
Introducing
Play Framework

Java Web Application
Development
—
Second Edition
—
Prem Kumar Karunakaran

Introducing Play
Framework

Java Web Application
Development

Second Edition

Prem Kumar Karunakaran

Introducing Play Framework: Java Web Application Development

ISBN-13 (pbk): 978-1-4842-5644-2 ISBN-13 (electronic): 978-1-4842-5645-9
https://doi.org/10.1007/978-1-4842-5645-9

Copyright © 2020 by Prem Kumar Karunakaran

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Editorial Operations Manager: Mark Powers

Cover designed by eStudioCalamar

Cover image by Mel Elias on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484256442. For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Prem Kumar Karunakaran
Thiruvananthapuram, Kerala, India

https://doi.org/10.1007/978-1-4842-5645-9

To my wife, Teena, and my daughters, Nayana and
Nandana. My gratitude to my parents for their support
during all these years. Thanks to all my friends for their

support and encouragement.

v

Chapter 1: Getting Started with Play 2 ��� 1

Getting Ready ��1

Installation ��1

Prerequisites ���2

Installing sbt ��2

Installing conscript ��2

Installing Giter8 ���3

Setting Up Play ��4

Using Play Example Projects ���4

Using sbt ��6

Creating Your First Project ��8

app���9

conf��10

build�sbt ���11

project ���11

public ���11

lib ���11

test ��12

Table of Contents

About the Author ���xi

About the Technical Reviewer ���xiii

Preface ���xv

vi

Configuring Play to Work with Your Preferred IDE ���12

Setting Up in Eclipse��12

Setting Up in IntelliJ ��15

Hello World Application ���17

Configuration ���19

Controller and View ���22

Testing Play Applications ��27

Testing Views ���28

Testing Controllers ���29

Chapter 2: Build System ���33

Scala Build Tool/Simple Build Tool ��33

Core Principles ��33

Benefits of sbt ���34

Project Structure ���35

Using sbt ���36

Setting Definition ���39

Resolvers ���42

Complete build�sbt���42

Complete plugins�sbt ���43

Quick Recap of SBT Commands ��43

Chapter 3: Play Controllers and HTTP Routing �����������������������������������45

MVC Programming Model ���45

Model ���46

View ���48

Controller ���48

Table of ConTenTsTable of ConTenTs

vii

HTTP Routing ��48

Static Definition ���50

Dynamic Parts in a URL ���50

Passing Fixed Values ���52

Optional Parameters ��53

Application Configuration Using application�conf ���53

Controllers ���54

Finishing the Bookshop Controller ��56

saveComment Method ���58

Testing the saveComment Action ��59

Models ��60

Scoped Objects ���61

Session Scope ���62

Flash Scope ���64

Chapter 4: Play Views and Templating with Scala �����������������������������65

Composite Views ���66

Designing a General Template ��68

Code Snippets Templating Basics ���69

Comments ���70

Template Parameters ��70

Import Statement���71

Iterating a List ���72

Iterating a Map ��72

If Blocks ���73

Escaping Dynamic Contents ��74

Table of ConTenTsTable of ConTenTs

viii

Chapter 5: Concurrency and Asynchronous Programming����������������75

What Is Concurrency? ���76

Executor ��76

Example 1: Using Runnable ���78

Example 2: Using Callable ���80

Asynchronous Programming with Play ���82

Writing an Asynchronous App ���83

Configuring Asynchronous Scheduled Jobs ��84

Akka Basics ���84

Chapter 6: Web Services, JSON, and XML ���87

Consuming Web Services��88

Processing Large Responses ��91

Handling JSON ��94

Consuming JSON Request ���94

Producing a JSON Response ���97

Handling XML ��98

Example 1: Simple XML Parsing ��99

Example 2: XML Parsing Using JAXB ���100

Chapter 7: Accessing Databases ��105

Configuring Database Support ��105

Working with an ORM ���109

ORM Concepts ���109

Key Terms ��111

Relationship Direction ���111

Configuring JPA ���113

Table of ConTenTsTable of ConTenTs

ix

Using Ebean in Play ��118

Ebean Query ��120

Common Select Query Constructs in Ebean ��125

Using RawSql ��128

Relationships in Ebean ��130

Chapter 8: Complete Example���133

Chapter 9: Using Play Modules ���157

Creating a Module ���158

Third-Party Modules ���161

Chapter 10: Application Settings and Error Handling �����������������������163

Filters ��164

Action Composition ���168

Error Handlers ���170

Client Errors ���170

Server Errors ���170

How Global Settings Were Done Before Play 2�6�x ��172

Chapter 11: Working with Cache ��175

Configuring Caffeine ���175

Adding Caffeine to a Project ��176

Configuring EhCache ���177

Using the Cache API ��177

Chapter 12: Production Deployment ���183

Configuring Apache httpd for Play ��184

Load Balancing Using mod_proxy_balancer ���184

Configuring Play with Nginx ��185

Index ���187

Table of ConTenTsTable of ConTenTs

xi

About the Author

Prem Kumar Karunakaran is an enterprise architect with about

20 years of industry experience. He holds a M.Tech in Software Systems

from BITS Pilani and a bachelor’s degree in electronics engineering from

Cochin University of Science and Technology. He is also an Oracle Certified

Java Enterprise Edition Master. He was involved in the architecture and

design of many cutting- edge products used by clients around the globe.

He has worked with organizations such as Infosys and IBS as an architect

and has worked in many projects spanning airlines, logistics, travel, and

retail domain. He is passionate about Java, Machine Learning, BigData

processing and Cloud and loves to learn new technologies; he contributes

his time to open source initiatives as well.

xiii

About the Technical Reviewer

Satheesh Madhavan has nearly 20 years of experience in the software

industry and currently serves as a digital consultant in one of India’s

largest IT firms. He has experience working in Java and JEE technologies in

providing enterprise solutions under various capacities. His qualifications

include an M.S in software systems from BITS Pilani and a B.Tech in

chemical engineering from the University of Kerala. His hobbies include

reading fiction and non-fiction, Philately, technical blogs and podcasts,

and astrophysics and pure sciences.

xv

Preface

Software developers need to have a number of traits in order to practice

their jobs well. A developer’s primary job is to create software that solves

business problems. Customers are operating in a dynamic business

environment and they need to change their business solutions fast

enough to retain and attract new customers. Hence, rapid application

development is a critical aspect of today's software development

methodology. You need better frameworks and tools that can help in

developing quality software faster.

Play Framework is the new and impressive framework in web

application development. By breaking the existing standards, it tries not

to abstract away from HTTP, as with most web frameworks, but to tightly

integrate with it.

Play Framework is a revolution in rapid application programming

for Java web development. It has changed the rules of the game for Java

web development. Java web development was a tedious, time consuming

activity and there were many frameworks offering the benefits of MVC

architecture. But there were hardly any frameworks capable of providing

true rapid application development capabilities. Play has changed all that.

Play is a clean alternative to the existing Java Enterprise stacks for

web development. Play focuses on developer productivity, scalability,

adherence to modern web standards (REST, JSON, Web Sockets, and

Comet, to name a few) and efficiency.

Using Play Framework, you just need to code your changes and hit

the browser refresh button to test your changes. Play will automatically

compile and deploy your changes. If there are any errors in your code, Play

shows them nicely in the browser. You are no longer required to scan long

xvi

exception traces to find out the cause of the error. Above all, Play comes

packaged with its own application server, which is lightweight, fast, and

easy to use. In a single sentence, Play is the single framework you will need

to start your Java web development. Java web development is a lot easier,

more fun, and more powerful thanks to Play Framework.

This book is all you need to learn and use the new version of Play

Framework, Play 2. You will be taken through all layers of Play Framework

and you’ll get in-depth knowledge via as many examples and applications

as possible.

 Further References
Play Framework official docs: www.playframework.com/

Google groups for Play: https://groups.google.com/forum/#!forum/

play-framework

Questions related to Play: http://stackoverflow.com/tags/

playframework

Ebeans: www.avaje.org/

Twirl: https://github.com/playframework/twirl

PrefaCePrefaCe

http://www.playframework.com/
https://groups.google.com/forum/#!forum/play-framework
https://groups.google.com/forum/#!forum/play-framework
http://stackoverflow.com/tags/playframework
http://stackoverflow.com/tags/playframework
http://www.avaje.org/
https://github.com/playframework/twirl

1© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_1

CHAPTER 1

Getting Started
with Play 2
After reading the introductory section on Play 2, you should now have an

idea of the capabilities of Play Framework and how it can accelerate Java

web development. This chapter is about

• Installing Play Framework

• Setting up Play Framework on your machine

• Configuring Play Framework

• Creating the first sample project

• Setting up the IDE

 Getting Ready
All you need is a browser and Internet connectivity. You can install Play on

a wide variety of operating systems, including Microsoft Windows, Linux,

and Mac. The operating system should have Java installed.

 Installation
Play just needs the Play jars available at runtime to work, hence you can

include the Play jars in any application using Maven or any such build tool.

2

But the recommended way to use Play is to install it using either sbt or

Gradle because Play provides a better development experience when using

sbt or Gradle.

 Prerequisites
Play 2.x requires JDK 1.8 or later to be installed on the machine. Please

note that JRE is not enough; you need JDK Version 8 or higher. You should

ensure that the PATH variable points to the JDK bin directory and that

javac and Java are accessible from everywhere.

You can check this by typing javac -version in the command prompt

or shell and verify that the version is 1.8 or above.

You can get Java SE from the Oracle website at www.oracle.com/

technetwork/java/javase/downloads/index.html.

Play also works with Open JDK version 1.8 and above. But you should

make sure that any dependency you use in the project is compatible with

the Open JDK.

 Installing sbt
sbt (Scala build tool) is available for all OS versions at the scala-sbt website

at www.scala-sbt.org/download.html. Please follow the instructions in

the installation guide at www.scala-sbt.org/1.x/docs/Setup.html to

install sbt.

 Installing conscript
To install Play using sbt, you need to install conscript. Please follow the

instructions at www.foundweekends.org/conscript/setup.html to install

conscript. The instructions are available for Mac, Linux, and Windows.

Chapter 1 GettinG Started with play 2

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.scala-sbt.org/download.html
https://www.scala-sbt.org/1.x/docs/Setup.html
http://www.scala-sbt.org/1.x/docs/Setup.html
http://www.foundweekends.org/conscript/setup.html

3

The cross-platform installation using a jar is simple. Download the

conscript jar from the foundweekends Maven release repo (https://

dl.bintray.com/foundweekends/maven-releases/org/foundweekends/

conscript/conscript_2.11/0.5.2/conscript_2.11-0.5.2-proguard.

jar) and run the following from the command prompt:

java -jar /conscript_2.11-0.5.2-proguard.jar

This will start a splash screen and will install conscript. Ignore any

error related to not finding ‘cs.’ Typically, conscript will get installed in the

C:\Users\username\.conscript folder in Windows, where username is the

home folder of the logged-in user in Windows. This location will be shown

in the splash screen.

Now let’s set up the environment variables for conscript:

export CONSCRIPT_HOME=" C:\Users\username\.conscript"

export CONSCRIPT_OPTS="-XX:MaxPermSize=512M -Dfile.encoding=UTF-8"

export PATH=%PATH%;%CONSCRIPT_HOME%\bin

CONSCRIPT_HOME is where conscript will download various files. For

example, in Windows, it will be C:\Users\username\.

PATH is your OS’s path variable. This will make the command cs

available from everywhere.

 Installing Giter8
After installing conscript, Giter8 can be installed using conscript itself.

Giter8 is a command-line tool to generate files and directories from

templates published on GitHub or any other git repository.

Go to a command prompt and type

cs foundweekends/giter8

This will download and install Giter8. More details of the

installation is available from the foundweekends website for Giter8

(www.foundweekends.org/giter8/setup.html).

Chapter 1 GettinG Started with play 2

https://dl.bintray.com/foundweekends/maven-releases/org/foundweekends/conscript/conscript_2.11/0.5.2/conscript_2.11-0.5.2-proguard.jar
https://dl.bintray.com/foundweekends/maven-releases/org/foundweekends/conscript/conscript_2.11/0.5.2/conscript_2.11-0.5.2-proguard.jar
https://dl.bintray.com/foundweekends/maven-releases/org/foundweekends/conscript/conscript_2.11/0.5.2/conscript_2.11-0.5.2-proguard.jar
https://dl.bintray.com/foundweekends/maven-releases/org/foundweekends/conscript/conscript_2.11/0.5.2/conscript_2.11-0.5.2-proguard.jar
http://www.foundweekends.org/giter8/setup.html

4

 Setting Up Play
There are multiple ways to install Play. Let’s look at the two most common ways:

• Using Play example projects: Use any of the example

projects provided by Lightbend Tech Hub (https://

developer.lightbend.com/start/?group=play).

• Using sbt: This approach depends on Giter8 templates

for sbt. This method creates a fresh Play project without

any example code. This is the preferred mode for a

clean, lean project structure.

 Using Play Example Projects
Play provides many example projects for making the installation easier.

If you follow this path, installation of sbt is not required because the

template provides sbt launchers for the Unix and Windows environments.

Let’s try the first approach: installing the Play example project in Scala.

 1. Go to https://developer.lightbend.com/

start/?group=play.

 2. Choose the project PLAY SCALA HELLO WORLD

TUTORIAL.

 3. Click the “Create a project for me” button (this will

download the example project to your system).

 4. Unzip the archive (play-samples-play-scala-

hello-world-tutorial.zip).

 5. Go to the folder named play-samples-play-scala-

hello-world-tutorial and double-click the

sbt.bat file if on Windows. If you are on a Mac or

Unix-based system, run the sbt file.

Chapter 1 GettinG Started with play 2

https://developer.lightbend.com/start/?group=play
https://developer.lightbend.com/start/?group=play
https://developer.lightbend.com/start/?group=play
https://developer.lightbend.com/start/?group=play

5

It will take a while to download the sbt and all

dependencies.

Once the sbt build is successful, you will see the

message

sbt server started at local:sbt-server-

f50b441db70fa47676ba

Note that the last part of the message

(f50b441db70fa47676ba) might be different for you

but that is okay. You are now good to go and you will

see the prompt as

[play-scala-seed] $

 6. Type the run command to start the application:

[play-scala-seed] $ run

As soon as this step completes, the prompt will display

(Server started, use Enter to stop and go back to the

console...)

 7. Go to http://localhost:9000. If all is good, you

should see the Play documentation displayed in the

browser.

Now let’s see how to install a Play example project using Java.

1. Go to https://developer.lightbend.com/

start/?group=play.

 2. Choose the project PLAY JAVA HELLO WORLD

TUTORIAL.

 3. Click the “Create a project for me” button (this will

download the example project to your system).

Chapter 1 GettinG Started with play 2

https://developer.lightbend.com/start/?group=play
https://developer.lightbend.com/start/?group=play

6

 4. Unzip the archive (play-samples-play-java-

hello-world-tutorial.zip).

 5. Go to the folder named play-samples-play-java-

hello-world-tutorial and double-click the sbt.

bat file if on Windows. If you are on a Mac or Unix-

based system, run the sbt file.

 6. This will download all the dependencies and

perform the build. Please note that it might take a

while to download all the dependencies.

 7. Once the build is over, the command prompt will

show

[play-java-hello-world-tutorial] $

 8. Type the run command to start the play

application:

[play-java-hello-world-tutorial] $ run

 Using sbt
Now you’ll learn how to install Play using sbt to get the basic Play application

structure and dependent jars but not the example projects.

To use sbt to create a Play project, the following needs to be completed:

 1. Install SBT.

 2. Install conscript.

 3. Install Giter8.

You can find instructions for installing the above software in the

Installation section of this chapter.

Chapter 1 GettinG Started with play 2

7

Once the above software is installed, you can proceed with creating

a Play project using sbt. Play supports Java and Scala as programming

languages, so I will show examples for both using sbt.

 Installing a Java Project Using sbt

Take a command prompt, change to the directory where you want the

project to be created, and type

sbt new playframework/play-java-seed.g8

This will install a Java starter project structure.

The wizard will ask for the project name and organization. (By

convention, this is a reverse domain name that you own, typically one

specific to your project. It is used as a namespace for projects.) Once these

names are supplied, the project will get created.

 Installing a Scala Project Using sbt

Here is the command:

sbt new playframework/play-scala-seed.g8

Provide the project name and organization, and the project will get

created.

You have now learned multiple ways to install a Play project for both

Scala and Java:

• Using Play examples

• Using sbt

In this book, I use Java as the programming language for Play, so when

you create your first project (a bookshop) in the next section, you will be

using sbt and the Java seed.

Chapter 1 GettinG Started with play 2

8

 Creating Your First Project
Let’s create a new project called bookshop to explore Play in detail. Name

your project bookshop and, for the ease of explanation, let’s make it an

online retail application selling books, a domain familiar to everybody.

From a command prompt or shell, type

sbt new playframework/play-java-seed.g8

See Figure 1-1.

Figure 1-1. Creating a project

Provide the following for the project name and organization:

name [play-java-seed]: bookshop

organization [com.example]: com.stackrules.example

For the organization name, you can give another domain name if you

want to do so.

Chapter 1 GettinG Started with play 2

9

Go to the directory where you created project. For instance, in my

machine, the project directory is E:\workarea\bookshop.

Let’s look at the folder structure and its relevance in the overall project

organization. See Figure 1-2.

Figure 1-2. Project structure

 app
The app folder contains all your server-side source files. This includes all

your Java code, Scala code, dynamic Scala HTML templates, database

access-related code, etc. By default, Play creates two folders, controllers

and views, inside the app folder. The names are self-explanatory. The

controllers folder holds your controller classes and views holds the

dynamic screens (the HTML and Scala code snippets).

You are free to create subdirectories inside the app folder for better

organization of your files. For example, you can create a models folder to

hold all your ORM mapped POJOs, a folder named helper to hold your

helper classes, etc.

Chapter 1 GettinG Started with play 2

10

Most of the project will have the following structure under the app folder:

app

└ assets: Compiled asset sources

└ stylesheets: For CSS source code (less CSS

sources)

└ javascripts: Typically this is the folder where

coffeescript sources are placed.

└ controllers: Application controllers

└ models: Application business layer

└ views: Templates

 conf
The conf folder holds the configurations used by the Play application.

It contains all the HTTP mappings, orm configurations, environmental

variables, logging, etc.

Basically, the conf directory contains configuration and

internationalization files, whereas the app folder has a subdirectory for its

model definitions.

The most important files in this directory are

• application.conf: The main configuration file for

the application, it contains standard configuration

parameters.

• routes: Maps HTTP URL paths to methods in the

controller. Handles all HTTP routing configurations.

• logback: Play uses logback for all logging configuration

and this is the file you need to change to configure

logback.

Chapter 1 GettinG Started with play 2

11

 build.sbt
Play’s build configuration is defined in two places: the build.sbt file in the

project root and two files found inside the /project folder. The build.sbt

files contain the build configuration.

 project
The project folder contains project build configurations:

• plugins.sbt: Defines the sbt plugins used by this project

• build.properties: Contains the sbt versions to use to

build your app and related sbt build information.

I will discuss more about sbt going forward. A basic understanding of

sbt is good when you work with Play.

 public
The public folder hosts all static files like Javascripts, images, and CSS style

sheets that are directly served by the web server. The public folder has three

subfolders, images, javascripts, and stylesheets, for storing these assets:

public

└ stylesheets: CSS files (.css extension)

└ javascripts: JavaScript files (.js files)

└ images: Images

 lib
The lib folder is not created by default. But you can create this folder and

put any jar into it. All jars in this folder will be added to the application

class path. It’s ideal for including third-party dependencies that need to be

managed out of the Play build system.

Chapter 1 GettinG Started with play 2

12

 test
The test folder is a holder for storing all unit and functional test cases.

 Configuring Play to Work with Your
Preferred IDE
Since you have finished setting up the project structure and have

generated a project template, let’s now integrate the project with an IDE to

make the development process easier and more rapid.

You don’t need a sophisticated IDE to work with Play because Play

compiles and refreshes the modifications you make to your source files

automatically. This gives you the flexibility to use a simple editor like

Notepad or a vi editor to work with Play. But this is not a practical case

for real-world projects. You need an IDE that provides better navigation,

autocompletion, debugging, refactoring, etc. By default, Play supports

most of the popular IDEs like Eclipse, IntelliJ, NetBeans, and ENSIME.

For this book, I will use Eclipse as the IDE .You can use any IDE of your

choice to try out the samples.

 Setting Up in Eclipse
As an example, let’s configure Play for Eclipse. To use Play with Eclipse,

you need to first integrate sbteclipse to your project. To do this, open

plugins.sbt (project/plugins.sbt) and add the following:

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" %

"5.2.2")

You want to compile the project before you run the eclipse command

to generate the eclipse import settings for the bookshop project. The

manual way is to run sbt compile first and then do the generate eclipse

Chapter 1 GettinG Started with play 2

13

project part. But you can do it in a better and automated way; you can

instruct it to run compilation first whenever you generate eclipse project

settings. For this, open the build.sbt file and add the following:

EclipseKeys.preTasks := Seq(compile in Compile, compile in Test)

EclipseKeys.projectFlavor := EclipseProjectFlavor.Java

EclipseKeys.createSrc := EclipseCreateSrc.ValueSet(EclipseCreateSrc.

ManagedClasses, EclipseCreateSrc.

ManagedResources)

Please note the above is only for Java projects. If you have Scala

sources, then you should use Scala IDE instead of the regular Eclipse IDE.

Save the build.sbt file and go to the sbt prompt by taking a command

prompt, moving to the project root directory (E:\workarea\bookshop) and

typing sbt.

This initializes the sbt prompt. This can take few minutes to complete

because sbt will download the plugins and all related dependencies. Once

the sbt prompt gets initialized, you should see the prompt as

[bookshop] $

Type eclipse with-source=false and press Enter. If you need all the

source jars of the dependencies, you can issue eclipse with-source=true

instead.

After the successful execution of the above command, start eclipse and

import the project. See Figure 1-3.

Chapter 1 GettinG Started with play 2

14

 1. Open Eclipse.

 2. Click File ➤ Import ➤ General ➤ Existing Projects

into Workspace.

 3. Browse and choose the root project folder

(bookshop).

 4. Click Finish.

Figure 1-3. Import Wizard

Chapter 1 GettinG Started with play 2

15

 Setting Up in IntelliJ
Importing a Play project to Intellij is pretty straightforward. The only

precondition is that the Scala plugin for Intellij should be installed, even

when using Java as the language. This is because the Scala plugin for

Intellij is required to resolve the sbt dependencies. So go ahead and install

the Scala plugin for Intellij if you have not done so. Open Intellij and go

to File ➤ Settings ➤ Plugins and search for Scala in the Marketplace tab.

From the plugins listed, select the Scala plugin from JetBrains and click

Install. See Figure 1-4.

Figure 1-4. Importing the Scala plugin

After installing the Scala plugin, import the bookshop Play project to

IntelliJ. See Figure 1-5.

Chapter 1 GettinG Started with play 2

16

Figure 1-5. Importing a project

 1. Open File ➤ New ➤ Project from Existing Sources.

 2. Browse to the bookshop project root folder

(E:\workarea\bookshop).

 3. Select Import project from the external model.

 4. Choose sbt.

 5. Click Finish.

Wait for the build to sync and you will see that the project is imported

to Intellij.

Chapter 1 GettinG Started with play 2

17

 Hello World Application
You have your project ready and you have imported the IDE of your choice.

Let’s add some files to it and create the Hello World program. From there

you will add more features to it and expand it.

Let’s start the Play server and try the default application.

 1. Open a command prompt.

 2. Go to the project root folder (E:\workarea\

bookshop).

 3. Go to the Play console by typing sbt in the root

folder.

 4. This will open up the Play console prompt

([bookshop] $).

 5. Type run to start the Play server. See Figure 1-6.

(If the server started, use Enter to stop, and go back

to the console.)

You can even combine the commands together to

start Play by using

sbt run

Chapter 1 GettinG Started with play 2

18

Open the browser and access http://localhost:9000/ to access the

home page. See Figure 1-7.

Figure 1-6. Application console

Figure 1-7. Welcome page

Chapter 1 GettinG Started with play 2

19

 Configuration
Go to the conf folder and open the routes file. This is where all the

URL mappings of the project need to be defined. You will examine URL

mappings and routes configuration in detail in the next chapter. When you

open up the routes file, you should see an entry like this:

GET / controllers.HomeController.index

This means the root of the application points to the index method

defined in the HomeController class.

If you type localhost:portnumber in the browser, the request

will be routed to the index method defined in the app/controllers/

HomeController.java file.

This is how Play routes the URL paths or URL patterns to the specific

methods of the controller classes.

Open the HomeController.java file and you can see the method

public Result index() {

 return ok(views.html.index.render());

}

This method returns a Twirl template file and this template file

generates the HTML output. Open the index.scala.html file found inside

the views folder. Let’s examine the contents of this file to understand what

is happening in it.

@()

@main("Welcome to Play") {

 <h1>Welcome to Play!</h1>

}

Before we take a look at each element, it is important to understand

what Twirl is and how it can be used.

Chapter 1 GettinG Started with play 2

20

WHAT IS TWIRL?

twirl is the template engine developed for play Framework. But it can also be

used outside the play environment. By default, twirl is included as part of play

but if there is a need to use twirl outside play, then the sbt plugin for Scala can

be installed. For example adding the below entry in the plugins.sbt file will

make twirl available to any sbt-based project:

addSbtPlugin("com.typesafe.sbt" % "sbt-twirl" % "LATEST_VERSION")

template files must be named {name}.scala.{ext} where ext can

be html, js, xml, or txt. the templates can be used to generate various

types of markup like htMl, XMl, or tXt and are totally decoupled from the

controller. Various kinds of markup can be plugged in as needed.

the twirl template is just a normal text file that contains small blocks of Scala

code. templates help to create composite views and help in a component-

based view generation.

the @ character marks the beginning of the dynamic code in the template.

Chapter 4 of this book provides detailed explanation of views and twirl

templates.

For the time being, let’s understand what is defined in the index.

scala.html file:

@main("Welcome to Play") {

 <h1>Welcome to Play!</h1>

}

@main("Welcome to Play") calls another template, main.scala.html

and passes it the page title “Welcome to Play” and the HTML content in

the second parameter, enclosed within the {}.

Hence you can infer that main template file should take two parameters:

a string for the title and HTML content as the second parameter.

Chapter 1 GettinG Started with play 2

21

Open the main.scala.html to validate this. The file starts with

@(title: String)(content: Html); this is just like any normal

method that accepts two parameters.

@*
 * This template is called from the `index` template. This template

 * handles the rendering of the page header and body tags. It takes

 * two arguments, a `String` for the title of the page and an `Html`

 * object to insert into the body of the page.

 *@

@(title: String)(content: Html)

<!DOCTYPE html>

<html lang="en">

 <head>

 @* Here's where we render the page title `String`. *@

 <title>@title</title>

 <link rel="stylesheet" media="screen" href="@routes.

Assets.versioned("stylesheets/main.css")">

 <link rel="shortcut icon" type="image/png" href="@

routes.Assets.versioned("images/favicon.png")">

 </head>

 <body>

 @* And here's where we render the `Html` object containing

 * the page content. *@

 @content

 <script src="@routes.Assets.versioned("javascripts/

main.js")" type="text/javascript"></script>

 </body>

</html>

Chapter 1 GettinG Started with play 2

22

The title string is inserted to HTML <title> using @title and HTML

content using @content markup.

Now you know the different elements and how they are wired together.

Let’s take this further by writing a new action and a view.

Let’s create an entry for the Hello World method:

GET /hello controllers.

HomeController.hello()

Save the routes file. The next step is to code your controller to handle

the request.

 Controller and View
Inside the app/controllers folder, you should find the HomeController.

java file. This is your default controller.

package controllers;

import play.mvc.*;

import views.html.*;

import java.time.LocalDate;

/**
 * This controller contains an action to handle HTTP requests

 * to the application's home page.

 */

public class HomeController extends Controller {

 /**
 * An action that renders an HTML page with a welcome message.

 * The configuration in the <code>routes</code> file means that

 * this method will be called when the application receives a

Chapter 1 GettinG Started with play 2

23

 * <code>GET</code> request with a path of <code>/</code>.

 */

 public Result index() {

 return ok(views.html.index.render());

 }

 }

}

Let’s examine the HomeController class in detail to understand what

is happening in it. First of all, it extends from play.mvc.Controller.

When you write a new controller, make sure you extend from play.mvc.

Controller.

You’ve seen the index method before: it is pretty simple and it just has

a single line. But it does a lot of smart things. The ok() method is closely

related to HTTP status 200, or the success response. If you want to return

a HTTP not found, you can use the notFound method. This is the beauty of

Play; it closely resembles HTTP protocol and there is no need for any fancy

code to convert your exceptions to corresponding HTTP status codes. You

can code and talk the language of HTTP.

The ok() method returns the HTML output generated by the render

method, defined in the view named index. You’ve seen this view in index.

scala.html. Views in Play use Scala and follow the naming convention

of “viewname.scala.html”. This file gets compiled by the Play compiler

into the corresponding Java class, which can be directly used in the

controller. This ensures type safety and less bugs. Remember that in other

frameworks like struts or Spring MVC, you typically return a string as view

name and the framework resolves that to a file. In Play, there is no need for

that. The views are straightaway available as Java class files and you can

ensure compile-time type safety.

Since you have already added the routes entry for the hello method,

let’s proceed with adding the controller method and create the view.

Chapter 1 GettinG Started with play 2

24

 View

Create a new file inside the app/views folder and name it hello.scala.

html and add the following contents:

@(message: String)

<!DOCTYPE html>

<html lang="en">

<head>

 <title>Hello World </title>

</head>

<body>

 <h1> @message </h1>

</body>

</html>

This template takes a single parameter and places that inside the

HTML <h1> tags.

 Controller

Now edit the HomeController:

package controllers;

import play.mvc.*;

import views.html.*;

import java.time.LocalDate;

/**
 * This controller contains an action to handle HTTP requests

 * to the application's home page.

 */

public class HomeController extends Controller {

Chapter 1 GettinG Started with play 2

25

 /**
 * An action that renders an HTML page with a welcome message.

 * The configuration in the <code>routes</code> file means that

 * this method will be called when the application receives a

 * <code>GET</code> request with a path of <code>/</code>.

 */

 public Result index() {

 return ok(views.html.index.render());

 }

 public Result hello() {

 return ok(views.html.hello.render("Today is

"+LocalDate.now()));

 }

}

Open your browser and go to

http://localhost:9000/hello

You will see the message “Today is” and the current date. See Figure 1- 8.

Figure 1-8. The Hello page

Chapter 1 GettinG Started with play 2

26

Just change any HTML code in the view and refresh the browser. Play

will perform on-the-fly compilation and render the view.

 Enhancing the View

Let’s now enhance the hello.scala.html file to reuse the main template

already available in the view folder. By using this template you will be

able to get the common theming across pages because main.scala.html

defines the common layout and style sheets.

Go to the public/stylesheets folder and open main.css. This is the

master style sheet for the application. You will make the background black

and the text white in color:

body {

 background: black;

}

h1,h2 {

 color: white;

}

Go to http://localhost:9000/ to the see the changes. But wait, if

you go to http://localhost:9000/hello, the display shows the white

background! Why?

The reason is your style sheet definitions and all site-wide settings

are defined in the main.scala.html template but you never used it in the

hello.scala.html file. Let’s fix that.

Edit the hello.scala.html and replace its contents as follows:

@(message: String)

@main("Hello World") {

 <h2>@message</h2>

}

Chapter 1 GettinG Started with play 2

27

You want a common theme across the web application and all pages

should inherit the site wide settings as is. You don’t want to scatter the site-

wide definitions across all pages, so put all common settings like header,

footer, style sheet definitions, JavaScript inclusions, etc. in a single file;

that is what main.scala.html is used for. It defines the common elements

applicable to all pages.

The main.scala.html file is converted by Play into a method

equivalent and can be invoked from other pages using its name. The name

doesn’t include the .scala.html part. For instance, main.scala.html is

invoked using its name, main. The hello.scala.html file calls the main.

scala.html as a method call and reuses the common definitions. Let’s

examine the contents of the hello.scala.html file in detail to understand

what is going on.

The hello.scala.html file is very simple. It just invokes main.scala.

html and passes it two arguments: the title of the page as a string and the

HTML content to be included. The first argument to main is the string

“Hello World” and the second argument is the content within {}. In short,

you pass the title and the HTML content defined in hello.scala.html (the

content within {}) to main.scala.html.

Now you have a common theme across all of your pages. Any other

page you may define should follow the same approach. If you want to

include a JavaScript library like JQuery or bootstrap to all pages, just define

it in main.scala.html and it will be available to all pages, if it follows the

approach mentioned above.

 Testing Play Applications
Let’s now understand how to unit test the important parts of a Play

application: views and controller classes.

Play supports test cases using Junit and provides helper classes and

utilities to make testing the application as easy as possible.

Chapter 1 GettinG Started with play 2

28

Tests should be created inside the tests folder within the project root.

Let’s write test cases for the views and controllers.

 Testing Views
Let’s write the test case for the hello.scala.html view. Create a new file

inside the test folder and name it HelloViewTest.java:

HelloViewTest.java

import org.junit.Test;

import play.twirl.api.Content;

import static junit.framework.TestCase.assertEquals;

public class HelloViewTest {

 @Test

 public void renderTemplate() {

 Content html = views.html.hello.render("Welcome to Play!");

 assertEquals("text/html", html.contentType());

 assert(html.body().toString().contains("Hello World"));

 }

}

The above test renders the hello.scala.html view and checks that the

content type is indeed html and also inspects the content to confirm that it

contains the string “Hello World”.

You can run the test directly within your IDE. Figure 1-9 shows how

you can run test from Intellij.

Chapter 1 GettinG Started with play 2

29

You can also run a test from the command prompt using sbt. Open the

command prompt, go to the project root directory, and run

sbt test

Note that sbt test will run all tests in the test folder. If you want to

run only a particular test, use the testOnly command.

 Testing Controllers
Create new file named HomeControllerTest.java inside the test folder

and add the contents as below. This test validates the index method of the

controller mapped to the /URL path.

HomeControllerTest.java

import org.junit.Test;

import play.Application;

Figure 1-9. Running a test

Chapter 1 GettinG Started with play 2

30

import play.inject.guice.GuiceApplicationBuilder;

import play.mvc.Http;

import play.mvc.Result;

import play.test.WithApplication;

import static org.junit.Assert.assertEquals;

import static play.mvc.Http.Status.OK;

import static play.test.Helpers.GET;

import static play.test.Helpers.route;

public class HomeControllerTest extends WithApplication {

 @Override

 protected Application provideApplication() {

 return new GuiceApplicationBuilder().build();

 }

 @Test

 public void testIndex() {

 Http.RequestBuilder request = new Http.RequestBuilder()

 .method(GET)

 .uri("/");

 Result result = route(app, request);

 assertEquals(OK, result.status());

 }

}

Run the test using the following sbt command:

sbt test

Chapter 1 GettinG Started with play 2

31

To run the HomeControllerTest alone, perform the following steps

(Figure 1-10):

• Open the command prompt.

• Go to the project root.

• Type sbt to go to the sbt shell.

• testOnly HomeControllerTest

Figure 1-10. testOnly

This concludes Chapter 1. Before we discuss the controllers and other

Play Framework components, let’s dive a little deeper into the build system

(sbt) you are going to use.

Chapter 1 GettinG Started with play 2

33© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_2

CHAPTER 2

Build System
Play uses sbt as its build system, as you saw in Chapter 1. A basic

understanding of sbt is a must when you work with Play-based projects.

The objective of this chapter is to provide a quick introduction to sbt.

 Scala Build Tool/Simple Build Tool
sbt is the build tool for Scala and Java projects. It is similar to the Maven

build tool typically used in Java projects. sbt is heavily inspired by Maven.

As a build tool, it provides capabilities to compile, run, test, and package

projects. Play comes packaged with sbt, so there is no need to install sbt

separately. Sbt was created by Mark Harrah. There is confusion about

whether sbt stands for “Scala build tool” or “simple build tool.” In fact,

when the sbt project started, it was announced as “simple build tool” but

over the years it was widely called “Scala build tool.” So both usages are

correct. My personal preference is “simple build tool” because it can be

used as the build tool for both Scala and Java projects.

 Core Principles
sbt always sticks to four core principles:

 1. Everything should have a type, enforced as much as

is practical.

 2. Dependencies should be explicit.

34

 3. Once learned, a concept should hold throughout all

parts of sbt.

 4. Parallel is the default.

 Benefits of sbt
sbt has the following benefits:

 1. It uses the Scala language to describe the build.

 2. There’s no need to write big and large pom.xml files.

The build configuration is in code and not in XML.

 3. It works for both Scala and Java.

 4. It requires a minimal configuration.

 5. It offers declarative dependency management (via Ivy).

 6. It has sensible defaults.

sbt build uses something called tasks (yes, it is a task and nothing

more) and a task can have dependencies. So a sbt build is a tree of task

dependencies that is to be executed.

When you want to do something, you have to execute a task. By default,

the tasks run in parallel in sbt. If you want to order the execution of tasks,

it can be done by specifying dependencies between tasks. For example,

compile and test are two tasks but test has a dependency with compile, so

when you execute the test task, the compile task will get executed before it.

Chaining of tasks is a lot easier with sbt. You can pass the output of a

task to another dependent task. Internally, sbt keeps an immutable map

(key-value pairs) describing the build. Because of this you can see that

most of the entries in the build file are key-value pairs. For instance, the

project name is provided as a key-value pair and it maps to a string value,

the name of your project.

Chapter 2 Build SyStem

35

The build configuration file in sbt is the build.sbt file and this is

similar in intent to that of the pom.xml in Maven. The build.sbt contains

the build definition of the project.

Let’s look at some code and practical examples to get a better

understanding.

 Project Structure
A typical project structure has the build.sbt file in the root directory and

the build.properties and plugins.sbt files inside the /project directory:

HelloProject

 /project

 build.properties: Specifies the sbt version to be

used in the project. If the particular sbt version is not

available locally, the sbt launcher will download it.

 plugins.sbt : Definition for sbt plugins

build.sbt: File containing build and project

settings

build.properties

sbt.version=0.13.0

Before you examine the sbt file structure created by Play for your

project, let’s understand the structure of build.sbt in general and try few

examples

Go to any directory, create a folder called helloworldsbt, create a file

named build.sbt, and add the following contents:

name := "helloworldsbt"

organization := "com.domainame.example"

Chapter 2 Build SyStem

36

version := "1.0-SNAPSHOT"

lazy val hello = (project in file("."))

.settings(

 name := "HelloWorld Proj"

)

scalaVersion := "2.13.0"

The build.sbt file holds a sequence of key-value pairs called setting

expressions and has a general structure of

key operator setting/task body

For example:

organization := "com.domainname"

Breaking it down a bit more:

 1) The left-hand side is the key.

 2) Operator (:=)

 3) The right-hand side is the body.

The organization, version, name, etc. are predefined, readily available keys.

 Using sbt
Go to the root folder of the helloworldsbt project and type sbt from a

command prompt. You can see that sbt downloads the needed jars and

you will be in the sbt prompt as

sbt:helloworldsbt>

You don’t have any source files in the helloworldsbt project and it is

fine. You can try many sbt commands and their usage without source code.

Chapter 2 Build SyStem

37

Here are the most common commands used in a typical project:

• help: Displays sbt help

• compile: Compiles the source code

• test: Executes the test cases

• run: Runs the main class

• package: Creates a jar file

• exit: Exits from the sbt prompt

When you execute run, you will get the following error:

No main class definition found

Ignore it for now as it is because you don’t have any source code and

run expects to find a main method to run.

As mentioned earlier, compile, run, test, etc. are readily available

tasks in sbt that perform a particular action. Just like these tasks, sbt lets

you create custom tasks and use them in the build. Let’s try a custom task.

Modify build.sbt as follows:

name := "helloworldsbt"

organization := "com.domainame.example"

version := "1.0-SNAPSHOT"

lazy val hello = taskKey[Unit]("Custom Task")

lazy val root = (project in file(".")).settings(

 hello := { println("This is a custom task !!") }

)

scalaVersion := "2.13.0"

The following line defines the tasks and assigns it to the variable hello:

lazy val hello = taskKey[Unit]("Custom Task")

Chapter 2 Build SyStem

38

The next line adds this task and provides an implementation, which in

this case is very simple, like printing a string to the console. That’s it; you

have defined a custom task.

lazy val root = (project in file(".")).settings(

hello := { println("This is a custom task !!") }

)

To test this, go the sbt prompt and type hello.

sbt:helloworldsbt> hello

This is a custom task !!

[success] Total time: 1 s

From your project root folder you can even try sbt hello:

C:\Test\helloworldsbt>sbt hello

Java HotSpot(TM) 64-Bit Server VM warning: ignoring option

MaxPermSize=256m; support was removed in 8.0

[info] Loading project definition from C:\Test\helloworldsbt\project

[info] Loading settings from build.sbt ...

[info] Set current project to helloworldsbt (in build file:/C:/

Test/helloworldsbt/)

This is a custom task !!

[success] Total time: 0 s, completed Nov 8, 2019 1:03:59 PM

Now let’s look at the build.sbt definition created by Play for the

bookshop project.

When you create a Play project, the build automatically creates the

required sbt folder structures and files:

build.sbname := "bookshop"

organization := "com.stackrules.example"

version := "1.0-SNAPSHOT"

lazy val root = (project in file(".")).enablePlugins(PlayJava)

Chapter 2 Build SyStem

39

scalaVersion := "2.13.0"

libraryDependencies += guice

EclipseKeys.preTasks := Seq(compile in Compile, compile in Test)

EclipseKeys.projectFlavor := EclipseProjectFlavor.

Java // Java project. Don't expect Scala IDE

EclipseKeys.createSrc := EclipseCreateSrc.

ValueSet(EclipseCreateSrc.ManagedClasses, EclipseCreateSrc.

ManagedResources)

Let’s analyze each line. The entries in the above files are settings. Each

setting has to be separated by an empty line. That is very important.

 Setting Definition
As you saw above, a setting contains a key, an operator, and an

initialization. For instance, name := "bookshop" sets the project name to

bookshop.

name – key := assignment operator "bookshop" - the initialization value

That is how you set a static value for a setting. The value of a setting

is computed only once and kept around. A task is also similar to a setting

having a key and a value. The important difference is that a task is

recomputed every time when it is invoked. We will come back to tasks later.

In the libraryDependencies section in the build.sbt file, you can see

this entry:

libraryDependencies += guice

This indicates the build is including guice Play module as a

dependency. To proceed to the other sections in the chapters ahead,

you need more modules to be available to Play. Let’s modify the

libraryDependencies section to add them now.

Chapter 2 Build SyStem

40

Replace the line

libraryDependencies += guice

with

libraryDependencies ++= Seq(

javaJdbc,

cacheApi,

guice

)

Ebeam ORM is available as an external plugin for Play so add the

following to the plugins.sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-play-ebean" % "5.0.2")

You are done with the changes to the build settings!

The typical library dependency format is

libraryDependencies += groupID % artifactID % revision

For example,

libraryDependencies += "org.apache.derby" % "derby" %

"10.4.1.3"

You can find the groupId and artifactId of any jar by visiting Maven

Central Repository at https://mvnrepository.com/repos/central and

search using the name. For example, type derby and choose the version to

see its dependency information. The definition for derby 10.4.1.3 is shown

in Figure 2-1.

Chapter 2 Build SyStem

https://mvnrepository.com/repos/central

41

The above line adds Derby version 10.4.1.3 as a dependency. If you

need to add more dependencies, you have to add another line and so on.

But there is also a shorthand technique to add dependencies all at once

rather than specifying each one line by line:

libraryDependencies ++= Seq(

groupID % artifactID % revision,

groupID % otherID % otherRevision

)

sbt depends on plugins to extend the build settings defined in the

build.sbt file. A plugin adds more functionality to the build and is reused

across sbt projects. For example, someone could develop a plugin that

performs code coverage during the build. To integrate sbt and Play, you

need to use the sbt-plugin from Typesafe. The plugins.sbt file is where all

plugin definitions go:

// Comment to get more information during initialization

logLevel := Level.Warn

Figure 2-1. Maven Central Repository

Chapter 2 Build SyStem

42

// The Typesafe repository

resolvers += "Typesafe repository" at "http://repo.typesafe.

com/typesafe/releases/"

// Use the Play sbt plugin for Play projects

addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.8.0")

 Resolvers
By default, sbt uses the standard Maven 2 repository. But not all jars exist

in the default repositories. If your jar is living in another repository, you

can add that repository as a resolver.

Format for adding a resolver:

resolvers += name at location

There are three parts to this: the name and location separated by the at

keyword.

Adding the Jboss repository:

resolvers += "JBoss repository" at "https://repository.jboss.

org/nexus/content/repositories/"

 Complete build.sbt
name := """bookshop"""

organization := "com.stackrules.example"

version := "1.0-SNAPSHOT"

lazy val root = (project in file(".")).enablePlugins(PlayJava)

scalaVersion := "2.13.0"

libraryDependencies ++= Seq(guice,javaJdbc,cache)

EclipseKeys.preTasks := Seq(compile in Compile, compile in Test)

Chapter 2 Build SyStem

43

EclipseKeys.projectFlavor := EclipseProjectFlavor.

Java // Java project. Don't expect Scala IDE

EclipseKeys.createSrc := EclipseCreateSrc.

ValueSet(EclipseCreateSrc.ManagedClasses, EclipseCreateSrc.

ManagedResources)

You can easily escape characters and symbols inside strings; you just

need to wrap the text within triple quotes. This is why you see triple quotes

for the name. If you need to include a space or a colon or an apostrophe in

the name, this syntax helps.

 Complete plugins.sbt
// The Play plugin

addSbtPlugin("com.typesafe.play" % "sbt-plugin" % "2.8.0

// Defines scaffolding (found under .g8 folder)

// http://www.foundweekends.org/giter8/scaffolding.html

// sbt "g8Scaffold form"

addSbtPlugin("org.foundweekends.giter8" % "sbt-giter8-scaffold"

% "0.11.0")

addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" %

"5.2.2")

addSbtPlugin("com.typesafe.sbt" % "sbt-play-ebean" % "5.0.2")

 Quick Recap of SBT Commands
• sbt: Starts the sbt console

• run: Runs the main method of the application

• compile: Compiles the source code in the src/main/

scala directory

Chapter 2 Build SyStem

44

• test: Executes all test cases

• testOnly: Provides the complete name of the test case

to run only the specific test case

• test:compile: Compiles only the test sources (src/

test/scala)

• package: Creates a jar containing the classes from the

source folder and artifacts from the resource folders

• doc: Generates Scala docs

• exit: Quits the sbt prompt

Chapter 2 Build SyStem

45© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_3

CHAPTER 3

Play Controllers and
HTTP Routing
This chapter focuses on the MVC part of the Play application: how MVC

plays a key role in the Play application framework. Before we get into the

details of the HTTP routing and controllers in Play, it is good to have a

quick introduction to MVC. If you are familiar with MVC, you can skip this

and head straight to the “HTTP Routing” section.

 MVC Programming Model
MVC (model-view-controller) is a framework for building web applications

using the famous MVC design pattern. MVC defines an application into

three logical layers: the business layer (model), the display layer (view),

and a routing and input control (controller). See Figure 3-1.

46

MVC architecture works like this. The user interacts with the view and

changes are sent to the controller by the view. The controller receives the

changes, invokes the model, and applies the validations and logic in the

model. The controller chooses the view and sends the updated model to

the view. The view is rendered and is send back to the browser client.

Both the view and the controller depend on the model. The model

doesn’t have any dependency with the view or controller. This is one of

the key benefits of the separation. This separation allows the model to be

constructed and tested independently of the view.

 Model
The model is the application’s data and the business logic on that data. The

model is an independent component and doesn’t depend on the controller

or the view. This means the model can be reused without associated views

or the controller.

The model handles the application’s business logic and is responsible

for retrieving the data from the database, performing updates, enforcing

validations, and being the core logical and analytical part of the

application.

1) The user's request is sent to the controller.

3) T
he c

on
tro

ller
 ch

oo
ses

 th
e v

iew
 to

disp
lay

 an
d prov

ides
it t

o t
he m

od
el.

4) The view updates the model on user interactions.

2) The controller manipulates the model.

Controller

View Model

Figure 3-1. MVC

Chapter 3 play Controllers and http routing

47

Consider the model representing the customer of the application; it’s

responsible for handling all validations and logic related to the customer

entity. The deactivate method in the following code is an example of

business logic within a model. This method handles the deactivation logic

of the customer, thereby encapsulating the domain logic within the model

itself. The domain logic is encapsulated within the domain object, so the

model can be reused across applications/subsystems.

package models;

import java.util.List;

import controllers.Order;

public class Customer {

 private long id;

 private String name;

 private boolean loyaltyMember;

 private boolean isActive;

 private List<Order> orders;

 public List<Order> getOrders() {

 //Logic

 }

 public boolean deactivate() {

 //Logic and validation to deactivate a customer

 }

}

The customer is a domain model and contains the data and the

associated business logic and validations applicable to the customer.

Of course, if you follow domain-driven design, you can split the model

into many business objects and they can handle domain-specific logic and

validations. Spring beans, JPA beans, simple POJO, etc. are typically used

for implementing domain models.

Chapter 3 play Controllers and http routing

48

 View
The view handles the display of the data and gets needed data attributes

from the model. The sole purpose of the view is to display the data.

Consider a screen showing the customer data of the application. This

screen may show the customer details, orders made by the particular

customer, and so on. If there is a new requirement to show the same

customer data in a drill-down mode instead of a tabular way in another

screen, only a new view needs to be created. There are no changes to be

done in the model. Thus views can be created and modified independently

of the model.

 Controller
The controller handles interactions with the user. Controllers typically

perform the following:

• Get input data from the view and send it to the model

for persistence.

• When the model changes, the controller sends the

updated model to the view and renders the view.

MVC helps make development in a team easy and manageable when

working on large projects. It provides a clean separation of concerns.

 HTTP Routing
The job of the HTTP router is to translate the incoming HTTP request to

an action call. That is, it maps an HTTP request to a method defined in the

controller class. This configuration is maintained in the routes files inside

the conf folder. The routes file also gets compiled by Play and, because

Chapter 3 play Controllers and http routing

49

of that, if you have any error in the routes file, it will be displayed in the

browser. This is very helpful during development time.

Let’s look at HTTP routing fundamentals. An HTTP request has two

parts: the protocol part (GET, POST, PUT, etc.) and the request path that

includes the query string.

To define a route, define the protocol and URL path in the conf/routes

file. Before that, create a new controller class inside the app/controllers

folder and name it Application. Make sure to extend the class from play.

mvc.Controller.

package controllers:

import play.mvc.*;

import views.html.*;

public class Application extends Controller {

}

You will add methods to this controller after completing the routes

section.

Edit the conf/routes file and add the following entries:

Home page

GET /bookshop controllers.

Application.index

Show details of a Book

GET / bookshop /book/:id/ controllers.

Application.getBook(id:String

Add a comment to the book

POST /bookshop/book/save/comment/ controllers.Application.

saveComment(request:Request)

Chapter 3 play Controllers and http routing

50

#Search a book by Tile

GET /bookshop/book/search/ controllers.

Application.searchByTitle(keyword:String)

This example features a basic application for managing books online. It

utilizes HTTP methods and URIs appropriately.

The entries defined in the routes file show important features

of routing. The first entry indicates that the home URL (say http://

yourdomainname/bookshop) points to the index method defined in the

Application class (a controller). The rest of the definitions show how to

dynamically include parameters in path and as query string parameters.

Let’s examine this in more detail.

 Static Definition
The definition

GET / controllers.Application.index

indicates that the root path doesn’t take any parameters and it is routed to

the index method defined in the Application class. You are using the GET

protocol for this example. If your webserver supports it, you can also use

the PUT and DELETE HTTP protocols as well.

The overall structure of a routes entry is

Protocol URLPATH Controller Mapping

 Dynamic Parts in a URL
Let’s say you want to retrieve the details of a particular book but you don’t

know in advance which book a user might select, so the book id has to be

dynamic:

Chapter 3 play Controllers and http routing

51

GET /bookshop/book/:id/ controllers.

Application.getBook(id:String)

The dynamic part is indicated by a colon (:) followed by the parameter

name (in this example :id). Play will extract the dynamic part from the

URI and supply it as a parameter to the getBook method. This means the

URL paths /bookshop/book/123/, /bookshop/book/12453/, etc. will get

mapped to the getBook method defined in the Application class.

Key point :variablename is used to define the dynamic parts of
the uri. example :id.

You can also configure dynamic parts spanning several forward slashes (/).

For instance,

GET /bookshop/book/images/* controllers.Application.

fetchImage(name:String)

matches the URLs

/bookshop/book/images/book1.jpg

/bookshop/book/images/books/book2.jpg

/bookshop/book/images/books/thumbnails/small/image1.jpg

The name parameters passed to the fetchImage method will be book1.

jpg, books/book2.jpg, and books/thumbnails/small/image1.jpg,

respectively.

You have used the fully qualified name of the controller class

(controllers.Application). You can define and use another controller if

you wish.

Play also supports regular expressions in the path definitions. To define

a regular expression in the dynamic part, you can use the syntax

$id<regex > syntax

Chapter 3 play Controllers and http routing

52

For example:

GET /bookshop/book/:id/page/$page<[0-9]+>/

 controllers.Application.fetchBookpage(bookid:String,

page:Integer)

In this definition, there are two dynamic parts: one for id (book’s

unique id) and the other for the page number. The page number part is

defined as a regular expression accepting only numbers. Play will validate

and throw an error if invoked with a nonnumeral in the URI. For example,

when invoked as http://localhost:9000/bookshop/book/10/page/12/,

the page will get rendered properly because the page number is a valid

number in the request. If the request is made as http://localhost:9000/

bookshop/book/10/page/a/, Play will throw an action not found error

because the page number in the request is not a valid number.

Key point $variablename<regular expression> is used to
define dynamic parts to match regular expression.

 Passing Fixed Values
For certain methods, you need to always pass a fixed value. You can

configure such cases as

GET /bookshop//authors/ controllers.Application.

authors(limit: Integer = 10)

Here you are passing a default of 10 to the show method. This means it

shows only 10 books when a user invokes the show method.

Chapter 3 play Controllers and http routing

53

 Optional Parameters
A typical use case is when some parameters may be passed sometimes but

are missing in certain situations. To handle such cases, you can use the

optional definition:

Shows all comments or comments made by a particular user

GET /bookshop//showcomment/ controllers.Application.

showComment(userid ?= null)

In this example, if userid is passed, it will retrieve the comments by

the user and if not fetch all comments.

Key point variable? = default-value is used to define
optional parameters.

I hope you now understand the static and dynamic URL

configurations. Let’s now look at how to declare configurations for the

application, before you proceed to the controllers section and other

chapters, because you will be making entries to the application.conf file

in the coming chapters.

 Application Configuration Using
application.conf
Play provides a single file called application.conf found inside the

conf directory to configure application-level configurations. This conf/

application.conf file can be used to configure database connection

strings, log levels, modules to enable additional functionality, etc. The

application.conf file is an UTF-8 encoded file.

Chapter 3 play Controllers and http routing

54

The entries in this file follow the scheme

comment

key = value

By default, the Play application starts listening to HTTP requests on

port 9000. By adding an http.port entry in the application.conf file, this

default port can be changed:

#http.port =8085

The default logging level defined in the application.conf file is

as follows. In production, do remember to change it to the appropriate

values. The general practice is to set it to ERROR.

Logger used by the framework:

logger.play=INFO

Logger provided to your application:

logger.application=DEBUG

 Controllers
Controllers in Play model the controller element of the MVC design. You

have already seen how every Play request is mapped to an action using the

HTTP routing configuration defined in the conf/routes file. In all these

configurations, you can see the use of a controller named Application.

This is done just for convenience because Play automatically creates a

class named Application in the controller folder. You can very well

create another class and use it.

A controller groups related actions together. You can create any

number of controllers as you wish depending on your application’s

functionality. In the case of a bookshop application, you can define a

BookController to handle all public-facing interactions with the user

and define a BackOfficeController to define all actions that are termed

Chapter 3 play Controllers and http routing

55

back- office functionalities like maintaining the inventory, adding a book

to the system, adding images to the book, etc. Grouping the functionalities

into different controllers will help in better maintainability and

modularization of your application.

In Play, the controller class extends from play.mvc.Controller. You

can define an action method that returns a Result:

public Result index() {

 return ok("Hello World.");

}

The Result is nothing but an HTTP response back to the client.

An action method can also take parameters, and these parameters are

resolved as per the routing logic defined in the conf/routes file:

public Result saveRating(String bookid,int rating) {

 //logic to save rating

 return ok("success");

}

A typical HTTP response consists of a status code, headers, and a

body. Play provides plenty of helper methods to produce all kinds of HTTP

responses. For example, the ok() method shown in the code snippet above

sends an HTTP 200 response back to the client. Similarly, Play provides

methods like notFound(), badRequest(), internalServerError(), etc. to

return all variations of HTTP responses. These helper methods are defined

in the play.mvc.Results class. Since the controller you write is extending

from the Controller class that extends the Results class, all these

methods are available to your controller by default.

Here is an example to return an internal server error to the client:

Result response = internalServerError("Server Error");

Chapter 3 play Controllers and http routing

56

Another important thing to understand is how to redirect a request

to another URL or to another action. This is also fairly simple with Play. It

provides a redirect method to do so:

public Result hello() {

 return redirect("/book/login/");

}

This redirects the user to the login page. This method sends the HTTP

status code 303 to the browser.

 Finishing the Bookshop Controller
Let’s now add all the required methods to the Application controller for

the bookshop application and test it. The routes look like this:

#Home Page

GET /bookshop controllers.Application.index

Show details of a Book

GET / bookshop /book/:id/ controllers.

Application.getBook(id:String)

Add a comment to the book

POST /bookshop/book/save/comment/ controllers.Application.

saveComment(request:Request)

#Search a book by Title

GET /bookshop/book/search/ controllers.

Application.searchByTitle(keyword:String)

Now the application controller (Application.java):

package controllers;

import javax.inject.Inject;

Chapter 3 play Controllers and http routing

57

import play.mvc.*;

import play.data.DynamicForm;

import play.data.FormFactory;

public class Application extends Controller{

/**

* Process the home page

* @return

*/

public Result index() {

 return ok(views.html.bookshop.render());

}

/**

* Get the details of a book by id

* @param id

* @return

*/

public Result getBook(String id) {

 return ok(views.html.bookshop.render());

}

@Inject

FormFactory formFactory;

/**

* Accept a form post and save the comment

* Shows the usage of dynamic forms to retrieve data from html

form posts

* @return

*/

public Result saveComment(Http.Request request) {

 DynamicForm requestData = formFactory.form().

bindFromRequest(request);

 String comment = requestData.get("comment");

Chapter 3 play Controllers and http routing

58

 return ok(views.html.savecomment.render());

}

public Result searchByTitle(String title) {

 //Query db and get the book details or get from cache

 return ok(views.html.searchresults.render());

}

}

 saveComment Method
The saveComment method handles the form post action used to save

reviews. In Play, there are many ways to handle and bind form post data

to model classes. The above method demonstrates how to dynamically get

data from forms using the DynamicForm class.

The most common approach is to define a class (model) for the form

data and wrap it with play.data.Form in a controller. Play will auto-bind

the form fields to the model attributes. For instance,

package models;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="comment")

public class Comment {

 @Id

 private Long id;

 private String comment;

Chapter 3 play Controllers and http routing

59

 public String getComment() {

 return comment;

 }

 public void setComment(String comment) {

 this.comment = comment;

 }

}

Save this file as Comment.java inside the models package.

Take a look at the Application.java class show above. In that class,

you have injected the FormFactory and supplied it with the comment

model. The data binding of the form data to the model class will thus be

handled automatically by Play Framework.

Relevant portions of the code from the Application.java file that

perform the automatic binding of form data to the model class

are as follows:

@Inject

FormFactory formFactory;

DynamicForm requestData = formFactory.form().

bindFromRequest(request);

String comment = requestData.get("comment");

 Testing the saveComment Action
Any HTTP test client can be used to test this action. In this book, Postman

is used to test the services. Postman is a platform that helps in testing

HTTP endpoints adhering to REST, SOAP, and more. For testing via the

command line, you can use curl. You can download Postman from www.

getpostman.com/. See Figure 3-2.

Chapter 3 play Controllers and http routing

http://www.getpostman.com/
http://www.getpostman.com/

60

To test from a command prompt, use the curl command:

curl --location --request POST 'http://localhost:9000/bookshop/

book/save/comment/' --form 'comment=Good Book'

 Models
Since Play Framework follows the MVC principle, you should make sure

that the controller layer is as thin as possible. Don’t put any business logic

in your controller. All your business logic should be done in your model

or other helper classes. The convention in Play is to define your models

inside the app/models folder.

Figure 3-2. Testing saveComment

Chapter 3 play Controllers and http routing

61

By default, Play will create the views and controllers folders inside

the app. The generally followed practice is to implement the model as JPA

entities. In this chapter, we will just annotate the models with JPA annotations;

we won’t do any JPA configuration or persistence implementation. In later

chapters in this book, we will explore JPA in detail.

package models;

import javax.persistence.*;

@Entity

@Table(name="book")

public class Book extends Model {

 @Id

 private String id;

 private String name;

 private String author;

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

}

 Scoped Objects
In any web application, data may need to be maintained across different

pages of the application so as to maintain a conversational session with the

user of the application. In certain cases, you may need to scope the data to

only the next request and not the entire session. Play provides support for

both cases. The controller class is responsible for storing and accessing

scoped objects.

Chapter 3 play Controllers and http routing

62

Play Framework provides two kinds of scoped objects:

• Session scope

• Flash scope

Data stored in the session scope spans multiple HTTP requests and is

available during the whole user session. Data stored in the flash scope is

only available to the next request.

Play implements the above two scopes by means of cookies and

therefore it enforces a size limit of 4 KB. You can only store string values in

these scopes.

 Session Scope
In Play, there is no timeout for session. A session expires when the user

closes the browser. But if your application needs to configure a timeout, it

can be done by adding the session configuration in the application.conf

file as follows:

application.conf

play.http {

 session {

 # Sets the max-age field of the cookie to 5 minutes.

 # maxAge = 300

 }

}

Chapter 3 play Controllers and http routing

63

Play provides the following methods to work with session scope:

addingToSession

public Result dard(Http.Request request) {

 return ok("Welcome!").addingToSession(request,

"dashboard login", "useremailaddress");

}

removingFromSession

public Result disconnect(Http.Request request) {

 return ok("disconnection success").

removingFromSession(request, "disconnect");

}

To access session data, use the following code:

public Result index(Http.Request request) {

 return request

 .session()

 .get("dashboardlogin")

 .map(id -> ok("Welcome: " + user))

 .orElseGet(() -> unauthorized("Try login again"));

}

In this example, you use the Session API of Play to retrieve the value;

if it is empty, you simply return an unauthorized response.

To discard the entire session, Play provides the withNewSession

method:

public Result quit() {

 return ok("Logged out").withNewSession();

}

Chapter 3 play Controllers and http routing

64

 Flash Scope
The flash scope is similar to session but with the following differences.

Firstly, data is kept for only one request. For the first request, you set the

flash scope, and when user moves to the next page or section by making

another request, this data is available and can be retrieved in that request’s

process by a method in the controller. Secondly, it uses unsigned cookie.

Both session and flash scope uses browser cookies to achieve the behavior,

and with flash scope the cookie is an unsigned one. So don’t use flash

scope to store any sensitive data. Use it only for storing success messages

or error messages. Use the following code to add data to the flash scope:

public Result about() {

 return redirect("/company").flashing("aboutinfo",

"about info requested");

}

When a request arrives, data with the key “aboutinfo” is added to the

flash scope and is redirected to the company page. In the company page,

the controller method mapped to the /company URL can access this data as

public Result companyinfo(Http.Request request) {

 return ok(request.flash().get("aboutinfo").orElse

("Company Name"));

}

Chapter 3 play Controllers and http routing

65© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_4

CHAPTER 4

Play Views and
Templating with Scala
By default, views in Play are HTML and they can be made dynamic using

the Scala expression language. In fact, you can return a JSON or XML

response as well if necessary. Let’s focus first on HTML Scala views and

how the Play template engine helps you to create modular, expressive,

and fluid views. Even though the template engine uses Scala as the

expression language, this is not a problem for Java developers. The Scala

language used in templates is very simple. As you saw in Chapter 1, the

template engine used by Play is Twirl. Recall that the template files must

be named {name}.scala.{ext}. The ext can be html, js, xml, etc. Play

prefers convention or configuration. When you compile, the compiler will

generate Scala source files and they will be compiled along with the rest of

the source code.

Like all other classes in Play, the template is also compiled on the fly

and you can see errors directly in the browser. You should keep in mind

that a template/view is not a place to write complex logic. Write all your

presentation-related logic in the controller or the helper classes. All your

business logic should be in your business entity classes.

66

Most of the time you will only access data from your model objects.

Stated another way, the Scala template language only gives limited options

to write complex logic; its purpose is to provide a simpler means to access

data in the model. This is by design to limit developers from writing

complex code embedded in the views.

Key point Remember that the view is just to access data stored in
the model. All logic, even something like maintaining a counter, is the
job of the controller or presentation helper classes.

 Composite Views
Remember that a Play view is named following the convention viewname.

scala.html. For instance, you can create a view for the footer and name

it as footer.scala.html. Let’s examine the following page to understand

this better:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

 @header("Home Page")

</head>

<body>

<div class="container">

<!-- Home Page content goes here -->

</div>

<div>

 @footer()

</div>

</body>

</html>

ChApteR 4 plAy Views And templAting with sCAlA

67

In this example, the home page uses two views to create a composite

view. Take a note of the following: the header and footer are included from

another view; the simplicity of incorporating the header and footer views;

no complex configurations; just the use of @ symbol followed by the name

of the view. You will find this simplicity all over Play Framework; it’s one of

the important goals of Play Framework.

The header view declares that it takes a String (title) as a parameter:

@(title:String)

<meta http-equiv="Content-Type" content="text/html;

charset=ISO-8859-1">

<title>@title</title>

This parameter is supplied by the caller to render the page title. The

parameter can be given a default value if required:

@(title : String ="Book Home")

@ SPECIAL CHARACTER

scala templates use @ as the special character. every time this character is

encountered, it indicates the beginning of a dynamic statement. the end of the

dynamic statement is automatically inferred by the scala engine. sometimes

you may need to write multi-line statements and for that you can enclose the

dynamic code in curly brackets or braces:

@(dynamic code)

@{ dynamic code }

ChApteR 4 plAy Views And templAting with sCAlA

68

 Designing a General Template
Let’s design the general template for all of your pages. For the sake of

explanation, let’s keep it very simple. All of your pages will have following

content:

Header

Main Content

Footer

Let’s define this template as main.scala.html:

@(title:String)(content:Html)

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

 @header(title)

</head>

<body>

 @content

 @footer()

</body>

</html>

Notice that along with the title, the template takes another parameter:

content (of type Html). This is to incorporate HTML code into the

template. The above template is like a method that takes two arguments: a

title parameter and the HTML content.

Let’s create a view that uses this template. ‘The welcome view passes

the two parameters from main.scala.html to the template to render the

view. Please note that the HTML (the second parameter to the template) is

passed inside the {}:

ChApteR 4 plAy Views And templAting with sCAlA

69

@maintemplate("welcome page") {

 <div>

 <h3>This is the welcome page</h3>

 </div>

}

The view (welcome.scala.html) uses the main template to introduce

the page structure involving a header, the body, and a footer. If your views

are complex, split them into multiple templates and compose the views

with the help of these templates.

The rule is to keep recurring portions of the code in a separate

template file. The Scala templating structure used in Play is more powerful

and simpler than many existing templating engines, for example Tiles.

 Code Snippets Templating Basics
Play views use a template engine called Twirl. By using a template engine,

a view can render any markup like HMTL, XML, and CSV with ease, even

though for most of the web applications we only use HTML.

For example, in all the examples you only used HTML markup, so you

named your views as {name}.scala.html. The general syntax for naming

views is {name}.scala.{ext}, where ext can be html, js, xml, or txt. Thus

you can keep different markup versions of the same page and, depending

on the context, the controller may render the appropriate view. This lets

you show HTML to a specific client and the XML markup to another client.

Play’s template engine, Twirl, is designed in such a way that it makes

front-end developers comfortable while working with dynamic parts

of code. The HTML expert only bothers about the HTML markup in

the template whereas another member may just deal with iterating the

dynamic elements and so on. The simple Twirl syntax makes the code

much easier to read and work with. Let’s explore the most common Play

templating elements.

ChApteR 4 plAy Views And templAting with sCAlA

70

 Comments
@***************

* A comment block

****************@

 Template Parameters
A template can take any number of parameters. It can take common Java

types or custom user-defined types. For instance, consider @(booklist <-

List[models.Book]). Here the template takes a list of book objects:

@(booklist <- List[models.Book])

@main("Book List") {

 @for(book <- booklist){

 <div>@book.getTitle()</div>

 <div>@book.getAuthor()</div>

 }

}

In this example, the template accepts a List of Books as the parameter

and iterates the book and passes the HTML content to the main.scala.

html file for rendering. Please note that you explored the main.scala.html

file in previous chapters. Here is how it looks:

@*

 * This template is called from the `index` template. This template

 * handles the rendering of the page header and body tags. It takes

 * two arguments, a `String` for the title of the page and an `Html`

 * object to insert into the body of the page.

 *@

@(title: String)(content: Html)

ChApteR 4 plAy Views And templAting with sCAlA

71

<!DOCTYPE html>

<html lang="en">

 <head>

 @* Here's where we render the page title `String`. *@

 <title>@title</title>

 < link rel="stylesheet" media="screen" href="@routes.

Assets.versioned("stylesheets/main.css")">

 < link rel="shortcut icon" type="image/png" href="@

routes.Assets.versioned("images/favicon.png")">

 </head>

 <body>

 @* And here's where we render the `Html` object

containing

 * the page content. *@

 @content

 < script src="@routes.Assets.versioned("javascripts/

main.js")" type="text/javascript"></script>

 </body>

</html>

You can provide default values to the template parameters using the

syntax

@(title: String ="Book Home")

 Import Statement
Consider the code @(booklist <- List[models.Book]). You might have

noticed that the type is explicitly defined with its fully qualified package

name. This becomes tedious and difficult to maintain when the number of

parameters increases. Scala templates let you import the packages into the

view so that you can refer to the classes by just their name.

ChApteR 4 plAy Views And templAting with sCAlA

72

Syntax:

@import packagename._

Example:

@import models._

You should use the import statement as the beginning of the template.

If you declare it anywhere else, the compiler will throw an exception. The

best place is to define the import just after the parameter declaration.

 Iterating a List
Syntax:

@for(localvariable <- variable refering the List) {

 @localvariable.method()

}

Let’s take the example of displaying the top N books on the home page.

You can name the model as Book; it contains the methods getTitle and

getPicture:

@(booklist <- List[models.Book])

@for(book <- booklist){

 <div>@book.getPicture()</div>

 <div>@book.getTitle()</div>

}

 Iterating a Map
Syntax:

@for((key, value) <- mapreference) {

 Key is @key

 Value is @value

}

ChApteR 4 plAy Views And templAting with sCAlA

73

Let’s take the example of iterating a Map having a String as a key and a

List as its value. Your map holds the author name as the key and a list of

books by the author as its value:

@(title: String,authorbookMap:Map[String,List[Book]])

@import models._

<!DOCTYPE html>

<html>

<head>

 @header("Main Home Page")

</head>

<body>

 @for((key,value) <- authorbookMap){

 Author - @key

 @for(book <- value){

 <div>

 @book.getTitle()

 </div>

 }

}

</body>

</html>

 If Blocks
Syntax:

@if(condition){

}else{

}

The if block is nothing special. It is the standard Scala if block.

ChApteR 4 plAy Views And templAting with sCAlA

74

 Escaping Dynamic Contents
By default, the dynamic content generated by the Scala code snippets

is escaped. This means it will behave as a plain text when the view is

rendered. But if you need to output dynamic raw content, you can use the

@Html tag.

Syntax:

@Html(code / variable)

ChApteR 4 plAy Views And templAting with sCAlA

75© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_5

CHAPTER 5

Concurrency and
Asynchronous
Programming
Before you dive deeper into Play, it is very important to have a good

knowledge of concurrency and asynchronous programming in Java. This

is essential because the examples in the chapters ahead will use lot of

asynchronous programming practices.

Let’s first understand the java.util.concurrent package, the core

module in Java for dealing with concurrent programming. Knowing this will

help in relating to how Play handles asynchronous web services using WS

and Promise classes. You may skip this chapter if you are already familiar

with concurrency, its challenges, and how Java handles it using the new

classes available in the java.util.concurrent package since JDK 1.5.

Concurrent programming is now a lot easier in Java with the

introduction of new classes in the java.util.concurrent package. The

most important classes to focus on are

 1) Executor

 2) Callable<V>

 3) Future<V>

 4) CompletionStage<T>

76

Before looking into each of the above classes in detail, let’s take a quick

look at what concurrency is.

 What Is Concurrency?
Concurrency is a technique that enables the execution of several tasks in

parallel. These tasks can be parts of the same program or different programs.

If a big task can be split into small chunks and if each of those chunks can be

executed in parallel, it can result in better response times and throughput.

When different parts of a program are run in parallel, usually lightweight

processes called threads are used. The moment you use threads, you need

to have proper mechanisms to allow access to shared resources, proper

management of thread life cycles, scheduling, etc. The classes in the java.

util.concurrent package help with many of these challenges.

 Executor
Before the introduction of the Executor framework in JDK 1.5, thread

management was the responsibility of the developer and there was no

framework for that in JDK. Developers handled the creation of the threads and

their management along with the actual business logic. From a design and

coding perspective, this is not an ideal situation, when you take into account

the benefits gained by following a “separation of concerns” design idea.

It makes sense to separate out the thread management and creation

from the rest of the program, and that is what the Executor framework

does. An Executor abstracts thread management activities like creation,

scheduling, etc. Instead of directly creating a thread, a Runnable class is

submitted to an Executor and it handles its execution. ExecutorService,

a more refined interface than Executor, is used in practical scenarios

because it provides support for Callable and Future. You will look at

Callable and Future in the coming sections. Note: ExecutorService

extends from Executor.

Chapter 5 ConCurrenCy and asynChronous programming

77

The java.util.concurrent package provides three Executor

interfaces:

• Executor: A simple interface that supports launching

new tasks

• ExecutorService: A subinterface of Executor that

adds features to help manage the life cycle, both of the

individual tasks and the executor itself

• ScheduledExecutorService: A subinterface of

ExecutorService that supports future and/or

periodic execution of tasks

ThreadPoolExecutor, ScheduledThreadPoolExecutor, and

ForkJoinPool are some of the important Executor implementations

available in JDK

At a high level, writing concurrent programs using the Executor

framework involves the following:

 1) Define a class/task that implements either a

Runnable or Callable interface.

 2) Configure and implement ExecutorService and

submit the task.

 3) Use the Future class to retrieve the result if the task

is a Callable task.

Let’s look at the difference between a Runnable and Callable. A

Runnable interface does not return a result whereas a Callable allows

for return values after completion. When a Callable is submitted to the

Executor framework, it returns an object of type java.util.concurrent.

Future. The Future can be used to retrieve results.

Chapter 5 ConCurrenCy and asynChronous programming

78

 Example 1: Using Runnable
package com.domain.concurrency;

public class SimpleTask implements Runnable {

 @Override

 public void run() {

 System.out.println("SimpleTask, Runnable: Executing

Logic "+System.currentTimeMillis());

 }

}

The SimpleTask class is the portion of logic that you want to execute

in parallel by many clients. This logic is implemented in the run method

and it prints the currentTime in milliseconds. In a traditional Java

practice, in order to execute this in parallel by many clients, you need to

create threads for each client and run those threads, along with thread

coordination, stopping, etc. You also need to ensure that you don’t create

an unnecessary number of threads, and the threads should be reused. All

of this adds to the complexity of concurrent programming and this where

the ExecutorService helps because it takes care of all those aspects. Let’s

now create a client and ask it to run the SimpleTask in many threads:

package com.domain.concurrency;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

public class Client {

 public static void main(String[] args) {

 // Step1 : Create a Runnable

 Runnable simpleTask = new SimpleTask();

 // Step 2: Configure Executor

Chapter 5 ConCurrenCy and asynChronous programming

79

 // Uses FixedThreadPool executor

 ExecutorService executor = Executors.newFixedThreadPool(2);

 for (int i = 0; i < 10; i++) {

 executor.submit(simpleTask);

 }

 executor.shutdown();

 }

}

The code is very simple but it does a lot. You create an instance

of SimpleTask, create the ExecutorService, and initialize it with

a thread pool having two threads. Then you submit the task to the

ExecutorService. ExecutorService takes care of the execution of the ten

requests with the two threads it has in an efficient way.

Run Client.java as

java com.domain.concurrenc.Client

Output

SimpleTask, Runnable: Executing Logic 1578145676485

SimpleTask, Runnable: Executing Logic 1578145676485

SimpleTask, Runnable: Executing Logic 1578145676486

SimpleTask, Runnable: Executing Logic 1578145676486

SimpleTask, Runnable: Executing Logic 1578145676486

SimpleTask, Runnable: Executing Logic 1578145676486

SimpleTask, Runnable: Executing Logic 1578145676486

SimpleTask, Runnable: Executing Logic 1578145676486

SimpleTask, Runnable: Executing Logic 1578145676486

SimpleTask, Runnable: Executing Logic 1578145676486

By inspecting the output, you can see the time repeats in a pattern

of two, meaning the ExecutorService schedules execution with the two

threads it has and, once it becomes free, the next two requests gets served,

and so forth.

Chapter 5 ConCurrenCy and asynChronous programming

80

 Example 2: Using Callable
A Callable is similar to a Runnable. Both are designed to be executed by

threads. The difference is a Runnable doesn’t return anything and cannot

throw a checked exception. The Callable returns a result and may throw

an exception. The Callable interface defines the method:

V call() throws Exception;

Let’s try a Callable using an example:

package com.domain.concurrency;

import java.util.concurrent.Callable;

public class CallableTask implements Callable<String> {

 @Override

 public String call() throws Exception {

 String s="Callable Task Run at "+System.

currentTimeMillis();

 return s;

 }

}

The CallableTask returns a String and can also throw an exception

if something goes wrong. The CallableClient defined below executes

this task using the ExecutorService. The most important thing to

understand is since these are asynchronous executions that return a result,

ExecutorService returns a Future object, which is a proxy for the actual

response. The caller has to check whether the execution has completed by

invoking the isDone method on the Future and extracting the response.

This is what is being done in the following code:

Chapter 5 ConCurrenCy and asynChronous programming

81

package com.domain.concurrency;

import java.util.concurrent.Callable;

import java.util.concurrent.ExecutionException;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.Executors;

import java.util.concurrent.Future;

public class CallableClient {

 /**

 * @param args

 */

 public static void main(String[] args) {

 // Step1 : Create a Runnable

 Callable callableTask = new CallableTask();

 // Step 2: Configure Executor

 // Uses FixedThreadPool executor

 ExecutorService executor = Executors.newFixedThreadPool(2);

 Future<String> future = executor.submit(callableTask);

 boolean listen = true;

 while (listen) {

 if (future.isDone()) {

 String result;

 try {

 result = future.get();

 listen = false;

 System.out.println(result);

 } catch (InterruptedException |

ExecutionException e) {

 e.printStackTrace();

 }

 }

Chapter 5 ConCurrenCy and asynChronous programming

82

 }

 executor.shutdown();

 }

}

Here you use a while loop to continuously check for the completion

and, once ready, the data is consumed and exits out of the loop. Note that

isDone is a non-blocking method so you don’t block the thread when

you use it. There is also a method called get in the Future API; it is a

blocking method and it blocks the main thread until a response arrives.

You can try another variation of get that accepts a timeout:

String result =future.get();

String result =future.get(10, TimeUnit.SECONDS);

 Asynchronous Programming with Play
The ability to handle requests asynchronously is a very important factor in

choosing a framework for any project that has to scale well. Synchronous

processing of a large number of concurrent requests can eat up server

resources and, in certain extreme cases, if the capacity planning is not well

done, can bring the server to a halt.

Normal page requests from a web server are typically synchronous

and many times they are cached copies of the previous rendered page.

But this is not the scenario always; there are many applications that do a

lot of expensive processing to return results to the client. In such cases,

obviously the client has to wait for the result to arrive, but the server

can—in fact, does—the processing asynchronously in another thread of

execution and frees up the scarce server resources.

Chapter 5 ConCurrenCy and asynChronous programming

83

Play does this elegantly. A Play action that is non-blocking at the server

should return a CompletionStage<Result> instead of the normal Result

object. The CompletionStage is a promise that the result will be available

after some time. The beauty of the CompletionStage interface is that it

provides a vast selection of methods to attach callbacks to in order to

process the result once it becomes available.

The web client will be blocked while waiting for the response but

nothing will be blocked on the server, and server resources can be used to

serve other clients.

 Writing an Asynchronous App
Let’s find a scenario to understand this better. Consider an application that

recommends gifts based on a person’s Facebook profile. This application

uses the data publicly available in the person’s profile and then searches

online to gather gifts matching their interests. The searching online and

composing the gift list are expensive operations that can be very heavy

on the server. So this piece of code is a good candidate for asynchronous

programming:

public CompletionStage<Result> recomendGifts(final String

uid,final String age,final String relation) {

 return CompletableFuture.supplyAsync(this::getGifts)

 .thenApply((List<GiftVO> gift) -> ok("Got " +

gift));

}

private List<GiftVO> getGifts() {

 List<GiftVO> gifts =new ArrayList<GiftVO>();

 gifts.add(new GiftVO());

 return gifts;

}

Chapter 5 ConCurrenCy and asynChronous programming

84

In this code, the private method getGifts deals with finding the

gifts and returning the list of gifts. Of course, I have mocked the response

for this example. In a real-world scenario, the gifts might be based on a

person’s social profile or wish list or similar logic. That logic is not in our

scope; we are focusing only on asynchronous programming semantics.

The public method recomendGifts invokes the getGifts method

asynchronously using the Completable<Future> interface that is part of

the java.util.concurrent package. This is done by the code segment

CompletableFuture.supplyAsync(this::getGifts).

The next step is to check whether you have a response and when it is

available do further processing on the response and then send it back to

the client. That is what the thenApply method does.

 Configuring Asynchronous Scheduled Jobs
Play uses Akka to work with asynchronous jobs. In order to understand

jobs in Play, a basic knowledge of Akka is required.

 Akka Basics
The official definition of Akka is that it’s “a toolkit and runtime for

building highly concurrent, distributed, and fault tolerant event-driven

applications on the JVM.”

Akka introduces the actor model abstraction and provides a better

platform to build correct, concurrent, and scalable applications. This

means that it solves the hardships of writing multi-threaded, highly

concurrent code. Akka uses a message flow model to achieve this.

The actor model is not a new concept. The idea was introduced in 1973

by Carl Hewitt, Peter Bishop, and Richard Steiger.

Traditional concurrent programming in Java involves many threads

working together. When they need to work on a shared resource, it is done

by acquiring locks on the shared object. The program deals directly with

Chapter 5 ConCurrenCy and asynChronous programming

85

the low-level tasks of getting locks, releasing them after use, and so on.

This kind of code is hard to maintain and is error prone; many times it

can lead to deadlocks. Another pain point is in scaling horizontally across

JVMs. Akka tries to abstract these low-level programming methodologies

using actors, ActorRefer, and ActorSystem. Actors provide the abstraction

for transparent distribution and the basis for truly scalable and fault-

tolerant applications.

Does this means there are no threads and locking with Akka? Well,

they are there, but you don’t directly deal with them. Internally everything

runs on lightweight threads and low-level concurrency primitives. Akka

uses the java.util.concurrency library to handle the coordination.

Akka is written in Scala with language bindings provided for both Scala

and Java. Let’s first understand what an actor is. An actor is just an object

that can receive messages and take an action to handle the messages. It is

strictly decoupled from the source that generates the message.

To use the Akka actors, the first thing you need is to start the

ActorSystem. The ActorSystem is the fundamental entity for interacting

with actors and is responsible for actor life cycle management and is the

entry point of an Akka application. When a Play application is started, an

ActorSystem becomes available and can be accessed using dependency

injection in classes that need to interact with the ActorSystem.

We will only look at how to schedule asynchronous jobs in Play via

Akka. We won’t be detailing out the internals or the configuration of Akka

actor system in Play. This information is readily available from the official

Play Framework documentation.

import akka.actor.ActorSystem;

import scala.concurrent.ExecutionContext;

import scala.concurrent.duration.Duration;

import javax.inject.Inject;

import java.util.concurrent.TimeUnit;

Chapter 5 ConCurrenCy and asynChronous programming

86

public class ScheduledTask {

 private final ActorSystem actorSystem;

 private final ExecutionContext executionContext;

 @Inject

 public ScheduledTask(ActorSystem actorSystem,

ExecutionContext executionContext) {

 this.actorSystem = actorSystem;

 this.executionContext = executionContext;

 this.initialize();

 }

 private void initialize() {

 this.actorSystem

 .scheduler()

 .scheduleAtFixedRate(

 Duration.create(30 TimeUnit.SECONDS),

// initialDelay

 Duration.create(1, TimeUnit.MINUTES),

// interval

 () -> actorSystem.log().info("Time in

millis now "+System.currentTimeMillis()),

 this.executionContext);

 }

}

This example shows how to schedule a task that is to be run

30 seconds from now and then every minute after. The code uses

dependency injection to get a reference to the default ActorSystem

and ExecutionContext, and then uses the scheduler method of the

ActorSystem to execute the code in the defined intervals.

Chapter 5 ConCurrenCy and asynChronous programming

87© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_6

CHAPTER 6

Web Services, JSON,
and XML
Modern applications not only expose web service, they also consume

other third-party web services. For example, your application may

consume a Facebook or Twitter feed. Most modern web services are

exposed using REST APIs that handle JSON payloads. A typical problem

with calling web services is that they can block the caller and can result in

blocking the server until a response is obtained or a timeout occurs. This

is not a particularly good design because it can affect the throughput of

the server and can result in missed SLAs. Play 2 has solved this problem

by providing asynchronous, non-blocking APIs to invoke long-running

tasks like an external web service. Play provides the play.libs.ws library

to handle asynchronous web service calls. A call made by play.libs.ws

returns CompletionStage<WSResponse>. Later you can extract the response

by using callback functions available in the CompletionStage interface.

Essentially they are asynchronous callback methods. The caller makes a

web service call and, once the response is available, the rest of the code

runs. You will explore this in more detail later in this chapter.

Note Going forward, I will use the term promise quite often. Hence
it is important to understand what a promise is and what its intent is.

88

“A promise, also known as CompletableFuture, is design pattern

widely used in concurrent, asynchronous programming situations. A

promise represents a proxy for some response that is not known when

the promise is created. Promises are a way to write asynchronous code

so it appears as though executing in a synchronous manner.” The use

of a promise is a way to avoid the callback hell found in processing

asynchronous functional calls. Whenever I refer to a promise, it indicates

the promise design pattern unless explicitly mentioned otherwise.

 Consuming Web Services
Let’s learn by example. You are going to build a new method in the

controller that calls a web service and returns the response back to the client.

This new service just echoes the response from the back-end service.

Route configuration:

GET /bookshop/book/echo controllers.Application.echoService

The following is Application.java:

package controllers;

import javax.inject.Inject;

import play.mvc.*;

import play.data.DynamicForm;

import play.data.FormFactory;

import play.libs.ws.*;

import play.mvc.Result;

import java.util.concurrent.CompletionStage;

public class Application extends Controller {

@Inject WSClient ws;

public CompletionStage<Result> echoService() {

CHapter 6 Web ServICeS, JSON, aNd XML

89

 return

 ws.url("http://www.mocky.io/v2/53c7ec8426e0e3fd14326b0d")

 .get()

 . thenApply(response -> ok("Feed Response: " + response.

getBody()));

 }

}

The echoService uses the WS library to invoke an external web service

and returns the response. For the demonstration, I have created a simple

JSON service using the mocky.io website.

Let’s examine each of the steps in the echoService method.

First, the WSClient is injected to the controller using the @Inject

annotation.

ws.url().get returns CompletionStage<WSResponse>. This object

contains the complete response and provides methods to fetch the

response in widely used formats like JSON, XML, etc. Since all invocations

and content delivery use asynchronous, non-blocking semantics, the

caller needs to use a futures block to retrieve the response when it is ready.

thenApply is used to do this; whenever the response is available, the code

inside thenApply will execute.

• Read response body as a string:

response.getBody()

• Read as JSON:

response.asJson()

• Read as XML:

thenApply(r -> r.getBody(xml()));

The xml method is available in play.libs.ws.WSBodyReadables.

CHapter 6 Web ServICeS, JSON, aNd XML

90

The following are the WSResponse API’s commonly used methods:

• Get the body as an array of bytes:

byte[] asByteArray()

• Get the body as a JSON node:

com.fasterxml.jackson.databind.JsonNode asJson()

• Return the body as XML:

org.w3c.dom.Document asXml()

• Return the content as raw bytes:

akka.util.ByteString getBodyAsBytes()

• Get the HTTP content type of the response:

java.lang.String getContentType()

• Return the HTTP status codes (200, 404, 201, 500, …) of

the response:

int getStatus()

• Return the textual representation of an HTTP status

code (Ok, Not Found, Internal Server error, …):

java.lang.String getStatusText()

The echoServices method uses the get method that returns a

CompletionStage<WSResponse> object. When you invoke get, what you

get is just a Proxy object. No actual invocation has occurred. The Proxy

(CompletionStage) merely indicates that the framework has created a

job that will be processed asynchronously in a non-blocking manner.

When the call is made and a response is obtained, there needs to be some

way by which the application code can get an intimation and do further

CHapter 6 Web ServICeS, JSON, aNd XML

91

processing. This is accomplished by providing a callback method. This is

what the rest of the code in echoService is for. The thenApply function

is a callback function. Play will invoke this function with an instance of

WSResponse when the back-end service returns a response.

 Processing Large Responses
When receiving large HTTP responses, it is not a good idea to use get to

load the response into memory. If the response is big and in the order of

gigabytes, it can result in memory errors and can potentially crash the

application. In such cases, the better choice is to use Akka streaming

to consume the response incrementally. For this use case, WSResponse

provides a method named getBodyAsSource:

Source<ByteString, ?> responseBody = res.getBodyAsSource();

This response body can be processed by chaining it with a sink. Let’s

see how this is done.

For this example, I have created a mock response using the mocky.

io online service. This service lets you create mock responses for testing.

Go to www.mocky.io/v2/5e08df833000005b0081a159. This URL returns

a simple HTML response. Let’s use Play and Akka streaming to process

this response in an asynchronous, non-blocking, and efficient way. The

intended output is to count the length of content in an incremental way

and, once all the processing is over, send the response to the client. To

use Akka streaming, you need to get a reference to the Akka ActorSystem

and the Akka streaming materializer classes in the controller class. For

the time being, just understand that the materializer is a helper class for

Akka streams to work. This is the class that is responsible for materializing

the Akka stream processing pipeline. If you are totally new to Akka and

asynchronous programming, you can quickly read Chapter 8 of this book

covering the basics of Akka and come back to this section. Before you get

to the code, here a two terms you need to understand:

CHapter 6 Web ServICeS, JSON, aNd XML

http://www.mocky.io/v2/5e08df833000005b0081a159

92

• Source: The element that produces the data. For

example, a source may be created to stream data from

a Twitter feed or a source for reading files in a directory

or a web service.

• Sink: The end receiver of the data. For instance, you

may read from a source, do some transformation, and

write back to a file. In this case, the save to file is the

sink. In Akka streams, you connect a source and sink,

and perform transformations and data filtering in

between. With this much information in hand, let’s get

to the code.

You will add a new method in Application.java (Controller class),

namely processLargeResponse. This method reads the data from a rest

endpoint using Akka streaming semantics and calculates the size of the

data. You won’t be reading the entire response and counting; instead, the

data is read in chunks and the count is updated.

package controllers;

import actors.ActorModel;

import actors.PingActor;

import akka.actor.ActorRef;

import akka.actor.ActorSystem;

import akka.stream.Materializer;

import akka.stream.javadsl.Sink;

import akka.stream.javadsl.Source;

import akka.util.ByteString;

import play.libs.ws.WSClient;

import play.libs.ws.WSResponse;

import play.mvc.Controller;

import play.mvc.Http;

import play.mvc.Result;

CHapter 6 Web ServICeS, JSON, aNd XML

93

import scala.compat.java8.FutureConverters;

import javax.inject.Inject;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

import static akka.pattern.Patterns.ask;

public class Application extends Controller {

 final ActorRef pingActor;

 @Inject

 public Application(ActorSystem system) {

 pingActor = system.actorOf(PingActor.getProps());

 }

 @Inject

 Materializer materializer;

 public CompletionStage<Result> processLargeResponse() {

 CompletionStage<WSResponse> futureResponse =

 ws.url("http://www.mocky.io/v2/5e08df833000005b

0081a159")

 .setMethod("GET").stream();

 CompletionStage<Long> bytesReturned =

 futureResponse.thenCompose(

 res -> {

 Source<ByteString, ?> responseBody = res.

getBodyAsSource();

 // Count the number of bytes returned

 Sink<ByteString, CompletionStage<Long>> bytesSum =

CHapter 6 Web ServICeS, JSON, aNd XML

94

 Sink.fold(0L, (total, bytes) -> total +

 bytes.length());

 return responseBody.runWith(bytesSum, materializer);

 });

 return bytesReturned.thenApply(

 res -> ok((String)res.toString()));

 }

}

This code calls the web service defined at mocky.io and processes the

response as an Akka stream. This way it only loads chunks of the response

into memory and processes the chunks. This mechanism ensures that you

can process any large response without encountering memory and CPU

bottlenecks.

To test this, add the following entry into the routes.conf file:

GET /bookshop/example/largeresponse controllers.Application.

processLargeResponse()

 Handling JSON
Play has built-in support for JSON. It can automatically parse a JSON

request or generate a JSON response. Let’s explore the two scenarios:

 1) Consuming a JSON request

 2) Producing a JSON response

 Consuming JSON Request
Play by default uses a body parser that can parse any valid content

type. The default body parser is accessible from the request object and

has method asJson to process the incoming request as JSON content.

CHapter 6 Web ServICeS, JSON, aNd XML

95

JSON content will have the Content-Type header set as text/json or

application/json.

JsonNode json = request().body().asJson();

This is, in fact, a Jackson node. Once you get this, you can use the

methods available in the Jackson API to extract the data in the JSON request.

You can ask Play to process only the JSON body as a request and reject

anything that is not valid with an HTTP 400 response code. For this, just

annotate the method with @BodyParser.Of (BodyParser.Json.class).

This is the better way to process an incoming JSON request body.

Let’s create a method that acknowledges a message it receives. The

acknowledgeGreeting method in the controller accepts a JSON body and

returns an HTML output:

package controllers;

import com.fasterxml.jackson.databind.JsonNode;

import play.mvc.Controller;

import play.mvc.Result;

import play.mvc.BodyParser;

public class Application extends Controller {

@BodyParser.Of(BodyParser.Json.class)

public Result acknowledgeGreeting(){

 JsonNode json = request().body().asJson();

 String greeting = json.findPath("greeting").textValue();

 if(greeting == null) {

 return badRequest("Missing parameter [greeting]");

 } else {

 return ok("Your greeting "+greeting+" is accepted");

 }

 }

}

CHapter 6 Web ServICeS, JSON, aNd XML

96

Modify the routes file and add the mapping entry:

POST /greeting controllers.Application.acknowledgeGreeting()

To test the service, you need a client that can post a JSON body. There

are many browser-based clients available and you can use the one of your

choice. I used a Mozilla Firefox add-on named RestClient (a debugger for

RESTful web services); you can also use Postman. If you want to do it via

the command line, use curl. See Figure 6-1.

Figure 6-1. Testing with RestClient

Testing the service using curl:

$ curl -H "Content-Type: application/json" -X POST -d

{\"greeting\":\"hello\"} http://localhost:9000/greeting http://

localhost:9000/greeting

Response:

Your greeting hello is accepted

CHapter 6 Web ServICeS, JSON, aNd XML

97

 Producing a JSON Response
It is very simple to generate a JSON response with Play. Just create a JSON

object and put key-value pairs into it:

ObjectNode result = Json.newObject();

result.put("status", "OK");

result.put("message", "Greetings");

return ok(result);

The acknowledgeGreeting method you used above accepts a JSON

request and it sends a text/plain response back. Let’s create another

version of the acknowledgeGreeting that returns an application/json

response instead (see Figure 6-2):

@BodyParser.Of(BodyParser.Json.class)

public Result acknowledgeGreetingJSON(){

 JsonNode json = request().body().asJson();

 String greeting = json.findPath("greeting").textValue();

 ObjectNode result = Json.newObject();

 if(greeting == null) {

 result.put("status", "BAD_REQ");

 result.put("msg", "Missing parameter [greeting]");

 } else {

 result.put("status", "SUCCESS");

 result.put("msg", "Your greeting "+greeting+" is

accepted");

 }

 return ok(result);

}

Routes entry:

POST /greeting/better controllers.Application.

acknowledgeGreetingJSON()

CHapter 6 Web ServICeS, JSON, aNd XML

98

If you examine the HTTP headers in the response, you can see that the

Content-Type header is set as application/json.

 Handling XML
Handling XML is very similar to the above case of handling JSON. It is enough

to use the default body parser to convert an incoming XML request body to

an Object for easier processing. The important factor to consider is that the

incoming Content-Type header should be either application/xml or

text/xml. By default, raw XML is converted to a valid W3C Document object:

Document dom = request().body().asXml();

Here the default body parser is used to convert the XML string to a

parsable Object.

To create an XML response, you should use a valid JAXB

implementation or, for very simple XML, you can even just return a String

in the XML structure. Manually building XML using String manipulation

is not extensible or maintainable, so use a proper JAXB implementation. In

Play Framework, you don’t need to add extra libraries because Play already

supports JAXB via the JDK. Let’s look at both ways. Example 1 shows

simple XML parsing and example 2 uses JAXB.

Figure 6-2. Testing the JSON response

CHapter 6 Web ServICeS, JSON, aNd XML

99

 Example 1: Simple XML Parsing
Use the following XML:

<message>

 <greeting>Value</greeting>

</message>

You will parse this XML and send back a text/plain response.

The method in the controller (Application.java):

import play.libs.XPath;

import play.mvc.BodyParser;

import org.w3c.dom.Document;

@BodyParser.Of(BodyParser.Xml.class)

public Result acknowledgeGreetingXML() {

 Document dom = request().body().asXml();

 if(dom == null) {

 return badRequest("Requires XML Input");

 } else {

 String greeting = XPath.selectText("//greeting", dom);

 if(greeting == null) {

 return badRequest("Missing parameter

[greeting]");

 } else {

 return ok("Your greeting "+greeting+" is

accepted");

 }

 }

}

CHapter 6 Web ServICeS, JSON, aNd XML

100

Now the routes:

POST /greeting/xml controllers.Application.

acknowledgeGreetingXML()

You can test this using Postman or RestClient or curl.

Testing using Curl:

curl -H "Content-Type: application/xml" -X POST -d "<message>

 <greeting>Value</greeting>

</message>" http://localhost:9000/greeting/xml

Response: Your greeting Value is accepted

Instead of using XPath, if required you may directly use JAXB and

map the incoming XML to a Java Object. This is what you will explore in

example 2.

 Example 2: XML Parsing Using JAXB
Let’s add a new method in Application.java called

acknowledgeGreetingXMLJaxbVersion. This method uses JAXB to bind

the incoming XML to a Java object or the model. For this to work, first

you need to create your model representing the XML content. Create new

file named Message.java inside the models package. Add the following

content to it and save the file:

Message.java

package models;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

CHapter 6 Web ServICeS, JSON, aNd XML

101

@XmlRootElement(name = "message")

@XmlAccessorType(XmlAccessType.PROPERTY)

public class Message {

 private String greeting;

 public String getGreeting() {

 return greeting;

 }

 @XmlElement

 public void setGreeting(String greeting) {

 this.greeting = greeting;

 }

}

This file represents the XML content. I have annotated it to instruct

JABX that the <message> element is the root element and marked the setter

method using the @XmlElement annotation so that JABX uses the setter

instead of the property directly.

Now let’s add the method to Application.java:

import actors.ActorModel;

import actors.PingActor;

import akka.actor.ActorRef;

import akka.actor.ActorSystem;

import akka.stream.Materializer;

import akka.stream.javadsl.Sink;

import akka.stream.javadsl.Source;

import akka.util.ByteString;

import models.GiftVO;

import models.Message;

import modules.Factorial;

import org.w3c.dom.Document;

CHapter 6 Web ServICeS, JSON, aNd XML

102

import play.data.DynamicForm;

import play.data.FormFactory;

import play.libs.XPath;

import play.libs.ws.WSClient;

import play.libs.ws.WSResponse;

import play.mvc.Controller;

import play.mvc.Http;

import play.mvc.Result;

import scala.compat.java8.FutureConverters;

import javax.inject.Inject;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import java.io.StringReader;

import java.io.StringWriter;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

import com.fasterxml.jackson.databind.JsonNode;

import play.mvc.BodyParser;

import static akka.pattern.Patterns.ask;

CHapter 6 Web ServICeS, JSON, aNd XML

103

public class Application extends Controller {

@BodyParser.Of(BodyParser.Xml.class)

public Result acknowledgeGreetingXMLJaxbVersion() throws Exception {

 Document doc = request().body().asXml();

 if(doc == null) {

 return badRequest("Requires XML Input");

 }else {

 TransformerFactory tf = TransformerFactory.newInstance();

 Transformer transformer = tf.newTransformer();

 transformer.setOutputProperty(OutputKeys.OMIT_XML_

DECLARATION, "yes");

 StringWriter writer = new StringWriter();

 transformer.transform(new DOMSource(doc), new

StreamResult(writer));

 String output = writer.getBuffer().toString();

 JAXBContext context = JAXBContext.newInstance

(Message.class);

 Unmarshaller unMarshaller = context.createUnmarshaller();

 //JAXB Auto conversion- XML to Model

 Message msg = (Message)unMarshaller.unmarshal(new

StringReader(output));

 if(msg == null) {

 return badRequest("Requires XML Input");

 } else {

 String greeting = msg.getGreeting();

 if(greeting == null) {

 return badRequest("Missing parameter [greeting]");

 } else {

 return ok("Your greeting "+greeting+" is

accepted");

CHapter 6 Web ServICeS, JSON, aNd XML

104

 }

 }

 }

 }

}

In the acknowledgeGreetingXMLJaxbVersion function, you take the

XML document object, convert it to the string representation, and use the

Unmarshaller class of JAXB to autoconvert the XML string to the Model

object, Message. This is the efficient and simple way to convert XML to

Model.

CHapter 6 Web ServICeS, JSON, aNd XML

105© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_7

CHAPTER 7

Accessing Databases
Play 2 has excellent support for SQL databases. All the database-related

configurations are maintained in the conf/application.conf file. By

default, Play 2 provides support for JDBC connection pools (connection

pools offer efficient and faster access to the database resources).

 Configuring Database Support
Edit the build.sbt file and add

libraryDependencies += javaJdbc

This will enable the JDBC API for Play projects.

Now open the application.conf file and add the following content:

Database configuration

~~~~~

You can declare as many datasources as you want.

By convention, the default datasource is named `default`

#

db.default.driver=org.h2.Driver

db.default.url="jdbc:h2:mem:play"

db.default.user=sa

db.default.password=""

106

You can start using the default data source (default) by configuring

the database properties and uncommenting the configuration settings.

The following are the settings to configure a MySQL database as the default

datasource:

db.default.driver=com.mysql.jdbc.Driver

db.default.url="jdbc:mysql://IP Address:port/books"

db.default.user=username

db.default.password="PASSWORD"

db.default.logStatements=true

Make sure that you have the appropriate MySQL connector jar (mysql-

connector- java-5.1.24-bin.jar) in the application classpath. An easy

way to do this is to create a folder named lib in the project and copy the

connector jar there. Play will add any jar file put inside the lib folder to the

classpath.

You can either work with the default data source or create any

number of your own data sources. To create another data source, copy the

properties defined for the default data source and change the name default

to one of your choice. For instance,

db.book.driver=com.mysql.jdbc.Driver

db.book.url="jdbc:mysql://localhost:3306/book"

db.book.user=username

db.book.password="password"

db.book.logStatements=true

This datasource is referred to by the name book, so by providing this

name a connection can be obtained from the pool.

Directly invoking JDBC calls is costly because they are blocking

operations and cause thread waiting. Hence it is a best practice to

run the JDBC calls in a separate execution context by providing a

CustomExectutionContext. Here’s an example that executes JDBC calls in

a Play application:

Chapter 7 aCCessing Databases

107

package dao;

import akka.actor.ActorSystem;

import play.db.Database;

import play.libs.concurrent.CustomExecutionContext;

import javax.inject.Inject;

import javax.inject.Singleton;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

public class DatabaseExecutionContext extends

CustomExecutionContext {

 @javax.inject.Inject

 public DatabaseExecutionContext(ActorSystem actorSystem) {

 // uses a custom thread pool defined in

application.conf

 super(actorSystem, "database.dispatcher");

 }

 @Singleton

 public static class JdbcExample {

 private Database db;

 private DatabaseExecutionContext executionContext;

 @Inject

 public JdbcExample(Database db,

 DatabaseExecutionContext context) {

 this.db = db;

 this.executionContext = executionContext;

 }

 public CompletionStage<Integer> updateSomething() {

 return CompletableFuture.supplyAsync(

 () -> {

Chapter 7 aCCessing Databases

108

 return db.withConnection(

 connection -> {

 //perform the

operations with

 //the connection

 return 1;

 });

 },executionContext);

 }

 }

}

You can see that this code uses ActorSystem as a constructor

argument. ActorSystem is part of the Akka framework, and Play relies on

Akka to implement the execution context (part of play.libs.concurrent.

CustomExecutionContext class used above). A chapter on Akka is provided

in this book and I recommend reading it if you are new to Akka.

Typically you don’t deal directly with connection-related activities.

It is a best practice to delegate the database activities to an ORM (object

relational mapping) layer. It is recommended to use ORM for database

access because it shields the programs from the complexities of persisting

the object and fetching the object to and from the underlying data store.

ORM brings a rich object-oriented flavor to the code by enabling the

programmer to concentrate on the business rather than writing code for

database access and related connection management. An ORM layer is

expected to generate efficient SQL statements given a situation and is

expected to shield the code from changes to the data store or its structure.

An ORM layer can also provide some sort of cache such that the actual

database interaction happens only when absolutely necessary. Ebean, the

ORM that comes bundled with Play, is an excellent choice considering the

requirements stated above. You’ll explore the Ebean ORM in the following

sections.

Chapter 7 aCCessing Databases

109

 Working with an ORM
Ebean is a lightweight, open source ORM and has a developer-friendly

API. Play supports integration with JPA and can be easily configured to use

Hibernate, iBatis or any other popular ORM. Let’s see how to configure

Hibernate as the JPA provider for Play 2 and then explore Ebean in detail.

In order to understand Ebean and any other ORM, it is important

that you are well aware of the basic ORM concepts. A quick introduction

to ORM is given in the next section. If you are already familiar with ORM

concepts, you may skip this section.

 ORM Concepts
Before the emergence of ORM, the only option available was JDBC. The

JDBC API allows all kinds of database operations from Java. It supports

updates, selects, database- and table-level metadata queries, and much

more. Gradually the Java community realized the difficulties with this

approach. The difficulties are

• Mismatch in representing the object models and

relational database models. RDMS represent data in a

tabular format whereas object-oriented languages like

Java represent it as an interconnected graph of objects.

• State management: Synchronizing the state of the in-

memory object model with a relational database

• Difficulties in modeling using pure object-oriented

domain models because there was no elegant way to

sync the model with the relational database

• Duplicate and repetitive SQL code

• Inefficient data traversal

• Ties the code to a particular database and SQL syntax

Chapter 7 aCCessing Databases

110

• The low-level SQL code gets embedded in the business logic

• Difficult to cache the data

An ORM framework tries to address these mismatches and acts as the

middleman in bridging these mismatches. The most important features

required from an ORM are the first three points; the rest are added

advantages.

• No mismatch between the database model and the

object model. ORM fixes this mismatch.

• ORM helps in state management by synchronizing the

state of the in-memory object model with a relational

database.

• ORM helps in modeling by using pure object-oriented

domain models and syncing the model with the

database.

As per my experience in building many systems over the years, if you

are designing your project such that it uses an object-oriented domain

model and the data store is relational, there is no other better choice than

an ORM.

If you are not particular about object-oriented design and the domain

model, there is no need for you to go for ORM. You may choose any other

technology that helps in persisting data to a database from Java.

If you are always thinking about tables and rows and not thinking

about domain objects, don’t waste your time with ORM. It’s better to use

some other technology that can help in persisting data to RDMS from Java.

But if you are not using ORM, you are missing a lot and you will end up

writing a lot of plumbing code. Hence even for smaller projects, go ahead

with ORM and model your business objects appropriately. There is no

reason for not using ORM because almost all ORM implementations have

matured and can offer wider choices in data access and updates.

Chapter 7 aCCessing Databases

111

 Key Terms
The possible relationships between entities in an object-oriented domain

model are

• One to one

• One to many

• Many to one

• Many to many

 One to Many
The relationship between an Order and the LineItems. An order may have

many line items. So this is an example of one to many. If the LineItem doesn't

have a property referring to the Order, it is a unidirectional association.

 Many to One

The relationship from the perspective of LineItem to Order is an example

of many to one.

 Many to Many

This can be explained easily using the association between students and

courses. A student can enroll in multiple courses, and a course can be

attended by many students. Hence this is an example of many to many.

 Relationship Direction
These relations can be unidirectional or bidirectional. Unidirectional

means you can access the child only from the parent. Bidirectional means

the parent and child can be traversed from both ends. That is, each entity

has a relationship field that refers to the other entity.

Chapter 7 aCCessing Databases

112

A bidirectional relationship has an owning side and an inverse side

whereas a unidirectional relation has only the owning side.

The owning side of a relationship determines the updates to the
relationship in the database. An easier way to understand this is to

consider that the entity that contains the foreign key of the table is the

owner and is responsible for maintaining the relationship in the case of a

bidirectional relationship.

For instance, Order has foreign keys to the line items so it is the owner

of the relationship.

A bidirectional relationship should follow these rules:

• The inverse side of a bidirectional relationship must

refer to its owning side by using the mappedBy element of

the @OneToOne, @OneToMany, or @ManyToMany annotation.

The mappedBy element designates the property or field in

the entity that is the owner of the relationship.

• The many side of many-to-one bidirectional

relationships must not define the mappedBy element. The

many side is always the owning side of the relationship.

• For one-to-one bidirectional relationships, the

owning side corresponds to the side that contains the

corresponding foreign key.

• For many-to-many bidirectional relationships, either

side may be the owning side.

The entity that contains the foreign key is the owner, and the child

entities are the inverse side. The child entity should contain the mappedBy

annotation. When entities are linked by relationships, it is also important

to specify the appropriate cascade settings. For example, a line item is part

of an order; if the order is deleted, the line item also should be deleted.

This is called a cascade-delete relationship. I hope you have now attained a

quick knowledge of working with ORM.

Chapter 7 aCCessing Databases

113

 Configuring JPA
The Java Persistence API (JPA) mandates that the data source should be

accessible via JNDI. The first thing you need to do is to make the data

source accessible via JNDI by changing the data source configuration in

the conf/application.conf file. A data source can be made available via

JNDI by specifying the JNDI name in the configuration.

You are going to use the h2 in-memory database for the examples. The

goal is to save a user’s review comment on a book and persist it using JPA.

Open the application.conf file and add the following entries:

This is the main configuration file for the application.

https://www.playframework.com/documentation/latest/ConfigFile

Default database configuration

db.default.driver=org.h2.Driver

db.default.url="jdbc:h2:mem:play"

db.default.jndiName=DefaultDS

jpa.default=defaultPersistenceUnit

The next step is to choose a JPA implementation and add that as a

dependency to the project. You are using Hibernate as the JPA provider

and the in-memory h2 database for the examples. Open the build.sbt file

and add

val appDependencies = Seq(

javaJdbc,

javaJpa,

"org.hibernate" % "hibernate-entitymanager" % "5.3.7.Final",

"com.h2database" % "h2" % "1.4.200"

)

build.sbt is located inside the project directory.

Chapter 7 aCCessing Databases

114

The next step is to create the persistence.xml file and configure it to

use Hibernate as JPA provider. persistence.xml should be put inside the

conf/META-INF directory.

<persistence xmlns="http://xmlns.jcp.org/xml/ns/persistence"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/persistence

http://xmlns.jcp.org/xml/ns/persistence/persistence_2_1.xsd"

version="2.1">

<persistence-unit name="defaultPersistenceUnit" transaction-

type="RESOURCE_LOCAL">

<provider>org.hibernate.jpa.HibernatePersistenceProvider</

provider>

<non-jta-data-source>DefaultDS</non-jta-data-source>

<properties>

<property name="hibernate.dialect" value="org.hibernate.

dialect.H2Dialect"/>

</properties>

</persistence-unit>

</persistence>

Tip it is a best practice to isolate all Jpa operations in a separate
execution context other than the default play execution context. all
Db operations are blocking, so it is important to isolate them in a
separate execution context.

Play provides the play.db.jpa.JPAApi to work with Entity Manager. If

you are not familiar with Entity Manager, read the next paragraph.

Chapter 7 aCCessing Databases

115

Entity Manager is part of JPA and it is used to interact with the

persistence context to maintain the conversational state. In short, it is the

interface we will use to create, remove, update, or find entities when using

JPA. It is closely related to the session concept found in Hibernate.

If you want to know more about the latest things in JPA, you can

download the specification at https://download.oracle.com/otn-pub/

jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf.

Your model class should not directly perform JPA or JDBC operations.

Let’s go ahead and create the repository classes. Before that, you need to

create an entity named Review that models the real-world review comment

by a user regarding a book.

package model;

import javax.persistence.*;

public class Review {

@Id

@GeneratedValue(strategy = GenerationType.AUTO)

 public Long id;

public String comment;

public Long getId() {

 return id;

}

public void setId(Long id) {

 this.id = id;

}

public String getComment() {

 return comment;

}

public void setComment(String comment) {

 this.comment = comment;

}

Chapter 7 aCCessing Databases

https://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf
https://download.oracle.com/otn-pub/jcp/persistence-2_1-fr-eval-spec/JavaPersistence.pdf

116

 public String getUserId() {

 return userId;

}

public void setUserId(String userId) {

 this.userId = userId;

}

public String getBookId() {

 return bookId;

}

public void setBookId(String bookId) {

 this.bookId = bookId;

}

public String userId;

public String bookId;

}

Next, create an interface for abstracting the review operations

(ReviewRepository.java):

:package dao;

import com.google.inject.ImplementedBy;

import model.Review;

import java.util.concurrent.CompletionStage;

import java.util.stream.Stream;

@ImplementedBy(JPAReviewRepository.class)

public interface ReviewRepository {

 CompletionStage<String> saveReview(Review review);

}

The ReviewRepository interface hides the JPA implementation details

from the model classes.

Chapter 7 aCCessing Databases

117

Go ahead and create the implementation of this interface

(JPAReviewRepository.java):

package dao;

import models.Review;

import play.db.jpa.JPAApi;

import javax.inject.Inject;

import javax.inject.Singleton;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

import static java.util.concurrent.CompletableFuture.supplyAsync;

@Singleton

public class JPAReviewRepository implements ReviewRepository{

 private JPAApi jpaApi;

 private DatabaseExecutionContext executionContext;

 @Inject

 public JPAReviewRepository(JPAApi api,

DatabaseExecutionContext executionContext) {

 this.jpaApi = api;

 this.executionContext = executionContext;

 }

 @Override

 public CompletionStage<String> saveReview(Review review) {

 return CompletableFuture.supplyAsync(

 () -> {

 // lambda is an instance of

 //Function<EntityManager, Long>

 return jpaApi.withTransaction(

 entityManager -> {

Chapter 7 aCCessing Databases

118

 entityManager.persist(review);

 return "saved";

 });

 },

 executionContext);

 }

}

JPA calls should be made inside a transaction, so you use the jpaApi.

withTransaction method to execute the persistence operation of saving

the Review entity.

 Using Ebean in Play
My experience in using Ebean with Play is quite satisfactory. It offers easy

to use apis and is much simpler in terms of architecture.

An architecture using EntityManager brings with it the concept of

attached and detached entities. The entity state is persisted only when it

is attached with an EntityManager. This also means if the conversation

needs to be maintained across multiple transactions, the EntityManager

needs to be managed by another object like an EJB Session bean. The

same Entity Manager instance is used across transactions to maintain

a single conversation. Ebean greatly simplifies this by following an

EntityManager architecture. This means Ebean doesn't provide an

Entity Manager nor does it provide the merge, f lush, or persist operations

normally found in JPA.

The point to understand here is that Ebean uses a totally different

architecture compared to JPA. Please note that even though Ebean

doesn’t have an Entity Manager, it does have a “persistence context” that is

transaction scoped and managed automatically.

Chapter 7 aCCessing Databases

119

I have worked with both JPA and Ebean, and in my experience both

have merits. There is no doubt that the query language used by Ebean is

much simpler to understand and work with. This simplicity is the selling

point of Ebean.

Another important optimization employed in Ebean is its support for

the partial object. In JPA, you would typically annotate a relationship to

instruct whether the relationship needs to be loaded using an eager or

lazy fetching strategy. In an eager fetch, the child objects are also retrieved

and loaded when the parent is fetched. In a lazy loading strategy, only the

parent gets loaded and the child is fetched only when it is used. The ability

to configure these fetch strategies is very important and is a big factor in

optimizing the code. JPA provides an annotation to configure them at the

entity level. But there is a problem.

Consider a scenario in which for use case 1 you want the entity to

adopt eager the fetch strategy and for use case 2 you want the same

entity to use the lazy loading strategy. This is a problem because these

annotations are declared at the entity level. This is highly inflexible. Most

ORMs provide functionality similar to that of partial objects via “fetch

groups.”

Having “partial object” support in the query language means you can

write a query that is optimal for different use cases. That is, the lazy or

eager loading of the dependent objects are not fixed but can be changed

depending on the use case. This is a nice feature employed in Ebean and

a big boost to optimizing queries for performance and efficiency. This

feature was in the earlier JPA specifications.

In certain use cases, you may find that writing custom SQL will be

much better and easier from a performance standpoint. Ebean has

excellent support for custom SQL queries and provides a simpler API to

work with.

Chapter 7 aCCessing Databases

120

To enable Ebean, add the plugin dependency to the project/plugins.

sbt file:

addSbtPlugin("com.typesafe.sbt" % "sbt-play-ebean" % "5.0.2")

Then modify the build.sbt file to add the Ebean dependency:

lazy val root = (project in file("."))

.enablePlugins(PlayJava, PlayEbean)

 Ebean Query
Ebean uses the same mapping as per the JPA specification. So you

annotate your beans with @Entity, @Table, @Column, @OneToMany, etc. as

per the JPA specification. In fact, most of the JPA annotations work with

Ebean.

Let’s consider a simple case of modeling a book as an entity. A book

is unique with its ISBN (for this example, you denote the ISBN as asin, an

Amazon notation). ASIN means a unique identifier for a book and no two

books can have the same ASIN.

An Ebean model should extend from io.ebean.Model:

package models;

import java.util.*;

import javax.persistence.*;

import io.ebean.*;

import play.data.format.*;

import play.data.validation.*;

@Entity

@Table(name="book")

public class Book extends Model {

 @Id

 @Column(name="asin")

Chapter 7 aCCessing Databases

121

 private String asin;

 @Column(name="title")

 private String title;

 @Column(name="author")

 private String author;

 @Column(name="description")

 private String description;

 @Column(name="language")

 private String language;

 public String getLanguage() {

 return language;

 }

 public void setLanguage(String language) {

 this.language = language;

 }

 public String getDescription() {

 return description;

 }

 public void setDescription(String description) {

 this.description = description;

 }

 public String getAsin() {

 return asin;

 }

 public void setAsin(String asin) {

 this.asin = asin;

 }

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

Chapter 7 aCCessing Databases

122

 public String getAuthor() {

 return author;

 }

 public void setAuthor(String author) {

 this.author = author;

 }

 @Override

 public int hashCode() {

 final int prime = 31;

 int result = super.hashCode();

 result = prime * result + ((asin == null) ? 0 : asin.

hashCode());

 return result;

 }

 @Override

 public boolean equals(Object obj) {

 if (this == obj)

 return true;

 if (!super.equals(obj))

 return false;

 if (getClass() != obj.getClass())

 return false;

 Book other = (Book) obj;

 if (asin == null) {

 if (other.asin != null)

 return false;

 } else if (!asin.equals(other.asin))

 return false;

 return true;

 }

}

Chapter 7 aCCessing Databases

123

Note play will automatically generate getter and setter methods
during runtime, so unless you want them available during compilation
time you don’t need to generate them.

There’s a lot of information in the annotations in the above code. The

most important parts are

• @Entity informs the ORM (Ebean) that this class is

associated with data stored in the underlying data store

and asks the ORM to handle it.

• @Table informs the ORM provider that this entity is to

be persisted in the table mentioned via the annotation,

and in your case the table is book.

• @Id is very important information and declares that

this field is the unique identifier to reference this entity.

This typically means this field is the primary key in the

underlying database.

• @Column maps the attribute to a particular column of

the underlying table.

How to create a new book and persist to database:

Book book= new Book();

//set the attributes

book.setId("A0091234");

book.setTitle("Play 2");

book.setAuthor("Prem");

book.setDescription("Play 2");

book.setLanguage("English");

book.save();

Chapter 7 aCCessing Databases

124

Here you use the save method of the Ebean class to persist the book

object.

How to fetch a book by its ID:

// find a Book by the id

Book book = Ebean.find(Book.class).where().idEq("id").

findOne();

How to fetch all books starting with Java in the title:

// find a list of books with title starting with "java"

List<Book> books =Ebean.find(Book.class).where().

like("title","java%").orderBy("tile desc").findList();

Let’s explore the find query with the where and like clauses in

detail. The above example uses a fluid API style where the methods are

chained together. This kind of method chaining is one of the traits of good

functional programming style and DSL.

You can optionally use select() and fetch() to specify only the

properties you want to fetch. This returns "partially" populated beans.

This is an important feature to help with the performance of your

queries. For instance, if you are only interested in two columns, say id

and name, and if they are already indexed by the database, the database

is not required touch the data blocks; it can just serve the values from

the index itself. This is a big performance improvement if the table has a

large number of records.

List<Book> books = Ebean.find(Book.class).where("asin,author").

findList();

In this example, you only retrieve the asin and author properties.

Chapter 7 aCCessing Databases

125

 Common Select Query Constructs in Ebean
Let us now explore the most commonly used methods available in Ebean

that helps to frame Select Queries.

 where()

The where clause is used to specify the where filtering condition. You can

pass the complete where clause as a string (where(" filter condition ")

or use it with Expression objects. Using where() with an expression list

is better from a programming standards perspective. The example listed

above on “fetching books starting with Java in the title” shows the where

clause used with Expression objects.

 eq()

Checks whether the given property is equal to the supplied value:

eq(String propertyName, Object value)

Fetch all books written by Robin Cook:

List<Book> booksList = Ebean.find(Book.class).where().

eq("author", "Robin Cook").findList();

 like()

Specifies a property-like value where the value contains the SQL wild card

characters % (percentage) and _ (underscore):

like(String propertyName,String value)

List<Book> booksList = Ebean.find(Book.class).where().

like("author", "%Cook").findList();

 orderBy()

Sets the order by clause, replacing the existing order by clause if there is one:

orderBy(String orderByClause)

Chapter 7 aCCessing Databases

126

This follows the SQL syntax of using commas between each property,

with the optional asc and desc keywords representing ascending and

descending order, respectively:

List<Book> booksList = Ebean.find(Book.class).where().

eq("author", "Robin Cook")

 .orderBy("title desc").findList();

 findUnique()

Used to return only one record. Executes the query returning either a

single bean or null (if no matching bean is found).

 findList()

Executes the query, returning the list of objects.

 LIMIT {max rows} [OFFSET {first row}]

Used to limit the number of records returned. By using it with the offset

parameter, pagination can be easily implemented.

 The Query Interface

There a lot methods in the Ebean Query interface. Please take a look at

com.avaje.ebean.Query interface to explore the available options. Here is

a list of a few of them:

• Query<T> fetch(String path)

Specifies a path to load, including all its properties

• Query<T> fetch(String path, FetchConfig joinConfig)

 Additionally specifies a JoinConfig to specify a “query join” and

or define the lazy loading query

Chapter 7 aCCessing Databases

127

• Query<T> fetch(String path, String fetchProperties)

 Specifies a path to fetch with its specific properties to include

(a.k.a. partial object)

• Query<T> fetch(String assocProperty, String

fetchProperties, FetchConfig fetchConfig)

 Additionally specifies a FetchConfig to use a separate query or

lazy loading to load this path

• List<Object> findIds()

Executes the query returning the list of Ids

• List<T> findList()

Executes the query returning the list of objects

• Map<?,T> findMap()

Executes the query returning a map of the objects

• int findRowCount()

Returns the count of entities this query should return

• Set<T> findSet()

Executes the query returning the set of objects

• intger FirstRow()

Returns the first row value

• String getGeneratedSql()

Returns the SQL that was generated for executing this query

• intger MaxRows()

Returns the max rows for this query

• RawSql getRawSql()

Returns the RawSql that was set to use for this query

Chapter 7 aCCessing Databases

128

• Query<T> select(String fetchProperties)

 Explicitly sets a comma-delimited list of the properties to fetch

on the ‘main’ entity bean (aka partial object)

• Query<T> setReadOnly(boolean readOnly)

Set to true when you want the returned beans to be read only.

• Query<T> setTimeout(int secs)

Sets a timeout on this query

 Using RawSql
You have seen that you need to have an entity for the typical Ebean queries

to work. The query is on the entity and that in turn gets translated to a

database query. In many situations, you may want to fetch results from

many entities and the returned data cannot be translated to an entity. This

is useful for reporting type requirements where you want to use aggregate

functions such as sum(), count(), max(), etc. For whatever reason, when

you want to write database-specific queries, you can use RawSql. The

returned data from the query can be mapped to an object easily with

Ebean thanks to its @Sql annotation. You can create an entity and mark it

with a @Sql annotation to tell Ebean that this is just a SQL representation

and not an entity that is related to a table.

Let’s see an example. Say you want to find the total number of books

written by all authors. You use the RawSqlBuilder class to specify the

query and map the columns in the select clause to the corresponding

property fields defined in the PopularBook class. This class is the entity you

defined to map the result:

String sql="select author,count(author) as noofbooks from books

group by author"

RawSqlBuilder rawSqlBldr = RawSqlBuilder.parse(sql);

RawSql rawSql = rawSqlBldr.columnMapping("author", "bookauthor")

.columnMapping("noofbooks", "totalbooksbyauthor").create();

Chapter 7 aCCessing Databases

129

Query<PopularBook> query = Ebean.find(PopularBook.class);

query.setRawSql(rawSql);

List<PopularBook> list = query.findList();

Here is the PopularBook entity:

package models;

import javax.persistence.Entity;

import com.avaje.ebean.annotation.Sql;

@Entity

@Sql

public class PopularBook extends TrendingBook {

 private String author;

 private int totalbooksbyauthor;

 //define the getters and setters

}

At times you may desire to use only the relational features and don't

want any ORM features for whatever reason. For such cases, Ebean

provides the SqlQuery class. Here you can write the plain old SQL and

get the results just like you do via a JDBC resultset. SqlQuery is where

you specify the exact SQL SELECT statement and return list, sets, or maps

of SqlRow objects. A SqlRow is a Map where the key is the column name.

This is a fairly lightweight API that you can use instead of going to raw

JDBC. Again, let’s see an example to understand this:

String sql = "select count(1) as count from book where author = ?";

SqlQuery query = Ebean.createSqlQuery(sql);

query.setParameter(1, author);

SqlRow row = query.findUnique();

int count = row.getInteger("count");

This is much easier than writing a plain old JDBC query using the

JDBC API.

Chapter 7 aCCessing Databases

130

If the situation demands writing raw SQL for an insert or update, you

can use the SqlUpdate class:

SqlUpdate query = Ebean.createSqlUpdate(sql);

Ebean also provides the CallableSql class to invoke database

procedures and functions.

 Relationships in Ebean
A one-to-many example:

@Entity

@Table(name="book")

public class Book implements Serializable {

// unidirectional ...

// ... can explicitly specify the join column if needed

@OneToMany

@JoinColumn(name="auth_id")

List<Author> authors;

Consider the above case where you can find the author from the Book

entity and you cannot traverse back to the book from the Author entity.

Here the foreign key is in the book table and you can use the @JoinColumn

to specify the table column that needs to be used for the key. If this was

modeled as a bidirectional relationship, the code would be as follows:

@Entity

@Table(name="author")

public class Author implements Serializable {

@OneToMany(mappedBy="authorId")

List<Book> writtenBooks;

Notice that in this bidirectional model, the Book entity has the foreign

key and is the owner of the relationship. So you mark the inverse side: the

Author with the mappedBy attribute.

Chapter 7 aCCessing Databases

131

If you inspect the RDBMS, you can easily understand that there is

no many-to-many relationship in RDBMS tables. The many-to-many

is enforced as two one-to-many relationships in database tables via an

intersection table. If you anticipate that the intersection table might need

to support more attributes, it is better to model it as a separate entity

and, in your model, include two one-to-many relationships. If there is no

chance for any extra attributes in the intersection table, you can just use

the default @ManyToMany annotation. Here’s an example.

Consider the case of a user and role. A user can have many roles, and

a role may be attributed to many users. In RDBMS, this is realized using

an intersection table. Let’s name the intersection table user_role. Let’s

assume the simple case that the intersection table won’t contain any

other attributes and in this case the entities will have the ManyToMany

relationships as shown in the code:

@Entity

@Table(name="user")

public class User implements Serializable {

...

@ManyToMany(cascade=CascadeType.ALL)

List<Role> roles;

@Entity

@Table(name="role")

public class Role {

...

@ManyToMany(cascade=CascadeType.ALL)

List<User> users;

There so many more things to explain about Ebean as it is vast and

may require a whole new book to explain it fully. I recommend you to go

through the official Ebean online documentation to understand more. The

docs are available at https://ebean.io/docs/.

Chapter 7 aCCessing Databases

https://ebean.io/docs/

133© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_8

CHAPTER 8

Complete Example
This chapter consolidates what you have learned so far into a complete

example. The primary focus of this chapter is to present the code; we

have already discussed all the concepts and portions of the code in prior

chapters.

conf/application.conf

This is the main configuration file for the application.

https://www.playframework.com/documentation/latest/ConfigFile

Default database configuration

play.modules.enabled += "modules.FirstModule"

play.http.filters=config.FilterConfig

play.http.errorHandler = "config.CustomErrorHandler"

db {

 default.driver = org.h2.Driver

 default.url = "jdbc:h2:mem:play"

 # Provided for JPA access

 default.jndiName=DefaultDS

}

Point JPA at our database configuration

jpa.default=defaultPersistenceUnit

134

Number of database connections

See https://github.com/brettwooldridge/HikariCP/wiki/About-

Pool- Sizing

db connections = ((physical_core_count * 2) + effective_

spindle_count)

fixedConnectionPool = 9

Set Hikari to fixed size

play.db {

 prototype {

 hikaricp.minimumIdle = ${fixedConnectionPool}

 hikaricp.maximumPoolSize = ${fixedConnectionPool}

 }

}

Job queue sized to HikariCP connection pool

database.dispatcher {

 executor = "thread-pool-executor"

 throughput = 1

 thread-pool-executor {

 fixed-pool-size = ${fixedConnectionPool}

 }

}

Here you configure a connection pool and a fixed thread pool for the

database connections. This is very important because you are running the

database invocations in a separate context with its own thread pool. This

will make sure that you don’t block default execution context threads.

Then you configure the h2 in-memory database as your storage and

registered it with JNDI name of DefaultDS.

conf/routes

Routes

Chapter 8 Complete example

135

This file defines all application routes (Higher priority

routes first)

~~~~

An example controller showing a sample home page

GET /bookshop controllers.Application.index

GET /bookshop/book/:id/ controllers.Application.getBook(id:String)

GET /bookshop/book/search/ controllers.Application.search

ByTitle(keyword:String)

GET /bookshop/book/echo controllers.Application.

echoService

GET /bookshop/book/:id/page/$page<[0-9]+>/ controllers.

Application.fetchBookpage(id:String, page:Integer)

GET /bookshop/example/largeresponse controllers.Application.

processLargeResponse()

GET /bookshop/authors/ controllers.Application.authors

(limit: Integer = 10)

GET /bookshop/showcomment/ controllers.Application.showComment

(userid ?= null)

GET /bookshop/contact controllers.Application.contact()

GET /bookshop/book/top controllers.Application.topThreeBooks()

POST /bookshop/book/save/comment/ controllers.Application.

saveComment(request:Request)

POST /greeting controllers.Application.acknowledgeGreeting

(request:Request)

POST /greeting/xml controllers.Application.acknowledgeGreeting

XML(request:Request)

POST /greeting/xml/jaxb controllers.Application.acknowledgeGr

eetingXMLJaxbVersion(request:Request)

Map static resources from the /public folder to the /assets URL path

GET /assets/*file controllers.Assets.versioned

(path="/public", file: Asset)

Chapter 8 Complete example

136

Application.java

package controllers;

import actors.ActorModel;

import actors.PingActor;

import akka.actor.ActorRef;

import akka.actor.ActorSystem;

import akka.stream.Materializer;

import akka.stream.javadsl.Sink;

import akka.stream.javadsl.Source;

import akka.util.ByteString;

import config.EchoAction;

import dao.ReviewRepository;

import models.GiftVO;

import models.Message;

import models.Review;

import modules.Factorial;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.w3c.dom.Document;

import play.cache.AsyncCacheApi;

import play.cache.Cached;

import play.data.DynamicForm;

import play.data.FormFactory;

import play.libs.Akka;

import play.libs.XPath;

import play.libs.ws.WSClient;

import play.libs.ws.WSResponse;

import play.mvc.*;

import scala.compat.java8.FutureConverters;

Chapter 8 Complete example

137

import javax.inject.Inject;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.Marshaller;

import javax.xml.bind.Unmarshaller;

import javax.xml.transform.OutputKeys;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import java.io.StringReader;

import java.io.StringWriter;

import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

import com.fasterxml.jackson.databind.JsonNode;

import static akka.pattern.Patterns.ask;

/**
 * Main controller

 */

public class Application extends Controller {

 final ActorRef pingActor;

 private static final Logger log = LoggerFactory.getLogger

(Application.class);

 private AsyncCacheApi cache;

 private ReviewRepository reviewRepo;

 @Inject

 public Application(ActorSystem system, AsyncCacheApi cache,

ReviewRepository reviewRepo) {

Chapter 8 Complete example

138

 pingActor = system.actorOf(PingActor.getProps());

 this.cache = cache;

 this.reviewRepo = reviewRepo;

 }

 @Inject

 Materializer materializer;

 /**
 * Simple ping method, demonstrating the use of Futures and

asynchronous processing

 *
 * @param msg

 * @return

 */

 public CompletionStage<Result> ping(String msg) {

 return FutureConverters.toJava(

 ask(pingActor, new ActorModel.Ping(msg), 1000)

).thenApply(response -> ok((String) response));

 }

 /**
 * Method demonstrating processing large http responses in chunks

 *
 * @return

 */

 public CompletionStage<Result> processLargeResponse() {

 CompletionStage<WSResponse> futureResponse =

 ws.url("http://www.mocky.io/

v2/5e08df833000005b0081a159")

Chapter 8 Complete example

139

 .setMethod("GET").stream();

 CompletionStage<Long> bytesReturned =

 futureResponse.thenCompose(

 res -> {

 Source<ByteString, ?> responseBody

= res.getBodyAsSource();

 // Count the number of bytes returned

 Sink<ByteString,

CompletionStage<Long>> bytesSum =

 Sink.fold(0L, (total, bytes)

-> total + bytes.length());

 return responseBody.runWith

(bytesSum, materializer);

 });

 return bytesReturned.thenApply(response -> ok((String)

response.toString()));

 }

 /**
 * Process the home page

 *
 * @return

 */

 public Result index() {

 System.out.println(fact.fact(10));

 return ok(views.html.bookshop.render());

 }

 /**
 * Get the details of a book by id

Chapter 8 Complete example

140

 *
 * @param id

 * @return

 */

 public Result getBook(String id) {

 return ok(views.html.bookshop.render());

 }

 @Inject

 FormFactory formFactory;

 @Inject

 Factorial fact;

 /**
 * Accept a form post and save the comment

 * Shows the usage of dynamic forms to retrieve data from

html form posts

 *
 * @return

 */

 public Result saveComment(Http.Request request) {

 DynamicForm requestData = formFactory.form().

bindFromRequest(request);

 String comment = requestData.get("comment");

 Review review = new Review();

 // We hardcoded the ids, but you can take it as

 //exercise to make book id and user id as request

parameters.

 // Also moodify repository to save those two against comment

 review.setBookId("123456789");

 review.setUserId("U1");

Chapter 8 Complete example

141

 review.setComment(comment);

 review.save(reviewRepo);

 return ok(views.html.savecomment.render());

 }

 /**
 * Search a book by title.

 * Demonstrating the various route configuration semantics

 *
 * @param title

 * @return

 */

 public Result searchByTitle(String title) {

 //Query db and get the book details or get from cache

 return ok(views.html.searchresults.render());

 }

 /**
 * Demonstrates ActionComposition

 */

 @Inject

 WSClient ws;

 @With(EchoAction.class)

 public CompletionStage<Result> echoService() {

 return

 ws.url("http://www.mocky.io/

v2/5e0edec33400003c0f2d7d27")

 .get()

 . thenApply(response -> ok("Feed

Response: " + response.getBody()));

 }

Chapter 8 Complete example

142

 /**
 * Example for asynchronous programming

 *
 * @param uid

 * @param age

 * @param relation

 * @return

 */

 public CompletionStage<Result> recomendGifts(final

String uid, final String age, final String relation) {

 return CompletableFuture.supplyAsync(this::getGifts)

 . thenApply((List<GiftVO> gift) -> ok("Got " +

gift));

 }

 private List<GiftVO> getGifts() {

 List<GiftVO> gifts = new ArrayList<GiftVO>();

 gifts.add(new GiftVO());

 return gifts;

 }

 /**
 * Example for various route configuration semantics

 *
 * @param bookid

 * @param pageNumber

 * @return

 */

 public Result fetchBookpage(String bookid, int pageNumber)

{

 //Query db and get the book details or get from cache

Chapter 8 Complete example

143

 return ok(views.html.searchresults.render());

 }

 /**
 * Example for handling Json

 *
 * @param request

 * @return

 */

 @BodyParser.Of(BodyParser.Json.class)

 public Result acknowledgeGreeting(Http.Request request) {

 JsonNode json = request.body().asJson();

 String greeting = json.findPath("greeting").textValue();

 if (greeting == null) {

 return badRequest("Missing parameter [greeting]");

 } else {

 return ok("Your greeting " + greeting + " is accepted");

 }

 }

 @BodyParser.Of(BodyParser.Xml.class)

 public Result acknowledgeGreetingXML(Http.Request request) {

 Document dom = request.body().asXml();

 if (dom == null) {

 return badRequest("Requires XML Input");

 } else {

 String greeting = XPath.selectText("//greeting", dom);

 if (greeting == null) {

 return badRequest("Missing parameter [greeting]");

 } else {

Chapter 8 Complete example

144

 return ok("Your greeting " + greeting + " is

accepted");

 }

 }

 }

 /**
 * Example for handling XML

 *
 * @param request

 * @return

 * @throws Exception

 */

 @BodyParser.Of(BodyParser.Xml.class)

 public Result acknowledgeGreetingXMLJaxbVersion(Http.Request

request) throws Exception {

 Document doc = request.body().asXml();

 if (doc == null) {

 return badRequest("Requires XML Input");

 } else {

 TransformerFactory tf = TransformerFactory.newInstance();

 Transformer transformer = tf.newTransformer();

 transformer.setOutputProperty(OutputKeys.OMIT_XML_

DECLARATION, "yes");

 StringWriter writer = new StringWriter();

 transformer.transform(new DOMSource(doc), new

StreamResult(writer));

 String output = writer.getBuffer().toString();

 System.out.println("XML " + output);

 JAXBContext context = JAXBContext.newInstance

(Message.class);

Chapter 8 Complete example

145

 Unmarshaller unMarshaller = context.

createUnmarshaller();

 //JAXB Auto conversion- XML to Model

 Message msg = (Message) unMarshaller.unmarshal(new

StringReader(output));

 if (msg == null) {

 return badRequest("Requires XML Input");

 } else {

 String greeting = msg.getGreeting();

 if (greeting == null) {

 return badRequest("Missing parameter

[greeting]");

 } else {

 return ok("Your greeting " + greeting + "

is accepted");

 }

 }

 }

 }

 public Result authors(Integer count) {

 return ok("Top selling authors");

 }

 /**
 * Example for Caching Http Response

 *
 * @return

 */

 @Cached(key = "contactus")

 public Result contact() {

 log.info("contact us method: processing");

Chapter 8 Complete example

146

 return ok("Apress Media, LLC\n" +

 "\n" +

 "One New York Plaza, Suite 4600\n" +

 "\n" +

 "New York, NY 10004-1562");

 }

 public CompletionStage<Result> topThreeBooks() {

 return cache.getOrElseUpdate("topthree",

this::getTopBooks)

 . thenApply((List<String> books) -> ok(books.

toString()));

 }

 private CompletionStage<List<String>> getTopBooks() {

 List<String> topThreeBooks = new ArrayList<String>();

 topThreeBooks.add("Book 1");

 topThreeBooks.add("Book 2");

 topThreeBooks.add("Book 3");

 return CompletableFuture.completedFuture(topThreeBooks);

 }

 public Result showComment(String userId) {

 return ok("Recent Comments by user");

 }

}

models/Book.java

package models;

import io.ebean.Model;

import javax.persistence.*;

Chapter 8 Complete example

147

import io.ebean.*;

@Entity

@Table(name="book")

public class Book extends Model {

 @Id

 private String id;

 private String author;

 private String title;

 private String picture;

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

 public String getPicture() {

 return picture;

 }

 public void setPicture(String picture) {

 this.picture = picture;

 }

 public String getId() {

 return id;

 }

 public void setId(String id) {

 this.id = id;

 }

Chapter 8 Complete example

148

 public String getAuthor() {

 return author;

 }

 public void setAuthor(String author) {

 this.author = author;

 }

}

class Test {

 void test() {

 Book book = new Book();

 book.save();

 Book b = Ebean.find(Book.class).where().idEq("").findOne();

 Ebean.find(Book.class).where().like("title","java%").

orderBy("tile desc").findList();

 }

}

models/Comment.java

package models;

import javax.persistence.Entity;

import javax.persistence.Id;

import javax.persistence.Table;

@Entity

@Table(name="comment")

public class Comment {

 @Id

 private Long id;

 private String comment;

 public String getComment() {

Chapter 8 Complete example

149

 return comment;

 }

 public void setComment(String comment) {

 this.comment = comment;

 }

}

models/Customer.java

package models;

import controllers.Order;

import java.util.List;

public class Customer {

 private long id;

 private String name;

 private boolean loyaltyMember;

 private boolean isActive;

 private List<Order> orders;

 public List<Order> getOrders() {

 return null;

 }

 public boolean deactivate() {

 //Logic and validation to deactivate a customer

 return false;

 }

}

models/GiftVO.java

package models;

Chapter 8 Complete example

150

public class GiftVO {

 private String giftName;

 private String giftImageUrl;

 private float price;

 private String category;

 public String getGiftName() {

 return giftName;

 }

 public void setGiftName(String giftName) {

 this.giftName = giftName;

 }

 public String getGiftImageUrl() {

 return giftImageUrl;

 }

 public void setGiftImageUrl(String giftImageUrl) {

 this.giftImageUrl = giftImageUrl;

 }

 public float getPrice() {

 return price;

 }

 public void setPrice(float price) {

 this.price = price;

 }

 public String getCategory() {

 return category;

 }

Chapter 8 Complete example

151

 public void setCategory(String category) {

 this.category = category;

 }

}

models/Message.java

package models;

import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "message")

@XmlAccessorType(XmlAccessType.PROPERTY)

public class Message {

 private String greeting;

 public String getGreeting() {

 return greeting;

 }

 @XmlElement

 public void setGreeting(String greeting) {

 this.greeting = greeting;

 }

}

models/Review.java

package models;

import dao.ReviewRepository;

import javax.persistence.*;

Chapter 8 Complete example

152

public class Review {

 @Id

 @GeneratedValue(strategy = GenerationType.AUTO)

 public Long id;

 public String comment;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 public String getComment() {

 return comment;

 }

 public void setComment(String comment) {

 this.comment = comment;

 }

 public String getUserId() {

 return userId;

 }

 public void setUserId(String userId) {

 this.userId = userId;

 }

 public String getBookId() {

 return bookId;

 }

Chapter 8 Complete example

153

 public void setBookId(String bookId) {

 this.bookId = bookId;

 }

 public String userId;

 public String bookId;

 public void save(ReviewRepository reviewRepo) {

 System.out.println("review repo "+reviewRepo);

 reviewRepo.saveReview(this);

 }

}

dao/DatabaseExecutionContext.java

package dao;

import akka.actor.ActorSystem;

import play.db.Database;

import play.libs.concurrent.CustomExecutionContext;

import javax.inject.Inject;

import javax.inject.Singleton;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

public class DatabaseExecutionContext extends

CustomExecutionContext {

 @javax.inject.Inject

 public DatabaseExecutionContext(ActorSystem actorSystem) {

 // uses a custom thread pool defined in application.conf

 super(actorSystem, "database.dispatcher");

 }

Chapter 8 Complete example

154

 @Singleton

 public static class JdbcExample {

 private Database db;

 private DatabaseExecutionContext executionContext;

 @Inject

 public JdbcExample(Database db,

DatabaseExecutionContext context) {

 this.db = db;

 this.executionContext = executionContext;

 }

 public CompletionStage<Integer> updateSomething() {

 return CompletableFuture.supplyAsync(

 () -> {

 return db.withConnection(

 connection -> {

 //perform the operations

with the connection

 return 1;

 });

 },

 executionContext);

 }

 }

}

dao/JPARepository.java

package dao;

import models.Review;

import play.db.jpa.JPAApi;

Chapter 8 Complete example

155

import javax.inject.Inject;

import javax.inject.Singleton;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

import static java.util.concurrent.CompletableFuture.supplyAsync;

@Singleton

public class JPAReviewRepository implements ReviewRepository{

 private JPAApi jpaApi;

 private DatabaseExecutionContext executionContext;

 @Inject

 public JPAReviewRepository(JPAApi api,

DatabaseExecutionContext executionContext) {

 this.jpaApi = api;

 this.executionContext = executionContext;

 }

 @Override

 public CompletionStage<String> saveReview(Review review) {

 return CompletableFuture.supplyAsync(

 () -> {

 // lambda is an instance of

Function<EntityManager, Long>

 return jpaApi.withTransaction(

 entityManager -> {

 entityManager.persist(review);

 return "saved";

 });

 },

 executionContext);

 }

}

Chapter 8 Complete example

156

models/ReviewRepository.java

package dao;

import com.google.inject.ImplementedBy;

import models.Review;

import java.util.concurrent.CompletionStage;

@ImplementedBy(JPAReviewRepository.class)

public interface ReviewRepository {

 CompletionStage<String> saveReview(Review review);

}

The views are same as those listed in previous chapters; they are not

listed again in this chapter to avoid repetition.

Chapter 8 Complete example

157© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_9

CHAPTER 9

Using Play Modules
A Play application can be assembled from several application modules.

This helps in reusing the application components across several

applications. The modules also help in splitting a large application into

several smaller applications.

A module is just another Play application. Modules can introduce

feature-specific abilities such as adding a different persistence mechanism,

integrating other view techniques, or integrating a new caching framework.

The modules framework got a revamp since Play 2.5.x. There is not

much difference between a module and a library in Play. The only real

difference is that modules use the Play API directly. Play modules use

dependency injection frameworks to work. If you want to write a custom

Play module, it can be done using any dependency injection framework.

Note that Play uses guice as its default dependency injection framework.

But the module shouldn’t be tied to any particular dependency

injection framework and should work in a dependency framework-

agnostic way. For this, Play provides a lightweight Bindings API to abstract

the module from underlying dependency injection framework.

The dependencies are declared in components using the @Inject

annotation. For example, if a controller class is dependent on a WSClient

module, it should declare it using the @Inject WSClient syntax. The

wiring of the dependent class is done automatically by Play using the

underlying dependency injection framework.

158

 Creating a Module
Let’s head straight to the creation of a simple module to understand

the process. As mentioned, a module is like any other Play application.

An important factor to remember is that a module doesn’t have its

own configuration; it uses the main application’s configuration. This

means module-specific configuration information should be set in the

application's conf/application.conf file.

The module you are going to develop is simple. It calculates the

factorial of a number less than 25. So follow these steps:

 1) Create a package and name it modules in the app

directory.

 2) Define the contract of the module as an interface:

package modules;

public interface Factorial {

int fact(int num);

}

 3) Provide the implementation for the Factorial

interface:

package modules;

import play.inject.ApplicationLifecycle;

import javax.inject.Inject;

public class FactorialImpl implements Factorial{

@Inject

public FactorialImpl(ApplicationLifecycle lifecycle) {

 //implement plugin lifecycle methods

}

Chapter 9 Using play ModUles

159

public int fact(int number) {

 return calculateFactorial(number);

}

private int calculateFactorial(int num) {

 if(num > 25) {

 throw new RuntimeException("Our of range");

 }

 if(num == 1)

 return num;

 return num ∗ calculateFactorial(num-1);
 }

}

 4) Create a module and name it FirstModule:

package modules;

import play.api.Configuration;

import play.api.Environment;

import play.api.inject.Binding;

import play.api.inject.Module;

import javax.inject.Inject;

import play.inject.ApplicationLifecycle;

import scala.collection.Seq;

public class FirstModule extends Module {

public Seq<Binding<?>> bindings(Environment

environment, Configuration configuration) {

 return seq(

 bind(Factorial.class).to(FactorialImpl.class)

);

 }

}

Chapter 9 Using play ModUles

160

Here you’ve declared a module and added your Factorial

implementation to the module. Now, for Play to detect it as a module, a

few changes are required in the application.conf file:

play.modules.enabled += "modules.FirstModule"

Save the file. That’s it! You have created a custom Play module. The

Factorial implementation defined in this module can be injected to any

class and can be used. For example, if it is needed in a controller class, just

declare it as

@Inject Factorial fact;

Play will do the rest and make it available during runtime. If you

want to make this module available to other Play applications, it needs

to be published to repositories. In such a case, only include the module

classes and related dependent classes in the Play application. All unused

components like views, public assets, etc. can be removed.

Start the command prompt and go to the directory where you created

the factorial Play project. For example, if the project exists in C:\Users\

username\playexamples\bookshop\, type sbt from the command prompt.

This will load the Play console. You need to publish the module so that it is

accessible by other applications. For the sake of simplicity, you will publish

this module to a local repository in your computer:

bookshop] $ publishLocal

Play will compile the files and publish to the local Play repository.

From the Play console, do take a note of the location where Play publishes

the module. In my machine, it is published under C:\Users\premk\.ivy2\

local\com.stackrules.example\bookshop_2.13\1.0-SNAPSHOT\docs\

bookshop_2.13-javadoc.jar. See Figure 9-1.

Chapter 9 Using play ModUles

161

The module is now ready to be consumed by other applications.

 Third-Party Modules
Often you need to use other software tools for various reasons, and in Play

they are integrated into the application using modules. There are many

third-party modules available for most enterprise requirements. Play

modules make it possible to extend Play functionality with a plug-and-play

architecture. Here are some popular ones:

• Redis: Integrates Redis to provide a cache

implementation

• Deadbolt: Role-based authorization

• PDF: Adds support for PDF output based on HTML

templates

There are many more such modules available and you can find more

information about them by visiting www.playframework.org.

Figure 9-1. Published module

Chapter 9 Using play ModUles

http://www.playframework.org

163© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_10

CHAPTER 10

Application Settings
and Error Handling
Before Play 2.6, the practice was to use a global object to define

application-level configurations and processing logic like filtering, error

handling, etc. This approach was deprecated in Play 2.5.x and dropped

since Play 2.6.x. The recommended approach since Play 2.6.x is to use

dependency injection. Hence I won’t go into the details of the approach

followed prior to 2.6.x and instead will direct your attention to the

dependency injection approach. I will give you an example at the end of

this section so that you are aware how it was done before, which will be

helpful if you’re migrating an older Play framework project to the newer

version.

The main class of a Play application is play.Application. This class

is created by Play Framework during a Play application start up. You need

not do anything special to make it happen; it’s handled by the framework.

You can hook various application-level behaviors by binding handlers

to specific instances of classes using dependency injection. This is the

recommended approach to configure application-level bindings in Play.

Let’s look at examples to understand this in more depth.

164

 Filters
A filter is intended for applying cross-cutting concerns of the application

to all classes, such as logging, inspecting security headers, compressing

the response, analytics etc. These are some of the places where a filter is

useful. Play also has something known as action composition and it is

intended to be used in situations where the concern is specific to a route.

For example, you may decide to secure certain routes and allow public

access to all other routes. In such a case, for specific routes you may need

to check authentication/authorization semantics. For such cases, use

action composition. You will look more into action composition in later

sections of this chapter. Let’s focus on filters first.

Logging Filter:

package config;

import akka.event.LoggingFilter;

import akka.stream.Materializer;

import java.util.concurrent.CompletionStage;

import java.util.function.Function;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import play.mvc.Filter;

import play.mvc.Http;

import play.mvc.Result;

import javax.inject.Inject;

/**
 * A simple filter implementation that logs how long it took to

process a request

 */

Chapter 10 appliCation SettingS and error handling

165

public class ApplicationFilter extends Filter {

 @Inject

 public ApplicationFilter(Materializer mat) {

 super(mat);

 }

 private static final Logger log = LoggerFactory.getLogger(L

oggingFilter.class);

 @Override

 public CompletionStage<Result> apply(Function<Http.

RequestHeader,

 CompletionStage<Result>> next,

Http.RequestHeader requestHeader) {

 long startTime = System.currentTimeMillis();

 return next

 .apply(requestHeader)

 .thenApply(

 result -> {

 long endTime =

System.currentTimeMillis();

 long requestTime = endTime -

startTime;

 log.info(

 " {} {} took {}ms to complete

and produced the status {}",

 requestHeader.method(),

 requestHeader.uri(),

 requestTime,

 result.status());

Chapter 10 appliCation SettingS and error handling

166

 return result;

 });

 }

}

The ApplicationFilter class extends from the play.mvc.Filter and

overrides the apply method. The apply method takes two parameters:

 1) A function that takes Http.RequestHeader as a

parameter and returns CompletionStage<Result>

as the output

 2) Http.RequestHeader: The request header of the

incoming request

Let’s understand the first argument and look at how it is used in

the code. The next parameter you use in the code represents the next

action in the filter chain. Invoking it will result in allowing the request

to flow forward and eventually reach the intended class, the controller

in most cases. In your logging case, before you pass control, you log

the request time and then allow the request to flow forward. Once

the request completes, you use the thenApply function to log the

response time and return the result back to the caller. Please note that

CompletionStage<Result> is the generic Promise API provided by Java

8 for handling asynchronous responses. Since Play uses asynchronous

programming, the responses from Play APIs use it. This is the reason why

you need to do processing using the thenApply method. More details of

the Promise class and asynchronous programming are provided in the

chapter on asynchronous programming.

Chapter 10 appliCation SettingS and error handling

167

Now that you have created a filter, let’s see how you can tell Play to use

it. Create a class named FilterConfig as follows and save it inside the

config package:

FilterConfig.java

package config;

import play.http.DefaultHttpFilters;

import javax.inject.Inject;

public class FilterConfig extends DefaultHttpFilters {

 @Inject

 public FilterConfig(ApplicationFilter logging) {

 super(logging);

 }

}

You have defined this class in a package, config. Because of this, Play

needs to be told which class it should use to configure the filters. This is

done by adding the following entry to the application.conf file:

play.http.filters=config.FilterConfig

If you saved the FilterConfig file in the root folder, then Play will

automatically use it and there is no need add the entry in application.conf,

as above. But it is better to put the classes into corresponding packages for

ease of organization and modularity, and that’s the reason for saving in the

config package instead of the root folder. Observe that the custom filter was

passed as an argument to the FilterConfig class using constructor-level

dependency injection. If you have written more filters, you can pass them

in the same way as constructor arguments to the FilterConfig class. This

works because the FilterConfig class extends from DefaultHttpFilters

Chapter 10 appliCation SettingS and error handling

168

and it has a constructor that takes N, the number of Filter instances via

vargs.

That is it. You have created a response logging filter. Let’s test it. Open

http://localhost:9000/bookshop and observe the console output and

logs (projectroot\logs\application.log). In both places you will see an

entry as follows:

[info] a.e.LoggingFilter - GET /bookshop took 7ms to complete

and produced the status 200

If you don’t see any output, check the logger settings and make sure it

is set to the INFO log level. For this, open the conf/logback.xml file and

ensure you have the following settings:

<logger name="play" level="INFO" />

<logger name="application" level="DEBUG" />

<root level="INFO">

 <appender-ref ref="ASYNCFILE" />

 <appender-ref ref="ASYNCSTDOUT" />

</root>

 Action Composition
Action composition is useful when you want to decorate a specific class or

certain group of classes with additional logic. Let’s learn by an example:

EchoAction.java

package config;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import play.mvc.Http;

Chapter 10 appliCation SettingS and error handling

169

import play.mvc.Result;

import java.util.concurrent.CompletionStage;

/**
 * An example of Action composition

 */

public class EchoAction extends play.mvc.Action.Simple {

 private static final Logger log = LoggerFactory.getLogger(E

choAction.class);

 public CompletionStage<Result> call(Http.Request req) {

 log.info("Request Method {} ", req.method());

 return delegate.call(req);

 }

}

This is a very simple Action that merely echoes the HTTP request

method to the logs. This is not a filter, so it won’t be applied to methods by

default. The method that needs to use this action has to explicitly ask for it

via annotations. Let’s use the EchoAction in one of the controller methods.

Open the Application.java file, go to echoService method, and add the

annotation @With(EchoAction.class):

@Inject WSClient ws;

@With(EchoAction.class)

public CompletionStage<Result> echoService() {

 return

 ws.url("http://www.mocky.io/

v2/5e0edec33400003c0f2d7d27")

 .get()

 .thenApply(response -> ok("Feed Response: " +

response.getBody()));

}

Chapter 10 appliCation SettingS and error handling

170

Open http://localhost:9000/bookshop/book/echo and observe the

console and logs. You will see the following log entry:

 [info] c.EchoAction - Request Method GET

 Error Handlers
As you know, Play is an HTTP application framework and such an

application can experience two types of errors:

 1. Client errors

 2. Server errors

 Client Errors
Client errors are due to mistakes made by a caller or the connecting client

of the application, such as if a client didn’t send the Content-Type header,

didn’t use the proper HTTP method, invalid URLs, etc. In all such cases,

Play automatically detects the error and redirects to error pages.

 Server Errors
Server errors are due to the something wrong the server, such as lack of

resources, a crash, application class-generated errors like a null pointer,

code throwing other forms of exceptions, etc. Play intelligently handles

such server errors by catching them and generating an error page.

In certain cases, the application may decide not to use the default error

handling mechanism as is and instead would like to extend it and provide

custom error handling logic. Let’s look at how you can do that.

CustomErrorHandler.java

Chapter 10 appliCation SettingS and error handling

171

package config;

import play.http.HttpErrorHandler;

import play.mvc.*;

import play.mvc.Http.*;

import java.util.concurrent.CompletableFuture;

import java.util.concurrent.CompletionStage;

import javax.inject.Singleton;

/**
 * A simple error handler

 */

@Singleton

public class CustomErrorHandler implements HttpErrorHandler {

 public CompletionStage<Result> onClientError(

 RequestHeader request, int statusCode, String

message) {

 return CompletableFuture.completedFuture(

 Results.status(statusCode, "Invalid Request " +

message));

 }

 public CompletionStage<Result> onServerError(RequestHeader

request, Throwable exception) {

 return CompletableFuture.completedFuture(

 Results.internalServerError("Cannot process the

request due to " + exception.getMessage()));

 }

}

You have now configured a custom error handler to use in cases of

client and server errors. Let’s test it.

Chapter 10 appliCation SettingS and error handling

172

Open http://localhost:9000/bookshop/book/echos. This URL is an

invalid URL and is a client-side error. This request will be intercepted by

the onClientError method defined in your CustomErrorHandler and you

will see the response in browser as

Invalid Request

 How Global Settings Were Done
Before Play 2.6.x
Global objects allow for the handling of global settings of the application.

A global object is the place where you write your intercepting logic. Tasks

like filtering certain request parameters, logging requests, etc. can be easily

done here. You can also configure global configurations for not found

errors, error pages, etc.

I will not go much deeper into GlobalSettings and Global because

Play deprecated them since the 2.5.0 version and dependency injection is

now the recommended way. The example below is just to show how it was

done in earlier Play versions. Please note that the below code will work

only in Play versions 2.5.x and below; it won’t work with Play 2.8.x, which is

the version this book is based on. The code is just for reference in case you

want to migrate from an earlier Play version to the latest and wish to know

how it was done earlier.

To create a Global object, just write a class extending from play.

GlobalSettings. The Global object is typically saved in the root package

of your application but you can save it in any package and then configure it

in the application.conf file by using the application.global property:

import play.Application;

import play.GlobalSettings;

import play.libs.Akka;

import play.mvc.Http.RequestHeader;

Chapter 10 appliCation SettingS and error handling

173

import play.mvc.Result;

import play.mvc.Results;

import scala.concurrent.duration.Duration;

import akka.actor.ActorRef;

import akka.actor.Props;

import controllers.Preloader;

public class Global extends GlobalSettings {

public Result onError(RequestHeader request, Throwable t) {

 return Results.notFound(views.html.errorpagetemplate.render());

}

public Result onHandlerNotFound(RequestHeader request) {

 return Results.notFound(views.html.errorpagetemplate.render());

}

public Result onBadRequest(RequestHeader request, String error) {

 return Results.notFound(views.html.errorpagetemplate.render());

}

public void onStart(Application app) {

//initialize all

ActorRef preloader = Akka.system().actorOf(new

Props(Preloader.class));

Akka.system().scheduler().schedule(

 Duration.create(0, TimeUnit.MILLISECONDS), // Initial delay 0

milliseconds

 Duration.create(5, TimeUnit.MINUTES), // Frequency 30

minutes

 preloader,

 "preload",

 Akka.system().dispatcher()

);

}

Chapter 10 appliCation SettingS and error handling

174

public void onStop(Application app) {

Logger.info("Application shutdown");

}

}

To migrate to the latest Play version, you should write custom filters

and include the logic in those filters or error handlers. You learned both of

these things at the beginning of this chapter.

Chapter 10 appliCation SettingS and error handling

175© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_11

CHAPTER 11

Working with Cache
Caching is one of the most important aspects in ensuring the scalability

and responsiveness of the application. A good cache can take load

off your database and can serve the user pretty fast. A framework that

doesn’t provide a good abstraction to work with cache is no longer fit for

enterprise-class development. Play, with its in-built support for cache, is an

ideal framework for building highly scalable, responsive, enterprise- class

applications.

Play provides a global cache object and it works with the underlying

cache implementation. This abstraction enables you to change your

caching provider without any modification to your application code. By

default, Play comes with a Cache API implementation using Caffeine and

also provides implementation for EhCache 2.x. For in-process processing,

Play recommends using Caffeine.

 Configuring Caffeine
Caffeine is a high performance, near-optimal caching library and is based

on Java 8.

The following are Caffeine’s important features at a glance:

• Automatic loading of entries into the cache, optionally

asynchronously

• Size-based eviction when a maximum is exceeded

based on frequency and recency

176

• Time-based expiration of entries, measured since last

access or last write

• Asynchronously refresh when the first stale request for

an entry occurs

• Keys automatically wrapped in weak references

• Values automatically wrapped in weak or soft

references

• Notification of evicted (or otherwise removed) entries

• Writes propagated to an external resource

• Accumulation of cache access statistics

You can find more about Caffeine at https://github.com/ben-manes/

caffeine/.

 Adding Caffeine to a Project
Open the build.sbt file and add the dependency for Caffeine:

libraryDependencies ++= Seq(guice,javaJdbc,cacheApi,

 javaWs,javaJpa,caffeine,org.hibernate" % "hibernate-

 entitymanager" % "5.3.7.Final",com.h2database" % "h2" %

"1.4.200")

This is all that is required to use Caffeine as the cache implementation

for Play.

Chapter 11 Working With CaChe

https://github.com/ben-manes/caffeine/
https://github.com/ben-manes/caffeine/

177

 Configuring EhCache
EhCache has been in existence for a long time and is one of the most

widely used cache implementations in Java projects. It requires Java 8

or above. You can learn about the internal workings of EhCache at

www.ehcache.org/.

Configuring EhCache is as simple as adding an entry to the build.sbt

file, just like you did for Caffeine:

libraryDependencies ++= Seq(guice,javaJdbc,cacheApi,

 javaWs,javaJpa,ehcache,org.hibernate" % "hibernate-

 entitymanager" % "5.3.7.Final",com.h2database" % "h2" %

"1.4.200")

 Using the Cache API
The Cache API is pretty simple and easy to use:

• Putting data:

• Cache.set("key", object)

• Retrieving data:

• Cache.get("key")

• Removing data:

• Cache.remove("key")

You can also control how long data needs to be retained in the cache

(cache expiry) by using the set method with three arguments:

Cache.set("key",object, int timeinminutes)

Chapter 11 Working With CaChe

http://www.ehcache.org/

178

To use the Cache API in the controller, it needs to be injected. Modify

the Application.java file as follows to get a reference to the Cache API:

private AsyncCacheApi cache;

@Inject

public Application(ActorSystem system, AsyncCacheApi cache) {

 pingActor = system.actorOf(PingActor.getProps());

 this.cache = cache;

}

Now you can use the Cache API to cache data in any method of the

controller. For instance,

CompletionStage<Done> result = cache.set("framework",

"Playframework");

//Cahce for 10 minutes

CompletionStage<Done> result = cache.set("framework",

"Playframework", 60 ∗ 10);

Whenever you work with cache, remember that a cache can expire

or get lost anytime. It is not persistent data, hence you should always

check whether the data is in cache and, if not, populate it in cache and

then retrieve it. This way your program is safe even if the cache doesn't

work or expires sooner than expected. In Play, the underlying cache

implementation can automatically remove objects from cache if there is a

low memory scenario in the JVM. So code wisely and use cache effectively.

Play uses a callable method to load data into cache if it is not present.

This is accomplished by providing a callable method to the Cache API that

gets invoked to generate the cached data when data is absent in the cache.

Let’s modify the Application.java file to add such a method:

public CompletionStage<Result> topThreeBooks() {

 return cache.getOrElseUpdate("topthree",this::getTopBooks)

Chapter 11 Working With CaChe

179

 .thenApply((List<String> books) -> ok(books.

toString()));

}

private CompletionStage<List<String>> getTopBooks() {

 List<String> topThreeBooks = new ArrayList<String>();

 topThreeBooks.add("Book 1");

 topThreeBooks.add("Book 2");

 topThreeBooks.add("Book 3");

 return CompletableFuture.completedFuture(topThreeBooks);

}

The private method getTopBooks is the callable method and it is

invoked by the Cache API if the data is not present in the cache. This

method computes the top three books and returns the response. The

public method topThreeBooks uses the getOrElseUpdate method of

the Cache API to get the data from the cache and convert it to the HTTP

response.

Edit routes.conf

GET /bookshop/book/top controllers.Application.topThreeBooks()

Test the method using http://localhost:9000/bookshop/book/top

and you will see the response as

[Book 1, Book 2, Book 3]

Play also provides the ability to cache entire HTTP responses. This is

useful to cache content that doesn't change per request. Let’s create a new

route and cache its response. You’ll use the Contact Us data that is static

Chapter 11 Working With CaChe

180

(you show the same content to all users). Open the Application.java file

and add the contactus method:

@Cached(key="contactus")

public Result contact() {

 log.info("contact us method: processing");

 return ok("Apress Media, LLC\n" +

 "\n" +

 "One New York Plaza, Suite 4600\n" +

 "\n" +

 "New York, NY 10004-1562");

}

Add the route configuration in the routes.conf file as

GET /bookshop/contact controllers.Application.contact()

To test, open the URL http://localhost:9000/bookshop/contact to

observe the response. This response is cached and is coming from the in-

memory cache. To test this, check the logs in the application.log file or

console you will see the entry

[info] c.Application - contact us method: processing

Access the URL again and you won’t see the log entry because from the

second time onwards, the response is served from the cache, bypassing the

processing logic which was already computed and cached.

This example is very simple and was used just to explain the point.

Response caching is very useful if the data (the contact info, as above) is

retrieved from a database or a web service or some other way that involves

some amount of processing. In such cases, for the first time, the processing

will happen, but from the next time onwards you can avoid all processing

because the response will be served from the cache. This generates a faster

response to the user and also doesn’t waste the processing time of the servers.

Chapter 11 Working With CaChe

181

There are also many scenarios where it is not practical to cache the

entire HTTP response. For instance, you may have certain elements in a

page that change according to the user, based on his login. This scenario

can also be easily handled by caching only the part of the data. You should

design your content for this. Consider a home page with 75% static content

and 25% dynamic content. In this case, split the static and dynamic parts

into separate objects and cache the static object. But in such a scenario

you can only cache the object and not the generated static HTML. That is,

you cannot take part of the HTML response from the cache and mix it with

the dynamic HTML response. You have to cache at the object or data level

rather than the HTTP response level in such cases. For pure static content

that doesn't change with each request or user, use HTTP response caching,

as explained in the contact method above. You also learned object caching,

as explained in the topThreeBooks example above.

The default Caffeine implementation is good enough for most cases and

is highly scalable. But if you need to use a distributed caching framework

like memcached, Play provides hooks to plug in memcached with its Cache

API. For memcached, Play provides an implementation by default but

depends on third-party plugins. To use memcached with Play, use the plugin

available at https://github.com/mumoshu/play2- memcached. I won’t detail

a memcached implementation in this book because the third-party plugin

documentation is not yet updated with Play 2.7 and above.

Chapter 11 Working With CaChe

https://github.com/mumoshu/play2-memcached

183© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9_12

CHAPTER 12

Production Deployment
An easier way to deploy Play is to use the command play run. For this to

work, you need to copy the entire Play project to the production box and

then, from within the project, issue play run. This is not a good method

for production deployment because you don’t want to move your source

files and only the executable in the form of jar files needs to be pushed to

production.

To achieve this, you can use the play dist command in your build

box to generate the Play executable jar files. Once the dist command

succeeds, it will create a dist directory and the jar file will be placed there.

Just copy and unzip the jar to the production box and you will see a start

file. Make the start file executable by assigning it the required execute

permissions (Unix/Linux box) and run it.

You can edit the start file and pass it additional arguments like -Xms

-Xmx etc. to configure the JVM memory parameters. If you need to

change the default listen port of the Play application, you can pass

-Dhttp.port=port to the start script.

You can run Play upfront without the need for any other web servers.

But this is not the ideal production deployment scenario. You may have

a web server like Apache HTTP server or Nginx before your Play server to

handle various production configuration and access requirements. You

may want to configure Apache to handle SSL requests and offload the SSL

load from Play, or maybe you just don’t want to expose your Play server

to the Internet. The reasons are many. Let’s see how you can use Apache

httpd as a proxy for your Play application.

184

 Configuring Apache httpd for Play
It is assumed that you already have an Apache installation and it is up and

running. Make sure you have the following modules enabled: mod_ssl,

mod_headers, mod_proxy, mod_proxy_http, and mod_proxy_balancer.

Here is a simple Apache configuration for redirecting from external

port 80 to an internal IP and port 9000 of your Play application:

<VirtualHost ∗:80>
ProxyPreserveHost on

ProxyPass / http://192.168.1.4:9000/

ProxyPassReverse / http://192.168.1.4:9000/

</VirtualHost>

The above configuration will route the requests to port 80 to the Play

application running on port 9000.

 Load Balancing Using mod_proxy_balancer
Production deployments usually have multiple server instances for load

balancing and high availability requirements. You can start multiple Play

instances and use Apache to perform the load balancing. You need the

mod_proxy_balancer module for this:

<Proxy balancer://prodcluster>

BalancerMember http://192.168.1.4:9000

BalancerMember http://192.168.1.5:9000

</Proxy>

<VirtualHost ∗:80>
ProxyPreserveHost on

ProxyPass / balancer://prodcluster/

ProxyPassReverse / balancer://prodcluster/

</VirtualHost>

Chapter 12 produCtion deployment

185

 Configuring Play with Nginx
Nginx (pronounced engine-x) is a free, open-source, high-performance

HTTP server and reverse proxy, as well as an IMAP/POP3 proxy server.

Unlike traditional servers, Nginx doesn’t rely on threads to handle

requests.

Instead it uses a much more scalable event-driven (asynchronous)

architecture. This architecture uses small, but more importantly,

predictable amounts of memory under load.

Nginx should be already installed and up and running. Execute the

following on any Debian-derived distribution to install Nginx in your

server:

apt-get install nginx

The file you want to edit is the nginx.conf file. Edit the /etc/nginx/

nginx.conf file and configure it for usage with Play. Here is a sample

configuration for your reference:

http {

proxy_buffering off;

proxy_set_header X-Real-IP $remote_addr;

proxy_set_header X-Scheme $scheme;

proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

proxy_set_header Host $http_host;

upstream my-backend {

server 127.0.0.1:9000;

}

server {

server_name www.yourserverdomainname.com;

}

server {

keepalive_timeout 70;

Chapter 12 produCtion deployment

186

server_name www.yourserverdomainname.com;

location / {

proxy_pass http://my-backend;

}

}

}

Note replace yourserverdomainname with the domain name of
your website.

After saving the file, you need to restart Nginx:

sudo /etc/init.d/nginx restart

Chapter 12 produCtion deployment

187© Prem Kumar Karunakaran 2020
P. K. Karunakaran, Introducing Play Framework,
https://doi.org/10.1007/978-1-4842-5645-9

Index

A
Action composition, 164, 168–169
Application-level configurations,

53, 54
Asynchronous programming

Akka, 84–86
application, 83, 84
CompletionStage, 83
configuration, 84
getGifts method, 84
Play Framework

documentation, 85
synchronous processing, 82

B
Bidirectional

relationship, 112, 113, 130
Bookshop project

app folder, 9, 10
build.sbt files, 11
configuration (conf) file, 10
folder structure, 9
lib folder, 11
project folder, 11
project creation, 8
public folder, 11
unit and functional test, 12

C
Caching object, 175

API
Application.java file, 178
callable method, 178
contactus method, 180
getTopBooks, 179
HTTP and HTML

response, 181
use of, 177

Caffeine
build.sbt file, 176
features, 175, 176

EhCache, 177
Cascade-delete relationship, 112
Composite views, 66
Concurrency programming,

See Asynchronous
programming

callable interface, 80–82
classes, 75
java.util.concurrent

package, 77
runnable, 78, 79
differences (Runnable and

Callable), 77
threads, 76
executor framework, 76, 77

https://doi.org/10.1007/978-1-4842-5645-9

188

Controllers
bookshop application

Application.java, 56
routers, 56
saveComment

method, 58, 59
testing, 59, 60

JPA configuration, 61
model/helper classes, 60
scoped objects

application.conf file, 62
flash scope, 64
messages/error

messages, 64
session scope, 62, 63
storing and accessing

class, 61

D
Database connections

Application.java, 136–146
conf/application.conf, 133, 134
dao

DatabaseExecutionContext.
java, 153

JPARepository.java, 154
http responses, 138
models

Book.java, 146–148
Comment.java, 148, 149
Customer.java, 149
GiftVO.java, 149
Message.java, 151

Review.java, 151
ReviewRepository.java, 156

ping method, 138
routes, 134, 135
thread pool, 134

Database resources
ActorSystem code, 108
application.conf file, 105
build.sbt file, 105
CustomExectutionContext

method, 106, 107
Ebean (see Ebean model)
Java Persistence API (JPA),

113–118
MySQL database, 106
ORM (see Object relational

mapping (ORM))
Dependency injection, 85, 86, 157,

163, 167, 173

E
Ebean model

annotations, 123
EntityManager, 118
eq(), 125
findList(), 126
findUnique(), 126
interface, 126–128
io.ebean.Model, 120
like(), 125
LIMIT {max rows} [OFFSET

{first row}], 126
optimization, 119

INDEX

189

orderBy(), 125
persistence context, 118
plugin dependency, 120
query, 120–124
RawSql, 128–130
relationship, 130, 131
save method, 124
where() clause, 125

Eclipse, 12–14
EhCache, 175, 177
Error handlers

application.global property, 172
client errors, 170
global objects, 172–174
server, 170–172
types of, 170

ExecutorService, 76–79
Extensible Markup Language

(XML)
handling JSON, 98
JAXB, 100–104
Message.java file, 100
parsing, 99, 100
text/plain response, 99

F, G
Filters

action composition, 164,
168–170

application.conf file, 167
ApplicationFilter class, 166

conf/logback.xml file, 168
echoService method, 169
implementation, 164, 165
package configuration, 167
parameters, 166

H
Hello World application

configuration, 19–22
console, 18
controller

app/controllers folder, 22
editing process, 24–26
Hello page, 25
hello.scala.html file, 26, 27
HomeController.java file, 22,

23
default application, 17
main.scala.html, 21
routes file, 19
Twirl template, 19
view folder, 24
welcome page, 18

HTTP routing fundamentals
configuration, 48–50
conf/routes file, 49
dynamic part (URL), 51–53
parameters, 53
passing fixed values, 52
protocols, 49
static definition, 50

INDEX

190

I
Integrated development

environment (IDE), 12–17,
28, 39, 43

Intellij
import project, 15
Scala plugin, 15
steps, 16

J, K, L
Java Persistence API (JPA)

application.conf file, 113
build.sbt, 113
entity manager, 114
implementation, 113
JDBC operations, 115
JPAReviewRepository.java, 117,

118
review operations, 116

JavaScript Object Notation (JSON)
acknowledgeGreeting method, 97
request object, 94–96
response, 97, 98
scenarios, 94
testing, 96, 98

M, N
Model-view-controller (MVC)

architecture, 46
controller, 48
deactivate method, 47
design pattern, 45, 46

model, 46, 47
view, 48

Modules
application.conf file, 160
creation, 158
dependencies, 157
Factorial interface, 158
FirstModule method, 159
interface, 158
publishes, 160, 161
third-party, 161

O
Object relational mapping (ORM)

advantages, 110
approach, 109
bidirectional

relationship, 112, 113
concepts, 109, 110
entities, 111
many to many, 111
many to one, 111
one to many, 111
unidirectional relationship,

111, 112

P, Q, R
Play framework

bookshop (see Bookshop
project)

conscript installation, 2
Giter8, 3

INDEX

191

Hello World (see Hello World
application)

IDE (see Integrated development
environment (IDE))

installation, 1
Java project, 5, 6
JDK version 1.8, 2
play setup, 4
sbt (Scala build tool)

Java project structure, 7
project creation, 6, 7
Scala and Java

installation, 7
website details, 2

Scala approach, 4, 5
testing

hello.scala.html view, 28, 29
HomeControllerTest.java,

29–31
testOnly, 31
views and controller

classes, 27
web development (Java), 1

Production deployment
Apache installation, 184
jar files, 183
load balancing, 184
mod_proxy_balancer

module, 184
Nginx, 185, 186

S
saveComment method

curl command, 60
DynamicForm class, 58, 59
testing, 59, 60

Scala build tool/simple build tool
(sbt), 2

benefits, 34
build.sbt file, 36, 42, 43
built tools, 33
commands, 37, 43
core principles, 33
definition, 39–42
folder structures and files, 38
helloworldsbt project, 36–39
Maven central repository, 41
plugin.sbt, 43
project structure, 35, 36
resolvers, 42
root folder, 38

T
Template engine, 65

comments, 69
content design, 68
dynamic contents, 74
getTitle and getPicture

method, 72
HTML code, 68

INDEX

192

if block, 73
import statement, 71
list iteration, 72
map iteration, 73, 74
parameters, 70
Scala template language, 66
Twirl, 69

Third-party modules, 161
Twirl, 19, 20, 65, 69

U
Unidirectional relationship, 111, 112

V
Views, See Composite views

W, X, Y, Z
Web services, 87

Application.java, 88–92
back-end service, 88
CompletableFuture, 88
getBodyAsSource, 91
processLargeResponse, 92–95
reponses, 91
xml method, 89

Template engine (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Chapter 1: Getting Started with Play 2
	Getting Ready
	Installation
	Prerequisites
	Installing sbt
	Installing conscript
	Installing Giter8
	Setting Up Play
	Using Play Example Projects
	Using sbt
	Installing a Java Project Using sbt
	Installing a Scala Project Using sbt

	Creating Your First Project
	app
	conf
	build.sbt
	project
	public
	lib
	test

	Configuring Play to Work with Your Preferred IDE
	Setting Up in Eclipse
	Setting Up in IntelliJ

	Hello World Application
	Configuration
	Controller and View
	View
	Controller
	Enhancing the View

	Testing Play Applications
	Testing Views
	Testing Controllers

	Chapter 2: Build System
	Scala Build Tool/Simple Build Tool
	Core Principles
	Benefits of sbt
	Project Structure
	Using sbt
	Setting Definition
	Resolvers
	Complete build.sbt
	Complete plugins.sbt

	Quick Recap of SBT Commands

	Chapter 3: Play Controllers and HTTP Routing
	MVC Programming Model
	Model
	View
	Controller

	HTTP Routing
	Static Definition
	Dynamic Parts in a URL
	Passing Fixed Values
	Optional Parameters

	Application Configuration Using application.conf
	Controllers
	Finishing the Bookshop Controller
	saveComment Method
	Testing the saveComment Action

	Models
	Scoped Objects
	Session Scope
	Flash Scope

	Chapter 4: Play Views and Templating with Scala
	Composite Views
	Designing a General Template
	Code Snippets Templating Basics
	Comments
	Template Parameters
	Import Statement
	Iterating a List
	Iterating a Map
	If Blocks
	Escaping Dynamic Contents

	Chapter 5: Concurrency and Asynchronous Programming
	What Is Concurrency?
	Executor
	Example 1: Using Runnable
	Example 2: Using Callable

	Asynchronous Programming with Play
	Writing an Asynchronous App
	Configuring Asynchronous Scheduled Jobs
	Akka Basics

	Chapter 6: Web Services, JSON, and XML
	Consuming Web Services
	Processing Large Responses
	Handling JSON
	Consuming JSON Request
	Producing a JSON Response

	Handling XML
	Example 1: Simple XML Parsing
	Example 2: XML Parsing Using JAXB

	Chapter 7: Accessing Databases
	Configuring Database Support
	Working with an ORM
	ORM Concepts
	Key Terms
	One to Many
	Many to One
	Many to Many

	Relationship Direction

	Configuring JPA
	Using Ebean in Play
	Ebean Query
	Common Select Query Constructs in Ebean
	where()
	eq()
	like()
	orderBy()
	findUnique()
	findList()
	LIMIT {max rows} [OFFSET {first row}]
	The Query Interface

	Using RawSql
	Relationships in Ebean

	Chapter 8: Complete Example
	Chapter 9: Using Play Modules
	Creating a Module
	Third-Party Modules

	Chapter 10: Application Settings and Error Handling
	Filters
	Action Composition
	Error Handlers
	Client Errors
	Server Errors

	How Global Settings Were Done Before Play 2.6.x

	Chapter 11: Working with Cache
	Configuring Caffeine
	Adding Caffeine to a Project

	Configuring EhCache
	Using the Cache API

	Chapter 12: Production Deployment
	Configuring Apache httpd for Play
	Load Balancing Using mod_proxy_balancer
	Configuring Play with Nginx

	Index

