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Preface to the Second Edition

These notes are a transcript of lectures delivered by Øyvind Grøn during the spring
of 1997 at the University of Oslo. The manuscript has been revised in 2019. The
present version of this document is an extended and corrected version of a set of
Lecture Notes which were written down by S. Bard, Andreas O. Jaunsen, Frode
Hansen and Ragnvald J. Irgens using LATEX2�. Sven E. Hjelmeland has made
many useful suggestions which have improved the text.

The manuscript has been revised in 2019. In this version, solutions to the
exercises have been included. Most of these have been provided by Håkon Enger.
I thank all my good helpers for enthusiastic work which was decisive for the
realization of the book.

I hope that these notes are useful to students of general relativity and look
forward to their comments accepting all feedback with thanks. The comments may
be sent to the author by e-mail to oyvind.gron.no@gmail.com.

Oslo, Norway Øyvind Grøn
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These notes are a transcript of lectures delivered by Øyvind Grøn during the spring
of 1997 at the University of Oslo.
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set of Lecture Notes which were typesetted by S. Bard, Andreas O. Jaunsen, Frode
Hansen and Ragnvald J. Irgens using LATEX2�. Svend E. Hjelmeland has made
many useful suggestions which have improved the text. I would also like to thank
Jon Magne Leinaas and Sigbjørn Hervik for contributing with problems and Gorm
Krogh Johnsen for help with finishing the manuscript. I also want to thank Prof.
Finn Ravndal for inspiring lectures on general relativity.

While we hope that these typeset notes are of benefit particularly to students of
general relativity and look forward to their comments, we welcome all interested
readers and accept all feedback with thanks.

All comments may be sent to the author by e-mail.
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Chapter 1
Newton’s Theory of Gravitation

Abstract In this chapter we first deduce Newton’s law of gravitation in its local
form as a preparation for comparing Newton’s and Einstein’s theories, including a
discussion of tidal forces. Then we give a presentation of the main conceptual foun-
dation of the general theory of relativity, emphasizing the principle of equivalence
and the principle of relativity.

In Newton’s theory there is an absolute space and time. They are independent of the
content in the universe. Newton wrote: “Absolute space, in its own nature, without
regard to anything external, remains always similar and immovable.” And further:
“Absolute, true and mathematical time, of itself, and from its own nature flows
equablywithout regard to anything external.” Thus, every object has an absolute state
of motion in absolute space. Hence an object must be either in a state of absolute
rest or moving at some absolute speed.

Galileo, however, argued for a relativity of rectilinear motion with constant veloc-
ity as least with respect to mechanical phenomena. This principle is obeyed by
Newton’s theory of gravity.

In Newton’s theory an inertial frame is defined as a reference frame moving along
a straight line with constant velocity.

The fundamental laws of Newton’s theory of gravitation are Newton’s three laws
plus the law of gravitation (see below). With reference to an inertial frame Newton’s
three laws take the form:

1. If a body is not acted upon by forces, or if the sum of the forces acting upon a
body is zero, the body is either at rest of moves along a straight line with constant
velocity.

2. The sum of the forces acting upon a body is equal to its (inertial) mass times its
acceleration,

∑ �F = mI �a. (1.1)

3. If a body A acts upon a body B with a force, then B acts back on A with an
equally large and oppositely directed force.
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2 1 Newton’s Theory of Gravitation

In a non-inertial frame with acceleration �a f one will experience an “artificial
acceleration of gravity” �g = − �a f , and Newton’s 2. law takes the modified form

∑ �F = mI
(�a + �a f

) = mI (�a − �g). (1.2)

If no forces act on a body, it is said to be freely falling. A freely falling body in a
non-inertial frame will have an acceleration �a = �g.

1.1 The Force Law of Gravitation

Consider two particles with masses M and m, respectively. They are at a distance
r from each other and act on each other by a gravitational force F. The situation is
shown in Fig. 1.1.

According to Newton’s theory the gravitational force between the particles is
given by

�F = −mG
M

r2
�er , �e = �r

r
, r = |�r |. (1.3)

Let V be the potential energy of m (see Fig. 1.1). Then

�F = −∇V (�r), Fi = − ∂V

∂xi
. (1.4)

For a spherical mass distribution V (�r) = −mG(M/r) with zero potential
infinitely far from the centre of M. Newton’s law of gravitation is valid for small
velocities, i.e. velocities much smaller than the velocity of light and weak fields.
Weak fields are fields in which the gravitational potential energy of a test particle is
very small compared to its rest mass energy. (Note that here one is interested only in
the absolute values of the above quantities and not their sign).

Fig. 1.1 Newton’s law of gravitation. Newton’s law of gravitation states that the force between two
spherical bodies is attractive, acts along the line joining the centres of the bodies, is proportional
to the product of the masses and inversely proportional to the distance between the centres of the
masses
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mG
M

r
� mc2 ⇒ r � GM

c2
. (1.5)

The Schwarzschild radius for an object with mass M is RS = 2GM/c2. Hence,
far outside the Schwarzschild radius the gravitational field is weak. To get a feeling
for the magnitudes, you may insert the mass of the earth. Then you find that the
Schwarzschild mass of the Earth is 9 mm. Comparing with the radius of the Earth,
which is RE ≈ 6400 km, we may conclude that the gravitational field is weak on the
surface of the Earth. Similarly the Schwarzschild radius of the Sun is 3 km and the
Earth is about 150 million km from the Sun. Hence the gravitational field of the Sun
is very weak in most parts of the solar system. This explains, in part, the success of
Newtonian gravity for describing the motion of bodies in the gravitational field of
the Earth and the Sun.

Example 1.1 (Two particles falling towards each other) Two point particles with
masses m1 and m2 are instantaneously at rest at a distance r0 from each other in
empty space, with no other forces present than the gravitational force between them.

How long time will they fall before they collide?
Newton’s 2. law is valid with reference to an inertial frame. Hence we start by

introducing a coordinate system fixed with respect to the mass centre of the particles.
In this system particles 1 and 2 have coordinates r1 and r2, respectively. The equations
of motion of the two particles are

r̈1 = G
m2

(r2 − r1)
2 , r̈2 = −G

m1

(r2 − r1)
2 . (1.6)

where a dot denotes differentiation with respect to time. Subtracting the equations
and introducing the distance r = r2 − r2 between the particles as a new coordinate,
we get the differential equation

r2 r̈ + G(m1 + m2) = 0. (1.7)

Writing this as

ṙ r̈ = −G(m1 + m2)

r2
ṙ (1.8)

and integrating with the boundary condition that ṙ = 0 for r = r0, we get the energy
conservation equation

ṙ2 = 2G(m1 + m2)

(
1

r
− 1

r0

)
. (1.9)

Hence, the falling time is given by the integral
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t =
√

r0
2G(m1 + m2)

r0∫

0

√
r

r0 − r
dr. (1.10)

Performing the integration gives

t = π

2

r3/20√
2G(m1 + m2)

. (1.11)

Assume that the particles have a mass equal to 1 kg and starts 1 m from each
other. Then the falling time is 26.5 h. This illustrates that gravity is indeed a very
weak force.

1.2 Newton’s Law of Gravitation in Local Form

Consider a gravitational field due to a mass distribution. Let P be a point in the field
(see Fig. 1.2) with position vector �r = xi �ei , and let the gravitating mass element be
at �r ′ = xi

′ �ei ′ . Newton’s law of gravitation for a continuous distribution of mass is

�F = −Gm
∫

ρ
(�r ′) �r − �r ′

|�r − �r ′|3 d
3r ′ = −∇V (�r). (1.12)

Note that the ∇ operator acts on the unprimed coordinates, only.
Let us consider Eq. (1.12) term by term

Fig. 1.2 Deduction
of Newton’s law of
gravitation in local form. The
dice is a mass element, and P
is the field point



1.2 Newton’s Law of Gravitation in Local Form 5

∇ 1

|�r − �r ′| = �ei ∂

∂xi

1
[(
x j − x ′ j)

(
x j − x ′

j

)]1/2 = �ei ∂

∂xi

[(
x j − x ′ j)(x j − x ′

j

)]−1/2

= �ei
(

−1

2

)[(
x j − x ′ j)(x j − x ′

j

)]−3/2
2
(
xk − x ′k)∂xk

∂xi

= −�ei
(
xk − x ′k)δik[(

x j − x ′ j)
(
x j − x ′

j

)]3/2 = −
(
xi − x ′i)�ei

[(
x j − x ′ j)

(
x j − x ′

j

)]3/2

= − �r − �r ′

|�r − �r ′|3 (1.13)

Equations (1.12) and (1.13) imply

V (�r) = −Gm
∫

ρ
(�r ′)

|�r − �r ′|d
3r ′. (1.14)

Hence, the gravitational potential at the point P is

φ(�r) ≡ V (�r)
m

= V (�r) = −G
∫

ρ
(�r ′)

|�r − �r ′|d
3r ′. (1.15)

It follows that

∇φ(�r) = −G
∫

ρ
(�r ′) �r − �r ′

|�r − �r ′|3 d
3r ′, (1.16)

and

∇2φ(�r) = −G
∫

ρ
(�r ′)∇ · �r − �r ′

|�r − �r ′|3 d
3r ′. (1.17)

We now calculate the divergence in the integrand

∇ · �r − �r ′

|�r − �r ′|3 = ∇ · �r
|�r − �r ′|3 + (�r − �r ′) · ∇ 1

|�r − �r ′|3 = 3

|�r − �r ′|3 − (�r − �r ′)

· 3
(�r − �r ′)

|�r − �r ′|5 = 3

|�r − �r ′|3 − 3

|�r − �r ′|3 = 0, �r �= �r ′. (1.18)

The condition �r �= �r ′ means that the field point is outside the mass distribution.
Hence, the Newtonian potential at a point in a gravitational field outside a mass
distribution satisfies the Laplace equation

∇2φ = 0. (1.19)
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We shall now generalize this to the case where the field point may be inside amass
distribution. It will then be useful to utilize the Dirac delta function. This function
has the following properties.

δ
(�r − �r ′) = 0, for �r �= �r ′, (1.20)

∫
δ
(�r − �r ′)d3r ′ =

{
1 if �r = �r ′ is contained in the integration region.
0 if �r = �r ′ is not contained in the integration region.

(1.21)

∫
f
(�r ′)δ

(�r − �r ′)d3r ′ = f (�r). (1.22)

A calculation of the integral (1.17) which is valid also in the case where the field
point is inside the mass distribution is obtained by utilizing Gauss integral theorem,

∫

V

∇ · �Ad3r ′ =
∮

S

�A · d�S, (1.23)

where S is the boundary surface of the volume V. We shall also need the definition
of a solid angle,

d� ≡ ds ′
⊥

|�r − �r ′|2 , (1.24)

where ds ′
⊥ is the projection of the area normal to the line of sight. It is represented

by absolute value of the component of d�s ′ along the line of sight, where d�s ′ is the
normal vector of the surface element of the mass distribution subtending the solid
angle d� at the field point P (Fig. 1.3).

Fig. 1.3 Solid angle. Solid angle d� is defined such that the surface of a sphere subtends the angle
4π at the centre
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Applying the Gauss integral theorem we have

∫

V

∇ · �r − �r ′

|�r − �r ′|3 d
3r ′ =

∮

S

�r − �r ′

|�r − �r ′|3 · d�s ′ =
∮

S

ds ′
⊥

|�r − �r ′|2 =
∮

S

dΩ (1.25)

Hence

∫

V

∇ · �r − �r ′

|�r − �r ′|3 d
3r ′ =

{
4π if P is inside themass distribution
0 if P is outside themass distribution

. (1.26)

This may be written in terms of the Dirac delta function as

∫

V

∇ · �r − �r ′

|�r − �r ′|3 d
3r ′ = 4πδ

(�r − �r ′). (1.27)

We now have

∇2φ(�r) = −G
∫

ρ
(�r ′)∇ · �r − �r ′

|�r − �r ′|3 d
3r ′ = G

∫
ρ
(�r ′)4πδ

(
←
r − �r ′

)
d3r ′

= 4πGρ(�r), (1.28)

showing that the Newtonian gravitational potential obeys the Poisson equation. This
means that Newton’s gravitational theory can be expressed in the following way:

• Mass generates a gravitational potential according to

∇2φ = 4πGρ. (1.29)

• The gravitational potential generates acceleration of gravity �g according to

�g = −∇φ. (1.30)

1.3 Newtonian Incompressible Star

We shall apply Eqs. (1.29) and (1.30) to calculate the gravitational field of a New-
tonian incompressible star. Let the gravitational potential be φ(r). In the spherically
symmetric case Eq. (1.29) then takes the form
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1

r2
d

dr

(
r2

dφ

dr

)
= 4πGρ. (1.31)

Assuming that ρ = constant and integrating gives

r2
dφ

dr
= 4π

3
Gρr3 + K1 = M(r) + K1. (1.32)

whereM(r) is the mass inside a sphere with radius r. According to Eq. (1.30) the
gravitational acceleration is

�g = −∇φ = −dφ

dr
�er , (1.33)

or

g = M(r)

r2
+ K1

r2
= 4π

3
Gρr + K1

r2
. (1.34)

Finite g in r = 0 gives K1 = 0

g = 4π

3
Gρr,

dφ

dr
= 4π

3
Gρr. (1.35)

Assume that the mass distribution has a radius R. A new integration then leads to

φ = 2π

3
Gρr2 + K2. (1.56)

Demanding continuous potential at r = R gives.

2π

3
GρR2 + K2 = M(R)

R
= −4π

3
GρR2. (1.37)

Hence

K2 = −2πGρR2. (1.38)

Thus the potential inside the mass distribution is

φ = 2π

3
Gρ(r2 − 3R2). (1.39)

The star is in hydrostatic equilibrium that is the pressure forces are in equilibrium
with the gravitational forces.

Consider a mass element dm = ρdV = ρdAdr, in the shell drawn in Fig. 1.4.
The pressure force on the mass element is dF = dAdp, and the gravitational

force is
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Fig. 1.4 Mass shell in a star. A shell with thickness dr is affected by both gravitational and pressure
forces

dG = gdm = Gm(r)

r2
dm, (1.40)

where m(r) is the mass inside the shell. With constant density m(r) = (4π/3)ρr3.
Hence

dG = gdm = 4π

3
Gρ2rdAdr. (1.41)

Equilibrium, dF = −dG, demands that

dp = −4π

3
Gρ2rdr. (1.42)

Integrating gives

p = K3 − 2πG

3
ρ2r2. (1.43)

Vanishing pressure at the surface of the mass distribution,p(R) = 0, gives the
value of the constant of integration
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K3 = 2πG

3
ρ2R2 (1.44)

which leads to

p(r) = 2πG

3
ρ2(R2 − r2). (1.45)

No matter how massive the star is, it is possible for the pressure forces to keep
the equilibrium with gravity. In Newtonian theory, gravitational collapse is not a
necessity.

1.4 Tidal Forces

Tidal forces are the difference of gravitational force on two neighbouring particles
in a gravitational field. The tidal force is due to the inhomogeneity of a gravitational
field.

Figure 1.5 shows two point masses, each with mass m, with a separation vector �ς
and position vectors �r and �r + �ς , respectively, where | �ς | << |�r |. The gravitational
forces on the mass points are �F(�r) and �F(�r + �ς). By means of a Taylor expansion
to the lowest order in | �ς | we get for the i-component of the tidal force

fi = Fi (�r + �ς) − Fi (�r) = ς j

(
∂Fi
∂x j

)

�r
. (1.46)

The corresponding vector equation is

�f = (ς · ∇)�r �F . (1.47)

Using that

Fig. 1.5 Tidal forces. The
separation vector �ς between
two mass points 1 and 2
acted upon by gravitational
forces �F1 and �F2
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�F = −m∇φ, (1.48)

The tidal force may be expressed in terms of the gravitational potential according
to

�f = −m( �ς · ∇)�r∇φ. (1.49)

It follows that in a local Cartesian coordinate system the i-component of the
relative acceleration of the particles is

d2ςi

dt2
= −

(
∂2φ

∂xi∂x j

)

�r
ς j . (1.50)

Example 1.2 (Tidal force on a system consisting of two particles) We shall first
consider two test particles with a vertical separation vector in the gravitational field
of a particle with massM. Let us introduce a small Cartesian coordinate system at a
distance R from the mass (Fig. 1.6). The particles are separated from each other by
a distance z � R.

According to Eq. (1.3) a test particle with mass m at a point (0, 0, z) is acted
upon by a gravitational force

Fz(z) = −m
GM

(R + z)2
, (1.51)

While an identical particle at the origin is acted upon by a force

Fz(0) = −m
GM

R2
. (1.52)

Fig. 1.6 Horizontal tidal
force. A small Cartesian
coordinate system at a
distance R from a particle
with massM
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Secondly, we shall first consider two particles in the same height in an
inhomogeneous gravitational field.

If this little system is falling freely towards M, an observer at the origin will say
that the particle at (0, 0, z) is acted upon by a force

fz = Fz(z) − F(0) ≈ 2GmM

R3
z (1.53)

directed away from the origin along the positive z-axis. This is the tidal force.
In the same way particles at the same height in the gravitational field, at positions

(x, 0, 0) and (0, y, 0) are attracted towards the origin by tidal forces

fx = −GmM

R3
x, fy = −GmM

R3
y. (1.54)

Note that the tidal force increases faster in strength with decreasing distance from
the mass which produces the gravitational field than the gravitational force.

Equations (1.53) and (1.54) have among others the following consequence: if an
elastic circular ring is falling freely in the gravitational field of the Earth, it will
be stretched in the vertical direction and compressed in the horizontal direction
(Fig. 1.7).

In general tidal forces cause changes of shape.

Example 1.3 (The tidal field on the Earth due to the Moon) The Earth–Moon system
is illustrated in Fig. 1.8. (Actually the distance between the Earth and the Moon is
much greater compared to the magnitude of the Earth.) The tidal force due to the
Moon on the surface of the Earth is the difference between the gravitational force at
A and C in the gravitational field of the Moon.

From the extended Pythagorean law we have, with reference to Fig. 1.8

r21 = R2 − 2r R cosψ + r2. (1.55)

Fig. 1.7 An elastic ring
originally circular, falling
freely in the gravitational
field of the Earth
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Fig. 1.8 The Earth-Moon
system

A series expansion of

1

r
= 1

R

[
1 − 2

r

R
cosψ +

( r

R

)2
]− 1/2

(1.56)

to second order in r/R gives

1

r
= 1

R

[
1 + r

R
cosψ + 1

2

( r

R

)2(
3 cos2 ψ − 1

)]
. (1.57)

Hence, the potential at a point A on the surface of the Earth in the gravitational
field of the Moon is

Vm = − Gm

r
= − Gm

R

[
1 + r

R
cosψ + 1

2

( r

R

)2(
3 cos2 ψ − 1

)]
. (1.58)

The first term, VC = −Gm/R, is the potential in the gravitational field of the
Moon at the centre, C, of the Earth. The second term is VA = −(

Gm/R2
)
r cosψ =

−gMoonxA, where xA is component of the separation between A and C along the
gravitational field. This is the difference of the potential at C andA in the gravitational
field of the Moon if one neglects the inhomogeneity in the Moon’s field at the Earth.
Hence the sum of the first two terms is then the potential at A in the gravitational
field of the Moon. This means that the third term,

Vt = −Gm

2R3
r2

(
3 cos2 ψ − 1

)
, (1.59)

is the difference between the potential at A in the Moon’s gravitational field if the
field is considered homogeneous with the value at the centre of the Earth and the
actual potential at A. This difference is due to the inhomogeneity of the gravitational
field of theMoon at the Earth, i.e. it is due to the tidal gravitational field. It is therefore
called the tidal potential at A.
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Fig. 1.9 Tidal acceleration field. The Tidal acceleration field (red) at the surface of the Earth due
to the Moon is the acceleration of gravity at the surface (black) of the Earth minus the acceleration
of gravity at the centre (green) of the Earth in the Moon’s gravitational field

The height difference, �h, between flood and ebb due to the Moon’s tidal field is
given by

g�h = Vt (0) − Vt (π/2), (1.60)

where Vt = Vt (ψ), and g is the acceleration of gravity at the surface of the Earth.
This gives

�h = 3

2

Gm

g

r2

R3
. (1.61)

For a numerical result we need the following values:

MMoon = 7.35 · 1022 kg, g = 9.81m/s2, R = 3.85 · 105 km, rEarth = 6378 km

Inserting this into Eq. (1.46) gives the height differences on the ocean of the
Earth due to the Moon, neglecting the effects of ocean currents and coast lines,
�h = 53 cm. The tidal field is shown in Fig. 1.9.

1.5 The Principle of Equivalence

Galilei investigated experimentally the motion of freely falling bodies. He found that
they moved in the same way, regardless of what sort of material they consisted of and
what mass they had. In Newton’s theory of gravitation mass appears in two different
ways; as gravitational mass, mG , in the law of gravitation, analogously to charge in
Coulomb’s law, and as inertial mass, mI , in Newton’s second law.

Newton’s 2. law applied to a freely falling body with gravitational mass mG and
inertial massmI in the field of gravity from a spherical body with massM then takes
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the form

mI
d2�r
dt2

= −GmG
M

r3
�r . (1.62)

The results ofGalilei’smeasurement indicated that the acceleration is independent
of the constitution of the bodies, and hence, the gravitational and inertial mass must
be the same for all bodies,

mG = mI . (1.63)

Measurements performed by the Hungarian baron Eötvös around the year
1900 indicated that this equality holds with an accuracy better than 10−8.

A parameter which is often used to specify the accuracy of tests of the equality
of gravitational and inertial mass is

� ≡ mG

mI
− 1. (1.64)

A very accurate test was published on 18 January 2018 [1]. A team of physi-
cists reported about tests based on 7 years with observational data from the MES-
SENGER space observatory. They deduced from the MESSENGER data that � =
(−4.1 ± 4.6) · 10−15. This is the most accurate test of the equality of gravitational
and inertial mass to date.

Einstein assumed the exact validity of Eq. (1.63). He considered this as a con-
sequence of a fundamental principle, the principle of equivalence, namely that the
physical effects of a gravitational field due to an acceleration (including rotation) of
the reference frame are equivalent to the physical effects of a gravitational field due
to a mass distribution.

A consequence of this principle is the possibility of removing locally the acceler-
ation of gravity by entering a laboratory in free fall. In order to clarify this, Einstein
considered a homogeneous gravitational field in which the acceleration of gravity,
�g, is independent of the position. Using Eq. (1.2) in a freely falling non-rotating
reference frame in this field, with a given by

mIa = GmGM

R2
, (1.65)

a free particle moves according to

mI
d2�r
dt2

= mGg − mI g = 0, (1.66)

where we have used Eq. (1.63). This means that an observer in such a freely falling
reference frame will experience that a particle which is not acted upon by non-
gravitational forces will move along a straight line with constant velocity.
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According to Newton’s theory the particle is acted upon by a gravitational force.
In Newton’s theory a free particle is a particle which is acted upon by a gravitational
force only. Furthermore, a reference frame which falls freely in a gravitational field
is accelerated according to Newton’s theory.

It is not inertial.
All of this is different according to the general theory of relativity. According

to Einstein’s theory gravitation is not reckoned as a force, and a free particle is not
acted upon by any forces. Furthermore, the general definition of an inertial frame,
valid both in Newton’s and Einstein’s theory, is that an inertial frame is a frame
where Newton’s 1. law is valid. We have seen above that a free particle moves along
a straight line with constant velocity in a freely falling reference frame. According to
Einstein’s theory it is not acted upon by any force. Hence Newton’s 1. law is valid in
the freely falling frame. This means that according to the general theory of relativity
an inertial frame falls freely. Also, there is no acceleration of gravity in an inertial
frame. All of these are consequences of the principle of equivalence according to
Einstein’s theory.

The principle of equivalence has also been formulated in an “opposite way.” An
observer at rest in a homogeneous gravitational field and an observer in an accelerated
reference frame far from anymass distribution will obtain identical results when they
perform similar experiments. The physical effects of a gravitational field caused
by the motion of the reference frame are equivalent to the physical effects of a
gravitational field caused by a mass distribution.

One often hears that there is a connection between gravity and spacetime curvature
according to Einstein’s theory. The concept spacetime curvature will be thoroughly
introduced later, but a few words may be in order already here, so that possible
misunderstanding can be avoided at this initial point.

The experience of acceleration of gravity has nothing to do with spacetime cur-
vature. It depends upon the motion of the observer’s reference frame. Acceleration
of gravity is experienced when the reference frame of the observer is not inertial.
It is independent both of spacetime curvature and whether one is close to a mass
distribution. When we experience acceleration of gravity at the surface of the Earth,
it is because being at rest on this surface means not being in an inertial reference
frame. We accelerate upwards relative to an inertial frame when we are at rest on the
surface of the Earth. Therefore we experience a downwards acceleration of gravity.

The Newtonian force which is related to spacetime curvature is the tidal force
as described mathematically in Eq. (1.50). The relativistic generalization of this
equation is the equation of geodesic deviation (see Chap. 6) which contains the
components of the spacetime curvature.

Tidal forces represent the inhomogeneity of the Newtonian gravitational field. In
order to observe this inhomogeneity by physicalmeasurements, one needs to perform
an experiment that requires some extension in space and time.

The principle of equivalence as formulated above has only a local validity. The
word local here means that the extension in space and time is so small that tidal
effects cannot be measured. Hence the principle of equivalence is valid only in the
limit that the gravitational field can be considered homogeneous. In a geometrical
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language the principle of equivalence is valid only as far as spacetime curvature
cannot be measured.

1.6 The General Principle of Relativity

The principle of equivalence led Einstein to a generalization of the special principle
of relativity. In his general theory of relativity Einstein formulated a general principle
of relativity, which says that not only velocities are relative, but accelerations, too.

Let us consider two formulations of the special principle of relativity.
S1. All laws of nature are the same (may be formulated in the sameway) in all inertial
frames.
S2. Every inertial observer can consider himself to be at rest.

These two formulations may be interpreted as different formulations of a single
principle. But the generalization of S1 and S2 to the general case, which encompasses
accelerated motion and non-inertial frames, leads to two different principles G1 and
G2.
G1. The laws of nature are the same in all reference frames.
G2. Every observer can consider himself to be at rest.

In the literature bothG1 andG2 arementioned as the general principle of relativity.
But G2 is a stronger principle (i.e. stronger restriction on natural phenomena) than
G1. Generally the course of events of a physical process in a certain reference frame
depends upon the laws of physics, the boundary conditions, the motion of the refer-
ence frame and the geometry of spacetime. The two latter properties are described by
means of a metrical tensor. By formulating the physical laws in a metric-independent
way, one obtains that G1 is valid for all types of physical phenomena. Even if the
laws of nature are the same in all reference frames, the course of events of a physical
process will, as mentioned above, depend upon the motion of the reference frame.
As to the spreading of light, for example, the law is that light follows null-geodesic
curves (see Chap. 4). This law implies that the path of a light particle is curved in
non-inertial reference frames and straight in inertial frames.

The question whether G2 is true in the general theory of relativity has been
thoroughly discussed recently, and the answer is not clear yet [2].

1.7 The Covariance Principle

The principle of relativity is a physical principle. It is concerned with physical phe-
nomena. This principle motivates the introduction of a formal principle, called the
covariance principle: the equations of a physical theory shall have the same form
in every coordinate system. This principle is not concerned directly with physical
phenomena. The principle may be fulfilled for every theory by writing the equations
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in a form invariant, i.e. covariant way. This may be done by using tensor (vector)
quantities, only, in the mathematical formulation of the theory.

The covariance principle and the equivalence principle may be used to obtain a
description of what happens in the presence of gravitation. We then start with the
physical laws as formulated in the special theory of relativity. Then the laws are
written in a covariant form, by writing them as tensor equations. They are then valid
in an arbitrary, accelerated system. But the inertial field (fictive force) in the accel-
erated frame is equivalent to a gravitational field. So, starting within a description
referred to an inertial frame, we have obtained a description valid in the presence of
a gravitational field.

The tensor equations have in general a coordinate-independent form. Yet, such
form-invariant, or covariant, equations need not fulfil the principle of relativity. This
is due to the following circumstances. A physical principle, for example the principle
of relativity, is concernedwith observable relationships. Therefore,when one is going
to deduce the observable consequences of an equation, one has to establish relations
between the tensor components of the equation and observable physical quantities.
Such relations have to be defined; they are not determined by the covariance principle.

From the tensor equations, that are covariant, and the defined relations between the
tensor components and the observable physical quantities, one can deduce equations
between physical quantities. The special principle of relativity, for example, demands
that the laws which these equations express must be the same in every inertial frame

The relationships between physical quantities and tensors (vectors) are theory
dependent. The relative velocity between two bodies, for example, is a vector within
Newtonian kinematics. However, in the relativistic kinematics of four-dimensional
spacetime, an ordinary velocity, which has only three components, is not a vector.
Vectors in spacetime, so-called 4-vectors, have four components. Equations between
physical quantities are not covariant in general. For example, Maxwell’s equations in
three-vector form are not invariant under a Galilei transformation. However, if these
equations are rewritten in tensor form, then neither a Galilei transformation nor any
other transformation will change the form of the equations.

If all equations of a theory are tensor equations, the theory is said to be given a
manifestly covariant form. A theory which is written in a manifestly covariant form
will automatically fulfil the covariance principle, but it need not fulfil the principle
of relativity.

1.8 Mach’s Principle

Einstein gave up Newton’s idea of an absolute space. According to Einstein all
motion is relative. This may sound simple, but it leads to some highly non-trivial
and fundamental questions. Imagine that there are only two particles connected by a
spring in the universe. What will happen if the two particles rotate about each other?
Will the spring be stretched due to centrifugal forces? Newton would have confirmed
that this is indeed what will happen. However, when there is no longer any absolute
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space that the particles can rotate relatively to, the answer is not so obvious. If we,
as observers, rotate around the particles, and they are at rest, we would not observe
any stretching of the spring. But this situation is kinematically equivalent to the one
with rotating particles and observers at rest, which leads to stretching.

Such problems led Mach to the view that all motion is relative. The motion of
a particle in an empty universe is not defined. All motion is motion relatively to
something else, i.e. relatively to other masses. According to Mach this implies that
inertial forces must be due to a particle’s acceleration relatively to the great masses
of the universe. If there were no such cosmic masses, there would not exist inertial
forces, like the centrifugal force. In our example with two particles connected by a
string, there would not be any stretching of the spring if there were no cosmic masses
that the particles could rotate relatively to.

Another example may be illustrated by means of a turnabout. If we stay on this,
while it rotates, we feel that the centrifugal forces lead us outwards. At the same time
we observe that the heavenly bodies rotate. According to Mach identical centrifugal
forces should appear if the turnabout is static and the heavenly bodies rotate.

Einstein was strongly influenced byMach’s arguments, which probably had some
influence, at least with regards tomotivation, on Einstein’s construction of his general
theory of relativity. Yet, it is clear that general relativity does not fulfil all require-
ments set by Mach’s principle. For example there exist general relativistic, rotating
cosmological models, where free particles will tend to rotate relative to the cosmic
masses of the model.

However, some Machian effects have been shown to follow from the equations
of the general theory of relativity. For example, inside a rotating massive shell the
inertial frames, i.e. the free particles, are dragged on and tend to rotate in the same
direction as the shell. This was discovered by Lense and Thirring in 1918 and is
therefore called the Lense–Thirring effect. More recent investigations of this effect
have, among others, led to the following result [3]: “a massive shell with radius
equal to its Schwarzschild radius has often been used as an idealized model of our
universe. Our result shows that in such models local inertial frames near the centre
cannot rotate relatively to the mass of the universe. In this way our result gives an
explanation in accordance with Mach’s principle, of the fact that the fixed stars are
at rest on the heaven as observed from an inertial reference frame.”

1.9 Exercises

1.1 A tidal force pendulum
A tidal force pendulum consists of two points with the same mass that are

connected by a stiff, massless rod as shown in Fig. 1.10.
The length of the rod is 2�. The pendulum oscillates with respect to the centre

of the rod, which is fixed at a constant distance from the centre of the Earth. The
pendulum oscillates in a vertical plane. The Earth is considered as a spherically
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Fig. 1.10 A tidal force
pendulum

symmetric mass distribution. The gravitational forces acting on the two mass
points are �F1 and �F2 as shown in the figure.

Find an expression for the period of the oscillation of the rod. What is the
period of the tidal force pendulum at the surface of the Earth? What happens in
the limit of a homogeneous gravitational field?

1.2 Newtonian potential for a spherically symmetric body

(a) Calculate the Newtonian potential φ(r) outside and inside a spherical shell
of matter with massM and radius R.

(b) Let M and R be the mass and radius of the Earth. Assume that the Earth
has constant mass density. Find the potential outside and inside the earth.

(c) Calculate the acceleration of gravity at the surface of the Earth.

1.3 Frictionless motion in a tunnel through the Earth

(a) We neglect the rotation of the Earth and air resistance and friction. Assume
that a hollow straight tube has been drilled through the centre of the Earth.
A small ball is dropped into the tube from the surface of the Earth and will
perform an oscillating motion in the tube.

Find the position of the ball as a function of time. What is the period of the
motion?
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(b) We now consider a straight tube from one point on the surface of the Earth
to another, not passing through the centre of the Earth. A ball is dropped
into the tube from a point on the surface of the Earth.

Find the period of the motion. Does it depend upon the direction of the tube?

(c) How long time does a satellite moving in a circular path around the Earth
at the surface of the Earth use to move around the Earth?

1.4 The Earth–Moon system

(a) Assume that the Earth and the Moon are spherical objects isolated from
the rest of the solar system. Write down the equations of motion for the
Earth–Moon system. Show that there is a solution where the Earth and the
Moon are moving in circular orbits around their common centre of mass.
What are the radii of the orbits in terms of the masses of the Earth and the
Moon and the period of the motion?

(b) Find the Newtonian potential along the line connecting the two bodies.
Show the result graphically and find the point on the line where the
gravitational forces from the bodies cancel each other.

(c) Calculate the difference of the gravitational force from the Moon upon a
1 kg particle on the points on the Earth that are closest to the Moon and
farthest away from the Moon.

1.5 The Roche limit

(a) A spherical Moon with mass m and radius R is orbiting a planet with mass
M. Show that if the Moon is closer to the centre of the planet than

r =
(
2M

m

)1/3

R,

then a stone lying freely on the surface of the Moon will be elevated due to tidal
forces.

(b) The comet Shoemaker–Levy 9, that in July 1994 collided with Jupiter, was
ripped apart already in 1992 after having passed near Jupiter. The comet
had a mass of m = 2.0 · 1012 kg, and the closest passage in 1992 was at a
distance of s = 96 000 km from the centre of Jupiter. The mass of Jupiter
is M = 1.9 · 1027 kg.

Use this information to estimate the size of the nucleus of the comet.
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Chapter 2
The Special Theory of Relativity

Abstract This chapter gives a concise and yet rather complete introduction to the
special theory of relativity. Minkowski diagrams are used to illustrate several con-
cepts such as the relativity of simultaneity. Special relativity is a theory of flat space-
time admitting accelerated and rotating reference frames. In this chapter we also
show how magnetism appears as a 2 order effect in v/c of electricity due to the
Lorentz transformation.

In this chapter we shall give a short introduction to the fundamental principles of the
special theory of relativity and deduce some of the consequences of the theory.

The special theory of relativity was presented by Albert Einstein in 1905. It was
founded on two postulates:

1. The laws of physics are the same in all Galilean frames.
2. The velocity of light in empty space is the same in all Galilean frames and

independent of the motion of the light source.

Einstein pointed out that these postulates are in conflict with Galilean kinemat-
ics, in particular with the Galilean law for the addition of velocities. According to
Galilean kinematics two observers moving relative to each other cannot measure the
same velocity for a certain light signal. Einstein solved this problem by a thorough
discussion of how two distant clocks should be synchronized.

2.1 Coordinate Systems and Minkowski Diagrams

The most simple physical phenomenon that we can describe is called an event. This
is an incident that takes place at a certain point in space and at a certain point in time.
A typical example is the flash from a flashbulb.

A complete description of an event is obtained by giving the position of the
event in space and time. Assume that our observations are made with reference to a
reference frame.We introduce a coordinate system into our reference frame. Usually
it is advantageous to employ a Cartesian coordinate system. This may be thought
of as a cubic lattice constructed by measuring rods. If one lattice point is chosen as

© Springer Nature Switzerland AG 2020
Ø. Grøn, Introduction to Einstein’s Theory of Relativity,
Undergraduate Texts in Physics, https://doi.org/10.1007/978-3-030-43862-3_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43862-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-43862-3_2


24 2 The Special Theory of Relativity

origin, with all coordinates equal to zero, then any other lattice point has three spatial
coordinates equal to the distances of that point along the coordinate axes that pass
through the origin. The spatial coordinates of an event are the three coordinates of the
lattice point at which the event happens. It is somewhat more difficult to determine
the point of time of an event. If an observer is sitting at the origin with a clock, then
the point of time when he catches sight of an event is not the point of time when the
event happened. This is because the light takes time to pass from the position of the
event to the observer at the origin.

Since observers at different positions have to make different such corrections, it
would be simpler to have (imaginary) observers at each point of the reference frame
such that the point of time of an arbitrary event can be measured locally. But then
a new problem appears. One has to synchronize the clocks, so that they show the
same time and go at the same rate. This may be performed by letting the observer
at the origin send out light signals so that all the other clocks can be adjusted (with
correction for light travel time) to show the same time as the clock at the origin.
These clocks show the coordinate time of the coordinate system, and they are called
coordinate clocks.

By means of the lattice of measuring rods and coordinate clocks, it is now easy to
determine four coordinates (ct, x, y, z) for every event. (We have multiplied the time
coordinate t by the velocity of light c in order that all four coordinates shall have
the same dimension.) This coordinatization makes it possible to describe an event
as a point P in a so-called Minkowski diagram. In this diagram we plot ct along the
vertical axis and one of the spatial coordinates along the horizontal axis.

In order to observe particles in motion, we may imagine that each particle is
equipped with a flashlight and that they flash at a constant frequency. The flashes
from a particle represent a succession of events. If they are plotted into a Minkowski
diagram, we get a series of points that describe a curve in the continuous limit. Such
a curve is called a world line of the particle. The world line of a free particle is a
straight line, as shown to the left of the time axis in Fig. 2.1.

A particle acted upon by a net force has a curved world line as the velocity of the
particle changes with time. Since the velocity of every material particle is less than
the velocity of light, the tangent of a world line in a Minkowski diagram will always
make an angle less than 45° with the time axis. A flash of light gives rise to a light
front moving onwards with the velocity of light. If this is plotted in a Minkowski
diagram, the result is a light cone. In Fig. 2.1 we have drawn a light cone for a flash
at the origin. It is obvious that we could have drawn light cones at all points in the
diagram. An important result is that the world line of any particle at a point is inside
the light cone of a flash from that point. This is an immediate consequence of the
special principle of relativity and is also valid locally in the presence of a gravitational
field.
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Fig. 2.1 World lines. World lines of particles moving slower than light are inside the light cone

2.2 Synchronization of Clocks

There are several equivalent methods that can be used to synchronize clocks. We
shall here consider the radar method. Then a mirror is placed on the x-axis and emits
a light signal from the origin at time tA. This signal is reflected by the mirror at tB

and received again by the observer at the origin at time tC . According to the second
postulate of the special theory of relativity, the light moves with the same velocity
in both directions, giving

tB = 1

2
(tA + tC). (2.1)

When this relationship holds we say that the clocks at the origin and at the mirror
are Einstein synchronized. Such synchronization is presupposed in the special theory
of relativity. The situation corresponding to synchronization by the radar method is
shown in Fig. 2.2.

The radar method can also be used to measure distances. The distance L from the
origin to the mirror is given by

L = c

2
(tC − tA). (2.2)
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Fig. 2.2 Clock synchronization by the radar method

2.3 The Doppler Effect

Consider three observers (1, 2 and 3) in an inertial frame. Observers 1 and 3 are at
rest, while 2 moves with constant velocity along the x-axis. The situation is shown
in Fig. 2.3.

Each observer is equipped with a clock. If observer 1 emits light pulses with a
constant period τ 1, then observer 2 receives them with a longer period τ 2 according
to his or her clock. The fact that these two periods are different is a well-known
phenomenon, called the Doppler effect. The same effect is observed with sound; the
frequency of a receding vehicle is lower than that of an approaching one.

We are nowgoing to deduce a relativistic expression for theDoppler effect. Firstly,
we see from Fig. 2.3 that the two periods τ 1 and τ 2 are proportional to each other,

τ2 = K τ1. (2.3)

The constant K(v) is called Bondi’s K-factor. Since observer 3 is at rest, the period
τ 3 is equal to τ 1 so that

τ3 = 1

K
τ2. (2.4)

These two equations imply that if 2 moves away from 1, so that τ 2 > τ 1, then τ 3

< τ 2. This is because 2 moves towards 3.
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Fig. 2.3 The Doppler effect

The K-factor is most simply determined by placing observer 1 at the origin, while
letting the clocks show t1 = t2 = 0 at the moment when 2 passes the origin. This
is done in Fig. 2.3. The light pulse emitted at the point of time tA is received by 2
when his clock shows τ2 = K tA. If 2 is equipped with a mirror, the reflected light
pulse is received by 1 at a point of time tC = K τ2 = K 2tA. According to Eq. (2.1)
the reflection event then happens at a point of time

tB = 1

2
(tC + tA) = 1

2

(
K 2 + 1

)
tA. (2.5)

The mirror has then arrived at a distance xB from the origin, given by Eq. (2.2),

xB = c

2
(tC − tA) = c

2

(
K 2 − 1

)
tA. (2.6)

Thus, the velocity of observer 2 is

v = xB

tB
= K 1 − 1

K 1 + 1
c. (2.7)

Solving this equation with respect to K gives

K =
(

c + v

c − v

)1/2

. (2.8)
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This result is relativistically correct. The special theory of relativity was included
through the tacit assumption that the velocity of the reflected light is c. This is a
consequence of the second postulate of special relativity; the velocity of light is
isotropic and independent of the velocity of the light source.

Since the wavelength λ of the light is proportional to the period τ , Eq. (2.3) gives
the observed wavelength λ′ for the case when the observer moves away from the
source,

λ′ = Kλ =
(

c + v

c − v

)1/2

λ. (2.9)

This Doppler effect represents a redshift of the light. If the light source moves
towards the observer, there is a corresponding blueshift given by K −1.

It is common to express this effect in terms of the relative change of wavelength,

z = λ′ − λ

λ
= K − 1 (2.10)

which is positive for redshift. If v � c, Eq. (2.9) gives

λ′

λ
= K ≈ 1 + v

c
(2.11)

To this order the redshift is

z = v/c. (2.12)

This expression of the Doppler shift is well known in non-relativistic physics.

2.4 Relativistic Time Dilation

Every periodic motion can be used as a clock. A particularly simple clock is called
the photon clock. This is shown in Fig. 2.4.

The clock consists of two parallel mirrors that reflect a light pulse back and forth.
If the period of the clock is defined as the time interval between each time the light
pulse hits the lower mirror, then �t ′ = 2L0/c.

Assume that the clock is at rest in an inertial reference frame�′ where it is placed
along the y-axis, as shown in Fig. 2.4. If this system moves along the ct-axis with a
velocity v relative to another inertial reference frame �, the light pulse of the clock
will follow a zigzag path as shown in Fig. 2.5.

The light signal follows a different path in � than in �′. The period �t of the
clock as observed in � is different from the period �t′ which is observed in the
rest frame. The period �t is easily found in Fig. 2.5. Since the pulse takes the time
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Fig. 2.4 Photon clock at rest

Fig. 2.5 Moving photon clock

(1/2)�t from the lower to the upper mirror and since the light velocity is always the
same, we find

(
1

2
c�t

)2

= L2
0 +

(
1

2
v�t

)2

. (2.13)

i.e.
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�t = γ
2L0

c
, γ = 1

√
1 − v2/c2

. (2.14)

The γ factor is a useful shorthand notation for a term which is often used in
relativity theory. It is commonly known as the Lorentz factor.

Since the period of the clock in its rest frame is �t ′ = 2L0/c, we get

�t = γ�t ′. (2.15)

Thus, we have to conclude that the period of the clock when it is observed to move
(�t) is greater that its rest period (�t′). In other words: a moving clock goes slower
than a clock at rest. This is called the relativistic time dilation. The period �t′ of
the clock as observed in its rest frame is called the proper period of the clock. The
corresponding time t′ is called the proper time of the clock.

One might be tempted to believe that this surprising consequence of the special
theory of relativity has something to do with the special type of clock that we have
employed. This is not the case. If there had existed a mechanical clock in � that did
not show the time dilation, then an observer at rest in � might measure his velocity
by observing the different rates of his light clock and this mechanical clock. In this
way he could measure the absolute velocity of �. This would be in conflict with the
special principle of relativity.

2.5 The Relativity of Simultaneity

Events that happen at the same point of time are said to be simultaneous events.
We shall now show that according to the special theory of relativity, events that are
simultaneous in one reference frame are not simultaneous in another reference frame
movingwith respect to the first. This is what is meant by the expression “the relativity
of simultaneity”.

Consider again two mirrors connected by a line along the x′-axis, as shown in
Fig. 2.6.

Halfway between the mirrors there is a flash-lamp emitting a spherical wavefront
at a point of time tC .

The points at which the light front reaches the left-hand and the right-handmirrors
are denoted by A and B, respectively. In the reference frame �′ of Fig. 2.6 the events
A and B are simultaneous.

If we describe the same course of events from another reference frame �, where
the mirror moves with constant velocity v in the positive x-direction, we find the
Minkowski diagram shown in Fig. 2.7. Note that the light follows world lines making
an angle of 45° with the axes. This is the case in every inertial frame.

In � the light pulse reaches the left mirror, which moves towards the light, before
it reaches the right mirror, which moves in the same direction as the light. In this
reference frame the events when the light pulses hit the mirrors are not simultaneous.
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Fig. 2.6 Simultaneous events A and B

Fig. 2.7 The simultaneous events of Fig. 2.6 in another frame

As an example illustrating the relativity of simultaneity, Einstein imagined that
the events A, B and C happen in a train which moves past the platformwith a velocity
v. The event C represents the flash of a lamp at the mid-point of a wagon. A and B
are the events when the light is received at the back end and at the front end of the
wagon, respectively. This situation is shown in Fig. 2.8.
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Fig. 2.8 Light flash in a moving train

As observed in the wagon, A and B happen simultaneously. As observed from the
platform the rear end of the wagon moves towards the light which moves backwards,
while the light moving forwards has to catch up with the front end. Thus, as observed
from the platform A will happen before B.

The time difference between A and B as observed from the platform will now be
calculated. The length of the wagon, as observed from the platform, will be denoted
by L. The time coordinate is chosen such that tC = 0. The light moving backwards
hits the rear wall at a point of time tA. During the time tA the wall has moved a
distance vtA forwards, and the light has moved a distance ctA backwards. Since the
distance between the wall and the emitter is L/2, we get

L

2
= vtA + ctA. (2.16)

Thus

tA = L

2(c + v)
. (2.17)

In the same manner one finds

tB = L

2(c − v)
. (2.18)

It follows that the time difference between A and B as observed from the platform
is

�t = tB − tA = γ 2 vL

c2
. (2.19)

As observed from the wagon A and B are simultaneous. As observed from the
platform the rear event A happens at a time interval �t before the event B. This is
the relativity of simultaneity.
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2.6 The Lorentz Contraction

During the first part of the nineteenth century the so-called luminiferous ether was
introduced into physics to account for the propagation and properties of light. After
J. C. Maxwell showed that light is electromagnetic waves and the ether was still
needed as a medium in which electromagnetic waves propagated.

It was shown thatMaxwell’s equations do not obey the principle of relativity,when
coordinates are changed using the Galilean transformations. If it is assumed that the
Galilean transformations are correct, then Maxwell’s equations can only be valid in
one coordinate system. This coordinate system was the one in which the ether was at
rest. Hence, Maxwell’s equations in combination with the Galilean transformations
implied the concept of “absolute rest”. This made the measurement of the velocity
of the Earth relative to the ether of great importance.

An experiment sufficiently accurate to measure this velocity to order v2/c2 was
carried out byMichelson andMorley in 1887. A simple illustration of the experiment
is shown in Fig. 2.9.

Our earlier photon clock is supplied by a mirror at a distance L along the x-axis
from the emitter. The apparatus moves in the x-direction with a velocity v. In the
rest frame �′ of the apparatus, the distance between A and B is equal to the distance
between A andC. This distance is denoted by L0 and is called the rest length between
A and B.

Light is emitted from A. Since the velocity of light is isotropic and the distances to
B and C are equal in �′, the light reflected from B and that reflected from C have the
same travelling time. This was the result of the Michelson–Morley experiment, and
it seems that we need no special effects such as the Lorentz contraction to explain
the experiment.

However, before 1905 people believed in the physical reality of absolute velocity.
The Earth was considered to move through the “ether” with a velocity that changed

Fig. 2.9 Length contraction
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with the seasons. The experiment should therefore be described under the assumption
that the apparatus is moving.

Let us therefore describe an experiment from our reference frame �, which may
be thought of as at rest in the “ether”. Then according to Eq. (2.14) the travel time
of the light being reflected at C is

�tC = γ
2L0

c
. (2.20)

For the light moving from A to B we may use Eq. (2.18) and for the light from B
to A Eq. (2.17). This gives

�tB = L

c − v
+ L

c + v
= γ 2 2L

c
. (2.21)

If length is independent of velocity, then L = L0. In this case the travelling times
of the light signals will be different. The travelling time difference is

�tB − �tC = γ (γ − 1)
2L0

c
. (2.22)

To the lowest order in v/c we have γ ≈ 1 + (1/2)(v/c)2, so that

�tB − �tC ≈ 1

2

(v

c

)2
. (2.23)

which depends upon the velocity of the apparatus.
According to the ideas involving an absolute velocity of the Earth through the

ether, if one lets the light reflected at B interfere with the light reflected at C (at the
position A), then the interference pattern should vary with the season. This was not
observed. On the contrary, observations showed that �tB = �tC .

Assuming that length varies with velocity, Eqs. (2.20) and (2.21), together with
this observation, gives

L =
√

1 − v2

c2
L0. (2.24)

Hence, L < L0, i.e. the length of a rod is less when it moves than when it is at
rest. This is called the Lorentz contraction.

2.7 The Lorentz Transformation

An event P has coordinates
(
t ′, x ′, 0, 0

)
in a Cartesian coordinate system associated

with a reference frame �′. Thus the distance from the origin of �′ to P measured
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with a measuring rod at rest in �′ is x′. If the distance between the origin of �′ and
the position at the x-axis where P took place is measured with measuring rods at
rest in a reference frame moving with velocity v in the x-direction relative to �′, one
finds the length γ −1x due to the Lorentz contraction. Assuming that the origin of �

and �′ coincided at the point of time t = 0, the origin of �′ has an x-coordinate vt
at a point of time t. The event P thus has an x-coordinate

x = vt + γ −1x ′ (2.25)

or

x ′ = γ (x − vt). (2.26)

The x-coordinate may be expressed in terms of x ′ and y′ by letting v → −v,

x = γ
(
x ′ + vt ′). (2.27)

The y- and z-coordinates are associated with axes directed perpendicular to the
direction of motion. Therefore, they are the same in the two-coordinate systems

y = y′, z
(
z′). (2.28)

Substituting x′ from Eq. (2.26) into Eq. (2.27) reveals the connection between the
time coordinates of the two-coordinate systems,

t ′ = γ
(

t − vx

c2

)
(2.29)

and

t = γ

(
t ′ + vx ′

c2

)
. (2.30)

The latter term in this equation is nothing but the deviation from simultaneity in
� for two events that are simultaneous in �′.

The relations (2.27)–(2.30) between the coordinates of � and �′ represent a
special case of the Lorentz transformations. The above relations are special since
the two-coordinate systems have the same spatial orientation, and the x- and x′-
axes are aligned along the relative velocity vector of the associated frames. Such
transformations are called boosts.

For non-relativistic velocities, v � c, the Lorentz transformations (2.27)–(2.30)
pass over into the corresponding Galilei transformations.

The Lorentz transformation gives a connection between the relativity of simul-
taneity and the Lorentz contraction. The length of a body is defined as the difference
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between the coordinates of its end points, as measured by simultaneity in the rest
frame of the observer.

Consider the wagon of Sect. 2.5. Its rest length is L0 = x ′
B − x ′

A. The difference
between the coordinates of the wagon’s end points, xA − xB as measured in �, is
given implicitly by the Lorentz transformation

x ′
B − x ′

A = γ [xB − xA − v(tB − tA)]. (2.31)

According to the above definition the length L of the moving wagon is given by
L = xB − xA with tB = tA.

From Eq. (2.3) we then get

L0 = γ L . (2.32)

which is equivalent to Eq. (2.24).
The Lorentz transformation will now be used to deduce the relativistic formulae

for velocity addition. Consider a particle moving with velocity u along the x′-axis of
�′. If the particle was at the origin at t′ = 0, its position at t′ is x′ = u′t′. Using this
relation together with Eqs. (2.27) and (2.28) we find the velocity of the particle as
observed in �

u = x

t
= u′ + v

1 + u′v/c2
. (2.33)

A remarkable property of this expression is that by adding velocities less than c
one cannot obtain a velocity greater than c. For example, if a particle moves with a
velocity c in�′ then its velocity in� is also c regardless of the velocity of� relative
to �′.

Equation (2.33) may be written in a geometrical form by introducing the so-called
rapidity η′ defined by

tanh η′ = u′

c
(2.34)

for a particle with velocity u′. Similarly the rapidity, η̄, of �′ relative to � is given
by

tanh η̄ = v

c
. (2.35)

Since

tanh
(
η′ + η̄

) = tanh η′ + tanh θ

1 + tanh η′ tanh θ
, (2.36)

the relativistic velocity addition formula, Eq. (2.33), may be written as
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η = η′ + η̄. (2.37)

Since rapidities are additive, their introduction simplifies some calculations and
they have often been used as variables in elementary particle physics.

With these new hyperbolic variables we can write the Lorentz transformation in
a particularly simple way. Using Eq. (2.35) in Eqs. (2.27) and (2.30) we find

x = x ′ cosh η̄ + ct ′ sinh η̄, ct = x ′ sinh η̄ + ct ′ cosh η̄. (2.38)

2.8 Lorentz Invariant Interval

Let two events be given. The coordinates of the events, as referred to two different ref-
erence frames � and �′, are connected by a Lorentz transformation. The coordinate
differences are therefore connected by

�t = γ
(
�t ′ + v

c2
�x ′

)
, �x = γ

(
�x ′ + v�t ′), �y = �y′, �z = �z′.

(2.39)

This leads to

−(c�t)2 + (�x)2 + (�y)2 + (�z)2 = −(
c�t ′)2 + (

�x ′)2 + (
�y′)2 + (

�z′)2,
(2.40)

showing that the quantity

(�s)2 = −(c�t)2 + (�x)2 + (�y)2 + (�z)2 (2.41)

is invariant under a Lorentz transformation. The quantity �s is called a spacetime
interval, or only an interval. Due to the minus sign in Eq. (2.40), the square of the
interval between two events may be positive, zero or negative. These three types of
intervals are termed space-like if (�s)2 > 0, xero or light-like if (�s)2 = 0 and
time-like if (�s)2 < 0.

The reasons for these names are the following. Given two events with a space-
like interval (A and B in Fig. 2.10), there exists a Lorentz transformation to a new
reference frame where A and B happen simultaneously. In this frame the distance
between the events is purely spatial. Two events with a light-like interval (C and D
in Fig. 2.10) can be connected by a light signal, i.e. one can send a photon from C to
D. The events E and F have a time-like interval between them and can be observed
from a reference frame in which they have the same spatial position, but occur at
different points of time.
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Fig. 2.10 Space-like, light-like and time-like intervals. Interval between A and B is space-like,
between C and D light-like and between E and F time-like

Since all material particles move with a velocity less than that of light, the points
on the world line of a particle are separated by time-like intervals. The curve is then
said to be time-like. All time-like curves through a point pass inside the light cone
from that point.

For a particle with velocity u = �x/�t Eq. (2.40) gives

(�s)2 = −
(
1 − u2

c2

)
(c�t)2. (2.42)

In the rest frame �′ of the particle �x ′ = 0, giving

(�s)2 = −(c�t)2. (2.43)

The time t ′ in the rest frame of the particle is the same as the time measured on a
clock carried by the particle. It is called the proper time of the particle and denoted
by τ . From Eqs. (2.42) and (2.43) it follows that

�τ =
√

1 − u2

c2
�t = γ −1�t, (2.44)

which is an expression of the relativistic time dilation.
Equation (2.43) is important. It gives the physical interpretation of a time-like

interval between two events. The interval is a measure of the proper time interval
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Fig. 2.11 World line of an accelerating particle

between the events. This time ismeasured on a clock that moves such that it is present
at both events. In the limit u → c (the limit of a light signal), �τ = 0. This shows
that (�s)2 = 0 for a light-like interval.

Consider a particle with a variable velocity, u(t), as indicated in Fig. 2.11. In
this situation we can specify the velocity at an arbitrary point of the world line.
Equation (2.44) can be used with this velocity, in an infinitesimal interval around
this point,

dτ =
√

1 − u2(t)

c2
dt. (2.45)

This equation means that the acceleration has no local effect upon the proper time
of the clock. Here the word “local” means as measured by an observer at the position
of the clock. Such clocks are called standard clocks.

If a particle moves from A to B in Fig. 2.11, the proper time as measured on a
standard clock following the particle is found by integrating Eq. (2.45)

τB − τA =
tB∫

tA

√

1 − u2(t)

c2
dt. (2.46)

The relativistic time dilation has been verifiedwith great accuracy by observations
of unstable elementary particles with short lifetimes [1].

An infinitesimal spacetime interval
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ds2 = −c2dt2 + dx2 + dy2 + dz2. (2.47)

is called a line element. The physical interpretation of the line element between two
infinitesimally close events on a time-like curve is

ds2 = −c2dτ 2, (2.48)

where dτ is the proper time interval between the events, measured with a clock
following the curve. The spacetime interval between two events is given by the
integral (2.46). It follows that the proper time interval between two events is path-
dependent. This leads to the following surprising result: A time-like interval between
two events is greatest along the straightest possible curve between them.

2.9 The Twin Paradox

Rather than discussing the lifetime of elementary particles, we may as well apply
Eq. (2.46) to a person. Let her name be Eva. Assume that Eva is rapidly accelerating
from rest at the point of time t = 0 at origin to a velocity v along the x-axis of a (ct,
x) coordinate system in an inertial reference frame � (Fig. 2.12).

At a point of time tP she has come to a position xP . She then rapidly decelerates
until reaching a velocity v in the negative x-direction. At a point of time tQ , as
measured on clocks at rest in �, she has returned to her starting location. If we

Fig. 2.12 Twin paradox world lines. World lines of the twin sisters Eva and Elisabeth
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neglect the brief periods of acceleration, Eva’s travelling time as measured on a
clock which she carries with her is

tEva =
(
1 − v2

c2

)1/2

tQ . (2.49)

Now assume that Eva has a twin sister named Elizabeth who remains at rest at
the origin of �.

Elizabeth has become older by τElisabeth = tQ during Eva’s travel, so that

τEva =
(
1 − v2

c2

)1/2

tElisabeth. (2.50)

For example, if Eva travelled to Alpha Centauri (the Sun’s nearest neighbour at
four light years) with a velocity v = 0.8c, she would be gone for 10 years as measured
by Elizabeth. Therefore Elizabeth has aged 10 years during Eva’s travel. According
to Eq. (2.50), Eva has only aged 6 years. According to Elizabeth, Eva has aged less
than herself during her travels.

The principle of relativity, however, tells that Eva can consider herself as at rest
and Elizabeth as the traveller. According to Eva it is Elizabeth who has only aged by
6 years, while Eva has aged by 10 years during the time they are apart.

What happens? How can the twin sisters arrive at the same prediction as to how
much each of them age during the travel? In order to arrive at a clear answer to these
questions, we shall have to use a result from the general theory of relativity. The twin
paradox will be taken up again in Chap. 5.

2.10 Hyperbolic Motion

With reference to an inertial reference frame it is easy to describe relativistic acceler-
ated motion. The special theory of relativity is in no way limited to describe motion
with constant velocity.

Let a particle move with a variable velocity u(t) = dx/dt along the x-axis in
�. The frame �′ moves with velocity v in the same direction relative to �. In this
frame the particle velocity is u′(t ′) = dx ′/dt ′. At every moment the velocities u and
u′ are connected by the relativistic formula for velocity addition, Eq. (2.33). Thus,
according to Eq. (2.30), a velocity change du′ in �′ and the corresponding velocity
change du in � are related by

dt = dt ′ + (
v/c2

)
dx ′

√
1 − v2/c2

= 1 + u′v/c2
√
1 − v2/c2

dt ′. (2.51)
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Combining these expressions we obtain the relationship between the acceleration
of the particle as measured in � and �′

a = du

dt
=

(
1 − v2/c2

)3/2
(
1 + u′v/c2

)3 a′. (2.52)

Let �′ be the rest frame of the particle at a point of time t. Then u′ = 0 at this
moment, giving

a =
(
1 − u2

c2

)3/2

a′. (2.53)

Here a′ is the acceleration of the particle as measured in its instantaneous rest
frame. It is called the rest acceleration of the particle. Equation (2.53) can be
integrated if we know how the rest acceleration of the particle varies with time.

We shall now focus on the case where the particle has uniformly accelerated
motion and moves along a straight path in space. The rest acceleration of the particle
is constant, say a′ = g. Integration of Eq. (2.53) with u(0) = 0 then gives

u =
(
1 + g2

c2
t2

)−1/2

gt. (2.54)

Integrating once more gives

x = c2

g

(
1 + g2

c2
t2

)1/2

+ x0 − c2

g
, (2.55)

where the integration constant x0 is equal to the position at t = 0.
Equation (2.55) can be given the form

(
x − x0 + c2

g

)2

− c2t2 = c4

g2
. (2.56)

This is the equation of a hyperbola in the Minkowski diagram (Fig. 2.13).
Since the world line of a particle with uniformly accelerated, rectilinear motion

has the shape of a hyperbola, this type of motion is called hyperbolic motion.
Using the proper time τ of the particle as a parameter, we may obtain a simple

parametric representation of its world line. Substituting Eq. (2.54) into Eq. (2.45)
we get

dτ = dt
√
1 + (

c2/g
)
t2

. (2.57)
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Fig. 2.13 World line of
particle with constant rest
acceleration

Integration with τ(0) = 0 gives

τ = c

g
arc sinh

(
gt

c

)
. (2.58)

or

t = c

g
sinh

(
gt

c

)
. (2.59)

Inserting this expression into Eq. (2.55) we get

x = c2

g
cosh

(
gt

c

)
+ x0 − c2

g
. (2.60)

These expressions shall be used later when describing uniformly accelerated
reference frames.

Note that hyperbolic motion results when the particle moves with constant rest
acceleration. Such motion is usually called uniformly accelerated motion. Motion
with constant acceleration as measured in the “laboratory frame” � gives rise to the
usual parabolic motion.



44 2 The Special Theory of Relativity

2.11 Energy and Mass

The existence of an electromagnetic radiation pressure was well known before Ein-
stein formulated the special theory of relativity. In black body radiation with mass
density ρ there is an isotropic pressure p = (1/3)ρc2. If the radiation moves in a
certain direction (laser), then the pressure in this direction is p = ρc2. Einstein gave
several deductions of the famous equation connecting the inertial mass of a body
with its energy content. A deduction he presented in 1906 is as follows.

Consider a box with a light source at one end. A light pulse with radiation energy
E is emitted to the other end where it is absorbed (see Fig. 2.14).

The box has amassM and a length L. Due to the radiation pressure of the shooting
light pulse the box receives a recoil. The pulse is emitted during a time interval �t.
During this time the radiation pressure is

p = ρc2 = E

V
= E

Ac�t
, (2.61)

where V is the volume of the radiation pulse and A the area of a cross section of the
box.

The recoil velocity of the box is

�v = −a�t = − F

M
�t = − p A

M
�t = −

(
E

Ac�t

)(
A�t

M

)
= − E

Mc
(2.62)

The pulse takes the time L/c to move to the other side of the box. During this
time the Box moves a distance

Fig. 2.14 Light pulse in a box
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�x = �v
L

c
= − E L

Mc2
. (2.63)

Then the box is stopped by the radiation pressure caused by the light pulse hitting
the wall at the other end of the box.

Letm be themass of the radiation. Before Einstein onewould putm = 0. Einstein,
however, reasoned as follows. Since the box and its contents represent an isolated
system, the mass centre has not moved. The mass centre of the box with mass M has
moved a distance �x to the left, and the radiation with mass m has moved a distance
L to the right. Thus

mL + M�x = 0 (2.64)

which gives

m = − M

L
�x = −

(
M

L

)(
− E L

Mc2

)
= E

c2
(2.65)

or

E = mc2. (2.66)

Here we have shown that radiation energy has amass given by Eq. (2.65). Einstein
derived Eq. (2.66) using several different methods showing that it is valid in general
for all types of systems.

The energy content of even small bodies is enormous. For example, by transform-
ing 1 g of matter to heat, one may heat 300,000 metric tons of water from room
temperature to the boiling point. (The energy corresponding to a mass m is enough
to change the temperature by �T of an object of mass M and specific heat capacity
cv : mc2 = Mcv�T ).

2.12 Relativistic Increase of Mass

In the special theory of relativity, force is defined as rate of change of momentum.We
consider a body that gets a change of energy dE due to the work performed on it by
a force F. According to Eq. (2.66) and the definition of work (force times distance)
the body gets a change of mass dm, given by

c2dm = dE = Fds = Fvdt = vd(mv) = mvdv + v2dm, (2.67)

which gives
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m∫

m0

dm

m
=

v∫

0

vdv

c2 − v2
, (2.68)

where m0 is the rest mass of the body—i.e. its mass as measured by an observer
co-moving with the body—and m its mass when its velocity is equal to v. Integration
gives

m = m0√
1 − v2/c2

= γ m0. (2.69)

In the case of small velocities compared to the velocity of light we may use the
approximation

√

1 − v2

c2
= 1 + 1

2

v2

c2
. (2.70)

With this approximation Eqs. (2.66) and (2.69) give

E ≈ m0c2 + 1

2
m0v

2. (2.71)

This equation shows that the total energy of a body encompasses its rest energy
m0c2 and its kinetic energy. In the non-relativistic limit the kinetic energy is
(1/2)m0v

2. The relativistic expression for the kinetic energy is

EK = E − m0c2 = (γ − 1)m0c2. (2.72)

Note that EK → ∞ when v → c.
According to Eq. (2.33), it is not possible to obtain a velocity greater than that

of light by adding velocities. Equation (2.72) gives a dynamical reason that material
particles cannot be accelerated up to and above the velocity of light.

Using Eq. (2.69) the energy and momentum of a particle with rest mass m0 and
velocity v are

E = γ m0c2, p = γ m0v (2.73)

Using the identity

γ 2 = γ 2 v2

c2
+ 1, (2.74)

It follows from the expressions (2.73) that

E2 = p2c2 + m2
0c4, (2.75)
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or

m2
0c4 = E2 − p2c2. (2.76)

Since the rest mass m0 of a particle is a velocity-independent quantity and hence
Lorentz invariant, it follows that the quantity E2 − p2c2 of a particle is a Lorentz
invariant having the same value in all inertial reference frames even if the energy and
momentum of the particle depend upon the frame.

2.13 Lorentz Transformation of Velocity, Momentum,
Energy and Force

We shall write down the Lorentz transformation of velocity, momentum, energy and
force. (Detailed derivations are given by W. G. V. Rosser in An Introduction to the
Theory of Relativity, Butterworths, 1964). Let � and �′ be two inertial frames with
a relative velocity v in the x-direction and with co-moving Cartesian coordinates. A
particle is moving with velocity components ux , uy, uz in � and u′

x , u′
y, u′

z in �′.
The transformation formulae for the velocity component are

u′
x = ux − v

1 − vux/c2
, u′

y = uy

√
1 − v2/c2

1 − vux/c2
, u′

z = uz

√
1 − v2/c2

1 − vux/c2
. (2.77)

It follows from these formulae that

u′2 = u′2
x + u′2

y + u′2
z = (ux − v)2 + (

u2 − u2
x

)(
1 − v2/c2

)

(
1 − vux/c2

)2 . (2.78)

As shown by Rosser this leads to

1
√
1 − u′2/c2

= 1 − vux/c2
√
1 − v2/c2

√
1 − u2/c2

. (2.79)

In the frames � and �′ the momentum of a particle with rest mass m0 has
components

pi = m0ui√
1 − u2/c2

, p′
i = m0u′

i√
1 − u′2/c2

, (2.80)

and energies

E = m0c2
√
1 − u2/c2

, E ′ = m0c2
√
1 − u′2/c2

. (2.81)
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Using the first of Eqs. (2.77) and (2.79) gives

p′
x = γ (mux − mv), (2.82)

where γ and m is given in Eq. (2.79). Since mux = px and m = E/c2 we get

p′
x = γ

(
px − Ev/c2

)
. (2.83)

Using the second and third of Eq. (2.77) we get

p′
y = py, p′

z = pz . (2.84)

Inserting Eq. (2.79) in the second of Eq. (2.81) we obtain

E ′ = γ (E − vpx ). (2.85)

At this stage we define force as a 3-vector

f = dp
dt

, (2.86)

or

fx = dpx

dt
etc. (2.87)

where p is the momentum as given in Eq. (2.73). Similarly we have

f ′
x = dp′

x

dt ′ etc. (2.88)

Using the transformation Eq. (2.83) we then have

f ′
x = γ

d

dt ′

(
px − vE

c2

)
= γ

dt

dt ′

(
dpx

dt
− v

c2
dE

dt

)
. (2.89)

From the Lorentz transformation t ′ = γ
(
t − vx/c2

)
we have

dt

dt ′ = 1
dt ′
dt

= 1
d
dt γ

(
t − vx

c2
) = 1

λ
(
1 − vux

c2
) . (2.90)

Furthermore we insert dpx/dt = fx in Eq. (2.89) and

dE

dt
= f · u = fx ux + fyuy + fzuz . (2.91)
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Inserting this in Eq. (2.89) and rearranging gives

f ′
x = fx − vuy

c2 − vux
fy − vuz

c2 − vux
fz . (2.92)

Since p′
y = py we get

f ′
y = dp′

y

dt ′ = dpy

dt ′ = dt

dt ′
dpy

dt
= dt

dt ′ fy . (2.93)

Using Eq. (2.90) we obtain the transformations equations for the y- and
z-components of the force

f ′
y = fy

γ
(
1 − vux/c2

) , f ′
z = fz

γ
(
1 − vux/c2

) . (2.94)

The inverse transformation is

fx = f ′
x + vu′

y

c2 + vu′
x

f ′
y + vu′

z

c2 + vu′
x

f ′
z , fy = f ′

y

γ
(
1 + vu′

x/c2
) ,

fz = f ′
z

γ
(
1 + vu′

x/c2
) . (2.95)

If �′ is the rest system of the particle, so that u′
x = u′

y = u′
z = 0, the

transformation reduces to

fx = f ′
x , fy =

√
1 − v2/c2 f ′

y, fz =
√
1 − v2/c2 f ′

z . (2.96)

Example 2.13.1 (The Lever paradox) A right-angled lever with arms of equal length
L′ is at rest at the origin of a Cartesian coordinate system co-moving with an inertial
reference frame �′. It is oriented with the arms along the x ′- and y′-axes. At the
end of the x′-arm there acts a force f ′ in the y-direction, and at the end of the y-arm
there acts an equal force in the x′-direction. Hence the torques acting in the opposite
directions are equal, so the lever is in rotational equilibrium andwill not start rotating.

An inertial frame�moves in the negative x-directionwith velocity v relative to�′.
In this frame the length of the x-arm is Lorentz contracted to L = √

1 − v2/c2L ′, but
the arm in the y-direction is unchanged. Furthermore, according to the transformation
Eq. (2.95) the force in the x-direction is unchanged, but the force in the y-direction
is diminished to fy = √

1 − v2/c2 f ′
y . Hence in this frame there is a net torque

f ′L ′ − √
1 − v2/c2 f ′√1 − v2/c2L ′ = (

v2/c2
)

f ′L ′, so one is inclined to conclude
that the lever will start rotating in the clockwise direction.

This is in conflict with the analysis in the rest frame of the lever, and this conflict
is what is called the lever paradox.
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What will happen? Shall we trust the analysis in the rest frame of the lever or in
the laboratory frame where the lever moves?

The answer is related to the relativity of simultaneity and what we mean by a
physical object. If an extended physical object exists at a certain moment, it is made
up of a set of simultaneous events. Due to the relativity of simultaneity these events
are not simultaneous in a frame moving relatively to the first one. Hence the lever
in the laboratory frame and the rest frame of the lever consists of different sets of
events.

The set of simultaneous events in the rest frame of an object determines what will
happen to the object. We therefore have the rule: In order to determine what happens
to an extended body acted upon by forces one has to perform the calculations in the
rest frame of the body.

This is not in conflict with the principle of relativity. The rule does not introduce
any absolute velocity. If one transforms the description in the rest frame of the body
to the laboratory frame, there will appear unusual terms depending upon the relative
velocity of the object and the laboratory frame. This does not mean that the laws of
nature are different in different inertial reference frames. But it means that the laws
contain this relative velocity, due to the relativity of simultaneity, because the objects
that are described by simultaneity in different reference frames do not consist of the
same sets of events.

2.14 Tachyons

Particles cannot pass the velocity barrier represented by the velocity of light. How-
ever, the special theory of relativity permits the existence of particles that have always
moved with a velocity v > c. Such particles are called tachyons.

Tachyons have special properties that have been used in the experimental searches
for them. There is currently no observational evidence for the physical existence of
tachyons.

There are also certain theoretical difficulties with the existence of tachyons. The
special theory of relativity applied to tachyons leads to the following paradox. Using
a tachyon telephone a person, A emits a tachyon to B at a point of time t1. B moves
away from A. The tachyon is reflected by B and reaches A before it was emitted; see
Fig. 2.15. If the tachyon could carry information it might bring an order to destroy
the tachyon emitter when it arrives back at A.

To avoid similar problems in regards to the energy exchange between tachyons and
ordinary matter, a reinterpretation principle is introduced for tachyons. For certain
observers a tachyon will move backwards in time, i.e. the observer finds that the
tachyon is received before it was emitted. Special relativity tells us that such a tachyon
is always observed to have negative energy.

According to the reinterpretation principle, the observer will interpret his observa-
tions to mean that a tachyon with positive energy moves forward in time. In this way,
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Fig. 2.15 Tachyon paradox. A emits a tachyon at a point of time t1. It is reflected at B and arrives
back at A at a point of time t2. Note that the arrival event at A is later than the reflection event as
measured by B

one finds that the energy exchange between tachyons and ordinary matter proceeds
in accordance with the principle of causality.

However, the reinterpretation principle cannot be used to remove the problems
associated with the exchange of information between tachyons and ordinary matter.
The tachyon telephone paradox cannot be resolved by means of the reinterpreta-
tion principle. The conclusion is that if tachyons exist, they cannot be carriers of
information in our slowly moving world.

2.15 Magnetism as a Relativistic Second-Order Effect

Electricity and magnetism are described completely by Maxwell’s equations of the
electromagnetic field,

∇ · E = 1

ε0
ρq , (2.97)

∇ · B = 0, (2.98)

∇ × E = −∂B
∂t

, (2.99)



52 2 The Special Theory of Relativity

∇ × B = μ0j + 1

c2
∂E
∂t

, (2.100)

together with Lorentz’s force law

F = q(E + v × B). (2.101)

However, the relation between the magnetic and the electric force was not fully
understood until Einstein had constructed the special theory of relativity. Only then
could one clearly see the relationship between themagnetic force on a chargemoving
near a current-carrying wire and the electric force between charges.

We shall consider a simple model of a current-carrying wire in which we assume
that the positive ions are at rest while the conducting electronsmovewith the velocity
v. The charge per unit length for each type of charged particle is λ̂ = Sne where S
is the cross-sectional area of the wire, n the number of particles of one type per unit
length and e the charge of one particle. The current in the wire is

J = Snev = λ̂v. (2.102)

Thewire is at rest in an inertial frame�
∧

. As observed in�
∧

it is electrically neutral.
Let a charge q move with a velocity u along the wire in the opposite direction of
the electrons. The rest frame of q is �. The wire will now be described from � (see
Figs. 2.16 and 2.17).

Note that the charge per unit length of the particles as measured in their own rest
frames, �0, is

λ0− =
(
1 − v2

c2

)1/2

λ̂, λ0+ = λ̂ (2.103)

Since the distance between the electrons is Lorentz contracted in �
∧

compared to
their distance in �0.

The velocities of the particles as measured in � are

Fig. 2.16 Current carrying
wire seen from its own rest
frame
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Fig. 2.17 Current carrying
wire seen from the frame of a
moving charge

v− = − v + u

1 + uv/c2
, v+ = −u. (2.104)

The charge per unit length of the negative particles as measured in � is

λ− =
(
1 − v2−

c2

)−1/2

λ0−. (2.105)

Substitution from Eqs. (2.103) and (2.104) gives

λ− = γ
(
1 + uv

c2

)
λ̂, (2.106)

where γ = (
1 − u2/c2

)−1/2
. In a similar manner the charge per unit length of the

positively charged particles as measured in � is

λ+ = γ λ̂. (2.107)

Thus as observed in the rest frame of q the wire has a net charge per unit length

λ = λ− − λ+ = γ
uv

c2
λ̂. (2.108)

As a result of the different Lorentz contractions of the positive and negative ions
when we transform from their respective rest frames to �, a current-carrying wire
which is electrically neutral in the laboratory frame is observed to be electrically
charged in the rest frame of the charge q.

As observed in this frame there is a radial electrical field with field strength

E = λ

2πε0r
. (2.109)

Then a force F acts on q this is given by
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F = q E = qλ

2πε0r
= λ̂v

2πε0c2r
γ qu. (2.110)

If a force acts upon q as observed in �
∧

then a force also acts on q as observed in
�. According to the relativistic transformation of a force component normal to the
direction of the relative velocity between �

∧

and �, this force is

F
∧

= γ −1F = λ̂v

2πε0c2r
qu. (2.111)

Inserting J = λ̂v from Eq. (2.102) and using c2 = (ε0μ0)
−1, where μ0 is the

permeability of vacuum, we obtain

F
∧

= μ0 J

2πr
qu. (2.112)

This is exactly the expression obtained if we calculate the magnetic flux density
B
∧

around the current-carrying wire using Ampere’s circuit law

B
∧

= μ0
J

2πr
(2.113)

and use the force law Eq. (2.101) for a charge moving in a magnetic field

F
∧

= qu B
∧

. (2.114)

Wehave seen here how amagnetic force appears as a result of an electrostatic force
and the special theory of relativity. The considerations above have also demonstrated
that a forcewhich is identified as electrostatic in one frame of reference is observed as
a magnetic force in another frame. In other words, the electric and the magnetic force
are really the same. What an observer names it depends upon his state of motion.

Exercises

2.1. Robb’s Lorentz invariant spacetime interval formula (A. A. Robb, 1936)

Show that the spacetime interval between the emission event at the point of time
tA and the reflection event at tB in Fig. 2.2 can be expressed as �s = c

√
tAtC , where

tC is the point of time when the reflected light signal arrives back at the emitter.

2.2. The twin paradox

On New Year’s day 2004, an astronaut (A) leaves Earth on an interstellar journey.
He is travelling in a spacecraft at the speed of v = (4/5)c heading towards Alpha



Exercises 55

Centauri. This star is at a distance of 4 ly (ly = light years) measured from the
reference frame of the Earth. As A reaches the star, he immediately turns around
and heads home. He reaches the Earth New Year’s day 2016 (in Earth’s time frame).
The astronaut has a brother (B), who remains on Earth during the entire journey. The
brothers have agreed to send each other a greeting every New Year day with the aid
of radio telescope.

(a) Show that A only sends 6 greetings (including the last day of travel), while B
sends 10.

(b) Draw a Minkowski diagram where A’s journey is depicted with respect to the
Earth’s reference frame. Include all the greetings that B is sending. Show with
the aid of the diagram that while A is outbound, he only receives one greeting,
while on his way home he receives nine.

(c) When does B receive signals from A?
(d) Show how the results from (b) and (c) can be deduced from the Doppler effect.

2.3. Faster than the speed of light?

The quasar 3C273 emits a jet of matter that moves with the speed v0 towards Earth
making an angle φ to the line of sight (see Fig. 2.18).

(a) Assume that two signals are sent towards the Earth simultaneously, one from
A and one from B. How much earlier will the signal from B reach the Earth
compared to that from A?

(b) Find an expression of the transverse distance that the emitted part has moved
when it reaches B. How much time (relative to the Earth) has this part been
travelling?

(c) Calculate the velocity v0 of the light source in terms of v and θ , and find the
value of v0 if v = 10c and θ = 10◦. How large must v0 be in order that the
observed transverse velocity shall be larger than c?

2.4. Time dilation and Lorentz contraction

Fig. 2.18 Light cone due
to Cherenkov radiation
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(a) At what speed does a clock move if its rate of time is 0.6 times the rate when it
is at rest?

(b) A rod moves in the x-direction. An observer following the rod measures that it
makes an angle π/4 with the x-axis. What is the speed of the rod if an observer
at rest on the x-axis finds that it makes an angle π/3 with the x-axis, due to the
Lorentz contraction of its length component in the x-direction?

2.5. Atmospheric mesons reaching the surface of the Earth

Atmospheric muons are formed when molecules in the Earth’s atmosphere are hit
by particles in the cosmic rays about L0 = 10 km above the surface. The half-life of
a muon as measured by an observer co-moving with the muon is t0 = 1.56×10−6 s.
The average velocity of the muons are v = 0.98 c.

(a) According to a non-relativistic calculation, how many of ten million muons
formed at 10 km height reach the Earth’s surface?

(b) Taking the relativistic time dilation into account, how many will then reach the
surface of the Earth?

(c) How is this explained by an observer following the muons?

2.6. Relativistic Doppler shift

The relativistic formula for the Doppler effect of an object moving along the
direction of sight with a velocity v away from the observer is

λr =
√
1 + v/c

1 − v/c
λe,

where λe is the frequency measured by an observer co-moving with the object, and
λr is the frequencymeasured for the light received by an observer at rest. If the object
moves towards the observer the signs are interchanged.

For an object moving away from an observer there is an increase in the measured
wavelength—a redshift. The redshift of an object is defined as

z = λr − λe

λe
.

Hence the redshift due to the Doppler effect is

z =
√
1 + v/c

1 − v/c
− 1.

Positive value of z means redshift and negative value blueshift.
The measured value of z for the centre of our neighbour galaxy, the Andromeda

Galaxy, is z = − 0.0004.
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Determine the velocity of the Andromeda Galaxy along the line of sight from this
measurement. Which way does the Andromeda Galaxy move relative to the Milky
Way?

2.7. The velocity of light in a moving medium

Light moves more slowly in a material medium than in empty space. The index
of refraction, n, of the medium is defined as the ratio of the velocity of light in the
medium when it is at rest, u0, and the velocity of light in empty space. Then

n = u0

c
.

We now consider a medium moving with a velocity v in the same direction as the
light. The speed of light in this medium relative to the laboratory frame is related to
the speed of light in a frame co-moving with the water by the relativistic velocity
addition law,

u = u0 + v

1 + u0v
c2

.

Find the velocity of light in a moving medium in terms of its index of refraction
and velocity.

2.8. Cherenkov radiation

When a particle moves through a medium with a velocity v greater than the
velocity of light in the medium, it emits a cone of radiation with a half-angle θ given
by cos θ = c/nv.

From Wikipedia: https://en.wikipedia.org/wiki/Cherenkov_radiation#/media/
File:Cherenkov.svg.

(a) What is the threshold kinetic energy (in MeV) of an electron moving through
water in order that it shall emit Cherenkov radiation? The index of refraction of
water is n = 1.3. The rest energy of an electron is mec2 = 0.5.11 MeV.

(b) What is the limiting half-angle of the cone for high-speed electrons moving
through water?

2.9. Relativistic form of Newton’s 2 law

In order to simplify the calculation we shall consider motion along the x-direction
only. Let the particle have rest mass m0 and velocity v. Its momentum is p = γ m0v,
where γ = (

1 − v2/c2
)−1/2

.
The relativistic form of Newton’s 2 law is F = dp/dt , where F is the force acting

on the particle, and t is the coordinate time.
Calculate the form of this law as expressed in terms of v and dv/dt.

2.10. Lorentz transformation of electric and magnetic fields

https://en.wikipedia.org/wiki/Cherenkov_radiation#/media/File:Cherenkov.svg
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It follows from the Lorentz transformations (2.27), (2.28) and (2.30) that the
partial derivatives transform as

∂

∂t
= γ

(
∂

∂t ′ + v
∂

∂x ′

)
,

∂

∂x
= γ

(
∂

∂x ′ + v

c2
∂

∂t ′

)
,

∂

∂y
= ∂

∂y′ ,
∂

∂z
= ∂

∂z′ .

Deduce the transformation equations for electric and magnetic fields by using
the transformation equations for the partial derivatives together with the requirement
that Maxwell’s equations shall be Lorentz invariant.

Reference
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Chapter 3
Vectors, Tensors and Forms

Abstract In this chapter we develop the main mathematical concepts used in this
book. First vectors, not only as quantities with length and direction, but as differential
operators. Then tensors of arbitrary rank are introduced. As a preparation for using
Cartan’s formalism we introduce forms, i.e. antisymmetric covariant tensors. This
antisymmetric tensor formalism is most effective when we introduce an orthonormal
basis field. Using an orthonormal basis co-moving with an observer, i.e. where the
time-like vector is equal to the 4-velocity of the observer, simplifies the physical
interpretation of the calculations.

3.1 Vectors

An expression of the form aμ�eμ, where aμ, μ = 1, 2, …, n are real numbers, is
known as a linear combination of the vectors �eμ.

The vectors �e1, . . . , �en are said to be linearly independent if there does not exist
real numbers aμ �= 0 such that aμ�eμ = 0 (Fig. 3.1).

This has a geometrical interpretation: A set of vectors are linearly independent if
it is not possible to construct a closed polygon of the vectors (even by adjusting their
lengths).

A set of vectors �e1, . . . , �en are said to be maximally linearly independent if
�e1, . . . , �en, �v are linearly dependent for all vectors �v �= �eμ, i.e. if there exist real
numbers aμ such that �v + aμ�eμ = 0. Hence the vector �v may be written as a linear
combination of the vectors �eμ,

�v = vμ�eμ. (3.1)

We define the dimension of a vector-space as the number of vectors in amaximally
linearly independent set of vectors of the space. The vectors �eμ in such a set are known
as the basis vectors of the space. The numbers vμ are called the components of the
vector �v in this basis.
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Fig. 3.1 Closed polygon (linearly dependent vectors)

3.1.1 Four-Vectors

Four-vectors (also denoted 4-vectors) are vectors which exist in (4-dimensional)
spacetime. A 4-vector equation represents four independent component equations.

As a first example of a 4-vector we shall consider the 4-velocity, i.e. the velocity
of a particle through spacetime.

Definition 3.1.1 (Four-velocity) The four-velocity of a particle is a 4-vector with
components equal to the derivatives of the coordinates with respect to the proper
time τ of the particle,

�u = uμ�eμ = dxμ

dτ
�eμ. (3.2)

One often writes the 4-velocity in the following way

�u = (u0, u1, u2, u3
)
, (3.3)

where u0 is the time component of the 4-velocity, and ui , i = 1, 2, 3 are the spatial
components.

The proper time of the particle is the time measured by a standard clock carried
by the particle. From Eq. (2.45) we have
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dt

dτ
= 1
√
1 − v2/c2

= γ, (3.4)

where v is the ordinary velocity through 3-dimensional space. Note that ν is a rel-
ative velocity which can be transformed away by referring to the rest frame of the
particle. On the other hand the 4-velocity, which is a vector in spacetime, cannot be
transformed away. In the rest frame of the particle it still has a non-vanishing time
component.

With reference to a Cartesian coordinate system with coordinates(
x0 = ct, x1 = x, x2 = y, x3 = z

)
the 4-velocity has the component form

�u = c
dt

dτ
�et + dx

dτ
�ex + dy

dτ
�ey + dz

dτ
�ez . (3.5)

This may be written

�u = dt

dτ

(
c�et + dx

dt
�ex + dy

dt
�ey + dz

dt
�ez

)
. (3.6)

The ordinary velocity through 3-space is

�v = dx

dt
�ex + dy

dt
�ey + dz

dt
�ez . (3.7)

Using Eqs. (3.4) and (3.7) the 4-velocity can be written

�u = γ (c�et + �v), (3.8)

or

�u = γ
(
c, vx , vy, vz

)
. (3.9)

In a co-moving reference framewhere the particle is at rest, the 3-velocity vanishes
and γ = 1. In this frame the four-velocity is

�u = c�et . (3.10)

In its rest frame the particle moves only in the time direction.

Definition 3.1.2 (Four-momentum) The four-momentum of a particle is equal to the
rest mass of the particle times its four-velocity,

�P = m0�u, (3.11)

where m0 is the rest mass of the particle. The components of the 4-momentum are
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�P = (E/c, �p), �p = γ m0�v = m�v, (3.12)

where E is the relativistic energy of the particle.

Definition 3.1.3 (Minkowski force) TheMinkowski force acting on a particle is equal
to the derivative of the 4-momentum with respect to the proper time of the particle,

�F = d �P/dτ. (3.13)

Its components are

�F = γ

(
1

c
�f · �v, �f

)
, (3.14)

where

�f = d �p
dt

(3.15)

is the ordinary force.

Definition 3.1.4 (Four-acceleration) The four-acceleration of a particle is equal to
the derivative of its four-velocity with respect to its proper time,

�A = d �U
dτ

. (3.16)

In the general theory of relativity gravitation is not considered a force. A particle
in free fall is inNewtonian gravitational theory said to be influenced by a gravitational
force. According to the general theory of relativity the particle is not influenced by
any force. Such a particle has no 4-acceleration. The equation �A �= 0 implies that
the particle is not in free fall. It is then influenced by non-gravitational forces. It
is important to distinguish between the ordinary 3-acceleration, which represents
the acceleration of a particle through 3-space relative to an observer, and the 4-
acceleration which represents deviation from free fall. In the context of the general
theory of relativity the words “a non-accelerating particle” usually mean “a particle
which is in free fall”.

3.1.2 Tangent Vector Fields and Coordinate Vectors

In a curved space position vectors with finite length do not exist (see Fig. 3.2).
Different points in a curved space have different tangent planes. Finite vectors do
only exist in these tangent planes (see Fig. 3.3). However, infinitesimal position
vectors d�r do exist.
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Fig. 3.2 No finite position vector in curved space. Vectors can only exist in tangent planes. The
vectors in the tangent plane of N do not contain the vector NP (dashed line)

Fig. 3.3 Vectors in tangent planes. In curved space vectors can only exist in tangent planes. The
figure shows the tangent plane of a point P in a curved surface
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We shall now define the concepts reference frame, coordinate system, co-moving
coordinate system, orthonormal basis and coordinate basis vector.

Definition 3.1.5 (Reference frame) A reference frame is a set of particles with spec-
ified motion. An inertial reference frame is a frame in which Newton’s first law is
valid. In the general theory of relativity, where gravity is not a force, this means that
an inertial reference frame is a non-rotating set of free particles.

Definition 3.1.6 (Coordinate system)A coordinate system is a continuumof 4-tuples
giving a unique set of coordinates for events in spacetime.

Definition 3.1.7 (Co-moving coordinate system) A co-moving coordinate system
in a frame is a coordinate system where the particles in the reference frame have
constant spatial coordinates.

Definition 3.1.8 (Orthonormal basis) An orthonormal basis
{�eμ̂

}
in spacetime is

defined by

�et̂ · �et̂ = −1(c = 1), �eî · �e ĵ = δî ĵ , (3.17)

where î and ĵ are space indices.

Definition 3.1.9 (Preliminary definition of coordinate basis vector)Our preliminary
definition is: A coordinate basis vector is the partial derivative of the position vector
with respect to a coordinate,

�eμ = ∂�r
∂xμ

. (3.18)

A vector field is a continuum of vectors, where the components are continuous
and differentiable functions of the coordinates. Let �u be a tangent vector field to a
curve with parameter λ (coordinate along the curve). Then

�u = d�r
dλ

. (3.19)

The position vector of a point on the curve is a function of the coordinates
which are again functions of the curve parameter, �r = �r [xμ(λ)]. The chain rule
for differentiation then yields

�u = ∂�r
∂xμ

dxμ

dλ
= dxμ

dλ
�eμ = uμ�eμ. (3.20)

Thus, the components of the tangent vector field along a curve parameterized by
λ are given by

uμ = dxμ

dλ
. (3.21)
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In the theory of relativity the invariant parameter of the world line of a particle is
usually chosen to be the proper time of the particle,

uμ = dxμ

dτ
. (3.22)

This means that the tangent vector field of the world line of a particle is made up
of the four-velocity of the particle.

3.1.3 Coordinate Transformations

Let there be given two coordinate systems, {xμ} and
{

xμ′}
covering a region of

spacetime with basis vectors

�eμ = ∂�r
∂xμ

, �eμ′ = ∂�r
∂xμ′ . (3.23)

Suppose there exists a coordinate transformation such that the primed coordi-
nates a functions of the unprimed, xμ′

(xμ), and an inverse transformation such
that the unprimed are functions of the primed, xμ

(
xμ′)

. Applying the chain rule
of differentiation we then obtain

�eμ′ = ∂�r
∂xμ′ = ∂�r

∂xμ

∂xμ

∂xμ′ = �eμ

∂xμ

∂xμ′ . (3.24)

This is the transformation equation for the basis vectors. The quantities ∂xμ/∂xμ′

are the elements of the transformation matrix. Indices that are not summation indices
are called free indices. We have the following rule: In all terms on each side of an
equation the free indices should appear in the same way (as an upper index or a lower
index).

Applying this rule we can now find the inverse transformation

�eμ = �eμ′
∂xη′

∂xμ
. (3.25)

A vector itself is invariant. Only its components and the basis vectors transform.
Hence,

�v = vμ�eμ = vμ′ �eμ′ = vμ′ �eμ

∂xμ

∂xμ′ . (3.26)

Thus, the components of a vector transform as follows
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vμ = vμ′ ∂xμ

∂xμ′ , vμ′ = vμ ∂xμ′

∂xμ
. (3.27)

The directional derivative along a curve parameterized by λ is

d

dλ
= ∂

∂xμ

dxμ

dλ
= vμ ∂

∂xμ
, (3.28)

where vμ = dxμ/dλ are the components of the tangent vector of the curve. The
directional derivative along an xν-axis is found by inserting λ = xν . This gives

∂

∂xμ

∂xμ

∂xν
= δμ

ν

∂

∂xμ
= ∂

∂xν
. (3.29)

Hence, the directional derivative along a coordinate axis is equal to the par-
tial derivative with respect to the coordinate of the axis. From the chain rule of
differentiation we get in the primed coordinate system

∂

∂xμ′ = ∂xμ

∂xμ′
∂

∂xμ
. (3.30)

Comparingwith Eq. (3.18) shows that the partial derivatives transform in the same
way as the basis vectors.

A weakness of the preliminary definition (3.18) of basis vectors is that it involves
the position vectors that are not defined in a curved space, only in the tangent plane
of the space. We would therefore like to have a general definition of basis vectors
not involving the position vector. The transformation (3.30) of the partial derivatives
motivates to the following definition.

Definition 3.1.10 (General definition of coordinate basis vectors) We define the
coordinate basis vectors as partial derivatives,

�eμ = ∂

∂xμ
. (3.31)

This is the general definition of coordinate basis vectors. It applies in curved as
well as in flat spaces.

Since an arbitrary vector can be written as a linear combination of basis vectors,
we now have a new way of thinking about vectors. From now on we can think of a
vector as a differential operator, not only a quantity with magnitude and direction,
i.e. an arrow.

Example 3.1.1 (Transformation between Cartesian- and plane polar coordinates)
The basis vectors of a Cartesian coordinate system and those of plane polar coordi-
nates are shown in Fig. 3.4. We see from the figure that the coordinates are related
by the transformation
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Fig. 3.4 Basis vectors in
Cartesian- and plane polar
coordinates

x = r cos θ, y = r sin θ (3.32)

The transformation of the basis vectors is found from the chain rule for
differentiation

�er = ∂

∂r
= ∂x

∂r

∂

∂x
+ ∂y

∂r

∂

∂y
= cos θ �ex + sin θ �ey,

�eθ = ∂

∂θ
= ∂x

∂θ

∂

∂x
+ ∂y

∂θ

∂

∂y
= −r sin θ �ex + r cos θ �ey . (3.33)

The basis vectors in the Cartesian coordinate system are unit vectors. The
magnitudes of the basis vectors in the plane polar coordinate system are

|�er | =
√

�er · �er =
√
cos2 θ + sin2 θ = 1,

|�eθ | =
√

�eθ · �eθ =
√

r2 cos2 θ + r2 sin2 θ = r. (3.34)

This shows that the coordinate basis vectors need not be unit vectors.

Definition 3.1.11 (Orthonormal basis) An orthonormal basis is a vector basis
consisting of unit vectors that are normal to each other.

We shall denote orthonormal basis by writing a hat over the indices. Note that an
orthonormal basis will not in general be a coordinate basis, i.e. the basis vectors of
an orthonormal basis are not just partial derivatives.

The orthonormal basis of the plane polar coordinate system is

�er̂ = �er , �eθ̂ = 1

r
�eθ . (3.35)

Example 3.1.2 (Relativistic Doppler effect) Consider a photon with energy E and
momentum p in the rest frame of the emitter and the observer. The energy of the
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photon as observed in a framemovingwith velocity v away from the observer is found
from the transformation Eq. (2.85). Inserting the energy E = hν and momentum
p = hν/c in the rest frame of the emitter gives

ν ′ = γ
(
ν − v

c
ν
)
, (3.36)

Giving

ν ′ =
√

c − v

c + v
ν. (3.37)

This change of observed frequency depending upon the observed velocity of the
emitter is often called the Doppler shift.

3.1.4 Structure Coefficients

Let us first define a mathematical quantity which is essential in connection with the
structure coefficients.

Definition 3.1.12 (Commutator of vectors) The commutator of two vectors is

[�u, �v] = �u�v − �v�u, (3.38)

where �u�v is defined as

�u�v = uμ�eμ(vν �eν). (3.39)

Hence, �u�v means that �u acts upon �v as a differential operator. The commutator of
two vectors is itself a vector.

Definition 3.1.13 (Structure coefficients) The structure coefficients cρ
μν are the

components of the commutators of the basis vectors,

[�eμ, �eν

] = cρ
μν �eρ. (3.40)

It follows that the structure coefficients are antisymmetric in their lower indices,

cρ
νμ = −cρ

μν. (3.41)

Calculating the structure coefficients in a coordinate basis we get

[
∂

∂xμ
,

∂

∂xν

]
= ∂2

∂xμ∂xν
− ∂2

∂xν∂xμ
= 0. (3.42)
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Hence the structure coefficients vanish in coordinate basis.

Example 3.1.3 (Structure coefficients in plane polar coordinates) We shall calcu-
late the structure coefficients of an orthonormal basis in a system of plane polar
coordinates. Using Eq. (3.35) we have

[�er̂ , �eθ̂

] =
[

∂

∂r
,
1

r

∂

∂θ

]
= ∂

∂r

(
1

r

∂

∂θ

)
− 1

r

∂

∂θ

= − 1

r2
∂

∂θ
+ 1

r

∂2

∂r∂θ
− 1

r

∂2

∂θ∂r
= − 1

r2
�eθ = −1

r
�eθ̂ . (3.43)

Since

[�er̂ , �eθ̂

] = cρ̂

r̂ θ̂
�eρ̂ , (3.44)

and using the antisymmetry (3.41), we get the only non-vanishing structure
coefficients in the orthonormal basis field of a plane polar coordinate system

cθ̂

r̂ θ̂
= −cθ̂

θ̂ r̂
= −1

r
. (3.45)

3.2 Tensors

Definition 3.2.1 (One-form basis) A one-form basis
{
ω1, . . . , ωn

}
is defined by

letting the basis forms act upon the basis vectors in an operation called contraction,
according to the rule

ωμ(�eν) = δμ
ν . (3.46)

An arbitrary one-form can be expressed as a linear combination of the basis forms

α = αμωμ, (3.47)

where αμ are the components of α is the given basis. Using Eqs. (3.46) and (3.47)
we find

α(�eν) = αμωμ(�eν) = αμδμ
ν = αν. (3.48)

This means that the contraction of a one formwith a basis vector gives the compo-
nent of the one-form corresponding to the basis vector. The contraction of a one-form
α with a vector �v gives
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α(�v) = α
(
vμ�eμ

) = vμα
(�eμ

) = vμαμ. (3.49)

This shows that the contraction of a one-form with a vector corresponds to the
scalar product of two vectors.

We shall now need the concept multilinear function which has the following
meaning. A multilinear function is a function which is linear in all its arguments.
Then we are ready to define tensors.

Definition 3.2.2 (Tensors) A tensor is a multilinear function which maps one-forms
and vectors into real numbers.

We have three different types of tensors:

• A covariant tensor maps vectors
• A contravariant tensor maps forms
• A mixed tensor maps tensors and forms.

A tensor of rank

(
N

N ′

)

maps N one-forms and N ′ vectors into real numbers. It

is, however, usual to say that the tensor has a rank N + N ′. A tensor of rank zero
is called a scalar quantity and may be given in terms of real numbers. A vector is a
contravariant tensor of rank one, and a one-form is a covariant tensor of rank one.

Definition 3.2.3 (Tensor product) Let T and S be two covariant tensors of rank m
and n. The tensor product of T and S is

T ⊗ S(�u1, . . . , �um, �v1, . . . , �vn) = T (�u1, . . . , �um)S(�v1, . . . , �vn). (3.50)

T ⊗ S is a tensor of rank m + n. Let R = T ⊗ S. Then we have

R = Rμ1...μq ω
μ1 ⊗ ωμ2 ⊗ · · · ⊗ ωμq . (3.51)

Notice that S ⊗ T �= T ⊗ S. The components of a tensor are found by contracting
the tensor with the basis elements, i.e. basis vectors, in the case of a covariant tensor,

Rμ1...μq = R
(�eμ1 , . . . , �eμq

)
. (3.52)

The indices of the components of a covariant tensor are written as lower indices
as in Eq. (4.52), and the indices of the components of a contravariant tensor as upper
indices.

Example 3.2.1 (Tensor product of two vectors) Let �u and �v be two vectors and α

and β two one-forms

�u = uμ�eμ, �v = vμ�eμ, α = αμωμ, β = βμωμ. (3.53)
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From these we can construct a contravariant tensor of rank 2 by R = �u ⊗ �v with
components

Rμ1μ2 = R
(
ωμ1 , ωμ2

) = �u ⊗ �v(ωμ1 , ωμ2
) = �u(ωμ1

)�v(ωμ2
) = uμ1vμ2 . (3.54)

3.2.1 Transformation of Tensor Components

We shall not limit the discussion to coordinate transformations but will consider
transformations between any type of bases,

{�eμ

} → {�eμ′
}
. The elements of the

transformation matrices are denoted by Mμ

μ′ . Then the transformations of the basis
vectors are written

�eμ′ = �eμMμ

μ′, �eμ = �eμ′ Mμ′
μ . (3.55)

It follows that

Mμ

μ′ Mμ′
ν = δμ

ν . (3.56)

For a coordinate transformation the elements of the transformation matrix are

Mμ′
μ = ∂xμ′

∂xμ
. (3.57)

3.2.2 Transformation of Basis One-Forms

The basis 1-forms transform inversely relatively to the basis vectors

ωμ′ = Mμ′
μ ωμ, ωμ = Mμ

μ′ω
μ′

. (3.58)

The components of a tensor of higher rank transform such that every contravariant
index (upper) transforms as a basis 1-form and every covariant index (lower) as a
basis vector. Also, all elements of the transformation matrix are multiplied with one
another.

Example 3.2.2 (A mixed tensor of rank 3) Tensor components transform homoge-
neously, which means that the transformed tensor components are linear combina-
tions of the original ones. The components of a mixed tensor of rank 3, for example,
transform as follows.

T α′
μ′ν ′ = Mα′

α Mμ

μ′ Mν
ν ′ T α

μν. (3.59)
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Tensor transformation of componentsmeans that tensors have a basis-independent
existence. That is, if a tensor has non-vanishing components in a given basis then it
has non-vanishing components in all bases. This means that tensor equations have
a basis-independent form. Tensor equations are invariant. A basis transformation
might result in the vanishing of one or more tensor components. Equations written
in component form will differ from one basis to another. An equation expressed in
terms of tensor components can be transformed from one basis to another using the
tensor component transformation rules. An equation that is expressed only in terms
of tensor components is said to be a covariant equation. An equation expressed in
terms of the tensors themselves has the same form in every coordinate system and is
said to be an invariant equation.

3.2.3 The Metric Tensor

Definition 3.2.4 (The scalar product) The scalar product of two vectors �u and �v is
denoted by g(�u, �v) and is defined as a symmetric linear mapping which for each pair
of vectors gives a scalar, i.e. a number. The symmetry means that g(�v, �u) = g(�u, �v).

Definition 3.2.5 (The metric tensor) The metric tensor, g = gμνω
μ ⊗ ων , is a

covariant symmetric tensor of rank 2with components made up of the scalar products
of the basis vectors,

gμν = g
(�eμ, �eν

) = �eμ · �eν . (3.60)

The values of the scalar products g
(�eμ, �eν

)
are given by specifying the scalar

products of each pair of basis vectors in a basis. The symmetry of the metric tensor
means that its components obey

gνμ = gμν. (3.61)

The components of the metric tensor are often called the metric and are written
as a 2 × 2 matrix. Those with equal indices are on the diagonal of this matrix. If
they are the only non-vanishing indices, the metric is said to be diagonal. It follows
from Eq. (3.60) that the metric is diagonal if the basis vectors are orthogonal to each
other.

The scalar product of two arbitrary vectors �u and �v is

�u · �v = g(�u, �v) = g(uμ�e, vν �eν) = uμvνg
(�eμ, �eν

) = uμvνgμν. (3.62)

The usual notation is

�u · �v = gμνuμvν. (3.63)
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The absolute value of a vector is

|�v| = √g(�v, �v) =
√∣∣gμνvμvν

∣∣. (3.64)

The scalar product of two vectors is an invariant, meaning that is has the same
value in every coordinate system.

Example 3.2.3 (Cartesian coordinates in a plane) In the present case the scalar
products of the basis vectors are

�ex · �ex = �ey · �ey = 1, �ex · �ey = �ey · �ex = 0. (3.65)

Hence

gxx = gyy = 1, gxy = gyx = 0. (3.66)

This is often written in matrix form

gμν =
(
1 0
0 1

)
. (3.67)

Example 3.2.4 (Plane polar coordinates) For this coordinate system the scalar
product of the basis vectors is

�er · �er = 1, �eθ · �eθ = r2, �er · �eθ = 0. (3.68)

Hence, in plane polar coordinates the metric tensor has the components

gμν =
(
1 0
0 r2

)
. (3.69)

Example 3.2.5 (Non-orthogonal basis vectors) We consider a skew angled coordi-
nate system where the basis vectors make an angle θ with each other as shown in
Fig. 3.5.

For this coordinate system the scalar products of the basis vectors are

Fig. 3.5 Basis vectors in a
skew angled coordinate
system. Basis vectors �e1 and
�e2



74 3 Vectors, Tensors and Forms

�e1 · �e1 = �e2 · �e2 = 1, �e1 · �e2 = �e2 · �e1 = cos θ. (3.70)

Hence, the metric tensor has the components

gμν =
(

1 cos θ

cos θ 1

)
. (3.71)

Definition 3.2.6 (Contravariant components of the metric tensor) The contravariant
components of the metric tensor, gμν , are defined by

gμαgαν = δμ
ν . (3.72)

The contravariant components of the metric tensor make up the inverse matrix
relative to thematrixmade up of the covariant components. It follows fromEq. (3.72)
that the mixed metric tensor can be thought of as a unit tensor of rank 2,

I = δμ
ν ων ⊗ �eμ = ωμ ⊗ �eμ. (3.73)

Note that I(�u) = (
ωμ ⊗ �eμ

)
(�u) = ωμ(�u)�eμ = uμ�eμ = �u, i.e. the unit tensor

applied to a vector gives out the vector.
It is possible to define a mapping between tensors of different type, i.e. covariant

or contravariant, using the metric tensor. An example with tensors of rank one is
shown in Fig. 3.6.

We can for example map a vector on a one-form

vμ = g
(�v, �eμ

) = g
(
vα�eα, �eμ

) = vαg
(�eα, �eμ

) = vαgαμ = gαμvα. (3.74)

This is known as lowering an index. Raising of an index is made according to

vμ = gμαvα. (3.75)

We shall now define distance in spacetime along a curve. Let the curve be
parametrized by λ (proper time for a time-like curve) with a tangent vector field
�v. The squared distance ds2 between the points along the curve is defined as

ds2 = g(�v, �v)dλ2. (3.76)

Using Eq. (3.56) we get

ds2 = gμνv
μvνdλ2. (3.77)

The tangent vectors have the components vμ = dxμ/dλ, which gives

ds2 = gμνdxμdxν . (3.78)
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Fig. 3.6 Covariant and contravariant components of a vector

The expression (3.78) is known as the line-element.

Example 3.2.6 (Line element in Cartesian coordinates) Inserting the metric com-
ponents (3.66) into Eq. (3.78) we obtain the line element of a plane in a Cartesian
coordinate system

ds2 = dx2 + dy2. (3.79)

Example 3.2.7 (Line element in plane polar coordinates) With the metric compo-
nents (3.61) we get

ds2 = dr2 + r2dθ2. (3.80)

The line element in (flat) four-dimensional Minkowski spacetime with Cartesian
spatial coordinates is required to be Lorentz invariant. It may be shown that the
line-element then takes the form
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ds2 = −c2dt2 + dx2 + dy2 + dz2. (3.81)

In this case the metric tensor is often called the Minkowski metric, and its com-
ponents are denoted by ημν . Introducing a time coordinate x0 = ct we obtain the
Minkowski metric,

ημν =

⎛

⎜⎜
⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠. (3.82)

The Minkowski line-element is then written

ds2 = ημνdxμdxν . (3.83)

An orthonormal basis field can be used in curved as well as in flat spacetime.
Often one uses a so-called co-moving orthonormal basis with an observer. This
means that we have an orthonormal basis field along the world line of the observer
with time-like vector equal to the four-velocity of the observer divided by the velocity
of light, �et̂ = �u/c. In every orthonormal basis field there is Minkowski metric with
components (3.82) whether spacetime is flat or curved, and the line-element takes
the form

ds2 = ημ̂ν̂dx μ̂dx ν̂ . (3.84)

Example 3.2.8 (The four-velocity identity) Let us calculate the scalar product of the
four-velocity by itself, using Eqs. (3.9) and (3.82),

�u · �u = ημ̂ν̂uμ̂u ν̂ = −γ 2
(
c2 − v2

) = −c2. (3.85)

This is called the four-velocity identity. In an arbitrary basis it takes the form

gμνuμuν = −c2. (3.86)

3.3 The Causal Structure of Spacetime

The causal structure of spacetime can be illustrated by considering the light cone
(Fig. 3.7).

Let us recapitulate some important points. The world lines of material particles
or an observer, moving slower than light, are inside the light cone. Such curves are
called time-like. The invariant parameter of a time-like curve is usually chosen to be



3.3 The Causal Structure of Spacetime 77

Fig. 3.7 Causal structure of spacetime From: https://en.wikipedia.org/wiki/Light_cone#/media/
File:World_line.svg

the proper time τ of an observer following the curve. Then a tangent vector of the
curve is the 4-velocity of the observer.

A point in spacetime represents an event. The distance in spacetime between two
infinitesimally nearby points in spacetime is called an interval. A time-like interval
is the interval between two points on a time-like curve. It has ds2time < 0.

We shall now give a general physical interpretation of the line element for time-
like intervals. For this purpose it is sufficient to consider theMinkowski line-element
which can be written

ds2 = −c2
{

1 − 1

c2

[(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2
]}

dt2. (3.87)

Consider a particle moving with a coordinate velocity

�v = vx �ex + vy �ey + vz �ez = dx

dt
�ex + dy

dt
�ey + dz

dt
�ez . (3.88)

Then

https://en.wikipedia.org/wiki/Light_cone#/media/File:World_line.svg
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ds2 = −
[
1 − (vx )2 + (vy)2 + (vz)2

c2

]
c2dt2 = −

(
1 − v2

c2

)
c2dt2. (3.89)

From the special theory of relativity we know that the timemeasured by a standard
clock following the particle, i.e. the proper time of the particle, is

dτ =
√

1 − v2

c2
dt. (3.90)

Hence we obtain the general physical interpretation of the line-element for a
time-like interval

ds2 = −c2dτ 2. (3.91)

This means that a time-like interval in spacetime is measured by a clock, it is
essentially a time interval.

We shall later define geodesic curves as the straightest possible curves between
two events in spacetime. In flat Minkowski spacetime they are straight. It will also
be shown that geodesic curves have extremal length between two events.

For light the velocity is v = c. Then the proper time vanishes. The world line of
light moving freely is called light-like, and an interval along the world line of light
is called light-like. Hence the interval along a light-like curve vanishes, ds2light = 0.
It is therefore also called a zero-interval.

A spacelike curve represents the world line of a particle moving faster than light.
The interval between two events on such a curve is called a space-like interval and
has ds2space > 0.

3.4 Forms

Definition 3.4.1 (Antisymmetric tensor) An antisymmetric tensor is a tensor whose
sign changes under an arbitrary exchange of two arguments,

A(. . . , �u, . . . , �v, . . .) = A(. . . , �v, . . . , �u, . . .). (3.92)

The components of an antisymmetric tensor changes sign under exchange of two
indices,

A . . .μ . . .ν . . . . . . = A . . .ν . . .μ . . . (3.93)

Definition 3.4.2 (p-form) A p-form is defined to be an antisymmetric, covariant
tensor of rank p.
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Definition 3.4.3 (The wedge product) Thewedge product is an antisymmetric tensor
product is defined by

ω[μ1 ⊗ · · · ⊗ ωμp] ∧ ω[ν1 ⊗ · · · ⊗ ωνp] = (p + q)!
p!q! ω[μ1 ⊗ · · · ⊗ ωνq ], (3.94)

where [ ] antisymmetric combination, which is defined by

ω[μ1 ⊗ · · · ⊗ ωμp] = 1

p!

⎛

⎝
the sum of terms with all possible permutations
of indices with plus for even and minus for an odd
number of permutations

⎞

⎠.

(3.95)

Example 3.4.1 (Antisymmetric combinations) The antisymmetric combination of a
tensor product of two basis form is

ω[μ1 ⊗ ωμ2] = 1

2

(
ωμ1 ⊗ ωμ2 − ωμ2 ⊗ ωμ1

)
. (3.96)

The antisymmetric combination of a tensor product of three basis form is

ω[μ1 ⊗ ωμ2 ⊗ ωμ3] = 1

6
(ωμ1 ⊗ ωμ2 ⊗ ωμ3 + ωμ3 ⊗ ωμ1 ⊗ ωμ2 + ωμ2 ⊗ ωμ3 ⊗ ωμ1

− ωμ2 ⊗ ωμ1 ⊗ ωμ3 + ωμ3 ⊗ ωμ2 ⊗ ωμ1 + ωμ1 ⊗ ωμ3 ⊗ ωμ2).

(3.97)

Example 3.4.2 (A 2-form in a 3-space) In a 3-dimensional space a 2-form may be
written in component form as

α =α12ω
1 ⊗ ω2 + α21ω

2 ⊗ ω1 + α13ω
1 ⊗ ω3 + α31ω

3 ⊗ ω1

α23ω
2 ⊗ ω3. (3.98)

The antisymmetry of α means that

α21 = −α12, α31 = −α13, α32 = −α23. (3.99)

Hence

α = α12
(
ω1 ⊗ ω2 − ω2 ⊗ ω1

)+ α13
(
ω1 ⊗ ω3 − ω3 ⊗ ω1

)

+ α23
(
ω2 ⊗ ω3 − ω3 ⊗ ω2

)
, (3.100)

Using Einstein’s summation convention this may be written as

α = α|μν|2ω[μ ⊗ ων], (3.101)
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where |μν| means summation with μ < ν, and the bracket denotes antisymmetriza-
tion. We now use the definition (3.94) of the wedge product ∧ with p = q = 1. This
gives

α = α|μν|ωμ ∧ ων, (3.102)

which is often written as

α = 1

2
αμνω

μ ∧ ων. (3.103)

A tensor of rank 2 can always be split up into a symmetric and an antisymmetric
part,

Tμν = 1

2

(
Tμν − Tνμ

)+ 1

2

(
Tμν + Tνμ

) = Aμν + Sμν, (3.104)

where

Aμν = 1

2

(
Tμν − Tνμ

)
, Sμν = 1

2

(
Tμν + Tνμ

)
. (3.105)

We thus have

Sμν Aμν = 1

4

(
Tμν + Tνμ

)
(T μν − T νμ)

= 1

4

(
TμνT μν − TμνT νμ + TνμT μν − TμνT νμ

) = 0. (3.106)

This shows that summation over the indices of a product of a symmetric and an
antisymmetric quantity vanishes. In a summation Tμν Aμν , where Tμν has no symme-
try, and Aμν is antisymmetric, only the antisymmetric part of Tμν contributes. Hence,
in the expression (3.103) only the antisymmetric combinations α[μν] contribute to
the summation. These antisymmetric combinations are the form-components.

Forms are antisymmetric covariant tensors. Because of this antisymmetry a form
with two equal component indices vanishes, α[μ...μ...] = 0. This implies that on an n-
dimensional space all p-forms with p > n vanish. Hence on a 2-dimensional surface
there exist only up to 2-forms, and in four-dimensional spacetime there exist only
up to 4-forms.

3.4.1 The Volume Form

The antisymmetric Levi-Civita symbol is defined by
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εμ1...μn =
⎧
⎨

⎩

1 if μ1 . . . μn is an even permutation of 1 . . . n
−1 if μ1 . . . μn is an odd permutation of 1 . . . n
0 otherwise

. (3.107)

It follows that εμ1...μn if two indices are equal.
The determinant of an n × n-matrix A with elements Aμν may be written

A = det(A) = εμ1...μn A1μ1 A2μ2 . . . Anμn . (3.108)

For example for n = 2 this equation gives

A = εμ1η2 A1μ1 A2μ2 = ε12 A11A22 + ε21A12 A21 = A11 A22 − A12 A21. (3.109)

We shall now consider an n-dimensional space with a metric tensor having com-
ponents gμν . Let

{
ωμ̂
}
be an orthonormal form basis. The volume form V is defined

by

V = ω1̂ ∧ · · · ∧ ωn̂. (3.110)

Let Mμ

μ̂
be the elements of the transformation matrix to an arbitrary basis ωμ =

Mμ

μ̂
ωμ̂. Then

V = M 1̂
μ1

. . . Mn̂
μn

ωμ1 ∧ · · · ∧ ωμn = M 1̂
μ1

. . . Mn̂
μn

εμ1...μn ω1 ∧ · · · ∧ ωn

= Mω1 ∧ · · · ∧ ωn (3.111)

where M is the determinant of the transformation matrix.
It follows from the general Eq. (3.59) for the components of a tensor that the

transformation from the components of the metric tensor in an orthonormal basis to
the components in an arbitrary basis is

gμν = M μ̂
μ M ν̂

ν gμ̂ν̂ . (3.112)

Since the determinant of a matrix is equal to the determinant of the transposed
matrix (rows and columns interchanged), it follows from Eq. (3.113) that the corre-
sponding transformation of the determinant made up of the components of the metric
tensor is

g = M2ĝ. (3.113)
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where ĝ is the determinant made by the components of the metric tensor in an
orthonormal basis. In usual 3-space ĝ = 1, and in 4-dimensional spacetime ĝ = − 1.
Inserting the positive square root of (3.113) into Eq. (3.111) gives

V = √|g|ω1 ∧ · · · ∧ ωn. (3.114)

where |g| is the absolute value of the determinant made by the components of the
metric tensor. The tensor components of the volume form are

Vμ1...μn = √|g|εμ1...μn . (3.115)

The volume form represents an invariant volume-element. The corresponding
invariant distance in the μ-direction is

Lμ =
√∣∣gμμ

∣∣ωμ. (3.116)

3.4.2 Dual Forms

The dual of a p-form α in an n-dimensional space is denoted by �α, where � is called
Hodge’s star operator, and is defined by

�α = 1

p!(n − p)! Vν1...νpμ1...μn−pα
ν1...νp ωμ1 ∧ · · · ∧ ωμn−p . (3.117)

The dual of an orthogonal basis p-form is

�
(
ων1 ∧ · · · ∧ ωνp

) = 1

(n − p)!
√|g|
gp

εν1...νpμ1...μn−pω
μ1 ∧ · · · ∧ ωμn−p , (3.118)

where gp is the determinant of the metric tensor associated with the space of the
p-form α, and g is the determinant made up of the components of the metric tensor
in the n-dimensional space.

Example 3.4.3 (Duals of basis forms in a spherical coordinate system in Euclidean
3-space) The transformation from spherical coordinates (r, θ, φ) to Cartesian
coordinates (x, y, z) is

x = r cosφ sin θ, y = r sin φ sin θ, z = r cos θ. (3.119)
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The coordinate basis vectors
(�er = ∂/∂r, �eθ = ∂/∂θ, �eφ = ∂/∂φ

)
are

�er = sin θ cosφ�ex + sin θ sin φ�ey + cos θ �ez,

�eθ = r cos θ cosφ�ex + r cos θ sin φ�ey − r sin θ �ez,

�eφ = −r sin θ sin φ�ex + r sin θ cosφ�ey, (3.120)

Inserting these expressions into Eq. (3.60) we find the non-vanishing components
of the metric tensor

grr = 1, gθθ = r2, gφφ = r2 sin2 θ. (3.121)

The line-element takes the form

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (3.122)

The volume form is

V = r2 sin θωr ∧ ωθ ∧ ωφ. (3.123)

The dual of a basis form is

�ων = 1

2

√
g

gν

ενμ1μ2ω
μ1 ∧ ωμ2 , (3.124)

where

g = r4 sin2 θ, gr = 1, gθ = r2, gφ = r2 sin θ. (3.125)

This gives

�ωr = r2 sin θε123ω
2 ∧ ω3 = r2 sin θωθ ∧ ωφ, (3.126)

�ωθ = sin θωφ ∧ ωr , (3.127)

�ωφ = ωr ∧ ωθ . (3.128)

The double dual is given by

��α = ĝ(−1)p(n−p)α. (3.129)

Hence the double dual is the identity up to a sign. The dual of the volume form is

�V = 1

n!εμ1...μn ε
μ1...μn = ĝ = ±1. (3.130)
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Table 3.1 Right column shows the components of the forms dual to the forms in 3-space with
components shown in the left column

0-form:
φ = φ

3-form:
�φ = √

gφ

1-form:
E : [E1, E2, E3]

2-form:

�E : √
g

⎡

⎢⎢
⎣

0 E3 −E2

−E3 0 E1

E2 −E1 0

⎤

⎥⎥
⎦

2-form:

B :

⎡

⎢
⎢
⎣

0 B12 −B31

−B12 0 B23

B31 −B23 0

⎤

⎥
⎥
⎦

1-form:
�B : √

g
[
B23, B31, B12

]

3-form:
G : G123 = G

0-form:
�G : g− 1/2G

Let α and β be p-forms with corresponding vectors A and B, respectively. Then

(�α) ∧ β = 1

p!α
μ1...μp βμ1...μp ε1···nω

1 ∧ · · · ∧ ωn = (A · B)V . (3.131)

Furthermore

(�α) ∧ β = α∧(�β). (3.132)

The following relationship valid for n = 3 between the wedge product of 1-forms
and the vector product of vectors should be noted

�
(
α ∧ β

)
= 1

2
ενλμ(A ∧ B)νλωμ = (A × B)μωμ. (3.133)

Examples with dual forms in 3-space and 4-dimensional spacetime are shown in
Tables 3.1 and 3.2.
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Table 3.2 Right column shows the components of the forms dual to the forms in 4-dimensional
spacetime with components shown in the left column

0-form:
φ = φ

4-form:
�φ = √−gφ

1-form:
A : [A0, A1, A2, A3]

3-form:
�A : (�A)012 = −√−g A3 etc.

2-form:

F :

⎡

⎢⎢
⎢
⎢
⎣

0 F01 F02 F03

−F01 0 F12 F13

−F02 −F12 0 F23

−F03 −F13 −F23 0

⎤

⎥⎥
⎥
⎥
⎦

2-form:

�F : √−g

⎡

⎢⎢
⎢
⎢
⎣

0 F23 −F13 F12

−F23 0 F03 −F02

F13 −F03 0 F01

−F12 F02 −F01 0

⎤

⎥⎥
⎥
⎥
⎦

3-form:
G : Gαβγ

1-form:
�G : √−g

[−G123, G230,−G301, G012
]

4-form:
H : H0123 = H

0-form:
�H = −(−g)−1/2H

Exercises

3.1. Four-vectors

(a) Given three four-vectors

�A = 4�et + 3�ex + 2�ey + �ex , �B = 5�et + 4�ex + 3�ey, �C = �et + 2�ex + 3�ey + 4�ex

�et · �et = −1, �ex · �ex = �ey · �ey = �ez · �ez = 1 (3.134)

Show that �A is time-like
( �A · �A < 0

)
, �B is light-like

( �B · �B = 0
)
and �C is

space-like
( �C · �C > 0

)
.

(b) Assume that �A and �B are two non-vanishing orthogonal vectors, �A · �B = 0.
Show the following

• If �A is light-like, then �B is space-like or light-like.
• If �A and �B are light-like, then they are proportional.
• If �A is space-like, then �B is time-like, light-like or space-like.

Illustrate this in a 3-dimensional Minkowski diagram.
(c) A change of basis is given by

�et ′ = cosh θ �et + sinh θ �ex , �ex ′ = sinh θ �et + cosh θ �ex , �ey′ = �ey, �ez = �ez

(3.135)

Show that this describes a Lorentz transformation along the x-axis, where the
relative velocity v between the reference frames is given by v = tanh θ . Draw
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the vectors in a 2-dimensional Minkowski diagram and find what type of curves
�et ′ and �ex ′ describe as θ varies.

(d) The 3-vector �v describing the velocity of a particle is defined with respect to an
observer. Explain why the 4-velocity �u is defined independent of any observer.
The 4-momentum of a particle, with rest mass m, is defined by �p = m �u =
md�r/dτ , where τ is the co-moving time of the particle. Show that �p is timelike
and that �p · �p = − m2. Draw, in a Minkowski diagram, the curve to which �p
must be tangent to and explain how this is altered as m → 0. Assume that the
energy of the particle is being observed by an observer with 4-velocity �u. Show
that the energy he measures is given by

E = − �p · �u. (3.136)

This is an expression which is very useful when one wants to calculate the
energy of a particle in an arbitrary reference frame.

3.2. The tensor product

(a) Given two 1-forms α = (1, 1, 0, 0) and β = (−1, 0, 1, 0). Show—by using the
vectors �e0 and �e1 as arguments—that α ⊗ β �= β ⊗ α.

(b) Find the components of the symmetric and antisymmetric parts of α ⊗ β.

3.3. Symmetric and antisymmetric tensors

(a) A tensor T of rank 2 in four-dimensional spacetime with Minkowski metric
ηαβ = diag(−1, 1, 1, 1) has contravariant components

T αβ =

⎛

⎜⎜
⎝

0 1 0 0
1 −1 0 2
2 0 0 1
1 0 −2 0

⎞

⎟⎟
⎠.

Find

1. The components of the symmetric tensor T (αβ) and the antisymmetric tensor
T [αβ].

2. The mixed components T α
β .

3. The covariant components Tαβ .

(b) Does it make sense to talk about the symmetric and the antisymmetric parts of
a mixed tensor, i.e. a tensor with both vector- and form-arguments? Explain!

3.4. Contractions of tensors with different symmetries

Let A be an antisymmetric tensor of rank

(
2

0

)

, B a symmetric tensor of rank

(
0

2

)

, C an arbitrary tensor of rank

(
0

2

)

and D an arbitrary tensor of rank

(
2

0

)

.
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Show that

Aαβ Bαβ = 0, AαβCαβ = AαβC[αβ], Bαβ Dαβ = Bαβ D(αβ). (3.137)

3.5. Coordinate transformation in an Euclidean plane

In this exercise we shall consider vectors in an Euclidean plane. Let
{�ex , �ey

}
be

an orthonormal basis in the plane,

�ei · �e j = δi j .

A position vector as decomposed in this basis is

�x = xi �ei = x�ex + y�ey

A new coordinate system
{

x ′, y′} is related to the {x, y}-system by the transfor-
mation

x ′ = 2x − y, y′ = x + y

(a) Find �ex ′ and �ey′ expressed in terms of �ex and �ey

(b) Find the basis vectors in the
{

x ′, y′}-system in terms of
{�ex , �ey

}
.

(c) Find the components of the metric tensor in the
{

x ′, y′}-system.
(d) Calculate the line-element in the

{
x ′, y′}-system.

(e) We now define a set of basis vectors �ωi ′
by �ωi = Mi ′

i �ei with summation over i.
The scalar products of these vectors define the contravariant components of the
metric tensors.

Use this to find the contravariant components of the metric tensor in the{
x ′, y′}-system.



Chapter 4
Accelerated Reference Frames

Abstract This chapter begins with an introduction to the formalism used to project
four-dimensional spacetime into a 3-dimensional spatial 3-space. Then we apply this
formalism to deduce the spatial geometry in a rotating reference frame and discuss
Ehrenfest’s paradox. Also we show that it is impossible to Einstein synchronize
clocks around a closed path in a rotating frame because this leads to a contradiction
in a non-rotating frame. Gravitational time dilation and frequency shift, and also
the Sagnac experiment are discussed. Finally we give an introduction to special
relativistic kinematic in a uniformly accelerated reference frame in flat spacetime. It
is pointed out that an observer experiences an acceleration of gravity in such a frame.

4.1 The Spatial Metric Tensor

Let �e0̂ (x0 = ct) be the 4-velocity field of the reference particles in a reference frame
R. We are going to find the metric tensor γij in a tangent space orthogonal to �e0
expressed by the metric tensor gμν of spacetime.

The spatial basis vectors {�ei} are not in general orthogonal to �e0 in an arbitrary
coordinate basis

{�eμ

}
. We choose �e0‖�e0̂. Let �ei⊥ be the component of �ei orthogonal

to �e0, that is �ei⊥ · �e0 = 0. The spatial metric tensor is defined by

γij = �ei⊥ · �ej⊥, γ00 = γi0 = γ0i = 0. (4.1)

It follows that the spatial metric tensor is symmetric. It is the projection of the
metric tensor of spacetime onto the surface orthogonal to the 4-velocity field of
the reference particles in the given reference frame. Hence it describes the spatial
geometry in the simultaneity 3-space of the reference frame.

The component of �ei along �e0 is

�ei‖ = �ei · �e0
�e0 · �e0 �e0 = gi0

g00
�e0. (4.2)

Hence, the component of �ei orthogonal to �e0 is
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�ei⊥ = �ei − �ei‖ = �ei − gi0

g00
�e0. (4.3)

Thus, the non-vanishing components of the spatial metric tensor are

γij =
(

�ei − gi0

g00
�e0

)
·
(

�ej − gj0

g00
�e0

)
= �ei · �ej

− gj0

g00
�e0 · �ei − gi0

g00
�e0 · �ej + gi0gj0

g2
00

�e0 · �e0

= gij − gi0gj0

g00
− gi0gj0

g00
+ gi0gj0

g00
= gi j − gi0gj0

g00
. (4.4)

The spatial line-element is

dl2 = γijdxidxj =
(

gij − gi0gj0

g00

)
dxidxj. (4.5)

This line-element gives the distance between simultaneous events in a reference
frame where the metric tensor of spacetime in a co-moving coordinate system is gμν .

Consider a transformation of the form

x0 = x0
(

xμ′)
, xi = xi

(
xi′

)
(4.6)

Applying the transformation Eq. (3.113) to each term in Eq. (4.4) and noting that
M i

0′ = 0 for the transformation (4.6) we get

γi′j′ = M i
i′M

j
j′γij. (4.7)

This shows that γij transform as tensor components under a transformation of the
form (4.6).

From the transformation (4.6) we have

∂

∂x0′ = ∂xμ

∂x0′
∂

∂xμ
. (4.8)

Since ∂xi/∂x0
′ = 0. Thus

�e0′ = ∂x0

∂x0′ �e0, (4.9)

showing that �e0′ is parallel to �e0. It follows that the 4-velocity field of particles
with fixed coordinates in two coordinate systems connected by a transformation of
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the form (4.6) is identical. This means that Eq. (4.6) represents coordinate trans-
formations between different coordinate systems that are both co-moving with the
same reference frame. Hence transformations of the form (4.6) are called internal
coordinate transformations.

Equation (4.7) shows that the components of the spatial metric tensor transform as
tensor components and the spatial line-element are invariant under internal transfor-
mations, i.e. under transformations between different coordinate systems co-moving
with one and the same reference frame.

The line-element of spacetime can be expressed as

ds2 = −c2dt̂2 + dl2, (4.10)

where dt̂ = 0 represents the simultaneity defining the spatial line-element. The
temporal part of the line-element may be expressed as

dt̂2 = dl2 − ds2 = (
γμν − gμν

)
dxμdxν

= (
γij − gij

)
dxidxj + 2(γi0 − gi0)dxidx0 + (γ00 − g00)dx0dx0

=
(

gij − gi0gj0

g00
− gij

)
dxidxj − 2gi0dxidx0 − g00

(
dx0

)2

= −g00

[(
dx0

)2 + 2
gi0

g00
dx0dxi + gi0gj0

g2
00

dxidxj

]

=
[
(−g00)

1/2

(
dx0 + gi0

g00
dx1

)]2

. (4.11)

It follows that

dt̂ = (−g00)
1/2

(
dx0 + gi0

g00
dxi

)
. (4.12)

The 3-space orthogonal to the world lines of the reference particles in R, defined
by dt̂ = 0, corresponds to a coordinate time interval

dt = − gi0

g00
dxi. (4.13)

This is not an exact differential, that is, dt is not integrable, which means that
one cannot in general define a 3-space orthogonal to the world lines of the reference
particles, i.e. a “simultaneity space”, in an arbitrary reference frame. We must also
conclude that unless gi0/g00 is constant, it is not possible to Einstein synchronize
clocks around closed curves.
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4.2 Einstein Synchronization of Clocks in a Rotating
Reference Frame

We shall show that it is not possible to Einstein synchronize clocks around a closed
curve in a rotating reference frame. If this is attempted, contradictory boundary
conditions in the non-rotating laboratory frame will arise, due to the relativity of
simultaneity (See Fig. 4.1).

The distance in the laboratory frame between two points is

�x = 2πr

n
. (4.14)

We now make a Lorentz transformation from the instantaneous rest frame
(
t′, x′)

of the circumference of the rotating frame R to the non-rotating laboratory frame

�t = γ
(
�t′ + rω

c2
�x′

)
, �x = γ

(
�x′ + rω�t′

)
, γ = 1

√
1 − r2ω2

c2

, (4.15)

where r is the radios of the circumference and ω is the angular velocity of R.
The proper distance between two points with distance (4.14) in the laboratory

frame is �x′ = γ�x. Hence we get a time difference

Fig. 4.1 Simultaneity in a rotating frame. Events that are simultaneous in the rotating frame are
not simultaneous in the stationary frame
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�t = γ 2 rω

c2
�x = γ 2 rω

c2
2πr

n
(4.16)

In the laboratory frame for simultaneous events in the rotating frame separated
by a proper distance �x′. This is due to the relativity of simultaneity. Around the
circumference the time difference is accumulated to

n�t = γ
2πr2ω

c2
, (4.17)

and we get a discontinuity of simultaneity as shown in Fig. 4.2.
Let IF be an inertial frame with cylinder coordinates (T , R,Θ, Z). The line-

element has then the form

ds2 = −c2dT 2 + dR2 + R2dΘ2 + dZ2. (4.18)

In a reference frame RF rotating with constant angular velocity ω we have co-
moving cylinder coordinates (t, r, θ, z). The two coordinate systems are related by
the coordinate transformation

t = T , r = R, θ = Θ − ωT , z = Z . (4.19)

Fig. 4.2 Discontinuity of simultaneity in rotating frame
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The first equation means that the coordinate clocks in RF go with a position
independent rate equal to that of the clocks in the non-rotating frame IF, i.e. equal to
that of the inertial rest frame of the rotational axis.

The line-element in the co-moving coordinates in RF is

ds2 = − c2 dt2 + dr2 + r2(dθ + ω dt)2 + dz2

= − (
1 − r2ω2/c2

)
dt2 + dr2 + r2dθ2 + dz2 + 2r2ω dθ dt. (4.20)

The metric tensor has the following components

gtt = −(
1 − r2ω2/c2

)
, grr = gzz = 1, gθθ = r2, gθ t = gtθ = r2ω. (4.21)

Putting dt = 0 in Eq. (4.20) gives

ds2 = dr2 + r2dθ2 + dz2. (4.22)

This represents the Euclidean geometry of the 3-space in IF.
The non-vanishing components of the spatial metric tensor (4.4) in the co-moving

coordinate system of the rotating frame are

γrr = γzz = 1, γθθ = gθθ − g2
θ0

g00
= r2 − r2ω2/c2

−(
1 − r2ω2/c2

) = r2

1 − r2ω2/c2
. (4.23)

Inserting this into Eq. (4.5) gives the spatial line-element in the co-moving
coordinate system of the rotating frame

dl2 = dr2 + r2dθ2

1 − r2ω2/c2
+ dz2. (4.24)

It describes the geometry of a local 3-space orthogonal to the world line of a
reference particle in RF. This 3-space cannot be extended to a finite 3-dimensional
space in RF since Einstein synchronization is not integrable in RF. From the line
element (4.20) it is seen that the geometry of this local simultaneity space in RF is
non-Euclidean. The circumference of a circle with radius r is

lθ = 2πr
√
1 − r2ω2/c2

> 2πr. (4.25)

This means that the spatial geometry is hyperbolic in the rotating frame.
We shall now explain this result first from the point of view of observers at rest

in the non-rotating frame F, and then from the point of view of observes co-moving
with the “rotating” frame, R.
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We shall first define the concept standard measuring rod. A standard measuring
rod has by definition a constant rest length even if it is accelerated. It is not allowed by
a standard measuring rod to be compressed or strained. Hence a standard measuring
rod will have a Lorentz contraction according to its velocity.

As observed from F the measuring rods along a circle about the origin have a
velocity v = rω. Hence they will be Lorentz contracted by the factor

√
1 − r2ω2/c2.

Hence there is place for more standard measuring rods around the circle the faster
the frame R rotates. Therefore the measured length of the circle will be larger by
this factor. This is the reason for the result (4.25) from the point of view of an F-
observer. Hence according to the F-observers there is no question of a non-Euclidean
geometry. The result (4.25) is explained by the Lorentz contraction of the standard
measuring rods.

It may further be noted that since the material of a rotating disc cannot Lorentz
contract an engraved scale on the disc cannot be used as a set of standard measuring
rods. When the disc is put into rotation the material tries to Lorentz contract in the
tangential direction, but is not allowed to do so. Hence a tangential strain will develop
in the material of a disc that is put into rotation.

We shall now assume the validity of the principle of relativity for rotating motion.
Then the observers inR can think of themselves as at rest and the environment as rotat-
ing. From this point of view the standard measuring rods are not Lorentz contracted.
Hence the explanation of the F-observers does not work for the R-observers.

According to Einstein’s interpretation of the general theory of relativity the expla-
nation of the R-observes is as follows. The R-observer experiences what in Newton’s
theory is called a centrifugal force field. According to the principle of equivalence
this is reckoned as a gravitational field in the theory of relativity. The R-observer
will say that there is a non-Euclidean spatial geometry in the R-frame, and that this
is connected with the gravitational field which is present in this frame.

In general an experimental result—in the present case that the measured length
of a rotating disc with radius r is larger than 2πr—is independent of the reference
frame that the experiment is described from, but the explanation of the result depends
upon the motion of the observer’s reference frame.

4.3 Angular Acceleration in the Rotating Frame

We will now investigate what happens when we give RF an angular acceleration.
Then we consider a rotating circle made of standard measuring rods, as shown in
Fig. 4.3.

All points on a circle are accelerated simultaneously in IF (the laboratory system).
We let the angular velocity increase from ω to ω + dω, measured in IF. Lorentz
transformation to an instantaneous rest frame for a point on the circumference then
gives an increase in velocity in this system:
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Fig. 4.3 Nonrotating disc with measuring rods. The standard measuring rods are fastened with
nails at one end so that they are free to contract when the disc is put into rotation

rdω′ = rdω

1 − r2ω2/c2
. (4.26)

Due to the relativity of simultaneity the points on the disc at the front end of the
rods are accelerated before the points on the disc at the rear ends, in the rotating
frame. The time difference of the accelerations at the front and rear ends is

�t′ = rωL0/c2
√
1 − r2ω2/c2

, (4.27)

where L0 = 2πr/n is the rest length of the rods. In IF all points of the circumference
are accelerated simultaneously.However, inRF the front points are accelerated before
the rear points, so the distances between the points will increase, i.e. the length of
the circumference of the disc will increase.

It is a defining property of standard measuring rods that they shall move in such
a way that their proper length is preserved. They are not allowed to be stretched
or compressed. The standard measuring rods must therefore move under a different
acceleration program than the points on the disc. All the points of the standard rods
are accelerated simultaneously in RF. Hence the measuring rods will separate from
each other during a period with angular acceleration of the disc as shown in Fig. 4.4.

In IF the separation of the rods is interpreted as a consequence of the Lorentz
contraction of the standard rods.

As observed in RF the distance between the rods is increased by
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Fig. 4.4 Lorentz contacted measuring rods on a rotating disc. Separation of the measuring rods
has different explanations as referred to IF and RF. The standard measuring rods have been Lorentz
contracted as observed in IF, while the length of the periphery has increased as observed in RF

ds′ = rdω′�t′ = r2ωL0dω/c2
(
1 − r2ω2/c2

)3/2 . (4.28)

The increase of distance during the acceleration period is

s′ = r2L0

c2

ω∫

0

ωdω
(
1 − r2ω2/c2

)3/2 =
(

1
√
1 − r2ω2/c2

− 1

)

L0. (4.29)

Hence, after the acceleration period there is a proper distance s′ between the rods.
In the laboratory system, IF, the distance between the rods is

s =
√
1 − r2ω2/c2s′ =

√
1 − r2ω2/c2

(
1

√
1 − r2ω2/c2

− 1

)

L0

= L0 − L0

√
1 − r2ω2/c2. (4.30)

We now have the situation shown in Fig. 4.4. There is room for more standard
rods around the periphery the faster the disc rotates. This means that as measured
with measuring rods at rest in the rotating frame the measured length of the periphery
(number of standard rods) gets larger with increasing angular velocity. This is how
an inertial observer would explain the measuring result of the rotating observer.
According to the rotating observer, however, the disc material has been stretched in
the tangential direction. Note that as measured by the inertial observer the length of
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the periphery is 2πr independent of the angular velocity of the disc, since the inertial
observer uses measuring rods at rest in the non-rotating reference frame.

4.4 Gravitational Time Dilation

We consider a standard clock moving along a circle about the rotational axis. This
clock has constant r and z. Along the world line of the clock the line element (4.20)
can be written as

ds2 = c2dt2
[
−

(
1 − r2ω2

c2

)
+ r2

c2
ω2

c + 2
r2ω

c2
ωc

]
. (4.31)

where ωc = dθ/dt is the angular velocity of the clock in RF. Utilizing the physical
interpretation of the line-element (3.91) for a time-like interval we conclude that the
proper time interval dτ of the clock is related to the coordinate time interval in RF
by

dτ = dt

√

1 − r2ω2

c2
− r2

c2
ω2

c − 2
r2ω

c2
ωc. (4.32)

which may be written

dτ = dt
√
1 − r2(ω + ωc)

2/c2. (4.33)

Here t represents proper time in RF at the axis, r = 0, which is equal to the proper
time in IF, and τ represents proper time at an arbitrary point in RF. Since the rate of
coordinate time is position independent, it follows that the rate of proper time in RF
decreases with increasing distance from the axis. Also it decreases with increasing
angular velocity ω of RF relative to IF, and it depends upon the angular velocity ωc

of the clock in RF, both its magnitude and sign. The rate of proper time of a clock
moving in RF compared to the time in IF, dτ/dt, is maximal for ωc = −ω. Such a
clock is at rest in IF which is non-rotating relative to the large scale cosmic masses.
For this clock dτ = dt. As considered in RF such a clock moves together with the
large-scale cosmic masses. Hence a clock at rest relative to the large scale cosmic
masses goes at a maximal rate.

A standard clock at rest in RF hasωc = 0. The proper time interval of these clocks
is

dτ = dt

√

1 − r2ω2

c2
. (4.34)

Seen from IF, the non-rotating laboratory system, Eq. (4.34) represents the
velocity-dependent time dilation from the special theory of relativity.
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But how is Eq. (4.34) interpreted in RF? The clock does not move relative to
an observer in this system, hence what happens cannot be interpreted as a velocity-
dependent phenomenon. According to Einstein, the fact that standard clocks slow
down the farther away from the axis of rotation they are is due to a gravitational
effect.

We will now find the gravitational potential at a distance r from the axis. The
centripetal acceleration is rω2 so

Φ = −
∫ r

0
g(r)dr = −

∫ r

0
rω2dr = −1

2
r2ω2. (4.35)

We then get

dτ = dt

√

1 − r2ω2

c2
= dt

√

1 + 2Φ

c2
. (4.36)

In RF the position-dependent time dilation is interpreted as a gravitational time
dilation: Time flows slower further down in a gravitational field.

4.5 Path of Photons Emitted from the Axis in a Rotating
Reference Frame

Let us first describe the photon paths in the inertial frame IF. In this frame the photon
paths are radial. Consider a photon path with � = 0, R = T with light source at
R = 0.

Transforming to RF the equation of the path is,

r = t, θ = −ωt. (4.37)

The orbit equation is thus θ = −ωr which is the equation for an Archimedean
spiral. The time used by a photon out to distance r from axis is t = r/c.

4.6 The Sagnac Effect

The Sagnac effect appears when a beam of light is split and the two beams are made
to follow the same path, but in opposite directions. Returning to the point of entry the
two light beams are allowed to undergo interference. The phases of the two beams,
and thus the position of the interference fringes, are shifted depending upon the
angular velocity of the apparatus.

Let us first describe the Sagnac effect in the inertial rest frame of the axis of the
apparatus. In this frame the velocity of light is isotropic, but the emitter/receiver
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Fig. 4.5 The Sagnac effect.
Experiment demonstrates the
anisotropic velocity of light
as observed by a non-local
measurement in a rotating
reference frame

moves due to the disc’s rotation as shown in Fig. 4.5. Let t1 be the travel time around
the disc of photons that move with the rotation.

Then

2πr + rωt1 = ct1, (4.38)

giving

t1 = 2πr

c − rω
. (4.39)

For light travelling in the opposite direction the travel time is shorter because the
light meets the emitter/receiver,

t2 = 2πr

c + rω
. (4.40)

The difference in travel time is

�t = t1 − t2 = 2πr

(
1

c − rω
− 1

c + rω

)
= 2πr2rω

c2 − r2ω2
= γ 2 4Aω

c2
, (4.41)

where A is the area enclosed by the photon path or orbit.
We shall now describe the same experiment from the point of view of an observer

at rest in a frame rotating together with the apparatus. In this case the line-element is
given by Eq. (4.31) with ωC replaced by the angular velocity of the light, ωL. Since
ds2 = 0 along the world line of the light, the equation of motion of the light takes
the form
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r2(ωL + ω)2 − c2 = 0, (4.42)

which has the solutions

ωL = −ω ± c/r. (4.43)

Hence, the speed of the light is

vL± = −rω ± c. (4.44)

We see that in the rotating frame RF the measured round trip velocity of light is
not isotropic. The difference in travel time of the two beams is

�t = t1 − t2 = 2πr

(
1

c − rω
− 1

c + rω

)
= γ 2 4Aω

c2
. (4.45)

In agreement with the time difference (4.41) observed in IF. In IF this time dif-
ference is explained as a consequence of the motion of the apparatus, while in RF,
where the apparatus is at rest, it is explained as due to the anisotropic velocity of
light.

4.7 Non-integrability of a Simultaneity Curve in a Rotating
Frame

We shall here give some supplementary remarks to the treatment of Einstein syn-
chronization in a rotating reference frame in Sect. 4.1. There we made a separation
of the spacetime line-element, ds2, in a spatial part, dl2, and a temporal part, c2dt̂2,
according to ds2 = dl2 − c2dt̂2, where

dl2 =
(

gij − gi0gj0

g00

)
dxidxj, ddt̂ = √−g00

(
dx0 + gi0

g00
dxi

)
, x0 = ct. (4.46)

As applied to the rotating reference frame R this gives

dl2 = dr2 + r2

1 − r2ω2/c2
dθ2 + dz2, dt̂ =

√

1 − r2ω

c2

(
dt − r2ω

1 − r2ω2/c2
dθ

)
.

(4.47)

Here dt = 0 means simultaneity in the non-rotating laboratory system, IF, and
dt̂ = 0 simultaneity in the rotating frame, RF. The simultaneity of the laboratory
frame is defined globally, but simultaneity in the rotating frame, RF, is only defined
locally. With dt̂ = 0 we get
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Fig. 4.6 Discontinuous simultaneity surface in a rotating frame

dt = r2ω

1 − r2ω2/c2
dθ (4.48)

which is not a total differential. This means that simultaneity in the rotating frame
RF cannot be defined around a closed curve about the axis. If define simultaneous
events in RF along a circle about the axis, we come to progressively later events in
IF as given by Eq. (4.48). Going around the circle we arrive at the point of departure
at a later event than the one we started from. This means that the 3-space defined
by simultaneity in RF does not represent a simultaneity space in IF. In a Minkowski
diagram with reference to IF the 3-space is shaped as shown in Fig. 4.6. It has a
discontinuity.

4.8 Orthonormal Basis Field in a Rotating Frame

We saw in Sect. 4.1.1 how the spatial metric representing a simultaneity space of an
observer with 4-velocity �u was defined in terms of orthogonal basis vectors, where
the time-like basis vector was chosen to be the 4-velocity of the observer. It has a
magnitude c.

Let us define an orthonormal basis vector field, also called a tetrad field, co-
moving with an observer at rest in an arbitrary reference frame. The 4-velocity of
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the observer is �u. As time-like unit basis vector we choose

�e0̂ = 1

c
�u = dt

dτ
�e0 = 1√−g00

�e0. (4.49)

We shall express the spatial vectors of this co-moving orthonormal basis in terms
of the coordinate basis vectors in a coordinate basis {�e0, �e1, �e2, �e3}where �e0 is parallel
to �u, and the spatial coordinate vectors need not be orthogonal to the time-like basis
vector.

As shown in Sect. 4.1.1 a space-like basis vector �ei may be separated in one
component

�ei‖ = gi0

g00
�e0 (4.50)

along �e0 and one �ei⊥ = �ei − �ei‖ orthogonal to �e0, i.e.

�ei⊥ = �ei − gi0

g00
�e0. (4.51)

Since this vector has a magnitude |�ei⊥| = √�ei⊥ · �ei⊥ = √
γii, the corresponding

unit vector is

�eî = (γii)
−1/2

(
�ei − gi0

g00
�e0

)
. (4.52)

The second and third space-like vectors in the orthonormal basis are then given
by

�eĵ · �eî = �eĵ · �e0̂ = 0, �ek̂ = �eî × �eĵ. (4.53)

Let us now consider the rotating reference frame, RF. The coordinate transforma-
tion is

T = t, R = r,Θ = θ + ωt, Z = z. (4.54)

Hence the transformation from the coordinate basis vectors in IF to those in RF
is

�et = ∂T

∂t
�eT + ∂Θ

∂t
�eΘ = �eT + ω�eΘ, �er = �eR, �eθ = �eΘ, �ez = �eZ . (4.55)

Note that even if T = t the basis vectors �eT and �et have different directions.
The vector field �eT is directed along the world lines of the reference particles in IF
that are parallel to the cylinder axis in the figure above while the vector field �et is
directed along the world lines of the reference particles in RF which has the spiral
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shape given by θ = constant shown in Fig. 4.6. The simultaneity space in IF is the
horizontal planes orthogonal to �eT , and the simultaneity space in RF is a succession
of simultaneity spaces locally orthogonal to �et .

In order to find the orthonormal basis carried by an observer in RF bymeans of the
formulae above, wemust first find the components of the 4-velocity in the co-moving
coordinate system in RF. Since the observer is at rest in RF, the time component is
the only non-vanishing component. It follows from the line-element in RF as applied
to an observer at rest that the 4-velocity is

�u = c
dt

dτ
�et = c

√
1 − r2ω2/c2

�et . (4.56)

Inserting Eq. (4.56) into Eq. (4.49) and the expressions (4.21) and (4.23) for the
components of the metric tensor and the spatial metric tensor in RF into Eq. (4.52)
then give the orthonormal basis carried by an observer in RF

�et̂ = 1√
c2 − r2ω2

�et, �er̂ = �er, �eθ̂ =
√
1 − r2ω2/c2

r
�eθ + rω/c2

√
1 − r2ω2/c2

�et . (4.57)

Example 4.8.1 (The acceleration of a velocity field representing rigid rotation) The
velocity field is

�v = rω�eθ̂ = ω�eθ . (4.58)

Note that the coordinate component of the velocity is not equal to the physical
velocity component. The physical velocity components are those in an orthonormal
basis (Fig. 4.7).

We shall calculate the acceleration field, �a = d�v
dt . Using the chain rule of

differentiation we get

Fig. 4.7 Rigid rotation
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�a = ∂�v
∂xμ

dxμ

dt
= vμ ∂�v

∂xμ
. (4.59)

Since the only non-vanishing velocity component is vθ = ω we get

�a = ω
∂�v
∂θ

. (4.60)

This gives

�a = ω
∂(ω�eθ )

∂θ
= ω2 ∂�eθ

∂θ
. (4.61)

We have found earlier that

�er = cos θ�ex + sin θ�ey, �eθ = −r sin θ�ex + r cos θ�ey. (4.62)

Differentiation gives

∂�eθ

∂θ
= −r cos θ�ex − r sin θ�ey = −r�er = −r�er̂ . (4.63)

Hence the acceleration is

�a = −rω2�er̂ . (4.64)

This is the centripetal acceleration for circular motion.

4.9 Uniformly Accelerated Reference Frame

Consider a particle moving along a straight line with velocity u and acceleration
a = du/dT . The acceleration in the instantaneous inertial rest frame of the particle,
its proper acceleration, is denoted by â and is given by

a = (
1 − u2/c2

)3/2
â. (4.65)

Assume that the particle has constant proper acceleration â = g, that is

du

dt
= (

1 − u2/c2
)3/2

g, (4.66)

which on integration with u(0) = 0 gives
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u = dX

dT
= gT

(1 + g2T 2

c2 )1/2
. (4.67)

Integrating once more gives

X = c2

g
(1 + g2T 2

c2
)1/2 + k, (4.68)

where k is a constant of integration. This may be written

(X − k)2 − c2T 2 = c4/g2. (4.69)

This describes a hyperbola in the Minkowski diagram as shown in Fig. 4.8.
The proper time interval as measured by a clock which follows the particle is

dτ =
(
1 − u2

c2

)1/2

dT . (4.70)

Substitution for u(T ) and integration with τ(0) = 0 give

τ = c

g
arcsinh

(
gT

c

)
, (4.71)

or

Fig. 4.8 Hyperbolic motion.
Graph is the world line of a
reference particle in a
uniformly accelerated
reference frames as drawn
with reference to the inertial
frame in which the particle is
at rest at the point of time
T = 0
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T = c

g
sinh

(gτ

c

)
. (4.72)

Inserting this into Eq. (4.68) gives

X = c2

g
cosh

(gτ

c

)
+ k. (4.73)

We now use this particle as the origin of space in an uniformly accelerated
reference frame, AF. With the initial condition X (0) = 0 we get k = −c2/g and

1 + gX

c2
= cosh

gτ

c
. (4.74)

Example 4.9.1 (Uniformly accelerated motion through the Milky Way) Let a traveller
traverse the Milky Way, say a distance of a hundred thousand years, with a constant
proper acceleration equal to 9.8m/s2, to the centre and then reversing the acceleration
so that the traveller stops at the other side. The travel would take approximately a
hundred thousand years as measured by the stationary observer. It has been said that
the traveller would only become around 20 years older during the travel.

Let us see how this comes about. LetX be the distance and T the time as measured
by the stationary observer, τ the proper time of the traveller and g = 9.8m/s2 the
proper acceleration. For uniformly accelerated motion, i.e. motion with constant
proper acceleration, we saw in Eqs. (4.72) and (4.74) that

1 + gX

c2
= cosh

gτ

c
,

gT

c
= sinh

gτ

c
(4.75)

From the identity cosh2(gτ/c) − sinh2(gτ/c) = 1 it then follows that

(
1 + gX

c2

)2

−
(

gT

c

)2

= 1 (4.76)

or

gT

c
=

√(
1 + gX

c2

)2

− 1 =
√

2
gX

c2
+

(
gX

c2

)2

. (4.77)

In the present case we have 1 year= 3.16× 107 s, 1 light year= ct = 9.48× 1015

m, and the distance from the initial position of the traveller to the centre of the Milky
Way is X = 5 × 104 light years = 4.74 × 1020 m. Hence gX /c2 = 5.16 · 104 � 1,
so we can approximate the expression (4.73) by T ≈ X /c. The reason that this is a
good approximation in the present case is that the traveller travels with approximately
the velocity of light during nearly all the time. This can be seen by calculating the
velocity as measured by the stationary observer by taking the differentials of the
expressions (4.75)
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Fig. 4.9 The velocity of a uniformly accelerated particle

U = dX

dT
= c tanh

gτ

c
. (4.78)

The velocity as a function of the proper time is shown in Fig. 4.9.
We see that already at gτ/c = 2 corresponding to gX /c2 = 2.8 or a travelled

distance of about 2.7 light years, the velocity of the traveller is close to that of light.
Then the travel time to the centre of the Milky Way as measured by the stationary
observer is close to T = 50 thousand years, giving gT/c = 5.16×104. Inserting this
into the second expression (4.75) written as

τ = c

g
arsinh

gT

c
(4.79)

gives τ = 11.2 years. So thewhole travel takes a hundred thousand years asmeasured
by the stationary observer, while the traveller only gets 22.4 years older. The traveller
ages extremely slowly because she travels with a velocity which is so close to the
velocity of light.

From her point of view she ages by only 22.4 years because theMilkyWaymoves
with nearly the velocity of light and is shaped like a disc which is only 22.4 light
years thick due to the Lorentz contraction.

Definition 4.9.1 (Born-rigid Motion) Born-rigid motion of a system is a motion
such that every element of the system has constant rest length.

The uniformly accelerated reference frame is required to move in a Born-rigid
way. Let the inertial frame has coordinates (T , X , Y , Z) and the accelerated frame
has coordinates (t, x, y, z). We now denote the X -coordinate of the “origin particle”
by X0. From Eq. (4.73) we then have

1 + gX0

c2
= cosh

gτ0

c
, (4.80)

where τ0 is the proper time for this particle and k is set to −c2/g. (These are Møller
coordinates. Putting k = 0 gives Rindler coordinates).
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Fig. 4.10 Simultaneity in a
uniformly accelerated
reference frame. The vector
�X
∧

lies along the
“simultaneity line” which
makes the same angle with
the x-axis as does �et̂ with the
cT-axis

The coordinate time at an arbitrary point in AF is defined by t = τ0. That is
coordinate clocks inAF run identicallywith the standard clock at the “origin particle”.
Hence, the coordinate time has a position independent rate. Let �X0 be the position
4-vector of the “origin particle”. Decomposed in the laboratory frame, this becomes

�X0 =
{

c2

g
sinh

gt

c
,

c2

g

(
cosh

gt

c
− 1

)
, 0, 0

}
. (4.81)

P is chosen such that P and P0 are simultaneous in the accelerated frame AF.
The distance (see Fig. 4.10) vector from P0 to P, decomposed into an orthonormal
co-moving basis of the “origin particle”, is X̂ = (0, x̂, ŷ, ẑ) where x̂, ŷ and ẑ are
physical distances measured simultaneously in AF. The space coordinates in AF are
defined by

x ≡ x̂, y ≡ ŷ, z ≡ ẑ. (4.82)

The position vector of P is �X = �X0 + �X
∧

. The relationship between basis vectors
in IF and the co-moving orthonormal basis is given by a Lorentz transformation in
the x-direction,

�eμ̂ = �eμ

∂xμ

∂xμ̂
= (�eT , �eX , �eY , �eZ , )

⎛

⎜⎜
⎝

cosh η sinh η 0 0
sinh η cosh η 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠, (4.83)

where η is the rapidity defined by
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tanh η ≡ U0

c
. (4.84)

Here U0 is the velocity of the “origin particle”,

U0 = dX0

dT0
= c tanh

gt

c
. (4.85)

Hence, in the present case the rapidity is

η = gt

c
. (4.86)

So the basis vectors can be written as follows,

�et̂ = �eT cosh
gt

c
+ �eX sinh

gt

c
,

�ex̂ = �eT sinh
gt

c
+ �eX cosh

gt

c
,

�eŷ = �eY , �eẑ = �eZ . (4.87)

The equation �X = �X0 + �X
∧

can now be decomposed in IF,

cT�eT + X �eX + Y �eY + Z�eZ

= c2

g
sinh

gt

c
�eT + c2

g

(
cosh

gt

c
− 1

)
�eX + x sinh

gt

c
�eT

+ x cosh
gt

c
�eX + y�eY + z�eZ . (4.88)

This then gives the coordinate transformations:

T = c
g sinh gt

c + x
c sinh

gt
c ,

X = c2

g

(
cosh gt

c − 1
) + x cosh gt

c

Y = y, Z = z

. (4.89)

The transformations of T and X may be written

gT

c
=

(
1 + gx

c2

)
sinh

gt

c
, 1 + gX

c2
=

(
1 + gx

c2

)
cosh

gt

c
. (4.90)

It follows from these equations that

gT

c
= (1 + gX

c2
) tanh

gt

c
, (4.91)
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showing that the coordinate curves t = constant are straight lines in the T, X-frame
passing through the point T = 0, X = −c2/g.

Using the identity cosh2 θ − sinh2 θ = 1 we get

(
1 + gX

c2

)2

−
(

gT

c

)2

=
(
1 + gx

c2

)2
, (4.92)

showing that the coordinate curves x = constant are hyperbolae in the T, X-diagram
(Fig. 4.11).

Taking the differentials of the coordinates in Eq. (4.89) gives the form of the
line-element in the co-moving coordinates of the uniformly accelerated reference
frame,

ds2 = −c2dT 2 + dX 2 + dY 2 + dZ2 = −
(
1 + gx

c2

)2
c2dt2 + dx2 + dy2 + dz2.

(4.93)

Fig. 4.11 World lines and simultaneity lines of a uniformly accelerated reference system.
Minkowski diagram of the world lines and simultaneity lines of the uniformly accelerated reference
frame AF with reference to the inertial frame IF in which AF is at rest at T = 0
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The line-element is an invariant quantity, but looks different in different coordinate
systems. Note that the metric is diagonal, i.e. only components with equal indices
are different from zero when the basis vectors are orthogonal.

We now consider standard clocks at rest in the accelerated reference frame, i.e.
dx = dy = dz = 0 along the world lines of the clocks. Then the line-element (4.93)
reduces to

ds2 = −
(
1 + gx

c2

)2
c2dt2. (4.94)

Utilizing the physical interpretation (3.91) of the line element for a time-like
interval we obtain the relationship between the proper time and the coordinate time

dτ =
(
1 + gx

c2

)
dt. (4.95)

Since the rate of coordinate time is position independent, this equation tells how
the rate of proper time depends upon the position.

An observer in the accelerated frame AF experiences a gravitational field in the
negative x-direction. When x < 0 then dτ < dt. Equation (4.95) says that time
passes slower further down in a gravitational field. This is called the gravitational
time dilation.

Consider a standard clock moving in the x-direction with velocity v = dx/dt.
Then

− c2 dτ 2 = −
(
1 + gx

c2

)2
c2dt2 + dx2 = −

[(
1 + gx

c2

)2 − v2

c2

]
c2dt2 (4.96)

Hence

dτ =
√(

1 + gx

c2

)2 − v2

c2
dt. (4.97)

This expresses the combined effect of the position dependent gravitational time
dilation and the velocity-dependent kinematic time dilation.

Let us consider how light moves in the uniformly accelerated reference frame.
As a simple example we consider light moving in the y-direction in the laboratory
frame,

X = X0, Y = Y0 + cT , Z = 0. (4.98)

Inserting this in the coordinate transformation above we obtain

gT

c
= g

c2
(y − y0),

(
1 + gx

c2

)2 +
[ g

c2
(y − y0)

]2 =
(
1 + gX0

c2

)2

. (4.99)
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The last equation shows that the light moves along a circular path with radius
X0 + c2/g. Differentiating the equation of the trajectory with respect to x we obtain

dy

dx
= x + c2/g

y − y0
. (4.100)

Hence dy/dx = 0 at the horizon. In other word the light moves in the vertical
direction at the horizon. At that position the light has no motion in the y-direction.
The reason is that the time does not progress at the horizon.

Note also from the line-element that

dx

dt
=

(
1 + gx

c2

)
c (4.101)

for light moving in the x-direction. Light moves slower the further down it is in the
gravitational field, and the coordinate velocity of the light approaches zero as the
light approaches the horizon.

4.10 The Projection Tensor

An observer moves through spacetime with a 4-velocity �u. An arbitrary 4-vector �a
shall be decomposed into one component, �a‖, along �u and one, �a⊥, orthogonal to �u,
so that �a = �a‖ + �a⊥. Using units so that c = 1 the 4-velocity is then a time-like unit
vector, �u · �u = −1, and

�a‖ = (�a · �u)�u
�u · �u = −(�a · �u)�u, �a⊥ = �a + (�a · �u)�u. (4.102)

In the following we shall need the corresponding 4-velocity form,

u = uμωμ. (4.103)

Definition 4.10.1 (The Projection Tensor) The projection tensor, P, is a mixed
tensor of rank 2 which is given in terms of the unit tensor I = ωμ ⊗ �eμ of rank 2, the
4-vector �u and the corresponding 4-form u as

P = I + u ⊗ �u. (4.104)

The mixed components of the projection tensor are

Pν
μ = δν

μ + uμuν . (4.105)
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Note that the last term is not a scalar product. The covariant components of the
projection tensor are

Pμν = gμν + uμuν . (4.106)

Applying the projection tensor to the vector �a and noting from the line below
Eq. (3.73), that I(�a) = �a, we get

P(�a) = I(�a) + (
u ⊗ �u)

(�a) = �a + u(�a)�u = �a + (�a · �u)�u = �a⊥. (4.107)

This means that when one applies the projection tensor to a vector �a one gets out
the component �a⊥ of the vector orthogonal to the vector �u of the projection tensor.
In other words one gets the projection onto the simultaneity space orthogonal to the
time direction of the observer with 4-velocity �u.
Example 4.10.1 (Covariant condition for uniformly accelerated motion) The covari-
ant condition for uniformly accelerated motion of a particle is that the proper acceler-
ation of the particle is constant, which means that the projection of the rate of change
of the acceleration vector vanishes in an instantaneous rest system of the particle. The
covariant mathematical expression of this is: P(d �a/dτ) = 0, where τ is the proper
time of the particle. The component form of this condition is: Pμ

ν daν/dτ = 0.

Example 4.10.2 (Spatial metric and the projection tensor ) We shall here generalize
Formula (4.4) for the spatial metric tensor. Consider a coordinate interval dxμ. It
has a component orthogonal to a 4-velocity �u given by dlμ = Pμ

α dxα . The invariant
spatial line-element is

dl2 = dlαdlα = gαβdlαdlβ = gαβPα
μPβ

ν dxμdxν = PμβPβ
ν dxμdxν . (4.108)

The components of the spatial metric tensor in a simultaneity space orthogonal
to �u may be defined by

dl2 = γμνdxμdxν . (4.109)

This gives

γμν = PμβPβ
ν = (

gμβ + uμuβ

)(
δβ
ν + uνuβ

) = gμν + uνuμ + uμuν

+ uμuνuβuβ = gμν + uμuν . (4.110)

The right-hand side is the covariant components of the projection tensor. Hence
the spatial metric tensor is equal to the projection tensor,

γμν = Pμν. (4.111)
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We shall now consider the simultaneity space of an observer at rest in the
coordinate system. Then the contravariant components of the 4-velocity are

uμ = (−g00)
−1/2(1, 0, 0, 0). (4.112)

The covariant components are

u0 = −(−g00)
1/2, ui = (−g00)

−1/2gi0. (4.113)

Substituting these expressions into Eq. (4.110) gives

γ00 = γi0 = 0, γij = gij − gi0gj0

g00
, (4.114)

in agreement with Eq. (4.4).

Exercises

4.1. Relativistic rotating disc

A disc rotates with constant angular velocity in ω in its own plane and around a fixed
axis A. The axis is chosen to be the origin in a non-rotating Cartesian coordinate
system (x, y) with coordinate clocks showing t. (The z-coordinate is kept constant
from now on). The motion of a given point on the disc can be expressed as

x = r cos(ωt + φ), y = r sin(ωt + φ), (4.115)

where (r, φ) are coordinates specifying the point at the disc.

(a) An observer is able to move on the disc and performs measurements of distance
between neighbouring points at different locations on the disc. The measure-
ments are performed when the observer is stationary with respect to the disc.
The result is assumed to be the same as that measured in an inertial frame with
the same velocity as the observer at the time of the measurement. The lengths
measured by the observer are given by

d�2 = f1(r, φ)dr2 + f2(r, φ)dφ2. (4.116)

Find f1(r, φ) and f2(r, φ).
We now assume that the observer measures the distance from the axis A to a

point (R, 0) along the line φ = 0, by adding the result of measurements between
neighbouring points. What is the result the observer finds? Furthermore the observer
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measures the distance around the circle r = R. What is then found? In what way,
based on this result, is it possible to deduce that the metric considered by the observer
is non-Euclidean? Will the observer find a negative or positive curvature of the disc?

We introduce coordinates (t̃, x̃, ỹ) that follow the rotating disc. They are given by

t̃ = t, x̃ = r cosφ, ỹ = r sin φ. (4.117)

(b) Find the invariant interval ds2 = dx2 + dy2 − c2dt2 in terms of the coordinates
(t̃, x̃, ỹ).

(c) Light signals are sent from the axis A. How will the paths of the light signals
be as seen from the (x̃, ỹ) system? Draw a figure that illustrates this. A light
signal with the frequency ν0 is received by the observer in r = R, φ = 0. Which
frequency ν will be measured by the observer?

(d) We now assume that standard clocks measuring proper time are tightly packed
around the circle r = R. The clocks are at rest on the disc. We now want to
synchronize the clocks and start out with a clock at the point (R, 0). The clocks
are then synchronized in the direction of increasing φ in the following way:
When a clock is tuned at a point φ, the clock at the neighbouring point φ + dφ

is also tuned so that it shows the same time at simultaneity in the instantaneous
rest frame of the two clocks.

Show that there is a problem with synchronization when this process is per-
formed around the entire circle, by the fact that the clock we started out with is no
longer synchronous with the neighbouring clock which is tuned according to the
synchronization process. Find the time difference between these two clocks.

(e) Locally around a point (r, φ, t)we can define an inertial system being an instan-
taneous rest frame of the point (r, φ) on the disc. We introduce an orthonormal
set of basis vectors �eλ̂, �eη̂ and �eξ̂ in this frame. The vector �eλ̂ points along the
time axis of the system, �eξ̂ points radially and eη̂ tangentially. Find the vectors
expressed by �et , �ex and �ey.

4.2. Uniformly accelerated system of reference

Wewill now study a coordinate system (t, x) co-movingwith a uniformly accelerated
reference frame, AF, in a 2-dimensional Minkowski space. The connection with a
Cartesian coordinate system (T , X ) co-moving with an instantaneous inertial rest
frame, IF, of AF at the point of time T = 0 is given by the coordinate transformation

T = x sinh(at), X = x cosh(at) (4.118)

where a is a constant.

(a) Draw the coordinate lines t = constant and x = constant in a (T , X )-diagram.
(b) Find the line-element ds2 = −dT 2 + dX 2 expressed by t and x.
(c) We now assume that a particle has a path in spacetime so that it follows one of

the curves x = constant. Such a motion is called hyperbolic motion. Why?
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Show that the particle has constant acceleration when the acceleration is
measured in the instantaneous rest frame of the particle. Find the acceleration
of the rod has constant acceleration and the rod g. Find also the velocity and
acceleration of the particle in the system (T , X ).

(d) Show that at any point on the trajectory of a reference particle inAF the direction
of the coordinate axes in the (T , X )-systemwill overlapwith the time and spatial
axis of the instantaneous rest frame of the particle. Explain why it is possible
to see from the line element that the X -coordinate measures length along the
spatial axis, whereas theT -coordinate, which is the coordinate time, is in general
not the proper time of the particle. For what value of X is the coordinate time
equal to the proper time?

The (t, x)-coordinate system can be considered as an attempt to construct,
from the instantaneous rest frames along the path, a coordinate system covering
the entire spacetime. Explain why this is not possible for the entire space. (Hint:
There is a coordinate singularity at a certain distance from the trajectory of the
particle).

(e) A rod is moving in the direction of its own length. At the time T = 0 the rod
is at rest, but still accelerated. The length of the rod measured in the stationary
system is L at this time. The rod moves so that the forwards point of the rod has
constant rest acceleration measured in the instantaneous rest frame.

We assume that the acceleration of the rod finds place so that the infinitesimal
distance d� between neighbouring points on the rod measured in the instantaneous
rest frame is constant. Find the motion of the rear point of the rod in the stationary
reference system. Why is there a maximal length of the rod, Lmax ?

If the rear point of the rod has constant acceleration and the rod is accelerated as
previously in this exercise, then is there a maximal value of L ?

4.3. Uniformly accelerated space ship

(a) A spaceship leaves the Earth at the time T = 0 and moves with a constant
acceleration g, equal to the gravitational constant at the Earth, into space.
Find how far the ship has travelled during 10 years of proper time of the
ship.

(b) Radio signals are sent from the Earth towards the spaceship. Show that
signals that are sent after a given time T will never reach the ship (even
if the signals travel with the speed of light). Find T . At what time are the
signals sent from the Earth if they reach the ship after 10 years (proper
time of the ship)?

(c) Calculate the frequency of the radio signals received by the ship, given
by the frequency ν0 (emitter frequency) and the time t0 (emitter time).
Investigate the behaviour of the frequency when the proper time on the
space ship τ → ∞.
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4.4. Light emitted from a point source in a gravitational field

A point-like light source is at the position x = x1, y = 0 in a uniformly accelerated
reference frame AF. A photon is emitted from the source at a point of time t = 0. It
is emitted in the (x, y)− plane in a direction making an angle θ0 with the x-axis.

Find the equation for the path followed by the photon, and identify the nature of
the trajectory.

4.5. Geometrical optics in a gravitational field

It was shown in Eq. (4.99) that light does not move along a straight path in the
gravitational field experienced in a uniformly accelerated reference frame AF, but
along a circular trajectory.

(a) A sphere seen from above. The observer P is at a height x = x1. The centre
of the sphere is at a distance b vertically beneath P. Light is emitted from the
surface of the body. It moves along a circular path with radius R = x1/ sin θ ,
where θ is the angle between the light path and the x-axis at the position of
the observer. The corresponding angle without a gravitational field would be θ0
given by sin θ0 = r/b, where r is the radius of the sphere. The acceleration of
gravity at the position of the observer is g/c2 = 1/x1.

Calculate how the angle θ depends upon g, r and b.
(b) A sphere seen from below. Same as (a) but with the observer below the sphere.
(c) An experiment. Place a camera one metre above the centre of a sphere of radius

10 cm and another one a metre below in the gravitational field of the Earth.
Calculate the difference of θ in photographs taken with the two cameras.



Chapter 5
Covariant Differentiation

Abstract The theory of forms is a theory of antisymmetric tensors. In such a theory
we need an antisymmetric version of the covariant derivative such that the derivative
of a form is a form.Hence in this chapterwefirst introduce the covariant derivative and
then the antisymmetric exterior derivative. The relativistic Euler–Lagrange equations
are introduced and applied to deduce the equation ofmotion of free particles in curved
spacetime—the geodesic equation. Since gravity is not reckoned as a force in the
general theory of relativity “free particles” in this theory correspond to particles acted
upon by gravity in Newton’s theory. The fundamental equations of electromagnetism
in form language are also presented in this chapter.

5.1 Differentiation of Forms

We must have a method of differentiation which maintains the antisymmetry so that
differentiating a form gives out a form.

5.1.1 Exterior Differentiation

The exterior derivative of a 0-form, i.e. a scalar function, f, is given by

d f = ∂ f

∂xμ
ωμ = fμωμ, (5.1)

where ωμ are coordinate basis forms

ωμ

(
∂

∂xν

)
= δμ

ν . (5.2)

We then get
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ωμ = δμ
ν ων = ∂xμ

∂xν
ων = dxμ. (5.3)

This shows that we can write the basis forms as exterior derivatives of the
coordinates in an arbitrary coordinate basis. The differential dxμ is given by

dxμ(d�r) = dxμ, (5.4)

where d�r is an infinitesimal position vector. Note that dxμ are not infinitesimal
quantities. It follows that in a coordinate basis the exterior derivative of a p-form

α = 1

p!αμ1...μpdxμ1 ∧ · · · ∧ dxμp (5.5)

has the following component form:

d α = 1

p!αμ1...μp,μ0dxμ0 ∧ dxμ1 ∧ · · · ∧ dxμp , (5.6)

whereμ0 ≡ ∂

∂xμ
0
. This shows that the exterior derivative of a p-form is a (p + 1)-form.

Let (dα)μ0...μp be the form components of dα. They must, by definition, be
antisymmetric under an arbitrary interchange of indices:

dα = 1

(p + 1)! (dα)μ0...μpdxμ0 ∧ · · · ∧ dxμp = 1

p!α[αμ1 ...μp ,μ0 ]dxμ0 ∧ · · · ∧ dxμp .

(5.7)

Hence

(dα)μ0...μp = (p + 1)α[μ1...μp,μ0]. (5.8)

The component form of the form equation dα = 0 is

α[μ1...μp,μ0] = 0. (5.9)

Example 5.1.1 (Relationship between exterior derivative and curl) We consider a
1-form in a 3-space,

α = αidxi , xi = (x, y, z). (5.10)

Its exterior derivative is

dα = αi, jdx j ∧ dxi . (5.11)
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Also, assume that dα = 0. The corresponding component equation is α[i, j] = 0
or αi, j − α j, i = 0. Writing it out we have

∂αy

∂x
− ∂αx

∂y
= 0,

∂αz

∂x
− ∂αx

∂z
= 0,

∂αy

∂z
− ∂αz

∂y
= 0. (5.12)

which corresponds to

∇ × �α = 0. (5.13)

The outer product of an outer product is

d2α ≡ d(dα), (5.14)

with component form

d2α = 1

p!αμ1...μp,ν1ν2dxν2 ∧ dxν1 ∧ · · · ∧ dxμp , ν1ν2 ≡ ∂2

∂xν1∂xν2
. (5.15)

Since

,ν1ν2 ≡ ∂2

∂xν1∂xν2
=,ν2ν1≡

∂2

∂xν2∂xν1
(5.16)

the quantities αμ1...μp,ν1ν2 are symmetric in ν1 and ν2. On the other hand, the basis is
antisymmetric in ν1 and ν2. We saw in Eq. (3.107) that the product of a symmetric
and an antisymmetric quantity vanishes. Hence, we have

d2α = 0, (5.17)

whichmeans that the second exterior derivative of a p-form (with scalar components,
see later) vanishes. This is sometimes called Poincaré’s lemma. For a 1-form, it
corresponds to the vector equation

∇ · (∇ × �A) = 0. (5.18)

Let α be a p-form and β a q-form. Then

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ. (5.19)
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5.1.2 Covariant Derivative

The general theory of relativity contains a covariance principle which states that
all equations expressing laws of nature must have the same form irrespective of the
coordinate system inwhich they are derived. This is achieved bywriting all equations
in terms of tensors. Let us see if the partial derivative of vector components transform
as tensor components.

Consider a vector �A = Aμ�eμ = Aμ′ �eμ′ . The basis transforms as

∂

∂xv′ = ∂xν

∂xv′
∂

∂xν
. (5.20)

Hence

Aμ′
,ν ′ ≡ ∂

∂xν ′

(
Aμ′) = ∂xν

∂xν ′
∂

∂xν

(
Aμ′) = ∂xν

∂xν ′
∂

∂xν

(
∂xμ′

∂xμ
Aμ

)
. (5.21)

Performing the differentiation of the product gives

Aμ′
,ν ′ = ∂xν

∂xν ′
∂xμ′

∂xμ
Aμ

,ν + ∂xν

∂xν ′ Aμ ∂2xμ′

∂xν∂xμ
. (5.22)

The first term corresponds to a tensor transformation.However, the presence of the
last term shows that Aμ

,ν does not, in general, transform as the components of a tensor.
Note that Aμ

,ν will transform as a components of a tensor under linear transformations
such as the Lorentz transformations.

In order to obtain a proper tensor formalism, the partial derivative must be gener-
alized so as to ensure that when its generalization is applied to tensor components it
produces tensor components.

5.2 The Christoffel Symbols

The covariant derivative of the components of a vector field was introduced by Elwin
Christoffel to be able to differentiate tensor fields. It is defined in coordinate basis
by generalizing the partial derivative Aμ

,ν to a derivative written as Aμ

;ν and which
transforms tensorially,

Aμ′
;ν ′ ≡ ∂xμ′

∂xμ
· ∂xν

∂xν ′ Aμ

;ν . (5.23)

Definition5.2.1 (Christoffel symbols) TheChristoffel symbols are definedbywriting
the covariant derivative of the vector components in the form
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Aμ

;ν ≡ Aμ
,ν + Aα�μ

αν. (5.24)

The Christoffel symbols �μ
αν are also called the “connection coefficients in coor-

dinate basis”. From the transformation formulae of the left-hand side and the first
term on the right-hand side it follows that the Christoffel symbols transform as

�α′
μ′ν ′ = ∂xν

∂xν ′
∂xμ

∂xμ′
∂xα′

∂xα
�α

μν + ∂xα′

∂xα

∂2xα

∂xμ′
∂xν ′ . (5.25)

Due to the last term, the Christoffel symbols do not transform as tensor compo-
nents. It is possible to make all Christoffel symbols vanish by transforming into a
locally Cartesian coordinate system which is co-moving in a locally non-rotating
reference frame in free fall. Such coordinates are known as Gaussian coordinates.

As discussed in Sect. 1.4 according to the general theory of relativity an inertial
frame is a non-rotating frame in free fall. The Christoffel symbols are 0 (zero) in a
locallyCartesian coordinate systemwhich is co-moving in a local inertial frameLocal
Gaussian coordinates are indicated with a hat over the indices since the coordinate
vector basis is orthonormal in such a coordinate system, giving

�α̂
μ̂ν̂ = 0. (5.26)

A transformation from local Gaussian coordinates to any coordinates leads to

�α′
μ′ν ′ = ∂xα′

∂x α̂

∂2x α̂

∂xμ′
∂xν ′ . (5.27)

This equation shows that the Christoffel symbols are symmetric in the two lower
indices, i.e.

�α′
μ′ν ′ = �α′

ν ′μ′ . (5.28)

Example 5.2.1 (The Christoffel symbols in plane polar coordinates) The transfor-
mation between plane polar coordinates and Cartesian coordinates is

x = r cos θ, y = r sin θ,

r = √
x2 + y2, θ = arctan y

x ,
(5.29)

We need the derivatives of the coordinates with respect to each other

∂x
∂r = cos θ, ∂x

∂θ
= −r sin θ, ∂r

∂x = x
r = cos θ, ∂r

∂y = sin θ,
∂y
∂r = sin θ,

∂y
∂θ

= r cos θ, ∂θ
∂x = − sin θ

r , ∂θ
∂y = cos θ

r ,
(5.30)
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Inserting these expressions into Eq. (5.27) gives the Christoffel symbols in the
plane polar coordinates

�r
θθ = ∂r

∂x

∂2x

∂θ2
+ ∂r

∂y

∂2y

∂θ2
= cos θ(−r cos θ) + sin θ(−r sin θ)

= −r(cos θ2 + sin θ2) = −r, (5.31)

�θ
rθ = �θ

θr = ∂θ

∂x

∂2x

∂θ∂r
+ ∂θ

∂y

∂2y

∂θ∂r
= − sin θ

r
(− sin θ) + cos θ

r
(cos θ) = 1

r
.

(5.32)

The geometrical interpretation of the covariant derivative was given by Levi-
Civita. Consider a curve S in any (e.g. curved) space. It is parameterized by λ, i.e.
xμ = xμ(λ). The parameter λ is invariant and chosen to represent the arc length.
The tangent vector field of the curve is

�u = (dxμ/dλ)�eμ. (5.33)

The curve passes through a vector field �A.
Definition 5.2.2 (Covariant directional derivative) The covariant directional
derivative of the vector field along the curve is defined as

∇�u �A = d �A
dλ

≡ Aμ

;ν
dxν

dλ
�eμ = Aμ

;νuν �eμ. (5.34)

Definition 5.2.3 (Parallel transport) The vectors are said to be connected by parallel
transport along the curve if

Aμ

;νuν = 0. (5.35)

According to the geometrical interpretation of Levi-Civita, the covariant direc-
tional derivative is

∇�u �A = Aμ

;νuν �eμ = lim
�λ→0

�A‖(λ + �λ) − �A(λ)

�λ
, (5.36)

where �A‖(λ + �λ) means the vector �A parallel transported from Q to P (Fig. 5.1).
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Fig. 5.1 Parallel transport from P to Q. The vector �B = Aμ

;νuν�λ�eμ

5.3 Geodesic Curves

Definition 5.3.1 (Geodesic curves) A geodesic curve is defined by the requirement
that the vectors of the tangent vector field of the curve are connected by parallel
transport.

This definition says that geodesic curves are “as straight as possible”. If vectors
in a vector field �A(λ) are connected by parallel transport by a displacement along a
vector �u, we have Aμ

;νuν = 0. For geodesic curves, we then have

uμ

;νuν = 0 (5.37)

which is the geodesic equation

(uμ
,ν + �μ

ανuα)uν = 0. (5.38)

Then we are using that

d

dλ
≡ dxν

dλ

∂

∂xν
= uν ∂

∂xν
, (5.39)

which gives

duμ

dλ
= uν ∂uμ

∂xν
= uνuμ

,ν. (5.40)

Hence, the geodesic equation can be written as
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duμ

dλ
+ �μ

ανuαuν = 0. (5.41)

A usual notation is to represent the derivative with respect to an invariant curve
parameter by an over dot, · = d

dλ . Then the expression for the components of the
tangent vector of the curve takes the form

uμ = dxμ

dλ
= ẋμ, (5.42)

and the geodesic equation is written as

ẍμ + �μ
αν ẋα ẋν = 0. (5.43)

Geodesic curves on a flat surface and on a spherical surface are shown in Figs. 5.2
and 5.3, respectively.

Fig. 5.2 Geodesic curve on
a flat surface. On a flat
surface, the geodesic curve is
the minimal distance
between P and Q

Fig. 5.3 Geodesic curves on
a sphere
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5.4 The Covariant Euler–Lagrange Equations

Let a particle have a world line between two points in spacetime (events) P1 and
P2. The curve is described by an invariant parameter λ (proper time τ is used for
particles with a rest mass, i.e. for time-like world lines).

The Lagrange function is a function of the coordinates and their derivatives,

L = L(xμ, ẋμ), ẋμ ≡ dxμ

dλ
. (5.44)

Note that if λ = τ then ẋμ are the 4-velocity components.
The action integral is S = ∫

L(xμ, ẋμ)dλ. The principle of extremal action
(Hamiltons principle) says that the world line of a particle is determined by the
condition that S shall be extremal for all infinitesimal variations of curves which
keep P1 and P2 fixed, i.e.

δ

λ2∫
λ1

L(xμ, ẋμ)dλ = 0, (5.45)

where λ1 and λ2 are the parameter values at P1 and P2 (Fig. 5.4).
For all the variations the following condition applies,

δxμ(λ1) = δxμ(λ2) = 0. (5.46)

We write Eq. (5.45) as

Fig. 5.4 Neighboring
geodesics in a Minkowski
diagram
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δ

λ2∫
λ1

Ldλ =
λ2∫

λ1

[
∂L

∂xμ
δxμ + ∂L

∂ ẋμ
δ ẋμ

]
dλ. (5.47)

Partial integration of the last term gives

λ2∫
λ1

∂L

∂ ẋμ
δ ẋμdλ =

[
∂L

∂ ẋμ
δxμ

]λ2

λ1

−
λ2∫

λ1

d

dλ

(
∂L

∂ ẋμ

)
δxμdλ. (5.48)

Due to the conditions δxμ(λ1) = δxμ(λ2) = 0, the first term becomes zero. Then
we have

δS =
λ2∫

λ1

[
∂L

∂xμ
− d

dλ

(
∂L

∂ ẋμ

)]
δxμdλ. (5.49)

The world line the particle follows is determined by the condition δS = 0 for any
variation δxμ. Hence, the world line of the particle must be given by

∂L

∂xμ
− d

dλ

(
∂L

∂ ẋμ

)
= 0. (5.50)

These are the covariant Euler–Lagrange equations.
The canonical momentum pμ conjugated to a coordinate xμ is defined as

pμ ≡ ∂L

∂ ẋμ
. (5.51)

The Lagrange equations can now be written as

dpμ

dλ
= ∂L

∂xμ
or ṗμ = ∂L

∂xμ
. (5.52)

A coordinate which the Lagrange function does not depend on is known as a cyclic
coordinate. Hence, ∂L

∂xμ = 0 for a cyclic coordinate. From Eq. (5.52) then follows:
The canonical momentum conjugated to a cyclic coordinate is a constant of motion.
That is, pμ = constant if xμ is cyclic. Note that only the covariant component of the
momentum is constant, not the corresponding contravariant component since raising
an index introduces metric functions.

A free particle in spacetime has the Lagrange function

L = 1

2
�u · �u = 1

2
ẋμ ẋμ = 1

2
gμν ẋμ ẋν . (5.53)
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An integral of the Lagrange equations is obtained readily from the 4-velocity
identity:

{
ẋμ ẋμ = −c2 for a particle with rest mass
ẋμ ẋμ = 0 for light

. (5.54)

The line element is

ds2 = gμνdxμdxν = gμν ẋμ ẋνdλ2 = 2Ldλ2. (5.55)

Thus the Lagrange function of a free particle is obtained from the line element.

5.5 Application of the Lagrange Formalism to Free
Particles

To describe the motion of a free particle, we start by setting up the line element
of the spacetime in the chosen coordinate system. There are coordinates on which
the metric does not depend. For example, given axial symmetry we may choose the
angle θ which is a cyclic coordinate here and the conjugate (covariant) impulse Pθ

is a constant of the motion (the orbital spin of the particle). If, in addition, the metric
is time independent (stationary metric) then t is also cyclic and pt is a constant of
the motion (the mechanical energy of the particle).

A static metric is time independent and unchanged under time reversal (i.e. t →
−t). A stationary metric is independent of time, but changes under time reversal.
Examples of static metrics are the Minkowski metric and the metric in a uniformly
accelerated reference frame. The rotating cylindrical coordinate system is stationary.

5.5.1 Equation of Motion from Lagrange’s Equations

The Lagrange function for a free particle is

L = 1

2
gμν ẋμ ẋν, (5.56)

where gμν = gμν(xλ), and the Lagrange equations are

∂L

∂xβ
− d

dτ

(
∂L

∂ ẋβ

)
= 0. (5.57)

Differentiation of L with respect to the coordinates and velocity components give
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∂L

∂xβ
= 1

2
gμν,β ẋμ ẋν,

∂L

∂ ẋβ
= gβν ẋν . (5.58)

Differentiation of the latter quantities with respect to the proper time leads to

d

dτ

(
∂L

∂ ẋβ

)
≡

(
∂L

∂ ẋβ

)·
= ġβν ẋν + gβν ẍν = gβν,μ ẋμ ẋν + gβν ẍν (5.59)

Equations (5.58) and (5.59) give

1

2
gμν,β ẋμ ẋν − gβν,μ ẋμ ẋν − gβν ẍν = 0. (5.60)

The second term on the left-hand side of Eq. (5.60) may be rewritten making use
of the fact that ẋμ ẋν is symmetric in μν, as follows:

gβν,μ ẋμ ẋν = 1

2
(gβμ,ν + gβν,μ)ẋμ ẋν . (5.61)

Hence, the equation of motion of the free particle may be written,

gβν ẍν + 1

2
(gβμ,ν + gβν,μ − gμν,β)ẋμ ẋν = 0. (5.62)

Finally, since we are free to multiply (5.62) through by gαβ , we can isolate ẍα to
get the equation of motion in the form

ẍα + 1

2
gαβ(gβμ,ν + gβν,μ − gμν,β)ẋμ ẋν = 0. (5.63)

This may be written as

ẍα + �α
μν ẋμ ẋν = 0, (5.64)

where the symbols �α
μν in (5.64) are given by

�α
μν ≡ 1

2
gαβ(gβμ,ν + gβν,μ − gμν,β). (5.65)

Comparison with Eq. (5.43) shows that Eq. (5.64) describes a geodesic curve and
that �α

μν are Christoffel symbols. Hence, free particles follow geodesic curves in
spacetime.

The equation of a time-like geodesic curve has been deduced from a variational
principle which says that if there are two fixed points P1 and P2 in spacetime, then
there exists an open subset of spacetime containing these two points such that among
all curves contained in this open subset, the geodesic will be the curve of longest
length between these two points. Note that for time-like curves, the length of a curve
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between the two events P1 and P2 which the curve passes through is the proper time
used by a particle travelling from P1 to P2 along the curve.

So, the variational principle says that time-like geodesics maximizes the proper
time along the curve among all curves in spacetime close to the geodesic.

There exist non-geodesic curves between two events far away from the geodesic
curve between the events, along which a particle following the curve may have larger
proper time between the events than a particle following the geodesic curve. Consider
for example a clock at rest outside the Earth compared to a clockmoving freely along
a circular path, and calculate the proper time between two meetings of the clocks. It
turns out that a standard clock on the non-geodesic particle at rest measures a larger
proper time between departure and arrival of a clock following the particle which
moves freely along a circular path in 3-space. (An exact calculation requires the
Schwarzschild spacetime. See Chap. 9) Hence in general the variational principle
has a local character.

Example 5.5.1 (Vertical free fall in a uniformly accelerated reference frame) The
Lagrange function of the particle is

L = −1

2

(
1 + gx

c2

)2
ṫ2 + 1

2

ẋ2

c2
, (5.66)

where the dot denotes differentiation with respect to the proper time τ of the freely
falling particle. This gives

∂L

∂x
= − g

c2

(
1 + gx

c2

)
ṫ2,

∂L

∂ ẋ
= ẋ

c2
. (5.67)

Hence the Euler–Lagrange equation

∂L

∂x
−

(
∂L

∂ ẋ

)·
= 0 (5.68)

takes the form

ẍ + g
(
1 + gx

c2

)
ṫ2 = 0. (5.69)

Furthermore we have

∂L

∂t
= 0,

∂L

∂ ṫ
= −

(
1 + gx

c2

)2
ṫ,

(
∂L

∂ ṫ

)·
= −2

(
1 + gx

c2

) g

c2
ẋ ṫ −

(
1 + gx

c2

)2
ẗ .

(5.70)

Hence, the Lagrange equation

∂L

∂t
−

(
∂L

∂ ṫ

)·
= 0 (5.71)
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takes the form

2g

c2
ẋ ṫ +

(
1 + gx

c2

)
ẗ = 0. (5.72)

Combining Eqs. (5.69) and (5.72) leads to

−c2
(
1 + gx

c2

) g

c2
ẋ ṫ2 − c2

(
1 + gx

c2

)2
ṫ ẗ + ẋ ẋ = 0. (5.73)

Integrating this equation gives the 4-velocity identity

−c2
(
1 + gx

c2

)2
ṫ2 + ẋ2 = −c2. (5.74)

Since the metric is static the momentum

pt = ∂L/∂ ṫ = −
(
1 + gx

c2

)2
ṫ (5.75)

is a constant ofmotion.Thevalue of pt is determinedby the initial condition. Inserting
the expression for ṫ into the 4-velocity identity gives

− p2
t(

1 + gx
c2
)2 + ẋ2

c2
= −1. (5.76)

Assume that the particle is falling from rest at an initial position x = x0, i.e.
ẋ(x0) = 0. Then

pt = −
(
1 + gxo

c2

)
. (5.77)

Inserting this into the 4-velocity identity leads after a short calculation to

x∫
x0

1 + gx
c2√(

1 + gx0
c2

)2 − (
1 + gx

c2
)2 dx =

τ∫
0

cdτ . (5.78)

Performing the integration gives

√(
1 + gx0

c2

)2 −
(
1 + gx

c2

)2 = gτ

c
. (5.79)

This expression shows that the particle uses a finite proper time

τmax = c

g

(
1 + gx0

c2

)
(5.80)
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to arrive at the horizon at x = −c2/g. The position of the particle as a function of
its proper time is

x = c2

g

(√(
1 + gx0

c2

)2 −
(gτ

c

)2 − 1

)
. (5.81)

5.5.2 Geodesic World Lines in Spacetime

Consider two time-like curves between two events in Minkowski spacetime. In
Fig. 5.5 they are drawn in a Minkowski diagram which refers to an inertial reference
frame.

The general interpretation of the line element for a time-like interval is: The
spacetime distance between O and P in Fig. 5.5 equals the proper time interval
between two events O and P measured on a clock moving in a such way that it is
present both at O and P.

ds2 = −c2dτ 2 (5.82)

The proper time interval between two events at coordinate times T 0 and T 1 are

τ0−1 =
T1∫

T0

√
1 − υ2(T )

c2
dT . (5.83)

Fig. 5.5 Time like geodesics
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Fig. 5.6 Projectiles in 3-space. The particle moves between two events O and P at fixed points in
time

We can see that τ0−1 is maximal along the geodesic curve with υ(T ) = 0. Time-
like geodesic curves in spacetime have maximal distance between two points.

Example 5.5.2 (How geodesics in spacetime can give parabolas in space) A
geodesic curve between two events O and P has maximal proper time. The proper
time interval of a particle with position x and velocity v in a gravitational field with
acceleration of gravity g is

dτ = dt

√(
1 + gx

c2

)2 − υ2

c2
. (5.84)

This expression shows that the proper time of the particle proceeds faster the
higher up in the field the particle is, and it proceeds slower the faster the particle
moves.

In Fig. 5.6, we have drawn several paths between to events O and P with the same
height in a gravitational field.

The path chosen by the particle betweenO andP is such that the proper time taken
by the particle between these two events is as large as possible. Thus the particle will
follow a path such that its co-moving standard clock goes as fast as possible. If the
particle follows the horizontal line between O and P it goes as slowly as possible and
the kinematical time dilation is as small as possible. Then the slowing down of its
co-moving standard clock due to the kinematical time dilation is as small as possible,
favoring a fast rate of the clock, but the particle is far down in the gravitational field
and its standard clock goes slowly for that reason. Paths further up lead to a greater
rate of proper time due to a smaller gravitational time dilation. But above the curve
drawn as a thick line, the kinematical time dilation will dominate, and the proper
time proceeds more slowly.

We shall now deduce the mathematical expression of what has been said above.
Time-like geodesic curves are curves with maximal proper time, i.e.
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τ =
τ1∫
0

√−gμν ẋμ ẋνdτ (5.85)

is maximal for a geodesic curve. However, the action

S = −2

τ1∫
0

Ldτ = −
τ1∫
0

gμν ẋμ ẋνdτ (5.86)

is maximal for the same curves, and this gives an easier calculation.
In the case of a vertical curve in a hyperbolically accelerated reference frame, the

Lagrangian is

L = 1

2

(
−
(
1 + gx

c2

)2
ṫ2 + ẋ2

c2

)
. (5.87)

Using the Euler–Lagrange equations now gives Eq. (5.69). Since spacetime is flat,
the equation represents straight lines in spacetime. The projection of such curves
into the three space of arbitrary inertial frames gives straight paths in 3-space, in
accordance with Newton’s 1st law. However, projecting it into an accelerated frame
where the particle also has a horizontal motion, and taking the Newtonian limit, one
finds the parabolic path of projectile motion.

5.5.3 Acceleration of Gravity

A free particle has vanishing 4-acceleration and moves along a time-like geodesic
curve. The i-component of the geodesic equation is

ẍ i + �i
μν ẋμ ẋν = 0. (5.88)

We define the acceleration of gravity as the 3-acceleration of a free particle instan-
taneously at rest. Since the spatial components of the 4-velocity of a particle at rest
vanish, the acceleration of gravity is given by

ẍ i = −�i
t t ṫ

2. (5.89)

Hence the acceleration of gravity is given by the Christoffel symbols �i
t t . They

vanish in a local inertial reference frame, i.e. in a freely falling non-rotating reference
frame. There is an acceleration of gravity in any non-inertial laboratory independent
of the geometrical properties of spacetime.

In the Newtonian limit dτ = dt , ṫ = 1 and the components of the acceleration of
gravity are written ẍ i = gi . It follows that
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Fig. 5.7 The twin paradox.
The twins Eartha and Starry
each travel between two
fixed events in spacetime

gi = −�i
t t . (5.90)

Example 5.5.3 (The Twin Paradox) Consider two twins, Starry and Eartha. Starry
travels to Proxima Centauri, four light years from the Earth, with a velocity v = 0.8c
so that γ = (

1 − v2/c2
)− 1/2 = 5/3. The trip takes five years out and five years back.

This means that Eartha, who remains at the Earth, is ten years older when she meets
Starry at the end of her journey. Starry, on the other hand, is 10/γ = 6 years older
(Fig. 5.7).

According to the general principle of relativity, Starry can consider herself as
being at rest and Eartha as the one whom undertakes the long journey. In this picture
it seems that Starry and Eartha must be ten and six years older, respectively, upon
their return.

Let us accept the principle of general relativity as applied to accelerated reference
frames and review the twin “paradox” in this light.

Starry’s description of the trip when she sees herself as stationary is as follows.
She perceives aLorentz-contracted distance between theEarth andProximaCentauri,
namely, four light years ×1/γ = 2.4 light years. The Earth and Eartha travel with
v = 0.8c. Her travel time in one direction is then 2.4 light years

0.8c = 3 years. So the round
trip takes six years according to Starry. This means that Starry is six years older when
they meet again. This is in accordance with the result arrived at by Eartha. According
to Starry, Eartha ages by only six years ×1/γ = 3.6 years during the round trip,
not ten years as Eartha found. It is this conflict which constitutes the twin paradox.
Note that the formulation of the twin paradox makes use of the general principle of
relativity.

On turning about Starry experiences a force which reduces her velocity and accel-
erates her towards the Earth and Eartha. This means that she experiences a gravita-
tional force directed away from theEarth. Eartha is higher up in this gravitational field
and ages faster than Starry, because of the gravitational time dilation.We assume that
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Starry has constant proper acceleration and is stationary in a uniformly accelerated
frame as she turns about. Let us follow Starry’s calculation of the ageing of Eartha
while Starry experiences this gravitation field.

The canonical momentum pt for Eartha is then (see Eq. (5.75))

pt = −
(
1 + gx

c2

)2
cṫ . (5.91)

Inserting this into the 4-velocity identity gives

p2
t − c2

(
1 + gx

c2

)2 =
(
1 + gx

c2

)2
ẋ2 (5.92)

or

dτ = 1 + gx
c2√

p2
t − c2

(
1 + gx

c2
)2 dx . (5.93)

Since ẋ = 0 for x = x2 (x2 is Eartha’s turning point according to Starry), it
follows that

pt = c
(
1 + gx2

c2

)
. (5.94)

Let x1 be Eartha’s position according to Starry at the moment that Starry begins
to notice the gravitational field, that is when Eartha begins to slow down in Starry’s
frame. Integration from x1 to x2 and inserting the value of pt gives

τ1−2 = c

g

√(
1 + gx2

c2

)2 −
(
1 + gx1

c2

)2
. (5.95)

Eartha neglected the time used by Starry to change from an outwards to a return
velocity at Proxima Centauri when she calculated the aging of herself and Starry.
This means that she took the limit of an infinitely large acceleration. Hence Starry
must do the same. In this limit Starry gets

lim
g→∞ τ1−2 = 1

c

√
x2
2 − x2

1 . (5.96)

Now setting x2 = 4 years and x1 = 2.4 light years, respectively, we get
limg→∞ τ1−2 = 3.2 years. Hence, Eartha’s aging as she turns about is, according
to Starry,

�τEartha = 2 lim
g→∞ τ1−2 = 6.4 years.
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So all in all Eartha has aged by τEartha = 3.6+6.4 = 10 years, according to Starry,
which is just what Eartha herself found.

We have now seen: The formulation of the twin paradox makes use of the gen-
eral principle of relativity for accelerated motion. The paradox arises if one tries to
describe the ageing of both twins from the point of view of each twin without taking
into account the effect of gravity upon the rate of time. Hence, both the formulation
and the solution of the twin paradox involves the general theory of relativity.

5.5.4 Gravitational Shift of Wavelength

Weshall consider the shift ofwavelength of lightmoving up or down in a gravitational
field. The 4-momentum of a particle with relativistic energy E and spatial velocity �v
(3-velocity) is given by

�P = E

c2
(c, �v). (5.97)

Let �U be the 4-velocity of an observer. In a co-moving orthonormal basis of the
observer we have �U = (c, 0, 0, 0). This gives

�U · �P = −Ê . (5.98)

Hence, the energy of a particle with 4-momentum �P measured by an observer
with 4-velocity �U is

Ê = − �U · �P . (5.99)

Let Ee = −( �U · �P)e and E0 = − ( �U · �P)0 be the energy of a photon, measured
locally by observers at rest in the emitter and observer positions, respectively. This
gives1

Ee

( �U · �P)e
= E0

( �U · �P)0
. (5.100)

Let the wavelength of the light, measured by the emitter and observer, be λe and
λ0, respectively. We then have

λe = hc

Ee
, λ0 = hc

E0
(5.101)

1 �A · �B = A0B0 + A1B1 + · · · = g00 A0B0 + g11 A1B1 + · · · , an orthonormal basis gives �A · �B =
−A0B0 + A1B1 + · · · .
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which gives

λ0 = ( �U · �P)e

( �U · �P)0
λe. (5.102)

This formula may be applied to observers with arbitrary motion.
We shall here restrict ourselves to an observer at rest in a coordinate system with

time-independent diagonal metric. Then we have

�U · �P = U t Pt = c
dt

dτ
Pt , (5.103)

where Pt is a constant of motion (since t is a cyclic coordinate) for photons and hence
has the same value in emitter and observer positions. The line element is

ds2 = gtt c
2dt2 + gii (dxi )2. (5.104)

Using the physical interpretation (3.82) of the line element for a time-like interval,
we obtain for the proper time of an observer at rest

dτ 2 = −gttdt2 ⇒ dτ = √−gttdt. (5.105)

Hence

dt

dτ
= 1√−gtt

, (5.106)

which gives

�U · �P = c√−gtt
Pt . (5.107)

Inserting this into the expression for the wavelength (5.102) gives the formula for
the gravitational shift of the wavelength of light emitted and observed by an emitter
and an observer at rest in the reference frame,

λ0 =
√

(gtt)0

(gtt)e
λe. (5.108)

Example 5.5.4 (Gravitational redshift or blueshift of light) Inserting the metric of
a uniformly accelerated reference frame with

gtt = −
(
1 + gx

c2

)2
(5.109)
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gives

λ0 = 1 + gx0
c2

1 + gxe
c2

λe. (5.110)

The gravitational redshift (light moving upwards in a gravitational field) or
blueshift (light moving downwards) is

zG = λ0 − λe

λe
= 1 + gx0

c2

1 + gxe
c2

− 1 =
g
c2 (x0 − xe)

1 + gxe
c2

≈ gh

c2
, (5.111)

where h = x0 − xe is the difference in height between transmitter and receiver. In
the case of motion upwards the observed wavelength increases with the height. By
motion of radiation downwards there is a blueshift.

This effect was first measured in 1959 in the Pound–Rebka experiment with a
height difference between emitter and receiver of h = 22.5m giving zG = 2.5 ×
10−15.

5.6 Connection Coefficients

The covariant directional derivative of a scalar field f in the direction of a vector �u
is defined as

∇�u f ≡ �u( f ). (5.112)

Here the vector �u should be taken as a differential operator. (In coordinate basis,
�u = uμ ∂

∂xμ .) The directional derivative along a basis vector �eν is written as

∇ν ≡ ∇�eν
. (5.113)

Hence ∇μ( ) = ∇�eμ
( ) = �eμ( ).

Definition 5.6.1 (Koszul’s connection coefficients in an arbitrary basis.) In an
arbitrary basis the Koszul connection coefficients, �α

μν , are defined by

∇ν �eμ ≡ �α
μν �eα, (5.114)

which may also be written �eν(�eμ) = �α
μν �eα . In coordinate basis �α

μν is reduced to
Christoffel symbols and one often writes �eμ,ν = �α

μν �eα . In an arbitrary basis �α
μν has

no symmetry.
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Fig. 5.8 Rotating coordinate system. The non-rotating coordinate system (X, Y ) and the rotating
system (x, y), rotating with angular velocity ω

Example 5.6.1 (The connection coefficients in a rotating reference frame) In an iner-
tial reference frame, there is a co-moving Cartesian coordinate system with coordi-
nates X, Y and corresponding plane polar coordinates R,�. In a reference frame
rotating with angular velocity ω, the corresponding co-moving coordinates are x, y
and r, θ (Fig. 5.8). The coordinate clocks in the rotating frame shows the same time
as those in the inertial frame, t = T .

The transformation between the coordinates is

t = T, r = R, θ = � − ωT,

X = R cos�, Y = R sin�,

X = r cos(θ + ωt), Y = r sin(θ + ωt). (5.115)

The time-like coordinate basis vector in the rotating frame is calculated from

�et = ∂

∂t
= ∂ X

∂t

∂

∂ X
+ ∂Y

∂t

∂

∂Y
+ ∂T

∂t

∂

∂T
, (5.116)

Using this formula together with the transformation (5.115), and corresponding
formulae for the spatial basis vectors, give

�et = −rω sin(θ + ωt)�eX + rω cos(θ + ωt)�eY + �eT ,

�er = ∂ X

∂r

∂

∂ X
+ ∂Y

∂r

∂

∂Y
= cos(θ + ωt)�eX + sin(θ + ωt)�eY ,

�eθ = ∂ X

∂θ

∂

∂ X
+ ∂Y

∂θ

∂

∂Y
= −r sin(θ + ωt)�eX + r cos(θ + ωt)�eY . (5.117)
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We are going to find the Christoffel symbols, which involves differentiation of
the basis vectors. The transformation (5.117) makes this easy, since �eX , �eY , �eT are
constant. Differentiation gives

∇t �et = −rω2 cos(θ + ωt)�eX − rω2 sin(θ + ωt)�eY . (5.118)

The connection coefficients are calculated from Eq. (5.114). Note that to calculate
�α

μν , the right-hand side of Eq. (5.118) has to be expressed by the basis which we are
differentiating. Comparing the right-hand side of Eq. (5.118) with the expression for
�er we see that ∇t �et = −rω2�er giving �r

tt = −rω2. The other nonzero Christoffel
symbols are

�θ
r t = �θ

tr = ω

r
, �θ

θr = �θ
rθ = 1

r
, �r

θ t = �r
tθ = −rω, �r

θθ = −r. (5.119)

Example 5.6.2 (Acceleration in a non-rotating reference frame) The covariant
expression for the acceleration is

�̈r = �̇v = vi
; jv

j �ei = (v̇i + �i
αβvαvβ)�ei , (5.120)

where · ≡ d/dt . Here i, j and k are space indices. Inserting the Christoffel symbols
(5.31), (5.32) for plane polar coordinates gives

�ainert = (r̈ − r θ̇2)�er +
(

θ̈ + 2

r
ṙ θ̇

)
�eθ = (r̈ − r θ̇2)�er̂ + (

r θ̈ + 2ṙ θ̇
)�eθ̂ . (5.121)

Example 5.6.3 (Acceleration in a rotating reference frame) Inserting the Christoffel
symbols from Example 5.6.1 into Eq. (5.119) gives

�arot = (r̈ − r θ̇2 + �r
tt ṫ

2 + �r
θ t θ̇ ṫ + �r

tθ ṫ θ̇ )�er +
(

θ̈ + 2

r
ṙ θ̇ + �θ

r t ṙ ṫ + �θ
tr ṫ ṙ

)
�eθ

= (r̈ − r θ̇2 − rω2 − 2rωθ̇)�er̂ + (r θ̈ + 2ṙ θ̇ + 2ṙω)�eθ̂

= �ainert − (rω2 + 2rωθ̇)�er̂ + 2ṙω�eθ̂ . (5.122)

The angular velocity of the reference frame, is �ω = ω�ez . We also introduce
�r = r �er . The velocity in a rotating reference frame is then

�̇r = ṙ �er + r �̇er . (5.123)

Furthermore

�̇er = d�er

dt
= ∂�er

∂xi

dxi

dt
= vi �er,i . (5.124)

Using Definition 5.6.1 in a coordinate basis, this may be written as
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�̇er = vi�
j
r i �e j . (5.125)

Applying the expressions for the Christoffel symbols in Example 5.6.1 and
introducing orthonormal basis, we get

�̇er = vθ�θ
rθ �eθ = θ̇

1

r
�eθ = θ̇ �eθ̂ . (5.126)

Hence

�v = �̇r = ṙ �er̂ + r θ̇ �eθ̂ . (5.127)

Inserting this into the expression for the acceleration gives

�̈r rot = �̈r inert + �ω × ( �ω × �r) + 2 �ω × �v. (5.128)

We see that the centrifugal acceleration (the term in the middle) and the Coriolis
acceleration (last term) are contained in the expression for the covariant derivative.

5.6.1 Structure Coefficients

The commutator of two vectors, �u and �v, expressed by covariant directional
derivatives is given by

[�u, �v] = ∇�u �v − ∇�v �u. (5.129)

Let �u = �eμ and �v = �eν . We then have

[�eμ, �eν] = ∇μ�eν − ∇ν �eμ. (5.130)

Using the definitions of the connection and structure coefficients we get

cα
μν �eα = (�α

νμ − �α
μν)�eα. (5.131)

Thus (in a torsion free space)

cα
μν = �α

νμ − �α
μν. (5.132)

In coordinate basis we have

�eμ = ∂

∂xμ
, �eν = ∂

∂xν
, (5.133)
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and therefore

[�eμ, �eν] =
[

∂

∂xμ
,

∂

∂xν

]
= ∂

∂xμ

(
∂

∂xν

)
− ∂

∂xν

(
∂

∂xμ

)
= ∂2

∂xμ∂xν
− ∂2

∂xν∂xμ
= 0.

(5.134)

Equation (5.134) shows that cα
μν = 0, and Eq. (5.132) then implies that the

connection coefficients in Eq. (5.98) are symmetrical in a coordinate basis:

�α
νμ = �α

μν. (5.135)

5.7 Covariant Differentiation of Vectors, Forms
and Tensors

5.7.1 Covariant Differentiation of Vectors

The covariant directional derivative of a vector field was defined in Eq. (5.34). It
should be noted, however, that there are several ways of defining the covariant deriva-
tive that are consistent with each other. Here we shall formulate some definitions that
are alternative to those given in Sect. 5.2.

Definition 5.7.1 (Covariant derivative of a vector field) The covariant derivative of
a vector in an arbitrary basis is defined by

∇ν
�A = ∇ν(Aμ�eμ) = ∇ν Aμ�eμ + Aα∇ν �eα. (5.136)

Using the definition (5.114) of the connection coefficients, this may be written

∇ν
�A = [�eν(Aμ) + Aα�μ

αν]�eμ. (5.137)

The covariant derivative of the components of a vector field was introduced in
Eq. (5.23) by the requirement that the derivative of a tensor component shall transform
as a tensor component. There exists, however, another point of view. The ordinary
partial derivative of the vector components does only describe the change of the
components of a vector, not of the vector itself. The covariant derivatives of the
vector components, on the other hand, describe the change of the vector itself. Let
us see how that comes about.

Definition 5.7.2 (Covariant derivative of a vector component) The covariant
derivative of a vector component Aμ is written as Aμ

;ν and is defined by

∇ν
�A = Aμ

;ν �eμ. (5.138)
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Comparison with Eq. (5.137) shows that

Aμ

;ν = �eν(Aμ) + Aα�μ
αν. (5.139)

Note that the term with the connection coefficients come from the second term in
Eq. (5.136). Hence, it represents the change of the basis vector field with position and
time. The first term describes the changes of the vector component with position and
time. The sum describes the change of the vector itself, as seen from the definition
(5.138).

5.7.2 Covariant Differentiation of Forms

Definition 5.7.3 (Covariant directional derivative of a 1-form field) Given a vector
field �A and a 1-form field α, the covariant directional derivative of α in the direction
of the vector �u is defined by

(∇�uα)( �A) ≡ ∇�u[α( �A)︸ ︷︷ ︸
αμ Aμ

] − α(∇�u �A). (5.140)

Let the 1-form α be a basis field, α = ωμ. Then ωμ(�eν) ≡ δμ
ν . Furthermore let

�A = �eν and �u = �eλ. We then have

(∇λω
μ)(�eν) = ∇λ[ωμ(�eν)︸ ︷︷ ︸

δ
μ
ν

] − ωμ(∇λ�eν). (5.141)

The covariant directional derivative∇λ of a constant scalar field is zero,∇λδ
μ
ν = 0.

We therefore get

(∇λω
μ)(�eν) = −ωμ(∇λ�eν) = −ωμ(�α

νλ�eα) = −�α
νλω

μ(�eα) = −�α
νλδ

μ
α = −�

μ
νλ.

(5.142)

The contraction of a 1-form and a basis vector gives the components of the 1-form,
α(�eν) = αν . Equation (5.142) gives the directional derivatives of the basis forms and
tells that the ν-component of ∇λω

μ is equal to −�
μ
νλ . Hence

∇λω
μ = −�

μ
νλω

ν. (5.143)

Using the rule for differentiation of a product gives

∇λα = ∇λ(αμωμ) = ∇λ(αμ)ωμ + αμ∇λω
μ = �eλ(αμ)ωμ − αμ�

μ
νλω

ν. (5.144)

This motivates the following definition.
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Definition 5.7.4 (Covariant derivative of a 1-form) The covariant derivative of a
1-form α = αμωμ is given by

∇λα = [�eλ(αν) − αμ�
μ
νλ]ων. (5.145)

Definition 5.7.5 (Covariant derivative of a 1-form component) The covariant
derivative of the 1-form components αμ is denoted by αν;λ and defined by

∇λα ≡ αν;λων. (5.146)

It follows that

αν;λ = �eλ(αν) − αμ�
μ
νλ. (5.147)

Note that�μ
νλ in Eq. (5.147) are not in general the same as the Christoffel symbols.

However, in coordinate basis we get

αν;λ = αν,λ − αμ�
μ
λν, (5.148)

where �
μ
λν = �

μ
νλ are Christoffel symbols.

5.7.3 Covariant Differentiation of Tensors of Arbitrary Rank

Definition 5.7.6 (Covariant derivative of tensors) Let A and B be two tensors of
arbitrary rank. The covariant directional derivative along a basis vector �eλ of a tensor
A ⊗ B of arbitrary rank is defined by

∇λ(A ⊗ B) ≡ (∇λ A) ⊗ B + A ⊗ (∇λ B). (5.149)

We will use Eq. (5.149) to find the formula for the covariant derivative of the
components of a tensor of rank 2:

∇α S = ∇α(Sμνω
μ ⊗ ων)

= (∇α Sμν)ω
μ ⊗ ων + Sμν(∇αωμ) ⊗ ων + Sμνω

μ ⊗ (∇αων)

= (Sμν,α − Sβν�
β
μα − Sμβ�β

να)ωμ ⊗ ων, (5.150)

where Sμν,α = �eα(Sμν).

Definition 5.7.7 (Covariant derivative of tensor components) The covariant deriva-
tive Sμν;α of the covariant components of a tensor of rank 2 is defined by

∇α S = Sμν;αωμ ⊗ ων (5.151)
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we get

Sμν;α = Sμν,α − Sβν�
β
μα − Sμβ�β

να. (5.152)

For the metric tensor we get

gμν;α = gμν,α − gβν�
β
μα − gμβ�β

να. (5.153)

From

gμν = �eμ · �eν (5.154)

we get

gμν,α = ∇αgμν = ∇α

(�eμ · �eν

) = (∇α�eμ) · �eν + �eμ(∇α�eν)

= �β
μα�eβ · �eν + �eμ · �β

να�eβ = gβν�
β
μα + gμβ�β

να. (5.155)

This means that

gμν;α = 0. (5.156)

So the metric tensor is a constant tensor.

5.8 The Cartan Connection

Definition 5.8.1 (Exterior derivative of a basis vector)

d�eμ ≡ �ν
μα�eν ⊗ ωα. (5.157)

Note that this can be thought of as a 1-form with vector components �ν
μα�eν , a

vectorial form. The exterior derivative of a vector field is

d �A = d(�eμ Aμ) = �eν ⊗ dAν + Aμd�eμ. (5.158)

In arbitrary basis the exterior derivative of the vector components are

dAν = �eλ(Aν)ωλ (5.159)

In coordinate basis �eλ(Aν) = ∂
∂xλ (Aν) = Aν

,λ, giving

d �A = �eν ⊗ [�eλ(Aν)ωλ] + Aμ�ν
μλ�eν ⊗ ωλ = (�eλ(Aν) + Aμ�ν

μλ)�eν ⊗ ωλ. (5.160)
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Together with Eq. (5.139), this gives

d �A = Aν
;λ�eν ⊗ ωλ. (5.161)

Definition 5.8.2 (Connection forms �ν
μ) The connection forms �ν

μ are 1-forms,
defined by

d�eμ ≡ �eν ⊗ �ν
μ. (5.162)

From Eqs. (5.157) and (5.162) we have

d�eμ = �ν
μα�eν ⊗ ωα = �eν ⊗ �ν

μαωα = �eν ⊗ �ν
μ. (5.163)

This shows that

�ν
μ = �ν

μαωα. (5.164)

The exterior derivatives of the components of the metric tensor:

dgμν = d(�eμ · �eν) = �eμ · d�eν + �eν · d�eμ, (5.165)

where the meaning of the dot is defined as follows.

Definition 5.8.3 (Scalar product between vector and 1-form) The scalar product
between a vector �u and a vectorial 1-form A = Aμ

ν �eμ ⊗ ων is defined by

�u · A ≡ uα Aμ
ν (�eα · �eμ)ων. (5.166)

Using this definition, we get

dgμν = (�eμ · �eλ)�
λ
ν + (�eν · �eγ )�γ

μ = gμλ�
λ
ν + gνγ �γ

μ. (5.167)

Lowering an index gives

dgμν = �μν + �νμ. (5.168)

In an orthonormal basis field there is Minkowski metric: gμ̂ν̂ = ημ̂ν̂ which is
constant. Then we have dgμ̂ν̂ = 0 which implies

�ν̂μ̂ = −�μ̂ν̂ . (5.169)

The connection forms with lower indices are antisymmetric in an orthonormal
basis. It follows from (5.164) and (5.169) that

�ν̂μ̂α̂ = −�μ̂ν̂α̂. (5.170)
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Note also that

� t̂
î ĵ

= −�t̂ î ĵ = �î t̂ ĵ = � î
t̂ ĵ

, � î
ĵ k̂

= −�
ĵ

î k̂
. (5.171)

We shall now consider Cartan’s 1 structure equation which gives a relationship
between the structure coefficients and the connection coefficients. As a preparation
for deducing Cartan’s 1 structure equation we shall first deduce a mathematical
identity valid for 1-forms.

The commutator of two vectors is itself a vector, and the contraction of a 1-form
with a vector is essentially the same quantity as a scalar product of two vectors.
Hence for a 1-form α we have

α
([�u, �v]) = αν

[�u, �v]ν = αν

(
uμvν,μ −vμuν,μ

)
. (5.172)

From this we get

�u(α(�v)
) = uμ�eμ(ανv

ν) = uμ
(
αν,μ vν + ανv

ν,μ
)
, (5.173)

and

�v(α(�u)
) = vμ

(
αν,μ uν + ανuν,μ

)
, (5.174)

Furthermore

dα(�u, �v) = (
αμ,ν −αν,μ

)
uνvμ. (5.175)

It follows from these expressions that

dα(�u, �v) = �u(α(�v)
) − �v(α(�u)

) − α
([�u, �v]). (5.176)

This identity is valid in an arbitrary basis.
Let α = ωρ, �u = �eμ, �v = �eν . Then

d ωρ
(�eμ, �eν

) = �eμ

(
ωρ(�eν)

) − �eν

(
ωρ

(�eμ

)) − ωρ
([�eμ, �eν

])
= �eμ

(
δρ
ν

) − �eν

(
δρ
μ

) − ωρ
(
cα
μν �eα

) = −cα
μνδ

ρ
α = −cρ

μν. (5.177)

A 2-form applied to two basis vectors is equal to its components. Hence we get
Cartan’s 1 structure equation

dωρ = −1

2
cρ
μνω

μ ∧ ων. (5.178)

Combining this with Eq. (5.132) and utilizing the antisymmetry of the wedge
product we have
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dωρ = −1

2
(�ρ

νμ − �ρ
μν)ω

μ ∧ ων = �ρ
μνω

μ ∧ ων. (5.179)

Together with Eq. (5.164) this gives

dωρ = −�ρ
ν ∧ ων. (5.180)

In coordinate basis, we have ωρ = dxρ . Thus,

dωρ = d2xρ = 0. (5.181)

The exterior derivatives of the basis forms vanish in coordinate basis.We also have
cρ
μν = 0, and Cartan’s 1 structure equation is reduced to an identity. This formalism
cannot be used in coordinate basis! But due to the antisymmetry (5.169) the Cartan
formalism is particularly useful in orthonormal basis.

Example 5.8.1 (Cartan connection in an orthonormal basis field in plane polar
coordinates.) Here the line-element is

ds2 = dr2 + r2dθ2.

Introducing basis forms in an orthonormal basis field (where the metric is gr̂r̂ =
gθ̂ θ̂ = 1), the metric tensor takes the form

g = gr̂r̂ω
r̂ ⊗ ωr̂ + gθ̂ θ̂ω

θ̂ ⊗ ωθ̂ = ωr̂ ⊗ ωr̂ + ωθ̂ ⊗ ωθ̂ .

Hence

ωr̂ = dr, ωθ̂ = rdθ

Exterior differentiation gives

dωr̂ = d2r = 0, dωθ̂ = dr ∧ dθ = 1

r
ωr̂ ∧ ωθ̂ .

From Eq. (5.180) we then have

dωμ̂ = −�
μ̂

ν̂
∧ ων = −�

μ̂

r̂ ∧ ωr̂ − �
μ̂

θ̂
∧ ωθ̂ .

Furthermore dωr̂ = 0, which gives

�r̂
θ̂

= �r̂
θ̂ θ̂

ωθ̂ (5.182)

since ωθ̂ ∧ ωθ̂ = 0. Note that �r̂
r̂ = 0 because of the antisymmetry �ν̂μ̂ = −�μ̂ν̂ .

We also have



5.8 The Cartan Connection 151

dωθ̂ = −1

r
ωθ̂ ∧ ωr̂ ,

and from Eq. (5.180) it follows that

dωθ̂ = −�θ̂
r̂ ∧ ωr̂ − �θ̂

θ̂︸︷︷︸
=0

∧ωθ̂ ,

From Eq. (5.164) we have

�θ̂
r̂ = �θ̂

r̂ θ̂
ωθ̂ + �θ̂

r̂ r̂ω
r̂ , (5.183)

giving

�θ̂

r̂ θ̂
= 1

r
.

Furthermore �r̂
θ̂

= −�θ̂
r̂ . Using Eqs. (5.182) and (5.183) we get

�θ̂
r̂ r̂ = 0, �r̂

θ̂ θ̂
= −1

r

giving

�r̂
θ̂

= −�θ̂
r̂ = −1

r
ωθ̂ .

5.9 Covariant Decomposition of a Velocity Field

I order to develop some intuition about the kinematics of fluids we shall first consider
an ordinary 3-velocity field in Newtonian hydrodynamics.

5.9.1 Newtonian 3-Velocity

The total or material derivative of the velocity is

D�v
Dt

= ∂ �v
∂t

+ (�v · ∇)�v. (5.184)
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Here ∂ �v/∂t is the local derivativewhich represents the change of the velocity field
at a certain position, for example the increasewith time of the velocity at certain place
in a river due to rain. The term (�v · ∇) �v is called the convective derivative and is
sometimes written d�v/dt . It represents the change of velocity with position at a fixed
point of time, for example the slowing down of the velocity further downwards due to
a widening of the river. The total derivative represents the change of the velocity field
following a fluid particle, due to both local changes with time and the inhomogeneity
of the velocity field. The component version of Eq. (5.184) is

Dvi

Dt
= ∂vi

∂t
+ v j ∂vi

∂x j
. (5.185)

Introducing a Cartesian coordinate system with coordinates (x, y, z), the convec-
tive derivative may be written in matrix form as

⎛
⎝

dvx

dt
dvy

dt
dvz

dt

⎞
⎠ =

⎛
⎜⎝

∂vx

∂x
∂vx

∂y
∂vx

∂z
∂vy

∂x
∂vy

∂y
∂vy

∂z
∂vz

∂x
∂vz

∂y
∂vz

∂z

⎞
⎟⎠
⎛
⎝ vx

vy

vz

⎞
⎠. (5.186)

The 3 × 3 matrix may be separated into three parts: The trace

θ = ∂vx

∂x
+ ∂vy

∂y
+ ∂vz

∂z
, (5.187)

The antisymmetric part

ωi j = 1

2

⎛
⎜⎝
0 ∂vx

∂y − ∂vy

∂x
∂vx

∂z − ∂vz

∂x

0 ∂vy

∂z − ∂vz

∂y
minus
the same 0

⎞
⎟⎠, (5.188)

and the symmetric, trace-free part,

σi j =

⎛
⎜⎜⎜⎝

1
3

(
2 ∂vx

∂x − ∂vy

∂y − ∂vz

∂z

)
∂vx

∂y + ∂vy

∂x
∂vx

∂z + ∂vz

∂x

1
3

(
2 ∂vy

∂y − ∂vx

∂x − ∂vz

∂z

)
∂vx

∂z + ∂vz

∂x

1
3

(
2 ∂vz

∂z − ∂vx

∂x − ∂vy

∂y

)

⎞
⎟⎟⎟⎠.

(5.189)

Here θ represents the volume expansion (or contraction), ωi j rotation and σi j

the shear. The component form of these expressions is

vi, j = θi j + ωi j + σi j , (5.190)



5.9 Covariant Decomposition of a Velocity Field 153

θi j = 1

3
vk,k δi j , (5.191)

ωi j = 1

2

(
vi , j −v j ,i

) = 1

2
(∇ × �v)i j , (5.192)

σi j = 1

2

(
vi , j +v j ,i

) − 1

2
vk,k δi j . (5.193)

5.9.2 Relativistic 4-Velocity

We shall now find the relativistic generalizations of these expressions, i.e. we shall
find covariant expressions that represent expansion, rotation and shear as measured
by an observer following the fluid.

The covariant derivative may be thought of as a generalization of the total deriva-
tive. We first separate the covariant directional derivative of a 4-velocity field in a
component along the 4-velocity and a component orthogonal to it. The directional
derivative of the 4-velocity along itself is the 4-acceleration. It is orthogonal to the
4-velocity and has covariant components

�̇uα = uα;μuμ = (
uα,μ − uν�

ν
αμ

)
uμ. (5.194)

Putting them equal to zero gives the geodesic equation describing the world line
of a freely falling particle.

The projection of the tensor with components uα;β into the spatial simultaneity
space orthogonal to the 4-velocity, is

(
uα;β

)
⊥ = uμ;ν Pμ

α Pν
β . (5.195)

where Pμ
α are the mixed components of the projection tensor defined in Eq. (4.104).

In the same way as we did in the Newtonian case, this may be separated in three
parts.
Expansion:

θαβ = 1

3
θ Pαβ, θ = uμ

;μ. (5.196)

Shear:

σαβ = 1

2

(
uμ;ν + uν;μ

)
Pμ

α Pν
β − 1

3
uμ

;μ Pαβ. (5.197)

Rotation:
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ωαβ = 1

2

(
uμ;ν − uν;μ

)
Pμ

α Pν
β . (5.198)

The covariant derivative of a 4-velocity field can now the be separated in
expansion, shear, rotation and a 4-acceleration-term as follows

uα;β = θαβ + σαβ + ωαβ − u̇αuβ (5.199)

In the relativistic literature, the expressions for shear and rotation are written in
different ways that are found by inserting the components of the projection tensor
from Eq. (4.106) into Eq. (5.195),

uμ;ν Pμ
α Pν

β = uμ;ν
(
δη

α + uμuα

)(
δν
β + uνuβ

)
. (5.200)

Using that

uμ;νδμ
α δν

β = uα;β, uμ;νδμ
α uνuβ = uα;νuνuβ = u̇αuβ, (5.201)

we get

uμ;ν Pμ
α Pν

β = uα;β + u̇αuβ + uμ;βuμuα + u̇μuμuαuβ. (5.202)

It follows from the 4-velocity identity, uμuμ = − 1, that the 4-acceleration is
orthogonal to the 4-velocity, u̇μuμ = 0, and that

(
uμuμ

)
; β

= 0, giving uμ;βuμ = 0.
Hence Eq. (5.202) simplifies to

uμ;ν Pμ
α Pν

β = uα;β + u̇αuβ. (5.203)

Furthermore

uα;μ Pμ
β = uα;μδ

μ
β + uα;μuμuβ = uα;β u̇α + uβ, (5.204)

or

uα;β = uα;μ Pμ
β − u̇αuβ. (5.205)

We then get

uα;μ Pμ
β = θαβ + σαβ + ωαβ, (5.206)

with the alternative expressions for shear and rotation

σαβ = 1

2

(
uα;μ Pμ

β + uβ;μ Pμ
α

)
− 1

3
uμ

;μ Pαβ, (5.207)
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ωαβ = 1

2

(
uα;μ Pμ

β − uβ;μ Pμ
α

)
. (5.208)

5.10 Killing Vectors and Symmetries

Killing vectors are useful for describing the symmetry properties of space in an
invariant way.

Definition 5.10.1 (Killing vectors) We will here define a Killing vector as a vector
�ξ which obeys Killing’s equation

ξμ;ν + ξν;μ = 0. (5.209)

In this form Killing’s equation is valid in an arbitrary basis. In a coordinate basis
the equation reduces to

ξμ,ν + ξν,μ = 2ξα�α
μν. (5.210)

One may show that if �ξ (1) and �ξ (2) are two Killing vectors, and a, b are con-

stants, then a�ξ (1)+b�ξ (2) is a Killing vector. Furthermore, the commutator
[�ξ (1), �ξ (2)

]
between two Killing vectors is also a Killing vector.

In an n-dimensional space, there are maximally n(n + 1)/2 linearly independent
Killing vectors. In four-dimensional spacetime, there may be up to ten such vectors.
A metric and the corresponding space that admit the maximum number of Killing
vectors is said to be maximally symmetric.

Example 5.10.1 (Killing vectors of an Euclidean plane) We consider a two-
dimensional Euclidean plane with Cartesian coordinates. Then the line-element has
the form

dl2 = dx2 + dy2, (5.211)

and the Christoffel symbols vanish. Hence, the Killing equations reduce to

ξx,x = ξy,y = 0, ξx,y + ξy,x = 0. (5.212)

These equations have the following solutions,

�ξ1 = ∂

∂x
, �ξ2 = ∂

∂y
, �ξ1 = x

∂

∂y
− y

∂

∂x
. (5.213)

The first vector represents invariance by translation in the x-direction, the second
in the y-direction, and the third vector represents invariance by rotation about an
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axis orthogonal to the plane. A two-dimensional space with three Killing vectors is
maximally symmetric. Hence the Euclidean space is maximally symmetric.

Definition 5.10.2 (Invariant basis) An invariant basis is defined as a basis where
the basis vectors commute with a Killing vector,

[�ξ, �eμ

]
= 0. (5.214)

Since the commutator of two coordinate basis vectors vanish, a consequence of
this definition is that if a basis vector of a coordinate basis is a Killing vector, then
this coordinate basis is invariant.

The commutator of two vectors,
[�u, �v] is also called the Lie derivative of �v with

respect to �u, which is writte

(5.215)

The Lie derivative of a scalar function with respect to a vector is the directional
derivative of the scalar function along the vector,

(5.216)

We have the rule

(5.217)

From this we get

(5.218)

Equations (5.214) and (5.215) give

(5.219)

It follows from Eq. (5.215) for an invariant basis, together with Eqs. (5.218) and
(5.219), that

�ξ(gμν

) = 0 (5.220)

for an invariant basis. Hence the components of the metric tensor are constants along
Killing vectors in a space with an invariant basis field.

We shall finally find the relation between the Killing vectors of a space and the
constants of motion for a particle moving freely in the space. A free particle moves
along a geodesic curve with the equation
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∇�u �u = 0 (5.221)

where �u is the 4-velocity of the particle. Consider the scalar product �u · �ξ , where �ξ is
a Killing vector field. The covariant directional derivative of this product along the
geodesic curve is

∇�u
(
�u · �ξ

)
= uσ

(
uμξμ

)
;σ = uσ uμ

;σ ξμ + uσ uμξμ;ν . (5.222)

Here the first term vanishes because of Eq. (5.221), and the second vanishes since
uσ uμ is symmetric in σ and μ while ξμ;ν is antisymmetric in σ and μ due to the
Killing equation (5.209). Thus

∇�u
(
�u · �ξ

)
= 0. (5.223)

We then have the result that �u · �ξ is constant along a geodesic curve. For a particle
with constant rest mass, this may also be expressed as: �p · ξ is constant along a
geodesic curve, where �p is the 4-momentum of the particle.

Assume that �ξα is a time-likeKilling vector associatedwith a cyclic coordinate xα .
Then a coordinate systemcanbe chosen such that �ξα = (−1, 0, 0, 0), i.e. �ξα = −δ0α�e0.
In this case

�p · �ξα = −pμδ0α = −pα0 = constant. (5.224)

which is the energy of the particle. Correspondingly, if �ξα is a space-like Killing
vector associated with a cyclic coordinate, and one chooses a coordinate system so
that �ξα = (0, 1, 0, 0), one obtains

pα1 = constant. (5.225)

This represents conservation ofmomentum in the x-direction for a free particle and
is in accordance with the Lagrangian dynamics that the covariant momenta conjugate
to cyclic coordinates are constants of motion for freely falling particles. The Killing
vectors describe symmetries of spacetime. Hence the equation �p · �ξα = constant
relates constants of motion of a free particle to symmetries of spacetime.

5.11 Covariant Expressions for Gradient, Divergence,
Curl, Laplacian and D’Alembert’s Wave Operator

The exterior derivative d of a p-form was defined in Eq. (5.6). It is an antisymmetric
derivative giving a (p + 1)-form. The so-called Hodge dual of the exterior derivative
δ is called the codifferential. In an n-dimensional space, it is defined by
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δ = (−1)n(p+1)+1�d�. (5.226)

where the Hodge star operator acting on a form gives the dual form defined in Eq.
(3.118). The codifferential acting on a p-form gives out a (p − 1)-form. For example
the codifferential of a 1-form is a scalar function. If the dimension of the space is
even, for example in four-dimensional spacetime, then

δ = −�d�. (5.227)

Since there only exist forms with p − 1 ≥ 0 the codifferential of a scalar func-
tion f is not defined as a form equation, but according to a separate definition the
codifferential of a scalar function vanishes,

δ f = 0. (5.228)

In the same manner as the exterior derivative as applied to a p-form with scalar
components, satisfies Poincare’s lemma, d2 = 0, the codifferential satisfies

δ δ = δ2 = 0. (5.229)

A generalization of the Laplacian operator in 3-space

� = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (5.230)

is the formoperator called theHodge Laplacianor alternatively theLaplace–Beltrami
operator, defined by

� = δ d + d δ. (5.231)

Due to Eq. (5.228) the Hodge Laplacian as applied to a scalar function takes the
form

�φ = δ dφ = �d�dφ. (5.232)

The Hodge Laplacian of a 1-form is

� α = (d�d� + �d�d)α. (5.233)

Let us find the covariant form of the Hodge Laplacian in four-dimensional space-
time as applied to a scalar function f. Using Eq. (3.118) and the definition (5.6) of
the exterior derivative, Eq. (5.232) gives

� f = 1

4! V αβγ δ4
∂

∂xα

(
Vλβγ δ

∂ f

∂xλ

)
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= 1

3!
−1√−g

εαβγ δ ∂

∂xα

(√−gελβγ δgλρ ∂ f

∂xρ

)

= −3!
3!

1√−g
δα
λ

∂

∂xα

(√−ggλρ ∂ f

∂xρ

)

= − 1√−g

∂

∂xλ

(√−ggλρ ∂ f

∂xρ

)
. (5.234)

where Vαβγ δ = √−gεαβγ δ , are the components of the volume form as given in
Eq. (3.116), and the minus sign comes from

V αβγ δ = 1

g
Vαβγ δ = 1

g

√−gεαβγ δ = − 1√−g
εαβγ δ = − 1√−g

εαβγ δ. (5.235)

In this case, the Hodge Laplacian reduces to minus the d’Lambertian wave
operator, � = −�. Hence we have the covariant form of the wave operator

� f = 1√−g

∂

∂xλ

(√−ggλρ ∂ f

∂xρ

)
. (5.236)

Performing the same calculation for a scalar field in 3-space, we get the covariant
form of the Laplacian

� f = 1√
g

∂

∂xi

(√
ggi j ∂ f

∂x j

)
. (5.237)

We shall finally look at the relationship between the exterior derivative and the
gradient, divergence and curl. The gradient is defined as the vector corresponding to
the 1-form dφ. Hence we get the covariant expression for the gradient as decomposed
in a coordinate basis

�∇ f = gi j ∂ f

∂x j
�ei . (5.238)

Considering an orthogonal coordinate basis, the physical components of the gra-
dient are obtained by transforming to an orthonormal basis according to �ei = √

gii �eî .
Hence the physical components of the gradient are given by

∇ f = 1√
gii

∂ f

∂xi
�eî . (5.239)

The divergence of a vector is given by

|g|div �A = �d�A, (5.240)
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where the components of the 1-form A are found by lowering the components of the
vector �A. From Eqs. (3.116) and (3.118) we have

�A = 1

(n − 1)!
√|g|εν·μ1...μn−1 Aνdxν1 ∧ dxμ1 ∧ · · · ∧ dxμn−1 . (5.241)

The exterior derivative of this form is

d�A = 1

(n − 1)!ενμ1...μn−p

∂
(√|g|Aν

)
∂xα

dxα ∧ dxμ1 ∧ · · · ∧ dxμn−1 . (5.242)

To avoid multicounting we use the notation ε|ν1·μ1...μn−1| meaning that the sum-
mation over the indices is performed under the condition ν < μ1 < · · · < μn−1.
Then

d�A = ε|ν·μ1...μn−1|
∂
(√|g|Aν

)
∂xα

dxα ∧ dxμ1 ∧ · · · ∧ dxμn−1 . (5.243)

The dual of this form is

�d�A = √|g|∂
(√|g|Aν

)
∂xν

. (5.244)

Inserting this into Eq. (5.240) gives the covariant expression for the divergence
of a vector

div �A = 1√|g|
∂
(√|g|Aν

)
∂xν

. (5.245)

We shall find the covariant expressions for the components of the curl of a vector
�A in the special case of a coordinate system with an orthogonal vector basis. The
corresponding 1-form is A. The covariant expressions of the components of the curl
�∇ × �A is obtained from

�∇ × �A = (�d A)#. (5.246)

This involves the following operations: The vector is originally given in an
orthonormal basis associated with a chosen coordinate system. We call the cor-
responding vector components for the physical components of the vector. One wants
to express the physical components of �∇ × �A in an arbitrary orthogonal coordinate
system in terms of the physical components of the vector and the components of
the metric tensor in the coordinate system. Since the expression (5.246) involves the
exterior derivative of the 1-form A, which is most easily performed in a coordinate
basis because then the exterior derivatives of the basis form vanish due to Poincare’s
lemma, one first transforms to the coordinate basis of the coordinate system. Then
the (contravariant) indices of the components of the vector �A is lowered, and one
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obtains the (covariant) components of the 1-form A in the arbitrary coordinate basis
in terms of the physical components of the vector and the components of the metric
tensor (Eq. 5.250 below). Then one takes the exterior derivative of this form and
gets the 2-form d A as decomposed in the coordinate basis. One now transforms to
the form basis corresponding to the orthonormal vector basis. Further one takes the
dual of this form and gets a 1-form �d A. The symbol # means that one converts this
1-form to a vector by raising the indices of the components of �d A. This is automat-
ically taken account of when we decompose d A in a 1-form basis corresponding to
an orthonormal vector basis where the covariant and contravariant components are
equal. Hence we get the vector as decomposed in the orthonormal basis. In this way
we have found the physical components of �∇ × �A.

We shall demonstrate this procedure in the case of an arbitrary orthogonal vector
basis, so that the metric tensor is diagonal, i.e. the only non-vanishing components
of the metric tensor are those with equal indices.

In a coordinate system with orthogonal basis vectors, the line element is

dl2 = giidxidxi . (5.247)

The coordinate basis vectors are �ei = ∂/∂xi , and the corresponding coordinate
basis forms are dxi . Since the metric is diagonal, the transformation of the basis
vectors to a coordinate basis has the form �eî = (gii )

−1/2�ei . The corresponding basis

forms dual to the orthonormal vector basis are ωî = √
giidxi . In this space we

have a vector �A = Aî �eî , î = 1, 2, 3 as decomposed in an orthonormal basis. As
decomposed in the coordinate basis the vector components are

Ai = (gii )
−1/2 Aî . (5.249)

So that

�A = Ai �ei = (gii )
−1/2 Aî �ei . (5.249)

The corresponding 1-form is

A = gii Aidxi = √
gii Aîdxi . (5.250)

The exterior derivative of this form is

d
⇁

A
⇁

= 1

2

[(√
gii Aî

)
, j −

(√
g j j A ĵ

)
,i

]
dx j ∧ dxi

= 1

2

1√
gii g j j

[(√
gii Aî

)
, j −

(√
g j j A ĵ

)
,i

]
ω ĵ ∧ ωî . (5.251)

The dual of this form is the 1-form
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�d A = 1√
gii g j j

[(√
gii Aî

)
, j −

(√
g j j A ĵ

)
,i

]
ωk̂, k̂ �= î, ĵ . (5.252)

Thus the curl is

∇ × �A = 1√
gii g j j

[(√
gii Aî

)
, j −

(√
g j j A ĵ

)
,i

]
�ek̂ . (5.253)

Example 5.11.1 (Differential operators in spherical coordinates) The components
of the metric tensor in spherical coordinates in Euclidean 3-space are given in
Eq. (3.122), grr = 1, gθθ = r2, gφφ = r2 sin2 θ . Inserting this into Eq. (5.239)
we get the expression for the gradient in spherical coordinates

∇ f = ∂ f

∂r
�er̂ + 1

r

∂ f

∂θ
�eθ̂ + 1

r sin θ

∂ f

∂φ
�eφ̂ . (5.254)

The curl is

∇ × �A = 1

r sin θ

[
∂

∂θ

(
sin θ Aφ̂

)
− ∂ Aθ̂

∂φ

]
�er̂

+ 1

r sin θ

[
∂ Ar̂

∂φ
− sin θ

∂

∂r

(
r Aφ̂

)]
�eθ̂

+ 1

r

[
∂

∂r

(
r Aθ̂

)
− ∂ Ar̂

∂θ

]
�eφ̂ . (5.255)

The divergence is

∇ · �A = 1

r2
∂
(
r2 Ar̂

)
∂r

+ 1

r sin θ

∂
(
sin θ Aθ̂

)
∂θ

+ 1

r sin θ

∂ Aφ̂

∂φ
. (5.256)

The Laplacian is

∇2 f = 1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r sin2 θ

∂2 f

∂φ2
. (5.257)

The d’Alembertian wave operator is

� f = 1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r sin2 θ

∂2 f

∂φ2
− 1

c2
∂2 f

∂t2
.

(5.258)
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5.12 Electromagnetism in Form Language

We shall consider electromagnetism in flat spacetime decomposing the vectors and
forms in a coordinate basis. In this section it will be shown that the simplest possible
form equations for electromagnetism in four-dimensional spacetime leads by means
of Poincare’s lemma to Maxwell’s equations.

Let us introduce an electromagnetic potential form

A = Aνdxν = −φcdt + cAidxi . (5.259)

Hence

A0 = −A0 = φ, (5.260)

where φ is the electric scalar potential. The spatial component of A is the
electromagnetic vector potential.

The exterior derivative of A is

F = d A, (5.261)

and is called the electromagnetic field form. In coordinate basis it is written in
component form as

F = 1

2
Fμνdxμ ∧ dxν = dA = 1

2

(
∂ Aν

∂xμ
− ∂ Aμ

∂xν

)
dxμ ∧ dxν . (5.262)

Hence, the components of the electromagnetic field form are

Fμν = ∂ Aν

∂xμ
− ∂ Aμ

∂xν
. (5.263)

The electric field strength �E and the magnetic flux density �B are given by

F = Eidxi ∧ cdt + 1

2
cBi jdxi ∧ dx j , B|i j | = Bk, k �= i, j. (5.264)

Here |i j | means that i < j . The components of the electromagnetic field form is
given in terms of the electric field strength and the magnetic flux density by

Fμν =

⎛
⎜⎜⎝

0 −Ex −Ey −Ez

Ex 0 cBz −cBy

Ey −cBz 0 cBx

Ez cBy −cBx 0

⎞
⎟⎟⎠. (5.265)

The electromagnetic field form can now be written as
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F = Fi tdxi ∧ dt + 1

2
c

(
∂ A j

∂xi
− ∂ Ai

∂x j

)
dxi ∧ dx j

= c

(
∂ At

∂xi
− ∂ Ai

∂t

)
dxi ∧ dt + 1

2
c

(
∂ A j

∂xi
− ∂ Ai

∂x j

)
dxi ∧ dx j

= −c

(
(∇φ)i − ∂ Ai

∂t

)
dxi ∧ dt + 1

2
c

(
∂ A j

∂xi
− ∂ Ai

∂x j

)
dxi ∧ dx j . (5.266)

It follows from Eqs. (5.264) and (5.266) that the electric field strength and the
magnetic flux density is given in terms of the electric scalar potential and the
electromagnetic vector potential by

�E = −�∇φ − ∂ Ā

∂t
, �B = �∇ × �A. (5.267)

Consider a transformation of the form

A′ = A + cd�, (5.268)

where � is a scalar function. Then, using Poincare’s lemma, we get

F ′ = d A′ = d A + cd d� = d A = F . (5.269)

Hence the field form F , and thereby the electromagnetic field strengths �E and
�B are invariant against a transformation of the form (5.268). This transformation is
called a gauge transformation. It has the component form

−φ′cdt + cA′
idxi = −φcdt + cAidxi + c

∂�

∂t
dt + c

∂�

∂xi
dxi . (5.270)

Hence the gauge transformation takes the form

φ′ = φ − ∂�

∂t
, �A′ = �A + �∇φ. (5.271)

As a consequence of Poincare’s lemma the electromagnetic field is invariant
against this transformation. This freedom of gauge has been utilized to introduce
a condition upon the potentials as follows. It follows from Eq. (5.268) that

δ A = δ A′ − cδ d f = δ A′ − c � f, (5.272)

where � is the d’Alembertian wave operator in Cartesian coordinates, i.e.

� = − 1

c2
∂2

∂t2
+ ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
, (5.273)
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and f is a scalar gauge function. Introducing a gauge function which satisfies the
Lorenz condition

c � f = δ A′, (5.274)

Equation (5.272) reduces to

δ A = 0. (5.275)

This is called the Lorenz gauge (Lorenz is a Danish physicist who died in 1892).
In this gauge the 4-divergence of A vanishes in vacuum. This corresponds to the
equation

�∇ · �A + 1

c2
∂φ

∂t
= 0. (5.276)

It follows from Poincare’s lemma that

d F = d d A = 0. (5.277)

The component form of the field form is given in Eq. (5.264). Writing it out gives

F = Exdx ∧ cdt + Eydy ∧ cdt + Ezdz ∧ cdt + cBzdx ∧ dy

+ cBydz ∧ dx + cBxdy ∧ dz. (5.278)

The exterior derivative of F is the 3-form

d F = ∂ F|i j |
∂xk

dxk ∧ dxi ∧ dx j

= c

(
∂ Bx

∂x
+ ∂ By

∂y
+ ∂ Bz

∂z

)
dx ∧ dy ∧ dz

= c

(
∂ By

∂t
+ ∂ Ex

∂z
− ∂ Ez

∂x

)
dt ∧ dy ∧ dz

= c

(
∂ Bx

∂t
+ ∂ Ez

∂y
− ∂ Ey

∂z

)
dt ∧ dz ∧ dx

= c

(
∂ Bz

∂t
+ ∂ Ey

∂x
− ∂ Ex

∂y

)
dt ∧ dx ∧ dy

= c
( �∇ · �B

)
dx ∧ dy ∧ dz + c

(
∂ �B
∂t

+ �∇ × �E
)

k

dt ∧ dxi ∧ dy j , k �= i, j.

(5.279)

This shows that the form equation
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dF = 0 (5.280)

corresponds to Maxwell’s source free equations

�∇ · �B = 0 (5.281)

and

∂ �B
∂t

+ ∇ × �E = 0. (5.282)

The electromagnetic current form J is the 1-form

J = −ρcdt + (1/c) jidxi . (5.283)

where ρ is the charge density and ji the i-component of the current density. The
source of the electromagnetic field form is the current form

δ F = − 1

ε0
J , (5.284)

where δ is the codifferential defined in Eq. (5.227), and ε0 is the permittivity of empty
space. Writing out this equation gives

−δ F = �d�F = ∂ν Fνλdxλ = (
∂0F00 + ∂ i Fi0

)
cdt + (

∂0F0 j + ∂ i Fi j
)
dx j .

(5.285)

Using the component form (5.278) of F we obtain

−δ F =
( �∇ · �E

)
cdt +

(
1

c

∂ �E
∂t

− c �∇ × �B
)

j

dx j . (5.286)

Equations (5.283), (5.284) and (5.285) give

�∇ · �E = ρ

ε0
(5.287)

and

�∇ × �B − 1

c2
∂ �E
∂t

= μ0 �j . (5.288)

where μ0 = 1/ε0c2 is the permeability of empty space. Equations (5.287) and
(5.288) are the Maxwell source equations. Hence the form equation (5.284) contains
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the Maxwell source equations. The displacement current ∂ �E/∂t is automatically
included in the formulation of Maxwell’s equation in the form language.

Let α be a p-form. In Minkowski spacetime

��α = −(−1)p(4−p)α. (5.289)

Since d�F is a 3-form we have

��d�F = −(−1)3d�F = d�F . (5.290)

Hence, taking the dual of Eq. (5.284) gives

�J = −ε0d�F . (5.291)

Taking the exterior derivative we get

d�J = −ε0d d�F = 0 (5.292)

due to Poincare’s lemma. Taking the dual of this equation we get

δ J = 0. (5.293)

The divergence of the current form vanishes. This is the mathematical expression
of the conservation of charge in the form language. Using Eq. (5.283) the vector
version of this equation is

∂ρ

∂t
+ �∇ · �j = 0, (5.294)

which is the equation of continuity in the electromagnetism.
It follows from Eqs. (5.261) and (5.284) that

δ d A = − 1

ε0
J . (5.295)

Applying the Laplace–Betrami operator defined in Eq. (5.231) to A gives

� A = δ d A + d δ A. (5.296)

It follows that

� A = − 1

ε0
J + d δ A. (5.297)



168 5 Covariant Differentiation

Asuming that A fulfills the Lorenz gauge condition (5.275) the last term in this
equation vanishes, so that

� A = − 1

ε0
J . (5.298)

This is the equation for electromagnetic waves. The time component of this
equation is

�φ = − ρ

ε0
, (5.299)

and the space component is

� �A = −μ0 �j . (5.300)

The equation of motion and the energy equation of a charged particle in an
electromagnetic field is combined in the following equation

M = q

c
F(�u). (5.301)

Here F(�u) is the contraction as defined in Eq. (3.46) of the field form F with the
4-velocity �u of the charge, and M is the Minkowski force form,

M = −γ
dE

dt
dt + γ

dpi

dt
dxi , (5.302)

where E and �p are the energy and momentum of the particle, and �u = γ (c, �v).
Writing out Eq. (5.301) gives

−γ
dE

dt
dt + γ

dpi

dt
dxi = (−Ex ux − Eyuy − Ezu

z
)
cdt

+ (
Ex ut cBzu

y − cByuz
)
dx

+ (
Ex ut − cBzu

x cBx uz
)
dy

+ (
Ezu

t cByux − cBx uy
)
dz

= −γ
( �E · �v

)
cdt + γ c

( �E + �v × �B
)

i
dxi . (5.303)

The time component of this equation is the equation representing energy
conservation

dE

dt
= q �E · �v, (5.304)
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and the space component is the equation of motion of a charge in an electromagnetic
field

d �p
dt

= q
( �E + �v × �B

)
. (5.305)

The covariant form of the equation of motion is found from Eq. (5.301),

dpμ

dτ
= q Fμ

ν uν . (5.306)

For a particle with constant rest mass m0, this gives

m0aμ = q Fμ
ν uν, (5.307)

where aμ is the μ-component of the particle’s 4-acceleration.

Exercises

5.1 Dual forms

Let {�eî } be a Cartesian basis in the three-dimensional Euclidean space. Using a

vector �a = aî �eî there are two ways of constructing a form:

(i) By constructing a 1-form from its covariant components a j = g ji ai :

A = aîdx î .

(ii) By constructing a 2-form from its dual components, defined by aî ĵ = εî ĵ k̂ak̂ :

a = 1

2
aî ĵdx î ∧ dx ĵ .

We write this form as a = �A where � means to take the dual form.

(a) Given the vectors �a = �ex + 2�ey − �ez and �b = 2�ex − 3�ey + �ez .
Find the corresponding 1-forms A and B, and the dual 2-forms a = �A and

b = �B, and also the dual form θ to the 1-form σ = dx − 2dy.
(b) Take the exterior product A ∧ B and show that

θî ĵ = εî ĵ k̂C k̂,

where θ = A ∧ B and �C = �a × �b.
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(c) Show that the exterior product A ∧ �B is given by the 3-form

A ∧ �B = (�a · �b)dx ∧ dy ∧ dz.

(d) Show that the exterior derivative of a 1-form, dA, corresponds to the curl∇ × �A
of the corresponding vector.

(e) Finally show that

d ∗ d f = ∇2 f dx ∧ dy ∧ dz

for a scalar field f.

5.2 Differential operators in spherical coordinates

We consider an Euclidean three-dimensional space with Cartesian coordinates
(x, y, z) and spherical coordinates (r, θ, φ). The transformation from the spherical
to the Cartesian coordinates is

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ

(a) Find the components of the metric tensor and the form of the line-element in
spherical coordinates.

(b) Let f be a scalar field. The gradient of f is given by

∇ f = ∂ f

∂r
�er̂ + ∂ f

∂θ
�eθ̂ + ∂ f

∂φ
�eφ̂ ,

where �eî are the orthonormal basis vectors formed from the coordinate basis
vectors in the spherical coordinate system.

Find the expressions for the gradient of f in coordinate basis.
(c) In a coordinate system with orthogonal coordinate basis vectors, the curl of a

vector field is given by

∇ × �A = 1√
g22g33

(
∂ A3̂

∂x2
− ∂ A2

∂x3

)
�e1 + 1√

g11g33

(
∂ A1̂

∂x3
− ∂ A3̂

∂x1

)
�e2

+ 1√
g11g22

(
∂ A2̂

∂x1
− ∂ A1̂

∂x2

)
�e3.

Find an expression for the curl in spherical coordinates. (The division by the
factors

√
gii g j j is a normalization of the area of a surface element normal to the

basis vector �ek, k �= i, j .)
(d) The divergence of a vector field can in general (in an arbitrary basis) be defined

by
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(
∇ · �A

)
ε = d ∗ A,

where

ε = √|g|ω1 ∧ ω2 ∧ ω3,

Is the volume form, and |g| is the determinant of the matrix formed by
the components of the metric tensor. The volume form represents an invariant
volume element.

Find the expression for the divergence of �A in spherical coordinate.
Finally find the expression for the Laplacian of f in the spherical coordinate

system.

5.3 Spatial geodesics in a rotating frame of reference

Our point of departure is the line-element (4.20) for 3-space in a rotating reference
frame,

d�2 = dr2 + r2dθ2

1 − r2ω2/c2
+ dz2.

We shall consider geodesics in the two-dimensional surface with z = constant.
The task is to calculate the shortest curve between two points with the same dis-
tance from the axis using the Lagrangian equations with the Lagrange function
L = (1/2)�̇2, where the dot denotes differentiation with respect to an invariant
parameter representing the arc length along the curve.

(a) Find the form of the 2-vector identity for the tangent vectors of the curve.
(b) Find an expression for the momentum pθ conjugate to the cyclic coordinate θ

of L.
(c) Find the differential equation for the geodesic curves.
(d) Use the boundary condition that the point on the curve closest to the axis has a

distance r0 from the axis, to show that

pθ = r0√
1 − r20ω

2/c2
.

(e) Show that the differential equation of the curve can be written as

dr

r
√

r2 − r20

− ω2

c2
rdr√

r2 − r20

= dθ

r0
.

Integrate this equation and find the equation of the curve. Finally draw the
curve.
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5.4 Christoffel symbols in a uniformly accelerated reference frame

(a) Use the coordinate transformation (4.80)–(4.82) and the formula (5.27) to calcu-
late the non-vanishing Christoffel symbols in the coordinate system of Chap. 4
co-moving with a uniformly accelerated reference frame.

(b) Use Eq. (5.65) to calculate the same Christoffel symbols as in (a).

5.5 Relativistic vertical projectile motion

A particle is thrown vertically upwards with velocity v from the origin of the
coordinate system in the gravitational field of a uniformly accelerated reference
frame.

Calculate the maximal height of the particle.

5.6 The geodesic equation and constants of motion

(a) Show that the geodesic equation can be written in the following form: duα

ds −
1
2

∂gβγ

∂xα uβuγ = 0.
(b) Assume that the metric is static and the space is cylindrically symmetric with

cylindrical coordinates (r, θ, z). What constants of motion are there then for a
free particle?



Chapter 6
Curvature

Abstract The Riemann curvature tensor is introduced, and the expression of its
components in terms of the derivatives of the metric and the structure coefficients is
deduced. Tidal forces are discussed in a relativistic context, and it is pointed out that
the relativistic gravitational field has both a non-tidal component due to the motion
of the reference frame and a tidal component due to spacetime curvature.

6.1 The Riemann Curvature Tensor

The covariant directional derivative of a vector field �A along a vector �v was defined
and interpreted geometrically in Sect. 5.2 as follows:

∇�υ �A = d�A
dλ

= Aμ

;νvν�eμ = lim
�λ→0

�AQP(λ + �λ) − �A(λ)

�λ
. (6.1)

Let �AQP be the vector �A parallel transported from Q to P in Fig. 6.1.
In Fig. 6.2 we have illustrated that a vector parallel transported around a closed

curve on a curved surface changes direction during the round trip.
Then to first order in �λ we have �AQP = �AP + (∇�v �A)P�λ and

�APQ = �AQ − (∇�v �A)Q�λ. (6.2)

To second order in �λ we have

�APQ =
(
1 − ∇�υ�λ + 1

2
∇�υ∇�υ(�λ)2

)
�AQ. (6.3)

We shall now parallel transport a vector around the closed polygon shown in
Fig. 6.3.

If �APQ is parallel transported further onto R we get

�APQR =
(
1 − ∇�u�λ + 1

2
∇�u∇�u(�λ)2

)(
1 − ∇�υ�λ + 1

2
∇�υ∇�υ(�λ)2

)
�AR, (6.4)
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Fig. 6.1 Parallel transport of �A

Fig. 6.2 Parallel transport of a vector around a triangle

where �AQ is replaced by �AR because the differential operator always shall be applied
to the vector in the first position. If we parallel transport �A around the whole polygon
in Fig. 6.3 we get

�APQRSTP =
(
1 + ∇�u�λ + 1

2
∇�u∇�u(�λ)2

)(
1 + ∇�υ�λ + 1

2
∇�υ∇�υ(�λ)2

)

· (
1 − ∇[�u,�υ](�λ)2

)(
1 − ∇�u�λ + 1

2
∇�u∇�u(�λ)2

)
(
1 − ∇�υ�λ + 1

2
∇�υ∇�υ(�λ)2

)
�AP. (6.5)
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Fig. 6.3 Curvature and parallel transport

Calculating to second order in �λ gives

�APQRSTP = �AP + ([∇�u,∇�υ] − ∇[�u,�υ]
)
(�λ)2�AP. (6.6)

There is a variation of the vector under parallel transport around the closed
polygon,

δ�A = �APQRSTP − �AP = ([∇�u,∇�υ] − ∇[�u,�υ]
)�AP(�λ)2. (6.7)

Definition 6.1.1 (The Riemann curvature tensor) The Riemann’s curvature tensor
is defined as

R( , �A, �u, �v) ≡ ([∇�u,∇�v] − ∇[�u,�v]
)
(�A). (6.8)

The components of the Riemann curvature tensor are defined by applying the
tensor on basis vectors

Rμ
ναβ�eμ ≡ ([∇α,∇β] − ∇[�eα,�eβ ]

)
(�eν). (6.9)

It follows fromDefinition (6.8) that the Riemann tensor is antisymmetric in its last
two arguments. Hence the components are antisymmetric in their last two indices,

Rμ
νβα = −Rμ

ναβ. (6.10)

The expression for the change of �A under parallel transport around the polygon,
Eq. (6.7), can now be written as
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Fig. 6.4 Curl as area of a
vectorial parallelogram.
Parallelogram defined by the
vectors �u�λ and �v �λ is
represented mathematically
by the vector
��S = �u × �v(�λ)2

��A = R( , �A, �u, �v)(�λ)2

= R( , Aν�eν, uα�eα, vβ�eβ)(�λ)2

= �eμRμ
ναβAνuαvβ · (�λ)2

= 1

2
�eμRμ

ναβAν(uαvβ − uβvα)(�λ)2. (6.11)

The area of the parallelogram defined by the vectors �u�λ and �v �λ is

��S = �u × �v (�λ)2. (6.12)

These vectors are shown in Fig. 6.4.
Using that

(�u × �v)αβ = uαvβ − uβvα, (6.13)

we can write Eq. (6.11) as

��A = 1

2
AνRμ

ναβ�Sαβ�eμ. (6.14)

The components of the Riemann tensor expressed by the connection coefficients
(5.114) and structure coefficients (3.40) are given by

�eμRμ
ναβ = [∇α,∇β]�eν − ∇[�eα,�eβ ]�eν

= (∇α∇β − ∇β∇α − cρ
αβ∇ρ)�eν

= ∇α∇β�eν − ∇β∇α�eν − cρ
αβ∇ρ�eν

= ∇α

μ
νβ�eμ − ∇β
μ

να�eμ − cρ
αβ
μ

νρ�eμ

= (∇α

μ
νβ)�eμ + 


μ
νβ∇α�eμ − (∇β
μ

να)�eμ − 
μ
να∇β�eμ − cρ

αβ
μ
νρ�eμ

= �eα(

μ
νβ)�eμ + 


ρ
νβ
μ

ρα�eμ − �eβ(
μ
να)�eμ − 
ρ

να

μ
ρβ�eμ − cρ

αβ
μ
νρ�eμ. (6.15)

This gives the components of the Riemann curvature tensor in an arbitrary basis
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Rμ
ναβ = �eα(


μ
νβ) − �eβ(
μ

να) + 

ρ
νβ
μ

ρα − 
ρ
να


μ
ρβ − cρ

αβ
μ
νρ. (6.16)

In coordinate basis Eq. (6.16) is reduced to

Rμ
ναβ = 


μ
νβ,α − 


μ
να,β + 


ρ
νβ
μ

ρα − 
ρ
να


μ
ρβ, (6.17)

where 

μ
νβ = 


μ
βν are the Christoffel symbols.

Since the basis vectors are derivative operators, the first two terms is a linear com-
bination of derivatives of the connection coefficients. In a local Cartesian coordinate
system co-moving with a local inertial reference frame all the connection coeffi-
cients vanish, and only the first two terms in the expression of the components of
the Riemann curvature tensor remain. As we have seen in Sect. 5.5.3 this means that
in such a system there is no acceleration of gravity. But in general the derivatives of
the connections coefficients will not vanish. Hence in general spacetime is curved.
This shows that the acceleration of gravity does not depend upon the curvature of
spacetime. It depends instead upon the motion of the reference frame. The curvature
of spacetime is given by a tensor and is an invariant property of spacetime at the con-
sidered position. The acceleration of gravity is, however, not an invariant property
of spacetime since it is given by certain connection coefficients that are not tensor
components. They can be transformed away. This is the mathematical expression of
the fact that you can transform away the acceleration of gravity locally by going into
a local inertial frame.

Definition 6.5.1 (Contraction of a tensor component) Contraction of a tensor
component is an operation defined by

Rνβ ≡ Rμ
νμβ. (6.18)

The summation is over μ. In this way a new tensor is constructed from another
tensor with a rank 2 lower than the original tensor.

The tensor with components Rνβ is called the Ricci curvature tensor. Another
contraction gives the Ricci curvature scalar R = Rμ

μ.
Due to the antisymmetry (6.10) we can define a matrix of curvature forms,

Rμ
ν = 1

2
Rμ

ναβωα ∧ ωβ. (6.19)

Inserting the components of the Riemann tensor from Eq. (6.14) gives

Rμ
ν =

(
�eα(


μ
νβ) + 


ρ
νβ
μ

ρα − 1

2
cρ
αβ
μ

νρ

)
ωα ∧ ωβ. (6.20)

We shall now introduce the curvature form. Then we need the connection forms,

�μ
ν = 
μ

ναωα. (6.21)
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The exterior derivatives of the basis forms are,

dωρ = −1

2
cρ
αβωα ∧ ωβ = −�ρ

α ∧ ωα (6.22)

The exterior derivatives of the connection forms can now be written

d�μ
ν = d
μ

νβ ∧ ωβ + 
μ
νρdω

ρ

= �eα(

μ
νβ)ωα ∧ ωβ − 1

2
cρ
αβ
μ

νρω
α ∧ ωβ. (6.23)

Combining Eqs. (6.20)–(6.22) the curvature forms take the form

Rμ
ν = d�μ

ν + �
μ
λ ∧ �λ

ν. (6.24)

This is Cartans 2. structure equation.

Example 6.1.1 The Riemann curvature tensor of a spherical surface calculated from
Cartan’s structure equations

Let r = R be the radius of the spherical surface. The calculation is performed in
5 steps.

1. Write down the metric tensor and introduce a form basis dual to an orthonormal
vector basis.

g = ωθ̂ ⊗ ωθ̂ + ωϕ̂ ⊗ ωϕ̂ = R2dθ ⊗ dθ + R2 sin2 θdϕ ⊗ dϕ,

giving

ωθ̂ = Rdθ, ωφ̂ = R sin θdϕ.

2. Use Cartan’s 1. structure equation, dωμ = ων ∧ �μ
ν , to calculate the structure

forms. Since R is constant and using Poincare’s lemma and the antisymmetry of
the connection forms, exterior differentiation of the basis forms lead to

dωθ̂ = 0 = ωϕ̂ ∧ �θ̂
ϕ̂, dωϕ̂ = R cos θdθ ∧ dϕ = ωθ̂ ∧ 1

R

cos θ

sin θ
ωϕ̂ = ωθ̂ ∧ �

ϕ̂

θ̂

giving

�θ̂
ϕ̂ = f (θ, ϕ)ωϕ̂, �

ϕ̂

θ̂
= g(θ, ϕ)ωθ̂ + 1

R

cos θ

sin θ
ωϕ̂

where the functions f (θ, ϕ) and g(θ, ϕ) are determined from the antisymmetry of
the connection forms. Using that �θ̂

ϕ̂
= �θ̂ϕ̂ = −�ϕ̂θ̂ = −�

ϕ̂

θ̂
, we get
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f (θ, ϕ) = 1

R

cos θ

sin θ
, g(θ, ϕ) = 0.

Hence,

�
ϕ̂

θ̂
= −�θ̂

ϕ̂ = 1

R

cos θ

sin θ
ωϕ̂ = cos θdϕ.

The reason for going back to coordinate basis here is that then it is easier to
calculate the exterior derivative d�ϕ̂

θ̂
.

3. Calculate the Riemann curvature forms from Cartan’s 2. structure equation,

Rθ̂
ϕ̂

= d�θ̂
ϕ̂

+ �θ̂
ϕ̂

∧ �
ϕ̂

ϕ̂
= d�θ̂

ϕ̂
= d

(
cos θdϕ

) = − sin θdθ ∧ dϕ = − 1

R2 ωθ̂ ∧ ωϕ̂ = −Rϕ̂

θ̂
.

4. Calculate the non-vanishing components of the Riemann tensor from

Rμ̂

ν̂
= (1/2)Rμ

ναβωα ∧ ωβ.

This gives

Rθ̂

ϕ̂θ̂ ϕ̂
= Rϕ̂

θ̂ ϕ̂θ̂
= −Rθ̂

ϕ̂ϕ̂θ̂
= −Rϕ̂

θ̂ θ̂ ϕ̂
= 1

R2
.

5. Calculate the components of the Ricci curvature tensor and the Ricci curvature
scalar,

Rθ̂ θ̂ = Rϕ̂ϕ̂ = 1

R2
, R = Rθ̂

θ̂
+ Rϕ̂

φ̂
= 2

R2
.

6.2 Differential Geometry of Surfaces

Imagine an arbitrary surface embedded in an Euclidean 3-dimensional space
(Fig. 6.5).

The coordinate basis vectors on the surface are

�eu = ∂

∂u
, �ev = ∂

∂v
, (6.25)

where u and v are coordinates on the surface. The directional derivatives of the basis
vectors are written as

�eμ,ν = 
α
μν�eα + Kμν

�N , α = 1, 2. (6.26)
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Fig. 6.5 Surface with tangent vectors and normal vector

Greek indices run through the surface coordinates, and �N is a unit vector
orthogonal to the surface. It follows from Eq. (6.26) that

Kμν = �eμ,ν · �N . (6.27)

Equation (6.26) is called Gauss’ equation. In coordinate basis we have
�eμ,ν = ∂2

∂xμ∂xν = ∂2

∂xν∂xμ = �eν,μ. Hence

Kμν = Kνμ. (6.28)

Let �u be the unit tangent vector to a curve on the surface, parameterized by λ .
Differentiating �u along the curve, we get

d�u
dλ

= uμ

;νuν�eμ+ Kμνuμuν︸ ︷︷ ︸
2nd fundamental form

�N . (6.29)

We define two scalar quantities κg and κN by

d�u
dλ

= κg�e + κN �N . (6.30)
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Here �e = �N×�u is a unit vector in the surfacewhich is orthogonal both to �N and to �u.
κg is called the geodesic curvature, and κN the normal curvature (external curvature).
Note that κg = 0 for geodesic curves on the surface. The geodesic curvature is given
by the covariant directional derivative of the tangent vector field of a curve along the
curve,

κg�e = uμ

;νuν�eμ = ∇�u�u. (6.31)

It follows from Eqs. (6.29) that

d�u
dλ

· �N = Kμνuμuν, (6.32)

and from Eq. (6.30) that

κN = d�u
dλ

· �N . (6.33)

We also have that �u · �N = 0 along the whole curve. Differentiation gives

d�u
dλ

· �N + �u · d �N
dλ

= 0. (6.34)

It follows from the last three equations that

κN = Kμνuμuν = −�u · d �N
dλ

, (6.35)

which is called Weingarten’s equation.
The geodesic curvature κg and normal curvature κN together give a complete

description of the geometry of a surface in a flat 3-dimensional space. We are now
going to consider geodesic curves through a point on the surface. The point of depar-
ture is the tangent vector �u = uμ�eμ with �u · �u = gμνuμuν = 1 . The directions with
maximum andminimum values for the normal curvatures are found by extremalizing
κN under the condition gμνuμuν = 1. We then solve the variation problem δF = 0
for arbitrary uμ where F = Kμνuμuν − k(gμνuμuν − 1). Here k is the Lagrange
multiplicator. Variation with respect to uμ gives

δF = 2(Kμν − kgμν)u
νδuμ. (6.36)

The requirement that δF = 0 for arbitrary uμ demands that

(Kμν − kgμν)u
ν = 0. (6.37)

For this system of equations to have nonzero solutions, we must have
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det(Kμν − kgμν) = 0, (6.38)

or

∣∣∣∣ K11 − kg11 K12 − kg12
K21 − kg21 K22 − kg22

∣∣∣∣ = 0. (6.39)

This gives the following quadratic equation for k:

k2det(gμν) − (g11K22 − 2g12K12 + g22K11)k + det(Kμν) = 0

(K symmetricK12 = K21). (6.40)

The equation has two solutions, k1 and k2. These are the extremal values of k.
In order to find the meaning of k, we multiply Eq. (6.37) by uμ, which gives

0 = (Kμν − kgμν)u
μuν

= Kμνuμuν − kgμνuμuν

= κN − k ⇒ k = κN . (6.41)

The extremal values of κN are called the principal curvatures of the surface. Let
the directions of the geodesics with extreme normal curvature be given by the tangent
vectors �u and �v. Equation (6.37) gives

Kμνuν = kgμνuν . (6.42)

Multiplying by vμ we get

Kμνuνvμ = k1gμνuνvμ = k1uμvμ = k1(�u · �v),
Kμνvνuμ = k2gμνvνuμ = k2(�u · �v), (6.43)

which gives

(k1 − k2)(�u · �v) = Kμν(u
νvμ − vνuμ) = 2Kμνu[νvμ]. (6.44)

Kμν is symmetric in μ and ν. So we get (k1 − k2)(�u · �v) = 0 . For k1 	= k2 we have to
demand �u · �v = 0. So the geodesics with extremal normal curvature are orthogonal
to each other.
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The Gaussian curvature (at a point) is defined as

K = κN1 · κN2 (6.45)

Since κN1 and κN2 are solutions of the quadratic equation above, we get

K = det(Kμν)

det(gμν)
. (6.46)

6.2.1 Surface Curvature Using the Cartan Formalism

When we use the Cartan formalism, we introduce an orthonormal set of basis vectors
at each point of the surface. Greek indices run through the surface coordinates (2-
dimensional) and Latin indices through the space coordinates (3-dimensional):

�eâ = (�e1̂, �e2̂, �N ), �eμ̂ = {�e1̂, �e2̂}. (6.47)

where �N is a unit vector field orthogonal to the surface. Using the exterior derivative
and form formalism, we find how the unit vectors on the surface change:

d�eν̂ = �eâ ⊗ �â
ν̂ = �eα̂ ⊗ �α̂

ν̂ + �N ⊗ �3̂
ν̂ , (6.48)

where �
μ̂

ν̂
= 


μ̂

ν̂α̂
ωα̂ are the connection forms on the surface, i.e. the intrinsic

connection forms. The extrinsic connection forms are

�3̂
ν̂ = Kν̂ α̂ωα̂, �

μ̂

3̂
= K μ̂

α̂
ωα̂. (6.49)

We let the surface be embedded in an Euclidean (flat) 3-dimensional space. This
means that the curvature forms of the 3-dimensional space are zero:

Râ
3̂b̂

= 0 = d�â
b̂
+ �â

k̂
∧ �k̂

b̂
, (6.50)

which gives

Rμ̂

3̂ν̂
= 0 = d�

μ̂

ν̂
+ �

μ̂

α̂
∧ �α̂

ν̂ + �
μ̂

3̂
∧ �3̂

ν̂ = Rμ̂

ν̂
+ �

μ̂

3̂
∧ �3̂

ν̂ , (6.51)

where Rμ̂

ν̂
are the curvature forms of the surface. We then have

1

2
Rμ̂

ν̂α̂β̂
ωα̂ ∧ ωβ̂ = −�

μ̂

3̂
∧ �3̂

ν̂ . (6.52)
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Inserting the components of the extrinsic connection forms, we get (using the
antisymmetry of α and β in Rμ

ναβ)

Rμ̂

ν̂α̂β̂
= K μ̂

α̂
Kν̂ β̂ − K μ̂

β̂
Kν̂α̂ . (6.53)

We now lower the first index:

Rμ̂ν̂α̂β̂ = Kμ̂α̂Kν̂β̂ − Kμ̂β̂Kν̂α̂ . (6.54)

Rμ̂ν̂α̂β̂ are the components of a curvature tensor which only refer to the dimensions
of the surface. In particular

R1̂2̂1̂2̂ = K1̂1̂K2̂2̂ − K1̂2̂K2̂1̂ = det K . (6.55)

We then have the following connection between this component of the Riemann
curvature tensor of the surface and the Gaussian curvature of the surface:

K = κN1κN2 = det Kμ̂ν̂

det gμ̂ν̂

= R1̂2̂1̂2̂

det gμ̂ν̂

= R1̂
2̂1̂2̂

, (6.56)

where we have used that det gμ̂ν̂ = 1 in orthonormal basis. Since the right-hand side
refers to the intrinsic curvature and the metric on the surface, we have proved that
the Gaussian curvature of a surface is an intrinsic quantity. It can be measured by
observers on the surface without embedding the surface in a 3-dimensional space.
This is the contents of Gauss’ theorema egregium.

6.3 The Ricci Identity

Applying the Riemann tensor to a vector gives

−→e
μ
Rμ

ναβAν = (∇α∇β − ∇β∇α − ∇[−→e α,
−→e

β
])(�A). (6.57)

In coordinate basis this is reduced to

−→e μRμ
ναβAν = (Aμ

;βα − Aμ;αβ)
−→e μ, (6.58)

where

Aμ

;αβ ≡ (Aμ

;β);α. (6.59)

The Ricci identity on component form is
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AνRμ
ναβ = Aμ

;βα − Aμ

;αβ. (6.60)

We can write this as

d2�A = 1

2
Rμ

ναβAν−→e μ ⊗ ωα ∧ ωβ. (6.61)

This shows that the 2. exterior derivative of a vector is equal to zero only in a flat
space. Equations (6.60) and (6.61) both represent the Ricci identity.

6.4 Bianchi’s 1. Identity

We shall here need Cartan’s 1. structure equation,

dωμ = −�μ
ν ∧ ων, (6.62)

and Cartan’s 2. structure equation,

Rμ
ν = d�μ

ν + �
μ
λ ∧ �λ

ν. (6.63)

Exterior differentiation of Eq. (6.62) and use of Poincaré’s lemma (5.16) give
d2ωμ = 0. Hence,

0 = d�μ
ν ∧ ων − �

μ
λ ∧ dωλ. (6.64)

Use of (6.62) gives

d�μ
ν ∧ ων + �

μ
λ ∧ �λ

ν ∧ ων = 0. (6.65)

From this we see that

(d�μ
ν + �

μ
λ ∧ �λ

ν) ∧ ων = 0. (6.66)

We now get Bianchi’s 1. identity,

Rμ
ν ∧ ων = 0 (6.67)

The component form of Bianchi’s 1. identity is

1

2
Rμ

ναβωα ∧ ωβ

︸ ︷︷ ︸
Rμ

ν

∧ων = 0. (6.68)
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The component equation is

Rμ

[ναβ] = 0 (6.69)

or

Rμ
ναβ + Rμ

αβν + Rμ
βνα = 0, (6.70)

where the antisymmetry Rμ
ναβ = −Rμ

νβα has been used.

6.5 Bianchi’s 2. Identity

Exterior differentiation of Eq. (6.63) gives

dRμ
ν = Rμ

λ ∧ �λ
ν − �μ

ρ ∧ �
ρ
λ ∧ �λ

ν − �
μ
λ ∧ Rλ

ν + �
μ
λ ∧ �λ

ρ ∧ �ρ
ν

= Rμ
λ ∧ �λ

ν − �
μ
λ ∧ Rλ

ν . (6.71)

We now have Bianchi’s 2. identity as a form equation:

d Rμ
ν + �

μ
λ ∧ Rλ

ν − Rμ
λ ∧ �λ

ν = 0 (6.72)

As a component equation Bianchi’s 2. identity is given by

Rμ

ν[αβ;γ ] = 0. (6.73)

The Riemann curvature tensor has four symmetries.

I. The definition of the Riemann tensor implies that: Rμ
ναβ = −Rμ

νβα .
II. Bianchi’s 1. identity:Rμ

[ναβ] = 0.
III. From Cartan’s 2. structure equation follows:

Rμναβ = −Rνμαβ. (6.74)

By choosing a locally Cartesian coordinate system in an inertial frame we get the
following expression for the components of the Riemann curvature tensor:

Rμναβ = 1

2
(gμβ,να − gμα,νβ + gνα,μβ − gνβ,μα), (6.75)

from which we get:

IV. The fourth symmetry of the Riemann curvature tensor is Rμναβ = Rαβμν .
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These four symmetries reduce the number of independent components of the
Riemann tensor in 4-dimensional spacetime from 256 to 20. Contraction of μ and α

leads to

Rνβ = Rβν, (6.76)

that is the Ricci tensor is symmetric. In 4-dimensional spacetime the Ricci tensor
has 10 independent components.

6.6 Torsion

Definition 6.6.1 (The torsion 2-form) The torsion 2-form is defined by

T (�u ∧ �v) = ∇�u�v − ∇�v�u − [�u, �v], (6.77)

where �u and �v are arbitrary vectors. It is a vectorial form, which means that the
torsion form has vector components. The contraction of the torsion with �u ∧ �v has
the component form,

T (�u ∧ �v) = −(

ρ

μν − 
ρ
νμ + cρ

μν

)
uμvν�eρ. (6.78)

It follows that the torsion form has the component form

T = 1

2

(

ρ

νμ − 
ρ
μν − cρ

μν

) �eρ ⊗ ωμ ∧ ων. (6.79)

Introducing the scalar torsion components T ρ
μν by

T (�u ∧ �v) = T ρ
μνuμvν�eρ, (6.80)

we get

T ρ
μν = 
ρ

νμ − 
ρ
μν − cρ

μν, (6.81)

So that

T = 1

2
T ρ

μν�eρ ⊗ ωμ ∧ ων.. (6.82)

In coordinate basis cρ
μν = 0, giving

T ρ
μν = 
ρ

νμ − 
ρ
μν. (6.83)
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Hence torsion induces an antisymmetric part of the connection coefficients in a
coordinate basis.

The spacetime of the general theory of relativity is assumed to be torsion free.
This is called a Riemannian space. Then the connection coefficients are related to
the structure coefficients by

cρ
μν = 
ρ

νμ − 
ρ
μν. (6.84)

This shows that the structure coefficients represent the antisymmetric parts of the
connection coefficients. In a coordinate basis in a Riemannian space the connection
coefficients are symmetric and the structure coefficients vanish.

It follows from Eqs. (5.164), (5.78) and (6.79) that the vectorial torsion form
(form with vector components) may be written

T = �eρ ⊗ (
dωρ + �μ

ν ∧ ωρ
)
. (6.85)

The torsion two forms, T ρ , with scalar components are defined by

T = �eρ ⊗ T ρ, (6.86)

hence,

T ρ = dωρ + �μ
ν ∧ ωρ. (6.87)

6.7 The Equation of Geodesic Deviation

Consider two nearby geodesic curves (Fig. 6.6), both parametrized by a parameter
λ. Let �s be a vector connecting two curves with the same value of λ. The connecting
vector �s is said to measure the geodesic deviation of the curves

In order to deduce an equation describing how the geodesic deviation varies along
the curves, we consider the covariant directional derivative of �s along the curves,∇�u�s,
where �u is the tangent vector field of the curves.

Let �u and �s be coordinate basis vectors of a coordinate system. Then
[�s, �u] = 0

so that

∇�u�s = ∇�s�u, (6.88)

giving

∇�u∇�u�s = ∇�u∇�s�u. (6.89)
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Fig. 6.6 Geodesic deviation.
Two neighbouring geodesic
curves with a vector �s
connecting points on the
curves with the same
parameter value

Furthermore

R(�u, �s) �u =
(
[∇�u, ∇�s] − ∇[�u, �s]

)
�u = [∇�u, ∇�s]�u. (6.90)

Thus

∇�u∇�u �s = ∇�s∇�u�u + R(�u, �s) �u. (6.91)

Since the curves are geodesics ∇�u�u = 0, and R(�u, �s) = −R(�s, �u) due to the
antisymmetry of the Riemann tensor, the equation reduces to

∇�u∇�u �s + R(�s, �u) �u = 0. (6.92)

This is the equation of geodesic deviation. The component form of the equation
is

(
D2s

dλ2

)μ

+ Rμ
ανβuαsνuβ = 0. (6.93)

where D/dλ is the covariant derivative with respect to an invariant curve parameter
λ. In co-moving geodesic normal coordinates with �u = (1, 0, 0, 0) and vanishing
Christoffel symbols, the covariant derivative reduces to the ordinary derivative, and
the equation for geodesic deviation reduces to

(
d2s

dλ2

)i

+ Ri
0j0sj = 0. (6.94)
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6.8 Tidal Acceleration and Spacetime Curvature

In Chap. 1 we found Eq. (1.50) for the tidal acceleration, i.e. the relative acceleration
between two nearby particles,

d2ζ k

dt2
= −ζ i ∂2φ

∂xi∂xk
, (6.95)

where ζ j is the j-component of the separation vector, and φ is the Newtonian grav-
itational potential. Comparing these equations we see that in the Newtonian limit
the non-vanishing components of the Riemann curvature tensor of spacetime are the
second derivatives of the Newtonian potential,

Ri
0j0 = ∂2φ

∂xi∂xj
. (6.96)

In Newtonian physics the acceleration of gravity is given by

�g = −∇φ, (6.97)

or in component form

gi = − ∂φ

∂xi
. (6.98).)

Comparing with Eq. (5.90) we see that with a locally Cartesian coordinate system
the non-vanishing Christoffel symbols are


i
00 = ∂φ

∂xi
. (6.99)

The Christoffel symbols are the first derivatives of the Newtonian gravitational
potential. According to Eq. (6.96) the second derivatives are the components of the
Riemann curvature tensor. Hence in the Newtonian approximation the non-vanishing
components of the curvature tensor are

Ri
0j0 = ∂
i

00

∂xj
. (6.100)
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6.9 The Newtonian Tidal Tensor

There are several definitions of the Newtonian tidal tensor that are mathematically
equivalent. One is as follows.

Definition 6.9.1 (Newtonian tidal tensor) The Newtonian tidal tensor is a symmet-
rical tensor of rank 2 with components

Ei j = −∂gi

∂xj
, (6.101)

i.e. Ei j is minus the change of the i-component of the acceleration of gravity due
to a displacement in the j-direction. Since

gi = − ∂φ

∂xi
, (6.102)

the components of the Newtonian tidal tensor may be written

Ei j = ∂2φ

∂xi∂xj
. (6.103)

It follows that the Newtonian tidal tensor is symmetrical.
The Newtonian gravitational field equation

∇2φ = ∂2φ

∂xi∂xi
= 4πGρ (6.104)

can now be written

Ei
i = 4πGρ. (6.105)

Also it follows that the equation of tidal acceleration can be written

d2ζ k

dt2
= −Ek

i ζ i, (6.106)

and that in the Newtonian limit the tidal tensor is related to the Riemann curvature
tensor of spacetime by

Ri
0j0 = Ei

j . (6.107)
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6.10 The Tidal and Non-tidal Components
of a Gravitational Field

InNewton’s theory of gravitation all gravitational fields are caused bymasses.Agrav-
itational field may be described mathematically in terms of a gravitational potential
φ. The acceleration of gravity can be expressed as the negative gradient of the gravita-
tional potential as in Eq. (6.97). The gravitational field is an acceleration field which
has a gravitational field strength equal to the acceleration of gravity at each point in
space. The gravitational field strength is a local quantity, while the gravitational field
itself is a global concept.

Einstein generalized Newton’s 1 law to the form: The 4-acceleration of a free
particle vanishes when no non-gravitational forces act upon it,

Aμ = dU μ

dτ
+ 


μ
αβU αU β = 0. (6.108)

This equation holds in arbitrary coordinate systems in all frames of reference,
inertial or accelerated. But only in coordinate systems in which the coefficients of
the metric tensor are constant, do the Christoffel symbols vanish, so that the equation
takes the Newtonian three-vector form �a = 0. In an arbitrary reference frame the
term dU i/dτ represents the i-component of the acceleration of the particle relative
to the reference frame, and according to Eq. (6.108) it is given by

dU i

dτ
= −
i

αβU αU β. (6.109)

The acceleration of gravity may be defined in two mathematically identical ways,
either in terms of the 3-acceleration of a free particle instantaneously at rest, or in
terms of the 4-acceleration

Aμ = dU μ

dτ
+ 


μ
αβU αU β (6.110)

of a particle permanently at rest in a reference frame. Let the gravitational field point
in the i-direction at a point. Then the quantity 
i

αβU αU β determines the acceleration
of gravity.

This has an important conceptual consequence: Experiencing a gravitational field
strength, i.e. that there is a non-vanishing acceleration of gravity, in other words that
a free particle falls, has nothing to do with the curvature of spacetime. It depends upon
certain Christoffel symbols. The fact that the Christoffel symbols are not tensor com-
ponents implies that all of them may be transformed away at a point by introducing
locally Cartesian coordinates co-moving with a freely falling local reference frame.
This is the mathematical expression of one of the properties of gravity expressed in
connection with the principle of equivalence, that gravity may be transformed away
locally by going into a freely falling room. So when do we experience a gravitational
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field strength? The answer is: We experience a gravitational field strength when we
are in a room which is not freely falling. Note that this is valid whether spacetime is
curved of flat.

As seen from Eq. (6.93) of geodesic deviation spacetime curvature is connected
to inhomogeneity in a gravitational field—the difference between acceleration at two
nearby points. In Newton’s theory this is associated with the phenomenon of tidal
forces.

Inertial effects upon physical phenomena may be defined as those effects that
depend upon the state of acceleration or rotation of the reference frame. In acceler-
ated or rotating reference frames there are non-vanishing Christoffel symbols that
represent inertial effects, such as theCoriolis and centrifugal acceleration in a rotating
reference frame. We shall take a closer look at this connection.

It should be noted that not all of the Christoffel symbols represent a deviation from
uniform motion of free particles. For example, there are non-vanishing Christoffel
symbols in a system of polar coordinates in an inertial reference frame that only
tell about the geometrical properties of the coordinate system, but do not have any
kinematical significance. On the other hand the Christoffel symbols
i

00 represent the
acceleration of a free particle instantaneously at rest, and 
i

j 0 represent the Coriolis
acceleration.

The gravitational field strength depends upon the chosen frame of reference and
vanishes in a local freely falling reference frame, i.e., an inertial reference frame.
Generally a gravitational field will have both a non-tidal tidal component which can
be transformed away, and a tidal component which cannot be transformed away. We
shall now consider the mathematical representation of these components.

Let us start by considering gravity in Newton’s theory. Introducing the gravita-
tional potential φ and the separation vector �s between P0 and a nearby point P, the
acceleration of gravity at P is given by the first two terms of a Taylor expansion about
P0,

gi = −
(

∂φ

∂xi

)
P

= −
(

∂φ

∂xi

)
P0

−
(

∂2φ

∂xi∂xj

)
sj = (gNT )i + (gT )i, (6.111)

where the non-tidal component of the gravitational field strength is

(gNT )i = −
(

∂φ

∂xi

)
P0

, (6.112)

and the tidal component is

(gT )i = −
(

∂2φ

∂xi∂xj

)
P0

sj. (6.113)
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Noting that (gT )i = d2si/dt2 and comparing with Eq. (6.94) we see that in the
weak field limit there is a simple connection between the tidal component of the
gravitational field strength and spacetime curvature,

(gT )i = −Ri
0j0sj = −

(
∂2φ

∂xi∂xj

)
P0

sj. (6.114)

This shows that the relativistic counterpart to inhomogeneity of a gravitational
field, i.e. to a tidal gravitational field, is spacetime curvature.

We now proceed to consider gravity according to Einstein’s theory. Making a
Taylor expansion ofEq. (6.109) for a free particle instantaneously at rest in a reference
framewith a stationarymetric, we find the relativistic expression for the i-component
of the gravitational field strength

gi
R = −(


i
00

)
P0

−
(

i
00,j

)
P0s

j. (6.115)

In this case Eq. (6.17) gives


i
00,j = Ri

0j0 + 
α
0j


i
α0 − 
k

00

i
kj. (6.116)

Inserting this into Eq. (6.115) leads to

gi
R = −(


i
00

)
P0

+
(

k
00


i
kj − 
α

0j

i
α0

)
P0

sj −
(

Ri
0j0

)
P0

sj. (6.117)

The first term of Eq. (6.117) represents the acceleration of gravity at point P0, i.e.,
it represents the uniform part of the gravitational field. The second term represents
the non-uniform part of the gravitational field which is also present in a non-inertial
reference frame in flat spacetime, for example, the non-uniformity of the centrifugal
field in a rotating reference frame. The last term represents the tidal effects, which
in the general theory is proportional to the spacetime curvature. This suggests the
following separation of a gravitational field into a non-tidal part and a tidal part:

gi
R = gi

NT + gi
T , (6.118)

where the non-tidal component of the gravitational field is given by

gi
NT = −(


i
00

)
P0

+
(

k
00


i
kj − 
α

0j

i
α0

)
P0

sj, (6.119)

and the tidal part by

gi
T = −

(
Ri
0j0

)
P0

sj. (6.120)
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As in the Newtonian case, the non-tidal part of the gravitational field can be
transformed away locally by going into a local inertial frame. The tidal part cannot
be transformed away.

Example 6.10.1 Non-tidal gravitational field. Let us as a simple illustrationdp con-
sider the gravitational field strength in a rotating reference frame in flat spacetime.
In this case the Riemann curvature tensor vanishes, so the gravitational field has no
tidal component. The non-vanishing Christoffel symbols are given in Eq. (5.119).
Inserting these into Eq. (6.119) gives for the non-tidal component of the gravitational
field

gr
NT = rω2 + ω2sr, gθ

NT = ω2sθ . (6.121)

The term rω2 is the centrifugal acceleration at the point P0, and the other terms
are due to the inhomogeneity of the centrifugal gravitational field.

Exercises

6.1 Parallel transport and curvature

(a) A curve P(λ) runs through a point P = P(0), and a vector �A is defined at
this point. The vector is parallel transported along the curve so that in each
point P(λ) there is a well-defined vector �A(λ) . Express the condition that
the vectors along the curve are parallel as an equation of the components
of the vector Aμ(λ). Show that the change of the components of the vector
by an infinitesimal displacement dxμ is

dAμ = −

μ
λν(x)A

λdxν .

(b) A closed curve has the shape of a parallelogram with the sides d�a and d�b.
The corners of the parallelogramare denoted byA,B,C andD, respectively.
A vector �A is parallel transported from A and C along the two curves ABC
and ADC. Show that the result in these two cases is in general not the same.
Then use this fact to show that the change of �A, by parallel transporting it
along the closed curve ABCDA, is

δAα = −Rα
βγ δAβdaγ dbδ,

where Rα
βγ δ is the Riemann curvature tensor.

6.2 Curvature of the simultaneity space in a rotating reference frame

Calculate the curvature scalar R of a 2-dimensional simultaneity space in a rotating
reference frame with the line-element
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Fig. 6.7 Spacetime
curvature and the tidal force
pendulum. Here

a = R
φ̂ t̂φ̂ t̂�

φ̂ cos θ −
Rr̂ t r̂ t̂�

r̂ sin θ, �� =
� sin θ �e

φ̂
+ � cos θ �er̂

dl2 = dr2 + r2dθ2

1 − r2ω2/c2
.

6.3 The tidal force pendulum and the curvature of space

We will again consider the tidal force pendulum. Here we shall use the equation for
geodesic deviation to find the period of the pendulum.

(a) Why can the equation for geodesic equation be used to find the period of the
pendulum in spite of the fact that the particles do not move along geodesics?
Assume that the centre of the pendulum is fixed at a distance R from the centre
of mass of the Earth. Introduce an orthonormal basis {eâ} with the origin at the
centre of the pendulum (see Fig. 6.7).

(b) Show to first order in v/c and φ/c2, where v is the 3-velocity of the masses and
φ the gravitational potential at the position of the pendulum, that the equation
of geodesic deviation takes the form

d2�î

dt2
+ Rî

0̂ĵ0̂
�ĵ = 0.

(c) Find the period of the pendulum expressed in terms of the components of
Riemann’s curvature tensor.



Chapter 7
Einstein’s Field Equations

Abstract This chapter starts with a hydrodynamical description of energy–momen-
tum conservation in a Newtonians context in order to give some intuition about
the relativistic formulation of energy–momentum conservation as represented by
a vanishing divergence of the energy–momentum tensor. Einstein demanded that
energy–momentum conservation should follow from the field equations, and hence
he needed a divergence-free curvature tensor. This is deduced fromBianchi’s 2. iden-
tity. It is shown that one need not postulate that free particles follow geodesic curves,
but that it follows from the field equations.

7.1 Newtonian Fluid

We shall begin this chapter by giving a mathematical formulation of the law of
energy–momentum conservation. Again (like we did in the Sect. 5.9.1) we shall start
by considering a Newtonian fluid.

The total derivative of a velocity field was presented in Sect. 5.9.1 and is

D�v
Dt

≡ ∂�v
∂t

+ (�v · �∇)�v. (7.1)

The component notation for the expression of the total derivative of the velocity
takes the form

D�vi

Dt
≡ ∂vi

∂t
+ v j ∂vi

∂x j
. (7.2)

In Newtonian hydrodynamics mass conservation is represented mathematically
by the continuity equation,
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∂ρ

∂t
+ ∇ · (ρ�v) = 0 or

∂ρ

∂t
+ ∂(ρvi )

∂xi
= 0. (7.3)

Conservation of momentum is represented by the Euler’s equation of motion
(ignoring gravity),

ρ
D �υ
Dt

= −�∇ p or ρ

(
∂υ i

∂t
+ v j ∂υ i

∂x j

)
= − ∂p

∂xi
. (7.4)

The energy–momentum tensor is a symmetric tensor of rank 2 which describes
material properties,

T μν =

⎛
⎜⎜⎝

T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

⎞
⎟⎟⎠, (7.5)

Here T 00 represents mass–energy density, T i0 represents momentum density, T ii

represents pressure for T ii > 0 and tension for T ii < 0, and T i j represents shear
forces for i �= j.

Example 7.1.1 (Energy–momentum tensor of a Newtonian fluid) In the case of a
Newtonian fluid the components of the energy–momentum tensor are

T 00 = ρc2, T i0 = ρcvi , T i j = ρvi v j + pδi j , (7.6)

where ρ is the mass density, p the pressure, assumed isotropic here and vi the i-
component of the velocity. We choose a locally Cartesian coordinate system in an
inertial frame such that the covariant derivatives are reduced to partial derivatives.
The divergence of the momentum–energy tensor, T μν

;ν , has four components, one for
each value of μ.

The zeroth component is

T 0ν
;ν = T 0ν

,ν = T 00
,0 + T 0i

,i = ∂ρ

∂t
+ ∂(ρvi )

∂xi
, (7.7)

which in comparison with Newtonian hydrodynamics shows that

T 0ν
;ν = 0 (7.8)

is the continuity equation. This equation represents the conservation of mass–energy.
The i- component of the divergence is

T iν
,ν = T i0

,0 + T i j
, j = ∂(ρvi )

∂t
+ ∂(ρvi v j + pδi j )

∂x j
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= ρ
∂vi

∂t
+ vi ∂ρ

∂t
+ vi ∂ρv j

∂x j
+ ρv j ∂vi

∂x j
+ ∂p

∂xi
, (7.9)

According to the continuity equation

∂(ρυ i )

∂xi
= −∂ρ

∂t
, (7.10)

which implies that

T iν
,ν = ρ

∂vi

∂t
+ vi ∂ρ

∂t
− vi ∂ρ

∂t
+ ρv j ∂vi

∂x j
+ ∂p

∂xi
= ρ

Dvi

Dt
+ ∂p

∂xi
. (7.11)

Hence the Euler equation of motion, which represents momentum conservation,
takes the form

T iν
;ν = 0. (7.12)

This is Euler’s equation of motion. It expresses the conservation of momentum.
It follows from Eqs. (7.8) and (7.12) that the equations

T μν

;ν = 0 (7.13)

are the general expressions for energy and momentum conservation.

7.2 Perfect Fluids

Wenow turn to the general relativistic case. A perfect fluid is a fluidwith no viscosity.
The components of the energy–momentum tensor of a perfect fluid are

Tμν =
(
ρ + p

c2

)
uμuν + pgμν, (7.14)

where ρ and p are the mass–density and pressure of tension, respectively, measured
in the rest frame of the fluid, and uμ are the components of the 4-velocity of the fluid.

In a co-moving orthonormal basis the components of the 4-velocity are uμ̂ =
(c, 0, 0, 0). Then the energy–momentum tensor is given by

Tμ̂ν̂ =

⎛
⎜⎜⎝

ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

⎞
⎟⎟⎠, (7.15)
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where p > 0 is pressure and p < 0 is tension.
There are three different types of perfect fluids that are particularly useful:

1. Dust or non-relativistic gas is given by p = 0 and the energy–momentum tensor
Tμν = ρuμuν .

2. Radiation or ultra-relativistic gas is given by a traceless energy–momentum
tensor, i.e. T μ

μ = 0. It follows that p = (1/3)ρc2.
3. The third type is a sort of vacuum energy of particular significance for

construction of relativistic universe models.

7.2.1 Lorentz Invariant Vacuum Energy—LIVE

Let us follow a thought presented by the Belgian cosmologist Georges Lemaître
around 1935. Assume a particle is alone in the universe. It is not possible to define
motion for such a particle. Hence all motion is relative.

Quantum mechanics implies that particle–antiparticle pairs are created and then
annihilated again in a very short time restricted by the Heisenberg uncertainty rela-
tionships. Averaging over a macroscopic time and region in space this implies the
existence of a quantum mechanical vacuum energy on a macroscopic scale. If it is
possible to measure velocity relative to this energy, it would act as a sort of ether and
re-establish absolute motion into the physics.

According to the special theory of relativity, which has been experimentally con-
firmed in several ways, this cannot be the case. Hence it must be impossible to
measure velocity relative to the vacuum energy. This implies that all the components
of the energy–momentum tensor of the vacuum energy must be Lorentz invariant. It
is shown in Exercise 7.2 that Lorentz invariance of all the components of an energy–
momentum tensor implies that the energy–momentum tensor is proportional to the
metric tensor.

Assume now that the Lorentz invariant vacuum energy, LIVE, can be described
as a perfect fluid.

Tμν = (
ρLIVE + pLIVE/c2

)
uμuν + ρLIVEgμν (7.16)

Lorentz invariance then requires that the vacuum energy obeys the equation of
state

pLIVE = −ρLIVEc2. (7.17)

Hence LIVE is in a state of strain.
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7.2.2 Energy–Momentum Tensor of an Electromagnetic Field

Given an electric field �E = Ei �ei and amagnetic field �B = Bi �ei . The electromagnetic
field tensor is an antisymmetric tensor of rank 2 given by (using units so that c = 1)

Fην =

⎡
⎢⎢⎣

0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

⎤
⎥⎥⎦. (7.18)

The electromagnetic energy–momentum tensor is a symmetric tensor of rank 2
with components

Tμν = Fμα Fα
ν − 1

4
gμν Fαβ Fαβ. (7.19)

This tensor is usedwhen one is going to find solutions of Einstein’s field equations
for spacetimes with electromagnetic fields.

7.3 Einstein’s Curvature Tensor

Einstein assumed that the field equations representing the relativistic generalization
of Newton’s law of gravitation have the form: spacetime curvature ∝ momentum–
energy tensor. Also, he demanded that energy and momentum conservation should
follow as a consequence of the field equation. This puts the following constraints on
the curvature tensor: It must be a symmetric, divergence-free tensor of rank 2.

A good candidate is the Ricci tensor introduced in Eq. (6.18). It is a symmetric
curvature tensor of rank 2. Let us seewhether it is divergence free. In order to calculate
its divergence we start with Bianchi’s 2. identity which was deduced in Sect. 6.5,

Rμ

ναβ;σ + Rμ

νσα;β + Rμ

νβσ ;α = 0. (7.20)

Contraction of μ and α and using Eq. (6.73) gives

Rνβ;σ − Rνσ ;β + Rμ

νβσ ;μ = 0. (7.21)

Further contraction of ν and σ leads to

2Rσ
β;σ = R;β. (7.22)

Thus, the divergence of the Ricci tensor is
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Rσ
β;σ = 1

2
R;β. (7.23)

It is not vanishing. Hence, the Ricci tensor is not the curvature tensor to be put
into the left-hand side of the field equations. However, we can use this expression to
construct a new divergence-free curvature tensor.

Since the metric tensor is covariant divergence free, we have that (gσ
β R);σ =

gσ
β R;σ . Now we multiply Eq. (7.23) by gβ

α to get

(
gβ

α Rσ
β

)
; σ

− 1

2

(
gβ

α R
)
;β = 0. (7.24)

Interchanging σ and β in the first term and using that the mixed components of
the metric tensor are gβ

α = δβ
α , we get

(
Rβ

α − 1

2
δβ
α R

)
;β

= 0. (7.25)

Hence the tensor Rβ
α − (1/2)δβ

α R is divergence-free. This tensor is called the
Einstein tensor, and its covariant components are denoted by Eαβ , that is

Eαβ = Rαβ − 1

2
gαβ R. (7.26)

In 4. dimensional spacetime the metric tensor has ten independent components.
Due to the identities

Eμν

;ν = 0, (7.27)

which represent four equations that any Einstein tensor fulfils as a consequence
of Bianchi’s 2. identity, the field equations give only six independent equations to
determine the components of the metric tensor. Since there are ten independent
components, this leaves four free metric functions. This secures a free choice of
coordinate system.

7.4 Einstein’s Field Equations

Einstein’s field equations are

Eμν = κTμν (7.28)

where κ is a constant called Einstein’s constant of gravity. Inserting the expression
(7.26) for the components of the Einstein tensor we have
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Rμν − 1

2
gμν R = κTμν. (7.29)

Contraction and using that gμ
μ = δμ

μ = 4 gives

R = −κT, (7.30)

where T = T μ
μ . Thus the field equations may be written in the form

Rμν = κ

(
Tμν − 1

2
gμνT

)
. (7.31)

In the Newtonian limit the metric may be written as

ds2 = −
(
1 + 2φ

c2

)
c2dt2 + (1 + hii )(dx2 + dy2 + dz2), (7.32)

where the Newtonian potential |φ| � c2, and hii is a perturbation of the metric
satisfying |hii | � 1.We also have T00 � Tkk and T ≈ −T00. Then the 00-component
of the field equations may be approximated by

R00 ≈ κ

2
T00. (7.33)

Furthermore we have

R00 = Rμ
0μ0 = Ri

0i0 = i
00,i − i

0i,0 = ∂k
00

∂xk
= 1

c2
∇2φ· (7.34)

Since T00 ≈ ρc2, Eq. (7.33) can be written as

∇2φ = 1

2
κc4ρ. (7.35)

Comparing this equation with the Newtonian law of gravitation on local form,

∇2φ = 4πGρ, (7.36)

we see that Einstein’s constant of gravity is

κ = 8πG

c4
. (7.37)
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It has the value κ = 2.077 × 10−43s2/mkg.
In classical empty space we have Tμν = 0, which gives

Eμν = 0, (7.38)

or

Rμν = 0. (7.39)

These are the field equations for empty space. Note that Rμν = 0 does not imply
Rμναβ = 0. In general curvature is non-vanishing in empty space. In the words of J.
A. Wheeler: “Mass there curves spacetime here”.

It was shown by D. Hilbert that the field equations may be deduced from a
variational principle with action

∫
R
√−gd4x, (7.40)

where R
√−g is theLagrange density.Onemay also include a so-called cosmological

constant �:
∫

(R + 2�)
√−gd4x . (7.41)

The field equations with cosmological constant are

Rμν − 1

2
gμν R + �gμν = κTμν. (7.42)

The field equations of empty space with a cosmological constant are

Rμν − 1

2
gμν R + �gμν = 0. (7.43)

Solutions of these equations are sometimes called Einstein spaces.

7.5 The “Geodesic Postulate” as a Consequence of the Field
Equations

The principle that free particles follow geodesic curves has been called the “geodesic
postulate”.We shall now show that the “geodesic postulate” follows as a consequence
of the field equations.



7.5 The “Geodesic Postulate” as a Consequence of the Field Equations 205

Consider a system of free particles in curved spacetime. This system can be
regarded as a pressure-free gas. Such a gas is called dust. It is described by an
energy–momentum tensor

T μν = ρuμuν, (7.44)

where ρ is the rest density of the dust as measured by an observer at rest in the dust,
and uμ are the components of the 4-velocity of the dust particles.

Einstein’s field equations as applied to spacetime filled with dust take the form

Rμν − 1

2
gμν R = κρuμuν . (7.45)

Because the divergence of the left-hand side is zero, the divergence of the right-
hand side must be zero, too,

(ρuμuν);ν = 0 (7.46)

or

(ρuνuμ);ν = 0. (7.47)

We now regard the quantity in the parenthesis as a product of ρuν and uμ. By the
rule for differentiating a product we get

(ρuν);νuμ + ρuνuμ

;ν = 0. (7.48)

Since the 4-velocity of any object has a magnitude equal to the velocity of light
we have

uμuμ = −c2. (7.49)

Differentiation gives

(uμuμ);ν = 0 . (7.50)

Using, again, the rule for differentiating a product, we get

uμ;νuμ + uμuμ

;ν = 0. (7.51)

From the rule for raising an index and the freedom of changing a summation index
from α to μ, say, we get

uμ;νuμ = uμuμ;ν = gμαuαuμ;ν = uαgμαuμ;ν = uαuα
;ν = uμuμ

;ν . (7.52)
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Thus the two terms of Eq. (7.51) are equal. It follows that each of them are equal
to zero. So we have

uμuμ

;ν = 0. (7.53)

Multiplying Eq. (7.48) by uμ, we get

(ρuν);νuμuμ + ρuνuμuμ

;ν = 0. (7.54)

Using Eq. (7.47) in the first term and Eq. (7.51) in the last term, which then
vanishes, we get

(ρuν);ν = 0. (7.55)

Thus the first term in Eq. (7.48) vanishes and we get

ρuνuμ

;ν = 0. (7.56)

Since ρ �= 0 we must have

uνuμ

;ν = 0. (7.57)

This is just the geodesic equation. Hence, it follows from Einstein’s field equations
that free particles follow geodesic curves of spacetime.

7.6 Einstein’s Field Equations Deduced from a Variational
Principle

It was shown by David Hilbert how Einstein’s field equations can be deduced from
a variational principle. A detailed discussion of this is given in for example Ø. Grøn
and S. Hervik: “Einstein’s General Theory of Relativity”, Chap. 8. We shall here
only give a brief summary as a preparation for the presentation of the Kaluza–Klein
theory in the Appendix.

Hilbert’s variational principle has the form

δ I = 0, I =
∫

L
√−g d4x, (7.58)

where I is the action, L the Lagrange function—also called the Lagrangian—and g
the determinant of the metric tensor. Einstein’s field equations for empty space are
obtained from the Lagrange function

L = R, (7.59)
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where R is the Ricci curvature scalar. This gives

δ I =
∫ (

Rμν − 1

2
R gμν

)
δ gμν

√−g d4x . (7.60)

Requiring that δ I = 0 for arbitrary variations of gμν gives the field equations for
empty space

Rμν − 1

2
R gμν = 0. (7.61)

Einstein’s field equations (7.29) for a spacetime filled with energy and matter,
described by an energy–momentum tensor with mixed components T μ

ν , are now
written

Rμ
ν − 1

2
R δμ

ν = κ T μ
ν . (7.62)

According to the Lagrangian formalism the energy–momentum tensor of an
electromagnetic field is given by

μ0T̄ μ
ν = ∂L

∂ Aρ, μ

Aρ, ν − Lδμ
ν , (7.63)

where Aρ are the components of the electromagnetic vector potential, and μ0 is the
permeability of empty space. The electromagnetic field tensor is given in terms of
the electromagnetic vector potential in Eq. (5.263) which is here written in the form

Fμν = Aν, μ − Aμ, ν. (7.64)

The Lagrange function of the electromagnetic field is

L = 1

4
Fμν Fμν. (7.65)

In order to calculate the first term at the right-hand side of Eq. (7.3) this is written
as

L = 1

4
Fμν

(
Aν, μ − Aμ, ν

)
. (7.66)

Due to the antisymmetry of Fμν this can be written as

L = 1

2
Fμν Aν, μ. (7.67)



208 7 Einstein’s Field Equations

Hence

∂L

∂ Aρ, μ

= Fμρ, (7.68)

so

μ0T̄ μ
ν = Fρ μ Aρ, ν − 1

4
Fρσ Fρσ δμ

ν . (7.69)

The covariant components are

μ0T̄μν = Fρ
μ Aρ, ν − 1

4
Fρσ Fρσ gμν. (7.70)

The energy–momentum tensor should be symmetric and divergence free in order
to fit into Einstein’s field equations. But the first term in the expression (7.70) is
not symmetric in μ and ν. The usual procedure for obtaining a symmetric energy–
momentum tensor is the following. Add a term of the form K λμ

ν,λ to the expression
(7.69), where K λμ

ν is antisymmetric in the first two indices. Themathematical expres-
sion of energy–momentum conservation is that the divergence of the energy–momen-
tum tensor vanishes. The divergence of the added term is K λμ

ν, λμ, which is symmetric
in the lower indices λ and μ and antisymmetric in the upper ones. So the summation
over λ and μ makes this term vanish. This means that the tensor

T μ
ν = T̄ μ

ν + K λμ
ν,λ (7.71)

is equally good for describing energy–momentum conservation as T̄ μ
ν .

For electromagnetism we choose

K λμν = Fμλ Aν . (7.72)

Hence

K λμ
ν ,λ = (

Fμλ Aν

)
, λ

= Fμλ
, λ Aν + Fμλ Aν, λ. (7.73)

The component form of Maxwell’s source free equations (5.280) is

Fμλ
, λ = 0, (7.74)

giving

K λμ
ν ,λ = Fμλ Aν, λ. (7.75)

From Eqs. (7.70), (7.71) and (7.75) we get
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μ0Tμν = Fρ
μ

(
Aν, ρ − Aρ, ν

) − 1

4
Fρσ Fρσ gμν. (7.76)

Using Eq. (7.64) we finally get the symmetric energy–momentum tensor of an
electromagnetic field

μ0Tμν = Fρ
μ Fρν − 1

4
Fρσ Fρσ gμν. (7.77)

Example 7.6.1 (The energy–momentum tensor of an electric field in a spherically
symmetric spacetime) We shall consider a spherically symmetric space with a charge
at the centre of the coordinate system. Then there is a static, radial electric field in
this spacetime, and the electromagnetic field tensor has only two non-vanishing
components

F01 = −F10 = 1

c
Er = Q

4πε0cr2
. (7.78)

In the present case the only non-vanishing components of the electromagnetic
energy–momentum tensor (7.77) are

μ0Tμμ = gμ0Fμ1F01 + gμ1Fμ0F10 − 1

2
gμμF01F01, (7.79)

where we have summarized two equal terms in the last term due to the antisymmetry
F01 = −F10.

We use spherical coordinates so the angular components are

gθθ = r2, gφφ = r2 sin2 θ (7.80)

as given in Eq. (3.122). The non-vanishing components of the energy–momentum
tensor are

T00 = 1

μ0

(
g00F01F01 − 1

2
g00F01F01

)
= 1

2μ0
g00F01F01 = Q2

32π2ε0

g00
r4

, (7.81)

T11 = 1

μ0

(
g11F01F01 − 1

2
g11F01F01

)
= 1

2μ0
g11F01F01 = Q2

32π2ε0

g11
r4

, (7.82)

T22 = 1

2μ0
g22F01F01 = 1

2μ0
r2 F01F01 = Q2

32π2ε0

1

r2
. (7.83)

T33 = 1

2μ0
g33F01F01 = 1

2μ0
r2 sin2 θ F01F01 = Q2

32π2ε0

sin2 θ

r2
. (7.84)
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Exercises

7.1. Newtonian approximation of perfect fluid
Let

T αβ = p ηαβ + (
ρ + p/c2

)
uαuβ

be the components of the energy momentum tensor of a perfect fluid in flat
spacetime with Minkowski metric ημν . Here p is the pressure and ρ the mass
density of the fluid, and uα the components of its 4-velocity.

(a) Explainwhy the conservation lawT αβ

;β = 0 in this case reduces toT αβ

,β = 0.
(b) We shall consider the Newtonian limit where p/c2 can be neglected com-

pared to ρ in the second term of T αβ , and the components of the 4-velocity
of the fluid are uα ≈ (c, �v) where �v is the ordinary velocity of a fluid
element. Show that in this case the conservation law (a) implies mass
conservation as represented by the equation of continuity,

∂ρ

∂t
+ ∇ · (ρ �v) = 0,

(c) And momentum conservation as represented by the Euler equation of
motion,

ρ

(
∂�v
∂t

+ (�v · ∇)�v
)

= −∇ p.

7.2. The energy–momentum tensor of LIVE

(a) Show that the energy–momentum tensor of a Lorentz invariant medium
is proportional to the metric tensor.

(b) Show that a Lorentz invariant perfect fluid has equation of state p = −ρc2.
(c) How is the density of Lorentz invariant vacuum energy, LIVE, related to

the cosmological constant?



Chapter 8
Schwarzschild Spacetime

Abstract TheSchwarzschild solution describing spacetime outside a sphericalmass
distribution is deduced. In this deduction we give a detailed prescription of how one
calculates the components of Einstein’s curvature tensor using differential forms
as decomposed in an orthonormal basis. The predictions for the classical tests
of Einstein’s theory—gravitational frequency shift and time dilation, deflection of
light passing the Sun and the perihelion shift of Mercury—are deduced. Finally
the Reissner–Nordström solution describing spacetime outside a charged particle is
deduced.

8.1 Schwarzschild’s Exterior Solution

This is a solution of the vacuum field equations Eμν = 0 for a static spherically
symmetric spacetime. One can then choose the following form of the line element
(employing units so that c = 1):

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2,

dΩ2 = dθ2 + sin2 θdφ2. (8.1)

These coordinates are chosen so that the area of a sphere with radius r is 4πr2.
They are often called “curvature coordinates”.

The physical distance in the radial direction, corresponding to a coordinate
distance dr, is

dlr = √
grrdr = eβ(r)dr. (8.2)

We shall now determine the components of the Einstein tensor by using the Cartan
formalism and give the procedure in eight steps.
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1. We first express the basis forms in orthonormal basis in terms of the coordinate
basis forms,

ω−
t̂ = eα(r)d−t ω−

r̂ = eβ(r)d−r, ω−
θ̂ = rd−θ ω−

φ̂ = r sin θd−φ. (8.3)

2. Then we compute the connection forms by applying Cartan’s 1. structure
equations

dωμ̂ = −Ω
μ̂

ν̂
∧ ω−

v̂. (8.4)

dωt̂ = eαα′d−r ∧ d−t

= eαα′e−βω−
r̂ ∧ e−αω−

t̂

= −e−βα′ω−
t̂ ∧ ω−

r̂

= −Ω−
t̂

r̂
∧ ωr̂ (8.5)

Hence

Ω−
t̂

r̂
= e−βα′ω−

t̂ + f1ω−
r̂ . (8.6)

3. To determine the f-functions, we apply the antisymmetry


μ̂ν̂ = −
ν̂μ̂. (8.7)

This gives the non-zero connection forms


r̂
φ̂

= −

φ̂

r̂ = − 1
r e−βωφ̂,


θ̂

φ̂
= −


φ̂

θ̂
= − 1

r cot θωφ̂,


t̂
r̂ = +
r̂

t̂
= e−βα′ωt̂ ,


r̂
θ̂

= −
θ̂
r̂ = − 1

r e−βωθ̂ .

(8.8)

4. We then proceed to determine the curvature forms by applying Cartan’s 2.
structure equations

R−
μ̂

ν̂
= dΩμ̂

ν̂
+ Ω−

μ̂

α̂
∧ Ω−

α̂

ν̂
, (8.9)

which gives
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R−
t̂

r̂
= −e−2β(α′′ + α′2 − α′β ′)ω−

t̂ ∧ ω−
r̂ ,

R−
t̂

θ̂
= − 1

r e−2βα′ω−
t̂ ∧ ω−

θ̂ ,

R−
t̂

φ̂
= − 1

r e−2βα′ω−
t̂ ∧ ω−

φ̂ ,

R−
r̂

θ̂
= 1

r e−2ββ ′ω−
r̂ ∧ ω−

θ̂ ,

R−
r̂

φ̂
= 1

r e−2ββ ′ω−
r̂ ∧ ω−

φ̂ ,

R−
θ̂

φ̂
= 1

r2 (1 − e−2β)ω−
θ̂ ∧ ω−

φ̂ .

(8.10)

5. By applying the relation

Rμ̂

ν̂
= 1

2
Rμ̂

ν̂α̂β̂
ωα̂ ∧ ωβ̂, (8.11)

we find the components of Riemann’s curvature tensor.
6. Contraction gives the components of Ricci’s curvature tensor,

Rμ̂ν̂ ≡ Rα̂
μ̂α̂ν̂ . (8.12)

7. A new contraction gives Ricci’s curvature scalar,

R ≡ Rμ̂

μ̂
. (8.13)

8. The components of the Einstein tensor can then be found,

Eμ̂ν̂ = Rμ̂ν̂ − 1

2
ημ̂ν̂ R, (8.14)

where ημ̂ν̂ = diag(−1, 1, 1, 1). Hence

Et̂t̂ = 2
r e−2ββ ′ + 1

r2 (1 − e−2β),

Er̂r̂ = 2
r e−2βα′ − 1

r2 (1 − e−2β),

Eθ̂ θ̂ = Eφ̂φ̂ = e−2β
(
α′′ + α′2 − α′β ′ + α′

r − β ′
r

)
.

(8.15)

We want to solve the equations Eμ̂ν̂ = 0. In the present case there are only two
independent equations,

Et̂t̂ = 0 and Er̂r̂ = 0. (8.16)

Adding the two equations we get

2

r
e−2β(β ′ + α′) = 0. (8.17)



214 8 Schwarzschild Spacetime

Integration gives

α + β = K1, (8.18)

where K1 is an integration constant.
We now have

ds2 = −e2αdt2 + e2(K1−α)dr2 + r2d
2. (8.19)

Letting r → ∞ the line element should describe flat spacetime in spherical
coordinates with α = β = 0. This requires that K1 = 0, and hence, that β = −α.

Since we have ds2 = −e2αdt2 +e−2αdr2 +r2d
2, this means that grr = − 1/gtt .

Wemust solve onemore equation to get the complete solution and choose the equation
Et̂t̂ = 0, which gives

2

r
e−2ββ ′ + 1

r2
(1 − e−2β) = 0. (8.20)

This equation can be written as

1

r2
d

dr

[
r
(
1 − e−2β

)] = 0. (8.21)

Integration gives

r(1 − e−2β) = K2. (8.22)

If we choose K2 = 0 we get β = 0 giving α = 0 and

ds2 = −dt2 + dr2 + r2d
2, (8.23)

which is the Minkowski spacetime described in spherical coordinates. In general,
K2 �= 0 and 1 − e−2β = K2

r ≡ K
r , giving

e2α = e−2β = 1 − K

r
, (8.24)

and

ds2 = −
(
1 − K

r

)
dt2 + dr2

1 − K
r

+ r2d
2. (8.25)

We can find K by going to the Newtonian limit and compare with a purely New-
tonian calculation. According to Newton’s theory the acceleration of gravity at a
distance r from a spherical mass M is
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g = d2r

dt2
= −GM

r2
. (8.26)

Let us now calculate the corresponding acceleration in the Newtonian limit of
the general theory of relativity. In this limit the proper time τ of a particle will be
approximately equal to the coordinate time t. The acceleration of a freely falling
particle in 3-space is given by the geodesic equation,

d2xμ

dτ 2
+ 

μ
αβuαuβ = 0. (8.27)

For a particle instantaneously at rest in a weak field, we have dτ ≈ dt . Using
uμ = (1, 0, 0, 0), we get

g = d2r

dt2
= −r

tt . (8.28)

This equation gives a physical interpretation of r
tt as the gravitational accelera-

tion. This is a mathematical way to express the principle of equivalence: The grav-
itational acceleration can be transformed to 0 since the Christoffel symbols always
can be transformed into 0 locally, by going into a freely falling non-rotating frame,
i.e. a local inertial frame. In the Newtonian approximation we have

r
tt = 1

2
grα

︸︷︷︸
1

grα

⎛
⎜⎜⎝

∂gαt

∂t︸︷︷︸
=0

+ ∂gαt

∂t︸︷︷︸
=0

− ∂gtt

∂xα

⎞
⎟⎟⎠ = − 1

2grr

∂gtt

∂r
. (8.29)

Inserting

gtt = −
(
1 − K

r

)
,

∂gtt

∂r
= − K

r2
(8.30)

into Eq. (8.29) and then calculating the acceleration of gravity from Eq. (8.28) we
get

g = −r
tt = − K

2r2
. (8.31)

Comparing with the Newtonian expression for the acceleration of gravity,
Eq. (8.26), and inserting the velocity of light, then lead to

K = 2GM

c2
. (8.32)

Then we have the line element of the exterior Schwarzschild metric,
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ds2 = −
(
1 − 2GM

c2r

)
c2dt2 + dr2

1 − 2GM
c2r

+ r2d
2. (8.33)

We now introduce the Schwarzschild radius of a mass M,

RS ≡ 2GM

c2
. (8.34)

Hence, the line element of the exterior Schwarzschild spacetime as expressed in
curvature coordinates, takes the form

ds2 = −
(
1 − RS

r

)
c2dt2 + dr2

1 − RS
r

+ r2d
2. (8.35)

The Schwarzschild radius of the Earth is RS ∼ 0.9 cm and of the Sun, RS ∼ 3 km.
Far froma localizedmass distribution the gravitational field isweak.Thedefinition

is that in a region where r � RS , there is a weak gravitational field.
A standard clock at rest in the Schwarzschild spacetime shows a proper time τ :

dτ =
√
1 − RS

r
dt. (8.36)

It follows from the time independence of the metric that the coordinate clocks
are adjusted to go at the same rate independent of their position. Hence Eq. (8.36)
shows that the rate of proper time is slower for decreasing value of r, i.e. farther
down in the gravitational field. Time is not running at the Schwarzschild radius.

Definition 8.1.1 (Physical singularity) A physical singularity is a point where the
curvature is infinitely large.

Definition 8.1.2 (Coordinate singularity) A coordinate singularity is a point (or a
surface) where at least one of the components of the metric tensor is infinitely large,
but where the curvature of spacetime is finite.

The Kretschmann’s curvature scalar is Rμναβ Rμναβ . From the Schwarzschild
metric, we get

Rμναβ Rμναβ = 12
R2

S

r6
, (8.37)

which diverges only at the origin. Since there is no physical singularity at r = RS ,
the singularity here is just a coordinate singularity and can be removed by a transfor-
mation to a coordinate system falling inwards (Eddington–Finkelstein coordinates,
Kruskal–Szekeres analytical extension of the description of Schwarzschild spacetime
to include the region inside RS).
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8.2 Radial Free Fall in Schwarzschild Spacetime

The Lagrangian function of a particle moving radially in Schwarzschild spacetime
is

L = −1

2

(
1 − RS

r

)
c2 ṫ2 + 1

2

ṙ2(
1 − RS

r

) , • ≡ d

dτ
, (8.38)

where τ is the time measured on a standard clock which the particle is carrying. The
momentum pt conjugate to the cyclic coordinate t is a constant of motion,

pt = ∂L

∂ ṫ
= −

(
1 − RS

r

)
c2 ṫ . (8.39)

The 4-velocity identity, uμuμ = −c2, takes the form

−
(
1 − RS

r

)
c2 ṫ2 + ṙ2

1 − RS
r

= −c2. (8.40)

Inserting the expression for ṫ from Eq. (8.39) gives

ṙ2 − p2
t

c2
= −

(
1 − RS

r

)
c2. (8.41)

The boundary condition is that the particle is falling from rest at r = r0, giving

p2
t

c2
=

(
1 − RS

r0

)
c2. (8.42)

Inserting this into Eq. (8.41) gives

ṙ = dr

dτ
= −

√
p2

t

c2
−

(
1 − RS

r

)
c2 = −√

RS

√
1

r
− 1

r0
. (8.43)

With the initial condition τ(r0) = 0 we have

r∫

r0

√
r

r0 − r
dr = −c

√
RS

r0
τ. (8.44)

Performing the integration gives
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τ = r3/20

c
√

RS

[
π

2
+

√
r

r0

(
1 − r

r0

)
− arcsin

√
r

r0

]
. (8.45)

The proper time that a particle spends falling from r0 to RS is

τ = r3/20

c
√

RS

[
π

2
+

√
RS

r0

(
1 − RS

r0

)
− arcsin

√
RS

r0

]
, (8.46)

which is finite. Assuming that r0 � RS and calculating to 1. order in RS/r0 we
obtain

τ(RS) ≈ π

2

r0
c

√
r0
RS

. (8.47)

Let us calculate the corresponding travelling time as measured by a stationary
observer. From Eqs. (7.39) and (7.42) we have

dt =
√
1 − RS

r0

1 − RS
r

dτ. (8.48)

From (8.43) we have

dτ = −
√

r0 r

RS(r0 − r)
dr. (8.49)

Hence the time taken by the particle to fall down to the Schwarzschild radius, as
measured by the stationary observer, is

t(RS) =
√

1

RS
− 1

r0

r0∫

RS

r3/2

(r − RS)
√

r0 − r
dr , (8.50)

which diverges. Hence it takes an infinitely long coordinate time to fall down to the
Schwarzschild radius. But the proper time of the falling object is finite.

8.3 Light Cones in Schwarzschild Spacetime

The Schwarzschild line element (with c = 1) is

ds2 = −
(
1 − RS

r

)
dt2 + dr2(

1 − RS
r

) + r2d
2. (8.51)
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We will look at radially moving photons. Then ds2 = d
2 = 0, giving

r
1
2 dr√

r − RS
= ±

√
r − RS

r
1
2

dt, (8.52)

or
rdr

r − RS
= ±dt (8.53)

with + for outward motion and − for inward motion. For inwardly moving photons,
integration yields

r + t + RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣ = k = constant. (8.54)

We now introduce a new time coordinate t ′ such that the equation of motion for
photons moving inwards takes the form

r + t ′ = k. (8.55)

Hence in this coordinate system the coordinate velocity of light is equal to the
invariant velocity of light,

dr

dt ′ = −1. (8.56)

It follows from Eqs. (8.54) and (8.55) that

t ′ = t + RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣. (8.57)

The coordinate t ′ is called an ingoing Eddington–Finkelstein coordinate. For
photons moving outwards we have

r + RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣ = t + k. (8.58)

Substituting for t from Eq. (8.57) we get

r + 2RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣ = t ′ + k. (8.59)

Differentiating we find the coordinate velocity of outgoing light in this coordinate
system,
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dr

dt ′ = r − RS

r + RS
. (8.60)

Making use of curvature coordinates we get the following coordinate velocities
for inwardly and outwardly moving photons,

vL = dr

dt
= ±

(
1 − RS

r

)
, (8.61)

which showshow light is decelerated in a gravitational field. Figure 8.1 illustrates how
this is viewed by a non-moving observer located far away from the mass. In Fig. 8.2
we have instead used the time coordinate t ′ of the ingoing Eddington–Finkelstein
coordinate system.

Note that since the special theory of relativity is valid locally, all material particles
have world lines inside the light cone formed by the light they emit. From the shape
of the light cone inside r = RS we see that nothing emitted from a position inside
the spherical surface r = RS can escape from this region. An observer outside this
surface cannot see anything from the inside region. Hence this surface is a horizon
for an external observer.

Fig. 8.1 Light cones in Schwarzschild spacetime with Schwarzschild time. At a radius r = RS the
light cones collapse, and nothing can any longer escape, when we use the Schwarzschild coordinate
time
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Fig. 8.2 Light cones in Schwarzschild spacetime with Eddington-Finkelstein time. Using the ingo-
ing Eddington–Finkelstein time coordinate there is no collapse of the light cone at r = RS . Instead
we get a collapse at the singularity at r = 0. The angle between the left part of the light cone and the
t ′-axis is always 45◦. We also see that once the emitter gets inside the horizon at r = RS , nothing
can escape

The region inside the horizon is called ablack hole since it is invisible because radi-
ation cannot comeout of this region according to classical (non-quantummechanical)
general relativity. A time-reversed black hole is called a white hole.

Let us compare the coordinate velocity with curvature coordinates of a parti-
cle falling vertically with the velocity of light moving vertically. It follows from
Eqs. (8.48) and (8.49) that a particle falling from rest at r = r0 has a coordinate
velocity

v = dr

dt
= ṙ

ṫ
= −

(
1 − RS

r

)√
RS(r0 − r)

(r0 − RS)r
. (8.62)

Comparing with the coordinate velocity of light as given in Eq. (8.61) we see that

v =
√

RS(r0 − r)

(r0 − RS)r
vL . (8.63)
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The coordinate velocity of a particle falling from rest at an infinitely far position
is

lim
r→∞ v = vL

√
RS

r
. (8.64)

Both Eqs. (8.63) and (8.64) give v(RS) = vL . Hence, a particle falling freely from
any distance moves with the velocity of light through the horizon of a black hole.

8.4 Analytical Extension of the Curvature Coordinates

The curvature coordinates are co-moving with a static reference frame outside a
spherical mass distribution. If the mass has collapsed to a black hole, there exists a
horizon at the Schwarzschild radius. As we have seen in Sect. 8.3 there do not exist
static observers at finite radii inside the horizon. Hence, the curvature coordinates
are well defined only outside the horizon.

Also the rr-component of the metric tensor has a coordinate singularity at the
Schwarzschild radius. The curvature of spacetime is finite here. Kruskal and Szekeres
have introduced new coordinates that are well defined inside as well as outside the
Schwarzschild radius, and with the property that the metric tensor is non-singular
for all r > 0.

In order to arrive at these coordinates we start by considering a photon moving
radially inwards. From Eq. (8.54) we then have

t = −r − RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣ + v, (8.65)

where v is a constant along the world line of the photon. We introduce a new radial
coordinate

r∗ ≡ r + RS ln

∣∣∣∣
r

RS
− 1

∣∣∣∣. (8.66)

Then the equation of the world line of the photon takes the form

t + r∗ = v. (8.67)

The value of the constant v does only depend upon the point of time when the
photon was emitted. We may therefore use v as a new time coordinate.

For an outgoing photon we get in the same way

t − r∗ = u, (8.68)
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where u is a constant of integration, which may be used as a new time coordinate for
outgoing photons. The coordinates u and v are the generalization of the light cone
coordinates of Minkowski spacetime to the Schwarzchild spacetime.

From Eqs. (8.67) and (8.68) we get

dt = 1

2
(dv + du), (8.69)

dr∗ = 1

2
(dv − du), (8.70)

and from Eq. (8.66),

dr =
(
1 − Rs

r

)
dr∗. (8.71)

Inserting these differentials into Eq. (8.51) we arrive at a new form of the
Schwarzschild line element,

ds2 = −
(
1 − Rs

r

)
du dv + r2d
2. (8.72)

The metric is still not well behaved at the horizon. Kruskal and Szekeres found
coordinates that are well behaved at the horizon.

Introducing the coordinates

U = −e− u
2Rs , (8.73)

V = e
v

2Rs , (8.74)

gives

U V = −e
v−u
2Rs = −e

r∗
Rs = −

∣∣∣∣
Rs

r
− 1

∣∣∣∣e
r

Rs (8.75)

and

du dv = −4R2
s

dUdV

U V
. (8.76)

The line element (8.72) then takes the form

ds2 = −4R 3
s

r
e− r

Rs dUdV + r2d
2. (8.77)
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This is the first form of the Kruskal–Szekeres line element. Here there is no
coordinate singularity, only a physical singularity at r = 0.

We may furthermore introduce two new coordinates:

T = 1

2
(V + U ) =

∣∣∣∣
r

Rs
− 1

∣∣∣∣
1
2

e
r

2Rs sinh
t

2Rs
, (8.78)

Z = 1

2
(V − U ) =

∣∣∣∣
r

Rs
− 1

∣∣∣∣
1
2

e
r

2Rs cosh
t

2Rs
. (8.79)

Hence

V = T + Z , (8.80)

U = T − Z , (8.81)

giving

dUdV = dT 2 − dZ2. (8.82)

Inserting this into Eq. (8.72) we arrive at the second form of the Kruskal–Szekeres
line element

ds2 = −4R 3
s

r
e− r

Rs
(
dT 2 − dZ2

) + r2d
2. (8.83)

The inverse transformations of Eqs. (8.74) and (8.75) are

∣∣∣∣
r

Rs
− 1

∣∣∣∣e
r

Rs = Z2 − T 2, (8.84)

tanh
t

2Rs
= T

Z
. (8.85)

Note from Eq. (8.83) that with the Kruskal–Szekeres coordinates T and Z the
equation of the radial null geodesics has the same form as in flat spacetime:

Z = ±T + constant. (8.86)
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8.5 Embedding of the Schwarzschild Metric

We will now look at a static, spherically symmetric space. A simultaneity surface
dt = 0 through the equatorial plane, dθ = 0, has the line element

ds2 = grrdr2 + r2dφ2 (8.87)

with a radial coordinate such that a circle with radius r has a circumference of length
2πr .

Now we embed this surface in a flat three-dimensional space with cylinder
coordinates (z, r, φ) and line element

ds2 = dz2 + dr2 + r2dφ2. (8.88)

The surface described by the line element in Eq. (8.87) has the equation z = z(r).
The line element in (8.88) can therefore be written as

ds2 =
[
1 +

(
dz

dr

)2
]
dr2 + r2dφ2. (8.89)

Demanding that (8.89) is in agreement with (8.87) we get

grr = 1 +
(
dz

dr

)2

, (8.90)

or

dz

dr
= ±√

grr − 1. (8.91)

Choosing the positive solution gives

dz = √
grr − 1dr. (8.92)

In the Schwarzschild spacetime we have

grr = 1

1 − RS
r

. (8.93)

Making use of this we find the equation of the intersection of the simultaneity
surface dt = 0 through the equatorial plane, dθ = 0, and the paper plane,

z =
∫ r

RS

dr√
r

RS
− 1

= √
4RS(r − RS). (8.94)
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Fig. 8.3 Embedding of the
extended Schwarzschild
spacetime. It represents a
worm-hole connecting a
black and a white hole

Rotating this about the symmetry axis and including negative values of z give the
surface shown in Fig. 8.3, which consists of two so-called Flamm paraboloids glued
together at the Schwarzschild radius.

8.6 The Shapiro Experiment

The radial speed of light in curvature coordinates as measured by an observer far
from a mass distribution, say the Sun, is given in Eq. (8.61). The formula shows that
the speed of light slows down farther down in a gravitational field.

To measure this effect, one can look at how long it takes for light to get from, for
example, Mercury (Shapiro used Venus in the first experiment in 1967) to the Earth
[1]. This is illustrated in Fig. 8.4.

The travel time from z1 to z2 is

�t =
∫ z2

z1

dz

1 − RS
r

≈
∫ z2

z1

(
1 + RS

r

)
dz =

∫ z2

z1

(
1 + RS√

b2 + z2

)
dz

= z2 + |z1| + RS ln

√
z22 + b2 + z2√

z21 + b2 − |z1|
, (8.95)
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Fig. 8.4 The Shapiro
experiment. General
relativity predicts that light
travelling from Mercury to
the Earth will be delayed due
to the effect of the Sun’s
gravity field on the speed of
light. This effect has been
measured by Shapiro et al.
[1] and is therefore called the
Shapiro effect

where RS is the Schwarzschild radius of the Sun.
The deceleration is greatest when Earth andMercury (where the light is reflected)

are on nearly opposite sides of the Sun. The impact parameter b is then small. A
series expansion to the lowest order of b

/
z gives

�t = z2 + |z1| + RS ln
4|z1|z2

b2
. (8.96)

The last term represents the extra travelling time due to the effect of the Sun’s
gravity field on the speed of light. The main effect is slowing down of the velocity
of light farther down in the gravitational field of the Sun. (Also the path is a little
longer because of the bending due to gravity, but the delay due to this is smaller
than the velocity effect and has been neglected in the calculation). Let us insert the
magnitudes of the quantities in Eq. (8.96) and calculate the magnitude of the Shapiro
effect.

RS = the Schwarzschild radius of the Sun = ∼ 3 km
|z1| = the radius of Earth’s orbit = 15 × 1010 m
z2 = the radius of Mercury’s orbit = 5.8 × 1010 m
b = R� = 7 × 108m

give a delay of 1.1 × 10−4s. In addition to this one must also take into account the
effect of the Earth‘s atmosphere upon the travelling time of the light.
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8.7 Particle Trajectories in Schwarzschild 3-Space

The Lagrange function of a free particle in the Schwarzschild spacetime is

L = 1

2
gμν Ẋμ Ẋ ν

= −1

2

(
1 − Rs

r

)
ṫ2 +

1
2 ṙ2

1 − Rs
r

+ 1

2
r2θ̇2 + 1

2
r2 sin2 θφ̇2. (8.97)

Since t is a cyclic coordinate

−pt = −∂L

∂ ṫ
=

(
1 − Rs

r

)
ṫ = constant = E, (8.98)

where E is the particle’s energy per unit rest mass as measured by an observer “far
away” (r � Rs). Also φ is a cyclic coordinate so that

pφ = ∂L

∂φ̇
= r2 sin2 θ φ̇ = constant, (8.99)

where pφ is the particle’s orbital angular momentum per unit rest mass, with units
so that c = 1 the angular velocity φ̇ has dimension length−1, and pφ has dimension
length.

In the present case the 4-velocity identity
−→
U 2 = gμν Ẋμ Ẋ ν = −1 takes the form

−
(
1 − Rs

r

)
ṫ2 + ṙ2

1 − Rs
r

+ r2θ̇2 + r2 sin2 θφ̇2 = −1, (8.100)

which on substitution for ṫ = E
1− Rs

r

and φ̇ = pφ

r2 sin2 θ
becomes

− E2

1 − Rs
r

+ ṙ2

1 − Rs
r

+ r2θ̇2 + p2
φ

r2 sin2 θ
= −1. (8.101)

Now, referring back to the Lagrange equation

d

dτ

(
∂L

∂ Ẋμ

)
− ∂L

∂ Xμ
= 0 (8.102)

we get

(r2θ̇ )· = r2 sin θ cos θφ̇2 = p2
φ cos θ

r2 sin3 θ
. (8.103)
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Multiplying this by r2θ̇ leads to

(r2θ̇ )(r2θ̇ )· = cos θ θ̇

sin3 θ
p2

φ, (8.104)

which, on integration, gives

(r2θ̇ )2 = k −
( pφ

sin θ

)2
, (8.105)

where k is the constant of integration.
Because of the spherical geometry we are free to choose a coordinate system such

that the particle moves in the equatorial plane and along the equator at a given time
t = 0. That is θ = π/2 and θ̇ = 0 at time t = 0. This determines the constant of
integration, giving k = p2

φ such that

(r2θ̇ )2 = p2
φ

(
1 − 1

sin2 θ

)
. (8.106)

The right-hand side is negative for all θ �= π/2. It follows that the particle cannot
deviate from its original (equatorial) trajectory. Also, since this particular choice of
trajectory was arbitrary, we can conclude, quite generally, that any motion of free
particles in a spherically symmetric gravitational field is planar.

8.7.1 Motion in the Equatorial Plane

We now consider motion in the equatorial plane. With θ = π/2 Eq. (8.101) reduces
to

− E2

1 − RS
r

+ ṙ2

1 − RS
r

+ p2
φ

r2
= −1, (8.107)

that is

ṙ2 = E2 −
(
1 − RS

r

)(
1 + p2

φ

r2

)
, (8.108)

or

ṙ2 = E2 − 1 + RS

r
− p2

φ

r2
+ RS p2

φ

r3
. (8.109)
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A particle falling from rest infinitely far from the mass distribution, ṙ(∞) = 0,
has E = 1, i.e. its energy at the starting point is equal to it rest mass (when the units
are chosen so that c = 1). Hence the energy equation takes the form

1

2
ṙ2 + VR = 0 (8.110)

with a relativistic effective potential

VR = −GM

r
+ p2

φ

2r2
− GMp2

φ

r3
, (8.111)

where we have used that RS = 2 GM. Note that the Newtonian “mechanical energy”
of a free particle falling from rest at the zero level of the effective potential vanishes,
since the rest mass energy is not included in this energy. It is, however, included in
the total relativistic energy E.

The Newtonian potential VN is

VN = −GM

r
+ p2

φ

2r2
. (8.112)

Hence the last term in Eq. (8.111) is a relativistic effect. The potential (8.112) is
plotted in Fig. 8.5.

The Newtonian potential has a centrifugal barrier preventing a particle with pφ �=
0 to arrive at the origin, r = 0.

The relativistic potential (8.111) is compared to the Newtonian potential in
Fig. 8.6.

The centrifugal barrier is not infinitely high according to the theory of relativity
as it is in Newton’s theory. This means that relativistic gravity is stronger than
Newtonian gravity. The reason is that the increase of the moving particle’s kinetic
energy gives it a larger mass, and hence, increases the gravity.

Fig. 8.5 Newtonian
centrifugal barrier.
Newtonian potential as
function of the radius. Note
the centrifugal barrier. Due
to this, particles with pφ �= 0
cannot arrive at r = 0
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Fig. 8.6 Relativistic
gravitational potential
outside a spherical body. VR
and VN plotted as a function
of r. When relativistic effects
are included, there is no
longer an infinitely high
potential barrier, and a
particle with pφ �= 0 can fall
down to r = 0

An orbit equation is one which connects r and φ. For motion in the equatorial
plane for weak fields we have

dφ

dt
= pφ

mr2
, • ≡ d

dt
= pφ

mr2
d

dφ
. (8.113)

Introducing the new radial coordinate u ≡ 1/r we get

du

dφ
= − 1

r2
dr

dφ
= − 1

r2
mr2

pφ

dr

dt
= − m

pφ

ṙ . (8.114)

Hence,

ṙ = − pφ

m

du

dφ
. (8.115)

Substitution fromEq. (8.115) for ṙ in the energy equation yields the orbit equation

(
du

dφ

)2

+ (1 − 2GMu)

(
u2 + 1

p2
φ

)
= E2

p2
φ

. (8.116)

Differentiating this, we find

d2u

dφ2
+ u = GM

p2
φ

+ 3GMu2 = RS

2p2
φ

+ 3

2
RSu2. (8.117)

The last term on the right-hand side is a relativistic correction term.
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8.8 Classical Tests of Einstein’s General Theory
of Relativity

8.8.1 The Hafele–Keating Experiment

In 1971 Hafele and Keating measured the difference in time shown on moving and
stationary atomic clocks at different height in a gravitational field [2]. This was
performed by flying around the Earth in the East–West direction, comparing the time
on the clock in the plane with the time on a clock on the ground.

The proper time interval measured on a clock moving with a velocity vi = dxi/dt
in an arbitrary coordinate system with metric tensor gμν is

dτ =
(
−gμν

c2
dxμdxν

) 1
2 =

(
−g00 − 2gi0

vi

c
− v2

c2

) 1
2

dt, v2 = gi j v
i v j . (8.118)

For a diagonal metric tensor, gi0 = 0, we get

dτ =
(

−g00 − v2

c2

) 1
2

dt, v2 = gii (v
i )2. (8.119)

We now look at an idealized situation where a plane flies at constant altitude h
and with constant speed along the equator,

dτ =
(
1 − RS

r
− v2

c2

) 1
2

dt, r = R + h. (8.120)

where R is the radius of the Earth. To lowest order in RS/r and v2/c2, we get

dτ =
(
1 − RS

2r
− 1

2

v2

c2

)
dt. (8.121)

The speed of the moving clock is

v = (R + h)
 + u, (8.122)

where 
 is the angular velocity of the Earth and u is the speed of the plane. A series
expansion and use of the expression (8.122) for v give

�τ =
(
1 − GM

Rc2
− 1

2

R2
2

c2
+ gh

c2
− 2R
u + u2

2c2

)
�t, g = GM

R2
− R
2.

(8.123)

u > 0 when flying in the direction of the Earth’s rotation, i.e. eastwards.
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Let us find the velocity of a clock with maximal rate of ageing. Differentiating
�τ with respect to u gives

d�τ

du
= − R
 + u

c2
�t. (8.124)

Putting the derivative equal to zero shows that the maximal rate of ageing happens
for a clockmoving along the equator on theEarthwith a velocity u = −R
. Thismay
be understood as a consequence of the fact that this clock is at rest in a non-rotating
reference frame.

For the clock that was left on the airport (stationary, h = u = 0) we get

�τ0 =
(
1 − GM

Rc2
− 1

2

R2
2

c2

)
�t. (8.125)

To lowest order, the relative difference in travel time is

k = �τ − �τ0

�τ0

∼= gh

c2
− 2R
u + u2

2c2
. (8.126)

Inserting approximate values,
g = 10 m/s2, h = 10 km, R = 6400 km, 
 = 7.27 × 10−5rad/s, u =

±250 m/s gives a

Travel time: �τ0 = 1.2 × 105s (a little over 24 h);
For travelling eastwards: ke = −1.0 × 10−12;
For travelling westwards: kw = 2.1 × 10−12.

Hence, (�τ − �τ0)e = −1.2 × 10−7s ≈ −120 ns and (�τ − �τ0)w = 2.5 ×
10−7s ≈ 250 ns.

These relativistic predictions were verified with about 15% accuracy in the
experiment.

8.8.2 Mercury’s Perihelion Precession

We shall now calculate Mercury’s perihelion shift. The point of departure is the orbit
Eq. (8.117). This will here be slightly generalized to

d2u

dφ2
+ u = RS

2p2
φ

+ ku2, (8.127)

where k is a theory-dependent or situation-dependent constant. The general theory
of relativity gives k = (3/2)RS , and Newton’s theory of gravitation gives k = 0.
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Here pφ = r2dφ/dτ . For light dτ → 0 and pφ → ∞. Hence the orbit equation
for light reduces to

d2u

dφ2
+ u = ku2. (8.128)

The orbit equation for a material particle has a circular solution with an inverse
radius fulfilling

u0 = RS

2p2
φ

+ ku2
0. (8.129)

The corresponding Newtonian radius is

u0N = RS

2p2
φ

. (8.130)

We shall now apply the procedure used in stability analysis to calculate the per-
ihelion precession of Mercury. The equilibrium solution will be perturbed, and the
equation of motion of the perturbation is calculated to 1. order in the perturbation.
This equation will tell whether the equilibrium solution is stable or not.

Hence, the circular motion is perturbed so that u = u0 + u1 with u1 � u0. To 1.
order in u1, we have

d2u1

dφ2
+ u0 + u1 = RS

2p2
φ

+ ku2
0 + 2ku0u1. (8.131)

Using the equation for the circular solution we get the equation of motion for the
perturbation

d2u1

dφ2
+ (1 − 2ku0)u1 = 0. (8.132)

If 1−ku0 > 0, this is the equation of harmonic oscillations, and the circularmotion
is stable. If 1 − ku0 < 0, the solution of the equation is exponential functions, and
the equilibrium solution is unstable. In the present case we assume that k is so small
that the solution is stable. In this case, and with the initial condition u1(0) = eu0,
where e is an integration constant, the solution of this equation can be written

u1 = u0e cos( f φ), f = √
1 − 2ku0. (8.133)

The constant e is called the eccentricity of the orbit and tells how elongated it is.
Using that
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u = u0 + u1 = u0[1 + e cos( f φ)], (8.134)

we have

r = r0
1 + e cos( f φ)

. (8.135)

In theNewtonian casewith k = 0we get f = 1, and then this expression describes
a (non-precessing) ellipse. However in the relativistic case k > 0 and f < 1. Then
φ has to increase by 2π/ f > 2π in order that r shall return to the initial value. The
precession angle per orbit is

�φ = 2π

(
1

f
− 1

)
= 2π

(
1√

1 − 2ku0
− 1

)
≈ 2πku0. (8.136)

Inserting the Newtonian value of u0 we have

�φ = πk RS

p2
φ

. (8.137)

On the other hand, the general relativistic value k = (3/2)RS leads to

�φ = 3

2
π

(
RS

pφ

)2

. (8.138)

The angular momentum per unit mass can be expressed in terms of the period by
means of Kepler’s 2. law. This law says that the planet has a constant areal velocity,
dA/dt , where dA is the area swept out by the radius vector from the Sun to the planet
during a time dt . In a small time dt the planet sweeps out a small triangle with base
line r and height r dφ and area dA = (1/2)r2 dφ, and so the constant areal velocity
is

dA

dt
= 1

2
r2

dφ

dt
. (8.139)

The area enclosed by the elliptical orbit is πab where a and b are the semi major
and semi minor axes of the ellipse. Hence integrating over one period, T, we get

1

2
r2

dφ

dt
T = 1

2
pφT = πab = πa2

√
1 − e2. (8.140)

Hence the angular per unit mass can be written

pφ = 2πa2
√
1 − e2

T
. (8.141)
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Inserting this in the general formula for the precession angle per orbit gives

�φ = RST 2k

4πa4
(
1 − e2

) . (8.142)

According to Kepler’s 3. law the square of the period is proportional to the cube
of the semi major axis,

T 2 = 4π2a3

G
(
MSun + mMercury

) ≈ 4π2a3

GM
= 8π2a3

RS
. (8.143)

Inserting this into Eq. (8.142) gives

�φ = 2πk

a
(
1 − e2

) . (8.144)

Finally, substituting the general relativistic value of k leads to

�φ = 3π RS

a
(
1 − e2

) . (8.145)

Inserting the Schwarzschild radius of the Sun, RS = 3 km, the semi major axis
of Mercury’s orbit, a = 5.8 × 107 km and the eccentricity e = 0.2, and using that
the period of Mercury’s orbital motion is 88 days, give a precession angle 43 arc
seconds per hundred years.

This solved an old problem, namely that observations showed that Mercury’s
elliptical orbit precesses by 575 arc seconds per hundred years, while only 532 arc
seconds per hundred years could be accounted for by gravitational forces from the
other planets in the solar system. So there was a discrepancy of 43 arc seconds per
hundred years between observations and the Newtonian prediction.

8.8.3 Deflection of Light

The orbit Eq. (8.128) for light, i.e. for a free particle with mass m = 0, reduces to

d2u

dφ2
+ u = ku2. (8.146)

If light is not deflected, it will follow the straight line

cosφ0 = b

r0
= bu0, (8.147)
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Fig. 8.7 Deflection of light. Light travelling close to a massive object is deflected

where b is the impact parameter of the path. This represents the horizontal dashed
line in Fig. 8.7. The zeroth order solution (8.147) fulfils

d2u0

dφ2
+ u0 = 0. (8.148)

Hence it is a solution of (8.146) with k = 0.
The perturbed solution is

u = u0 + u1, |u1| � u0. (8.149)

Inserting this into the orbit equation gives

d2u0

dφ2
+ d2u1

dφ2
+ u0 + u1 = ku2

0 + 2ku0u1 + ku2
1. (8.150)

The first and third terms at the left-hand side cancel each other due to Eq. (8.148),
and the last term at the right-hand side is small to second order in u1 and will be
neglected. Hence we get

d2u1

dφ2
+ u1 = ku2

0 + 2ku0u1. (8.151)

The last term at the right-hand side is much smaller than the first and will also be
neglected. Inserting for u0 from (8.147) we then get

d2u1

dφ2
+ u1 = k

b2
cos2 φ. (8.152)

This equation has a particular solution of the form
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u1p = A + B cos2 φ. (8.153)

Inserting this into (8.152) we find

A = 2k

3b2
, B = − k

3b2
. (8.154)

Hence

u1p = k

3b2

(
2 − cos2 φ

)
(8.155)

giving

1

r
= u = u0 + u1 = cosφ

b
+ k

3b2

(
2 − cos2 φ

)
. (8.156)

The deflection of the light�θ is assumed to be small.We therefore putφ = π
2 + �θ

2
where �θ � π (see Fig. 8.7). Hence

cosφ = cos

(
π

2
+ �θ

2

)
= − sin

�θ

2
≈ −�θ

2
. (8.157)

Thus, the term cos2 φ in (8.155) can be neglected. Furthermore, the deflection of
the light is found by letting r → ∞, i.e. u → 0. Then we get

�θ = 4k

3b
. (8.158)

For motion in the Schwarzschild spacetime outside the Sun, k = (3/2)RS where
RS is the Schwarzschild radius of the Sun, and for light passing the surface of the
Sun b = R�, where R� is the actual radius of the Sun. The deflection is then

�θ = 2
RS

R�
= 1.75′′. (8.159)

This general relativistic predictionwas verified in twoBritish expeditions utilizing
a solar eclipse in 1919.

8.9 The Reissner–Nordström Spacetime

Weshall now solveEinstein’s field equations for a static spherically symmetric space-
time with a radial electric field outside a body with mass M and charge Q. According
to Eqs. (7.81)–(7.84) the non-vanishing components of the energy–momentum tensor
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in an orthonormal basis are

Tt̂t̂ = Tθ̂ θ̂ = Tφ̂φ̂ = Q2

32π2ε0

1

r4
, Tr̂r̂ = − Q2

32π2ε0

1

r4
. (8.160)

From Eq. (8.15) we get by adding the t̂ t̂− and r̂ r̂−field equations and integrating

α(r) = −β(r). (8.161)

Inserting this into the t̂ t̂ field equation we get

1

r2
[
r
(
1 − e− 2β

)]′ = R2
Q

r4
, R2

Q = G Q2

4πε0c4
. (8.162)

Integrating this equation and determining the integration constant by the require-
ment that the solution shall reduce to the Schwarzschildmetricwith vanishing charge,
we obtain

e−β = 1 − RS

r
+ R2

Q

r2
, RS = 2GM

c2
. (8.163)

Hence, the line element of the spacetime outside a massive changed body takes
the form

ds2 = −
(
1 − RS

r
+ R2

Q

r2

)
c2dt2 + dr2

1 − RS
r + R2

Q

r2

+ r2d
2. (8.164)

This is the Reissner–Nordström solution. There are two coordinate singularities
at

r± = RS

2
±

√(
RS

2

)2

− R2
Q . (8.165)

The exterior singularity is a horizon for an observer outside the mass and charge
distribution.

The maximum allowed charge of the body is given by RQ = RS/2 which leads
to

Qmax = 2
√

πε0GM. (8.166)

One may note that the “Reissner–Nordström length” as given in Eq. (8.162),
corresponding to the elementary charge, is
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Re = e

2c2

√
G

πε0
. (8.167)

Inserting the values of the constants gives Re = 1.38 × 10−35 m, which is a little
smaller than the Planck length.

Exercises

8.1. Non-relativistic Kepler motion

In the first part of this exercisewewill consider the gravitational potential at a distance
r from the Sun, V (r) = −GM/r , where M is the mass of the Sun.

(a) Write down the classical Lagrangian in spherical coordinates (r, θ, φ) for a
planet with mass m moving in this field. The Sun is assumed to be stationary.

What is the physical interpretation of the canonical momenta pφ = �?
How is it possible, by just looking at the Lagrangian, to state that pφ is a

constant of motion?
Find the Euler equation for ϑ and show that it can be written into the form

d

dt

(
mr4θ̇2 + �2

m sin2 θ

)
= 0. (8.168)

Based on the above equation, show that the planet moves in a plane by
choosing a direction of the z-axis so that at a given time, t = 0, we have that
θ = π/2 and θ̇ = 0.

(b) Write down the Euler equation for r and use this equation to find u = 1/r as a
function of φ. Show that the orbits that describe bound states are elliptic. Find
the period T 0 for a circular orbit in terms of the radius R of the circle.

(c) If the Sun is not entirely spherical, but rather a little deformed (i.e. more flat
near the poles), the gravitational field in the plane where the Sun has its greatest
extension will be modified into

V (r) = −GM

r
− S

r3
, (8.169)

where S is a small constant. We now assume that the motion of the planet takes
place in the plane where the expression of is V (r) valid. Show that a circular
motion is still possible. What is the period T now, expressed by the radius R?

We now assume that the motion deviates slightly from a pure circular orbit, that
is u = 1

R + u1, where u1 � 1
R . Show that u1 varies periodically around the orbit,

u1 = k sin( f φ). (8.170)
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(d) Find f and show that the path rotates in space. What is the size of the angle �φ

that the planetary orbit rotates per round trip?

The constant S can be written as S = 1
2 J2GMR2

Sun where J2 is a parameter
describing the quadrupole moment and RSun is the radius of the Sun. Observational
data indicate that J2�3 · 10−5. Calculate how large the rotation �φ of the orbit of
Mercury this can cause. Is this sufficient to explain the discrepancy between the
observed perihelion motion of Mercury and that predicted by Newtonian theory?

8.2. The Schwarzschild solution in isotropic coordinates

(a) We introduce a new radial coordinate ρ so that the Schwarzschild metric (with
units so that c = 1),

ds2 = −
(
1 − RS

r

)
dt2 +

(
1 − RS

r

)−1

dr2 + r2d
2, (8.171)

gets the following form

ds2 = −
(
1 − RR

r(ρ)

)
dt2 + f 2(ρ)(dρ2 + ρ2d
2), (8.172)

where d
2 = dθ2 + sin2 θdφ2. Find the functions r(ρ) and f (ρ), and write down
the explicit expression of the line element with ρ as the radial coordinate.

(b) What is the value of ρ at the Schwarzschild horizon r = RS and at the origin,
r = 0? The Schwarzschild coordinates t and r interchange their roles as r < RS .
What is the behaviour of ρ inside the horizon?

8.3. Proper radial distance in the external Schwarzschild space

Calculate the proper radial distance from a coordinate position r to the horizon RS

in the external Schwarzschild space.

8.4. The Schwarzschild–de Sitter metric

The Einstein equations for empty space with a cosmological constant Λ are

Rμν − 1

2
Rgμν + �gμν = 0. (8.173)

(a) Use curvature coordinates and solve the Einstein field equations with a cos-
mological constant for a static spacetime with a spherically symmetric 3-space
outside a spherical body with mass M.

(b) The solution of Einsteins field equations with a cosmological constant in glob-
ally empty space, i.e. with M = 0, is called the de Sitter spacetime. Introduce
a de Sitter radius R� = √

3/�. Give a physical interpretation of this radius
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and calculate how large it is in a universe where the value of the cosmological
constant corresponds to a density of LIVE equal to the average density of the
masse and vacuum energy of the universe, � = 10−52 m−2.

8.5. The perihelion precession of Mercury and the cosmological constant

(a) Show that the orbit equation for free particles moving outside a spherically
symmetric body with mass M has the form

d2u

dφ2
+ u = M

L2
+ 3Mu2 − �

3L2u3
, (8.174)

where u = 1/r , and L is the angular momentum per unit mass for the particle.
(b) Assume that the orbit can be described as a perturbation of a circle and calculate

the precession angle per round trip.
(c) Estimate the contribution to the precession of Mercury’s perihelion from the

cosmological constant if we assume that the value of the cosmological constant
is � ≈ 10−52 m−2.

8.6. Relativistic time effects and GPS

Calculate the magnitude of the kinematical and gravitational time effects upon the
GPS satellite clocks. Are standard clocks on the GPS satellites going slower or faster
than a standard clock at rest on the surface of the Earth.

To compute the position of an object by means of the GPS systemwith a precision
of 1 m, the GPS satellite clocks must measure time with a precision of one part in
1013.

Are the relativistic effects so small that they can be neglected?

8.7. The photon sphere

The photon sphere is defined as a spherical shellmade up of lightmoving horizontally
in the Schwarzschild spacetime. Calculate the radius of the photon sphere.
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Chapter 9
The Linear Field Approximation
and Gravitational Waves

Abstract The linear field approximation of Einstein’s field equations is presented.
The solutions of these equations inside and outside a rotating spherical shell are
deduced. It is shown that inertial dragging is a consequence of the general theory of
relativity. The equations of gravitomagnetism are deduced. Gravitational waves are
described and related to their detection by the LIGO-detectors.

9.1 The Linear Field Approximation

In this chapter we shall describe weak gravitational fields, i.e. fields far from a black
hole, meaning that r � RS , where RS is the Schwarzschild radius of the black
hole. Normalizing the gravitational potential, φ, to zero far from the black hole, this
means that |φ| � c2, and that the curvature of spacetime is small. It is then possible
to introduce a coordinate system such that the metric deviates very little from the
Minkowski metric. Then it will be a good approximation in order to linearize the
field equations.

We now assume that the gravitational field is weak and introduce a near-Cartesian
coordinate system. The components of the metric tensor can then be written as
gμν = ημν + hμν where ημν is the Minkowski metric, and hμν � 1. Also the
derivatives hμν,λ are small.

Einstein’s field equations are

Rμν − 1

2
gμνR = κTμν, (9.1)

Here R ≡ Rβ

β is the Ricci curvature scalar and Rμν = Rα
μαν the components of

the Ricci curvature tensor, where Rα
μαν are the components of the Riemann curvature

tensor. According to Eq. (6.17) they are given by the expression

Rα
μβν = 	α

μν,β − 	α
μβ,ν + 	α

λβ	λ
μν − 	α

λν	
λ
μβ (9.2)
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in coordinate basis. Here 	α
μν are the Christoffel symbols. They are calculated from

the expression (5.65),

	α
μν = 1

2
gαβ

(
gβμ,ν + gβν,μ − gμν,β

)
. (9.3)

In the linear approximation we will only calculate to first order in the metric
perturbation hμν . Then the expression for the Christoffels symbols becomes

	α
μν = 1

2
ηαβ

(
hβμ,ν + hβν,μ − hμν,β

)
. (9.4)

Inserting this into Eq. (9.2) gives

Rα
μβν = 1

2
ηαγ

(
hγ ν,μβ + hμβ,γ ν − hμν,γβ − hγβ,μν

)
. (9.5)

Calculating the Ricci tensor by contracting the 1. and 3. index we find

Rμν = 1

2

(
hα

μα,ν + hα
να,μ − hα

μν,α − h,μν

)
, (9.6)

where h ≡ hα
α = ηαβhαβ . Hence the Ricci scalar is

R = Rμ
μ = hαβ,αβ −h,αα . (9.7)

Then the Einstein’s field equations in the linear approximation take the form

hα
μα,ν + hα

να,μ − hα
μν,α − h,μν − ημν(h

αβ

αβ, − hβ

,β) = 16πGTμν. (9.8)

This equation can be simplified by introducing

h̄μν = hμν − 1

2
ημνh. (9.9)

We assume that h̄ satisfies the so-called Lorenz gauge condition

h̄α
μ,α = 0. (9.10)

Then the field equations take the form

h̄α
μν,α = −2κTμν. (9.11)

Introducing the d’Alembert’s wave operator in Minkowski spacetime
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� = ηαβ∂α∂β = −∂2/∂t2 + ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 = −∂2/∂t2 + ∇2,

(9.12)

Einstein’s field equations in the linear field approximation can be written as

�h̄μν = −2κTμν. (9.13)

Hence, the linearized field equations for empty space take the form

�h̄μν = 0. (9.14)

This is d’Alembert’s wave equation for waves moving with the velocity of light.
It here describes gravitational waves. Hence, it follows from Einstein’s theory that
gravitational waves move with the velocity of light. This reveals a deep relation-
ship between electromagnetism and gravity which is not yet fully understood. The
explanation may be hidden in the Kaluza–Klein theory (see the Appendix).

In the case of a static spacetime in matter with density ρ the tt-component of
Einstein’s field equations takes the form

∇2h̄t t = −2κρ. (9.15)

Comparing with the Newtonian gravitational field Eq. (1.29) we get

h̄t t = −4φ/c2. (9.16)

where φ is the Newtonian gravitational potential.
In order to find the line-element in the linear field approximation we need the

reverse of Eq. (9.9). Taking the trace of h̄μν and utilizing that ημ
μ = δμ

μ = 4 we get
h̄ = −h. Hence,

hμν = h̄μν − 1

2
ημν h̄. (9.17)

Inserting Eq. (9.16) gives

htt = hii = (1/2)h̄t t = −2φ. (9.18)

Hence the line element takes the form

ds2 = −
(
1 + 2φ

c2

)
c2dt2 +

(
1 − 2φ

c2

)(
dx2 + dy2 + dz2

)
, (9.19)

or

ds2 = −
(
1 + 2φ

c2

)
c2dt2 +

(
1 − 2φ

c2

)(
dr2 + r2d�2

)
. (9.20)
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9.2 Solutions of the Linearized Field Equations

9.2.1 The Gravitational Potential of a Point Mass

The space time outside a spherical mass distributionwith givenmass does not depend
upon the radius of the mass distribution. Hence the spacetime is the same as that
outside a particle. We choose to consider spacetime outside a particle in order to
simplify the calculation.

A point mass with the mass m is situated in the origin of a Cartesian coordinate
system. Its energy–momenta tensor has only one non-vanishing component,

T00 = mδ(�r), (9.21)

where δ(�r) is the 3-dimensional δ-function.
In this case Einstein’s field equation (9.13) takes the form

∇2h̄00 = −2κmδ(�r). (9.22)

Using that

∫
δ(�r)d3r = 1, (9.23)

and integrating Eq. (9.22) gives

∫
∇2h̄00d

3r = −2κm. (9.24)

Utilizing Gauss’s integral theorem we can transform the left-hand side to an
integral over the surface of a spherical surface with radius r and get

∫
∇h̄00 · d�S = 4πr2

dh̄00
dr

= −2κm. (9.25)

where r = √
x2 + y2 + z2. Hence,

dh̄00
dr

= −4Gm

c2r2
. (9.26)

Integration with the boundary condition h̄00
lim r→∞

= 0 gives

h̄00 = 4Gm

c2r
. (9.27)
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Hence,

h̄ = h̄μ
μ = −4Gm

c2r
. (9.28)

Inserting Eqs. (9.27) and (9.28) in Eq. (9.17) gives

h00 = hii = 2GM

c2r
= RS

r
. (9.29)

Hence the line element of the spacetime outside the particle is

ds2 = −
(
1 − RS

r

)
c2dt2 +

(
1 + RS

r

)(
dx2 + dy2 + dz2

)
. (9.30)

In terms of spherical coordinates the line element takes the form

ds2 = −
(
1 − RS

r

)
c2dt2 +

(
1 + RS

r

)(
dr2 + r2d�2

)
. (9.31)

This is the same as the linearized line element, (S8.50), of the Schwarzschild
spacetime as expressed in isotropic coordinates.

9.2.2 Spacetime Inside and Outside a Rotating Spherical
Shell

We shall solve the linearized field equations, (9.13), inside and outside a rotating
spherical shell with radius R and mass M consisting of dust particles. The energy–
momentum tensor of the shell is

Tμν = ρuμuν, ρ = M

4πR2
δ(r − R), uμ = (−1,−Rω sin θ sin φ, Rω sin θ cosφ, 0).

(9.32)

where ω is the angular velocity of the shell. In this case Einstein’s field equations
(9.13) take the form

∇2h̄00 = −2RS

R2
δ(r − R), ∇2h̄i i = 0

∇2h̄0x = 2RSω

R
sin θ sin φδ(r − R), ∇2h̄0y = 2RSω

R
sin θ cosφδ(r − R)

.

(9.33)

These equations are integrated in the same manner as Eq. (9.22). For h̄00 we get
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dh̄00
dr

=
{−2RS/r2, r ≥ R
0, r < R

. (9.34)

Integrating once more and demanding that h̄00 is continuous at the shell give

h̄00 =
{
2RS/r, r ≥ R
2RS/R, r ≤ R

. (9.35)

The second Eq. (9.33) and the requirement that there shall be Minkowski metric
infinitely far from the shell gives h̄i i = 0.

Because of the spherical symmetry the two last equations in (9.33) will have the
same solution, so it is sufficient to solve one of then, say the last one. Due to the form
of the right-hand side we assume that h̄0y has the form

h̄0y = f (r) sin θ cosφ. (9.36)

This gives

∇2h̄0y =
[
1

r2
∂

∂r
r2

∂

∂r
+ 1

r2 sin2 θ

∂2

∂φ2
+ 1

r2 sin2 θ

∂

∂θ
sin θ

∂

∂θ

]
f (r) sin θ cosφ

=
(
f ′′ + 2

r
f ′ − 2

r2
f

)
sin θ cosφ

,

(9.37)

where f ′ = d f/dr . Inserting this into the last Eq. (9.33) leads to

f ′′ + 2

r
f ′ − 2

r2
f = −2RSω

R
δ(r − R). (9.38)

This equation may be written as

[
1

r2
(
r2 f

)′
]′

= −2RSω

R
δ(r − R). (9.39)

Using that δ(r − T ) = −δ(R − r) we have

[
1

r2
(
r2 f

)′
]′

= 2RSω

R
δ(R − r). (9.40)

Integration gives

1

r2
(
r2 f

)′ =
{
0, r > R
2RSω
R , r < R

. (9.41)
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Hence,

(
r2 f

)′ =
{
0, r > R
2RSω
R r2, r < R

. (9.42)

Integrating once more gives

r2 f =
{
Kout, r > R
2RSω
3R r3 + Kin, r < R

. (9.43)

Hence,

f =
{
Kout/r2, r > R
2RSω
3R r + Kin

r2 , r < R
. (9.44)

The requirement that the metric is well defined at r = 0 implies that Kin = 0.
Furthermore the requirement that the metric is continuous at the shell then implies
that Kout = 2RSR2ω/3. Hence the solution of Eq. (9.33) outside and inside the shell
is

f (r) =
{

2RSω
3

(
R
r

)2
, r > R

2RSω
3

r
R , r < R

. (9.45)

Inserting the expressions for h̄μν fromEqs. (9.35), (9.36) and (9.45) into Eq. (9.17)
gives the line element

ds2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−
(
1 − RS

R

)
c2dt2 +

(
1 + RS

R

)(
dr2 + r2d�2

)
− 4RSω

3R
r2 sin θdφdt, r < R

−
(
1 − RS

r

)
c2dt2 +

(
1 + RS

r

)(
dr2 + r2d�2

)
− 4RSR2ω

3r
sin θdφdt, r > R

.

(9.46)

The angular momentum of the shell is

S = (1/3)RSR
2ω. (9.47)

Hence the line-element (9.46) can be written

ds2 =

⎧
⎪⎪⎨

⎪⎪⎩

−
(
1 − RS

R

)
c2dt2 +

(
1 + RS

R

)(
dr2 + r2d�2

)
− 4S

R3 r
2 sin θdφdt, r < R

−
(
1 − RS

r

)
c2dt2 +

(
1 + RS

r

)(
dr2 + r2d�2

)
− 4S

r
sin θdφdt, r > R

.

(9.48)
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Let us see how the shell modifies space inside it.

9.3 Inertial Dragging

We shall first find a formula for the inertial dragging effect inside the shell. Consider
a free observer moving in the equator plane, θ = π/2, in the space described by the
line-element (9.46) for r < R. The Lagrange function of the observer is

L = −1

2

(
1 − RS

R

)
c2 ṫ2 + 1

2

(
1 + RS

R

)
ṙ2 + 1

2

(
1 + RS

R

)
r2φ̇2 − 2RSω

3R
r2φ̇ ṫ .

(9.49)

The momentum pφ conjugates to the cyclic coordinate φ,

pφ = ∂L

∂φ̇
=

(
1 + RS

R

)
r2φ̇ − 2RSω

3R
r2 ṫ . (9.50)

An observer with pφ = 0 is called a zero-angular-momentum-observer, ZAMO.
The coordinate angular velocity of the ZAMO is

�IN = dφ

dt
= φ̇

ṫ
= 2

3

RS

R + RS
ω. (9.51)

The metric is time independent. This means that the physical distance between
arbitrary coordinate points is independent of the time. Hence the coordinates are
co-moving with a stiff reference frame. At the origin the dφdt—term of the line-
element (9.46) vanishes, and close to the origin the line element approaches the
linearized line-element of the Schwarzschild spacetime. This means that as seen by
a non-rotating observer at the origin the reference frame of the coordinate system is
non-rotating.

Imagine that the observer at the origin throws out a particle. It is a free particle
with zero angular momentum, a ZAMO. This particle will however not move along
a radial line. It has a constant coordinate angular velocity given by Eq. (9.51) and
moves along a spiral path. The particle is dragged in the same direction at the shell
rotates. This phenomenon has several names. It was originally called the Lense–
Thirring effect because it was first described in a published article by the Austrian
Physicist Lense and Thirring in 1918. Later it has been called inertial dragging.

The reason for the latter name is that a free particlewith vanishing angularmomen-
tum represents a local inertial frame. Hence inside the shell inertial frames are
dragged around by the rotation of the shell—inertial dragging.

There is a similar effect outside the shell. Calculating the angular velocity of a
ZAMO outside the shell in the same manner as above leads to
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�IN = 2

3

RS

r + RS

(
R

r

)2

ω. (9.52)

The dragging angular velocity outside the shell decreases from the value (9.51)
at the shell to zero infinitely far from the shell.

Note that the expressions (9.51) and (9.52) are valid only in the linear field
approximation, i.e. for R >> RS . Corresponding expressions for arbitrarily strong
gravitational fields will be found in the next chapter.

9.4 Gravitoelectromagnetism

In the context of gravitoelectromagnetism the Newtonian gravitational potential

φ = −GM

r
= − RS

2r
(9.53)

of a rotating body with mass M is called the “gravito-electric” potential. One also
introduces a “gravitomagnetic” vector potential �A with components (including the
velocity of light in this section)

Ai = G

c
εi jk

S j xk

r3
, (9.54)

where εi jk is the antisymmetric Levi-Civita symbol, and S j is the j-component of
the angular momentum of the rotating body. In 3-vector notation this takes the form

�A = G

c

�S × �r
r3

. (9.55)

The angular momentum of the rotating mass distribution is related to the energy–
momentum tensor by

Si = 2
∫

εijk x
j j kd3r, (9.56)

where

j k = T 0k/c (9.57)

is the mass current density. Then the line element of the linear field approximation
can be written

ds2 = −
(
1 + 2φ

c2

)
c2dt2 +

(
1 − 2φ

c2

)
δi jdx

idx j − 4

c
Aidx

idt. (9.58)
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In terms of the gravitoelectromagnetic potentials the Lorenz gauge condition
(9.10) takes the form

1

c

∂φ

∂t
+ 1

2
∇ · �A = 0. (9.59)

The “gravito-electric” field is

�EG = −∇φ − 1

2c

∂ �A
∂t

, (9.60)

and the gravitomagnetic field is

�BG = 1

2
∇ × �A. (9.61)

It follows from the field Eqs. (9.13) together with Eqs. (9.59)–(9.61) that the
gravito-electric and -magnetic fields satisfy equations of similar form as Maxwell’s
equations for electromagnetic fields,

∇ · EG = −4πGρ, (9.62)

∇ · BG = 0, (9.63)

∇ × EG = −∂ �BG

∂t
, (9.64)

∇ × BG = 1

c2
∂ �EG

∂t
+ 4πG

c2
�j . (9.65)

The gravitoelectromagnetic analog of the Lorentz force is

�F = m
( �EG + 4�v × �BG

)
. (9.66)

In the linear field approximation the gravitomagnetic field can be written as a
dipole field,

�BG = − G

2cr3

⎡

⎣�S − 3

(�S · �r
)
�r

r2

⎤

⎦. (9.67)

If a body with an angular momentum �L is in a gravitomagnetic field �BG , the field
will cause a torque
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�τ = 1

2c
�L × �BG. (9.68)

The torque is equal to the time derivative of the angular momentum

�τ = d �L
dt

. (9.69)

The rate of change of angular momentum is

d �L
dt

= �� × �L, (9.70)

where �� is the angular velocity of the inertial dragging. Equations (9.63)–(9.65) give

�� = − 1

2c
�BG. (9.71)

Outside a body, for example the Earth, producing the gravitomagnetic field (9.67),
the dragging angular velocity is

�� = G

4c2r3

⎡

⎣�S − 3

(�S · �r
)
�r

r2

⎤

⎦. (9.72)

At the equatorial plane �S is orthogonal to �r so �S · �r = 0 and the equation reduces
to

�� = G

4c2r3
�S. (9.73)

In the case of a rotating body, for example a gyroscope, this dragging field rep-
resents the rate of angular precession of the rotation axis (which was observed in
the Gravity probe B experiment), and in the case of orbital motion it represents the
perihelion precession of the orbit (for example the orbit of the planet Mercury), or
the precession of the orbital plane (which was observed for the LAGEOS satellites).

9.5 Gravitational Waves

We will here consider gravitational waves in the weak field approximation of Ein-
stein’s equations using the Maxwell like equations for the gravitoelectromagnetic
fields.

Inserting Eq. (9.60) into Eq. (9.62) gives
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−∇2φ − 1

2c

∂

∂t

(
∇ · �A

)
= −4πGρ. (9.74)

From the Lorenz gauge condition we have

∇ · �A = −2

c

∂φ

∂t
. (9.75)

Hence

(
− 1

c2
∂2

∂t2
+ ∇2

)
φ = �φ = 4πGρ. (9.76)

Furthermore, inserting Eqs. (9.60) and (9.61) into Eq. (9.65) gives

1

2
∇ ×

(
∇ × �A

)
= −1

c
∇ ∂φ

∂t
− 1

2c2
∂2 �A
∂t2

+ 4πG

c2
�j . (9.77)

Using the identity

∇ ×
(
∇ × �A

)
= ∇

(
∇ · �A

)
− ∇2 �A (9.78)

we get

∇
(
1

c

∂φ

∂t
+ 1

2
∇ · �A

)
= 1

2

(
− 1

c2
∂2

∂t2
+ ∇2

)
�A + 4πG

c2
�j = 1

2
� �A + 4πG

c2
�j .
(9.79)

Due to the Lorenz gauge condition (9.59) the left-hand side vanishes. Hence we
obtain

� �A = −8πG

c2
�j . (9.80)

In empty space Eqs. (9.76) and (9.80) reduce to

�φ = 0, � �A = 0. (9.81)

These are equations of gravitational waves moving through empty space with the
velocity of light.
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9.5.1 What Sort of Gravitational Waves Is Predicted
by Einstein’s Theory?

We shall now investigate the nature of these waves. In order to simplify the treatment
we shall consider plane gravitational waves. There are three types of such gravita-
tional waves, transverse (T), shear (S) and longitudinal (L). We shall here investigate
what type Einstein’s theory predicts the existence of and follow a procedure given
by Eddington in an article published in 1922 [1].

We consider plane gravitational waves moving in the x-direction with velocity v.
Hence hμν are periodic functions of x + vt . Differentiation with respect to x + vt
will be denoted by ’, and the coordinates by (x, y, z, t) = (x1, x2, x3, x4). Then the
only non-vanishing derivatives are

∂2gμν

∂x21
= h′′

μν,
∂2gμν

∂x1∂x4
= vh′′

μν,
∂2gμν

∂x24
= v2h′′

μν. (9.82)

The covariant components of the linearized Riemann tensor are

Rμναβ = 1

2

(
∂2gμν

∂xα∂xβ

+ ∂2gαβ

∂xμ∂xν

− ∂2gμα

∂xβ∂xν

− ∂2gνβ

∂xμ∂xα

)
. (9.83)

For a spacetime with plane gravitational waves the Riemann tensor has 21 inde-
pendent components, six of them vanishing. The 15 non-vanishing components were
given by Eddington as follows for i and j equal to 1, 2 and 3,

Ri4j4 = 1

2
v2h′′

ij, R1ij4 = −R1ji4 = −1

2
vh′′

ij, R1i1j = 1

2
h′′
ij,

R14i4 = −vR1i14 = v

2

(
vh′′

1i − h′′
i4

)
, R1414 = 1

2
v2h′′

11 − vh′′
14 + 1

2
h′′
44

. (9.84)

The corresponding non-vanishing components of the Einstein tensor are

G11 = v

2

(
vh′′

11 − 2h′′
14

) + 1

2

(
h′′
44 − h′′

22 − h′′
33

)
, Gkk = 1

2

(
v2 − 1

)
h′′
kk, k = 2, 3

G44 = 1

2

(
h′′
44 − 2vh′′

14

) − 1

2

(
h′′
11 + h′′

22 + h′′
33

)
, G1k = vGk4 = v

2

(
vh′′

1k − h′′
k4

)
,

G23 = 1

2

(
v2 − 1

)
h′′
23, G14 = −v

2

(
h′′
22 + h′′

33

)
, (9.85)

Einstein’s field equations for empty space are Gμν = 0, which is a set of second-
order differential equations for hμν . Since hμν are periodic functions, the second
derivatives of the functions are equal to minus the functions themselves. This leads
to field equations

v(vh11 − 2h14) + h44 − h22 − h33 = 0, hkk = 0, k = 2, 3
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h44 − 2vh14 − h11 − h22 − h33 = 0,

vh1k − hk4 = 0, h23 = 0, v(h22 + h33) = 0. (9.86)

These equations can be reduced to the following seven conditions,

h22 + h33 = 0,
(
1 − v2

)
(h22, h33, h23) = 0,

h24 = vh12, h34 = vh13, v2h11 − 2vh14 + h44 = 0. (9.87)

Eddington pointed out that for T-waves h22, h33, h23 cannot all vanish. Hence for
these waves Eq. (9.87) implies v = ±1, meaning that according to the general the-
ory of relativity transverse gravitational waves move with a coordinate independent
velocity equal to the velocity of light in empty space. For S- andL-waves h22, h33, h23
are zero, and there is no coordinate independent equation determining v. The value
of v found from the three last relationships in (9.87) depends upon the metric com-
ponents and is hence coordinate dependent. Furthermore from (9.84) it is seen that
for S- and L-waves the relationships (9.87) imply that the Riemann curvature tensor
vanishes so that spacetime is flat and the periodic changes of the metric components
are coordinate artifacts.

The conclusion is that the general theory of relativity predicts the existence of
transverse gravitational waves travelling with the velocity of light.

9.5.2 Polarization of the Gravitational Waves

The gravitational waves may be represented by the metric functions

h̄μν = Aμν cos(kαx
α), (9.88)

where Aμν are the components of a symmetric tensor of rank 2, and kα are the
components of a constant wave vector. Inserting (9.88) into the field Eqs. (9.13)
leads to

kαk
α = 0. (9.89)

Hence kα is a null-vector, meaning again that the gravitational waves move with
the velocity of light. An observer with four-velocity Uμ would observe the wave to
have an angular frequency

ω = −kαU
α. (9.90)

In the co-moving frame of the observer, where Uμ = (1, 0, 0, 0), the so-called
transverse traceless gauge condition takes the form
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hμ0 = 0, h j
k, j = 0, hii = 0. (9.91)

The first of these equations tells that only the spatial components of the metric
perturbations are nonzero.The second says that the spatial components are divergence
free, and the third says that they are trace free. It should also be noted that since
h = hμ

μ = 0 there is no difference between h̄μν and hμν in this gauge.
We now choose the orientation of the coordinate system such that the gravitational

wave travels along the z-axis. The metric perturbation then takes the form

hμν =

⎡

⎢⎢
⎣

0 0 0 0
0 hxx hxy 0
0 hxy −hxx 0
0 0 0 0

⎤

⎥⎥
⎦. (9.92)

There are only two free metric functions. This corresponds to the fact that there
are only two different polarizations of gravitational waves according to Einstein’s
theory.

9.6 The Effect of Gravitational Waves upon Matter

We shall investigate physical effects of gravitational waves upon systems they pass.
A gravitational wave is a “curvature wave”. We shall therefore study the physical
effects of gravitational waves by utilizing the Eq. (6.94) of geodesic deviation,

d2si

dt2
= −Ri

0 j0s
j . (9.93)

Here si are the components of the separation vector between twonearby geodesics.
From the expression (9.5) for the components of the Riemann curvature tensor in the
linear field approximation we get in the transverse traceless gauge,

Ri
0 j0 = (1/2)hij,00. (9.94)

Note that the mixed components of the metric perturbations are not equal to the
Kronecker symbols, so the derivatives do not in general vanish. Equation (9.93) now
takes the form

d2si

dt2
= −1

2
hij,00s

j . (9.95)

Inserting the components of the metric perturbation from Eq. (9.87) we obtain
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d2sx

dt2
= 1

2
sxhx

x,t t + 1

2
s yhx

y,t t ,
d2s y

dt2
= 1

2
sxhy

x,t t − 1

2
s yhx

x,t t ,
d2sz

dt2
= 0. (9.96)

These equations show that only the sx and s y components of the separation vector
between two nearby free particles will be disturbed by a gravitational wave travelling
in the z-direction.

A gravitational antenna is a system able to shape form, and according to Eq. (9.96)
it is only disturbed in directions perpendicular to the wave propagation. Let us use
the above equations to describe what happens to a ring in the xy-plane of free test
particles at rest as a gravitational wave passes in the z-direction. To lowest order we
can then neglect the terms with sy at the right-hand side of the two first Eqs. (9.96)
so that

d2sx

dt2
= −1

2
hx
y,t t s

x ,
d2s y

dt2
= −1

2
hx
x,t t s

y . (9.97)

Suppose a wave propagating in the z-direction with

hxx = h sin[ω(t − z)], hxy = 0 (9.98)

hits the particles. Let us consider two particles that are hit by the wave. One is at the
origin, and the other has initially the position x = ε cos θ, y = ε sin θ, z = 0. The
initial separation vector has the components sx (0) = ε cos θ, s y(0) = ε sin θ . Then
Eqs. (9.97) and (9.98) give

d2sx

dt2
= −1

2
εhω2 cos θ sinωt,

d2s y

dt2
= 1

2
εhω2 sin θ sinωt. (9.99)

These equations have the solutions

sx = ε cosω

(
1 + h

2
sinωt

)
, s y = ε sinω

(
1 − h

2
sinωt

)
, (9.100)

satisfying the initial conditions. It follows from these expressions that

(sx )2

a2
+ (s y)2

b2
= 1, a = ε

(
1 + h

2
sinωt

)
, b = ε

(
1 − h

2
sinωt

)
. (9.101)

This shows that an originally circular ring is deformed to an oscillating ellip-
tical shape by the gravitational wave, varying between being stretched in the y-
direction and compressed in the x-direction and then stretched in the x-direction
and compressed in the y-direction. This is called the + polarization and is shown in
Fig. 9.1.

We now consider the case when the wave has
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Fig. 9.1 Deformation of a ring of free particles caused by a gravitational wave with + polarization

hxx = 0, hxy = h sin[ω(t − z)]. (9.102)

In this case Eqs. (9.97) and (9.98) give

d2sx

dt2
= −1

2
εhω2 sin θ sinωt,

d2s y

dt2
= −1

2
εhω2 cos θ sinωt. (9.103)

These equations have the solutions

sx = ε cos θ + 1

2
εh sin θ sinωt, s y = ε sin θ + 1

2
εh cos θ sinωt. (9.104)

Rotating the coordinate axes through an angle π/4 we obtain new components of
the separation vector

sx
′ = 1√

2

(
sx − s y

)
, s y

′ = 1√
2

(
sx + s y

)
. (9.105)

Inserting the expressions (9.104) gives

sx
′ = ε cos

(
θ + π

4

)(
1 − h

2
sinωt

)
, s y

′ = ε cos
(
θ + π

4

)(
1 + h

2
sinωt

)
.

(9.106)

It follows from these expressions that

(
sx

′)2

a2
+

(
s y

′)2

b2
= 1, a = ε

(
1 − h

2
sinωt

)
, b = ε

(
1 + h

2
sinωt

)
. (9.107)

In this case the gravitational wave produces elliptical deformations rotated an
angle π/4 relative to those of Fig. 9.1, as shown in Fig. 9.2. This is called the x
polarization.

Since hxx and hxy are independent, Figs. 9.1 and 9.2 show the existence of two
different states of polarization that are oriented at an angle π/4 relative to each other.
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Fig. 9.2 Deformation of a ring of free particles caused by a gravitational wave with x polarization

9.7 The LIGO-Detection of Gravitational Waves

As noted in Sect. 9.6 the effect of a gravitational wave, GW, upon two freely falling
nearby particle is to change the distance, L, between them. If the induced change of
distance is �L , the fractional change in length h = �L/L is called the GW-strain.
This is a dimensional measure of the amplitude of the gravitational wave.

LIGO consists of two detectors, one at the West coast of USA and one at the East
coast. They are separated by about 3000 km. Hence light uses about 10 ms to move
the distance between them. This means that signals of a certain type separated in
time by less than 10 ms can be a sign that a gravitational wave has passed through
the detectors.

The detectors are Michelson interferometers as illustrated in Fig. 9.3. The inter-
ferometer is constructed so that in normal modus the light that has been reflected
from the upper mirror and the right hand mirror is in opposite phase and there is
destructive interference when it meets after the reflections. Hence no light arrives at
the detector in normal modus.

The two mirrors of the Fabry-Pérot cavities are hanged up so that they are free
to move along the 4 km long L’s. When a gravitational wave, say from a system
of black holes with some tens of solar masses a billion light years away that spiral
towards each other and collide, passes the detector, the distances between the two
mirrors of the Fabry–Pérot cavities will get a length change with opposite signs, one
is shortened, and the other gets longer. Hence the phases of the reflected light change,
and a light signal arrives at the detector. In this situation typically the GW-strain is
10−21. Hence with L = 4 km one has to be able to detect a change of length of the
order 10−18 m.

The shape of the signal has been calculated and is as shown in Fig. 9.4.
The signal has three phases. The first phase is the inspiral when the objects are

outside the innermost stable orbit. In this phase the frequency and the amplitude
increase. It is said to chirp. The second phase is themerger when they are inside and
collide, and the third phase is the ringdown when the object formed by the collision,
vibrates and falls to rest. The shape of the signal in the inspiral phase can be calculated
analytically using post-Newtonian theory, the merger using numerical calculations
and the ringdown using perturbation theory.

The first detection of gravitational waves by LIGO came 14 September 2015 [2].
The most recent was detected by LIGO and Virgo. The detected signals are shown
in Fig. 9.5.
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Fig. 9.3 LIGO gravitational wave detector

Order of magnitude estimates for the amplitudes of the waves emitted at different
phases are given in [3], and a simple, but quantitative analysis has recently been
given by Mathur et al. [4]. The main points when it comes to extracting information
of the physical properties of the source of gravitational waves from the signals in an
interferometric gravitational wave detector such as LIGO when a gravitational wave
is detected, will be presented below.

The LiGO–Virgo-team detected a signal of this type the 14 August 2017.
Figure 9.5 is from this report. An analysis of the signal that lasted for about 0.2 s
showed that they had detected a gravitational wave emitted by a system of two black
holes spiralling towards each other and merging at a distance of 1,8 billion light
years. The frequency increased from 35 to 250 Hz meaning that the number of times
the black holes went around each other per second increased from 17 to 125 during
less than the fifth of a second. The masses of the black holes were detected to be
31M and 25M, where 1M is the mass of the Sun. The mass of the final black
hole was 54M. Hence an energy corresponding to 3M was emitted in the form of
gravitational waves. The relative velocity of the black holes increased from 0.32c to
0.57c in this brief time interval.
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Fig. 9.4 LIGO-gravitational wave signal. LIGO-signal when a gravitational wave from a system
of two compact objects, for example two black holes, passes the detector. There are three phases,
the inspiral when the objects are outside the innermost stable orbit, themerger when they are inside
and collide and the ringdown when the object formed by the collision vibrates and falls to rest.
(Nobel.org)

9.7.1 Kepler’s Third Law and the Strain of the Detector

For a systemof two compact objectswithmassesM1 andM2 one defines the so-called
chirp mass,

Mch =
(

(M1M2)
3

M

)1/5

(9.108)

where M = M1 + M2 is the total mass of the system, and the reduced mass is

μ = M1M2

M
. (9.109)

One also defines the dimensionless mass ratio for the system,

η = μ

M
= M1M2

M2
. (9.110)

The expressions for the chirp mass and the total mass can be solved for the masses
of the compact objects, giving
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M1 = M

2
+

√(
M

2

)2

− M1/3M5/3
ch , M2 = M

2
−

√(
M

2

)2

− M1/3M5/3
ch ,

(9.111)

which requires Mch < 2−6/5M .
In the inspiral phase there will be a maximal orbital angular frequency, �, given

by Kepler’s third law

2�2R3 = c2RS. (9.112)

when two objects with equal masses are about to merger, where R = R1 + R2 is
the sum of the radial coordinates of the compact objects, and RS = 2GM/c2 is the
Schwarzschild radii of the total mass.

At a distance r from the source of two inspiralling compact objects, the strain due
to a gravitational wave is

h = 4RSR2�2

c2r
. (9.113)

It follows from the last two equations that

h = 2
R2
S

r R
. (9.114)

Let us use this formula tomake an estimate of the expectedmagnitude of the strain
for a gravitational wave detector on the Earth. The maximal value of h is obtained
just before the objects merger, when R ≈ 2RS . Then

hmax ≈ RS/r. (9.115)

The Schwarzschild radius of the Sun is RS = 3 km = 3 · 10−13l · y. Hence for
a system of for example black holes with total mass equal to 50 solar masses one
billion light years from the Earth the strain is h = 1.5 · 10−20. For an interferometer
with 4 km long arms this means that the distance between two mirrors at the ends of
the arms will change by �L = hL = 6 · 10−17 m, which is less than the magnitude
of an atomic nucleus.

Combining Eq. (9.114) with Eq. (9.110) and introducing the Schwarzschild radii
RS1 and RS2 of the two objects, the strain can be expressed as

h = 2

η

RS1RS2

r R
. (9.116)

Sometimes the strain is expressed by the totalmass and the chirpmass. Introducing
the Schwarzschild radius of the total mass, RS = 2GM , and the chirp mass, RSch =
2GMch/c2, and using Eq. (9.108) the strain can be expressed as
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h = 2

η

R1/3
S R5/3

Sch

r R
. (9.117)

Using Eq. (9.112) the strain asmeasured at a distance r far away from the colliding
objects can then be expressed as

h = �2/3R5/3
Sch

24/3

c2/3ηr
. (9.118)

9.7.2 Newtonian Description of a Binary System

We use a coordinate system co-moving with the mass centre of the binary system,
M1R1 = M2R2. Using this together with R = R1 + R2 we get

R1 = M2

M
R, R2 = M1

M
R. (9.119)

Furthermore we introduce an angular coordinate, θ = θ1 = θ2 − π . The kinetic
energy of the system is

EK = 1

2
M1v

2
1 + 1

2
M2v

2
2 . (9.120)

where the square of the velocities of the compact objects are

v2
1 = Ṙ2

1 + R2
1 θ̇

2
1 =

(
M2

M

)2

v2,

v2
2 = Ṙ2

2 + R2
2 θ̇

2
2 =

(
M1

M

)2

v2,

v2 = Ṙ2 + R2θ̇2. (9.121)

Inserting these expressions into Eq. (9.120) and using Eq. (9.109) gives

EK = 1

2
μv2. (9.122)

The objectsmove along elliptical paths. In theNewtonian theory of binary systems
it is usual to write the equation of the elliptic orbit as

p = R(1 + e cos θ), (9.123)
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where p is called the semi-latus rectum, and e is the eccentricity of the ellipse, i.e. the
ratio of the semi-minor and semi-major half axis of the ellipse, e = b/a. The specific
angular momentum, L = R2θ̇ , is a constant of motion. The relation L2/p = GM
will be needed below. Differentiation of Eq. (9.123) with respect to time gives

Ṙ = R2e sin θ

R(1 + e cos θ)
= Le

p
sin θ, Rθ̇ = R2θ̇

R
= L

p
(1 + e cos θ). (9.124)

Using these expressions and that p = a
(
1 − e2

)
one finds that the kinetic energy

is

EK = 1

2
μGM

(
2

R
− 1

a

)
= GM1M2

R
− GM1M2

2a
. (9.125)

The potential energy of the system is

EP = −GM1M2

R
. (9.126)

It follows that the mechanical energy of the system, E = EK + EP, has the value

E = −GM1M2

2a
, (9.127)

which is constant. Approximating the distance between the objects by the semi-major
half axis of the ellipse, R ≈ a we can use Eq. (9.112) to express the mechanical
energy in terms of the angular frequency,

E = −GM1M2

R1/3
S

(
�

2

)2/3

. (9.128)

9.7.3 Gravitational Radiation Emission

According to the general theory of relativity the binary system will emit gravita-
tional waves and thereby loose mechanical energy. The emitted power is given by
Eq. (9.121) in Ref. [5] for a system of two compact objects with equal masses. In
the general case allowing different masses this expression is generalized to

P = 32

5
Gcμ2R4�6. (9.129)

Using Eq. (9.108) this may be written as
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P = 32

5

cG4M2
1M

2
2M

R5
. (9.130)

The emission of gravitational waves causes the compact object to move towards
each other along a spiral path. The orbital energy may be approximated by

E = −GM1M2

2R
. (9.131)

The rate of change of the orbital energy,

Ė = GM1M2

2

Ṙ

R2
, (9.132)

is equal to the power given in Eq. (9.130). Hence

R3 Ṙ = −8

5
cRS1RS2RS. (9.133)

where RS = RS1 + RS2. The distance between the objects at a point of time t is

R =
(
R4
0 − 32

5
RS1RS2RSct

)1/4

, (9.134)

where R0 = R(0). This shows that it takes a finite time

tGW = 5R4
0

32cRS1RS2RS
(9.135)

before two objects moving around an elliptical orbit with initial distance R0, collides
with each other. If a detection signal lasts for a time tD until the sign that a merger
has happened appears, then the objects had an initial distance

R0 =
(
32

5
RS1RS2RSctD

)1/4

(9.136)

when the initial part of the signal was emitted.

9.7.4 The Chirp

I order to extract information from the measured data, and it will be useful to express
the emitted effect in terms of the frequency f of the observed radiation. As shown in
Eq. (9.110) of Ref. [5] the frequency of the radiation is twice the orbital frequency.
Hence � = π f. Inserting this into Eq. (9.112) gives
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R =
(

c2RS

2π2 f 2

)1/3

. (9.137)

Hence Eqs. (9.129) and (9.131) take the form

P = 32

5
π10/3cGμ2

(
c2RS

2

)4/3

f 10/3, (9.138)

E = −GM1M2

2

(
2π2

c2RS

)1/3

f 2/3. (9.139)

Differentiation gives

Ė = −π2/3GM1M2

3

(
2

c2RS

)1/3

f −1/3 ḟ . (9.140)

Equating (9.138) and (9.140) leads to

f −11/3 ḟ = 96π8/3

5c5
(GMch)

5/3, (9.141)

where Mch is the chirp mass defined in Eq. (9.108). Integration gives

f = f0

(

1 − 64

5
21/3π8/3

(
RSch

c

)5/3

f −8/3
0 t

)−3/8

. (9.142)

where f0 = f (0). Solving this equation with respect to the Schwarzschild radius of
the chirp mass leads to

RSch = c

(
5� f

64 · 21/3π8/3�t

)3/5

, � f ≡ 1

f 8/31

− 1

f 8/32

, �t = t2 − t1, (9.143)

which may be written

Mch = 7.8 · 102Hz

(
�f

�t

)3/5

M. (9.144)

The objects begin to coalesce when their separation is equal to the sum of their
Schwarzschild radii, R = 2RS. Inserting this into Eq. (9.112) gives

RS = c

4π fc
, (9.145)
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where fc is the frequency of the emitted gravitational radiation when the objects
begin to coalesce. This may be written

M = 2.0 · 104Hz

fc
M, (9.146)

where M is the mass of the Sun.
Let us apply Eqs. (9.144) and (9.146) to the signals shown in Fig. 9.5. We shall

only illustrate the method and therefore do not include the uncertainties. The figure
shows that the initial frequency is f1 = 30Hz at the point of time t1 = 0.46 s and the
frequency is f2 ≈ 150Hz at t2 = 0.50 s. This gives �f = 1.1 · 10−4,�t = 0.04 s
with a rather large uncertainty. Hence Mch ≈ 23M. The measured peak frequency
was around fp = 200Hz. This gives from Eq. (9.146) a total mass M = 100M.
More accurate relativistic calculations give a somewhat lower mass. Also there is
a rather large uncertainty in the value of the maximal frequency, which may be
somewhat higher than the measured peak frequency due to the very rapid merger.
Assuming that fc ≈ 350Hz, we get M ≈ 57M. Inserting these values for the
total mass and the chirp mass into Eq. (9.111) gives for the masses of the two black
holes, M1 ≈ 38M, M2 ≈ 19M. The masses determined by the more accurate
calculations of the LIGO–VIRGO-teams were Mch ≈ 24M, M ≈ 56M, M1 ≈
31M, M2 ≈ 25M. The Schwarzschild radii of the black holes are RS1 = 91 km
and RS2 = 74 km. Inserting these radii and the duration of the signal before merger,
tD ≈ 0.07 s, into Eq. (9.136) gives the distance between the black holes when they
emitted the first detected gravitational wave, R0 = 630 km.

On 17 August 2017 LIGO and Virgo detected a gravitational wave from colliding
neutron stars, and 1.7 s later ESA’s INTEGRAL telescope andNASA’s Fermi gamma
ray space telescope detected a short gamma ray burst from the same source. The
next days and weeks the afterglow of the burst was observed by a large number
of telescopes. This was the first time electromagnetic signals were observed from
the source of directly detected gravitational waves. It opened a new window for
observing the universe and gave a great stimulus to the new research area called
multi-messenger astronomy.

References

1. Eddington, A.S.: The propagation of gravitational waves. Proc. Roy. Soc. Lond. 268–281 (1922)
2. Abbott, P.B., et al.: Observation of gravitational waves from a binary black hole merger. PRL

116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102
3. Satyaprakash, B.S., Schutz, B.F.: Physics, astrophysics and cosmologywith gravitational waves.

Living Rev. Relativity 12, 2 (2009)
4. Mathur,H., Brown,K., Lowenstein,A.:An analysis of theLIGOdiscovery based on introductory

physics. Am. J. Phys. 85(9) (2017)
5. Grøn, Ø., Hervik, S.: Einstein’s General Theory of Relativity. Springer (2007)

https://doi.org/10.1103/PhysRevLett.116.061102


Chapter 10
Black Holes

Abstract Spacetime outside black holeswith andwithout rotation—i.e. theKerr and
Schwarzschild spacetimes—is studied. By considering the motion of free particles
in the Kerr spacetime we find an exact expression for the angular velocity of the
inertial dragging. Hawking radiation from a non-rotating black hole is also studied.

10.1 “Surface Gravity”: Acceleration of Gravity
at the Horizon of a Black Hole

The quantity which is called surface gravity is equal to the acceleration of gravity at
the horizon of a black hole. The acceleration of gravity is equal to the acceleration
of a freely falling particle instantaneously at rest as observed by a static observer in
the coordinate system. However, it has become usual to express the acceleration of
gravity measured by an observer in terms of the acceleration scalar of the observer.
Note that the 4-acceleration, and hence, the acceleration scalar of a free particle
vanishes, so this cannot be used in the same way.

It is tempting to define the acceleration of gravity mathematically as equal to the
acceleration scalar a of the observer, since this is an invariant quantity representing
the acceleration of the observer relatively to a freely falling particle, as measured by
the standard measuring rods and clocks of the observer. But we saw in Eq. (8.36)
that the standard clocks do not proceed at the horizon of a black hole. Therefore the
acceleration scalar of the observer diverges there. For this reason it has become usual
to define the acceleration of gravity as

g = a
dτ

dt
= a

ut
, (10.1)

where ut is the time component of the 4-velocity of the observer. This quantity has
a finite value at the horizon of a black hole.

In this chapter we use units so that c = 1. Surface gravity is denoted by κ and is
defined by
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κ = lim
r→r+

a

ut
, a = √

aμaμ, (10.2)

where r+ is the horizon radius, r+ = RS for the Schwarzschild spacetime, and ut is
the time component of the 4-velocity.

The 4-velocity of an observer permanently at rest in the Schwarzschild spacetime
is

�u = ut �et = dt

dτ
�et = 1√−gtt

�et = �et√
1 − RS

r

. (10.3)

The only component of the 4-acceleration different from zero is ar . The
4-acceleration of the observer is

�a = ∇�u �u = uμ

;νu
ν �eμ = (uμ

,ν + �μ
ανu

α)uν �eμ. (10.4)

The covariant, radial component of the 4-acceleration is

ar = (ur,ν + �rανu
α)uν = ur,νu

ν

︸ ︷︷ ︸
=0

+�r tt (u
t )2 = �r tt

1 − RS
r

. (10.5)

The Christoffel symbol is

�r tt = −1

2

∂gtt
∂r

= − RS

2r2
. (10.6)

Inserting this into Eq. (10.5) gives

ar = RS/2r2

1 − RS
r

. (10.7)

The contravariant component of the 4-acceleration is

ar = grrar = ar
grr

= (1 − RS

r
)ar = RS

2r2
. (10.8)

The positive sign of ar means that an observer permanently at rest in the curvature
coordinate systemaccelerates outwards relative to an inertial (freely falling) reference
frame which has vanishing 4-acceleration.

The acceleration scalar is

a = √
arar = RS/2r2√

1 − RS
r

. (10.9)
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This represents the acceleration as measured with standard instruments at the
position of the particle. The acceleration of gravity as defined in Eq. (10.1) is

g = RS

2r2
. (10.10)

The surface gravity is equal to the acceleration of gravity at the horizon of a black
hole,

κ = lim
r→RS

g = 1

2RS
. (10.11)

Inserting the velocity of light we get

κ = c2

2RS
. (10.12)

On the horizon of a black hole with one solar mass κ� = 2 × 1013m/s2.

10.2 Hawking Radiation: Radiation from a Black Hole

The radiation from a black hole has a thermal spectrum. Following Hawking we shall
write down an expression for the temperature of a Schwarzschild black hole of mass
M. The Planck spectrum has an intensity maximum at a wavelength given byWien’s
displacement law,

� = N�c

kT
. (10.13)

where k is Boltmann’s constant and N = 0.2014. For radiation emitted from a black
hole Hawking derived the following expression for the wavelength at a maximum
intensity,

� = 4πN RS = 8πNGM

c2
. (10.14)

Substituting for � from Wien’s displacement law leads to

T = �c3

8πGkM
= �c

2πk
κ. (10.15)

Inserting values for �, c and k gives
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T ≈ 2 × 10−4m

RS
K . (10.16)

For a black hole with one solar mass, we have T� ≈ 10−7. When the mass
decreases because it radiates, the temperature increases. So a black hole has a negative
heat capacity. The energy loss of a black hole because of radiation is given by the
Stefan–Boltzmann law,

−dM

dt
= σT 4 A

c2
, (10.17)

where A is the area of the horizon

A = 4πR2
S = 16πG2M2

c4
, (10.18)

In Eq. (10.17)

σ = π2k4

60�3c2
(10.19)

is Stefan–Boltzmann’s constant. Combining these equations we get

dM

dt
= −KH

M2
, KH = �c4

15360πG2
= 2.2 · 1015 kg3/s. (10.20)

Hence

M∫

M0

M2dM = − KHt, (10.21)

giving

M(t) = (
M3

0 − 3KHt
)1/3

. (10.22)

The time taken for a black hole to evaporate is

tev = M3
0

3KH
=

(
M0

M�

)3

tev�, (10.23)

where tev� = 2.1 · 1067 years is the evaporation time of the Sun. The evaporation
time of a black hole with one Planck mass is

tevP = 5120π

√
�G

c5
= 5120π tP . (10.24)
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where tP = 5.4·10− 44 s is the Planck time. Hence tevP = 8.67·10−40 s. A primordial
black hole made at the Big Bang and exploding at the present time when the age of
the universe is t0 = 13.7 · 109 years, is

M0 = (3KHt0)
1/3, (10.25)

giving M0 ≈ 1011kg which is around the mass of Mount Everest. It is called a
“mini-black hole”.

10.3 Rotating Black Holes: The Kerr Metric

The solution of Einstein’s field equations describing spacetime outside a rotating
mass distribution was found by Roy Kerr in 1963 and is therefore called the Kerr
spacetime.

A time-independent, time-orthogonal metric is known as a static metric. A time-
independent metric is known as a stationary metric. A stationary metric allows
rotation.

Consider a stationary metric which describes an axially symmetric space

ds2 = −e2νdt2 + e2μdr2 + e2ψ(dφ − ωdt)2 + e2λdθ2

= − (
e2ν − e2ψω2

)
dt2 + e2μdr2 + e2ψdφ2 + e2λdθ2 − 2e2ψω dφ dt

, (10.26)

where ν, μ,ψ, λ and ω are functions of r and θ . The covariant components of the
metric tensor are

gtt = e2ψω2 − e2ν, grr = e2μ, gφφ = e2ψ, gθθ = e2λ, gtφ = − e2ψω.

(10.27)

Hence,

ω = − gtφ
gφφ

, gtt = gφφω2 − e2ν . (10.28)

By solving the vacuum field equations for this line element, Kerr found the
solution:

e2ν = ρ2�

Σ2
, e2μ = ρ2

�
, e2ψ = Σ2

ρ2
sin2 θ, e2λ = ρ2,

ω = RSar

Σ2
, where ρ2 = r2 + a2 cos2 θ,

� = r2 + a2 − RSr,

Σ2 = (r2 + a2)2 − a2� sin2 θ. (10.29)
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This is the Kerr solution expressed in Boyer–Lindquist coordinates. The function
ω is an angular velocity. As mentioned above the Kerr solution is the metric for
spacetime outside a rotating mass distribution. The constant a represents spin per
mass unit for the mass distribution and RS its Schwarzschild radius. With the units
we use, a has dimension length.

The line element has the form

ds2 = −
(
1 − RSr

ρ2

)
dt2 + ρ2

�
dr2 − 2RSar

ρ2
sin2 θdtdφ + ρ2dθ2

+
(
r2 + a2 + RSa2r

ρ2
sin2 θ

)
sin2 θdφ2. (10.30)

Light emitted from the surface, r = r0, where gtt(r0) = 0, is infinitely redshifted
further out. Observed from the outside time does not proceed at this surface. The
radial coordinate r0 is given by

ρ2 = RSr0, (10.31)

or

r20 + a2 cos2 θ = RSr0, (10.32)

giving

r0 = RS/2 ±
√

(RS/2)
2 − a2 cos2 θ. (10.33)

This is the equation of two surfaces with the property that light emitted from the
surfaces is infinitely redshifted. In the equatorial plane, θ = π/2, the radius of the
surface with infinitely redshifted light has a coordinate distance from the origin equal
to the Schwarzschild radius of the mass distribution,

r0 = RS. (10.34)

10.3.1 Zero-Angular Momentum Observers

The Lagrange function of a free particle in the equator plane, θ = π/2, is

L = −1

2
(e2ν − ω2e2ψ)ṫ2 + 1

2
e2μṙ2 + 1

2
e2ψφ̇2 + 1

2
e2λθ̇2 − ωe2ψ ṫ φ̇. (10.35)

Here θ̇ = 0. The constant momentum pφ of the cyclic coordinates φ is
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pφ ≡ ∂L

∂φ̇
= e2ψ(φ̇ − ωṫ), ṫ = dt

dτ
, φ̇ = dφ

dτ
. (10.36)

The angular velocity of the particle relative to the coordinate system is

� = dφ

dt
= φ̇

ṫ
. (10.37)

Hence

pφ = e2ψ ṫ(� − ω). (10.38)

Thus a zero-angular momentum observer, a ZAMO, has an angular velocity in the
Boyer–Lindquist coordinate system, � = ω. This gives the physical interpretation
of ω. It is the angular velocity of the ZAMOs in the Kerr spacetime relative to an
observer at rest infinitely far from the mass distribution. Hence ω is the angular
velocity of the inertial dragging in the Kerr spacetime. It follows from Eqs. (10.28)
and (10.29) that

ω = − gtφ
gφφ

= RSa

r3 + a2(r + RS)
. (10.39)

Note that ω → 0 when r → ∞. The Kerr spacetime approaches the
Minkowski spacetime for large r. Calculating the inertial dragging angular veloc-
ity at the surface of the Earth one finds ωEarth = 10− 14 rad/s. At the infinite redshift
surface with radius (10.34) the dragging angular velocity is

ω(r0) = a

R2
S + 2a2

. (10.40)

10.3.2 Does the Kerr Spacetime Have a Horizon?

Definition 10.3.1 (Horizon) A horizon is a one-way surface through which anything
can enter, but nothing can exit, not even light. Hence the region inside the horizon is
invisible for an outside observer.

Consider a particle in an orbit with constant r and θ . Its 4-velocity is

�u = d�x
dτ

= dt

dτ

d�x
dt

= (−gtt − 2gtφ� − gφφ�2)−
1
2 (1,�). (10.41)

The existence of a stationary orbit requires

gφφ�2 + 2gtφ� + gtt < 0. (10.42)
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This implies that

�min < � < �max, (10.43)

where

�min = ω −
√

ω2 − gtt
gφφ

and �max = ω +
√

ω2 − gtt
gφφ

. (10.44)

Outside the surface with infinite redshift gtt < 0. That is � can be negative, zero
and positive. Inside the surface r = r0 with infinite redshift gtt > 0. Here �min > 0
and static particles, � = 0, cannot exist. This is due to the inertial dragging effect.
The surface r = r0 is therefore known as “the static border”. The interval of �,
where stationary orbits are allowed, is reduced to zero when �min = �max, that is

gtt = ω2gφφ, (10.45)

which is the equation of the horizon. For the Kerr metric we have

gtt = ω2gφφ − e2ν . (10.46)

Comparing with the second of Eq. (10.28), we see that the equation of the horizon
becomes

e2ν = 0, (10.47)

which requires � = 0 or

r2 − RSr + a2 = 0. (10.48)

The exterior solution is

r+ = RS/2 +
√

(RS/2)
2 − a2, (10.49)

and this is the equation for a spherical surface. Note that the radius of the horizon
is smaller than the Schwarzschild radius of the rotating mass. The dragging angular
velocity at the horizon is

ω(r+) = a

RSr+
. (10.50)

The static border and horizon of a Kerr black hole are shown in Fig. 10.1.
Going from a region outside the static border and inwards we have the following

situation. In the outside region it is possible for an observer to stay at rest if a suitable
non-gravitational force acts upon the observer. The surface r = r0 has two roles;
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Fig. 10.1 Static border and horizon of a Kerr black

light emitted from sources at rest on it are infinitely redshifted, and inside the surface
the inertial dragging is so strong that it is impossible to stay at rest even by trying
to do so by means of a motor. But it is possible to move along a path with constant
r , i.e. there exist stationary orbits. Also it is possible to come out of this region. But
inside the horizon, everything fall inwards, and it is not possible neither to move with
constant r nor to move outwards.

Exercises

10.1. A spaceship falling into a black hole

(a) In this problem we will consider a spaceship (A) falling radially from the
Earth (neglecting the gravitational field of the earth) into a Schwarzschild
black hole with mass the mass of the Sun, M = MSun at the position of
the Sun, 150 million km from the Earth.

What is the Schwarzschild radius of the black hole?
Find the equations ofmotion of the spaceship in curvature coordinates

r and t, using the proper time τ as time parameter.
Solve the equations of motion with the initial condition that the space

ship falls from rest at the Earth at proper time τ = 0.
When (in terms of τ ) does the spaceship reach the Schwarzschild

radius? And the singularity?
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(b) The spaceship (A) has radio contact with a stationary space station (B)
at rB = 1 light years. The radio signals are sent with intervals �T and
with frequency ω from both A and B. The receivers at A and B receive
signals with frequency ωA and ωB , respectively. Find ωA and ωB as a
function of the position of the spaceship. Hint: Perform the calculation
in two steps. At first find the change in frequency between two stationary
inertial systems in the points rA (the position of the spaceship) and rB .
Then calculate the change in frequency due to a transfer into an inertial
system with the velocity of the spaceship.

10.2. Kinematics in the Kerr spacetime
A Kerr black hole is an electrically neutral, rotating black hole. When

spacetime outside a Kerr black hole is described in Boyer–Lindquist coordi-
nates, the line element is the following,

ds2 = −e2νdt2 + e2μdr2 + e2λdθ2 + e2ψ(dφ − ωdt)2,

where

e2ν = ρ2�

Σ2
, e2μ = ρ2

�
, e2λ = ρ2,

e2ψ =
(

Σ2

ρ2

)
sin2 θ, ω = − gtφ

gφφ

= 2Mar

Σ2
,

ρ2 = r2 + a2 cos2 θ, � = r2 + a2 − 2Mr, Σ2 = (r2 + a2)2 − a2� sin2 θ.

HereM is the mass of the hole and a its spin per unit mass.

(a) Consider light moving in negative and positive direction of φ in the
equatorial plane, θ = π/2. What is the coordinate velocity cφ = dφ/dt
of light?

We now want to investigate the Sagnac effect in the Kerr space. An
emitter–receiver is attached to a point in the BL coordinate system. Light
signals with the frequency ν are sent by means of mirrors in both direc-
tions along the circle r = r0, θ = π/2. Find the travel time difference of
light travelling in opposite directions, when the signals reach the receiver.

(b) AZAMO is an observerwith vanishing angularmomentum. In the follow-
ing a ZAMO in the Kerr spacetime will be describing particles with fixed
r- and θ -coordinates. Introduce an orthonormal basis (�et̂ ′, �er̂ ′, �eθ̂ ′, �eφ̂′),
where �et̂ ′ is the 4-velocity of a ZAMO. The dual basis 1-forms are

ω−
t̂ ′ = eνω−

t , ω−
r̂ ′ = eμω−

r ,

ω−
θ̂ ′ = eλω−

θ , ω−
φ̂′ = eψ(ω−

φ − ωω−
t ). (10.51)
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Show that

�et̂ ′ = e−ν(�et + ω�eφ), �er̂ ′ = e−μ�er ,
�eθ̂ ′ = e−λ�eθ , �eφ̂′ = e−ψ �eφ, (10.52)

where (�et , �er , �eθ , �eφ) are the coordinate basis vectors in theBLcoordinate
system.

Given a particle with 4-velocity components

Uμ = (
ṫ, φ̇

) = ṫ(1, �), � = dφ

dt
(10.53)

in the Boyer–Lindquist coordinate system.
Show that the physical velocity of the particle, measured by a ZAMO,

is

vφ̂′ = eψ−ν(� − ω). (10.54)

What is the velocity v
φ̂′
0 of a fixed coordinate point measured by a

ZAMO?
(c) Introduce an orthonormal basis field given by the expressions

�e0̂ = (−g00)
−1/2�e0, �eî = (γi i )

−1/2[�ei − (gi0/g00)�e0], (10.55)

where

γi i = gii − g2i0/g00.

Show that

�et̂ = γ̂ e−ν �et , �er̂ = e−μ�er ,
�eθ̂ = e−λ�er , �eφ̂ = γ̂ −1e−ψ �eφ + γ̂ e−νv

φ̂′
0 �et , (10.56)

where γ̂ = (1 − (v
φ̂′
0 )2)−1/2. Find the dual basis 1-forms.

10.3. A gravitomagnetic clock effect
This problem is concerned with the difference of proper time shown by

two clocks moving freely in opposite directions in the equatorial plane of the
Kerr spacetime outside a rotating body. The clocks move along a path with
r = constant and θ = π/2.

(a) Show that in this case the radial geodesic equation reduces to

Γ r
ttdt

2 + 2Γ r
φtdφdt + Γ r

φφdφ
2 = 0. (10.57)
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Calculate the Christoffel symbols and show that the equation takes
the form

(
dt

dφ

)2

− 2a
dt

dφ
+ a2 − r3

M
= 0, (10.58)

where M is the mass of the rotating body and a its angular momentum
per unit mass, a = J/M .

(b) Show that the time difference for one closed orbit in (φ → φ + 2π) the
direct and the retrograde direction is t+ − t− ≈ 4πa = 4π J/M , or in
S.I. units,

t+ − t− = 4πa = 4π J/mc2. (10.59)

Estimate this time difference for clocks in satellites moving in the
equatorial plane of the Earth. (The mass of the Earth is m = 6 · 1026 kg
and its angular momentum J = 1034kg m2/s.)



Chapter 11
Sources of Gravitational Fields

Abstract In this chapter we shall first find a general expression of the acceleration
of gravity due to a mass distribution. Then we shall deduce the solution of Einstein’s
field equations inside an incompressible star—the internal Schwarzschild solution.
Furthermore we shall present Israel’s formalism for describing singular mass shells
in the general theory of relativity, and apply this first to a shell consisting of dust
particles, and then to find a source of the conformally flat, spherically symmetric
Levi-Civita—Bertotti—Robinson metric, and finally to the Kerr spacetime. Lastly
we shall introduce a river model of space.

11.1 The Pressure Contribution to the Gravitational Mass
of a Static, Spherically Symmetric System

According to the Definition (10.1) of the acceleration of gravity (including a minus
sign denoting inwards acceleration, here),

g = − a

ut
, a = √

aμaμ. (11.1)

where a is the acceleration scalar and ut the time component of the 4-velocity of an
observer permanently at rest in the coordinate system. We have the line element,

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2d�2. (11.2)

Hence

gtt = −e2α, grr = e2β, (11.3)

which gives for the acceleration of gravity,

g = −eα−βα′. (11.4)

© Springer Nature Switzerland AG 2020
Ø. Grøn, Introduction to Einstein’s Theory of Relativity,
Undergraduate Texts in Physics, https://doi.org/10.1007/978-3-030-43862-3_11

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43862-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-43862-3_11


284 11 Sources of Gravitational Fields

From the expressions (8.15) for the components of the Einstein tensor
Et̂t̂ , Er̂r̂ , Eθ̂ θ̂ , Eφ̂φ̂ , it follows that

Et̂
t̂ − Er̂

r̂ − E θ̂

θ̂
− E φ̂

φ̂
= −2e−2β

(
2α′

r
+ α′′ + α′2 − α′β ′

)
. (11.5)

We also have

(r2eα−βα′)′ = r2eα−β

(
2α′

r
+ α′′ + α′2 − α′β ′

)
, (11.6)

which gives

g = 1

2r2

∫
(Et̂

t̂ − Er̂
r̂ − E θ̂

θ̂
− E φ̂

φ̂
)r2eα+βdr. (11.7)

By applying Einstein’s field equations

E μ̂

ν̂
= 8πGT μ̂

ν̂
(11.8)

we get

g = 4πG

r2

∫
(T t̂

t̂ − T r̂
r̂ − T θ̂

θ̂
− T φ̂

φ̂
)r2eα+βdr. (11.9)

This is the Tolman–Whittaker expression for gravitational acceleration.
The corresponding Newtonian expression is

gN = −4πG

r2

∫
ρr2dr . (11.10)

The relativistic gravitational mass–density is therefore defined as

ρG = −T t̂
t̂ + T r̂

r̂ + T θ̂

θ̂
+ T φ̂

φ̂
. (11.11)

For an isotropic fluid with

T t̂
t̂ = −ρ, T r̂

r̂ = T θ̂

θ̂
= T φ̂

φ̂
= p (11.12)

we get ρG = ρ + 3p (with c = 1), which becomes

ρG = ρ + 3p

c2
. (11.13)



11.1 The Pressure Contribution to the Gravitational Mass of a Static … 285

It follows that in relativity, pressure has a gravitational effect. Greater pressure
gives increasing gravitational attraction. Strain (p < 0) decreases the gravitational
attraction. In the Newtonian limit, c → ∞, pressure has no gravitational effect.

Inserting the equation of state (7.17) of LIVE into Eq. (11.13) gives ρG = −2ρ <

0. Hence the assumption that it is not possible to measure velocity relative to the
vacuum energy, and that the vacuum energy can be described as a perfect fluid,
together with the general theory of relativity, imply that the vacuum energy produces
repulsive gravitation.

11.2 The Tolman–Oppenheimer–Volkoff Equation

We are going to solve Einstein’s field equations inside a spherically symmetric,
static mass distribution with density ρ(r). Then the line-element can be given the
form (11.2). Using Eq. (8.15) for the components of the Einstein curvature tensor
the field equation for Et̂t̂ can be written

1

r2
d

dr
[r(1 − e−2β)] = 8πGρ. (11.14)

Integration gives

r(1 − e−2β) = 2G
∫ r

0
4πρr2dr. (11.15)

The mass inside a spherical surface with coordinate radius r is

m(r) =
∫ r

0
4πρr2dr. (11.16)

Hence, Eq. (11.15) can be written as

e−2β = 1 − 2Gm(r)

r
= 1

grr
. (11.17)

From the field equation for Er̂r̂ , we have

2

r

dα

dr
e−2β − 1

r2
(1 − e−2β) = 8πGp. (11.18)

This leads to

2

r

dα

dr

(
1 − 2Gm(r)

r

)
− 2Gm(r)

r3
= 8πGp, (11.19)
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or

dα

dr
= G

m(r) + 4πr3 p(r)

r(r − 2Gm(r))
. (11.20)

The relativistic equation of hydrostatic equilibrium is

T r̂ ν̂
;ν = 0. (11.21)

Written out

T r̂ ν̂
,ν̂ + Γ ν

α̂ν̂T r̂ α̂ + Γ r̂
α̂ν̂T α̂ν̂ = 0. (11.22)

The first term is

T r̂ ν̂
,ν̂ = T r̂r̂

,r̂ = p,r̂ = �er̂ (p). (11.23)

Since �er · �er = grr we have |�er | = √
grr . Hence, �er̂ = (

1/
√

grr
)�er . This gives

T r̂ ν̂
,ν̂ = �er̂ (p) = 1√

grr
�er (p) = e−β dp

dr
. (11.24)

Wehere use ordinary derivatives instead of partial derivatives since p only depends
upon r. The second term is

�ν̂
α̂ν̂T r̂ α̂ = �ν̂

r̂ ν̂T r̂r̂ = �ν̂
r̂ ν̂ p = � t̂

r̂ t̂ p + � î
r̂ î

p. (11.25)

The third term is

�r̂
α̂ν̂T α̂ν̂ = �r̂

ν̂ν̂T ν̂ν̂ = �r̂
t̂ t̂ρ + �r̂

î î
p. (11.26)

In orthonormal basis, we have

�ν̂μ̂ = −�μ̂ν̂ ⇒ �ν̂μ̂α̂ = �μ̂ν̂α̂ and � î
r̂ î

= �î r̂ î = −�r̂ î î = −�r̂

i ˆ̂i . (11.27)

Hence the last terms in the expressions for �ν̂
α̂ν̂

T r̂ α̂ and �r̂
α̂ν̂

T α̂ν̂ cancel each other,
and the hydrostatic equation then takes the form

e−β dp

dr
+ � t̂

r̂ t̂ p + �r̂
t̂ t̂ρ = 0. (11.28)

Furthermore

� t̂
r̂ t̂ = −�t̂ r̂ t̂ = �r̂ t̂ t̂ = �r̂

t̂ t̂ , (11.29)
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and

�r̂
t̂ t̂ = e− β dα

dr
. (11.30)

The hydrostatic equation then takes the form

dp

dr
+ (p + ρ)

dα

dr
= 0. (11.31)

Inserting Eq. (11.20) into Eq. (11.31) gives

dp

dr
= −G(ρ + p)

m(r) + 4πr3 p(r)

r(r − 2Gm(r))
. (11.32)

This is the Tolman–Oppenheimer–Volkov (TOV) equation which can be used to
construct relativistic star models. It can be written in the form

dp

dr
= −Gρm(r)

r2

(
1 + p(r)

ρ

)(
1 + 4πr3 p(r)

m(r)

)

1 − 2Gm(r)

r

. (11.33)

InNewtonian theory, only the first factor appears. The three last terms are relativis-
tic corrections. They show that pressure, p > 0, makes relativistic gravity stronger
than Newtonian gravity. This is significant for the possibility of collapse to black
holes.

11.3 An Exact Solution for Incompressible
Stars—Schwarzschild’s Interior Solution

The metric component gtt = −e2α(r) can now be calculated from Eq. (11.31) in the
form

dα = − dp

ρ + p
(11.34)

We now consider an incompressible star, say a neutron star, with ρ = constant
and radius R. Integration of eq. (11.34) with vanishing pressure at the surface then
gives

α(r)∫

α(R)

dα = −
p∫

0

dp

ρ + p
⇒ α(r) = α(R) − ln

(
1 + p

ρ

)
. (11.35)
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Requiring continuity of the metric at r = R, and using the exterior Schwarzschild
metric, we get

gtt(r) = e2α(r) = gtt(R)
(
1 + p

ρ

)2 = − 1 − RS
R(

1 + p
ρ

)2 . (11.36)

For an incompressible star, the mass inside a radius r is

m(r) = 4π

3
ρr3. (11.37)

We then get

e−2β = 1 − 2Gm(r)

r
= 1 − 8πGρ

3
r2. (11.38)

Defining a constant a with dimension length by

a2 = 3

8πGρ
, (11.39)

this may be written as

e−2β = 1 − r2

a2
. (11.40)

It may be noted that

RS = 2Gm(R) = 8πGρ

3
R3 = R3

a2
. (11.41)

Hence

a2 = R3

RS
and

R2

a2
= RS

R
. (11.42)

The TOV-equation may now be written

dp

dr
= − 1

2a2ρ
(ρ + 3p)(ρ + p)

r

1 − r2
a2

. (11.43)

So

p∫

0

dp

(ρ + 3p)(ρ + p)
= − 1

2a2ρ

r∫

R

r

1 − r2
a2

dr. (11.44)
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which leads to

ρ + p

ρ + 3p
=

√
a2 − R2

a2 − r2
, (11.45)

giving the pressure distribution

p(r) =
√

a2 − r2 − √
a2 − R2

3
√

a2 − R2 − √
a2 − r2

ρ =
√
1 − Rs

R3 r2 −
√
1 − RS

R

3
√
1 − RS

R −
√
1 − Rs

R3 r2
ρ, r < R.

(11.46)

This gives

1 + p

ρ
=

2
√
1 − RS

R

3
√
1 − RS

R −
√
1 − Rs

R3 r2
. (11.47)

Combining this with Eq. (11.36) we get

gtt = −1

4

(

3

√

1 − RS

R
−

√

1 − RS

R3
r2

)2

. (11.48)

Hence the line-element of the spacetime inside an incompressible star is

ds2 = −1

4

(

3

√

1 − RS

R
−

√

1 − RS

R3
r2

)2

dt2 + dr2

1 − RS
R3 r2

+ r2d�2. (11.49)

The spacetime described by this line-element is called the internal Schwarzschild
spacetime.

In Newtonian gravity, there is no limit to how large a star can be if there exists a
sufficiently effective mechanism for generating a pressure gradient which may resist
gravity. We shall see that it is not so in relativistic gravity.

In order to satisfy the condition of hydrostatic equilibrium, the pressure must be
positive. This must be valid at every distance from the centre of the star, also at the
centre, p(0) > 0. It follows from the expression for the pressure distribution that

p(0) =
1 −

√
1 − RS

R

3
√
1 − RS

R − 1
> 0, (11.50)
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which requires that RS < (8/9)R. Including here the velocity of light, this leads to
the condition

M <
c2

G
√
3πGρ

= 2
√
2

3

c2

G
a, a = c

√
3

8πGρ
. (11.51)

A star with a larger mass will collapse to a black hole independent of the
mechanism that generates a pressure gradient in the star.

Let us consider an incompressible neutron star as an illustrating example.A typical
density is then ρn = 5 · 1017 kg/m3. This gives an = 18 km and M < 22 · 1030 kg =
11 M�.

11.4 The Israel Formalism for Describing Singular Mass
Shells in the General Theory of Relativity

We shall here follow the descriptions of this formalism as presented by Israel [1],
Misner, Thorne Wheeler [2], and Lightman, Press, Price and Teukolsky [3].

Let Si j be the components of the energy–momentum tensor of a singular shell,
and Tαβ the components of the energy–momentum tensor of the medium filling the
region at each side of the shell. Here the indices i, j mark the coordinates in the shell
and α, β the coordinates of the spacetime outside the shell. Israel has shown that the
equation of continuity can be written

u j Sm
j |m = −[

Tαβuαnβ
]
, (11.52)

where u j is the j-component of the 4-velocity of a point on the shell, nβ the β−
component of its normal vector, the vertical line denotes covariant derivative with
respect to the intrinsic metric on the shell, and the bracket denotes the difference
between the values of the quantity inside the bracket at the two sides of the shell.
The energy–momentum tensor of the shell has the form

Si j = σui u j + ti j , (11.53)

where σ is the mass per unit area of the shell, and ti j are the components of the stress
tensor of the shell.

The components of the extrinsic curvature tensor of the shell are ([2] p. 513)

Ki j = −ni; j = −ni, j + nα�α
i j , (11.54)

where �α
i j are the Christoffel symbols of the spacetime. The equation of motion of

the shell is ([3] exercise 21.8)
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[
Ki j

] = κ

(
Si j − 1

2
S(3)gi j

)
, S = Sk

k = gi j Si j . (11.55)

Contraction gives

[K ] = −(κ/2)S. (11.56)

Hence, solving Eq. (11.55) with respect to Si
j gives the energy–momentum tensor

of the shell in terms of the discontinuity of the extrinsic curvature tensor of the shell,
as evaluated inside and outside the shell

κSi
j = [

K i
j

] − K δi
j . (11.57)

Example 11.1 (Thin dust shell described by the Israel formalism) We shall describe
a spherical shell consisting of dust particles in empty space. The shell will collapse,
and we shall first investigate whether the rest mass of the shell is constant and then
find the equation of motion of the shell.

In empty space, the energy–momentum tensor at the right-hand side of equation
of continuity (11.52) vanishes. Then it takes the form,

u j Sm
j |m = 0. (11.58)

Also the stress tensor of the shell vanishes. Then the energy–momentum tensor
of the shell as given in Eq. (11.53) has the form

Si j = σui u j . (11.59)

Hence,

u j Sm
j |m = u j

(
σu j u

m
)
|m = u jσ|m u j u

m + u jσu j |m um + σu j u j u
m
|m . (11.60)

We now use the 4-velocity identity which here takes the form u j u j = −1, and
that the 4-acceleration is

a j = umu j |m . (11.61)

Equation (11.60) then takes the form

u j Sm
j |m = −umσ|m + σu j a j − σu j

| j . (11.62)

Here

umσ|m = dσ

dτ
(11.63)
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is the derivative of the mass density of the shell with respect to its proper time.
Furthermore, since the 4-acceleration is orthogonal to the 4-velocity, u j a j = 0.
Thus we get

u j Sm
j |m = −dσ

dτ
− σu j u| j . (11.64)

The continuity equation of the shell then takes the form

dσ

dτ
= −σu j u| j . (11.65)

Writing this out we have

dσ

dτ
= −σ

(
(3)g

)− 1/2
[(

(3)g
)1/2

u j
]

′ j
, (11.66)

where (3)g is the determinant of the three-dimensional metric on the shell.
The motion of the shell is given by r = R(τ ) where 4π R2(τ ) is the area of the

shell at the point of time τ . Let the intrinsic geometry of the shell be described in
terms of the coordinates (τ, θ, φ). Then the line-element of the intrinsic geometry of
the shell may be written

ds2 = −dτ 2 + R2(τ )d�2. (11.67)

Since

(3)g = −R4(τ ) sin2 θ, (11.68)

and the only non-vanishing component of the 4-velocity in the intrinsic coordinate
system is

uτ = dτ

dτ
= 1, (11.69)

the continuity equation of the shell reduces to

1

σ

dσ

dτ
= − 1

R2

dR2

dτ
= − 2

R

dR

dτ
. (11.70)

Integration gives

σ R2 = constant. (11.71)

Hence, the rest mass of the shell
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MS = 4πσ R2 (11.72)

is constant.
We shall now find the equation of motion of the shell. For a shell consisting of

dust particles, Eq. (11.55) reduces to

[
Ki j

] = κσ

(
ui u j + 1

2

(3)

gi j

)
. (11.73)

The equation of motion will be found from the θθ− component of this equation.
Since uθ = 0 and (3)gθθ = R2 this gives

[Kθθ ] = (κ/2)σ R2 = RSS/2, (11.74)

where RSS is the Schwarzschild radius of the shell. As applied to a spherical surface
with the line-element (11.67), Eq. (11.54) gives

Kθθ = nα�α
θθ = nr�rθθ = −Rnr . (11.75)

Hence, Eq. (11.74) takes the form

nr+ − nr− = − RSS

2R
. (11.76)

We now utilize that

�n · n̄ = 1, �u · �u = −1, �u · �n = 0. (11.77)

In the exterior region with Schwarzschild metric, these equations take the form

−
(
1 − RS

r

)(
nt+)2 +

(
nr+)2

1 − RS
r

= 1, (11.78)

−
(
1 − RS

r

)(
ut

)2 + (ur )2

1 − RS
r

= −1, (11.79)

−
(
1 − RS

r

)
ut nt+ + ur nr+

1 − RS
r

= 0, (11.80)

where RS is the constant Schwarzschild radius of the shell. Equations (11.78–11.80)
give

nt+ = ur

1 − RS/R
, nr+ =

(
1 + (

ur
)2 − RS

R

)1/2

. (11.81)
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The radial component of the 4-velocity of a particle on the shell is

ur = dR

dτ
≡ Ṙ. (11.82)

Hence,

nr+ =
(
1 + Ṙ2 − RS

R

)1/2

. (11.83)

Inside the shell RS = 0, giving

nr− = (
1 + Ṙ2

)1/2
. (11.84)

Inserting the expressions (11.83) and (11.84) into Eq. (11.76) gives the equation
of motion of the shell

(
1 + Ṙ2 − RS

R

)1/2

− (
1 + Ṙ2

)1/2 = RSS

2R
. (11.85)

Solved with respect to M = RS/2 (using units so that Newton’s gravitational
constant and the velocity of light are equal to one), we get

M = MS
(
1 + Ṙ2

)1/2 − M2
S/2R. (11.86)

Let T be the time measured on a standard clock at rest just inside the shell. Then

dT = [
1 − (dR/dT )2

]− 1/2
dτ. (11.87)

This gives

1 + Ṙ2 = [
1 − (dR/dT )2

]−1
. (11.88)

Hence Eq. (11.86) takes the form

M = MS√
1 − (dR/dT )2

− M2
S

2R
. (11.89)

This equation expresses energy conservation. The mass M of the external
Schwarzschild spacetime represents the total energy of the shell. The quantity
MS

[
1 − (dR/dT )2

]−1/2
is the relativistic energy of the shell as measures by an

observer at rest in the coordinate system at the position of the shell, i.e. the sum of
rest mass energy and kinetic energy, not including any gravitational potential energy.
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The term M2
S/2R is the Newtonian expression for the gravitational self energy—or

potential energy—of a spherical shell.
Differentiation of Eq. (11.86) with constant M gives

R̈ = −(
1 + Ṙ2

)1/2
MS/2R2. (11.90)

The acceleration of a shell instantaneously at rest is

R̈ = −MS/2R2. (11.91)

It accelerates as if half of its mass is inside the shell and half is outside.

11.5 The Levi-Civita—Bertotti—Robinson Solution
of Einstein’s Field Equations

We shall here derive and give a physical interpretation of a conformally flat, static,
spherically symmetric solution of Einstein’s field equation which was found inde-
pendently by Levi-Civita in 1917 ([4]), and by B. Bertotti and I. Robinson in 1959
([5] and [6]), and which is therefore called the Levi-Civita—Bertotti—Robinson
solution of Einstein’s field equations.

A spacetime is said to be conformally flat if it admits a coordinate system such that
the line-element can be written as a function times the line element of theMinkowski
spacetime. In the static spherically symmetric case the line element of a conformally
flat spacetime can be written

ds2 = e2α(r)
(−c2dt2 + dr2 + r2d�2

)
(11.92)

Einstein’s field equations take the form

Gt
t = e−2α

(
2α′′ + α′2 + 4

r
α′

)
= −e−4α G Q2

4πε0c4r4
, (11.93)

Gr
r = e−2α

(
3α′2 + 4

r
α′

)
= −e−4α G Q2

4πε0c4r4
, (11.94)

Gθ
θ = Gφ

φ = e−2α

(
2α′′ + α′2 + 2

r
α′

)
= e−4α G Q2

4πε0c4r4
. (11.95)

Here Q = Q(r) is the charge inside a spherical shell with radius r. Subtracting
Eq. (11.93) from (11.95) we obtain

e2αα′ = − G Q2

4πε0c4r3
. (11.96)
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Inserting this into Eq. (11.94) leads to two different solutions, either

Q(r) = 0, (11.97)

or

Q(r) = ±c2
√
4πε0

G
reα. (11.98)

The first solution gives α(r) = constant, which can be chosen to be zero with
a suitable choice of coordinates. Hence this solution represents the Minkowski
spacetime.

Inserting Eq. (11.98) into (11.96) gives

α′ = −1

r
. (11.99)

Integration gives

eα = RQ

r
, (11.100)

where RQ is a constant of integration with dimension length. Inserting this into
Eq. (11.64) leads to

Q(r) = ±c2
√
4πε0

G
RQ . (11.101)

This means that the charge inside a spherical surface with radius r is constant.
Hence the charge density vanishes in the considered region. Thus the assumption of
a conformally flat, static and spherically symmetric spacetime implies that there is
no charge in this region, although there is a radial electric field there. So there must
be a charge inside the region described by the solution (11.100). The line element of
the spacetime outside the charge distribution has the form

ds2 = R2
Q

r2
(−c2dt2 + dr2 + r2d�2

)
. (11.102)

Since the metric is static the coordinate clocks go at the same rate everywhere,
equal to the rate of standard clocks at r = RQ . There is continuous metric at r = RQ

with Minkowski spacetime inside this radius. Hence the charge is situated on a
spherical shell with radius r = RQ .

The line-element (11.102) shows that in this spacetime standard clocks at rest
slow down for increasing r. Hence, the gravitational field points in the direction of
increasing r. This means that the mass and charge distribution inside the region with
this geometry causes repulsive gravitation.
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The Kretschmann curvature scalar of this spacetime is

Rμναβ Rμναβ = 8

R4
Q

, (11.103)

which is constant. Hence there is no physical singularity in this spacetime.
Let us introduce a new radial coordinate equal to the physical radial distance,

dr̂ = RQ

r
dr. (11.104)

Integration with the boundary condition that r = RQ corresponds to r̂ = RQ

gives

r̂ = RQ

(
1 + ln

r

RQ

)
. (11.105)

The inverse transformation is

r = RQe(
r̂−RQ)/RQ . (11.106)

With the radial coordinate r̂ the line-element takes the form

ds2 = −e−2(r̂−RQ)/RQ c2dt2 + dr̂2 + R2
Qd�

2. (11.107)

The geometry of space has a very strange property. The physical area of a spherical
surface with radius r̂ is independent of the radius and equal to the area of a surface
with radius r̂ = RQ .

We shall now find the physical properties of source of this spacetime [7]. These
properties will presumably provide an explanation for the phenomenon of repulsive
gravity outside the charged shell.

11.6 The Source of the Levi-Civita—Bertotti—Robinson
Spacetime

We shall now find the energy–momentum tensor of a static spherical shell as given
by Eq. (11.57) with Minkowski spacetime inside the shell and a curved spacetime
outside. In order to provide a rather general result, we shall first consider a line-
element,

ds2 = −eαc2dt2 + eβdr2 + eγ d�2, (11.108)
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describing spacetime outside the shell, where α, β and γ are functions of r, and then
specialize to the Levi-Civita—Bertotti—Robinson metric.

The unit normal vector to a spherical surface about the origin is

�n = e−β/2�er . (11.109)

The covariant components of the extrinsic curvature tensor are given by
Eq. (11.54). Inserting the expression (5.65) for the Christoffel symbols with the
line element (11.108) gives

Ki j = −1

2
nr gi j,r = −1

2
e−β/2gi j,r . (11.110)

The mixed components are

K t
t = −1

2
e−β/2α,r , K θ

θ = K φ
φ = −1

2
e−β/2γ,r . (11.111)

Inserting these expressions into Eq. (11.57) gives the mixed components of the
energy–momentum tensor of the shell

κSt
t = −2

[
K θ

θ

] = [
e−β/2γ,r

]
,

κSθ
θ = κSφ

φ = −[
K t

t

] − [
K θ

θ

] = 1

2

[
e−β/2

(
α,r + γ,r

)]
. (11.112)

We shall now specialize to the Levi-Civita—Bertotti—Robinson spacetime with
the line element (11.102) outside the shell. Then α+ = β+ = 2 ln

(
RQ/r

)
and

γ+ = 2 ln RQ outside the shell, and α− = β− = 0, γ− = 2 ln r inside it. This gives

κSt
t = κSθ

θ = κSφ
φ = −2c2

RQ
. (11.113)

Surprisingly, the mass density and strain of the shell are independent of its radius.
It follows from Eq. (11.113) that the components of the energy–momentum tensor
of the singular shell may be written as

Si
j = −σδi

j , σ = 2c2

κ RQ
, (11.114)

where σ is the mass density of the shell. Hence, the shell has a mass

M = 4πσ R2
Q = RQc2/G. (11.115)

Note that the radius of the shell is only half its Schwarzschild radius.
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Equation (11.114) shows that the shell is a domain wall. Furthermore the Levi-
Civita—Bertotti—Robinson spacetime is a solution of Einstein’s field equationswith
a radial electric field. Hence the domain wall is charged. Using Eqs. (11.101) and
(11.115) can be written Q = √

4πε0G M , which shows that the charge of the domain
wall is proportional to its mass.

From Eq. (11.113) we can understand why there is repulsive gravity in the Levi-
Civita—Bertotti—Robinson spacetime. This equation shows that there is a strain
in the charged domain wall equal to minus its energy density. Hence, according
to Eq. (11.11) is has negative gravitational mass, and according to the Tolman–
Whittaker formula (11.9) the strain of the domain wall causes repulsive gravity in
the space outside the charged domain wall.

11.7 A Source of the Kerr–Newman Spacetime

The most general black holes can have three properties: mass, charge and angular
momentum. The spacetime outside a black hole with all three properties is a gener-
alization of the Kerr spacetime with an electric field. It is called the Kerr–Newman
spacetime. The line element of this spacetime in Boyer–Lindquist coordinates may
be written

ds2 = −c2dt2 + ρ2

(
dr2

�
+ dθ2

)
+ (

r2 + a2) sin2 θdφ2 + r2eff
ρ2

(
cdt − a sin2 θdφ

)2
,

r2eff = RSr − 2R2
Q, ρ2 = r2 + a2 cos2 θ, � = r2 + a2 − r2eff, (11.116)

where RS is the Schwarzschild radius of the mass distribution, RQ the radius given
in Eq. (11.101) corresponding to its charge Q, and a = J/Mc a length representing
its angular per unit mass.

We shall need both the covariant and the contravariant components of the metric
tensor,

gμν =

⎡

⎢⎢⎢⎢
⎣

−
(
1 − r2eff

ρ2

)
0 0 − ar2eff sin

2 θ

ρ2

0 ρ2

�
0 0

0 0 ρ2 0

− ar2eff sin
2 θ

ρ2 0 0
(

r2 + a2 + a2r2eff sin
2 θ

ρ2

)
sin2 θ

⎤

⎥⎥⎥⎥
⎦

, (11.117)

gμν =

⎡

⎢⎢⎢⎢
⎣

− �2

ρ2�
0 0 − ar2eff

ρ2�

0 �
ρ2 0 0

0 0 1
ρ2 0

− ar2eff
ρ2�

0 0 �−a2 sin2 θ

ρ2� sin2 θ

⎤

⎥⎥⎥⎥
⎦

,

�2 = (
r2 + a2

)2 − a2� sin2 θ

. (11.118)
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Theunit normal vector of the shell is �n = nr �er .Hence, �n·�n = 1gives grr (nr )2 = 1.
With the metric (11.117) this leads to

�n =
√

�

ρ
�er . (11.119)

From Eq. (11.110) we now find the components of the external curvature tensor
of a surface with r = constant,

Kθθ = nr�rθθ = −1

2
nr ∂gθθ

∂r
= −r

√
�

ρ
,

Kφφ = −
√

�

2ρ

∂gφφ

∂r
= −

[

2r +
(

RS − 2r2e f f r

ρ2

)
a2

2ρ2
sin2 θ

]√
�

ρ
sin2 θ,

Ktt = −
√

�

2ρ

∂gtt

∂r
= −

(

RS − 2r2e f f r

ρ2

)√
�

2ρ3
,

Kφt = −
√

�

2ρ

∂gφt

∂r
= −

(

RS − 2r2e f f r

ρ2

)
a
√

�

2ρ3
sin2 θ. (11.120)

Lopez [8] has considered a shell with radius

r0 = 2R2
Q

RS
= Q2

4πε0Mc2
, (11.121)

so that reff = 0. In the case that Q is equal to the elementary charge, and M is the
electron mass, r0 is equal to the classical electron radius, 2.8× 10−15 m. At the shell
the line-element (11.82) reduces to

ds2 = −c2dt2 + ρ2
0

r21
dr2 + ρ2

0dθ
2 + r21 sin

2 θdφ2,

ρ2
0 = r20 + a2 cos2 θ, r21 = r20 + a2. (11.122)

This line-element describes Minkowski spacetime at the shell in oblate spher-
ical coordinates. One can introduce ordinary spherical coordinates (R,�) by the
transformation

R cos� = r cos θ, R sin� =
√

r2 + a2 sin θ. (11.123)

The ordinary coordinates are given explicitly in terms of the oblate ones by

R = r

√

1 + a2

r2
sin2 θ, tan� =

√

1 + a2

r2
tan θ. (11.124)
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The inverse transformation is

r = R

√√√√1 + a2

R2 cos2 θ

1 + a2

R2

, sin θ = sin�
√
1 + a2

R2

. (11.125)

Taking the differential and inserting them into the line element (11.88) gives

ds2 = −c2dT 2 + dR2 + R2
(
d�2 + sin2 �dφ2

)
, (11.126)

which describes Minkowski spacetime in ordinary spherical coordinates.
We now assume that there is Minkowski spacetime inside the shell, so that the

metric is continuous at the shell. However the derivatives are not continuous. At the
shell the expressions (11.120) for the components of the external curvature tensor
then reduce to

Kθθ = −r0r1
ρ0

, Kφφ = −
(

r0 + RS

2

a2

ρ2
0

sin2 θ

)
r1
ρ0

sin2 θ,

Ktt = − RS

2

r1
ρ3
0

, Kφt = RS

2

ar1
ρ3
0

sin2 θ, (11.127)

and the metric components (11.117) and (11.118) are

gμν = diag

(
−1,

ρ2
0

r21
, ρ2

0 , r21 sin
2 θ

)
, gμν = diag

(
−1,

r21
ρ2
0

,
1

ρ2
0

,
1

r21 sin
2 θ

)
.

(11.128)

Hence,

K θ+
θ = −r0r1

ρ3
0

, K φ+
φ = −

(
r0 + RS

2

a2

ρ2
0

sin2 θ

)
1

ρ0r1
,

K t+
t = RS

2

r1
ρ3
0

, K φ+
t = RS

2

a

r1ρ3
0

(11.129)

outside the shell. In the oblate spherical coordinates inside the shell a 
= 0, but there
M = 0. Thus the discontinuities of the mixed components of the exterior curvature
tensor at the shell are

[
K θ

θ

] = 0,
[

K φ
φ

]
= − RS

2

a2

r1ρ3
0

sin2 θ,

[
K t

t

] = RS

2

r1
ρ3
0

,
[

K φ
t

]
= RS

2

a

r1ρ3
0

. (11.130)
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The components of the energy–momentum tensor are now calculated from
Eq. (11.57) with the result

κSt
t = −

([
K θ

θ

] +
[

K φ
φ

])
= RSa2

2r1ρ3
0

sin2 θ, (11.131)

κSθ
θ = −

([
K t

t

] +
[

K φ
φ

])
= − RS

2r1ρ0
, κSφ

φ = −([
K t

t

] + [
K θ

θ

]) = − RSr1
2ρ3

0

,

(11.132)

κSφ
t =

[
K φ

t

]
= RSa

2r1ρ3
0

, (11.133)

κSt
φ = κgtt Stφ = κgtt Sφt = κgtt gφφ Sφ

t = − RSr1a

2ρ3
0

sin2 θ. (11.134)

The energy–momentum tensor of the shell may be written

2κSi
j = − RS

r1ρ0

(
ui u j + δi

j

)
, ui = 1

r1ρ0

(
r21 , 0, 0, a

)
. (11.135)

This is Lopez’s source of the Kerr–Newman spacetime. The first term represents
dust with negative rest mass density, and the second term a domain wall. The four
velocity of the dust particles show that they move in the φ− direction. Thus the
source may be described as a domain wall with “bubbles” of negative rest energy
within it rotating around in the wall.

11.8 Physical Interpretation of the Components
of the Energy–Momentum Tensor by Means
of the Eigenvalues of the Tensor

Let a system be described by an energy–momentum tensor with mixed components
Si

j . The eigenvalues, λ, of the tensor are defined by the matrix equation

∣∣Si
j − λδi

j

∣∣ = 0. (11.136)

In an n-dimensional space (11.136) is an n-degree equation for λ so that Si
j has n

eigenvalues. Furthermore Si
j has n eigenvectors, �u(k), given by

Si
j u

(k) j = λ(k)u
(k)i . (11.137)

Let �u and �v be two different eigenvectors of Si
j associated with two different

eigenvalues λ1 and λ2. Then
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Si
j u

i = λ1u
i , Si

j v
i = λ1vi . (11.138)

giving

Si j u
i v j − Si j u

j vi = (λ2 − λ1)ui v
i . (11.139)

Interchanging the summation indices in the last term and using that the tensor S
is symmetrical, Si j = Sji , we get

(λ2 − λ1)(�u · �v) = 0. (11.140)

Since in general λ2 
= λ1 this requires

�u · �v = 0. (11.141)

Hence, the eigenvectors of S are orthogonal.
For the physical problems considered, Eq. (11.137) will give one time like eigen-

vector, and the other are space like. We now require that all of the eigenvectors shall
be unit vectors. The eigenvectors of S will form an orthonormal basis. The time like
eigenvector is the 4-velocity of a point of the system described by the tensor S. This
means that the eigenvectors form an orthonormal basis co-moving with the system.

Let this four-velocity be �u. Then the eigenvectors of S have the following physical
interpretation,

λ(t) = ρ0, λ(k) = −pk, (11.142)

whereρ0 is the proper energydensitymeasuredby anobserver at restwith the physical
system, and pk is the stress in the k-direction, i.e. the stress towards a surface with
normal vector in the k-direction. The components of the energy–momentum tensor
S may in general be written as

Si j = ρ0ui u j +
∑

k

pkv(k)
i v(k)

j , (11.143)

where �v(k) is a space like eigenvector of S.

Example 11.2 (Lopez’s source of the Kerr–Newman metric) The energy–momen-
tum tensor of Lopez’s source of the Kerr–Newman tensor has components given in
Eqs. (11.132–11.134). Equation (11.136) here takes the form

∣∣∣∣∣∣∣

St
t − λ 0 Sφ

t

0 Sθ
θ − λ 0

St
φ 0 Sφ

φ − λ

∣∣∣∣∣∣∣
= 0. (11.144)

Thus
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(
St

t − λ
)(

Sθ
θ − λ

)(
Sφ

φ − λ
)

− Sφ
t St

φ

(
Sθ

θ − λ
) = 0. (11.145)

One solution of this equation is

λθ = Sθ
θ . (11.146)

The other two solutions are found from

λ2 −
(

St
t + Sφ

φ

)
λ + St

t Sφ
φ − Sφ

t St
φ = 0, (11.147)

giving

λt = 1

2

(
St

t + Sφ
φ

)
−

√
1

4

(
St

t − Sφ
φ

)2 + Sφ
t St

φ,

λφ = 1

2

(
St

t + Sφ
φ

)
+

√
1

4

(
St

t − Sφ
φ

)2 + Sφ
t St

φ. (11.148)

Inserting the components (11.133–11.134) of the energy–momentum tensor of
Lopez’s source of the Kerr–Newman spacetime we get

λt = 0, λθ = λφ = − RS

2r1ρ0
. (11.149)

The eigenvectors are now found from Eq. (11.137). The time like eigenvector, i.e.
the 4 velocity field of the source is given by

St
t ut + St

φuφ = 0, Sφ
t ut + Sφ

φ uφ = 0. (11.150)

The 4-velocity identity gives

gtt
(
ut

)2 + gφφ

(
uφ

)2 + 2gφt u
φut = −1. (11.151)

Since gφt = 0 at the shell this reduces to

gtt
(
ut

)2 + gφφ

(
uφ

)2 = −1. (11.152)

Equations (11.150) and (11.152) give

ut =
⎡

⎣−gtt − gφφ

(
St

t

St
φ

)2
⎤

⎦

−1/2

, uφ =
⎡

⎣−gtt

(
St

φ

St
t

)2

− gφφ

⎤

⎦

−1/2

. (11.153)

Inserting the values of the metric tensor at the shell,
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gtt = −1, gφφ = r21 sin
2 θ, (11.154)

and

(
St

t

St
φ

)2

= a2

r41
(11.155)

gives the eigenvector

�u = 1

r1ρ0

(
r21 �et + a�eφ

)
. (11.156)

This is the 4-velocity of particles following the shell. According to the interpre-
tation at the end of the previous section, this means that the bubbles with negative
rest energy within the shell rotate rigidly with an angular velocity

� = uφ

ut
= a

r21
c = a

r20 + a2
c, (11.157)

where we have used the last of Eq. (11.122) and inserted the velocity of light.

11.9 The River of Space

When teaching the theory of relativity one sometimes gets the question: What is
space? It is here understood that the question is concerned with ordinary three-space
and not the four-dimensional spacetime. The first part of the answer is to make clear
that space is a theory dependent concept. The second is to try to explain what we
mean by “space” according to the general theory of relativity.

One definition is to say that space is a set of simultaneous events. Even if this is
an essential part of what we mean by space, this definition is not sufficient to give
us a picture of space which makes us understand, for example, why light cannot be
emitted from the horizon of a black hole, and what is meant by an “expanding space”.
We must demand from the properties of space that it provides an interpretation of
the expression the “expanding space” according to the general theory of relativity.
Furthermore, the definition should capture the phenomenon of inertial dragging.

We shall here define the concept of “physical space” as a continuum of freely
moving reference particles with specified initial conditions. In a homogeneous and
isotropic universe, the only motion of the reference particles is that due to a universal
change of the distances between the particles. This may be described by a single
scale factor and defines the Hubble flow which obeys the Hubble–Lemaître law.
These particles make up what we call the “river of space” ([10]).
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We shall here describe the river of space in the Schwarzschild–de Sitter space-
time with the line element (11.172). One may think of the cosmological constant as
representing the constant density of LIVE (see 7.2.1) causing repulsive gravity.

Let

f (r) = 1 − RS

r
− r2

R2
H

, RS = 2G M

c2
, RH =

√
3

�
. (11.158)

The value of the cosmological constant representing the density of LIVE in our
universe is � ∼ 1052 m−2. Hence RH ∼ 1, 7 · 1026m ∼ 1.7 · 1010l.y. The horizons
of this spacetime are given by f (r) = 0, giving

r1 = 2√
3

RH sin θ, r2 = RH cos θ − RH√
3
sin θ, sin(3θ) = 3

√
3

2

RS

RH
. (11.159)

We shall assume that 0 < θ < π/6.
Let us first calculate the 4-acceleration of a particle at rest in the coordinate

system. Hence we consider a particle with dr = dθ = dφ = 0 in the line element
(11.172). Then the only non-vanishing component of the particle’s 4-velocity is
ut = dt/dτ = f (r)−1/2, where τ is the proper time of the particle. Since ut is
independent of the time, the components of the particle’s 4-acceleration are given by
uα = �α

t t

(
ut

)2
, where the only non-vanishing Christoffel symbol is �r

tt . Hence the
only nonzero component of the 4-acceleration is

ar = 2r3 − RS R2
H

2R2
Hr2

. (11.160)

Accordingly, the 4-acceleration vanishes on a 3-surface with radius

r0 =
(

RS R2
H

2

)1/3

. (11.161)

Inserting, for example, the Schwarzschild radius of the Sun and the density of
dark energy in the universe we get r0 ≈ 200l.y.. It is clear that RH  r0 for all
localized systems we are aware of in the local part of the universe. A particle at rest
at r = r0 is a free particle. Note further that ar < 0 for r < r0 and ar > 0 for r > r0.

In this spacetime we define the river of space by a continuum of free particles
that are at rest at r = r0. Hence the river of space flows inwards towards the central
mass for r < r0 and outwards for r > r0. The reason for the outwards flow outside
r = r0 is the repulsive gravity of the LIVE.

Let us now calculate the velocity of the river of space in the Schwarzschild–de
Sitter spacetime. It consists of falling particles with a Lagrangian
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L = −1

2
f (r)c2 ṫ2 + 1

2

ṙ2

f (r)
, (11.162)

where the dots represent differentiation with respect to the proper time of a parti-
cle. Since L does not depend upon the time, the conjugate momentum to the time
coordinate is a constant of motion,

pt = ∂L

∂ ṫ
= − f (r)c2 ṫ = constant. (11.163)

From the four-velocity identity, we obtain

− p2
t

f (r)
+ ṙ2

f (r)
= −c2. (11.164)

Inserting the boundary condition ṙ(r0) = 0 gives

pt = −c
√

f (r0), f (r0) = 1 − 3

(
RS

2RH

)2/3

. (11.165)

Hence

ṙ = ±c
√

f (r0) − f (r), (11.166)

with+ for r > r0 and – for r < r0. Inserting the expression (11.165) into Eq. (11.163)
gives

ṫ =
√

f (r0)

f (r)
. (11.167)

The coordinate velocity of the river of space is then

dr

dt
= ṙ

ṫ
= ± f (r)

√

1 − f (r)

f (r0)
. (11.168)

We now introduce an orthonormal basis vector field associated with observers at
rest in the coordinate system. The relationship between the coordinate basis vectors
and those of the orthonormal basis vector field is

et̂ = 1√
f (r)

et , er̂ = √
f (r)er . (11.169)

Hence, the velocity of the river of space as measured by an observer at rest in the
static reference frame is
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Fig. 11.1 River of space in the Schwarzschild–de Sitter spacetime. The centre vertical line marks
the equilibrium radius, where the river of space is at rest, and the left and right lines mark the
horizons where the river of space flows with the velocity of light (From Braeck and Grøn [10])

dr̂

dt̂
= 1

f (r)

dr

dt
= ±

√

1 − f (r)

f (r0)
= ±

√
r2 + 2r30/r − 3r20

R2
H − 3r20

. (11.170)

Inserting the horizon radii (11.159) gives dr̂/dt̂ = ±c with minus at the
Schwarzschild horizon and plus at the de Sitter horizon. Hence, the river of space
flows at the velocity of light into a black hole around the origin of the coordinate
system and there is an outwards flow with the velocity of light at the outer horizon.
The function (11.170) is plotted in Fig. 11.1.

The river of space flows with superluminal velocity inside the Schwarzschild
horizon and outside the de Sitter horizon.

Note that for r  r0 the expression (11.170) reduces to

dr̂

dt̂
≈ H0r, H0 = c

√
R2

H − 3r20

≈ c

RH
= c

√
�

3
. (11.171)

Hence, far outside the equilibrium radius, the velocity of the river of space is
proportional to the distance. This is the Hubble–Lemaître expansion law which will
be discussed in the next chapter. Thus, the flow of the river approaches the Hubble
flow far from the mass distribution.
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Exercises

11.1 The Schwarzschild–de Sitter metric

ShowSchwarzschild–de Sitter metric that the solution of Einstein’s field equations
with a cosmological constant in a static, spherically symmetric space is

ds2 = −
(
1 − RS

r
+ r2

R2
H

)
c2dt2 + dr2

1 − RS
r + r2

R2
H

+ r2d�2, (11.172)

where RS = 2G M/c2 is the Schwarzschild radius of the central mass, and RH =√
3/� is the de-Sitter horizon radius which is the horizon radius in the case that there

is no central mass, RS = 0.

11.2 A spherical domain wall described by the Israel formalism

Consider a static, spherically symmetric domain wall in empty space with mass
density σ and radius R. Show that the mass M of the Schwarzschild spacetime
outside the wall is

M = (1 − 2πσ R)4πσ R2. (11.173)
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Chapter 12
Cosmology

Abstract The Lemaître–Friedmann–Robertson–Walker (LFRW) universe models
are deduced as solutions of Einstein’s field equations, and the Hubble–Lemaître
expansion law is found as a general property of these models. It is shown that the
cosmic redshift due to the expansion of the space contains both the kinematicDoppler
effect due to the velocity of the emitter relative to the observer and the gravitational
shift of wavelength for light moving vertically in a gravitational field. Several obser-
vational properties of a flat LFRW universe model with dust and Lorentz invariant
vacuum energy (LIVE) are deduced. Also anisotropic and inhomogeneous universe
models are considered. Finally some inflationary universe models are discussed, and
their predictions for some observational properties are confronted with observed
data.

12.1 Co-moving Coordinate System

In this chapter we will first consider expanding homogeneous and isotropic models
of the universe. They are called Lemaître-Friedmann–Robertson–Walker universe
models. We introduce an expanding frame of reference with the galactic clusters
as reference particles. Then we introduce a “co-moving coordinate system” in this
reference frame with spatial coordinates χ , ϑ , φ. Time measured on standard clocks
carried by the galactic clusters is used as coordinate time.

The line element can then be written in the form

ds2 = −c2dt2 + a(t)2[R2
0dχ

2 + r(χ)2d�2], (12.1)

Here χ is a dimensionless radial coordinate, and R0 represents the present value
of the curvature radius of the 3-space. The coordinate time t is shown on standard
clocks co-moving with the reference particles of the expanding system, dχ = d� =
0 and ds2 = − c2dτ 2 = − c2dt2. The function a(t) is called the scale factor, and t is
called cosmic time. The age of the universe is the present value of the cosmic time,
t0. The scale factor tells how the reference particles move radially. It is normalized
to have the value 1 now, a(t0) = 1. Hence the scale factor represents the ratio of the
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distance between the reference particles at an arbitrary point of time and their present
distance.

We shall now investigate whether the reference particles are freely moving, i.e.
whether they obey the geodesic equation. Since a reference particle is permanently
at rest in the coordinate system, and the derivative of the coordinate time with respect
to its proper time is dt/dτ = 1, its 4-velocity has components

uμ = dxμ

d τ
= dxμ

dt
= (c, 0, 0, 0). (12.2)

This applies at an arbitrary time, so duμ

dt = 0. Hence, the geodesic equation

duμ

dt
+ �

μ
αβ uαuβ = 0 (12.3)

reduces to

�
μ
tt = 0. (12.4)

Since

�
μ
tt = 1

2
gμν(

0
︷︸︸︷

gνt,t +
0

︷︸︸︷

gtν,t +
0

︷︸︸︷

gtt,ν ) = 0, (12.5)

The geodesic equation is fulfilled for the reference particles. Hence they are freely
falling.

12.2 Curvature Isotropy—The Robertson–Walker Metric

We introduce an orthonormal form basis,

ωt̂ = dt, ωχ̂ = R0a(t)dχ, ωθ̂ = a(t)r(χ)dθ,

ωφ̂ = a(t)r(χ) sin θdφ. (12.6)

Then we use Cartan’s 1. and 2. structure equations,

dωμ̂ = −�
μ̂

v̂ ∧ ωv̂, Rμ̂

ν̂
= d�μ̂

ν̂
+ �

μ̂

λ̂
∧ �λ̂

ν̂ (12.7)

to find the connection forms and the curvature forms. Calculations give (notation:
· = d

dt ,
′ = d

dχ )
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Rt̂
î
= ä

a ωt̂ ∧ ωî, ωî = ωχ̂ , ωθ̂ , ωφ̂,

Rχ̂

ĵ
=

(

ȧ2

a2 − r′′
ra2

)

ωχ̂ ∧ ωĵ , ωĵ = ωθ̂ , ωφ̂,

Rθ̂

φ̂
=

(

ȧ2

a2 + 1
r2a2 − r′2

r2a2

)

ωθ̂ ∧ ωφ̂.

(12.8)

The present curvature of 3-space (dt = 0) can be found by putting a = 1. That is

3Rχ̂

ĵ
= − r′′

r
ωχ̂ ∧ ωĵ,

3R
θ̂

φ̂
=

(

1

r2
− r′2

r2

)

ωθ̂ ∧ ωφ̂. (12.9)

The 3-space is assumed to be isotropic and homogeneous. This demands

− r′′

r
= 1 − r′2

r2
= k

R2
0

, (12.10)

where R0 is the present value of the curvature radius of the 3-space. Here k is a
dimensionless constant which has the value 1 for a positively curved (spherical)
space, 0 for Euclidean (flat) space, and −1 for negatively curved (hyperbolic) space.

r′′ + k

R2
0

r = 0 and r′ =
√

1 − k(r/R0)
2. (12.11)

The solutions with the boundary conditions r(0) = 0, r′(0) = 1 are

r = R0 sinh χ, dr =
√

R2
0 + r2dχ (k = −1),

r = R0χ, dr = R0dχ (k = 0),

r = R0 sin χ, dr =
√

R2
0 − r2dχ (k = 1) .

(12.12)

In all three cases one may write

dr = R0

√

1 − k(r/R0)
2dχ. (12.13)

We now substitute

R2
0dχ

2 = dr2

1 − k(r/R0)
2 (12.14)

into the line element (12.1). In standard coordinates it then takes the form

ds2 = −c2dt2 + R2
0a2(t)

(

dχ2 + S2
k (χ)d�2

)

. (12.15)
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where

Sk(χ) =
⎧

⎨

⎩

sin χ , k = 1
χ , k = 0
sinh χ, k = −1

. (12.16)

With the radial coordinate r the line-element takes the form

ds2 = −c2dt2 + a2(t)

(

dr2

1 − k(r/R0)
2 + r2d�2

)

. (12.17)

This is called the Robertson–Walker line element.
The 3-space has constant curvature and is spherical for k = 1, Euclidean for k =

0 and hyperbolic for k = −1. Universe models with k = 1 are known as “closed”,
and models with k = −1 are known as “open”. Models with k = 0 are called “flat”
even though also these models have curved spacetime.

12.3 Cosmic Kinematics and Dynamics

12.3.1 The Hubble–Lemaître Law

Thephysical distance at a point of time t, to a particlewith an instantaneous coordinate
distance χ from an observer at the origin, is

l = √
gχχ χ = R0a(t)χ. (12.18)

The value of χ determines which reference‚ particle’ (galactic cluster) we are
observing, and a(t) how it is moving. The velocity of the particle relative to the
observer at the origin is

v = R0(ȧχ + aχ̇ ) = R0

(

ȧ

a
aχ + aχ̇

)

. (12.19)

The Hubble parameter is defined as

H = ȧ

a
. (12.20)

The present value of the Hubble parameter, H0 = H (t0) is called the Hubble
constant. A universe expanding with constant velocity has an age equal to the inverse
value of the Hubble constant. This is called the Hubble age of the universe,
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tH = 1

H0
. (12.21)

We shall call lH = c tH the Hubble length.
A large number of observations have been performed in order to determine the

age of the universe and the value of the Hubble constant. Favoured values are t0 =
13.8 × 109 years, and H0 = 21.5 km/s per million light years corresponding to a
Hubble age tH = 13.85 × 109 years. It may be noted that the astronomers use the
length unit parsec which is equal to 3.26 light years. So they give the Hubble constant
in units km/s per Megaparsec, H0 = 70.1 km/s per Mpc.

Equation (12.19) may be written as

v = H l + aR0χ̇ = vH + vP. (12.22)

Here

vH = H l (12.23)

is the velocity of the Hubble flow, which represent the expansion of the universe.
It says that the velocity of the Hubble flow is proportional to the distance from the
observer. This is the Hubble–Lemaître law. The general relativistic interpretation of
this law is that space expands.

Furthermore

vP = aR0χ̇ (12.24)

is called the peculiar velocity of the considered particle. It is a velocity peculiar to
the considered particle due to a local gravitational field at the position of the particle.
In other words: vH is the velocity of space, and vP is a velocity through space. The
velocity of space is permitted to be larger than the velocity of light, which is the case
farther away from the observer than c/H , and the velocity though space is always
smaller than the velocity of light.

12.3.2 Cosmological Redshift of Light

We consider light emitted from a position with standard radial coordinate χe and
received by the observer at χ = 0. Let �te be the period of the light as measured
in the emitter position at the emission time, and �t0 the period as measured in the
receiver position at the receiving time (Fig. 12.1).

Light follows curves with ds2 = 0, with dϑ = dφ = 0, and we have

cdt = −a(t)R0dχ. (12.25)
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Fig. 12.1 Cosmological redshift

Integration from emitter event to receiver event gives

c
R0

t0∫

te

dt
a(t) = −

0
∫

χe

dχ = χe,

c
R0

t0+�t0∫

te+�te

dt
a(t) = −

0
∫

χe

dχ = χe,

(12.26)

which gives

t0+�t0∫

te+�te

dt

a
−

t0∫

te

dt

a
= 0 (12.27)

or

t0+�t0∫

t0

dt

a
−

te+�te∫

te

dt

a
= 0. (12.28)

During the integration time interval from te to te + �te the expansion factor a (t)
can be considered a constant with value a(te) and during the integration time interval
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from t0 to t0 + �t0 with value a(t0), giving

�te
a(te)

= �t0
a(t0)

. (12.29)

�t0 and �te are periods of the light at the receiving and emitting time. Since the
wavelength of the light is λ = c�t we have

λ0

a(t0)
= λe

a(te)
. (12.30)

This can be interpreted as a “stretching” of the electromagnetic waves due to the
expansion of space [1]. The cosmological redshift is denoted by z and is given by

z = λ0 − λe

λe
= a(t0)

a(te)
− 1. (12.31)

The scale factor is usually normalized to have a present value equal to one, a(t0) =
1, so that

1 + z = 1

a
. (12.32)

12.3.3 Cosmic Fluids

The energy–momentum tensor for a perfect fluid with mass density ρ as measured
by a co-moving observer in the fluid, and pressure p (no viscosity and no thermal
conductivity), is

Tμν = (ρ + p/c2)uμuν + pgμν. (12.33)

In an orthonormal basis

Tμ̂ν̂ = (ρ + p/c2)uμ̂uν̂ + pημ̂ν̂ , (12.34)

where ημ̂ν̂ is the Minkowski metric. We consider three types of cosmic fluid.

1. Dust: p = 0,

Tμ̂ν̂ = ρuμ̂uν̂ . (12.35)

2. Radiation: p = 1
3ρc2,
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Tμ̂ν̂ = 4

3
ρuμ̂uν̂ + pημ̂ν̂

= ρ

3
(4uμ̂uν̂ + ημ̂ν̂). (12.36)

The trace vanishes for radiation,

T = T μ̂

μ̂
= ρ

3

(

4uμ̂uμ̂ + δμ
μ

)

= 0. (12.37)

3. Lorentz invariant vacuum energy, LIVE, pL = −ρLc2,

Tμ̂ν̂ = −ρημ̂ν̂ . (12.38)

The density of LIVE can be related to the cosmological constant by

� = κ ρL. (12.39)

One has also introduced a more general type of vacuum energy given by the
equation of state

pφ = wρφc2, (12.40)

where φ represents a scalar field, and w is a factor which is often assumed to be
constant. In a homogeneous universe the pressure and density are given by

pφ = 1

2
φ̇2 − V (φ), ρφ = 1

2
φ̇2 + V (φ), (12.41)

where V (φ) is the potential for the scalar field. Then we have

w =
1
2 φ̇

2 − V (φ)

1
2 φ̇

2 + V (φ)
. (12.42)

The special case φ̇ = 0 gives LIVE with w = −1. The more general vacuum is
called “quintessence”.

12.3.4 Isotropic and Homogeneous Universe Models

We will discuss isotropic and homogenous universe models with perfect fluid and a
non-vanishing cosmological constant �. Calculating the components of the Einstein
tensor from the line-element (12.17) we find in an orthonormal basis



12.3 Cosmic Kinematics and Dynamics 319

Et̂t̂ = 3ȧ2

a2
+ 3kc2

R2
0a2

, Em̂m̂ = −2ä

a
− ȧ2

a2
− kc2

R2
0a2

. (12.43)

Hence, the trace of the Einstein tensor is

Eμ̂

μ̂
= − 6

a2

(

a ä + ȧ2 + kc2/R2
0

)

. (12.44)

The components of the energy–momentum tensor of a perfect fluid in a co-moving
orthonormal basis are

Tt̂t̂ = ρ, Tm̂m̂ = p. (12.45)

Hence the t̂ t̂ component of Einstein’s field equations is

3
ȧ2 + kc2/R2

0

a2
= κρ + � (12.46)

where κ is Einstein’s gravitational constant as given inEq. (7.37). The m̂m̂ component
of Einstein’s field equations is

−2
ä

a
− ȧ2

a2
− kc2

R2
0a2

= κpc2 − �, (12.47)

where ρ is the energy density and p is the pressure. These equations are called the
Friedmann–Lemaître equations.

There are three cases of empty universe models, i.e. models with ρ = 0.

1. Empty, flat universe model with vanishing cosmological constant: ρ = p =
k = � = 0. Then Eq. (12.44) gives ȧ = 0. Integrating with the normalization
a(t0) = 1 gives a(t) = 1. The line-element then takes the form

ds2 = − c2dt2 + dr2 + r2d�2 (12.48)

This represents the Minkowski spacetime in spherical coordinates.
2. Empty universemodelwith curved 3-space and vanishing cosmological constant:

ρ = p = � = 0, k �= 0. Then Eq. (12.44) gives ȧ2 + kc2/R2
0 = 0. This requires

k = − 1, i.e. hyperbolic 3-space. For an expanding universe model we then get
ȧ = 1. Integrating with the normalization a(t0) = 1 gives a(t) = t/t0. The
line-element then takes the form

ds2 = −c2dt2 +
(

t

t0

)2( dr2

1 + (r/R0)
2 + r2d�2

)

. (12.49)

The universe model represented by this line-element is called the Milne
universe model.
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In this universe model the Hubble parameter (12.20) is

H = 1

t
. (12.50)

Hence the age of this universe model is related to the Hubble constant by

t0 = 1

H0
= tH. (12.51)

Applying the coordinate transformation

ct =
√

c2T 2 − R2, r = ct0R√
c2T 2 − R2

(12.52)

transforms the line-element to the form (12.48) which represents the Minkowski
spacetime. When there exists a coordinate transformation between two line-
elements they represent the same spacetime in two coordinate systems, which
may be co-moving with different reference frames.The coordinateR is co-moving
with a static reference frame, SR. The coordinate r is co-moving with another
reference frame, RF. We can find the motion of the reference particles of RF
relative to those of SR as follows.

Solving the last of the two transformation equations with respect to R gives

R = rcT
√

c2t20 + r2
(12.53)

The reference particles of RF have r = constant. Hence for these particles
R increases linearly with T. This means that the frame in which r is co-moving
is expanding with a constant expansion velocity. Hence the Milne universe is
nothing but the Minkowski spacetime as described in an expanding reference
frame.

3. Expanding, flat, empty universe model with positive cosmological constant, ρ =
p = k = 0 , � > 0 For this universe model Eq. (12.46) reduces to

H = ȧ

a
=

√

�

3
. (12.54)

Hence the Hubble parameter is constant. Integration with a(t0) = 1 gives

a(t) = eH (t−t0). (12.55)

The line-element takes the form

ds2 = − c2 dt2 + e2H (t−t0)
(

dr2 + r2 d�2
)

. (12.56)
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The spacetime represented by this line-element is called the De Sitter
spacetime.

It was represented by De Sitter in 1917 as a static and spherically symmetric
solution of Einsteins’s equations with a cosmological constant for empty space.
Five years later it was shown that the reference particles of the static frame were
not freelymoving, and thatwhen transforming the solution to a coordinate system
co-moving with freely moving reference particles, one obtained the line-element
above. Also Georges Lemaître showed in 1933 that the cosmological constant
could be interpreted to represent the constant energy density of Lorentz Invariant
Vacuum Energy, LIVE.

Equations (12.46) and (12.47) then give

ä = −κ

6
a(ρ + 3p/c2) + �

3
. (12.57)

Inserting the gravitational mass–density ρG from Eq. (11.13) this equation takes
the form

ä = −κ

6
aρG + �

3
. (12.58)

Inserting p = wρc2 into Eq. (11.13) gives

ρG = (1 + 3w)ρ, (12.59)

which is negative for w < −1/3, i.e. according to Eq. (12.42), for φ̇2 < V (φ).
Special cases:

• matter in the form of dust: w = 0, ρG = ρm,
• radiation: w = 1

3 , ρG = 2ρR,
• LIVE: w = −1, ρG = −2ρL.

In a universe dominated by LIVE the acceleration of the cosmic expansion is

ä = κ

6
aρL > 0, (12.60)

that is accelerated expansion. This means that LIVE acts upon itself with repulsive
gravitation.

The field equations can be combined into

H 2 ≡
(

ȧ

a

)2

= κ

3
ρm + �

3
− kc2

R2
0a2

, (12.61)

where ρm is the density of matter in the form of dust,
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� = κρL, (12.62)

and ρL is the constant density of LIVE. Then we may write

H 2 = κ

3
ρ − kc2

R2
0a2

, (12.63)

where ρ = ρm+ρL. The critical density ρcr is the density in a universewith Euclidean
space-like geometry, k = 0, which gives

κρcr = 3H 2. (12.64)

The present value of the Hubble parameter, i.e. the Hubble constant, is

H0 = √

(κ/3)ρcr 0 (12.65)

We introduce the density parameters

�m = ρm

ρcr
, �Λ = ρL

ρcr
. (12.66)

Note that these quantities are only well defined for expanding universe models
with H �= 0. Furthermore we introduce a dimensionless parameter which represents
the curvature of 3-space

�k = − kc2

R2
0a2H 2

. (12.67)

with present value

�k0 = − kc2

R2
0H 2

0

. (12.68)

Note that �k < 0 means positive spatial curvature, and �k > 0 means negative
spatial curvature. Equation (12.63) can now be written as

�m + �L + �k = 1. (12.69)

This equation shows that an empty, expanding universe has �k = 1; i.e. an
empty, expanding universe has negative spatial curvature. It may be noted that since
the present value of the scale parameter is normalized to a(t0) = 1 the curvature
parameter may be written

�k = �k0H 2
0

a2H 2
= 1 − �0

a2

H 2
0

H 2
, �0 = �m0 + �L0. (12.70)
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Hence a sufficiently large mass density �0 > 1 gives spherical spatial geometry,
�0 = 1 gives Euclidean spatial geometry, and �0 < 1 gives hyperbolic spatial
geometry. Inserting�k0 = 1−�0 into Eq. (12.68) and solving the resulting equation
with respect to R0 gives

R0 = lH√|1 − �0| . (12.71)

The Hubble length in our universe is 13.8 billion light years. Observations of tem-
perature fluctuations in the CMB-radiation show that �0 ≈ 1. Hence the curvature
radius of the 3-space is extremely large, much larger than the Hubble length of the
universe.

12.3.5 Cosmic Redshift

We consider a homogeneous and isotropic universe with standard coordinates so
that the line-element has the form (12.1). An observer is at χ = 0 and an emitter at
χ = χe. A light signal is emitted at a point of time te and received by the observer
at the present time t0. The scale factor is normalized to have the value a(t0) = 1
at the present time. The emitter is relatively close to the observer in the sense that
the expansion velocity of the emitter relatively to the observer is much smaller than
the velocity of light, vH � c. Due to the Hubble–Lemaître law that the expansion
velocity is proportional to the distance, this condition takes the form

vH = H l = R0H (te)a(te)χe � c, (12.72)

The equation ofmotion of a light signal is given inEq. (12.25). Integrating between
the emitter and the observer gives

c(t0 − te) = R0

χe
∫

0

a(t)dχ. (12.73)

To second order in c(t0 − te) this gives

R0 χe =
t0∫

te

c dt

a(t)
= c(t0 − te) + 1

2
H0c2(t0 − te)

2, (12.74)

where we have used that a(t0) = 1 and ȧ(t0) = H0. In the condition (12.72) it is suffi-
cient to keep the first term. Hence the condition takes the form H (te)a(te)(t0 − te) �
1. In this inequality we can approximate the values of the Hubble parameter and the
scale factor at the emission point of time by their values at the time that the light
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signal is received by the observer. Hence we arrive at the condition H0(t0 − te) � 1.
In the following we shall include only terms up to 2 order in H0(t0 − te).

The cosmic redshift is given in Eq. (12.32). Introducing the deceleration
parameter,

q = −a ä

ȧ2
, (12.75)

we have

ż = − ȧ

a2
= −H

a
, z̈ = 2

ȧ2

a3
− ä

a2
= 2

H 2

a
+ H 2q

a
, (12.76)

giving ż(t0) = − H0, z̈(t0) = H 2
0 (2 + q0). Hence a Taylor expansion of z about

t = t0 to 2 order in H0(t0 − te) gives

z(te) = H0(t0 − te) +
(

1 + 1

2
q0

)

H 2
0 (t0 − te)

2. (12.77)

We now introduce an observer G instantaneously at the position of the emitter at
the point of time te, but permanently at rest relative to the observer O at the origin.
The velocity of the emitter relative to this observer is

Ve = ȧ(te) χe . (12.78)

Due to the Doppler effect G measures a redshift

zD = [(1 + Ve/c)/(1 − Ve/c)]1/2 − 1 (12.79)

of the emitted signal. Since |Ve| � c we can use the two first terms of a Mc Laurin
expansion, giving

zD ≈ Ve

c
+ 1

2

(

Ve

c

)2

. (12.80)

A Taylor expansion of ȧ about t0 gives to 2 order in H0(t0 − te),

ȧ(te) ≈ ȧ(t0) + ä(t0) (t0 − te) = H0 + q0H 2
0 (t0 − te). (12.81)

Inserting the expressions (12.74) and (12.81) in Eq. (12.78) we get

Ve ≈ H0c(t0 − te) +
(

1

2
+ q0

)

H 2
0 c2(t0 − te)

2. (12.82)

Substituting this into Eq. (12.80) gives
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zD = H0(t0 − te) + (1 + q0)H
2
0 (t0 − te)

2. (12.83)

Inserting an observer in the homogeneous LFRW universe model breaks the homo-
geneous symmetry. Hence the gravitational potential depends upon the distance from
the observer. From Eq. (12.57) with a vanishing cosmological constant we see that in
the theory of relativity it is natural to generalize the Newtonian gravitational potential
of Eq. (1.29) and define a relativistic gravitational potential φG by

∇2φG = 4πG
(

ρ + 3p/c2
)

(12.84)

Using Eq. (12.57) we then have

∇2φG = 3qH 2. (12.85)

The potential at the present time is given by

∇2φG = 3q0H 2
0 . (12.86)

Integrating this equation with the conditions (dφG/dr)r=0 = φG(0) = 0 gives

φG = 1

2
q0H 2

0 r2. (12.87)

Note that there is accelerated expansion for q0 < 0 and decelerated expansion for
q0 > 0. Hence the gravitational potential decreases in the outwards direction when
there is accelerated expansion and increases for decelerated expansion.

The distance from the emitter to the observer at a time close to the present time,
when the scale factor is equal to one, is

r = c(t0 − te). (12.88)

Hence the gravitational potential at the emitter is

φG = 1

2
q0H 2

0 c2(t0 − te)
2. (12.89)

We now consider the Newtonian limit where the contribution of the pressure to
the acceleration of gravity is negligible and the relativistic gravitational potential
reduces to the Newtonian gravitational potential, φG → φ, and we can neglect the
expansion of the region between the emitter and the observer. Then the gravitational
shift of the wavelength of light is given by Eqs. (5.108) and (5.111),

zG = λ0

λe
− 1 =

√

(gtt)0

(gtt)e
− 1. (12.90)
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According to Eq. (9.20) the tt-component of the metric tensor is then

gtt = −
(

1 + 2φ

c2

)

, (12.91)

where 2|φ|/c2 � 1. We then get

zG =
√

1 + 2φ0/c2

1 + 2φe/c2
− 1. (12.92)

Noting that φ0 = 0 and making a series expansion to 1 order in φ/c2 we have

zG = −φe/c2 ≈ −φG/c2. (12.93)

Inserting the potential (12.89) gives

zG = −1

2
q0H 2

0 (t0 − te)
2. (12.94)

It follows from Eqs. (12.78), (12.84) and (12.95) that in the limit of small cosmic
redshifts,

z = zD + zG. (12.95)

In this limit the cosmic redshift due to the expansion of the universe is equal to
the sum of the kinematic redshift due to the Doppler effect and the gravitational shift
of wavelength due to the gravitational field between the emitter and the observer.
The Doppler effect is a redshift since the emitter moves away from the observer,
but the gravitational effect is a blueshift in a universe with retarded expansion due
to attractive gravitation, since the light moves downwards in this gravitational field.
In a universe with accelerated expansion due to the repulsive gravity of the vacuum
energy, light moves upwards in the gravitational field between the emitter and the
observer, and the gravitational effect is a redshift.

Hence the cosmic redshift due to the expansion of the space contains both the
kinematic Doppler effect due to the velocity of the emitter relative to the observer
and the gravitational shift of wavelength for light moving vertically in a gravitational
field.

12.3.6 Energy–Momentum Conservation

From the 2 Bianchi identity and Einstein’s field equations, it follows that the energy–
momentum density tensor is covariantly divergence free. The time component
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expresses the equation of continuity and takes the form

[(ρ + p/c2)ut̂uν̂];ν̂ + (pηt̂ν̂ );ν̂ = 0. (12.96)

Since ut̂ = 1, um̂ = 0 and ηt̂ t̂ = −1, ηt̂m̂ = 0, we get

(ρ + p/c2). + (ρ + p/c2)uν̂
;ν̂ − ṗ = 0 (12.97)

or

ρ̇ + (ρ + p/c2)(uν̂
,ν̂ + uα̂�ν̂

α̂ν̂ ) = 0. (12.98)

Here uν̂
,ν̂

= 0 and � t̂
t̂ t̂

= 0. Calculating �m̂
t̂m̂

from Cartan’s 1. structure equation
in the form

d ωμ̂ = �
μ̂

α̂β̂
ωα̂ ∧ ωβ̂ (12.99)

with the basis forms (12.6) we get

�m̂
t̂m̂ = �r̂

t̂r̂ + �θ̂

t̂θ̂
+ �

φ̂

t̂φ̂
= 3

ȧ

a
. (12.100)

Inserting this into Eq. (12.98) gives

(ρc2a3). + p(a3). = 0. (12.101)

Let V = a3 be a co-moving volume in the universe and U = ρc2V the energy in
the co-moving volume. Then we may write

dU + pdV = 0. (12.102)

This is the first law of thermodynamics for an adiabatic expansion. It follows that
the universe expands adiabatically. The adiabatic equation can be written as

ρ̇

ρ + p/c2
= −3

ȧ

a
. (12.103)

With p = wρc2 we get

dρ

ρ
= −3(1 + w)

da

a
. (12.104)

Assuming that w = constant this equation can be integrated to give



328 12 Cosmology

ln
ρ

ρ0
= ln

(

a

a0

)−3(1+w)

. (12.105)

It follows that

ρ = ρ0

(

a

a0

)−3(1+w)

or ρa3(1+w) = constant (12.106)

We have three particularly important special cases:

• Matter in the form of dust: w = 0 gives

ρma3 = constant. (12.107)

Thus, the mass in a co-moving volume is constant.
• Radiation: w = 1/3 gives

ρrada4 = constant. (12.108)

Thus, the radiation energy density decreases faster than the density of the dust
when the universe is expanding. The energy in a co-moving volume is decreasing
because of the thermodynamic work on the surface of a co-moving volume. In a
remote past, the density of radiation was greater than the density of dust.

• LIVE: w = −1 gives ρL = constant. The vacuum energy in a co-moving volume
is increasing proportionally to a3. In spite of this energy is conserved locally
because of the negative work performed at a co-moving, expanding surface. This
work transfers energy from the region outside the surface to the region inside it,
maintaining the constant value of the energy density of LIVE in the expanding
universe. Since we can choose the surface to have an arbitrarily large radius this
amounts to extracting energy from an infinitely remote region to the region in
a finite distance from the observer at the origin. Hence there is a difficulty with
global energy conservation in cosmology.

The Friedmann–Lemaître Eq. (12.63) can be written

H 2

H 2
0

= �rad 0

a4
+ �m0

a3
+ �k0

a2
+ �L0. (12.109)

where �rad 0 and �m0 are the present values of the radiation density and the density
of dust, respectively, and �0 is given in Eq. (12.70). Since H = (1/a)(da/dt), the
scale factor can be found as a function of time by integrating the equation

da

dt
= H0

√

�rad0

a2
+ �m0

a
+ �k0 + �L0a2. (12.110)
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By means of Eq. (12.32) this equation can be expressed in terms of the redshift of
the source. In this way we obtain an equation for the Hubble parameter at the time
of emission of light emitted from a source with redshift z and received at the present
time,

H 2

H 2
0

= �rad 0(1 + z)4 + �m0(1 + z)3 + �k0(1 + z)2 + �L0. (12.111)

Similarly this equation can be integrated to find the redshift, and hence the scale
factor as a function of time by utilizing that

H = − 1

1 + z

dz

dt
. (12.112)

In combination with Eq. (12.111) this gives an expression for age of the universe
at the time a source with observed redshift z emits the observed light, i.e. the emission
point of time,

tE(z) = tH

∞
∫

z

dz

(1 + z)
√

�rad0(1 + z)4 + �m0(1 + z)3 + �k0(1 + z)2 + �L0

.

(12.113)

where the Hubble age tH is defined in Eq. (12.21). This is called the age-redshift
relationship. The age of the universe is found by letting the redshift of the source be
zero, t0 = t(0). Taking the integral from 0 to z gives the time taken for the radiation
to move from the source to the observer and arrive at the present time. This is called
the lookback time.

Equation (12.113) is in general an elliptic integral, but it can be integrated in
terms of elementary functions in the case that the cosmological constant vanishes, so
that �� = 0. This gives the age-redshift relationship for a curved, dust-dominated
universe.

tE(z) = tH

[ √
1 + �m0z

(1 − �m0)(1 + z)
− �m0

(1 − �m0)
3/2 arc sinh

√

1 − �m0

�m0(1 + z)

]

. (12.114)

The age of this universe is

t0 = tE(0) = tH
1 − �m0

(

1 − �m0√
1 − �m0

arc sinh

√

1 − �m0

�m0

)

. (12.115)
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12.4 Some LFRW Cosmological Models

12.4.1 Radiation-Dominated Universe Model

The energy–momentum tensor for radiation is trace free. According to the Einstein’s
field equations the Einstein tensor must then be trace free. Using Eq. (12.44) we then
have

aä + ȧ2 + kc2/R2
0 = 0,

(aȧ + ktc2/R2
0)

· = 0.
(12.116)

Integration gives

aȧ + ktc2/R2
0 = B. (12.117)

Integrating once more gives

1

2
a2 + 1

2

kc2

R2
0

t2 = Bt + C. (12.118)

The initial condition a(0) = 0 gives C = 0. Hence

a =
√

2Bt − kt2c2/R2
0. (12.119)

For k = 0 we have

a = √
2Bt, ȧ =

√

B

2t
. (12.120)

The expansion velocity reaches infinity at t = 0, lim
t→0

ȧ = ∞ (Fig. 12.2).

According to the Stefan–Boltzmann law we have

ρR = σT 4. (12.121)

Combining this with Eq. (12.108) we have

T 4a4 = constant, (12.122)

or

T = T0

a
, (12.123)
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Fig. 12.2 Expansion of a radiation dominated universe. In a radiation-dominated universe the
expansion velocity reaches infinity at t = 0

where T0 is the temperature of the radiation at the present time. Equations (12.120)
and (12.123) give

T = T0

√

t0
t
. (12.124)

12.4.2 Dust-Dominated Universe Model

From the first of the Friedmann–Lemaître equations we have

ȧ2 + kc2

R2
0

= κ

3
ρa2. (12.125)

We now introduce a so-called conformal time η by

dt

dη
= a(η) ⇒ d

dt
= 1

a

d

dη
. (12.126)

Hence,

ȧ = da

dt
= 1

a

da

dη
. (12.127)
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We also introduce

A ≡ κ

3
ρm0. (12.128)

The first Friedmann–Lemaître equation then gives

aȧ2 + kc2

R2
0

a = κ

3
ρma3 = κ

3
ρm0 = A. (12.129)

Using η we get

1
a

(

da
dη

)2 = c2

R2
0
(A − ka),

da
dη = ca

R0

√

A
a − k = c

R0

√
aA

√

1 − ka
A ,

(12.130)

where we have chosen the positive root. We now introduce u by

a = Au2, u =
√

a

A
, (12.131)

and get

da

dη
= 2Au

du

dη
, (12.132)

which together with Eq. (12.131) gives

du√
1 − ku2

= c

2R0
dη. (12.133)

This equation will first be integrated for k = −1. Then

∫

du√
1 + u2

= cη

2R0
+ K, (12.134)

or

arsinh(u) = cη

2R0
+ K . (12.135)

The condition u(0) = 0 gives K = 0. Hence

1

A
a = sinh2

cη

2R0
= 1

2

(

cosh
cη

R0
− 1

)

(12.136)
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or

a = A

2

(

cosh
cη

R0
− 1

)

. (12.137)

From Eqs. (12.128), (12.65) and (12.66) we have

A = κ

3
ρm0 = H 2

0
ρm0

ρcr0
= H 2

0 �m0. (12.138)

From Eqs. (12.67) and (12.69) we get

k = R2
0H 2

0

c2
(�m0 − 1). (12.139)

Hence, the scale factor of the negatively curved, dust-dominated universe model
is

a(η) = 1

2

�m0

1 − �m0

(

cosh
cη

R0
− 1

)

. (12.140)

Inserting this into Eq. (12.126) and integrating with t(0) = η(0) leads to

t(η) = �m0

2H0(1 − �m0)3/2

(

sinh
cη

R0
− cη

R0

)

. (12.141)

Integrating Eq. (12.118) for k = 0 leads to an Einstein–de Sitter universe

a(t) =
(

t

t0

) 2
3

. (12.142)

Finally integrating Eq. (12.125) for k = 1 gives

a(η) = 1

2

�m0

�m0 − 1

(

1 − cos
cη

R0

)

, (12.143)

t(η) = �m0

2H0(�m0 − 1)3/2

(

cη

R0
− sin

cη

R0

)

. (12.144)

This is a parametric representation of a cycloid (Fig. 12.3).
In the Einstein–de Sitter model the Hubble parameter is

H = 2

3

1

t
. (12.145)

The age of this universe model is
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Fig. 12.3 Expansion of matter dominated universe models. For k = 1 the density is larger than the
critical density, and the universe is closed. For k = 0 we have ρ = ρcr and the expansion velocity
of the universe will approach zero as t → ∞. For k = −1 we have ρ < ρcr. The universe is then
open and will continue expanding forever

t0 = (2/3) tH. (12.146)

With a Hubble age tH = 13.85 billion years the age of the flat, dust-dominated
universe becomes t0 = 9.2 billion years, in conflict with the age t0 = 13.8 years
based upon a large set of different observations (Fig. 12.4).

Fig. 12.4 Hubble age. Here tH is the Hubble age, i.e. the age of the universe if the expansion had
been constant. But in the dust-dominated universe the expansion rate was faster closer to the Big
Bang, so the age is lower
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Example 12.4.1 (Lookback Time for Flat Dust-dominated Universe) In the case of a
flat universe�0 = 1.With�L0 = 0 Eq. (12.113) with modified limits corresponding
to the lookback time reduces to

tLB = tH

z
∫

0

dz

(1 + z)
5
2

= 2

3
tH

[

1 − 1

(1 + z)
3
2

]

. (12.147)

Using Eq. (12.146) for the age of a flat, dust-dominated universe the expression
for the lookback time can be written

tLB = t0

[

1 − 1

(1 + z)3/2

]

. (12.148)

Hence, the redshift of an object with lookback time tLB is

z = 1
(

1 − tLB
t0

)2/3 − 1. (12.149)

12.4.3 Transition from Radiation-Dominated
to Matter-Dominated Universe

We consider the early universe filled with radiation and matter, but where vacuum
energy can be neglected. The universe is assumed to be flat. Then Friedmann’s 1.
equation takes the form

ȧ2 = κ

3
(ρm + ρr)a

2. (12.150)

For matter,

ρma3 = ρm0. (12.151)

For radiation,

ρra
4 = ρr0. (12.152)

Hence

a2ȧ2 = κ

3
(ρm0a + ρr0). (12.153)

The present values of the critical density and the density parameters are
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κρcr0 = 3H 2
0 , �m0 = ρm0

ρcr0
, �r0 = ρr0

ρcr0
, (12.154)

giving

aȧ = H0(�m0a + �r0)
1/2. (12.155)

Integration with a(0) = 0 leads to

H0t = 4

3

�
3/2
r0

�2
m0

+ 2

3

(�m0a − 2�r0)(�m0a + �r0)
1/2

�2
m0

. (12.156)

From Eqs. (12.155) and (12.156) it follows that at the transition time teq when
ρm = ρr, the scale factor has the value

aeq = ρr0

ρm0
= �r0

�m0
. (12.157)

Inserting this into Eq. (12.156) gives

teq = 2

3

(

2 − √
2
)�

3/2
r0

�2
m0

tH. (12.158)

The microwave background radiation has a temperature 2.73 K corresponding to
a density parameter �r0 = 8.4 × 10−5. In a flat universe without vacuum energy
�m0 = 1−�r0. Inserting tH = 13.85×109 years then leads to teq = 47×103 years.

12.4.4 The de Sitter Universe Models

These are universe models without radiation and matter, containing only LIVE.
There are three models depending upon the spatial curvature. For these models the
Friedmann Eq. (12.46) takes the form

ȧ2 − �

3
a2 = −kc2

R2
0

. (12.159)

This equation has the following solution

a(t) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

R0
c

√

3
�

cosh
(√

�
3 t

)

, k = 1

e
√

�/3 t, k = 0
R0
c

√

3
�

sinh
(√

�
3 t

)

, k = −1

. (12.160)
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Fig. 12.5 The scale factor of
the De Sitter universe models

The scale factor as a function of time is shown for these universe models in
Fig. 12.5. Note that the flat De Sitter universe is infinitely old. It had no Big Bang.

12.4.5 The Friedmann–Lemaître Model

The dynamics of galaxies and clusters of galaxies has made it clear that far stronger
gravitational fields are needed to explain the observed motions than those produced
by visible matter [2]. At the same time it has become clear that the density of this
dark matter is only about 30% of the critical density, although it is a prediction by the
usual versions of the inflationary universe models that the total density of all that is
contained in the universe ought to be equal to the critical density [3]. Also the recent
observations of the temperature fluctuations of the cosmic microwave radiation have
shown that space is either flat or very close to flat [4–6]. The energy which fills up
the universe to the critical density must be evenly distributed in order not to affect
the dynamics of the galaxies and the clusters.

Furthermore, in 1998 observations of supernovae of type-I a with high cosmic
redshifts indicated that the expansion of the universe is accelerating [7, 8]. This was
explained as a result of repulsive gravitation due to some sort of vacuum energy.
Thereby the missing energy needed to make space flat was identified as vacuum
energy. Hence, it seems that we live in a flat universe with vacuum energy having a
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density around 70% of the critical density and with matter having a density around
30% of the critical density.

Until the discovery of the accelerated expansion of the universe the standard
model of the universe was assumed to be the Einstein–de Sitter model, which is a
flat universe model dominated by cold matter. Now it seems that we must replace
this model with a new “standard model” containing both dark matter and vacuum
energy [9].

Recently several types of vacuum energy or so-called quintessence energy have
been discussed [10, 11]. However, the most simple type of vacuum energy is the
Lorentz invariant vacuum energy, LIVE, which has constant energy density during
the expansion of the universe [12, 13]. This type of energy can be mathematically
represented by including a cosmological constant in Einstein’s gravitational field
equations. The flat universe model with cold dark matter and this type of vacuum
energy is the Friedmann–Lemaître model. This universe model is usually denoted
the Lambda-Cold-Dark-Matter (� CDM) model, but a better name would be the
LIVE-Cold-Dark-Matter (LCDM) model.

The field equations for the flat Friedmann–Lemaître universe model are found by
putting k = p = 0 in Eq. (12.62). This gives

2
ä

a
+ ȧ2

a2
= �, � = κρL (12.161)

Integration leads to

aȧ2 = �

3
a3 + K, (12.162)

where K is a constant of integration. Since the amount of matter in a volume co-
moving with the cosmic expansion is constant, ρma3 = ρm0 a3

0, where the index 0
refers to values at the present time. Normalizing the expansion factor so that a0 =
1 and comparing Eqs. (12.46) and (12.162) then give K = (κ/3)ρm0. Introducing
a new variable x by a3 = x2 and integrating once more with the initial condition
a(0) = 0, we obtain

a3 = 3K

�
sinh2

(

t

tL

)

, (12.163)

where

tL = 2√
3�

= 2

3H0
√

�L0
= 2

3
√

�L0
tH, (12.164)

where L denotes LIVE. Since there is, at the present time (July 2019), a rather large
disagreement between the value of H0 as determined from supernova observations
and from observations of temperature fluctuations in the cosmic microwave back-
ground radiation, we shall here determine the parameters of the universe model
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from the observed values of the age of the universe and the value of the density
parameters of LIVE. From a large number of different types of observations we have
t0 = (13.8 ± 0.02) × 109 years and �L0 = 0.694 ± 0.007 [14].

Since the present universe model has flat space, the total density is equal to the
critical density, i.e.�m+�L = 1.Equation (12.162)with the normalizationa(t0) = 1
gives 3H 2

0 = 3K + �. Equation (12.46) with k = 0 gives κρ0 = 3H 2
0 − �. Hence

K = κρ0/3 and

3K

�
= κρ0

�
= ρ0

ρL
= �m0

�L0
. (12.165)

In terms of the values of the relative densities at the present time the expression
for the scale factor then takes the form

a = A1/3 sinh2/3
(

t

tL

)

, A = �m0

�L0
= 1 − �L0

�L0
. (12.166)

Inserting �L0 = 0.694 gives A = 0.44. Using the identity sinh(x/2) =√
(cosh x − 1)/2 this expression may be written as

a3 = A

2

[

cosh

(

2t

tL

)

− 1

]

. (12.167)

The age t0 of the universe is found from a(t0) = 1, which, by use of the formula
arctanh x = arsinh (x/

√
1 − x2), leads to the expression

t0 = tL arsinh

√

�L0

�m0
= tLartanh

√

�L0. (12.168)

We use this to determine tL, writing

tL = t0
artanh

√
�L0

. (12.169)

Inserting t0 = 13.8 × 109 years and �L0 = 0.694 gives tL = 11.5 × 109 years.
Substituting the values A = 0.44 and tL = 11.5 × 109 years into Eq. (12.166) gives

a = 0.76 sinh2/3
(

1.2
t

t0

)

. (12.170)

This function is plotted in Fig. 12.6.
A consistency requirement on the Hubble constant H0 follows from Eqs. (12.164)

and (12.158). If the general theory of relativity is correct, and if it is correct to describe
the universe as homogeneous and isotropic on a large scale, and dominated by dust
and LIVE, then the Hubble constant must obey the equation
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Fig. 12.6 The scale factor of the flat �CDM universe model

H0 = 2

3

artanh
√

�L0√
�L0

1

t0
. (12.171)

Inserting t0 = 13.8×109 years and�L0 = 0.694 gives H0 = 68.3 km/s per Mpc.
This is the predicted value of the Hubble constant. The corresponding Hubble age is
tH = (977/H0) × 109 years, giving tH = 14.3 × 109 years.

The ratio of the age of the universe and its Hubble age, t0/tH = H0t0, is plotted
in Fig. 12.7. The age of the universe increases with increasing density of vacuum
energy. In the limit that the density of the vacuum approaches the critical density,
there is no dark matter, and the universe model approaches the de Sitter model with

Fig. 12.7 The ratio of age and Hubble age of the flat �CDM universe model



12.4 Some LFRW Cosmological Models 341

exponential expansion and no Big Bang. This model behaves in the same way as the
steady-state cosmological model and is infinitely old.

Invoking the phenomenon of perfect inertial dragging it has been argued that the
validity of the principle of relativity for rotational motion requires that the age of the
universe must be equal to its Hubble age, H0t0 = 1 [15]. According to Eq. (12.171)
this requires that

tanh

(

3

2

√

�L0

)

= √

�L0. (12.172)

The positive, real solution of this equation is �L0 = 0.737.
Using Eqs. (12.166) and (12.168) we obtain a nice form of the age-redshift

relationship, giving the emission point of time of an object with redshift z,

tE =
arsinh

(√

�L0
�m0

1
(1+z)3/2

)

arsinh
(√

�L0
�m0

) t0. (12.173)

Inserting �L0 = 0.7 and �m0 = 0.3 with t0 = 13.8·109 years gives

tE = 12.5 × 109 arsinh

(

1.53

(1 + z)3/2

)

years. (12.174)

This is plotted in Fig. 12.8.

Fig. 12.8 Age-redshift relation of the flat �CDM universe model. The emission time is given in
billion years
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Fig. 12.9 The Hubble parameter of the flat �CDM universe model

The time which the radiation has taken in moving from the source to the observer
and being observed at the present time, i.e. the lookback time, is tLB = t0 − tE. The
distance which the radiation has travelled is tLB light years.

The Hubble parameter as a function of time is

H = 2

3 tL
coth

(

t

tL

)

. (12.175)

Inserting t0 = 1.2 tL we getH t0 = 0.8 coth(1.2 t/t0), which is plotted in Fig. 12.9.
It may be noted that the Hubble parameter is given as a function of the redshift

in Eq. (12.111) with �RAD0 = 0 and �0 = 1. The graph in Fig. 12.8 shows that
the Hubble parameter decreases all the time and approaches a constant value H∞ =
2/3 tL in the infinite future. The Hubble age is

tH = (3/2)tL
√

�L0. (12.176)

Inserting numerical values gives tH = 14.4 · 109years. In this universe model the
age of the universe is nearly as large as the Hubble age, while in the Einstein–de
Sitter model the corresponding age is t0ED = (2/3)tH = 9.5× 109years. The reason
for this difference is that in the Einstein–de Sitter model the expansion is decelerated
all the time, while in the Friedmann–Lemaître model the repulsive gravitation due
to the vacuum energy has made the expansion accelerate lately (see below). Hence,
for a given value of the Hubble parameter the previous velocity was larger in the
Einstein–de Sitter model than in the Friedmann–Lemaître model.

A dimensionless quantity representing the rate of change of the cosmic expansion
velocity is the deceleration parameter, which is defined as
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Fig. 12.10 The deceleration parameter of the flat �CDM universe model

q = − ä/aH 2. (12.177)

For the present universe model the deceleration parameter as a function of time is

q = 1

2

[

1 − 3 tanh2(t/tL)
]

, (12.178)

which is shown graphically in Fig. 12.10.
From Eqs. (12.169) and (12.178) the deceleration parameter at the present point

of time may be written as

q0 = − 1

2
(3� L0 − 1). (12.179)

With �L0 = 0.7 we get q0 = − 0.55.
The inflection point of time t1 when deceleration turned into acceleration is given

by q = 0. This leads to

t1 = t�artanh
(

1/
√
3
)

(12.180)

or is expressed in terms of the age of the universe

t1 =
artanh

(

1/
√
3
)

artanh
√

��0
t0. (12.181)

The corresponding cosmic redshift is
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z(t1) = 1

a(t1)
− 1 =

(

2�L0

1 − �L0

)1/3

− 1. (12.182)

Inserting �L0 = 0.7 gives t1 = 0.54t0 and z(t1) = 0.67.
The results of analyzing the observations of supernova SN 1997 at z = 1.7, cor-

responding to an emission time tE = 0.30t0 = 4.5 × 109 years, have provided evi-
dence that the universe was decelerated at that time [16]. Turner and Riess [17] have
recently argued that the other supernova data favour a transition from deceleration
to acceleration for a redshift around z = 0.5.

It may be noted from Eq. (12.57) that in a flat universe with dust and LIVE and
vanishing cosmological constant, the transition from deceleration to acceleration
happens when the gravitational mass density vanishes, i.e. when ρm +ρL +3pL = 0.
Since pL = − ρL, this gives ρm(t1) = 2ρL(t1). Hence the constant density of LIVE
is half the density of the dust at this transition.

Note that the expansion velocity given byHubble’s law, v = H l, always decreases
as seen from Fig. 11.8. This is the velocity away from the Earth of the cosmic fluid
at a fixed physical distance l from the Earth ȧ. The quantity ȧ, on the other hand, is
the velocity of a fixed fluid particle co-moving with the expansion of the universe. If
such a particle accelerates, the expansion of the universe is said to accelerate. While
Ḣ tells how fast the expansion velocity changes at a fixed distance from the Earth, the
quantity ä represents the acceleration of a free particle co-movingwith the expanding
universe. The connection between these two quantities is ä = a(Ḣ + H 2).

The ratio of the inflection point of time and the age of the universe, as given in
Eq. (12.168), is depicted graphically as a function of the present relative density of
vacuum energy in Fig. 12.11. The turnover point of time happens earlier the greater
the vacuum density is. The change from deceleration to acceleration would happen
at the present time if �L0 = 1/3.

Fig. 12.11 Point of time for deceleration–acceleration turnover
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Fig. 12.12 Cosmic redshift at the deceleration–acceleration turnover

The redshift of the inflection point given in Eq. (12.181) as a function of vacuum
energy density is plotted in Fig. 12.12 Note that the redshift of future points of time is
negative, since then a > a0. If �L0 < 1/3 the transition to acceleration will happen
in the future.

The critical density is

ρcr = ρL tanh
−2(t/tL). (12.183)

This is plotted in Fig. 12.13. The critical density decreases with time.
Equation (12.182) shows that the density parameter of LIVE is

Fig. 12.13 Critical density as function of time
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�L = tanh2(t/tL), (12.184)

which is plotted in Fig. 12.14.
The density of LIVE approaches the critical density. Since the density of LIVE

is constant, this is better expressed by saying that the critical density approaches the
density of the vacuum energy. Furthermore, since the total energy density is equal to
the critical density all the time, this also means that the density of matter decreases
faster than the critical density. The density of matter as function of time is

ρm = ρ� sinh−2(t/tL), (12.185)

which is shown graphically in Fig. 12.15.
The density parameter of the dust as function of time is

�m = cosh−2(t/tL), (12.186)

which is shown in Fig. 12.16. Adding the density parameters of the expressions
(12.183) and (12.185) we get the total density parameter �TOT = �m + �� = 1.

The universe became vacuum dominated at a point of time t2 when ρL(t2) =
ρm(t2). FromEq. (12.184) it follows that this point of time is given by sinh(t2/tL) = 1.
Using Eq. (12.142) we get

t2 = arsinh(1)

artanh(
√

�L0)
t0. (12.187)

It follows that the corresponding redshift is

Fig. 12.14 The density parameter of vacuum energy as function of time
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Fig. 12.15 The density of matter as function of time

Fig. 12.16 The density parameter of matter as a function of time

z(t2) = A−1/3 − 1. (12.188)

Inserting �L0 = 0.7 gives t2 = 0.73 t0 and z(t2) = 0.32. Hence, the transition to
accelerated expansion happens before the universe becomes vacuum dominated.

As mentioned above, many different observations indicate that we live in a uni-
verse with critical density, where cold matter contributes with about 30% of the
density and vacuum energy with about 70%. Such a universe is well described by
the Friedmann–Lemaître universe model which has been presented above.

However, this model is not quite without problems in explaining the observed
properties of the universe. In particular there is nowmuch research directed at solving
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the so-called coincidence problem. Aswehave seen, the density of the vacuumenergy
is constant during the expansion, while the density of the matter decreases inversely
proportional to a volume co-movingwith the expandingmatter. Yet, one observes that
the density of matter and the density of the vacuum energy are of the same order of
magnitude at the present time.This seems tobe a strange andunexplained coincidence
in the model. Also just at the present time the critical density is approaching the
density of the vacuum energy.

There is now a great activity in order to try to explain these coincidences by
introducing more general forms of vacuum energy called quintessence and with a
density determined dynamically by the evolution of a scalar field [18].

However, the simplest type of vacuum energy is LIVE. One may hope that a
future theory of quantum gravity may settle the matter and let us understand the
vacuum energy. In themeantimewe can learnmuch about the dynamics of a vacuum-
dominated universe by studying simple and beautiful universe models such as the
Friedmann–Lemaître model.

12.4.6 Flat Universe with Dust and Phantom Energy

We shall here consider a flat LFRW universe model with dust and phantom
energy [18]. Differentiating Eq. (12.63) with k = 0 and using Eq. (12.103) we
get

2Ḣ + 3H 2 = − κp/c2. (12.189)

The pressure is due to the phantom energy which can be described as due to a
scalar field φ with a potential V (φ). The density and pressure of the phantom energy
are

κρφ = −φ̇2/2 + V (φ), κpφ/c2 = −φ̇2/2 − V (φ). (12.190)

Equation (12.189) then takes the form

2Ḣ + 3H 2 = 1

2
φ̇2 + V (φ). (12.191)

The evolution equation for the phantom energy field is

φ̈ + 3H φ̇ = V ′(φ), (12.192)

where the prime denotes differentiation with respect to φ.
It is now assumed that the time derivative of the phantom field is proportional to

the Hubble parameter,
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φ̇ = −αH = −α
ȧ

a
. (12.193)

where α is a positive constant. Integration gives

φ = φ0 − α ln a. (12.194)

Hence the phantom field decreases during the expansion of the universe.
We shall now deduce a differential equation for the relationship between the

Hubble parameter and
the scalar field itself (not its derivative). We use that

d

dt
= φ̇

d

dφ
. (12.195)

Differentiating Eq. (12.191) and substituting for V ′ from Eq. (12.192) we then
get

(

2H ′′ − 3H
)

φ̇2 + 2
(

H ′ − φ̇
)

φ̈ + 6HH ′φ̇ = 0. (12.196)

Using the relationship (12.193) in this equation gives

HH ′′ + H ′2 +
(

α − 3

α

)

HH ′ − 3

2
H 2 = 0. (12.197)

Introducing y = H 2 this equation can be written as

y′′ +
(

α − 3

α

)

y′ − 3y = 0. (12.198)

This is a 2 order linear differential equationwith constant coefficients. The general
solution is

H 2(φ) = Ae3φ/α + Be− αφ. (12.199)

It follows from Eqs. (12.191), (12.193) and (12.199) that the potential of the
phantom field is

V (φ) =
(

3 + α2

2

)

Be− αφ − α2

2
Ae3φ/α. (12.200)

Using Eqs. (12.190), (12.193) and (12.200) we find the energy density of the
phantom field

κρφ = 3Be− αφ − α2Ae3φ/α. (12.201)
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Similarly the pressure is

κpφ = −(

3 + α2
)

Be− αφ. (12.202)

The mass density of the dust is

κρm = κ
(

ρcr − ρφ

) = 3H 2 − κρφ = (

3 − α2
)

Ae3φ/α. (12.203)

Hence the constant A represents the dust. Note that there is no future singularity
in this model.

Inserting the expression (12.199) for H into Eq. (12.193) gives a differential
equation for the time evolutionof the phantomfield, but this equationhas no analytical
solution. The equations simplify if we assume that there is no dust, only the phantom
field. Then A = 0, and the equation of state parameter of the phantom field is

w = pφ

ρφ

= −1 − α2

3
, (12.204)

which is less than minus one. This is characteristic of phantom energy. In the present
case the potential of the phantom field is

V (φ) =
(

3 + α2

2

)

Be− αφ, (12.205)

and the Hubble parameter is

H (φ) = √
B e− (α/2)φ. (12.206)

Letting H0 = H (0) we have B = H 2
0 . Inserting Eq. (12.206) into Eq. (12.193)

gives

e(α/2)φφ̇ = −α H0. (12.207)

Integration with φ(0) = φ0 gives

φ(t) = ln

[

e(α/2)φ0 − α2

2
H0t

]2/α

. (12.208)

The field vanishes at a point of time

t0 = 2

α2

(

e
α
2 t0 − 1

)

tH , (12.209)

where tH = 1/H0. After this point of time the field is negative and diverges at
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t1 = 2

α2
e(α/2)φ0 tH . (12.210)

Inserting Eq. (12.208) into (12.206) gives

H = ȧ

a
= H0

e(α/2)φ0 − (

α2/2
)

H0t
. (12.211)

Hence H (0) = e− (α/2)φ0H0 which is finite, H (t0) = H0 and H (t1) = ∞, which
is called the Big Rip. Integration with a(t0) = 1 gives

a(t) =
[

e(α/2)φ0 − α2

2
H0t

]− 2/α2

. (12.212)

Hence at the Big Rip a(t1) = ω. It should be noted that the presence of dust
removes the Big Rip.

12.5 Flat Anisotropic Universe Models

We shall consider anisotropic world models with flat 3-space of Bianchi type-I
following Ref. [19]. The line-element has the form

ds2 = −c2dt2 + a2
1

(

dx1
)2 + a2

2

(

dx2
)2 + a2

3

(

dx3
)2

. (12.213)

The directional Hubble parameters are defined by

Hi = ȧi

ai
. (12.214)

The mean scale factor is defined as

a = (a1a2a3)
1/3. (12.215)

A “volume scale factor”,

V = a3 = a1a2a3 (12.216)

will also be useful. The average Hubble parameter is

H = 1

3
(H1 + H2 + H3). (12.217)

These definitions give
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H = 1

3
(ln V )· = (ln a)·. (12.218)

The anisotropy parameter is defined by

A = 1

3

3
∑

i=1

(

Hi − H

H

)2

. (12.219)

Einstein’s field equations with a cosmological constant for this class of universe
models filled by a perfect fluid may be written

(ln V )· + H 2
1 + H 2

2 + H 2
3 = κ

2

(

ρ + 3p

c2

)

+ �, (12.220)

1

V
(V Hi)

· = κ

2

(

ρ − p

c2

)

+ �. (12.221)

We shall consider some special cases.

1. Anisotropic empty universe with vanishing cosmological constant

In this case Eqs. (12.220) and (12.221) reduces to

(ln V )· + H 2
1 + H 2

2 + H 2
3 = 0, (12.222)

1

V
(V Hi)

· = 0. (12.223)

The last equation gives

Hi = αi

V
, (12.224)

This gives

3H =
3

∑

i=1

Hi =

3
∑

i=1
αi

V
. (12.225)

Combining this with Eq. (12.218) gives

V̇ =
3

∑

i=1

αi. (12.226)

Integration with V (0) = 0 gives
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V =
3

∑

i=1

αi t. (12.227)

Inserting this into Eq. (12.224) gives

Hi = ȧi

ai
= αi

∑3
i=1 αi

1

t
= pi

t
, pi = αi

∑3
i=1 αi

,

3
∑

i=1

pi = 1. (12.228)

Integration gives

ai = ai0tpi . (12.229)

Inserting this into Eq. (12.222) gives

3
∑

i=1

p2
i = 1. (12.230)

The directional and average Hubble parameters are

Hi = pi

t
, H = 1

3t
. (12.231)

Inserting this into Eq. (12.219) gives

A = 1

3

3
∑

i=1

(3pi − 1)2 = 2. (12.232)

The universe described in this subsection is called the Kasner universe. It repre-
sents the Minkowski universe as described from a reference frame with anisotropic
expansion. Due to the conditions (12.228) and (12.230) it is not possible to have
equal values for the three constants pi. Hence there is no isotropic special case of
the Kasner universe. In particular, the Milne universe is not a special case since the
Kasner universe is spatially flat, while the Milne universe has curved 3-space. It may
be noted that the Kasner universe has a constant anisotropy parameter equal to 2.

2. Anisotropic universe dominated by LIVE

In this case Eqs. (12.220) and (12.221) take the form

(ln V )· · + H 2
1 + H 2

2 + H 2
3 = �, (12.233)

1

V
(V Hi)

· = �, (12.234)
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where the cosmological constant represents the constant density of LIVE. It follows
from Eqs. (12.217), (12.218) and (12.234) that

Ḣ + 3H 2 = �. (12.235)

The solution of this equation with the boundary condition H (0) = H0 is

H = H0 coth(3HLt), HL = √

�/3. (12.236)

Inserting this into Eq. (12.218) gives

(ln V )· = 3H0 coth(3HLt). (12.237)

The general solution of this equation is

V = V0 sinh
H0/HL(3HLt). (12.238)

In order to have a simple illustrating example we choose H0 = HL giving

V = V0 sinh(3HLt). (12.239)

Equation (12.234) can be written

Ḣi + V̇

V
Hi = 3H 2

L . (12.240)

Inserting (12.239) gives

Ḣi + 3HL coth(3HLt) Hi = 3H 2
L . (12.241)

The general solution of this equation is

Hi = ȧi

ai
= Ci

sinh(3HLt)
+ HL coth(3HLt), (12.242)

where Ci are integration constants. Integration with the initial condition ai(0) = 0
gives

ai = 21/3 sinhpi

(

3

2
HLt

)

cosh
2
3 − pi

(

3

2
HLt

)

, (12.243)

where pi = 1
3

(

1 + Ci
HL

)

. Inserting (12.236) and (12.242) into Eq. (12.219) and using

that Ci = (3pi − 1)HL together with the conditions
∑3

i=1 pi = 1 and
∑3

i=1 p2
i = 1,

give the anisotropy parameter
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Fig. 12.17 Evolution of
anisotropy in a
LIVE-dominated
Bianchi-type I universe.
Initially the anisotropy
parameter A has the maximal
value of the empty Kasner
universe, but it decreases
rapidly towards zero

A = 2

cosh2(3HLt)
. (12.244)

This is shown graphically in Fig. 12.17. For 3HLt  1 the anisotropy param-
eter approaches zero exponentially. Hence the LIVE causes the universe model to
isotropize. At the beginning, 3HLt → 0, and the expression (12.244) gives the value
A = 2 of the Kasner universe.

12.6 Inhomogeneous Universe Models

We shall here consider the Lemaître–Tolman–Bondi (LTB) class of universe mod-
els following [20–23]. These universe models are inhomogeneous and spherically
symmetric. The line-element has the form

ds2 = −c2dt2 + F ′2(r, t)

1 − k(r)
dr2 + F2(r, t)d�2, (12.245)

where k(r) is an arbitrary function of r which represents the curvature of 3-space.
We use the notation ′ = d/dr and · = d/dt.
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12.6.1 Dust-Dominated Model

The Einstein equations for the dust-dominated LTB-universe models can be written
as

H 2
⊥ + 2H‖H⊥ + k

F2
+ k ′

FF ′ = κρm, (12.246)

(1 − 3q)2H 2
⊥ − 2H‖H⊥ + 2

k

F2
− k ′

FF ′ = −κρm. (12.247)

where the Hubble parameters and the deceleration parameter are

H⊥ = Ḟ

F
, H‖ = Ḟ ′

F ′ , q = −FF̈

Ḟ2
. (12.248)

Adding Eqs. (12.246) and (12.247) and using the Definition (12.248) gives

2FF̈ + Ḟ2 = −k, (12.249)

Integration of this equation leads to

H 2
⊥ = α

F3
− k

F2
, (12.250)

where α is a function of r. The functions α and k are not determined by the field equa-
tions. They must be specified as boundary conditions. Differentiating Eq. (12.250)
with respect to r and inserting the result into Eq. (12.247) gives

κρm = α′

F2F ′ . (12.251)

Substituting Eqs. (12.249) and (12.250) into the expression (12.248) for the
deceleration parameter yields

q = α

2(α − kF)
. (12.252)

Let F(r, t = 0) = F0(r). We now introduce a conformal time η by k1/2dt =
− (cF/R0) dη, where R0 is the present value of the curvature radius of the 3-space.
The solution of Eqs. (12.246) and (12.247) with k < 0 can then be written

F = − α

2k

(

cosh
cη

R0
− 1

)

+ F0

(

cosh
cη

R0
+

√

1 − α

kF0
sinh

cη

R0

)

, (12.253)
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√−k t = − α

2k

(

sinh
cη

R0
− cη

R0

)

+ F0

[

sinh
cη

R0
+

√

1 − α

kF0

(

cosh
cη

R0
− 1

)]

(12.254)

The dust-dominated solution given in Eqs. (12.140) and (12.141) for a homoge-
neous dust-dominated LFRW universe with negative spatial curvature is found by
choosing F0 = 0 and α = H 2

0 �m0r3, k = −H 2
0 (1 − �m0)r2. Note that in this case

F = r a(η).

12.6.2 Inhomogeneous Universe Model with Dust and LIVE

We shall here consider an inhomogeneous generalization of the LCDM-universe
which was presented in Sect. 12.4.5. In this case Eq. (12.246) is generalized to

H 2
⊥ + 2H‖H⊥ + k

F2
+ k ′

FF ′ = κ(ρm + ρL), (12.255)

and the acceleration equation is

2
F̈

F
+ H 2

⊥ + k

F2
= κρL. (12.256)

Here ρL = ρL0 is the constant density of LIVE. Equation (12.250) now takes the
form

H 2
⊥ = α

F3
− k

F2
+ κ

3
ρL. (12.257)

Equation (12.251) is still valid. Combining Eqs. (12.255) and (12.256) we get

2
F̈

F
+ F̈ ′

F ′ = κ

2
(2ρL − ρm). (12.258)

The present values of the density parameters are defined by the equations

α = H 2
⊥0F2

0�m, (12.259)

k = H 2
⊥0F2

0 (�m + �L − 1), (12.260)

where F0 = F0(r) = F(r, t0), H⊥0 = H⊥0(r) = H (r, t0) and �L0 = �L0(r) =
κρL/3H 2

⊥0(r). With these definitions Eq. (12.257) of the Hubble parameter H⊥ takes
the form
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Ḟ

F
= H⊥(r, t) = H0

[

�m0

(

F0

F

)3

+ �L0 + (1 − �m0 − �L0)

(

F0

F

)2
]1/2

.

(12.261)

It follows that the scale factor F is given implicitly as a function of time by

H0t =
∫

dF
[

�m0
(F0

F

)3 + �L0 + (1 − �m0 − �L0)
(F0

F

)2
]1/2 . (12.262)

We now consider an inhomogeneous universe corresponding to the LCDM-
universe where the density parameters of dust and LIVE obey the condition
�m0 + �L0 = 1. Then Eq. (12.262) reduces to

H0t =
∫

dF
[

�m0
(F0

F

)3 + �L0

]1/2 . (12.263)

Integrating this equation with the initial condition F(r, 0) = 0 gives

H0t = 2

3
√

�L0
arsinh

[√

�L0

�m0

(

F

F0

) 3
2

]

. (12.264)

Hence

F = F0

(

�m0

�L0

)1/3

sinh
2
2

(

3

2

√

�L0 H0t

)

. (12.265)

In the present universe model �m0, �L0 and H0 are functions of r, while in the
LCDM-universe they are constants.

12.7 The Horizon and Flatness Problems

12.7.1 The Horizon Problem

The cosmic microwave background (CMB) radiation from two points A and B in
opposite directions has the same temperature. This means that it has been radiated
by sources of the same temperature at these points. Thus, the universe must have
been in thermic equilibrium at the decoupling time, td = 3× 105 years. This implies
that points A and B, “at opposite sides of the universe” as seen by an observer, had
been in causal contact already at that time. That is, a light signal must have had time
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to move from A to B during the time from t = 0 to t = 3 × 105 years. The points A
and B must have been within each other’s horizons at the decoupling.

Consider a photon moving radially in space described by the Robertson–Walker
metric (12.17) with k = 0. Light follows a null-geodesic curve; i.e. the curve is
defined by ds2 = 0. We get (using units so that c = 1),

dr = dt

a(t)
. (12.266)

The particle horizon (also called the cosmological horizon) is the maximum dis-
tance from which light from particles could have travelled to the observer during the
time which the universe has existed. It represents the boundary between the observ-
able and the unobservable regions of the universe. Its distance at the present epoch
defines the size of the observable part of the universe. The coordinate distance from
an observer at the origin of the coordinate system to the particle horizon at the time
t is

�r =
t

∫

0

dt

a(t)
. (12.267)

The physical radius of the particle horizon is

lPH = a(t)�r = a(t)

t
∫

0

dt

a(t)
. (12.268)

To find a quantitative expression for the “horizon problem”, we may consider a
model with critical mass–density (Euclidean space-like geometry). Using p = wρ

and k = 0, Eq. (12.63) takes the form

ȧ

a
=

√

κρ0

3
a− 3

2 (1+w) = H0a− 3
2 (1+w) (12.269)

Integration with the condition a(t0) = 1 gives

a =
(

t

t0

) 2
3(1+w)

, t0 = 2

3(1 + w)

1

H0
= 2

3(1 + w)
tH. (12.270)

where tH = 1/H0 is the Hubble age of the universe. Inserting this into the expression
(12.268) and integrating gives

lPH = 3w + 3

3w + 1
t. (12.271)
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Hence, the radius of the particle horizon increases proportionally to the cosmic
time. Equation (12.270) also shows that the age of a flat radiation-dominated universe
is only half of the Hubble age.

Let us call the volume inside the horizon the “horizon volume” and denote it by
VPH. From Eq. (12.271) it follows that VPH ∝ t3. At the decoupling time, the horizon
volume may therefore be written as

(VPH)d =
(

td
t0

)3

V0, (12.272)

where V 0 is the size of the present horizon volume. Events within this volume are
causally connected, and a volume of this size may be in thermal equilibrium at the
decoupling time.

Let (V0)d be the size, at the decoupling, of the part of the universe that corre-
sponds to the present horizon volume, i.e. the observable universe. For our Euclidean
universe, Eq. (12.271) holds, giving

(V0)d = a3(td)

a3(t0)
V0 =

(

td
t0

) 2
w+1

V0. (12.273)

From Eqs. (12.272) and (12.273), we get

(V0)d

(VPH)d
=

(

td
t0

)− 3w+1
w+1

. (12.274)

Using that td = 10−4t0 and inserting w = 0 for dust, we find

(V0)d

(VPH)d
= 104. (12.275)

Thus, there was room for 104 causally connected areas at the decoupling time
within the region which represents our observable universe. Points at opposite sides
of our observable universe were therefore not causally connected at the decoupling,
according to the Friedmann models of the universe. These models therefore cannot
explain that the temperature of the radiation from such points is the same.

12.7.2 The Flatness Problem

According to Eqs. (12.67) and (12.68), the total mass parameter � = ρ/ρcr is given
by
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� − 1 = kc2

R2
0a2H 2

. (12.276)

Using the expansion factor (12.269) for a universe near critical mass–density, we
get

� − 1

�0 − 1
=

(

t

t0

)2( 3w+1
3w+3 )

. (12.277)

For a radiation-dominated universe, we get

� − 1

�0 − 1
= t

t0
. (12.278)

Measurements indicate that �0 − 1 is of the order of magnitude 1. The age of the
universe is about t0 = 1017s. When we stipulate initial conditions for the universe,
it is natural to consider the Planck time, tP = 10−43 s, since this is the limit of
the validity of general relativity. At earlier time, quantum effects will be important,
and one cannot give a reliable description without using quantum gravitation. The
stipulated initial condition for the mass parameter then becomes that � − 1 is of
order 10−60 at the Planck time. Such an extreme fine tuning of the initial value of the
universe’s mass–density cannot be explained within standard Big Bang cosmology.
Since a universe with critical density has Euclidean spatial geometry and is called
flat, this fine tuning requirement is called the “flatness problem”.

12.8 Inflationary Universe Models

12.8.1 Spontaneous Symmetry Breaking and the Higgs
Mechanism

The particles responsible for the electroweak force are the W ± and Z0 bosons. They
are massive, causing the weak force to only have short-distance effects. This was
originally a problem for the quantum field theory describing this force, since it made
it difficult to create a renormalizable theory. This was solved by Higgs and Kibble
in 1964 by introducing the so-called Higgs mechanism.

The main idea is that the massive bosons W ± and Z0 are originally massless, but
are given a mass by interacting with a Higgs field φ. The effect causes the mass of the
particles to be proportional to the value of the Higgs field in vacuum. It is therefore
necessary that the Higgs field has a value different from zero in the vacuum (the
vacuum expectation value must be nonzero).

Let us see how the Higgs field can get a nonzero vacuum expectation value.
The important thing for our purpose is that the potential of the Higgs field may be
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temperature dependent. Let us assume that the potential of theHiggs field is described
by the function

V (φ) = 1

2
μ2φ2 + 1

4
λφ4, (12.279)

where the sign ofμ2 depends on whether the temperature is above or below a critical
temperature Tcr. This sign has an important consequence on the shape of the potential
V. The potential is shown in Fig. 12.18 for two different temperatures. For T >

Tcr, μ2 > 0, and the shape is like in Fig. 12.18a, and there is a stable minimum for
φ = 0. However, for T < Tcr, μ2 < 0, the shape is like in Fig. 12.18b. In this case
the potential has stable minima for φ = ±φ0 = ± |μ|√

λ
and an unstable maximum at

φ = 0.
The “real” vacuum state of the system is at a stable minimum of the potential.

For T > Tcr, the minimum is in the “symmetric” state φ = 0. On the other hand, for
T < Tcr this state is unstable. It is therefore called a “false vacuum”. The system will
move into one of the stable minima at φ = ±φ0. When the system is in one of these
states, it is no longer symmetric under the change of sign of φ. Such a symmetry,
which is not reflected in the vacuum state, is called spontaneously broken. From
Fig. 12.16b we see that the energy of the false vacuum is larger than for the real
vacuum.

The central idea, fromwhich the “inflationary cosmology” originated, was to take
into consideration the consequences of the unified quantum field theories, the gauge
theories, at the construction of relativistic models for the early universe. According
to the Friedmann models, the temperature was extremely high in the early history
of the universe. If one considers Higgs fields associated with GUT models (grand

Fig. 12.18 Inflationary potentials. The shape of the potential depends on the sign of μ2. a Higher
temperature than the critical, with μ2 > 0. b Lower temperature than the critical, with μ2 < 0
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Fig. 12.19 Temperature dependence of Higgs potential

unified theories), one finds a critical temperature Tcr corresponding to the energy
kTcr = 1014GeV, where k is the Boltzmann’s constant. Before the universe was
about t1 = 10−35s old, the temperature was larger than this. Thus, the Higgs field
was in the symmetric ground state. According to most of the inflation models, the
universe was dominated by radiation at this time.

When the temperature decreases, the Higgs potential changes. This could happen
as shown in Fig. 12.19. Here, there is a potential barrier at the critical temperature,
which means that there cannot be a classical phase transition. The transition to the
stable minimum must happen by quantum tunnelling. This is called a first-order
phase transition. Alan Guth’s original inflation model [23] was based on a first-order
phase transition.

12.8.2 Guth’s Inflationary Model [24]

According to most of the inflationary models, the universe was dominated by radia-
tion during the time before 10−35s. The universe was then expanding so fast that there
was no causal contact between the different parts of the universe that became our
observable universe. Probably, the universe was rather inhomogeneous, with consid-
erable space-like variations in temperature. There were also regions of false vacuum,
with energy densities characteristic of the GUT energy scale, which also controlled
the critical temperature. While the energy density of the radiation decreased quickly,
as a−4, the energy density of vacuum was constant. At the time t = 10−35s, the
energy density of the radiation became less than that of the vacuum.
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At the same time the potential started to change such that the false vacuum went
from being stable to unstable. Thus, there was a first-order phase transition to a
real vacuum. Because of the inhomogeneity of the universe’s initial condition, this
happenedwith different speeds at differing places. The potential barrier slowed down
the process, which happened by tunnelling, and the universe was at several places
considerably under cooled. Then there appeared “bubbles” dominated by the energy
of the false vacuum. These regions acted upon themselves with repulsive gravity.

By integrating the equation of motion for the expansion factor in such a vacuum-
dominated bubble, one gets

a = eHt, H =
√

8πGρcr

3
. (12.280)

By inserting the GUT value above, we get H = 6.6 × 1034s−1, i.e.H−1 = 1.5 ×
10−35s. With reference to field theoretical works by Sidney Coleman and others,
Guth reasoned that a realistic duration of the nucleation process happening during
the phase transition is 10−33s. During this time, the expansion factor increases by a
factor of 1028. This vacuum-dominated epoch is called the inflationary era.

Let us look closer at what happened with the energy of the universe in the course
of its development, according to the inflationary models. To understand this we first
have to consider what happened at the end of the inflationary era. When the Higgs
field reached the minimum corresponding to the real vacuum, it started to oscillate.
According to the quantum description of the oscillating field, the energy of the false
vacuum was converted to radiation and particles. In this way the equation of state
for the energy dominating the development of the expansion factor changed from
p = −ρ, characteristic of LIVE, to p = (1/3)ρ, characteristic of radiation.

The energy density and the temperature of the radiation then increased enor-
mously. Before and after this short period around the time t = 10−33s the radiation
energy increased adiabatically, such thatρa4 = constant.According toStefan–Boltz-
mann law of radiation, ρ ∝ T 4. Therefore, aT = constant during adiabatic expan-
sion. This means that during the inflationary era, while the scale factor increased
exponentially, the energy density and temperature of radiation decreased exponen-
tially. At the end of the inflationary era, the radiation was reheated so that it returned
to approximately the energy it had when the inflationary era started.

It may be interesting to note that the Newtonian theory of gravitation does not
allow an inflationary era, since stress has no gravitational effect according to it.

12.8.3 The Inflationary Models’ Answers to the Problems
of the Friedmann Models

The horizon problemwill be investigated here in the light of the inflationary universe
models. The problem was that there was room for about 10,000 causally connected
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regions inside the region defined by our presently observable universe at the decou-
pling time when the universe became transparent to the background radiation. Let
us calculate the horizon radius lh and the radius a of the region presently within the
particle horizon, lPH = 15 × 109 ly = 1.5 × 1026cm, at the time t1 = 10−35s when
the inflation started. From Eq. (12.120) for the radiation-dominated period before
the inflationary era, one gets

lPH = 2t1 = 6 × 10−25cm. (12.281)

The radius, at time t1, of the region corresponding to our observable uni-
verse is found by using a ∝ eHt during the inflation era from t1 =
10−35s to t2 = 10−33s, a ∝ t1/2 in the radiation-dominated period from t2 to t3 =
1011s and a ∝ t2/3 in the matter-dominated period from t3 until now, t0 = 1017s.
This gives

a1 = eHt1

eHt2

(

t2
t3

)1/2( t3
t0

)2/3

lPH(t0) = 1.5 × 10−28cm. (12.282)

Hence at the beginning of the inflationary era the horizon radius, lPH, was larger
than the radius a1 of the region corresponding to our observable universe. The whole
of this region was then causally connected, and thermic equilibrium was established.
This equilibriumwas preserved, and there was thermal equilibrium at the decoupling
time about 400,000 years later. This explains the observed isotropy of the cosmic
background radiation and solves the horizon problem.

We will now consider the flatness problem. This problem was the necessity, in the
Friedmann models, of fine tuning the initial density in order to obtain the closeness
of the observed mass–density to the critical density. Again, the inflationary models
give another result, making fine tuning unnecessary.

Inserting the scale factor (12.280) into Eq. (12.276), we get

� − 1 = k

H 2
e−2Ht, (12.283)

where H is constant and given in Eq. (12.280). The ratio of � − 1 at the end of the
inflationary era to the beginning of the inflationary era becomes

�2 − 1

�1 − 1
= e−2H (t2−t1) = 10−56. (12.284)

Contrary to the Friedmann models, where the mass–density moves away from
the critical density as time increases, the density approaches the critical density
exponentially during the inflationary era. Within a large range of initial conditions,
this means that according to the inflation models the universe should still have a
density very close to the critical density.
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12.8.4 Dynamics of the Inflationary Era

During the inflationary era the evolution of the universe is assumed to be dominated
by a scalar field φ which is called the inflaton field. The first Friedmann equation is

H 2 = κ

3
ρ = κ

3

(

1

2
φ̇2 + V

)

, (12.285)

where ρ is the energy and V = V (φ) the potential of the inflaton field. The continuity
equation is

ρ̇ + 3Hρ = −3Hp. (12.286)

It follows from these equations that

ρ̇ = −√

3κρ(ρ + p). (12.287)

The equation for the evolution of the inflaton fieldwhich generates the dark energy
causing repulsive gravity during the inflationary era is

φ̈ + 3H φ̇ = −V ′, (12.288)

where V ′ = dV/dφ.
It follows from the second Friedmann equation that the acceleration of the cosmic

expansion is given by

ä

a
= − κ

6
(ρ + 3p). (12.289)

The inflaton field is often described as a perfect fluid with density and pressure

ρ = 1

2
φ̇2 + V, p = 1

2
φ̇2 − V . (12.290)

Hence, the fluid obeys the equation of state

p = wρ, w = (1/2)φ̇2 − V

(1/2)φ̇2 + V
. (12.291)

It interpolates between a Lorentz invariant vacuum energy (LIVE) with w = −1
for a constant inflaton field and a Zel’dovich fluid with w = 1 for a flat potential with
V = 0. Solved with respect to φ̇2 the second of these equations gives

φ̇2 = 1 + w

1 − w
2V . (12.292)
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This equation shows that V > 0 for |w| < 1.
The acceleration Eq. (12.289) of the scale factor then takes the form

ä

a
= − κ

3

(

φ̇2 − V
)

. (12.293)

Differentiating Eq. (2.285) and inserting Eq. (2.289) gives

Ḣ = −(κ/2)φ̇2, (12.294)

or

φ̇ = −(2/κ)H ′, (12.295)

whereH ′ = dH/dφ = Ḣ/φ̇. Equation (2.294) shows thatH is a decreasing function
of time. It follows from Eqs. (2.285) and (2.295) that

κ2V = 3κH 2 − 2H ′2. (12.296)

Equation (2.294) shows that the Hubble parameter is constant and there is expo-
nential expansion for a constant inflaton field. This represents the case where the
inflaton field behaves like LIVE with a constant density, which may be represented
by a cosmological constant. Equation (2.294) implies that the Hubble parameter is a
decreasing function of time for a variable scalar field.

During most of the inflationary era, i.e. except during the transient phases at the
beginning and the end of the era, the scalar field changes very slowly so that φ̈ � H φ̇.
If the potential V is not too small, the condition φ̇ � V may also be satisfied. Then
w ≈ −1 which means that the inflaton field behaves like LIVE with approximately
constant energy density, and with exponential expansion of the space during most of
the inflationary era.

In the so-called slow-roll approximation we shall assume that φ̈ � H φ̇, but not
in general that φ̇2 � V . Then Eq. (12.288) reduces to

φ̇ ≈ − V ′

3H
. (12.297)

Equations (12.291) and (12.294) give

Ḣ = −κ V
1 + w

1 − w
. (12.298)

It follows from Eqs. (12.285) and (12.294) that

κV = Ḣ + 3H 2. (12.299)
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Hence

Ḣ = −(3/2)(1 + w)H 2. (12.300)

Integration of this equation for constant w �= −1 gives

a = a1

(

t

t1

) 2
3(1+w)

. (12.301)

Hence, power law expansion corresponds to a constant equation of state parameter
w �= −1 during the inflationary era, and exponential expansion tow = − 1. Inserting
the first of Eq. (2.291) into Eq. (12.287) gives

ρ̇ = −√

3κρ(1 + w)ρ. (12.302)

Integrating this equation for w �= −1 with ρ(0) = ρ0 gives

ρ = ρ0
[

1 + (1/2)(1 + w)
√
3κρ0 t

]2 . (12.303)

Hence for
√

ρ0 t  MP the energy density of an inflaton field with constant equa-
tion of state parameter, w �= −1, decreases approximately inversely proportionally
to the square of time.

We define the slow-roll parameters ε , η by

ε ≡ 1

2κ

(

V ′

V

)2

, η ≡ 1

κ

V ′′

V
. (12.304)

The absolute values of the slow-roll parameters are much less than one during the
slow-roll period. This means that during a slow-roll period the graph of V (φ) is very
flat and has small curvature.

Alternatively one defines “Hubble slow-roll parameters”, εH , ηH in terms of the
Hubble parameter and its derivatives with respect to the inflaton field

εH = 2

κ

(

H ′

H

)2

, ηH = 2

κ

H ′′

H
. (12.305)

Inserting the first of these expressions into Eq. (12.296) we get for the inflaton
potential

κV = (3 − εH )H 2. (12.306)

It follows from Eq. (12.295) that during the slow-roll era differentiation with
respect to time and with respect to the inflaton field are related by
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d

dt
= − 2

κ
H ′ d

dφ
. (12.307)

Using this in the Definition (12.305) we get simple expressions for εH and ηH

εH ≡ − Ḣ

H 2
, ηH = −1

2

Ḧ

ḢH
. (12.308)

Using that H = ȧ/a the first equation takes the form

εH = 1 − aä

ȧ2
= 1 + q, (12.309)

where q is the deceleration parameter defined in Eq. (12.75). A requirement for
inflation is that there is accelerated expansion, ä > 0. Hence a necessary condition
for inflation is that εH < 1.

It follows from Eq. (12.294) that

φ̈

φ̇
= 1

2

Ḧ

Ḣ
, (12.310)

giving

ηH = − φ̈

H φ̇
. (12.311)

This equation may be written

[

(1/2)φ̇2]· = −ηH H φ̇2. (12.312)

Hence the sign of the parameter ηH decides whether the kinetic energy of the
inflaton field increases, ηH < 0, or decreases, ηH > 0. The kinetic energy is constant
for ηH = 0.

To lowest order

εH = ε, ηH = η − ε. (12.313)

Equations (2.57), (12.63) and (2.309) give

w = −1 + (2/3)εH . (12.314)

It follows that a universe with εH = 0 is dominated by LIVE with equation of
state parameter w = − 1 and a constant energy density.

From Eqs. (12.285), (2.294) and (2.308) we get
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εH = 3
φ̇2/2

φ̇2/2 + V
. (12.315)

Hence the parameter εH represents the ratio of the kinetic energy and the
total energy of the inflaton field. This is exact. It does not require the slow-roll
approximation.

The ratio of the final value af of the scale factor during the inflationary era and
the initial value a(N ) is

af

a(N )
= eN , (12.316)

where N is called the number of e-folds of the slow-roll era. Hence

N = ln
(

af /a
)

. (12.317)

Note thatN = 0 at the end of inflation, so thatN counts the number of e-folds until
inflation ends and increases as we go backward in time. It follows from Eq. (12.317)
that

Ṅ = −H , (12.318)

or

d

dN
= − 1

H

d

dt
. (12.319)

If Ḣ � H 2 Eq. (12.299) can be approximated by

κV = 3H 2. (12.320)

Hence

V ′

V
= 2

H ′

H
, V ′′ = (6/κ)

(

H ′2 + HH ′′) (12.321)

Using this together with Eqs. (2.319) and Ṅ = N ′φ̇, we have

dN = − H

φ̇
dφ = κ

2

H

H ′ dφ = κ
V

V ′ dφ. (12.322)

This equation can be used to relate derivative with respect to N and derivative
with respect to φ as

d

dN
=

√

2ε

κ

d

dφ
, (12.323)
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which may be written

ε = κ

2

(

dφ

dN

)2

, (12.324)

showing that ε > 0. From Eqs. (12.288) and (12.319) we have

εH = H ′(N )

H
. (12.325)

Hence H ′(N ) > 0. From the Definition (12.304) and Eq. (12.323) we get

ε = 1

2

V ′(N )

V
. (12.326)

Integration of Eq. (12.322) gives

N ≈ κ

φ
∫

φf

V

V ′ dφ =
φ

∫

φf

√

κ

2ε
dφ <

√

κ

2εmin

(

φ − φf
)

, (12.327)

where εmin is the minimum value of ε. Note that if V ′ > 0 we must have φf < φ in
order that N > 0, and if V ′ < 0 we must have φf > φ. Equation (12.327) implies a
bound on the change of the value of the scalar field during the inflationary era,

�φ > N

√

2εmin

κ
= N MP

√

2εmin. (12.328)

This is called the Lyth bound.
There exists a third type of slow-roll parameters. They are defined by

ε1 = εH , εn+1 = −d ln|εn|
dN

. (12.329)

Using Eq. (12.319) we have

εn+1 = 1

H

ε̇n

εn
. (12.330)
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12.8.5 Testing Observable Consequences of the Inflationary
Era

It has turned out that observations of the polarization of the cosmic microwave back-
ground radiation (CMB) can be used to test predictionsmade by different inflationary
models [25].

The polarization of the CMB may at every point be described by an amplitude of
the oscillation and a direction. The field of polarization is decomposed in twomodes:
the E-mode and the B-mode. The E-mode is curl free like the electrical field of a
charged particle. The B-mode is divergence free like the magnetic field of a current
(Fig. 12.20).

One has classified the polarization in three types:
Scalar perturbation: Energy density fluctuations in the plasma (resulting in hotter

and colder regions) cause velocity distributions that are out of phase with the acoustic
density mode. The fluid velocity from hot to colder regions causes blueshift of the
photons, resulting in E-mode polarization.

Vector perturbation: Vorticity in the plasma causes Doppler shifts resulting in the
quadrupole lobes in the figure. However, vorticity would be damped by inflation and
is expected to be negligible.

Fig. 12.20 Polarization of electromagnetic radiation. Illustration of the E-mode and the B-mode
of polarization of electromagnetic radiation
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Tensor perturbation: Gravitywaves stretch and squeeze space in orthogonal direc-
tions. This also stretches the wavelength of radiation, therefore creating both E-mode
and B-mode polarization in the radiation temperature field.

Gravity waves from inflation produce tensor perturbations.
The power spectra of scalar and tensor fluctuations are represented by

PS = AS(k∗)
(

k
k∗

)nS−1+(1/2)αS ln(k/k∗)+...

, PT = AT (k∗)
(

k
k∗

)nT +(1/2)αT ln(k/k∗)+...

,

AS = V
24π2εM 4

P
, AT = 2V

3π2M 4
P

.

(12.331)

Here k is the wave number of the perturbation which is a measure of the average
spatial extension for a perturbationwith a given power.One oftenwrites k = ȧ = aH ,
where a is the scale factor representing the ratio of the physical distance between
reference particles in the universe relative to their present distance. The quantities
AS and AT are amplitudes, and nS and nT are the spectral indices of the scalar and
tensor fluctuations. The quantities −δns ≡ nS − 1 and nT are called the tilt of the
power spectra of curvature perturbations and tensor modes, respectively, because
they represent the deviation from the values δns = nt = 0 that represent a scale
invariant spectrum.

Furthermore αS and αT are factors representing the k-dependence of the spectral
indices. They are called the running of the spectral indices and are defined by

αS = dnS

d ln k
, αT = dnT

d ln k
. (12.332)

If nS = 1 the spectrum of the scalar fluctuations is said to be scale invariant. An
invariant mass–density power spectrum is called a Harrison-Zel’dovich spectrum.
One of the predictions of the inflationary universe models is that the cosmic mass
distribution has a spectrum that is nearly scale invariant, but not exactly. The observa-
tions and analysis of the Planck team [26] have given the result nS = 0.968± 0.006.
Hence we may use nS = 0.968 as the preferred value of nS , corresponding to
δns = 0.032. Furthermore they have obtained αS = − 0.003 ± 0.007.

The tensor-to-scalar ratio r is defined by

r ≡ PT (k∗)
PS(k∗)

= A T

A S
, (12.333)

which is a positive quantity. From Eqs. (12.331) and (12.333) we have

r = 16ε. (12.334)

The tensor-to-scalar ratio can be determined from observations of the B-mode of
polarization of the CMB. In the measured wavelength region this B-mode pattern
is partly due to radiation from galactic dust and partly to imprints on the CMB at
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the time 380,000 years after the Big Bang, when the universe became transparent
for the CMB, from relic gravitational waves produced by quantum fluctuations in
the inflationary era. At the present time (November 2019) the best restriction on the
tensor-to-scalar ratio obtained from CMB-measurements is r < 0.04.

It follows from Eqs. (12.334) and (12.314) that the equation of state parameter
during the slow-roll era is given in terms of the tensor-to-scalar ratio as

1 + w = r/24. (12.335)

With 0 ≤ r < 0.04 this gives − 0.9983 ≤ w ≤ −1 during the slow-roll era,
which is equal to or very close to the equation of state of LIVE.

We shall now find how the spectral indices depend upon the slow-roll parameters.
From Eq. (12.331) it follows that they are given by

δns = −
[

d lnPS(k)

d ln k

]

k= aH

, nT =
[

d lnPT (k)

d ln k

]

k= aH

. (12.336)

The quantities inside the brackets are evaluated at the horizon crossing where
k = k·, and the wave number is equal to the scale factor times the Hubble parameter.
It will be useful to write

d

d ln k
= d

dN
× dN

d ln k
. (13.337)

Hence, using that AS ∝ H 2/ε, the scalar spectral indices may be written as

δns =
(

d ln ε

dN
− 2

d lnH

dN

)

dN

d ln k
, nT = 2

d lnH

dN

dN

d ln k
. (12.338)

Using Eqs. (12.318) and (12.308) we get in the slow-roll approximation

d lnH

dN
= − Ḣ

H 2
= εH . (12.339)

From the condition that the spectral indices are calculated at the horizon crossing
we have k = aH . Equation (12.317) gives dN = − d ln a. Hence d ln k = d ln a +
d lnH = − dN + d lnH . Since H is approximately constant during the slow-roll
inflationary era, it follows that

dN

d ln k
≈ −1. (12.340)

It follows from the Definition (12.304) that the derivative of the slow-roll
parameter ε with respect to the scalar field is given by
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√

2ε

κ
ε

′
(φ) = 2ε(η − 2ε) . (12.341)

Using Eq. (12.323) this may be written as

dε

dN
= 2ε(η − 2ε). (12.342)

Inserting this together with Eqs. (12.313) and (12.339) into Eq. (12.338) leads to

δns = 2(3ε − η) (12.343)

It follows from Eqs. (12.313) and (12.343) that the spectral tilt can be expressed
in terms of the Hubble slow-roll parameters as

δns = 2(2εH − ηH ). (12.344)

Equations (12.338), (12.339), (12.340) and (12.313) give

nT ≈ −2ε (12.345)

A consistency relation between r and nT follows from Eqs. (12.334) and (12.245)

nT = − r

8
. (12.346)

Example 12.8.1 Polynomial Inflation As a simple illustration we shall here use the
formalism above to calculate the optical parameters δns, nT and r for the class of
inflationary models called polynomial inflation.

The so-called chaotic inflation models are a class of polynomial models. The
potential of the inflaton field in this type of inflationary models is

V = M 4φ̂p, (12.347)

where φ̂ = √
κφ. M is the energy scale of the potential when the inflaton field has

Planck mass, and it is assumed that p is constant and φ > 0.

We shall now deduce expressions for the spectroscopic parameters of this model
in terms of the number of e-folds and find the restrictions that the observational
results δns = 0.032, r < 0.04 put on this class of inflationary models.

Differentiating the potential we get

V ′

V
= p

φ̂
,

V ′′

V
= p(p − 1)

φ̂2
. (12.348)

Hence, the slow-roll parameters for this model are
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ε = 1

2κ

(

p

φ

)2

, η = 1

κ

p(p − 1)

φ2
, (12.349)

Hence for this class of inflationary universe models we have

η = 2(p − 1)

p
ε . (12.350)

Inserting the expressions (12.349) into Eqs. (12.343) and (12.334) we get

δns = κ
p(p + 2)

φ2
, r = κ

8p2

φ2
. (12.351)

This gives the δns, r− relation

r = 8p

p + 2
δns, (12.352)

which may be written

p = 2r

8δns − r
. (12.353)

It follows from this equation that the observational results δns = 0.032, r < 0.04
give requirement p < 0.37.

From Eqs. (12.322) and (12.347) we have

dN = κ

p
φ dφ. (12.354)

Integrating through the slow-roll inflationary era, we get

N = κ

2p

(

φ2 − φ2
f

)

. (12.355)

where φ = φ(N ) is the value of the field strength when the slow-roll era with N
e-folds begins. It is usual to define the end of the inflationary era by ε

(

φf
) = 1. From

Eq. (12.349) we then get

φf = p√
2κ

. (12.356)

Inserting this expression for φf into Eq. (12.356) gives

φ =
√

p

2κ
(p + 4N ) . (12.357)
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Inserting this into Eq. (12.349) shows that for an inflationary era in which the
potential of the dark energy is a power of the scalar field, the slow-roll parameters
are

ε = p

p + 4N
, η = 2(p − 1)

p + 4N
. (12.358)

From Eqs. (12.343), (12.345) and (12.334) we then get

δns = 2(p + 2)

p + 4N
, nT = − 2p

p + 4N
, r = 16p

p + 4N
. (12.359)

Hence

N = 8 − r/2

8δns − r
. (12.360)

The observational results δns = 0.032, r < 0.04 then requires that for these
models the number of e-folds is restricted to N < 37.

There is a consensus that in order to solve the horizon and flatness problems the
number of e-folds of the universe during the inflationary era must be larger than 50.
Hence polynomial inflation does not give a satisfactory solution of these problems.

Confrontations of observable consequences of the inflationary era and observa-
tional data have been thoroughly discussed for several inflationary universe models
in [24].

12.9 The Significance of Inertial Dragging
for the Relativity of Rotation

The first published paper on inertial dragging inside a rotating shell based on the
general theory of relativity was published by H. Thirring in 1918. He calculated the
angular velocity, �, of a Zero Angular Momentum Observer (ZAMO) inside a shell
with Schwarzschild radius, RS, and radius, r0, rotating slowly with angular velocity,
ω, in the weak field approximation, and found the inertial dragging angular velocity,

� = 8RS

3r0
ω. (12.361)

Both the angular velocity of the shell and that of the ZAMO are defined with
respect to a system that is non-rotating in the far away region with asymptotic
Minkowski spacetime.

In 1966 Brill and Cohen [26] presented a calculation of the angular velocity of an
inertial frame inside a rotating shell valid for arbitrarily strong gravitational fields, but
still restricted to slow rotation. The calculation of Brill and Cohen gave the dragging
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angular velocity � inside a massive shell with radius r0, Schwarzschild radius RS

and rotating with angular velocity ω,

� = 4RS(2r0 − RS)

(r0 + RS)(3r0 − RS)
ω. (12.362)

A detailed calculation of this expression is found in [26]. For weak fields, i.e.
for r0  RS, this expression reduces to that of Thirring. But if the shell has so
great mass that its Schwarzschild radius is equal to the radius of the shell, r0 = RS,
the expression above gives � = ω. Then there is perfect dragging. In this case the
inertial properties of space inside the shell no longer depend on the properties of the
ZAMO at infinity, but are completely determined by the shell itself. Brill and Cohen
further wrote that a shell of matter with radius equal to its Schwarzschild radius
together with the space inside it can be taken as an idealized cosmological model,
and proceeded: “Our result shows that in such a model there cannot be a rotation of
the local inertial frame in the centre relative to the large masses in the universe. In
this sense our result explains why the “fixed stars” are indeed fixed in our inertial
frame”. This means that rotation is relative to the motion of the large scale cosmic
masses, and hence that the principle of relativity is valid for rotational motion in a
universe with perfect inertial dragging.

When we look outwards in space, we look backwards in time, because we see an
object the way it was when it emitted the light that we receive. Remarkably, gravi-
tational waves move at the velocity of light. Although it has a quantum mechanical
explanation in the fact that both photons and gravitons are massless, it is a strange
coincidence from a classical point of view, possibly indicating a deep connection
between gravity and electromagnetism. It means that when we search for sources of
gravitational effects that have propagated undisturbed from a changing source to an
observer, neglecting tales of gravitational waves that can be contributions from the
inside of the light cone, we must look at events along the past light cone.

12.9.1 The Cosmic Causal Mass in the Einstein-de Sitter
Universe

We search for cosmic sources of inertial dragging here and now. Hence, we introduce
the concept causal mass, i.e. the mass which produces gravitational effects here and
now.When the causal mass at the point of time t0 of an observer at r = 0 is calculated
by performing an integral with a mass element formed as a spherical shell about the
observer with coordinate radius and thickness r and dr, respectively, the mass of the
element is calculated by inserting the value of the density at the emission time of the
considered mass element on the past light cone.

If the causal mass inside the particle horizon of the universe is so great that its
Schwarzschild radius is equal to or larger than the radius of the horizon, there will
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be perfect inertial dragging [26]. In this case the principle of relativity is valid for
rotational motion in such a universe.

In order to give a simple illustration we first consider an example permitting
analytical expressions in terms of elementary functions; i.e. we shall first consider
the Einstein–de Sitter universe. This is a flat universe containing only dust. It has
scale factor

a(t) = (t/t0)
2/3, (12.363)

where t0 is the present age of the universe, and the scale factor has been normalized
to a(t0) = 1.

The Hubble age is tH = 1/H0, where H0 is the present value of the Hubble param-
eter. Inserting the most recent value of the Hubble parameter gives tH = 13.9 Gy.
The age of this universe is

t0ED = (2/3)tH. (12.364)

where ED means Einstein-de Sitter.
The physical radius of the particle horizon is (we are using units so that c = 1),

RPH(t) = a(t)

1
∫

0

1

a(t)
dt. (12.365)

Inserting the scale factor (12.363) gives the horizon radius of the Einstein–de
Sitter universe,

RPHED(t) = 3 t2/30 t1/3. (12.366)

The present horizon radius is

RPHED(t0) = 3t0ED = 2tH. (12.367)

Hence, the present radius of the particle horizon is 27.8 Gly in an Einstein–de
Sitter universe with the measured value of the Hubble parameter.

We shall now calculate the Schwarzschild radius of the causal mass inside the
particle horizon. It is calculated by integrating along the past light cone; i.e. the
density is evaluated at retarded points of time,

rSED = 2GM = 8πG

r0PH∫

0

[

ρ
√

g
]

t - rdr =
t0PH∫

0

[

ρa3
]

t - rr
2dr. (12.368)
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Here, g is the determinant of the spatial part of the metric, and r0PH is the present
radius of the particle horizon. Since the density of the dust is ρ = ρ0a−3, we get

rSED = (8πG/3)ρ0r30PH. (12.369)

Using Eq. (12.367) and given that the present density is equal to the present value
of the critical density,

ρ0 = 3H 2
0

8πG
= 3

8πGt2H
, (12.370)

we get

rSED = 8 tH. (12.371)

InsertingPlanckobservational data gives rSED =108.8Gly.Hence for this universe
model, rSED = 4RPHED, showing that the Schwarzschild radius of the causal mass
inside the horizon is larger than the horizon radius. This indicates that the causal mass
inside the horizon is so great that there is perfect inertial dragging in this universe,
and hence that the principle of relativity is valid for rotational motion in this universe.

The lookback distance is the radius of a surface S around an observer equal to
the velocity of light times the age of the universe, rLED = t0. Inserting this as the
upper limit in the integral (12.215), we find that the Schwarzschild radius of the mass
inside S is equal to the lookback distance, rSHED = rLED. This corresponds to the
condition for perfect inertial dragging used in Sect. 12.7. However, from a causal
point of view, the relevant surface is the particle horizon.

12.9.2 The Cosmic Causal Mass in the Flat ΛCDM Universe

We now consider the flat �CDM universe which has scale factor [9]

a(t) = A1/3 sinh2/3(t/t�), A = 1 − ��0

��0
, t� = 2√

3�
= 2tH

3
√

�0
. (12.372)

The present radius of the particle horizon in this universe is

r0PH = rPH(t0) = 2

3

tH

�
1/6
�0 (1 − ��0)

1/3

arsinh
√
1/A

∫

0

dx

sinh2/3(x)
. (12.373)

Inserting the Planck values ��0 = 0.68 and tH = 13.9 Gy and calculating the
integral numerically gives R0PH = 45Gly.
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The mass which acts causally at the present time t0 upon the observer located at
r = 0 in the �CDM universe is

M = 4π

r0PH∫

0

[

ρM 0 + ρ
(

a(te(r))
3)] r2 dr. (12.374)

Here ρM0 and ρ� denote the present density of the dust and the vacuum energy,
respectively, and te denotes the emission time of a signal emitted at the coordinate
distance r and received at r = 0 at the time t0. Accordingly te is a function of the
coordinate distance r the signal travels and is given implicitly by the relation

dr

dt
= t

a(t)
(12.375)

with the initial condition r(−t0) = 0. The present Schwarzschild radius of this mass
is RS = 2GM. Solving these equations numerically and plotting the Schwarzschild
radius of the causal mass inside the particle horizon and the present radius of the
particle horizon as functions of ��0 we obtain the result shown in Fig. 12.21 which
is taken from the article [27].

We see from this that the Schwarzschild radius of the causal mass inside the
present particle horizon in a flat �CDM universe is larger than the present radius
of the particle horizon. This means that there is perfect inertial dragging in the
universe. Hence the motion of inertial frames in the universe is determined by the

Fig. 12.21 Causal mass. The upper curve represents the Schwarzschild radius of the causal mass
inside the present particle horizon in a flat �CDM universe, and the lower curve represents the
present radius of the particle horizon
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average motion of the causal mass in the universe. If this is a realistic model of our
universe, we may conclude that rotational and accelerated motion is relative in our
universe according to the general theory of relativity.

Exercises

12.1. Gravitational collapse

In this problem we shall find a solution to Einstein’s field equations describing a
spherically symmetric gravitational collapse. The solution shall describe the space-
time both exterior and interior to the star. To connect the exterior and interior solu-
tions, the metrics must be expressed in the same coordinate system. We will assume
that the interior solution has the same form as a Friedmann solution. The Friedmann
solutions are expressed in co moving coordinates, thus freely falling particles have
constant spatial coordinates.

Let (ρ, τ ) be the infalling coordinates, i. co-moving coordinateswith freely falling
particles. τ is the proper time of a freely falling particle starting at infinity with
zero velocity. These coordinates are connected to the curvature coordinates via the
requirements

ρ = r, for τ = 0,
τ = t, for r = 0.

(12.376)

(a) Show that the transformationbetween the in falling coordinates and the curvature
coordinates is given by

τ = 2

3c
√

RS

(

ρ
3
2 − r

3
2

)

,

t = τ − 2

c
(RSr)

1
2 + RS

c
ln

⎡

⎢

⎣

(

r
RS

) 1
2 + 1

(

r
RS

) 1
2 − 1

⎤

⎥

⎦, (12.377)

where RS is the Schwarzschild radius of the star.

(b) Show that the Schwarzschild metric in these coordinates takes the form

ds2 = −c2dτ 2 +
[

1 − 3

2
(RS)

1
2 cτρ− 3

2

]− 2
3

dρ2

+
[

1 − 3

2
(RS)

1
2 cτρ− 3

2

] 4
3

ρ2(dθ2 + sin2 θdφ2). (12.378)
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Assume the star has a position-dependent energy density ρ(τ), and that the pres-
sure is zero. Assume further that the interior spacetime can be described with a
Friedmann solution with Euclidean geometry (k = 0).

(c) Find the solution when the radius of the star is R0 at τ = 0.

12.2. The volume of a closed Robertson–Walker universe

Show that the volume of the region contained inside a radius r = aχ = a arcsin r is

V = 2πa3

(

χ − 1

2
sin 2χ

)

. (12.379)

Find the maximal volume. Find also an approximate expression for V when χ �
R.

12.3. Conformal time

Find the form of the line-element (12.1) if the cosmic time t is replaced by conformal
time η defined by Eq. (12.126).

What is the equation of light moving radially when we use conformal time?

12.4. Lookback time and the age of the universe

The lookback time of an object is the time required for light to travel from an emitting
object to the receiver. Hence, it is tL ≡ t0 − te, where t0 is the point of time the object
was observed and te is the point of time the light was emitted.

(a) Show that the lookback time is given by

tL =
2

∫

0

dy

(1 + y)H (y)
, (12.380)

where z is the redshift of the object and the Hubble parameter H (y) is given in
Eq. (12.111).

(b) Show that the lookback time in the Milne universe model with a(t) =
(t/t0), k < 0, is

tL = 1

H0

z

1 + z
. (12.381)

and find the age of this universe.

(c) Show that tL = t0
[

1 − (1 + z)−3/2
]

, where t0= 2/(3H0), in a flat, matter-
dominated universe.
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What is the age of this universe.?

(d) Find the lookback time of an object with redshift z and the age of the matter-
dominated universe models with positive and negative spatial curvature.

(e) Find the age of a matter-dominated universe from the parametric solutions
(12.140)–(12.144).

Are the resulting expressions in agreement with those found in d)?

(f) Find the lookback time–redshift relation and the age of a flat universe with dust
and LIVE.

(g) Find the lookback time—redshift relation for a flat, LIVE-dominated universe.

12.5. The LFRW universe models with a perfect fluid

In this problem we will investigate FRWmodels with a perfect fluid. We will assume
that the perfect fluid obeys the equation of state

p = wρ, (12.382)

where −1 ≤ w ≤ 1.

(a) Write down the Friedmann equations for a LFRW universe model with a w-law
perfect fluid. Express the equations in terms of the scale factor a only.

(b) Assume that a(0) = 0. Show that when −1/3 < w ≤ 1, the closed model will
recollapse. Explain why this does not happen in the flat and open models.

(c) Solve the Friedmann equation for a general w �= −1 in the flat case. What is the
Hubble parameter and the deceleration parameter? Also write down the time
evolution for the matter density.

(d) Find the particle horizon distance in terms of H0, w and z.
(e) Specialize the above to the dust-dominated, radiation-dominated and LIVE-

dominated universe models.
(f) Find a general formula in terms of the density parameters for the present value

of the deceleration parameter of a LFRW universe model.

12.6. Age—density relation for a radiation-dominated universe

Show that the age of a radiation-dominated universe model is given by

t0 = tH
1 + √

�rad0
(12.383)

for all values of k.
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12.7. Redshift–luminosity relation for matter-dominated universe: Mattig’s for-
mula

The luminosity distance of an object with redshift z is

dL = 1 + z

H0
√|�k0|Sk

⎡

⎣H0

√|�k0|
z

∫

0

dz

H (z)

⎤

⎦, (12.384)

where the function Sk is defined in Eq. (12.17) and H (z) is given in Eq. (12.111).
Show that the luminosity distance of an object with redshift z in a matter-

dominated universe with relative density �m0 and Hubble constant H0 is

dL = 2c

H0�
2
m0

[

�m0z + (�m0 − 2)(
√

1 + �m0z − 1)
]

. (12.385)

This is called Mattig’s formula. Find the corresponding formula for the Einstein–
de Sitter universe, with �m0 = 1.

12.8. Newtonian approximation with vacuum energy

(a) Show that Einstein’ linearized field equation for a static spacetime containing
dust with density ρ and vacuum energy with density ρ� takes the form of a
modified Poisson equation

∇2φ = 4πG(ρ − 2ρ�). (12.386)

(b) Assume there is a particle with mass m at the origin. Solve Eq. (12.386) in the
space outside the particle, and find the acceleration of gravity at a function of
the distance from the origin.

Find the radius of a spherical surface where the acceleration of gravity vanishes.
How large is the mass inside this surface compared to the mass of the particle at

the origin?
Evaluate the importance of LIVE for gravitational phenomena in the solar system.

12.9. Universe models with constant deceleration parameter

(a) Show that the universe with constant deceleration parameter q has
expansion factor

a =
(

t

t0

) 1
1+q

, q �= −1, and a ∝ eHt, q = −1. (12.387)
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This is the scale factor of a flat universe with a perfect fluid. Find the equation of
state of the fluid.

12.10. Density parameters as functions of the redshift

Show that the relative densities of LIVE and matter as functions of a are

�L = �L0a3

�L0a3 + (1 − �L0 − �m0)a + �m0
,

�m = �m0

�L0a3 + (1 − �L0 − �m0)a + �m0
. (12.388)

What can you conclude from these expressions concerning the universe at early
and late times?

12.11. FRW universe with radiation and matter

Show that the scale factor and the cosmic time as functions of conformal time of a
universe with radiation and matter are [28].

k > 0 :
{

a = a0[α(1 − cos η) + β sin η]
t = a0[α(η − sin η) + β(1 − cos η)],

(12.389)

k = 0 :
{

a = a0
[

1
2αη2 + βη

]

t = a0
[

1
6αη3 + 1

2βη2
]

,
(12.390)

k < 0 :
{

a = a0[α(cosh η − 1) + β sinh η]
t = a0[α(sinh η − η) + β(cosh η − 1)],

(12.391)

where α = a2
0H 2

0 �m0/2 and β = (a2
0H 2

0 �γ 0)
1/2, and �γ 0 and�m0 are the present

density parameters of radiation and matter, and H0 is the present value of the Hubble
parameter.

12.12. Event horizons in de Sitter universe models

Find the coordinate distances to the event horizons of the de Sitter universe models
with k > 0, k = 0 and k < 0 as function of time.

12.13. Flat universe model with radiation and LIVE

(a) Find the scale factor as a function of time for a flat universe with radi-
ation and Lorentz invariant vacuum energy represented by a cosmo-
logical constant �, and with present density parameter of radiation
�rad0.

(b) Calculate the Hubble parameter, H, as a function of time, and show that
the model approaches a de Sitter model in the far future. Find also the
deceleration parameter, q(t).
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(c) When is the inflection point, t1, for which the universe went from decel-
eration to acceleration? What is the corresponding redshift observed at
the time t0?

12.14 De Sitter spacetime

Consider a De Sitter spacetime with coordinates (t, r) and line element

ds2 = −c2dt2 + e2Ht
(

dr2 + r2d�2
)

, (12.393)

where the Hubble parameter H is constant.

(a) Find the redshift of light emitter from a coordinate r as measured at a point of
time t0 by an observer at the origin. The Hubble parameter H is assumed to be
known.

(b) What is the 4-acceleration of a reference particle at rest in the coordinate system?
What does your result tell about the reference frame in which these coordinates
are co-moving?

Will an observer with constant radial coordinate r experience an acceleration of
gravity?

Introducing coordinates (T , R) by the transformation

R = reHt, T = t − ln
(

1 − H 2r2e2Ht
)

(12.394)

or

r = R

eHT
√

1 − H 2R2/c2
, eHt = eHT

√

1 − H 2R2/c2, (12.395)

the line element takes the form (you need not show this)

ds2 = −(

c2 − H 2R2
)

dT 2 + dR2

1 − H 2R2/c2
+ R2d�2. (12.396)

(c) Find the redshift of light emitted from a coordinateR asmeasured by an observer
at the origin. Why is your result different to the one in a)?

(d) What is the 4-acceleration of a reference particle at rest in the coordinate system?
What does your result tell about the reference frame in which these coordinates
are co-moving? Will an observer with constant radial coordinate r experience
an acceleration of gravity?

(e) How does a reference particle with r = r0 = constant move in the (T , R)-
coordinate system.

(f) How is the redshift of light explained in the (T , R)-coordinate system? How
is it explained in the (t, r)-system?
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12.15. The Milne Universe

(a) The Milne Universe has a line element

ds2 = −cdt2 +
(

t

t0

)2( dr2

1 + r2/c2t20
+ r2d�2

)

. (12.397)

The t , r coordinates are co-moving in a reference frame E. Give a physical
interpretation of the line-element.

(b) The Hubble parameter is H = ȧ/a where ȧ is the derivative of the scale factor
with respect to time. Calculate the Hubble parameter of this universe model at
an arbitrary point of time. Find the age of the universe in terms of the present
value of the Hubble parameter.

(c) The so-called deceleration parameter is given by q ≡ − aä/ȧ2.

What is the value of q for this universe model? What does this tell about the
expansion?

(d) Introduce new coordinates T and R by the transformation

T = t

√

1 +
(

r

ct0

)2

, R = r t

t0
. (12.398)

Show that the inverse transformation is

c t =
√

c2T 2 − R2 , r = ct0R√
c2T 2 − R2

, (12.399)

and that

R = rcT
√

c2t20 + r2
. (12.400)

(e) Make a Minkowski diagram with reference to the cT , R-system, and draw the
world lines of the reference particles of E, i.e. those with r = constant and the
simultaneity curves of E, i.e. those with t = constant.

(f) Use the transformation Eqs. (3) to show that the differentials of the coordinates
co-moving in the reference frame E are

dt = c2T dT − R dR

c
√

c2T 2 − R2
, dr = c3t0T (T dR − R dT )

(

c2T 2 − R2
)3/2 . (12.401)
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Use these differentials and the expressions for t and r in Eq. (3) to calculate the
line element in the T , R coordinate system. What does your result tell about the
spacetime described by the line element you just have found and the line element
(1)?

(g) Calculate the cosmic redshift, z, of a star with r = r1 = constant in terms of r1
and the point of time t0 of the observation. Then calculate the redshift of a star
with R = constant. Explain the results you found.

(h) Einstein’s field equations as applied to an isotropic and homogeneous universe
model lead to the Friedmann equations

ȧ2 + kc2

a2
= 8πG

3
ρ ,

ä

a
= − 4πG

3

(

ρ + 3
p

c2

)

(12.402)

where a is the scale factor, ρ and p are the density and pressure of the cosmic fluid,
respectively, and k is the spatial curvature index.

Apply these equations to the line-element (1). What does your result tell about
this universe model?

12.16. Natural Inflation

The natural inflation model has potential

V (φ) = V0

(

1 + cos φ̃
)

, (12.403)

where φ̃ = φ/M , and M is the spontaneous symmetry breaking scale. We shall here
write Einstein’s gravitational constant as κ = 1/M 2

P , where MP is the Planck mass.

(a) Show that for this model the spectral parameters are

δns = b
3 − cos φ̃

1 + cos φ̃
, nT = − b

1 − cos φ̃

1 + cos φ̃
, r = 8 b

1 − cos φ̃

1 + cos φ̃
, b =

(

MP

M

)2

(12.404)

Observations have given the results δns = 0.032 and r < 0.04.

(b) Show that

b = δns − r

4
, (12.405)

and use this to calculate the requirement from the observations upon the symmetry
breaking scale. Is there any problem with the result?
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(c) Show that for this model the number of e-folds is

N = 1

b
ln

1 − cos
(

φ̃f

)

1 − cos
(

φ̃
) . (12.406)

Use this to express the spectral parameters as

δns = b
(2 + b)eb N + 2

(2 + b)eb N − 2
, nT = − 2b

(2 + b)eb N − 2
, r = 16b

(2 + b)eb N − 2
,

(12.407)

In order to solve the horizon- and flatness problems the number of e-folds must
be larger than 50. Insert N = 50, r = 0.04 and make a judgement of this model.
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Appendix
Kaluza–Klein Theory

In the general theory of relativity gravitation is a property of 4-dimensional space-
time and of the motion of the reference frame. Kaluza–Klein theory, [1, 2], is a
unified theory of gravitation and electromagnetism in which electromagnetism is the
projection of certain elements of gravitation in 5-dimensional spacetime into our
4-dimensional spacetime. The fifth dimension is spatial. According to this theory
there is no electromagnetism in the 5-dimensional world, only gravitation which is
described by the general theory of relativity in 5-dimensional spacetime.

A.1 The Structure of the Kaluza–Klein Theory

The Kaluza–Klein theory is constructed in the following way. Let the line-element
in a Riemannian 5-dimensional space be

ds2 = gμνdxμdxν, μ, ν = 1, 2, 3, 4, 5 (A.1)

with signature (−,+,+,+,+).
We experience a 4-dimensional world. We are flat-landers in a 4-dimensional

hyper-surface R4—our spacetime—in the 5-dimensional universe. It has become
usual to consider the fifth dimension as a cylinder with axis orthogonal to 4-
dimensional spacetime. Hence, the intersection of the fifth cylinder dimension with
our 4-dimensional spacetime is a circle. Also it is assumed that this circle has an
extremely small radius, since we have no direct experience of this fifth dimension.
This means that what we ordinarily think of as a point in 4-dimensional spacetime
is a small circle according to the Kaluza–Klein theory.

Let �e5 be a basis vector orthogonal to our 4-dimensional spacetime. Einstein and
Bergmann (1938) have shown that if one requires that closed geodesic curves in the
fifth dimension—around the cylinder—shall be continuous, then it is necessary that

gμν,5 = 0. (A.2)
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Furthermore g55 is a constant along the curve. One can then require that g55 is
generally constant, and by a suitable choice of coordinate one can normalize g55 so
that

g55 = 1. (A.3)

The conditions (A.2) and (A.3) are called the cylinder conditions.
In the same way that the spatial metric in the line-element (4.5) represents a

projection of themetric in 4-dimensional spacetime into the 3-space orthogonal to the
time direction, themetric of 4-dimensional spacetime is obtained in theKaluza–Klein
theory by projecting the metric of 5-dimensional spacetime onto the 4-dimensional
spacetime orthogonal to the a basis vector pointing along the fifth dimension. Hence
the line element of 4-dimensional spacetime is,

dl2 = γi jdxidx j , γi j = gi j − g5i g5 j

g55
= gi j − g5i g5 j , (A.4)

where we have used Eq. (A.3).
It follows from Eqs. (4.6)–(4.9) that dl2 is invariant against a coordinate

transformation of the form

xi ′ = xi ′(
xi
)
, x5′ = x5 + f

(
xi
)
. (A.5)

Here the first equation represents an arbitrary transformation in 4-dimensional
spacetime, and the second a gauge-transformation in the fifth dimension: the choice
of origin on a circle x1, x2, x3, x4 = constant depends upon the position in 4-
dimensional spacetime.Note that the cylinder conditions (A.2) and (A.3) are invariant
against a transformation of the form (A.5). Furthermore the transformation of g5i

against (A.5) has the form

g5ν = ∂xμ′

∂x5

∂xν ′

∂xi
gμ′ν ′ = ∂x5′

∂x5

∂xν ′

∂xν
g5′ν ′ + ∂x5′

∂x5

∂x5′

∂xν
g5′5′ = ∂xν ′

∂xν
g5′ν ′ + ∂ f

∂xν
.

(A.6)

Hence one can introduce a one-form in the 5-dimensional spacetime

g5 = g′
5 + d f. (A.7)

The physical interpretation of this form from the 4-dimensional point of view is
that it represents the electromagnetic vector potential form,

g5 = A. (A.8)

This leads to the gauge transformation of the electromagnetic vector potential,

https://doi.org/10.1007/978-3-030-43862-3_4
https://doi.org/10.1007/978-3-030-43862-3_4
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A = A′ + d f. (A.9)

From this equation and Poincare’s lemma it follows that the electromagnetic field
form

F = dA (A.10)

is invariant against the gauge transformation (A.9). Also this invariance is here seen
as a consequence of the invariance of the metric 1-form g5 against a transformation
representing a free choice of the origin on the fifth cylinder dimension.

A.2 Calculation of the 5-dimensional Curvature Scalar

We shall now calculate the curvature scalar of the Riemann tensor representing the
curvature of the 5-dimensional spacetime using Cartan’s structure equations.

The line-element of 5-dimensional spacetime may be written as

ds2 = γi jdxi dx j + (
dx5 + Aidxi

)2
, Ai = g5i , (A.11)

where γi j are the components of the metric tensor of our 4-dimensional spacetime.
We introduce a form basis

ωi = dxi , ω5 = dx5 + Aidxi . (A.12)

Exterior differentiation gives

dωi = 0, dω5 = 1

2

(
∂ Ai

∂x j
− ∂ A j

∂xi

)
dxi ∧ dx j . (A.13)

Hence the electromagnetic field form has components

Fi j = ∂ Ai

∂x j
− ∂ A j

∂xi
= ∂g5i

∂x j
− ∂g5 j

∂xi
. (A.14)

From Cartan’s 1. structure equation in the form (5.180) we have

dω5 = −�5
j ∧ ω j . (A.15)

According to Eq. (5.164) the components of the connection form are

�5
j = �5

jνω
ν. (A.16)

It follows from Eqs. (A.3) and (A.13)–(A.16) that

https://doi.org/10.1007/978-3-030-43862-3_5
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�k
i j =4 �k

i j − 1

2

(
Ai Fk

j + A j Fk
i

)
, �5 j i = �5

j i = −1

2
Fi j = 1

2
Fji , �

μ

55 = 0.

(A.17)

Hence

�5i j = �5
i j = 1

2
Fi j . (A.18)

With the basis (A.12) the metric has the form

gμν =
(

γi j 0

0 1

)

. (A.19)

Hence

dg5 j = dg j5 = dg55 = 0. (A.20)

It follows from Eq. (5.169) and this equation that

�i5 = −�5i , (A.21)

giving

�i5 j = −�5i j = −1

2
Fi j . (A.22)

Thus

�i
5 j = −1

2
Fi

j . (A.23)

It follows from Eq. (5.132) that

�i
j5 = �i

5 j + ci
5 j , (A.24)

where the structure coefficients are defined by Eq. (3.40) which here gives

[�e5, �ei
] = cμ

5i �eμ. (A.25)

Here

�e5 = ∂

∂x5
, �ei = ∂

∂xi
− Ai

∂

∂x5
. (A.26)

Since Ai is independent of x5 we get

https://doi.org/10.1007/978-3-030-43862-3_5
https://doi.org/10.1007/978-3-030-43862-3_5
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[
∂

∂x5
,

∂

∂xi
− Ai

∂

∂x5

]
= 0. (A.27)

It follows that

cμ

5i = 0. (A.28)

Equations (A.23) and (A.24) then give

�i
j5 = �i

5 j = −1

2
Fi

j . (A.29)

We have

�i
j = �i

jkω
k + �i

j5ω
5. (A.30)

The curvature forms are given in Cartan’s 2. structure equation (6.24). In the
present case they give for the curvature of the 5-dimensional spacetime,

Ri
j = d�i

j + �i
μ ∧ �

μ

j = d�i
j + �i

k ∧ �k
j + �i

5 ∧ �5
j

= d
(
�i

jkω
k
)

+ �i
k ∧ �k

j + d
(
�i

j5ω
5
)

+ �i
5 ∧ �5

j

=4 Ri
j + �i

j5,kω
k ∧ ω5 + �i

j5dω
5 + �i

5 ∧ �5
j

. (A.31)

From Eqs. (A.15), (A.16) and (A.19) we have

dω5 = 1

2
Fi jω

i ∧ ω j . (A.32)

and

�i
5 ∧ �5

j = 1

4
Fi

m Fnjω
m ∧ ωn, (A.33)

which leads to

Ri
j =4 Ri

j − 1

2
Fi

j,kω
k ∧ ω5 − 1

4
Fi

j Fmnω
m ∧ ωn + 1

4
Fi

m Fnjω
m ∧ ωn. (A.34)

The components of the Riemann curvature tensor are given as the components of
the curvature forms by

Ri
j = 1

2
Ri

jμνω
μ ∧ ων. (A.35)

We need the components, Ri
jmn , of these curvature forms for the 5-dimensional

spacetime in 4-dimensional spacetime. Then the second term in the right-hand side of

https://doi.org/10.1007/978-3-030-43862-3_6
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Eq. (A.34) does not contribute. Also the components of the 2-forms are antisymmet-
ric. This is automatically taken care of in the third term due to the antisymmetry of the
electromagnetic field tensor, but in the fourth term we have to take the antisymmetric
combination when we write down the form-components. This gives

Ri
jmn =4 Ri

jmn − 1

2
Fi

j Fmn + 1

4
Fi

m Fnj − 1

4
Fi

n Fmj . (A.36)

We are going to calculate the Ricci curvature scalar in the 5-dimensional
spacetime,

R = R j
j + R5

5, (A.37)

where the terms at the right-hand side are themixed components of theRicci curvature
tensor. These are calculated as follows.

The components of the Riemann curvature tensor are

R jn = Rμ

jμn = Ri
jin + R5

j5n = Ri
jin + R5 j5n = Ri

jin + R j5n5. (A.38)

Using Eq. (A.36) and (A.48) we get

R jn =4 R jn − 1

2
Fi

j Fin + 1

4
Fi

i Fnj − 1

4
Fi

n Fi j − 1

4
Fji Fi

n . (A.39)

The electromagnetic field tensor is trace free, so Fi
i = 0.Hence the third termat the

right-hand side vanishes.Also since the electromagnetic field tensor is antisymmetric,
the two last terms cancel each other. Hence we get

R jn =4 R jn − 1

2
Fi

j Fin. (A.40)

Thus

R j
j =4 R j

j − 1

2
Fi j Fi j =4 R j

j − 1

2
Fi j Fi j . (A.41)

In order to calculate R5
5 we need the curvature forms

Ri
5 = d�i

5 + �i
μ ∧ �

μ

5 = d�i
5 + �i

j ∧ �
j
5. (A.42)

It follows from Eqs. (5.164) and (A.29) that

�i
5 = �i

5 jω
j = −1

2
Fi

j ω
j . (A.43)

Hence

https://doi.org/10.1007/978-3-030-43862-3_5


Appendix: Kaluza–Klein Theory 399

d�i
5 = −1

2
Fi

j,kω
k ∧ ω j . (A.44)

Using Eqs. (A.30) and (A.43) we get

Ω i
j ∧ Ω

j
5 = (

Γ i
jmωm + Γ i

j5ω
5
) ∧ Γ

j
5nω

n

= Γ i
jmΓ

j
5nω

m ∧ ωn + Γ i
j5Γ

j
5nω

5 ∧ ωn
. (A.45)

In the first term at the right-hand side �i
jm�

j
5n is symmetric in m and n while the

basis is antisymmetric. Hence this term vanishes. Using Eq. (A.29) we then obtain

�i
j ∧ �

j
5 = 1

4
Fi

j F j
mω5 ∧ ωm . (A.46)

Inserting the expressions (A.44) and (A.46) into Eq. (A.42) gives

Ri
5 = −1

2
Fi

j,kω
k ∧ ω j + 1

4
Fi

j F j
mω5 ∧ ωm . (A.47)

This gives

Ri
5 jk = 1

2

(
Fi

k, j − Fi
j,k

)
(A.48)

and

Ri
55m = 1

4
Fi

j F j
m (A.49)

or

Ri
5m5 = −1

4
Fi

j F j
m . (A.50)

It follows that

R5
5 = R55 = Ri

5i5 = −1

4
Fi

j F j
i = −1

4
Fi j Fi j . (A.51)

Inserting Eqs. (A.41) and (A.51) into Eq. (A.37) finally gives the Kaluza–Klein
expression for the Ricci curvature scalar of the 5-dimensional spacetime

R =4 R j
j − 1

2
Fi j Fi j + 1

4
Fi j Fi j =4 R j − 1

4
Fi j Fi j (A.52)

Comparing with Eq. (7.65) the last term is recognized as the Lagrangian of an
electromagnetic field. The variational principle (7.58) with the Lagrangian equal to
the Ricci curvature scalar of 5-dimensional spacetime gives Einstein’s gravitational

https://doi.org/10.1007/978-3-030-43862-3_7
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field equations in this 5-dimensional word. But as interpreted from our 4-dimensional
perspective, the right-hand side of Eq. (A.52) shows that we have the Lagrangian
leading to the Einstein’s gravitational equations andMaxwell’s source free equations.
So the Einstein’s theory in the 5-dimensional world is interpreted as a unified theory
of gravity and electromagnetism in our 4-dimensional subspace of the 5-dimensional
world.

A.3 Field Equations for Kaluza–Klein Theory with g55 = 1

The theory as developed so far has one serious problem. The Einstein equations
in 5-dimensional spacetime, (marking here the curvature tensors of 5-dimensional
spacetime by an index 5)

5E =5 Rμν − 1

2

5

Rgμν = κTμν, (A.53)

represent in general 15 equations. Since there are 5 Bianchi identities in 5-
dimensional spacetime, there are 10 independent field equations. In general the
5-dimensional metric tensor has 15 independent components. But when the the-
ory is projected down to our 4-dimensional spacetime g55 appears as an unwanted
scalar field, i.e. a scalar field which is foreign to Einstein’s theory of 4-dimensional
spacetime and gravitation. This is eliminated by the cylinder condition (A.3). With
this condition there are 14 functions to be determined. Because of the transforma-
tion (A.5) which contains 5 arbitrary functions, there are only 9 independent metric
functions. Hence the system is over determined. Thus, with the cylinder condition
(A.3) it is necessary to reduce the number of independent equations by 1. This can
be performed by adding a term in the equations in such a way that a sixth algebraic
identity results. In this way there will only be 9 independent equations.

We shall therefore require that the curvature tensor at the left-hand side of the
field equations in 5-dimensional spacetime is both divergence free, trace free and
symmetric. The trace of the 5-dimensional Einstein tensor is

5E = −3

2

5

R. (A.54)

So in order to obtain a trace-free curvature tensor we must add a symmetric,
divergence-free tensor with trace (A.54). The tensor with components

Nμν = 3

2

5

Rg5μg5ν (A.55)

fulfil these conditions. Thus a symmetric, divergence-free and trace-free curvature
tensor in 5-dimensional spacetime is
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5 ↔
Eμν =5 Rμν − 1

2

(
gμν − 3g5μg5ν

)5
R. (A.56)

It was originally proposed byLeibowitz andRosen [3] andmay therefore be called
the Leibowitz-Rosen tensor. Hence, the modified field equations have the form

5Rμν − 1

2

(
gμν − 3g5μg5ν

)5
R = κ5Tμν, (A.57)

where 5Tμν are the components of the energy–momentum tensor in 5-dimensional
spacetime. Since the left-hand side of this equation is trace free, the right-hand side
must be so, too. From an arbitrary energy–momentum tensor Tμν we can always
construct a corresponding trace-free tensor

5Tμν = Tμν − T g5μg5ν . (A.58)

Since the electromagnetic energy–momentum tensor is trace free 5Tμν = Tμν for
electromagnetic fields.

A.4 The 5-dimensional Counterpart of Electric Charge

From the tensor 5Tμν we can form a quantity with components

J i = −
√
2κ

μ0
T i
5 (A.59)

that transform as the components of a 4-vector under the transformation (A.5). Here
κ is Einstein’s gravitational constant given in Eq. (7.37), and μ0 is the permeability
of empty space. The conservation equation

5T μν

;ν = 0, (A.60)

following from the 5-dimensional field equations, then implies that

J i
;i = 0, (A.61)

which is the electromagnetic equation of continuity

∇ · �j + ∂ρ

∂t
= 0. (A.62)

Hence conservation of charge follows from a geometric identity, the Bianchi
identity, in this theory.

https://doi.org/10.1007/978-3-030-43862-3_7
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Let us consider a gas of dust particles in 5-dimensional spacetime. Its trace-free
energy–momentum tensor has the components

5Tμν = ρ
(
uμuν + g5μg5ν

)
. (A.63)

where uμ are the components of the 5-velocity of the dust particles. For this gas the
conservation Eq. (A.60) takes the form

(ρuν);νuμ + ρaμ = 0, (A.64)

where

aμ = uνuμ

;ν (A.65)

are the components of the 5-acceleration of the dust particles. The 5-velocity is a
unit vector. It follows that the 5-velocity and the 5-acceleration are orthogonal. Thus,
multiplying Eq. (A.64) by uμ gives

(ρuν);ν = 0 (A.66)

Inserting this into Eq. (A.64) gives

aμ = 0, (A.67)

which shows that the dust particles follow geodesic curves in 5-dimensional
spacetime. Written out this equation takes the form

duμ

ds
+ Γ

μ
αβuμuν = 0. (A.68)

The k-component of this equation is

duk

ds
+ �k

i j u
i u j + 2�k

5i u
5ui + �k

55

(
u5

)2 = 0. (A.69)

Inserting the expressions of the 5-dimensional Christoffel symbols from Eq.
(A.17) gives

duk

ds
+4 �k

i j u
i u j = 1

2

(
Ai Fk

j + A j Fk
i

)
ui u j + Fk

i u5ui . (A.70)

Since ui u j is symmetric in i and j this can be written as

duk

ds
+4 �k

i j u
i u j = A j Fk

i ui u j + Fk
i u5ui . (A.71)
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TheLagrange function of a free particle in the 5-dimensional spacetime is obtained
from the line-element (A.11) and is

L = 1

2
γi j ẋ

i ẋ j + 1

2

(
ẋ5 + Ai ẋ

i
)2

, (A.72)

where the dot denotes differentiation with respect to the proper arc length along the
world line of the particle. Since x5 is a cyclic coordinate the momentum p5 conjugate
to x5 is a constant of motion,

p5 = m0
(
u5 + A j u

j
) = m0u5. (A.73)

where m0 is the rest mass of the particle. From this equation we get

u5 = p5 − A j u
j . (A.74)

Inserting this into Eq. (A.71) gives

m0

(
duk

ds
+4 �k

i j u
i u j

)
= p5Fk

i ui , (A.75)

or

m4
0ak = p5Fk

i ui , (A.76)

where 4ak is the k-component of the particle’s 4-acceleration. It was shown by Lei-
bowitz andRosen [1] that the physical components of the electromagnetic field tensor
are

F̂ i j = 1

c
√

ε0κ
Fi j . (A.77)

where ε0 is the permittivity of empty space, and we have used S.I. units here. Hence,
Eq. (A.76) takes the form

m4
0ak = c

√
ε0κ p5 F̂k

i ui . (A.78)

Comparingwith the equation ofmotion of a charged particle in an electromagnetic
field, Eq. (5.307) we get

q = c
√

ε0κ p5. (A.79)

Hence the conserved covariant momentum of the particle in the fifth direction,
i.e. around the cylindrical fifth dimension, is interpreted as the charge of the particle
from our 4-dimensional point of view. Inserting the expression (7.37) for Einstein’s
gravitational constant gives

https://doi.org/10.1007/978-3-030-43862-3_5
https://doi.org/10.1007/978-3-030-43862-3_7


404 Appendix: Kaluza–Klein Theory

q = 1

c

√
8πε0G p5. (A.80)

The Kaluza–Klein theory may provide an explanation of the fact that gravita-
tional waves move with the velocity of light. According to this theory all of electro-
magnetism comes from projection of gravity in a 5-dimensional world into our 4-
dimensional spacetime. According to this theory electromagnetic waves are the pro-
jectionof certain gravitationalwaves that propagate isotropically.Hence theprojected
waves, both those projections that are interpreted as electromagnetic waves from
our 4-dimensional point of view, and the gravitational waves in our 4-dimensional
spacetime, move with the same velocity. This should be expressed by saying that
electromagnetic waves move with the velocity of gravity, i.e. of gravitational waves.

In this connection there appears a problem which has not, so far, been solved.
According to the general theory of relativity the source of a gravitational wave must
change its quadrupole moment; i.e. it must change its shape. A particle cannot emit
gravitational waves. But if the particle is electrically charged, it can emit electromag-
netic waves. According to Larmor’s formula it will emit electromagnetic radiation
when it is accelerated.

In the 5-dimensional world a particle which we call charged is a neutral particle
moving around the fifth spatial cylinder dimension. Hence in order that a charged
particle in our world should emit electromagnetic radiation when it is accelerated,
a neutral particle moving around the compact fifth dimension should emit those
gravitational waves that are interpreted as electromagnetic waves in our world, when
it is accelerated in a direction orthogonal to its circular motion in the fifth direction.
Whether this is really the case is still an unsolved problem.

A.5 Quantization of Charge as a Consequence
of Quantization of Momentum Along a Closed Path
Around the Fifth Cylinder Dimension

Due to the closed character of the fifth cylinder dimension the momentum p5 is
periodic. As shown by Klein [2] this implies a quantization of p5 according to

r5 p5 = n�, (A.81)

where r5 is the radius of the cylindrical fifth dimension. Thus

q = 1

r5c

√
8πε0Gn�. (A.82)

This means that in the Kaluza–Klein theory quantization of charge need not be
postulated. It follows as a consequence of quantization of momentum around the
closed fifth dimension. This is again a consequence of the de Broglie relationship



Appendix: Kaluza–Klein Theory 405

associating a wave with the momentum. Then quantization follows from the require-
ment of constructive interference, demanding awhole number ofwavelengths around
the fifth dimension.

The quantumof charge is the elementary charge e. Inserting q = e into Eq. (A.82),
solving the resulting equation with respect to r5 and putting n = 1gives the smallest
allowed radius of the cylinder dimension,

r5 = �
√
8πε0G

ce
. (A.83)

The Planck length is

lP =
√

�G

c3
. (A.84)

Inserting the values of the constants gives lP ≈ 1.6× 10−35m. The fine-structure
constant is a dimensionless number

α = e2

4πε0�c
≈ 1

137
. (A.85)

Thus, in terms of the Planck length the radius of the fifth cylinder dimension is

r5 =
√

2

α
lP , (A.86)

giving r5 ≈ 16.6lP ≈ 2.6 × 10−34m. This may represent a quantum of length in
5-dimensional spacetime.

A.6 Electric Field from Inertial Dragging in the Fifth
Dimension

In Kaluza–Klein theory electric charge in the projection of momentum in the fifth
dimension. It is natural then to wonder.What in the 5-dimensional world with gravity
only is the electrical field of a charged particle the projection of?

In order to answer this question we shall consider a solution of the field equations
for empty 5-dimensional space that was found some years ago [4],

ds2 = −
(
1 + b

r
− 3a2

r2

)
c2dt2 + dr2

1 + b
r + a2

r2

+ r2d�2 − a

r
dtdx5 + (

dx5
)2

.

(A.87)
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where a and b are constants. Projecting this line-element into ordinary 4-dimensional
spacetime we obtain

ds2 = ds2 = −
(
1 + b

r
+ a2

r2

)
c2dt2 + dr2

1 + b
r + a2

r2

+ r2d�2. (A.88)

With the identification b = RS and a = Rq as given in Eq. (8.164), this repre-
sents the Reissner–Nordström solution of Einstein’s field equations in 4-dimensional
spacetime with an electric field.

It remains to identify which part of the gravitational field in 5-dimensional space-
time is interpreted as an electric field from our 4-dimensional point of view. Let us
first identify the physical meaning of the constant a in the line-element (A.87) from
the 5-dimensional point of view.

Consider a test particle with p5 = 0 corresponding to a zero-angular momentum
particle in the Kerr spacetime as was described in Sect. 10.3.1. According to Eq.
(A.74) it has

u5 = ẋ5 = −A j u
j . (A.89)

Assume the particle is at rest in the spatial 3-space of the 4-dimensional spacetime.
Then the only non-vanishing component of the 4-velocity is u0 = cṫ . Hence

ẋ5 = −A0 ṫ . (A.90)

According to Eq. (A.11) we have

A0 = g50 = g05. (A.91)

With the line-element (A.87)

g05 = −a

r
. (A.92)

Thus

A0 = −b

r
, (A.93)

and

ẋ5 = a

r
ṫ . (A.94)

This gives

https://doi.org/10.1007/978-3-030-43862-3_8
https://doi.org/10.1007/978-3-030-43862-3_10


Appendix: Kaluza–Klein Theory 407

dx5

dt
= ẋ5

ṫ
= a

r
. (A.95)

This shows that a particle with vanishing conserved momentum in the 5-direction
will drift through the coordinate system in the 5-direction. This is inertial dragging.
Thus from the 5-dimensional point of view the constant a represents inertial drag-
ging due to the motion of the central body moving in the 5-direction. Hence the
central body moving around the fifth direction causes an inertial dragging field. The
projection of this field into 4-dimensional spacetime is interpreted from our point of
view as the electric field due to the charge of this central body.

Let us conclude with a speculation. One may wonder whether it is possible to
use of our knowledge of quantum electrodynamics within the frame of Kaluza–
Klein theory to shed some light upon how we should quantize gravity. In what way
should one quantize gravity in order that the projection of quantized gravity into
our 4-dimensional spacetime shall give us the quantum electrodynamic theory? The
inertial dragging field may play a role in this programme.
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Solutions to the Exercises

Solutions for Chapter 1

1.1 A tidal force pendulum

Two particles each with massm are connected by a rigid rod of length 2 l. The system
is free to oscillate in any vertical plane about its centre of mass. Themass of the rod is
negligible relative tom. The pendulum is at a distanceR from the centre of a spherical
distribution of a spherical distribution of matter with mass M (see Fig. 1.10).

|l × (F1 − F2)| = I θ̈

where I = 2ml2 is the moment of inertia of the pendulum.
By Newton’s law of gravitation

F1 = −G Mm
R + l

|R + l|3 ,F2 = −G Mm
R − l

|R − l|3 .

Thus

G Mm
l × R

|R − l|3 − G Mm
l × R

|R + l|3 = 2ml2θ̈ .

It is seen from Fig. 1.10 that

|l × R| = l R sin θ.

It is now assumed that l 	 R. Then we have to first order in l/R.

1

|R − l|3 − 1

|R + l|3 = 6l

R4
cos θ.
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The equation of motion of the pendulum now takes the form

2θ̈ + 3G M

R3
sin 2θ = 0.

This is the equation of motion of a simple pendulum in the variable 2θ instead
of as usual θ as a variable. The equation shows that the pendulum oscillates about
a vertical equilibrium position. The reason for 2θ instead of θ is that the tidal force
pendulum is invariant under a change θ → θ + π while the simple pendulum is
invariant under a change θ → θ + 2π .

Assuming small angular displacements leads to

θ̈ + 3G M

R3
θ = 0.

This is the equation of a harmonic oscillator with period

T = 2π

(
R3

3G M

)1/3

.

Note that the period of the tidal force pendulum is independent of its length. This
means that tidal forces can be observed on a system of arbitrarily small size. Also,
from the equation of motion it is seen that in a uniform field, where F1 = F2, the
pendulum does not oscillate.

The acceleration of gravity at the position of the pendulum is g = G M/R2, so
that the period of the tidal pendulum may be written

T = 2π

(
R

3g

)1/2

.

The mass of a spherical body with density ρ is M = (4π/3)ρR3, which gives for
the period of the tidal pendulum at its surface

T =
(

πG

ρ

)1/2

.

Hence, the period depends only upon the density of the body. For a pendulum at
the surface of the Earth the period is about 50 min. The region in spacetime needed
in order to measure the tidal force is not arbitrarily small.

1.2 Newtonian potential for a spherically symmetric body

(a) We can find the potential using Gauss’ law
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∫

∂V

�F(r)d�S =
∫

V

∇ · �F(r)dV ,

where the integration on the left-hand side is over a spherical surface (which may
be inside or outside the mass shell), and the integral on the right-hand side is over
the volume enclosed by this surface. Using Newton’s law of gravity as formulated
locally, we have

∇ · �F(�r) = −m∇2φ(�r) = −4πmGρ(�r),

where φ(r) is the gravitational potential, ρ(�r) is the mass density at a point with
position vector �r , and m is the mass of a test particle at this position. Inserting this
into Gauss’ law gives

4πr2F(r) = −4πGm
∫

ρ(�r)dV

The value of the integral at the right-hand side depends uponwhether the boundary
surface of the integration volume is inside or outside the mass distribution. We get

�F(�r) =
{− G Mm

r3 �r r ≥ R
0 r < R

.

Defining zero potential infinitely far from the mass distribution, the potential at a
finite distance r from the centre is found by calculating the (negative)work performed
to move a particle downwards from the zero level to a distance r from the centre,

φ(�r) = − 1

m

r∫

∞

�F · d�s =

⎧
⎪⎪⎨

⎪⎪⎩

−
r∫

∞
G M
r2 dr = − G M

r r ≥ R

−
R∫

∞
G M
r2 dr = − G M

R r < R
.

(b) To calculate the gravitational potential outside an inside a sphere of constant
density we use the same procedure as in point (a). Outside the sphere the result
becomes the same as in point (a). Inside the sphere we now get

r∫

0

ρ(�r)dV = 4π

3
ρr3 = M

r3

R3
.

Hence,
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4πr2F(r) = −4π
G Mmr3

R3
.

The gravitational force outside and inside the sphere is then

�F(�r) =
{− G Mm

r3 �r r ≥ R
− G Mm

R3 �r r < R
.

This leads to the gravitational potential

φ(�r) =
{

− G M
r r ≥ R

− G M(3R2−r2)
2R3 r < R

.

1.3 Frictionless motion in a tunnel through the Earth

In order to find the equation of motion of a particle moving without friction in the
tube under the action of gravity only, we insert the expression for the gravitational
force inside a sphere from Exercise 1.2 into Newton’s 2. law and get

mr̈ = −G Mmr

R3
.

This is the equation for harmonic oscillations with period

T = 2π

√
R3

G M
.

This is just
√
3 times the period of the tidal force pendulum at the surface of the

Earth (see Exercise 1.1). The period is 1 h and 24 min.

(b) The figure illustrates the situation with a tube not passing through the centre of
the Earth, but having a closest distance s from the centre.

Here x = r sin θ and the component of the gravitational force upon the direction
of motion of the particle is
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F‖ = F(r) sin θ = −G Mmr

R3
sin θ = −G Mm

R3
x .

Hence the equation of motion takes the form

mẍ = −G Mm

R2
x .

This gives the same period aswhen the tube passes the centre of the Earth, showing
that the period does not depend upon the direction of the tube. Using this procedure
(and neglecting friction and the rotation of the Earth) it takes about 42 min to travel
from an arbitrary point on the surface on the Earth to whatever other point on the
Earth, and the traveller would be weightless during all of the travel.

(c) The equation of motion of a satellite moving in a circular path around the Earth
at the surface of the Earth takes the form

G Mm

R2
= m

v2

R
,

where v is the velocity of the satellite. Hence, the velocity is

v =
√

G M

R
.

Since the magnitude of the velocity is constant, the time taken to move around
the Earth is

TC = 2π R

v
= 2π

√
R3

G M
,

which is equal to the period of the frictionless motion through the tube.

1.4 The Earth-Moon System

(a) TheEarthand theMoon have positions �rJ , �rM andmasses MJ , MM , respectively,
as shown in the figure.
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The equations of motion for the Earth and the Moon are

MJ �̈r J = −MM �̈r M = G MJ MM

|�rM − �rJ |3
(�rM − �rJ ).

The position of the centre of mass is

�rC M = MJ �rJ + MM �rM

MJ + MM
.

Since there are no external forces on the Earth-Moon system the mass centre is
at rest. We may therefore choose a coordinate system co-moving with an inertial
reference frame, in which the mass centre is at the origin, MJ �rJ = −MM �rJ .

We shall show that there is a solution where the Earth and the Moon are moving
in circular orbits around their common centre of mass. For the Earth such a motion
may be represented by

xJ (t) = A sin(ωt), yJ (t) = A cos(ωt).

where xJ and yJ are the components of the position vector �rJ , and A is the distance
of the Earth from the mass centre. Hence the motion of the Moon is given by

xM(t) = − MJ

MM
A sin(ωt), yM(t) = − MJ

MM
A cos(ωt).

The x-component of the equation of motion of the Earth can now be written

MJ ω
2 A sin(ωt) = G MJ MM

|�rM − �rJ |3
A

(
1 + MJ

MM

)
sin(ωt).

Giving
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ω2 = G MM

|�rM − �rJ |3
(
1 + MM

MJ

)
.

Furthermore

|�rM − �rJ | =
√

(xM − xJ )
2 + (yM − yJ )

2 = A

(
1 + MJ

MM

)
.

Hence the equation of motion is fulfilled for the circular path if

ω2 A3 = G MM

(1 + MJ /MM)2
.

Inserting the values of the gravitational constant and the masses of the Earth and
the Moon together with the period of the Moon’s motion, T = 27.3 days, we get
ω = 2π/T = 2.66 × 10−6s−1. Hence the radius of the circular motion of the Earth
is A = 4670 km, and that of the Moon’s motion (MJ /MM)A = 3.8 × 105 km.

(b) The gravitational potential of the Earth–Moon system is the sum of the potential
of each of the bodies. Along the line connecting the Earth and the Moon we get

φ(r) = −G MJ

r
− G MM

R − r
,

where r is the distance from the centre of the Earth, and R is the distance between
the centres of the Earth and the Moon. The gravitational force upon a test particle
with mass m is

F(r) = −G MJ m

r2
+ G MM m

(R − r)2
.

This force vanishes at two points given by

r = MJ ± √
MJ MM

MJ − MM
R.

Inserting theMasses of the Earth and theMoon and the distance R = 3.8×105 km
gives r1 = 3.46 × 105 km and r2 = 4.32 × 105 km. The first one is between the
Earth and the Moon, and the second one is beyond the Moon.

(c) The difference between the Moon’s attraction upon a particle with mass m at
a point on the surface of the Earth closest to the Moon and at the most remote
point is

�F = G MM m

(R − RE )2
− G MM m

(R + RE )2
≈ 4G MM m

RE

R3
,
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where RE is the radius of the Earth. This gives �F = 2.2 × 10−6N .

1.5 The Roche limit

(a) AMoon with mass m moves around a planet with mass M. A stone with mass μ

on the surface of the Moon is acted upon by the gravitational field of the planet
and the Moon. Calculating with absolute values, the gravitational force acting
upon the stone towards the planet is equal to the gravitational force due to the
planet minus the gravitational force due to the Moon,

F = G Mμ

(r − R)2
− Gmμ

R2
,

where R is the radius of the Moon and r the distance between the centres of mass of
the Moon and the planet. The centripetal acceleration of the stone is

a = F

μ
= G M

(r − R)2
− Gm

R2
= G M

r2

(
1 − R

r

)−2

− Gm

R2
.

Since R 	 r we can use the series expansion

(
1 − R

r

)−2

≈ 1 + 2R

r
,

giving

a ≈ G M

r2
+ 2G M R

r3
− Gm

R2
.

The Moon has a centripetal acceleration

a0 = G M

r2
.

In order that a stone at the point of the surface of theMoon closest to the Earth shall
not be lifted up from the surface of theMoon, the centripetal acceleration of the stone
cannot be larger than the centripetal acceleration of the Moon. So the acceleration of
the stone must obey the condition a ≤ a0. Inserting the expressions above this gives

2M R

r3
≤ m

R2
,

or

r ≥
(
2M

m

)1/3

R.
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The right-hand expression is called the Roche limit. If a Moon is inside the Roche
limit of the Moon-planet system, matter will be drawn from the surface of the Moon
towards the planet. Similarly, if a planet is inside the Roche limit of the planet-star
system matter will be drawn from the planet onto the star. Or if a star is inside the
Roche limit of a system consisting of the star and for example a super massive black
hole at the centre of a galaxy, matter will be drawn from the star into the black hole.
This is an essential part of the mechanism behind quasars.

(b) From the observations of what happened to the comet Shoemaker–Levy 9 when
it passed Jupiter in 1992, it is reasonable to assume that the smallest distance of
the comet from Jupiter was equal to the Roche limit of the comet-planet system.
Then the radius of the comet nucleus is given by

R =
( m

2M

)1/3
s.

Inserting m = 2.0 × 1012 kg, M = 1.9 × 1027 kg and s = 96, 000 km gives
R = 775 m.

Solution for Chapter 2

2.1 Robb’s Lorentz invariant spacetime interval formul

Consider Fig. 2.2. We shall find a formula for the invariant spacetime interval �sAB

between the emission event A and the reflection event B of a light signal reflected
by a mirror, in terms of the emission point of time tA and the point of time tC when
the reflected light signal arrives back at the emission position.

Our point of departure is the usual Formula (2.41) for the invariant spacetime
interval, the Einstein synchronization Formula (2.1) and Eq. (2.2). Hence we have

�tAB = 1

2
(tA + tC),�xAB = c

2
(tC − tA),

and

�s2AB = c2�t2AB − �x2
AB = c2

4
(tA + tC)2 − c2

4
(tC − tA)2 = c2tAtC .

Hence we arrive at Robb’s formula

�sAB = c
√

tAtC .

2.2 The twin paradox

(a) In the reference frame of the Earth A travels with a velocity v = 0.8c. B remains
at the Earth. Hence according to B the travel takes 8 light years/0.8 c= 10 years.
Hence B sends 10 greetings.

https://doi.org/10.1007/978-3-030-43862-3_2
https://doi.org/10.1007/978-3-030-43862-3_2
https://doi.org/10.1007/978-3-030-43862-3_2
https://doi.org/10.1007/978-3-030-43862-3_2
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Let us now describe the situation as seen from the reference frame of A. The
twin A thinks of himself as at rest while the Earth and Alpha Centauri travels with
the velocity v = 0.8c. Hence the distance between the Earth and Alpha Centauri
becomes length contracted to L A = L

√
1 − v2/c2 = 2.4l.y. The time taken for

Alpha Centauri to arrive at A is therefore 2.4 l y/0.8 c= 3 years. The return trip takes
the same time, so A sends 6 greetings.

(b) The figure shows the world lines of the twins and the signals.

The figure shows that the twin A receives his first greeting at the moment he
arrives at Alpha Centauri. He receives the 9 other signals from B at the return travel.

(c) The figure shows that B receives the first greeting from A after 3 years, the next
after 6 years and the last year he receives the 3 signals A send during the return
travel.

(d) Due to theDoppler effect a light signal sent byAwith a frequency νA ismeasured
by B to have a frequency

νB =
√
1 − v/c

1 + v/c
νA.

Hence, if the emitted frequency is 1/year, the received frequency is 1/3 years, and
during the return travel the received frequency is 3 signals per year.

2.3 Faster than the speed of light?

(a) The situation is schematically illustrated on the Figure. The radiation source
is moving from A towards B with a velocity v0. The arrows at the bottom of
the figure point towards an observer at the Earth. Here θ is the angle between
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the direction of motion of the light source and the direction of sight. We now
consider light emit at A and B. The point A′ has the same distance from the
Earth as B. We see from the figure that
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AB = a

sin θ
, AA′ = a

tan θ
.

The difference in arrival time on the Earth for light emitted from A and B is

�t = AB

v0
− AA′

c
= a

v0 sin θ
− a

c tan θ
,

giving

�t = 1 − (v0/c) cos θ

v0 sin θ
a.

(b) The observed transverse velocity normal to the line of sight is

v = a

�t
= v0 sin θ

1 − (v0/c) cos θ

Hence, the velocity of the light source is

v0 = v

sin θ + (v/c) cos θ
.

Inserting v = 10c and θ = 100 gives v0 = 0.998c.
The observed transverse velocity is larger than c if

v0 >
c

sin θ + cos θ
.

with θ = 100 this requires v0 > 0.86c.

2.4 Time dilation and Lorentz contraction

(a) Theformula for the time dilation is �t
�t0

= 1
γ

=
√
1 − v2

c2 . Hence
1
γ 2 = 1 − v2

c2

and v = c
√
1 − 1

γ 2 .

In the present case 1
γ

= 0.6 giving v = 0.8c.

(b) Let Lx and L y be the components of the rod in the x- and y-directions, respec-
tively, as measured by an observer following the rod. As measured by this
observer the angle θ0 which the rod makes with the x-axis, is given by

tan θ0 = L y

Lx
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As measured by an observer at rest on the x-axis the component in the y-direction
is unchanged, and the component in the x-direction is Lx/γ . Hence this observer
measures that the rod makes an angle θ given by

tan θ = γ
L y

Lx
.

Thus

1

γ
=

√

1 − v2

c2
= tan θ0

tan θ
,

giving

v = c

√

1 −
(
tan θ0

tan θ

)2

.

With θ0 = π/4 and θ = π/3 we get v = √
2/3c ≈ 0.82c.

2.5 Atmospheric mesons reaching the surface of the Earth.

(a) The travel time of a muon is T = L
v

= 34 × 10−6s, or 21.8 half lives. Thus the
survival rate is I/I0 = 2−21.8 ≈ 0.3×10−6. Hence only 3 of ten million created
muons in the upper atmosphere reaches the surface of the Earth.

(b) Due to the relativistic time dilation the actual half life of the travelling muons is
t = γ t0 = t0√

1− v2

c2

≈ 5t0 = 7.8×10−6s. Then the survival rate is 0.049 meaning

that 4900 of ten million muons reach the surface of the Earth.
(c) As observed by a co-moving observer with a muon its half life is 1.56 · 10−6s.

But as measured by this observer the distance is Lorenz contracted to L =
(1/γ )L0 = 2 km. Hence the survival rate is in agreement with the result of the
Earth-bound observer.

2.6 Relativistic Doppler effect

Solving the equation for the redshift with respect to the velocity we get

v = (1 + z)2 − 1

(1 + z)2 + 1
.

Since |z| 	 1 in the present case, we can use the approximation (1 + z)2 ≈
1 + 2z. This gives to 1 order in z, v ≈ zc. For the centre of the Andromeda galaxy
z = −0.0004, giving v = −120 km/s. This means that the Andromeda galaxymoves
towards the Milky Way galaxy with this velocity.
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2.7 The velocity of light in a moving medium

The velocity of light in a medium with index of refraction, n, moving with velocity
v is

u = u0 + v

1 + u0v
c2

=
c
n + v

1 + 1
n

v
c

= c + nv

nc + v
c.

This formula is exact. In most applications v 	 c and one uses an approximate
formula,

u = c

n

1 + nv
c

1 + v
vc

≈ c

n

(
1 + n

v

c

)(
1 − 1

n

v

c

)
≈ c

n
+ v

(
1 − 1

n2

)
.

2.8 Cherenkov radiation

The geometry of the light cone formed when a source of light passes through a
medium having index of refraction n with a velocity v greater than that of light in
the medium is shown in the Figure (From Wikipedia: https://en.wikipedia.org/wiki/
Cherenkov_radiation#/media/File:Cherenkov.svg

We see from the figure that the angle θ is given by cos θ = c
nv
.

(a) In order that the electron shall emit Cherenkov radiation it must move through
the glass with a velocity v > c/n. Hence the threshold kinetic energy in order
that it shall emit Cherenkov radiation is

K =
(

1
√
1 − v2/c2

− 1

)

mec2 =
(

n√
n2 − 1

− 1

)
mec2.

Inserting the given data gives K = 0.29 MeV.

https://en.wikipedia.org/wiki/Cherenkov_radiation#/media/File:Cherenkov.svg
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(b) The limiting velocity for increasing energy is v → c. In this limit the angle θ

approaches θmax given by cos θmax = 1
n . From the figure is seen that the corre-

sponding maximal half angle is given by sin φmax = 1
n , Inserting the refractive

index for glass gives φmax ≈ 50◦.

2.9 Relativistic form of Newton’s 2. law

Using the chain rule of differentiation we first differentiate γ = (
1 − v2/c2

)−1/2
,

dγ

dt
= −1

2

(
1 − v2/c2

)−1/2
(
−2

v

c2

)dv
dt

= γ 3 v

c2
dv

dt
.

The momentum of the particle is p = γ m0v. Differentiating we get

1

m0

dp

dt
= v

dγ

dt
+ γ

dv

dt
= γ 3 v2

c2
dv

dt
+ γ

dv

dt
=

(
γ 2 v2

c2
+ 1

)
γ
dv

dt
= γ 3 dv

dt
.

Hence Newton’s 2. law has the relativistic form

F = γ 3m0
dv

dt
.

2.10 Lorentz transformation of electric and magnetic fields

We write out Eqs. (5.281) and (5.282) in component form

∂ Bx

∂x
+ ∂ By

∂y
+ ∂ Bz

∂z
= 0,

∂ Ez

∂y
− ∂ Ey

∂z
= −∂ Bx

∂t
,
∂ Ex

∂z
− ∂ Ez

∂x
= −∂ By

∂t
,
∂ Ey

∂x
− ∂ Ex

∂y
= −∂ Bz

∂t
.

Inserting the transformations of the partial derivatives into the y-component of
the second equation, we get

∂ Ex

∂z′ − γ

(
∂ Ez

∂x ′ + v

c2
∂ Ez

∂t ′

)
= −

(
∂ By

∂t ′ + v
∂ By

∂x ′

)
.

This equation shall be compared with the similar Maxwell equation in the marked
coordinate system,

∂ E ′
x

∂z′ − ∂ E ′
z

∂x ′ = −∂ B ′
y

∂t ′ .

Hence, we rearrange the above equation as follows

∂ E ′
x

∂z′ − ∂

∂x ′ γ
(
Ez − cBy

) = − ∂

∂t ′ γ
(

By − v

c2
Ez

)
.

https://doi.org/10.1007/978-3-030-43862-3_2
https://doi.org/10.1007/978-3-030-43862-3_2
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Requiring equivalence of these equations gives the transformation equations

E ′
x = Ex , E ′

z = γ
(
Ez − vBy

)
, B ′

y = γ
(

By − v

c2
Ez

)
.

Using all the Maxwell-equations in this way we end up with the transformation
equations of the electric and magnetic field

E ′
x = Ex , B ′

x = Bx ,

E ′
y = γ

(
Ey + vBz

)
, B ′

y = γ
(
By − v

c2 Ez
)

E ′
z = γ

(
Ez − vBy

)
, B ′

z = γ
(
Bz + v

c2 Ey
)

Solutions for Chapter 3

3.1 Four-vectors

(a) The scalar products of the vectors with themselves are

�A · �A = (
4�et + 3�ex + 2�ey + �ez

) · (4�et + 3�ex + 2�ey + �ez
) = −2,

�B · �B = (
5�et + 4�ex + 3�ey

) · (5�et + 4�ex + 3�ey
) = 0,

�C · �C = (�et + 2�ex + 3�ey + 4�ez
) · (�et + 2�ex + 3�ey + 4�ez

) = 28
.

(b) We now assume that �A · �B = 0. If �A is time-like, i.e. �A · �A < 0, we may chose a
basis where �A points in the time direction, �A = At ′ �et ′ . Then �A · �B = −At ′

Bt ′
.

Hence, the condition �A · �B = 0 requires that Bt ′ = 0, which means that �B is
space-like.

If �A is light-like, then �A · �A = 0. Assume now that �B is time-like. Hence, we can
chose a basis where �B = Bt ′ �et ′ . This gives �A · �B = −At ′

Bt ′
. The vector component

At ′ cannot vanish since �A is light-like. This means that �A · �B �= 0 in contradiction
to the initial assumption. Thus �B cannot be time-like.

If both �A and �B are light-like we may choose a basis where �A = A(�et ′ + �ex ′).
Then �A · �B = A

(−Bt ′ + Bx ′)
. In this case �A · �B = 0 implies that Bx ′ = Bt ′

, giving
�B · �B = (

B y′)2 + (
Bz′)2

. Since �B is light-like �B · �B = (
B y′)2 + (

Bz′)2 = 0 which
requires B y′ = Bz′

. Hence �B = Bt ′
(�et ′ + �ex ′) showing that the vectors �A and �B have

the same direction; i.e. they are proportional to each other.
If �A is space-likewemay chose a basis inwhich only one of the spatial components

of the vectors are is different from zero, say �A = Ax ′ �ex ′ . This gives �A · �B =
Ax ′

Bx ′
, and hence Bx ′ = 0. There are, however, no further requirements on the other

components of �B. This means that the vector �B can be either time-like, light-like or
space-like.
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(c) A Lorentz transformation along the x-axis has the form, measuring distance in
light seconds so that c = 1,

t = t ′ + vx ′
√
1 − v2

, x = x ′ + vt ′
√
1 − v2

, y = y′, z = z′

where v is the relative velocity of the reference frames. We now define the velocity
parameter θ by tanh θ = v. Using the relationships

cosh θ = 1
√
1 − tanh2 θ

, sinh θ = tanh θ
√
1 − tanh2 θ

The Lorentz transformation takes the form

t = t ′ cosh θ + x ′ sinh θ, x = x ′ cosh θ + t ′ sinh θ, y = y′, z = z′.

Hence the transformation matrix becomes

�
μ

μ′ = ∂xμ

∂xμ′ =

⎛

⎜
⎜
⎝

cosh θ sinh θ 0 0
sinh θ cosh θ 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠.

(d) The 4-velocity �u is a vector in 4-dimensional spacetime. This vector may be
described by expressing its components in a chosen basis. But the vector itself
exist independently of any basis. This is expressed mathematically by

�u = uμ�eμ = uμ′ �eμ′ ,

where the components uμ and uμ′
depend upon the basis, but �u is independent of it.

The component of the 4-velocity in an arbitrary basis are given by

�u = γ (1, �v),

where �v = (
dxi/dt

)�ei is the ordinary velocity in 3-space and γ = (
1 − v2

)−1/2
. The

3-velocity is not a vector in 4-dimensional spacetime. It depends upon the reference
frame of the observer.

It follows from the 4-velocity identity, �u · �u = −1 that �u is a time-like vector.
Also the 4-momentum �p = m �u is time-like. In the limit m → 0 the 4-momentum
becomes light-like.
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The energy of the particle with rest mass m and 3-velocity �v is E = γ m. The
velocity of the observer is �uobs = (1, 0). Hence

E = −�uobs · �p.

This formula is valid independent of the basis.

3.2 Tensor product

(a) We get

α− ⊗ β
−
(�e0, �e1) = α0β1 = 0, β

−
⊗ α−(�e0, �e1) = β0α1 = −1.

Hence α− ⊗ β
−

�= β
−

⊗ α− .

(b) Calculation of all the components of α− ⊗ β
−
give

αμβν =

⎛

⎜⎜
⎝

−1 0 1 0
−1 0 1 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠.

The symmetric part of α− ⊗ β
−
has components

α(μβν) = 1

2

(
αμβν + ανβμ

) = 1

2

⎛

⎜⎜
⎝

−2 −1 1 0
−1 0 1 0
1 1 0 0
0 0 0 0

⎞

⎟⎟
⎠,

and the antisymmetric part of α− ⊗ β
−
has components

α(μβν) = 1

2

(
αμβν − ανβμ

) = 1

2

⎛

⎜⎜
⎝

0 1 1 0
−1 0 1 0
−1 −1 0 0
0 0 0 0

⎞

⎟⎟
⎠.

3.5 Symmetric and antisymmetric tensors

We have
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T αβ =

⎛

⎜⎜
⎝

0 1 0 0
1 −1 0 2
2 0 0 1
1 0 −2 0

⎞

⎟⎟
⎠.

1. The symmetric part of this tensor is

T (αβ) = 1

2

(
T αβ + T βα

) = 1

2

⎛

⎜⎜
⎝

0 2 2 1
2 −2 0 1
2 0 0 −1
1 2 −1 0

⎞

⎟⎟
⎠.

The antisymmetric part of the tensor is

T (αβ) = 1

2

(
T αβ − T βα

) = 1

2

⎛

⎜⎜
⎝

0 0 −2 −1
0 0 0 1
2 0 0 3
1 −1 −3 0

⎞

⎟⎟
⎠.

2. The mixed components of the tensor are

T α
β = ηβμT αμ =

⎛

⎜
⎜
⎝

0 1 0 0
−1 −1 0 2
−2 0 0 1
−1 0 −2 0

⎞

⎟
⎟
⎠.

3. The covariant components are

Tαβ = ηαμηβνT μν =

⎛

⎜⎜
⎝

0 −1 0 0
−1 −1 0 2
−2 0 0 1
−1 0 −2 0

⎞

⎟⎟
⎠.

(b) It is not possible to define a symmetric or antisymmetric part of a mixed tensor
because it is not allowed to exchange a vector by a form in the argument.

3.4 Contractions of tensors with different symmetries

SinceA is antisymmetric we may write

Aαβ = 1

2

(
Aαβ − Aβα

)
,

and since B is symmetric we may write
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Bαβ = 1

2

(
Bαβ + Bβα

)
.

Hence, we get

Aαβ Bαβ = 1

4

(
Aαβ − Aβα

)(
Bαβ + Bβα

)

=1

4

(
Aαβ Bαβ + Aαβ Bβα − Aβα Bαβ − Aβα Bβα

),

AαβCαβ = 1

2

(
Aαβ − Aβα

)
Cαβ = 1

2

(
AαβCαβ − AβαCαβ

)

= 1

2

(
AαβCαβ − AαβCβα

) = Aαβ 1

2

(
Cαβ − Cβα

) = AαβC[αβ]

,

Bαβ Dαβ = 1

2

(
Bαβ Dαβ + Bβα Dαβ

) = Bαβ

1

2

(
Dαβ + Dβα

) = Bαβ D(αβ).

3.5 Coordinate transformation in an Euclidean plane

(a) The given transformation can be written

(
x ′

y′

)

=
(
2 −1
1 1

)(
x

y

)

.

This means that we have a transformation matrix Mi ′
j given by xi ′ = Mi ′

i x i which
is

Mi ′
i =

(
2 −1
1 1

)
.

The inverse transformation matrix is given by Mi ′
i Mi

j ′ = δi ′
j ′ and is

Mi
j ′ = 1

3

(
1 −1
1 2

)
.

(b) The transformation of the basis vectors is �ei ′ = Mi
i ′ �ei , giving

�ex ′ = (1/3)
(�ex − �ey

)
, �ey′ = (1/3)

(�ex + 2�ey
)
.

(c) The scalar products of the basis vectors in the
{

x ′, y′}-system are

�ex ′ · �ex ′ = 1

9

(�ex − �ey
) · (�ex − �ey

) = 2

9
, �ey′ · �ey′ = 1

9

(�ex + 2�ey
) · (�ex + 2�ey

)

= 5

9
�ex ′ · �ey′ = 1

9

(�ex − �ey
) · (�ex + 2�ey

) = −1

9
= �ey′ · �ex ′

.



Solutions to the Exercises 429

Hence, in this system the covariant components of the metric tensor are

gi ′ j ′ = 1

9

(
2 −1

−1 5

)
.

(d) The line-element in the
{

x ′, y′}-system is

ds2 = gi ′ j ′dxi ′
dx j ′ = (1/9)

(
2dx ′ 2 + 5dy′ 2 − 2dx ′dy′).

(e) The vectors �ωi ′
can be expressed in terms of the Cartesian basis vectors �ex and

�ey by

�ωi ′ = Mi ′
i �ei =

(
2 − 1

1 1

)(
�ex

�ey

)

,

giving

�ωx ′ = 2�ex − �ey �ωy′ = �ex + �ey .

The scalar products of these vectors are

�ωx ′ · �ωx ′ = (
2�ex − �ey

) · (2�ex − �ey
) = 5, �ωy′ · �ωy′ = (�ex + �ey

) · (�ex + �ey
) = 2

�ωy′ · �ωx ′ = �ωx ′ · �ωy′ = (
2�ex − �ey

) · (�ex + �ey
) = 1

.

Hence, the contravariant components of the metric tensor in the
{

x ′, y′}-system
are

gi ′ j ′ =
(
5 1
1 2

)
.

Solutions for Chapter 4

4.1 Relativistic rotating disk

We use units so that the velocity of light is c = 1.

(a) Let dl be the physical distance measured by standard measuring rods at
rest in the reference frame between two points with coordinates (r, φ) and
(r + dr, φ + dφ), where (r, φ) are co-moving coordinateswith a frameRF rotat-
ing with angular velocity ω. A radial distance dlr = dr is equal to that of the
non-rotating inertial system IF of the axis. A physical distance, In the tangential
direction the standard measuring rods will be Lorentz contracted, and therefore
the measured distance will be larger in RF than in IF, dlφ = (

1 − r2ω2
)−1/2

rdφ.
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Using the Pythagorean rule the square of the distance of an interval with both a
radial and tangential component is

dl2 = dl2r + dl2φ = dr2 + r2

1 − r2ω2
dφ2.

Hence

f1(r, φ) = 1, f2(r, φ) = r2

1 − r2ω2
.

The distance in the radial direction between the axis and a point with coordinates
R is lr = R. The distance around a circle with this radius is

lφ = 2π R√
1 − R2ω2

.

Since the observer finds that lφ �= 2π R he will conclude that the geometry is not
Euclidean. On a positively curved surface (for example a part of a spherical surface)
the periphery is less than 2π R and on a part of a negatively curves surface (saddle
like) it is larger. Hence the observer concludes that the simultaneity surface with
constant z is negatively curved in the rotating frame.

(b) In order to express the line-element

ds2 = −dt2 + dx2 + dy2

in terms of t̃ , x̃ and ỹ we must first use Eqs. (4.54) to express t , x and y in terms of
t̃ , x̃ and ỹ. This gives t = t̃ and

x = r cos(ωt + φ) = r cosφ cos(ωt) − r sin φ sin(ωt) = x̃ cos(ωt) − ỹ sin(ωt),

y = r sin(ωt + φ) = r sin φ cos(ωt) + r cosφ sin(ωt) = ỹ cos(ωt) + x̃ sin(ωt).

The differentials are dt = dt̃ and

dx = cos
(
ωt̃

)
dx̃ − sin

(
ωt̃

)
dỹ + (−ωx̃ sin

(
ωt̃

) − ω ỹ cos
(
ωt̃

))
dt̃,

dy = sin
(
ωt̃

)
dx̃ − cos

(
ωt̃

)
dỹ + (−ω ỹ sin

(
ωt̃

) − ωx̃ cos
(
ωt̃

))
dt̃ .

Squaring and inserting the result into the line-element above gives the form of the
line-element in the rotating frame

ds2 = −[
1 − (

x̃2 + ỹ2
)
ω2]dt̃2 + dx̃2 + dỹ2 − 2 ỹωdt̃dx̃ + 2ωx̃dt̃dỹ.

https://doi.org/10.1007/978-3-030-43862-3_4
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Fig. 4.12 In a rotating frame
the path of a light signal
emitted from the axis is an
Archimedian spiral

(c) A light signal is emitted from the axis of RF.As observed from IF the lightmoves
along a straight radial curve in 3-space, say along the x-axis, x = t, y = 0.
Inverting the coordinate transformation above we get

x̃ = x cos(ωt) + y sin(ωt), ỹ = −x sin(ωt) + y cos(ωt).

Inserting x = t, y = 0 gives

x̃ = t cos(ωt), ỹ = t sin(ωt).

This is the equation of an Archimedian spiral in parametric for, as shown in
Fig. 4.12.

Using that r = √
x̃2 + ỹ2 and the physical interpretation of the line element for

a time-like interval, ds2 = −dτ 2, we see from the line element that the proper time
interval for an observer at rest in the rotating frame, i.e. with constant values of x̃
and ỹ is related to a corresponding coordinate time interval by

dτ =
√
1 − r2ω2dt.

The frequency this observer measures may be written ν = dN/dτ , where dN
is the number of wave fronts passing the observer during the time interval dτ . The
frequency of the emitted light is ν0 = dN/dt . Hence, the observer measures the
frequency
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ν = dN

dτ
= dN

dt

dt

dτ
= ν0√

1 − r2ω2
.

This frequency is larger than the frequency at the axis. In the rotating frame the
observer experiences a gravitational field away from the axis. Hence he concludes
that light moving downwards in a gravitational field gets an increased frequency.

(d) We shall describe the synchronization process from the point of view of an
observer at rest in the laboratory frame. A Lorentz transformation from the
rotating frame to the laboratory frame gives a time difference for two neigh-
bouring clocks with the same distance from the axis and angular coordinates φ

and φ + �φ that are synchronized in the rotating frame,

�t = γ
(
�τ + Rω�lφ

) = γ 2R2ω�φ

wherewe have used that�τ = 0 for the synchronized clocks and that their distance in
the rotating frame is�lφ = γ R�φ. Integrated around the disk the angular difference
is 2π . It follows that the clocks at (R, 0) and (R, 2π) will have a time difference
2πγ 2R2ω. But these clocks are at the same position on the disk. So it is not possible
to Einstein-synchronize clocks globally on a rotating disk.

(e) In the cylindrical coordinate system co-movingwith the rotating reference frame
the spacetime line-element has the form

ds2 = −(
1 − r2ω2

)
dt2 + dr2 + r2dφ2 + 2r2ωdφdt

The non-vanishing dφdt−term means that the coordinate basis vectors are not
orthogonal. We shall find the vectors in an orthonormal basis field co-moving with
RF.

Let us start by the time-like unit basis vector. It shall have the same direction as
�e. Hence, according to Eq. (4.57),

�et̂ = �et

|�et | = �et√�et · �et
= �et√|gtt | = �et√

1 − r2ω2
,

�er̂ = �er , �eφ̂ =
√
1 − r2ω2/c2

r
�eφ + rω/c2

√
1 − r2ω2/c2

�et .

https://doi.org/10.1007/978-3-030-43862-3_4
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Fig. 4.13 The lines
represent simultaneity planes
in the accelerated frame AF.
They are not simultaneous in
the inertial frame IF. The
curves are world lines of
reference points in AF
plotted with reference to IF.
Three sets of basis vectors in
the orthonormal basis field
co-moving with AF are also
shown

4.2 Uniformly accelerated system of reference

(a) It follows from the given coordinate transformation (4.91) that

T = tanh(at)X, X2 − T 2 = x2

For t = constant the first of these equations describe a set of straight lines in the
(t, X)-system that represent simultaneity planes for the reference particles of AF
at different points of time. For x = constant the second equation represents a set
of hyperbolae. They are the world lines of fixed reference points in the accelerated
reference frame as referred to the instantaneous Inertial rest frame IF of the particles
at the point of time T = 0. These sets of lines and curves are shown in theMinkowski
diagram4.12.

(b) In IF there is Minkowski metric

ημ̂ν̂ =
(−1 1

1 1

)
.

We can find the line element ds2 by applying the transformation matrix

M μ̂
μ =

(
∂T
∂t
∂ X
∂t

∂T
∂x
∂ X
∂x

)

=
(

ax cosh(at) sinh(at)
ax sinh(at) cosh(at)

)

https://doi.org/10.1007/978-3-030-43862-3_4
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to the components of the metric tensor. This gives

gtt = M μ̂
t M ν̂

t ημ̂ν̂ = −[ax cosh(at)]2 + [ax sinh(at)]2 = −a2x2,

gtx = M μ̂
t M ν̂

x ημ̂ν̂ = −ax cosh(at) sinh(at) + ax sinh(at) cosh(at) = 0,
gxx = M μ̂

x M ν̂
x ημ̂ν̂ = [sinh(at)]2 + [cosh(at)]2 = 1.

Hence, the line-element takes the form

ds2 = −a2x2dt2 + dx2.

(c) We now consider a fixed particle in AF moving along one of the hyperbolae in
Fig. 4.13. Using the transformation 4.91 we find that Its velocity in IF is

v = dX

dT
= dX/dt

dT/dt
= xa sinh(at)

xa cosh(at)
= tanh(at).

and its acceleration

dv

dT
= dt

dT

dv

dt
= 1

x cosh3(at)
.

Lorentz transforming the acceleration to the instantaneous rest frame of the
particle gives

g = (
1 − v2

)−3/2 dv

dT
=

(
1

1 − tanh2(at)

)3/2 1

x cosh3(at)
= 1

x
.

Since the particle has a constant value of x in AF it follows that the proper
acceleration of the particle is constant.

(d) The time axis of an orthonormal basis co-moving with an instantaneous inertial
rest frame of AF is equal to the four-velocity of the reference particles in AF,

�et̂ = dt

dτ
�et = 1

ax
�et .

Since the metric is diagonal the coordinate basis in AF is orthogonal, and since
the values of the spatial components of the metric tensor are equal to 1, the spatial
basis vector in the orthonormal basis is �ex̂ = �ex . The basis vectors �et̂ and �ex measure
unit distance in the time- and spatial directions, respectively. Hence �ex has unit
length in the spatial direction, but �et = ax�et̂ does not measure unit length in the
time direction. Along the world line of a reference particle in AF x is constant. The

https://doi.org/10.1007/978-3-030-43862-3_4
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time-like coordinate basis vector has unit length along the world line of a reference
particle with x = 1/a.

We see from Figure 4.13 that AF does not cover the region |t | > |x |. From the
line element it is seen that there is a coordinate singularity at x = 0. The relationship
between the proper time in AF and the coordinate time is dτ = axdt , where the rate
of coordinate time is position independent. Hence at x = 0 time does not proceed in
AF.

(e) The accelerated reference frame AR is required to move in a Born rigid way.
Thismeans that all the points on the x-axismove in such away that the rest length
of all elements of the x-axis remains unchanged. As observed in IF the elements
then get an increasing Lorentz contraction due to the increasing velocity.

We now think of a part of the x-axis in AF as a rod with rest length L. All the points
of the rod move with constant proper acceleration. In AF the front end of the rod is at
x = x0, and the rear end of the rod has a position x = x0 − L . The position in IF of
a point with coordinate x in AF is given above by the by an equation of a hyperbola
which may be written X = √

T 2 + x2. Differentiation gives the coordinate velocity
as measured in IF

V = dX

dT
= T√

T 2 + x2
.

Hence, the velocity of the front end of the rod and its rear end is

VF = T
√

T 2 + x2
0

VR = T
√

T 2 + (x0 − L)2
.

We see that the rear end of the rod moves faster than the front end. This is due to
the increasing Lorentz contraction. As observed in IF the rod becomes shorter due
to the increasing velocity.

All points of the rod have to move slower than the velocity of light. The longer
the rod is the faster its rear end moves. We have the limit lim

L→x0
= 1. Hence if the rest

length of the rod approaches x0 the velocity of its rear end approaches that of light.
In this limit the rear end of the rod falls together with the origin of the x-axis which
also represents the limit in the backwards x-direction of the accelerated reference
frame.

The motion of this limiting point can be inferred from Fig. 4.13. For negative
time the reference frame moves in the negative x-direction with decreasing velocity.
Then the rod has a decreasing Lorenz contraction. It gets longer, and the left end of
the rod moves faster than the right one. As observed in IF the origin of the x-axis
approaches the origin in IF with the velocity of light. At the point of time T = 0 the
motion is reversed, and the limiting point moves in the positive X-direction with the
velocity of light.
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Fig. 4.14 World lines of
Earth, light signals from the
Earth and the spaceship

4.3 Uniformly accelerated spaceship

(a) A spaceship moves with constant proper acceleration g = 10m/s2. The position
of the spaceship as a function of its proper time is given in Eq. (4.62),

X = c2

g
cosh

(gτ

c

)
+ k,

where k is a constant of integration. The spaceship starts at X = τ = 0 giving
k = −c2/g. Hence,

X = c2

g

[
cosh

(gτ

c

)
− 1

]
.

We shall find the distance which the spaceship has moved during a proper time
τ = 10years. There are 3.15 × 107s in a year, and a light year is 9.46 × 1015m.
Hence the acceleration of gravity at the surface of the Earth may be expressed as
g = 9.8 m/s2 = 1.03l.y./y2. This gives c2/g = 0.97l.y. and for τ = 10y. we get
gτ/c = 10.3. Inserting this in the formula above gives X = 1.44 × 104l.y..

(b) In Fig. 4.14 we have shown the world lines of the spaceship and of light signals
emitted from the earth.

This figure shows that light signals emitted frompoints on theX-axiswith negative
values ofX will never arrive at the spaceship even if the spaceship always travel slower
than light. If the Earth is at a position X E and the spaceship departs at a point of time
T = 0, a light signal emitted from the Earth later than T = X E/c = c/g will never
arrive at the spaceship. Hence there is a horizon far down in the gravitational field
experienced in the spaceship, at a position �x = X E = c2/g lower than the initial
position of the spaceship.

https://doi.org/10.1007/978-3-030-43862-3_4
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A light signal emitted from the Earth at a point of time TE is received at the
spaceship at a point of time τE . We shall find the emitter time TE corresponding to a
receiver time τE = 10 years. The position in IF at a point of time T of a light signal
emitted at a point of time TE from the Earth at X E = 0 is

X = c(T − TE ).

The position of the spaceship at this point of time is

X = c2

g

⎛

⎝

√

1 +
(

gT

c

)2

− 1

⎞

⎠.

Putting the two expressions for X equal to each other and solving the resulting
equation with respect to TE gives

TE = c

g

⎛

⎝1 + gT

c
−

√

1 +
(

gT

c

)2
⎞

⎠.

The transformation to the proper time τ of the spaceship is

T = c

g
sinh

gτ

c
.

Using this in the expression for TE gives

TE = c

g

(
1 + sinh

gτE

c
− cosh

gτE

c

)
.

Inserting the acceleration of gravity at the surface of the earth, g = 9.8m/s2 =
1.03l.y/y2 gives c2/g = 0.97l.y. and for τ = 10y we get gτE/c = 10.3, which gives
TE = 0.97years.

The expression for the point of time of emission of the signal can be written

TE = c

g

(
1 − e− gτE

c

)
.

It follows that lim
τE →∞ TE = c/g. Hence, signals emitted later than at TE = c/g are

not able to reach the spaceship.

(c) Due to the Doppler effect the frequency of the signals is less than the frequency
observed at the emitter. The frequency ν measured in the spaceship is given by
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ν =
√
1 − v/c

1 + v/c
ν0 =

√
1 − tanh(gτE/c)

1 + tanh(gτE/c)
ν0,

where ν0 is emitted frequency measured on the Earth, and τE is the point of time
measured on the spaceship when the signal is received. The formula in point b) for
the emission point of time may be written

√
1 − tanh(gτE/c)

1 + tanh(gτE/c)
= 1 − gTE

c
.

Hence the frequency of the received signal measured on the spaceship is

ν =
(
1 − gTE

c

)
ν0.

The velocity of the spaceship increases, and the observed frequency decreases due
to an increasing Doppler effect. Since signals emitted later than at TE = c/g will
not arrive at the spaceship, the expression for the frequency has physical meaning
only for TE ≤ c/g. The observed frequency at the spaceship decreases towards zero
at this limiting point of time.

4.4 Light emitted from a point source in a gravitational field

Consider a point like light source at the point x = x1, y = 0 in a uniformly
accelerated reference frame AF. Let a photon be emitted from the source at a point
of time t = 0. It is emitted in the (x, y)−plane in a direction making an angle θ0
with the x-axis. In the inertial laboratory frame IF the coordinates of the emission
event is T = 0, X = x1. The photon follows a null-geodesic curve which in this
frame is a straight line given by

X = x1 + cT cos θ0, Y = cT sin θ0.

Using the transformation

T = x sinh(gt/c), X = x cosh(gt/c) Y = y

between the coordinate systems co-moving with IF and AF gives the equations for
the world lines of the photon in AF

x = x1
cosh(gt/c) − sinh(gt/c) cos θ0

, y = x1 sinh(gt/c) sin θ0

cosh(gt/c) − sinh(gt/c) cos θ0
.

Dividing the expressions for x and y by each other, we get

sinh(gt/c) = y

x sin θ0
.
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Fig. 4.15 Light rays andwave fronts emitted by a point particle in a uniformly accelerated reference
frame

Inserting this into the expressions for x and y gives an equation which may be
written as

x2 + (y − x1 cot θ0)
2 =

(
x1

sin θ0

)2

.

This is the equation of a circle with radius r = x1/ sin θ0. A set of these circular
trajectories and the corresponding wave front is shown in Fig. 4.15.

4.5 Geometrical optics in a gravitational field

(a) Asphere photographed from above. The situation described in the text is
illustrated in Fig. 4.16.
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Fig. 4.16 There is a camera at x = x1 on the vertical x-axis in a uniformly accelerated reference
frame AF. The centre of a sphere with radius r is on the x-axis a distance b below the camera. Due
to the gravitational field experienced in AF a light signal does not move along a straight line, but
along a circle with radius R. Light emitted tangentially from the sphere to the camera makes an
angle θ with the x-axis at the camera.

The radius of the circular light path is c2/g = 0.97 light years in the gravitational
field of the Earth, so the optical effects of the gravitational field are very small at the
surface of the Earth.

The camera P is at a position x = x1. The acceleration of gravity at the position
of the camera is g = c2/x1. The centre of a sphere with radius r is a distance b below
P. A ray of light is emitted tangentially from a point on the surface of the sphere
such that it arrives at P. The angle θ is half the apex angle.

We see from the figure that sin θa = x1/R and R2 − x2
1 = (R − r)2 − (x1 − b)2

which gives

R = x1
sin θa

= x2
1 + r2 − (x1 − b)2

2r
= r2 + 2x1b − b2

2r
.

Hence

sin θa = 2r x1
r2 + 2x1b − b2

.

The half of the apex angle without the gravitational field is sin θ0 = r/b. Inserting
this into the above expression and using that x1 = c2/g gives

sin θa = sin θ0

1 − (
gb/2c2

)
cos2 θ0

= r/b

1 − (
gb/2c2

)(
1 − r2/b2

) .

This shows that as photographed from above the sphere appears enlarged.

(b) A sphere photographed from below. This situation is illustrated in Fig. 4.17.

In the present case the figure shows that R2 − x2
1 = (R + r)2 − (x1 + b)2. Then

a similar deduction to that in point a) gives
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Fig. 4.17 Similar to the
situation in a, but with the
camera below the sphere

sin θb = sin θ0

1 + (
gb/2c2

)
cos2 θ0

= r/b

1 + (
gb/2c2

)(
1 − r2/b2

) .

This shows that as photographed from below the sphere appears diminished.

(c) The difference in θ as photographed from above and below at the same distance
is given by

sin θa − sin θb =
(
gb/c2

)
cos2 θ0 sin θ0

1 − (
gb/c2

)2
cos4 θ0

.

With b = 1m we get gb/c2 = 1m/0.97l.y. = 1.06 × 10−16. Hence the dif-
ference, �θ , between the angels θa and θb is very small. We can therefore use the
approximations

sin θa − sin θb ≈ sin(θ + �θ) − sin θ = sin θ cos�θ + cos θ sin�θ − sin θ

≈ �θ cos θ,

and

�θ ≈ gb

c2
sin θ0 cos θ0 = gr

c2

√

1 − r2

b2
.

With r = 0.1m and b = 1m we can further use the approximation

�θ ≈ gr

c2
.

Letting g = 9.8m/s2 and r = 0.1m we get �θ ≈ 1, 0 × 10−17. This corresponds
to �θ ≈ 2.2 × 10−12arc seconds, which is beyond what we are able to observe.
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Solutions for Chapter 5

5.1 Dual forms

Let{�eî } be a Cartesian basis in the 3-dimensional Euclidean space. Using a vector
�A = Aî �eî there are two ways of constructing a form:

(i) By constructing a 1-form from its covariant components A j = g ji Ai :

A = Aîdx î .

(ii) By constructing a 2-form from its dual components, defined by

a = 1

2
aî ĵdx î ∧ dx ĵ = 1

2
εî ĵ k̂ Ak̂dx î ∧ dx ĵ

We write this form as a = �A, where � means to take the dual form.

(a) Given the vectors �a = �ex + 2�ey − �ez and �b = 2�ex − 3�ey + �ez .

We shall find the corresponding 1-forms A and B, and the dual 2-forms a = �A
and b = �B, and also the dual form θ to the 1-form σ = dx − 2dy .

Since the space has Euclidean geometry with an orthonormal basis gî ĵ = δî ĵ , the
component of the 1-forms A and B are equal to the components of the corresponding
vectors Aî = δî ĵ A ĵ and Bî = δî ĵ B ĵ .

Hence,

A = dx + 2dy − dz B = 2dx − 3dy + dz.

The dual 1-forms α = ∗A and β = ∗B have components αî ĵ = εî ĵ k̂ Ak̂ and

βî ĵ = εî ĵ k̂ Bk̂ . This gives

∗A = −dx ∧ dy − 2dx ∧ dz + dy ∧ dz
∗B = dx ∧ dy + 3dx ∧ dz + 2dy ∧ dz

.

Given a 1-form σ = σîdx î = dx − 2dy. The 2-form θ = ∗σ has components

αî ĵ = εî ĵ k̂σ
k̂ = αî ĵ = εî ĵ k̂ gk̂l̂σl̂ which gives

θ = 2dx ∧ dz + dy ∧ dz.

(b) Inserting the expressions for A and B found in point a) in θ = A ∧ B we find

θ− =
(
dx + 2dy − dz

)
∧
(
2dx − 3dy + dz

)
= − 7dx ∧ dy + 3dx ∧ dz
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− dy ∧ dz.

Calculating the vector product of �A and �B in the usual way we find

�C = �A × �B = −�ex − 3�ey − 7�ez .

We see that �C and θ have the same components, where Cz corresponds to θxy and
so forth.

Let us show this in general. The components of the vector product are Ck̂ =
εm̂n̂k̂ Am̂ Bn̂ . Hence,

εî ĵ k̂C k̂ = εî ĵ k̂εm̂n̂k̂ Am̂ Bn̂ =
(
δî m̂δ ĵ n̂ − δî n̂δ ĵ m̂

)
Am̂ Bn̂ = Aî B ĵ − A ĵ Bî .

Since the exterior product of two 1-forms gives

θî ĵ = (
A ∧ B

)
î ĵ = Aî B ĵ − A ĵ Bî ,

we see that with a metric gî ĵ = δî ĵ there is agreement between the two expressions.
Note that if we replace δî m̂δ ĵ n̂ − δî n̂δ ĵ m̂ by gim g jn − ging jm the deduction will

bevalid in an
arbitrary basis.

(c) Direct calculation gives

A ∧ ∗B =
(

Al̂ω
î
)

∧
(
1
2εî ĵ k̂ Bk̂ωî ∧ ω ĵ

)

= (
Axω

x + Ayω
y + Azω

z
) ∧ (

Bzωx ∧ ωy − B yωx ∧ ωz + Bxωy ∧ ωz
)

= (
Ax Bx + Ay B y + Az B Z

)
ωx ∧ ωy ∧ ωz =

( �A · �B
)
ωx ∧ ωy ∧ ωz

.

(d) The exterior derivative of A is

dA = Ai, jω
j ∧ ωi = (

Ay,x − Ax,y
)
ωx ∧ ωy

+ (
Az,x − Ax,z

)
ωx ∧ ωz

(
Az,y − Ay,z

)
ωy ∧ ωz .

The curl of a vector is

∇ × �A = (
Az,y −Ay,z

)�ex − (
Az,x −Ax ,z

)�ey + (
Ay,x −Ax ,y

)�ez .

Hence

(
dA

)
i j = εi jk

(
∇ × �A

)k

(e) The exterior derivative of the dual ∗A is
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d ∗ A = 1

2

(∗A
)

i j ,k ωk ∧ ωi ∧ ω j = 1

2

(
εi jl Al

)
,k ωk ∧ ωi ∧ ω j

= Ak,k ωx ∧ ωy ∧ ωz .

The exterior derivative of a scalar field f is

d f = f,i ωi .

Which has the same components as ∇ f . Inserting A = d f in the expression for
d ∗ A we get

d ∗ d f = ∇2 f ωx ∧ ωy ∧ ωz

5.2 Differential operators in spherical coordinates

(a) Wefind the metric tensor by transforming from the metric in the Cartesian
coordinate system,

gi j = ∂x î

∂xi

∂x ĵ

∂x j
δî ĵ .

The coordinate transformation is

x = r sin θ cosφ, y = r sin θ sin φ, z = r cos θ

Hence, the transformation matrix has the elements

⎛

⎜
⎝

∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

⎞

⎟
⎠ =

⎛

⎝
sin θ cosφ r cos θ cosφ −r sin θ sin φ

sin θ sin φ r cos θ sin φ r sin θ cosφ

cos θ −r sin θ 0

⎞

⎠.

Inserting this into the transformation formula for the components of the metric
tensor, we find the following non-vanishing components

grr = 1, gθθ = r2, gφφ = r2 sin2 θ.

This shows that the line-element has the form

dl2 = dr2 + r2dθ2 + r2 sin2 θdφ2

In the spherical coordinate system.

(b) The gradient of the scalar field f in the spherical coordinate system is gives by
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∇ f = ∂ f

∂r
�er̂ + ∂ f

∂θ
�eθ̂ + ∂ f

∂φ
�eφ̂

The orthonormal basis vectors are given in terms of the coordinate basis vectors
as,

�eî = �ei/|�ei | = �ei/
√

�ei · �ei = �ei/
√

gii .

This gives

�er̂ = �er , �eθ̂ = 1

r
�eθ , �eφ̂ = 1

r sin θ
�eφ.

Inserting these in the expression for the gradient gives

∇ f = ∂ f

∂r
�er + 1

r

∂ f

∂θ
�eθ + 1

r sin θ

∂ f

∂φ
�eφ.

(c) The curl of a vector is given as

∇ × �A = 1√
g22g33

(
∂ A3̂

∂x2
− ∂ A2

∂x3

)

�e1 + 1√
g11g33

(
∂ A1̂

∂x3
− ∂ A3̂

∂x1

)

�e2

+ 1√
g11g22

(
∂ A2̂

∂x1
− ∂ A1̂

∂x2

)

�e3.

The components of the vector field in orthonormal basis are given in terms of its
coordinate component by

Ar̂ = Â, Aθ̂ = r Aθ , Aφ̂ = r sin θ Aφ.

Using this together with the components of the metric tensor from point a) in the
above expression for the curl gives in spherical coordinates

∇ × �A = 1

r sin θ

(
∂
(
sin θ Aφ

)

∂θ
− ∂ Aθ

∂φ

)

�er + 1

r sin θ

(
∂ Ar

∂φ
− sin θ

∂
(
r Aφ

)

∂r

)

�eθ

+ 1

r

(
∂
(
r Aθ

)

∂r
− ∂ Ar

∂θ

)

�eφ

(d) The divergence of a vector field is given by
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(
∇ · �A

)
ε = d ∗ A,

where

ε = √|g|ω1 ∧ ω2 ∧ ω3,

is the volume form and |g| the determinant of the matrix formed by the components
of the metric tensor.

From Exercise 5.1 we have that the dual 2-form of a vector is given by

(∗A
)

i j
= √|g|εi jk Ak,

where εi jk is the Levi-Civita symbol with εrθφ = +1. Hence, we get

∇ · �A =
(
d ∗ A

)
rθφ√|g| .

In spherical coordinates we have

√|g| = r2 sin θ,

giving

(∗A
)

rθ
= r2 sin θ Aφ,

(∗A
)

rφ
= −r2 sin θ Aθ ,

(∗A
)
θφ

= r2 sin θ Ar .

The exterior derivative has only one component

(
d ∗ A

)
r θ φ

= (∗A
)

θ φ,r − (∗A
)

r φ,θ +(∗A
)

r θ ,φ

= sin θ
(
r2 Ar

)
,r +r2

(
sin θ Aθ

)
,θ +r2 sin θ Aφ,φ

.

where we have used Einstein’s comma-notation for partial derivatives. This gives

∇ · �A =
(
d ∗ A

)
rθφ

r2 sin θ
= 1

r2
(
r2 Ar

)
,r + 1

sin θ

(
sin θ Aθ

)
,θ +Aφ,φ .

We can also express the divergence of a vector in term of it components in an
orthonormal basis. Using that

Ar = Ar̂ , Aθ = 1

r
Aθ̂ , Aφ = 1

r sin θ
Aφ̂ ,

we get



Solutions to the Exercises 447

Fig 5.9 Geodesic curves on
a non-rotating (dashed line)
and rotating (solid line) disc

∇ · �A = 1

r2

(
r2 Ar̂

)
,r + 1

r sin θ

(
sin θ Aθ̂

)
,θ + 1

r sin θ
Aφ,φ .

Inserting �A = ∇ f , where ∇ f is given in point b), we get the expression for the
Laplacian in spherical coordinates

∇2 f = 1

r2
(
r2 f,r

)
,r + 1

r2 sin θ
(sin θ f,θ ),θ + 1

r2 sin2 θ
f,φφ .

5.3 Spatial geodesics in a rotating frame of reference

In Fig. 5.9, we see a rotating disc.We can see two geodesic curves betweenP1 andP2.
The dashed line is the geodesic for the non-rotating disc. The other curve is a geodesic
for the 3-space of a rotating reference frame. We can see that the geodesic is curved
inward when the disc is rotating. The curve has to curve inward since the standard
measuring rods along the curve are longer there (because of less Lorentz contraction
close to the axis where the velocity in the length direction of the measuring rods is
less). Thus, the minimum distance, i.e. the minimum number of standard measuring
rods along the curve between P1 and P2, will be achieved by an inwardly bent curve.
We will show this mathematically, using the Lagrangian equations.

(a) We first deduce the form of the tangent vector identity for the present case. The
line element for the space dt̂ = dz = 0 of the rotating reference frame is

dl2 = dr2 + r2dθ2

1 − r2ω2

c2

.
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The Lagrangian function for the spatial geodesics in the rotating frame is

L = 1

2
ṙ2 + 1

2

r2θ̇2

1 − r2ω2

c2

.

where the dot means differentiation with respect to an invariant parameter represent-
ing the arc length along the curve. In the present case the 3-vector identity for the
tangent vectors of the spatial geodesic curves take the form

ṙ2 + r2θ̇2

1 − r2ω2

c2

= c2.

(b) It is seen from the Lagrangian function that θ is cyclic (∂L/∂θ = 0), implying
that

pθ = ∂L

∂θ̇
= r2θ̇

1 − r2ω2

c2

= constant.

(c) This gives

θ̇ =
(
1 − r2ω2

c2

)
pθ

r2
= pθ

r2
− ω2 pθ

c2
.

Inserting into tangent vector identity we get

ṙ2 = 1 + ω2 p2
θ

c2
− p2

θ

r2
.

This gives the equation of the geodesic curve between P1 and P2 .

ṙ

θ̇
= ± dr

dθ
= r2

√
1 + ω2 p2

θ

c2 − p2
θ

r2

pθ

(
1 − r2ω2

c2

) .

(d) The boundary conditions are ṙ = 0, r = r0, for θ = 0, where r0 is the distance
from the rotational axis to the point of the curve with minimal distance to the
axis (Fig. 5.10). Inserting this into the expression for pθ gives

pθ

r0
=

√

1 + p2
θω

2

c2
.

(e) Solving this equation with respect to pθ gives
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Fig. 5.10 Geodesic curves
on a rotating disc,
coordinates

pθ = r0√
1 − r20ω

2/c2
.

Inserting this into the equation of the geodesic curve, it takes the form

dr

dθ
=

r
√

r2 − r20

r0
(
1 − r2ω2/c2

) ,

which may be written

dr

r
√

r2 − r20

− ω2

c2
rdr

√
r2 − r20

= dθ

r0
.

Integrating this yields

θ = ±r0ω2

c2

√
r2 − r20 ∓ arccos

r0
r

.

The curve represented by this equation is shown in Fig. 5.10.

5.4 Christoffel symbols in a uniformly accelerated reference frame

(a) Theonly non-vanishing Christoffel symbols in the coordinate system co-moving
with a uniformly accelerated reference frame are
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�x
tt = ∂x

∂T

∂2T

∂t2
+ ∂x

∂ X

∂2X

∂t2
, �t

xt = �t
t x = ∂t

∂T

∂2T

∂t∂x
+ ∂t

∂ X

∂2X

∂t∂x
.

The coordinate transformation formulae are

gT
c = (

1 + gx
c2
)
sinh gt

c , 1 + gX
c2 = (

1 + gx
c2
)
cosh gt

c ,

gT
c = (1 + gX

c2 ) tanh gt
c ,

(
1 + gX

c2

)2 −
(

gT
c

)2 = (
1 + gx

c2
)2

.

Differentiation gives

∂x

∂T
= − gT

√(
1 + gX/c2

)2 − (gT/c)2
= − gT

1 + gx/c2
,

∂x

∂ X
= 1 + gX/c2

1 + gx/c2
,

∂t

∂T
= 1 + gX/c2

(
1 + gx/c2

)2 = cosh(gt/c)

1 + gx/c2
,

∂ct

∂ X
= gT/c

(
1 + gx/c2

)2 = sinh(gt/c)

1 + gx/c2
,

∂2T

∂t2
= g

c

(
1 + gx

c2

)
sinh

gt

c
,

∂2X

∂t2
= g

(
1 + gx

c2

)
cosh

gt

c
,

∂2T

∂t∂x
= g

c2
cosh

gt

c
,

∂2X

∂t∂x
= g

c
sinh

gt

c

Inserting these expressions into the formulae of the Christoffel symbols leads to

�x
tt = g

(
1 + gx/c2

)
, �t

xt = �t
t x = g/c2

1 + gx/c2
.

(b) We shall use the formula for the Christoffel symbols in terms of the derivatives
of the components of the metric tensor,

�α
μν ≡ 1

2
gαβ(gβμ,ν + gβν,μ − gμν,β)

To calculate the same Chritoffel symbols as above.
The components of the metric tensor in the coordinate system co-moving with a

uniformly accelerated reference frame are

gtt = −
(
1 + gx

c2

)2
c2, gxx = gyy = gzz = 1

only the term ∂gtt

∂x contributes to�α
μν . Thus the only non-vanishingChristoffel symbols

are
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�t
xt = �t

t x = 1

2
gtt

(
∂gtt

∂x

)
= 1

2gtt

∂gtt

∂x
= 2

(
1 + gx

c2
)
g

2
(
1 + gx

c2
)2

c2
= 1

(
1 + gx

c2
)

g

c2
,

�x
tt = −1

2
gxx

(
∂gtt

∂x

)
= −1

2

{
−2

(
1 + gx

c2

) g

c2
c2
}

=
(
1 + gx

c2

)
g.

5.5 Relativistic vertical projectile motion

A particle is thrown vertically upwards with velocity v from the origin of the coor-
dinate system in the gravitational field of a uniformly accelerated reference frame.
We shall calculate the maximal height of the particle.

The line element, including only the vertical x-direction, has the form

ds2 = −
(
1 + gx

c2

)2
c2dt2 + dx2

the Lagrange function is

L = 1

2
gμν ẋμ ẋν = −1

2

(
1 + gx

c2

)2
c2 ṫ2 + 1

2
ẋ2,

where the dots imply differentiation with respect to the particle’s proper time
τ . The initial conditions are x(0) = 0, ẋ(0) = γ (c, v, 0, 0), where γ =(
1 − v2/c2

)−1/2
.

Newtonian description: 1
2mv2 = mgh ⇒ h = v2

2g .

Relativistic description: t is a cyclic coordinate ⇒ x0 = ct is cyclic and p0 =
constant.

p0 = ∂L

∂ ẋ0
= 1

c

∂L

∂ ṫ
= −c

(
1 + gx

c2

)2
ṫ .

In the present case the 4-velocity identity has the form

−1

2

(
1 + gx

c2

)2
c2 ṫ2 + 1

2
ẋ2 = −1

2
c2.

Since the maximum height h is reached when ẋ = 0we have

(
1 + gh

c2

)
ṫx=h = 1.

Since p0 is a constant of the motion we can determine ist value from the initial
condition, p0 = −cṫ(0) = −γ c, and at x = h:

p0 = −γ c = −c

(
1 + gh

c2

)2

ṫx=h
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It follows from the two last equations that the maximal height of the projectile is

h = c2

g
(γ − 1).

In the Newtonian limit this becomes

h = c2

g

(
1

(1 − v2/c2)1/2
− 1

)
�

c2

g

(
1 + 1

2

v2

c2
− 1

)
⇒ h�

v2

2g
.

5.6 The geodesic equation and constants of motion

(a) Thegeodesic equation can be written

duμ

ds
− �α

μβuαuβ = 0.

Inserting the expression for the Christoffel symbols give

�α
μβuαuβ = �αμβuαuβ = 1

2

(
gαμ,β + gαβ,μ − gμβ,α

)
uαuβ.

Since the metric tensor is symmetrical this can be written

�α
μβuαuβ = 1

2

(
gαμ,β + gαβ,μ − gβμ,α

)
uαuβ.

Since gαμ,β − gβμ,α is antisymmetric in α and β, and uαuβ is symmetric in α and
β we have that

(
gαμ,β − gβμ,α

)
uαuβ = 0. Hence

�α
μβuαuβ = 1

2
gαβ,μuαuβ.

Hence the geodesic equation in the form above reduces to

duμ

ds
− 1

2
gαβ,μuαuβ = 0.

(b) From the form of the geodesic equation in b) it follows that since the metric is
independent

of t , θ and z in the static and cylindrically symmetric case, so that gμν,t = gμν,θ =
gμν,z = 0, then ut ,uθ and uz are constants of motion in this case.
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Solutions for Chapter 6

6.1 Parallel transport

Parallel transport of a vector �A along a curve means that the covariant directional
derivative of the vector along the curve vanishes,

∇�u �A = 0. (S6.1.1)

where �u is the tangent vector field of the curve. Let the curve parameter be λ. Then
the component equation of parallel transport along the curve takes the form

Aμ

;νuν = Aμ

;ν
dxν

dλ
= 0. (S6.1.2)

Inserting the expression Aμ

;ν = Aμ
,ν + �

μ
λν Aλ of the covariant derivative, we get

Aμ
,ν

dxν

dλ
= dAμ

dλ
= −�

μ
λν Aλ dxν

dλ
. (S6.1.3)

For an infinitesimal displacement along the curve the change of the vector
component Aμ thereby becomes

dAμ = −�
μ
λν Aλdxν . (S6.1.4)

(b) The result from point a) may be written as a Taylor expansion of Aμ to first
order at the point x,

Aμ(x + dx) = Aμ(x) − �
μ
λν Aλdxν . (S6.1.5)

The Taylor expansion is generally given as

Aμ(x + dx) = Aμ(x) + ∂ Aμ(x)

∂xν
dxν + 1

2

∂2 Aμ(x)

∂xν∂xγ
dxνdxγ + · · · (S6.1.6)

We see that

∂ Aμ

∂xν
= −�

μ
λν Aλ. (S6.1.7)

We also need the next term in the Taylor expansion,

∂2 Aμ

∂xν∂xγ
= ∂

∂xγ

∂ Aμ

∂xν
= ∂

(−�
μ
λν Aλ

)

∂xγ
= −�

μ
λν,γ Aλ − �

μ
λν Aλ

,γ
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Fig. 6.8 Infinitesimalt
parallelogram

= −�
μ
λν,γ Aλ + �

μ
λν�

λ
αγ Aα. (S6.1.8)

Hence, we get to 2.order that by parallel from x to x + dx the component Aμ of
the vector is

Aμ(x + dx) = Aμ(x) − �
μ
λν Aλdxν − �

μ
λν,γ Aλdxνdxγ + �

μ
λν�

λ
αγ Aαdxνdxγ .

(S6.1.9)

Let �AAB be the vector �A parallel transported frompointA toB in the parallelogram
shown in Fig. 6.8.

Using Eq. (S6.1.9) we get

Aμ

AB = Aμ − �
μ
λν(A)Aλdaν − �

μ
λν,γ (A)Aλdaνdaγ + �

μ
λν(A)�λ

αγ (A)Aαdaνdaγ ,

(S6.1.10)

where (A) means that the quantity is evaluated at the point A. Further parallel
transport to C gives

Aμ

ABC = Aμ

AB − �
μ
λν(B)Aλdbν − �

μ
λν,γ (B)Aλdbνdbγ + �

μ
λν(B)�λ

αγ (B)Aαdbνdbγ .

(S6.1.11)

Note that since the last parallel transport starts at the point B, wemust evaluate the
connection coefficients at point B. These connection coefficients deviate infinitesi-
mally from their values in A. We want to express all the functions by their values in
A. This is performed by means of a Taylor expansion. Since the connection coeffi-
cients in (S6.2.11) are all multiplied by differentials, it is sufficient to make a Taylor
expansion to first order in the differentials. This gives

�
μ
λν(B) = �

μ
λν(A + d�a) = �

μ
λν(A) + �

μ
λν,γ (A)daγ + · · · (S6.1.12)

Inserting Eqs. (S6.1.10) and (S6.1.12) into Eq. (S6.1.11) we get

Aμ

ABC = Aμ

AB − Γ
μ
λν Aλdaν − Γ

μ
λν Aλdbν

− Γ
μ
λν,γ Aλ

(
dbνdaγ + 1

2
daνdaγ + 1

2
dbνdbγ

)

+ Γ
μ
λνΓ

λ
αγ Aα

(
dbνdaγ + 1

2
daνdaγ + 1

2
dbνdbγ

)
(S6.1.13)
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Parallel transport to C via D gives a similar expression, the only difference being
that da and db are exchanged,

Aμ

ABC = Aμ

AB − �
μ
λν Aλdbν − �

μ
λν Aλdaν − �

μ
λν,γ Aλ

(
daνdbγ + 1

2dbνdbγ + 1
2daνdaγ

)

+�
μ
λν�

λ
αγ Aα

(
daνdbγ + 1

2dbνdbγ + 1
2daνdaγ

) .

(S6.1.14)

The difference is

Aμ

ABC − Aμ

ADC =
(
�

μ
λν,γ − �

μ
λγ,ν + �μ

αγ �α
λν − �μ

αν�
α
λγ

)
Aλdaνdbγ , (S6.1.15)

where we have changed some of the summation indices in order to have the same
indices on A, da and db in all the terms.

The difference Aμ

ABC − Aμ

ADC corresponds to adding parallel transport of A from
a to C via B and then adding the negative of the transport from A via D to C. The
latter is the same as adding parallel transport from C via D to A. Hence the difference
corresponds to parallel transporting A around the parallelogram. So the right-hand
side is the change of the vector �A by this round trip. Comparing with Eq. (6.17) we
see that the quantities inside the parenthesis in equation (S6.1.15) are the components
of the Riemann curvature tensor in coordinate basis. Hence,

δAμ = −Rμ
λνγ Aλdaνdbγ . (S6.1.16)

The curvature of a space makes a vector change when it is parallel transported
around a closed curve in the space.

6.2 Curvature of the spatial simultaneity space of a rotating reference frame

Considerthe 2. dimensional simultaneity space, t̂ = constant, z = constant, with
line element (4.20),

dl2 = dr2 + r2dθ2

1 − r2ω2/c2
. (S6.2.1)

We shall calculate the Riemann curvature scalar of the 2-space described by this
line-element. The 1-foms of an orthonormal basis are

ωr̂ = dr, ωφ̂ = r
√
1 − r2ω2/c2

dφ. (S6.2.2)

Taking the exterior derivative gives

dωr̂ = 0

dωφ̂ =
(
d r√

1−r2ω2/c2

)
∧ dφ = 1

(1−r2ω2/c2)
3/2 dr ∧ dφ = 1

r(1−r2ω2/c2)
3/2 ω

r̂ ∧ ωφ̂ .

(S6.2.3)

https://doi.org/10.1007/978-3-030-43862-3_6
https://doi.org/10.1007/978-3-030-43862-3_4
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From Cartan’s 1. structure equation

dωμ̂ = −�
μ̂

ν̂
∧ ων̂. (S6.2.4)

We then have

�r̂
φ̂

= f (r)ωφ̂ �
φ̂

r̂ = 1

r
(
1 − r2ω2/c2

)3/2 ωφ̂ + g(r)ωr̂ . (S6.2.5)

The antisymmetry �νμ = −�μν now gives

f (r) = 1

r
(
1 − r2ω2/c2

)3/2 , g(r) = 0. (S6.2.6)

Hence the only non-vanishing connection forms are

�
φ̂

r̂ = �r̂
φ̂

= 1

r
(
1 − r2ω2/c2

)ωφ̂. (S6.2.7)

We then calculate the curvature forms from Cartan’s 2. structure equation

Rμ̂

ν̂
= d�μ̂

ν̂
+ �

μ̂

λ̂
∧ �λ̂

ν̂ . (S6.2.8)

This gives only one non-vanishing curvature form

Rφ̂

r̂ = − 3ω2/c2
(
1 − r2ω2/c2

)2 ωφ̂ ∧ ωr̂ . (S6.2.9)

From

Rμ̂

ν̂
= Rμ̂

ν̂α̂β̂
ωα̂ ∧ ωβ̂ (S6.2.10)

we then get the non-vanishing components of the Riemann curvature tensor

Rr̂
φ̂r̂ φ̂

= Rφ̂

r̂ φ̂r̂
= − 3ω2/c2

(
1 − r2ω2/c2

)2 . (S6.2.11)

Contraction gives the components of the Ricci curvature tensor

Rr̂r̂ = Rφ̂

r̂ φ̂r̂
= − 3ω2/c2

(
1 − r2ω2/c2

)2 , Rφ̂φ̂ = Rr̂
φ̂r̂ φ̂

= − 3ω2/c2
(
1 − r2ω2/c2

)2 . (S6.2.12)

Finally the curvature scalar is the trace of the Ricci tensor
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R = Rμ̂

μ̂
= Rr̂

r̂ + Rφ̂

φ̂
= − 6ω2/c2

(
1 − r2ω2/c2

)2 . (S6.2.13)

According toEq. (6.55) this is equal to theGaussian curvature of the surface,which
is again equal to the product of the curvatures of two geodesic curves orthogonal to
each other on the surface. When the Gaussian curvature is negative, these so-called
principal curvatures have opposite signs,meaning that the geodesics curve in opposite
ways, like they do on a saddle surface. Hence, the surface has negative curvature.

6.3 The tidal force pendulum and the curvature of space

(a) The particles of the pendulum are not moving geodesically. However, the forces
on the particles from the rod connecting them, have no component in the direc-
tion normal to the rods, and are thus of no consequence for the period of the
pendulum. We may therefore calculate the period of the tidal force pendulum
using the equation of geodesic deviation,

D2�μ

dτ 2
+ Rμ

ανβuα�νuβ = 0. (S6.3.1)

where τ is the proper time of the pendulum.

(b) We introduce co-moving geodesic normal coordinates with �u = (1, 0, 0, 0),
vanishing Christoffel symbols and origin at the mass centre of the pendulum.
The coordinate basis of this coordinate system is orthonormal. The pendulum
is permanently at rest at the surface of the Earth. Then it moves with non-
relativistic velocity in a weak gravitational field. Hence, the proper time of the
pendulum can be approximated by the coordinate time t of the Earth, and Eq.
(S6.3.1) reduces to

d2�î

dt2
+ Rî

0̂ ĵ 0̂
� ĵ = 0. (S6.3.2)

(c) From Fig. 6.6 is seen that the θ -component of the equation is

d2�θ̂

dt2
+ Rφ̂

t̂ φ̂ t̂
�φ̂ cos θ − Rr̂

t̂r̂ t̂�
r̂ sin θ = 0, (S6.3.3)

where

�θ̂ = �θ, �φ̂ = � sin θ, �r̂ = � cos θ. (S6.3.4)

https://doi.org/10.1007/978-3-030-43862-3_6
https://doi.org/10.1007/978-3-030-43862-3_6
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Hence, for small angular amplitudes the equation of motion of the pendulum can
be approximated by

d2θ

dt2
+

(
Rφ̂ t̂ φ̂ t̂ − Rr̂ t̂r̂ t̂

)
θ = 0. (S6.3.5)

This equation describes harmonic oscillations with period

T = 2π
√

Rφ̂ t̂ φ̂ t̂ − Rr̂t̂r̂ t̂

, (S6.3.6)

showing that the period of the tidal force pendulum depends only upon the curvature
of spacetime at its position.

At a distance R from the centre of a spherical body of mass M [6.1],

Rφ̂ t̂ φ̂ t̂ = G M/R2, Rr̂ t̂r̂ t̂ = −2G M/R2, (S6.3.7)

giving

T = 2π

√
R3

3G M
, (S6.3.8)

in agreement with the Newtonian calculation in Exercise 1.1 of the period of the tidal
force pendulum.
[1] Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation, p. 821. Freeman, San
Franscisco (1973)

Solutions for Chapter 7

7.1 Newtonian approximation of perfect fluid

(a) Thecovariant formulation of energy–momentum is that the covariant divergence
of the energy–momentum tensor vanishes,

T μν

;ν = 0.

Writing out the covariant derivative we have

T μν
,ν + �ν

ανT μα + �μ
ανT αν = 0

In the Newtonian approximation we neglect the curvature of spacetime and intro-
duce a Cartesian coordinate system with Minkowski metric and where all the com-
ponents of the metric tensor are constant. Hence all the Christoffel symbols vanish,
and the conservation laws reduce to
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T μν
,ν = 0.

(b) In the Newtonian limit the components of the energy–momentum tensor are

T 00 = ρc2, T 0i = ρcvi , T i j = pδi j + ρviv j .

Hence the time component of the conservation laws is

T 0ν
,ν = T 00

,0 + T 0i
,i = ∂ρ

∂t
+ ∂

(
ρvi

)

∂xi
= 0 or

∂ρ

∂t
+ ∇ · (ρ�v) = 0.

This is the equation of continuity of the fluid.

(c) The spatial components of the conservation laws are

T iν
,ν = T i0

,0 + T i j
, j = ∂

(
ρvi

)

∂t
+ ∂

(
pδi j + ρviv j

)

∂x j

= ∂
(
ρvi

)

∂t
+ ∂

(
ρviv j

)

∂x j
+ ∂p

∂xi
= 0

This equation can be simplified by using the equation of continuity in the

form
∂(ρv j)

∂x j = − ∂ρ

∂t . Hencewe need to rewrite the second last term in the conservation
equation as follows

∂
(
ρviv j

)

∂x j
= ρv j ∂vi

∂x j
+ vi ∂

(
ρv j

)

∂x j
= ρv j ∂vi

∂x j
− vi ∂ρ

∂t
.

Inserting this into the conservation equation, and using the product rule in the first
term gives

vi ∂ρ

∂t
+ ρ

∂vi

∂t
+ ρv j ∂vi

∂x j
− vi ∂ρ

∂t
+ ∂p

∂xi
= 0,

or

ρ
∂vi

∂t
+ ρv j ∂vi

∂x j
+ ∂p

∂xi
= 0.

This is usually written as

ρ

(
∂vi

∂t
+ v j ∂vi

∂x j

)
= − ∂p

∂xi
or ρ

(
∂ �v
∂t

+ (�v · ∇)�v
)

= −∇ p.

which is the Euler equation of motion applied to a fluid in a region without a
gravitational field, i.e. the Minkowski spacetime.
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7.2 The energy–momentum tensor of LIVE

(a) Weshall deduce the form of an energy–momentum tensor with Lorentz invariant
components as decomposed in orthonormal basis fields, i.e. with

Tμ̂ν̂ = Tμ̂′ν̂ ′ = �α̂
μ̂′�

β̂

ν̂ ′ Tα̂β̂

where �
μ̂

μ̂′ are the elements of a Lorentz transformation matrix. Let us first consider

a Lorentz transformation in the x 1̂- direction,

�
μ̂

μ̂′ =

⎡

⎢⎢
⎣

γ γ v 0 0
γ v γ 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦.

where γ = (
1 − v2

)−1/2
, and we have used units so that c = 1. Inserting this in the

above equation leads to

v
(
T0̂0̂ + T1̂1̂

) + T0̂1̂ + T1̂0̂ = 0.

In a similar way transformation of T0̂1̂ and T1̂0̂ leads to

v
(
T0̂1̂ + T1̂0̂

) + T
0̂

↼
0

+ T1̂1̂ = 0.

It follows from these equations that

T0̂0̂ = −T1̂1̂, T0̂1̂ = −T1̂0̂.

Transformation of T0̂2̂ and T1̂2̂ give, respectively

T0̂2̂ = γ
(
T0̂2̂ + vT1̂2̂

)
, T1̂2̂ = γ

(
T1̂2̂ + vT0̂2̂

)
,

which demands that

T0̂2̂ = T1̂2̂ = 0.

In the same way one finds

T2̂0̂ = T2̂1̂ = T0̂3̂ = T1̂3̂ = T3̂0̂ = T3̂1̂ = 0.

Thus, as a result of Lorentz invariance of the components Tμ̂ν̂ under a Lorentz

transformation in the x 1̂-direction the energy–momentum tensor must have the form
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Tμ̂ν̂ =

⎡

⎢⎢
⎣

T0̂0̂ T0̂1̂ 0 0
−T0̂1̂ −T0̂0̂ 0 0
0 0 T2̂2̂ T2̂3̂

0 0 T3̂2̂ T3̂3̂

⎤

⎥⎥
⎦.

Demanding Lorentz invariance under a Lorentz transformation in the x 2̂-direction
gives the additional conditions

T0̂1̂ = T1̂0̂ = T2̂3̂ = T3̂2̂ = 0, T2̂2̂ = T0̂0̂.

Lastly Lorentz invariance under a Lorentz transformation in the x 3̂-direction gives
the additional condition

T3̂3̂ = T0̂0̂.

It follows that the energy–momentum tensor for LIVE has the form

Tμ̂ν̂ = T0̂0̂diag(−1, 1, 1, 1) = T0̂0̂ημ̂ν̂ ,

where ημ̂ν̂ are the components of the Minkowski metric. This is valid in orthonormal
basis. Transforming to an arbitrary basis with metric gμν , the energy–momentum
tensor takes the form

Tμν = T0̂0̂gμν.

From the physical interpretation of the components of the energy–momentum
tensor (including here the velocity of light) we have that T0̂0̂ = −ρLIVEc2, where
ρLIVE is the mass density of LIVE. Thus

(TLIVE)μν = −ρLIVEgμν.

(c) We now assume that LIVE can be described as a perfect fluid with energy–
momentum tensor of the form (7.14),

(TLIVE)μν =
(
ρLIVE + pLIVE

c2

)
uμuν + pLIVEgμν .

Since the energy–momentum tensor of LIVE is proportional to the metric tensor,
the first term must vanish. Hence theequation of stateof LIVE is

pLIVE = −ρLIVEc2.

https://doi.org/10.1007/978-3-030-43862-3_7
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(d) Einstein’ field equations with a cosmological constant for empty space, (7.41),
can be written

Rμν − 1

2
gμν R = −�gμν.

We comparing this with Einstein’s field equations without a cosmological
constant, (7.29),

Rμν − 1

2
gμν R = κTμν .

Hence, a spacetime with LIVE, and nothing else, is mathematically equivalent to
an Einstein space if LIVE is represented by an energy–momentum tensor

(TL I V E )μν = −(�/κ)gμν.

We see that the cosmological constant represents the density of LIVE

� = κρL I V E .

Solutions for Chapter 8

8.1 Non-relativistic Kepler motion

(a) According to Newtonian Lagrange dynamics the Lagrange function of a planet
with mass m (considered as a particle) moving in the gravitational field of the
Sun is it kinetic energy minus its potential energy. In spherical coordinates,
(r, θ, φ), the kinetic energy is

T = 1

2
mv2 = m

2

(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
, (S8.1)

where ṙ = dr/dt and so forth. The potential energy is

V = −G Mm

r
, (S8.2)

where M is the mass of the Sun. Hence, the Lagrange function is

L = m

2
ṙ2 + m

2
r2θ̇2 + m

2
r2 sin2 θφ̇2L + G Mm

r
. (S8.3)

Since L is does not depend upon φ, the momentum

https://doi.org/10.1007/978-3-030-43862-3_7
https://doi.org/10.1007/978-3-030-43862-3_7
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pφ = ∂L

∂φ̇
= mr2 sin2 θφ̇ (S8.4)

is a constant of motion. It is the angular momentum of the planet.
The Lagrange equation for θ ,

∂L

∂θ
− d

dt

(
∂L

∂θ̇

)
= 0 (S8.5)

takes the form

mr2 sin θ cos θφ̇2 − 2mrṙ θ̇ − mr2θ̈ = 0 (S8.6)

Substituting for φ̇ from Eq. (S8.4) we get

2p2
φ cos θ θ̇

mr2 sin3 θ
− 4mr3ṙ θ̇2 − 2mr4θ̇ θ̈ = 0 (S8.7)

which may be written

d

dt

(

mr4θ̇2 + p2
φ

m sin2 θ

)

= 0. (S8.8)

Integrating gives

mr4θ̇2 + p2
φ

m sin2 θ
= K , (S8.9)

whereK is a constant determined from the initial condition θ(0) = π/2, θ̇ (0) = 0.
This gives K = p2

φ/m. Hence Eq. (S8.9) reduces to

mr4θ̇2 + p2
φ

m sin2 θ
= p2

φ

m
. (S8.10)

This may be written

m2r4 sin2 θ θ̇2 = p2
φ

(
sin2 θ − 1

) = −p2
φ cos

2 θ. (S8.11)

In general the left-hand side of this equation is positive, and the right-hand side
is negative. Hence, the only possibility of having this equation fulfilled is that both
sides vanish, which happens for θ = π/2, θ̇ = 0. This shows that the planet moves
in a plane.

(b) We shall now consider motion in this plane. The Lagrange equation for r,
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∂L

∂r
− d

dt

(
∂L

∂ ṙ

)
= 0 (S8.12)

takes the form

r̈ − r θ̇2 − r sin2 θφ̇2 = −G M

r2
. (S8.13)

which is the same as the r-component of Newton’s 2. law applied to the planet. With
θ = π/2 the Lagrange Eq. (S8.4) for φ becomes

φ̇ = pφ

mr2
. (S8.14)

and the Lagrange Eq. (S8.13) for r reduces to

r̈ + r φ̇2 = −G M

r2
. (S8.15)

In order to find the orbit equation we express the derivatives with respect to t in
terms of derivatives with the respect to φ,

ṙ = dr

dt
= dr

dφ

dφ

dt
= φ̇r ′ = pφ

mr2
r ′, (S8.16)

r̈ = d

dt

(
dr

dt

)
= pφ

mr2
d

dφ

(
pφ

mr2
dr

dφ

)
= p2

φ

m2r4
r ′′ − 2p2

φ

m2r5
(
r ′)2. (S8.17)

where r ′ = dr/dφ. Introducing a new radial coordinate, u = 1/r , we get

r ′ = − u′

u2
, r ′′ = −u′′

u2
+ 2

(
u′)2

u3
. (S8.18)

Inserting this into the expressions (S8.15) and (S8.16) for the radial velocity and
acceleration, we get

ṙ = − pφ

m
u′, r̈ = − p2

φ

m2
u2u′′. (S8.19)

Substituting this into Eq. (S8.15) gives the orbit equation

u′′ + u = G Mm2

p2
φ

. (S8.20)
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This is an inhomogeneous equation for harmonic oscillationswith general solution

u = G Mm2

p2
φ

[1 + ε sin(φ − φ0)], (S8.21)

where ε and φ0 are integration constants. With the boundary condition u(0) =
G Mm2/p2

φwe have φ0 = 0.
The equation of an ellipse with major half axis a and eccentricity ε in polar

coordinates with origin at one of the focal points has the form

u = 1

a
(
1 − ε2

) (1 + ε sin φ). (S8.22)

Hence with non-relativistic Kepler motion the planet moves along an elliptical
path.

Equation (S8.20) has a particular solution representing circularmotionwith radius

R = p2
φ

G Mm2
. (S8.23)

Using Eq. (S8.14) the period of the motion is

T0 = 2π

φ̇
= 2π

m R2

pφ

. (S8.24)

From Eq. (S8.23) we have

p2
φ = G Mm2R. (S8.25)

Inserting this into Eq. (S8.24) gives

T0 = 2π
R3/2

√
G M

. (S8.26)

(c) We shall now consider the effect upon the motion of the planets of a flattening
of the Sun. The gravitational potential of the Sun is then

V (r) = −G M

r
− S

r3
. (S8.27)

In this case the orbit Eq. (S8.20) is modified to

u′′ + u = G Mm2

p2
φ

+ 3Sm2

p2
φ

u2. (S8.28)
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Again there is a particular solution representing circular motion. This time the
radius R = 1/u0 is given by

u2
0 − p2

φ

3Sm2
u0 + G M

3S
= 0. (S8.29)

Hence

p2
φ = G Mm2R + 3Sm2

R
. (S8.30)

The period is still given by Eq. (S8.24). Inserting Eq. (S8.30) leads to

T = T0√
1 + 3S/G M R2

. (S8.31)

The flattening of the Sun makes the orbital period of the planets a little longer
than in the spherical case.

(d) We shall now assume that the planet moves along an elliptical path which devi-
ates slightly from a circle, and calculate the precession of the perihelion due to
the flattening of the Earth. Hence, u = u0+u1 where u0 = 1/R and |u1| 	 |u0|.
Inserting this into Eq. (S8.28) we get

u′′
1 + u0 + u1 = m2

p2
φ

(
G M + 3Su2

0 + 6Su0u1 + 3Su2
1

)
. (S8.32)

Calculating to 1. order in u1 and utilizing that u0 fulfils Eq. (S8.29) we get

u′′
1 + u1 = 6Sm2

p2
φ R

u1, (S8.33)

or

u′′
1 + ω2u1 = 0, ω2 = 1 − 6Sm2

p2
φ R

. (S8.34)

This is an equation for harmonic oscillations for 6Sm2 < p2
φ R. The solution with

u1(0) = 0 is

u1 = εu0 sin(ωφ), (S8.35)

representing an ellipse with eccentricity ε. The period of the orbit is 2π/ω. For
ω = 1 the path is a closed ellipse with fixed orientation. For ω �= 1 the ellipse will
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rotate. There will be a precession of the ellipse, where the ellipse rotates an angle

�φ = 2π

(
1

ω
− 1

)
(S8.36)

for each travel around the sun. Using the expression (S8.34) for ω and inserting the
expression (S8.30) for pφ gives

�φ = 2π

(√
G M R2 + 3S√
G M R2 − 3S

− 1

)

≈ 6π S

G M R2
. (S8.37)

The quantity S is usually written

S = (1/2)J2G M R2
Sun, (S8.39)

where J2 is a numerical factor determined by measurements, J2 = 3 × 10−5 and
RSun = 7.0 × 108m. For the planet Mercury the distance from the Sun is R =
5.8×1010m. This gives �φ = 4.1×10−8 radians per round trip, which corresponds
to 3.5′′ per century, too small to explain the disagreement of 43′′ per century between
the Newtonian prediction and measurements.

8.2 The Schwarzschild solution in isotropic coordinates

(a) Incurvature coordinates the line-element of the Schwarzschild space time has
the form

ds2 = −
(
1 − RS

r

)
c2dt2 + dr2

1 − RS
r

+ r2d�2. (S8.40)

We introduce a so-called radial isotropic coordinate, ρ(r), where the line-element
of the Schwarzschild spacetime takes the form

ds2 = −
(
1 − RS

r(ρ)

)
dt2 + f 2(ρ)(dρ2 + ρ2d�2), (S8.41)

This requires that

dr2

1 − RS
r

= f 2(ρ)dρ2, (S8.42)

and

r2 = f 2(ρ)ρ2. (S8.43)
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Dividing these equations by each other and taking the positive square root gives

dρ

ρ
= dr

√
r2 − RSr

. (S8.44)

Integrating gives

ρ

C
= r − RS

2
+

√
r2 − RSr . (S8.45)

It is usual with isotropic coordinates, to choose C = 1/2. This gives

ρ = r

2
− RS

4
+ 1

2

√
r2 − RSr . (S8.46)

Solving this equation with respect to r gives

r = (ρ + RS/4)
2

4ρ
. (S8.47)

From (S8.43) and (S8.47) we have

f (ρ) = r

ρ
=

(
1 + RS

4ρ

)2

. (S8.48)

Inserting the expressions (S8.47) and (S8.48) into Eq. (S8.41) gives the line-
element of the Schwarzschild spacetime in isotropic coordinates

ds2 = −
(
1 − RS/4ρ

1 + RS/4ρ

)2

dt2 +
(
1 + RS

4ρ

)4(
dρ2 + ρ2d�2

)
. (S8.49)

A series expansion of this line element to 1. order in RS/ρ gives

ds2 = −(1 − RS/ρ)dt2 + (1 + RS/ρ)
(
dρ2 + ρ2d�2

)
. (S8.50)

(b) This coordinate system does only exist outside the horizon of a black hole. From
Eq. (S8.46) we find that the value of the isotropic radius at the horizon is

ρ(RS) = RS/4. (S8.51)

8.3 Proper radial distance in the external Schwarzschild space

The proper radial distance from the horizon to a point in the Schwarzschild spacetime
with radial curvature coordinate r is
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r̂ = r̂ =
r∫

RS

dr√
1 − r/RS

=r

√

1 − RS

r
+ RS ln

[√
r

RS

(

1 −
√

1 − RS

r

)]

. (S8.52)

8.4 The Schwarzschild–de Sitter metric

(a) We shall here generalize the Schwarzschild solution (8.35) to a space-time
with a non-vanishing cosmological constant. We consider a static space-time
with a spherically symmetric 3-space outside a spherical body (the Sun) with
Schwarzschild radiusRS as described in orthonormal basis associated with cur-
vature coordinates. Then the line-element has the form (8.1) and the non-
vanishing components of the Einstein tensor are given in Eq. 8.15). Einstein’s
field equations are

Et̂t̂ = �, Er̂r̂ = −�. (S8.53)

Adding the equations and inserting the expressions (8.15) for the components of
the Einstein tensor, leads to β = −α and

2

r
e−2ββ ′ + 1

r2
(1 − e−2β) = �, (S8.54)

which may be written as

d

dr

[
r
(
1 − e−2β

)] = �r2. (S8.55)

The general solution of this equation is

r
(
1 − e−2β

) = �

3
r3 + K , (S8.56)

where K is an integration constant. Going to the Newtonian limit we find in the same
manner as in a spacetime without a cosmological constant K = RS . Thus, we get

e2α = e−2β = 1 − RS

r
− �

3
r2, (S8.57)

and the line-element takes the form

ds2 = −
(
1 − RS

r
− �

3
r2
)

c2dt2 + dr2

1 − RS
r − �

3 r2
+ r2d�2. (S8.58)

Introducing a De Sitter radius R� = √
3/�, the line element takes the form

https://doi.org/10.1007/978-3-030-43862-3_8
https://doi.org/10.1007/978-3-030-43862-3_8
https://doi.org/10.1007/978-3-030-43862-3_8
https://doi.org/10.1007/978-3-030-43862-3_8
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ds2 = −
(
1 − RS

r
− r2

R2
�

)
c2dt2 + dr2

1 − RS
r − r2

R2
�

+ r2d�2. (S8.59)

(b) In globally empty space, but with LIVE, R� = 0, and the line element reduces
to

ds2 = −
(
1 − r2

R2
�

)
c2dt2 + dr2

1 − r2

R2
�

+ r2d�2. (S8.60)

The spacetime described by this line element is called the DeSitter spacetime after
the Duch astronomer Willem De Sitter who found it as a solution of Einstein’s field
equations with a cosmological constant for empty space already in 1917.

Standard clocks at rest in this coordinate system show a time τ related to the
coordinate time t by

dτ =
√
1 − r2/R2

�dt. (S8.61)

The coordinate clocks of the line-element (S8.60) are adjusted to go at the same
rate as a standard clock at the origin independent of their position. Hence the standard
clocks go at a slower rate the farther they are from the origin. This means that they are
in a gravitational field pointing outwards from the origin. The time does not proceed
at r = R�.

Hence, the line-element has a singularity at r = R�. In order to find its physical
significance,we consider lightmoving radially.Along theworld line of light, ds2 = 0,
and hence, for light emitted in the negative r-direction, i.e. towards an observer at
the origin, we have

dr

dt
= −

(
1 − r2

R2
�

)
c. (S8.62)

Since the coordinate clocks go at the same rate as a standard clock at the origin,
Eq. (S8.61) represents the velocity of light as measured by an observer at the origin.
As measured by this observer light emitted towards him from r = R� does not
proceed at all. This means the observer cannot receive information from the region
outside the spherical surface with radius r = R�. Hence this surface is a horizon for
observers inside it.

In our universe observations indicate that the cosmological constant has a value
which corresponds approximately to a density of LIVE equal to the critical density
of the universe (see Chap. 12), � ≈ 10−52 m−2, giving R� ≈ 1026 m. This is
approximately equal to ten billion light years.

8.5 The perihelion precession of Mercury and the cosmological constant

https://doi.org/10.1007/978-3-030-43862-3_12
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(a) Weshallnow find the orbit equation of a body moving in the gravitational field
of the central mass distribution. It follows from Eq. (S8.45) that the Lagrange
function of the body is

L = −1

2

(
1 − Rs

r
− �

3
r2
)

ṫ2 +
1
2 ṙ2

1 − Rs
r − �

3 r2
+ 1

2
r2θ̇2 + 1

2
r2 sin2 θφ̇2 (S8.63)

with constants of motion

pt = ∂L

∂ ṫ
= −

(
1 − RS

r
− �

3
r2
)

ṫ, pφ = r2 sin2 θφ̇. (S8.64)

In the same way as in the case � = 0 the motion is planar, so we can put
θ = π/2, θ̇ = 0. Then the 4-velocity identity takes the form

− p2
t

1 − RS
r − �

3 r2
+ ṙ2

1 − RS
r − �

3 r2
+ p2

φ

r2
= −1, (S8.65)

giving

ṙ2 = p2
t −

(
1 − RS

r
− �

3
r2
)(

1 + p2
φ

r2

)

. (S8.66)

The orbit equation is found in the same way as with � = 0, and it turns out that
Eq. (8.117) is generalized to

d2u

dφ2
+ u = RS

2p2
φ

+ 3

2
RSu2 − �

3p2
φu3

. (S8.67)

(c) As with � = 0 the solution of this equation represents a slowly rotating ellipse.
We shall calculate the perihelion precession of the ellipse. A circular motion
has a constant radius with u = u0, where u0 fulfils

u0 = RS

2p2
φ

+ 3

2
RSu2

0 − �

3p2
φu3

0

, (S8.68)

giving

p2
φ = 1

3u4
0

(3/2)RSu3
0 − �

1 − (3/2)RSu0
≈ r40

3RS/r30 − �

1 − 3RS/2r0
. (S8.69)

https://doi.org/10.1007/978-3-030-43862-3_8
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Thepath of a planet is a perturbationof the circle,u = u0+u1,where |u1| << |u0|.
Inserting this into Eq. (S8.66) and calculating to 1. Order in u1 gives

d2u1

dφ2
+ u1 = 2ku0u1, k = 3

2
RS + �r50

2p2
φ

. (S8.70)

This is an equation of harmonic oscillations with general solution

u1 = εu0 cos[ f (φ − φ0)], f = √
1 − 2ku0 ≈ 1 − ku0. (S8.71)

The period of the oscillations is 2π/ f . Equation (S8.71) describes a rotating
ellipse. The precession angle per round trip is

�φ = 2π

(
1

f
− 1

)
≈ 2πku0 = π

(
3RS

r0
+ �r40

p2
φ

)

. (S8.72)

(c) Inserting the approximate value of p2
φ from Eq. (S8.69) gives

�φ ≈ π
3R2

S + (
r0 − RS

2

)
�r30

r0
(
RS − �

3 r30
) . (S8.73)

Since RS 	 r0 the last term in the parenthesis in the numerator can be neglected.
With the unit we use here the cosmological constant has dimension m−2. Hence
we can introduce a length characterizing the value of the cosmological constant,
R� = 1/

√
�. Inserting this into Eq. (S8.73) we get

�φ ≈ 3π

r0

3R2
S R2

� + r40
3RS R2

� − r30
. (S8.74)

The cosmological constant has a value which corresponds approximately to a
density ofLIVEequal to the critical density of the universe (seeChap. 12),� ≈ 10−52

m−2, giving R� ≈ 1026 m. The Schwarzschild radius of the Sun is RS ≈ 3× 103 m,
and Mercury’s distance from the Sun r0 = 5.8 × 1010 m. This gives r30 	 RS R2

�.
Hence the expression for the perihelion precession of Mercury can be approximated
by

�φ ≈ 3π
RS

r0
+ π

r30
RS R2

�

. (S8.75)

https://doi.org/10.1007/978-3-030-43862-3_12
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Here the first term is the general relativistic precession given in equation (8.145),
and the last term is the contribution from the cosmological constant. Inserting numer-
ical values gives�φ ≈ 5.1 × 10−7 + 2 × 10−23. Hence, the contribution from the
cosmological constant is negligible.

8.6 Relativistic time effects and GPS

According to the general physical interpretation of a time-like spacetime interval the
proper time interval measured on a standard clock moving in spacetime with a metric
gμν is

dτ =
(

−gμνdxμdxν

c2

)1/2

. (S8.76)

In order to find the magnitude of the relativistic effects it is sufficient to consider
a satellite moving along a circular path with radius rs in the equatorial plane. For a
clock moving with velocity vφ = r dφ

dt in the Schwarzschild metric this gives

dτ =
(

1 − RS

rs
−

(
vφ

c

)2
)1/2

dt, (S8.77)

where t is the coordinate time as shown by coordinate clocks adjusted to go with a
position independent rate of time. Here RS = 0.01 m is the Schwarzschild radius of
the Earth. The radius of the Earth is approximately rE = 6.4× 106 m. Hence at the
surface of the Earth RS/rE = 1.6 × 10−9.

A typical height and velocity of the GPS satellite are rs = 2 × 104 km and
vφ = 4 × 103 m/s. Hence the magnitudes of the terms inside the parenthesis are

RS

rE
= 5 × 10−10,

(
vφ

c

)2

= 1.7 × 10−10.

These are the relative magnitudes of the relativistic effects. Hence we can with
good accuracy make a Taylor expansion to first order in RS/r and

(
vφ/c

)2
. To this

order the difference between the proper time interval as measured on the satellite
clocks and coordinate time interval corresponding to a coordinate interval �t is

�τ = �τG + �τV = 1

2

RSh

rE (rE + h)
�t − 1

2

(
vφ

c

)2

�t, (S8.78)

where �τG is the gravitational effect and �τV the kinematical effect. Here h is the
height of the satellite above the surface of the Earth. Inserting numerical values gives
for a coordinate time interval corresponding to a day, �t = 24h = 8.6 × 104s that
�τG = 5.2 × 10−5s and �τV = −7.0 × 10−6s. The minus sign means that the
kinematical effect makes the satellite clocks go slower due to the velocity-dependent

https://doi.org/10.1007/978-3-030-43862-3_8
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time dilation. The gravitational effect acts in the opposite way, making the satellite
clocks go faster that the clocks on the Earth. It should be noted that the gravitational
effect is larger than the kinematical effect. The gravitational effect makes the satellite
clock go faster that the Earth clock by 52microseconds in 24 h, while the kinematical
effect slows down the satellite clock with 7 microseconds.

To compute the position of an object bymeans of the GPS-systemwith a precision
of 1m the GPS satellite clocks must measure time with a precision of one part in
1013. Our calculation shows that to obtain such a precision both the special relativistic
kinematical time dilation and the general relativistic gravitational time effect must
be taken into account.

8.7 The photon sphere

We consider a photon travelling at constant radius. Due to the spherical symmetry
there is no loss of generality if we choose to consider a photon which travels in the
equatorial plane. We the put dr = dθ = 0 and have θ = π/2 in the Schwarzschild
line-element. Furthermore since photons follow null-geodesic curves we have ds =
0. Hence the equation of motion of the considered photon is

(
1 − RS

r

)
c2dt2 = r2dφ2, (S8.79)

Giving

(
dφ

dt

)2

= c2

r2

(
1 − RS

r

)
. (S8.80)

We now use the radial geodesic equation

d2r

dτ 2
+ �r

μνuμuν = 0. (S8.81)

The only non-vanishing Christoffel symbols with an upper index r are

�r
tt = c2

2

(
1 − RS

r

)
RS

r2
, �r

rr = − RS

2
(
1 − RS

r

)
r2

, �r
θθ = �r

φφ = −r

(
1 − RS

r

)
.

(S8.82)

Furthermore dr
dτ = dθ

dτ = d2r
dτ 2 = 0. Hence the geodesic equation reduces to

�r
φφ

(
dφ

dτ

)2

= −�r
tt

(
dt

dτ

)2

, (S8.83)

or



Solutions to the Exercises 475

(
dφ

dt

)2

= − �r
tt

�r
φφ

. (S8.84)

Inserting the expressions (S8.82) for the Christoffel symbols leads to

(
dφ

dt

)2

= c2RS

2r3
. (S8.85)

Equations (S8.80) and (S8.85) give

c2

r2

(
1 − RS

r

)
= c2RS

2r3
. (S8.86)

Solving this equation with respect to r gives the radius of the photon sphere in the
Schwarzschild spacetime

r = 3

2
RS. (S8.87)

Solutions for Chapter 10

10.1 A spaceship falling into a black hole

(a) We shall consider a spaceship falling radially into a Schwarzschild black hole
with the mass of the Sun, M� = 2, 0 × 1030 kg. The Schwarzschild radius of
the black hole is

RS = 2G M�
c2

= 2 · 6.67 × 10−11 m3/kgs2 · 2.0 × 1030 kg
(
3.0 × 108 m/s

)2 = 3.0 km. (S10.1)

The line-element has the form

ds2 = −
(
1 − RS

r

)
c2dt2 + dr2

1 − RS
r

+ r2d�2. (S10.2)

Hence, the Lagrange function of the spaceship is

L = −1

2

(
1 − RS

r

)
c2 ṫ2 + 1

2

ṙ2

1 − RS
r

. (S10.3)
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Since t is a cyclic coordinate,

pt =
(
1 − RS

r

)
c2 ṫ (S10.4)

is a constant of motion. The 4 velocity identity takes the form

−
(
1 − RS

r

)
c2 ṫ2 + ṙ2

1 − RS
r

= −c2. (S10.5)

Substituting for ṫ from the previous equation we get

ṙ2 = p2
t

c2
−

(
1 − RS

r

)
c2. (S10.6)

We consider a spaceship which falls from r = r0 at τ = 0, i.e. with ṙ(r0) = 0.
This gives

p2
t =

(
1 − RS

r0

)
c4. (S10.7)

Hence,

dr

dτ
= −c

√
RS

√
1

r
− 1

r0
. (S10.8)

Integration gives

τ(r) = r0
c

(√(
1 − r

r0

)
r

RS
+

√
r0
RS

arctan

√
r0
r

− 1

)

. (S10.9)

The proper time taken to fall from the Earth to the Sun is

τ(RS) = r0
c

(√

1 − RS

r0
+

√
r0
RS

arctan

√
r0
RS

− 1

)

. (S10.10)

Since RS 	 r0 a good approximation is

τ(RS) ≈ π

2

r0
c

√
r0
RS

, (S10.11)

where we have used that lim
x→∞ arctan x = π/2 Here r0 is the distance from the Earth

to the Sun, i.e. r0 = 1.5 × 108 km. Inserting numerical values gives τ(RS) ≈ 64
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days. This is the same as the Newtonian result (1.11) for the case considered here,
where we neglect the gravitational field of the Earth.

(b) Let A be an observer on the spaceship and B a stationary observer at a distance
rB from the Sun. BothA andB emit signalswith angular frequencyω. A receives
the signals from B with an angular frequency ωA, and B receives the signals
from A with angular frequency ωB .

We shall find ωA and ωB by utilizing an inertial observer C instantaneously at rest
in the coordinate system at rA. This observer is at rest relatively to B. The observer
C receives signals from A with an angular frequency ωC A and from B with ωC B .

Let us first consider the signals from A to B via C. Since A moves away from C
the signal from A to C will be redshifted due to the kinematical Doppler effect, but
there is no gravitational frequency shift since A and C is at the same position during
their exchange of signals. Hence

ωC A =
√
1 − |v|/c

1 + |v|/c
ω. (S10.12)

The velocity as measured by standard clocks in a local inertial frame is given in
Eq. (S10.8).

We then consider the signal from C to B. Then there is no kinematical Doppler
effect since B and C are at rest relatively to each other. But there is a gravitational
frequency shift,

ωB =
√

(gtt )C

(gtt )B
ωC A =

√
1 − RS/rA

1 − RS/rB
ωC A. (S10.13)

Inserting the expression (S10.8) for the velocity into Eq. (S10.12) and combining
with Eq. (S10.13) gives

ωB =
√
1 − RS/rA

1 − RS/rB

√√
√√√√

1 − √
RS

√
1

rA
− 1

r0

1 + √
RS

√
1

rA
− 1

r0

ω. (S10.14)

We then consider the signals from B to the spaceship A in a similar manner. The
signal is first sent from B to C. Then there is no kinematical Doppler effect, only
a gravitational blue shift, since these signals move downwards in the gravitational
field of the sun,

ωC B =
√

(gtt)B

(gtt)A
ω =

√
1 − RS/rB

1 − RS/rA
ω. (S10.15)

https://doi.org/10.1007/978-3-030-43862-3_1
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Then the signals are emitted further from C to A. Since A moves away from C
there is now a redshift,

ωA =

√√
√√√√

1 − √
RS

√
1

rA
− 1

r0

1 + √
RS

√
1

rA
− 1

r0

ωC B . (S10.16)

Combining the last two expressions we get

ωA =

√√
√√√√

1 − √
RS

√
1

rA
− 1

r0

1 + √
RS

√
1

rA
− 1

r0

√
1 − RS/rB

1 − RS/rA
ω. (S10.17)

In the limit that the spaceship falls from an infinitely far away position we get

lim
r0→∞ ωA =

√
1 − RS

rB

1 +
√

RS
rA

ω. (S10.18)

In this case there is a redshift, which means that the kinematical redshift then
dominates over the gravitational blue shift.

10.2 Kinematics in the Kerr spacetime

(a) We shall consider light moving in negative and positive direction of φ in the
Kerr spacetime in the equatorial plane θ = π/2, as described inBoyer–Lindquist
coordinates. Using that ds2 = 0 along the world line of light, we then get for
the angular velocity of light, ωL = dφ/dt , from the line element (10.26),

ω2
L − 2ωωL + ω2 − e2ν−2ψ = 0. (S10.19)

where

ω = RSa

r3 + a2(r − 2RS)
, eν−ψ = r

√
r(r − RS) + a2

r3 + a2(r − 2RS)
. (S10.20)

The solution of Eq. (S10.19) is

ω±
L = ω ± eν−ψ = RSa ± r

√
r(r − RS) + a2

r3 + a2(r − 2RS)
. (S10.21)

https://doi.org/10.1007/978-3-030-43862-3_10
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The velocity of light in the equatorial plane of the Kerr spacetime is cK φ = rωL

which approaches 1, or c, when r → ∞. In the special case without rotation, a =
0, which represents the Schwarzschild spacetime, the coordinate velocity of light
reduces to

cSφ =
√

1 − RS

r
. (S10.22)

which is isotropic. But in the Kerr spacetime the velocity is different in the positive
and the negative φ−direction. The time difference for light sent around the equator
in the positive and negative φ−direction is

�t = 2π

(
1

ω−
L

− 1

ω+
L

)
= 4π RSa

r − RS

r3 + (r − 2RS)a2

r3 + (r + RS)a2
. (S10.23)

This time difference vanishes for the non-rotating case, a = 0, and in general
when r → ∞.

(b) We are still describing particles and observers in the equatorial plane of the
Kerr space. In the following a ZAMO in the Kerr spacetime will be describing
particles with fixed r- and θ -coordinates. We introduce an orthonormal basis
(�et̂ ′, �er̂ ′, �eθ̂ ′, �eφ̂′), where �et̂ ′ is the 4-velocity of the ZAMO. It follows from the
form of the line element

ds2 = −e2νdt2 + e2μdr2 + e2λdθ2 + e2ψ(dφ − ωdt)2, (S10.24)

that the dual basis 1-forms are

ω−
t̂ ′ = eνω−

t , ω−
r̂ ′ = eμω−

r ,

ω−
θ̂ ′ = eλω−

θ , ω−
φ̂′ = eψ(ω−

φ − ωω−
t ).

. (S10.25)

Using the fundamental contraction

ωμ(�eν) = δμ
ν (S10.26)

It follows that the basis-vectors of an orthonormal basis associatedwith theZAMO
are

�et̂ ′ = e−ν(�et + ω�eφ), �er̂ ′ = e−μ�er ,

�eθ̂ ′ = e−λ�eθ , �eφ̂′ = e−ψ �eφ, (S10.27)

We shall now find the physical velocity as measured by a ZAMO of a particle
with 4-velocity components
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Uμ = (
ṫ, φ̇

) = ṫ(1,�),� = dφ

dt
(S10.28)

in the Boyer–Lindquist coordinate system. Here the dot denotes differentiation with
respect to the proper time of the particle. We shall find the components of its velocity
with reference to the orthonormal basis above, carried by the ZAMO. Using the
tensor transformation of the vector components we get

U t̂ ′ = eνU t = eν ṫ, U φ̂′ = eψ
(
Uφ − ωU t

) = eψ ṫ(� − ω). (S10.29)

The physical velocity of the particle measured by the ZAMO is

vφ̂′ = U φ̂′

U t̂ ′ = eψ−ν(� − ω). (S10.30)

A particle at rest in the coordinate system has � = 0 and hence the velocity

v
φ̂′
0 = −eψ−νω = − RSa

r
√

r(r − RS) + a2
. (S10.31)

We shall later need the factor

γ̂ ′ = 1
√

1 −
(
v

φ̂′
0

)2
=

√√√√1 + (
1 − RS

r

)−1 a2

r2

1 + (
1 + RS

r

)
a2

r2

. (S10.32)

In the non-rotating case, with a = 0, the particle is at rest relative to the ZAMO;
i.e. observers at rest in the coordinate system are ZAMOs in the Schwarzschild
spacetime. But in the Kerr spacetime observers at rest in the coordinate system are
not ZAMOs. At r = RS the velocity of a particle at rest in the coordinate system is

v
φ̂

0 = −1, i. the particle moves with the velocity of light relative to the ZAMO.

(c) We shall introduce an orthonormal basis co-moving with observers at rest in the
Boyer–Lindquist coordinate system. The vectors of this orthonormal basis are

�et̂ = (−gtt)
−1/2�et , �eî = (γi i )

−1/2[�ei − (git/gtt)�et ], (S10.33)

where

γi i = gii − g2
i t/gtt . (S10.34)

are the components of the spatial metric tensor. Using that
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gtt = e2ψω2 − e2ν = −e2ν
(
1 −

(
v

φ̂′
0

)2) = −e2ν/γ̂ ′ 2,

grr = e2μ, gφφ = e2ψ, gθθ = e2λ, gtφ = −e2ψω (S10.35)

we get

γrr = grr = e2μ γθθ = gθθ = e2λ,

γφφ = gφφ − g2
φt

gtt
= e2ψ + ω2e2ψ

e2ν γ̂ −2
= e2ψ

(
1 + γ̂ 2

(
v

φ̂′
0

)2) = γ̂ 2e2ψ. (S10.36)

Inserting the expressions (S10.35) and (S10.36) into Eq. (S10.33) gives

�et̂ = γ̂ e−ν �et , �er̂ = e−μ�er ,

�eθ̂ = e−λ�er , �eφ̂ = γ̂ −1e−ψ �eφ + γ̂ e−νv
φ̂′
0 �et . (S10.37)

The vector �et̂ is the 4-velocity of an observer at rest in the BL-coordinate system,
i.e. of a static observer. Using the fundamental contraction (S10.26) we get the
corresponding basis 1-forms,

ωt̂ = γ̂ −1eνωt − γ̂ eψv
φ̂′
0 ωφ, ωr̂ = eμωr , ωθ̂ = eλωθ , ωφ̂ = γ̂ eψωφ. (S10.38)

(d) The transformation matric leading from the coordinate basis vectors in the
Boyer–Lindquist system to the ZAMO can be read off from equation (S10.37),

(
Mμ

μ̂

)
=

⎛

⎜
⎜⎜
⎝

γ̂ e−ν 0 0 γ̂ e−νv
φ̂′
0

0 e−μ 0 0
0 0 e−λ 0
0 0 0 γ̂ eψ

⎞

⎟
⎟⎟
⎠

. (S10.39)

The inverse transformation matrix is

(
M μ̂

μ

)
=

⎛

⎜⎜⎜
⎝

γ̂ −1eν 0 0 −γ̂ eψv
φ̂′
0

0 eμ 0 0
0 0 e−λ 0
0 0 0 γ̂ eψ

⎞

⎟⎟⎟
⎠

. (S10.40)

The components in the orthonormal basis (S10.37) of the Boyer–Linquist system
of the 4-velocity of aa particle with the 4-velocity (S10.28) are found by applying
the transformation (S10.40), U μ̂ = M μ̂

μUμ, which gives,
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U t̂ = γ̂ −1eνU t − γ̂ eψv
φ̂′
0 Uφ = γ̂ −1eν ṫ − γ̂ eψv

φ̂′
0 �ṫ, U φ̂ = γ̂ eψUφ = γ̂ eψ�ṫ .

(S10.41)

The physical velocity of the particle as observed by an observer at rest in the
Boyer–Lindquist coordinate system is

vφ̂ = U φ̂

U t̂
= eψ−ν�

γ̂ −2 + e2ψ−2νω�
. (S10.42)

Using Eqs. (S10.30) and (S10.31) this can be written as

vφ̂ = vφ̂′ − v
φ̂′
0

1 − vφ̂′
v

φ̂′
0

, (S10.43)

which is the relativistic formula for velocity addition.

10.3 A gravitomagnetic clock effect

Following [10.1] and [10.2] we consider two clocks moving freely in opposite direc-
tions in the equatorial plane of the Kerr spacetime outside a rotating body. The clocks
move along a path with r = constant and θ = π/2.

(a) In this case the radial geodesic equation

d2r

dτ 2
+ �r

αβ

dxα

dτ

dxβ

dτ
= 0 (S10.44)

reduces to

�r
ttdt2 + 2�r

φtdφdt + �r
φφdφ

2 = 0.. (S10.45)

Inserting the expression (5.65) for the Christoffel symbols we obtain

gtt,r

(
dt

dφ

)2

+ 2gφt,r
dt

dφ
+ gφφ,r = 0. (S10.46)

From the line element (10.28) we see that in the equatorial plane of the Kerr
spacetime the non-vanishing components of the metric are

gtt = −
(
1 − RS

r

)
, gφt = RSa

r
, gφφ = r2 + a2 + RSa2

r
. (S10.47)

Performing the differentiations and inserting the result into equation (S10.46)
gives

https://doi.org/10.1007/978-3-030-43862-3_5
https://doi.org/10.1007/978-3-030-43862-3_10
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(
dt

dφ

)2

− 2a
dt

dφ
+ a2 − 2r3

RS
= 0. (S10.48)

The solution of this equation is

dt

dφ
= a ± 1

ωK
, (S10.49)

where ωK is the Keplerian angular frequency,

ω2
K = 2RS

r3
= G M

r3
, (S10.50)

and equation (S10.50) is an expression of Kepler’s 3. law.

(b) To find the gravitomagnetic clock effect one integrates equation (S10.49) over
2π for co-rotating and counter-rotating clocks. This gives

t± = TK ± 2πa, (S10.51)

where

TK = 2π

ωK
(S10.52)

is the Keplerian period. The time difference in the travel time around the central
rotating body is

�t = 4πa = 4π J/M, (S10.53)

where J is the angular momentum of the central body. Inserting the velocity of light
we have,

�t = 4π J/Mc2. (S10.54)

The mass of the Earth is m = 6 × 1026 kg and its angular momentum J =
1034 kg m2/s. Hence outside the Earth the travel time difference for clocks travelling
freely around the Equatior in opposite directions is 2 × 10−7s.
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Solutions for Chapter 11

11.1 The Schwarzschild-de Sitter metric

In the static spherically symmetric case the line element can be written as in
Eq. (8.1). Then there are only 2 independent field equations, which can be taken
to be the t̂ t̂−and r̂ r̂−equations. The components of the Einstein curvature tensor
are given in equation (8.15). Then the t̂ t̂−and r̂ r̂−field equations (7.43) with a
cosmological constant for empty space take the form

2

r
e−2ββ ′ + 1

r2
(1 − e−2β) = �, (S11.1)

2

r
e−2βα′ − 1

r2
(1 − e−2β) = −�. (S11.2)

Adding the equations we get with a suitable coordinate condition β = −α.
Equation (S11.1) can be written as

d

dr

[
r
(
1 − e−2β)] = �. (S11.3)

The general solution of this equation is

e−2β = 1 − K

r
− �

3
r2. (S11.4)

Demanding that the solution reduces to the exterior Schwarzschild solution with
vanishing cosmological constant, we get K = RS . Introducing the length RH =√
3/� the line element can then be written as

ds2 = −
(
1 − RS

r
+ r2

R2
H

)
c2dt2 + dr2

1 − RS
r + r2

R2
H

+ r2d�2, (S11.5)

which describes the Schwarzschild-De Sitter spacetime.

11.2 A spherical domain wall in empty space described by the Israel formalism

Theenergy–momentum tensor of a domain wall is

Si j = −σ (3)gi j . (S11.6)

Hence, the only non-vanishing mixed components of the energy–momentum
tensor are

Sθ
θ = Sφ

φ = −σ. (S11.7)

https://doi.org/10.1007/978-3-030-43862-3_8
https://doi.org/10.1007/978-3-030-43862-3_8
https://doi.org/10.1007/978-3-030-43862-3_7
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In empty space the equation of continuity of the domain wall reduces to (11.58)
which then gives

dσ

dτ
= 0 σ = constant (S11.8)

Hence, the mass density of the domain wall remains constant during radial motion
even if the area of the domain wall changes.

Inserting Eq. (S11.6) into Eq. (11.55) gives

[Kθθ ] = κ

(
−σ (3)gθθ + 3

2
σ (3)gθθ

)
= κ

2
σ R2. (S11.9)

This equation has the same form as Eq. (11.74) for dust, but there σ R2 =constant,
while here σ =constant. The equation of motion (11.89) for dust is still valid, but
with MS replaced by 4πσ R2,

M =
(√

1 + Ṙ2 − 2πσ R
)
4πσ R2. (S11.10)

A static spherical domain wall has

M = (1 − 2πσ R)4πσ R2, (S11.11)

which may be written

RS = RSS(1 − RSS/4R). (S11.12)

Here RS is theSchwarzschild radius of the domainwall asmeasuredby anobserver
far from it, RSSis Schwarzschild radius as measured by an observer at the wall, and
R is its radius.

Solutions for Chapter 12

12.1 Gravitational collapse

(a) We shall here study particles falling freely from rest at a position infinitely far
from a black hole with Schwarzschild radiusRS. In Exercise 10.1 we considered
a spaceship falling from a position r0 outside a black hole and into the hole.
Hence we shall here consider the limit r0 → ∞.

We found the following expression for the radial component of the 4-velocity

ṙ2 = p2
t

c2
−

(
1 − RS

r

)
c2. (S12.1)

https://doi.org/10.1007/978-3-030-43862-3_11
https://doi.org/10.1007/978-3-030-43862-3_11
https://doi.org/10.1007/978-3-030-43862-3_11
https://doi.org/10.1007/978-3-030-43862-3_11
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The boundary condition ṙ(∞) = 0 gives pt = c2. Hence

ṙ = −c

√
RS

r
. (S12.2)

New integration with r(0) = ρ gives

τ = 2

3c
√

RS

(
ρ3/2 − r3/2

)
. (S12.3)

Inserting this expression into Eq. (S12.2) gives

dt = −c
√

RS

√
r

r − RS
dr. (S12.4)

Integration with the boundary condition t(0) = τ gives

ct = cτ + RS ln

√
r/RS + 1

∣∣√r/RS − 1
∣∣ − 2

√
RSr . (S12.5)

Solving the expression (S12.3) with respect to r gives

r =
(

ρ3/2 − 3c
√

RS

2
τ

)2/3

= ρ

(
1 − 3c

√
RS

2
τρ−3/2

)
. (S12.6)

Inserting this into Eq. (S12.5) gives the relationship between the proper time of a
freely falling particle and the coordinate time, which is the same as the proper time
of an observer at rest far away from the black hole. Note that ρ has a constant value
for a freely falling particle.

(b) We shall now assume that there is Schwarzschild spacetime outside the black
hole, and find the form of the spacetime line-element, using τ as time coordinate
and ρ as radial coordinate. The radial coordinate ρ is commovingwith the freely
falling particles. Solving Eq. (S12.6) with respect to ρ gives

ρ3/2 = r3/2 + 3

2
c
√

RSτ. (S12.7)

We see that ρ increases with τ . As seen from the freely falling particles points
with fixed Schwarzschild coordinates move outwards.

Taking the differential of t, using Eqs. (S12.5) and (S12.4) we get

dt = ∂t

∂τ
dτ + ∂t

∂r
dr = dτ − c

√
RS

√
r

r − RS
dr. (S12.8)
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Inserting this into the Schwarzschild line-element (8.35) gives

ds2 = −
(
1 − RS

r

)
c2dτ 2 + 2

√
RS

r
cdτdr + dr2 + r2d�2. (S12.9)

Taking the differential of Eq. (S12.6) gives

dr = ∂r

∂ρ
dρ + ∂r

∂τ
dτ =

√
ρ

r
dρ −

√
RS

r
dτ. (S12.10)

Inserting this into Eq. (S12.8) and using Eq. (S12.6) gives

ds2 = −c2dτ 2 +
[
1 − 3

2

√
RScτρ− 3

2

]− 2
3

dρ2 +
[
1 − 3

2

√
RScτρ− 3

2

] 4
3

ρ2d�2.

(S12.11)

This metric is regular at the Schwarzschild radiusr = RS which has an increasing
co-moving radial coordinate,

ρS = RS

(
1 + 3c

2RS
τ

)2/3

, (S12.12)

which increases with time. But the metric is singular at

ρ =
(
3
√

RS

2
cτ

)2/3

, (S12.13)

which corresponds to the centre of the black hole, r = 0.

(c) We shall now consider a collapsing star which has a position-dependent energy
density ρ(τ), assuming that the pressure is zero. Assume further that the inte-
rior spacetime can be described by a Friedmann metric with Euclidean spatial
geometry (k = 0). We shall find the metric inside the star.

We assume that the star is homogeneous so that the density of the star is constant
in space, but increases with time since the star collapses. The total mass of the star
is assumed to be constant. The surface of the star has a radius given by equation
(S12.6). Let the radius of the star at an arbitrary point of time be R and at τ = 0 be
R0. Hence the density of the star is

ρ(τ) = M

(4/3)π R3
= 6M

4π R3
0

(
2 − 3

√
RScτ R−3/2

0

)2 . (S12.14)

https://doi.org/10.1007/978-3-030-43862-3_8
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Inserting this into theFriedmann equation (12.46) for aflat universewith vanishing
cosmological constant gives,

ȧ2

a2
= A2

(
1 − 3

2 Acτ
)2 , A2 = RS

R3
0

. (S12.15)

Since the star collapses we take the negative root, getting

da

a
= − Acdτ

1 − 3
2 Acτ

. (S12.16)

Integration with the initial condition a(0) = 1 gives

a(τ ) =
(
1 − 3

2
Acτ

)2/3

. (S12.17)

Hence the metric in the collapsing star is

ds2 = −c2dτ 2 +
(

1 − 3

2

√
RS

R3/2
0

cτ

)4/3
(
dρ2 + ρ2d�2

)
. (S12.18)

12.2 The volume of a closed Lemaître-Friedmann-Robertson-Walker (LFRW)
universe

The volume of the region contained inside a radius r = a R0χ in a closed LFRW
universe is

V = 4πa3R3
0

χ∫

0

sin2 χdχ = 2πa3R3
0

(
χ − 1

2
sin 2χ

)
. (S12.19)

12.3 Conformal time

The conformal time η of the Isotropic and homogeneous universe models is defined
by

dt = a(η)dη. (S12.20)

Inserting this into the line-element (12.1) gives

ds2 = a(η)2
(−c2dη2 + R2

0dχ
2 + r(χ)2d�2

)
. (S12.21)

Light moving radially have ds2 = d�2 = 0, and hence a coordinate velocity

https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_12
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dχ

dη
= c

R0
. (S12.22)

The physical velocity of the light is

R0dχ

dη
= c. (S12.23)

12.4 Lookback time and the age of the universe

(a) Accordingto Eq. (12.111) the Hubble parameter at the emission point of time is
given as a function of the redshift of the source by

H(z) = H0
[
�rad0(1 + z)4 + �m0(1 + z)3 + �k(1 + z)2 + �L0

]1/2
. (S12.24)

Using Eq. (12.113) the lookback time of a source with redshift z is

tLB(z) = t0 − tE(z) =
∞∫

0

dz

(1 + z)H(z)
−

∞∫

z

dz

(1 + z)H(z)
=

z∫

0

dz

(1 + z)H(z)
,

(S12.25)

giving

tLB(z) = tH

z∫

0

dz

(1 + z)
√

�rad0(1 + z)4 + �m0(1 + z)3 + �k(1 + z)2 + �L0

(S12.26)

where tH = 1/H0 is the Hubble age of the universe, and �L0is the present value of
the density parameter of LIVE.

The age of the universe is

t0 = tLB(∞) = tH

∞∫

0

dz

(1 + z)
√

�rad0(1 + z)4 + �m0(1 + z)3 + �k(1 + z)2 + �L0

.

(S12.27)

(b) An empty universe (the Milne universe) has �rad0 = �m0 = �L0 = 0, �k = 1
giving

https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_12
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tLB(z) = tH

z∫

0

dz

(1 + z)2
=tH

z

1 + z
. (S12.28)

Hence the age of theMilne universe is equal to its Hubble age, t0 = tLB(∞) = tH.

(c) The Einstein–de Sitter universe is a flat, mass-dominated universe with �rad0 =
�L0 = �k = 0,�m0 = 1. Then the integral (S12.26) reduces to

tLB(z) = tH

z∫

0

dz

(1 + z)5/2
= 2

3
tH

[
1 − 1

(1 + z)3/2

]
. (S12.29)

The age of this universe is

t0 = tLB(∞) = 2

3
tH. (S12.30)

(d) A matter-dominated universe with curved 3-space has

tLB(z) = tH

z∫

0

dz

(1 + z)2
√

�m0z + 1
. (S12.31)

For positive spatial curvature, �m0 > 1, this gives

tLB(z) = tH
�m0 − 1

⎡

⎢⎢⎢
⎣

�m0√
�m0 − 1

arcsin

√
�m0 − 1

(√
1 + �m0z − 1

)

�m0
√
1 + z

+
√
1 + �m0z

1 + z
− 1

⎤

⎥⎥⎥
⎦

, (S12.32)

The age of the universe is

t0 = tLB(∞) = tH
�m0 − 1

(
�m0√

�m0 − 1
arccos

√
1

�m0
− 1

)

. (S12.33)

For negative curvature, �m0 < 1, the integral (S12.30) gives

tLB(z) = tH
1 − �m0

⎡

⎢
⎢⎢
⎣

1 −
√
1 + �m0z

1 + z
− �m0√

1 − �m0
arcsinh

√
1 − �m0

(√
1 + �m0z − 1

)

�m0
√
1 + z

⎤

⎥
⎥⎥
⎦

. (S12.34)
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The present age of this universe is

t0 = tLB(∞) = tH
1 − �m0

(

1 − �m0√
1 − �m0

arccosh

√
1

�m0

)

. (S12.35)

(e) We shall now determine the age of a matter-dominated universe from the para-
metric solution (S12.140)–(S12.144). We shall first consider the universe model
with negatively curved 3-space. The present value of the conformal time is fund
from the requirement a(η0) = 1 which gives

cη0
R0

= arccosh

(
2 − �m0

�m0

)
. (S12.36)

Inserting this into Eq. (S12.141) gives

t0 = t(η0) = tH

1 − �m0

[
1 − 1

2

�m0√
1 − �m0

arccosh

(
2 − �m0

�m0

)]
. (S12.37)

This seems to be in conflict with equation (S12.35). However applying the identity

arccoshx = 1

2
arccosh

(
2x2 − 1

)
(S12.38)

with x = 1/
√

�m0, shows that the expressions are identical.
Using Eqs. (S12.143) and (S12.144) we find the age of a universe with a positively

curved 3-space

t0 = t(η0) = tH

�m0 − 1

[
1

2

�m0√
�m0 − 1

arccos

(
2 − �m0

�m0

)
− 1

]
. (S12.39)

(f) For a flat universe with cold matter and LIVE�rad0 = �k = 0, and the integral
(S12.26) reduces to

tLB(z) = tH

z∫

0

dz

(1 + z)
√

�m0(1 + z)3 + �L0

, (S12.40)

which gives

tLB = 2tH
3
√

�L0
arctanh

√
�L0

(√
�L0 + �m0(1 + z)3 − 1

)

√
�L0 + �m0(1 + z)3 − �L0

. (S12.41)
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The age of this universe is equal to the look back time of an object with infinitely
great redshift,

t0 = tLB(∞) = 2

3
tH
arctanh

√
�L0√

�L0
(S12.42)

in agreement with Eqs. (12.164) and (12.168). Since lim
x→0

arctan x
x = 1 we get

tLB = 2

3
tH (S12.43)

for a flat matter-dominated universe with �L0 = 0, in agreement with Eq. (S12.30).

(g) In the case of a flat LIVE-dominated universe with �m0 = 0,�L0 = 1 the
integral (S12.140) gives

tLB = tH ln(1 + z). (S12.44)

12.5 The LFRW universe models with a perfect fluid

Inthis problem we will investigate FRWmodels with a perfect fluid. We will assume
that the perfect fluid obeys the equation of state

p = wρc2, (S12.45)

where −1 ≤ w ≤ 1.

(a) The Friedmann equations (12.46) and (12.57) with vanishing cosmological
constant are

3
ȧ2 + kc2/R2

0

a2
= κρ (S12.46)

and

ä = −κ

6
a(ρ + 3

p

c2
). (S12.47)

Inserting equation (S12.45) the last equation takes the form

ä = −κ

6
a(1 + 3w)ρ. (S12.48)

The integral (12.106) of the energy–momentum conservation equation with the
normalization a(t0) = 1 takes the form

https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_12
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ρ = ρ0a−3(1+w). (S12.49)

(b) For w > −1/3 Eq. (S12.48) gives ä < 0, i.e. decelerated expansion. Hence
at a point of time the expansion will stop, ȧ = 0 and the universe will start to
collapse. It follows from equation (S12.46) that this is only possible for k > 0,
i.e. for a closed universe.

(c) We now assume that the spatial curvature is Euclidean, k = 0. Inserting (S12.49)
into (S12.46) then gives

a1+3wȧ2 = κ

3
ρ0. (S12.50)

Integration for w �= −1 with the conditions a(0) = 0, a(t0) = 1 gives

a(t) =
(

t

t0

) 2
3(1+w)

. (S12.51)

The Hubble parameter is

H = ȧ

a
= 2

3(1 + w)

1

t
, (S12.52)

and the deceleration parameter is

q = −aä

ȧ2
= 1

2
(1 + 3w). (S12.53)

It follows from Eqs. (S12.49) and (S12.51) that the time evolution of the mass
density is

ρ(t) = ρ0

(
t0
t

)2

. (S12.54)

(d) For the present universe model the time evolution of the radius of the particle
horizon is given in Eq. (12.194),

lPH = 3(1 + w)

1 + 3w
t. (S12.55)

This shall be expressed in terms of the redshift and the Hubble age of the universe.
Using Eq. (S12.51) the relation between the redshift and the cosmic time is

https://doi.org/10.1007/978-3-030-43862-3_12
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1 + z = 1

a
=

(
t0
t

) 2
3(1+w)

. (S12.56)

Hence

t = t0(1 + z)−
3
2 (1+w). (S12.57)

Inserting this into Eq. (S12.55) gives

lPH = 3(1 + w)

1 + 3w
t0(1 + z)−

3
2 (1+w). (S12.58)

The relationship between the age of the universe and its Hubble age is given in
equation (12.193),

t0 = 2

3(1 + w)
tH . (S12.59)

Inserting this into equation (S12.54) gives

lPH = 2

1 + 3w
tH(1 + z)−

3
2 (1+w). (S12.60)

(e) For a dust-dominated universe, w = 0, the above results give ρa3 = constant,
which means that the mass of dust in a co-moving volume is constant. The
time evolution of the scale factor, the Hubble parameter and the deceleration
parameter is a(t) = (t/t0)

2/3, H = 2
3
1
t and q = 1/2, the first two in agreement

withEqs. (12.142) and (12.145). For this universemodel the radius of the particle
horizon evolve as lPH = 3t = 2tH(1 + z)−(3/2).

For a radiation-dominated universe model, w = 1/3, we get ρ = ρ0a−4. Hence
the energy of radiation in a co-moving volume decreases with time. This is due to
the work performed by the radiation upon the region outside a co-moving volume.
The time evolution of the scale factor, the Hubble parameter and the deceleration
parameter is a(t) = (t/t0)

1/2, H = 1
2
1
t and q = 1. The time evolution of the radius

of the particle horizon is lPH = 2t = 2tH(1 + z)−(3/2) = tH (1 + z)−2.
For a LIVE-dominated universe, w = −1, we get ρ = ρ0; i.e. the density of

the vacuum energy is constant in the expanding universe. Hence the vacuum energy
in a co-moving volume increases. This is due to the negative work performed at
the boundary of the co-moving volume due to the negative pressure of the vacuum
energy. Hence vacuum energy is extracted from an infinitely remote region into the
regions at a finite distance from the origin.

Integration of equation (S12.46) for w = −1 gives a(t) = eH0t . The Hubble
parameter is constant, H = H0, and the deceleration parameter is q = −1. This
universe model has no particle horizon.

https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_12
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(f) We shall find a general formula for the deceleration parameter of a LFRW
universe model,

q = − ä

aH 2
. (S12.61)

From ȧ = aH we have ä = ȧH + aḢ . Hence

q = −1 − Ḣ

H 2
. (S12.62)

Differentiating Eq. (12.129) we get

− Ḣ

H 2
0

= 3

2

�m0

a3
+ 2�rad0

a4
+ �k0

a2
. (S12.63)

Using that a(t0) = 1 and that �k0 = 1 − �m0 − �rad0 − �L0, we find that the
present value of the deceleration parameter is

q0 = �m0

2
+ �rad0 − �L0. (S12.64)

12.6 Age—density relation for a radiation-dominated universe

Theage of a radiation-dominated universe is given by equation (S12.27) with�m0 =
�L0 = 0, and �rad0 + �k = 0, i.e.

t0 = tH

∞∫

0

dz

(1 + z)2
√

�rad0(1 + z)2 + 1 − �rad0

. (S12.65)

This gives

t0 = tH
1 + √

�rad0
. (S12.66)

12.7 Redshift–luminosity relation for matter-dominated universe: Mattig’s fomula

Itfollows from 1 + z = 1
a that dz = − ȧ

a2 dt = − H
a dt . The equation of motion

for light moving radially towards the origin is R0adχ = −dt . Hence we obtain a
relation between the difference in redshift of to objects and the difference of their
radial coordinate,

R0dχ = dz

H(z)
. (S12.67)

https://doi.org/10.1007/978-3-030-43862-3_12
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Inserting the expression (12.111) of the Hubble parameter gives the redshift-
distance relation

R0H0dχ = [
�rad0

(
1 + z4

) + �m0(1 + z)3 + �k0(1 + z)2 + �L0
]−1/2

dz.
(S12.68)

This formula is valid in curved as well as flat universe models. In a matter-
dominated universe it gives

R0χ = 1

H0

z∫

0

dz

(1 + z)
√
1 + �m0z

. (S12.69)

The so-called distance function is

D(χ) = R0Sk(χ). (S12.70)

Performing the integral (S12.69) and inserting the result into equation (S12.70)
gives the distance function of a matter-dominated universe is

D(z) = 2

H0

�m0z − (2 − �m0)
(√

1 + �m0z − 1
)

�2
m0(1 + z)

. (S12.71)

This is called Mattig’s formula.
The luminosity distance to an object with redshift z is

dL(z) = (1 + z)D(z) = 2

H0

�m0z − (2 − �m0)
(√

1 + �m0z − 1
)

�2
m0

. (S12.72)

This is the redshift–luminosity relation for matter-dominated universe. For the
Einstein–de Sitter universe, with �m0 = 1, this relation reduces to

dL = 2c

H0
(1 + z − √

1 + z). (S12.73)

12.8 Newtonian approximation with vacuum energy

(a) The time-time component of Einstein’s field equations is

Gtt + �gtt = 8πGρ. (S12.74)

In orthonormal basis gt̂ t̂ = −1. Hence the field equations without a cosmologi-
cal constant corresponds to those with a cosmological constant if the cosmological
constant is intepreted to represent the constant density ρL of LIVE according to

https://doi.org/10.1007/978-3-030-43862-3_12
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� = −8πGρL. (S12.75)

When equations (9.15) and (9.16) of the linear field approximation are generalized
to include a cosmological constant we obtain

∇2φ + � = 4πGρ, (S12.76)

which may be written

∇2φ = 4πG(ρ + 2ρL). (S12.77)

(b) In the spherically symmetric case this equation takes the form

1

r2
d

dr

(
r2

dφ

dr

)
= 4πG(ρ + 2ρL). (S12.78)

Assume there is a particle with mass m at the origin. In the space outside the
particle Eq. (S12.78) then reduces to

1

r2
d

dr

(
r2

dφ

dr

)
= 8πGρL . (S12.79)

The solution of this equation is

φ = −Gm

r
− 4

3
πGρLr2. (S12.80)

The acceleration of gravity is

g = −Gm

r2
er + 8

3
πGρLrer . (S12.81)

Hence, the acceleration of gravity vanishes at a radius

r0 =
(

3m

8πρL

)1/3

. (S12.82)

The mass of LIVE inside this surface is

mL = 4π

3
ρLr30 . (S12.83)

It follows that the mass of the LIVE inside the surface with vanishing acceleration
of gravity is only half as large as the mass at the centre, mL(r0) = m/2.

https://doi.org/10.1007/978-3-030-43862-3_9
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As an illustration we calculate the transition radius for the Solar system in the
present Universe. Then the density of the LIVE is ρL = �Lρcr, where the mass
parameter of LIVE is �L = 0.7 and the critical density is ρcr ≈ 10−26 kg/m3. The
mass of the Sun is m = 2 × 1030 kg. Inserting these quantities into Eq. (13) gives
a transition radius of approximately 300 l.y. Since the distances in the solar system
are much smaller than this, the cosmological constant is of negligible significance
for solar system gravitational effects.

12.9 Universe models with constant deceleration parameter

The deceleration parameter is

q = −aä

ȧ2
. (S12.84)

Integration with constant q and the boundary conditions a(0) = 0, a(t0) = 1
gives

a =
(

t

t0

)1/(1+q)

. (S12.85)

In a flat universe filled by a perfect fluid with equation of state p = wρenergy–
momentum conservation implied Eq. (12.106),

ρ = ρ0a−3(1+w). (S12.86)

For a flat universe with vanishing cosmological constant equation (12.47) then
takes the form’

3
ȧ2

a2
= κρ = κρ0a−3(1+w). (S12.87)

Integration with a(0) = 0 gives

a(t) =
(

t

t0

) 2
3(1+w)

. (S12.88)

Comparison with Eq. (S12.85) shows that the solution with constant deceleration
parameter is identical to the time evolution of a plat universe filled by a perfect fluid
with equation of state

p = 1

3
(2q − 1)ρc2. (S12.89)

12.10 Density parameters as functions of the redshift

https://doi.org/10.1007/978-3-030-43862-3_12
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The density parameter in a universe with radiation matter in the form of dust, and
LIVE is

� = ρ

ρcr
= κ

3

ρ

H 2
= �rad + �m + �L. (S12.90)

It follows from Eq. (12.106) that

ρrad = ρrad0(1 + z)4, ρm = ρm0(1 + z)3, ρL = ρL0. (S12.91)

Combining this with Eqs. (12.111) and (S12.90) can be written

�(z) = �rad0(1 + z)4 + �m0(1 + z)3 + �L0

�rad0(1 + z)4 + �m0(1 + z)3 + �k(1 + z)2 + �L0
. (S12.92)

where

�rad0 + �m0 + �k + �L0 = 1. (S12.93)

The density parameters of radiation, matter and LIVE as functions of the redshift
are

�(z) = �rad0(1 + z)4

�rad0(1 + z)4 + �m0(1 + z)3 + �k(1 + z)2 + �L0
, (S12.94)

�(z) = �m0(1 + z)3

�rad0(1 + z)4 + �m0(1 + z)3 + �k(1 + z)2 + �L0
, (S12.95)

�(z) = �L0

�rad0(1 + z)4 + �m0(1 + z)3 + �k(1 + z)2 + �L0
. (S12.96)

12.11 LFRW universe with radiation and matter

We shall deduce the solutions of Einstein’s field equations for LFRW-universes with
dust and radiation, following [1]. We introduce conformal time in the same way as
in Eq. (12.126). Then Friedmann’s 1. equation takes the form

(
da

dη

)2

= κ

3
(ρm0a + ρr0) − ka2. (S12.97)

This equation can be written as

(
da

dη

)2

= 2αa + β2 − ka2, (S12.98)

where

https://doi.org/10.1007/978-3-030-43862-3_12
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α = κ

6
ρm0 = 1

2
�m0H 2

0 , β =
√

κ

3
ρrad0 = H0

√
�rad0. (S12.99)

The solutions of Eq. (S12.98) with the initial condition a(0) = 0 are
For k = 1:

a = α(1 − cos η) + β sin η, t = α(η − sin η) + β(1 − cos η). (S12.100)

For k = 0:

a = α

2
η2 + βη, t = α

6
η3 + β

2
η2. (S12.101)

For k = −1:

a = α(cosh η − 1) + β sinh η, t = α(sinh η − η) + β(cosh η − 1). (S12.102)

12.12 Event horizons in de Sitter universe models

Theeventhorizon represents the barrier between the future events that can be
observed, and those that cannot. It is a spherical surface around an observer. The
event horizon sets up a limit in the future observable universe, since in the future the
observer will be able to obtain information only from events which happen inside
their event horizon. According to its definition the coordinate radius, rEH, of the event
horizon is given by

rE H∫

0

dr
√
1 − k(r/R0)

2
=

∞∫

t

cdt

a(t)
. (S12.103)

The proper distance to the horizon is

lEH = a(t)

rEH∫

0

dr
√
1 − k(r/R0)

2
=a(t)

∞∫

t

cdt

a(t)
. (S12.104)

The scale factors of the de Sitter universe models are given in Eq. (12.160). We
have 3 cases

k = 1: In this case the scale factor is

a(t) = R0

c

√
3

�
cosh

(√
�

3
t

)

. (S12.105)

Inserting this into Eq. (S12.103) gives

https://doi.org/10.1007/978-3-030-43862-3_12
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rE H∫

0

dr
√
1 − (r/R0)

2
= c2

R0

√
3

�

∞∫

t

dt

cosh
(√

�/3t
) , (S12.106)

which leads to

arcsin

(
rEH
R0

)
= 6c2

�R2
0

arctan
(

e−√
�/3t

)
. (S12.107)

Hence the coordinate radius of the event horizon is

rEH = R0 sin

[
6c2

�R2
0

arctan
(

e−√
�/3t

)]
. (S12.108)

k = 0: The flat de Sitter universe has scale factor

a(t) = e(�/3)t . (S12.109)

In this case Eq. (S12.104) takes the form

rE H∫

0

dr =
∞∫

t

cdt

e
√

�/3t
, (S12.110)

giving

rEH = c
√

�/3e−√
�/3t . (S12.111)

k = −1: For this model the scale factor is

a(t) = R0

c

√
3

�
sinh

(√
�

3
t

)

. (S12.112)

Equation (S12.104) then takes the form

rE H∫

0

dr
√
1 + (r/R0)

2
= c2

R0

√
3

�

∞∫

t

dt

sinh
(√

�/3t
) , (S12.113)

which leads to

arcsinh

(
rEH
R0

)
= − 3c2

�R2
0

ln

[

tanh

(
1

2

√
�

3
t

)]

. (S12.114)

Hence
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rEH = R0 sinh

{

− 3c2

�R2
0

ln

[

tanh

(
1

2

√
�

3
t

)]}

. (S12.115)

12.13 Flat universe model with radiation and LIVE

(a) We shall find the scale factor as function of cosmic time following the procedure
in [1]. It follows from Eq. (12.106) that in a universe containing non-interacting
radiation and LIVE the density of LIVE is constant, and the density of the
radiation decreases as the fourth power of the expansion factor. Also in a flat
universe the sum of the densities of radiation and LIVE is equal to the critical
density. Hence the total density can be written

ρ = ρL0 + ρrad0a
−4 = 1 − ρrad0 + ρrad0a4 (S12.116)

with the usual normalization of the scale factor, a(t0) = 1. Then the first
Friedmann equation takes the form

a2ȧ2 = κ

3

(
(ρcr0 − ρrad0)a

4 + ρrad0
)
. (S12.117)

which can be written as

a2ȧ2 = (ω/2)2
(
a4 + A4

)
, (S12.118)

where

ω = 2

√
κ

3
(ρcr0 − ρrad0) = 2H0

√
1 − �rad0,

A =
(

ρrad0

ρcr0 − ρrad0

)1/4

=
(

�rad0

1 − �rad0

)1/4

. (S12.119)

Introducing the function y = (a/A)2 Eq. (S12.118) takes the form

ẏ2 = ω2
(
y2 + 1

)
. (S12.120)

The solution with the initial condition y(0) = 0 is

y = sinh(ωt). (S12.121)

Hence the scale factor is

a(t) = A
√
sinh(ωt). (S12.122)

https://doi.org/10.1007/978-3-030-43862-3_12
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(b) The Hubble parameter and the critical density are

H = ω

2
coth(ωt) (S12.123)

and

ρcr = (3/κ)H 2 = ρL0 coth
2(ωt). (S12.124)

Hence the density parameter of LIVE and radiation is

�L = tanh2(ωt), �rad0 = 1

cosh(ωt)
. (S12.125)

A graph essentially of the Hubble parameter as a function of time is shown in
Fig. 12.22.

The graph shows that the Hubble parameter approaches the constant value ω/2
forωt > 2. Also the scale factor then approaches an exponential function. Hence this
model approaches the flat de Sitter universe for large times. This is a consequence of
the fact that the density of LIVE is constant while the density of radiation decreases
during the expansion, so that the model ends up by being LIVE dominated.

(c) The age of the universe is determined from the condition a(t0) = 1. Equation
(S12.122) then gives

t0 = (1/ω)arcsinh
(
1/A2

) = tH
2
√
1 − �rad0

arcsinh

√
1 − �rad0

�rad0
. (S12.126)

An alternative expression follows from Eq. (S12.125),

t0 = tH
2

arctanh
√
1 − �rad0√

1 − �rad0
. (S12.127)

The acceleration of the scale factor is

ä = Aω2

2
sinh1/2(ωt)

[
1 − 1

2
coth2(ωt)

]
. (S12.128)

There is a transition from decelerated expansion due to the attractive gravity of
the radiation to accelerated expansion due to the repulsive gravity of LIVE at a point
of time t1 given by ä(t1) = 0. This leads to

coth(ωt1) = √
2. (S12.129)
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Fig. 12.22 The graph of cothx

Combining this with Eq. (S12.127) gives

t1 = t0
artanh

(
1/

√
2
)

artanh
√
1 − �rad0

. (S12.130)

The present density parameter of the cosmic background radiation is �rad0 ≈
10−4. Inserting this in the above equation gives t1 ≈ 0.17t0 = 2.3 billion years.
Hence neglecting dust, a flat universe with LIVE and radiation equal to the CMB of
our universe, will experience a transition from decelerated expansion to accelerated
expansion 2.3 billion years after the Big bang.

It follows from Eqs. (S12.121) and (S12.129) that the observed redshift of an
object emitting the observed radiation at the point of time t1 is



Solutions to the Exercises 505

z1 = 1

a(t1)
− 1 = 1

A
√
sinh(ωt1)

− 1 = 1√
2A

− 1 = 1√
2

√
1 − �rad0

�rad0
− 1.

(S12.131)

Inserting �rad0 ≈ 10−4 gives z1 = 6.1.

12.14 The De Sitter Universe

(a) The formula for the cosmic redshift of light emitted at a point of time te and
received at a point of time t0 is: z1 = 1

a(te)
− 1. The scale factor of the “flat” de

Sitter universe is a(t) = eHt . This gives z1 = eH(t0−te) − 1. Light moves along
a null geodetic curve, ds2 = 0.

For light moving radially this gives dr = −ce−Htdt . Integration leads to

r = c

H

(
e−Hte − e−Ht0

) = c

H
e−Ht0

(
eH(te−t0) − 1

)
, (S12.132)

Giving

z1 = (H/c)eHt0re. (S12.133)

(b) The 4-acceleration of an arbitrary particle is

�a = d�u
dτ

=
(
duμ

dτ
+ �

μ
αβuαuβ

)
�eμ. (S12.134)

With the present line-element the 4-velocity of a reference particle is uμ = dxμ

dτ =
(c, 0, 0, 0) all the time. Hence duμ

dτ = 0. Thus the expression for the 4-acceleration
reduces to �a = �

μ
t t c

2�eμ. These Christoffel symbols are

�
μ
t t = 1

2
gμν

(
∂gνt

∂t
+ ∂gtν

∂t
− ∂gtt

∂xν

)
. (S12.135)

Since the metric is diagonal the first two terms vanish, and since gtt = −c2 the
last term vanish. Hence the four-acceleration of a reference particle in this reference
frame is �a = 0. This means that the reference particles are freely falling. Hence an
observer with constant radial coordinate r does not experience any acceleration of
gravity.

(c) For a static metric the frequency change of light measured locally at the position
of the emitter, e, and the receiver, r, comes from the position dependence of the
rate of time in a gravitational field. Let �τe be the period of light emitted at R
as measured locally by a standard clock at rest, and �te the as measured by a
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coordinate clock. The corresponding quantities as measured at the receives are
�τr and �tr . Then

�τe = √−(gtt)e�te,�τr = √−(gtt)r�tr . (S12.136)

A static metric means that the coordinate clocks tick with a position independent
rate, �te = �tr . Hence the proper periods of the light at the emitter and the receiver
are related by

�τr =
√

(gtt)r

(gtt)e
�τe. (S12.137)

Locally the wavelength and the period are related by λ = c�τ . Hence the
gravitational redshift (for light moving upwards, blueshift downwards) is

z = λr

λe
− 1 =

√
(gtt)r

(gtt)e
− 1. (S12.138)

With the given static form of the de Sitter metric we get

z2 = 1
√
1 − H 2R2

e

− 1. (S12.139)

The reason that the redshifts in (a) and (c) are different, is that the experiments are
not identical, since the emitter in (a) moves relative to the receiver, but the emitter in
(c) is at rest relative to the receiver.

(d) From point (b) we have that the 4-acceleration of a reference particle perma-
nently at rest in the coordinate system is

�a = �
μ

T T c2�eμ = −1

2
gμν ∂gT T

∂xν
�eμ = −1

2
gR R ∂gT T

∂ R
�eR = − 1

2gR R

∂gT T

∂ R
�eR .

(S12.140)

Inserting gT T = −(
c2 − H 2R2

)
, gR R = (

1 − H 2R2/c2
)−1

gives

�a = −(
1 − H 2R2/c2

)
H 2R�eR . (S12.141)

The particle accelerates in the negative R-direction. Hence the observers at rest in
this reference frame experiences an acceleration of gravity in the positiveR-direction.
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(e) It follows from the given coordinate transformation that a particle with r = r0
will have a motion with

R = r0eH T
√
1 − H 2R2/c2 or R = r0eH T

√
1 + H 2r20

c2 e2H T

. (S12.142)

Relatively to the (T, R)-system the reference particles of the (t, r)-system have
an accelerated outwards motion.

(f) In the (t, r)-system the redshift is explained as an expansion effect, but in the
(T, R)-system the redshift is explained as a gravitational effect. The light which
moves inwards towards the observer at the origin,moves upwards in the outwards
directed gravitational field that is experienced in this reference frame, because
the reference particles are not falling freely.

12.15 The Milne Universe

(a) This line element describes an expanding, isotropic and homogeneous universe
model, a FLRW-universe. It has negative spatial curvature, and thus infinitely
large spatial extension, and the scale factor is a(t) = t/t0.

(b) The Hubble parameter is H(t) = 1/t with a present value H(t0) = 1/t0. Hence
the age of this universe is equal to the inverse of the present value of its Hubble
parameter.

(c) The deceleration parameter is q ≡ −aä/ȧ2 = 0. Hence this universe model
expands with a constant velocity.

(d) Given the coordinate transformation T = t

√

1 +
(

r
ct0

)2
, R = r t

t0
. It follows that

c2T 2 − R2 = c2t2 +
(

r t

t0

)2

−
(

r t

t0

)2

= c2t2. (S12.143)

Hence

t =
√

T 2 − R2/c2. (S12.144)

Furthermore it follows from the given coordinate transformation that

R

cT
= r

√
c2t20 + r2

. (S12.145)

Solving this equation with respect to r gives
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r = ct0R√
c2T 2 − R2

. (S12.146)

Equations (d2) and (d4) are the inverse transformation.

(e) The world lines of the reference frame E in which the coordinates t, r are co-
moving are given by r = r0=constant. It follows from Eq. (ds) that these world
lines are given by the curves described by cT = K1R, K1 = √

1 + (ct0/r0) in
a Minkowski diagram referring to the T, R-system. These curves are straight
lines.

According to Eq. (d1) the simultaneity curves of the t, r -system, t = a = constant,
are hyperbolae.

The world lines and simultaneity curves of the t, r -system relative to the T, R-
system are shown in the Minkowski diagram below.

12.16 Natural Inflation

(a) We here consider a natural inflation model with potential

V (φ) = V0

(
1 + cos φ̃

)
, (S12.147)

where φ̃ = φ/M , and M is the spontaneous symmetry breaking scale. Writing
the Einstein gravitational constant as κ = 1/M2

P , where MP is the Planck mass, and
inserting the potential (S12.147) into Eq. (12.304) we find the slow-roll parameters

ε = b

2

1 − cos φ̃

1 + cos φ̃
, η = −b

cos φ̃

1 + cos φ̃
, b =

(
MP

M

)2

. (S12.148)

Here φ is the initial value of the field giving rise to N e-folds. The parameter b
represents the symmetry breaking scale and b < 1 for M > MP .

The spectral parameters are

δns = b
3 − cos φ̃

1 + cos φ̃
, nT = −b

1 − cos φ̃

1 + cos φ̃
, r = 8b

1 − cos φ̃

1 + cos φ̃
. (S12.149)

(b) It follows from these equations that

r = 4(δns − b), nT = −r

8
, (S12.150)

The symmetry breaking parameter b can be determined from observations from
the first of the relationships (S12.150),

b = δns − r

4
. (S12.151)

https://doi.org/10.1007/978-3-030-43862-3_12
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Theobserved value δns = 0.032 and r ≥ 0 givesb < 0.02 andhence M ≥ 5.6MP .
This shows that the symmetry breaking energy is higher than the Planck energywhich
is a weakness of the original natural inflation model.

(c) Inserting the potential (S12.147) into equation (12.322) and performing the
integration gives the number of e-folds

N = 1

b
ln

1 − cos
(
φ̃ f

)

1 − cos
(
φ̃
) (S12.152)

It is usual to specify that the inflationary era ends when ε = 1. Inserting φ = φ f

in the first of the Eq. (S12.148) with ε = 1 we get

cos
(
φ̃ f

)
= −2 − b

2 + b
. (S12.153)

Inserting this into Eq. (S12.152) gives

cos
(
φ̃
)

= 1 − 4

2 + b
e−bN . (S12.154)

It follows from Eqs. (6.5.22) and (6.5.29) that

δns = b
(2 + b)ebN + 2

(2 + b)ebN − 2
, nT = − 2b

(2 + b)ebN − 2
, r = 16b

(2 + b)ebN − 2
.

(S12.155)

Inserting δns = 0.032 and N = 50 into equation the first of the expressions
(S12.155) we get b = 0.02 and bN = 1, and the last of the equations gives r ≈ 0.09
which is a little larger than the observational requirement r < 0.04.

https://doi.org/10.1007/978-3-030-43862-3_12
https://doi.org/10.1007/978-3-030-43862-3_6
https://doi.org/10.1007/978-3-030-43862-3_6
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Mattig’s formula, 385, 496
Maximally linearly independent, 59
Maximally symmetric, 155
Maxwell, 33
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Momentum-energy tensor, 198
Moon, 12, 21, 413
Multilinear function, 70
Multi messenger astronomy., 269

N
Natural Inflation, 389, 508
Newton, 1, 18
Newton fluid, 198
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Phantom energy, 348, 350
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