided by a Kalman filter based predictor. The confirmation about occlusion is
obtained from the KD-tree based classifier which identifies it as a background.

Human Tracking Algorithm with Pose Change Detection 575

-100

-50

 0

 50

 100

-100 -50 0 50 100

y
-
a
x

i
s

x-axis

0
15

30
45

60
75

90

FIGURE 16.9: Thirty points are taken on the boundary of a circle in x-y
plane. With increasing amount of out-of-plane rotation, these points get closer
to each-other and finally merged in a straight line at 90◦ rotation.

FIGURE 16.10: Demonstration of projected points during out-of-plane rota-
tion on dataset D6.

However, if the target is occluded for several consecutive frames, the motion
predictor might drift from the actual trajectory of the target in absence of
update over these frames. Therefore, in such cases, the SURF-based tracker
is used to search around the location predicted by the Kalman filter with
increasing size of the tracker window. In the worst case, a frame-to-frame
matching between the current image and the past template image could be
used to locate the target once it recovers from the occlusion. In most cases, a
local search around predicted position is adequate to recover the target.

In order to implement the proposed visual human tracking algorithm on
a mobile robot, a visual servo controller is designed in the next section which

576 Vision-Based Tracking for a Human Following Mobile Robot

takes data from the tracking algorithm and gives motion commands to the
mobile robot.

16.4 Human Tracking Algorithm Based on Optical
Flow

Optical flow is used to track specific features (points) in image over the time,
where the movements of the pixels (points) from one frame to another frame
were converted into velocity vector. It is defined as follow

I(x, y, t) = I(x+ dx, y + dy, t+ dt), (16.15)
where I is the intensity value of the image, and t is the displaced time for the
intensity value. In this research work, Lucas-Kanade optical flow method is
used [488]. The Lucas Kanade method assumes that the displacement of the
image contents between two consecutive frames is small and approximately
constant within a neighborhood of the point p under consideration. Thus, the
optical flow equation can be assumed to hold for all pixels within a window
centered at p. Therefore, the local image flow (velocity) vector (vx, vy) must
satisfy

Ix(qi)vx + Iy(qi)vy = −It(qi), where i = 1, 2, .., n; (16.16)
q1, q2, . . . , qn are the pixels inside the window; and Ix(qi), Iy(qi), It(qi) are the
partial derivatives of the image I with respect to position x, y, and time t,
evaluated at the point qi, and at the current time. These equations can be
written in matrix form Av = b, where

A =


Ix(q1) Iy(q1)
Ix(q2) Iy(q2)

...
...

Ix(qn) Iy(qn)

 , v =
[
vx
vy

]
, b =


−It(q1)
−It(q2)

...
−It(qn)

 . (16.17)

The Lucas-Kanade method obtains the solution of this over-determined sys-
tem by the least squares as

v = (ATA)−1AT b. (16.18)
Optical flow has been used in a large number of tracking algorithms, as in

Kalal’s TMD model [489], active appearance models (AAM) [490], and with
SURF [491] etc. The optical flow tracker used in the proposed approach is
similar to the SURF-based optical flow tracker described in [491]. However,
the proposed approach does not compute the parameters of the warp matrix or
update of the eigen basis representation of the model using incremental PCA

Human Tracking Algorithm Based on Optical Flow 577

with MS window
Reinitialize OF

Update KFMP
with OF

Update KFMP
with MS

Update KFMP
with OF

Predict human

KFMP
location usingusing OF tracker

Find human window
using MS tracker

Find human window

START

Initialize MS,OF
and KFMP

Select the human
manually and

Yes

Capture new frame

No

MS=1 & OF=1
If

?
MS=1 & OF=0

?

If
MS=0 & OF=0

?

IfIf
MS=0 & OF=1

?

Last frame
?

STOP

Reinitialize MS
with OF window

Use KFMP to
locate human

scaling
Use MS/OF for

Occlusion Pose changeAbrupt motionTracking

Yes

No

Yes Yes Yes Yes

Template initialization

Use MS to recover
occlusion

Template pool
update

Select new template

1st frame ?
initialize 1st template

FIGURE 16.11: Flowchart of the proposed optical flow-based algorithm.
Human is selected manually in first frame and tracked with optical flow and
mean-shift tracker in subsequent frame.

algorithm [492], as has been done by the authors. The optical flow works
under the assumption of temporal persistence and spatial coherence, and may
fail in case of abrupt camera motion or low frame rate [493, 494]. In case of
gradual pose change, optical flow may be used to localize the tracker window
by estimating the positions of current SURF key-points in the next frame. The
optical flow serves two purposes in the proposed approach. First, it helps in
scaling the bounding box for the target being tracked. Secondly, it is used for
selecting templates over time particularly in cases, where the target undergoes
change in pose due to out-of-plane rotations.

The proposed method is explained in the next section that makes use
of the above two trackers to yield robust tracking of human in a dynamic
environment. The flowchart of the proposed scheme is shown in Figure 16.11
and the working of the proposed algorithm is illustrated in Figure 16.12.

16.4.1 The Template Pool and its Online Update
The template pool P is a collection of SURF descriptors obtained from the
templates that are selected online. Each template is represented by a set of
SURF descriptors available within the tracker window Wj . Mathematically,
template pool can be defined as

P , {Vv(Wj), j = 1, 2, · · · , r}, (16.19)

578 Vision-Based Tracking for a Human Following Mobile Robot

Both MS and OF fails

: Occlusion

Selected as

a Template

First Template

is selected manually

OF Tracker

MS Tracker

OF Tracker failsMS tracker fails

Motion Predictor

FIGURE 16.12: The working of the proposed algorithm. Two trackers and a
motion predictor run in parallel. First tracker is a SURF-based mean-shift
tracker (MS) while the other tracker is an flow tracker (OF). A Kalman Filter
based motion predictor (KFMP) is used to learn the motion model of the
human. MS and OF trackers correct each other whenever one of them fails to
detect the target. When both of these trackers fail, it is considered as a case of
occlusion where the motion predictor (KFMP) is used to localize the target.

where r is the number of templates in the pool. The template pool has an
upper bound on its size and it is taken as 1,000 descriptors. Each descriptor
is assigned an initial weight, whenever it is added to the template pool. The
initial weights are selected so as to ensure that the descriptors survive at least
for few frames. In the proposed approach, the initial weight for the descriptors
are taken as 15. The weight is incremented by 2, whenever a match is found
with this descriptor; otherwise, it is decremented by 1. Mathematically, it can
be written as

ωi(t+ 1) =
{
ωi(t) + 2 if match is found
ωi(t)− 1 else . (16.20)

This is similar to weight update method provided in [495]. However, in
the proposed approach, the weights are maintained only for the foreground
model. The descriptors with negative weights are discarded, whenever new
descriptors are added to the template pool. If the size of the template pool
exceeds its upper bound size, then the descriptors with lowest weights are
discarded in order to bring the template pool with-in its upper bound size.

16.4.1.1 Selection of New Templates

A new template is selected, whenever the mean-shift tracker fails to converge
but the optical flow provides a sufficient number of matching points. This
case arises when there is a pose change particularly due to an out-of-plane
rotation, and the target is not occluded. In this case, the mean-shift tracking
fails due to the absence of matching descriptors. However, the optical flow

Human Tracking Algorithm Based on Optical Flow 579

Re-initialization
of MS tracker

Template Pool of SURF descriptors

Store it as a new template

Occlusion detected.

Optical Flow

MS Tracker Fails
(Nms > NT)

If (TL ≤ Q < TH),

else if (Q < TL)

FIGURE 16.13: Using optical flow to re-initialize the mean-shift tracker. OF
tracker is used for selecting templates. Mean-shift tracker fails when the num-
ber of matching correspondences falls below a threshold. This usually occurs
during a pose change due to out-of-plane rotations. In this case, optical flow
could be used to get an estimate of the tracker window location using the
temporal coherence present in the video.

provides the estimates of the current key-point locations in the next frame, and
the complete reinitialization process flow is illustrated by Figure 16.13. The
basic assumptions of an optical flow algorithm, namely, brightness constancy,
temporal persistence, and spatial coherence are satisfied in case of a pose
change [494], and hence, OF tracker does not fail.

Every template obtained from the OF tracker may not be a right tem-
plate to be included into the template pool P . Each template obtained from
the OF tracker is checked for its quality. Therefore, SURF correspondence
between the template provided by tracker window Wt and the template pool
P is calculated, and is represented as V (P ∼Wt). In this case, the SURF cor-
respondence is obtained based on the Euclidean distance between the descrip-
tors of the two sets. The set of descriptors of the current tracker window Wt

that matches with the template pool is given by

ψPv (Wt) = {vi|vi ∈ Wt ∧ vi ∈ V (P ∼ Wt), i = 1, 2, . . . ,m}, (16.21)
where m is the number of matching descriptors found between the two sets.

Each template is checked for the following two aspects before including it
into the template pool:
(i) Matching Quotient: It is the ratio of the SURF descriptors in the tracker

window that matches with those in the template pool to the total number
of descriptors present in this window, weighted by the distance between
the centers of two consecutive windows. Mathematically, it is expressed
as

Mp = Nm
NT
× e−λ‖ct−ct−1‖2 , (16.22)

580 Vision-Based Tracking for a Human Following Mobile Robot

where Nm is the cardinality of set ψPv (Wt), which represents the num-
ber of descriptors of target window Wt that matches with those in the
template pool; NT is the cardinality of the set V (Wt), which represents
the total number of descriptors in the current tracker window Wt cor-
responding to the image It; ct and ct−1 are the centers of current and
previous tracker window, respectively.
If the Mp falls below a certain threshold (0.2), the template is consid-
ered an invalid one and should not be included into the template pool.
This may indicate a case of partial or full occlusion, which is dealt with
separately as explained in the later part of this section.

(ii) If the height of the bounding box of the tracker window changes more
than a certain percentage (20%), it is considered an invalid template,
which should not be included into the template pool. The height of
the bounding box may change abruptly if trackers fail to find matching
points for a part of the body for instance, the leg region.

16.4.2 Re-Initialization of Optical Flow Tracker
In the case of a sudden change in the motion of the target arising out of
abrupt camera motion or drop in camera frame rate, the optical flow may
fail to localize the tracker window due to the loss of temporal coherence [493].
Usually, the number of points available from optical flow go on decreasing over
the time when started with the points from a single template. It is necessary
to re-initialize the tracker, when the number of points available fall below a
certain threshold. The re-initialization is also needed in cases, where the size
of the OF tracker window suddenly changes due to the loss of points in one
part of the body (e.g., leg region).

In such cases, the mean-shift (MS) tracker could be utilized to initialize the
optical flow tracker. It should be noted that the proposed approach cannot
be used to deal with cases where pose change, and sudden motion occurs
simultaneously. Such cases are treated as occlusions, and treated differently
as explained in the next section. The SURF key-point locations of the current
mean-shift (MS) tracker are used as the input to the OF tracker, which now
estimates the location of these points in the next frame.

16.4.3 Detection of Partial and Full Occlusion
In the case of partial occlusion of the target, it is still possible to obtain a
few matching descriptors with the template pool. The partial occlusion is
detected in two ways. Either the mean-shift tracker does not converge within
a pre-specified number of iterations or the quality of the tracker window lies
between a lower and an upper bound (TL ≤ Q < TH). In case of full occlusion,
the quality of of the tracker window falls below the threshold TL. In this
algorithm, the value of TL and TH are taken as 0.2 and 0.3, respectively.

Visual Servo Controller 581

Partial occlusions are easier to deal with as it is always possible to find a few
matching points, which could be utilized to position the tracker window. Full
occlusions are difficult to deal with. In the case of full occlusion, both mean-
shift tracker and optical flow tracker fail due to the unavailability of matching
feature points.

16.5 Visual Servo Controller
To design a visual servo controller for the mobile robot, equations are derived
from the kinematic model of the robot and the pinhole model of the camera.
Then, the problem is formulated using these equations. Let us consider a
differentially driven mobile robot (P3-DX) carrying a fixed camera (Kinect).
The task of the robot is to track a moving human on a 2-D plane (x-y plane).
As shown in Figure 16.14, the camera is mounted along the heading direction
of the mobile robot. A coordinate frame {Rc} is attached to the optical center
of the camera Pc. The x-axis being along the optical axis of the camera. z-axis
is in the direction pointing out of the paper. Using Figure 16.14, the kinematic
equations of a mobile robot can be obtained as follows.

Target human

X

Y

y
x

Robot

Camera

φ

(xt, yt)
Pt

vt

θ

(xc, yc)
Pc

{R0}P0

{Rc}

v

FIGURE 16.14: Mobile robot mounted with a fixed camera tracks a moving
human on a 2-D plane.

582 Vision-Based Tracking for a Human Following Mobile Robot

16.5.1 Kinematic Model of the Mobile Robot
The posture of a mobile robot is presented by its position that is the middle
point of the two driving wheels, and the heading direction θ. Figure 16.14
shows the position of the robot expressed in the X-Y coordinates. The posture
vector of mobile robot is presented as Pc = (xc, yc, θ)T with respect to initial
frame {R0}. The mobile robot has 2 degrees of freedom. It can move along the
x-axis and rotate around the z-axis. The mobile robot’s motion is controlled
by the vector q = (v, ω)T , where v is the linear velocity of the robot and ω
is the angular velocity of the robot. Based on the assumption that the mobile
robot moves on a 2-D plane without slips, the kinematic equation of a mobile
robot can be written as

Ṗc =

 ẋc
ẏc
θ̇

 =

 v cos θ
v sin θ
ω

 =

 cos θ 0
sin θ 0

0 1

q (16.23)

16.5.2 Pinhole Camera Model
The pinhole camera model describes the mathematical relationship between
the coordinates of a 3-D point and its projection onto the image plane of an
ideal pinhole camera, where the camera aperture is described as a point and
no lenses are used to focus light [496]. Let (cxt,c yt, h) is the position vector
of the human center Pt with respect to the frame {Rc}, h is a known positive
constant, (αt, βt) is the image coordinate of the point projected on the image
plane, and f is the focal length of the camera. Using the pinhole model for
the camera as shown in Figure 16.14, the following relationships are obtained:

cxt
f

=
cyt
αt

= h

βt
(16.24)

16.5.3 Problem Formulation
Let the error posture between the target human and the robot be Pe =
(xe, ye, θe). The error posture is a transformation of the target posture Pt
from frame {R0} in a local coordinate frame {Rc} with an origin of (xc, yc)
and z-axis is the direction of θe.

Pe =

 xe
ye
θe

 =

 cxt
cyt
φ


=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 xt − xc
yt − yc
ωt − ω

 (16.25)

Visual Servo Controller 583

The equation of relative motion between the target human and the mobile
robot can be calculated as follows [497]:

Ṗe =

 ˙cxt
˙cyt
φ̇

 =

 −v + vt cosφ+ cyt.ω
vt sinφ− cxt.ω

ωt − ω


=

 −v + vtx + cyt.ω
vty − cxt.ω
ωt − ω

 (16.26)

where vt is the linear velocity of the target human, φ is the angle between
moving directions of the target human and the mobile robot, ωt is the angular
velocity of the target human, and vtx and vty are the target human velocity
components, vtx = vt cosφ and vty = vt sinφ, respectively.

The objective of human tracking is to drive the mobile robot to keep the
target human always in sight of the camera. This objective can be achieved
if we keep the position of the human center Pt on the heading direction and
within a short distance of the mobile robot, i.e.,

cxt = xd and cyt = 0 (16.27)

16.5.4 Visual Servo Control Design
For the objective of human tracking (16.27), the tracking errors, ex and ey
can be defined as:

e =
[
ex
ey

]
=
[
cxt − xd

cyt

]
(16.28)

The system (16.26) can be rewritten in terms of tracking errors as:

ė =
[
ėx
ėy

]
=
[
−v + vtx + cyt.ω
vty − cxt.ω

]
(16.29)

or

ė =
[
ėx
ėy

]
=
[
−1 cyt
0 −cxt

] [
v
ω

]
+
[
vtx
vty

]
(16.30)

In this work, the visual servo controller is designed using the approach of
dynamic inversion. In dynamic inversion approach, the controller is synthe-
sized such that the following stable linear error dynamics are satisfied

ė+K.e = 0, (16.31)

584 Vision-Based Tracking for a Human Following Mobile Robot

where K =
[
k1 0
0 k2

]
is the gain matrix. Substituting the values of ė and e,

we get

[
−1 cyt
0 −cxt

] [
v
ω

]
+
[
vtx
vty

]
+[

k1 0
0 k2

] [
cxt − xd

cyt

]
= 0

(16.32)

After rearranging the equation, the desired control inputs are

v = vtx + k1(cxt − xd) +
cyt(k2

cyt + vty)
cxt

(16.33)

ω = (k2
cyt + vty)
cxt

. (16.34)

The values of (cxt, cyt) can be obtained using the pinhole camera equa-
tion (16.24) and the relative target velocities (vtx, vty) are obtained using the
Kalman filter. The Kalman filter provides the estimate of the velocities in
image plane, which can be converted to real-world velocities using the inter-
action matrix as explained in [498].

16.5.5 Simulation Results
To illustrate the performance of the proposed control scheme, simulations were
performed in which the mobile robot was required to track circular trajecto-
ries. The trajectories were generated by a path planner in the frame of the x-y
coordinates. The units of x and y coordinates are in meter in all the experi-
ments. In the simulations, for using the proposed control scheme, object tra-
jectories were transformed into the robot local coordinate frame {Rc} before
generating control commands. Only later two trajectories are described below
in the interest of the space limitation.

16.5.5.1 Example: Tracking an Object which Moves in a Circular
Trajectory

Let the object move counterclockwise in a circle around (0.7, 1) with respect
to {R0} [499] and set the motion as follows:

xt = 0.7− 0.2 cos(t), yt = 1.0− 0.2 sin(t) (16.35)

Therefore, the velocity of moving object is described as follows:

dxt
dt

= 0.2 sin(t) = vt cos(θ + φ) (16.36)

Experimental Results 585

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y
 (

m
)

x (m)

Object trajectory
Robot trajectory

(a) 2-D position trajectories
in the world coordinate frame

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

D
is

ta
n

ce
 (

m
)

Time (sec)

Object x-coordinate
Object y-coordinate

(b) Target coordinate in robot
frame

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 1 2 3 4 5 6 7 8 9 10

Time (sec)

Robot translational velocity (m/s)
Robot rotational velocity (radian/s)

(c) Velocity trajectories

FIGURE 16.15: Simulation results for tracking a circular trajectory. The filled
and empty circles show the starting and ending point of the trajectory respec-
tively.

dyt
dt

= −0.2 cos(t) = vt sin(θ + φ) (16.37)

The relative velocity between the object and the mobile robot can be derived
as follows:

vtx = vt cos(φ) = −0.2 sin(θ − t) (16.38)
vty = vt sin(φ) = −0.2 cos(θ − t) (16.39)

The robot initial pose is taken as Pc(0) = (0, 0, 0.0)T . The desired tracking
goal is set as xd = 0.25 and yd = 0. The values of k1 and k2 are taken as 3
and 1, respectively.

Figure 16.15 shows the simulation result for tracking a circular trajectory in
the world coordinate ({R0} frame). As can be seen in this figure, the proposed
controller results in a smooth trajectory. In order to maintain the desired
distance xd, the robot departs from the target when the target approaches to
it. Figure 16.15(b) indicates that the tracking result achieves the tracking goal,
i.e., cxt = xd = 0.25 and cyt = yd = 0.0, before four seconds. The velocities
given to the robot are provided in Figure 16.15(c).

16.6 Experimental Results
16.6.1 Experimental Results for the Human Tracking

Algorithm Based on SURF-based Dynamic Object
Model

The experimental results are provided in two parts. In the first part, the per-
formance of the proposed visual human tracking algorithm is evaluated while
in the second part, the results obtained from the actual robot are analyzed.

586 Vision-Based Tracking for a Human Following Mobile Robot

16.6.2 Tracking Results
The performance of the proposed tracking algorithm is analyzed by testing it
on a number of video datasets collected from different sources. These data-
sets exhibit different kinds of situations and different pose challenges. This is
different from a person detection problem [500] or a video surveillance prob-
lem, where one needs to detect and track persons in the scene no matter how
small they appear. The summary of various datasets used in this work are
provided in Table 16.1. In total, six sets of videos are taken, out of which two
are from a pedestrian dataset of ETH Zurich [501], two sets are from Youtube,
and the last two are our own. The videos depict several challenging situations
like variation in illumination, scaling, occlusion, camera motion, and change
in pose with out-of-plane rotations.

The images in each video have a resolution of 640×480. The algorithm is
implemented in C/C++ using OpenCV 2.0 library on a system with intel i7
processor running with 8 GB of RAM. The tracking results for these data-
sets are available on website [502] for the inspection and a few snapshots are
shown in Figure 16.16. The templates generated by the proposed algorithm
for all video datasets are shown in Figure 16.17. As one can see, the templates
generated exhibit all kinds of variations as discussed earlier in the chapter.
Online update of object model helps in tracking a person for a longer duration
by avoiding tracking failures arising out of appearance changes that may occur
over time.

It can be seen in Figure 16.18(a) that the maximum number of descriptors
in the object model is less than 1,000, which is quite less as compared to the
methods [486] that save a number of templates in the memory. Therefore,
it can be concluded that the memory requirement of the proposed tracker is
quite low, as compared to the existing methods. Computational efficiency of
the proposed tracker can be seen in Figure 16.18(b). Average computation
time for a video is around 150ms, i.e., 6 frame/second, which is comparable to

TABLE 16.1: Summary of attributes for datasets used for evaluating the per-
formance of the proposed algorithm.

Dataset Total
no. of
frames

Scaling
(Upto)

No. of
tem-
plates
gener-
ated

Success
Rate

ETH D1 380 179% 25 98.15
D2 251 214% 21 92.82

Youtube D3 166 17% 9 80.12
D4 266 87% 12 90.22

Own D5 291 14% 19 94.15
D6 979 51% 29 86.41

Experimental Results 587

D1

D2

D3

D4

D5

D6

FIGURE 16.16: Tracking results for different datasets. The green window is
the main tracking window for the target being tracker while white window is
the estimated target location obtained from a predictor.

D2

D4D3

D6

D1

D5

FIGURE 16.17: Templates generated by the algorithm for these datasets. As
one can see, the templates contains different poses of the human with a varying
degree of scaling and illumination.

588 Vision-Based Tracking for a Human Following Mobile Robot

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 100 200 300 400 500 600 700 800 900 1000

N
o
.

o
f

d
es

cr
ip

to
rs

Frame Index

D1
D2
D3
D4
D5
D6

(a)

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 (

m
s)

Frame Index

D1
D2
D3
D4
D5
D6

(b)

FIGURE 16.18: (a) Average number of descriptors and, (b) average computa-
tion time per frame for data sets mentioned in Table 16.1.

those reported by [474] and sufficient for tracking a human with mobile robot.
The tracking results of real-time implementation of visual human tracking
algorithm are available online [503].

In order to assess the utility of the proposed approach, its performance is
compared with the well-known algorithms like mean-shift algorithm [479] and
the SURF-based mean-shift algorithm (SBMS) [483].

Three measures are used, namely, percentage overlap, success rate, and
computation time to quantify the efficacy a given tracking algorithm. In order
to compute these values, the ground truths are labeled manually for all the
video datasets. The percentage overlap between the tracker window (Wt) and
its ground truth (Wg) is defined as

% Overlap = area(Wg ∩Wt)
area(Wg ∪Wt)

× 100 (16.40)

The overlap is measured as the percentage of area of the ground truth window
that is common with the tracker window.

Similarly, the success rate [504] of the algorithm is defined as the ratio of
number of frames where the target is correctly detected by the tracking algo-
rithm (n) to the total number of frames (N). Mathematically, it is computed
as follows:

Success Rate = n

N
× 100 (16.41)

For a given frame, if the overlap between the tracker window and its ground
truth exceeds 50%, the target detection is considered to be successful. The
success rate for the videos is mentioned in Table 16.1. A tracking algorithm is
considered to have a better performance if it has higher values for % overlap
and success rate with lower value of computation time per image.

The performance comparison among the tracking algorithms in terms of
the above quantitative measures is provided in Table 16.2. It is clear from
the table that the success rate of the proposed algorithm is high for all
the datasets, while mean-shift tracker tracks the human successfully only

Experimental Results 589

TABLE 16.2: Quantitative performance comparison of various tracking algo-
rithms

````````````Data-set
Algorithm MS [479] SBMS [483] PA

D1
Success Rate 0 21.84 98.15

Average % overlap 11.12 34.3 75.4
Average time (ms) 121 682 134

D2
Success Rate 0 8.36 92.82

Average % overlap 8.23 19.78 71.7
Average time (ms) 121 565 179

D3
Success Rate 22.8 54.81 80.12

Average % overlap 15.4 41.3 68.9
Average time (ms) 120 486 101

D4
Success Rate 20.67 60.5 90.22

Average % overlap 29.1 50.54 61.6
Average time (ms) 121 423 51

D5
Success Rate 100 53.9 94.15

Average % overlap 74.9 51.7 69.1
Average time (ms) 121 748 160

D6
Success Rate 51.68 79.8 86.41

Average % overlap 41.8 60.3 71.5
Average time (ms) 124 771 131

for dataset D5, in which human color is different from the background color
and human did not get occluded. However, the computation time of the pro-
posed algorithm is greater than the mean-shift algorithm. As compared to the
SURF-based mean-shift tracker, the proposed tracker outperforms in all the
measures.

16.6.3 Human Following Robot
The schematic block diagram of a human following robot is shown in Figure
16.5. It consists of a P3-DX mobile robot from Adept Mobile robots [505]
equipped with a camera, a human detection algorithm and a visual controller.
The desired position of the human center in the robot frame is represented
by the pair (xd, yd). V and ω are the translational and rotational velocities
generated by the visual controller for the mobile robot so that it can reach
the desired position. (xc, yc) is the human center position obtained by the
human detection algorithm in the image frame. H represents the relationship
between the variables defining the relative posture of the follower robot to
the target human (xr, yr), and the image features. The experimental setup
used for implementing the algorithms is shown in Figure 16.19. The Kinect
is used as the visual sensor for detecting and tracking the human walking
in front of the robot. The visual controller takes the human position in the
robot frame as the input and with reference to the desired goal generates



590 Vision-Based Tracking for a Human Following Mobile Robot

Kinect camera

P3−DX mobile robot

Core i7 Processor

Serial to USB cable

FIGURE 16.19: The Experimental setup for a human following robot. This
comprises a P3-DX mobile platform from Adept [505] and a Kinect. An exter-
nal computer is used to run the tracking algorithm and the visual controller
required for this task.

the velocity commands for the mobile robot. The mobile robot moves with
the generated velocities to perform human following. The robot maintains a
constant distance from the human target by using Kinect depth measurement.
In order to analyze the performance of the robot, an experiment is performed
where the subject walks in a corridor in front of the robot. Few snapshots of
the person being tracked is shown in Figure 16.21 and the resulting trajectory
of the robot is shown in Figure 16.20(a). The translational and rotational
velocities of the robot is shown in Figures 16.20(b) and 16.20(c) respectively.
As one can see, the robot trajectory is smooth and control velocities are well
within the limits of the system. The average translational velocity of the robot
is 0.4 m/s.

16.6.4 Discussion on Performance Comparison
To summarize, the advantages of the proposed approach are demonstrated
by providing performance comparison with previous works only at individual
module level, rather than for the full system. For instance, the performance
of the vision-based tracking algorithm is compared with some of the earlier
works as shown in Table 16.2. This improvement is achieved using lesser num-
ber of features compared to earlier works. Similarly, for the visual servoing
module, an improved version of the controller used in [499] is proposed in this
chapter which uses feedback linearization to overcome the problem of chat-
tering present in sliding mode controller used in the previous work. Direct
comparison for the overall system is difficult due to several factors such as,
unavailability of common dataset, non-uniformity of sensors used, etc. A more
rigorous comparison with uniform operating conditions will remain as a part
of the future work.



Experimental Results 591

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  5  10  15  20  25

y
 (

m
)

x (m)

(a) Robot Trajectory

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  100  200  300  400  500  600  700  800

T
ra

n
sl

at
io

n
al

 v
el

o
ci

ty
 (

m
/s

)

Frame no.

(b) Translational Velocity

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0  100  200  300  400  500  600  700  800

R
o

ta
ti

o
n

al
 v

el
o

ci
ty

 (
ra

d
ia

n
/s

)

Frame no.

(c) Rotational Velocity

FIGURE 16.20: Robot motion trajectories in the actual experiment where a
subject is tracked and followed in an outdoor environment. As one can see
the velocity magnitudes are well within the physical limits of robot. The high
frequency in the velocity component is due to sensor noise.

16.6.5 Experimental Evaluation of Human Tracking
Algorithm Based on Optical Flow

In this experiment the proposed controller is combined with the human track-
ing algorithm based on optical flow. This experiment is performed in an
outdoor environment where the target human walked in a corridor and was
occluded twice by other humans. The trajectory generated by the robot to

FIGURE 16.21: Snapshots of real-life experiment where the subject is walking
in front of a robot in an outdoor environment.



592 Vision-Based Tracking for a Human Following Mobile Robot

-30

-25

-20

-15

-10

-5

 0

 5

 0  10  20  30  40  50  60  70  80

y
 (

m
)

x (m)

(a) Robot Trajectory

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  200  400  600  800  1000

T
ra

n
sl

at
io

n
al

 v
el

o
ci

ty
 (

m
/s

)

Frame no.

(b) Translational Velocity

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  200  400  600  800  1000

R
o

ta
ti

o
n

al
 v

el
o

ci
ty

 (
ra

d
ia

n
/s

)

Frame no.

(c) Rotational Velocity

FIGURE 16.22: Experimental results for optical flow-based human tracking
algorithm:

follow the target human using proposed visual servo controller is shown in
Figure 16.22(a). It can be seen in this figure that the robot moves in a curve
trajectory to follow the target human. The translational and rotational veloc-
ities of the robot are shown in Figure 16.22(b) and 16.22(c), respectively. The
average translational velocity of the robot is 0.5 m/s. A few snapshots of the
experiment are shown in Figure 16.23.

FIGURE 16.23: Snapshots of experiment-for optical flow-based human track-
ing algorithm.



Summary 593

16.7 Summary
In this chapter, the problems associated with a human following robot that
uses a vision sensor for detecting and tracking a human subject has been
discussed. The problem consists of two parts - first, detecting and tracking
humans in a video sequence recorded from the on-board camera and secondly,
designing a visual servo controller that generates necessary motion commands
required for following the human target. The first part is fraught with several
challenges, such as variation in shape, size, illumination, scale and pose, partial
and full occlusion, pose-change due to out-of-plane rotations, etc. On the other
hand, the visual servo controller has to deal with problems like inaccurate
odometry information, field of view constraints, nonholonomic motion, and
camera calibration errors. The proposed method uses a tracking-by-detection
framework which uses point features for detection. The tracking algorithm uses
a dynamic object model that evolves over time to accommodate for temporal
changes while the stability is ensured by propagating stable features using
affine motion model. The spread of the projected points is used for detecting
pose change due to out-of-plane rotations, which is a novel contribution. A KD-
tree based classifier is used to differentiate a case of full occlusion from that of
partial occlusion and pose change. The visual servo controller uses a feedback-
linearization based technique to ensure stability during motion. Experimental
results are also provided to demonstrate the efficacy of the algorithms.



http://taylorandfrancis.com


Exercises

Chapter 3
1. Consider the two link manipulator as given in Example 3.3. Actuate the

manipulator with a random joint vector θ and note the tip position x in
the Cartesian space. You can assume that you have training pair {x, y}.
Train the KSOM network the way it is trained to learn a map in Example
3.2. After training, repeat the testing experiments as given in 3.3. Are you
able to replicate the results? Why?

2. Consider the example of CRS Plus manipulator as given in 3.4. Integrate
the camera model as given in [150]. Propose a KSOM network for the
visual motor control. Train the network and track a straight line.

3. Consider the 7 DOF PowerCube manipulator without integrated with the
camera. Learn the inverse kinematics with the standard KSOM network
using 50,000 examples. Verify all the associated problems with the stan-
dard KSOM for learning the inverse kinematics of a redundant manipula-
tor as given in Section 3.4.

Chapter 8
1. Consider following dynamics

ẋ =
[
0 1
4 0

]
x +

[
0
−1

]
u (.42)

(i) Formulate the ARE for the above system.

(ii) Find the optimal controller for the above system.

(iii) Show the system is asymptotically stable with the optimal controller.

2. Consider any two DoF manipulator model with joint angles q =
[
θ1
θ2

]
and τ is the joint torque:

B(q)q̈ + C(q̇,q) + g(q) = τ (.43)

595



596 Exercises

and

B(q) =
[
((m1 +m2)l21 +m2l

2
2 + 2m2l1l2 cos θ2) (m2l

2
2 +m2l1l2 cos θ2)

m2l
2
2 +m2l1l2 cos θ2 m2l

2
2

]
(.44)

C(q̇ =
[
−m2l1l2 sin θ2(2θ̇1 ˙theta2 + θ̇2

2)
−m2l1l2 sin θ2θ̇1 ˙theta2

]
(.45)

g(q) =
[
−(m1 +m2)gl1 sin θ1 −m2gl2 sin(θ1 + θ2)

−m2gl2 sin(θ1 + θ2)

]
(.46)

where, m1, m2 are the mass of the links, l1, l2 are the link lengths and g
is the gravity. Assume any suitable value for the parameters m1, m2, l1 and
l2. Design an optimal controller using the SNAC algorithm as described in
section 8.3.1 (Use the input matrix from the model).

3. Consider that the dynamics of the above manipulator are not known.
Learn a TSK Fuzzy model which represents the above manipulator dynamics
with arbitrary accuracy.

4. Consider a 2 DoF robotic manipulator given in Exercise 2. Now sup-
pose the mathematical model od its dynamics is unknown. Design an optimal
controller for the manipulator using the methodology presented in 8.3.2. Use
the model in Exercise 2. for data generation.

5. In the above problem, learn the controller without applying the con-
straints (8.69) to (8.71) and check the performance of the controller.

Chapter 9
1. Design a motion encoding system which can generate velocity commands in
the joint space to write the letter “B”. Use kinesthetic demonstration and learn
the model using DMP. Try out various function approximation techniques such
as GMR, Fuzzy logic, RBFN to learn f(τ) and compare their performances.

2. Formulate a DMP model for a target which is non-static in the environ-
ment.

3. Suppose you have been provided 5 demonstrations for a pouring task.
Which method of imitation learning would you prefer and why?

4. Replace the cost function in the SED formulation with the mean-square
error as given in the following:

minimize
θ

1
N∑
n=1

Tn

N∑
n=1

Tn∑
m=1
‖ẋm,n − ˙̂xm,n‖

(.47)



Exercises 597

with the required constraints and compare the performance with method
described earlier. Consider any demonstration of your choice.

5. Consider a picking task demonstration and use C-FuzzStaMP to learn
the task. Take different values of α and check the performance.

6. What will be the consequence if someone learns all the Aks in R-
FuzzStaMP model as positive definite? Can you still achieve an asymptotically
stable motion model? How would be the performance of the model?

7. Learn six tasks in a single motion model using GMR. Discuss how the
robustness of the motion model can be improved.

8. Compare the performance of various methods presented in multitask
learning. Consider the spatial error metric to evaluate the performance. Dis-
cuss how the performance varies among different regression techniques when
the number of tasks increases.

Chapter 13
1. Consider a vector x = [2.5 5.5 18]T defined in a rotated frame, which

has undergone a positive yaw rotation about the original robot frame, by
an amount, ψ = 2π/3. Find the coordinates of the vector in the original
robot coordinate frame.

2. Consider a vector x = [3 8 2]T defined in the rotated coordinate frame.
Find the coordinates of the vector in the original frame, if the original
frame is rotated by π/8 rad about the roll axis, π/2 rad about the pitch
axis and π/5 rad about the yaw axis, and if the coordinates of the origin of
the original frame with respect to the rotated frame be PT = [15, 5, 45]T .

3. Consider a ground robot with the coordinates in ECEF frame given by
[3078.3, 4356.6, 3678] km. Find the corresponding latitude and longitude.

4. Design and implement a stable controller based on feedback linearization
technique using the dynamic model of the robot given by (13.7) starting
from [0.5, 0.5]T of the reference frame to track a lemniscates shape trajec-
tory about the point [1, 0]T , with a lobe length of 2 m, and an angular
velocity of 0.3 rad/s.

5. Consider a two-wheel differential-driven mobile robot with the kinematic
model given by (13.6). Design a stable backstepping controller to track a
sinusoidal trajectory using the kinematic model of the robot. Also analyze
the stability of the controller using Lyapunov stability theory.

6. Design and implement a stable controller for the two wheel differential-
driven robot based on NTSMC and FNTSMC techniques to track a circular



598 Exercises

trajectory of radius 3 m, and compare the performance of the controllers
based on the speed of convergence.

7. Write a Matlab program for driving a nonholonomic mobile robot to chase a
target moving in a sinusoidal trajectory. Assume the initial relative position
of the target as [0.5, 0.5]T with respect to the robot. Use the kinematic
model of the robot and the feedback linearization technique to design the
controller.

8. Repeat the above simulation for a target following nonholonomic robot
using sliding mode control technique based on the dynamic model.

Chapter 14
1. Consider a three-robot formation in leader-follower-based framework.

Design a dynamic controller using Backstepping approach depicted in
Chapter 13 for the trailing robots based on the dynamic model given by
(13.7). The robots are assumed to make a triangular-shaped formation, in
which the trailing robots are making a desired distance separation of 2 m
with respect to the leader.

2. Consider a system of three robots. Design a kinematic controller for the sys-
tem of robots using super twisting controller, and the robots are supposed
to make a line formation of 1 m separation.

3. Consider a multi-agent system with three members. Design an APF-based
path planner for the system to achieve the following objectives:

a. The agents are supposed to make a triangular formation initially of
formation size 2m.

b. The formation should navigate to the target point at the location (15,15)
in the global reference frame. Assume random initial positions for all the
agents.

c. The formation should switch to a line after 10s.
d. Assume a point mass obstacle at location (5,10). The formation is sup-

posed to retain the shape while avoiding the obstacle.

4. Consider a team of five robots with one leader and four followers. Design
and implement the path planning and control scheme based on the pro-
posed FAGNTSMC scheme for the trailing robots to satisfy the following
objectives

a. The followers are supposed to make a square shaped formation of 2
m separation between the consecutive members, and the formation is
supposed to follow a sinusoidal trajectory.



Exercises 599

b. Assume that one of the agents goes to complete failure on runtime,
because of critical actuator fault. The rest of the agents are supposed
to isolate the faulty member and reconfigure to a triangular formation.
[hint: Make the velocity of the faulty agent to be zero, while the occur-
rence of the fault.]

5. Design and implement in Matlab an APF-based path planner and back
stepping-based formation controller for a team of six robots in hexagonal
formation to chase a target moving in a sinusoidal trajectory. Assume the
target as a point mass and its initial relative position as [5, 5]T with respect
to the initial position of the formation centre.

6. Repeat the above simulation with fault tolerant APF and adaptive sliding
mode technique, assuming that two of the agents are becoming faulty on
run time, after twenty seconds. The agents are supposed to reconfigure to a
square formation and continue chasing the target, after isolating the faulty
member.

7. Suggest an APF-based path planning scheme for the flock of agents consist-
ing of three groups with a formation size of four each, to follow a lemniscates
shape trajectory with a lobe length of 2 m. Write the Matlab program to
implement the algorithm.

8. Design an APF-based path planner for resilient flocking in a multi-agent
system, and perform the simulation for the flock of agents with the forma-
tion sizes mentioned in the previous question. Improvise the algorithm, and
repeat the simulation after including the obstacle avoidance and formation
reconfiguration parts.

Chapter 15
1. Consider the system

ẋ = Ax+Bu, (.48)

where A =
[

1 −1
1 1

]
and B = [0 1]T .

(a) Design and implement feedback linearization based event triggered con-
trol scheme.

(b) Analytically prove that the zeno phenomenon should not occur.
(c) Design an smc-based event triggered control scheme for the system,

and compare the results.



600 Exercises

2. Consider a multi-agent system with the following dynamics

ẋi = Ax+Bu+ d, xi ∈ <n (.49)

(a) Design and implement the sliding mode-based event triggered consensus
protocol for a multi-agent system. Assume that the agents are communi-
cating based on an undirected graph topology.
(b) Derive an analytic expression for the lower bound of the inter-execution
time period.

3. Consider a multi-agent system with three members. Design and implement
sliding mode-based event triggered control scheme for the system to achieve
the following objectives:

a. The agents are supposed to make a triangular formation of formation
size 1 m.

b. The formation should navigate to the target point at the location (50,
50) in the global frame of reference. Assume random initial positions for
the agents.

c. The formation should switch to a line after 10 s.
d. Assume a point mass obstacle at location (5, 10) in the global frame. The

system should regain the formation shape after avoiding the obstacle.

4. For a multi-agent system with the graph topology given by Figure 24,
obtain the adjacency matrix, Laplacian and propose a finite time nonlinear
consensus protocol.

2

7

4

1

6

3

5

FIGURE 24: Graph.

5. Develop and implement a finite time event triggered consensus protocol
based on super twisting sliding mode control technique depicted in chapter
13 for the consensus-based formation of a group of mobile agents following a
directed graph communication topology. Analytically prove that the inter-
execution time is lower bounded.



Exercises 601

6. Repeat the above simulation for a multi-agent system in leader-follower
configuration consisting of four agents with one leader and three followers
with the agent dynamics given by (15.12), and the relative state deviations
of the followers w.r.t leader are as follows: δ1 = (1,−1), δ2 = (1, 1) and
δ3 = (2, 0).
Consider that the leader is free to navigate and the followers will reach into
a consensus tracking the leader, and there is no feedback from the followers
to the leader.

Chapter 16
1. Write a program to grab images from the camera, detect the object using

color and SURF features, and perform background estimation using the
frames. Assume that the object in the scene is moving. Repeat the simu-
lation with challenging conditions such as illumination variation, scaling,
occlusion, etc.

2. Design a visual servo controller for the mobile robot carrying a fixed camera
to track a human in 2D plane based on sliding mode control technique, using
the kinematic model of the robot and the pinhole model of the camera
given in this chapter. The objective is to drive the mobile robot to keep the
target human always in sight of the camera. This can be done by keeping
the position of the human center on the heading direction and within a
short distance from the mobile robot.

a. Perform the simulation using human tracking algorithm based on SURF-
based dynamic object model.

b. Repeat the simulation using human tracking algorithm based on optical
flow

3. Write a Matlab program to implement a fuzzy nonsingular fast termi-
nal sliding mode controller for a mobile robot tracking a human based
on SURF-based dynamic object model.

4. Develop an image Jacobian for the nonholonomic robot relating the feature
motion with robot motion, and design image-based visual servo controller
using sliding mode control technique for a human following mobile robot.

5. Assume that if the visual features being used move out from the field
of view (FOV) of the camera due to motion of the robot or any other
disturbances, propose a suitable estimation scheme, to restore the feature
in the FOV, and repeat the simulation experiment with a image-based
visual servo controller.





Bibliography

[1] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of pre-
diction and reward,” Science, vol. 275, no. 5306, pp. 1593–1599, 1997.

[2] J. R. Hollerman and W. Schultz, “Dopamine neurons report an error
in the temporal prediction of reward during learning,” Nature neuro-
science, vol. 1, no. 4, pp. 304–309, 1998.

[3] W. Schultz, “Neural coding of basic reward terms of animal learning
theory, game theory, microeconomics and behavioural ecology,” Current
opinion in neurobiology, vol. 14, no. 2, pp. 139–147, 2004.

[4] M. Zhihong, A. P. Paplinski, and H. R. Wu, “A robust mimo termi-
nal sliding mode control scheme for rigid robotic manipulators,” IEEE
transactions on automatic control, vol. 39, no. 12, pp. 2464–2469, 1994.

[5] L. M. Capisani and A. Ferrara, “Trajectory planning and second-
order sliding mode motion/interaction control for robot manipulators
in unknown environments,” IEEE Transactions on Industrial Electron-
ics, vol. 59, no. 8, pp. 3189–3198, Aug 2012.

[6] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in cognitive sciences, vol. 3, no. 6, pp. 233–242, 1999.

[7] W. Schultz, P. Dayan, and P. R. Montague, “A neural substrate of pre-
diction and reward,” Science, vol. 275, pp. 1593–1599, 1997.

[8] W. Schultz, “Neural coding of basic reward terms of animal learning
theory, game theory, microeconomics and behavioural ecology,” Current
Opinion in Neurobiology, vol. 14, pp. 139–147, 2004.

[9] J. R. Hollerman and W. Schultz, “Dopamine neurons report an error
in the temporal prediction of reward during learning,” Nature Neuro-
science, vol. 1, no. 4, pp. 304–309, August 1998.

[10] F. Chaumette and S. Hutchinson, “Visual servo control Part I : Basic
approaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, December 2006.

[11] F. Chaumette and S. Hutchinson, “Visual servo control part II :
Advanced approaches (tutorial),” IEEE Robotics and Automation Mag-
azine, vol. 14, no. 1, pp. 109–118, March 2007.

603



604 Bibliography

[12] B. Siciliano, “Kinematic control of redundant robot manipulators : A
tutorial,” Journal of Intelligent and Robotic systems, vol. 4, no. 4, pp.
201–212, August 1990.

[13] D. E. DeMers and K. K. Kreutz-Delgado, “Solving the inverse kinemat-
ics problem for robots with excess degrees-of-freedom,” http://citeseer.
ist.psu.edu/375197.html.

[14] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. John Wiley & sons Inc., 2005.

[15] D. E. Whitney, “Resolved motion rate control of manipulators and
human prostheses,” IEEE Transactions on Man-Machine Systems,
vol. 10, no. 2, pp. 47–53, June 1969.

[16] J. Baillieul, “Kinematic programming alternatives for redundant manip-
ulators,” in Robotics and Automation. Proceedings. 1985 IEEE Interna-
tional Conference on, vol. 2, March 1985, pp. 722 – 728.

[17] A. Liegeois, “Automatic supervisory control of the configuration and
behavior of multibody mechanisms,” IEEE Transactions of Systems,
Man and Cybernetics, vol. 7, no. 12, pp. 868–871, December 1977.

[18] T. F. Chan and R. V. Dubey, “A weighted least-norm based solution
scheme for avoiding joint limits for redundant joint manipulators,” IEEE
Transactions on Robotics and Automation, vol. 11, no. 2, pp. 286–292,
April 1995.

[19] T. Yoshikawa, “Manipulability and redundancy control of robotic mech-
anisms,” in Proceedings of IEEE International Conference on Robotics
and Automation, 1985, pp. 1004–1009.

[20] I. Gravagne and I. Walker, “On the structure of minimum effort solutions
with application to kinematic redundancy resolution,” IEEE Transac-
tions on Robotics and Automation, vol. 16, no. 6, pp. 855 –863, December
2000.

[21] Y. Zhang, J. Wang, and Y. Xu, “A dual neural network for bi-criteria
kinematic control redundant manipulators,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 6, pp. 923–931, February 2002.

[22] L. Li, W. Gruver, Q. Zhang, and Z. Yang, “Kinematic control of redun-
dant robots and the motion optimizability measure,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 31, no. 1,
pp. 155 –160, February 2001.

[23] D. N. Nenchev, “Redundancy resolution through local optimization: A
review,” Journal of Robotic Systems, December 1989.

http://citeseer.ist.psu.edu/
http://citeseer.ist.psu.edu/


Bibliography 605

[24] C. A. Klein and C. H. Huang, “Review of pseudoinverse control for
use with kinematically redundant manipulators,” IEEE Transactions
on Systems, Man and Cybernetics, vol. SMC-13, pp. 245–250, 1983.

[25] C. Wampler, “Manipulator inverse kinematic solutions based on vector
formulations and damped least-squares methods,” Systems, Man and
Cybernetics, IEEE Transactions on, vol. 16, no. 1, pp. 93 –101, January
1986.

[26] C. Wampler and L. J. Leifer, “Application of damped least squares meth-
ods to resolved-rate and resolved-acceleration control of manipulators,”
Journal of Dynamic Systems, Measurement, and Control, vol. 110, no. 1,
pp. 31–38, 1988.

[27] F. Caccavale, S. Chiaverini, and B. Siciliano, “Second-order kinematic
control of robot manipulators with Jacobian damped least-squares
inverse: theory and experiments,” IEEE/ASME Transactions on Mecha-
tronics, vol. 2, no. 3, pp. 188 –194, September 1997.

[28] K. Glass, R. Colbaugh, D. Lim, and H. Seraji, “Real-time collision avoid-
ance for redundant manipulators,” IEEE Transactions on Robotics and
Automation, vol. 11, no. 3, pp. 448 –457, June 1995.

[29] S. Chiaverini, B. Siciliano, and O. Egeland, “Review of the damped
least-squares inverse kinematics with experiments on an industrial
robot manipulator,” IEEE Transactions on Control Systems Technol-
ogy, vol. 2, no. 2, pp. 123 –134, June 1994.

[30] H. Seraji, “Configuration control of redundant manipulators: theory
and implementation,” IEEE Transactions on Robotics and Automation,
vol. 5, no. 4, pp. 472–490, 1989.

[31] H. Seraji, “Task options for redundancy resolution using configuration
control,” in Proceedings of 30th IEEE conference on Decision and Con-
trol, Brighton, UK, December 1991, pp. 2793–2798.

[32] J. English and A. Maciejewski, “On the implementation of velocity con-
trol for kinematically redundant manipulators,” IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 30,
no. 3, pp. 233 –237, May 2000.

[33] J. Wang, Q. Hu, and D. Jiang, “A Lagrangian network for kinematic
control redundant robot manipulators,” IEEE Transactions on Neural
networks, vol. 10, no. 5, September 1999.

[34] Y. Xia and J. Wang, “A dual neural network for kinematic control redun-
dant robot manipulators,” IEEE Transactions on Systems, Man and
Cybernetics - Part B, vol. 31, no. 1, February 2001.



606 Bibliography

[35] Y. Zhang, J. Wang, and Y. Xia, “A dual neural network for redundancy
resolution of kinematically redundant manipulators subject to joint lim-
its and joint velocity limits,” IEEE Transactions on Neural Networks,
vol. 14, no. 3, pp. 658 – 667, May 2003.

[36] Y. Zhang, S. S. Ge, and T. H. Lee, “A unified quadratic programming-
based dynamical system approach to torque minimization of physically
constrained redundant manipulators,” IEEE Transactions on Systems,
Man, and Cybernetics - Part B: Cybernetics, vol. 34, no. 5, pp. 2126–
2132, October 2004.

[37] Y. Zhang and J. Wang, “Obstacle avoidance for kinematically redun-
dant manipulators using a dual neural network,” IEEE Transactions on
Systems, Man and Cybernetics - Part B:Cybernetics, vol. 34, no. 1, pp.
752–759, February 2004.

[38] B. Cai and Y. Zhang, “Different-level redundancy-resolution and its
equivalent relationship analysis for robot manipulators using gradient-
descent and zhang et al. neural-dynamic methods,” IEEE Transactions
on Industrial Electronics, 2012.

[39] H. Ding and J. Wang, “Recurrent neural networks for minimum infinity-
norm kinematic control redundant robot manipulators,” IEEE Transac-
tions on Systems, Man and Cybernetics - Part A, vol. 29, no. 3, May
1999.

[40] W. S. Tang and J. Wang, “A recurrent neural network for minimum
infinity-norm kinematic control of redundant manipulators with an
improved problem formulation and reduced architecture complexity,”
IEEE Transactions on Systems, Man and Cybernetics - Part B : Cyber-
netics, vol. 31, no. 1, pp. 98–105, February 2001.

[41] J. Hollerbach and K. Suh, “Redundancy resolution of manipulators
through torque optimization,” IEEE Journal of Robotics and Automa-
tion, vol. 3, no. 4, pp. 308 –316, August 1987.

[42] Y. Nakamura and H. Hanafusa, “Optimal redundancy control of robot
manipulators,” International Journal of Robotic Research, vol. 6, pp.
32– 42, 1987.

[43] K. Kazerounian and Z. Wang, “Global versus local optimization in
redundancy resolution of robot manipulators,” International Journal of
Robotic Research, vol. 7, no. 3, pp. 227 – 246, 1988.

[44] K. Suh and J. Hollerbach, “Local versus global torque optimization
of redundant manipulators,” in Robotics and Automation. Proceedings.
1987 IEEE International Conference on, vol. 4, March 1987, pp. 619 –
624.



Bibliography 607

[45] M. Galicki, “Time-optimal controls of kinematically redundant manipu-
lators with geometric constraints,” IEEE Transactions on Robotics and
Automation, vol. 16, no. 1, pp. 89–93, February 2000.

[46] D. Martin, J. Baillieul, and J. M. Hollerbach, “Resolution of kinematic
redundancy using optimization,” IEEE Transactions on Robotics and
Automation, vol. 5, no. 4, pp. 529–533, 1989.

[47] S.-W. Kim, K.-B. Park, and J.-J. Lee, “Redundancy resolution of robot
manipulators using optimal kinematic control,” in IEEE International
Conference on Robotics and Automation, vol. 1, 1994, pp. 683–688.

[48] Z. Ahmad and A. Guez, “On the solution to the inverse kinematic prob-
lem,” in Robotics and Automation, 1990. Proceedings., 1990 IEEE Inter-
national Conference on, vol. 3, May 1990, pp. 1692 –1697.

[49] P. Mart́ın and J. R. Millán, “Robot arm reaching through neural inver-
sions and reinforcement learning,” Robotics and Autonomous Systems,
vol. 31, no. 4, pp. 227 – 246, 2000.

[50] R. V. Mayorga and P. Sanongboon, “An artificial neural network
approach for inverse kinematics computation and singularities preven-
tion of redundant manipulators,” Journal of Intelligent and Robotic Sys-
tems, vol. 44, pp. 1–23, 2005.

[51] L. Behera and N. Kirubanandan, “A hybrid neural control scheme for
visual-motor coordination,” IEEE Control Systems Magazine, vol. 19,
no. 4, pp. 34–41, August 1999.

[52] D. Kragic and H. I. Christensen, “Survey on visual servoing for manipu-
lation,” Computational Vision and Active Perception Laboratory, Tech.
Rep., 2002.

[53] E. Malis and S. Benhimane, “A unified approach to visual tracking and
servoing,” Robotics and Autonomous Systems, vol. 52, no. 1, pp. 39–52,
July 2005.

[54] A. Comport, E. Marchand, and F. Chaumette, “Statistically robust 2-
D visual servoing,” IEEE Transactions on Robotics, vol. 22, no. 2, pp.
415–420, April 2006.

[55] D. Kragic and H. I. Christensen, “Cue integration for visual servoing,”
IEEE Transactions on Robotics and Automation, vol. 17, no. 1, pp. 18–
27, February 2001.

[56] W.-C. Chang, “Precise positioning of binocular eye-to-hand robotic
manipulators,” Journal of Intelligent Robotics Systems, vol. 49, pp. 219–
236, 2007.



608 Bibliography

[57] C. C. Cheah, C. Liu, and J. J. E. Slotine, “Adaptive jacobian vision
based control for robots with uncertain depth information,” Automatica,
vol. 46, no. 7, pp. 1228 – 1233, 2010.

[58] F. Conticelli and B. Allotta, “Discrete-time robot visual feedback in
3-d positioning tasks with depth adaptation,” IEEE Transactions on
Mechatronics, vol. 26, no. 4, pp. 684 –697, August 2010.

[59] E. Malis, Y. Mezouar, and P. Rives, “Robustness of image-based visual
servoing with a calibrated camera in the presence of uncertainties in the
three-dimensional structure,” IEEE Transactions on Robotics, vol. 26,
no. 1, pp. 112–120, February 2010.

[60] F. Chaumette, “Potential problems of stability and convergence in image
based and position based visual servoing,” in D. Kreigman and G. Hager
and S. Morse, ser. Lecture notes in Control and Information Sciences,
T. confluence of vision and control, Eds. New York: Springer-Verlag,
1998, vol. 237, pp. 66–78.

[61] J.-T. Lapreste, F. Jurie, M. Dhome, and F. Chaumette, “An efficient
method to compute the inverse Jacobian matrix in visual servoing,” in
Proceedings of IEEE International Conference on Robotics and Automa-
tion, vol. 1. New Orleans, LA: IEEE, April 2004, pp. 727–732.

[62] F. Chaumette, P. Rives, and B. Espiau, “Positioning a robot with respect
to an object, tracking it and estimating its velocity by visual servoing,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), vol. 3, 1991, pp. 2248–2253.

[63] B. Espiau, F. Chaumette, and P. Rives, “A new approach to visual
servoing in robotics,” IEEE Transactions on Robotics and Automation,
vol. 8, no. 3, pp. 313–326, June 1992.

[64] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12, no. 5,
pp. 651–670, October 1996.

[65] K. Hashimoto and T. Noritsugu, “Performance and sensitivity in visual
servoing,” in Proceedings of the IEEE international Conference on
Robotics and Automation (ICRA), vol. 2, 1998, pp. 2321–2326.

[66] M. Iwatsuki and N. Okiyama, “A new formulation of visual servo-
ing based on cylindrical coordinate system,” IEEE Transactions on
Robotics, vol. 21, no. 2, pp. 266 – 273, April 2005.

[67] W. Wilson, C. Hulls, and G. Bell, “Relative end-effector control using
cartesian position based servoing,” IEEE Transactions on Robotics and
Automation, vol. 12, no. 5, pp. 684–696, October 1996.



Bibliography 609

[68] F. Janabi-Sharifi and M. Marey, “A kalman-filter-based method for pose
estimation in visual servoing,” IEEE Transactions on Robotics, vol. 26,
no. 5, pp. 939 –947, October 2010.

[69] P. Wunsch, S. Winkler, and G. Hirzinger, “Real-time pose estimation of
3d objects from camera images using neural networks,” in Proceedings
of IEEE International Conference on Robotics and Automation (ICRA),
vol. 3, Albuquerque, New Mexico, 1997, pp. 3232–3237.

[70] T. Drummond and R. Cipolla, “Visual tracking and control using lie
algebras,” in Proceedings of the Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR), vol. 2, Fort Collins, Col-
orado, 1999, pp. 652–657.

[71] P. Allen, A. Timcenko, B. Yoshimi, and P. Michelman, “Automated
tracking and grasping of a moving object with a robotic hand-eye sys-
tem,” IEEE Transactions on Robotics and Automation, vol. 9, no. 2, pp.
152–165, April 1993.

[72] G. Taylor and L. Kleeman, “Hybrid position-based visual servoing with
online calibration for a humanoid robot,” in Intelligent Robots and Sys-
tems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International
Conference on, vol. 1, September 2004, pp. 686 – 691.

[73] W. Sepp, S. Fuchs, and G. Hirzinger, “Hierarchical featureless tracking
for position-based 6-dof visual servoing,” in Intelligent Robots and Sys-
tems, 2006 IEEE/RSJ International Conference on, oct. 2006, pp. 4310
–4315.

[74] V. Lippiello, B. Siciliano, and L. Villani, “Position-Based Visual Servo-
ing in industrial multirobot cells using a hybrid camera configuration,”
IEEE Transactions on Robotics, vol. 23, no. 1, pp. 73 –86, February
2007.

[75] E. Malis, F. Chaumette, and S. Boudet, “2-1/2-d visual servoing,” IEEE
Transactions on Robotics and Automation, vol. 15, no. 2, pp. 238–250,
April 1999.

[76] Y. Fang, A. Behal, W. E. Dixon, and D. M. Dawson, “Adaptive 2.5d
visual servoing of kinematically redundant robot manipulators,” in Pro-
ceedings of the 41st Conference on Decision and Control, Las Vegas,
Nevada, USA, December 2002, pp. 2860–2865.

[77] P. I. Corke and S. Hutchinson, “A new partitioned approach to
image based visual servo control,” IEEE Transactions on Robotics and
Automation, August 2001.

[78] N. Gans and S. Hutchinson, “Stable visual servoing through hybrid
switched-system control,” IEEE Transactions on Robotics, vol. 23, no. 3,
pp. 530 –540, June 2007.



610 Bibliography

[79] O. Tahri, Y. Mezouar, F. Chaumette, and P. Corke, “Decoupled Image-
Based Visual Servoing for cameras obeying the unified projection
model,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 684 –697,
August 2010.

[80] J. Chen, D. Dawson, W. Dixon, and A. Behal, “Adaptive homography-
based visual servo tracking for a fixed camera configuration with a
camera-in-hand extension,” IEEE Transactions on Control Systems
Technology, vol. 13, no. 5, pp. 814 – 825, September 2005.

[81] F. Chaumette and E. Marchand, “A redundancy-based iterative
approach for avoiding joint limits: Application to visual servoing,” IEEE
Transactions on Robotics and Automation, vol. 17, no. 5, pp. 719–730,
October 2001.

[82] N. Mansard and F. Chaumette, “Visual servoing sequencing able to
avoid obstacles,” in Robotics and Automation, 2005. ICRA 2005. Pro-
ceedings of the 2005 IEEE International Conference on, April 2005, pp.
3143 – 3148.

[83] N. Mansard and F. Chaumette, “Directional redundancy for robot con-
trol,” IEEE Transactions on Automatic Control, vol. 54, no. 6, pp. 1179
–1192, June 2009.

[84] M. Waltz and K. Fu, “A heuristic approach to reinforcement learning
control systems,” IEEE Transactions on Automatic Control, vol. 10,
no. 4, pp. 390–398, 1965.

[85] J. Mendel and R. McLaren, “8 reinforcement-learning control and pat-
tern recognition systems,” Mathematics in Science and Engineering,
vol. 66, pp. 287–318, 1970.

[86] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[87] A. Segre and G. DeJong, “Explanation-based manipulator learning:
Acquisition of planning ability through observation,” in Robotics and
Automation. Proceedings. 1985 IEEE International Conference on,
vol. 2. IEEE, 1985, pp. 555–560.

[88] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Teaching by showing: Gener-
ating robot programs by visual observation of human performance,” in
Proc. of the 20th International Symp. on Industrial Robots, 1989, pp.
119–126.

[89] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning
in robotics: Applications and real-world challenges,” Robotics, vol. 2,
no. 3, pp. 122–148, 2013.



Bibliography 611

[90] O. Brock and O. Khatib, “Elastic strips: A framework for integrated
planning and execution,” in Experimental Robotics VI, ISER, P. I. Corke
and J. P. Trevelyan, Eds. Sydney, Australia: Springer-Verlag, Berlin,
Heidelberg, Germany, 2000, Mar. 1999, pp. 329–338.

[91] J. S. Kelso, Dynamic patterns: The self-organization of brain and behav-
ior. MIT press, 1997.

[92] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlinear dynamical
systems as movement primitives,” in Humanoids2000, First IEEE-
RAS International Conference on Humanoid Robots. cd-proceedings,
2000. [Online]. Available: http://www-slab.usc.edu/publications/S/
schaal-ICHR2000.pdf

[93] A. Billard and G. Hayes, “Drama, a connectionist architecture for con-
trol and learning in autonomous robots,” Adaptive Behavior, vol. 7,
no. 1, pp. 35–63, 1999.

[94] A. I. Selverston, “Are central pattern generators understandable?”
Behavioral and Brain Sciences, vol. 3, no. 4, pp. 535–540, 1980.

[95] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming
by demonstration,” in Handbook of Robotics, B. Siciliano and O. Khatib,
Eds. Secaucus, NJ, USA: Springer, 2008, pp. 1371–1394.

[96] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International Confer-
ence on, vol. 2. IEEE, 2002, pp. 1398–1403.

[97] S. Calinon, F. D’halluin, E. L. Sauser, D. G. Caldwell, and A. G. Billard,
“Learning and reproduction of gestures by imitation,” IEEE Robotics &
Automation Magazine, vol. 17, no. 2, pp. 44–54, 2010.

[98] D. Kulić, W. Takano, and Y. Nakamura, “Incremental learning, clus-
tering and hierarchy formation of whole body motion patterns using
adaptive hidden markov chains,” The International Journal of Robotics
Research, vol. 27, no. 7, pp. 761–784, 2008.

[99] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” Robotics Research, pp. 561–572, 2005.

[100] L. Righetti, J. Buchli, and A. J. Ijspeert, “Dynamic hebbian learning in
adaptive frequency oscillators,” Physica D: Nonlinear Phenomena, vol.
216, no. 2, pp. 269–281, 2006.

[101] S. Degallier, L. Righetti, S. Gay, and A. Ijspeert, “Toward simple control
for complex, autonomous robotic applications: combining discrete and
rhythmic motor primitives,” Autonomous Robots, vol. 31, no. 2, pp. 155–
181, 2011.

http://www-slab.usc.edu/
http://www-slab.usc.edu/


612 Bibliography

[102] J. Kober and J. Peters, “Movement templates for learning of hitting and
batting,” in Learning Motor Skills. Springer, 2014, pp. 69–82.

[103] D. Bullock and S. Grossberg, “The vite model: A neural command cir-
cuit for generating arm and articulator trajectories,” Dynamic patterns
in complex systems, pp. 305–326, 1988.

[104] P. Gaudiano and S. Grossberg, “Adaptive vector integration to end-
point: Self-organizing neural circuits for control of planned movement
trajectories,” Human Movement Science, vol. 11, no. 1, pp. 141–155,
1992.

[105] D. Bullock, R. M. Bongers, M. Lankhorst, and P. J. Beek, “A vector-
integration-to-endpoint model for performance of viapoint movements,”
Neural Networks, vol. 12, no. 1, pp. 1–29, 1999.

[106] S. Grillner, “Locomotion in vertebrates: central mechanisms and reflex
interaction,” Physiological reviews, vol. 55, no. 2, pp. 247–304, 1975.

[107] M. H. Raibert, Legged robots that balance. MIT press, 1986.

[108] F. Delcomyn, “Neural basis of rhythmic behavior in animals,” Science,
vol. 210, no. 4469, pp. 492–498, 1980.

[109] E. Marder and D. Bucher, “Central pattern generators and the control of
rhythmic movements,” Current biology, vol. 11, no. 23, pp. R986–R996,
2001.

[110] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Computer Science Review, vol. 3,
no. 3, pp. 127–149, 2009.

[111] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent neural
networks: A survey,” IEEE Transactions on Neural networks, vol. 6,
no. 5, pp. 1212–1228, 1995.

[112] L. Medsker and L. C. Jain, Recurrent neural networks: design and appli-
cations. CRC press, 1999.

[113] A. F. Atiya and A. G. Parlos, “New results on recurrent network train-
ing: unifying the algorithms and accelerating convergence,” IEEE trans-
actions on neural networks, vol. 11, no. 3, pp. 697–709, 2000.

[114] A. Ijspeert, J. Nakanishi, and S. Schaal, “Trajectory formation for
imitation with nonlinear dynamical systems,” in IEEE International
Conference on Intelligent Robots and Systems (IROS 2001), 2001, pp.
752–757. [Online]. Available: http://www-clmc.usc.edu/publications/I/
ijspeert-IROS2001.pdf

http://www-clmc.usc.edu/
http://www-clmc.usc.edu/


Bibliography 613

[115] J.-J. E. Slotine and W. Li, Applied nonlinear control. Prentice hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[116] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge uni-
versity press, 2004.

[117] F. H. Clarke, Optimization and nonsmooth analysis. SIAM, 1990.

[118] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
theory and algorithms. John Wiley & Sons, 2013.

[119] J. Nocedal and S. J. Wright, Sequential quadratic programming.
Springer, 2006.

[120] J.-F. Bonnans, J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal,
Numerical optimization: theoretical and practical aspects. Springer Sci-
ence & Business Media, 2006.

[121] D. E. Goldberg, Genetic algorithms. Pearson Education India, 2006.

[122] K. Deb, Optimization for engineering design: Algorithms and examples.
PHI Learning Pvt. Ltd., 2012.

[123] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Micro Machine and Human Science, 1995. MHS’95., Pro-
ceedings of the Sixth International Symposium on. IEEE, 1995, pp.
39–43.

[124] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simu-
lated annealing: Theory and applications. Springer, 1987, pp. 7–15.

[125] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006. [Online]. Available: http://research.microsoft.com/en-us/um/
people/cmbishop/prml/

[126] G. J. McLachlan and K. E. Basford,Mixture models: Inference and appli-
cations to clustering. Marcel Dekker, 1988, vol. 84.

[127] G. McLachlan and D. Peel, Finite mixture models. John Wiley & Sons,
2004.

[128] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the royal sta-
tistical society. Series B (methodological), pp. 1–38, 1977.

[129] G. J. McLachlan and T. Krishnan, “The em algorithm and extensions.
1997,” Hoboken: Wiley and Sons Google Scholar.

[130] “Schunk,” http://www.schunk-modular-robotics.com/.

[131] “Amtec robotics,” http://www.amtec-robotics.com/.

http://www.schunk-modular-robotics.com/
http://www.amtec-robotics.com/
http://research.microsoft.com/
http://research.microsoft.com/


614 Bibliography

[132] F. i Digital Camera, “Unibrain inc.” http://www.unibrain.com.

[133] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy
3D machine vision metrology using off-the-shelf tv cameras and lenses,”
IEEE Journal of Robotics and Automation, vol. RA-3, no. 4, pp. 323–
344, August 1987.

[134] R. Wilson, “Tsai camera calibration software,” http://www.cs.cmu.edu/
~rgw/TsaiCode.html.

[135] OpenCV, “Open source computer vision library,” http://www.intel.
com/technology/computing/opencv/.

[136] T. Kohonen, Self-organizing Maps. Springer, Heidelberg, 2001.

[137] J. Walter and H. Ritter, “Rapid learning with parametrized self-
organizing maps,” Neurocomputing, vol. 12, pp. 131–153, 1996.

[138] J. A. Walter, “PSOM network: Learning with few examples,” in Int.
Conf. on Robotics and Automation. Leuven, Belgium: IEEE, May 1998,
pp. 2054–2059.

[139] J. Walter, C. Nolker, and H. Ritter, “The PSOM algorithm and appli-
cations,” in Proc. Int. ICSC Symposium on Neural Computation, 2000,
pp. 758–764.

[140] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-dimensional
neural net for learning visual motor coordination of a robot arm,” IEEE
Transactions on Neural Networks, vol. 1, no. 1, pp. 131–136, March
1990.

[141] J. A. Walter and K. J. Schulten, “Implementation of self-organizing
neural networks for visual-motor control of an industrial robot,” IEEE
Transactions on Neural Networks, vol. 4, no. 1, pp. 86–95, January 1993.

[142] T. Martinetz, H. Ritter, and K. Schulten, “Learning of visuomotor-
coordination of a robot arm with redundant degrees of freedom,” in
Proc. of the Int. Conf. on Parallel Processing in Neural Systems and
Computers (ICNC). Dusseldorf, Amsterdam: Elsevier, 1990, pp. 431–
434.

[143] M. Han, N. Okada, and E. Kondo, “Coordination of an uncalibrated
3-d visuo-motor system based on multiple self-organizing maps,” JSME
International Journal Series C, vol. 49, no. 1, pp. 230–239, 2006.

[144] H. Zha, T. Onitsuka, and T. Nagata, “A self-organization learning algo-
rithm for visuo-motor coordination in unstructured environment,” Arti-
ficial life and robotics, vol. 1, no. 3, pp. 131–136, September 1997.

http://www.intel.com/
http://www.intel.com/
http://www.cs.cmu.edu/
http://www.cs.cmu.edu/
http://www.unibrain.com


Bibliography 615

[145] X.-Z. Zheng and K. Ito, “Self-organized learning and its implementa-
tion of robot movements,” in IEEE Int. Conf. on SMC, ’Computational
cybernetics and simulation’, Orlando, FL, USA, 1997, pp. 281–286.

[146] F. Chaumette, “Image moments: A general and useful set of features
for visual servoing,” IEEE Transactions on Robotics, vol. 20, no. 4, pp.
713–723, August 2004.

[147] R. Sharma and S. Hutchinson, “Optimizing hand/eye configuration for
visual-servo systems,” in Proc. of Int. Conf. on Robotics and Automation
(ICRA). IEEE, May 1995, pp. 172–177.

[148] J. T. Feddema, C. S. G. Lee, and O. W. Mitchell, “Weighted selection of
image features for resolved rate visual feedback control,” IEEE Trans.
on Robotics and Automation, vol. 7, no. 1, pp. 31–47, February 1991.

[149] G. Tevatia and S. Schaal, “Inverse kinematics of humanoid robots,” in
Proc. of IEEE Int. Conf. on Robotics and Automation, San Francisco,
CA, April 2000, pp. 294–299.

[150] L. Behera and N. Kirubanandan, “A hybrid neural control scheme for
visual-motor coordination,” IEEE Control System Magazine, vol. 19,
no. 4, pp. 34–41, 1999.

[151] V. R. Angulo and C. Torras, “Speeding up the learning of robot kine-
matics through function decomposition,” IEEE Transaction on Neural
Networks, vol. 16, no. 6, pp. 1504–1512, November 2005.

[152] S. H. M. Spong and M. Vidyasagar, Robot Modeling and Control. John
Wiley & sons Inc., 2005.

[153] M. K. Hu, “Visual patter recognition by moment invariants,” IRE Trans.
on Information Theory, vol. 8, no. 2, pp. 179–187, February 1962.

[154] T. S. J. Flusser, “Affine moment invariants: a new tool for
character recognition,” Pattern Recognition, April 1994, available:
http://www.sciencedirect.com/science/article/pii/0167865594900922.

[155] Complex Objects Pose Estimation Based on Image Moment variants.
IEEE, April 2005.

[156] D. Cyganski and J. A. Orr, “Applications of tensor theory to object
recognition and orientation determination,” IEEE Trans.on Pattern
Analysis and Machine Intelligence, vol. 7, no. 6, pp. 662–673, November
1985.

[157] C. H. Lo and H. S. Don, “3-d moment forms: their construction and
application to object identification and positioning,” IEEE Trans.on
Pattern Analysis and Machine Intelligence, vol. 11, no. 10, pp. 1053–
1064, October 1989.

http://www.sciencedirect.com/


616 Bibliography

[158] Z. Yang and F. Cohen, “Cross-weighted moments and affine invariants
for image registration and matching,” IEEE Trans.on Pattern Analysis
and Machine Intelligence, vol. 21, no. 8, pp. 804–814, August 1999.

[159] J. Flusser and T. Suk, “Rotation moment invariants for recognition of
symmetric objects,” IEEE Trans.on Image processing, vol. 26, no. 5, pp.
3784–3796, December 2006.

[160] C. C. Chen, “Rotation moment invariants for recognition of symmetric
objects,” IEEE Trans.on Image processing, vol. 26, no. 5, pp. 683–686,
December 1993.

[161] R. J. Prokop and A. P.Reeves, “A survey of moment-based techniques
for unoccluded object representation and recognition,” CVGIP: Graph.
Models Image Process, vol. 54, no. 5, pp. 438–460, 2002.

[162] J.Stewart, Calculus, 6th ed. Thomson Learning Inc., 2008.

[163] A first step toward visual servoing using image moments, vol. 1. IEEE,
2002.

[164] F. Chaumette, “Image moments: A general and useful set of features
for visual servoing,” IEEE Transactions on Robotics and Automation,
vol. 20, no. 4, pp. 713–723, August 2004.

[165] D. Ballard and C. Brown, Computer Vision. Prentice Hall, 1982.

[166] R. K. R. Jain and B. SChunk, Machine Vision. McGraw-Hill Interna-
tional Editions, 1995.

[167] F. Chaumette, “La relation vision-commande: theorie et application a
des taches robotique,” Ph.D. dissertation, IRISA, Ph.D. dissertation,
University de Rennes 1, 1990.

[168] O. Tahri and F. Chaumette, “Image moments: generic descriptors for
decoupled image-based visual servo,” in Proceedings. ICRA ’04, vol. 2.
IEEE International Conference on Robotics and Automation, 2004, May
2004, pp. 1185–1190.

[169] “Open source computer vision library. [online].” Available:
http://opencv.willowgarage.com.

[170] P. K. Patchaikani and L. Behera, “Visual servoing of redundant manipu-
lator with Jacobian estimation using self-organizing map,” Robotics and
Autonomous Systems, vol. 58, no. 8, pp. 978–990, August 2010.

[171] K. Hosoda and M. Asada, “Versatile visual servoing without knowl-
edge of true jacobian,” in Intelligent Robots and Systems ’94. ’Advanced
Robotic Systems and the Real World’, IROS ’94. Proceedings of the
IEEE/RSJ/GI International Conference on, vol. 1, September 1994, pp.
186 –193.

http://opencv.willowgarage.com


Bibliography 617

[172] M. Asada, T. Tanaka, and K. Hosoda, “Visual tracking of unknown
moving object by adaptive binocular visual servoing,” in Multisensor
Fusion and Integration for Intelligent Systems, 1999. MFI ’99. Proceed-
ings. 1999 IEEE/SICE/RSJ International Conference on, 1999, pp. 249
–254.

[173] A. Farahmand, A. Shademan, and M. Jagersand, “Global visual-motor
estimation for uncalibrated visual servoing,” in Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
vol. 2, November 2007, pp. 1969 –1974.

[174] F. Nori, L. Natale, G. Sandini, and G. Metta, “Autonomous learning of
3d reaching in a humanoid robot,” in Intelligent Robots and Systems,
2007. IROS 2007. IEEE/RSJ International Conference on, November
2007, pp. 1142 –1147.

[175] L. Natale, F. Nori, G. Sandini, and G. Metta, “Learning precise 3d
reaching in a humanoid robot,” in Development and Learning, 2007.
ICDL 2007. IEEE 6th International Conference on, July 2007, pp. 324
–329.

[176] N. Mansard, M. Lopes, J. Santos-Victor, and F. Chaumette, “Jacobian
learning methods for tasks sequencing in visual servoing,” in Intelli-
gent Robots and Systems, 2006 IEEE/RSJ International Conference on,
October 2006, pp. 4284 –4290.

[177] T. M. Martinetz, H. J. Ritter, and K. J. Schulten, “Three-dimensional
neural net for learning visual motor coordination of a robot arm,” IEEE
Transactions on Neural Networks, vol. 1, no. 1, pp. 131–136, March
1990.

[178] T. Martinetz, H. Ritter, and K. Schulten, “Learning of visuomotor-
coordination of a robot arm with redundant degrees of freedom,” in
Proceedings of the International Conference on Parallel Processing in
Neural Systems and Computers, 1990, pp. 431–434.

[179] M. Han, N. Okada, and E. Kondo, “Coordination of an uncalibrated
3-D visuo-motor system based on multiple self-organizing maps,” JSME
International Journal Series C, vol. 49, no. 1, pp. 230–239, 2006.

[180] G. Asuni, G. Teti, C. Laschi, E. Guglielmelli, and P. Dario, “A bio-
inspired sensory-motor neural model for a neuro-robotic manipulation
platform,” in Advanced Robotics, 2005. ICAR ’05. Proceedings., 12th
International Conference on, July 2005, pp. 607 –612.

[181] G. A. Barreto and A. F. R. Araujo, “Self-organizing feature maps for
modeling and control of robotic manipulators,” Journal of Intelligent
and Robotic Systems, vol. 36, pp. 407–450, 2003.



618 Bibliography

[182] V. R. de Angulo and C. Torras, “Speeding up the learning of robot kine-
matics through function decomposition,” IEEE Transactions on Neural
Networks, vol. 16, no. 6, pp. 1504–1512, November 2005.

[183] S. Kumar, L. Behera, and T. McGinnity, “Kinematic control of a
redundant manipulator using an inverse-forward adaptive scheme with
a KSOM based hint generator,” Robotics and Autonomous Systems,
vol. 58, no. 5, pp. 622–633, May 2010.

[184] S. Kumar, P. K. Patchaikani, A. Dutta, and L. Behera, “Visual motor
control of a 7DOF redundant manipulator using redundancy preserving
learning network,” Robotica, vol. 28, no. 6, pp. 795–810, 2010.

[185] T. Hesselroth, K. Sarkar, P. P. Smagt, and K. Schulten, “Neural network
control of a pneumatic robot arm,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 24, no. 1, pp. 28–38, January 1994.

[186] “Barrett Technology,” http://web.barrett.com/support/WAM_
Documentation/WAM_InertialSpecifications_AC-02.pdf, accessed:
2016-09-30.

[187] P. K. Patchaikani, L. Behera, and G. Prasad, “A single network adap-
tive critic based redundancy resolution for robot manipulators,” IEEE
Transactions on Industrial Electronics, vol. 58, pp. 1–13, 2012.

[188] J. C. Dunn, “A fuzzy relative of the isodata process and its use in detect-
ing compact well-separated clusters,” Journal of Cybernetics, vol. 3,
no. 4, 1973.

[189] S. Zeki, “The representation of colours in the cerebral cortex,” Nature,
vol. 284, pp. 412–418, 1980.

[190] The Self-Organizing Map, vol. 78, no. 9. Proceedings of The IEEE,
September 1990.

[191] L. Behera and I. Kar, Intelligent Systems and Control: Principles and
Applications. Oxford University Press, 2009.

[192] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its appli-
cation to modeling and control,” IEEE Transactions on Systems Man
and Cybernetics, vol. 15, no. 1, pp. 116–132, January 1985.

[193] J.-S. Jang, C.-T.Sun, and E. Mizutani, Neuro-Fuzzy and Soft Comput-
ing: A computational Approach to Learning and Machine Intelligence.
Pearson Prentice Hall, 2007.

[194] J. Espinosa, J. Vandewalle, and V. Wertz, Fuzzy Logic, Identification
and Predictive Control. Springer-Verlag, 2005.

http://web.barrett.com/
http://web.barrett.com/


Bibliography 619

[195] J. Kluska, Analytical Methods in Fuzzy Modelling and Control.
Springer-Verlag, 2009.

[196] J.-S. R. Jang, “Neuro-Fuzzy Modelling: Architecture, Analyses and
Applications,” Ph.D. dissertation, Department of Electrical and Com-
puter Science University of California, 1984.

[197] S.-J. Kang, C.-H. Woo, H.-S. Hwang, and K. Woo, “Evolutionary design
of fuzzy rule base for nonlinear system modeling and control,” Fuzzy
Systems, IEEE Transactions on, vol. 8, no. 1, pp. 37–45, February 2000.

[198] W. Pedrycz and M. Reformat, “Evolutionary fuzzy modeling,” Fuzzy
Systems, IEEE Transactions on, vol. 11, no. 5, pp. 652–665, October
2003.

[199] H. K. Khalil, Nonlinear Systems, 2nd ed. Prentice Hall, 1996.

[200] S. Kumar, L. Behera, and T. McGinnity, “Kinematic control of a redun-
dant manipulator using an inverse-forward adaptive scheme with a ksom
based hint generator,” Robotics and Autonomous Systems, vol. 58, no. 5,
pp. 622–633, May 2010.

[201] P. Patchaikani, L. Behera, and G. Prasad, “A single network adap-
tive critic based redundancy resolution scheme for robot manipulators,”
Robotics and Autonomous Systems, vol. 58, no. 8, pp. 978–990, August
2009.

[202] C. C. Cheah, S. Hou, Y. Zhao, and J.-J. Slotine, “Adaptive vision and
force tracking control for robots with constraint uncertainty,” Mecha-
tronics, IEEE/ASME Transactions on, vol. 15, no. 3, pp. 389–399, June
2010.

[203] H. Wang, Y.-H. Liu, W. Chen, and Z. Wang, “Adaptive Visual Servo-
ing Using Point and Line Features With an Uncalibrated Eye-in-Hand
Camera,” Robotics, IEEE Transactions on, vol. 24, no. 4, pp. 843–857,
August 2008.

[204] L. Hsu, R. R. Costa, and F. Lizarralde, “Lyapunov/passivity-based
adaptive control of relative degree two mimo systems with an appli-
cation to visual servoing,” IEEE Transactions on Automatic Control,
vol. 52, no. 2, pp. 364–371, February 2007.

[205] S. Islam and P. Liu, “Pd output feedback control design for indus-
trial robotic manipulators,” Mechatronics, IEEE/ASME Transactions
on, vol. 16, no. 1, pp. 187–197, February 2011.

[206] J. Armstrong Piepmeier, G. McMurray, and H. Lipkin, “A dynamic
jacobian estimation method for uncalibrated visual servoing,” in
IEEE/ASME International Conference on Advanced Intelligent Mecha-
tronics, September 1999, pp. 944–949.



620 Bibliography

[207] C. Broyden, “A class of methods for solving nonlinear simultaneous
equations,” Mathematics of Computation, vol. PP, no. 19, pp. 577–593,
1965.

[208] M. Bonkovic, A. Hace, and K. Jezernik, “Population based uncalibrated
visual servoing,” IEEE/ASME Transactions on Mechatronics, vol. 13,
no. 3, June 2008.

[209] Q. Fu, Z. Zhang, and J. Shi, “Uncalibrated visual servoing using
more precise model,” in IEEE Conference on Robotics, Automation and
Mechatronics, September 2008, pp. 916–921.

[210] P. Patchaikani and L. Behera, “Visual servoing of redundant manipula-
tor with jacobian matrix estimation using self-organizing map,” Robotics
and Autonomous Systems, vol. 58, no. 8, pp. 978–990, August 2010.

[211] P. Jiang, L. Bamforth, Z. Feng, J. Baruch, and Y. Chen, “Indirect iter-
ative learning control for a discrete visual servo without a camera-robot
model,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, vol. 37, no. 4, pp. 863–876, August 2007.

[212] K. Ahn and H. Anh, “Inverse double narx fuzzy modeling for system
identification,” Mechatronics, IEEE/ASME Transactions on, vol. 15,
no. 1, pp. 136–148, February 2010.

[213] P. Goncalves, L. Mendoca, J. Sousa, and J. Pinto, “Uncalibrated eye
to hand visual servoing using inverse fuzzy models,” IEEE Transactions
on Fuzzy Systems, vol. 16, no. 2, pp. 341–353, April 2008.

[214] K. Tanaka, M. Tanaka, H. Ohtake, and H. Wang, “Shared nonlinear
control in wireless-based remote stabilization: A theoretical approach,”
Mechatronics, IEEE/ASME Transactions on, vol. 3, no. 1, pp. 443–452,
June 2012.

[215] R. Padhi, N. Unnikrishnan, X. Wang, and S. Balakrishnan, “A single
network adaptive critic (SNAC) architecture for optimal control,” Neu-
ral Networks, vol. 19, no. 10, pp. 1648–1660, 2006.

[216] R. Bellman, Dynamic Programming. NJ: Princeton university press,
1957.

[217] P. J. Werbos, “Approximate dynamic programming for real-time control
and neural modeling,” in Handbook of Intelligent control, D. A. White
and D. A. Sofge, Eds. Multiscience Press, 1992.

[218] K. Doya, “Reinforcement learning in continuous time and space,” Neural
computing, vol. 12, no. 1, pp. 219–245, January 2000.



Bibliography 621

[219] L. C. B. III, “Reinforcement learning in continuous time: Advan-
tage updating,” in International Joint conference on Neural Networks.
IEEE, June 1994.

[220] S. Kumar, R. Padhi, and L. Behera, “Direct adaptive control using single
network adaptive critic,” IEEE International Conference on Systems of
Systems Engineering, 2007.

[221] P. K. Patchaikani, L. Behera, N. H. Siddique, and G. Prasad, “A T-S
fuzzy based adaptive critic for continuous-time input affine nonlinear
systems,” in Systems, Man and Cybernetics, 2009. SMC 2009. IEEE
International Conference on, October 2009, pp. 4329 –4334.

[222] G. N. Saridis and C. S. G. Lee, “An approximation theory of opti-
mal control for trainable manipulators,” IEEE Transactions on Systems,
Man and Cybernetics, vol. SMC-9, no. 3, pp. 152–159, March 1979.

[223] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm
to solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, 2010.

[224] T. Cheng, F. L. Lewis, and M. Abu-Khalaf, “Fixed-final-time-
constrained optimal control of nonlinear systems using neural network
HJB approach,” IEEE Transactions on Neural Networks, vol. 18, no. 6,
pp. 1725–1737, November 2007.

[225] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time non-
linear HJB solution using approximate dynamic programming: Conver-
gence proof,” IEEE Transactions on Systems, Man and Cybernetics-
Part B:Cybernetics, vol. 38, no. 4, pp. 943–949, August 2008.

[226] H. Zghal, R. V. Dubey, and J. A. Euler, “Efficient gradient projection
optimization for manipulators with multiple degrees of redundancy,” in
Proceedings of IEEE International Conference on Robotics and Automa-
tion, vol. 2, 1990, pp. 1006–1011.

[227] G. H. Golub and C. Reinsch, “Singular value decomposition and least
square solutions,” Numerische Mathematik, vol. 14, no. 5, pp. 403–420,
1970.

[228] P. Ioannou and J. Sun, Robust Adaptive Control. Upper Saddle River,
NJ, USA: Prentice-Hall, 1996.

[229] S. H. Zak, Systems and Control. Oxford university press, 2002.

[230] S. Balakrishnan and V. Biega, “Adaptive-critic-based neural networks
for aircraft optimal control,” Journal of Guidance, Control, and Dynam-
ics, vol. 19, no. 4, pp. 893–898, 1996.



622 Bibliography

[231] L. Behera and I. Kar, Intelligent Systems and control principles and
applications. Oxford University Press, Inc., 2010.

[232] R. Padhi, S. Balakrishnan, and T. Randolph, “Adaptive-critic based
optimal neuro control synthesis for distributed parameter systems,”
Automatica, vol. 37, no. 8, pp. 1223 – 1234, 2001, neural Network Feed-
back Control.

[233] R. Padhi, N. Unnikrishnan, X. Wang, and S. N. Balakrishnan, “A single
network adaptic critic (snac) architecture for optimal control,” Neural
Networks, vol. 19, pp. 1648–1660, 2006.

[234] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, Belmount, 1995.

[235] H. Modares, F. L. Lewis, and M. B. Naghibi-Sistani, “Adaptive optimal
control of unknown constrained-input systems using policy iteration and
neural networks,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 24, no. 10, pp. 1513–1525, Oct 2013.

[236] A. F. Gómez-Skarmeta, M. Delgado, and M. Vila, “About the use of
fuzzy clustering techniques for fuzzy model identification,” Fuzzy Sets
and Systems, vol. 106, no. 2, pp. 179–188, September 1999.

[237] A. Patnaik, S. Dutta, and L. Behera, “Data driven system identification
using evolutionary algorithms,” Lecture Notes in Computer Science, vol.
7665, pp. 568–576, 2012.

[238] K. Tanaka and H. O. Wang, Fuzzy Control Syatems Design and Analysis.
New York: Wiley, 2001.

[239] B. J. Rhee and S. Won, “A new fuzzy lyapunov function approach for a
takagi-sugeno fuzzy control system,” Fuzzy Sets and Systems, vol. 157,
pp. 1211–1228, 2006.

[240] S. Dutta and L. Behera, “Snac based near-optimal controller for robotic
manipulator with unknown dynamics,” in Fuzzy Systems (FUZZ-IEEE),
2014 IEEE International Conference on, July 2014, pp. 98–105.

[241] P. K. Patchaikani, “Learning based near-optimal redundancy resolution
schemes for visually controlled robot manipulators,” Ph.D. dissertation,
Dept. Elect. Eng., Indian Institute of Technology Kanpur, India, Aug
2012.

[242] P. K. Patchaikani, L. Behera, and G. Prasad, “A single network adap-
tive critic-based redundancy resolution scheme for robot manipulators,”
IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3241–
3253, Aug 2012.



Bibliography 623

[243] J. J. Craig, Introduction to robotics: Mechanics and Control. Pearson,
2009.

[244] X. Li and C. C. Cheah, “Adaptive neural network control of robot based
on a unified objective bound,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 3, pp. 1032–1043, May 2014.

[245] S. Khansari-Zadeh and A. Billard, “Learning stable nonlinear dynamical
systems with gaussian mixture models,” IEEE Transactions on Robotics,
vol. 27, no. 5, pp. 943–957, Oct 2011.

[246] S. Dutta, P. K. Patchaikani, and L. Behera, “Near-optimal controller for
nonlinear continuous-time systems with unknown dynamics using policy
iteration,” IEEE transactions on neural networks and learning systems,
vol. 27, no. 7, pp. 1537–1549, 2016.

[247] J. Lofberg, “Yalmip : a toolbox for modeling and optimization in mat-
lab,” in 2004 IEEE International Conference on Robotics and Automa-
tion (IEEE Cat. No.04CH37508), Sept 2004, pp. 284–289.

[248] A. Butz, “Higher order derivatives of Liapunov functions,” Automatic
Control, IEEE Transactions on, vol. 14, no. 1, pp. 111–112, Feb 1969.

[249] A. Ahmadi and P. Parrilo, “On higher order derivatives of Lyapunov
functions,” in American Control Conference (ACC), June 2011, pp.
1313–1314.

[250] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online learning
in high dimensions,” Neural Computation, vol. 17, pp. 2602–2634, 2005.

[251] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[252] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

[253] R. Diankov. (2013, Oct.) Ikfast: The robot kinematics compiler. [Online].
Available: http://openrave.org/docs/latest_stable/openravepy/ikfast/
#ikfast-the-robot-kinematics-compiler

[254] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international con-
ference on computer vision, 2015, pp. 1440–1448.

[255] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” IEEE transactions on
pattern analysis and machine intelligence, vol. 39, no. 6, pp. 1137–1149,
2017.

http://openrave.org/
http://openrave.org/
http://www.csie.ntu.edu.tw/
http://www.csie.ntu.edu.tw/


624 Bibliography

[256] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21–37.

[257] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2881–2890.

[258] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Com-
puter Vision (ICCV), 2017 IEEE International Conference on. IEEE,
2017, pp. 2980–2988.

[259] M. M. Adankon and M. Cheriet, “Support vector machine,” in Encyclo-
pedia of biometrics. Springer, 2009, pp. 1303–1308.

[260] W. S. McCulloch andW. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, 1943.

[261] D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter,
“The multilayer perceptron as an approximation to a bayes optimal
discriminant function,” IEEE Transactions on Neural Networks, vol. 1,
no. 4, pp. 296–298, 1990.

[262] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12.

[263] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta,
A. P. Aitken, A. Tejani, J. Totz, Z. Wang, et al., “Photo-realistic sin-
gle image super-resolution using a generative adversarial network.” in
CVPR, vol. 2, no. 3, 2017, p. 4.

[264] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, p. 20, 2015.

[265] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[266] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” in European conference on computer vision. Springer,
2014, pp. 818–833.

[267] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with con-
volutions,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 1–9.

http://yann.lecun.com/


Bibliography 625

[268] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[269] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[270] B. C. Russell, A. Torralba, K. P. Murphy, andW. T. Freeman, “Labelme:
a database and web-based tool for image annotation,” International
journal of computer vision, vol. 77, no. 1, pp. 157–173, 2008.

[271] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A retro-
spective,” International journal of computer vision, vol. 111, no. 1, pp.
98–136, 2015.

[272] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” arXiv preprint arXiv:1612.01105, 2016.

[273] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” in European Conference
on Computer Vision. Springer, 2014, pp. 346–361.

[274] S. Wu, S. Zhong, and Y. Liu, “Deep residual learning for image ste-
ganalysis,” Multimedia Tools and Applications, pp. 1–17, 2017.

[275] F. Yu, V. Koltun, and T. Funkhouser, “Dilated residual networks,” arXiv
preprint arXiv:1705.09914, 2017.

[276] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” arXiv preprint
arXiv:1612.03144, 2016.

[277] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A convolu-
tional neural network for 6d object pose estimation in cluttered scenes,”
arXiv preprint arXiv:1711.00199, 2017.

[278] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a
multi-armed bandit model with correlated rewards,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016, pp. 1957–1964.

[279] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea,
and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps
with synthetic point clouds and analytic grasp metrics,” arXiv preprint
arXiv:1703.09312, 2017.



626 Bibliography

[280] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to grasp
from 50k tries and 700 robot hours,” in Robotics and Automation
(ICRA), 2016 IEEE International Conference on. IEEE, 2016, pp.
3406–3413.

[281] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning
hand-eye coordination for robotic grasping with deep learning and large-
scale data collection,” The International Journal of Robotics Research,
vol. 37, no. 4-5, pp. 421–436, 2018.

[282] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,” Int. J. Rob. Res., vol. 27, no. 2, pp. 157–173, feb
2008. [Online]. Available: http://dx.doi.org/10.1177/0278364907087172

[283] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. J. Rob. Res., vol. 34, no. 4-5, pp. 705–724, apr 2015.
[Online]. Available: http://dx.doi.org/10.1177/0278364914549607

[284] E. Johns, S. Leutenegger, and A. J. Davison, “Deep learning a grasp
function for grasping under gripper pose uncertainty,” in Intelligent
Robots and Systems (IROS), 2016 IEEE/RSJ International Conference
on. IEEE, 2016, pp. 4461–4468.

[285] A. ten Pas and R. Platt, “Localizing grasp affordances in 3-d points
clouds using taubin quadric fitting,” CoRR, vol. abs/1311.3192, 2013.

[286] A. Ten Pas and R. Platt, “Localizing handle-like grasp affordances in 3d
point clouds,” in Experimental Robotics. Springer, 2016, pp. 623–638.

[287] N. P. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator.” in IROS, vol. 4. Citeseer, 2004,
pp. 2149–2154.

[288] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE Robotics
& Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[289] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012.

[290] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91–99.

[291] D. Chaudhuri and A. Samal, “A simple method for fitting of bounding
rectangle to closed regions,” Pattern recognition, vol. 40, no. 7, pp. 1981–
1989, 2007.

[292] A. t. Pas and R. Platt, “Using geometry to detect grasps in 3d point
clouds,” arXiv preprint arXiv:1501.03100, 2015.

http://dx.doi.org/
http://dx.doi.org/


Bibliography 627

[293] G. Vosselman, B. G. Gorte, G. Sithole, and T. Rabbani, “Recognising
structure in laser scanner point clouds,” International archives of pho-
togrammetry, remote sensing and spatial information sciences, vol. 46,
no. 8, pp. 33–38, 2004.

[294] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, “Segmentation
of point clouds using smoothness constraint,” International archives
of photogrammetry, remote sensing and spatial information sciences,
vol. 36, no. 5, pp. 248–253, 2006.

[295] Q. Chen, Q.-s. Sun, P. A. Heng, and D.-s. Xia, “A double-threshold
image binarization method based on edge detector,” Pattern recognition,
vol. 41, no. 4, pp. 1254–1267, 2008.

[296] G. Jie and L. Ning, “An improved adaptive threshold canny edge
detection algorithm,” in Computer Science and Electronics Engineer-
ing (ICCSEE), 2012 International Conference on, vol. 1. IEEE, 2012,
pp. 164–168.

[297] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” CoRR, vol. abs/1603.01564,
2016. [Online]. Available: http://arxiv.org/abs/1603.01564

[298] S. Jain and B. Argall, “Grasp detection for assistive robotic manipu-
lation,” in Robotics and Automation (ICRA), 2016 IEEE International
Conference on. IEEE, 2016, pp. 2015–2021.

[299] N. Somani, C. Cai, A. Perzylo, M. Rickert, and A. Knoll,
Object Recognition Using Constraints from Primitive Shape Matching.
Cham: Springer International Publishing, 2014, pp. 783–792. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-14249-4_75

[300] M. Nieuwenhuisen, J. Stueckler, A. Berner, R. Klein, and S. Behnke,
“Shape-primitive based object recognition and grasping,” in Robotics;
Proceedings of ROBOTIK 2012; 7th German Conference on, May 2012,
pp. 1–5.

[301] G. Vezzani, U. Pattacini, and L. Natale, “A grasping approach based on
superquadric models,” in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 1579–1586.

[302] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE multimedia,
vol. 19, no. 2, pp. 4–10, 2012.

[303] M. Draelos, Q. Qiu, A. Bronstein, and G. Sapiro, “Intel realsense= real
low cost gaze,” in Image Processing (ICIP), 2015 IEEE International
Conference on. IEEE, 2015, pp. 2520–2524.

[304] I. Imaging, “Ensenso 3d cameras,” https://en.ids-imaging.com/
ensenso-stereo-3d-camera.html, 2018.

https://en.ids-imaging.com/
https://en.ids-imaging.com/
http://dx.doi.org/
http://arxiv.org/


628 Bibliography

[305] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “Bigbird: A
large-scale 3d database of object instances,” in Robotics and Automation
(ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp.
509–516.

[306] A. Aldoma, F. Tombari, L. Di Stefano, and M. Vincze, A Global
Hypotheses Verification Method for 3D Object Recognition. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2012.

[307] S. G. F. Tombari, L. Di Stefano, “Rgb-d semantic segmentation
dataset,” http://vision.deis.unibo.it/fede/kinectDataset.html, 2011.

[308] “Willowgarage test set dataset,” https://repo.acin.tuwien.ac.at/tmp/
permanent/dataset_index.php.

[309] O. Kundu, “TCS grasping datasets for individual and multiple objects,”
https://sites.google.com/view/grasping-tcs-research/home, TATA Con-
sultancy Services, 2018.

[310] Y. Luo, M. Zhou, and R. J. Caudill, “An integrated e-supply chain model
for agile and environmentally conscious manufacturing,” IEEE/ASME
Transactions On Mechatronics, vol. 6, no. 4, pp. 377–386, 2001.

[311] Amazon.com, “The largest internet-based retailer in the world,” http:
//www.amazon.com/.

[312] S. O’Connor, “Amazon unpacked,” Financial Times, vol. 8, 2013.

[313] P. J. Reaidy, A. Gunasekaran, and A. Spalanzani, “Bottom-up approach
based on internet of things for order fulfillment in a collaborative ware-
housing environment,” International Journal of Production Economics,
vol. 159, pp. 29–40, 2015.

[314] W. Ding, “Study of smart warehouse management system based on
the iot,” in Intelligence Computation and Evolutionary Computation.
Springer, 2013, pp. 203–207.

[315] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses,” AI magazine,
vol. 29, no. 1, p. 9, 2008.

[316] N. Mathew, S. L. Smith, and S. L. Waslander, “Planning paths for pack-
age delivery in heterogeneous multirobot teams,” IEEE Transactions
on Automation Science and Engineering, vol. 12, no. 4, pp. 1298–1308,
2015.

[317] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Ensemble coordina-
tion approach in multi-agv systems applied to industrial warehouses,”
IEEE Transactions on Automation Science and Engineering, vol. 12,
no. 3, pp. 922–934, 2015.

http://www.amazon.com/
http://www.amazon.com/
https://sites.google.com/
https://repo.acin.tuwien.ac.at/
https://repo.acin.tuwien.ac.at/
http://vision.deis.unibo.it/


Bibliography 629

[318] N. T. Truc and Y.-T. Kim, “Navigation method of the transportation
robot using fuzzy line tracking and qr code recognition,” International
Journal of Humanoid Robotics, p. 1650027, 2016.

[319] H.-G. Xu, M. Yang, C.-X. Wang, and R.-Q. Yang, “Magnetic sensing
system design for intelligent vehicle guidance,” IEEE/ASME Transac-
tions on Mechatronics, vol. 15, no. 4, pp. 652–656, 2010.

[320] A. Muis and K. Ohnishi, “Eye-to-hand approach on eye-in-hand config-
uration within real-time visual servoing,” IEEE/ASME transactions on
Mechatronics, vol. 10, no. 4, pp. 404–410, 2005.

[321] P. R. Wurman and J. M. Romano, “Amazon picking challenge 2015,”
AI Magazine, vol. 37, no. 2, pp. 97–99, 2016.

[322] C. Hernandez, M. Bharatheesha, W. Ko, H. Gaiser, J. Tan, K. van
Deurzen, M. de Vries, B. Van Mil, J. van Egmond, R. Burger, et al.,
“Team delft’s robot winner of the amazon picking challenge 2016,” in
Robot World Cup. Springer, 2016, pp. 613–624.

[323] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating sys-
tem,” in ICRA workshop on open source software, vol. 3. Kobe, Japan,
2009, p. 5.

[324] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d
machine vision metrology using off-the-shelf tv cameras and lenses,”
IEEE Journal on Robotics and Automation, vol. 3, no. 4, pp. 323–344,
1987.

[325] Z. Zhang, “A flexible new technique for camera calibration,” IEEE
Transactions on pattern analysis and machine intelligence, vol. 22,
no. 11, pp. 1330–1334, 2000.

[326] M. R. Andersen, T. Jensen, P. Lisouski, A. K. Mortensen, M. K. Hansen,
T. Gregersen, and P. Ahrendt, “Kinect depth sensor evaluation for com-
puter vision applications,” Technical Report Electronics and Computer
Engineering, vol. 1, no. 6, 2015.

[327] C. L. Lawson and R. J. Hanson, Solving least squares problems. SIAM,
1995.

[328] K. S. Arun, T. S. Huang, and S. D. Blostein, “Least-squares fitting of
two 3-d point sets,” IEEE Transactions on pattern analysis and machine
intelligence, no. 5, pp. 698–700, 1987.

[329] J. Matas, C. Galambos, and J. Kittler, “Robust detection of lines using
the progressive probabilistic hough transform,” Comput. Vis. Image
Underst., vol. 78, no. 1, pp. 119–137, Apr. 2000. [Online]. Available:
http://dx.doi.org/10.1006/cviu.1999.0831

http://dx.doi.org/


630 Bibliography

[330] G. Bradski et al., “The opencv library,” Doctor Dobbs Journal, vol. 25,
no. 11, pp. 120–126, 2000.

[331] A. K. Jain, N. K. Ratha, and S. Lakshmanan, “Object detection using
gabor filters,” Pattern recognition, vol. 30, no. 2, pp. 295–309, 1997.

[332] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recog-
nition using shape contexts,” IEEE transactions on pattern analysis and
machine intelligence, vol. 24, no. 4, pp. 509–522, 2002.

[333] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110, 2004.

[334] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on, vol. 1. IEEE, 2005, pp.
886–893.

[335] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Region-based convo-
lutional networks for accurate object detection and segmentation,” IEEE
transactions on pattern analysis and machine intelligence, vol. 38, no. 1,
pp. 142–158, 2016.

[336] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee, “Improving object
detection with deep convolutional networks via bayesian optimization
and structured prediction,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 249–258.

[337] P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE,
2008, pp. 1–8.

[338] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recog-
nition, 2014, pp. 580–587.

[339] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–
788.

[340] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition engine,”
in Robotics and Automation (ICRA), 2013 IEEE International Confer-
ence on. IEEE, 2013, pp. 4263–4270.



Bibliography 631

[341] D. Fischinger, M. Vincze, and Y. Jiang, “Learning grasps for unknown
objects in cluttered scenes,” in Robotics and Automation (ICRA), 2013
IEEE International Conference on. IEEE, 2013, pp. 609–616.

[342] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic grasping of novel
objects using vision,” The International Journal of Robotics Research,
vol. 27, no. 2, pp. 157–173, 2008.

[343] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter,” in Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 598–605.

[344] J. Redmon and A. Angelova, “Real-time grasp detection using convo-
lutional neural networks,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on. IEEE, 2015, pp. 1316–1322.

[345] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” The International Journal of Robotics Research, vol. 34, no.
4-5, pp. 705–724, 2015.

[346] G. P. Otto and T. K. Chau, “‘region-growing’algorithm for matching of
terrain images,” Image and vision computing, vol. 7, no. 2, pp. 83–94,
1989.

[347] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud
shape detection,” in Computer graphics forum, vol. 26, no. 2. Wiley
Online Library, 2007, pp. 214–226.

[348] N. J. Mitra and A. Nguyen, “Estimating surface normals in noisy point
cloud data,” in Proceedings of the nineteenth annual symposium on Com-
putational geometry. ACM, 2003, pp. 322–328.

[349] P. Kovesi, “Shapelets correlated with surface normals produce surfaces,”
in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Con-
ference on, vol. 2. IEEE, 2005, pp. 994–1001.

[350] Z. Zivkovic, “Improved adaptive gaussian mixture model for background
subtraction,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of
the 17th International Conference on, vol. 2. IEEE, 2004, pp. 28–31.

[351] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,
planning and control. Springer Science & Business Media, 2010.

[352] D. E. Koditschek, “Robot planning and control via potential functions,”
The robotics review, p. 349, 1989.

[353] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 22, no. 2, pp. 224–241, 1992.



632 Bibliography

[354] Y. K. Hwang and N. Ahuja, “A potential field approach to path plan-
ning,” IEEE Transactions on Robotics and Automation, vol. 8, no. 1,
pp. 23–32, 1992.

[355] N. Malone, A. Faust, B. Rohrer, R. Lumia, J. Wood, and L. Tapia, “Effi-
cient motion-based task learning for a serial link manipulator,” Trans-
action on Control and Mechanical Systems, vol. 3, no. 1, 2014.

[356] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[357] F. Avnaim, J.-D. Boissonnat, and B. Faverjon, “A practical exact motion
planning algorithm for polygonal objects amidst polygonal obstacles,” in
Robotics and Automation, 1988. Proceedings., 1988 IEEE International
Conference on. IEEE, 1988, pp. 1656–1661.

[358] F. Lingelbach, “Path planning using probabilistic cell decomposition,”
in Robotics and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, vol. 1. IEEE, 2004, pp. 467–472.

[359] S. M. LaValle and J. J. Kuffner Jr, “Rapidly-exploring random trees:
Progress and prospects,” 2000.

[360] J. Rosell, A. Pérez, A. Aliakbar, L. Palomo, N. García, et al., “The
kautham project: A teaching and research tool for robot motion plan-
ning,” in Proceedings of the 2014 IEEE Emerging Technology and Fac-
tory Automation (ETFA). IEEE, 2014, pp. 1–8.

[361] R. Diankov and J. Kuffner, “Openrave: A planning architecture for
autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech. Rep.
CMU-RI-TR-08-34, vol. 79, 2008.

[362] D. Roberts, R. Wolff, O. Otto, and A. Steed, “Constructing a gazebo:
supporting teamwork in a tightly coupled, distributed task in virtual
reality,” Presence, vol. 12, no. 6, pp. 644–657, 2003.

[363] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for
collision and proximity queries,” in Robotics and Automation (ICRA),
2012 IEEE International Conference on. IEEE, 2012, pp. 3859–3866.

[364] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard,
“Octomap: A probabilistic, flexible, and compact 3d map representation
for robotic systems,” in Proc. of the ICRA 2010 workshop on best prac-
tice in 3D perception and modeling for mobile manipulation, vol. 2, 2010.

[365] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza, “A dataset for
improved rgbd-based object detection and pose estimation for warehouse



Bibliography 633

pick-and-place,” IEEE Robotics and Automation Letters, vol. 1, no. 2,
pp. 1179–1185, 2016.

[366] C. Eppner, S. Höfer, R. Jonschkowski, R. Martın-Martın, A. Sieverling,
V. Wall, and O. Brock, “Lessons from the amazon picking challenge:
Four aspects of building robotic systems,” 2016.

[367] K.-T. Yu, N. Fazeli, N. Chavan-Dafle, O. Taylor, E. Donlon, G. D.
Lankenau, and A. Rodriguez, “A summary of team mit’s approach to
the amazon picking challenge 2015,” arXiv preprint arXiv:1604.03639,
2016.

[368] J. J. Craig, Introduction to robotics: mechanics and control. Pearson
Prentice Hall Upper Saddle River, 2005, vol. 3.

[369] Universal Robots Support, “Axes for computing d-h parameter of an
ur5 robot,” https://www.universal-robots.com/how-tos-and-faqs/faq/
ur-faq/actual-center-of-mass-for-robot-17264/.

[370] M. W. Spong and M. Vidyasagar, “Robot dynamics and control, 1989,”
and, vol. 247251, p. 141150, 1991.

[371] J. Wang, Y. Li, and X. Zhao, “Inverse kinematics and control of a 7-dof
redundant manipulator based on the closed-loop algorithm,” Interna-
tional Journal of Advanced Robotic Systems, vol. 7, no. 4, pp. 1–9, 2010.

[372] S. Jotawar, “An automated robotic pick and place system
for a retail warehouse,” https://www.youtube.com/watch?v=jQ4_
poYAXZU, 2016.

[373] L. Behera, “IITK-TCS participation in amazon picking challenge 2016,”
https://sites.google.com/site/swagatkumar/home/apc_iitk_tcs, 2016.

[374] M. Soni and O. Kundu, “Demonstration of grasping algorithm,” https:
//www.youtube.com/watch?v=lCxMGvCKe_g, 2016.

[375] N. Kejriwal and S. Jotawar, “Software codes developed by iitk-
tcs team for amazon picking challenge 2016,” https://github.com/
amazon-picking-challenge/team_iitk_tcs, 2016.

[376] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang, “Error-driven
incremental learning in deep convolutional neural network for large-scale
image classification,” in Proceedings of the 22nd ACM international con-
ference on Multimedia. ACM, 2014, pp. 177–186.

[377] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural networks
for computer-aided detection: Cnn architectures, dataset characteristics
and transfer learning,” IEEE transactions on medical imaging, vol. 35,
no. 5, pp. 1285–1298, 2016.

https://github.com/
https://github.com/
https://www.youtube.com/watch?v=lCxMGvCKe_g
https://www.youtube.com/
https://sites.google.com/
https://www.youtube.com/watch?v=jQ4_poYAXZU
https://www.youtube.com/watch?v=jQ4_poYAXZU
https://www.universal-robots.com/
https://www.universal-robots.com/


634 Bibliography

[378] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[379] H. Herrero, J. L. Outón, U. Esnaola, D. Sallé, and K. L. de Ipiña, “State
machine based architecture to increase flexibility of dual-arm robot pro-
gramming,” in International Work-Conference on the Interplay Between
Natural and Artificial Computation. Springer, 2015, pp. 98–106.

[380] J. Bohren and S. Cousins, “The SMACH high-level executive [ROS
news],” IEEE Robotics & Automation Magazine, vol. 17, no. 4, pp. 18–
20, 2010.

[381] T. Field, “SMACH documentation,” Online at http://www. ros.
org/wiki/smach/Documentation, 2011.

[382] S. Calinon and A. Billard, “Active teaching in robot programming by
demonstration,” in Robot and Human interactive Communication, 2007.
RO-MAN 2007. The 16th IEEE International Symposium on. IEEE,
2007, pp. 702–707.

[383] Y. Maeda, N. Ishido, H. Kikuchi, and T. Arai, “Teaching of grasp/gras-
pless manipulation for industrial robots by human demonstration,” in
Intelligent Robots and Systems, 2002. IEEE/RSJ International Confer-
ence on, vol. 2. IEEE, 2002, pp. 1523–1528.

[384] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[385] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-scale
data collection,” arXiv preprint arXiv:1603.02199, 2016.

[386] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion control,”
arXiv preprint arXiv:1511.03791, 2015.

[387] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel, “Rapyuta:
A cloud robotics platform,” IEEE Transactions on Automation Science
and Engineering, vol. 12, no. 2, pp. 481–493, 2015.

[388] B. Ranjbarsahraei, M. Roopaei, and S. Khosra, “Adaptive fuzzy forma-
tion control for a swarm of nonholonomic differentially driven vehicles,”
Nonlinear Dynamics, vol. 67, no. 4, pp. 2747–2757, Mar. 2012.

[389] S. X. Yanga, A. Zhu, G. Yuan, and M. Q.-H. Meng, “A bioinspired
neurodynamics-based approach to tracking control of mobile robots,”
IEEE Trans. Ind. Electron., vol. 59, no. 8, pp. 3211–3220, Aug. 2012.

http://www.ros.org/
http://www.ros.org/


Bibliography 635

[390] A. Loria, J. Dasdemir, and N. A. Jarquin, “Leader-follower formation
and tracking control of mobile robots along straight paths,” IEEE Trans.
Control Syst. Technol., vol. 24, no. 2, pp. 727–732, Mar. 2016.

[391] A. K. Das et al., “A vision-based formation control framework,” IEEE
Trans. Robot. Autom., vol. 18, no. 5, pp. 813–825, Oct. 2002.

[392] G. Cook, Mobile Robots: Navigation, Control and Remote Sensing,
1st ed. Wiley-IEEE Press, 2011.

[393] J.-J. E. Slotine and W. Li, Applied nonlinear control, 1st ed. NJ:
Prantice-Hall, Englewood Cliffs, 1991.

[394] V. Utkin, Sliding Modes and Their Application in Variable Structure
Systems. Imported Publications, Incorporated, 1978.

[395] L. Wu, P. Shi, and X. Su, Sliding Mode Control of Uncertain Parameter-
Switching Hybrid Systems, 1st ed. Wiley Publishing, 2014.

[396] S. T. Venkataraman and S. Gulati, “Control of nonlinear systems using
terminal sliding modes,” ASME J. Dyn. Syst. Meas. Control, vol. 115,
no. 3, pp. 554–560, Sep. 1993.

[397] C. Edwards and S. Spurgeon, Sliding mode control: theory and applica-
tions. CRC Press, 1998.

[398] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite time con-
trol for robotic manipulators with terminal sliding mode,” Automatica,
vol. 41, no. 11, pp. 1957–1964, Nov. 2005.

[399] L. Yang and J. Yang, “Nonsingular fast terminal sliding-mode control for
nonlinear dynamical systems,” Int. J. Robust Nonlinear Control, vol. 21,
no. 16, pp. 1865–1879, Nov. 2011.

[400] S. S.-D. Xu, C.-C. Chen, and Z.-L. Wu, “Study of nonsingular fast ter-
minal sliding-mode fault-tolerant control,” IEEE Trans. Ind. Electron.,
vol. 62, no. 6, pp. 3906–3913, Jun. 2015.

[401] H. Delavari, R. Ghaderi, A. Ranjbar, and S. Momani, “Fuzzy fractional
order sliding mode controller for nonlinear systems,” Commun. Nonlin-
ear Sci. Numer. Simul., vol. 15, no. 4, pp. 963–978, 2010.

[402] M. B. Delghavi, S. Shoja-Majidabad, and A. Yazdani, “Fractional-order
sliding-mode control of islanded distributed energy resource systems,”
IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1482–1491, Oct. 2016.

[403] C. Izaguirre-Espinosa, A. J. Munoz-Vazquez, A. Sanchez-Orta, V. Parra-
Vega, and P. Castillo, “Attitude control of quadrotors based on frac-
tional sliding modes: theory and experiments,” IET Control Theory
Appl., vol. 10, no. 7, pp. 825–832, 2016.



636 Bibliography

[404] C.-M. Chi and F. Gao, “Simulating fractional derivatives using matlab,”
JSW, vol. 8, no. 3, pp. 572–578, Mar. 2013.

[405] A. Levant, “Robust exact differentiation via sliding mode technique,”
Automatica, vol. 34, no. 3, pp. 379–384, Mar. 1998.

[406] A. Levant, “Higher-order sliding modes, differentiation and output-
feedback control,” Int. J. Control, vol. 76, no. 9/10, pp. 924–941, 2003.

[407] M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “A novel higher
order sliding mode control scheme,” Syst. Control Lett., vol. 58, no. 2,
pp. 102 – 108, Feb. 2009.

[408] G. Bartolini, A. Levant, A. Pisano, and E. Usai, “Adaptive second-order
sliding mode control with uncertainty compensation,” Int. J. Control,
vol. 89, no. 9, pp. 1747–1758, Mar. 2016.

[409] V. Utkin, “Discussion aspects of high-order sliding mode control,” IEEE
Trans. Autom. Control, vol. 61, no. 3, pp. 829–833, Mar. 2016.

[410] J. Shao, G. Xie, and L. Wang, “Leader- following formation control of
multiple mobile vehicles,” IET Control Theory Appl., vol. 1, no. 2, pp.
545–552, Mar. 2007.

[411] H. Xiao, Z. Li, and C. L. P. Chen, “Formation control of leader-follower
mobile robots’ systems using model predictive control based on neural-
dynamic optimization,” IEEE Trans. Ind. Electron., vol. 63, no. 9, pp.
5752–5762, Sep. 2016.

[412] X. Lu, R. Lu, S. Chen, and J. Lu, “Finite-time distributed tracking con-
trol for multi-agent systems with a virtual leader,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 60, no. 2, pp. 352–362, Feb. 2013.

[413] H. Rezaee and F. Abdollahi, “A decentralized cooperative control
scheme with obstacle avoidance for a team of mobile robots,” IEEE
Trans. Ind. Electron., vol. 61, no. 1, pp. 1268–1282, Jan. 2014.

[414] J. Chen, M. Gauci, W. Li, A. Kolling, and R. Grob, “Occlusion-based
cooperative transport with a swarm of miniature mobile robots,” IEEE
Trans. Robot., vol. 31, no. 2, pp. 307–321, Apr. 2015.

[415] L. A. V. Reyes and H. G. Tanner, “Flocking, formation control, and
path following for a group of mobile robots,” IEEE Trans. Control Syst.
Technol., vol. 23, no. 4, pp. 1268–1282, Jul. 2015.

[416] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent forma-
tion control,” Automatica, vol. 53, pp. 424–440, 2015.

[417] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Rob. Res., vol. 5, no. 1, pp. 90–98, Apr. 1986.



Bibliography 637

[418] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Proc. IEEE Conf. Robot.
Autom., vol. 2, Apr 1991, pp. 1398–1404.

[419] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proc. IEEE Conf. Robot. Autom. (ICRA), vol. 2, Mar. 1985,
pp. 500–505.

[420] V. Gazi, “Swarm aggregations using artificial potentials and sliding-
mode control,” IEEE Trans. Robot., vol. 21, pp. 1208–1214, Dec. 2005.

[421] V. Gazi and R. Ordonez, “Target tracking using artificial potentials and
sliding mode control,” Int. J. Control, vol. 80, pp. 1626–1635, Oct. 2007.

[422] R. R. Nair and L. Behera, “Swarm aggregation using artificial potential
field and fuzzy sliding mode control with adaptive tuning technique,” in
Proc. Amer. Control Conf. (ACC), Jun. 2012, pp. 6184 –6189.

[423] V. Gazi, “Swarm aggregations using artificial potentials and sliding-
mode control,” IEEE Trans. Robot., vol. 21, no. 6, pp. 1208–1214, Dec.
2005.

[424] J.-O. Kim and P. K. Khosla, “Real-time obstacle avoidance using har-
monic potential functions,” IEEE Trans. Robot. Autom., vol. 8, no. 3,
pp. 338–349, Jun. 1992.

[425] L. McFetridge and M. Y. Ibrahim, “New technique of mobile robot navi-
gation using a hybrid adaptive fuzzy potential field approach,” Comput.
Ind. Eng., vol. 35, no. 3, pp. 471–474, 1998.

[426] J. H. Chuang and N. Ahuja, “Path planning using the newtonian poten-
tial,” in Proc. IEEE Conf. on Robot. Autom., Apr. 1991, pp. 558–563.

[427] M. C. Lee and M. G. Park, “Artificial potential field based path plan-
ning for mobile robots using a virtual obstacle concept,” in Proc.
IEEE/ASME Conf. Adv. Intell. Mechatronics (AIM 2003), vol. 2, Jul.
2003, pp. 735–740.

[428] V. Gazi and K. M. Passino, “A class of attractions/repulsion functions
for stable swarm aggregations,” Int. J. Control, vol. 77, no. 18, pp. 1567–
1579, 2004.

[429] D. Izzo and L. Pettazzi, “Autonomous and distributed motion planning
for satellite swarm,” J. Guid. Control Dynam., vol. 30, no. 2, pp. 449–
459, Mar.-Apr. 2007.

[430] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path
planning,” IEEE Tran. Robot. Autom., vol. 16, no. 5, pp. 615–620, Oct.
2000.



638 Bibliography

[431] Y. Yang, C. Hua, and X. Guan, “Finite time control design for bilateral
teleoperation system with position synchronization error constrained,”
IEEE Trans. Cybern., vol. 46, no. 3, pp. 609–619, Mar. 2016.

[432] S. S.-D. Xu, C.-C. Chen, and Z.-L. Wu, “Study of nonsingular fast ter-
minal sliding-mode fault-tolerant control,” IEEE Trans. Ind. Electron.,
vol. 62, no. 6, pp. 3906–3913, Jun. 2015.

[433] R. Zhang, L. Dong, and C. Sun, “Adaptive nonsingular terminal sliding
mode control design for near space hypersonic vehicles,” IEEE/CAA J.
Autom. Sin., vol. 1, no. 2, pp. 155–161, Apr. 2014.

[434] V. Gazi, “Swarm aggregations using artificial potentials and sliding-
mode control,” IEEE Trans. Robot., vol. 21, no. 6, pp. 1208–1214, Dec.
2005.

[435] R. R. Nair, H. Karki, A. Shukla, L. Behera, and M. Jamshidi, “Fault-
tolerant formation control of nonholonomic robots using fast adaptive
gain nonsingular terminal sliding mode control,” IEEE Systems Journal,
vol. 13, no. 1, pp. 1006–1017, Mar 2019.

[436] R. R. Nair, L. Behera, V. Kumar, and M. Jamshidi, “Multi-satellite for-
mation control for remote sensing applications using artificial potential
field and adaptive fuzzy sliding mode control,” IEEE Syst. J., vol. 9,
no. 2, pp. 508–518, Jun. 2015.

[437] R. J. Wai, “Fuzzy sliding-mode control using adaptive tuning tech-
nique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 586–594, Feb.
2007.

[438] M. Guo, D. V. Dimarogonas, and K. H. Johansson, “Distributed real-
time fault detection and isolation for cooperative multi-agent systems,”
in Proc. Amer. Control Conf. (ACC), 2012, pp. 5270–5275.

[439] “Fault tolerant multi-robot formation control,” https://youtu.be/
4-S8ztofrQQ.

[440] A. K. Behera and B. Bandyopadhyay, “Event-triggered sliding mode
control for a class of nonlinear systems,” Int. J. Control, vol. 0, no. 0,
pp. 1–16, Jul. 2016.

[441] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “A distributed
event-triggered control for multi-agent systems,” IEEE Trans. Autom.
Control, vol. 57, no. 5, pp. 1291–1296, May. 2012.

[442] Y. Fan, L. Liu, G. Feng, and Y. Wang, “Self-triggered consensus for
multi-agent systems with zeno-free triggers,” IEEE Trans. Autom. Con-
trol, vol. 60, no. 10, pp. 2779–2784, Oct. 2015.

https://youtu.be/4-S8ztofrQQ
https://youtu.be/4-S8ztofrQQ


Bibliography 639

[443] T.-H. Cheng, Z. Kan, J. M. Shea, and W. E. Dixon, “Decentralized
event-triggered control for leader-follower consensus,” in Proc. 53rd
IEEE Conf. Decision Control, Dec. 2014, pp. 1244–1249.

[444] W. Hu, L. Liu, , and G. Feng, “Consensus of linear multi-agent systems
by distributed event-triggered strategy,” IEEE Trans. Cybern., vol. 46,
no. 1, pp. 148–157, Jan. 2016.

[445] Y. Zhu, X. Guan, X. Luo, and S. Li, “Finite-time consensus of multi-
agent system via nonlinear event-triggered control strategy,” IET Con-
trol Theory Appl., vol. 9, no. 17, pp. 2548–2552, Nov. 2015.

[446] Q. Liu, Z. Wang, X. He, and D. H. Zhou, “Event-based h∞ consensus
control of multi-agent systems with relative output feedback: The finite-
horizon case,” IEEE Trans. Autom. Control, vol. 60, no. 9, pp. 2553–
2558, Sep. 2015.

[447] S. Yu and X. Long, “Finite-time consensus for second-order multi-
agent systems with disturbances by integral sliding mode,” Automatica,
vol. 54, pp. 158–165, Apr. 2015.

[448] S. Rao and D. Ghose, “Sliding mode control-based autopilots for leader-
less consensus of unmanned aerial vehicles,” IEEE Trans. Control Syst.
Technol., vol. 22, no. 5, pp. 1964–1972, Sep. 2015.

[449] A. K. Behera and B. Bandyopadhyay, “Self-triggering-based sliding-
mode control for linear systems,” IET Control Theory Appl., vol. 9,
no. 17, pp. 2541–2547, Nov. 2015.

[450] R. R. Nair, L. Behera, and S. Kumar, “Event-triggered finite-time inte-
gral sliding mode controller for consensus-based formation of multirobot
systems with disturbances,” IEEE Transactions on Control Systems
Technology, vol. 27, no. 1, pp. 39–47, Jan 2019.

[451] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous finite time con-
trol for robotic manipulators with terminal sliding mode,” Automatica,
vol. 41, no. 11, pp. 1957–1964, Nov. 2005.

[452] W. Gao and J. C. H. Rao, “Variable structure control of nonlinear sys-
tems: A new approach,” IEEE Trans. Ind. Electron., vol. 40, no. 1, pp.
45–55, Feb. 1993.

[453] S. Li, H. Du, and X. Lin, “Finite-time consensus algorithm for multi-
agent systems with double-integrator dynamics,” Automatica, vol. 47,
no. 8, pp. 1706–1712, Mar. 2011.

[454] X. Lu, R. Lua, S. Chen, and J. Lu, “Finite-time distributed tracking con-
trol for multi-agent systems with a virtual leader,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 60, no. 2, pp. 352–362, Feb. 2013.



640 Bibliography

[455] R. R. Nair and L. Behera, “Robust adaptive gain nonsingular fast termi-
nal sliding mode control for spacecraft formation flying,” in Proc. 54th
IEEE Conf. Decision Control, 2015, pp. 5314–5319.

[456] R. D. Robinett, D. G. Wilson, G. R. Eisler, and J. E. Hurtado, Applied
Dynamic Programming for Optimization of Dynamical Systems. SIAM,
2005.

[457] J. Van de Weijer, T. Gevers, and A. D. Bagdanov, “Boosting color
saliency in image feature detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), vol. 28, no. 1, pp. 150–156,
2006.

[458] R. Lukac and k. N. Plataniotis, Color Image Processing: Methods and
Applications. CRC Press, 2006, ch. Color Feature Detection: An
Overview.

[459] J. Shotton, J. Winn, C. Rother, and A. Criminisi, “Textonboost for
image understanding: multi-class object recognition and segmentation
by jointly modeling texture, layout, and context,” International Journal
on Computer Vision, vol. 81, no. 1, pp. 2–23, 2008.

[460] J. Winn, A. Criminisi, and T. Minka, “Object categorization by learned
universal visual dictionary,” in IEEE International Conference on Com-
puter vision (ICCV), vol. 2, 2005, pp. 1800–1807.

[461] B. S. Manjunath and W.-Y. Ma, “Texture features for browsing and
retrieval of image data,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), vol. 18, no. 8, pp. 837–842, 1996.

[462] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-
scale and rotation invariant texture classification with local binary pat-
terns,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), vol. 24, no. 7, pp. 972–987, 2002.

[463] B. K. Horn and B. G. Schunk, “Determining optical flow,” Artificial
Intelligence, vol. 17, pp. 185–203, 1981.

[464] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” IJCAI, vol. 81, pp. 674–679, 1981.

[465] P. Sabzmeydani and G. Mori, “Detecting pedestrians by learning
shapelet features,” in IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE, 2007, pp. 1–8.

[466] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Internation Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
January 2004.



Bibliography 641

[467] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, Elsevier,
vol. 110, pp. 346–359, December 2008.

[468] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005, pp. 886–893.

[469] C. Feichtenhofer and A. Pinz, “Spatio-temporal good features to track,”
in IEEE International Conference on Computer Vision Workshops.
IEEE, 2013, pp. 246–253.

[470] L. Juan and O. Gwun, “A comparison of SIFT, PCA-SIFT and SURF,”
International Journal of Image Processing (IJIP), vol. 3, no. 4, pp. 143–
152, 2009.

[471] Z. Bing, Y. Wang, J. Hou, H. Lu, and H. Chen, “Research of tracking
robot based on SURF features,” in International Conference on Natural
Computation (ICNC). Yantai, Shandong: IEEE, 2010, pp. 3523–3527.

[472] S. Gu, Y. Zheng, and C. Tomasi, “Efficient visual object tracking with
online nearest neighbor classifier,” in Asian Conference on Computer
Vision (ACCV). Springer, 2010, pp. 271–282.

[473] D.-N. Ta, W.-C. Chen, N. Gelfand, and K. Pulli, “SURFTrac: Efficient
tracking and continuous object recognition using local feature descrip-
tors,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Miami,FL: IEEE, 2009, pp. 2937–2944.

[474] W. He, T. Yamashita, L. Hongtao, and S. Lao, “SURF tracking,” in
International Conference on Computer Vision. Kyoto: IEEE, 2009,
pp. 1586–1592.

[475] M. Gupta, S. Garg, S. Kumar, and L. Behera, “An on-line visual human
tracking algorithm using SURF-based dynamic object model,” in Inter-
national Conference on Image Processing (ICIP). IEEE, 2013, pp.
3875–3879.

[476] Y. Liu and H. Zhang, “Indexing visual features: Real-time loop closure
detection using a tree structure,” in IEEE International Conference on
Robotics and Automation (ICRA). IEEE, May 2012, pp. 3613–3618.

[477] L. Baird and A. W. Moore, “Gradient descent for general reinforcement
learning,” Advances in neural information processing systems, pp. 968–
974, 1999.

[478] J. Zhang, J. Fang, and J. Lu, “Mean-shift algorithm integrating with
SURF for tracking,” in Natural Computation. Shanghai: IEEE, 2011,
pp. 960–963.



642 Bibliography

[479] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object track-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 25, no. 4, pp. 1–14, April 2003.

[480] A. Ahmadi, M. R. Daliri, A. Nodehi, and A. Qorbani, “Objects recog-
nition using the histogram based on descriptors of SIFT and SURF,”
Journal of Basic and Applied Scientific Research, vol. 2, no. 9, pp. 8612–
8616, 2012.

[481] B. Thomee, E. M. Bakker, and M. S. Lew, “TOP-SURF: a visual words
toolkit,” in Proc. of International Conference on Multimedia. New
York: ACM, 2010, pp. 1473–1476.

[482] T. Nicosevici and R. Garcia, “Automatic visual bag-of-words for online
robot navigation and mapping,” IEEE Transactions on Robotics, vol. 28,
no. 4, pp. 886–898, August 2012.

[483] S. Garg and S. Kumar, “Mean-shift based object tracking algorithm
using SURF features,” in International Conference on Signal Processing,
Robotics and Automation. WSEAS, 2013, pp. 187–194.

[484] R. Adams and L. Bischof, “Seeded region growing,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641–
647, 1994.

[485] I. Leichter, M. Lindenbaum, and E. Rivlin, “Tracking by affine kernel
transformations using color and boundary cues,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 31, no. 1, pp. 164–171,
2009.

[486] D. Zhou and D. Hu, “A robust object tracking algorithm based on surf,”
in Wireless Communications & Signal Processing (WCSP), 2013 Inter-
national Conference on. IEEE, 2013, pp. 1–5.

[487] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.” VISAPP (1), vol. 2, 2009.

[488] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying frame-
work,” International Journal of Computer Vision, pp. 221–255, 2004.

[489] Z. Kalal, J. Matas, and K. Mikolajczyk, “Online learning of robust object
detectors during unstable tracking,” in IEEE ICCV Workshops. Kyoto:
IEEE, 2009, pp. 1417–1424.

[490] I. Matthew and S. Baker, “Active appearance models revisited,” Interna-
tional Journal of Computer Vision, vol. 60, no. 2, pp. 135–164, November
2004.



Bibliography 643

[491] J. Li, Y. Wang, and Y. Wang, “Visual tracking and learning using
speeded up robust features,” Pattern Recognition Letters, vol. 33, no. 16,
pp. 2094–2101, December 2012.

[492] D. A. Ross, J. Lim, and R.-S. Lin, “Incremental learning for robust
visual tracking,” International Journal of Computer Vision, vol. 77, no.
1-3, pp. 125–141, May 2008.

[493] W. Kloihofer and M. Kampel, “Interest point based tracking,” in Inter-
national Conference on Pattern Recognition (ICPR). ACM, 2010, pp.
3549–3552.

[494] K. F. Sim and K. Sundaraj, “Human motion tracking of athlete using
optical flow and artificial markers,” in International Conference on Intel-
ligent and Advanced Systems (ICIAS). Kualampur, Malaysia: IEEE,
2010, pp. 1–4.

[495] C.-C. Lien, S.-J. Lin, C.-Y. Ma, and Y.-W. Lin, “SURF-badge-based
target tracking,” in World Academy of Science, Engineering and Tech-
nology, vol. 77, 2013, pp. 877–883.

[496] Wiki, “Pinhole camera model,” http://en.wikipedia.org/wiki/Pinhole_
camera_model.

[497] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable track-
ing control method for an autonomous mobile robot,” in Robotics and
Automation, 1990. Proceedings., 1990 IEEE International Conference
on. IEEE, 1990, pp. 384–389.

[498] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. Wiley New York, 2006, vol. 3.

[499] J.-H. Jean and F.-L. Lian, “Robust visual servo control of a mobile
robot for object tracking using shape parameters,” IEEE Transactions
on Control Systems Technology, vol. 20, no. 6, pp. 1461–1472, Nov 2012.

[500] A. Mekonnen, C. Briand, F. Lerasle, and A. Herbulot, “Fast hog based
person detection devoted to a mobile robot with a spherical camera,” in
Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on. IEEE, 2013, pp. 631–637.

[501] A. Ess, B. Leibe, and L. V. Gool, “Depth and appearance for mobile
scene analysis,” in International Conference on Computer Vision, Octo-
ber 2007, pp. 1–8.

[502] M. Gupta, “Demonstration video of surf-based human tracking
algorithm,” https://www.youtube.com/watch?v=wUxhAQeWXGg&
feature=youtu.be, July 2014.

https://www.youtube.com/watch?v=wUxhAQeWXGg&feature=youtu.be
https://www.youtube.com/watch?v=wUxhAQeWXGg&feature=youtu.be
http://en.wikipedia.org/
http://en.wikipedia.org/


644 Bibliography

[503] M. Gupta, “Surf-based human tracking from a mobile robot platform,”
https://www.youtube.com/watch?v=J2I2E38cB-g, Sept. 2015.

[504] Q. Wang, F. Chen, W. Xu, and M.-H. Yang, “An experimental compari-
son of online object-tracking algorithms,” in SPIE Optical Engineering+
Applications. International Society for Optics and Photonics, 2011, pp.
81 381A–81 381A.

[505] A. Mobilerobots, “Mobile robots,” http://www.mobilerobots.com/
Mobile_Robots.asp.

http://www.mobilerobots.com/
http://www.mobilerobots.com/
https://www.youtube.com/watch?v=J2I2E38cB-g


Index

3D point cloud, 425, 433, 445
7 DOF Manipulator, 6, 54, 139

Activation function, 387
Adaptive critic, 289

Update, 304
Adaptive distributed T-S fuzzy PD

controller, 208
AlexNet, 400
Artificial Neural Network, 387
Artificial potential function,

511–513
Autonomous picking and stowing,

454
Axis Assignment, 428

Backpropagation, 390
Backstepping, 495
Barrett Hand, 195
Barrett Wam Manipulator, 45, 46

DH Parameters, 49
Dynamic model, 47, 49

Behavior-based approach, 508

C-FuzzStaMP, 328
Camera model, 38

Calibration, 38
Computation of image feature

velocity, 39
Transformation from Cartesian

space to vision space, 36
Caputo Approximation, 503
Cartesian space, 18
Chattering, 549
Collision avoidance potential, 514,

516
Consensus, 541
Consensus protocol, 544

Continuous-time optimal control
problem, 241

Adaptive critic, 242
CT-SNAC, 242

Convex optimization problem, 23
Convolutional Neural Networks, 395,

399, 428, 453
CT-SNAC, 242

Critic network, 246
Weight update law, 243

Value function approximation
with T-S fuzzy model-based
critic network, 246

Damped Least Square Method, 475
Data augmentation, 427
Data augmentation technique, 405
Deep learning techniques, 395
Deep Neural Networks, 386
Differential-drive mobile robots, 485
Discrete-time optimal control

problem, 230
Adaptive critic, 231
Adaptive critic

Dual network training, 232
DT-SNAC, 175, 234, 261
Single network adaptive critic,

234
DT-SNAC, 234

Costate vector modeling with
T-S fuzzy model-based
critic network

Nearest neighbor heuristic,
236

Critic network, 236
Dynamic controller, 4
Dynamic Movement Primitives, 320

645



646 Index

Earth-Centered Earth-Fixed
co-ordinate system, 491

Edge Points, 435
Energy dissipation rate (EDR), 354
Event triggered consensus, 539, 543
Event triggered control, 537
Event triggered sliding mode control,

544
Expectation maximization (EM), 26
Experimental setup, 31

Fast Adaptive Fuzzy NTSMC, 524
Fast Adaptive Gain NTSMC, 519
Fast Nonsingular terminal sliding

mode Control, 501
Fast reaching law, 520
Faster RCNN , 481
Fault tolerant Formation control,

527
Feedback linearization, 493
Finite time consensus, 546
Fitness function, 345
FuzzStaMP, 327
Fuzzy Lyapunov function, 329
Fuzzy sliding mode control, 524
Fuzzy-based fast reaching law, 525

Gaussian mixture model, 25
Gaussian Mixture Regression, 324

motion modeling, 364
Genetic algorithm, 24

Crossover, 25
Fitness, 25
Mutation, 25
Selection, 25

Goal Seeking Potential, 516
Grasp Decide Index (GDI), 430
Grasp pose detection, 434
Grasp region, 424
Grasping, 201, 445

Final Pose selection, 431
Gripping and suction system, 453,

457
Grunwald-Letnikov Approximation,

502

Hamilton-Jacobi-Bellman equation,
287

Higher order sliding mode control,
503

Human Following Mobile Robot, 555
Human Following Robot, 589
Human Tracking Algorithm

Optical flow, 576
Human tracking algorithm, 558

out-of-plane rotations, 567
Pose change detection, 567

Image moment interaction matrix,
132, 134

Image moment velocity, 126, 134
Image moments, 122, 132
Imitation Learning, 319
Imitation learning, 16
Inverse kinematics, 474

Kalman Filter based motion
predictor, 578

KD-tree classifier, 572
Kinematic control, 4, 6

Pseudo-inverse based, 7
Kinematic Jacobian, 7
Kinesthetic teaching, 18
Kohonen Self Organizing Map,

56–58, 60, 199
KSOM based kinematic control, 148

Approximation of inverse
Jacobian

Empirical verification, 152
Approximation of inverse

Jacobian, 151
Experimental results, 160
Network architecture, 149
Redundancy resolution, 159
Visual servoing, 156
Stability analysis, 157

Weight update, 149
KSOM-SC Architecture

Adaptive Sub-clustering, 94
Modified Neighborhood, 99
Reaching points, 103



Index 647

Real-time experiment, 108
Redundancy Resolution, 98
Tracking a line, 105
Tracking Ellipse, 107

Laplacian, 541, 550
Leader-follower-based approach, 507,

519, 542
Learning, 17
Learning-Based Inverse Kinematic

Control, 66, 69
Learning-based visual automation, 5
Learning-based visual control, 40

schematic, 40
Linear quadratic regulator, 285
Locally weighted projection

regression, 367
Lyapunov theory, 21, 297

Manipulator
Kinematic control, 121

Manipulators, 31
kinematic model, 43, 45

Measurement error, 550
MLP, 389
Mobile robot, 485

Dynamic Model, 486
Kinematic Model, 486

Model-based grasping, 425
Model-Based Visual Servoing,

113
Multi agent system, 512, 541
Multi-Class Segmentation, 417
Multi-layer perceptron, 389
Multi-robot Formation, 507, 530
Multi-robot system, 549
Multiple task-equilibrium, 375
Multitasking, 375

Neural networks, 387
Newton-Euler Algorithm, 48
NN, 387
Nonholonomic mobile robots, 485
Nonholonomic robot, 549
Null space optimization, 473

Object detection, 465
Object recognition, 462, 478, 563
Object Verification, 463
Obstacle avoidance potential, 528
Occlusion, 574
Occlusion detection, 564
Optical Flow, 557
Optical flow tracker, 580
Optimization, 22

Pinhole camera model, 582
Pinhole camera projection, 128
Policy iteration scheme, 291, 292
PowerCube manipulator, 31, 152,

160, 195, 276
Kinematic configuration, 32
Kinematic constraints, 33

R-CNN, 428
R-FuzzStaMP, 335
Rack detection, 460
RANSAC, 565
Rapidly-exploring Random Trees,

427
Reaching condition, 497
Reaching law, 498
Redundancy resolution

Extended Jacobian method, 8
Redundancy Preserving Networks, 55
Redundancy resolution, 6

Global optimization, 9
Neural Network, 10
Null space control, 8
Optimization based method, 9

Redundancy Resolution Criteria
Lazy Arm motion, 98
Minimum angle norm, 98
Minimum Condition Number, 98

Region growing algorithm, 437
RELU, 397
ResNet50, 428
Resource optimal control, 537
Riemann-Liouville Approximation,

503
Robot Attitude-Pitch, 488



648 Index

Robot Attitude-Roll, 487
Robot Attitude-Yaw, 489

SAKE EZGripper, 427
Self triggered control, 537
Sigmoid function, 387, 388
Single Network Adaptive Critic, 229,

283
Single Shot Detection, 416
Sliding Mode Control, 496

Nonsingular Fast Terminal
SMC, 501

Nonsingular Terminal SMC, 500
Fractional Order SMC, 502
Higher order SMC, 503
Terminal SMC, 499

SNAC based redundancy resolution,
175, 261

from Cartesian space
Discrete-time input affine
system representation of
forward kinematics, 257

Modeling the primary and
additional tasks as an
integral cost function, 259

from Cartesian space, 261
Computational complexity,
264

T-S fuzzy model-based critic,
262

Schematic, 261
from vision space, 174, 175
discrete-time input affine
system representation of
forward kinematics, 174

Control challenges, 177
KSOM based critic, 185
Schematic, 176
T-S fuzzy model-based critic,
179

Stability, 21
Stochastic Gradient Descent (SGD),

404
Suction, 478
Suction-based end-effector, 469

Support vector regression, 373
SURF

Dynamic object model, 559
Error Recovery Module, 572
Human tracking algorithm, 562
Object model description, 560
Template pool, 561
Template Update Module, 571

T-S Fuzzy Model, 205–207, 295
T-S fuzzy PD controller, 208, 211

Offline learning algorithm, 209
Online adaptation algorithm,

212
Target window prediction, 564
Teleoperation, 19
Template initialization, 569
Tensorflow, 392
Time triggered control, 537
Triggering function, 545
Tsai’s algorithm, 38
Two-finger parallel-jaw gripper,

433

Unicycle model, 486
UR10 Robot-DH Parameters, 43

VGG networks, 402
Virtual-leader-based approach, 508
Vision-based control, 3
Vision-Based Grasping, 423
Vision-based object detection, 404
Vision space, 116, 120, 121
Visual servoing

Eye-to-hand, 11
Visual control of redundant

manipulator, 13, 172, 174
Visual Motor Control

Schematic, 90
Visual Perception, 385
Visual servo controller, 581
Visual servoing, 11, 122, 128, 138,

205
3-D Servoing, 12
2-1/2-D visual servoing, 13
Eye-in-hand, 11



Index 649

Image based (IBVS), 12
Position based (PBVS), 12

Visual servoing controller, 123,
139

Visual tracking, 555
features, 556

Warehouse Automation
Grasping, 465

Warehouse automation, 3, 412, 453
Autonomous picking and

stowing, 456
Motion planning, 466
Suction, 470

Weighted adjacency matrix, 541

Zeno behavior, 539
ZFNet, 401



mailto:support@taylorfrancis.com
http://www.taylorfrancis.com

	Cover������������
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Contents���������������
	Preface��������������
	Acknowledgment���������������������
	Authors��������������
	1. Introduction����������������������
	1.1 Vision-Based Control�������������������������������
	1.2 Kinematic Control of a Redundant Manipulator�������������������������������������������������������
	1.2.1 Redundancy Resolution using Null Space of the Pseudo-inverse�������������������������������������������������������������������������
	1.2.2 Extended Jacobian Method�������������������������������������
	1.2.3 Optimization Based Redundancy Resolution�����������������������������������������������������
	1.2.4 Redundancy Resolution with Global Optimization�����������������������������������������������������������
	1.2.5 Neural Network Based Methods�����������������������������������������

	1.3 Visual Servoing��������������������������
	1.3.1 Image Based Visual Servoing (IBVS)�����������������������������������������������
	1.3.2 Position Based Visual Servoing (PBVS)��������������������������������������������������
	1.3.3 2-1/2-D Visual Servoing������������������������������������

	1.4 Visual Control of a Redundant Manipulator: Research Issues���������������������������������������������������������������������
	1.5 Learning by Demonstration������������������������������������
	1.5.1 DS-Based Motion Learning�������������������������������������

	1.6 Stability of Nonlinear Systems�����������������������������������������
	1.7 Optimization Techniques����������������������������������
	1.7.1 Genetic Algorithm������������������������������
	1.7.2 Expectation Maximization for Gaussian Mixture Model����������������������������������������������������������������

	1.8 Composition of the Book����������������������������������

	Part I: Manipulators���������������������������
	2. Kinematic and Dynamic Models of Robot Manipulators������������������������������������������������������������
	2.1 PowerCube Manipulator��������������������������������
	2.2 Kinematic Configuration of the Manipulator�����������������������������������������������������
	2.3 Estimating the Vision Space Motion with Camera Model���������������������������������������������������������������
	2.3.1 Transformation from Cartesian Space to Vision Space����������������������������������������������������������������
	2.3.2 The Camera Model�����������������������������
	2.3.3 Computation of Image Feature Velocity in the Vision Space����������������������������������������������������������������������

	2.4 Learning-Based Controller Architecture�������������������������������������������������
	2.5 Universal Robot (UR 10)����������������������������������
	2.5.1 Mechatronic Design�������������������������������
	2.5.1.1 Platform�����������������������
	2.5.1.2 End-Effector���������������������������
	2.5.1.3 Perception Apparatus�����������������������������������

	2.5.2 Kinematic Model����������������������������

	2.6 Barrett Wam Manipulator����������������������������������
	2.6.1 Overview of the System�����������������������������������
	2.6.2 Experimental Setup�������������������������������
	2.6.3 Dynamic Modeling�����������������������������
	2.6.4 System Description and Modeling��������������������������������������������
	2.6.5 State Space Representation���������������������������������������

	2.7 Summary������������������

	3. Hand-eye Coordination of a Robotic Arm using KSOM Network�������������������������������������������������������������������
	3.1 Kohonen Self Organizing Map��������������������������������������
	3.1.1 Competitive Process��������������������������������
	3.1.2 Cooperative Process��������������������������������
	3.1.3 Adaptive Process�����������������������������

	3.2 System Identification using KSOM�������������������������������������������
	3.3 Introduction to Learning-Based Inverse Kinematic Control�������������������������������������������������������������������
	3.3.1 The Network������������������������
	3.3.2 The Learning Problem���������������������������������
	3.3.3 The Approach�������������������������
	3.3.4 The Formulation of Cost Function���������������������������������������������
	3.3.5 Weight Update Laws�������������������������������

	3.4 Visual Motor Control of a Redundant Manipulator using KSOM Network�����������������������������������������������������������������������������
	3.4.1 The Problem������������������������

	3.5 KSOM with Sub-Clustering in Joint Angle Space��������������������������������������������������������
	3.5.1 Network Architecture���������������������������������
	3.5.2 Training Algorithm�������������������������������
	3.5.3 Testing Phase��������������������������
	3.5.4 Redundancy Resolution����������������������������������
	3.5.5 Tracking a Continuous Trajectory���������������������������������������������

	3.6 Simulation and Results���������������������������������
	3.6.1 Network Architecture and Workspace Dimensions����������������������������������������������������������
	3.6.2 Training���������������������
	3.6.3 Testing��������������������
	3.6.3.1 Reaching Isolated Target Positions in the Workspace������������������������������������������������������������������
	3.6.3.2 Tracking a Straight Line Trajectory��������������������������������������������������
	3.6.3.3 Tracking an Elliptical Trajectory������������������������������������������������

	3.6.4 Real-Time Experiment���������������������������������
	3.6.4.1 Redundant Solutions����������������������������������
	3.6.4.2 Tracking a Circular and a Straight Line Trajectory�����������������������������������������������������������������
	3.6.4.3 Multi-Step Movement����������������������������������


	3.7 Summary������������������

	4. Model-based Visual Servoing of a 7 DOF Manipulator������������������������������������������������������������
	4.1 Introduction�����������������������
	4.2 Kinematic Control of a Manipulator���������������������������������������������
	4.2.1 Kinematic Control of Redundant Manipulator�������������������������������������������������������

	4.3 Visual Servoing��������������������������
	4.3.1 Estimating the Vision Space Motion with Camera Model�����������������������������������������������������������������
	4.3.2 Transformation from Cartesian Space to Vision Space����������������������������������������������������������������
	4.3.3 The Camera Model�����������������������������
	4.3.4 Computation of Image Feature Velocity in the Vision Space����������������������������������������������������������������������

	4.4 Kinematic Control of a Manipulator Directly from Vision Space������������������������������������������������������������������������
	4.5 Image Moments������������������������
	4.6 Image Moment Velocity��������������������������������
	4.7 A Pinhole Camera Projection��������������������������������������
	4.8 Image Moment Interaction Matrix������������������������������������������
	4.9 Experimental Results using a 7 DOF Manipulator���������������������������������������������������������
	4.10 Summary�������������������

	5. Learning-Based Visual Servoing����������������������������������������
	5.1 Introduction�����������������������
	5.2 Kinematic Control using KSOM���������������������������������������
	5.2.1 KSOM Architecture������������������������������
	5.2.2 KSOM: Weight Update��������������������������������
	5.2.3 Comments on Existing KSOM Based Kinematic Control Schemes����������������������������������������������������������������������

	5.3 Problem Definition�����������������������������
	5.4 Analysis of Solution Learned Using KSOM��������������������������������������������������
	5.4.1 KSOM: An Estimate of Inverse Jacobian��������������������������������������������������
	5.4.2 Empirical Verification�����������������������������������
	5.4.2.1 Inverse Jacobian Evolution in Learning Phase�����������������������������������������������������������
	5.4.2.2 Testing Phase: Inverse Jacobian Estimation at each Operating Zone��������������������������������������������������������������������������������
	5.4.2.3 Inference������������������������


	5.5 KSOM in Closed Loop Visual Servoing����������������������������������������������
	5.5.1 Stability Analysis�������������������������������

	5.6 Redundancy Resolution��������������������������������
	5.7 Results������������������
	5.7.1 Learning Inverse Kinematic Relationship using KSOM���������������������������������������������������������������
	5.7.2 Visual Servoing����������������������������
	5.7.3 Redundancy Resolution����������������������������������
	5.7.3.1 Tracking a Straight Line���������������������������������������
	5.7.3.2 Tracking an Elliptical Trajectory������������������������������������������������


	5.8 Summary������������������
	5.9 Reinforcement Learning-Based Optimal Redundancy Resolution Directly from the Vision Space����������������������������������������������������������������������������������������������������
	5.10 Introduction������������������������
	5.11 Redundancy Resolution Problem from the Vision Space���������������������������������������������������������������
	5.12 SNAC Based Optimal Redundancy Resolution from Vision Space����������������������������������������������������������������������
	5.12.1 Selection of Cost Function����������������������������������������
	5.12.2 Control Challenges��������������������������������

	5.13 T-S Fuzzy Model-Based Critic Neural Network for Redundancy Resolution from Vision Space���������������������������������������������������������������������������������������������������
	5.13.1 Fuzzy Critic Model��������������������������������
	5.13.2 Weight Update Law�������������������������������
	5.13.3 Selection of Fuzzy Zones��������������������������������������
	5.13.4 Initialization of the Fuzzy Network Control���������������������������������������������������������
	5.13.4.1 Remark����������������������


	5.14 KSOM Based Critic Network for Redundancy Resolution from Vision Space���������������������������������������������������������������������������������
	5.14.1 KSOM Critic Model�������������������������������
	5.14.2 KSOM: Weight Update���������������������������������
	5.14.3 Initialization of KSOM Network Control����������������������������������������������������

	5.15 Simulation Results������������������������������
	5.15.1 T-S Fuzzy Model�����������������������������
	5.15.2 Kohonen’s Self-organizing Map�������������������������������������������

	5.16 Real-Time Experiment��������������������������������
	5.16.1 Tracking Elliptical Trajectory��������������������������������������������
	5.16.1.1 T-S Fuzzy Model�������������������������������
	5.16.1.2 KSOM��������������������

	5.16.2 Grasping a Ball with Hand-manipulator Setup���������������������������������������������������������

	5.17 Summary�������������������

	6. Visual Servoing using an Adaptive Distributed Takagi-Sugeno (T-S) Fuzzy Model���������������������������������������������������������������������������������������
	6.1 T-S Fuzzy Model��������������������������
	6.2 Adaptive Distributed T-S Fuzzy PD Controller�������������������������������������������������������
	6.2.1 Offline Learning Algorithm���������������������������������������
	6.2.2 Online Adaptation Algorithm����������������������������������������
	6.2.3 Stability Analysis�������������������������������

	6.3 Experimental Results�������������������������������
	6.3.1 Visual Servoing for a Static Target������������������������������������������������
	6.3.2 Compensation of Model Uncertainties������������������������������������������������
	6.3.3 Visual Servoing for a Moving Target������������������������������������������������

	6.4 Computational Complexity�����������������������������������
	6.5 Summary������������������

	7. Kinematic Control using Single Network Adaptive Critic����������������������������������������������������������������
	7.1 Introduction�����������������������
	7.1.1 Discrete-Time Optimal Control Problem��������������������������������������������������
	7.1.2 Adaptive Critic Based Control������������������������������������������
	7.1.2.1 Training of Action and Critic Network����������������������������������������������������

	7.1.3 Single Network Adaptive Critic (DT-SNAC)�����������������������������������������������������
	7.1.4 Choice of Critic Network Model�������������������������������������������
	7.1.4.1 Costate Vector Modeling with MLN Critic Network��������������������������������������������������������������
	7.1.4.2 Costate Vector Modeling with T-S Fuzzy Model-Based Critic Network��������������������������������������������������������������������������������


	7.2 Adaptive Critic Based Optimal Controller Design for Continuous-time Systems��������������������������������������������������������������������������������������
	7.2.1 Continuous-time Single Network Adaptive Critic (CT-SNAC)���������������������������������������������������������������������
	7.2.2 Critic Network: Weight Update Law����������������������������������������������
	7.2.3 Choice of Critic Network�������������������������������������
	7.2.3.1 Critic Network using MLN���������������������������������������
	7.2.3.2 T-S Fuzzy Model-Based Critic Network with Cluster of Local Quadratic Cost Functions��������������������������������������������������������������������������������������������������

	7.2.4 CT-SNAC��������������������

	7.3 Discrete-Time Input Affine System Representation of Forward Kinematics
	7.4 Modeling the Primary and Additional Tasks as an Integral Cost Function
	7.4.1 Quadratic Cost Minimization (Global Minimum Norm Motion)
	7.4.2 Joint Limit Avoidance

	7.5 Single Network Adaptive Critic Based Optimal Redundancy Resolution
	7.5.1 T-S Fuzzy Model-Based Critic Network for Closed Loop Positioning Task
	7.5.2 Training Algorithm

	7.6 Computational Complexity
	7.7 Simulation Results
	7.7.1 Global Minimum Norm Motion
	7.7.2 Joint Limit Avoidance

	7.8 Experimental Results
	7.8.1 Global Minimum Norm Motion
	7.8.2 Joint Limit Avoidance

	7.9 Conclusion

	8. Dynamic Control using Single Network Adaptive Critic��������������������������������������������������������������
	8.1 Introduction�����������������������
	8.2 Optimal Control Problem of Continuous Time Nonlinear System����������������������������������������������������������������������
	8.2.1 Linear Quadratic Regulator���������������������������������������
	8.2.2 Hamilton-Jacobi-Bellman Equation���������������������������������������������
	8.2.3 Optimal Control Law for Input Affine System��������������������������������������������������������
	8.2.4 Adaptive Critic Concept������������������������������������

	8.3 Policy Iteration and SNAC for Unknown Continuous Time Nonlinear Systems����������������������������������������������������������������������������������
	8.3.1 Policy Iteration Scheme������������������������������������
	8.3.2 Optimal Control Problem of an Unknown Dynamic����������������������������������������������������������
	8.3.3 Model Representation and Learning Scheme�����������������������������������������������������
	8.3.3.1 TSK Fuzzy Representation of Nonlinear Dynamics�������������������������������������������������������������
	8.3.3.2 Learning Scheme for the TSK Fuzzy Model������������������������������������������������������

	8.3.4 Critic Design and Policy Update��������������������������������������������
	8.3.4.1 Construction of Initial Critic Network using Lyapunov Based LMI������������������������������������������������������������������������������
	8.3.4.2 Lyapunov Function��������������������������������
	8.3.4.3 Conditions for Stabilization�������������������������������������������
	8.3.4.4 Design of Fitness Function�����������������������������������������

	8.3.5 Learning Near-Optimal Controller���������������������������������������������
	8.3.5.1 Update of Critic Network���������������������������������������
	8.3.5.2 Fitness Function for PI Based Training�����������������������������������������������������

	8.3.6 Examples���������������������
	8.3.6.1 Simulated Model������������������������������
	8.3.6.2 Example using Real Robot���������������������������������������


	8.4 Summary������������������

	9. Imitation Learning����������������������������
	9.1 Introduction�����������������������
	9.2 Dynamic Movement Primitives��������������������������������������
	9.2.1 Mathematical Formulations��������������������������������������
	9.2.1.1 Choice of Mean and Variance������������������������������������������
	9.2.1.2 Spatial and Temporal Scaling�������������������������������������������

	9.2.2 Example��������������������

	9.3 Motion Encoding using Gaussian Mixture Regression������������������������������������������������������������
	9.3.1 SED: Stable Estimator of Dynamical Systems�������������������������������������������������������
	9.3.1.1 Learning Model Parameters����������������������������������������
	9.3.1.2 Log-likelihood Cost����������������������������������


	9.4 FuzzStaMP: Fuzzy Controller Regulated Stable Movement Primitives���������������������������������������������������������������������������
	9.4.1 Motion Modeling with C-FuzzStaMP���������������������������������������������
	9.4.1.1 Fuzzy Lyapunov Function��������������������������������������
	9.4.1.2 Learning Fuzzy Controller Gains����������������������������������������������
	9.4.1.3 Design of Fitness Function�����������������������������������������
	9.4.1.4 Example����������������������

	9.4.2 Motion Modeling with R-FuzzStaMP
	9.4.2.1 Stability Analysis of the Motion System������������������������������������������������������
	9.4.2.2 Design of the Fuzzy Controller���������������������������������������������

	9.4.3 Global Validity and Spatial Scaling������������������������������������������������
	9.4.3.1 Examples�����������������������


	9.5 Learning Skills from Heterogeneous Demonstrations������������������������������������������������������������
	9.5.1 Stability Analysis�������������������������������
	9.5.1.1 Asymptotic Stability in the Demonstrated Region��������������������������������������������������������������
	9.5.1.2 Ensuring Asymptotic Stability outside Demonstrated Region������������������������������������������������������������������������

	9.5.2 Learning Model Parameters from Demonstrations����������������������������������������������������������
	9.5.2.1 Motion Modeling using GMR����������������������������������������
	9.5.2.2 Motion Modeling using LWPR�����������������������������������������
	9.5.2.3 Motion Modeling using e-SVR
	9.5.2.4 Complete Pipeline��������������������������������

	9.5.3 Spatial Error Calculation��������������������������������������
	9.5.4 Examples���������������������
	9.5.4.1 Example of Monotonic and Non-monotonic State Energy������������������������������������������������������������������
	9.5.4.2 Example of Multitasking with Single and Multiple Task-equilibrium

	9.5.5 Summary��������������������


	10. Visual Perception����������������������������
	10.1 Introduction������������������������
	10.2 Deep Neural Networks and Artificial Neural Networks���������������������������������������������������������������
	10.2.1 Neural Networks�����������������������������
	10.2.1.1 Multi-layer Perceptron��������������������������������������
	10.2.1.2 MLP Implementation using Tensorflow���������������������������������������������������

	10.2.2 Deep Learning Techniques: An Overview���������������������������������������������������
	10.2.2.1 Convolutional Neural Network (Flow and Training with Back-propogation)��������������������������������������������������������������������������������������

	10.2.3 Different Architectures of Convolutional Neural Networks (CNNs)�����������������������������������������������������������������������������

	10.3 Examples of Vision-Based Object Detection Techniques����������������������������������������������������������������
	10.3.1 Automatic Annotation of Object ROI������������������������������������������������
	10.3.1.1 Image Acquisition���������������������������������
	10.3.1.2 Manual Annotation���������������������������������
	10.3.1.3 Augmentation and Clutter Generation���������������������������������������������������
	10.3.1.4 Two-class Classification Model using Deep Networks������������������������������������������������������������������
	10.3.1.5 Experimental Results and Discussions����������������������������������������������������

	10.3.2 Automatic Segmentation of Objects for Warehouse Automation������������������������������������������������������������������������
	10.3.2.1 Network Architecture������������������������������������
	10.3.2.2 Base Network����������������������������
	10.3.2.3 Single Shot Detection�������������������������������������

	10.3.3 Automatic Generation of Artificial Clutter��������������������������������������������������������
	10.3.4 Multi-Class Segmentation using Proposed Network�������������������������������������������������������������

	10.4 Experimental Results��������������������������������
	10.4.1 System Description��������������������������������
	10.4.1.1 Server����������������������

	10.4.2 Ground Truth Generation�������������������������������������
	10.4.3 Image Segmentation��������������������������������

	10.5 Summary�������������������

	11. Vision-Based Grasping��������������������������������
	11.1 Introduction������������������������
	11.2 Model-Based Grasping��������������������������������
	11.2.1 Problem Statement�������������������������������
	11.2.2 Hardware Setup����������������������������
	11.2.3 Dataset���������������������
	11.2.4 Data Augmentation�������������������������������
	11.2.5 Network Architecture and Training�����������������������������������������������
	11.2.6 Axis Assignment�����������������������������
	11.2.7 Grasp Decide Index (GDI)��������������������������������������
	11.2.8 Final Pose Selection����������������������������������
	11.2.9 Overall Pipeline and Result�����������������������������������������

	11.3 Grasping without Object Models������������������������������������������
	11.3.1 Problem Definition��������������������������������
	11.3.2 Proposed Method�����������������������������
	11.3.2.1 Creating Continuous Surfaces in 3D Point Cloud��������������������������������������������������������������

	11.3.3 Finding Graspable Affordances�������������������������������������������
	11.3.4 Experimental Results����������������������������������
	11.3.4.1 Performance Measure�����������������������������������

	11.3.5 Grasping of Individual Objects��������������������������������������������
	11.3.6 Grasping Objects in a Clutter�������������������������������������������
	11.3.7 Computation Time������������������������������

	11.4 Summary�������������������

	12. Warehouse Automation: An Example�������������������������������������������
	12.1 Introduction������������������������
	12.2 Problem Definition������������������������������
	12.3 System Architecture�������������������������������
	12.4 The Methods�����������������������
	12.4.1 System Calibration��������������������������������
	12.4.2 Rack Detection����������������������������
	12.4.3 Object Recognition��������������������������������
	12.4.4 Grasping����������������������
	12.4.5 Motion Planning�����������������������������
	12.4.6 End-Effector Design���������������������������������
	12.4.6.1 Suction-based End-effector������������������������������������������
	12.4.6.2 Combining Gripping with Suction�����������������������������������������������

	12.4.7 Robot Manipulator Model�������������������������������������
	12.4.7.1 Null Space Optimization���������������������������������������
	12.4.7.2 Inverse Kinematics as a Control Problem�������������������������������������������������������
	12.4.7.3 Damped Least Square Method������������������������������������������


	12.5 Experimental Results��������������������������������
	12.5.1 Response Time���������������������������
	12.5.2 Grasping and Suction����������������������������������
	12.5.3 Object Recognition��������������������������������
	12.5.4 Direction for Future Research�������������������������������������������

	12.6 Summary�������������������


	Part II: Mobile Robotics�������������������������������
	13. Introduction to Mobile Robotics and Control������������������������������������������������������
	13.1 Introduction������������������������
	13.2 System Model: Nonholonomic Mobile Robots����������������������������������������������������
	13.3 Robot Attitude��������������������������
	13.3.1 Rotation about Roll Axis��������������������������������������
	13.3.2 Rotation about Pitch Axis���������������������������������������
	13.3.3 Rotation About Yaw Axis�������������������������������������

	13.4 Composite Rotation������������������������������
	13.5 Coordinate System�����������������������������
	13.5.1 Earth-Centered Earth-Fixed (ECEF) Co-ordinate System������������������������������������������������������������������

	13.6 Control Approaches������������������������������
	13.6.1 Feedback Linearization������������������������������������
	13.6.2 Backstepping��������������������������
	13.6.3 Sliding Mode Control����������������������������������
	13.6.4 Conventional SMC������������������������������
	13.6.5 Terminal SMC��������������������������
	13.6.6 Nonsingular TSMC (NTSMC)��������������������������������������
	13.6.7 Fast Nonsingular TSMC (FNTSMC)��������������������������������������������
	13.6.8 Fractional Order SMC (FOSMC)������������������������������������������
	13.6.9 Higher Order SMC (HOSMC)��������������������������������������

	13.7 Summary�������������������

	14. Multi-robot Formation��������������������������������
	14.1 Introduction������������������������
	14.2 Path Planning Schemes���������������������������������
	14.3 Multi-Agent Formation Control�����������������������������������������
	14.3.1 Fast Adaptive Gain NTSMC��������������������������������������
	14.3.2 Fast Adaptive Fuzzy NTSMC (FAFNTSMC)��������������������������������������������������
	14.3.3 Fault Detection, Isolation and Collision Avoidance Scheme�����������������������������������������������������������������������

	14.4 Experiments�����������������������
	14.5 Summary�������������������

	15. Event Triggered Multi-Robot Consensus������������������������������������������������
	15.1 Introduction to Event Triggered Control���������������������������������������������������
	15.2 Event Triggered Consensus�������������������������������������
	15.2.1 Preliminaries���������������������������
	15.2.2 Sliding Mode-Based Finite Time Consensus������������������������������������������������������

	15.3 Event Triggered Sliding Mode-based Consensus Algorithm������������������������������������������������������������������
	15.3.1 Consensus-based Tracking Control of Nonholonomic Multi-robot Systems����������������������������������������������������������������������������������

	15.4 Experiments�����������������������
	15.5 Summary�������������������

	16. Vision-Based Tracking for a Human Following Mobile Robot�������������������������������������������������������������������
	16.1 Visual Tracking: Introduction�����������������������������������������
	16.1.1 Difficulties in Visual Tracking���������������������������������������������
	16.1.2 Required Features of Visual Tracking��������������������������������������������������
	16.1.3 Feature Descriptors for Visual Tracking�����������������������������������������������������

	16.2 Human Tracking Algorithm using SURF Based Dynamic Object Model��������������������������������������������������������������������������
	16.2.1 Problem Definition��������������������������������
	16.2.2 Object Model Description��������������������������������������
	16.2.2.1 Maintaining a Template Pool of Descriptors����������������������������������������������������������

	16.2.3 The Tracking Algorithm������������������������������������
	16.2.3.1 Step 1: Target Initialization���������������������������������������������
	16.2.3.2 Step 2: Object Recognition and Template Pool Update�������������������������������������������������������������������
	16.2.3.3 Step 3: Occlusion Detection, Target Window Prediction���������������������������������������������������������������������

	16.2.4 SURF-Based Mean-Shift Algorithm���������������������������������������������
	16.2.5 Modified Object Model Description�����������������������������������������������
	16.2.6 Modified Tracking Algorithm�����������������������������������������

	16.3 Human Tracking Algorithm with the Detection of Pose Change due to Out-of-plane Rotations����������������������������������������������������������������������������������������������������
	16.3.1 Problem Definition��������������������������������
	16.3.2 Tracking Algorithm��������������������������������
	16.3.3 Template Initialization�������������������������������������
	16.3.4 Tracking����������������������
	16.3.4.1 Scaling and Re-positioning the Tracking Window��������������������������������������������������������������

	16.3.5 Template Update Module������������������������������������
	16.3.6 Error Recovery Module�����������������������������������
	16.3.6.1 KD-tree Classifier����������������������������������
	16.3.6.2 Construction of KD-Tree���������������������������������������
	16.3.6.3 Dealing with Pose Change����������������������������������������
	16.3.6.4 Tracker Recovery from Full Occlusions�����������������������������������������������������


	16.4 Human Tracking Algorithm Based on Optical Flow����������������������������������������������������������
	16.4.1 The Template Pool and its Online Update�����������������������������������������������������
	16.4.1.1 Selection of New Templates������������������������������������������

	16.4.2 Re-Initialization of Optical Flow Tracker�������������������������������������������������������
	16.4.3 Detection of Partial and Full Occlusion�����������������������������������������������������

	16.5 Visual Servo Controller�����������������������������������
	16.5.1 Kinematic Model of the Mobile Robot�������������������������������������������������
	16.5.2 Pinhole Camera Model����������������������������������
	16.5.3 Problem Formulation���������������������������������
	16.5.4 Visual Servo Control Design�����������������������������������������
	16.5.5 Simulation Results��������������������������������
	16.5.5.1 Example: Tracking an Object which Moves in a Circular Trajectory��������������������������������������������������������������������������������


	16.6 Experimental Results��������������������������������
	16.6.1 Experimental Results for the Human Tracking Algorithm Based on SURF-based Dynamic Object Model������������������������������������������������������������������������������������������������������������
	16.6.2 Tracking Results������������������������������
	16.6.3 Human Following Robot�����������������������������������
	16.6.4 Discussion on Performance Comparison��������������������������������������������������
	16.6.5 Experimental Evaluation of Human Tracking Algorithm Based on Optical Flow���������������������������������������������������������������������������������������

	16.7 Summary�������������������


	Exercises����������������
	Bibliography�������������������
	Index������������



