ntelligent Control

Of Robot VSIBMS
A== §+> I ®
L (0?10‘.‘)-2 ®
1 \W | Wo1:
_ | %100
éﬁ / v) LEL0
Q/o 0/ 00£0 |
, 0rton:
; %%@b:oo
”)/ goo.
s
, QLX
| 100
201
‘ Lo
_ L G0
9 QofoIoe0
TS
Z (1l P
- ' NEESD $11
N (f " :E[‘\. 80
ff L e ess
Laxmidhar Behera \\T\\L,K,\; 80
Swagat Kumar JD olllh
Prem Kumar Patchaikani \

Ranjith Ravindranathan Nair
and Samrat Dutta

Intelligent Control of
Robotic Systems

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Intelligent Control of
Robotic Systems

Laxmidhar Behera
Swagat Kumar
Prem Kumar Patchaikani
Ranjith Ravindranathan Nair
Samrat Dutta

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks
does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of
MATLAB® software or related products does not constitute endorsement or sponsorship by The
MathWorks of a particular pedagogical approach or particular use of the MATLAB® software.

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-138-59771-6 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has
not been obtained. If any copyright material has not been acknowledged please write and let us
know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, repro-
duced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now
known or hereafter invented, including photocopying, microfilming, and recording, or in any infor-
mation storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center,
Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a variety of users. For organizations that
have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Behera, Laxmidhar, author.

Title: Intelligent control of robotic systems / Laxmidhar Behera, Swagat
Kumar, Prem Kumar Patchaikani, Ranjith Ravindranathan Nair and

Samrat Dutta.

Description: First edition. | Boca Raton, FL : CRC Press/Taylor & Francis
Group, 2019. | Includes bibliographical references.

Identifiers: LCCN 2019015139| ISBN 9781138597716 (hardback : acid-free
paper) | ISBN 9780429486784 (ebook)

Subjects: LCSH: Robots--Control systems. | Intelligent control systems.
Classification: LCC TJ211.35 .B46 2019 | DDC 629.8/92--dc23

LC record available at https://lccn.loc.gov/2019015139

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.crcpress.com
http://www.taylorandfrancis.com
https://lccn.loc.gov/2019015139
http://www.copyright.com/
http://www.copyright.com

Contents

Preface
Acknowledgment
Authors

1 Introduction
1.1 Vision-Based Control
1.2 Kinematic Control of a Redundant Manipulator
1.2.1 Redundancy Resolution using Null Space of the
Pseudo-inverse
1.2.2 Extended Jacobian Method
1.2.3 Optimization Based Redundancy Resolution.
1.2.4 Redundancy Resolution with Global Optimization . .
1.2.5 Neural Network Based Methods
1.3 Visual Servoing
1.3.1 Image Based Visual Servoing (IBVS)
1.3.2 Position Based Visual Servoing (PBVS)
1.3.3 2-1/2-D Visual Servoing
1.4 Visual Control of a Redundant Manipulator: Research
Issues L
1.5 Learning by Demonstration
1.5.1 DS-Based Motion Learning
1.6 Stability of Nonlinear Systems
1.7 Optimization Techniques
1.7.1 Genetic Algorithm
1.7.2 Expectation Maximization for Gaussian Mixture
Model
1.8 Composition of the Book

I Manipulators

2 Kinematic and Dynamic Models of Robot Manipulators
2.1 PowerCube Manipulator
2.2 Kinematic Configuration of the Manipulator
2.3 Estimating the Vision Space Motion with Camera Model

2.3.1 Transformation from Cartesian Space to Vision
Space ...

13
16
19
21
22
24

25
27

29

31
31
32
35

36

vi

Contents

2.3.2 The Camera Model
2.3.3 Computation of Image Feature Velocity in the Vision
Space . .o

2.4 Learning-Based Controller Architecture
2.5 Universal Robot (UR10)
2.5.1 Mechatronic Design
2.5.1.1 Platform

2.5.1.2 End-Effector

2.5.1.3 Perception Apparatus

2.5.2 Kinematic Model,

2.6 Barrett Wam Manipulator
2.6.1 Overview of the System
2.6.2 Experimental Setup
2.6.3 Dynamic Modeling
2.6.4 System Description and Modeling
2.6.5 State Space Representation

2.7 Summary

Hand-eye Coordination of a Robotic Arm using KSOM
Network
3.1 Kohonen Self Organizing Map
3.1.1 Competitive Process
3.1.2 Cooperative Process
3.1.3 Adaptive Process
3.2 System Identification using KSOM
3.3 Introduction to Learning-Based Inverse Kinematic Control .
3.3.1 TheNetwork
3.3.2 The Learning Problem
3.3.3 The Approach
3.3.4 The Formulation of Cost Function
3.3.5 Weight Update Laws
3.4 Visual Motor Control of a Redundant Manipulator using
KSOM Network,
341 TheProblem
3.5 KSOM with Sub-Clustering in Joint Angle Space
3.5.1 Network Architecture
3.5.2 Training Algorithm
3.5.3 Testing Phase
3.5.4 Redundancy Resolution
3.5.5 Tracking a Continuous Trajectory
3.6 Simulation and Results
3.6.1 Network Architecture and Workspace Dimensions . . .
3.6.2 Training L oo
3.6.3 Testing

38

39
40
41
41
41
43
43
43
45
45
46
47
49
93
54

55
56
o7
57
58
60
66
68
69
69
69
70

Contents vii

3.6.3.1 Reaching Isolated Target Positions in the

Workspace oL 103
3.6.3.2 Tracking a Straight Line Trajectory 105
3.6.3.3 Tracking an Elliptical Trajectory 107
3.6.4 Real-Time Experiment 108
3.6.4.1 Redundant Solutions 109
3.6.4.2 Tracking a Circular and a Straight Line
Trajectory oL 110
3.6.4.3 Multi-Step Movement 111
3.7 Summary e 111
4 Model-based Visual Servoing of a 7 DOF Manipulator 113
4.1 Introduction 113
4.2 Kinematic Control of a Manipulator 113
4.2.1 Kinematic Control of Redundant Manipulator 114
4.3 Visual Servoing oo 115
4.3.1 Estimating the Vision Space Motion with Camera
Model 116
4.3.2 Transformation from Cartesian Space to Vision
Space . .o 117
4.3.3 The Camera Model 119
4.3.4 Computation of Image Feature Velocity in the Vision
Space 120
4.4 Kinematic Control of a Manipulator Directly from Vision
Space ... 121
4.5 Image Moments 122
4.6 Image Moment Velocity 126
4.7 A Pinhole Camera Projection 128
4.8 Image Moment Interaction Matrix 132
4.9 Experimental Results using a 7 DOF Manipulator 139
4.10 Summary e e 141
5 Learning-Based Visual Servoing 145
5.1 Imtroduction 145
5.2 Kinematic Control using KSOM 148
5.2.1 KSOM Architecture 149
5.2.2 KSOM: Weight Update 149
5.2.3 Comments on Existing KSOM Based Kinematic
Control Schemes 150
5.3 Problem Definition L. 151
5.4 Analysis of Solution Learned Using KSOM 151
5.4.1 KSOM: An Estimate of Inverse Jacobian 152
5.4.2 Empirical Verification 152

5.4.2.1 Inverse Jacobian Evolution in Learning
Phase 153

viii

5.5

5.6
5.7

5.8
5.9

5.10
5.11
5.12

5.13

5.14

5.15

5.16

5.17

Contents

5.4.2.2 Testing Phase: Inverse Jacobian Estimation
at each Operating Zone
5.4.2.3 Inference
KSOM in Closed Loop Visual Servoing
5.5.1 Stability Analysis. 0oL
Redundancy Resolution
Results o
5.7.1 Learning Inverse Kinematic Relationship using
KSOM o
5.7.2 Visual Servoing L.
5.7.3 Redundancy Resolution
5.7.3.1 Tracking a Straight Line
5.7.3.2 Tracking an Elliptical Trajectory
Summary
Reinforcement Learning-Based Optimal Redundancy
Resolution Directly from the Vision Space
Introduction Lo
Redundancy Resolution Problem from the Vision Space
SNAC Based Optimal Redundancy Resolution from Vision
Space
5.12.1 Selection of Cost Function
5.12.2 Control Challenges
T-S Fuzzy Model-Based Critic Neural Network for Redundancy
Resolution from Vision Space
5.13.1 Fuzzy Critic Model
5.13.2 Weight Update Law
5.13.3 Selection of Fuzzy Zones
5.13.4 Initialization of the Fuzzy Network Control
5.134.1 Remark
KSOM Based Critic Network for Redundancy Resolution from
Vision Space
5.14.1 KSOM Critic Model
5.14.2 KSOM: Weight Update
5.14.3 Initialization of KSOM Network Control
Simulation Results
5.15.1 T-S Fuzzy Model
5.15.2 Kohonen’s Self-organizing Map
Real-Time Experiment
5.16.1 Tracking Elliptical Trajectory
5.16.1.1 T-S Fuzzy Model
5.16.1.2 KSOM
5.16.2 Grasping a Ball with Hand-manipulator Setup
Summary

153
154
156
157
159
160

160
161
164
165
168
172

172
172
174

175
176
177

179
179
181
182
183
184

185
185
188
188
190
190
191
195
196
196
199
201
202

Contents ix

6 Visual Servoing using an Adaptive Distributed

Takagi-Sugeno (T-S) Fuzzy Model 205
6.1 T-S Fuzzy Model 206
6.2 Adaptive Distributed T-S Fuzzy PD Controller 208
6.2.1 Offline Learning Algorithm 209
6.2.2 Online Adaptation Algorithm 212
6.2.3 Stability Analysis 214
6.3 Experimental Results 216
6.3.1 Visual Servoing for a Static Target 220
6.3.2 Compensation of Model Uncertainties 222
6.3.3 Visual Servoing for a Moving Target 223
6.4 Computational Complexity 225
6.5 Summary e 225
7 Kinematic Control using Single Network Adaptive Critic 229
7.1 Imtroduction 229
7.1.1 Discrete-Time Optimal Control Problem 230
7.1.2 Adaptive Critic Based Control 231
7.1.2.1 Training of Action and Critic Network 232
7.1.3 Single Network Adaptive Critic (DT-SNAC) 234
7.1.4 Choice of Critic Network Model 235
7.1.4.1 Costate Vector Modeling with MLN Critic
Network. 235
7.1.4.2 Costate Vector Modeling with T-S Fuzzy
Model-Based Critic Network 236
7.2 Adaptive Critic Based Optimal Controller Design for
Continuous-time Systems 241
7.2.1 Continuous-time Single Network Adaptive Critic
(CT-SNAC) e 242
7.2.2 Critic Network: Weight Update Law 243
7.2.3 Choice of Critic Network 245
7.2.3.1 Critic Network using MLN 245

7.2.3.2 T-S Fuzzy Model-Based Critic Network with
Cluster of Local Quadratic Cost Functions . 246

724 CT-SNAC 248
7.3 Discrete-Time Input Affine System Representation of Forward
Kinematics Lo 257
7.4 Modeling the Primary and Additional Tasks as an Integral
Cost Function o o 259
7.4.1 Quadratic Cost Minimization (Global Minimum Norm
Motion) 260
7.4.2 Joint Limit Avoidance 260

7.5 Single Network Adaptive Critic Based Optimal Redundancy
Resolution 261

Contents

7.5.1 T-S Fuzzy Model-Based Critic Network for Closed
Loop Positioning Task
7.5.2 Training Algorithm
7.6 Computational Complexity
7.7 Simulation Results
7.7.1 Global Minimum Norm Motion
7.7.2 Joint Limit Avoidance
7.8 Experimental Results
7.8.1 Global Minimum Norm Motion
7.8.2 Joint Limit Avoidance
7.9 Conclusion e

Dynamic Control using Single Network Adaptive Critic

8.1 Introduction
8.2 Optimal Control Problem of Continuous Time Nonlinear

System
8.2.1 Linear Quadratic Regulator
8.2.2 Hamilton-Jacobi-Bellman Equation
8.2.3 Optimal Control Law for Input Affine System
8.2.4 Adaptive Critic Concept

8.3 Policy Iteration and SNAC for Unknown Continuous Time
Nonlinear Systems,
8.3.1 Policy Iteration Scheme
8.3.2 Optimal Control Problem of an Unknown Dynamic . .
8.3.3 Model Representation and Learning Scheme

8.3.3.1 TSK Fuzzy Representation of Nonlinear

Dynamics
8.3.3.2 Learning Scheme for the TSK Fuzzy Model .
8.3.4 Critic Design and Policy Update
8.3.4.1 Construction of Initial Critic Network using
Lyapunov Based LMI
8.3.4.2 Lyapunov Function
8.3.4.3 Conditions for Stabilization
8.3.4.4 Design of Fitness Function
8.3.5 Learning Near-Optimal Controller
8.3.5.1 Update of Critic Network
8.3.5.2 Fitness Function for PI Based Training .
836 Examples oL
8.3.6.1 Simulated Model
8.3.6.2 Example using Real Robot
8.4 Summary

Contents

9 Imitation Learning

9.1
9.2

9.3

9.4

9.5

Introductiono
Dynamic Movement Primitives
9.2.1 Mathematical Formulations
9.2.1.1 Choice of Mean and Variance
9.2.1.2 Spatial and Temporal Scaling
922 Example. oo
Motion Encoding using Gaussian Mixture Regression .
9.3.1 SED: Stable Estimator of Dynamical Systems
9.3.1.1 Learning Model Parameters.
9.3.1.2 Log-likelihood Cost
FuzzStaMP: Fuzzy Controller Regulated Stable Movement
Primitiveso
9.4.1 Motion Modeling with C-FuzzStaMP
9.4.1.1 Fuzzy Lyapunov Function
9.4.1.2 Learning Fuzzy Controller Gains
9.4.1.3 Design of Fitness Function
9.4.14 Example
9.4.2 Motion Modeling with R-FuzzStaMP
9.4.2.1 Stability Analysis of the Motion System . . .
9.4.2.2 Design of the Fuzzy Controller
9.4.3 Global Validity and Spatial Scaling
9.4.3.1 Examples
Learning Skills from Heterogeneous Demonstrations
9.5.1 Stability Analysis.
9.5.1.1 Asymptotic Stability in the Demonstrated
Region
9.5.1.2 Ensuring Asymptotic Stability outside
Demonstrated Region
9.5.2 Learning Model Parameters from Demonstrations . . .
9.5.2.1 Motion Modeling using GMR
9.5.2.2 Motion Modeling using LWPR
9.5.2.3 Motion Modeling using e-SVR
9.5.2.4 Complete Pipeline
9.5.3 Spatial Error Calculation
9.5.4 Examples oo
9.5.4.1 Example of Monotonic and Non-monotonic
State Energy L.
9.5.4.2 Example of Multitasking with Single and
Multiple Task-equilibrium
9.5.5 Summary

xi

319
319
320
321
322
322
323
324
326
326
327

327
328
329
331
333
333
335
339
342
346
348
354
357

361

xii

Contents

10 Visual Perception

10.1
10.2

10.3

10.4

10.5

Introductiono
Deep Neural Networks and Artificial Neural Networks .
10.2.1 Neural Networks
10.2.1.1 Multi-layer Perceptron
10.2.1.2 MLP Implementation using Tensorflow .
10.2.2 Deep Learning Techniques: An Overview
10.2.2.1 Convolutional Neural Network (Flow and
Training with Back-propogation)
10.2.3 Different Architectures of Convolutional Neural
Networks (CNNs)
Examples of Vision-Based Object Detection Techniques .
10.3.1 Automatic Annotation of Object ROI
10.3.1.1 Image Acquisition
10.3.1.2 Manual Annotation
10.3.1.3 Augmentation and Clutter Generation
10.3.1.4 Two-class Classification Model using Deep
Networks
10.3.1.5 Experimental Results and Discussions
10.3.2 Automatic Segmentation of Objects for Warehouse
Automation
10.3.2.1 Network Architecture
10.3.2.2 Base Network
10.3.2.3 Single Shot Detection
10.3.3 Automatic Generation of Artificial Clutter
10.3.4 Multi-Class Segmentation using Proposed Network . .
Experimental Results
10.4.1 System Description L.
10.4.1.1 Server
10.4.2 Ground Truth Generation
10.4.3 Image Segmentation
Summary

11 Vision-Based Grasping

11.1
11.2

Introduction
Model-Based Grasping
11.2.1 Problem Statement
11.2.2 Hardware Setup
11.2.3 Dataset oo
11.2.4 Data Augmentation
11.2.5 Network Architecture and Training
11.2.6 Axis Assignment
11.2.7 Grasp Decide Index (GDI)
11.2.8 Final Pose Selection
11.2.9 Overall Pipeline and Result

385
385
386
387
389
392
395

395

399
404
405
407
407
407

409
411

412
413
416
416
417
417
417
417
418
418
419
421

423

Contents

11.3 Grasping without Object Models
11.3.1 Problem Definition
11.3.2 Proposed Method

11.3.2.1 Creating Continuous Surfaces in 3D Point
Cloud,
11.3.3 Finding Graspable Affordances
11.3.4 Experimental Results
11.3.4.1 Performance Measure
11.3.5 Grasping of Individual Objects
11.3.6 Grasping Objects in a Clutter
11.3.7 Computation Time
11.4 Summary

12 Warehouse Automation: An Example

12.1 Introduction
12.2 Problem Definition
12.3 System Architecture L.
12.4 The Methods
12.4.1 System Calibration
12.4.2 Rack Detection
12.4.3 Object Recognition
12.4.4 Grasping
12.4.5 Motion Planning
12.4.6 End-Effector Design
12.4.6.1 Suction-based End-effector

12.4.6.2 Combining Gripping with Suction

12.4.7 Robot Manipulator Model
12.4.7.1 Null Space Optimization

12.4.7.2 Inverse Kinematics as a Control Problem . .

12.4.7.3 Damped Least Square Method

12.5 Experimental Results
12.5.1 Response Time
12.5.2 Grasping and Suction
12.5.3 Object Recognition
12.5.4 Direction for Future Research

12.6 Summary

II Mobile Robotics

13 Introduction to Mobile Robotics and Control

13.1 Introduction
13.2 System Model: Nonholonomic Mobile Robots
13.3 Robot Attitudeo
13.3.1 Rotation about Roll Axis
13.3.2 Rotation about Pitch Axis.
13.3.3 Rotation About Yaw Axis

xiv Contents

13.4 Composite Rotation
13.5 Coordinate System L.
13.5.1 Earth-Centered Earth-Fixed (ECEF) Co-ordinate

System L

13.6 Control Approaches
13.6.1 Feedback Linearization.
13.6.2 Backstepping oL
13.6.3 Sliding Mode Control
13.6.4 Conventional SMC
13.6.5 Terminal SMC
13.6.6 Nomnsingular TSMC (NTSMC)
13.6.7 Fast Nonsingular TSMC (FNTSMC)
13.6.8 Fractional Order SMC (FOSMC)
13.6.9 Higher Order SMC (HOSMC)

13.7 Summary

14 Multi-robot Formation

14.1 Introduction Lo
14.2 Path Planning Schemes
14.3 Multi-Agent Formation Control
14.3.1 Fast Adaptive Gain NTSMC
14.3.2 Fast Adaptive Fuzzy NTSMC (FAFNTSMC)

14.3.3 Fault Detection, Isolation and Collision Avoidance
Scheme,
14.4 Experiments o
14.5 Summary

15 Event Triggered Multi-Robot Consensus
15.1 Introduction to Event Triggered Control
15.2 Event Triggered Consensus
15.2.1 Preliminaries 0.
15.2.2 Sliding Mode-Based Finite Time Consensus
15.3 Event Triggered Sliding Mode-based Consensus Algorithm
15.3.1 Consensus-based Tracking Control of Nonholonomic
Multi-robot Systems,
15.4 Experiments L oo
15.5 Summary

16 Vision-Based Tracking for a Human Following Mobile
Robot
16.1 Visual Tracking: Introduction
16.1.1 Difficulties in Visual Tracking
16.1.2 Required Features of Visual Tracking
16.1.3 Feature Descriptors for Visual Tracking

Contents

16.2

16.3

16.4

16.5

16.6

Human Tracking Algorithm using SURF Based Dynamic
Object Model
16.2.1 Problem Definition
16.2.2 Object Model Description
16.2.2.1 Maintaining a Template Pool of Descriptors
16.2.3 The Tracking Algorithm
16.2.3.1 Step 1: Target Initialization
16.2.3.2 Step 2: Object Recognition and Template
Pool Update
16.2.3.3 Step 3: Occlusion Detection, Target Window
Prediction
16.2.4 SURF-Based Mean-Shift Algorithm
16.2.5 Modified Object Model Description
16.2.6 Modified Tracking Algorithm
Human Tracking Algorithm with the Detection of Pose Change
due to Out-of-plane Rotations
16.3.1 Problem Definition
16.3.2 Tracking Algorithm
16.3.3 Template Initialization
16.3.4 Trackingo
16.3.4.1 Scaling and Re-positioning the Tracking
Window
16.3.5 Template Update Module
16.3.6 Error Recovery Module
16.3.6.1 KD-tree Classifier
16.3.6.2 Construction of KD-Tree
16.3.6.3 Dealing with Pose Change
16.3.6.4 Tracker Recovery from Full Occlusions
Human Tracking Algorithm Based on Optical Flow
16.4.1 The Template Pool and its Online Update
16.4.1.1 Selection of New Templates
16.4.2 Re-Initialization of Optical Flow Tracker
16.4.3 Detection of Partial and Full Occlusion
Visual Servo Controller
16.5.1 Kinematic Model of the Mobile Robot
16.5.2 Pinhole Camera Model
16.5.3 Problem Formulation
16.5.4 Visual Servo Control Design
16.5.5 Simulation Results
16.5.5.1 Example: Tracking an Object which Moves in
a Circular Trajectory
Experimental Results
16.6.1 Experimental Results for the Human Tracking
Algorithm Based on SURF-based Dynamic Object
Model

XV

558
559
560
561
562
563

563

564
564
565
566

567
567
568
569
570

571
071
o972
572
573
573
574
576
ST
578
580
580
581
082
582
582
583
o84

o84
585

xvi Contents

16.6.2 Tracking Results 586
16.6.3 Human Following Robot 589
16.6.4 Discussion on Performance Comparison 590
16.6.5 Experimental Evaluation of Human Tracking Algorithm
Based on Optical Flow 591
16.7 Summary 593
Exercises 595
Bibliography 603

Index 645

Preface

Robots are artificial agents that exhibit some aspect of sentient behavior.
They come in all forms, shapes and sizes. Some may even be form-less, e.g.,
software-bots that filter out spam in your email boxes or a chat-bot that
answers to queries on websites. In this book, we will primarily look into phys-
ical robots that cannot only perceive their environment but also alter it by
manipulating objects around it. These robots are no more confined to the
cages on a factory shop floors and are moving to other places of human habi-
tation such as home, offices and hospitals where they work alongside humans,
sharing each other’s workspace. These robots are becoming smarter with each
passing day and someday, they will replace humans in all kinds of dull, dirty
and dangerous jobs, relieving them for more creative pursuits. Industry 4.0
paints an optimistic future of smart and flexible factories where the production
pipeline can change in real-time in response to variations arising from factors
like weather, socio-economic and political changes. This would be made pos-
sible by having robots that can independently take local decisions based on
global cues provided by a centralized ERP'/ WMS? decision maker. Such
robots can work in unstructured and dynamic environments and can learn to
cooperate and collaborate with humans and other robots, while learning new
skills from and sharing knowledge with them. Such intelligent robots could
then be rented cheaply by small and medium enterprises (SMEs) who can-
not afford to buy these robots, thereby allowing them to reap the benefits
of robot-based automation at an affordable cost. Such changes will give rise
to new business opportunities in the form of “Robotics-as-a-Service” where
the end-users will pay for the services offered and not for robots which will
be managed and maintained by the service provider. It is also envisaged that
such changes will make it possible to achieve mass personalization in contrast
to mass standardization that is being offered by today’s industries. These
aspirations of Industry 4.0 can be realized through advancement in multiple
fields such as additive manufacturing, machine learning, artificial intelligence,
signal processing, computer vision, cloud computing, embedded systems, and
mechatronics etc.

Historically, Robotics and AI have grown in parallel ways complementing
and enriching each other. This book is the outcome of our sincere endeavor to
show the synergy between the two disciplines while asking the hard questions
on naturalization of human intelligence that make robots mimic humans in

IEnterprise Resource Planner
2Warehouse Management System

xXvii

xviii Preface

complex tasks such as warehouse automation, surveillance, imitation learning,
and multi-robot systems.

Traditionally, methods for robot control relied heavily on physics-based
models which benefited from strong mathematical foundations available in
the control literature. However, these methods had limited ability to deal
with uncertainty associated with non-deterministic factors like parameter vari-
ation, sensor noise, extraneous disturbances, model nonlinearity, and model
approximation. In contrast, machine learning-based methods relied on data
generated by the system to understand the underlying model and then use
it to develop necessary control strategies for systems. The latter approach is
more commonly known as a “data-driven” approache which was pioneered by
computer science researchers who had neither any background nor any inter-
est in physics-based models. On the other hand, researchers and engineers
from Electrical and Mechanical Engineering were more comfortable with tra-
ditional methods based on physics-based models and took casual interest in
learning-based approaches. Over the years, the authors of this book have tried
to marry these two schools by augmenting physics-based models with learning-
based control approaches. This approach has the following benefits:

e Imprecise machines guided by learning-based algorithms can achieve high
level precision which has the advantage of reducing the cost of robotic
systems.

e Elimination of manual programming of the robots: In the proposed scheme,
robots autonomously localize themselves, they learn to adaptively inter-
act with the environment, and these programs are mostly independent
of robotic platforms. Hence there is significant reduction of customized
programming of each robot in different contexts.

e In transfer learning, most of the learning models are developed in simu-
lation environments. The fine-tuning of these models in physical robots
requires very little data. Thus the process reduces the robot cycle time
significantly as huge number of robots can learn their own kinematics and
dynamics in simulation environment only.

o Usually researchers work only on specifics-kinematic control or visual per-
ception or dynamic control or reinforcement learning. In this book, we
take an approach which will guide readers to build a complete integrated
robotic system that combines kinematics, dynamics, visual perception, and
manipulation.

In this book, we will focus on five major aspects of robotics. First being
the perception where we will describe various computer vision techniques for
object detection, recognition, and tracking, etc. In the process, we will provide
an overview of deep learning-based methods and demonstrate their impact on
the performance of these algorithms. The second aspect is related to manip-
ulation and motion planning which aims at solving the inverse kinematics
of a manipulator in the Cartesian as well as image plane. In the process,

Preface Xix

we will describe several methods for solving the hand-eye coordination and
visual servoing problem. The third aspect is related to mobile robots which
will demonstrate vision-based algorithms for mobile robot navigation. The
fourth aspect will focus on vision-based techniques for grasping where we will
describe a model-free approach for computing graspable handles directly from
3D point cloud. The fifth and final aspect will be multi-robot coordination
which becomes essential when one has to deal with multiple robots. In this
context, we will describe several methods to achieve formation control in a
group of robots which is resource optimal and fault-tolerant.

The precise and lucid presentation of tools, techniques, and associated
engineering science as provided in this book will help scientists, researchers and
practicing engineers to get an in-depth understanding of techniques required
for developing integrated robotic systems for various applications, such as
robots for automating pick and place tasks, automated mobile robots for
movement of goods in warehouses, a robot for assisting patients, drones for
infrastructure monitoring, and surveillance, etc. In the process, the researchers
will get exposed to some of the niche areas such as deep learning, program-
ming by demonstration (PbD), visual servoing, and multi-robot control. The
accompanied source codes and examples will help the readers in getting a
good grasp of the concept.

Scientists, researchers, and graduate students alike will benefit from both
machine learning and control theoretic frameworks as presented in this book.
We have tried to make every chapter self-contained by including introductory
primers and examples. We provide an introductory chapter that includes back-
ground material on robotics covering topics such as kinematics, dynamics, and
control. Simultaneously, the readers are expected to have a basic background
in machine learning techniques such as back-propagation networks, Kohonen
self-organizing map, adaptive critic networks, and deep learning. Readers can
refer to the book on Intelligent Systems and Control by Laxmidhar Behera
and Indrani Kar, which is published by Oxford University Press as a good
primer for the subjects dealt with in this book.

A repository of colour images can be downloaded from https://www.crcpress.
com/9781138597716

MATLAB® is a registered trademark of The MathWorks, Inc. For product

information, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA
Tel: 508-647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com

mailto:info@mathworks.com
http://www.mathworks.com
https://www.crcpress.com/
https://www.crcpress.com/

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Acknowledgment

Most of the works as presented in this book were done in the Intelligent Sys-
tems and Control Lab at IIT Kanpur. All authors gratefully acknowledge the
contributions of funding agencies such as DST, DEITY, UKIERI, ADNOC-
GRC and TCS that helped to carry out the underlying research and experi-
mentation.

All of us gratefully acknowledge the contributions from our colleagues who
all worked, in some way or another, in the lab. Special thanks are due to Dr.
Indrazno Siradjuddin, Dr. Meenakshi Gupta, and Dr. Anima Mazumder for
their significant contribution to Chapters 4 and 6, 16, and 10, respectively.

Laxmidhar Behera thanks all his family members, specifically his parents
for their blessings, his wife Gopali Priyadarsini, who has been such a brilliant
companion, and his three daughters, Yamuna, Lalita, and Visakha for bringing
aesthetics into his life. Last, but not least, he acknowledges the association of
Bhakti-Vedanta club at II'T Kanpur which inspires him to inculcate the ideal
human values.

Swagat Kumar would like to acknowledge the contribution of Ms. Olyvia
Kundu toward providing the content for the Chapter 14 on “Vision-based
Grasping.” In addition, he would like thank his friends and colleagues who
have always been a source of motivation and encouragement for him.

Prem Kumar Patchaikani would like to thank his parents and family mem-
bers for their constant support in all his endeavors. He would also like to thank
Prof. Behera for giving him the opportunity to work on this book, and also
the fellow authors; without their support and cooperation, this book couldn’t
have been completed successfully on time.

Ranjith Ravindranathan Nair would like to express his sincere gratitude to
all the co-authors of this book, especially Prof. Behera, and all the colleagues
of intelligent systems and control lab at IIT Kanpur for their support. He
would also like to extend his heartfelt thanks to his beloved parents, for their
endless support, prayers, and blessings, his soulmate Devika for her fathomless
support, patience, and care, sister and family for their constant support, and
last but not least, he would like to thank his son Samarth, who made him feel
more fulfilled than he has ever imagined.

Samrat Dutta would like to extend his deep gratitude to Prof. Laxmidhar
Behera for giving him the opportunity to be a co-author of this book. He is
extremely grateful to his parents for their love and support, his wife Anima

pol

xxii Acknowledgment

for making his life a beautiful journey and his beloved daughter Ahana for
giving the feeling of completeness. He is also thankful to his friends in Intelli-
gent Systems and control Lab (IITK), colleagues in TCS Innovation Lab for
their encouragement and last but not the least, he expresses his gratitude to
publication team for their effort.

Authors

Laxmidhar Behera is working as Poonam and Prabhu Goel Chair Professor
at IIT Kanpur having research and teaching experience of more than 24 years.
He has received his BSc (engineering) and MSc (engineering) degrees from NIT
Rourkela in 1988 and 1990, respectively. He received his PhD degree from IIT
Delhi in 1996. He pursued his postdoctoral studies in the German National
Research Center for Information Technology, GMD, Sank Augustin, Germany,
during 2000-2001. Previously, he has worked as an assistant professor at BITS
Pilani during 1995-1999 and as a reader at Intelligent Systems Research Cen-
ter (ISRC), University of Ulster, UK during 2007-2009. He has also worked as
a visiting researcher/professor at FHG, Germany and ETH, Zurich, Switzer-
land. His research work lies in the convergence of machine learning, control
theory, robotic vision, and heterogeneous robotic platforms. He has received
more than INR 170 million research grants to support his research activi-
ties. He has established industrial collaboration with TCS, Renault Nissan,
BEL, Bangalore, and ADNOC, Abu Dhabi while making significant techno-
logical development in areas such as robotics-based ware-house automation,
vision and drone-guided driver assistance systems, and drone-guided pipeline
inspection systems. He has published more than 250 papers in journals and
conference proceedings. He has supervised 16 PhD theses to completion. He is
a Fellow of INAE and Senior Member of IEEE. He is a Technical Committee
member on IEEE SMC on Robotics and Intelligent Systems. His other research
interests include intelligent control, semantic signal/music processing, neural
networks, control of cyber-physical systems, and cognitive modeling.

Swagat Kumar obtained his Bachelor’s degree in Electrical Engineering
from North Orissa University in 2001 and his Master’s and his Ph.D. degree
in Electrical Engineering from II'T Kanpur in 2004 and 2009 respectively. He
was a postdoctoral researcher at Kyushu University in Japan during 2009-10.
He, then, worked as an assistant professor at IIT Jodhpur for about two years
before joining TCS Research in 2012. He currently heads the robotics research
group at TATA Consultancy Services in New Delhi. His research interests
include Robotics, Computer Vision and Machine Learning. He is a member
of IEEE Robotics and Automation Society. He has co-authored about forty
articles in peer-reviewed conferences and journals and filed several patents.

xxiii

XX1v Authors

Prem Kumar Patchaikani received the B.E. degree in Electrical and Elec-
tronics Engineering from Thiagarajar College of Engineering, Madurai, India,
in 2003, the M.Tech. degree in Power and Control from IIT Kanpur, Kanpur,
India, in 2005, and the Ph.D. degree from the Department of Electrical Engi-
neering, IIT Kanpur, in 2012. He was a Design Engineer with Larsen & Toubro
Ltd., Chennai, India, from 2005 to 2006. He was a Visiting Researcher with the
Intelligent System Research Center, University of Ulster, Londonderry, U.K.,
from 2008 to 2009, and in 2011. He is currently a Lead Engineer with General
Electric, Bengaluru, India. His current research interests include visual servo-
ing, redundant manipulators, neural networks and fuzzy logic-based control,
adaptive critic, system identification, and IC engine controls.

Ranjith Ravindranathan Nair received the Master’s degree in Guidance
and Navigational Control from the College of Engineering, Thiruvananthapu-
ram, Kerala, India. He received his Ph.D in Control and Automation from the
Department of Electrical Engineering, Indian Institute of Technology (IIT)
Kanpur, Kanpur, India. After completing his Ph.D, he was working as a post
doctoral research fellow in Intelligent Systems and Control Lab at IIT Kan-
pur. Currently, he is working as an Assistant Professor in the Department
of Electronics & Communication Engineering at Indian Institute of Informa-
tion Technology Pune, India. His primary research interests include multia-
gent systems, formation control, Intelligent control, nonlinear control systems,
cyber-physical systems, and multi-robot/ multi-vehicle systems.

Samrat Dutta received the B.Tech. degree in Electrical and Electronics
Engineering from the Siliguri Institute of Technology, Siliguri, India, in 2005,
and the M.Tech. degree in Electrical Engineering with a specialization in con-
trol system from the Department of Electrical Engineering, Jadavpur Uni-
versity, Kolkata, India, in 2010. He has received his Ph.D. degree in Control
and Automation from the Department of Electrical Engineering, IIT Kanpur,
Kanpur, India in 2018. He was a Cluster Head with Sterling Communications
Ltd., Chennai, India, from 2005 to 2007, where he was involved in Tata Tele-
services mobile network infrastructure projects in India. He is currently work-
ing as a research scientist with TCS innovations Labs, Bangalore, India. His
current research interests include Imitation learning, Reinforcement Learning,
Intelligent Robots, Robotic Vision, Deep Learning, neural networks and fuzzy
logic-based control, and system identification.

1

Introduction

Robot-assisted applications in warehouse, agriculture and health care are
highly multi-disciplinary. Mechanical design, robot dynamics and control,
kinematics and control, visual servoing, visual perception, motor skill learn-
ing, grasping, machine learning and AI and sensors are some of the key areas
that contribute to the development of a wholesome robotic product. Often
researchers work on a specific area — an approach that lead to the neglect of
systemic integration. Amazon Picking Challenges (APC-2015 and APC-2016)
and Amazon Robotics Challenge — ARC-2017 — have motivated researchers
to look at the problem of of developing autonomous robots at the systemic
integration level as well. Based on this approach, the first part of the book will
take an integrative approach to the design of three key areas — visual control,
motor skill learning and visual perception — to build autonomous manipulation
systems using control theoretic framework.

Development of intelligent autonomous robots that can assist humans in
their daily needs or can be used as replacement for human labor in various
tasks, has always been a challenging and interesting problem in the field of
robotics. These applications require robots to have human-like learning capa-
bility. Starting from turning off the alarm clock using our hand when we wake
up in the morning, to switching off the light before going to bed at night, we
perform uncountable number of tasks consciously or unconsciously through
out the day while making use of our limbs. These tasks, such as moving an
object, playing an instrument, writing a letter, and playing soccer require skill
and dexterity which we have been acquiring through rigorous training since
the day we are born. Initial abrupt movements of the limbs of a child, interact
with the environment and get rewarded by the consequence. This works as
the reinforcement signal in the learning process. The temporal error between
the expected and the received rewards are encoded in the dopamine signal of
the mammalian brain [1-3]. In the training process, children learn indepen-
dent and controlled movement of their limbs. These movements are adaptive
enough to deal with the dynamically changing environment. Generally, the
training could be either independent or supervisory. The former is about cor-
recting one’s own actions continuously to optimize a performance index based
on the reinforcement signal as received for an arbitrary action performed in
the environment and the latter is about improving one’s own actions based on
the expert’s instructions. In this way, we learn to control our limbs at the joint
level and eventually we learn higher level motions in the task space. In fact,

2 Introduction

FIGURE 1.1: The Mobile Manipulator System for warehouse automation at
IIT Kanpur.

like humans, many life-forms on this planet have this capability of learning
from experience. Thus, when we think of a robotic system co-existing with
humans in society, it must have human-like adaptability in its behavior. They
should also be able to learn from their experience as humans do.

Our team IITK-TCS participated in Amazon Picking Challenge 2016 and
Amazon Robotics Challenge 2017. The team secured fifth position in ARC
2016. The team secured fifth, third, and 4th position in stow task, pick task,
and stow-cum-pick task respectively in ARC 2017. The robotic system that
was used in APC 2016 is shown in Figure (1.1). The system consisted of
Barrett Arm mounted on a mobile platform that could automatically adjust
its height to reach any box within the shelf. The robot arm was mounted with
a Kinect camera. The suction was used to grasp the desired object. RCNN was
used to learn the object categories and to identify the centroid of 2-d image
of the desired object where the suction gripper is guided with help of cloud
data to grasp the object.

The system consisted of UR ten robot manipulators, a server with eight
GPUs, Suction gripper, RGB-D sensor, and Ensenso Camera. A customized
deep network was designed that is capable of semi-supervised leveling, auto-
matic cluttering, and semantic segmentation as shown in Figure (1.2). Among
all teams, our algorithm had the highest grasp rate.

Vision-Based Control 3

o] = |l o,

Input Image Feature Map Pyramid parsing module Final prediction

FIGURE 1.2: Visual perception using deep neural network.

1.1 Vision-Based Control

The schematic of the various components associated with the warehouse
automation system can be given as in Figure 1.3. The target item is seg-
mented using a vision system comprising of a RGB-D sensor. The goal config-
uration is used to generate a dynamic trajectory from a library of previously
demonstrated trajectories to reach the item. The controller then finds an opti-
mal control to execute the motion. The grasping is finally accomplished using
feedback-based reinforced training and learning in a physics-based simulator.
An automated precision agriculture system — for example, a mobile manip-
ulator employed for pruning, spraying and plucking in horticulture — will have
similar functional blocks as shown for the automated warehouse system as
shown above. The same is true for an automated system for manufacturing.

- InverKin
Solution »
Primitive
Library
rEn “

Vision Based Mixture of
Grasping « Controller ‘ primitives ‘

Object Detection » Pose
and Localization Estimation

Vision System

UoI3e2IUNWILWIOD)

FIGURE 1.3: The proposed robot assisted ware-house automation system.

4 Introduction

In practical applications of a robotic manipulator such as an automated
warehouse, the robotic movements are controlled in two stages in the control
hierarchy:

e There is an inner loop controller (also called dynamic controller) that
converts the joint space command to the joint torque command as the
manipulators are controlled in joint space. The electrical controller, that is
a part of the robot’s hardware, converts this joint torque to electrical signal
and subsequently the robot moves. The controller here we are interested
in, is not just any but from a specific class of controllers that help the robot
to achieve the desired joint states while optimizing a certain performance
index.

e There is an outer loop controller (also called kinematic controller) that
plans and executes the robot’s movement in the Cartesian space of the
robot. This movement is defined by the task assigned to the robot. Design
of these controllers has always been an intriguing and challenging control
engineering problem.

The core of such an automated system is the dynamic and kinematic con-
trol of the manipulator while guaranteeing the closed loop stability. In this
book, we will be concerned with data-driven learning frameworks that enable
the robot to learn controllers in the inner loop which is dynamic control and
outer loop of the control hierarchy (see Fig. 1.4) that is referred to kinematic
control. The controller in the inner loop involves robot’s dynamics and is

Inner Loop Control

(P, 0,) Inverse 04 Dynamic u 1
Kinematics ; Controller : Robot]
,,,,,,,,,,,,,, |
(P4, Oq) Kinematic (P,0) Forward
Controller i Kinematics

Outer Loop Control

FIGURE 1.4: The inner loop controller converts the joint space command
to the joint space torque and the outer loop controller plans the robot’s end-
effector trajectory in the task space. The robot’s joint position 6 is converted to
Cartesian position and orientation (P, O) using forward kinematics. The outer
loop controller provides position and orientation command (P, O.) based on
the current P, O. The inverse kinematics algorithm finds corresponding joint
position command @, based on P., O.. The inner loop controller converts 0,
to joint torque u.

Vision-Based Control 5

responsible for providing joint torques which are required for the robot to
achieve commanded joint positions while optimizing some performance index.

Classical techniques, for decades, have given us the ability to solve prob-
lems associated with nonlinear systems and its control. These techniques have
been efficiently used in industrial robots with a high accuracy of task com-
pletion. However, they reflect strong dependence upon precise mathematical
modeling of the entire process [4,5]. With the increasing diversified applica-
tions of robots, in many real-life situations it becomes difficult to work with
these techniques as the precise mathematical description of the process is not
available. They have limited ability to incorporate effects of the dynamically
changing environment interacting with the robot. Additionally, one needs to
possess good technical knowledge and skill to work with these techniques. It is
very difficult for a general user, who lacks in-depth knowledge in this domain,
to make use of these techniques in order to prepare the robotic system for the
assigned task.

Given the progress in AT and machine learning, researchers have been inter-
ested to emulate human learning processes in robots. We will thus present
learning-based kinematic and dynamic control strategies in this book while
well positioning with the state of the art techniques available in the litera-
ture. As the outer loop controller, we will discuss various data-driven motion
planners that plan reaching motions for the manipulator in the Cartesian
space. Besides neural network-based schemes, one of the approaches is to
develop a motion planner in terms of movement primitives [6], which can
be combined to produce more complicated robotic motions. The movement
primitives are represented by a dynamical system (DS). A learning by demon-
stration (LbD) based approach is adopted to identify the movement primi-
tives from the demonstrations given by a user. As we learn DS using real data
from the robot, ensuring stability of the learned system is challenging. Using
learning-based approaches, both the dynamic and kinematic controllers have
been designed. In this sense, techniques developed, work can make a robot
learn its own kinematic and dynamic controllers as it performs from simple
to complex tasks.

It is presumed that the dextrous manipulation is achieved by continu-
ous learning with the reinforcement signal obtained from the environment.
It is argued in [7-9] that the temporal error between the expected and the
received rewards is encoded in the dopamine signal of the mammalian brain.
The successful implementation of the robotic systems to assist the human
beings in real-life requires adaptability to the dynamic environment by con-
tinuous learning and robustness to the model and sensor inaccuracies. Hence,
learning-based control schemes which could adapt according to the rewards
are imperative in the robotic systems to operate in a dynamic cluttered envi-
ronment. These observations have led to the development of learning-based
visual automation of robotic arms, which enables the robotic systems to serve
well in both structured and unstructured environments. To achieve the excel-
lence similar to humans, the redundant manipulator guided through visual

6 Introduction

feedback must necessarily work in a dynamically changing environment. Vision
can provide continuous information about a dynamic environment, and kine-
matic redundancy is introduced in the manipulator for handling complex tasks
which occur in changing environments.

Vision-based control of a redundant manipulator is a challenging task
which involves two sub-tasks: (i) visual servoing [10,11] and (ii) redundant
manipulator control [12,13]. In general, visual servoing computes the end-
effector velocity required to reach the desired position from the image features
obtained through the visual feedback. It basically assumes that there exists
a non-redundant manipulator which can generate the desired end-effector
velocity with its own inverse kinematic algorithm. A non-redundant manip-
ulator can achieve the end-effector velocity estimated from visual servoing
with unique joint angle configuration. In a dynamic environment, the avail-
able unique joint angle configuration may become infeasible to position the
end-effector due to the presence of obstacles and the physical constraints.
This necessitates the use of redundant manipulators for vision-based control
in dynamic environments, which have excess DOF than that required for the
given task. Theoretically infinite choices of joint angle configuration exist for
redundant manipulators to achieve the estimated end-effector velocity. The
excess DOF can be effectively utilized in performing additional constraints
introduced by the dynamic environment. An optimal joint angle configura-
tion needs to be selected, while satisfying these additional constraints. This is
popularly known as redundancy resolution.

1.2 Kinematic Control of a Redundant Manipulator

The position of the end-effector and the associated joint angle configuration
are coupled with forward and inverse kinematic relationship of the manipula-
tor. The forward kinematic map expresses the Cartesian space position of the
end-effector x for the given joint angle configuration 8, as,

x = £,.(6) (1.1)

where the dimension of the task space x is n, and that of the joint angle space 0
is m. In case of redundant manipulators n < m and the degree of redundancy
is given by m —n. £5(0) is highly nonlinear and is obtained from the geometry
of the manipulator using Denavit-Hartenberg (D-H) parameters [14].

The inverse kinematic relation computes the joint angle space configura-
tion @ which is required to reach the desired position x4. The closed form
inverse kinematic relationship exists only for simple manipulator configura-
tions. The problem becomes much more difficult for redundant manipulator
since infinite number of solutions exist to reach the given workspace position.
The control of a kinematically redundant manipulator to reach the object is a

Kinematic Control of a Redundant Manipulator 7

highly challenging task owing to the one-to-many inverse kinematic relation-
ships. The redundancy resolution schemes discuss about different methodolo-
gies to exploit the available redundancy for performing the additional tasks
which occur in real-time.

In general inverse kinematic control is achieved with forward differential
kinematic relationship, since it expresses a linear relationship between the joint
angular velocity 6 and the Cartesian space velocity x. The forward differential
kinematic relationship between 0 and x is represented as,

x=J0 (1.2)
where J = % is the kinematic Jacobian of the manipulator. In case of redun-
dant manipulators, J is not a square matrix and theoretically infinite joint
angular velocity @ exists to generate the given end-effector velocity. The joint
angular velocity required for the given end-effector velocity is computed using
inverse Jacobian. Inverse Jacobian does not exist in case of redundant manip-
ulators since the associated Jacobian is not square and hence, the pseudo-
inverse has been employed. Inverse kinematic control of the redundant manip-
ulator using generalized pseudo-inverse was first proposed by Whitney [15].
The pseudo-inverse method computes the value of 8 as,

6=J%x, (1.3)

where J7T is the pseudo-inverse of the kinematic Jacobian, and x4 is the desired
end-effector velocity. Henceforth, the notation (.)* will be used to indicate the
generalized pseudo-inverse of (.). The open-loop solution obtained using the
above equation unavoidably leads to solution drift due to numerical integration
and hence, results in task space error e = x;—x. To overcome this drawback in
open-loop control, the closed loop kinematic control is proposed with the task
space error e. In closed loop kinematic control the joint velocity is computed
as,

6=rkJ"e (1.4)

where k, > 0 is proportional gain which controls the speed of the convergence
to the desired position x4. The pseudo-inverse based solution results in lazy
arm movement, i.e., it minimizes the joint angular velocity in least square
sense. Baillieul showed in [16] that the pseudo-inverse solution may reach a
singular configuration when implemented without any modification.
Pseudo-inverse based kinematic control is widely popular since the rela-
tionship between the various joint angular velocities, which can generate the
desired end-effector velocity can be established using the pseudo-inverse of
Jacobian J. JT obeys the property that the matrix (I — J*J) projects onto
the null space of J and, hence, the vector J(I — J*J)¢ = 0 for all vectors ¢.
A joint angular velocity computed as @ = (I — J*J)¢ for any vector ¢ € R™
does not generate any end-effector motion but only changes the internal joint
angle configuration of the manipulator. The internal reconfiguration of the

8 Introduction

manipulator is popularly known as self-motion of the manipulator. The differ-
ent joint angular velocities which can generate the given end-effector velocity
are given by the relationship,

0=J"%+k,(I-J"0)¢p (1.5)

where I is the identity matrix of order m, and k,, is the gain which determines
the magnitude of the self-motion.

1.2.1 Redundancy Resolution using Null Space of the
Pseudo-inverse

The self-motion of the redundant manipulator is used to achieve the additional
tasks required in the dynamic environment by optimizing certain performance
measure J;. In general ¢ is chosen as — %‘g to minimize J; and as %{; to max-
imize J;. Liegeois [17] used equation (1.5) to resolve the redundancy by using
the null space of the Jacobian for avoiding the kinematic limits. The self-
motion has been exploited to perform additional tasks such as satisfying kine-
matic constraints [18], maximizing the manipulability index [19], minimizing
the infinity norm of the joint angular velocity [20] and obstacle avoidance [21].

The value of gain k,, determines the speed of convergence to the optimal
joint angle configuration. It is clear from equation (1.5) that the manipulator
may exhibit self-motion even after x4 = 0 because of improper choice of the
gain k,. A high value of gain k, results in undesirable oscillation and a low
value of gain k, may end up with sub-optimal solutions. The value of gain
kn is to be properly chosen to avoid oscillations. Li et al. [22] proposed an
analytical method to calculate the limiting values of k,,, while constraining
the manipulator within its kinematic limits. The Jacobian null space based
redundancy resolution schemes optimize an instantaneous cost function for
resolving the redundancy and results in local optimum [23]. A detailed discus-
sion about various pseudo-inverse based redundancy resolution methods and
the associated challenges are available in [12,24].

Pseudo-inverse based methods are widely used in the literature but they
perform poor near singularities due to numerical instability. The damped least
square method avoids problems associated with singularities by not exactly
following the desired trajectory [25,26]. Damped least square method has been
tested on redundant manipulators to achieve torque minimization [27] and
obstacle avoidance [28]. The challenges associated with various damped-least
square based control schemes are available in [29].

1.2.2 Extended Jacobian Method

The solution obtained with the null space projection methods is not periodic,
i.e., the closed trajectory in the Cartesian space does not result in a peri-
odic joint angle space trajectory. Hence, the null space projection methods
are not suitable for repetitive tasks. Extended Jacobian methods [16, 30, 31]

Kinematic Control of a Redundant Manipulator 9

are proposed to achieve closed joint angle space trajectories. Extended Jaco-
bian methods form a square Jacobian matrix by augmenting the kinematic
Jacobian with the additional task space constraints. The inverse kinematic
solution is obtained by computing the inverse of the augmented Jacobian.
Though extended Jacobian methods result in cyclic trajectories, the methods
suffer from algorithmic singularity, i.e., the augmented Jacobian may become
singular even if the kinematic Jacobian is not rank-deficient.

English et al. [32] discussed a single framework integrating both the null
space projection and the extended Jacobian based kinematic control schemes.

1.2.3 Optimization Based Redundancy Resolution

The null space projection methods and the extended Jacobian methods require
the computation of inverse of the Jacobian. Alternatively optimization based
methods are developed which resolve the redundancy without explicit com-
putation of the inverse of the Jacobian. In optimization based methodolo-
gies [33,34], the redundancy resolution scheme is formulated as a time-varying
optimization task with equality and inequality constraints and the necessary
condition for the optimality is derived. Various dynamic neural network (NN)
architectures are proposed such that the equilibrium point of the dynamic neu-
ral network (DNN) corresponds to the necessary condition of the optimality.
At each instant the DNN is presented with the desired end-effector velocity
and the network evolves from the initial joint angle configuration to the opti-
mal solution of the redundant manipulator. Quadratic program formulation
has been used for kinematic limit avoidance [35], torque optimization [36],
obstacle avoidance [37], and acceleration level resolution [38]. Infinity norm
minimization [39, 40] is achieved by formulating the control task as a lin-
ear program and by minimizing the convex energy function with a recurrent
neural network (RNN). The major drawback with DNN based optimization
approaches is that the convergence speed of the network to the optimal solu-
tion is not known and, hence, the approaches are computationally intensive.

1.2.4 Redundancy Resolution with Global Optimization

All the aforementioned approaches minimize an instantaneous cost function
and achieve local optimum. The solution obtained is locally optimum since it
may not be optimum for the whole trajectory. Local optimization may lead
to control instabilities, which result in high torque and joint angular velocity
for relatively long trajectories which cover the whole workspace [41]. Instan-
taneous cost minimization is generally preferred since it is computationally
simple in terms of the current joint angle configuration. Global optimiza-
tion with an integral cost function over the entire trajectory is developed
to cope up with the instabilities occurring for long trajectories. Kinematic
and dynamic redundancy resolution by minimizing a global cost function is
discussed using Pontryagin’s maximum principle in [42]. Kazerounian and

10 Introduction

Wang [43] analytically showed that the local minimization of the joint angu-
lar acceleration is equivalent to the global minimization of the joint angular
velocity in least square sense. Suh and Hollerbach achieved global torque min-
imization [44] using the principles of calculus of variation. Minimum time
control is discussed for redundancy resolution in [45]. The integral cost based
optimization has been implemented for path planning in [46]. The redundancy
resolution is formulated as an optimal control problem in [47], and the 2n
first order partial differential equations with boundary conditions have been
derived. It has been shown that it is equivalent to n second order differential
equations resolving the redundancy in acceleration level.

The major drawback with the global cost optimization is that the accu-
rate knowledge of the forward kinematics is required and the optimal solu-
tion is obtained by solving the associated two-point boundary value problem
numerically for individual trajectories. Hence, all the aforementioned global
optimization methods are offline processes and cannot be implemented in real-
time over the whole workspace.

1.2.5 Neural Network Based Methods

All the above local and global optimization schemes require the accurate for-
ward kinematic model to resolve the redundancy and perform poorly with
inaccurate models. Model inaccuracies pose a major challenge for pseudo-
inverse computation since the pseudo-inverse is sensitive to parameter varia-
tions, and the parameter variation may eventually result in controller insta-
bility. The universal function approximation property of NN is used to learn
either the inverse kinematic map or the forward kinematic map to control the
manipulator without the complete knowledge of the kinematic model. The
major challenge associated in learning inverse kinematic map of the redundant
manipulator is that it is a one-to-many relationship. Existing NN architectures
learn only a single joint angle configuration for the given end-effector position
by converging toward the arithmetic mean of all the joint angle configurations
available in the data. Such convergence results in poor positioning accuracy
and the redundancy available in the data is lost.

Ahmad and Guez [48] learned the inverse kinematic map with multi-layer
perceptron (MLP) and the map is used as a seed generator for redundancy
resolution with pseudo-inverse method. The method to learn an exact joint
angle configuration is not discussed and, hence, the learned map is a poor
approximation of the inverse kinematics. Martin and Millan [49] suggested the
distal learning approach to learn the inverse map with an NN approximating
the forward kinematic map. Though a self-motion network is suggested in
addition to inverse network for redundancy resolution, the method requires
the geometric knowledge of the manipulator configuration, and it is difficult to
generalize for n-link manipulator. Two neural networks are used for resolving
the redundancy in [50]. The first network learns the null space projection
vector ¢ which optimizes the chosen additional task. The second network is

Visual Servoing 11

used to compute the output of the damped least square pseudo-inverse. The
method requires the computation of pseudo-inverse during the training phase.

All the aforementioned redundancy resolution strategies compute the joint
angular velocity from the end-effector. Apart from neural network approaches,
accurate kinematic model is needed for control and require computation-
ally intensive pseudo-inverse. Global optimal solution has been achieved only
through offline methods.

1.3 Visual Servoing

Vision is employed in robotics owing to its flexibility during manipulation.
Visual feedback gives dynamic information about the environment and the
object. Typically, vision-based manipulator control is executed in open loop
fashion, “looking” and then “moving.” [51] This results in poor positioning
accuracy due to the model inaccuracies. An alternative approach is to use a
visual control loop which is generally referred to as visual servoing. A detailed
survey on visual servoing can be found in [10], [11], and [52]. Vision-based
manipulator control use either single camera or multiple cameras to give
visual feedback to the manipulator system. Visual servoing systems use one
of two camera configurations: eye-in-hand or eye-to-hand. In the eye-in-hand
configuration [53,54], a camera is mounted on the end-effector while in the
eye-to-hand configuration [55,56], the cameras are fixed in the workspace.
Eye-to-hand configuration is also known as stand-alone camera system [52].

Visual servoing schemes use the image features u to represent the position
of the end-effector and the object in the vision space. The desired position
Xg and the current position x of the end-effector are observed through the
camera as the desired image feature vector uy and the current image feature
vector u respectively. In general, visual servoing uses the linear relationship
between the change in the image feature vector u and the change in the
Cartesian space position of the end-effector x for controlling the manipulator.
The image Jacobian L, represents the relationship between the end-effector
motion and the image feature motion as,

0= Lx (1.6)

where u,u € RP. L is a p X n matrix and is also referred to as interaction
matrix in literatures. The control task is to compute the necessary Cartesian
space velocity motion such that the end-effector will reach the desired position
in vision space asymptotically.
The simple proportional control law which results in asymptotic stabiliza-
tion is expressed as,
Xd =]{ip.LJr(ud - u) (17)

12 Introduction

where k, is a proportional gain, L™ is the pseudo-inverse of L and ugy — u
is the error between the desired and the current image features. Here after-
wards, the error vector in the visions space is expressed as e, and, hence,
e, = ug —u : € RP. The above controller requires the exact knowledge of
L and its pseudo-inverse though it ensures global stability. The exact knowl-
edge of L requires the complete knowledge of the 3 D Cartesian space which
may not be available in a dynamic environment. The depth information of
the object has to be estimated for visual control of the manipulator [57-59].
Hence, the image Jacobian L is to be estimated at each instant. To reduce
the computational complexity, the image Jacobian is estimated at the desired
position and then the pseudo-inverse is evaluated for the estimated image
Jacobian to implement the controller. This eliminates the continuous estima-
tion of L and the computation of the pseudo-inverse L in real-time. But, this
results in a locally stabilizing controller since the sufficient positivity condi-
tion of stability is valid in local region only [60]. The learning-based servoing
scheme proposed in [61] for non-redundant manipulator focusses on learning
the inverse Jacobian at the chosen operation point only.

Visual servoing systems are classified based on the method of using the
visual information as follows:

1.3.1 Image Based Visual Servoing (IBVS)

In image based visual servoing, the 2 dimensional image features are used to
estimate the motion of the manipulator directly. The error signal is specified
in the 2 dimensional image plane as the difference between the actual and the
desired features. IBVS is also known as 2-D visual servoing [62-65] since the
control input is computed directly from 2-D image features. Since the control
input is generated from the vision space directly, IBVS may result in poor
Cartesian space trajectories [60, 66].

1.3.2 Position Based Visual Servoing (PBVS)

In position based visual servoing [67,68], features extracted from the image
are used to estimate the position and orientation of the object with respect to
the camera (or world) coordinate system. Using these values, an error between
the current and the desired pose of the robot manipulator is defined in the
task space to compute the necessary end-effector motion. In this scheme, the
control task is completely separated from the estimation process involved
in computing the Cartesian pose from the image data. Since the control is
actuated using the Cartesian pose information, it is also called 3-D visual
servoing. Position based visual servoing for eye-in-hand configuration is dis-
cussed in [67,69, 70], and the stand-alone camera configuration is discussed
in [71-73]. Position based visual servoing for hybrid eye-in-hand and eye-to-
hand multi-camera system is discussed in [74]. In contrast to IBVS, desirable

Visual Control of a Redundant Manipulator: Research Issues 13

Cartesian space velocity is obtained in PBVS, since the joint angular velocity
is computed from the estimated current pose of the robot manipulator in the
Cartesian space. But the algorithm suffers with poor positioning accuracy, if
the accurate camera model is not known, since there is no closed loop control
over the pose estimation.

1.3.3 2-1/2-D Visual Servoing

The combination of both image and position based approaches are developed
to avail the benefit of both the methods [75,76] in the visual control process.
The error is defined by combining both the vision space and the Cartesian
space information, and then the end-effector velocity is computed. It is known
as 2-1/2-D visual servoing since both the image and the Cartesian space fea-
tures are used to control the manipulator. Such hybrid schemes [77-79] decou-
ple the translation and rotation velocity of the end-effector with proper feature
selections which results in desirable Cartesian space trajectories and accurate
positioning. Hybrid visual servoing is proposed for both the eye-to-hand and
eye-in-configuration using homography in [80].

1.4 Visual Control of a Redundant Manipulator:
Research Issues

As discussed in previous sections, classical approaches estimate the Carte-
sian space velocity of the end-effector from the vision space with the visual
servoing schemes, and then the redundancy is resolved for the chosen addi-
tional task while following the Cartesian space trajectory generated by the
visual servoing scheme. The schematic diagram of the two stage control pro-
cess for vision-based redundant manipulator control is shown in Figure 1.5.
The visual servoing scheme uses the image features ug, u and the Carte-
sian space information x to compute the end-effector velocity x. Redun-
dancy resolution schemes compute the joint angular velocity from the end-
effector velocity x, using the current joint angle € and the environmental
constraints.

Alternatively the vision space trajectories can be directly controlled from
the joint angle space by combining visual servoing with redundancy resolu-
tion in a single framework. The redundancy is achieved for the trajectories
specified in the vision space while satisfying the additional constraints intro-
duced by the environment. The schematic diagram of visual controller with
integrated visual servoing and redundancy resolution is shown in Figure 1.6.
The controller computes the joint angle configuration directly from the visual
feedback resulting in a direct and efficient control over the vision space.

14 Introduction

Visual Servoing Redundancy Resolution

Environmental Constraints

\ 4

| Redundancy | 44 Redundant x
> Resolution Manipulator e
Algorithm | | ——

)
]

Environmental Constraints

¥

uy Integrated X Redundant [~
Visual Servoing 9/9 x
and P Manipulator [——F
+ — Redundancy Resolution
u
--------------------------------- Camera(s) 4_

FIGURE 1.6: Visual control: Integrated visual servoing and redundancy res-
olution.

The relationship between image feature velocity and joint angular velocity
is obtained by combining equations (1.2) and (1.6) as,

au = LPJO
1o (1.8)

where P is the transformation matrix representing the coordinate transforma-
tion between the world coordinate frame and the camera coordinate frame,
and J = LPJ is a p x m Jacobian matrix from the joint angle space to the
vision space. Here afterwards, the notation J will be used to represent the
Jacobian from the joint angle space to the vision space.

Visual Control of a Redundant Manipulator: Research Issues 15

The closed loop proportional controller resulting in asymptotic stabiliza-
tion is given as, .
0=Fk,J"e,. (1.9)

Since the pseudo-inverse of the Jacobian J is used in the control law, the
controller would result in “lazy-arm movement.” The null space of J can be
used to satisfy the additional constraints required in the dynamic environment.

In this context, model-based redundancy resolution for visually controlled
manipulator is proposed in [81] for trajectories defined in vision space. The
trajectories are defined in vision space from a single camera in eye-in-hand
configuration, and then task sequencing is used to prioritize the task for
achieving kinematic limit avoidance. Mansard and Chaumette [82] achieved
obstacle avoidance by task sequencing while following vision space trajectories
in eye-in-hand configuration. Later the approach is extended for multiple-task
considering occlusion and kinematic limit avoidance together in [83]. These
approaches need accurate knowledge of the model and pseudo-inverse of the
Jacobian at each instant.

The redundancy can be resolved either for the Cartesian space end-effector
velocity estimated from visual servoing scheme or for the trajectories directly
defined in vision space. Both of these control schemes can be implemented in
model-based control framework. Development of learning-based visual control
schemes is motivated due to following the drawbacks of model-based control
paradigm.

1. Visual servoing requires the exact computation of image Jacobian L, and
kinematic Jacobian J is needed for the redundancy resolution. The accu-
rate knowledge about the workspace is required to compute L, which may
not be available in the dynamic environment and, hence, image Jaco-
bian is to be estimated at each instant in real-time. In addition, classi-
cal approaches need pseudo-inverse of both image and kinematic Jaco-
bian at each instant, which is computationally intensive. As degree-of-
freedom increases, the pseudo-inverse computation poses a major chal-
lenge in real-time implementation. Thus the efficient combined estimate
of pseudo-inverse of J and L using learning methodologies is an interesting
research problem within a learning-based paradigm.

2. Existing redundancy resolution schemes minimize an instantaneous cost
function and achieve local optimum in real-time. Minimizing an instan-
taneous cost function leads to instabilities resulting in high torque and
joint angular velocity, for long trajectories spanning the entire workspace.
Optimization of a global cost function as an integral cost function over
the entire trajectory leads to an offline optimal control problem. Such
global optimization schemes are robust to instabilities but cannot be imple-
mented in real-time as required in a visual servoing situation. Hence the
development of real-time optimal redundancy resolution schemes for global
cost function is one of the unsolved research problems in this area and
worth investigating within the learning paradigm.

16 Introduction

3. Just like kinematic visual control, optimality plays an important role in
dynamic visual servoing. Optimization in dynamic visual servoing results
in minimization of torque effort while avoiding the obstacles and kinematic
limits. An optimal control strategy which is computationally efficient and
robust to model inaccuracies and adaptive to environmental changes is
highly desirable. A learning-based paradigm for dynamic visual servoing
also poses an interesting research problem.

These challenges necessitate developing computationally efficient visual con-
trol schemes which are robust to model inaccuracies and could directly affect
the error in vision space from joint space. These goals can be achieved through
learning-based approaches. Learning-based control schemes can adapt their
behavior according to the feedback received from the environment and are
robust to model inaccuracies. An autonomous system which can improve its
performance with time, using the available feedback and cope up with model
inaccuracies and changes occurring in a dynamic environment is highly pre-
ferred for real-life implementation of the robotic systems. Robots are active
agents and are amenable for learning-based schemes, which do not require the
complete knowledge of the camera, manipulator, and the environment model.

This book is thus concerned with development of learning-based
approaches for controlling the redundant manipulators kinematically and
dynamically, directly from the vision space. Learning-based algorithms are
developed to resolve the redundancy while controlling the manipulator directly
from the vision space. Learning-based approaches are developed to resolve the
redundancy either by minimizing a local or a global performance index. NN
architectures which model the nonlinear controller as a cluster of local linear
controllers are used for redundancy resolution. The joint angle configuration
required to reach the desired position is computed as the output of the neural
networks using the positioning error in vision space and the additional environ-
mental constraints. The proposed learning-based control algorithms are tested
on a 7 DOF kinematically redundant PowerCube manipulator controlled with
stereo vision in eye-to-hand configuration.

1.5 Learning by Demonstration

Learning by demonstration (LbD) is also known as programming by demon-
stration (PbD) or imitation learning (IL). As we have already mentioned,
classical approaches of robot motion planning involves hard-coded program-
ming or pre-programming of robotic motions for predefined tasks, which in
fact limits the adaptability of the robotic motion in an dynamic environment.
Such manual motion planning also requires in-depth technical skill. With the
increasing degrees of freedom (DOF) in new generation robotic manipulators,

Learning by Demonstration 17

FIGURE 1.7: Learning by demonstration in human life: a) a child observes
how to kick a football; b) she kicks the football as demonstrated.

the robotic motion is expected to be more adaptive and intuitive while accom-
plishing a wide variety of tasks as the humans do. Given the scenario, manual
coding based solution is not viable anymore. In contrast, the learning-based
approaches are more intuitive. By making the robot capable of learning to
perform a task from instances such as watching the expert’s movement of
limbs, the rigorous manual programming can be avoided.

Learning in robotics is fundamentally motivated by the biological systems.
In motion learning, the robot is expected to learn new task-oriented policies'.
The learning could be solely trial-and-error basis where the policy is improved
based on the reward collected for performing an action. This reward based
learning is independent and falls under the category of reinforcement learning
(RL) [84-86] where an agent mainly learns suitable policies to achieve the
goal. In contrast, in LbD or IL the agent learns the policies by observing the
demonstrations given by the teacher to accomplish a specified task [87,88]. In
this case the policies are learned such that the error between the demonstrated
and the executed profile is minimized. In other words, policies are learned
under the supervision of the demonstrator.

LbD is a data-driven learning technique which humans use very frequently
in their life time. As a child grows up, LbD or IL plays a vital role in his/her
learning of numerous behaviors/skills such as communicating through ges-
ture, movements of limbs during various sports, common social behaviors,
playing an instrument (Figure 1.7 presents such examples). LbD being a pow-
erful alternative to classical motion planning techniques, it is employed in
both symbolic and trajectory level. In the symbolic level planning, the high-
level representation or the concept is encoded, i.e., the robot learns what the
demonstrator is trying to achieve, whereas in the trajectory level planning, the
robot encodes the trajectory itself, provided during human demonstrations.

LA policy is a map between the state-space and the action-space.

18 Introduction

FIGURE 1.8: A robotic manipulator is given kinesthetic demonstrations for
pick and place task.

It learns the nonlinear relationship between the sensory information and the
motor action. LbD at trajectory level is intended to reproduce demonstrated
trajectories as similar as possible. By the word simdlar it is meant that the pat-
tern of the demonstrated trajectory is preserved in the reproduced trajectory.
In both the cases, ultimately the intended task is accomplished. Therefore,
LbD based motion planning is implemented in two stages:

o Collecting data from demonstrations
e Learning a model from the data

The robot collects the relevant data during the demonstrations. The data
is generally recorded in the form of state-action-pair?. In the LbD paradigm,
the demonstrations can be provided to the robot by the following ways [89]:

¢ Kinesthetic
In kinesthetic teaching, the demonstrations are provided to the robot by
physically holding the robotic arm while guiding through the intended tra-
jectory to accomplish a task (see Figure 1.8). The main advantage of this
approach is that each point in the demonstrated trajectory is associated
with a joint space measurement. For instance, if the demonstrations involve
end-effector trajectories, then the associated inverse kinematic solutions
always exist.

2The state-action-pair is defined as the combination of the current state and commanded
action. For example, suppose a robotic manipulator is demonstrated a picking task; the
state-action-pair could be the position of the robot (joint/Cartesian space) and the velocity
at each sampling interval during the demonstrations.

Learning by Demonstration 19

o Teleoperation
Teleoperation is another technique of providing demonstrations to the
robot. It is quite popular in medical/surgical robots. The demonstration
is given to the robot by operating it using some joystick-like device for
a particular task. However, demonstrations through teleoperation are not
very accurate in the case of robots with high degrees of freedom.

¢ Observation
Demonstrations through observation is the most used technique in human
learning. Humans learn various limb movements by observing others. In
robots, when a demonstrator provides demonstrations, the activities are
recorded using a motion tracking system. The robot uses the data to learn
the motion profiles.

We mainly focus on kinesthetic demonstrations as the motion tracking sys-
tem is not required to record the data and these are more realistic than the
teleoperated demonstrations.

The trajectories are encoded in nonlinear functions represented by regres-
sive models (learned using Gaussian mixture regression, Gaussian processes,
support vector regression, etc.). The parameters of these regressive models
are learned from the demonstration data. These nonlinear functions are in
fact referred to as dynamical systems (DS) when represented as differential
equations, as they evolve through time to reproduce the robot’s trajectory.

1.5.1 DS-Based Motion Learning

Classical approaches of motion planning for robots divide a particular task
in two separate parts as planning and ezecution [90]. The planning part is
responsible for exploring the robot’s trajectory in the workspace and the exe-
cution part realizes the planned path as a trajectory tracking problem, which
employs various control theories to minimize the tracking error. Using DS-
based approach, these two parts are integrated in a single generalized model
[91-94]. The tedious manual programming part is avoided as the DS actu-
ally encodes the demonstrations in the form of movement primitives (MPs).
MPs are the building blocks of a motion learning system. In LbD approach
of motion learning, MPs are identified by learning the parameters of the DS
from demonstrations. Figure: 1.9 presents an example of such representation.
A DS-based system is represented as follows:

x = ((x,0) (1.10)

x is the state of the system (for example, it could be position when the DS
is modeled for reaching motion), € is the parameter and ¢ learns the map
between two spaces. Equation (1.10) is learned from demonstrations where the
expert shows how to accomplish an assigned task. To learn the DS, optimiza-
tion techniques are employed, which search for the appropriate parameters
that fit the demonstrations.

20 Introduction

FIGURE 1.9: This plot is an example of movement primitives in a demon-
strations. The dots as a whole represent the demonstrated trajectory (could
be in the joint or Cartesian space of a robotic a manipulator). All the trajec-
tories end at the black "*’. The grey regions can be regarded as the movement
primitives learned from the demonstrations. These movement primitives are
learned in the form of dynamical systems which are locally linear and valid in
their neighborhood. The weighted combination of these local linear systems
represents complex motion profiles. The trajectory here is encoded using a
Gaussian mixture model where the '+’ in the grey regions represents mean of
the Gaussian function.

DS-based systems are not guaranteed to be stable as they are learned
in unconstrained optimization process from the demonstration data which
includes sensor noise. An unstable system is never guaranteed to end up to
the target / equilibrium state while unfolding in time. On the other hand, a
globally stable DS is guaranteed to reach the the target state anywhere from
the state space even if the trajectory is perturbed. Hence, like human, a glob-
ally stable DS-based motion model has the capability of providing spontaneous
directional command to the robot to reach its goal anywhere in the reachable
workspace. The main advantage of using a DS-based system is that it can be
easily modulated as desired with resilience to perturbation and instant adapt-
ability [95]. During the last decade, DS-based techniques have been found
to be useful for many applications such as discrete motions [96-98], rhyth-
mic motions [99-101], and hitting motions [102]. DS models are learned from
multiple demonstrations to encode a specific behavior. Due to the modular
nature of the DS-based approach, many formulations have been suggested in
the recent past such as Vector Integration To Endpoint (VITE) model for
arm reaching movements [103-105], Central Pattern Generators (CPGs) to
model rhythmic behaviors [106-109], Reservoir Computing [110], and Recur-
rent Neural Network (RNN) [111-113].

In this context, another class of DS-based formulation is presented in
[92,114] which can be modulated as per the task requirement. The Dynamic
Movement Primitive (DMP) is proposed to learn the DS from demonstration.
DMP consists of a PD controller and a nonlinear term that actually captures

Stability of Nonlinear Systems 21

the features of the demonstration. DMP is quite fast as it learns from a single
demonstration and is globally stable due to the PD controller. DMP has an
explicit dependence on time (which is its own clock) which in fact controls the
switching between the nonlinear term and the PD controller.

1.6 Stability of Nonlinear Systems

While designing a controller for a nonlinear system® such as a robot, the
foremost priority is to analyze whether the overall system is stable or not. Any
dynamical system is associated with equilibrium point/state(s). The behavior
of the system in the neighborhood of the equilibrium state defines the system’s
stability.

Definition 1.1. A state x* is called as an equilibrium state of a dynamical
system if once the state of the system x(t) reaches at x(t) = x*, it remains
there for all the future time.

The equilibrium state of a dynamical system can be calculated by setting
the state equation to zero at x(t) = x*. We shall define a few terms those are
defined to analyze the stability of the dynamical systems. These definitions
are in frequent use in this thesis.

First, let us define a few notations: B represents the ball given by ||x|| < R
in the state space defined by Sg with ||x|| = R. The basic definition of stability
is given as follows [115]:

Definition 1.2. The equilibrium state x = 0 is said to be stable in the sense
of Lyapunov if, for any R > 0 there exists r > 0, such that if ||x(0)|| < r, then
Ix||(t) < R for all t > 0. Otherwise the equilibrium point is unstable.

Definition 1.2 essentially states that the equilibrium state is called stable
if a state starting within the radius r, remains in the ball Bg with arbitrarily
chosen R. However, for the kind of problem we are interested in, it requires the
states of the system not only remain in a region, but also attain the desired
value. This type of requirement is addressed by the concept of asymptotic
stability which is defined as [115]:

Definition 1.3. The equilibrium state x = 0 is said to be locally asymptoti-
cally stable if it is stable, and if there exists r > 0, such that ||x(0)|| < r and
eventually x(t) =0 as t — oo.

Definition 1.3 states the asymptotic stability of a dynamical system locally
in the state space. The global asymptotic stability of the dynamical system is
given as follows:

3In this thesis we work with autonomous systems. Any system we mention here should
be considered an autonomous system unless it is explicitly described otherwise.

22 Introduction

Definition 1.4. The equilibrium state x = 0 is said to be globally asymptot-
ically stable if the asymptotic stability holds for any initial state x(0) = xg.
It is also termed as asymptotically stable in the large.

Lyapunov stability theorems are used in this thesis to determine the sta-
bility criteria of the learned DS and are given as follows [115]:

Theorem 1.1. If there exists a scalar function V(x) associated with (1.10)
has continuous first order partial derivatives in a ball Br and such that

e V(x) is positive definite in Br
e V(x) is negative semi-definite in Br

then the equilibrium point x = 0 is locally stable. If V(X) s megative definite
in Bgr, then the equilibrium point is locally asymptotically stable.

Theorem 1.2. If there exists a scalar function V(x) associated with (1.10)
has continuous first order partial derivatives such that

e V(x) is positive definite
e V(x) is negative definite
e V(x) — o0 as ||x]| = o
then the equilibrium point x = 0 is globally asymptotically stable.

Theorem 1.2 essentially suggests that if the dynamical system is globally
asymptotically stable, Bg spans over the entire state space. Let V' : S — R is
a continuously differentiable positive definite function in S where S contains
the origin of the state space. We can note the following on stability of the
system.

o If g—‘;(is negative semi-definite in Bg, then the equilibrium state of the
system (1.10) is stable in Bg.

o If %—ZC is negative definite in By, then the equilibrium state of the system
(1.10) is asymptotically stable in Bg.

o If %C is negative definite in Br and Bg spans the entire state space,
then the equilibrium state of the system (1.10) is globally asymptotically
stable.

1.7 Optimization Techniques

Optimization has been used as an important tool in this thesis to learn the
parameters of the data-driven models. The role of the optimization algorithm

Optimization Techniques 23

A

Feasible
Region

Cost

Optimal
solution

Infeasible
Region

Solution Space

FIGURE 1.10: The optimization algorithm searches for a solution from the
white region with minimum associated cost. The solutions from the grey region
may promise a lower objective values but they are not useful as they do not
satisfy the constraints. The black circle represents the global optimal solution
in this case.

in the context is to minimize the error between the model prediction and the
actual measurement by searching appropriate set of parameters in the model.
As we have already discussed that an unconstrained search process does not
guarantee stability of the models, the search space needs to be constrained by
imposing the desired criteria. In general, an optimization problem is formu-
lated as follows:

minimize P(w)

SUbjeCt to ngality(w) = 0 Cc = 1, ey 1V (111)
icneqality(w) <0 c¢= 1, ey

where, w is called the design parameter and P(w) is called the performance
index or objective function of the system parameterized by w. The inten-
tion is to find a W (= Wopimar) that is associated with the minimum value
of P(W). C¢u1iy(W) and Cf,.o 411, (W) Tepresent the equality and inequality
constraints respectively. The solution to this problem must satisfy these con-
straints. Figure 1.10 explains the constrained optimization where the solutions
from the grey region do not satisfy the constraints in (1.11). The optimization
algorithm is expected to find a solution from the white region of the solution
space, associated with minimum value of P(w).

In general optimization problems can be categorized as convex and non-
convex problems. An optimization problem is convex when both its objective
and the constraints are convex function. The characteristic of a convex opti-
mization problem is if there exists an optimal solution to the problem, it
is associated with the global optima [116]. But the same is not true about

24 Introduction

the non-convex optimization problems. A non-convex optimization problem is
that, which has at least one non-convex function as the objective or as con-
straint. A non-convex optimization problem suffers from local optima problem
and thereby making it difficult to solve [117].

Techniques have been developed to find the optimal solution of the non-
convex problems. Interior-point methods, active-set techniques, sequential
quadratic programming, etc., [118-120] are quite efficient and fast to find solu-
tions which are locally optimal. Being local optimization techniques, these
approaches end up as different solutions with different initial guesses. The
chances of finding the global optima is high if the initial guess is close to the
global optima. On the other hand genetic algorithm (GA) [121,122], particle
swarm optimization [123], and simulated annealing [124] reaches global optima
(ideally) given a non-convex optimization problem. However, this achievement
comes with expensive computation when the variable size is high. In this the-
sis work we mostly deal with non-convex constrained optimization problems
as the work involves finding of appropriate means and covariances of nonlin-
ear membership functions, matrices with certain sign, vectors having certain
angles with some arbitrary vector, etc. GA has been frequently used in this
thesis as it is good at handling such constraints while minimizing the objective
value.

1.7.1 Genetic Algorithm

Genetic algorithm (GA) is a heuristic search approach applicable to a wide
range of optimization problems. The algorithms have the capability of discov-
ering the global minimum in an optimization problem if it is run for sufficient
number of generations. The GA is motivated by the natural evolution of the
living creatures, which makes them able to adapt the changing environment
by creating complex structure over generations. Hence, evolution is the funda-
mental policy in GA. Mating of two different individuals and getting different
offspring is the key to success of the natural evolution. GA also comprises sim-
ilar steps. In this section we briefly discuss all these steps to give an overview
of GA. A GA is driven by a few genetic operator such as crossover, mutation

Algorithm 1 Basic architecture of GA

1: Create a set of initial population
2: for Each generation do
3 for Each chromosome do
4 Perform crossover
5: Perform mutation
6 Compute fitness

7 end for

8 Select parent chromosomes for mating based on fitness
9: end for

Optimization Techniques 25

Parent chromosome 1 Parent chromosome 2
‘ @0063
Child chromosome 1 Child chromosome 2

FIGURE 1.11: The creation of the offspring in a new generation is depicted
here. The chromosomes in the new generation have the possibility to retain
better fitness value than the previous generation as the genes are shuffled
between parents.

which play the pivotal role in creating better offspring. Algorithm 1 presents
the basic architecture of the GA.

Crossover: Crossover is a genetic operator that amalgamates the genes
of two chromosomes from the parents in order to create new chromosome. In
GA, a chromosome is represented by a bit string. In n-point crossover, n is
selected randomly. The strings are split up in two segments at the n position
and the segments are exchanged to create two new strings as shown in the
Fig. 1.11. Mutation: Mutation is another genetic operator. It brings random
changes in a chromosome with a hope that the change will give good fitness
to the new chromosome. Mutation is performed based on a probability factor.
This sometimes saves the algorithm from being stuck in the local minima.
Fitness: The fitness of a chromosome is evaluated based on a fitness function.
The fitness function defines the optimization problem. After the crossover and
mutation, the new chromosome goes through the fitness test. The fitness tells
how close the chromosome is to the optimal solution. Selection: The elite
offsprings are selected based on the fitness values of the chromosomes. These
elites are considered the parental population for the new generation.

Termination: The algorithm is terminated based on some termination
criteria such as number of generations, minimum cost achieved, number of
stall generations. The chromosome with the best fitness gives the solution to
the optimal problem.

1.7.2 Expectation Maximization for Gaussian Mixture
Model

Gaussian mixture model (GMM) is efficient in capturing the underlying dis-
tribution of real datasets as it uses linear superposition of Gaussian com-
ponents [125]. Such superposition can be developed as probabilistic models
known as mizture distributions [126,127]. By tuning the means, covariances,

26 Introduction

and the priors in a GMM of sufficient number of Gaussian components, almost
any continuous density can be estimated with arbitrary precision. The Gaus-
sian mixture distribution is given by superimposing K Gaussian components
and is represented as follows:

K
p(x) = 3 meN (x|, B) (1.12)

k=1

where, each N (x|p;, Xk) is the Gaussian component with their own mean g,
and covariance 3. The superposition of the components is parameterized by
the prior (mizing coefficient) m. In order to capture the data distribution,
the parameters p;,, Xj and 7 need to be properly adjusted.

Expectation maximization (EM) is a sophisticated and powerful optimiza-
tion technique to find maximum log-likelihood solutions for models with latent
variables [128,129]. For a dataset X = [x; x5 ... xy]” , x; € R, with the cor-
responding latent variable Z = [z1 23 ... z N]T, z; € RE, the log-likelihood
associated with the Gaussian mixture distribution of K components is given
by

N
In p(X|m,p, X) = Zln (1.13)

n=1

K
D N (a1 Zk)
k=1

where 7, is the mixing coefficient and p; and X are the mean and co-
variance of the associated Gaussian. The expression for the mean and the
covariance matrix can be obtained by applying the optimality condition to
the log-likelihood and are given as follows:

N
1
= S () 1.14
ey, Nkn=17(z k)X (1.14)

TN (X0 | 4,)

V(2k) = — (1.15)
Z TN (% |1 35)
N
Ni = Z’Y(an) (1.16)

and

N
B = 5 D02 enn) (%0 —) (00—)" (1.17)

Composition of the Book 27

and finally,

™= (1.18)

Algorithm 2 describes the steps in the EM algorithm for finding the optimal
set of parameter in GMM.

Algorithm 2 Steps in EM algorithm

1: Initialize p,, 3j and 7.

2: while EM has not converged do

3: E step: Evaluate v(zy) as given in (1.15).

4 M step: Re-estimate the parameters p,, 3 and 7, (as given in
(1.14),(1.17) and (1.16)) that maximize the log-likelihood.

Compute the log-likelihood as given in (1.13)

6: end while

o

1.8 Composition of the Book

The remaining chapters are organized as follows. The kinematic and dynamic
models of the robot manipulator used for experimentations are included in
Chapter 2. Chapter 3 deals with the hand-eye coordination of a Robotic
Arm using KSOM Network. The Model-based visual servoing of a 7 DOF
manip- ulator is detailed in Chapter 4. Chapter 5 focuses on development
of optimal redundancy resolution scheme for visually controlled redundant
manipula- tor. Visual servoing using an adaptive distributed Takagi-Sugeno
(T-S) fuzzy model has been detailed in Chapter 6. The kinematic control
of the robotic manipulator using Single Network Adaptive Critic (SNAC)
has been briefed in Chapter 7. Chapter 8 deals with the dynamic control
of manipulators using SNAC. Imitation learning techniques and their appli-
cation in robotic systems are detailed in Chapter 9. Chapter 10 deals with
the deep learning-based visual perception techniques. Chapter 11 deals with
visual grasping techniques. Warehouse automation, an experimental example
for intelligent control of robotic systems, has been detailed in Chapter 12.
Chapter 13 gives an introduction to the mobile robotics and control. The var-
ious multi-robot formation coordination and control techniques are given in
Chapter 14. Chapter 15 deals with the event triggered-based multi-robot con-
sensus. Various vision-based tracking algorithms for a human following mobile
robot and their experimental demonstrations are detailed in Chapter 16.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Part 1

Manipulators

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

2

Kinematic and Dynamic Models of Robot
Manipulators

There are many available benchmark robot manipulators which are used in the
laboratory for research purposes. Three such robot manipulators have been
selected for experimentations. All appropriate control algorithms as presented
in this book are tailormade for these three sets of manipulators. These are as
follows:

o Seven degrees of freedom PowerCube manipulator from Schunk
e Six degrees of freedom Manipulator - UR10 - from Universal Robotics

e Seven degrees of freedom Manipulator - direct drive whole arm Manipu-
lator (WAM) from Barrett

It is important that readers become familiar with these models in terms
of both kinematics and dynamics before reading subsequent chapters.

The vision-based redundant manipulator control strategies as presented in
Chapters 3 and 4 have been implemented on a 7 DOF PowerCube™ robot
manipulator supplied by SCHUNK [130, 131], whose end-effector is visually
seen through a stereo-vision setup fixed on the workspace. A brief introduction
of this experimental set-up is given in this chapter for easier understanding
of the simulation and the experimental results presented in the book. The
kinematic model of this manipulator, along with the model and the image
Jacobian of the stereo-vision setup is presented in this chapter as well.

The dynamic control using SNAC as presented in Chapter 8 uses the Bar-
rett Arm. The complete dynamic model has been presented in this chapter
as well. The vision-based picking and stowing using UR10 arm has been pre-
sented in Chapter 12. The kinematic model of this UR10 manipulator has
been briefly described in this chapter as well.

2.1 PowerCube Manipulator

The 7 DOF PowerCube™ manipulator and the workspace comprising the
stereo-vision set-up are shown in Figure 2.1. The end-effector of the manip-
ulator is seen through the two Fire-i™ digital cameras [132] fixed in the

31

32 Kinematic and Dynamic Models of Robot Manipulators

FIGURE 2.1: Experimental setup: (a) PowerCube™ Manipulator (b) Workspace
with stereo vision

workspace. The cameras are located at the top corners of the Figure 2.1(b) and
the two cameras are mounted such that a large workspace is available for real-
time implementation. The end-effector is identified in vision space with a red
tape wrapped around it, and the desired position is represented using a yellow
ball during experimentation. The manipulator and the workspace are observed
through the cameras with an image frame of dimension 320 x 240 pixels.
The current position of the end-effector gets projected in the image plane and
the regions of interest are extracted using image processing techniques such
as thresholding and filtering. The centroid of the identified region is used to
identify the current position of the end-effector and the desired position. The
image processing and the learning-based control scheme are implemented on
a PC (personal computer) with Intel Core 2 Duo E7300 CPU with 2.66 GHz
clock and 4GB RAM. The computer is operated with Debian 4.02 operating
system running in multi-user graphics mode with all the services enabled. The
proposed learning-based schemes are to be tested in the Cartesian space vis-
ible in both the cameras. Typical workspace visible through stereo-vision is
shown in Figure 2.2. A cubic volume is chosen within the workspace to learn
the inverse kinematic solution, so that it will be easier to choose the desired
position in real-time implementation.

2.2 Kinematic Configuration of the Manipulator

The coordinate frames of individual joint of the PowerCube manipulator is
shown in Figure 2.3. The forward kinematic relationship of 7 DOF PowerCube
manipulator is obtained from D-H parameters [14] given in Table 2.1, where

Kinematic Configuration of the Manipulator 33

FIGURE 2.2: View of the workspace from stereo-vision. The robot manipulator
end-effector is identified with red tape (a) Left Camera (b) Right Camera.

TABLE 2.1: D-H Parameters of PowerCube™

link (’L) (673 a; dz 91‘
1 —90° [0 [dy |0y
2 90 [0] 0 |6
3 —90° [0 [ds|6s
4 90 [0] 06y
5 —90° [0 | ds | 05
6 —90° [0] 0|6
7 180° [0 [dr | 67

the dimensions of the manipulator links are: d; = 0.368m, d3 = 0.3815m,
ds = 0.3085m, and d7; = 0.2656m.

D-H parameter computes the position of the end-effector with respect to
the world coordinate frame, whose origin Oq is located at the base of the
manipulator. The end-effector position is obtained using the aforementioned
D-H parameters as follows:

x = —d7((—(c1cacs — $183)84 — c182¢4)ce — ((—c1ca83 — S1C3)85
+((c1c2c3 — 5183)c4 — €15254)C5)56)
+ds((crcac3 — 5153)854
+c150¢4) + d3cy 52

y = —d7((—(c153+ s1c2¢3)s4 — S152¢4)C6
—((c1c3 — s1¢253)s5 + ((c183 + S1C2C3)Ca — 515254)C5)S6)
+ds5((c183 + s1¢2¢3)84

+s152¢4) + d3s152

34 Kinematic and Dynamic Models of Robot Manipulators

z7
O7
7 - -
7 i
y7 Og
) ;
d7
z6
o 5 . Y .
}—» i
T5 l'HS
z4
ds
Y4
Oy
x4
O3
23 } 7777777777777777777777777
2a &
3 ly:s
22
i d
v2 D98
Oz
z2
1 X ,,,,,,,,,,,,,,
S z1
1
y1
H dl
E]
Yo o ____ Y l_____ I
Oo

zQ

FIGURE 2.3: Assignment of DH frames for the UR10 robot associated to table
above. Except for x5 and z3, all other x; points inside the sheet.

z = —d7((826384 — 0264)66 — (828385 =+ (—0284 — 826304)05)86)
+d5(0264 — 820384)
+d302 + dl (21)

where ¢; = cosf;, s; =sinf;, i = 1,2,...6. The end-effector position is inde-
pendent of 67 since the seventh link generates roll motion for the manipulator

Estimating the Vision Space Motion with Camera Model 35

TABLE 2.2: Kinematic limits of the manipulator

Joint angle Joint Velocity (rad/sec)
—160° < 0, < 160° | 1.7e —5 < 6, < 2.618
—95° < By < 95° 1.7e — 5 < 65 < 2.618
—160° < 05 < 160° | 1.7e — 5 < 65 < 2.618
—90° < 6, < 90° 1.7e — 5 < 64 < 2.618
—160° < 05 < 160° | 1.7e — 5 < 65 < 2.618
—120° < 0 < 120° | 1.7e — 5 < fg < 4.189
—720° < 0, <720° | 1.7e — 5 < 6, < 6.283

configuration. We mainly focus on the positioning the end-effector at a desired
location. The orientation of the end-effector is not considered and, hence,
x € R? in all the experiments is carried out in this thesis. Since 6; does not
contribute to a change in the position, 87 will not be shown while discussing
the experimental results and it is assumed as to be 0.

The physical kinematic limits of the manipulator are tabulated in Table
2.2. These limits constrain the implementation of kinematic control scheme
and the control schemes can be physically realized only if they generate joint
angle trajectories which satisfy the tabulated physical limits.

2.3 Estimating the Vision Space Motion with Camera
Model

The positional coordinates of the end-effector in the Cartesian space get pro-
jected as pixel coordinates in the frame buffer of the image plane. The position
x = [z y 2]T in the Cartesian space gets projected into the camera frame buffer
as (xs, ys), which corresponds to the — y coordinates of the camera frame
buffer respectively.

The positions of the end-effector in both the Cartesian and the vision
space are used during learning phase and in simulations. The position of the
end-effector in the vision space is obtained through series of transformations.
These transformations are computed as a camera model, which computes the
position of the point in the vision space, from the point’s position in the
Cartesian space. This necessitates a camera model to compute u from x in
simulations.

36 Kinematic and Dynamic Models of Robot Manipulators

2.3.1 Transformation from Cartesian Space to Vision Space

The transformation associated with computing a point’s position in the vision
from the Cartesian space is shown in Figure 2.4. The origin of the world
coordinate frame and that of the camera coordinate frame are shown as O,,
and O, respectively. The origin of the camera coordinate frame is located at
[T T, T.]T in the world coordinate frame and the orientation is represented
using R... The origin of the camera coordinate frame (z., y., z.) coincides with
front nodal point of the camera and the z. axis coincides with the camera’s
optical axis. The image plane is assumed to be parallel to the (z., y.) plane
at a distance of f from the origin, where f is the effective focal length of the
camera. The position (z7,ys) of a point P in the camera plane is obtained
from the point’s position x = [z y 2]7 in the world coordinate frame as follows:

The position x = [z y 2]7 is transformed from the world coordinate frame
to the position x. = [z, Y. zC]T in the camera coordinate frame through
rotation R, and translation T.. The transformation is expressed in the form

(Tur Yu)

Z 1
!
!
/
/
! (R, Tp)
/
i
i
1
oL
Ow o
Y
T

FIGURE 2.4: Transformation from Cartesian space to vision space.

Estimating the Vision Space Motion with Camera Model 37

of equation as,

T, T T, L T2 T3
ye| =Re |y| + |Ty|, whereR.= |ra 15 rg]. (2.2)
Ze z T, r7To Ty T9

In the above equation, R, describes the orientation of the camera in the world
coordinate frame, and T, = [T, T}, T,]T is the translational position of the
camera in the world coordinate frame. The projected position of the point P
in the image plane is computed using an ideal pinhole camera model. This
transformation is obtained by perspective projection as follows:

Ty = fxc
Ze
Ye
u = —_ 2.3
Y . (2.3)

The position (x,, y,) is computed with the assumption of an ideal pinhole
camera. But, there exists distortion and the position obtained with ideal pin-
hole model is not accurate. This is compensated by using the lens distortion
coefficient k. The true position of the point’s image (x4, y4) in the sensor
plane is computed from the ideal undistorted position as,

z, = xq(1+ rp?)
Yo = ya(l+rp®) (2.4)

where p = /2% + y2. Finally the image of the point is transformed from the
sensor plane to its coordinates in the camera’s frame buffer (zs, yy) as,

SpXd +
Tr = Cy
f d,
Ya
yr = 1 +cy (2.5)
y

where
sz, Cy : Pixel coordinates of optical center;

sz : Scale factor to account for any uncertainty due to imperfections in
hardware timing for scanning and digitization;

d, : Dimension of camera’s sensor element along x coordinate direction
(in mm/sel);
d, : Dimension of camera’s sensor element along y coordinate direction(in

mm/sel).

The computation of a point’s position in the frame buffer requires the geo-
metric and camera parameters used in the aforementioned transformations.

38 Kinematic and Dynamic Models of Robot Manipulators

The parameters which specify the position and the orientation of the camera
relative to the world coordinate frame are commonly known as extrinsic or
external parameters. The camera parameters which project the point from the
camera coordinate frame to the frame buffer are known as intrinsic or internal
parameters. The camera calibration is the process of estimation of a model
for camera overlooking a workspace.

2.3.2 The Camera Model

Tsai’s algorithm [133] is a popularly known camera calibration technique, and
an online implementation of the Tsai calibration algorithm is proposed by R.
Willson [134]. The Tsai model is based on the pinhole perspective projection
discussed above and estimates eleven parameters: f, &, ¢, ¢y, Sz, Ty, Ty, Tz,
R,, R,,and R.. Tsai model represents the rotation angles for the transfor-
mation between the world and camera coordinates with (R,, Ry, R.). The
elements of the rotation matrix R, is computed from [R,, R, R.] as follows:

r1L = CRCy
o = CySaSB — CaSy
r3 = SaSy t CaCySp
T4 = CBSy
s = 8aS88Sy T Caly
e = CaSgSy — CySa
rT = —85
rg = CBSa
rg = CaCp

(2.6)

where ¢, = cos(Ry), cg = cos(Ry), ¢y = cos(R,), sa = sin(Ry), sg = sin(R,),
sy = sin(R;).

In addition to the above eleven variable camera parameters, Tsai’s model
uses the following six fixed intrinsic camera constants:

d : Size of camera’s sensor element in x coordinate direction (in mm/sel),
d, : Size of camera’s sensor element in y coordinate direction (in mm/sel),
N, : Number of sensor elements in camera’s x direction (in sels),
Ny, : Number of pixels in frame grabber’s x direction (in pixels),

dps : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel), and

dpy : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel).

These six parameters can be obtained from the manufacturer’s data sheet.

Estimating the Vision Space Motion with Camera Model 39

The chess board based calibration algorithm available in OpenCV [135] is
used to obtain the data points over the workspace seen through the stereo-
vision setup.

The image feature vector u is obtained using the estimated model for
stereo-vision as u = (uy uz uz ug)? where (u1, ug) and (ug, ug) are the x —y
coordinates of the first and the second camera respectively. Hence, (ug,us) is
the (xy, yy) of the first camera, and (us, u4) corresponds to the (zs, ys) of
the second camera respectively. Hence, the control vectors ug and u belong
to R* in the all the experiments presented in this thesis.

2.3.3 Computation of Image Feature Velocity in the Vision
Space

The image Jacobian which represents the motion of the image features with
respect to the motion in the Cartesian space is given by,

K 0 —keo (25 —cCa)
— z
L=10 ka

- (2.7)

Zec
—key(yr—cy)
Zc Zc
where (kcz, key) are the gains associated to transform the Cartesian space
position to the x-y coordinate of the vision space, and z. is the distance
between the image plane and the object in the camera coordinate frame. The
camera gains (kcq, key) are computed using the camera parameters as follows:

kc:r =

kca: =

dy
f
i (2.8)

The vision space velocity is computed from the Cartesian space velocity as,

Uy
| [Li O Xe,
A 29
Uy
where L; is the image Jacobian of the ith camera, %., = [a’nci Ve, 7301}T

represents the velocity of the end-effector in the coordinate frame of the ith
camera.

The end-effector velocity in the coordinate frame of the ith camera is
computed as,

Te; T
Ye, = Rci Yy
Ze z

%X, = R, % (2.10)

40 Kinematic and Dynamic Models of Robot Manipulators

where R, is the rotational transformation between the robot coordinate frame
and the camera coordinate frame. The parameters (key, kcy), (¢z,¢y), and R
are obtained from the camera model estimated with Tsai algorithm.

2.4 Learning-Based Controller Architecture

The kinematic and camera model described above are used during the training
phase of the proposed learning-based control methodologies, and the learned
controller is then tested in both simulations and real-time experiments. The
schematic of a typical vision-based manipulator control scheme in learning
paradigm is shown in Figure 2.5. It consists of a stereo-vision system and a

PC - Intel Core 2 Duo E7300 CPU with 2.66GHz clock and 4GB RAM

a (uh u?)
Learning- |« Image <
based u Processing
. U¢ u
Controller | Unit (uz, ws)

0/6

®/ Target

\ 4
Servo
Driving

Unit

7TDOF PowerCube
Robot Manipulator

FIGURE 2.5: Schematic of visual servo control i) uy, ug, us, ug : Camera coor-
dinates seen through stereo-vision system ii) ug : Desired position (object) iii)
u: Current position of end-effector iv) Control input 6 - joint angle, 0 - joint
angular velocity.

Universal Robot (UR 10) 41

robot manipulator. Image processing as well as the learning-based controller
are executed on a personal computer. The image processing unit is used to
extract 4-dimensional image coordinate vectors to represent the current end-
effector position u, and the desired position uy. The learning-based controller
generates either the joint angle @ or the joint angular velocity @, which is
given to the servo unit to drive the robot manipulator so that the end-effector
reaches the desired position.

2.5 Universal Robot (UR 10)
Amazon Robotics Challenge 2017:

ARC’ 17 posed a simplified version of the task that humans face in ware-
houses across the globe, namely, stowing items from tote into a storage sys-
tem and then picking items from storage system and putting those items into
Amazon packing boxes. Each team was asked to design a fully autonomous
robot to perform such task. A set of forty items was provided, referred to as
known-set. In addition, a set of novel items was also provided before forty-
five minutes from the start of task. Each task involved picking or stowing of
a set of items referred as competition-set, having equal numbers of known
and novel items, and have a maximum physical volume of 95,000 cm?, and
11) Design a visual perception system which can perform object recognition in
the presence of cluttered known and novel items. Sixteen teams were selected
worldwide for this challenge. In the stow task, twenty items were provided, all
of which had to be stowed into the designed storage system. In the pick task,
thirty-two items were given and ten of them had to be picked and placed in a
tote. Top eight teams, based on the combined performance in previous tasks,
were selected for the final stow-pick task in which a total of thirty-two items
was provided. In this task, the teams were required to first perform a stow task
and then a pick task. This task was relatively challenging as the errors of the
stow task could propagate to the pick task. Apart from this, an item dropping
from above a specified height or any item protruding from the storage system
by more than 2.5 cm was penalized. Moreover, reporting incorrect location of
the items in the storage systems also contributed to penalty.

2.5.1 Mechatronic Design
2.5.1.1 Platform

Our robot platform setup shown in Figure 2.6 consists of a UR10 robot
manipulator with its controller box/internal computer and a host PC/exter-
nal computer. The UR10 robot manipulator is a 6 DOF robot arm designed
to safely work alongside and in collaboration with a human. This arm can

42 Kinematic and Dynamic Models of Robot Manipulators

) FOSCAM RGB,
Robot controller | URIO Arm e/ Ensenso depth sensor ‘
- [J

i) P " Robot base

Amazon packing box §

Suction system and controller ~
S,

FIGURE 2.6: Our robotic system workspace for ARC’17. Image courtesy:
Amazon Robotics.

follow position commands like a traditional industrial robot, as well as take
velocity commands to apply a given velocity in/around a specified axis. The
low level robot controller is a program running on UR10’s internal computer
broadcasting robot arm data, receiving and interpreting the commands and
controlling the arm accordingly. There are several options for communicating
with the robot low level controller to control the robot including the teach
pendent or opening a TCP socket (C++/Python) on a host computer. We
used open source C++ based UrDriver wrapper class integrated with ROS
on a host PC (Intel i7 processor with 16 GB of system RAM) to implement
our proposed velocity based kinematic control scheme. The host PC streams
joint velocity commands via URScript to the robot real-time interface over
Ethernet at 125H z. The driver was configured with necessary parameters like
IP address of the robot at startup using ROS parameter server.

Universal Robot (UR 10) 43

2.5.1.2 End-Effector

Amazon provided a large variety of items most of which could be grasped
using suction, few of which were deformable, transparent, book, etc. There-
fore, our end-effector design is suction based grasp. It has a rectangular suction
hose followed by a nozzle which can rotate between 0° to 90°. The nozzle tip
contains a bellow and its angle is governed by a linear actuator. The suction
hose and nozzle are connected through a flexible rubber tube. The two vac-
uum cleaners were employed to generate required suction to grasp an item. A
custom designed bleed valve with linear actuation was used to ensure instant
release of a grasped item, otherwise the item remains attached to the end-
effector until the suction pressure drops entirely. Furthermore, a manifold
air pressure sensor, is also inserted near the vacuum cleaners to reflect the
air pressure as an analog voltage which is converted to a digital value and
provides feedback for a firm grasp. To close the loop for sensing grasped
items, we used flow meter reading to sense pressure difference and force-
torque sensor mounted on end-effector (wrist-3-link for UR10) for force
feedback.

2.5.1.3 Perception Apparatus

We used eye-in-hand approach, i.e., the vision hardware consisting of RGB-D
Ensenso camera with a HD Foscam camera was mounted on the manipulator
itself in contrast to the other teams which used the vision hardware exter-
nally. This offered us an advantage of an extremely simplified system with
minimal external components while relegating the need of complex external
sensor calibration procedures. However, for the proper realization of the eye-
in-hand approach, the vision and manipulator system should be calibrated.
We achieved this by developing a semi-autonomous procedure based on which
the system can self-calibrate itself while requiring minimal human effort.

2.5.2 Kinematic Model

TABLE 2.3: DH parameters (in mm or rad), with the value of § € R® in the
shown configuration below

Link i (67 a; di 02
I |2 0 di =128 [6, =0
2 0 |ay=—-612.7 0 b = 3
3 0 | a3 = —571.6 0 0s=0
4 z 0 dy = 1639 [0, = —2
5 -2 0 ds = 115.7 | 05=0
6 0 0 ds = 92.2 0= 0

44 Kinematic and Dynamic Models of Robot Manipulators

Z¢6 , Z5

ag

a2

Yo X0

FIGURE 2.7: Assignment of DH frames for the UR10 robot associated to table
above. Except for x5 and z3, all other x; points inside the sheet.

The homogeneous transformation matrix (arm matrix) Ty, for an n
DOF manipulator, which represents the final position and orientation of
end-effector with respect to the base coordinate system, can be obtained by
chain product of successive coordinate transformation matrices using standard
Denavit-Hartenberg(D-H) parameters [14]. Let Tjq; for ¢ = 1,2....,n be the
transformation matrices between successive arms, the final arm matrix can be
expressed as Ton, = [} Ti1,i-

Jacobian of a Robotic Structure, which can be derived directly from the
relation between joint positions and end-effector position, is the mapping
between velocities in each coordinate system. It is a very useful relation espe-
cially in kinematic control. The velocity space is easier to operate in when
we want to determine the inverse kinematics iteratively. In practical terms
this implies what end-effector velocities will occur, relative to the base-frame,

Barrett Wam Manipulator 45

corresponding to certain joint velocities. This relationship is established
through the Jacobian [14].

Consider forward kinematics of an n DOF robot manipulator with task
workspace configuration consisting of position and orientation with respect
to base coordinate system and designated as X € RN, where N,, represents
number of independent variables in robot task space. We represent a manipu-
lator joint configuration with variable § € R, where N, represents number
of independent variables in robot joint configuration space.

The kinematic relationship of a robotic structure can be represented by
following sets of equations.

T = f1(01,92,....9NC)
T = f2(91,927....9]\[c)

wa = wa (91, 02, GNF)

The forward kinematic model for the manipulator for a given joint config-
uration # can be written as,

~

X =1(9) (2.11)
Here, 9 € R is the vector of joint configuration involved in the forward
kinematic model and X € RN« is the vector of position and orientation with
respect to base coordinate system.
The derivative of X w.r.t. time ¢ is

~

. f(0) =~ N
X = 0 (A)Q:JG (2.12)
00
where, J = 8f(/\) is the N,, x N, manipulator Jacobian matrix. Formally, the

Jacobian is a set of partial differential equations - a multidimensional form of
a derivative. We can split the Jacobian into a linear velocity contribution Js,
and an angular velocity contribution Jy [14].

J— Evvv] (2.13)

2.6 Barrett Wam Manipulator
2.6.1 Overview of the System

The proposed dynamic motion generation module along with the developed
control scheme to generate motor skills for novel situation was demonstrated
using a basic ball hitting experiment. We employed a 4 DOF Barrett WAM

46 Kinematic and Dynamic Models of Robot Manipulators

; Reset
Interim System

L) 1)

Ball Detection m=% Ball Prgdiction msp

+

Vision System

InverKin
Solution

L d

Primitive
SR Library

¥

Mixture Block

@ ¥

. 4m Controller 4mm DMP =

uojiediunwiwon

FIGURE 2.8: System overview.

robot manipulator for the same. The ball was suspended from a fixed height
with a string. Vision system consisted of two off the shelf Basler’s cameras.
The ball is detected using standard segmentation techniques and an extended
kalman filter (EKF) was employed to predict the ball interception point. Since
at the ball interception point there is a discrete jump in the dynamics of
the moving ball, an interim system is employed to take care of this hybrid
dynamics and ensure the convergence of the EKF. Once the ball prediction
touches the ball interception plane the goal parameters (6,, ég) corresponding
to the predicted ball interception point is passed to the trajectory generation
module in real time. Then a novel trajectory is generated by mixing the a
priori demonstrated primitives in the library. This trajectory is then fed to
the control scheme for accurate and stable execution. Once the ball is returned
the follow up DMP trajectory from the ball interception point to the home
position is joined with the striking trajectory and and the robot returns to
the home position. Execution foe of the entire system is depicted in Figure
(2.8). In the next section the background of DMPs and FSMC is discussed.

2.6.2 Experimental Setup

Experimental hardware setup consists of a 4 DOF Barrett Wam robot manip-
ulator, a hanging ball, and two off the shelf Basler’s acA800 — 550uc cameras
at 200 frames per second (FPS) and 800X 600 resolution. The ball is detected
using standard segmentation techniques and EKF was employed to predict the

Barrett Wam Manipulator 47

FIGURE 2.9: Hardware setup consisting of two off the shelf cameras, a hanging
ball and 4 DOF Barrett Wam Robot Manipulator.

ball interception point. Since at the ball interception point there is a discrete
jump in the dynamics of the moving ball, an interim system is employed to take
care of this hybrid dynamics and ensure the convergence of the EKF. There
are two phases of the robot motions, hitting phase and follow up phase. In the
hitting phase, the robot starts from a fixed home position to the ball inter-
ception point and then the follow up phase proceeds in which robot returns
from the ball interception point to the home position. The robot motions are
initiated in accordance with the different phases and dynamic goal parameters
(e.g. ball position and velocity at the interception point).

2.6.3 Dynamic Modeling

Precise model-based control necessitates the requirement of an accurate model
of the robotic system. This section focuses on the development of a dynamic
model for an n— DOF operation of the Barrett Whole Arm Manipulator
(WAM). We use the recursive Newton-Euler technique to achieve the same. A
detailed description of the parameters required for implementing the Newton-
Euler algorithm is presented next.

The Newton-Euler formulation is based on three important laws of
mechanics:

e Every action has an equal and opposite reaction. Thus, if link 7 exerts a
force f and a torque 7 on link 7 + 1, then link ¢ + 1 in turn exerts a force
—f and a torque —7 on link 3.

48 Kinematic and Dynamic Models of Robot Manipulators

e The rate of change of linear momentum equals the total force applied to
the link.

e The rate of change of angular momentum equals the total torque applied
to the link.

Based on these basic principles, the governing equations for this technique can
be derived [14]. We present the main steps of implementation of the Newton-
Euler algorithm.

Algorithm 3 Newton-Euler Algorithm

Forward Recursion : Computing w;, o; and ac;
Initial Conditions: wy =0, a9 =0, aco =0 and acp =0
for each i :=1 to n do

Wi < sz_lwi,1 + bz(h ; where bl = R,E_lzo

o < Ri_joi—1 + bigi +wi X big;

Ge,i $ Ri_10ei—1 + Wi X Tii1 +wi X (Wi X Ti41)

Qe < R_1Gei—1 + Wi X 1, +wi X (wi X Ti,ci)
end for
Backward Recursion : Computing f; and 7;
Terminal Conditions: fn4+1 =0,7,41 =0
for each j:=nto 1 do

gi < Rig0

fi < Ry fiv1 +mgac; —m;g;

Ti < R§+1Ti+1 — fi X rie + (Rf+1fi+1) X Tigt,e; + Loy +w; X (Liws)
end for

As can be seen from Algorithm 3, there are two key steps in the Newton-
Euler technique: The Forward Recursion, which involves the computation of
the angular velocity, angular acceleration and linear acceleration of each link,
starting from the first link and moving outwards, and the Backward Recursion,
which involves computation of the forces and torques at each link, starting
from the n-th link and moving inwards. Figure 2.10 shows a random link and
the forces and torques acting on it.

—R: o
; 1%i+1
T i, T ci bt

; T
* m;g;

“R§+1ﬁ+1

FIGURE 2.10: Forces and torques acting on a random link [14].

Barrett Wam Manipulator 49

Notation : The notation used is described as follows:

e, — Acceleration of center of mass of link 7 in frame .

Ge,i — Acceleration of end of link 7 in frame 7.

w; — Angular velocity of frame i w.r.t frame 7.

Q; — Angular acceleration of frame ¢ w.r.t frame 1.

Gi — Acceleration due to gravity in frame i.

fi — Force exerted by link ¢ — 1 on link ¢ in frame i.

T — Torque exerted by link ¢ — 1 on link ¢ in frame 4.
RZH — Rotation matrix from frame i + 1 to frame 1.

m; — Mass of link 1.

I; — Inertia matrix of link 7, about a frame parallel to frame

1, whose origin is at the center of mass of link 1.

Tici — Vector from joint i to the center of mass of link .
Tiy1,e; — Vector from joint ¢ + 1 to the center of mass of link i.
riit1 — Vector from joint ¢ to joint ¢ + 1.

2.6.4 System Description and Modeling

Barrett, the leader in advanced robotic manipulators, provides information
about the D-H parameters of the WAM and also about its inertial specifi-
cations in its data sheets. However, a dynamic model of the WAM is not
disclosed. In our work, we have derived a dynamic model of the Barrett WAM
for 4 degree-of-freedom operation. The parameters required for obtaining this
model are detailed in this section. Schematics of the Barrett WAM with its
seven revolute joints are shown in Figure 2.11 (copyright has been obtained
from Barrett). The necessary D-H parameters of the Barrett WAM are pro-
vided in Table 2.4.

For obtaining the necessary rotation matrices, we use the generalized D-H
transform matrix

ch; —sb;co; sb;s0; a;cl;

i—1 _ | st cbicoy —clisa; a;s0;
L 0 sy cay d; (214)
0 0 0 1

TABLE 2.4: D-H Parameters for the 4-DOF Barrett WAM Manipulator

kap (m) oy (rad) dy (m) O
T 0) 0 4
2 0 /2 0 6,
30045 /2 055 0O
4 20045 7/2 0

50 Kinematic and Dynamic Models of Robot Manipulators

TOP

910 To
End Plate ~ _
850)
~~—wrist
$89 J5,J6,J7
45 Common
550 Offset
\Elbow
J4
Shoulder
®89 / 31.92,43
0 —
186 —
FRONT _REAR
= =
346 —
100 +— 50
T]
250 150 280 348
\ BOTTOM
1 ™ —
R Il
4x M10 THRU— |

FIGURE 2.11: WAM 7-DOF dimensions and D-H frames.

It should be noted that we follow the convention of [14] in our work. ¢
denotes the cos function and s denotes the sin function. The lengths in the

D-H specifications are in meters.
Using equation (2.14) and the D-H parameters of the WAM, we derive the

following rotation matrices

091 0 —891

R{=|s6, 0 ¢t (2.15)
0 -1 0
602 0 892

R)=[s02 0 —cby (2.16)

0 1 0

Barrett Wam Manipulator 51

Fi, i+1

Frameii
(Jointi+1)

Frame i-1 B
(Joint i) Centre of mass of linki

FIGURE 2.12: Vectors associated with link 1.

003 0 7503

Ri=|s05 0 b3 (2.17)
0 -1 0
chy 0 sy

R}=|s0, 0 —cb, (2.18)
0 1 0

Figure 2.12 shows the different vectors associated with link 7. Specifi-
cally, we need the link vectors r}, ,,7} . and ri,, . for i = 1,2,3 and 4.
The superscript ¢ indicates that the vectors need to be expressed in frame
1. From the definition of transformation matrices, we know that the vector
v = [a;ch;, a;50;,d;]T represents the vector pointing from Joint i to Joint i + 1
expressed in frame i — 1. We need to express this vector in frame i. From
Figure 2.12, we can see that

Tf,iﬂ = Pj& - P1i37 (2.19)

where P} and P} represent the position vectors of points A and B in frame
i. Now, we know that any random point P}{l in frame ¢ — 1 is transformed

to frame ¢ via the relation
i) i—1
[Pr] _Ti [Pi] (2.20)

Now, we have

Ti_, = (T} = [RT.—RTV] : (2.21)

52 Kinematic and Dynamic Models of Robot Manipulators

TABLE 2.5: Link Vectors

Tit1,c, (in mm) Tic, (in mm) ;41 (in mm)
[0.3506, 132.6795, 0.6286] " [0.3506, 132.6795, 0.6286] " [0,0,0]"
[-0.223, —21.3924,13.3754]7 || [-0.223, —21.3924, 13.3754]" [0,0,0"
[—38.7565,217.9078,0.0252]7 || [6.2435, —332.0922,0.0252]7 | [45, —550, 0]
[6.2895, —0.001,111.0633]7 || [-38.7105, —0.001,111.0633]" | [—45,0,0]"

W N | s,

where R = Rg_l. Here, we have used the property that rotation matrices are
orthogonal. Clearly, Py ' = [0,0,0]” and Py ' = v. Using equations (2.20)
and (2.21), we get

0
3]-l][3)-[77) e

1
e KR E= M (2:23)

Using equations (2.19), (2.22) and (2.23), we get the desired result
Tiie1 = R'v = [a;, d;sa;, dica;]” (2.24)

The inertial specifications of the WAM provides the 77, . vector, i.e., the
position vector of the center of mass of link ¢ w.r.t to frame ¢. From Figure
2.12, we see that the following relation holds

%

Tic; = rzi,i—&-l + rzZ:-i-l,ci (2.25)
Equations (2.24) and (2.25) can be used to find the necessary link vectors.
Using these equations, the link vectors so obtained are tabulated in Table
2.5. The link masses are - m; = 8.3936 kg, my = 4.8487 kg, ms = 1.7251 kg
and m4 = 1.0912 kg. It should be noted that the masses of the electrical and
mechanical cables are not included in the inertial specifications. This data is
obtained from the inertial specifications of the Barrett WAM. We also obtain
the following inertia matrices from the same source-

[95157.4294 246.1404 —95.0183]|
I, =107% | 246.1404 92032.3524 —962.6725 (2.26)
| —95.0183 —962.6725 59290.5997 |

[29326.8098 —43.3994 —129.2942]
I, =107%| —43.3994 20781.5826 1348.6924 (2.27)
| —120.2942 1348.6924 22807.3271 |

Barrett Wam Manipulator 53

[56662.2970 —2321.6892 8.2125
I; =107% | —-2321.6892 3158.0509 —16.6307 (2.28)
8.2125 —16.6307 56806.6024 |

[18890.7885 —0.8092 —1721.2915]
I,=10"%| —0.8092 19340.5969 17.8241 (2.29)
| —1721.2915 17.8241 2026.8453 |

It should be noted that the unit of each entry of the above matrices is kg-
mm?. This completes the necessary system description. Armed with this data,
one can implement Algorithm 3. Two other points need to be mentioned in
this regard. For forward recursion, the vector 2o = [0,0, 1]7 and for backward
recursion, the vector go = [0,0, —g]7, where g is the acceleration due to gravity.
These results follow directly from the way in which the frames are assigned.

The implementation of the Newton-Euler algorithm has been done using
the software Maple. The choice was justified by the ability of Maple to carry
out heavy symbolic calculations. The Maple code used for deriving the model
can be accessed through the following link: https:// drive.google.com/ file/d/
0B1SCfViLdPjZekFMLXJpUnRJTzg/ view?usp=sharing. The M, C' and G
matrices necessary for state-space representation are also derived using this
code. For testing our control laws in a simulation environment, we have used
the Matlab platform. Thus, the model derived in Maple has been imported
to Matlab. The Maple to Matlab conversion has also been demonstrated in
the Maple code. It should be noted that this code can be used to derive rigid
body models for a generalized n-link manipulator with revolute joints.

Note

o The D-H specifications can be obtained from the following link:
http:// www.me.unm.edu/~starr/ research/ WAM__UsersGuide__AE-00.pdf .

e The Barrett Arm Inertial Specifications are available from the following
https:/ /www.cs.rpi.edu/twiki/pub/Robotics Web/Wam TrackingSystem,/Arm
_ InertiaSpecifications.pdyf.

2.6.5 State Space Representation

The standard model representing the dynamics of the robotic system as
obtained via the Newton Euler technique is

M(q)d +C(q,q) +G(q) =T (2.30)

where q € R* represents the joint position vector, ¢ € R* is the joint velocity
vector, § € R? is the joint acceleration vector, M(q) € R*** is the symmetric,
positive definite inertia matrix, C(q,¢q) € R* is the Coriolis and Centrifugal
vector and G(q) € R* is the Gravity vector. T represents the vector of applied
joint torques to the system.

https://www.cs.rpi.edu/
https://www.cs.rpi.edu/
http://www.me.unm.edu/
https://drive.google.com/
https://drive.google.com/

54 Kinematic and Dynamic Models of Robot Manipulators

For applying the control techniques, we need to express the model given
by (2.30) in the standard nonlinear control affine form. To this end, we define
the following

x 2 [q1,02,93,q4]"

z 2 (g1, G2, G5, Ga]”
f(x,z) £ -M}(C + G)
g(x) =M™

A
u=T
Based on these notations, the state space model for (2.30) becomes

z = f(x,z)+gx)u (2.31)

2.7 Summary

Models of PoweCUBE 7 DOF manipulator, Barrett 7 DOF WAM, and UR10 6
DOF manipulator have been introduced. The integration of camera with the
system and the corresponding kinematics have been presented. The exper-
imental setup along with these manipulators have been introduced in this
chapter.

3

Hand-eye Coordination of a Robotic Arm
using KSOM Network

Hand-eye coordination is a process by which biological organisms manipulate
objects of interests. Some of the interesting examples of hand-eye coordination
are as follows:

o Eagles spot their potential prey from a very long distance and catch the
prey with amazing visual control of their speed.

e The great football player Diego Maradona had the amazing ability to pass
the ball with accuracy; he had the almost perfect control of the ball as he
dribbled past multiple opposing players on a run; and his amazing reaction
time to score a goal given an opportunity astounded every one. The key
here is again the eye-leg coordination - the precise visual control that he
exerted.

e The sand artist Mr. Patel depicts the pastimes of Lord Krishna on the
sand by dexterous manipulation of his fingers.

e Such hand eye coordinations are visible when one plays computer games,
instruments, and when one is typing or cooking.

In a human brain there are billions of motor neurons that actuate muscles
which in turn helps one to manipulate one’s hands or legs through visual feed-
back. We cannot possibly make a mathematical model of human visual motor
control mechanisms. However, persons like Maradona and Sudarshan Patnaik
have excelled in this through learning and practice. This is the motivation
that drives us to present this chapter where we will show many examples of
robotic systems that learn to manipulate using visual feedback. We call this
as visual motor coordination.

Although humans deal with billions degrees of freedom, a robot manip-
ulator has a considerably lower number of degrees of freedom. A redundant
manipulator has a minimum of seven degrees of freedom. To manipulate an
object, a robot needs three degrees of freedom in Cartesian task space and
three degrees of freedom for orientation - pitch, yaw and roll. With six degrees
of freedom, a robot arm can manipulate an object properly. But if one increases
this by one, i.e., a seven-degrees of freedom robot manipulator becomes redun-
dant because this can reach a reachable target in theoretically infinite possible

55

56 Hand-eye Coordination of a Robotic Arm using KSOM Network

kinematic configurations. Thus with redundancy, comes the challenge of deal-
ing with infinite choices. This chapter will explain the process of learning
hand-eye coordination using Kohonen’s Self Organizing Map for robots with
different degrees of freedom. We will start with a simple 2-d planar manip-
ulator to illustrate the learning principle lucidly. Then we will deal with a
seven-degrees of freedom Robot Manipulator.

3.1 Kohonen Self Organizing Map

Kohonen [136] proposed an unsupervised learning algorithm that can form
clusters for a given data set while preserving topology. A simple configuration
of Kohonen self-organizing feature map is illustrated in Fig. 3.1(a). The promi-
nent feature of this network is a lattice that can be m dimensional. Although
the dimension of the lattice is a priori fixed, this dimension usually refers to
the topology of the real-world data. Another prominent feature is the concept
of excitatory learning with a neighborhood around the winning neuron. The
size of the neighborhood slowly decreases as learning progresses as shown in
Figure 3.1(a). To be precise, in the initial phase, almost all neurons partici-
pate in the learning as the network is excited by an input pattern x. But there

0/0/0 0 0j0/0 0

D — Neighborhood 08
©/0/0 @0/0/00 :
Two Dimensional Lat

[0.0.0/0/0 0/ ofNeurom 06

Winning Newfbn /7
- O
;

O o0oooo000/ between

input and cach neuron

0.4

NP
e -50 0 50
[]

Input x (N X 1) d

(a) (b)

FIGURE 3.1: (a) A two dimensional self organizing feature map. By updating
all the weight connecting to a neighborhood of the target neurons, it enables
the neighboring neuron to become more responsive to the same input pattern.
Consequently, the correlation between neighboring nodes can be enhanced.
Once such a correlation is established, the size of a neighborhood can be
decreased gradually based on the desire for having a stronger identity of
individual nodes. (b) The Neighborhood Function h.. This function value
decreases as the lattice distance d., of the A neuron from the winning neu-
ron increases.

Kohonen Self Organizing Map 57

is a unique winning neuron associated with this input pattern x, which will
have a maximum say in the decision making. Other neurons will contribute to
the decision making according to their lattice distance d, from the winning
neuron. This function is shown in Figure 3.1(a)(b).

The basic idea is to discover patterns in the input data in a self-organizing
way while similar data are represented by a weight vector w. associated with
the " neuron. This clustering takes place in following three steps:

o Competition: For each input pattern, the neurons in the network compute
their respective values of a discriminant function. The neuron with the
largest value of that function is declared the winner. This discriminant
function is usually a measure of Euclidean distance.

o Cooperation: The winning neuron determines the spatial location of a
topological neighborhood of excited neurons, i.e., cooperative neighboring
neurons.

e Synaptic Adaptation: The excited neurons which are situated in the neigh-
borhood of the winning neuron adjust their synaptic weights in relation
to the input pattern.

3.1.1 Competitive Process

Let n be the dimension of the input (data) space and weight vector. Let a
randomly chosen input pattern (vector) be

x = [z1, T2, ...,xn]T

Let the synaptic weight vector of neuron v be denoted by
Wy = [w’)’la Wry2y «-ey w’yn]T, v =1, 2,....N

where N=total number of neurons in the network.

Finding the best match of the input vector x with the synaptic weight
vectors w., is mathematically equivalent to minimizing the Euclidean distance
between the vectors x and w;.

Let i(z) = index to identify the neuron that best matches x,

i(r) = arg min|jz —w,||, v=1,2,...,N (3.1)
B!

3.1.2 Cooperative Process

The winner neuron tends to excite the neurons in its immediate neighborhood
more than those farther away from it. Let h, denote the topological neigh-
borhood centered on winning neuron i(x) and d., denote the lattice distance
between winning neuron i(z) and the excited neuron .

58 Hand-eye Coordination of a Robotic Arm using KSOM Network

e The topological neighborhood h., is symmetric about the maximum point
defined by d,= 0. In other words, it attains its maximum value at the
winning neuron i(z) for which the distance d is zero. For the winning
neuron vy = i(x).

» The amplitude of the topological neighborhood k- decreases monotonically
with increasing lattice distance d,.

A typical choice of h, that satisfies these requirements is the Gaussian
function as shown in Figure 3.1(a)(b). The expression of a Gaussian neigh-
borhood function is given as:

b —exp -0)
c=e 5 (3.2)

where ¢ is the width of neighborhood function. This width is varied in
such a manner so that all neurons participate in the weight update pro-
cess in the beginning and the width significantly reduced as the training gets
completed.

3.1.3 Adaptive Process

Weights associated with the winning neuron and its neighbors are updated as
per a neighborhood index h.. The winning neuron is allowed to be maximally
benefited from this weight update while the neuron that is farthest from the
winner is minimally benefited. The Kohonen law by which weights are updated
is given as

Wy = Wy + Nuwhy (z — wy) (3.3)

where 7,, is the learning rate. The width of the neighborhood function ¢ and
the learning rate n,, are updated as:

7] t/tmaw
n="; (f) (3.4)

i

where n € {ny,o}. The width of the neighborhood o is kept usually large
initially. This would imply that all neurons in the lattice will be covered by
the neighborhood function h, in the beginning, allowing all neurons to get
excited. They will all participate in the decision making. As learning pro-
gresses, this width gets reduced until the neighborhood of the winning neuron
shrinks substantially. The learning rate 7,, is assigned a large value - usu-
ally 1.0 - in the beginning. This value decreases as the learning progresses
almost to zero. This implies that once the learning is over, this parameter
becomes inactive.

Kohonen Self Organizing Map 59

Example 3.1. 1 — D SOM learns 2 — D topology: Select a 1-d lattice and
excite the neurons with the data coming from a 2 — d plane. Show that the
network preserves the topology of the data.

Solution 3.1. In the simulation a neural network is chosen with 100 neu-
rons organized in one dimensional lattice. The network is trained with a two-
dimensional input vector x.

o Input data are generated randomly from a 2 — D topology.

e Since each data point is two-dimensional, x = [x1 x2]T, where
x1 represent x coordinate, xo represent y coordinate

e w, associated with each neuron is also two-dimensional.

The training is done for 6,000 iterations.

n = 2
r = [z1,22]"
_ T, _
wy = [wy,wy]"; v=1,2,..,100

The weight vectors of the network are initialized from a random set (—0.04 <
w;1 < 0.04 and —0.04 < wj 2 < 0.04). The input x is uniformly distributed
in the region (0 < 1 < 1 and 0 < xzo < 1). Figure 3.2.a shows the input data
space. Figure 3.2.b shows the network weights before training and Figure 3.2.c
shows that the weights of the network preserve the topology of the input space.
As can be seen in this Figure 3.2, although initial weights have no correlation
with the input space, the final weight vector as plotted shows that the data are
coming from a 2 — d space although neurons are assigned to a 1 — d lattice.
This example illustrates that KSOM network learns the clusters in the data
while preserving the topology.

003
002) 0

o o,

o o

001 0 0y 9@ @ O o
oo ® E

B
001 o0 o @ %
002 00 o 8 o

-003]

0 02 04 06 08 1 “oo4 003 -002 001 0 001 002 003 004 0 02 04 06 08 1

(a) (b) (c)

FIGURE 3.2: (a)Input space for training; (b)Initialization of weight for train-
ing; (c) Weights after the completion of training

60 Hand-eye Coordination of a Robotic Arm using KSOM Network

3.2 System ldentification using KSOM

We learned how a Kohonen self-organizing map works. In this section, we will
learn how this network can be used for learning any arbitrary map f:z — y.
That is, given data {x,y}, we can build a neural architecture around KSOM
that will learn the unknown map f(). The KSOM network that learns this
map f(.) is shown in Figure 3.3.

Let’s assume that the following nonlinear map is given:

y=f(x), zeR", yeR™

We will express this nonlinear function as aggregation of linear functions using
first order Taylor series expansion. Given any input vector z,

Yo = f(xo)

Using first order Taylor series expansion, the output y can be expressed lin-
early around z(as follows:

of
Y =19+ %L’E:mo(z - 1‘0)

Input space f Output space

KSOM Lattice ?—

X

FIGURE 3.3: KSOM network for system identification.

System Identification using KSOM 61

Let’s consider the following Kohonen lattice where each neuron is associated
with the following linear model:

Y =yy + Ay(z—wy)

where given z, y7 is the linear response of the " neuron. This neuron is
associated with three parameters: w.,, the natural weight vector; y, which
should converge to f(w,); and A, which is equivalent of %L’v:ww

The linear response of each neuron given = has a weight of h., where h,
is the neighborhood function with respect to the winning neuron. Thus the
nonlinear map y = f(z) can be approximated as:

y:M
2 hy

where b, = and d., is the lattice distance between the winning neuron
i and the 4" neuron.
The final expression for the network response can be given as:

y = > he(yy + Ay (z —w,))
>h,

As shown in Figure 3.3, the network has a collective response y when
excited by the input pattern x where each neuron computes its own response
linearly. The readers must know that parameters associated with each neuron
wy, Ay and y, are unknown and are randomly initialized with very small
values. We will now derive the update laws for these parameters. Given that
wy is the natural weight vector, its update will follow the same Kohonen
weight update algorithm:

2 1o 2
efd,Y/ZU

Wy = wy + nhy(z — ws) (3.5)

Let the cost function be E = %ng, 7 = y? —y and y¢ is the desired
response given x while y is the network response. The update law for the y,
can be derived using gradient descent:

8£ _ ,QT@
0y~ 0y~
i)
~T v
=7
(s

Thus the update law for y, becomes:

yw<—yv+n<£zv>ﬂ (3.6)

For the update law of A, the gradient term is derived as:

08 __x oy

04, ~ Y o4,

62 Hand-eye Coordination of a Robotic Arm using KSOM Network

o My

= Yy Z h’y (.’L' - w'Y)
hy T
=- (@ —wy)7
Shy T
Thus the update law becomes:
- v hy
Ay Ay +ngj(z — w) S (3.7)
¥

It is important to learn that KSOM based system identification makes use of
both unsupervised and supervised learning, which we will call a type of hybrid
learning. The following example will demonstrate this idea.

Example 3.2. Let’s consider the following map:

Y1 = etites (3.8)

Yo = ellzrt+az|? (3.9)

Generate input data x = |11 x2]7 uniformly distributed in [0,1]. Compute the
corresponding output y = [y1 y2]T. Take a 2 — d lattice of size 5 x 5. Update
weights w~, Yy, and Ay as given in equations (3.5), (3.6) and (3.7) respectively.

Solution 3.2. The KSOM network has 25 sets of parameters - each set of
parameters associated with each neuron is w.,yy and A,. These parameters
are initially uniformly randomly distributed in [0,1]. The network is excited
by x which is uniformly randomly generated in [0,1]. Using the corresponding
desired response y® and the network response y, weights are updated.

The plot of the functional map is given in Figure 3.4.

Five hundred training data sets are gemerated from this map and these
data are used to train the network over 200 epochs. The error convergence
over epochs is shown in Figure 3.5(a). During the testing, the input data is
generated as 1 = 0.5 + 0.5 % COS(%) and xo = 0.5+ 0.5 sin(%), The test

FIGURE 3.4: (a) The plot of y; versus input z; (b) The plot of y» versus z.

System Identification using KSOM 63

vy,

0 5 mw owo W ® 0 5 mw oW oW ®
Sampling instants Sampling instants

(b) (©)

FIGURE 3.5: (a) Error convergence during the training; (b) y; versus yf
during the testing; (c)y2 versus y¢ during the testing.

results y® versus y are plotted in Figures 3.5 (b) and (c) respectively. One
can see from these figures that the actual network response is very accurately
following the desired response. The rms tracking error for y1 and yo are 3.5.b
and 3.5.c respectively. These results confirm that the KSOM network can be
used for learning any unknown map.

MATLAB CODE FOR SYSTEM IDENTIFICATION
%% Definitions
clc; clear all; close all; format long;
n=100; % No. of dataset
Xt = rand(n,2); nip=size(Xt,2);
for i=1:n
Ydt (i,1)=exp ((Xt(1i,1)"2)+(Xt(i,2)72));
Ydt (i,2)=exp ((Xt(i,1)+Xt(i,2))72);
end
nop=size (Ydt,2); N=5; %No. of neurons/side in the 2-
— Dlattice
Ylambda=0.1*rand (nop,N,N); Alambda=rand(nop,nip,N,N);
Wlambda=0.1l*rand (nip,N,N); Ylambdanew=rand (nop,N,N);
Alambdanew=rand (nop ,nip,N,N); Wlambdanew=rand(nip,N,N);
% Parameters
etah0=10; tauh=0.70; etaw0=0.1; tauw=5;
etaal0=2; taua=50; etay0=2; tauy=50;

%% KSOM Training

N_epoch=20;

for epoch=1:N_epoch

etah=etahO*exp (-epoch/tauh); etaw=etawO*exp(-epoch/tauw);
etaa=etaal*exp(-epoch/taua); etay=etayO*xexp(-epoch/tauy);
RDPM=randperm(n,n) ;

64 Hand-eye Coordination of a Robotic Arm using KSOM Network

for shuffle=1:n
Xtr (shuffle,:)=Xt (RDPM(shuffle),:);
Ydtr (shuffle,:)=Ydt (RDPM(shuffle),:);

end
for ndata=1:n
a=100;
for i=1:N
for j=1:N
Dx(i,j) = norm(Xtr(mdata,:)’-Wlambda(:,i,j));
if (a>Dx(i,j))
a=Dx(i,j);
ai=i;
aj=j;
end
end
end
for i=1:N
for j=1:N
H(i,j) = exp(-((ai-i)~2+(aj-j) ~2)/(2xetah*etah));
end
end

s=sum (sum (H)) ;
Ytemp=zeros (2,1);

for i=1:N
for j=1:N
Y(:,i,j)=H(i,j)*(Ylambda(:,i,j)+Alambda(:,:,1i,]j)

*((Xtr(ndata,:)’)-Wlambda(:,i,j)));
Ytemp=Ytemp+Y(:,i,j);
end
end
Ypred(ndata,:)=Ytemp/s; Ytilde(ndata,:)=Ydtr(ndata,:)
-Ypred (ndata,:) ;
for i=1:N
for j=1:N
Ylambda(:,i,j)=Ylambda(:,i,j)+etay*xH(i, j)
*(Ytilde (ndata,:)’)/s;
Alambda(:,:,i,j)=Alambda(:,:,i,j)+(1/s)*etaaxH(i, j)
(Ytilde (ndata,:) ’)(((Xtr(ndata,:)’)-Wlambda(:,i,j))’);
Wlambda (:,i,j)=Wlambda(:,i,j)+etaw*H(i, j)
*((Xtr (ndata,:)’-Wlambda(:,i,j)));
end
end
end
Error (epoch)=norm(Ytilde)/(size(Ytilde ,1)*size(Ytilde ,2));
end
%% Error Plot
figure (1)
plot (1:N_epoch,Error,’LineWidth’,2);

System Identification using KSOM 65

%% Testing
Xte=zeros(1,1); Ydte=zeros(1,1); Y=zeros(nop,N,N); n2 =
— 250;
for i=1:n2
Xte(i,1)=0.5%cos (i*pi/40)+0.5;
Xte(i,2)=0.5*sin(i*pi/40)+0.5;
end
for i=1:n2
Ydte (i,1)=exp ((Xte(i,1)"2)+(Xte(i,2)"2));
Ydte(i,2)=exp ((Xte(i,1)+Xte(i,2))"2);
end
Ypredte=zeros(n2,2);
for ndata=1:n2
a=100;
for i=1:N
for j=1:N
Dx(i,j) = norm(Xte(ndata,:)’-Wlambda(:,i,j));
if (a>Dx (i, j))
a=Dx(i,j);
ai=i;
aj=j;
end
end
end
for i=1:N
for j=1:N
H(i,j) = exp(-((ai-i)~2+(aj-j)~2)/(2*etah*etah));
end
end
s=sum(sum(H)); Ytemp=zeros(nop,1);
for i=1:N
for j=1:N
Y(:,i,j)=H(i,j)*(Ylambda(:,i,j)+Alambda(:,:,1,]j)
*((Xte(ndata,:)’)-Wlambda(:,i,j)));
Ytemp=Ytemp+Y(:,i,j);
end
end
Ypredte (ndata,:)=(Ytemp/s)’; Ytilde(ndata,:)
=Ydte (ndata,:)-Ypredte (ndata,:);
end

figure (5)
plot(1:n2,Ypredte(:,1),’--’,’Color’,[0,0,0],’LineWidth’ ,4);
hold on;

plot (1:n2,Ydte(:,1),’Color’,[0,0,0],’LineWidth’ ,2);

figure (6)
plot (1:n2,Ypredte(:,2),’--",’Color’,[0,0,0],’LineWidth’,4);
hold on;

66 Hand-eye Coordination of a Robotic Arm using KSOM Network
plot(1:n2,Ydte(:,2),’Color’,[0,0,0],’LineWidth’,2);

%% Function Approx Plot
X1funt=0:0.01:1; X2funt=0:0.01:1;
for i=1:size(X1funt,b2)
for j=1:size(X2funt,2)
Yifunt (i, j)= exp((Xifunt (i) ~2)+(X2funt(j)~2));
Y2funt (i, j)= exp((X1funt (i)+X2funt(j))~2);
end
end
figure(7); surf(Xifunt,X2funt,Yifunt)
figure(8); surf (Xifunt,X2funt,Y2funt)

3.3 Introduction to Learning-Based Inverse Kinematic
Control

We will learn how to use KSOM network to learn inverse kinematics of a
robot manipulator. The human arm has 7 degrees of freedom (DOF). The five
fingers have 21 degrees of freedom. If we consider two arms with two hands,
then we are talking of 56 degrees of freedom. These degrees of freedom help
a sculpturer to give an aesthetic shape to a statue. Although with degrees of
freedom, the dexterity of manipulation enhances as choices in terms of kine-
matic configurations also increase manifold times. A sculpturer is in general
ignorant of scientific characterization of forward and inverse kinematics, but
he is expert in manipulation simply through learning. This section will teach
you how to learn inverse kinematics of a robot manipulator. To make it easy
for the learners, we will start with a planar two link manipulator. Referring
to Figure 3.6, it has two links of link lengths [; and ls respectively. The angle
of the first link with respect to the horizontal z axis is #; and the angle of the
second link with respect to the link 1 axis is 65 as shown in the figure. From
the figure, we can derive the following forward kinematics:

x =1yc0s(01) + lacos(b01 + 02); y = lisin(01) + lasin(61 + 02) (3.10)

In general, for a robot manipulator, it is very easy to find out the for-
ward kinematics. Given a forward kinematic equation, we can find out the tip
position of the robot manipulator in the Cartesian space if we are given joint
angles of each link. However, in practice, the robot has to know its own joint
angles given a target defined in the Cartesian space. It is usual for a robot to
reach a target, i.e., the desired tip position is known and the robot has to find
out its own joint angles. For the above planar manipulator, let’s find out the

Introduction to Learning-Based Inverse Kinematic Control 67

y

FIGURE 3.6: Two link planar manipulator.

inverse kinematics:

cosby = SRR (3.11)
2 2 12 _ l2
0y = cos™! Tt y2l1l2 12 (3.12)
lasind
0, = tan=1Z — tan—1 2512 (3.13)

ll + lQ 60882

You can note that although forward kinematics has simple expressions,
the inverse kinematics is not that simple. In fact, as the degrees of freedom
will increase, the inverse kinematic solution cannot be obtained in closed form
equations as derived above. We will show you how to learn this inverse kine-
matic solutions using KSOM network.

In general the forward kinematics is given as

r=f(¢); zeR™0ecR" (3.14)
The inverse kinematic relation can be expressed as
0=g(x); r€R™0cRg=f" (3.15)

The above inverse kinematic equation can be linearized around 6, using
first order Taylor series expansion:

0 :90+A0(.’E—1’0)

where Ag = £|,—;, which is called inverse Jacobian at x¢. It should be noted
that 0y = g(xo).

68 Hand-eye Coordination of a Robotic Arm using KSOM Network

Robot Workspace

0, =0+ A (x—w,) S~ /’/
e T T Ss 5\\\ ,’/
Y < Sy 100
| 3N
/]
X /)
» 0
O 0000)
000000 0 =13 (05 + Ay(a — wy))
OO0O0OQp0O0
O OO0 o000
OO0 OO0

KSOM Lattice 1—

FIGURE 3.7: KSOM network for kinematic control of 2-d planar manipulator.

3.3.1 The Network

Please refer to the KSOM network as shown in Fig 3.7. Here the input is the
Cartesian space coordinate vector x. Since it is a planar manipulator, the 2-d
lattice of size 10 x 10 has been taken. It is assumed that {; = 1m;ls = 1m. If
you look at the planar manipulator, you will see that its workspace covers a
circle of radius 2m. The lattice has 100 neurons and each neuron represents a
discrete cell in this circle of 2m radius. We associate a linear model with each
of these neurons:

0=0,+A,(z—wy)

where w., is the weight associated with the 4" neuron where vy € [1,100]. A,

is the inverse Jacobian at ¢ = w,. 6, = g(w,) is the local joint angle vector
around which the above liner model is valid.

Just like in the previous section, the network response to input x is given
in terms of collective response model:

o — %Zhv(ﬁvjhAv(a:—wV)) (3.16)

where s = = e This is a normalizing factor. As said earlier, each neuron
§ ¥
¥

contributes according to its lattice distance from the winning neuron - this is
represented by the neighborhood function h.,.

Introduction to Learning-Based Inverse Kinematic Control 69

3.3.2 The Learning Problem

In the previous section on system identification, we are given the vector pairs
{z,y}, i.e., input vector & and desired vector y. It is desired to learn the
network parameters given both input and output vectors. But in the inverse
kinematic learning problem, we are given only the input vector x, the target at
which the manipulator is desired to reach. With reference to equation (3.16),
all parameters 6,, A,, w, are unknown. Since there are 100 neurons as
shown in Figure, there are 300 sets of parameters that have to be learned
based on a given set of random targets within the circular robot workspace of
2m radius. This is even more difficult than the previous system identification
problem.

3.3.3 The Approach

We need to generate error corrector terms to be able to update the parameters.
In the beginning, all 100 sets of parameters - ¢,, A,, w, are randomly
initialized and these random values are made as small as possible to test the
efficacy of the update algorithms. The coarse action is initiated first. This
action is the network response with the current set of network parameters.
Given z, the network response is

1
05t = - 3 Doy + Aq(a = w,) (3.17)
v

where 63“* is the coarse action that is actuated to take the robot to some

point in Cartesian space. If we feed these angles to equation (3.10), we will
get vg = [z y]T. This course action 3¢ will take the robot to Cartesian
point in the task space vg. This pair 03“%, vy will help us to generate the error
corrector term. But this vy is absolutely random. Hence we need to create a
fine action that will take the robot toward the actual target . The fine action
is generated as:

09" = 05" + 571y " hy Ay (2 — vg) (3.18)

i

In this expression, the pair 63%“*, vg is an inverse kinematic pair, i.e., §3*¢ =

g(vg). Hence this fine action will surely take the manipulator tip position closer
to the target position x. If we feed this angle vector 0% to equation (3.10),
we will get v1 = [z y]7. That is, the fine action #§“* will take the robot
to Cartesian position in the task space v;. Through the fine action, we get
another inverse kinematic pair 9“¢, vy, i.e. 09“* = g(v;1). These informations
will help us to formulate the cost function.

3.3.4 The Formulation of Cost Function

Since w, will be updated as per the Kohonen law (3.5), we need to formulate
the cost function for the update of parameters A, and ¢,. During the coarse

70 Hand-eye Coordination of a Robotic Arm using KSOM Network

and fine control actions, we obtained the following two inverse kinematic pairs:
03" = g(vp) and 69**, v;. Using these pairs, following two expressions can be
written as:

ou 1
ot = > hy(0y + Ay (vo — wy)) (3.19)
vy

out
91

53 0+ Ay o w) (3:20)

If we assume that all network parameters are exact, then equations (3.19)
and (3.20) are correct as vy will initiate the joint actuation 6jut and v, will
initiate the joint actuation 9.

By subtracting (3.19) from (3.20), we obtain:

1
AGTt = = > hyAAv (3.21)
Y

where AUt = g9t — §9** and Av = v; — vy. The equation (3.21) is valid
if the network parameters are exact. However, they are not exact. Hence the
cost function for the update of A, naturally becomes:

1 ou 1
Ea = 5[1A0 b - > hy Ay Av|? (3.22)
ol

The cost function for the update of 6, can be obtained using the same
logic from equation (3.19) as

I |
Ey = 5”90 = S Zhv(e’y + Ay (vo — w'y)H2 (3.23)
v

3.3.5 Weight Update Laws

Using gradient descent, we can update the parameter matrices as

0Fy
9—\/ — 07 - 7’]9% (324)
0F 5
We can thus write the weight update algorithms as
Wey 4= Wey + Nyl (T — W) (3.26)
0 0, +no G, (3.27)

Ay Ay +1aAA, (3.28)

Introduction to Learning-Based Inverse Kinematic Control 71

where
h
Aeﬂ/ _ ?’)’ egut _ 871 ; h’y(g’y + A'y(UO — w,),))‘| (329)
AA, = ”ZA/ B AN Z hy Ay Av AvT (3.30)
s||Av
v

Although we started with the description of the two link planar manipu-
lator, the update laws are valid for any n-link manipulator. The only change
will be the network lattice. Since the workspace of any n-link manipulator will
have 3-D structure, the lattice has to be that 3-d size.

Example 3.3. Let’s consider the two-link planar manipulator as shown in
Fig 3.6. The link lengths are Il; = 1m and ls = 1m. As shown in the corre-
sponding Kohonen network (Figure 3.7), to learn its inverse kinematics, the
workspace of the manipulator is a planar circle with radius 2m. The network
lattice is a 2d lattice of size 10 x 10. This network is presented with as a random
target position from this circle. Through coarse and fine learning, we construct
the cost functions E4 and Ejy as given in equations (3.22), and (3.23) respec-
tively. Write a MATLAB code to update weights as given in (3.26)-(3.28).
After training is over, draw the following graphs:

e Draw the final weight vectors associated with 100 neurons in the same
plot.

e Test your trained network for five random target positions and verify using
exact kinematic inverse equations.

e Make the manipulator to track a straight line.
o Make the manipulator to track a circle.

Solution 3.3. Please look at the MATLAB code. All initial weights are
assigned a random number uniformly distributed in [0, 0.1]. That is, the robot
is absolutely ignorant about its own kinematics as well as its own workspace.
The objective is to start from no knowledge to complete knowledge by updat-
ing weights of KSOM network as shown in Figure 3.7. To compute h., o is

updated as
O_f (t/tmuaz)
oc=o0; | — (3.31)

i
where o; = 2.5 and oy = 0.01. The large initial value of o implies that as
weights w, are updated as per the Kohonen law, all neurons participate in
the decision making in the beginning. This value is gradually reduced to 0.01
which implies that mostly the winning neuron makes the decision as training
comes to an end. The learning rate 7,, of the Kohonen law starts with a value
1.0 and ends with a value 0.05 following the similar tuning law for . The

72 Hand-eye Coordination of a Robotic Arm using KSOM Network

N %
2 -5 -1 05 0 05 1 15 2

(a)

FIGURE 3.8: (a) Final weights, (b) Tracking a line, (c¢) Tracking a circle.

learning rate na for A, and the learning rate ny for 6, are both assigned to
0.9. The number of maximum iterations is fixed at 3000. To train the network,
we use 2-d lattice of dimension 10 x 10 where 3000 samples (random target
positions) are used for training which are generated using a forward kinematic
model. After the training is over, the weights of each neuron are plotted in
Figure 3.8a.

We can see from Figure 3.8(a) that each neural weight has taken position
within the robot workspace which is a circle of radius 2m. This signifies that
the network has captured the topology of the input data = as expected.

The trained network is tested for three cases. First, this trained network
was given some random target positions. Five such target positions in the task
space are [x1 x| = [0 1.414], [1.414 0], [1 1], [-1 -1] and [0.8 1.2]. The network
response 6 is given in Table 3.1. For a given target position (21 = z,z9 = y) in
task space, the joint angles 61 and 6, are calculated using the inverse kinematic
equations (3.11). We find that the network responses are consistent with the
exact inverse kinematics results.

Next, the KSOM network is tested to track a line y = 1.2 while x €
[-1,+1] and a circle of radius 1.5m. The results are shown in Figure 3.8(b)

TABLE 3.1: Two-link manipulator reaches five target positions

KSOM based inverse Exact inverse

kinematics results kinematics results

X y 01 92 X y 01 92
0.0167 | 1.4161 | 45.76° |89.84°| 0.0167 | 1.4161 | 44.41° |89.863°
1.4186 [-0.0394 | -46.39° | 89.60° | 1.4186 |-0.0394 | -46.39° | 89.60°
1.0210 | 1.0371 | 2.14° [86.61°| 1.0210 | 1.0371 | 2.14° | 86.62°
-0.9995 |-0.9980 | -180.11° [90.14° | -0.9995 | -0.9980 |-180.11°| 90.14
0.7898 | 1.1894 | 11.96° |88.90°| 0.7898 | 1.1894 | 11.97° | 88.90°

Introduction to Learning-Based Inverse Kinematic Control 73

and (c) respectively which show that two-link manipulator properly follows
the desired paths.

Figures 3.8(b) and (c) show the tracking of a line and circle with respective
kinematic configurations as well. The rms error for the line tracking is 0.0175m
and the rms error for the tracking a circle is 0.0223m.

The complete MATLAB code - for training, for testing on random targets,
for tracking a line and a circle are provided:

MATLAB CODE FOR TRAINING
clear all;
%% Initialization of Model parameters
sig_i=2.5; sig_£=0.01;
etaw_i=1;etaw_£f=0.05;
etaA_i=0.9;etaA_£=0.9;
11=1;12=1; % link length
A_g=0.1*rand(2,2,100)
w_g=0.1*rand (2,1,100)
th_g=0.1%rand (2,1,100)
%% 2d Lattice formation of size 10x10
[1x,1y]l=ind2sub ([10,10],1:100) ;
lattice=[1x;1ly]l;iterations=6000;
%% Iterations and update
for i=1:iterations
thli=(rand-0.5) *2*pi;th2=(rand-0.5) *2*xpi;
x=11*cos (thl)+12*cos (th2+thl) ;
y=1l1*sin(th1)+12*sin (th2+thl);
u=[x;yl;
for j=1:100
dist (j)=norm(u-w_g(:,:,3));
end
[~,win_vall=min(dist);
win=[1x(win_val),ly(win_val)];% Winning Neuron
sig(i)=sig_ix*((sig_£f/sig_i) ~(i/iterations));
eta_wg(i)=etaw_i*((etaw_f/etaw_i) " (i/iterations));
eta_Ag(i)=etaA_i*((etaA_f/etaA_i) " (i/iterations));
d=repmat (win’,1,100)-lattice;
H_g=exp (-(sum(d.~2))/(2x(sig(i)~2)));
% Coarse action:
s=sum(H_g) ;s2=0;s3=0;
for k=1:100
s1=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(u-w_g(:,:,k)));
s2=s2+s1;
end
th_o=s2/s;
x_o=11*cos(th_o(1))+12*cos(th_o(2)+th_o(1));
y_o=11*sin(th_o(1))+12*sin(th_o(2)+th_o(1));
v_o=[x_o;y_ol;
% Fine action

74 Hand-eye Coordination of a Robotic Arm using KSOM Network

for k=1:100
s4=H_g(k)*(A_g(:,:,k)*(u-v_o));
s3=s3+s4;
end
th_1=th_o+s3/s;
x_1=11*cos(th_1(1))+12%cos(th_1(2)+th_1(1));
y_1=11*sin(th_1(1))+12*sin(th_1(2)+th_1(1));
v_1=[x_1;y_11;
% Update equations
del_v = v_1-v_o;del_th = th_1-th_o;s5=0;s7=0;
for k=1:100
s6=H_g(k)*(th_g(:,:,k)+A _g(:,:,k)*(v_o-w_g(:,:,k)));

sb=sb+s6;
end
for t=1:100
deltheta_g(:,:,t) = (H_g(t)/s)*(th_o-(s5/s));
end
for k=1:100
s8=H_g(k)*(A_g(:,:,k)*del_v);s7=s8+s7;
end
for t=1:100
deltaA_g(:,:,t)=(H_g(t)/(s*norm(del_v)~2))
(del_th-s7/s)(del_v’);
w_g(:,:,t)=w_g(:,:,t)+eta_wg(i)*H_g(t)
*(u-w_g(:,:,t)); % Update Weights
th_g(:,:,t)=th_g(:,:,t)+eta_Ag(i)
*deltheta_g(:,:,t); % Update Theta_g
A g(C:,:,t)=A_g(:,:,t)+eta_Ag(i)
xdeltaA_g(:,:,t); % Update A_g
end
end

% Plot final Weights

figure(1); hold on;

for t = 1:100
plot(w_g(1,1,t),w_g(2,1,t),’%’)
end ;

MATLAB CODE FOR POINT TRACKING

% Tracking of given five points
ul=[0 1.414 ; 1.414 0 ; 11 ; -1 -1 ; 0.8 1.2]°;

for m=1:size(ul,2)
u=ul(:,m)
for j=1:100

dist (j)=norm(u-w_g(:,:,3));

Introduction to Learning-Based Inverse Kinematic Control

end
[~,win_vall=min(dist);
win=[1x(win_val),ly(win_val)l;
d=repmat (win’,1,100)-lattice;
H_g=exp(-(sum(d."2)/(2*(sig_£72))));
% Corse actiomn:
s=sum(H_g) ;s2=0;s3=0;

for k=1:100

s1=H_g(k)*(th_g(:,:,k)+A_g(:,: , k) *x(u-w_g(:,:,k)));

s2=s2+s1;
end
theta=s2/s
th_degree=theta*180/(pi)
x=1l1*cos(theta(1l))+12*cos(theta(2)+theta(1l));
y=1l1*sin(theta(1))+12*sin(theta(2)+theta(1));

v=[x;y] % Tracked point

end

(0]

MATLAB CODE FOR LINE TRACKING

% Track the line

x = linspace(-1,1,41);y = 1.2%ones(size(x));
test2 = [x;yl;t=size(x,2);

for m=1:t

ul=test2(:,m);

76 Hand-eye Coordination of a Robotic Arm using KSOM Network
for j=1:100
dist (j)=norm(ul-w_g(:,:,j));
end
[~,win_vall=min(dist);
win=[1x(win_val),ly(win_val)l;
d=repmat (win’,1,100)-lattice;
H_g=exp(-(sum(d."2))/(2*(sig_£72)));
s=sum(H_g) ;s2=0;
for k=1:100

s1=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(ul-w_g(:,:,k)));

s2=s2+s1;

end
theta=s2/s;
x_o=1l1l*cos(theta(1))+12*cos(theta(2)+theta(1));
y_o=1l1*sin(theta(1))+12*sin(theta(2)+theta(1l));
v_o=[x_o;y_ol;
th(:,m) = theta;

end

for i = 1:t
x_Position(i,:) = [0 1li*cos(th(1,i))
li*xcos(th(1,i))+12*cos(th(2,i)+th(1,i))];
y_Position(i,:) = [0 1li1xsin(th(1,i))
11*sin(th(1,i))+12*sin(th(2,i)+th(1,1))];

end

figure; plot(test2(1,:),test2(2,:),’-0k’);hold on;

for i = 1:t

Introduction to Learning-Based Inverse Kinematic Control

plot (x_Position(i,:),y_Position(i,:),’k’)
end

axis equal

7

MATLAB CODE FOR CIRCLE TRACKING
% Track the Circle
t=0:pi/15:2*%pi;testl=[1.5%cos(t);1.5*xsin(t)];
for m=1:1length(t)
u2=testl(:,m);
for j=1:100
dist (j)=norm(u2-w_g(:,:,j));
end
[~,win_vall=min(dist) ;
win=[1x(win_val),ly(win_val)l;
d=repmat (win’,1,100)-lattice;
H_g=exp(-(sum(d."2))/(2*(sig_£72)));
s=sum(H_g) ;s2=0;

for k=1:100

s1=H_g(k)*(th_g(:,:,k)+A_g(:,:,k)*(u2-w_g(:,:,k)));

s2=s2+s1;
end

theta=s2/s;

x_o=1l1l*cos(theta(1))+12*xcos(theta(2)+theta(1));

y_o=1l1*sin(theta(1))+12*sin(theta(2)+theta(1l));

v_o=[x_o;y_ol;

78 Hand-eye Coordination of a Robotic Arm using KSOM Network
th(:,m) = theta;

end

for i = 1:length(t)

x_Position(i,:) = [0 1li*cos(th(1,i)) 1i*cos(th(1,i))
+12%cos(th(2,1i)+th(1,1))1]1;

y_Position(i,:) = [0 1li*sin(th(1,i)) 1lil*sin(th(1,i))
+12%sin(th(2,i)+th(1,1i))];

end
figure; plot(test1(1l,:),test1(2,:),’-0k’);hold on;
for i = 1:length(t)
plot (x_Position(i,:),y_Position(i,:),’k’)
end

axis equal

Example 3.4. Let’s consider a CRS PLUS manipulator as shown in Figure
3.9. The link lengths are taken from its service manual. The kinematics are
simplified by assuming the wrist (joint 4) to be rigid. Actually, the wrist is
servoed to maintain its pose with respect to the base plane. This ensures that
the manipulator behaves as a 3 DOF manipulator.

The forward kinematics are given as:

z = lgsin(bs) + lgsin(03) + 14 (3.32)
x = Reos(61) (3.33)
y = Rsin(0;) (3.34)

where R = lyc0s(02) +13c0s(03) +t and 1y, l2, I3 are the respective link lengths,
and t is the length of the rigid portion of the wrist.

For the CRS PLUS Manipulator, I; = ls = I3 = 254mm, t = 50mm. It
is assumed that the wrist of the manipulator is rigid, assured by locking the
joint for our purpose, and always holds the end-effector parallel to the work
table (the xy plane).

The exact inverse kinematics of this manipulator is given as:

0, = tan™! (%) (3.35)

0y = cos™ ' (p) (3.36)

Introduction to Learning-Based Inverse Kinematic Control 79

e

) o,

FIGURE 3.9: CRS Plus manipulator.

b— lysin(d
0 = sin~! <QZ”(2)) (3.37)

Here p is the solution of Ap?+ Bp+C = 0, where a = /22 +y2 —t, b= z—1;,
K=b+13—-12+a? A=4a%3+4b%13, B = —4alyK, and C = K? — 4b%I3.

It is desired that these inverse kinematic solutions are derived using the
KSOM network. Since the robot task-space is 3 dimensional, a 3-d lattice of
size 12 X 7 x 4 is selected. The maximum training iterations are fixed at 30000.
This implies that the network is presented with 30000 random target positions
sample from its workspace. Train the KSOM network and test the network
for tracking a straight line and circle.

Solution 3.4. Please look at the MATLAB code. All initial weights are
assigned a random number uniformly distributed in [0,0.1]. That is, the robot
is absolutely ignorant about its own kinematics as well as its own workspace.
The objective is to start from no knowledge to complete knowledge by updating
weights of KSOM network as shown in Fig 3.7. The learning parameters are
updated during the training as:

77f (t/tmnrm)
n=nn () (3.38)

i
where 0 € {Nw,Ng,Na,0. 0; = 2.5 and oy = 0.01. The large initial value of o
implies that as weights w, are updated as per the Kohonen law, all neurons
participate in the decision making in the beginning. This value is gradually
reduced to 0.01 which implies that mostly the winning neuron makes the deci-
ston as training comes to an end. The learning rate 1y of the Kohonen law
(3.5) starts with a value 1.0 and ends with a value 0.05. The learning rate

80 Hand-eye Coordination of a Robotic Arm using KSOM Network

© End-effector position
Desired Trajectory
== \lanipulator Link

<>
0.3 0.35 0.4

- 777<77f77f77T77
04 0 0.05 0.1 0.15 0.2 0.25

Y-axis
X-axis

FIGURE 3.10: CRS manipulator tracks a line.

na for A, and the learning rate ng for 0. are fized at 0.9. The number of
maximum iterations is fized at 30000. To train the network, we use 3 —d lat-
tice of dimension 12 x 7 x 4 where 30000 samples (random target positions)
are used for training which are generated using the forward kinematic model
(3.32). After the training, the robot is asked to follow a straight line. The
tracking results are shown in Figure 3.10 along with the kinematic configura-
tions. Readers should note that the network has effectively learned the inverse
kinematics where all network parameters are initialized randomly and the net-
work is presented with the random target positions without the corresponding
joint space solutions. The coarse and fine actions are used to build the effective
cost functions gradients of which helped to derive the weight update laws. The
MATLAB code will help you to understand these concepts even better.

MATLAB CODE-KSOM TRAINING-3 LINK MANIPULATOR
clear all;

format long; kstar=1000; Xmin=0.15; Xmax=0.35;
Ymin=0.15; Ymax=0.35; Zmin=0.15; Zmax=0.35;
Xmiddle=(Xmax+Xmin)/2; Ymiddle=(Ymax+Ymin)/2;
Zmiddle=(Zmax+Zmin) /2; ndsD=200; %No. of datasets
11=0.254; 12=0.254; 13=0.254; t=0.05;

% Lattice dimensions

p=12; q=7; r=4; nip=3;%Input dimension
nop=3;%0utput dimension

W(l,:,:,:)=(Xmax-Xmin)*rand(1l,p,q,r)+Xmin;
W(2,:,:,:)=(Ymax-Ymin)*rand(1l,p,q,r)+Ymin;
W(3,:,:,:)=(Zmax-Zmin) *rand(1,p,q,r)+Zmin;

A=rand (nop,nip,p,q,r); Y_lambda=zeros(nop,p,q,r);
Theta_lambda=2*pi*(rand(nop,p,q,r)-0.5%ones (nop,p,q,r));
D=zeros(p,q,r); sigini=2.5; sigfin=0.01;

etaini=0.5; etafin=0.9; etaWini=0.5; etaWfin=0.05;
epoch=300; a=0;

Introduction to Learning-Based Inverse Kinematic Control 81

for ep=1:epoch
ep
if (a>1)
fprintf (’More than one min distance values’);
break;
end
Xd(1,:)=(Xmax-Xmin)*rand (1,ndsD)+Xmin;
Xd(2,:)=(Ymax-Ymin)*rand (1,ndsD)+Ymin;
Xd(3,:)=(Zmax-Zmin) *rand (1,ndsD)+Zmin;
for nds=1:ndsD
etaW=etaWini*(etaWfin/etaWini) ~((ep/(epoch)));
eta=etaini*(etafin/etaini) ~((ep)/(epoch));
etaT=eta;
sigma=sigini*(sigfin/sigini) ~(ep/epoch);
for i=1:p
for j=1:q
for k=1:r
Dis(i,j,k)=norm(W(:,i,j,k)-Xd(:,nds));
end
end
end
Dis_min=min(min(min(Dis)));
a=0;
for i=1:p
for j=1:q
for k=1:r
if (Dis(i,j,k)==Dis_min)
a=a+l;ai=i;aj=j;ak=k;
end
end
end
end
if (a>1)
fprintf (’More than one min distance values’);
break;
end
for i=1:p
for j=1:q
for k=1:r
H(i,j,k)=exp(-((ai-i)~"2+(aj-j) "2+(ak-k)"2)/(2*sigma*sigma))
—
end
end
end
Y_temp=zeros(3,1);
for i=1:p
for j=1:q
for k=1:r
Y_lambda(:,i,j,k)=H(i,j,k)*(Theta_lambda(:,i,j,k)

82 Hand-eye Coordination of a Robotic Arm using KSOM Network

+AC:,:,i,j,k)*(Xd(:,nds)-W(:,1i,5,k)));
Y_temp=Y_temp+Y_lambda(:,i,j,k);
end
end
end
s=(sum(sum(sum(H)))); Theta_O0=(Y_temp)/s;
R=(12*cos (Theta_0(2,1)))+(13*cos(Theta_0(3,1)))+t;
V_0(1,1)= R*cos(Theta_0(1,1));V_0(2,1)= R*xsin(Theta_0(1,1))
—
V_0(3,1)=(12*sin(Theta_0(2,1)))+(13*sin(Theta_0(3,1)))+11;
Y_temp_Theta_O=zeros (nop,1);
Y_lambda_Theta_O=zeros(nop,p,q,r);
for i=1:p
for j=1:q
for k=1:r
Y_lambda_Theta_O0(:,i,j,k)=H(i,j,k)*(Theta_lambda(:,i,j,k)
FAC:,:,i,,K)*(V_0-W(:,i,j,k)));
Y_temp_Theta_O=Y_temp_Theta_0+Y_lambda_Theta_0(:,i,j,k);
end
end
end
Y_temp_Theta_O=Y_temp_Theta_0/s;
Co_act=zeros(nop,p,q,r);
Corr_action=zeros (nop,1);
for i=1:p
for j=1:q
for k=1:r
Co_act (:,i,j,k)=H(i,j,k)*AC:,:,1i,j,k)*(Xd(:,nds)-V_0);
Corr_action=Corr_action+Co_act(:,i,j,k);
end
end
end
Theta_1=Theta_O0+(Corr_action/s);
R=(12*cos (Theta_1(2,1)))+(13*cos(Theta_1(3,1)))+t;
V_1(1,1)= R*cos(Theta_1(1,1));
V_1(2,1)= R*sin(Theta_1(1,1));
V_1(3,1)=(12*sin(Theta_1(2,1)))+(13*sin(Theta_1(3,1)))+11;
del _V=V_1-V_O;
del_Theta=Theta_1-Theta_O0;
YA_up=zeros (nop,p,q,r);
YA_update=zeros (nop,1);

for i=1:p
for j=1:q
for k=1:r
YA_up(:,i,j,k)=H(i,j,k)*A(:,:,i,j,k)*(V_1-V_0);
YA_update=YA_update+YA _up(:,i,j,k);
end
end

end

Introduction to Learning-Based Inverse Kinematic Control 83

for i=1:p
for j=1:q
for k=1:r
Theta_lambda(:,i,j,k)=Theta_lambda(:,i,j,k)+(etaT*(Theta_O
-Y_temp_Theta_0)*H(i,j,k)/s);
W(:,i,j,k)=W(:,i,j,k)+etaW*H(i,j,k)*(Xd(:,nds)-W(:,i,j,k));

end
end
end
for i=1:p
for j=1:q
for k=1:r
AC:,:,i,j,k)=AC:,:,i,j,k)+etaxH(i,j,k)*(del_Theta-
(YA_update/s))*(del_V’)/(s*norm(del_V)*norm(del_V));
end
end
end

valA(nds)=A(1,1,5,6,4);
valW(nds)=W(1,5,6,4);
valT (nds)=Theta_lambda(1,5,6,4) ;
end
end
%% Testing 1
a=0;
Xmiddle=(Xmax+Xmin) /2;
Ymiddle=(Ymax+Ymin) /2;
Zmiddle=(Zmax+Zmin) /2;
Rp=0.08;
Xt=0;
Xdt=0;
for j=0:0.1:1
a=a+1;
Xdt (1,a)=Xmin*(1-j)+Xmax*j;
Xdt (2,a)=Ymax*(1-j)+Yminx*j;
Xdt (3,a)=Zmin*(1-j)+Zmax*j;
end
ndsT=a;
for nds=1:ndsT
nds
for i=1:p
for j=1:q
for k=1:r
Dis(i,j,k)=norm(W(:,i,j,k)-Xdt(:,nds));
end
end
end
Dis_min=min (min(min(Dis)));
a=0;
for i=1:p

84 Hand-eye Coordination of a Robotic Arm using KSOM Network

for j=1:q
for k=1:r
if(Dis(i,j,k)==Dis_min)
a=a+1;
ai(a)=i;
aj(a)=j;
ak (a)=k;
end
end
end
end
if (a>1)
fprintf (’More than one min distance values’);
break;
end
for i=1:p
for j=1:q
for k=1:r
H(i,j,k)=exp(-((ai-i)~2+(aj-j) "2+(ak-k)"2)/
(2xsigfin*sigfin));

end
end
end
Y_temp=zeros(3,1);
for i=1:p
for j=1:q
for k=1:r

Y_lambda_Theta_0(:,i,j,k)=H(i,j,k)*(Theta_lambda(:,i,j,k)
+AC:,:,1,j,k)*(Xdt(:,nds)-W(:,1i,j,k)));
Y_temp=Y_temp+Y_lambda_Theta_0(:,i,j,k);
end
end
end
s=(sum(sum(sum(H))));
Theta(:,nds)=(Y_temp)/s;
R=(12*cos (Theta(2,nds)))+(13*cos(Theta(3,nds)))+t;
V_0= R*cos(Theta(1l,nds));
V_0= R*sin(Theta(1,nds));
V_0=(12*sin(Theta(2,nds)))+(13*sin(Theta(3,nds)))+11;
lol1=0;
error=10;
while(error>0.001)
lol=1lol+1;
Co_act=zeros(nop,p,q,r);
Corr_action=zeros (nop,1);
for i=1:p
for j=1:q
for k=1:r
Co_act (:,i,j,k)=H(i,j,k)*AC:,:,i,j,k)*(Xdt(:,nds)-V_0);

Introduction to Learning-Based Inverse Kinematic Control 85

Corr_action=Corr_action+Co_act (:,i,j,k);

end
end
end

Theta_1=Theta_O0+(Corr_action/s);

R=(12*cos (Theta_1(2,1)))+(13*cos(Theta_1(3,1)))+t;

Xt (1,nds)= R*cos(Theta_1(1,1));

Xt (2,nds)= R*sin(Theta_1(1,1));

Xt (3,nds)=(12*sin(Theta_1(2,1)))+(13*sin(Theta_1(3,1)))+11;
error=norm (Xt (:,nds)-Xdt(:,nds));
Theta_O=Theta_1;

V_0=Xt (:,nds);
if (101>100)

break;
end
end

Teeta(:,nds)=Theta_1;

pts1(:,nds)=[0;0;0];

pts2(:,nds)=[0;0;11];

pts3(:,nds)=[12*cos(Theta_1(2,1))*cos(Theta_1(1,1));

12*cos(Theta_1(2,1))*sin(Theta_1(1,1));
12*sin(Theta_1(2,1))+11];
pts4(:,nds)=[(R-t)*cos(Theta_1(1,1));

(R-t)*sin(Theta_1(1,1));Xt(3,nds)];

pts5(:,nds)=[Xt(1,nds);Xt(2,nds);Xt(3,nds)];

end

figure (1)

grid on;

scatter3(Xt(1,:)’,Xt(2,:)’,Xt(3,:)’,50,’b’,%07);

grid on;

hold on;

legend (’End effector position’,’Desired Trajectory’,

’Manipulator Link’)

plot3(Xdt(1,:),Xdt(2,:),Xdt(3,:),’k’,’lineWidth’,2);

hold on;

xlabel (’X-axis’);

ylabel (’Y-axis’);

zlabel (’Z-axis’);

for ii=1:nds

% scatter3(ptsi1(1,ii),pts1(2,ii),pts1(3,1ii));

line ([pts1(1,ii),pts2(1,ii)],[pts1(2,ii),pts2(2,1ii)]

,[pts1(3,ii) ,pts2(3,1ii)],’LineWidth’ ,4)

% scatter3(pts2(1,ii),pts2(2,ii),pts2(3,1ii));

line ([pts3(1,ii),pts2(1,ii)],[pts3(2,ii),pts2(2,1ii)]

,[pts3(3,ii) ,pts2(3,1ii)],’LineWidth’ ,4)

% scatter3(pts3(1,ii),pts3(2,ii),pts3(3,1ii));

line([pts3(1,ii),pts4(1,ii)],[pts3(2,ii),pts4(2,1ii)]

,[pts3(3,1ii) ,pts4(3,ii)],’LineWidth’ ,4)

% scatter3(pts4(1,ii),pts4(2,ii),ptsd(3,1ii));

86 Hand-eye Coordination of a Robotic Arm using KSOM Network

line ([pts5(1,ii),pts4(1,ii)],[pts5(2,1ii) ,pts4(2,1ii)]
,[pts5(3,ii) ,pts4(3,ii)],’LineWidth’,4)
% scatter3(ptsb(1,ii),ptsb5(2,ii),pts5(3,ii));
end
hold on;
% legend (’Manipulator Link?’)
e=norm (Xt-Xdt)/size (Xt ,2);
for i=1:p
for j=1:q
for k=1:r
figure (3)
scatter3(wW(1,i,j,k),w(2,i,j,k),W(3,i,j,k))
hold on;
end
end
end

MATLAB COODE FOR TESTING-3 LINK MANIPULATOR
%% Testing 1
load (’ksom_3dof_weights ’);
a=0;
Xmiddle=(Xmax+Xmin) /2;
Ymiddle=(Ymax+Ymin) /2;
Zmiddle=(Zmax+Zmin) /2;
Rp=0.08;
Xt=0;
Xdt=0;
for j=0:0.1:1
a=a+1;
Xdt (1,a)=Xmin*(1-j)+Xmax*j;
Xdt(2,a)=Ymax*(1-j)+Yminx*j;
Xdt (3,a)=Zmin*(1-j)+Zmax*j;
end
ndsT=a;
for nds=1:ndsT
nds
for i=1:p
for j=1:q
for k=1:r
Dis(i,j,k)=norm(W(:,i,j,k)-Xdt(:,nds));
end
end
end
Dis_min=min(min(min(Dis)));
a=0;
for i=1:p
for j=1:q
for k=1:r

Introduction to Learning-Based Inverse Kinematic Control

if (Dis(i,j,k)==Dis_min)
a=a+1;
ai(a)=i;
aj(a)=j;
ak (a)=k;
end
end
end
end
if (a>1)
fprintf (’More than one min distance values’);
break;
end
for i=1:p
for j=1:q
for k=1:r
H(i,j,k)=exp(-((ai-i)~2+(aj-j) "2+(ak-k)~2)/
(2*sigfin*sigfin));

end
end
end
Y_temp=zeros(3,1);
for i=1:p
for j=1:q
for k=1:r

Y_lambda_Theta_O0(:,i,j,k)=H(i,j,k)*(Theta_lambda(:,i,j,k)
+A(C:,:,i,j,k)*(Xdt(:,nds)-W(:,1,3,k)));
Y_temp=Y_temp+Y_lambda_Theta_O0(:,i,j,k);
end
end

end

s=(sum(sum(sum(H))));
Theta(:,nds)=(Y_temp)/s;

R=(12*cos (Theta(2,nds)))+(13*xcos(Theta(3,nds)))+t;

V_0= R*cos (Theta(1l,nds));

V_0= R*sin(Theta(1,nds));
V_0=(12*sin(Theta(2,nds)))+(13*sin(Theta(3,nds)))+11;
lol=0;

error=10;
while (error>0.001)

lol=1lol+1;
Co_act=zeros (nop,p,q,r);
Corr_action=zeros (nop,1);
for i=1:p
for j=1:q
for k=1:r
Co_act(:,i,j,k)=H(i,j,k)*A(C:,:,1i,j,k)*x(Xdt(:,nds)-V_0);
Corr_action=Corr_action+Co_act (:,i,j,k);
end

87

88 Hand-eye Coordination of a Robotic Arm using KSOM Network

end

end
Theta_1=Theta_O+(Corr_action/s);
R=(12*cos (Theta_1(2,1)))+(13*cos(Theta_1(3,1)))+t;
Xt (1,nds)= R*cos(Theta_1(1,1));
Xt (2,nds)= R*sin(Theta_1(1,1));
Xt (3,nds)=(12*sin(Theta_1(2,1)))+(13*sin(Theta_1(3,1)))+11;
error=norm (Xt (:,nds)-Xdt (:,nds));
Theta_O=Theta_1;
V_0=Xt(:,nds);

if (101>100)

break;

end

end
Teeta(:,nds)=Theta_1;
pts1(:,nds)=[0;0;0];
pts2(:,nds)=[0;0;11];
pts3(:,nds)=[12*xcos(Theta_1(2,1))*cos(Theta_1(1,1));
12*cos (Theta_1(2,1))*sin(Theta_1(1,1));
12*sin(Theta_1(2,1))+11];
pts4(:,nds)=[(R-t)*cos(Theta_1(1,1));(R-t)*sin(Theta_1(1,1)

—)
; Xt (3,nds)];
pts5(:,nds)=[Xt(1,nds);Xt(2,nds);Xt(3,nds)];
end
figure (1)
grid on;
scatter3(Xt(1,:)’,Xt(2,:)’,Xt(3,:)’,50,’b’,’07);
grid on;
hold on;
legend (’End effector position’,’Desired Trajectory’,
’Manipulator Link?’)
plot3(Xdt(1l,:),Xdt(2,:),Xdt(3,:),’k’,’lineWidth’,2);
hold on;
xlabel (’X-axis’);
ylabel (’Y-axis’);
zlabel (’Z-axis’);
for ii=1:nds
% scatter3(pts1(1,ii),pts1(2,ii),pts1(3,1ii));
line ([pts1(1,ii),pts2(1,ii)],[pts1(2,1ii),pts2(2,1ii)],
[pts1(3,ii),pts2(3,ii)], ’LineWidth’,4)
% scatter3(pts2(1,ii),pts2(2,1ii),pts2(3,1i));
line ([pts3(1,ii),pts2(1,ii)],[pts3(2,1ii),pts2(2,1ii)],
[pts3(3,ii),pts2(3,ii)], ’LineWidth’,4)
% scatter3(pts3(1,ii),pts3(2,1ii),pts3(3,1ii));
line ([pts3(1,ii),pts4(1,ii)],[pts3(2,1ii),pts4(2,1ii)],
[pts3(3,ii) ,pts4(3,ii)],’LineWidth’,4)
% scatter3(pts4(1,ii),pts4(2,1ii),pts4(3,1ii));
line ([pts5(1,ii),pts4(1,ii)],[pts5(2,ii) ,pts4(2,1ii)],

Visual Motor Control of a Redundant Manipulator using KSOM Network 89

[pts5(3,ii) ,pts4(3,ii)],’LineWidth’ ,4)
% scatter3(pts5(1,ii),pts5(2,ii),pts5(3,1ii));
end
hold on;
e=norm (Xt-Xdt)/size (Xt ,2);
for i=1:p
for j=1:q
for k=1:r
figure (3)
scatter3(W(1,i,j,k),w(2,i,j,k),W(3,1i,j,k))
hold on;
end
end
end

3.4 Visual Motor Control of a Redundant Manipulator
using KSOM Network

In the previous section, it is discussed how to make use of KSOM based
network to learn the inverse kinematics of a robot manipulator. In this section
we consider a 7 degrees of freedom manipulator as shown in figure 3.11. This
robot manipulator is a modular power PowerCube manufactured by Schunk.
The kinematic model of this manipulator is given in Chapter 2. The visual
feedback is provided by the two overhead cameras. The integration of the
camera model with the kinematic model is also provided in Chapter 2.

The KSOM network for visual motor control (VMC) using the standard
model given in the previous section is given in Figure 3.12.

The input to this network is u; which is the target position in the visual
space. A 3-d lattice has been taken as the task space is always that of 3-d
even if the manipulator considered here has 7 DOF. Each camera gives the
centroid of the target object as @, y.. Thus u; = [zlylzlyl]T. r and [refer to
right and left overhead cameras. In this network the coarse and fine actions
are given as:

ou 1
gt = ; Z hy (0 + Ay (ug — wy)) (3.39)
R

07" = 05" + 571 " hy A (uy — vo) (3.40)
ol

One can notice that the only change that has happened here is that x has
been replaced by u;. The weight update laws for the visual motor control are
thus given as

Wey 4= Wry + NPy (U — W) (3.41)

90 Hand-eye Coordination of a Robotic Arm using KSOM Network

Running on Computer

‘ ug (=1 y1)
! Neural < Image .
: Network Processing '
I <« Unit i(z2, y2)
|
l

N

0

Cameral

Joint

angle

vector

Servo
Driving
Unit

7DOF PowerCube
Robot Manipulator

Camera?2

FIGURE 3.11: Schematic of a visual motor control system. u; and u, are the
4-dimensional image coordinate vectors for target point and robot end-effector

respectively.

Vision space g Joint space

KSOM Lattice 1—

Uy

FIGURE 3.12: KSOM network for visual motor control.

Visual Motor Control of a Redundant Manipulator using KSOM Network 91

0 < 0y +n9 G, (3.42)
A, — A, +n4AA, (3.43)
where
h ou _
A, = ?7 gt — 571 Zh”(gw + A, (vo — wv))] (3.44)
¥
AA, = ﬁ JAV A Z hy A, Av | AvT (3.45)
s||Av
¥

The above standard SOM-based VMC scheme has following limitations which
restrict its applicability to redundant manipulators:

o It is found that for a redundant manipulator with 6 or higher degrees of
freedom, although the SOM lattice neurons preserve topology of the input
space as shown in Fig. 3.13, the lattice fails to preserve the topology of
output (joint angle) space as shown in Fig. 3.14. In Fig. 3.13, it can be seen
that the weight vectors (w) represented by square ‘boxes’ are spread out
uniformly over the input space. On the other hand, in Fig. 3.14, we find
that the clusters in joint angle space (6.) represented by square ‘boxes’
are concentrated at one location. It would be shown in the simulation
section that because of the fact that the network fails to capture the
output topology, the positioning accuracy attained using standard SOM
algorithm is sensitive to initial conditions.

« Training Data 1 « Training Data
o Lattice Neuron vector (w‘,) . o Lattice neuron vector (\W
= ° .

0.5 0.5

Y - Pixel
(=}

Y - Pixel
[=]

-0.5

FIGURE 3.13: Clustering in image-coordinate (input) space. Lattice neurons
capture the topology of input space during training. The circular dots denote
the actual input data generated during training and the square represent the
cluster centers w,.

92 Hand-eye Coordination of a Robotic Arm using KSOM Network

Training data +

i -. nvector6, O

(a) Space formed by first 3 joint angles (b) Space formed by last 3 joint angles

FIGURE 3.14: The topology of output space is not captured by the original
VMC algorithm during the evolution of parameters (training phase). While
the training data shown by ‘+’ signs are distributed across the entire volume,
the cluster centers 8., are collected at one location.

e The standard SOM algorithm returns a unique inverse kinematic solution
for any target in the manipulator workspace. This might not be desirable
in case of redundant manipulators where one would like to choose a dif-
ferent configuration to satisfy some additional requirements. Even though
the training data sets are replete with redundant solutions, there is no
provision to preserve this redundancy during the evolution of parameters.

3.4.1 The Problem

In case of 2-d and 3-d manipulators, during the training, the robot is asked to
reach 3000 and 6000 random target positions. But in case of 7 DOF manip-
ulator, the number of training examples required may increase significantly.
During the training, we actuate a random joint angle vector within given joint
constraints to the forward kinematics. This will make the robot tip position
to reach a random target position. This random position as seen by the two
overhead cameras becomes the input for the KSOM network to actuate a joint
angle vector. If we select ten random angles for each joint, then for seven joints,
the total number of target positions generated will be 107. This is surely a
very large number of training data set. In stead we generate 50,000 random
joint angle vectors. Using the integrated kinematic-camera model, 50,000 tar-
get positions in the visual space are obtained. It will be shown in this section
that these many training examples are sufficient to train the network.

There is another problem associated with redundancy. A redundant manip-
ulator can reach a target position in infinite possible kinematic configurations.
In practice, many joint angle vectors will make the robot tip position which is
also called as the end-effector to reach the same target positions. So the robot
will reach same target position in many possible kinematic configurations.

Visual Motor Control of a Redundant Manipulator using KSOM Network 93

3-dimensional KSOM lattice

FIGURE 3.15: Sub-clustering in joint angle space: Each node =y is associated
with one weight vector w., and several 8 vectors.

Earlier we associated only one linear model with each neuron. But each neuron
has to be associated with multiple linear models for a redundant manipulator
as shown in figure 3.15.

The idea is to associate each lattice neuron with several joint angle vectors.
Each joint angle vector is a linear expression in terms of 6., Ajamma and w,.
The advantage is that for every target position, it is possible to have several
configurations, and one can choose a suitable configuration based on some task
oriented criterion. In this approach, clustering is carried out independently in
the task space as well as in the configuration space and a linearized inverse
kinematic relationship is learned between each pair of input-output clusters.
Since each cluster in task space is associated with more than one cluster
in configuration space, redundancy is resolved in real time using different
criteria. This approach is different from PSOM based methods proposed by
Walter and Ritter [137-139], where constraints are included in forming a map
manifold over which the training is carried out. This in turn, necessitates a
priori knowledge of the task at hand.

Another problem associated with the redundant manipulator is that the
number of kinematic configurations in which the robot can reach a target
position will get reduced as the target position varies from the interior of
the workspace toward the external boundary of the workspace. So we can-
not assign a fixed number of linear models with each neuron. Thus following
modifications have been done to the network architecture.

o Instead of fixing the number of sub-clusters a priori, the number is decided
adaptively during on-line training process. A new sub-cluster is created
whenever the incoming data vector is far away from the currently existing

94 Hand-eye Coordination of a Robotic Arm using KSOM Network

sub-clusters. Through simulations, it is shown that this scheme helps
in preserving the topology in joint angle space by avoiding creation of
outliers.

e The smoothness of joint angle trajectories can be preserved by using
the neighborhood concept where the network output is taken as the
weighted average of individual neuron outputs. The weighting coefficients
are obtained from a neighborhood function. Since each input cluster is
associated with more than one output cluster, the conventional neighbor-
hood concept as used by Martinetz et al. [140, 141] cannot be used. A
modified neighborhood concept is proposed to preserve the conservative
property of the inverse kinematic solution. The concept explained in detail
later in this chapter.

3.5 KSOM with Sub-Clustering in Joint Angle Space

Any point within the 3-dimensional Cartesian workspace of the manipula-
tor may be reached using only 3 degrees of freedom. The presence of higher
degrees of freedom provide dexterity in performing the task at hand. In other
words, apart from reaching the point, the extra degrees of freedom may be
used to perform some additional tasks like avoiding obstacles, meeting joint
angle limits or satisfying other motion constraints. The proper utilization of
available degrees of freedom has been an interesting problem for researchers.

In the context of visual motor control using KSOM networks, redundancy
resolution has been dealt with by many authors. For instance, Martinetz et
al. [142] applied KSOM algorithm to a 5 DOF manipulator and argued that
because of neighborhood function, the redundancy is resolved ‘naturally’ by
using ‘lazy arm method.” Han et al. [143] and Zha et al. [144] used SOM for
avoiding obstacles. Zheng et al. [145] resolved redundancy by optimizing some
task oriented criteria. Most of these methods have been applied to 3, 4 or 5
DOF manipulators and each method resolves redundancy in only one way.
The redundancy resolution scheme is learned during the training phase itself.
Hence once the network is trained, it is not possible to change the redun-
dancy resolution criterion while computing the inverse kinematic solution.
Since most of the current VMC schemes involve time consuming training pro-
cess, retraining the network for a new redundancy resolution criterion is not
desirable.

In case of redundant manipulators, several sets of joint angle vectors may
lead to same end-effector position. Thus, the data generated during training
phase consists of redundant data sets. The current VMC algorithms explained
in the beginning of the Section 3.4 do not have provisions to preserve this
redundancy in the solution space. In the previous chapter, a concept called

KSOM with Sub-Clustering in Joint Angle Space 95

3-dimensional KSOM Lattice

FIGURE 3.16: Sub-clustering in joint-angle space. Each lattice neuron = is
associated with one weight vector w, and several joint angle vectors 0$, A=
1,2,...,N,. Here N, = 3.

‘sub-clustering in joint angle space’ is introduced to preserve this redundancy
in a useful manner. The idea is to associate multiple angle vectors with each
lattice neuron as shown in Fig. 3.16. Since the number of redundant solutions
available for a target point varies across the manipulator workspace, the num-
ber of sub-clusters to be associated with each neuron is decided on-line based
on the distribution of generated data points.

3.5.1 Network Architecture

The network architecture for sub-clustering is reproduced here for conve-
nience. It consists of a 3-dimensional SOM lattice where each lattice neuron
is associated with a 4-dimensional weight vector w, and several 6-dimensional
joint angle vectors as shown in Fig. 3.16. Let us assume that each lattice
neuron <y is associated with N, numbers of angle vectors given by OZy, j =
1,2...,N, and an equal number of Jacobian matrices A% Jj=12,...,N,
of dimension 6 x 4. The number N, varies with each v and is decided on-
line based on the actual data distribution. When lattice neuron v becomes a
winner for a given input vector u, this network architecture can actuate N,
kinematic configurations by which the robot manipulator can reach the same
target as per following relation:

0 =6 + Al (uy —w,); j=1,2...,N, (3.46)

For this network architecture, the parameters 0% and A% cannot be learned

using standard SOM algorithm. Unlike standard SOM algorithm, we propose

96 Hand-eye Coordination of a Robotic Arm using KSOM Network

an on-line clustering algorithm to learn 9% while the error-correcting gradient
learning for A, in standard SOM algorithm has been adapted to learn A%.

3.5.2 Training Algorithm
The training phase consists of following steps:
1. Set the iteration counter k = 1.

2. Data generation: A training data set (0, u;) is generated using robot and
camera models during simulation. The robot manipulator is commanded
a movement in joint angle space by generating a random vector 6; within
physical limits while the input vector u; is recorded from camera output.

3. Clustering in input space: For each 4-dimensional target input u;, a winner
neuron g is selected based on minimum Euclidean distance as shown in
equation (3.1). The weight vectors corresponding to the winner neuron p
and the neighboring neurons are updated as per equation (3.41) for the
given target vector uy.

4. Clustering in output space: Let’s assume that this winner neuron pu is
associated with IV, number of 6 vectors given by Bi,j =1,2,...,N,. The
incoming target angle vector 6; is used to create a new angle vector or
update the existing angle vectors as per following conditions:

o Casel: If N, =0, i.e., there is no 6 vector associated with this neuron,
then assign the target joint angle vector 8; as its first center. That
is, 07T = 0], = 6,.

o Case II: If N, > 0, following steps are followed:

— Find the angle vector Bft which is nearest to the incoming angle
vector 8;. Let’s call the winner among these angle vectors be Hﬁ

where _
[5’:zanrgmjin||0{b—0t||7 j=12,...,N, (3.47)

— If the minimum distance d,u;, = Heﬁ — 0] < K, where K is
a user-defined threshold, the angle vectors are updated using a
competitive rule given by

6,k + 1) = 07,(k) + nhg; (0, — 07, (k)) (3.48)

—(B-7)?
2at2

where hg; =€ is the neighborhood function used for sub-
clustering. A suitable value of spread of Gaussian function oy is
selected for this purpose.

— If dpmin > K, create a new centre and assign the incoming 6,
vector to it and increment the count of angle centers associated
with this winner neuron p from N, to N, + 1. In other words,
0 =0,

KSOM with Sub-Clustering in Joint Angle Space 97

5. Coarse Movement: Because of sub-clustering, the winner neuron p is
associated with N, sub-clusters in joint angle space given by Oi, j =
1,2,...,N,. For the given target point u, the network has IN,, outputs
given by ' ‘ ,

0y =0, + Al (u; —w,); j=1,2,....N,. (3.49)

These are called coarse movements. These coarse movements lead to end-
effector positions v{), j =1,2,..., N, as recorded by the cameras.

6. Fine movement: Based on the current positioning accuracy for each end-
effector position v}, a fine movement may also be carried out as follows:

0] = 0} + Al (u, — v)) (3.50)
The new end-effector positions are recorded as V{, Jj=12,...,N,.

7. The difference Av? = v]i fvé is used to update the corresponding Jacobian
matrix A{L S0 as to minimize the error

1 . . .
E; = §(A9-7 — AL AV7)? (3.51)
This gives following update law for Jacobian matrices:
j — Al T (AGT AT AV AT
Al (k+1) = A (k) + IREIE (A97 — A) AV?)Av (3.52)

8. Increment the iteration counter k = k + 1 and go to step 1.

Note that during training phase, the output of the network is not an weighted
average of all the neurons as was previously done. It is because of the fact
that the number of @ clusters associated with neurons are not same and hence
the usual neighborhood concept cannot be used in this case.

3.5.3 Testing Phase

o For a given target point uy, the winner neuron u is computed based on its
minimum Euclidean distance from the target in input space as given by
(3.1). This winner neuron is associated with several, say, N,, sub-clusters
in joint angle space.

e One can choose among these sub-clusters based on some criterion. The
redundancy is resolved using three criteria namely, lazy arm movement,
minimum angle norm and minimum condition number of Jacobian matrix.
Let the winning joint angle sub-cluster be 5. Once the winner indices p
and [are computed, coarse and fine joint angle outputs are given by

0y = 05 =0+ A(u —w,) (3.53)
0 = 6 =00+ Al(u —vo) (3.54)

98 Hand-eye Coordination of a Robotic Arm using KSOM Network

where v is the end-effector position recorded after coarse movement. Mul-
tiple steps may be taken to improve the positioning accuracy further.

3.5.4 Redundancy Resolution

Sub-clustering gives rise to multiple configurations for every target position.
Let the index of winner neuron in input space be p and this winner neuron is
associated with IV, sub-clusters. One can select a suitable configuration based
on different criteria. In this chapter, the following three criteria are used for
resolving redundancy:

e Lazy arm movement: The angle sub-cluster which is closest to the current
robot configuration is selected as the winner. The winning sub-cluster for
these criteria is given by

B = argmin 6], — 6| (3.55)

where 6. is the current robot configuration.

o Minimum angle norm: The angle sub-cluster whose norm is minimum is
selected as the winner. The winning sub-cluster for this criteria is given
by _

_ ; J
B = argmin |6, (3.56)

o Minimum condition number: The matrix Ai represents a local inverse
image Jacobian matrix associated with each joint angle vector Oi. For
visual motor control, it is desirable to have low condition number for image
Jacobian matrices to improve the robustness and numerical stability of the
system [146]. Sometimes the condition number of image Jacobian matrix
is used as measure of perceptibility of motion [147,148]. The perceptibility
is a quantitative measure of the ability of a camera setup to observe the
changes in image feature due to motion of robot end-effector. It is used to
evaluate the ease of achieving vision-based control and steering away from
singular configurations [147].

Since several joint angle configurations are available for a given winner
neuron, each associated with an inverse Jacobian matrix, one can choose a
particular configuration based on the minimum condition number of these
matrices. The winning sub-cluster based on minimum condition number
is given by

B = arg mjln[cond(AfL)} (3.57)

where cond(Aj,) is the condition number of the matrix AJ,.

KSOM with Sub-Clustering in Joint Angle Space 99

3.5.5 Tracking a Continuous Trajectory

Unlike original VMC algorithm, the neighborhood function is not used during
the training phase. This might not be of concern when the task is to reach
isolated points in the workspace. However, one would like to have a continuous
trajectory in joint angle space for a continuous trajectory in image coordinate
space. In other words, the conservative property [149] of inverse kinematic
solution is desirable and needs to be preserved.

Use of neighborhood helps in maintaining a continuous trajectory in the
joint angle space by avoiding abrupt changes in the joint motion. This happens
because the network output is obtained by taking the weighted average of
individual neuron outputs within a neighborhood around the winner neuron.
In order to facilitate further discussion, we divide the available configurations
into following two classes:

o Each joint angle sub-cluster represents a particular robot configuration.
Two configurations, Of/ and 67, are said to be similar if ||0ﬁ/ -0 <
K, i # j, v # XA and K is an arbitrarily small constant. Otherwise, they
would be called dissimilar configurations.

o All angle sub-clusters associated with each neuron ~ are dissimilar. In
other words, ||0?y - OZYH > K for i # j. Note that K is the threshold that
was used for creating a new sub-cluster during training phase. Refer to
the discussion under section “clustering in output space”.

The concept of neighborhood in a sub-clustered environment employed
in this paper is explained in Fig. 3.17. In this figure, w, and w, are two
neighboring neurons, represented by their respective weight vectors. The angle
sub-clusters associated with them are represented by 6-, i = 1,2,..., N, and
03)'\, j =1,2,..., Ny respectively. For simplicity, it is assumed that N, = N, =
5. Let’s assume that the lazy-arm criterion (LA) selects the angle vector ‘2’
in case of 7 neuron and ‘5’ in case of A neuron (refer to (3.55)). On the other
hand, the minimum-angle norm criterion (MA) selects angle vector ‘4’ in case
of v and ‘3’ in case of A neuron (refer to (3.56)). The dotted lines show that the
configurations corresponding to these sub-clusters are similar. In other words,
the configurations (v, 2) and (X, 5) are similar and so are the configurations
(v, 4) and (A, 3).

The network output is obtained as a weighted average over all similar joint
angle vectors. The coarse and fine joint angle movements, after incorporating
neighborhood, are given by following two equations

Zh'y(gﬁﬁ/(’ﬂ + A’ﬁy(v)(ut _ ny))
6y = — (3.58)

S
ol

100 Hand-eye Coordination of a Robotic Arm using KSOM Network

Neighboring nodes

in i dinate pl
in image coordinate plane Angle sub-clusters

l IlA 1\1{A /

1 2 3 4 5
o 0L 02 63 0t 03
Woy - < '/
» 'S
—*| pnl 2 3 4 5
o O S - S
WX

FIGURE 3.17: Defining neighborhood in sub-clustered environment. (w.,, 9’2v)

and (wy, 03) are similar configurations for lazy-arm criterion when v and X
are neighboring neurons in input space.

Z thg(W)(ut —vp)
0, =6y + — (3.59)

S
v

ly=pl?
where h, = e~ "5 s the neighborhood function defined in input space. p

is the winner neuron in input (image coordinate) space. () is the index of
the winning angle sub-cluster associated with the neuron +. The winning sub-
cluster for each neuron 7 is obtained using the same criterion which was used
for winner neuron pu. In the simulation section, it would be shown that the
use of neighborhood results in a smooth trajectory in the joint angle space.

.|
3.6 Simulation and Results

3.6.1 Network Architecture and Workspace Dimensions

A 3-dimensional neural lattice with 7 x 7 x 7 neurons is selected for the task.
Note that 10 x 10 x 10 nodes were used for least square based method in the
previous chapter. With the current scheme, this smaller network is found to be
adequate for obtaining better accuracy. Training data is generated using for-
ward kinematic model (2.1) and camera model (4.12). A Cartesian workspace
of dimension of 600 mm x 500 mm x 500 mm is considered for both simula-
tion as well as experiment. All points within this workspace are visible through
both the cameras of the stereo-vision system. Joint angle values are generated

Simulation and Results 101

randomly within the physical limits of the manipulator and only those input-
output pairs are retained where the end-effector positions are visible by both
the cameras simultaneously. The ranges of input and output spaces are given
in Table 2.2. Since end-effector positions in camera plane and joint angles have
different range of values, data points are normalized within +1.

3.6.2 Training

The network is trained offline using 50,000 data generated using forward kine-
matic model (2.1) and (4.12). Again, it is to be noted that this data size is
one-tenth the size of the training set used in the least-square based method
discussed in the previous chapter. The training can be carried out ‘on-line’
which would necessitate generating data by moving the robot continuously.
Generating such a large number of data on a real system might not be con-
venient. Hence we follow the hybrid approach proposed by Behera et al. [150]
where, a network is trained offline using approximate models and then it is
fine-tuned during online operation.

A new 6 sub-cluster is formed whenever the distance of incoming 6; from
the existing nearest sub-cluster exceeds the threshold K = 1.0. The distribu-
tion of sub-clusters for lattice neurons is shown in Fig. 3.18(a). The number
of sub-clusters associated with each neuron varies between 10 to 35. The dis-
tribution of joint angle sub-clusters in 3-dimensional manipulator workspace
is shown in Fig. 3.18(b). It is seen that the points with less number of redun-
dant solutions lie toward the boundary of the workspace as shown by ‘+’
symbols (no. of solutions < 19). The number of points with very large num-
ber of redundant solutions is also less as shown by circles (no. of solutions >
30). The square symbols represent points with number of solutions in between
19 and 30. It is a common observation that the number of inverse kinematic
solutions for a given target position varies across the manipulator workspace.
This distribution of redundant solutions is captured effectively by the pro-
posed architecture as shown in the Figure 3.18(b).

The discretization of input and output spaces by the lattice neurons is
shown in Fig. 3.19. It is seen that the topology is captured by the lattice
neurons both in input and output spaces. Since the number of sub-clusters for
each neuron is decided based on the input data distribution, the outliers are
automatically avoided. Outliers are the neurons which do not represent input
data. In Fig. 3.19(a)-3.19(b), it is seen that all sub-clusters are surrounded
by training data points and they do not lie in an empty region. These results
are in contrast to that of a standard SOM algorithm as shown in figure 3.14
where clusters are localized and some of them are outliers.

3.6.3 Testing

The following tasks were performed to demonstrate the efficacy and usefulness
of the proposed schemes.

102 Hand-eye Coordination of a Robotic Arm using KSOM Network

40

w
a2
o

u
g
6o,

Number of Sub-clusters (Ny)
s |5
%
o
8
o
3
8
8
%
ge 8
o
°
o
8

@
o

100 200 300
Lattice index (y)

(a) (b)

FIGURE 3.18: (a) The number of sub-clusters for lattice neurons. The num-
ber of sub-clusters vary from one neuron to another. The number of sub-
clusters for a neuron is decided on-line based on the training data distribution.
(b) Distribution of joint angle sub-clusters in the 3-dimensional manipulator
workspace. The number of solutions available for a given target point varies
across the workspace. There are very few points where the number of available
solutions are too high. The number of solutions decreases toward boundary
of workspace. In this figure, ‘+’ represents the points where the number of
sub-clusters N, < 18, squares represent the points with IV, is between 19 to
30 and circles represent points with IV, > 30. A typical robot configuration is
shown in solid line.

&

L9050 oooo
[R=SSN S SN

B N

Inputdata + Sub-cluster center &

(a) First 3 joint angles (b) Last 3 joint angles

FIGURE 3.19: KSOM-SC architecture captures the topology in the output
space thereby eliminating the limitations of standard KSOM-based architec-
tures. Since the number of joint angle sub-clusters are decided on-line based
on the actual data distribution, the outliers are automatically avoided. It’s
because a new sub-cluster is created only when the new training data is far
away from current sub-clusters.

Simulation and Results 103

3.6.3.1 Reaching Isolated Target Positions in the Workspace

The joint angle vectors were computed for 20,000 target positions located
randomly within the manipulator workspace. Only one step is used to compute
the necessary joint angles. The performance of the proposed sub-clustering
based scheme is compared with the standard SOM-based scheme [141, 150].
The performance comparison is provided in Table 3.2. Since the performance
of standard SOM-based schemes is found to depend on initial values of network
parameters, the test results are averaged over twenty different runs. Each run
starts with a different random initialization.

As discussed earlier, sub-clustering based scheme preserves the redundancy
available in training data and provides a finite number of joint angle vec-
tors for every target position in the manipulator workspace. The redundancy
is resolved using three criteria namely, “lazy-arm method (LA),” “minimum
angle norm (MA),” and “minimum condition number (MC).” Various solu-
tions obtained for a given target point after resolving redundancy is shown in
Fig. 3.20.

From the Table 3.2, it is clear that sub-clustering based methods give
better positioning accuracy than the standard SOM-based schemes proposed
by Martinetz [140] and Schulten [141]. It is seen in Table 3.2 that standard
SOM algorithm gives rise to very large joint angle variation as reflected in the
magnitude of joint angle norm.

It is said earlier that the joint angle vectors associated with lattice neurons
do not capture the topology of output space. This makes the convergence of
standard SOM-based schemes sensitive to initial values of network parameters
as shown in Fig. 3.21(a). In this figure, average positioning error over 20,000
isolated target positions are shown for different runs, where each run starts
with a different random initialization and includes a training and a testing
phase. It is observed in Fig. 3.21(a) that the average positioning error varies
widely across different runs and can be as high as 100 mm. On the contrary,
the performance of sub-clustering based scheme using lazy-arm redundancy
resolution technique is comparatively less sensitive to initial conditions and

TABLE 3.2: Performance comparison for reaching isolated points

Scheme Average positioning error |Angle norm |learning
(normalized) |parameters
(nwa Nty Nas 0)

Cartesian Image space
space (mm) |(pixels)

Standard |24.93 7.87 1.54 0.1,0.2,0.9, 0.1
SOM

SC+ LA [3.83 1.22 0.83 0.1, 0.5, 0.9, 1.5
SC+ MA 3.0 0.95 0.76 0.1,05, 09, 1.5

SC + MC |18.67 6.33 1.38 0.1,0.9, 0.9, 0.2

104 Hand-eye Coordination of a Robotic Arm using KSOM Network

Z(m) Target []
Lazy Arm — -

FIGURE 3.20: Redundancy resolution using various criteria. Different criteria
give different configurations for the same target point.

performance remains constant across different runs. The average positioning
accuracy over all runs is below 4 mm implying that the proposed scheme is
very accurate in position tracking.

The advantage of an on-line incremental learning scheme is that one can
execute multiple fine movements (refer (3.54)) to improve the positioning
accuracy as shown in Fig. 3.21(b). This figure plots the number of fine move-
ment steps required to achieve a given average positioning error over 1000

& -a Standard KSOM — Stndard KSOM
—0 KSOM + SC — KSOM +SC

Average positioning error (mm)
Number of fine movements

393633 3 272421 1815120906 03 DD
Positioning error (mm)

(b)

FIGURE 3.21: (a) Dependence of convergence on initial conditions. Standard
SOM algorithm is sensitive to initial conditions and hence varies widely for
different runs. The performance of sub-clustering based scheme is indepen-
dent of initial conditions. (b) Improving positioning accuracy using multiple
fine movements. The results are obtained by averaging over 1000 test points.
Standard SOM algorithm requires very large number of fine movements to
attain accuracy below 1 mm as compared to sub-clustering based method.

Simulation and Results 105

test points. Since the standard SOM algorithm is sensitive to initial network
parameters, we have taken initial network parameters corresponding to run
14 where both standard SOM and proposed algorithm have same level of
performance. This figure shows that the standard SOM algorithm requires
seventeen fine movement steps to attain the average positioning accuracy of
0.1 mm while the proposed sub-clustering based method takes three steps to
attain the same accuracy. The result shown in this figure is in sharp contrast
to those reported by Angulo et al. [151] where authors take more than 1000
steps to attain that level of accuracy even when they use orientation infor-
mation to compute the inverse kinematic solution. Note that in Fig. 3.21(b),
the result for standard SOM is shown for those initial conditions for which
the network performance is comparable with the proposed scheme. Otherwise,
the performance of the standard SOM will further deteriorate for other initial
conditions.

3.6.3.2 Tracking a Straight Line Trajectory

The desired straight line trajectory in Cartesian space is given by

5., 1
= —x —
Y 6" " 20
5
z = 6(m+0.3) (3.60)

where —0.3 m < x < 0.3 m. Six hundred points are generated sequentially
on this line and the joint angles for each point are computed using only one
fine movement. Since learning algorithm has been designed so that it can be
used on-line, the parameters are updated even during the testing phase. This
helps in improving tracking accuracy. A typical tracking result obtained using
sub-clustering scheme is shown in Fig. 3.22(a). In this case, the redundancy is
resolved using lazy-arm criterion. The corresponding joint angle trajectory is
shown in Fig. 3.22(b). It is seen that for a continuous trajectory in Cartesian
space, the joint angle movement is continuous and hence the inverse kinematic
solution is conservative in nature. Performance comparison among various
redundancy resolution schemes is provided in Table 3.3. The solution based on
minimum condition number (MC) criterion does not give rise to continuous
joint angle movement. While the joint angle trajectory obtained using MA
criterion is unique for a given task space trajectory, the joint angle trajectory
obtained using LA criterion depends on current robot configuration. If all the
joint angles of the manipulator are reset to zero prior to robot movement,
then the solution for lazy arm movement converges to that of minimum angle
norm movement. Different criteria give rise to different trajectories in the
configuration space as shown in Fig. 3.23. This figure shows the solutions
obtained using two LA and MA criteria. The purpose of this figure is to show
that different criteria lead to different solution trajectories.

106 Hand-eye Coordination of a Robotic Arm using KSOM Network

Robot movement ——
Desired Trajectory - 63,05 First 3 angles [J

bast3angles O

pooooooo
QopwruoN®

IS
®

(a) Robot configuration (b) Joint angle trajectories

FIGURE 3.22: Tracking a straight line using lazy-arm criterion. A continuous
trajectory in task-space gives rise to a continuous trajectory in joint angle
space.

TABLE 3.3: Performance comparison for tracking a straight line trajectory

Criterion Average positioning error |Angle norm |learning
(normalized) | parameters
(T Nts Mas 0)
Cartesian Image space
space (mm) |(pixels)
SC T LA [201 0.75 0.89 0.9,0.9,09, 1.4
SC+ MA [2.70 0.63 0.77 0.9,0.9,009, 1.4
SC + MC |34.78 9.74 1.361 0.9, 0.9, 0.9, 1.4

z(mj?

Desired trajectory

dys configuration

Lazy Arm Motion - -

qum angle norm motion —=—

FIGURE 3.23: Redundancy resolution while tracking a straight line trajectory.
The minimum angle norm (MA) solution is independent of initial configura-
tion. The lazy arm (LA) solution depends on initial condition.

Simulation and Results 107

3.6.3.3 Tracking an Elliptical Trajectory

The desired trajectory to be traversed is given by

x = 0.2sint; y =0.540.2cost; z= g(x +0.3) (3.61)
where ¢ varies from 0 to 27. A total of 628 points are generated sequentially
on this trajectory, the joint angles are computed in one step for each point. A
typical trajectory obtained using lazy-arm criterion and sub-clustering tech-
nique is shown in Fig. 3.24(a). The corresponding trajectories for joint angles
is shown in Fig. 3.24(b). This reaffirms our previous assertion that the inverse
kinematic solution obtained is conservative. The performance comparison for
different schemes is provided in Table 3.4. Similar references can be drawn
from this table as it was done in case of a straight line trajectory.

Normalized Values

Desired Trajectory
Robot configurations

First3angles +
Last3angles X

(a) Robot configuration (b) Joint angle trajectories

FIGURE 3.24: Tracking an elliptical trajectory using lazy arm movement.
The inverse kinematic solution is conservative in the sense that a closed loop
trajectory in task space gives rise to a closed trajectory in configuration space.

TABLE 3.4: Performance comparison for tracking an elliptical trajectory

Criterion Average positioning error |Angle norm |learning
(normalized) |parameters
(nwa Nty Nas 0)

Cartesian Image space
space (mm) |(pixels)

SC + LA 1.44 0.42 1.0 0.9, 0.9, 0.9, 2.0
SC + MA |1.28 0.42 0.82 0.9, 0.9, 0.9, 2.0
SC + MC |22.78 6.82 1.55 0.9, 0.9, 0.9, 2.0

108 Hand-eye Coordination of a Robotic Arm using KSOM Network

&

cemeral

Display panels

FIGURE 3.25: Experimental setup for VMC experiment.

3.6.4 Real-Time Experiment

The actual setup used for experiment is shown in Figure 3.25. The Cartesian
workspace visible by both cameras has a dimension of 600 mm x 600 mm X
500 mm. The image frame has a dimension of 320 x 240 pixels. A yellow
ball is taken as a target and robot tip is identified using pink color. The
regions of interest are extracted using thresholding and filtering operations.
The centroid of the region is used by the VMC algorithm to compute necessary
joint angles. All image processing tasks are carried out using OpenCV library
[135]. The algorithm is implemented using C/C++ on a computer with Intel
Pentium 4 1.8 GHz processor. The cameras are calibrated using Reg Wilson’s
C implementation of Tsai algorithm [134]. In order to reduce positioning error
in real-time experiment, LEDs are used to detect end-effector position as well
as target position in a dark environment. The time required for manipulator
to execute a given joint angle command is approximately 80 milliseconds. The
image processing unit must provide the coordinates of the target within this
time interval. During closed loop operation, the synchronization between the
image processing unit and robot arm motion is carried out using software
timers.

The Cartesian workspace visible by both cameras has a dimension of
600 mm x 600 mm x 500 mm. The image frame has a dimension of 320 x 240
pixels. The target and the robot tip are identified with yellow and pink colors
respectively. The initial location of robot end-effector and target in the image
plane is shown in Figure 3.26(a). The regions of interest are extracted using
thresholding and filtering operations. The centroid of the region is used by
the VMC algorithm to compute necessary joint angles. These joint angles are
applied to the robot and it moves to a position as shown in Figure 3.26(b). This
figure shows the final state of manipulator obtained after robot movement. The

Simulation and Results 109

(a) Initial state (b) Final state

FIGURE 3.26: Extraction of pixel coordinates for robot end-effector and tar-
get. Initial state is the state before robot movement. The final state refers to
state obtained after robot movement.

error is computed after making corrections for the pixel width of the robot
end-effector as well as the target object. The accuracy in detecting tip position
is further improved by using LEDs against a dark background.

The proposed scheme can be implemented on-line as was done by Schulten
[140, 141]. However, we used a hybrid approach as suggested by Behera et
al. [150] where the SOM network is trained offline by generating data from
the model rather than from the actual system. This reduces the demand on
on-line data generation.

The trained network was used on-line to compute joint angle vectors for
20 random locations in the manipulator workspace. Since it was not possible
to accurately measure the manipulator tip positions in world coordinate, the
distance error was measured directly in pixel coordinates. Only one fine step
was used to compute the necessary joint angle vector for each point. The
average distance error in the image plane is computed to be 12 pixels. This
error can be reduced by taking multiple fine steps. It takes fifteen steps, on
an average, for reaching an accuracy of about 1 pixel for a given target point
in the image plane.

3.6.4.1 Redundant Solutions

Although a redundant manipulator can reach a target point using more than
one joint angle configuration, existing learning algorithms can provide only a
unique inverse kinematic solution. However, the proposed redundancy preserv-
ing network provides multiple solutions simultaneously for any given target
position. Fig. 3.27 shows some of these inverse kinematic solutions for a given
target position represented by a yellow ball. Readers should be able to appre-
ciate that the yellow ball has been reached by many kinematic configurations.
Although the network provides multiple solutions, a particular configuration
can be selected based on the task requirement.

110 Hand-eye Coordination of a Robotic Arm using KSOM Network

(d) Configuration 4 e) Configuration 5 (f) Configuration 6
FIGURE 3.27: Redundant solutions for a given target position: The target
is a yellow ball which is reached by the manipulator using various kinematic

configurations. Six such kinematic configurations are shown in this figure.

O O

(a) Camera 1 (b) Camera 2

FIGURE 3.28: Tracking a circular trajectory as observed in the image plane.
Thin line represents the desired trajectory and the thick line is the trajectory
of actual end-effector position. The end-effector is detected using an LED in a
dark environment. The image has been processed to ensure visibility on paper.

3.6.4.2 Tracking a Circular and a Straight Line Trajectory

The real-time experimental results for tracking a circular trajectory are shown
in Fig. 3.28 and the results for tracking a straight line trajectory are shown
in Fig. 3.29. The desired trajectories are specified directly on the image plane
using a camera model. In Fig. 3.28, the desired trajectory is shown as a thin
line and the actual end-effector trajectory is shown in thick points. In Fig. 3.29,
the desired and actual positions are shown in red and blue colors respectively.
Due to the overlap of colors, the actual trajectory appears discontinuous. The
end-effector position is detected using an LED against a dark background.
The average positioning error in both cases is 8 pixels.

Summary 111

/ \

(a) Camera 1 (b) Camera 2

FIGURE 3.29: Tracking a straight line trajectory as observed in the image
plane. The actual and the desired trajectories of the end-effector position
are demonstrated. The end-effector is detected using an LED against a dark
background.

A

0 g)

(a) Initial State (b) Coarse Move- (c) Fine Movement - (d) Fine Movement -
ment Step 5 Step 15

FIGURE 3.30: Multi-step Movement: The rectangular box with solid bound-
ary is the target specified on image plane that is to be reached. The current
end-effector position is shown with a box with dashed boundary. (a) shows
the initial state. The end-effector LED appears as black dot. (b) shows the
state after coarse movement. (c) shows the end-effector position after five fine
movement steps, and (d) shows the final end-effector position obtained after
15 fine movement steps. The final positioning error is less than 1 pixel. The
images have been processed to ensure visibility on paper.

3.6.4.3 Multi-Step Movement

In order to improve positioning accuracy of end-effector, multiple fine move-
ment steps are applied to the manipulator, and the corresponding results
are shown in Fig. 3.30. The first step is a coarse movement as shown in Fig.
3.30(b). The positioning error is approximately 15 pixels after the coarse move-
ment. This error has been further reduced to 7 pixels and 1 pixels respectively
after five and fifteen fine movements as shown in Fig. 3.30(c) and Fig. 3.30(d).

3.7 Summary

This chapter shows that existing KSOM-based visual motor control algo-
rithms are inefficient for applications in redundant manipulators. The existing

112 Hand-eye Coordination of a Robotic Arm using KSOM Network

learning architectures do not preserve topology of the output space (refer Fig.
3.14). Thus such algorithms become sensitive to initial network parameters
as shown in Fig. 3.21(a). Since existing learning architectures do not preserve
redundancy, the redundant manipulator cannot perform dexterous tasks using
these VMC algorithms.

Thus a KSOM based redundancy preserving network proposed in the pre-
vious chapter is used to provide several kinematic configurations for a given
target position. A real-time algorithm to learn network parameters has been
proposed. Since each lattice neuron is associated with multiple solutions in
joint angle space, an online adaptive clustering algorithm has been proposed
to learn these joint angle vectors. It is shown that this adaptive sub-clustering
in output space leads to the preservation of topology in both input and out-
put spaces by the KSOM lattice neurons. It is also shown that the proposed
KSOM network is insensitive to initial network parameters unlike the stan-
dard KSOM network. The smoothness of joint angle trajectories is maintained
through a modified neighborhood concept thereby preserving the conservative
property of the inverse kinematic solution.

These modifications lead to following improvements over existing methods:

o It is possible to attain a positioning error less than 1 mm in real-time
experiment. In simulation, it is even possible to reach less than 0.1 mm
error.

e It leads to a ten-fold reduction in the amount of data needed for training
the network. A smaller sized network (with 7 x 7 x 7 nodes) gives rise to
an accuracy of 1 mm when it is trained with only 50,000 data points. The
training can be carried out on-line.

e The inverse kinematic solution is conservative. In other words, the joint
angle trajectories are smooth and continuous for a continuous task space
trajectory.

e The positioning accuracy attained is less dependent on initial conditions
of the network as compared to the standard SOM-based algorithms.

¢ In a multi-step movement, the number of steps needed for obtaining lesser
positioning error increases very slowly as compared the existing SOM-
based algorithms.

Three criteria namely, lazy-arm movement, minimum angle-norm move-
ment, and minimum condition number of Jacobian matrices, are used to
resolve redundancy. Apart from providing dexterity, it is shown that the pro-
posed scheme provides the best positioning accuracy as compared to standard
SOM-based schemes. Finally, simulation results are validated through exper-
iments on a 7 DOF PowerCube ™ robot manipulator.

4

Model-based Visual Servoing of a 7 DOF
Manipulator

4.1 Introduction

This chapter presents the theoretical development of the MBVS control law
using image moments. It is focused on determining the analytical form of
the interaction matrix related to selected image moment features from a seg-
mented image. A real-time experimental results using a 7 DOF PowerCube
robot manipulator are presented to validate the system convergence.

This chapter starts the discussion by reviewing the basic image moment
definitions and computations as presented Section 4.5. The following Section
4.6 gives detail derivation of the first order of the image moments with respect
to the time using Green’s theorem. A fundamental pinhole camera model
is described in Section 4.7 which then is used for further development to
determine the interaction matrix. Section 4.8 presents the interaction matrix
derivation of the selected image moment features. The real-time experimental
results are presented in Section 4.9 and followed by the summary of this
chapter as described in Section 4.10.

4.2 Kinematic Control of a Manipulator

The position of the end-effector and the associated joint angle configuration
are coupled with forward and inverse kinematic relationship of the manipula-
tor. The forward kinematic map expresses the Cartesian space position of the
end-effector x for the given joint angle configuration 8, as

x = £, (8), (4.1)

where the dimension of the task space x is n, and that of the joint angle
space 6 is m. In the case of redundant manipulators n < m and the degree of
redundancy is given by m — n. £5(0) is highly nonlinear and is obtained from
the geometry of the manipulator using Denavit-Hartenberg (D-H) parameters
[152].

113

114 Model-based Visual Servoing of a 7 DOF Manipulator

The inverse kinematic relation computes the joint angle space configuration
0 which is required to reach the desired position x4. The closed form inverse
kinematic relationship exists only for simple manipulator configurations. In
general inverse kinematic control is achieved with forward differential kine-
matic relationship, since it expresses a linear relationship between the joint
angular velocity @ and the Cartesian space velocity x. The forward differential
kinematic relationship between 6 and x is represented as

x =J6, (4.2)

where J = % is the kinematic Jacobian of the manipulator. The joint angular
velocity required for the given end-effector velocity is computed using inverse
Jacobian. The pseudo-inverse method computes the value of 6 as

0 =J'xy, (4.3)

where J~! is the pseudo-inverse of the kinematic Jacobian, and %4 is the
desired end-effector velocity. The open-loop solution obtained using the above
equation, unavoidably leads to solution drift due to numerical integration and,
hence, results in task space error e = x4 — x. To overcome this drawback in
open-loop control, the closed loop kinematic control is developed with the task
space error e. In closed loop kinematic control the joint velocity is computed

as .
0 =k,J e, (4.4)

where k;, > 0 is proportional gain which control the speed of the convergence
to the desired position x4.

4.2.1 Kinematic Control of Redundant Manipulator

Kinematic control is difficult for a redundant manipulator since infinite num-
ber of solutions exist to reach the given workspace position. The control of a
kinematically redundant manipulator to reach the object is a highly challeng-
ing task owing to the one-to-many inverse kinematic relationship.

In the case of redundant manipulators, J is not a square matrix and theo-
retically infinite joint angular velocity 0 exist to generate the given end-effector
velocity. Inverse Jacobian does not exist in case of redundant manipulators
since the associated Jacobian is not square and, hence, the pseudo-inverse
has been employed. Inverse kinematic control of the redundant manipulator
using generalized pseudo-inverse. Joint velocity is computed for redundant
manipulator in closed loop as

0=rkJ"e, (4.5)

where J7T is the pseudo-inverse of the kinematic Jacobian, and %, is the desired
end-effector velocity. Henceforth, the notation (.)* will be used to indicate the
generalized pseudo-inverse of (.). The pseudo-inverse based solution results in

Visual Servoing 115

lazy-arm movement, i.e., it minimizes the joint angular velocity in least square
sense.

Pseudo-inverse based kinematic control is widely popular since the rela-
tionship between the various joint angular velocities, which can generate the
desired end-effector velocity can be established using the pseudo-inverse of
Jacobian J. J* obeys the property that the matrix (I — J*J) projects onto
the null space of J and, hence, the vector J(I — J*J)¢ = 0 for all vectors ¢.
A joint angular velocity computed as 6= (I—-J*J)¢ for any vector ¢ € R™
does not generate any end-effector motion but only changes the internal joint
angle configuration of the manipulator. The internal reconfiguration of the
manipulator is popularly known as self-motion of the manipulator. The differ-
ent joint angular velocities which can generate the given end-effector velocity
are given by the relationship,

0=J3"%x+k,1-JTD)e, (4.6)

where I is the identity matrix of order m, and k,, is the gain which determines
the magnitude of the self-motion.

4.3 Visual Servoing

Vision is employed in robotics owing to its flexibility during manipulation.
Visual feedback gives dynamic information about the environment and the
object. Typically, vision-based manipulator control is executed in open loop
fashion, “looking” and then “moving.” This results in poor positioning accu-
racy due to the model inaccuracies. An alternative approach is to use a visual
control loop which is generally referred as visual servoing. Vision-based manip-
ulator control uses either single camera or multiple cameras to give visual
feedback to the manipulator system. Visual servoing systems use one of two
camera configurations: eye-in-hand or eye-to-hand. In eye-in-hand configura-
tion, a camera is mounted on the end-effector while in eye-to-hand configu-
ration, the cameras are fixed in the workspace. Eye-to-hand configuration is
also known as stand-alone camera system.

Visual servoing schemes use the image features u to represent the position
of the end-effector and the object in the vision space. The desired position
Xg and the current position x of the end-effector are observed through the
camera as the desired image feature vector uy and the current image feature
vector u, respectively. In general, visual servoing uses the linear relationship
between the change in the image feature vector u and the change in the
Cartesian space position of the end-effector x for controlling the manipulator.
The image Jacobian L, represents the relationship between the end-effector
motion and the image feature motion as

u = Lx, (4.7)

116 Model-based Visual Servoing of a 7 DOF Manipulator

where u, 1 € RP. L is a p X n matrix and is also referred as interaction matrix
in literatures. The control task is to compute the necessary Cartesian space
velocity motion such that the end-effector will reach the desired position in
vision space asymptotically.

The simple proportional control law which results in asymptotic stabiliza-
tion is expressed as

Xd = kp L*(ud — u), (48)

where k), is a proportional gain, L™ is the pseudo-inverse of L and ug—u is the
error between the desired and the current image features. Here afterwards, the
error vector in the visions space is expressed as e, and, hence, e, =ug —u:
€ RP. The above controller requires the exact knowledge of L and its pseudo-
inverse though it ensures global stability. Hence, the image Jacobian L is to be
estimated at each instant. To reduce the computational complexity, the image
Jacobian is estimated at the desired position and then the pseudo-inverse is
evaluated for the estimated image Jacobian to implement the controller. This
eliminates the continuous estimation of L and the computation of the pseudo-
inverse LT in real-time. But, this results in a locally stabilizing controller since
the sufficient positivity condition of stability is valid in local region only.

4.3.1 Estimating the Vision Space Motion with Camera
Model

The camera acts as a sensor and gives visual feedback about the position of
the object and the environment. The feature extracted from the camera must
give enough information such that the manipulator can be controlled to reach
the object located in a 3-D workspace.

Two cameras fixed in the workspace can be used to give visual feedback
about the environment. The position of the centroid of the object in the image
plane of the stereo-vision is used as the feedback to locate the position of
the object. If a single fixed camera is used instead of two cameras, the depth
information about the environment will not be available while identifying only
the centroid of the object. To control the manipulator in 3-D workspace, more
features are to be extracted with single camera. Typically, area of the object
gives a good information about the distance between the camera and the
object. Hence, the manipulator can be controlled to reach the object in a
3-dimensional workspace with the image features area, and position of the
object in the image plane. Alternatively, multiple non-coplanar points can be
identified in the object to get the information about the position of the object.
But such an approach demands the knowledge of the relative position of the
feature points in the 3-D workspace, for effective control.

The position of the object is estimated by extracting the image feature as
follows: the positional coordinates of the end-effector in the Cartesian space
get projected as pixel coordinates in the frame buffer of the image plane. The
position x = [z y 2]T in the Cartesian space gets projected into the camera
frame buffer as (zf, yys), which corresponds to the & — y coordinates of the

Visual Servoing 117

P
.‘*~‘
h -
/
/
/
/
/
/
//
/
/
/
/
/
/
/
/
A
Z J
/
/
/ .
(// (R07 TC)
!
!
o
Ow o
Y
T

FIGURE 4.1: Transformation from Cartesian space to vision space.

camera frame buffer, respectively. The position of the end-effector in the vision
space is obtained through series of transformations. These transformations are
computed as a camera model, which computes the position of the point in the
vision space, from the point’s position in the Cartesian space. This necessitates
a camera model to compute u from x in simulations.

4.3.2 Transformation from Cartesian Space to Vision Space

The transformation associated with computing a point’s position in the vision
from the Cartesian space is shown in Figure 4.1. The origin of the world
coordinate frame and that of the camera coordinate frame are shown as O,,
and O, respectively. The origin of the camera coordinate frame is located at
[T, T, T.]" in the world coordinate frame and the orientation is represented
using R.. The origin of the camera coordinate frame (z., y, z.) coincides with
front nodal point of the camera and the z. axis coincides with the camera’s

118 Model-based Visual Servoing of a 7 DOF Manipulator

optical axis. The image plane is assumed to be parallel to the (z., y.) plane
at a distance of f from the origin, where f is the effective focal length of the
camera. The position (zf,ys) of a point P in the camera plane is obtained
from the point’s position x = [z y 2]7 in the world coordinate frame as follows:

The position x = [z y 2|7 is transformed from the world coordinate frame
to the position x. = [z, y. z.JT in the camera coordinate frame through
rotation R, and translation T.. The transformation is expressed in the form
of equation as

T, T T, L T2 T3
ye| =Re |y| + |Ty|, whereR.= |ra r5 rg]. (4.9)
Ze z T, rr Ty T9

In the above equation, R, describes the orientation of the camera in the world
coordinate frame, and T. = [T, T, TZ]T is the translational position of the
camera in the world coordinate frame. The projected position of the point P
in the image plane is computed using an ideal pinhole camera model. This
transformation is obtained by perspective projection as follows:

Ty = fgé
Zc
Yo = % (4.10)

The position (x,, y,) is computed with the assumption of an ideal pinhole
camera. But, there exists distortion and the position obtained with ideal pin-
hole model is not accurate. This is compensated for by using the lens distortion
coefficient k. The true position of the point’s image (x4, y4) in the sensor plane
is computed from the ideal undistorted position as

z, = xq(1+rp?)
vu = ya(l+rp?), (4.11)

where p = /2% + y2. Finally the image of the point is transformed from the
sensor plane to its coordinates in the camera’s frame buffer (zs, ys) as

Sxd
Ty = +c
f dz x
yr = gd + ¢y, (4.12)
dy

where

sz, Cy : Pixel coordinates of optical center;

sz @ Scale factor to account for any uncertainty due to imperfections in
hardware timing for scanning and digitization;

d, : Dimension of camera’s sensor element along x coordinate direction
(in mm/sel);

dy : Dimension of camera’s sensor element along y coordinate direction(in
mm/sel).

Visual Servoing 119

The computation of a point’s position in the frame buffer requires the geo-
metric and camera parameters used in the aforementioned transformations.
The parameters which specify the position and the orientation of the cam-
era relative to the world coordinate frame is commonly known as extrinsic or
external parameters. The camera parameters which project the point from the
camera coordinate frame to the frame buffer are known as intrinsic or internal
parameters. The camera calibration is the process of estimation of a model
for camera overlooking a workspace.

4.3.3 The Camera Model

Tsai’s algorithm is a popularly known camera calibration technique which is
based on the pinhole perspective projection discussed above and estimates
eleven parameters: f, K, ¢z, ¢y, Sz, 1, Ty, 1>, Ry, Ry,and R,. The Tsai
model represents the rotation angles for the transformation between the world
and camera coordinates with (R, R,, R.). The elements of the rotation
matrix R, is computed from [R,, R,, R.] as follows:

r1T = CpCy
o = CyS8aSB — CaSy
r3 = SaSy t CaCySp
T4 = CBSy

rs = SaSpSy T Caly
e = CaSBSy — CySq
rT = —S@

rs = CBSq

rg = CaCg,

(4.13)

where ¢, = cos(Ry), cg = cos(Ry), ¢y = cos(R,), so = sin(Ry), sg = sin(R,),
sy = sin(R;).

In addition to the above eleven variable camera parameters, Tsai’s model
uses the following six fixed intrinsic camera constants:

dy : Size of camera’s sensor element in x coordinate direction (in
mm/sel),

dy, : Size of camera’s sensor element in y coordinate direction (in
mm/sel),

N, : Number of sensor elements in camera’s x direction (in sels),

Ny, : Number of pixels in frame grabber’s x direction (in pixels),

120 Model-based Visual Servoing of a 7 DOF Manipulator

dps : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel), and

dpy : Effective number of pixel in y coordinate direction of the frame buffer
(in mm/pixel).

These six parameters can be obtained from the manufacturer’s data sheet.

The image feature vector u is obtained using the estimated model for
stereo-vision as u = [u; uo uz ug)” where (u1, us) and (us, uy) are the z —y
coordinates of the first and the second camera, respectively. Hence, (u1,uz) is
the (x5, yy) of the first camera, and (us, u4) corresponds to the (zf, ys) of
the second camera, respectively. Hence, the control vectors ug and u belong
to R* in the all the experiments presented in this chapter.

4.3.4 Computation of Image Feature Velocity in the Vision
Space

The image Jacobian which represents the motion of the image features with
respect to the motion in the Cartesian space is given by

kex 0 _kcm(xf_cx)
L= ZO bey —heyCar—cy) | ° (4.14)

where (kcz, key) are the gains associated to transform the Cartesian space
position to the x-y coordinate of the vision space, and z. is the distance
between the image plane and the object in the camera coordinate frame. The
camera gains (kcy, kcy) are computed using the camera parameters as follows:

S
kcz = J;TL
kew = CZ! . (4.15)
The vision space velocity is computed from the Cartesian space velocity as
(1
| | Ly O Xey
NI
Uy
where L; is the image Jacobian of the ith camera, %., = [IQ Ye, 261}T

represents the velocity of the end-effector in the coordinate frame of the ith
camera.
The velocity of the end-effector in the coordinate frame of the ith camera
is
T, T
Ye, = RCi Y
Ze, Z

Kinematic Control of a Manipulator Directly from Vision Space 121

X, = R %, (4.17)
where R, is the rotational transformation between the robot coordinate frame
and the camera coordinate frame. The parameters (key, kcy), (€2, ¢y), and R
are obtained from the camera model estimated with Tsai algorithm.

4.4 Kinematic Control of a Manipulator Directly from
Vision Space

As discussed in previous sections, classical approaches estimate the Cartesian
space velocity of the end-effector from the vision space with the visual servoing
schemes, and then the joint velocity is computed to follow the Cartesian space
trajectory generated by the visual servoing scheme. Visual servoing scheme
uses the image features uy, u, and the Cartesian space information x to
compute the end-effector velocity x. Inverse kinematic schemes compute the
joint angular velocity from the end-effector velocity x, using the current joint
angle @ and the environmental constraints.

Alternatively, the vision space trajectories can be directly controlled from
the joint angle space by combining visual servoing with redundancy resolution
in a single framework. The redundancy is achieved for the trajectories specified
in the vision space while satisfying the additional constraints introduced by the
environment. The controller computes the joint angle configuration directly
from the visual feedback resulting in a direct and efficient control over the
vision space.

The relationship between image feature velocity and joint angular velocity
is obtained by combining equations (4.2) and (4.7) as

a = LPJO
Je, (4.18)

where P is the transformation matrix representing the coordinate transforma-
tion between the world coordinate frame and the camera coordinate frame,
and J = LPJ is a p x m Jacobian matrix from the joint angle space to the
vision space. Here afterwards, the notation J will be used to represent the
Jacobian from the joint angle space to the vision space.
The closed loop proportional controller resulting in asymptotic stabiliza-
tion is given as
0="k,J"e,. (4.19)

Since the pseudo-inverse of the Jacobian J is used in the control law, the
controller would result in “lazy-arm movement.” The null space of J can be
used to satisfy the additional constraints required in the dynamic environment.

122 Model-based Visual Servoing of a 7 DOF Manipulator

4.5 Image Moments

One of the basic problems in the design of an imagery pattern recognition
system relates to the selection of a set of appropriate numerical attributes of
features to be extracted from the object of interest for the purpose of classifi-
cation. The recognition of objects from imagery may be achieved with many
methods by identifying an unknown object as a member of a set of known
objects. Efficient object recognition techniques abstracting characterizations
uniquely from objects for representation and comparison are crucially impor-
tant for a given pattern recognition system. One of the popular techniques to
characterise an object in the image space is to use image moments.

Image moments are mathematical entities whose inferred values can
describe objects in the image space defined either from closed contour or a set
of points in a segment or within the boundary. Image moment descriptors are
related to geometrical properties of a segment, e.g., position, orientation or size
of a segment in the image space. The mathematical concept of moments has
been around for many years and has been used in many diverse fields ranging
from mechanics and statistics to pattern recognition and image understand-
ing. In [153] the mathematical concept of image moments was first introduced
in 1962, it also proved that the image moment functions are insensitive to a
particular segment’s changes, such as translation, rotation and scaling, based
on the theory of algebraic invariant. Since then, the moment invariants theory
has been applied in several applications, such as character recognition [154],
pose estimation [155], [156], [157], and object matching [158]. At the same
time of widespread use of image moments for such applications, the theoreti-
cal developments of the moment invariants have also been presented. In [159]
detecting objects using n-fold rotation symmetry was presented to resolve the
limitation of the moment invariant to detect objects which present symme-
tries. A formulation of image moments which reduces the computational time
was proposed in [160], by defining image moments as a function of image coor-
dinates of the points lying on the boundary of the considered segment, instead
of taking into account the whole points of an object’s image. A survey of the
theoretical developments of image moments was presented in [161].

The objective of this section is to introduce image moments and to illus-
trate the usefulness in visual servoing. The usefulness of the image moments
approach in the visual servoing is because of their key feature. The key feature
of the image moments is that they can be used as a generic representation
of an object in the image space in the form of an image segment. The image
moments’ descriptors are computed using information of all image points lying
on a segmented image. Image moments approach does not consider an indi-
vidual point as a descriptor but a global information of a segmented image,
therefore, they are robust in the presence of image noise. Image moments
are potential entities that can be used as a feedback signal vector in visual

Image Moments 123

IT

Image segment

VA

u T

FIGURE 4.2: Image segment on an image plane II.

servoing systems since they consider the shape of the object which has more
geometric meaning compared with the image points.

It is well known that the key solution for visual servoing controller devel-
opment is to construct the interaction matrix associated with selected visual
features. A visual servoing controller is developed to have smooth and contin-
ues velocity control trajectories to follow the movement of the target object.
Therefore, the interaction matrix that maps the camera kinematic screw into
visual feature velocity is needed. To develop the interaction matrix, the visual
feature properties have to be modeled and to be derived. Firstly the geometric
moments and its definitions are presented in the following discussion.

The 2D geometric moment of order i + j of a density distribution function
f(z,y) is defined in terms of the surface integral as

M :/ / z'y! f(z,y)drdy (4.20)

where f(x,y) could be related to the pixel intensity value, color or other pixel
image properties, e.g., f(z,y) is the grey level of a point P at coordinate
(z,y) lying on the image segment in the orthogonal frame (u,v) (see Figure
4.2). Therefore, it can be deduced that moments are strongly correlated to the
shape of the image segment, as it is formulated in the product term of x’y7.
In [153], Hu stated that f(x,y) is piecewise continous and has nonzero values
only in a finite region of II plane, then the moment sequence m;; is uniquely
determined by f(z,y), and the other way around that f(z,y) is uniquely
determined by the moment sequence m;;. Therefore, complete moments can
be computed and used to uniquely describe an object image if moments of all

124 Model-based Visual Servoing of a 7 DOF Manipulator

orders exist and the image segment has finite area. But, it requires an infinite
number of moment descriptors to obtain all information contained in an image
segment. Thus, it becomes very important to select a meaningful subset of
the moment descriptors which contains minimal information to characterize
an object image uniquely for a specific application.

The fundamental geometric properties contained in the image segment can
be represented by the lower order moment functions. Those geometric prop-
erties are called: area, center of gravity, centered moments, and orientation.
The definition of the zeroth order moment mgg of the function f(z,y)

moo = [Z / Z £, y)ddy (1.21)

represents the total mass of the given function or image f(z,y). The zeroth
order moment is basically the total area for the case of a binary image. The
first two order moments determine the position of the center of gravity or the
center of the area, defined as

mio

/_Z /_Z xf(x,y)dxdy (4.22)
/Z /Z yf(z,y)dzdy (4.23)

mo1

The center of gravity is the point where all the mass of the image f(z,y)
concentrated without changing the first moment of the image about any axis.
In the 2D case, the moment values of the center of gravity coordinates are

denoted as
mio _

T, = y =
g ’ g
moo moo

oy (4.24)

Generally, it is common practice that the center of gravity is chosen to rep-
resent the position of an object image in the field of view, since it defines a
unique location of an image segment f(x,y) that can be used as a reference
point.

The centered moments of f(x,y) are defined as

Mij = /_OO /_OO (x — :Eg)i(y - yg)jf(ny)dxdy (4.25)

The centered moments ji;; are invariant under the translation of coordinates
[153].

= x4+ (4.26)
= y+ogy (4.27)

where 2’13 are new position coordinates of centered moments after those are
translated by constants c; and c,. Given the center of the gravity and the

Image Moments 125

moments my; the centered moments can be described as a binomial function

) fiij = Z i (,i) (Jl) (—2g) " (yg)? "'m (4.28)

k=0 1=0
where the binomial coefficients

. 1!
k) T HG—R) B
() -7 2

The reciprocal relationship to (4.28) which describes my; by giving the cen-
tered moments is computed as

ko1
mi =) <k> (j) (20" (99)' 1 (4.30)
i=0 j=0

The second order moments mgs, Mm11, Moy are known as the moment of iner-
tia. These descriptors are used to define another important geometric image
feature, the orientation of an image segment. The description of the image
segment orientation is generally measured in the direction of the principal
axes, describing how the image lies in the field of view. In terms of moments,
the orientation of the principal axis « (see Figure 4.3) is described as

1 2
a=—tan"! ('ull) (4.31)
2 H20 — Ho2

where

T /_°° /_OO (= 29)(y = yo) f (@, y)dudy (4.32)

FIGURE 4.3: Image segment of an ellipse-shaped object.

126 Model-based Visual Servoing of a 7 DOF Manipulator

/_ o; /_ O;(x — w2 f(z, y)dady (4.33)

H20

Ho2

/O; /O;(y —yg)* f(z,y)dwdy (4.34)

In (4.31) the principal axis angle « is in the range of —§ < a < Z. The
following discussion will be focused on the determination of the relationship
between the camera movement and the time variation of the image moment

My

4.6 Image Moment Velocity

The system modeling objective is to determine the linear relationship between
the camera movement X, = (v.,w.) and the time variation m;; of image
moment m;;. Recall equation (2.2) for the case of the image moments as a
image feature set

mij = L, Xec (4.35)

where Lmu is the interaction matrix determined by the image moments. Let’s
recall Green’s theorem which gives the relationship between a line integral
around a simple closed contour C and a double integral over the segment
region D [162]. Figure 4.4 shows an image segment D and its contour C, the
line integral of the vertical component of the tangential component of vector
field F along C as the double integral of the vertical component curl F' over
the region D enclosed by C.

?ﬁF -dr = //D(curlF) -kdA (4.36)

where k is a unit vector perpendicular to the segment D. The contour C can
be described by vector equation

x(t) =z(t)i+y(t)j (4.37)

while the unit tangent vector t is given by

RECRNTOR

1= e e (4.58)
then the normal vector n(t) is described by

n(t) = Y0 =), (4.39)

o k@

Developing (4.36), another version of Green’s theorem can be derived which
says that the line integral of the normal component of F along C is equal to

Image Moment Velocity 127
YA

Z

FIGURE 4.4: Image segment D enclosed by contour C.

double integral of the divergence of F over the segment D enclosed by C [162].

féF ‘nds = //D divF(z,y) dzdy (4.40)

In relation to the definition stated in Green’s theorem, the image moment
function can be defined as

m;;(t) = /D(t) h(z,y)dzdy (4.41)

where h(x,y) = z%y’ f(z,y). It can be seen in the right side of (4.41) that
the only part that varies on ¢ is the image segment D(¢). Therefore the image
moment velocity 7i2;; can be obtained by analyzing the variation of C(t), since
there is a relationship between a segment and its contour (4.40). Figure 4.5
shows the variation of contour C(t), the variation of m;; is computed using m;;
on segmented area between C(¢ + 1) and C(¢). The segmented area between
C(t+1) and C(t) can be obtained by integrating every point x =(z,y) along
C(t) until it reaches C(t + 1) by the scalar product between point’s velocity x
and the normal vector n. Thus using (4.40), the image moment velocity can
be written as [163,164]

U

/ div[h(z, y)x]dzdy
D(t)

// <8h(m,y)x n 3h($,y)x) ddy
D(t) Or 8y

Oh(a.y) . Oh(a.y) oi 9y
//D(t) < o T+ ay g+ h(z,y) 9 + 3y dxdy
(4.42)

128 Model-based Visual Servoing of a 7 DOF Manipulator

C(t+1)

0)

>
Xz
FIGURE 4.5: Variation of contour C(t).

In (4.42), the term &, g, % and %Z can be described as the kinematic screw

of the camera. Similarly, by applying Green’s theorem, the variation of the
centered image moments can be defined as

) oh, (x, L Oh,(x, L
g = //m) Ha(x 8 (=2t Mﬁ(y . = 9)
o0r 0Oy
+hy,(z,y) ((“)fc + 83) dxdy (4.43)

where h,(z,y) = (x — x4)"(y — yy)’ f(z,y). To continue the development of
the visual servoing model using image moment m;; and p;;, the relationship
between the camera kinematic screw and the corresponding point velocity
expressed in the camera frame has to be known. This relationship can be
obtained using a pinhole camera model as explained in the following section.

4.7 A Pinhole Camera Projection

To model the visual servoing system, the projection of the object with respect
to the pinhole camera system must be described [165,166]. A pin hole camera
projection is shown in Figure 4.6 as the position of a point p with respect
to the camera frame o.z.y.z. and p, is a projection point of p on the image
plane. The coordinate p,(zx, yx, fc) is expressed relative to the camera frame
0cxYcze- The origin of a 2D local coordinate of the image plane is denoted
as (ug, vo) and it is also called the principal point, measured in pixels. The
pixel coordinate of p, is represented by (x;,y;). The transformation of the

A Pinhole Camera Projection 129

(Tp; Yp, 2p)

(x’ﬂ‘) yﬂ‘? fC)
(wi,yi)

(w0, vo)

Rw

FIGURE 4.6: A pinhole camera projection.

camera frame o.x.y.z. With respect to the reference frame 0,,x .,y 2, is given
by [RY, d¥]. The normalized projection coordinate p into p, can be expressed
as . Y
xﬂ:fclvyw:fcl (4‘44)
“p “p
In order to relate the 3D coordinate into 2D pixel coordinate we determine
the projection relationship between (2, y,) and (z;,y;) as follows

(w5 — uo) (yi — vo) (4.45)

Tg = T =
ko ko

where (k,, k,) are the conversion factors from meters to pixels for the hori-
zontal and vertical camera axis, respectively.
Substituting (4.44) into (4.45), we have

x y
zi = foku =" +uo, yi = feko = + 0o (4.46)
Zp Zp

Thus, once the values of the intrinsic camera parameters f., ky, ky, ug, Vg are
determined the mapping of a point in a 3D coordinate system to image the

130 Model-based Visual Servoing of a 7 DOF Manipulator

coordinate system can be computed. In the matrix form, we have

T fekw 0w X,
Yi = 0 feky o Y, (4.47)
1 0 0 1 1
x, = Ax, (4.48)

where X, = j—p and Y, = Z—” denote normalized coordinates.
P P

To continue the derivation of the velocity relationship of a point p between

coordinate frames in Figure 4.6, we need to introduce a Skew symmetric

matrix S(w) [152]. It is expressed as

0 —W, Wy
S(w)=1| w, 0 —wy (4.49)
—Wy Wy 0

where w is the angular velocity vector of the rotating frame with respect to
the reference frame. The transpose of S(w) can be easily derived as

ST (w) = S(~w) (4.50)

In relation with the first derivative of a rotation matrix R, the Skew symmetric
matrix can be defined as .
S(w) =RRT (4.51)

furthermore, the transpose of S(w) can also be derived as
ST (w)=RRHT =RTR (4.52)
By multiplying the right term and the left term of (4.52) with R, we have
S7(w)RT = RTRR” (4.53)
Let’s remark the orthogonality property of a rotation matrix R
RRT =1 (4.54)
where I € R? is an identity matrix. Substituting (4.54) into (4.53)
RT = sT(w)RT (4.55)

The Skew symmetric matrix properties in (4.51) and (4.55) are important
properties for the next derivation of the velocity relationship of a point p
between coordinate frames in Figure 4.6. The representation of the coordinate
point p with respect to reference frame 0,x,Yw 2w is given as

p’ =R!p°+dY (4.56)

A Pinhole Camera Projection 131

Since the relative position of a point p with respect to the camera frame is
considered, we have
T
p° = (RY) (p¥ —d) (4.57)

The velocity vector of a point p is then derived as
- c Sw\ T w w w\T Jw
p = (Rc) (p - d-c) - (Rc) dc (458)

Note, a point p is static and the camera frame is moving, thusp® = 0. Rear-
ranging (4.57) and substituting into (4.58)

. S\ pw. ¢ w Jw
P = (R(') ch 7(Rc)Tdc (459)

Using Skew symmetric properties (4.54) and (4.55) yields

p° = ST(w)(RY)"RYP— (RY)" dY (4.60)
= S(—w)Ip®—REAY (4.61)
= S(—w)p®—d (4.62)

where d¢, is the camera frame translational velocity. In the matrix form, it is

expressed as

jfp 0 W, —Wwy Tp j.:c
Up | =| —w. O Wy Yp | — | Ye (4.63)
Zp Wy —Wye 0 Zp 2}(:
then we have
Tp = Ypws — Zpwy — Ee (4.64)
yp = ZpWg — TpW, — Ye (465)
Zp = TpWy — YpWz — Zc (4.66)

The first derivative of (4.46) is derived as

LpZp — LpZp

& = foky 5 (4.67)
(2p)
. UpZp — YpZ
Yi = fckv Lo 21) L (468)
(2p)
Note, we assume an ideal camera model where the principal point (ug,vq)

is centered (0,0) and the image is undistorted Z—“ = 1. The velocity of the

projected point on the image plane associated with the camera movement is
then derived by substituting (4.64), (4.65), (4.66) into (4.67) and (4.68)

(Ypws — Zpwy — Fe)zp — Tp(Tpwy — Ypwa —)
(2p)?

jji:fck?u

132 Model-based Visual Servoing of a 7 DOF Manipulator

((25) o) (2) () (222))

:fck;u
(zp)Q
_fck . xzyz fckQ
=JeBuy +f + wp — T 4.69
o feko foky v YRS (469)
—f (zpwz — Tpwz — Ye)2zp — Yp(Tpwy — Ypwa — Zc)
¢ (2p)?
fie) e i) (52) ((F) = - (52) »)
ZpWg — Wz — Ve | 2p — Wy — Wr — Zc
:f k (P (fck?u P fckv fcku Y fckv
(ZP)2
—feky . B foks +up TiYi
c —_— Y Wg — — LWz 4.
— et St T - ey —aw o

It can be composed in the matrix form as follows

ZLe
) 7fcku 0 ﬂ TiYi f2k2 + ZZ? i yc
Ti| _ Zp Zp fcku fc u 20
|:yi:| R —feko yi fERD Ay _ TiYi | e
Zp Zp fckv fcku ’ Wy
Wy

(4.71)

At this step, without loss generality and to simplify the model, (4.71) can be
expressed as

Ty —1-22 y

Loy ay e % (4.72)

(@n)
\
NleN|&

where the depth Z = 2, fo =k, = k, = 1, %X = [z, y;] and X, = [v,, w,]. Note
that the camera parameters obtained from camera calibration can be easily
replugged into the final model of the IBVS using image moments. However, the
camera parameters described in (4.72) are sufficient to be applied in practice.
The robustness of the IBVS in the presence of camera calibration errors is
described in Appendix C.

4.8 Image Moment Interaction Matrix

n [167], the projection analysis of the 3D geometric primitive (lines, cylin-
drical, spherical, etc.) parameters into the image plane has been discussed.
Figure 4.7 shows the projection of a 3D object into the planar limb surface
and the image plane [168]. The projection of 3D geometric parameters of an
object into its planar limb surface is expressed as

h(X,P) =0 (4.73)

Image Moment Interaction Matriz 133

An object

A planar limb surface

I 1
mage plane = u(z,y, P1, ..., P2)

h(X)}/)Zv‘Pla'"aPn) =0

Camera centre

9(x,y,p1, s Pm) =0

FIGURE 4.7: Projection of the geometric primitive points and parameters
into the image plane and the planar limb surface.

and its projection into the image plane is expressed as

g(x,p) =0 (4.74)

where P and p are the geometric primitive parameters. The link between the
3D geometric parameters and the 2D image is described as

1
— =ux,P 4.75
— = 1(x,P) (4.75)
As an example, if a line in space is represented by the intersection of two
planes, then

hy, = AIX+BY+C,Z+D; =0

Ao X + BoY + (02 Z = (4.76)

>
V)
|

Using the perspective projection (a pinhole camera projection), the function
w(x,P) can be described as

1
p(x,P) = 7= Az + By +C (4.77)
For the case of hy the projected geometric primitive parameters are defined
as A= —%L, B=—F3t and C = —%t. The geometric primitive parameter of

ho prOJected in the i 1mage plane can be expressed as

ar+by+c=0 with a = A3,b= By, c=Cy

134 Model-based Visual Servoing of a 7 DOF Manipulator

In this case, the depth any 3D points belonging to an object is in the continous
form which expressed as [163]:

1
= Z Agrazly” (4.78)
q>0,r>0

N

In this study, a planar object is used. The degenerated analysis of the 3D geo-
metric of a non planar object’s properties from the projected image is beyond
the scope of this chapter. For a planar object Agg = C, A1g = A, Agy = B
and all other terms A, equal to 0. Using (4.72) and (4.77), the relationship
between the camera kinematic screw and the velocity of the image feature in
the image plane involving the 3D geometric primitive can be expressed as

& = —(Az+ By+ C)v, +x(Az+ By + C)v,

+ ryw, — (1 + 2wy, + yw, (4.79)
y = —(Az+ By+ C)uy+y(Az+ By + C)v,

+ (1 + y?)we — Tyw, — TW, (4.80)

The partial derivative of (4.79) and (4.80) can be derived as

? = —Av, + (24z 4+ By + C)v, + yw, — 21w, (4.81)
X
g—z = —Buy+ (A + 2By + C)v, + 2yw, — 2wy (4.82)

Substituting (4.79), (4.80), (4.81) and (4.82) into the developed image moment
velocity using Green’s theorem (4.42) and arrange the derivation in the
form of

Mij = Ly, Xe (4.83)
and the interaction matrix components are denoted as
L, = [Mue Muy Mz Mg My Mz (4.84)
Knowing that h(z,y) = iyl f(z,y), % = iyl f(z,y), %ﬁ’y) =
jaty =L f(x,y) the result of the derivation can be written as
Myr = 7Z‘(Amij + Bmi_l,j+1 + Cmi_l,j) — Amij (485)
Myy = —j(AmiH,j_l + Bmij + C’mi,j_l) — Bmij (486)
Mye = (i4J+3)(Amitr; + Bmijia + Cmij) — Cmg; - (4.87)
Mz = (145 +3)myjp1 + Jmi -1 (4.88)
Myy = *(Z. +j5+ 3)mi+17j — imi_lyj (489)
Moz = IMGi—1j41 = JMit1,j-1 (4.90)

Equations (4.85) - (4.90) are general forms for further derivation of any par-
ticular image moment m;; defined by the value of ¢ and j. Let’s start with

Image Moment Interaction Matriz 135

image moment area a = mgg. The interaction matrix for image moment area
can be derived from the general forms using i = 57 = 0.

Myz = —Amy; (4.91)
Myy = —DBmy; (4.92)
My = 3(Amig+ Bmo1 + Cmoo) — Cmoo (4.93)
Mz = 3Mol (4.94)
Myy = —3Mig (4.95)
Mo, = 0 (4.96)

Considering that Z% =Axg+ By, +C, x4y = Zég and yg = ZS; (see equation

(4.24)), the interaction matrix of the image moment area can be simplified as

L,=| —aA —aB a(%—C’) 3ay, —3azxg, O (4.97)

A special case of the camera-object position configuration is used to know
the behavior of the camera kinematic screw in relation with the given set of
image features. This special case simplifies the parameters described in the
system by assuming that the object plane is parallel to the image plane and
the object center (z4,y,) is in the optical axis of the camera frame. It can
be seen from (4.97) that when the object image is centered and parallel to
the image plane where A = B = x4, = y, = 0, 7hgo is only affected by the
translation movement along z axis, v, (expressed in the camera frame).

Image points are other geometric properties that are useful in the visual
servoing. In term of the image moment, the variables that can be computed
by image moment descriptors and represent a point coordinates are the image
moment centroid x, = Z;g and y, = Tmng(l) . Similar to the previous development
of Lg, the interaction matrix of the image moment centroid coordinates x,
and y, can be obtained by knowing that

. M19Moo — MooM10
ty = 5 (4.98)
m
00

M1Moo — 10001

! 4.99
Yg mgo ()

The final result of the interaction matrix of the image centroid coordinates
are expressed as
Lg"g = |: _%g 0 Lgp: Lgue zgwy Yg :| (4100)
1
L, = [0 7z, Y9u: Yguo Yoy Ty } (4.101)

where

Tg,. = % + 4(Ango + Bni) (4.102)
g9

136 Model-based Visual Servoing of a 7 DOF Manipulator

Ygo: = gi + 4(Anqi1 + Bnoz) (4.103)
g

Tgue = —Ygu, = TgYy + 4011 (4.104)

g, = —(L4a5+dnm0) (4.105)

Yoo = L+yo+dno (4.106)

and the normalized centered moments n11,ng2 and nog are expressed as

mi1 — aTgYg

= et (4.107)
2
™m — a

oy = OQT‘% (4.108)
2
m — axr

P % (4.109)

Again by assuming that the object image is centered and parallel to the image
plane where A = B = x, = y, = 0, the interaction matrix L,, and L,,
obtained as

L, = [—% 000 -1 0] (4.110)

L, = [0 ~+ 010 o} (4.111)
which deducing that the motion of z, is mostly affected by the camera trans-
lational motion along camera x axis (v;) and the rotational motion about
camera y axis (w,). Similarly, v, and w, are the main variables that cause the
motion of y,.

Using (4.43) and the relationship between m;; and p;; which has been
described in (4.28) and (4.30), the interaction matrix associated with y;; can
be derived in the following form

Lﬂij:[ﬂvw Hoy Hvz Hwz Hwy sz] (4.112)

where matrix components of the general form interaction matrix Ly, are
denoted as

poe = —(+1)Api; —iBpi—1 41 (4.113)
foy = —JApit1-1 — (J+1)Buij (4.114)
fo: = —Apwy + Buw, + (i+j 4 2)Cpij (4.115)
How = (i+J+3)pij41 +iTgpio1 41

+(i + 25 + 3)ygﬂij —dingpi—1,5 — 4jno2fi -1 (4.116)
Py = —(@+7+3)pit1; — (20 + 5+ 3)zgpi;

—JYghti+1,5 T 4ingopi—1,; — 4jnaifii j—1 (4.117)

Pwz = fli—1,+1 — JHit1,5—1 (4.118)

Image Moment Interaction Matriz 137

An interesting image moment feature that can be selected using image
moment in the second order is the object orientation « as described in (4.31),
for convenient analysis, it is rewritten as follows

1 2
a=—tan"! (“”) (4.119)
2 H20 — [L02
Using 24/2) t3:71(2“) = 1+€iu2, the first derivative of a can be derived as
L1 (20 — po2) — pa1 (f20 — froz2)
. (Mzo — Mo2)2
@ = K11 9
1+4(————
H20 — Ho2
_ L1 (20 — po2) — pai(f20 — froz2) (4.120)
X .

where A = (a0 — po2)? + 43, . By deriving fi11, fiao and fip2 using the general
form of the interaction matrix associated with the image centered moments
(substituting ¢, j combinations using i =j=1,i=2;5=0and i =0;j = 2
into equation (4.112)), the interaction matrix that relates the camera kine-
matic screw X, with the velocity of a can be obtained as

La = [Ay Oévy Ay Qg aw?] -1] (4121)
where
o = auA-+b.B (4.122)
Qyy = —CaA —anB (4123)
Ay, = —Aawy + Bawa: (4124)
Quzr = Doy + aayy + do (4.125)
Aoy = Galy— Caly + o (4.126)
and
v — W (4.127)
2 2 _
by — iy + N02A(,u02 1120) (4.128)
2 2 —
- iy + ,uzoA(Hzo J02) (4.129)
5 _ _
do, = (p12(p20 — poz) A+ p1(po3 — 1)) (4.130)
S 5(p21 (ko2 — uzo)AJr pa1(z0 — p12)) (4.131)

Let’s assume a special case of the camera-object position configuration where
the object plane is parallel and centered along the camera optical axis (A = 0,

138 Model-based Visual Servoing of a 7 DOF Manipulator

B = 0). When the special case is considered, it can be noted that from
(4.121), the motion of a does not depend on any translational camera motion
(vg,vy, vz). It also can be deduced that there is a strong association between
the camera rotation motion w, and the motion of «, which can be seen from
the last column’s value of Ly,.

The visual features x4, y4, a, and o have been derived using the image
moments up to second order. As it has been discussed, the selected visual
features (z4, Y4, a, and) have a strong relationship with particular compo-
nent of the camera kinematic screw and invariant to the rest. For example,
the motion of a is strongly affected by the camera motion along the camera
optical axis (v,) and invariant to the other camera kinematic screw com-
ponents (vg, vy, Wy, Wy, w,). Using image moment features (x4, yq, @, @),
4-DOF movement of the robot in the task space can be controlled, specifically
the translational movements (vs, vy, v,) and the rotational movement about
the camera optical axis (w,). A full 6-DOF task space robot control requires
the image moments derivation up to third order and the computation of the
image moment invariants [164]. In this chapter, 4-DOF robot movement in the
task space is considered, focusing the discussion on how to use the learning
algorithm to reduce the computational complexity of the traditional visual
servoing scheme in next chapters.

Let’s consider developing visual servoing algorithm using four visual fea-
tures (x4, Yg, @, @). A new form of the combined interaction matrix Lg
can be obtained by stacking together the obtained interaction matrices of
L, L.,,L,, and L, (represented in (4.97) (4.100) (4.101) (4.121), respec-
tively), it is described as

T
Ls = [an Lyg Lo La]
1
-z, 01 Lgys Lguwe Lguy Yg
0 - Yg.- Y90a Yg., -z
- B Zg L - ! - | (4.132)
—a —a a (79 —) 3ayy, —3azrg 0
Qyy avy Qyz Qo awy -1

Since the visual servoing controller is designed to control (v, vy, v;, w,) and
by making w, and w, are equal to zero, the fourth and fifth column of the Lg
can be cancelled. Thus, the interaction matrix Lg can be simplified as

_%g 0 Lg,. Yg
0 -5 You. —
L, = Zs . ! (4.133)
—aA —aB a (7 - C’) 0
Qg avy Qo -1

In the following section, the experimental results of the MBVS of a 7 DOF
manipulator using the selected image moment features and the developed
interaction matrix are presented.

Experimental Results using a 7 DOF Manipulator 139

4.9 Experimental Results using a 7 DOF Manipulator

The experimental set up consists of a 7 DOF PowerCube robot manipulator
as shown in Figure 4.8. A specific detail about the kinematic derivation of
the 7 DOF PowerCube robot manipulator is given in Appendix A. In this
experiment, a firewire CCD camera is mounted at the robot end-effector so
that the camera frame coincided with the robot end-effector frame, x. = X.. In
the presented experimental results, the visual servoing control law is described
as
%, = —kLg'e

where %, is the camera velocity, k is a positive gain and L_." is the inverse of
the interaction matrix Lg- and e =(s—s*). Lg- is the interaction matrix which
is computed using the desired value of s. The relationship between the image
feature velocity vector § and the joint angle velocity vector 6 is obtained as

§ = LgJ.0 (4.134)

Ensuring an exponential decrease of the error € = —kxe, the final eye-in-hand
MBYVS control law is obtained as

0 = KILIN(s* —s) (4.135)

where J{ is the pseudo-inverse of the robot kinematic Jacobian J. expressed in
the robot end-effector frame. In this experiment scenario, the desired camera

FIGURE 4.8: Experiment setup.

140 Model-based Visual Servoing of a 7 DOF Manipulator

pose is parallel with an offset (Z*) to the target object plane where the object
segment center is on the camera optical axis. Therefore, the object segment
geometric parameters A and B are set to zero. Immediately, the interaction
matrix can be expressed as

8
%

- gq 0 Z; Yg
0 —L Vg -z}
L. = z; g (4.136)
* 2
0o 0 (&) o
0 0 -1

where f. = 0.0053 is the camera focal length given by the camera manufac-
turer’s specification. The image feature s and the corresponding components
of Lg« are expressed in meter. The desired centroid coordinates were set as
the center coordinates of the camera image view. A firewire camera with the
resolution of 320 x 240 was used in this experiment, therefore, the image view
center coordinates (x};,y;;) = (160, 120). The corresponding coordinates point
on the camera frame are (z},y;) = (0,0). The desired depth Z; and area a*
can be obtained by bringing the camera into the desired pose with respect to
the target object position.

The final pose of the robot end-effector was set to be 20 cm of distance
from the object, Z; = 20 cm, with o = 0. In this final pose the desired image

area was computed as a;,, .. = 5046 pixels?, using (4.45), it can be deduced

that a = fzaimage. The numerical value of the interaction matrix from the
desired image feature values was computed as

00265 0 0 0
0 —00265 0 0

Le = 0 0 01417 0 (4.137)
0 0 0 -1

At the desired image feature values s*, the interaction matrix Lg+ has a perfect
decoupling property since it is a diagonal matrix.

The initial robot joint configuration of 8 = [0°,60°, 0, 30°,0°,90°, 30°] dis-
placed the camera pose from its desired pose which was approximately com-
posed of the translation of 50, 15,10 cm along z, y, z axes, and the rotation of
0°, 0°, 30° rotation about z, y, z axes, respectively. The result realized from
the MBVS control law measured in the joint space is depicted in Figure 4.9.
The joint velocities converged to zero in 2 s when the desired camera pose
was reached. At t > 2s, the MBVS controller maintained the camera pose
at the desired values by giving the error signal between the desired and the
current image feature sets. Small joint velocity fluctuations as shown in the
Figure 4.9 were caused by the small image noise captured by the camera. The
corresponding image feature error trajectories are shown in Figure 4.10.

It can be seen from Figure 4.10(a), the error of the image centroid coordi-
nate is more sensitive to the image noise compared to the other image feature

Summary 141

50 3
- — g
40 — .
] 0o
] 03
30 o — 0
— 3 65
KAl - .
20 7 - b
=] b7
£ 103
£]
=] — e A =
= -
10
20
\30 3 T T T I T T T I T T T I T T T I T T T I
0 2 4 6 8 10

Time

FIGURE 4.9: Joint velocity results of the MBVS.

errors, since small pixels’ noise would affect less in the computation result of
the image area a and « (see Figure 4.10(b) and 4.10(c)). As an example, 2 pix-
els noise will not significantly affect the area of a segmented image of 70 x 70
pixels. This condition also applies to the computation of a which involves
the computation of the second order centered image moments. Figure 4.11
shows segmented target images captured at initial and desired camera posi-
tions. OpenCV 2.0 [135,169] library was used to preprocess images from the
camera’s raw data to the obtained binary segmented images which included
image color converter (RGB to greyscale image), blurring, Canny edge detec-
tor and contour finder functions.

4.10 Summary

This chapter has presented a detail development of the MBVS of a 7 DOF
manipulator using image moments. The visual features x4, yq, @, and «
have been derived using the image moments up to second order. These
image moment features were chosen to have nice decoupling property of the

142

Model-based Visual Servoing of a 7 DOF Manipulator

Tracking error (pixels)

Time (s)
(a) es, and es,

N

,000

1,500

=

,000

500

z
2
=i
=
5
=
g
E‘D
2
g
=
=

500 T T T

-
~
o
0

Time (s)

(b) es,

0.1 —

0l 1 "] T

Time (s)
(c) esq

FIGURE 4.10: Results for the image feature errors.

Summary 143

(a) Initial b) Final

FIGURE 4.11: Segmented target images at initial and desired camera position.

interaction matrix, e.g., the movement of the centroid coordinates (x4, y,) are
significantly affected by the movement of the camera in x and y camera axes,
the changes of the segmented image area a is caused by the movement of the
camera along the camera optical axis, and the orientation « of the segmented
image is significantly affected by the orientation of the camera about the cam-
era optical axis. As a result, the interaction matrix of the desired image is a
diagonal matrix which has perfect decoupling property.

The presented MBVS control law has been validated in a real-time exper-
iment using 7 DOF PowerCube robot manipulator. By giving four image
moment features, the MBVS controlled each joint of the robot manipulator
using velocity command, to position the attached camera on the robot end-
effector from the initial pose to the desired pose. The system convergence was
reached when the current image moment feature set s was approximately the
same with the desired image moment feature set s*. In the real-time experi-
ment, image noises cannot be avoided; as a result the joint velocity trajectories
fluctuated in a small region near zero, in order to keep the camera pose at
the desired position. The development of the presented MBVS in this chap-
ter is important for further analysis and comparison in the next following
contribution chapters.

Readers may refer [15] for inverse kinematic control of the redundant
manipulator using generalized pseudo-inverse. Vision-based manipulator con-
trol in open loop fashion is discussed in [51]. A detailed survey on visual ser-
voing can be found in [10], [11] and [52]. Vision-based control in eye-in-hand
configuration is discussed in [53,54]. Visual servoing in eye-to-hand config-
uration is discussed in [52,55, 56]. Model-based redundancy resolution for a
visually controlled manipulator is discussed in [81] for trajectories defined in
vision space. The trajectories are defined in vision space from a single cam-
era in eye-in-hand configuration, and then task sequencing is used to prioritize
the task for achieving kinematic limit avoidance. Mansard and Chaumette [82]
achieved obstacle avoidance by task sequencing while following vision space
trajectories in eye-in-hand configuration. Later the approach is extended for

144 Model-based Visual Servoing of a 7 DOF Manipulator

multiple-task considering occlusion and kinematic limit avoidance together in
[83]. The learning-based servoing scheme proposed in [61] for a non-redundant
manipulator focuses on learning the inverse Jacobian at the chosen operation
point only. Tsai’s algorithm to calibrate the camera is discussed in [133], and
an online implementation of the Tsai calibration algorithm is available by

R. Willson [134].

5)

Learning-Based Visual Servoing

Kohonen’s self-organizing map has been used to kinematically control the
redundant manipulator but the type of solution learned with the associated
map is not discussed in the literature. This chapter analyzes the map learned
with the KSOM based kinematic control algorithm. It is experimentally shown
that the learned KSOM actually approximates the pseudo-inverse of the Jaco-
bian with a linear map in every local zone. A globally asymptotically stable
visual servoing method is proposed with the learned map, and it is shown that
the proposed scheme is Lyapunov stable, if the approximation is accurate. A
KSOM based global positioning scheme is further generalized for redundancy
resolution using a weighted norm solution method [170].

5.1 Introduction

Real-life implementation of the redundant manipulator control requires the
ability to control the manipulator over the entire workspace to reach the
objects scattered in the environment. Model-based schemes compute the joint
angular velocity from the vision space as,

0=1"k,l"e,. (5.1)

Such model-based approaches are inefficient while implementing in a dynamic
environment in the following aspects:

e The model-based visual control schemes require the exact Cartesian depth
information between the camera and the environment for the computation
of the interaction matrix L, which may not be available over the entire
workspace in a dynamic environment.

e The pseudo-inverse of Jacobian J is required at each instant to control
the manipulator. The computation of pseudo-inverse is computationally
intensive. The method may lead to instability in dynamic environment
due to sensor and model inaccuracies since the method is sensitive to
parameter variations.

These problems are circumvented in model-based paradigm, by computing
L only at a given operating point during the control process. In general the

145

146 Learning-Based Visual Servoing

desired position ug is chosen to estimate the image Jacobian, which is denoted
as Ly, . Then the pseudo-inverse is computed for the Jacobian estimated at ug
as Ju, = Ly, PJ. If the camera and the kinematic model are not available, then
P and J are also estimated. Such methodology is computationally cost effec-
tive but results in local stabilization. Model-based locally stabilizing schemes
cannot be used in the real-world since the objects are scattered over the envi-
ronment. The image Jacobian L has to be estimated for every object and the
position of the objects will be continuously changing in dynamic environment.
Hence a local estimation of the Jacobian is ineffective. The global stabilization
can be achieved by estimating J over the entire workspace and then computing
the pseudo-inverse at each operating point. The Jacobian from the joint space
to the vision space is estimated at every instant and then an adaptive control
strategy is proposed visual servoing in [171,172]. The global Jacobian from the
joint space to the vision space is estimated using a K-nearest neighbor network
in [173] and receptive field weighted regression neural network in [174,175].
The learned map is used to compute the pseudo-inverse at each instant to
control the manipulator. All the above discussed approaches require the com-
putation of the pseudo-inverse at each instant and, hence, the approaches are
computationally intensive. An alternative approach is to estimate the pseudo-
inverse JT directly over the entire workspace, which reduces the computation
complexity associated with the pseudo-inverse. The learning-based visual ser-
voing scheme discussed in [61] computes the pseudo-inverse of L at a chosen
operating point and achieves local stabilization. The pseudo-inverse of the
image Jacobian L is estimated with an online update algorithm in [176] while
realizing task sequencing. Hence, the control is a two stage process, and the
redundancy is resolved while following the Cartesian space trajectory gener-
ated from the estimate of the image Jacobian’s pseudo-inverse.

On the other hand, model-free control of the redundant manipulator
from vision space has been addressed using KSOM based kinematic con-
trol schemes [177]. KSOM based learning schemes compute the joint angles
directly from the vision space but mostly tested on non-redundant manipu-
lators [51]. In [178], it has been shown through experimentation that KSOM
learns a smooth map for redundant manipulators owing to its topology pre-
serving nature, and yet a detailed analysis about the type of solution is not
studied. KSOM has been used for obstacle avoidance in [179]. The algorithm
presumes that the KSOM approximates the pseudo-inverse of the Jacobian
and the Jacobian is estimated by computing the pseudo-inverse of the learned
map. The null space of the Jacobian is then used to achieve obstacle avoid-
ance, but the assumption is not confirmed with any analysis. The discussed
experimental results also show that the redundant manipulator is tested for
end-effector collision avoidance only and the method suffers from positioning
inaccuracy due to open loop mode of operation. Asuni et al. [180] used a
growing neural gas architecture to learn the inverse kinematics of a redundant
manipulator. The approach does not resolve the redundancy for any particu-
lar task. It has been shown through the experimental results that the learned

Introduction 147

map is robust to model inaccuracies and it can adapted to environmental
changes such as clamped links and extended tool tips. A detailed survey of
KSOM based kinematic control schemes is discussed in [181]. The implemen-
tation of the learning-based control schemes is constrained by the number of
data generated to train the network. Angulo and Torras [182] suggested func-
tion decomposition for manipulators with last three joints crossing at a point
to improve the speed of the learning process. This method can be used for
both non-redundant and redundant manipulators provided that the last three
joints cross at a point. Kumar et al. [183] suggested an inverse-forward adap-
tive scheme to reduce the required number of training data during the learning
stage. The approach approximates the forward map with a radial basis func-
tion network and then the inverse kinematic solution is obtained with a KSOM
based hint generator for redundancy resolution. The learned forward map is
updated online while controlling the manipulator to improve the positioning
accuracy. Alternatively, Behera and Kirubanandan [51] suggested learning an
approximate inverse kinematic map with the available kinematic and camera
models and then the learned map is improved in real-time. Such an approach
uses the model to train the network and the learned model is adapted during
the operational phase.

Kumar et al. [184], proposed a KSOM network with joint angle space sub-
clustering which allows to learn multiple solutions for each end-effector posi-
tion. The network acts as a look-up table for redundant solutions and it works
based on the principle of “look and move.” Though KSOM based approaches
control the manipulator over the entire workspace, there is no proper study
associated with the relationship between the learned KSOM and the type of
resulting solution. This thesis work analyzes the learned map with experimen-
tal studies. It is empirically proved that the learned map approximates the
inverse Jacobian as a linear map in each operating zone. With such experi-
mental verification, a globally asymptotically stable visual control scheme is
proposed for redundant manipulators. In addition, KSOM based kinematic
control scheme is generalized to learn a particular solution to resolve the
redundancy for the chosen additional task.

Initially a KSOM based neural network is used to learn the inverse kine-
matics of the redundant manipulator offline. The input to the network is 4
dimensional image coordinate vector viewed from two cameras while the out-
put is 7 dimensional joint angle vector. Each neuron in KSOM approximates
the inverse kinematics relation from the vision space to the joint angle space
within a local operating zone. The output of KSOM neuron lattice consists
of a joint angle configuration required to reach near the corresponding input
vision space position, and a local first order map to move closer to the desired
position. This thesis work mainly focuses on the learned local linear model
of the KSOM network. It is shown experimentally that KSOM approximates
the pseudo-inverse of the Jacobian matrix with the local linear map. This
observation motivated us to use the learned KSOM for closed loop visual ser-
voing. The classical proportional feedback [164] is chosen for the closed loop

148 Learning-Based Visual Servoing

control. Further experiments revealed that a globally stabilizing controller
can be obtained by using conventional proportional feedback in conjunction
with the inverse kinematic map learned using KSOM. Since the approximate
inverse kinematic relationship is learned offline over the entire workspace,
a simple proportional controller results in global stability. Lyapunov analy-
sis shows that the global stability can be achieved if the learned map accu-
rately approximates the local inverse Jacobian. The obtained inverse Jacobian
approximation also eliminates the necessity of online pseudo-inverse compu-
tation required in visual servoing and makes the proposed scheme computa-
tionally efficient. With the empirical observations of convergence to pseudo-
inverse, the KSOM based kinematic control is extended for redundancy res-
olution under weighted norm formulation. KSOM is learned to resolve the
redundancy directly from the vision space while minimizing an instantaneous
cost function.

The remaining portion of this chapter is organized as follows. The follow-
ing section briefly introduces the KSOM based kinematic control scheme. The
problem is defined in Section 5.3, and the proposed control strategy is pre-
sented in Section 5.4. The simulations and the experiments performed for con-
trolling the robotic system discussed in Chapter 2 are presented in Section 5.7.
The contributions made in this chapter are finally summarized in Section 5.8.

5.2 Kinematic Control using KSOM

The forward map from 7 dimensional joint angle space to 4 dimensional image
coordinate space can be derived using manipulator forward kinematic model
(2.1) and camera model obtained through the Tsai algorithm. This forward
mapping is represented as,

u = f,,x(0) (5.2)

where f,x represents the nonlinear map from the joint angle space to the
vision space. In robotic manipulation, the inverse relationship plays a key
role, since the knowledge of the joint angle configuration which can reach the
desired position uy is necessary, for manipulating the objects scattered in the
workspace. The inverse kinematic relationship is given by,

0 = £l (ug) = r(uy). (5.3)

In KSOM based visual control, a smooth solution is learned over the entire
workspace and the learned map is used to reach any desired position in the
workspace. A brief discussion about KSOM based NN architecture for kine-
matic control is presented in the following subsection to aid understanding.

Kinematic Control using KSOM 149

5.2.1 KSOM Architecture

The inverse kinematic relationship of the redundant manipulator (5.3) is a
nonlinear relationship and, hence, it is difficult to learn. One easier approach
to this problem involves the discretization of both the input as well as the
output spaces into several small cells so that a linear map from the input to
output space holds good within each cell. KSOM discretizes the input vision
space into number of cells and associates a vector and a linear map in the
output joint angle space for each region.

In this thesis work, a 3 dimensional KSOM lattice is used to discretize
the input and output spaces. Lattice node indices are represented by v and
each such node is associated with a vision space vector w., € RP, a joint angle
vector 8, € R™, and a linear map A, : R? — R™. The vectors w, and
0. discretize the input and output space respectively. A, approximates the
inverse kinematic relationship in each region with a linear map. The joint angle
required to reach any desired position is computed using KSOM as follows:

Given a desired position uy, a winner neuron p is selected based on its
FEuclidean distance metric in the input space. The neuron whose weight vector
is closest to the desired position is declared winner as shown below.

p = min g — w, 2 (5.4)

. . t .
The arm is given a coarse movement 63" given by,

N’L
65" =571 Z hqy(0y + Ay (ug — w,)) (5.5)
~y=1

Ny — =l
where s =) h., hy = ("o), and N, is the number of neurons located in
=1

the KSOM lattice. Because of this coarse movement, the end-effector reaches
a position ug in vision space. A correcting fine movement 0(1”“5 is evaluated as
follows:

Ny,
07" = 05" + 57> hyA(ug— o). (5.6)
y=1
This corrective movement results in a final movement of the end-effector to

u;. Although one can use several such corrective movements to increase the
accuracy of tracking, usually one corrective movement is used.

5.2.2 KSOM: Weight Update
The parameters of the KSOM network are updated as,

AU = A4 57 nh, AA, (5.7)
wi = wgld +s7 ' nh, Aw, (5.8)

150 Learning-Based Visual Servoing
01 = 09 +s nh, AG, . (5.9)

The change in the network parameters AA.,, Af8, and Aw, are computed
as follows:

The local linear map A, is updated similar to gradient descent rule, by
minimizing the function,

1
E =3 | Ao — A\ Aug, 12 (5.10)
where Afy; = 61 — 0y and Aug; = u; — ug. The value of AA, is obtained
from equation (5.10) as,

AA, =| Aug ||7? (A8 — A, Aug;) Auf;. (5.11)
The change in the value of 8., is computed as,
A0, =00—0,— AT (ug —w,), (5.12)

such that 6, — 6.
The value of Aw,, is computed with the basic KSOM based clustering
algorithm to identify a center around the desired position uy as,

AW, = Uy — W,. (5.13)

5.2.3 Comments on Existing KSOM Based Kinematic
Control Schemes

The above approach has been used for visual motor coordination of non-
redundant manipulators [51] as well as redundant manipulators [178], [185].
While the application of KSOM to kinematic control of the non-redundant
manipulators has been analyzed extensively, it has not been applied much
to the redundant manipulators, since the redundancy is lost in the learning
phase. It is demonstrated in [178] that, the above control algorithm is capable
of resolving the redundancy by minimizing the variations of joint angles, in
the case of manipulators with higher degrees of freedom. Han et al. [179] used
KSOM to avoid obstacles with multiple camera setup for a 4 DOF manipula-
tor, but the approach involves the computation of the pseudo-inverse during
learning phase.

The learned map is generally used in open loop mode which suffers from
positioning inaccuracy. KSOM based kinematic control algorithm considers
only the desired position and the current end-effector position is ignored dur-
ing the coarse movement. Hence, the path traversed during coarse movement
from the current position to the desired position is not controlled. Since the
manipulator is controlled with joint angle reference, it is difficult to resolve
redundancy with existing approaches for different subtasks.

Analysis of solution learned using KSOM 151

5.3 Problem Definition

As discussed in previous sections, existing visual servoing techniques are
model-dependant and computationally intensive. Though model-free strate-
gies are analyzed for position level control, they are inaccurate and not suit-
able for redundancy resolution. Considering these challenges associated in the
visual control of the redundant manipulators, the problem is formulated as
follows:

“Given a redundant manipulator with stereo vision overlooking the
workspace in eye-to-hand configuration, develop a model-free visual con-
trol technique which can control the redundant manipulator over the entire
workspace while resolving the redundancy for the chosen additional task. With
any initial manipulator configuration 8y resulting in end-effector position u,
and the desired end-effector position uy in vision space, identify the control
law 6 = £ (0,e,), where e, = ug — u, such that the manipulator end-effector
asymptotically reaches the desired position from the initial position.”

The main focus of the proposed approach is to achieve global positioning
of the end-effector through visual servoing, and it is achieved by analyzing
the linear map learned using the KSOM based kinematic control algorithm.
Following are the prime issues addressed in this thesis work:

e A computationally less intensive model-free architecture for visual servo-
ing.

o Global positioning of the redundant manipulator without the computation
of pseudo-inverse at each instant.

¢ Redundancy resolution from vision space while minimizing an instanta-
neous cost function under learning paradigm.

5.4 Analysis of Solution Learned Using KSOM

As discussed in Section 5.2, KSOM learns to control the redundant manipula-
tor with a linear map in each operating zone. In case of redundant manipula-
tors, it is shown through simulation [178] that the KSOM resolves the redun-
dancy by learning a smooth movement in the workspace. A smooth solution is
learned since it tries to minimize the joint angle variation due to its topology
conserving nature. In this thesis work, the solution learned with KSOM is
analyzed using eigenvalue approach, and it is experimentally shown that the
pseudo-inverse of Jacobian matrix is learned locally. In such a case it is argued
that the KSOM can be considered as an approximation of the pseudo-inverse
of the Jacobian matrix for the learned joint angle configuration 6,. In the

152 Learning-Based Visual Servoing
following sections, it is empirically confirmed through experiments that the

KSOM actually approximates the inverse Jacobian.

5.4.1 KSOM: An Estimate of Inverse Jacobian

The correcting fine movement (5.6) can be rewritten as,
07" — 05"t = st Z hyA(ug — ug)
A0 = 571> h,A(Au) (5.14)

where AQ°“" represents the estimated change in the joint angle to generate
the end-effector position change of Au in the vision space. The above equation

can be represented in velocity form by actuating a joint angular velocity, o
for a duration of At as follows,

AQM L Au
AT T Y X mA(Ey)
~y=1
sout —1 Jn .
0" = s> hAu (5.15)
~y=1

By comparing equations (5.1) and (5.15), it is easy to infer that KSOM may
approximate the inverse of the Jacobian from the joint angle space to the
vision space as,

Np
It~ sy hA, (5.16)
y=1

This thesis work proposes that the KSOM approximates the inverse Jacobian
as a linear map in each operating zones. The linear map is valid within its
local zone and the global nonlinear inverse is obtained by clustering in the
lattice space. To verify the proposition, empirical experiments are performed.
For simplicity, the simulations are performed for inverse kinematic relation
from the Cartesian space to the joint angle space. The same experiments can
also be extended to the vision space which also requires the computation of
image Jacobian at every point in the visible workspace.

5.4.2 Empirical Verification

If KSOM approximates the pseudo-inverse of the kinematic Jacobian J while
controlling from the Cartesian space, then the following relationships are valid.

Analysis of solution learned using KSOM 153

¢ Around non-singular points,
I> hA,~1 (5.17)
¢ Around singular points,

I hAy~T (5.18)

where Z hA. is the linear approximation of the inverse Jacobian learned by
~y=1

KSOM. I is the identity matrix of order n and I isa positive definite matrix
of order n. The I matrix of rank 7 will have n —r eigenvalues as 0. Consider-
ing these relationships, following simulations are performed to check whether
above properties are satisfied with KSOM. The simulations are performed
with the kinematic model of the PowerCube™ manipulator discussed in Sec-
tion 2.2. The parameters are taken the same as an actual setup in simulation
so that it matches with the experimental result.

A 3 dimensional neural lattice with 7 x 7 x 7 neurons is selected to learn the
inverse kinematics. The inverse kinematic relation from the Cartesian space
to the joint angle space is learned with 5,00, 000 training patterns. The input
to KSOM network is 3 dimensional Cartesian position of the end-effector and
the output is 6 dimensional joint angle coordinates.

5.4.2.1 Inverse Jacobian Evolution in Learning Phase

It is observed from the inverse kinematic solutions that KSOM learns a smooth
motion. This learned mapping improves as the number of patterns increases.
It is easier to infer then, that, as the learning progresses, KSOM approaches
the pseudo-inverse. To validate this assumption, a typical neuron is selected

, Ny,
and I =J)" hyA, is computed in regular intervals of learning. If KSOM
r=1

learns the generalized pseudo-inverse, then eigenvalues of I converge to 1.

The neuron located at (4,4,4) of neuron lattice is considered to check
the eigenvalue evolution in the learning phase. The eigenvalues are computed
at regular interval of 200 data points. The simulation results are shown in
Figure 5.1. It is clear from the figure that the eigenvalues approach 1 with the
learning, which confirms the proposition.

5.4.2.2 Testing Phase: Inverse Jacobian Estimation at each
Operating Zone

The inverse Jacobian relationship at every nodes of KSOM network is checked
after learning. The results are shown in Figure 5.2. It is clear from the figure

154 Learning-Based Visual Servoing

e

1000 1500 2000 2500

=
~

—_
[\

Eigen Value : 1

o o
o

=

~
o
wn
(=)
(=)

—_
[\

o
o0

Eigen Value : 2
|

I

=
)
14
=3
S
—_
=)
S
S

1500 2000 2500

A ——

0 500 1000 1500 2000 2500
Instant

=
IS

—_
[\

0.8
0.6

Eigen Value : 3

FIGURE 5.1: Evolution of eigenvalue.

that KSOM approximates the pseudo-inverse in most of the centers of net-
works, and in some of the nodes the eigenvalues have not yet converged to
1 which belongs to the neurons located at the corner of lattice. To conclude
further, the positioning accuracy at each center is checked and the result is
shown in Figure 5.3, which clearly shows that learning is not accurate at the
corresponding centers where eigenvalues have not yet converged to 1. Hence,
the eigenvalues may converge to 1, if the learning is extended further.

5.4.2.3 Inference

It is clear from the above two experiments that KSOM approximates the
pseudo-inverse of Jacobian and the approximation improves with learning.
Though the above experiments are performed from the Cartesian space to the
joint angle space for simplicity, it can be extended to the vision space too.

It is claimed that the KSOM learns the pseudo-inverse of kinematic rela-
tionship as a cluster of locally valid inverse maps, and the claim is corroborated
with the empirical results. KSOM reaches the pseudo-inverse, since the linear
approximation of inverse Jacobian is learned by minimizing equation (5.10),
which is equivalent to,

6=1J"x (5.19)

Analysis of Solution Learned Using KSOM 155

Ly

0.8 vv
0.6

0.4

0.2

Eigen Value : 1

0 50 100 150 200 250 300 350

0.8
0.6
0.4
0.2

Eigen Value : 2

0 50 100 150 200 250 300 350

0.8
0.6
0.4
0.2

Eigen Value : 3

0 50 100 150 200 250 300 350
Center

FIGURE 5.2: Eigenvalues at centers of KSOM.

Hence, KSOM based kinematic control algorithm estimates the inverse Jaco-
bian with average value of locally valid linear inverse Jacobian maps in each
operating zone. This inverse Jacobian is required in the visual servoing control
algorithm (5.1). This is one of the major contribution achieved in this thesis
work.

With these observations, the learned KSOM is considered to be an approx-
imation of the inverse Jacobian from the vision space to the joint angle space.
These observations play a significant role in the visual control of a kinemati-
cally redundant manipulator as follows:

e The map learned with KSOM based kinematic control algorithm is an
estimate of the inverse Jacobian for the global workspace. A globally stable
visual servoing algorithm can be formulated with this estimated map.

e The KSOM based kinematic control algorithm can be generalized to
approximate a particular solution which satisfies the desired additional
task by learning an appropriate inverse Jacobian map.

It will be shown in subsequent sections of this chapter that it is indeed possible
to achieve global visual servoing while satisfying the desired additional task
with the KSOM based kinematic control scheme. Global positioning scheme
is achieved by using the KSOM in conjunction with the proportional gain,
while redundancy is resolved by expressing the instantaneous cost function in
weighted norm formulation.

156 Learning-Based Visual Servoing

0.1

0.08

0.06
g
5
g
53]

0.04

0.02

0 WWWWWWMV»WW
0 50 100 150 200 250 300 350

Center

FIGURE 5.3: Positioning error at centers of KSOM.

5.5 KSOM in Closed Loop Visual Servoing

Through experimental analysis, it is shown that the inverse Jacobian is
approximated as a linear map in each operation zone with KSOM based kine-
matic control algorithm. This learned map can be used as an approximate
inverse Jacobian for visual servoing. With the learned KSOM based approxi-
mation of the inverse Jacobian, image based visual servoing can be performed
from the joint angle space. The KSOM based visual servoing simplifies the
following issues:

e With the learned KSOM map, the approximate pseudo-inverse from the
vision space to the joint angle space is known over the entire space. This
eliminates the computation of the pseudo-inverse during servoing. It is
known that only the winner neuron contributes to the learned map after
learning phase. Hence, the computation cost of real-time servoing reduces
to a simple matrix multiplication.

e Since KSOM learns a unique relationship between the vision space and
the joint angle space, it resolves the redundancy in learning phase itself.
This facilitates to analyze the visual servoing and redundancy resolution

KSOM in Closed Loop Visual Servoing 157

in a simple integrated framework with direct computation of joint angle
space trajectories from vision space.

The conventional proportional controller with pseudo-inverse computation at
the desired location ensures local asymptotic stability only. The global asymp-
totic stability can be achieved by either estimating the forward Jacobian at
each instant and then computing the pseudo-inverse of the forward Jacobian
or estimating the pseudo-inverse of the Jacobian over the entire workspace. As
discussed in the previous section, KSOM approximates the inverse kinematic
Jacobian from the vision space to the joint angle space at discrete operating
points. Hence, KSOM based learning approach is a holistic methodology to
learn the inverse kinematic relationship over the entire workspace.

In this thesis work, this KSOM based approximation of the inverse Jaco-
bian is used to achieve global stabilization with conventional proportional
controller. KSOM eliminates the computation of pseudo-inverse along the tra-
jectory, since the inverse kinematic relationship is learned offline. With this
control scheme, the input to KSOM network is given as,

Au =k, e,. (5.20)

The global stabilizing controller can be obtained only if the inverse adaptively
changes along the path. In conventional KSOM algorithm, the winner neuron
is selected based on the position of the object and, hence, the inverse will be
fixed for a given desired location. This approach results in a local stabilizing
controller. In this work, the winner neuron is selected based on the current
end-effector position such that the inverse Jacobian changes as the end-effector
traverses along the path. The desired joint angular velocity is then computed
with the above input as,

out

Nn
07" = kst hiAen. (5.21)
y=1

After training, the winner neuron is the major contributor to the joint angular
velocity. Hence, the computation reduces to a simple matrix multiplication
in real-time which makes the algorithm computationally efficient. This is a
major improvement in case of visual servoing, where currently the computation
poses a constraint in real-time implementation due to the computation cost
associated with the image processing techniques.

5.5.1 Stability Analysis

It is clear from the empirical observation that the KSOM approximates the
pseudo-inverse of the Jacobian. In this section, Lyapunov stability of the pro-
posed control scheme is analyzed. Let’s consider the Lyapunov candidate as
the quadratic position error,

V=e,e, (5.22)

158 Learning-Based Visual Servoing

where the error, e, = ug—u and uy is constant for positioning task. The time
derivative of the Lyapunov function is given by,

vV = ele,
T
u

= feg,]lé

—e; u

Nn
= —elTkys 'Y hAe,
y=1

Ny
= —kys tell. Z(thv)eu
y=1

N"I,
= —kps el H{IT =TT+ (D hyAy) ey
y=1

N’Vl
—kps~le I e, — kysTley J{IT — (Z hyAy)}ey
~y=1

= —kps’lefI/eu —kps el J(A)e,

= —kps_leZI/eu — kpslelTe, (5.23)
~ N’n/

where I = JJ*, A = {J* — (> h,A,)} is the approximation error of KSOM
~y=1

network and I = JA. It is well known that, I' > 0 and I is sign indefinite.
The above equation can be further simplified as,

Vo< —kyselTe,+kys T] eul- (5.24)
It is clear from the above equation that V is negative definite, if,
elTe, > 1| el - (5.25)

Empirical observation has clearly shown that the linear map of KSOM
approaches the local pseudo-inverse of the kinematic Jacobian with train-
ing and, hence, I ~ 0. Thus equation (5.25) is true, which implies that the
stability condition given by equation (5.24) is also satisfied. To make the algo-
rithm robust, one can increase the number of neurons which would increase
the discretization of the workspace and, hence, || I || will be bounded. The
global Lyapunov stability of the proposed scheme is thus guaranteed, with
accurate offline learning of KSOM network. A globally asymptotically sta-
ble visual servoing scheme can be designed with the inverse kinematic map
learned using the KSOM based kinematic control algorithm. Visual servoing
does not require the estimation of the Jacobian and the computation of its
pseudo-inverse at each instant, which makes the proposed KSOM based visual
servoing scheme computationally efficient. The KSOM based visual servoing
simplifies the development of global visual servoing scheme with offline learn-
ing process.

Redundancy Resolution 159

5.6 Redundancy Resolution

The proposed KSOM based closed loop control strategy is further extended
for resolving the redundancy. As discussed in section 5.4.2.3, KSOM generates
a smooth minimum joint angle space motion since the linear map is updated
by minimizing the equation (5.10). KSOM based kinematic control algorithm
is generalized to resolve the redundancy by minimizing weighted norm as dis-
cussed in [18]. Weighted norm solution penalizes the joint angle space motion

for achieving the desired additional task. The joint angular velocity € which
minimizes the weighted norm, || 8© W8 || is given as,

6 =W, ’Itu (5.26)

where Wgr € R™*™ is the weight matrix which penalizes the joint angle
space motion to achieve the additional task, J,, = JW?/ ? and Jh =
WI_%T/%,]IT(JW;JT)*I. The detailed discussion about weighted least norm
solution is available in [18]. Comparing equations (5.19) and (5.26), the Jaco-
bian matrix of KSOM is updated to minimize,

1 _
5 |l A6 - W, 2A; Aug, |12 (5.27)

The above equation is analogous to equation (5.10), which converges to the
minimum norm solution (5.19). The above cost function, is same as equation
(5.10), if W = I, where I is the identity matrix. Hence, the existing KSOM
based learning method [51] is a particular case of the proposed generalized
update law. The change in the value of A, with the proposed generalization
is computed to be,

AA., =| Aug; |2 (Aem - W§1/2A7Au01> Aul). (5.28)
The change in the joint angle vector 6, is evaluated as,
—-1/2 new
AG, =0y — 0, — W, PAT (uy — w,), (5.29)

such that 6., — 6y while minimizing || BTWRG |. The update law for w, is
chosen as same as equation (5.13), since the weights are penalizing the joint
angle space only.

The manipulator has to be actuated with generalized KSOM based kine-
matic control scheme to move near the desired position uy with a coarse
movement. The coarse movement is generalized as,

N,
05" = 5D (0, + WAL (g — wy). (5.30)
y=1

160 Learning-Based Visual Servoing

The manipulator moves to the position ug in the vision space, with the joint
angle configuration 08” computed for the joint penalization W . The posi-
tioning error in the vision space after the coarse movement is given by ug—ug.

The positioning accuracy can be further improved with a fine movement

defined as,

N,
etl)ut — Bgut + S—1WE1/2 Z h»yAry(Ud _ uO)- (531)

r=1

The manipulator reaches the position u;, when it is commanded with the
joint angle vector 9(1"”. The positioning accuracy can be further improved with
multi-steps similar to the existing KSOM based kinematic control schemes.

The above algorithm penalizes the joint angle space motion based on
the additional task and, hence, it is expected to resolve the redundancy
during learning phase. The learned map is expected to converge to J! =
WI;T/QQ]IT(JWI}lq]IT)*1 with the proposed generalization of the KSOM based
learning scheme. It will be further corroborated with empirical results that
the proposed generalized scheme indeed resolves the redundancy by penal-
izing the joint angle space motion with weight matrix Wg. Thus, the pro-
posed generalization of KSOM based kinematic control algorithm resolves the
redundancy during learning phase, provided the additional task is expressed in
weighted norm formulation. Such generalization is highly desirable in vision-
based redundant manipulator control, since the accurate model of the system
is mot known, and the redundancy of the manipulator can be resolved only by
estimating the Jacobian with a learning algorithm.

5.7 Results

The performance of the proposed controller sc