

Java EE 8 Design Patterns and
Best Practices

Build enterprise-ready scalable applications with architectural
design patterns

Rhuan Rocha
João Purificação

BIRMINGHAM - MUMBAI

Java EE 8 Design Patterns and Best
Practices
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Akshada Iyer
Technical Editor: Mehul Singh
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Jisha Chirayil
Production Coordinator: Shraddha Falebhai

First published: August 2018

Production reference: 1080818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-062-1

www.packtpub.com

http://www.packtpub.com

To my Aunt, Vanessa Rocha, for teaching me to have a calm look and observe the facts more
clearly. To my mother, Ivonete Rocha, for her sacrifices and power.

- Rhuan Rocha

To my two daughters, Carolina and Beatriz, who give me the energy to walk even further; to my
father, João Lobato, for his great wisdom and intelligence; and to my mother, Dinah, for her love

and affection.

 - João Purificação

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the authors
Rhuan Rocha is from Brazil and has experience with development using the Java language
and Java EE. Currently, he works as senior Middleware consultant in a partnership
between Red Hat and FábricaDS, and he applies Red Hat solutions using Red Hat
Middlewares. Furthermore, he has 8 years, experience with Java development and Java EE
development, developing enterprise applications and government applications.

João Purificação is an electronic engineer from Brazil with a master's in systems
engineering. He started working with software development as a C and C ++ programmer.
He has worked on the analysis, development, and architecture of Java-based enterprise
applications. As a Java/JavaEE consultant, he has participated in the development and
architecture of applications for private and government companies. He currently works as a
senior architect at Resource IT, a company based in São Paulo.

About the reviewer
Kamalmeet Singh got his first taste of programming at the age of 15, and he immediately
fell in love with it. After spending over 14 years in the IT Industry, Kamal has matured into
an ace developer and a technical architect. He is also the coauthor of a book on Design
Patterns and Best Practices in Java. The technologies he works with range from cloud
computing, machine learning, augmented reality, serverless applications, to microservices
and so on.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Design Patterns 8
Explaining design patterns 9

Explaining the Gang of Four design patterns 9
The catalog of Gang of Four design patterns 11

Understanding the advantages of design patterns 13
Understanding the basic design patterns of the Java world 14

Explaining Singleton 14
Explaining Abstract Factory 15
Explaining Facade 17
Explaining Iterator 17
Explaining Proxy 18

Explaining enterprise patterns 19
Defining the difference between design patterns and enterprise
patterns 20
Summary 21

Chapter 2: Presentation Patterns 22
Explaining the presentation tier 22
Explaining intercepting filter pattern 24
Implementing the intercepting filter pattern using Java EE 8 25

Implementing LogAccessFilter 25
Implementing LogBrowserFilter 27
Deciding filter mapping 29

Explaining the FrontController pattern 30
Implementing FrontController 31
Implementing the commands 33

The application controller pattern 33
Implementing DownloadFrontController 34
Implementing DownloadApplicationController 36
Implementing commands 39
The difference between the application controller and front controller
patterns 42

Summary 42

Chapter 3: Business Patterns 43
Understanding the business tier 43
Explaining the Business Delegate pattern 45

Client tier, presentation tier, and business tier 45

Table of Contents

[ii]

Layers 45
Tiers 47

The classic Business Delegate pattern scenario 48
The benefits of the Business Delegate pattern 51

Business Delegate – obsolete or not 52
Explaining the Session Façade pattern 53

Benefits of Session Façade 54
Implementing the Session Façade pattern in JEE 55
The classic Session Façade pattern scenario 55

Implementing the Session Façade pattern 58
Explaining the business-object pattern 70

Applications with complex business rules 71
Motivation for using the business-object pattern 73
Benefits of business-object pattern usage 73

Implementing the business-object pattern 75
Summary 78

Chapter 4: Integration Patterns 80
Explaining the concept of the integration tier 80
Explaining the concept of the data-access object pattern 81
Implementing the data-access object pattern 82

Implementing the entity with JPA 83
Implementing DAO 85

Explaining the concept of the domain-store pattern 88
Implementing the domain-store pattern 90

Implementing the PersistenceManagerFactory class 91
Implementing the PersistenceManager class 92
Implementing the EmployeeStoreManager class 95
Implementing the StageManager interface 96
Implementing the TransactionFactory class 98
Implementing the Transaction class 99
Implementing the EmployeeBusiness class 100

Explaining the concept of the service-activator pattern 101
Java Message Service (JMS) 102
EJB asynchronous methods 104
Asynchronous events – producers and observers 104

Implementing the service-activator pattern 106
Implementing sending and receiving messages with JMS 106
Implementing the EJB asynchronous methods 107
Implementing asynchronous events – producers and observers 108

Summary 109

Chapter 5: Aspect-Oriented Programming and Design Patterns 110
Aspect-oriented programming 111

Compile-time versus run-time AOP 111
AOP in JEE scenario – the interceptor 112

Table of Contents

[iii]

A brief word about CDI and beans 113
The bean 113

Managed beans in CDI 114
Loose coupling 114
Interceptors in the JEE platform 115
EJB interceptor implementation 117

Intercepting method invocation 120
Interceptor class and multiple method interceptors 121
Intercepting life cycle callback events 122

CDI interceptor implementation 125
Decorator 128

The decorator pattern 128
The decorator in a JEE scenario 130
Decorator implementation 131

Summary 134

Chapter 6: Reactive Patterns 135
Explaining the concept of an event in CDI 137
Implementing an event in CDI 138

Implementing the FileUploadResource class 138
Bean sent on the event 139
Qualifier to select the JpgHandler observer to react to an event 139
Qualifier to select the PdfHandler observer to react to an event 140
Qualifier to select the ZipHandler observer to react to an event 140
The FIleUploadResource class 141

Implementing observers 143
Explaining the concept of an asynchronous EJB method 146

Difference between an asynchronous EJB method and an event in CDI 146
Implementing an asynchronous EJB method 147
Implementing EJBs 147

Implementing the FileUploadResource class 150
Calling an asynchronous EJB method to save a PDF 151
Calling an asynchronous EJB method to save a JPG 152
Calling an asynchronous EJB method to save a ZIP 152

Explaining the concept of an asynchronous REST service 152
Implementing an asynchronous REST service 153

Implementing the EJBs 153
Implementing the FileUploadResource class 155
Implementing the client API 159

Summary 160

Chapter 7: Microservice Patterns 162
Explaining microservices patterns 162

Inside a monolithic application 164
Difficulty in implementing new features and fixing bugs 166
Long application startup time 166
Inefficient continuous deployment 166
Low reliability 167

Table of Contents

[iv]

Difficulty using new frameworks and technologies 167
The scale cube 167
What microservices actually are 168

Microservices are not a silver bullet 168
Explaining how microservices architecture works 169

The application is decomposed into smaller components 170
Multitask teams 174
Product focus 175
Simpler and smarter processing 176
Decentralized governance of libraries and APIs 176
Single responsibility principle 176
Fault tolerance 177
Evolutionary systems 177
Decentralized data 178

Explaining when to use microservices architecture 178
How to decompose an application into microservices 179

Identifying microservices 179
Taking care of the process of extracting application modules that are
candidates for microservices 180
Establishing a hexagonal model for the application 182

Advantages and drawbacks of a microservices-based application 183
Microservices architecture patterns 184

Aggregator pattern 185
Proxy pattern 185
Chained pattern 186
Branch pattern 187
Asynchronous pattern 188

Implementing microservices 189
Summary 192

Chapter 8: Cloud-Native Application Patterns 194
Explaining the concept of cloud-native applications 194
Explaining the goals of the cloud-native application 195
Explaining the cloud design patterns 197

Composite application (microservices) 197
Abstraction 197
Twelve-factor 197

Codebase 198
Dependencies 199
Config 199
Backing services 201
Build, release, run 202
Processes 202
Port-binding 203
Concurrency 203
Disposability 203
Dev/prod parity 204

Table of Contents

[v]

Logs 204
Admin processes 204

The API Gateway 205
The service-registry pattern 206
Config server 207
The circuit-breaker pattern 208

The circuit-breaker mechanism 209
Summary 210

Chapter 9: Security Patterns 211
Explaining the concept of security patterns 211
Explaining the concept of the single-sign-on pattern 212
Implementing the single-sign-on pattern 214

Implementing the AuthenticationResource class 215
Implementing the App1 and App2 classes 221

Explaining the authentication mechanism 225
Explaining basic authentication 226
Explaining form authentication 226
Explaining digest authentication 227
Explaining client authentication 227
Explaining mutual authentication 227
When to use the deployment descriptor, annotation, or programmatic
configuration 230

Implementing the authentication mechanism 230
Implementing the web.xml file 231
Implementing the HelloWorld class 232
Implementing the HelloWordServlet class 234

Explaining the authentication interceptor 235
Implementing the authentication interceptor 235

Implementing the CDI interceptor 236
Implementing the JAX-RS resource 242

Summary 243

Chapter 10: Deployment Patterns 244
Explaining the concept of deployment patterns 244
Explaining the concept of canary deployment 247

Defining the canary servers 248
Deploying the application to canary servers 249
Testing the application and verifying whether it satisfies our criteria 249
Deploying the application to remaining servers 250

Explaining the concept of blue/green deployment 250
Defining the group of servers to receive the first deployment 250
Deploying the application to a group of servers 251
Deploying the application to the remaining server 252

Explaining the concept of A/B testing 253
Defining a group of end users 254

Table of Contents

[vi]

Defining the servers to receive a new version 254
Deploying the new version 254
Evaluating the impact of a new version 255

Explaining the concept of continuous deployment 255
Summary 256

Chapter 11: Operational Patterns 258
Explaining the concept of operational patterns 258
Explaining the concept of performance and scalability patterns 259

The cache-aside pattern 260
When to use the cache-aside pattern 261

The lifetime of cached data 261
Evicting data 262
Priming the cache 262
Consistency 262
Local (in-memory) caching 263

The CQRS pattern 263
When to use the CQRS pattern 263
The event sourcing pattern 264

Understanding the event of event sourcing 264
Promoting performance 264
Promoting decoupling 265
Promoting scalability 265
Promoting auditing 265

Explaining the index table pattern 265
The materialized view pattern 267

Rebuilding the materialized view 268
When to use the materialized view pattern 268

Explaining the sharding pattern 269
When to use the sharding pattern 269

Explaining the concept of management and monitoring patterns 270
The ambassador pattern 270

When to use the ambassador pattern 271
Explaining the health endpoint monitoring pattern 271

When to use the health endpoint monitoring pattern 272
Explaining the external configuration store pattern 273

When to use the external configuration store pattern 274
Summary 274

Chapter 12: MicroProfile 275
Explaining the Eclipse MicroProfile project approach 275

Eclipse MicroProfile Config 1.3 276
Eclipse MicroProfile Fault Tolerance 1.1 276
Eclipse MicroProfile Health Check 1.0 277
Eclipse MicroProfile JWT authentication 1.1 277
Eclipse MicroProfile Metrics 1.1 277
Eclipse MicroProfile OpenAPI 1.0 277

Table of Contents

[vii]

Eclipse MicroProfile OpenTracing 1.1 278
Eclipse MicroProfile REST Client 1.1 278
CDI 2.0 278
Common annotations 1.3 278
JAX-RS 2.1 279
JSON-B 1.0 279
JSON-P 1.1 279
Why should we use the MicroProfile project? 279
Community 280
Future work 280

Summary 280

Other Books You May Enjoy 281

Index 284

Preface
Over time, the world of enterprise has invested more and more in technologies and
applications that optimize processes and help businesses increase their profits and improve
services or products. The enterprise environment has challenges that need to be faced to
implement good solutions, such as the high availability of services, the capacity to change
when needed, the capacity to scale services, and the capacity to process a large amount of
data. With this, new applications have been created to optimize processes and increase
profits. The Java language and Java EE are great tools for creating an application for the
enterprise environment, because, Java language is multiplatform, open source, widely
tested, and has a strong community and a strong ecosystem. Furthermore, the Java
language has Java EE, which is, an umbrella of specifications that permit us developer
enterprise application without depending on vendors. The development of enterprise
application has some well-known problems that occur over and over. These problems
involve the integration of services, the high availability of applications, and resilience.

This book will explain the concepts of Java EE 8, what its tiers are, and how to develop
enterprise applications using Java EE 8 best practices. Furthermore, this book will
demonstrate how we can use design patterns and enterprise patterns with Java EE 8, and
how we can optimize our solutions using aspect-oriented programming, reactive
programming, and microservices with Java EE 8. Throughout this book, we learn about
integration patterns, reactive patterns, security patterns, deployment patterns, and
operational patterns. At the end of this book, we will have an overview of MicroProfile and
how it can help us develop applications using microservices architecture.

Who this book is for
This book is for Java developers who want to learn to develop and deliver enterprise
applications using design patterns, enterprise patterns, and Java best practices. The reader
needs to know the Java language and the basic Java EE concepts.

What this book covers
Chapter 1, Introduction to Design Patterns, introduces design patterns, looking at the reasons
to use them, how they differ from enterprise patterns, and how they behave in the real
world.

Preface

[2]

Chapter 2, Presentation Patterns, covers each pattern by explaining the concept and showing
examples of implementations. After reading this chapter, we will know about these
patterns and will be able to implement them with best practices using Java EE 8.

Chapter 3, Business Patterns, explores definitions of the business delegate pattern, the
session façade pattern, and the business object pattern. Here, we will focus on reasons to
use these design patterns, the common approach to each of them, their interaction with
some other patterns, their evolution, and how they behave in the real world. We will also
demonstrate some examples of these patterns' implementations.

Chapter 4, Integration Patterns, explains some integration patterns and looks at how they
work on the integration tier of Java EE. After reading this chapter, you will be able to
implement these patterns and use them to solve problems. You will also be able to work on
the integration tier, as well as becoming familiar with the concepts associated with
integration patterns.

Chapter 5, Aspect-Oriented Programming and Design Patterns, looks at the concept of aspect-
oriented programming (AOP), focusing on which situations AOP should be used in, as well
as how to achieve AOP with the use of CDI interceptors and decorators. Finally, we will
also address some examples of implementations. By the end of this chapter, you will be
able to identify a situation that requires aspect-oriented programming with the use of
interceptors and decorators. Furthermore, you will also be able to identify the best
approach to implementing these concepts.

Chapter 6, Reactive Patterns, focuses on reactive patterns, concepts, and implementations,
and how they can help us implement a better application. We will also cover reactive
programming concepts, focusing on how they can aid application development. After
reading this chapter, you will be able to use reactive patterns using Java EE 8 best practices.

Chapter 7, Microservice Patterns, showcases microservice patterns. We will also compare
these with the monolithic pattern, looking at what the advantages and drawbacks of a
microservices-based application, are as well as focusing on when to use microservices.
Furthermore, we will demonstrate how to switch from a traditional monolithic application
to a microservice application, while using implementation examples throughout. We will
then look at the design patterns used to compose microservices. After reading this chapter,
you will be able to identify the parts of an application's code that are eligible to be
microservices, and you will also know how to implement a microservice pattern-based
application using Java EE8.

Preface

[3]

Chapter 8, Cloud-Native Application Patterns, outlines cloud-native application pattern
concepts. What a cloud-native application is and what goals can be achieved with a cloud-
native application will be covered, and we will look at both patterns already described in
the previous chapters and new patterns that have emerged to address cloud-based
applications. After reading this chapter, the reader will be able to understand the concepts
and patterns that characterize cloud architecture.

Chapter 9, Security Patterns, discusses security pattern concepts and how these can help us
implement better security applications. We will also learn about the single sign-on pattern
and how this can help us provide a security application. In addition, we will learn about the
authentication mechanism and authentication interceptor, focusing on how to implement
these concepts. After reading this chapter, you will be able to create a security application
and implement it using Java EE 8.

Chapter 10, Deployment Patterns, features deployment patterns, why we use them, and how
they impact on the delivery of applications. We will also cover the concepts of canary
deployment, blue/green deployment, A/B deployment, and continuous deployment. After
reading this chapter, you will be familiar with the concepts of deployment patterns.

Chapter 11, Operational Patterns, dives into operational patterns, focusing on why we use
them and how they impact on application projects. We will then cover performance and
scalability patterns, as well as management and monitoring patterns. After reading this
chapter, you will have learned all about the concepts of operational patterns.

Chapter 12, MicroProfile, is an overview of the eclipse MicroProfile project, covering its
goals and the expectation of this project. Throughout this chapter, we will cover the real
benefits of using this project to develop our application and will then actually use it. After
reading this chapter, you will know about the Eclipse MicroProfile project and what the
real benefits of using this project in our application are. This chapter is only an overview
and will not teach readers how to implement applications using the MicroProfile project,
and will not be an in-depth chapter.

To get the most out of this book
Before reading this book, readers need to know about the object-oriented1.
concept, the Java language, and the basic concepts of Java EE. In this book, we
assume that the reader already knows some specifications of the Java EE
umbrella, such as EJB, JPA, and CDI, among others.
To test the code of this book, you need an application server that supports Java2.
EE 8, such as GlassFish 5.0. Furthermore, you need to use an IDE such as IntelliJ,
Eclipse, NetBeans, or any other that supports the Java language.

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Java- EE- 8- Design- Patterns- and-Best- Practices. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/JavaEE8DesignPatternsandBestPractices_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Java-EE-8-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/JavaEE8DesignPatternsandBestPractices_ColorImages.pdf

Preface

[5]

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "It is also important to bear in mind that the @Electronic qualifier identifies the
decorated object."

A block of code is set as follows:

public interface Engineering {
 List<String> getDisciplines ();
}
public class BasicEngineering implements Engineering {

 @Override
 public List<String> getDisciplines() {
 return Arrays.asList("d7", "d3");
 }
}
@Electronic
public class ElectronicEngineering extends BasicEngineering {
 ...
}
@Mechanical
public class MechanicalEngineering extends BasicEngineering {
 ...
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

@Loggable
@Interceptor
public class LoggedInterceptor implements Serializable {
 @AroundInvoke
 public Object logMethod (InvocationContext invocationContext) throws
 Exception{
 System.out.println("Entering method : "
 + invocationContext.getMethod().getName() + " "
 + invocationContext.getMethod().getDeclaringClass()
);
 return invocationContext.proceed();
 }
}

Any command-line input or output is written as follows:

creating bean.
intercepting post construct of bean.
post construct of bean

Preface

[6]

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"After the user logs in, when they access Application 1, Application 2, or Application 3,
they will not need to log in again. "

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

https://www.packtpub.com/

1
Introduction to Design Patterns

This chapter will introduce design patterns, looking at reasons to use them, how they differ
from enterprise patterns, and how they behave in the real world.

Since we assume that you are already familiar with the Java programming language and
Java EE, our goal is not to teach Java EE, but to demonstrate its most common design
patterns. We will also demonstrate examples of the implementation of design
patterns using Java EE 8. Furthermore, we will demonstrate the best way to implement
design patterns and discuss the benefits of using design patterns and enterprise patterns. If
you do not know about design patterns and enterprise patterns, then this book will be a
great tool for learning about the concepts and implementations of design patterns and
enterprise patterns. If you already know about design patterns and enterprise patterns,
then this book will be a great point of reference to address when implementing them. We'll
cover the following topics in this chapter:

Understanding design patterns
Understanding the advantages of design patterns
Defining the basic design patterns of the Java world
Explaining enterprise patterns
Explaining the difference between design patterns and enterprise patterns

Introduction to Design Patterns Chapter 1

[9]

Explaining design patterns
Design patterns are sets of solutions to common design problems that occur over and over
in development. They work as a solution template in which an abstract solution for a
common problem is described and the user then applies it, adapting it to their problem. In
object-oriented programming, the design pattern provides a way to design reusable classes
and objects for a specific problem as well as defining the relationship between objects and
classes. In addition, design patterns provide a common idiom among programming
languages that allows architects and software developers to communicate about a common
and recurring problem regardless of the programming language they are using. With this,
we are able to identify a problem and its solution by the name of the pattern and thinking
about a solution by a model point of view in a high abstraction level of language
programming details.

The design patterns theme gained strength in 1994 after the Gang of Four (formed by Rich
Gamma, Richard Helm, Ralph Johnson, and John Vlissides) wrote Design Patterns: Elements
of Reusable Object‐Oriented Software. Here, they described 23 design patterns that were later
known as GoF design patterns and are still used today.

Explaining the Gang of Four design patterns
The Gang of Four (GoF) design patterns are 23 patterns that are classified as creational
patterns, structural patterns, and behavioral patterns. The creational patterns control the
creation and initialization of the object and class selection; the structural patterns define the
relationship between classes and objects, and the behavioral patterns control the
communication and interaction between objects. As well as this, the GoF design patterns
have two types of scope which define the focus of solutions. These scopes are object
scope, which resolves problems about object relations, and class scope, which resolves
problems about class relations.

The object scope works with composition and the behavior changes are done in a runtime.
Thus, the object can have a dynamic behavior. The class scope works with inheritance and
its behavior is static-fixed at compile-time way. Then, to change the behavior of a class-
scope pattern, we need to change the class and recompile.

Patterns classified as class scope solve problems about the relationship between classes and
are static (fixed at compile time and cannot be changed once compiled). However, patterns
classified under the object scope solve problems about the relationship between objects and
can be changed at runtime.

Introduction to Design Patterns Chapter 1

[10]

The following diagram shows us the three classifications, as well as their patterns and
scope:

In the preceding diagram, we can see the Factory Method pattern on the Class section and
the Abstract Factory pattern on the Object section. This occurs because the Factory Method
works with inheritance and the abstract method pattern works with composition. Then, the
Factory Method is static-fixed at compile time and cannot be changed after compilation.
However, the Abstract Factory is dynamic and can be changed at runtime.

GoF design patterns are generally described using a graphical notation such as a use case
diagram, and an example of the implementation's code. The used notation must be able to
describe the classes and objects as well as the relationship between these classes and
objects.

The pattern's name is an important part of the design patterns. This is because it is what the
developer uses to quickly identify the problem related to the pattern and to understand
how the pattern will solve it. The name of the pattern must be brief and refer to the problem
and its solution.

A design pattern is a great tool for designing software development, but its use needs to be
analyzed to determine if the design pattern is really required in order to solve the problem.

Introduction to Design Patterns Chapter 1

[11]

The catalog of Gang of Four design patterns
Names of design patterns need be succinct, making them easy to identify. This is because
design patterns create a vocabulary for communicating between developers independent of
programming language, permitting developers to identify problems and solutions only by
name of a design pattern.

In design patterns, a catalog is a set of pattern names which are designed to permit a better
communication between developers.

The catalog of GoF's design patterns has 23 patterns, as shown in the preceding diagram.
Here is a description of these patterns:

Abstract Factory: This provides an interface to create objects without specifying
their concrete class, making it possible to decouple the business logic and
the object creation logic. With this, we can update the object creation logic in an
easy way.
Adapter: This provides an interface that makes it possible for two incompatible
interfaces to work together. The adapter pattern works as a bridge between
interfaces, adapting these interfaces to work together. Furthermore, the adapter
can adopt a class or objects.
Bridge: This pattern decouples an abstraction from its implementation, making
them vary independently. With this, we can modify the implementations without
impacting the abstractions and we can also modify the abstractions without
impacting the implementations. The class of abstraction hides implementations
and its complexity.
Builder: This pattern separates the construction of a complex object from its
representation. With this, we can construct the objects of several representations
using the same process to that. Thus, we create a standard process of
construction of objects that have a complex process to construct.
Chain of responsibility: This pattern avoids coupling the sender and receiver of
a request creating some objects that have a chance to treat the requests. These
objects create a chain of receiver objects for a sender's request. Each object of this
chain receives the request and verifies whether or not it will treat this request.
Command: This pattern encapsulates a request for an object and creates a
wrapper of requests containing their information about the request. With this, we
can do a request to some object sending parameters without knowing about this
operation. Furthermore, the command permits us to execute an undo operation.
Composite: This pattern composes objects into a tree structure, which represents
a part-whole hierarchy. It permits you to treat a group of objects as a single
object.

Introduction to Design Patterns Chapter 1

[12]

Decorator: This pattern permit extends a functionality of a class with flexibility,
without use subclass. It allows you to dynamically attach a new responsibility to
an object.
Facade: This hides the complexity of the system, applying a unified interface to a
set of interfaces on a subsystem. This makes the subsystem easy to use.
Factory Method: This defines an interface for creating an object, and the subclass
states which class to initiate.
Flyweight: This uses sharing to efficiently support a large number of fine-
grained objects. This pattern reduces the number of objects created.
Interpreter: This pattern represents language grammar and uses it to interpret
them as sentences of a language.
Iterator: This pattern provides a way to sequentially access the elements of a set
of objects without knowing its underlying representation.
Mediator: This reduces the complexity of communication by creating an object
that encapsulates all the communication and interaction between objects.
Memento: This pattern captures the object's internal states without hurting
encapsulated concepts, with this, the state of the object can be restored by the
object. This pattern works as a backup that maintains the current state of an
object.
Observer: This defines a one-to-many dependency between objects. This means
that if one object is modified, all of its dependents are automatically notified and
updated.
Prototype: This pattern permits us to create a new object using an object or
instance as a prototype. This pattern creates a copy of an object, creating a new
object with the same state of the object used as a prototype.
Proxy: This pattern creates a surrogate object (proxy object) for another object
(original object) in order to control the access to the original object.
State: This permits an object to alter its behavior when its internal state changes.
Singleton: This ensures that a class has only one instance in the entire project,
and the same instance of the object is returned every time the creation process is
performed/run.
Strategy: This creates a family of algorithms, encapsulating each one and making
them interchangeable. This pattern permits you to change the algorithm at
runtime.

Introduction to Design Patterns Chapter 1

[13]

Template method: This defines a skeleton for an algorithm in an operation, and
the subclass defines some steps to the algorithm. This pattern algorithm structure
and the subclass redefine some steps of this algorithm without modifying its
structure.
Visitor: This represents an operation to be performed on an object structure. This
pattern permits us to add new operations to an element without modifying its
class.

Understanding the advantages of design
patterns
Creating an object-oriented design is a tough task. This is because we have several
important elements to think about with regard to the scenario that we'll work in and the
problem we'll solve. This includes defining the appropriate objects that we need to create in
order to reach the solution; defining the granularity of objects and looking at what
interfaces we need to create. These tasks need to be addressed during the creation process
in design. Objects can be created to represent a real-world object or to represent a process
with its algorithms and responsibilities. Furthermore, we even need to consider the number
of objects, their size, and the interface we need to access.

Design patterns are great tools for helping us to identify classes and objects that don't
represent real-world objects and objects that are less-obvious abstractions. Moreover,
design patterns help us to apply the finest granularity to objects and they also allow us to
analyze a problem and solution as a model. Design patterns make the design flexible,
providing a decoupling between classes and objects. They also provide the ability to
organize solutions, allowing delegate responsibilities to classes with the best way.

Building software is an expensive process for companies because it requires capable
professionals and infrastructure to build and maintain the software. Design patterns, with
their flexibility and decoupled design, make maintenance easy and therefore decrease its
cost.

Introduction to Design Patterns Chapter 1

[14]

Understanding the basic design patterns of
the Java world
All GoF patterns have a good purpose and solve major problems of object-oriented design,
but some patterns are most commonly used in the Java and Java EE ecosystem. In this book,
these patterns are treated as basic design patterns because they are most commonly used to
implement solutions on Java's APIs, frameworks, and algorithms. Consequently,
understanding these patterns will help us to understand these APIs, frameworks, and
algorithms, and we'll, in turn, be able to create a better solution using Java. These patterns
are Singleton, Abstract Factory, Facade, Iterator, and Proxy.

Explaining Singleton
In a software project, in some solutions, we may want to ensure that a class has only one
instance of an object throughout the project and that this object is accessible at any point in
the project. Creating a global instance or static instance will not ensure that this class will
not be used at another point in another instance. The best way to solve this is by using the
Singleton pattern, which ensures that there is only one instance of a class in the entire
project. In the following diagram, we are showing the structure of Singleton and how it is
designed:

Here, we have one class called Singleton which has a private constructor, as well as a
reference variable of Singleton and a method for returning its unique instance. A good
example of an application is a situation in which we want to create a class responsible for
application configurations (paths to some resource, parameters to access filesystems,
behaviors of the environment). Often, the application has some configurations and we need
a class to represent these application configurations. Thus, this class of application
configuration doesn't need various instances, but only one instance.

Introduction to Design Patterns Chapter 1

[15]

Another application of Singleton is when we want to create an Abstract Factory that will be
explained in the following subsection. Generally, we will have only one Abstract Factory
throughout the application. With this, we can use a Singleton to guarantee that we will
have only one instance of Abstract Factory.

This pattern is often used in frameworks and APIs, but it is common for this pattern to be
found in the code of projects, mainly on Java EE.

The use of the Singleton pattern can be a good practice depending on the scenario, but
depending on the scenario the use of Singleton can be a bad practice. The Singleton should
not be used when the object is stateful and maintain a state, because with Singleton the
same instance of the object is shared by all processes of application and if some process
updates a state of this object all processes of application will be impacted by this update.
Furthermore, we can have a problem with the concurrent update of the state of a Singleton.

Explaining Abstract Factory
Sometimes, we need to create a family of objects in a project. Imagine that we have an e-
commerce and we have various kinds of products such as cell phones, notebooks, and
tablets. These products are objects of the same family. If we create objects throughout a
software, we will face problems if we then need to modify the initialization process of this
object.

Using Abstract Factory will help us to solve problems including a system which should be
independent of how its products are created, a system that should use one of the multiple
families of products, and a system that should work with objects which are designed to be
used together. Using this pattern will be beneficial as it isolates concrete classes. This means
that with this pattern, we can control which class of objects that can be initiated on
software. Furthermore, it permits the exchange of products easily and provides consistency
among products.

The Abstract Factory pattern creates a single point of creation for objects and if we need to
change the algorithm of object creation, we need only modify the concrete factory. In the
following diagram, you can see the structure of Abstract Factory and how it is designed:

Introduction to Design Patterns Chapter 1

[16]

In our example, the Abstract Factory's structure has three main
classes—AbstractFactory, Product, and Sale. The concrete classes of
AbstractFactory are CellPhoneFactory, NotebookFactory, and TabletFactory.
CellPhoneFactory is a concrete class responsible for creating the concrete classes
CellphoneProduct and CellphoneSale, NotebookFactory is a concrete class
responsible for creating the concrete classes NotebookProduct and NotebookSale, and
the TabletFactory is a concrete class responsible for creating the concrete classes
TabletProduct and TabletSale. A Client is a class responsible for using
AbstractFactory to create AbstractProduct and AbstractSale. The concrete factory
is created at runtime and it then creates the concrete product and sale.

The Abstract Factory pattern is sometimes used with another pattern such as Singleton,
which we described earlier. Abstract Factory is a single point of creation, and often we need
only one instance of it in an entire system. With this, using a Singleton pattern can help us
create a design better and more efficiently.

This pattern is often used in frameworks and APIs that have a difficult creation process for
an object, such as connections or sessions.

Introduction to Design Patterns Chapter 1

[17]

Explaining Facade
Projects can sometimes turn out to be very complex and big, making them difficult to
design and organize. To solve this, a great solution is to break a system into subsystems
(divide and conquer) and make them less complex and better organized.

The Facade pattern creates a higher-level interface to hide a complexity of a set of interfaces
in a subsystem. This pattern reduces the complexity and coupling, minimizing
communication and dependencies between subsystems. In the following diagram, you can
see the structure of Facade and how it is designed:

In the preceding diagram, we can see the Facade pattern encapsulating all of the calls to
subsystems and hiding these calls from the client. The system has one interface, Facade,
and the client calls this interface in order to call subsystems. Thus, clients does not call
the subsystems directly. With this solution, the client doesn't need to know about the
subsystem and its complexity.

This pattern is often used in projects and systems that have high complexity and need to be
broken down into subsystems.

Explaining Iterator
Imagine that we want a way to access elements of an aggregate object sequentially without
exposing its internal structure. The Iterator pattern does just that.

Introduction to Design Patterns Chapter 1

[18]

The Iterator pattern is responsible for sequentially accessing the aggregate object and
defining an interface to access the elements without exposing the internal structure. This
interface doesn't put a new element on the aggregate object, but simply reads elements to it.
In the following diagram, you can see the structure of an Iterator and how it is designed:

In the preceding diagram, we can see the Aggregate and Iterator interfaces with their
concrete subclasses. The client is the class that uses the Iterator to access elements of
Aggregate.

This pattern is used on Java collections such as list, deque, and set. Understanding this
pattern will help you to understand Java collections.

Explaining Proxy
Sometimes, creating a new object can be a big process and several rules can be involved in
creating this object. Imagine that we want to create a list of objects, and these objects
represent telecommunication equipment, which has a lot of calculus to generate the
information of each object. As well as this, these objects will not be accessed at the same
time but will be accessed on demand. A good strategy is to create each object when it is
accessed, thereby minimizing the cost and time it takes to create all objects and only access
some. The Proxy can help us to solve this.

Introduction to Design Patterns Chapter 1

[19]

The Proxy pattern is a pattern that surrogates an object instance (original object) to another
object instance (Proxy object) that permitting access control to the original object. In the
following diagram, you can see the structure of Proxy and how it is designed:

From the preceding diagram, we can see a structure of the Proxy pattern. If Subject is an
interface that clients use to access object operations, then RealSubject is the class of the
original object and Proxy is the class that works as a Proxy. Then, when the client accesses
the object, they will access the Proxy object, and the Proxy object will then access the
RealSubject object and return this object to the client.

This pattern is used in frameworks and APIs that implement JPA specification and object
relational mapping (ORM).

Explaining enterprise patterns
Over time, technology has evolved and new tools have emerged and helped to change
some areas. Seeing the potential of these technologies, organizations increasingly began to
use and invest in these tools to automate their processes and optimize their costs. These
tools then began to be referred to as enterprise software.

Introduction to Design Patterns Chapter 1

[20]

Enterprise software is a type of software widely used in organizations, companies, or
governments that provide a service to make their processes better and optimize the cost
and efficiency. Over time, the complexity of this software increased as they began to
provide a lot of services. As different services demanded more communication, scalability
became increasingly important. With this, some problems surfaced.

Enterprise patterns is a set of solutions for common problems that appear in enterprise
software as a result of the complexity of enterprise environments. Many enterprise patterns
are based on GoF patterns and differ only in the way in which we implement them. On Java
EE, enterprise patterns are divided into three groups: presentation patterns, business
patterns, and integration patterns. These patterns act on the presentation tier, business tier,
and integration patterns, and we'll cover their details in Chapter 2, Presentation Patterns,
which covers presentation patterns, Chapter 3, Business Patterns, which covers business
patterns, and Chapter 4, Integration Patterns, which covers integration patterns.

Enterprise patterns are very important for professionals who create software, because bad
practices in the creation of software could inflate the cost and risks involved in the projects.
Because of the complexity of the enterprise software, an error could propagate along the
time and environment, making the enterprise environment unsustainable.

Defining the difference between design
patterns and enterprise patterns
Comparing design patterns with enterprise patterns is not an easy task, because some
behaviors are similar. Design patterns were the first subject that arrived, and this was
covered in Design Patterns: Elements of Reusable Object-Oriented Software, written by Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides. These design patterns were also
the base to other patterns. Enterprise patterns became necessities that design patterns
cannot resolve. This is because the design patterns describe solutions for of classes and
objects relationships, but the enterprise environments have other necessities such as
integrations between systems and software relations. However, enterprise patterns use
some design patterns to solve problems.

The principal difference between design patterns and enterprise patterns is the aim; design
patterns aim to organize and optimize the object-oriented design, and enterprise patterns
focus on improving the use of Java EE tools as well as making communications between
Java EE components better. Design patterns are focused on object-oriented and class and
object relations, whereas enterprise patterns are focused on communication between Java
EE components.

Introduction to Design Patterns Chapter 1

[21]

The use of design patterns makes it possible to reuse algorithms and also makes the design
flexible; enterprise design patterns promote an abstraction of the complexity of Java EE
tools and make it easier for the architecture to make changes.

Because of the complexity of architecture, the minimal use of enterprise patterns tends to be
worse than the minimal use of design patterns. This is because, with the lack of use of
enterprise patterns, the professional will always work with Java EE's complexity, increasing
the probability of error.

Some implementations of Java EE patterns are already present in Java EE tools, and this
makes them easy to use. In the next chapters, we will describe some of these patterns and
their implementation using Java EE tools and see how these patterns will favor the design
and architecture of your project.

Summary
In this chapter, we introduced you to design patterns, explaining the GoF design patterns
and their catalog. We covered the basic design patterns of the Java world with a brief
introduction to Singleton, Abstract Factory, Facade, Iterator, and Proxy. As well as this, we
looked at enterprise patterns and the difference between them and design patterns.

In the next chapter, we will explain presentation patterns, including their concepts and
implementation. We will also demonstrate the concepts of presentation patterns and how
they help us to write better software. We will then show examples of the implementation of
presentation patterns, using real-world problems as an example.

2
Presentation Patterns

In this chapter, we'll cover each topic by explaining the concept and showing examples of
implementations. After reading this chapter, you will know about these concepts and will
be able to implement them using Java EE 8. Here are the topics that are covered in
upcoming sections:

Explaining the presentation tier
Explaining the intercepting filter pattern
Implementing the intercepting filter pattern using Java EE 8
Explaining the front controller pattern
Implementing the front controller pattern
Explaining the application controller pattern
Implementing the application controller pattern

Explaining the presentation tier
The Java EE platform is a distributed multitiered application model that has three widely
used common tiers. These tiers are the presentation tier (or web tier), the business tier, and
the integration tier (or EIS tier).

The presentation tier, also known as the web tier, contains the components that create a
web application. This tier has many components that use the HTTP protocol, construct
views and interfaces for users, and provide a web service. These components are called web
components. There are two types of presentation tier:

Presentation-oriented tier: This type of presentation tier contains the
components to construct an interactive web page and dynamic content using
HTML and XHTML. These components are JavaServer Faces technology, Java
Servlet technology, and JavaServer Page technology, which allow us to construct
an interactive web page.

Presentation Patterns Chapter 2

[23]

Server-oriented tier: This contains the components to construct an endpoint of a
web service. These components are JAX-RS and JAX-WS.

The presentation-oriented tier is generally used on web applications using component-
based specifications such as JavaServer Faces technology, or web applications using action-
based Java Servlet technology as well as JavaServer Pages technology. The server-oriented
tier is generally used on web applications that create a REST API or web service that is
consumed by the client running on a mobile platform or browser. In the following diagram,
we can see how the presentation tier works:

As shown in the preceding diagram, the Client sends a Request to the server; the
Presentation Tier processes the request and sends it to the Business Tier; the Business Tier
then sends a response to the Presentation Tier if the request is not asynchronous, and
finally the Presentation Tier processes and sends the response to the Client.

Because the Presentation Tier is responsible for promoting HTTP communications and
connections with external users, this tier fulfills many interactions and communications
between web components. Numerous tasks need to be performed for this to work well.
These tasks include validating the data sent by a client, formatting it, sending it to the
correct business component or class, and filtering the data and requests.

Presentation Patterns Chapter 2

[24]

Explaining intercepting filter pattern
When a client sends a request to the server, the server sometimes processes this
request/response to perform the following tasks:

Validating authentication
Generating log
Validating constraints
Verifying the browser of the client
Checking the duration between the request and response; calculating the
response time
Setting a cookie

However, we don't want to put these tasks within the logic of processing the main request.
Consequently, creating a pre-process and/or post-process to do these tasks is a good
method for decoupling the main logic from the complementary logic.

The intercepting filter pattern is the pattern that solves problems when we want to insert a
logic that is not part of the main logic but we want to keep the two logics separated and
decoupled. Merging the new logic with the main logic is a bad practice because these
become coupled. This pattern creates a filter to pre-process and post-process the request,
permitting the creation of a logic block to solve some problems that are not part of the main
problem, and thus decoupling both pieces of logic. Using this pattern, we can create a
pluggable solution without modifying the main logic. Take a look at the model of the
intercepting filter pattern in the following diagram:

Presentation Patterns Chapter 2

[25]

In the preceding diagram, we have a Client, FilterManager, FilterChain, FilterOne,
FilterTwo, FilterThree, and Target. The client sends a request to the server; the
FilterManager creates a FilterChain with its filters ordered and initiates the processing; the
FilterChain is an ordered collection of independent filters; FilterOne, FilterTwo, and
FilterThree are the filters in the FilterChain, which can include N filters; Target is the
resource that contains the main logic. The order of filter execution is important because
some filters often need to be executed first. An example of filter priority is the task of
validating authentication, which generally needs to be executed first because some tasks are
executed after client authentication only.

Implementing the intercepting filter
pattern using Java EE 8
To implement this pattern with the best practices of Java EE 8, we will use the servlet filter
from the Java Servlet specification. With the servlet filter, we can create an ordered request
interceptor to treat the requests and responses. These interceptors are mapped by the URL
pattern or servlet name. The servlet filter can be configured with XML (on web.xml) or
annotation. In our case, we will imagine that we want to create a log of all the requests that
are sent to the server. We will also have two filters—one to log the access time and another
to log the information about the browser that the client is using. To log the access time, we
will create a filter called LogAccessFilter, and to log the browser information we will
create a filter called LogBrowserFilter.

Implementing LogAccessFilter
Here, we have the implementation of LogAccessFilter:

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
import java.io.IOException;
import java.util.Date;

@WebFilter(filterName = "LogAccess", urlPatterns = "/*")
public class LogAccessFilter implements javax.servlet.Filter {

 private static Logger logger =
LogManager.getLogger(LogAccess.class);

Presentation Patterns Chapter 2

[26]

 public void destroy() {
 }

 public void doFilter(javax.servlet.ServletRequest req,
 javax.servlet.ServletResponse resp, javax.servlet.FilterChain
 chain) throws javax.servlet.ServletException, IOException {

 //Gets the initial date of request.
 Date dateInitRequest = new Date();

 //Get IP of Client that sent a resquest.
 String ip = ((HttpServletRequest)req).getRemoteAddr();

 //Following to next filter. If none next filter exist, follows
 //for main logic.
 chain.doFilter(req, resp);

 //Gets the end date of request.
 Date dateEndRequest = new Date();

 //Logging the informations of IP and access time.
 logger.info("IP: "+ip +" Access time : "
 + Long.toString(dateEndRequest.getTime()
 - dateInitRequest.getTime())
 + " ms");

 }

 public void init(javax.servlet.FilterConfig config) throws
 javax.servlet.ServletException {

 }

}

As we can see in the code, to create one servlet filter, we need to create a class that
extends javax.servlet.Filter and puts the @WebFilter annotation with filterName
and urlPatterns parameters, which define the filter name and the URLs to filter, before
the definition of class. The following is a snippet of code that demonstrates how to do that:

@WebFilter(filterName = "LogAccess", urlPatterns = "/*")
public class LogAccessFilter implements javax.servlet.Filter{
 ...
}

Presentation Patterns Chapter 2

[27]

Note that the servlet filter uses the chain of responsibility pattern to walk throughout the
filters (objects that are servlet filter). The following is a snippet of code that uses a chain of
responsibility pattern:

chain.doFilter(req, resp);

In the preceding line of code, we established the filter name as LogAccess through
the filterName parameter. This will filter all requests, because
the urlPatterns parameter has the "/*" value. If we filter according to servlet name, we
need to use the following annotation:

//Servlet1 and Servlet2 are the servlets to filter.
@WebFilter(filterName = "LogAccess", servletNames =
{"servlet1","servlet2"})

The doFilter method is responsible for pre-processing and post-processing and
establishes when to follow the request to the next filter or servlet (main logic). To follow the
request to the next filter or servlet, the following code needs be executed:

//Following to next filter or servlet.
chain.doFilter(req, resp);

When the preceding code is executed, the current filter executes only the next line when the
other filters and servlets finish their processing.

Implementing LogBrowserFilter
The implementation of LogBrowserFilter is as follows:

import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

import javax.servlet.*;
import javax.servlet.annotation.WebFilter;
import javax.servlet.http.HttpServletRequest;
import java.io.IOException;

@WebFilter(filterName = "LogBrowser",urlPatterns = "/*")
public class LogBrowserFilter implements Filter {

 private static Logger logger = LogManager.getLogger(LogBrowser.class);

 public void destroy() {
 }

Presentation Patterns Chapter 2

[28]

 public void doFilter(ServletRequest req, ServletResponse resp,
FilterChain chain) throws ServletException, IOException {

 //Get userAgent that contain browse informations.
 String userAgent = ((HttpServletRequest)req).getHeader("User-
Agent");

 //Get IP of Client that sent a resquest.
 String ip = ((HttpServletRequest)req).getRemoteAddr();

 //Logging the informations of IP and Browser.
 logger.info("IP: "+ip +" Browser info: "+userAgent);

 //Following to the next filter. If none next filter exist, follow
to main logic.
 chain.doFilter(req, resp);

 }

 public void init(FilterConfig config) throws ServletException {

 }

}

In the preceding filter, we get the client IP and browser information and log them. The
LogBrowserFilter operation is similar to that of LogAccessFilter.

To define the order of filter execution, we need to configure the web.xml and add the filter
mapping information. Here, we can see web.xml with its configuration:

<web-app version="3.1"
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd">
 <filter>
 <filter-name>LogBrowser</filter-name>
 <filter-class>com.rhuan.filter.LogBrowserFilter</filter-class>
 </filter>
 <filter>
 <filter-name>LogAccess</filter-name>
 <filter-class>com.rhuan.filter.LogAccessFilter</filter-class>
 </filter>
</web-app>

Presentation Patterns Chapter 2

[29]

The configurations defined in web.xml override the annotation configurations. Thus, if we
put the urlPattern configuration on web.xml, then the configuration considered
is web.xml's configuration. We don't put the filter mapping information on web.xml
because this is already on the annotation configuration in the code.
The web.xml configuration defines the order—LogBrowserFilter will be called first,
followed by LogAccessFilter, and then the main logic (servlet).

Deciding filter mapping
Defining the mapping method is crucial to implementing the intercepting filter pattern.
This is because a bad method for mapping can impact the project directly and cause
rework. We have two filter mapping types—UrlPattern and servlet name.

The use of UrlPatterns is indicated when we want to filter the HTTP Requests to non-
specific resources or files, but we also want to filter various unknown resources. Here are
some examples of this:

*.jsp: This filters all requests to JSP pages. If one JSP page is added to the
server, then the filter will filter the new JSP page without making any
modifications.
/*: This filters all requests to all resources or files on the server. If one resource or
file is added to the server, then the filter will filter this new resource or
file without performing any modifications.
/user/*: This filters all requests to all resources or files on the server that have a
URI beginning with /user. If one resource or file that is accessed by a URI
beginning with /user is added on servlet, then the filter will filter this new
resource or file without performing any modifications.

The servlet name used to map the filter indicates when you want to filter a specific servlet,
independent of its urlPattern. This way of mapping allows us to modify one
urlPattern of the mapped servlet without performing any modifications on the filter.
Here are some examples:

{servlet1}: This only maps the servlet named as servlet1. If the
urlPatterns of servlet1 are modified, then the filter doesn't need to be
modified.
{servlet1,servlet2}: This maps two servlets named servlet1 and
servlet2. Its behavior is similar to the previous example shown, in which only
one servlet was mapped.

Presentation Patterns Chapter 2

[30]

Explaining the FrontController pattern
In the Java EE world, we commonly work with complex projects that have similar
functionalities and processes. Sometimes, using various controllers to handle a request is a
bad practice because it needs to be configured at multiple endpoints and incurs a large cost
of creation and maintenance. Consequently, creating a central point to treat a request is a
very good solution, as it creates one point to manage all or a group of requests and then
sends this request to the correct process. We can then treat all points that are common to all
functionalities and send the request to a process to treat the questions that are not common
to all but are specific to one functionality. Some configurations, such as session
configuration, the maximum size limit of a request, cookie, and header, are common to all
requests and can be configured from a central point.

The FrontController pattern is a pattern that creates a central manager to treat all
requests or a request group of an application and then sends the requests to one specific
process, which is generally a command. This pattern is rarely used on common projects
because today we have some ready-made solutions, and implementing this pattern is
generally unnecessary. This pattern is used by frameworks such as JSF, Spring MVC, and
struts. The following diagram depicts this pattern:

In the preceding diagram, we have FrontController, AbstractCommand, Command1, and
Command2. FrontController receives all requests, treats some common points of the
request, and sends this request to the matching command. AbstractCommand is the
abstract class of command. Command1 and Command2 are the subclasses of command,
which implement its correspondent logic.

In our case, we will have two pages—a homepage and a login page. If the user is logged in
at the moment that a request is sent, then the application will launch the login page, and
then the homepage.

Presentation Patterns Chapter 2

[31]

Implementing FrontController
Here, we have an implementation of MyAppController, which is a FrontController to
treat all the requests of an application:

import com.rhuan.action.Command.AbstractCommand;
import com.rhuan.action.Command.HomeCommand;
import com.rhuan.action.Command.LoginCommand;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@WebServlet(name = "MyAppController", urlPatterns = "/myapp/*")
public class MyAppController extends HttpServlet {

 private static Logger logger =
 LogManager.getLogger(MyAppController.class);

 private final String PAGE_ERROR = "/pageError.jsp";

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 processRequest(request,response);
 }

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 processRequest(request,response);
 }

 protected void processRequest(HttpServletRequest
 request, HttpServletResponse response)
 throws ServletException, java.io.IOException {
 String resultPage;
 AbstractCommand command = null;
 try {

 //Create a correspondent Command.
 if(request.getSession().getAttribute("USER") == null)
 command = new LoginCommand();

 else command = new HomeCommand();

Presentation Patterns Chapter 2

[32]

 //Execute the Command that return a page.
 resultPage = command.execute();
 } catch (Exception e) {
 logger.error(e.getMessage());
 resultPage = PAGE_ERROR;
 }

 //Dispatch to correspondent page.
 getServletContext().getRequestDispatcher(resultPage)
 .forward(request, response);

 }
}

In the following code snippet, it is very important to note that urlPattern is used to
define which requests a context will send to our controller. Here's how we do this:

//Defining the urlPattern to Front Controller
@WebServlet(name = "MyAppController", urlPatterns = "/myapp/*")
public class MyAppController extends HttpServlet {
 ...
}

On the urlPattern, the value is "/myapp/*". As previously shown in the preceding code
snippet, this URL pattern ("/myapp/*") establishes that all requests to the myapp URI are
sent to our controller. For example, http://ip:port/context/myapp/myfuncionality
is sent to our controller.

When we implement this pattern, it is very important to pay attention to the use of
attributes on servlets, because all the class attributes on a servlet are shared with all threads
or all requests.

All GET requests or POST requests are sent to the processRequest method, which
implements the logic to send the request to the respective command and executes the
respective logic. After the correct command is set, the respective command is executed and
the page is dispatched. Here, we have the line that executes the command and dispatches
the request to the correct page:

//Execute a Command
resultPage = command.execute();

Dispatching the request to the corresponding page:

//Dispatch to correspondent page.
getServletContext().getRequestDispatcher(resultPage)
 .forward(request, response);

Presentation Patterns Chapter 2

[33]

Implementing the commands
Here, we have AbstractCommand, which is an abstract class with one execute method.
This is the abstract command, and the execute method is implemented on the
subclasses:

public abstract class AbstractCommand {

 public abstract String execute();
}

In the following code snippet, we have the subclass HomeCommand, which is the
implementation of AbstractCommand. The method execute() returns the path to the
home page (/home.jsp):

public class HomeCommand extends AbstractCommand {
 @Override
 public String execute() {
 return "/home.jsp";
 }
}

Here, we have the LoginCommand subclass, which is the implementation of
AbstractCommand. The execute() method returns the path to the login page
(/login.jsp):

public class LoginCommand extends AbstractCommand {
 @Override
 public String execute() {
 return "/login.jsp";
 }
}

The application controller pattern
Some web applications have a complex logic for defining the correct view, content, or
action to invoke. The MVC controller can be used to make this decision and get the correct
view, content, or action. However, sometimes the logic to define a decision is very hard,
and using the MVC controller to do this can cause duplication of a lot of code. To solve this,
we need to centralize the logic at one point to permit an easy maintenance and a central
logic point.

Presentation Patterns Chapter 2

[34]

The application controller pattern is the pattern that permits the centralization of all view
logic and promotes a unique process to define the flow of pages. This pattern is used
together with FrontController, discussed earlier, and is an intermediary
between FrontController and Command. Using this pattern, we will promote the
decoupling between view treatment and request treatment. The following diagram
represents this:

In the preceding diagram, we can see the ApplicationController between FrontController
and AbstractController. When the client sends a request, the FrontController receives this
and treats points about the request. The FrontController then sends this request to
ApplicationController, which treats points about the view and flow and defines the correct
Command to execute.

In our example scenario, we want to create one point to download a file on our server, and
this point can only be accessed by a logged-in user. As well as this, we will only
accept PDF downloads and JPG files. In this example, we will create one class called
DownloadFrontController to receive the request. We will also create a class
called DownloadApplicationController to process the logic of view and content choice.
AbstractCommand is the abstract class for commands. In addition to this, we will create
PdfCommand, which is an implementation of AbstractCommand that processes the logic to
download one PDF file. Finally, we will create JpgCommand, which is an implementation of
AbstractCommand that processes the logic to download one JPG file.

Implementing DownloadFrontController
Here, we have the implementation of DownloadFrontController, which is a Servlet used
to download files:

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;

Presentation Patterns Chapter 2

[35]

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@WebServlet(name = "DownloadFrontController", urlPatterns =
"/download/*")
public class DownloadFrontController extends HttpServlet {

 protected void doPost(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 processRequest(request,response);
 }

 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {
 processRequest(request,response);
 }

 protected void processRequest(HttpServletRequest
 request, HttpServletResponse
 response)
 throws ServletException, java.io.IOException {

 //If user is logged the request is sent to
 ApplicationController,
 // then one error 401 is sent to client.
 if(Objects.nonNull(request.getSession().getAttribute("USER"))) {

 //Send the request to ApplicationController
 new DownloadApplicationController(request,
 response).process();

 }

 else {
 response.sendError(401);
 }
 }
}

In the preceding block of code, we have the DownloadFrontController class with the
logic to process a request. This class is a servlet that responds to all requests sent to
/download/* using the following line of code:

@WebServlet(name = "DownloadFrontController", urlPatterns = "/download/*")

Presentation Patterns Chapter 2

[36]

All GET requests or POST requests are sent to the processRequest method, inside which
we have the code to send the request to DownloadApplicationController. The
following line of code does just that:

//Send the request to ApplicationController
new DownloadApplicationController(request, response).process();

Implementing DownloadApplicationController
Here, we have the implementation of DownloadApplicationController, which is
responsible for deciding the correct command to send the request. The process for deciding
the correct command can be carried out in several ways, with reflections and annotations,
using switch cases and maps, among others. In our example, we use a map to help us:

import com.rhuan.action.Command.AbstractCommand;
import com.rhuan.action.Command.PdfCommand;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;

public class DownloadApplicationController {

 private static Logger logger =
LogManager.getLogger(DownloadApplicationController.class);

 private final String PAGE_ERROR = "/pageError.jsp";

 private HttpServletRequest request;

 private HttpServletResponse response;

 private Map<String, Class> map;

 private String key;

 public DownloadApplicationController(HttpServletRequest
 request, HttpServletResponse
 response){

Presentation Patterns Chapter 2

[37]

 //On our example, only PDF and JPG is acepted to download.
 this.map = new HashMap<String, Class>();
 this.map.put("PDF", PdfCommand.class);
 this.map.put("JPG", PdfCommand.class);

 this.request = request;
 this.response = response;

 }

 public void process(){

 //Processes the URI and creates the key using URI.
 this.processUri();

 //Validates if the request is valid.
 if (!validate()) {
 try {
 response.sendError(400);
 } catch (IOException e1) {
 logger.error(e1.getMessage());
 }

 return;
 }

 //Get the correspondent command.
 Class commandClass = map.get(key);

 boolean error = false;

 try {

 AbstractCommand command = (AbstractCommand)
 commandClass.newInstance();

 //Executes the command.
 command.execute(request,response);

 } catch (InstantiationException e) {
 logger.error(e.getMessage());
 error = true;

 } catch (IllegalAccessException e) {
 logger.error(e.getMessage());
 error = true;

 } catch (ServletException e) {

Presentation Patterns Chapter 2

[38]

 logger.error(e.getMessage());
 error = true;
 } catch (IOException e) {
 logger.error(e.getMessage());
 error = true;
 }

 //If an error ocorred, response 500.
 if(error){
 try {
 response.sendError(500);

 } catch (IOException e1) {
 logger.error(e1.getMessage());
 return;
 }
 }

 }

 private void processUri(){

 String uri = request.getRequestURI();
 if(uri.startsWith("/")) uri = uri.replaceFirst("/", "");
 String[] uriSplitted = uri.split("/");

 if(uriSplitted.length > 2)
 key = uriSplitted[2].toUpperCase();
 }

 private boolean validate(){

 String uri = request.getRequestURI();
 if(uri.startsWith("/")) uri = uri.replaceFirst("/", "");
 String[] uriSplitted = uri.split("/");

 return uriSplitted.length == 3 && map.containsKey(key);
 }

}

Presentation Patterns Chapter 2

[39]

In the preceding code, we created two methods to help us to process and validate the URI,
the processUri method, and the validated method. After processing the URI, validating
the request and generating the key, the code finds the correct command using the key
generated. In the following code snippet, we have the line of code that gets the command
class by key, creates a new instance of the command, and executes the following command:

//Get the correspondent command.
Class commandClass = map.get(key);

A new instance of the command is then created using the newInstance() method :

//Instantiate the command
AbstractCommand command = (AbstractCommand) commandClass.newInstance();

The command is then executed, passing request and response as parameters:

//Executes the command.
command.execute(request,response);

Implementing commands
Here, we have the abstract class AbstractCommand, which includes the
abstract execute method. All implementations of this command
extend AbstractCommand, which is an abstract class:

package com.rhuan.action.Command;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public abstract class AbstractCommand {

 public abstract void execute(HttpServletRequest
 request, HttpServletResponse response)
 throws ServletException, java.io.IOException ;
}

In the following block of code, we have the PdfCommand class. This is a subclass of
AbstractCommand that implements the logic to download a PDF file:

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.File;

Presentation Patterns Chapter 2

[40]

import java.io.FileInputStream;
import java.io.IOException;
import java.io.OutputStream;

public class PdfCommand extends AbstractCommand {

 @Override
 public void execute(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {

 String fileName = request.getParameter("fileName");

 // for example application/pdf, text/plain, text/html,
 image/jpg
 response.setContentType("application/pdf");

 // Make sure to show the download dialog
 response.setHeader("Content-disposition","attachment;
 filename=myapp_download.pdf");

 // Assume file name is retrieved from database
 // For example D:\\file\\test.pdf

 File file = new File(fileName);

 // This should send the file to browser
 OutputStream out = response.getOutputStream();
 FileInputStream in = new FileInputStream(file);

 byte[] buffer = new byte[4096];
 int length;
 while ((length = in.read(buffer)) > 0){
 out.write(buffer, 0, length);
 }
 in.close();
 out.flush();

 }
}

In the preceding code block, we have the execute() method, which processes the logic to
download a PDF file. At this point, all the processes and main validations of requests
were executed, and the execute() method needs only to execute the download process.

Presentation Patterns Chapter 2

[41]

Here, we have the JpgCommand class, which is a subclass of AbstractCommand that
implements the logic to download a JPG file:

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.OutputStream;

public class JpgCommand extends AbstractCommand {

 @Override
 public void execute(HttpServletRequest request, HttpServletResponse
 response) throws ServletException, IOException {

 //Gets the file name sent by paramenter.
 String fileName = request.getParameter("fileName");

 //Configures the content type.
 response.setContentType("image/jpg");

 // Configure the dialog to download.
 response.setHeader("Content-disposition","attachment;
 filename=myapp_download.pdf");

 //Read file and send to client.
 File file = new File(fileName);
 OutputStream out = response.getOutputStream();
 FileInputStream in = new FileInputStream(file);

 byte[] buffer = new byte[4096];
 int length;
 while ((length = in.read(buffer)) > 0){
 out.write(buffer, 0, length);
 }
 in.close();
 out.flush();

 }
}

In the preceding code block, we have the execute() method, which processes the logic to
download a JPG file. At this point, all request and main validation processes have already
been done.

Presentation Patterns Chapter 2

[42]

The difference between the application controller
and front controller patterns
The application controller and front controller patterns are quite similar and can create
confusion for some users. The problem that the application controller pattern and front
controller patterns solve are similar because both are used to centralize the logic at one
point. As well as that, both work together using the design pattern command.

The main difference between the application controller and the front controller is that the
application controller works to solve the complexity of view and flow page logic, and the
front controller works to solve the complexity of the requests and the configurations of
them. When the view and flow logic is simple, all logic is sometimes inserted into the front
controller, and the application controller is not then used. However, when the logic within
the view and flow page is complex, it is recommended to use the application controller in
order to decouple the view and flow logic and organize the code.

Summary
In this chapter, we learned about the presentation tier and looked at the intercepting filter
pattern, front controller patterns, and application controller pattern as well as how to
implement them. In the real world, we rarely need to implement these patterns because
some frameworks, APIs, and specifications already implement them for us. However, it is
very important to know about these patterns in order to improve our understanding of the
frameworks, APIs, and specifications that implement them. As well as this, we sometimes
need to implement some components outside of the framework. Consequently, it is a good
idea to use this pattern.

The next chapter will address the business tier and its patterns. Here, we will cover the
patterns that act on the business tier. Knowing about these patterns will complement our
knowledge of the concepts and implementations of enterprise patterns as well as how these
patterns promote the use of good tools to solve common problems in a business
environment.

3
Business Patterns

In this chapter, we will cover definitions of the Business Delegate pattern, the Session
Façade pattern, and the business-object pattern. We will show the reasons to use these
design patterns, common approaches to each of them, their interaction with other patterns,
their evolution, and how they behave in the real world. We will also demonstrate some
examples of these patterns' implementations.

At the end of the chapter, you will be able to identify the correct scenarios to apply business
patterns and choose the best methods for implementing them. The following topics will be
covered:

Understanding the business tier
Explaining the Business Delegate pattern
Explaining the Session Façade pattern
Implementing the Session Façade pattern
Explaining the business-object pattern
Implementing the business-object pattern

Understanding the business tier
Before talking about the business patterns and the use of these patterns from the
perspective of JEE8 and its technologies, we must identify where the business logic of an
application will be within the JEE framework. As we have already seen,
JEE architecture basically has three tiers. Most JEE technologies, such as Enterprise Java
Beans (EJB) and Java Persistence API (JPA), are related to the business tier. The EJB
container is located in the business tier, but there are a few other technologies that navigate
the entire JEE framework, such as CDI and Bean Validation. However, the most important
thing to know is that the core business-logic application is executed in the business tier.

Business Patterns Chapter 3

[44]

We will see three important patterns in the business tier. We will briefly explain the
definition and goal of each pattern:

Business Delegate pattern: It is a proxy for the business service, hiding the
service lookup and the remote invocation.

Session Façade pattern: Encapsulates business rules and exposes coarse-grained
services to clients.

Business-object pattern: These are real-world objects with properties and
methods for applications with a high level of complexity which help to separate
business logic from the rest of the application, promoting a decoupling between
business logic and the rest of the application.

Let's look at the following diagram:

Business Patterns Chapter 3

[45]

We will see later in this chapter that, although the Business Delegate is a business-tier
component, its physical location is on the web tier.

Explaining the Business Delegate pattern
To explain the Business Delegate pattern, we need to understand some points that show the
reason and evidence for the real goals of this pattern. Thus, we will show these points and
explain the Business Delegate pattern in detail.

Client tier, presentation tier, and business tier
Before we go on, here is a brief explanation of the concept of tiers and layers.

Layers
A layer is merely a logical division that has a responsibility within the architecture of the
application. It is a logical way to organize the application code. Martin Fowler's
book Patterns of Enterprise Application Architecture describes the three main layers and their
responsibilities:

Layer Responsibility
Presentation User interaction, validation of input fields, formatting display data
Business Application logic
Data Database communication, messaging-system communication

Thus, the classes of an application are logically separated according to their responsibilities.
There are classes that are used in the data-access layer, while other classes prepare the data
to be displayed as part of the presentation layer. This division is purely logical. A good
architecture practice is to have a layered chain where a layer interacts with its adjacent
layer, providing and consuming services. This leads to more cohesion (the same
responsibilities are contained in the same layer) and low-coupling.

Business Patterns Chapter 3

[46]

Let's look at the following diagram:

We can see that the JSF, JSP, and HTML pages, the bean-backing class, and even a servlet
belong logically to the presentation layer group, since they have the same basic
responsibility, which is to send information to the user and receive requests from a user. An
EJB, a servlet (part of it), and a Business Object belong to the business layer. The DAO
classes and the JPA entities belong to the data layer.

Business Patterns Chapter 3

[47]

Tiers
A tier is a physical unit, and it is related to hardware and software components. It is the
infrastructure in which the layer components are deployed and executed. Examples of tiers
are web browsers, application servers, and database servers. A typical n-tier application is
defined with the following tiers:

Tier Infrastructure
Client Web browsers, a mobile device
Presentation Web server (container), HTTP protocol
Business Application server (such as Java EE server)
Data/Integration Database servers, messaging service, web services

Let's look at the following diagram:

Here, it is very important to note the difference between the client tier and the presentation
tier. The client tier is where a client application is executed (through platforms such as a
browser or a mobile application). Generally, the client tier is the client machine or device,
and the presentation tier is represented by the web server. The presentation tier receives a
data request from the client tier, prepares the data (with some format defined previously, if
necessary), and sends it to the business tier. This is the classic mechanism of how data is
processed in a JEE scenario. We can identify some technologies in the presentation tier,
such as Servlets, JSP, JSF, WebSockets, JAX‐RS and JAX‐WS, Java API for JSON processing,
JSON-B, CDI, and bean validation.

Business Patterns Chapter 3

[48]

Let's look at the following diagram:

As previously discussed, it is in the business tier that all business logic is executed. The
presentation tier is the client of the business tier because it requires operations of the
business tier and receives the result that comes from the business tier. At this point, we can
see an additional responsibility for the presentation tier, which is to locate the service and
make the request. It would be interesting if we had a mechanism that delegated the request
to the real service. This is the role of the Business Delegate pattern, which prevents details
of the business tier services from being exposed to the presentation tier. The coupling
between the presentation and business tiers is reduced, and therefore modifications in the
business tier have a minimal impact in the presentation tier.

The Business Delegate pattern acts as an input door for the client. It is responsible for
receiving the request, identifying or locating the real business service, and calling the
service sending the request. After that, the delegate receives the service response and then
sends the response back to the client.

The classic Business Delegate pattern scenario
In a classic Business Delegate pattern scenario, the implementation of the Business Delegate
pattern receives a request from a Java client and sends the response back to it. In addition,
to minimize the coupling between the presentation tier and the business tier, it was the
responsibility of a delegate to locate remote services (in most cases, a remote EJB service)
and provide a caching mechanism for accessing business services to reduce the network
traffic.

Business Patterns Chapter 3

[49]

So, when EJB was used as a remote service in the past, Business Delegate patterns were
used with another pattern, the Service Locator Pattern, which is responsible for locating the
remote (and local) EJB. Also, the stub (a kind of EJB reference based on the RMI (Remote
Method Invocation) protocol) of the remote EJB is cached by the delegate.

The following diagram shows the class diagram for the Business Delegate pattern. This
represents the basic structure of this pattern. The client sends requests to the Business
Delegate, which in turn accesses the correct business service. The Business Delegate can
use a service locator in the case of a remote service lookup:

As the Business Delegate re-passes the business request to the Business Service, one
natural approach in code development is to make both classes (Business
Delegate and Business Service) implement the same business interface.

Business Patterns Chapter 3

[50]

This is shown in the following diagram:

Business Patterns Chapter 3

[51]

In the following diagram, we show the sequence diagram for the Business Delegate pattern:

The benefits of the Business Delegate pattern
According to the old J2EE architecture, the benefits of a Business Delegate included:

Hiding the details of the underlying business service. In the case of remote
services, using the Business Delegate makes naming and looking up services
transparent to the presentation tier.
Handling business-service exceptions. The Business Delegate can catch service
exceptions that have a technical meaning and translate them into a more friendly
exception, generating application exception level to the client. For instance,
Business Delegate could translate the eventual remote exceptions generated by a
business service into a specific application exception.
A Business Delegate can transparently carry out a new retry of a failed service
execution and hide the problem from the client.
In addition, a Business Delegate can cache references to remote business services
in order to improve performance. Calling a remote service is a costly operation,
and the repetition of remote service calls can greatly increase network traffic.

Business Patterns Chapter 3

[52]

However, as new scenarios have arisen, things have evolved in the world of distributed
application development. The JEE architecture has been changing in accordance with this.
As modern mobile applications and web clients developed, new client applications, with
rich JavaScript frameworks, have been emerging. As a consequence, the Business Delegate
is seen as a bridge or door between the presentation tier (where technologies such as
Servlet, JSP, and the JSF mechanism reside) and the business tier (where technologies such
as EJB reside).

Business Delegate – obsolete or not
In the old J2EE architecture, both remote and local business services, such as EJB, use a
service locator mechanism. However, dependency injection is now used to access local EJBs
(and the option for local services is increasingly being used). In many cases, using a
Business Delegate to look for local services has become somewhat obsolete for this
reason. Consequently, someone could question the use of a pattern, such as Business
Delegate, only to handle remote communications. This is because, since JEE5, we have
begun to use DI annotations to reference local EJB with ease. However, if we think of a
Business Delegate as a bridge for Session Bean EJBs, for example, then we can change these
EJBs (when necessary) without having to worry about whether or not the presentation tier
will be broken. If something changes in the session EJB, it is the Business Delegate's job to
handle this change and keep the presentation tier intact.

The following diagram shows the classic architecture of an application:

In some situations, this architecture was replaced by others, as shown in the following
diagrams:

Business Patterns Chapter 3

[53]

Looking at the two previous alternatives, we can see the way in which Business Delegate
can be used when there is a need to change the business service layer. This can be done
without impacting the presentation layer. In addition, when we need to handle business-
service exceptions and we have a client other than a web browser, we can use a Business
Delegate with a lookup mechanism (JNDI) for the business services (EJBs).

There are several other architectures that can be used in application building. We will see
that the use of the Business Delegate pattern occurs along with some other patterns,
especially the Session Façade pattern, as shown in the diagrams. Another common pattern
is the business-object pattern, which represents a real-world business object with properties
and methods, not necessarily getter and setter methods.

Explaining the Session Façade pattern
Before we introduce the Session Façade pattern, it is important to cover the façade patterns,
which are one of the structural design patterns mentioned in the Gang of Four (GoF) book.

The main goal is to encapsulate the complexity of business logic in a business interface.
Broadly speaking, this interface only exposes a small number of coarse-grained methods to
the client. Each of these interface methods is responsible for controlling the underlying
complexity of business logic. In this way, the internal services of finer granularity can be
combined into a set of services that are exposed by the interface method.

The benefits of using a façade pattern are as follows:

It provides coarse‐grained methods for available services.
It reduces remote calls. A remote client does not need to call many fine-grained
business objects. Instead, it executes a remote call to the exposed interface
method, which is responsible for making local calls to the fine-grained objects.
It can create a single channel to a legacy backend system.
It decreases the coupling between the client and the fine‐grained objects.

Let's say, for example, that there is a system for checking vacancies in hotels in a city. The
hotels offer web services to be consulted about the vacancies. A client application that
wants to know how many vacancies are available will have to make a call to each web
service. But if we make a call to a façade layer, this façade could take responsibility for
searching the web services. In addition to reducing calls, the façade removes the high
coupling that would exist between the client and web services.

Business Patterns Chapter 3

[54]

By understanding the problem for which the GoF façade pattern is the solution, we can
then see a similar problem with JEE. In this case, server-side components are implemented
as Business Objects (BOs) or POJOs. Almost every request coming from the client needs a
BO interaction, and each BO involved in the request process may have a relationship with
other BOs. In addition, the BO might have accessed an integration tier using a DAO
pattern. We do not want to expose the complexity of the business components and their
internal relationships to clients—especially to remote clients. We then have a Session
Façade pattern as a solution to this problem.

Benefits of Session Façade
It is important not to expose the client to the complexity of using these fine-grained BOs.
Frequent access to a large set of fine‐grained components greatly increases the complexity
of BOs control. Transaction-control, security-management, and service-lookup are all
examples of this complexity.

Like the GoF façade pattern, the use of a coarse-grained layer in JEE decreases the coupling
between the client and the business components represented by BOs of fine granularity
(and we can think of a Session Façade as an extension of the GoF façade pattern in JEE). The
Session Façade pattern represents this coarse-grained layer. An architecture built with the
Session Façade provides a facade of more generic (or coarse-grained) methods for clients.
The two biggest benefits of using the Session Façade pattern are as follows:

It does not expose the high complexity of the business objects (BOs) and their
relationships.
It decreases network traffic. This occurs because remote calls are limited to
coarse-grained methods exposed by Session Façade instead of the fine-grained
business objects.

Of course, EJB remote calling was used much more in the old JEE scenario in comparison to
current architectures. It is important that this is taken into consideration.

Business Patterns Chapter 3

[55]

Implementing the Session Façade pattern in JEE
In the JEE architecture, Session Façade is implemented by a stateless or stateful EJB. An EJB
object can use or combine other POJOs, business objects, and EJBs. At this point, we must
be careful not to accumulate too many unnecessary layers, as we run the risk of having a
chain of EJBs where one EJB calls another more internal EJB, and so on. The services must
be mapped and designed well.

Because the Session Façade is primarily implemented by EJBs, services such as transaction-
control and security-management come naturally to this technology. It is in this layer that
we usually have the transaction-control of most internal objects, such as the POJOs, which
represent entities within the JPA technology. For an EJB, JPA entity transaction control is
native, meaning that it is supplied by the JEE container. This provides a large increase in
productivity during development.

The classic Session Façade pattern scenario
The Session Façade pattern can be used in several architectures. The following diagram
shows a classic model of Session Façade usage:

Business Patterns Chapter 3

[56]

Looking at the preceding diagram, we can see that a client (typically a web component or a
Business Delegate implementation) accesses the facade layer. In this architecture, we find
some options that depict the use of the Session Façade.

The Façade can handle different business objects (BO). Later in this chapter, we will see a
better description of a BO and the business-object pattern. A business object is the
representation of a conceptual model, which is a real-world object. A BO may have
methods that describe its behavior. In this case, we will say that this BO reflects a non-
anemic model (an anemic domain object contains a few business methods, such as
validation and calculation). Here, the BO can use a Data-Access Object (DAO) pattern as a
strategy for executing CRUD operations.

The Façade can directly access a POJO JPA (Java Persistence API) entity. If the conceptual
model of the business object is very close to the data model, we can fully represent this
business object (an actor of a use case of the application) as a persistence entity. Most of the
time, a Session Façade is implemented as an EJB session. Although a JPA entity does not
require an EJB container to run because it runs in both JSE and JEE environments, the EJB
and JPA technologies make a very successful combination. Since the JEE 5.0 platform, JPA
has been the default specification for object-relational mapping (OR mapping) and
persistence-management. JPA version 1.0 is part of the JSR 220 specification (EJB 3.0). The
final result of the EJB 3.0 specification is that three separate documents were produced, the
third being the Java Persistence API. This described the persistence model for the JSE and
JEE environments. More internal services are offered naturally by the implementation of
the EJB technology, such as transaction and security control:

In most applications, the Session Façade uses a DAO implementation to perform
the crud operations with the persistence layer. We will see later that the DAO
pattern encapsulates the details related to crud, and can directly use a JDBC
implementation or a JPA implementation to perform the crud work.

Business Patterns Chapter 3

[57]

The following is an activity diagram with the component tiers involved in the Session
Façade pattern:

Business Patterns Chapter 3

[58]

The following shows the Session Façade pattern-sequence diagram:

Implementing the Session Façade pattern
Let's make a small application related to the academic world. We will make two
façades—one façade to manage the financial part of the application, and one to manage the
academic part of the application. We will also construct some other classes, such as DAO
classes and classes of the domain model. There is no database; all the data is kept in
memory through the DAO classes. Consequently, the methods designed for finding
information are built into the DAO classes. Let's create the following domain model classes:
Discipline, Course, Member (Member is an abstract class that represents a member of a
college), Professor, and Student:

import java.io.Serializable;

public class Discipline implements Serializable{
 private String name;
 private String code;

 @Override
 public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((code == null) ? 0 : code.hashCode());
 return result;

Business Patterns Chapter 3

[59]

 }
 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 Discipline other = (Discipline) obj;
 if (code == null) {
 if (other.code != null)
 return false;
 } else if (!code.equals(other.code))
 return false;
 return true;
 }
 public Discipline() {
 }
 public Discipline(String code, String name) {
 this.setCode(code);
 this.setName(name);
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getCode() {
 return code;
 }
 public void setCode(String code) {
 this.code = code;
 }
}

This is the Course class:

 import java.io.Serializable;

 public class Course implements Serializable {
 private String code;
 private String name;
 public Course() {
 }
 public Course (String code, String name) {
 this.setCode(code);

Business Patterns Chapter 3

[60]

 this.setName(name);
 }
 public String getCode() {
 return code;
 }
 public void setCode(String code) {
 this.code = code;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

Here is the Member class which like the previous classes, implements the Serializable
package:

import java.io.Serializable;
import java.time.LocalDate;

public abstract class Member implements Serializable {
 @Override
 public int hashCode() {
 final int prime = 31;
 int result = 1;
 result = prime * result + ((name == null) ? 0 : name.hashCode());
 return result;
 }
 @Override
 public boolean equals(Object obj) {
 if (this == obj)
 return true;
 if (obj == null)
 return false;
 if (getClass() != obj.getClass())
 return false;
 Member other = (Member) obj;
 if (name == null) {
 if (other.name != null)
 return false;
 } else if (!name.equals(other.name))
 return false;
 return true;
 }
 private String name;
 private LocalDate initDate;

Business Patterns Chapter 3

[61]

 private String email;
 public String getEmail() {
 return email;
 }
 public void setEmail(String email) {
 this.email = email;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public LocalDate getInitDate() {
 return initDate;
 }
 public void setInitDate(LocalDate initDate) {
 this.initDate = initDate;
 }
}

Now, the Professor class inherits the Member class:

import java.util.Date;
import java.time.LocalDate;

public class Professor extends Member {
 private LocalDate initTeachDate;
 public Professor() {
 }
 public Professor(String name, LocalDate initDate) {
 this.setName(name);
 this.setInitDate(initDate);
 }
 public Professor(String name) {
 this.setName(name);
 }
 public LocalDate getInitTeachDate() {
 return initTeachDate;
 }
 public void setInitTeachDate(LocalDate initTeachDate) {
 this.initTeachDate = initTeachDate;
 }
}

Business Patterns Chapter 3

[62]

The following is the Student class, which inherits the Member class:

public class Student extends Member {
 private String enrollment;
 public Student() {
 }
 public Student(String enrollment) {
 this.setEnrollment(enrollment);
 }
 public Student(String enrollment, String name) {
 this.setEnrollment(enrollment);
 this.setName(name);
 }
 public String getEnrollment() {
 return enrollment;
 }
 public void setEnrollment(String enrollment) {
 this.enrollment = enrollment;
 }
}

We could make these application entities with an id integer type property that would
represent a unique entity. It is common to extend an abstract entity class that contains this
ID. However, for the college members, we simplified it and used the name property for the
identification job. In the Discipline and Member classes, we implemented the equals
method to check for equal objects within a collection.

Let's make some DAO classes. There is no POJO JPA entity in these examples. The
relationships between the model objects are inserted in the DAO classes:

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class CourseDAO {
 private static Map<Course, List<Discipline>> courseXDisciplines;
 static {
 Discipline d1 = new Discipline("D1", "discipline 1");
 Discipline d2 = new Discipline("D2", "discipline 2");
 Discipline d3 = new Discipline("D3", "discipline 3");
 Discipline d4 = new Discipline("D4", "discipline 4");
 courseXDisciplines = new HashMap<>();
 courseXDisciplines.put (new Course ("C1", "Course 1"), Arrays.asList
(d1, d2, d4));
 courseXDisciplines.put (new Course ("C2", "Course 2"), Arrays.asList
(d1, d3));

Business Patterns Chapter 3

[63]

 courseXDisciplines.put (new Course ("C3", "Course 3"), Arrays.asList
(d2, d3, d4));
 }
 public List<Discipline> getDisciplinesByCourse(Course course) {
 return courseXDisciplines.get(course);
 }
}

This is the DisciplineDAO class:

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class DisciplineDAO {
 private static Map<Discipline, List<Discipline>>
disciplineXPreReqDisciplines = new HashMap<>();
 private static Map<Professor, List<Discipline>> professorXDisciplines =
new HashMap<>();
 private static Map<Discipline, List<String>> disciplineXBooks = new
HashMap<>();
 private static List<Discipline> disciplines;
 static {
 Discipline d1 = new Discipline("D1", "discipline 1");
 Discipline d2 = new Discipline("D2", "discipline 2");
 Discipline d3 = new Discipline("D3", "discipline 3");
 Discipline d4 = new Discipline("D4", "discipline 4");
 disciplines = Arrays.asList(d1, d2, d3, d4);
 disciplineXPreReqDisciplines.put (d3, Arrays.asList (d1, d2));
 disciplineXPreReqDisciplines.put (d4, Arrays.asList (d2));
 professorXDisciplines.put (new Professor ("professor a"), Arrays.asList
(d1, d2));
 professorXDisciplines.put (new Professor ("professor b"),
Arrays.asList (d3));
 professorXDisciplines.put (new Professor ("professor cv"),
Arrays.asList (d1, d3, d4));
 disciplineXBooks.put (d1, Arrays.asList ("book x", "book y"));
 disciplineXBooks.put (d2, Arrays.asList ("book x", "book a", "book
w"));
 disciplineXBooks.put (d3, Arrays.asList ("book x", "book b"));
 disciplineXBooks.put (d4, Arrays.asList ("book z"));
 }
 public List<Discipline> getPreRequisiteDisciplines (Discipline
discipline) {
 return disciplineXPreReqDisciplines.get (discipline);
 }

Business Patterns Chapter 3

[64]

 public List<Discipline> getDisciplinesByProfessor(Professor professor) {
 return professorXDisciplines.get (professor);
 }

 public List<String> getBooksByDiscipline(Discipline discipline) {
 return disciplineXBooks.get (discipline);
 }
 public List<Professor> getProfessorByDiscipline (Discipline discipline) {
 return professorXDisciplines.keySet()
 .stream()
 .filter (p->professorXDisciplines.get(p).contains(discipline))
 //.collect(ArrayList::new, ArrayList::add, ArrayList::addAll);
 .collect(Collectors.toList());
 }
 public Discipline getDisciplineByCode (String code) {
 return disciplines
 .stream()
 .filter(s->s.getCode().equals(code))
 .findAny()
 .get();
 }
}

Now, you will make the StudentDAO class:

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;

public class StudentDAO {
 public static enum FINANCIAL_STATUS {
 OK (true, "OK"), PENDING (false, "Payment pending"), DOC_PENDING (true,
"Document pending");
 private boolean status;
 private String description;
 public boolean isStatus() {
 return status;
 }
 public String getDescription() {
 return description;
 }
 FINANCIAL_STATUS (boolean status, String description){
 this.status = status;
 this.description = description;
 }
 }

Business Patterns Chapter 3

[65]

 public static enum ACADEMIC_STATUS {
 APPROVED , FAILED;
 }
 private static List<Student> students;
 private static Map<String, FINANCIAL_STATUS> studentStatusPayment = new
HashMap<>();
 private static Map<Student, List<String>> studentXCourseName = new
HashMap<>();
 static {
 Student s1 = new Student ("20010001", "student 1");
 Student s2 = new Student ("20010002", "student 2");
 Student s3 = new Student ("20010003", "student 3");
 Student s4 = new Student ("20010004", "student 4");
 students = Arrays.asList(s1, s2, s3, s4);
 studentStatusPayment.put ("20010001", FINANCIAL_STATUS.OK);
 studentStatusPayment.put ("20010002", FINANCIAL_STATUS.OK);
 studentStatusPayment.put ("20010003", FINANCIAL_STATUS.PENDING);
 studentStatusPayment.put ("20010004", FINANCIAL_STATUS.OK);
 studentXCourseName.put (s1, Arrays.asList ("C01", "C02"));
 studentXCourseName.put (s2, Arrays.asList ("C03"));
 studentXCourseName.put (s3, Arrays.asList ("C04"));
 studentXCourseName.put (s4, Arrays.asList ("C03", "C04"));
 }
 public static Map<String, FINANCIAL_STATUS> getStudentStatusPayment() {
 return studentStatusPayment;
 }
 public List<Student> getEnrolledStudentByCourse(Course course) {
 return studentXCourseName.keySet()
 .stream()
 .filter(s->studentXCourseName.get(s).contains(course.getCode()))
 .collect(Collectors.toList());
 }
 public Student getStudentByEnrollment (String enrollment) {
 return students
 .stream()
 .filter(s->s.getEnrollment().equals(enrollment))
 .findAny()
 .get();
 }
}

Let's look at the ProfessorDAO class:

import java.time.LocalDate;
import java.util.Arrays;
import java.util.Set;
import java.util.stream.Collectors;
public class ProfessorDAO {

Business Patterns Chapter 3

[66]

 private static Set<Professor> professors;
 static {
 Professor p1 = new Professor ("professor a", LocalDate.of (2001, 03,
22)),
 p2 = new Professor ("professor b", LocalDate.of (1994, 07, 05)),
 p3 = new Professor ("professor c", LocalDate.of (1985, 10,
12)),
 p4 = new Professor ("professor cv", LocalDate.of (2005, 07,
17));
 professors = Arrays
 .stream (new Professor[]{p1, p2, p3, p4})
 .collect (Collectors.toSet());
 }
 public Professor findByName (String name) {
 return professors
 .stream()
 .filter(p->p.getName().equals(name))
 .findAny()
 .get();
 }
}

We put a lot of responsibility in DisciplineDAO for simplicity. We could have increased
the scope of the CourseDAO or ProfessorDAO class for access to data related to
the Professor entity.

Now, the following classes are the two Session Façade implementations:
AcademicFacadeImpl and FinancialFacadeImpl. It is important to note that this is only
one of several ways to build this kind of application. The next part of this chapter will cover
the business-object pattern, and here we will create a business object that centralizes the
application's business rules instead of the Session Façade:

import java.time.DayOfWeek;
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
import java.util.List;
import java.util.Set;
import javax.ejb.Asynchronous;
import javax.ejb.LocalBean;
import javax.ejb.Stateless;
import javax.enterprise.event.Observes;
import javax.inject.Inject;
/**
 * Session Bean implementation class AcademicFacadeImpl
 */
@Stateless

Business Patterns Chapter 3

[67]

@LocalBean
public class AcademicFacadeImpl {
 @Inject
 private CourseDAO courseDAO;
 @Inject
 private DisciplineDAO disciplineDAO;
 @Inject
 private StudentDAO studentDAO;
 @Inject
 private ProfessorDAO professorDAO;
 public List<Discipline> getDisciplinesByCourse(Course course) {
 return courseDAO.getDisciplinesByCourse (course);
 }
 public List<Discipline> getPreRequisiteDisciplines (Discipline
discipline) {
 return disciplineDAO.getPreRequisiteDisciplines(discipline);
 }
 public List<Discipline> getDisciplinesByProfessor(Professor professor) {
 return disciplineDAO.getDisciplinesByProfessor(professor);
 }
 public List<String> getBooksByDiscipline(Discipline discipline) {
 return disciplineDAO.getBooksByDiscipline(discipline);
 }
 public List<Student> getEnrolledStudentByCourse(Course course) {
 return studentDAO.getEnrolledStudentByCourse (course);
 }
 public void requestTestReview (Student student, Discipline discipline,
LocalDate testDate) {
 // TODO
 }

 private LocalDateTime scheduleTestReview (TestRevisionTO testRevisionTO)
 {
 LocalDateTime dateTime = null;
 try {
 Thread.sleep(10000);
 // get some code to calculate the schedule date for the test review
 Thread.sleep (5000); // simulate some delay during calculation
 dateTime = LocalDateTime.now().plusDays(10);
 if (dateTime.getDayOfWeek().equals(DayOfWeek.SUNDAY)) {
 dateTime = dateTime.plusDays(1);
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 return dateTime;
 }
 private void sendEmail (TestRevisionTO testRevisionTO, LocalDateTime

Business Patterns Chapter 3

[68]

dateTime) {
 Student student = studentDAO.getStudentByEnrollment
(testRevisionTO.getEnrollment());
 String enrollment = student.getEnrollment();
 String studentName = student.getName();
 String email = student.getEmail();
 Discipline discipline = disciplineDAO.getDisciplineByCode
(testRevisionTO.getDisciplineCode());
 String disciplineName = discipline.getName();
 String disciplineCode = discipline.getCode(); //
testRevisionTO.getDisciplineCode()
 String date = dateTime.format(DateTimeFormatter.ISO_LOCAL_DATE);
 String time = dateTime.format(DateTimeFormatter.ofPattern("HH:mm"));
 // sending an email using the above information ...
 System.out.println("sending an email to : " + studentName + " ...");
 }
 public void requestTestReview (@ObservesAsync TestRevisionTO
testRevisionTO) {
 System.out.println("matricula " + testRevisionTO.getEnrollment());
 LocalDateTime dateTime = scheduleTestReview (testRevisionTO);
 sendEmail (testRevisionTO, dateTime); // send an email with the
schedule date for the test review:
 }

 public List<Professor> getProfessorsByDiscipline(Discipline discipline) {
 return disciplineDAO.getProfessorByDiscipline(discipline);
 }

 public boolean canProfessorTeachDiscipline (Professor professor,
Discipline discipline) {
 return disciplineDAO.getDisciplinesByProfessor(professor)
.contains(discipline);
 }
}

Now, let's look at the FinancialFacadeImpl class:

import javax.ejb.LocalBean;
import javax.ejb.Stateless;
import javax.inject.Inject;

/**
 * Session Bean implementation class FinancialFacadeImpl
 */
@Stateless
@LocalBean
public class FinancialFacadeImpl {
 @Inject

Business Patterns Chapter 3

[69]

 private StudentDAO studentDAO;

 public FinancialFacadeImpl() {
 }
 public boolean canStudentEnroll (Student student) {
 return studentDAO.getStudentStatusPayment().get
(student.getEnrollment()).isStatus();
 }
 public boolean isStudentPending (Student student) {
 FINANCIAL_STATUS status = studentDAO.getStudentStatusPayment().get
(student.getEnrollment());
 return (status.equals (FINANCIAL_STATUS.PENDING)) || (status.equals
(FINANCIAL_STATUS.DOC_PENDING));
 }
}

We can observe the @LocalBean annotation in the EJB Session Façade. This means that the
bean has a no-interface view. This is just a simplification because there is no need to apply
local or remote interfaces for the explanation of the Session Façade. Just remember, the
requirement for local interfaces has been dropped since EJB 3.1.

The AcademicFacadeImpl Session Façade has an asynchronous method with an event
listener parameter. This method is responsible for providing the date and time for a test
revision when requested by a student. For example:

 public void requestTestReview (@ObservesAsync TestRevisionTO
testRevisionTO) {
 System.out.println("Enrollment : " + testRevisionTO.getEnrollment());
 LocalDateTime dateTime = scheduleTestReview (testRevisionTO);
 sendEmail (testRevisionTO, dateTime); // send an email with the
schedule date for the test review:
 }

This event can be fired from a façade client, typically a delegate or a web component (a
servlet or a JSF-managed bean, for example). The event is injected into the client and fired
according to the request. It is then fired together with a TestRevisionTO object:

// Event Injection :
@Inject
 Event<TestRevisionTO> event;
...
...

 // get the schedule date for a test revision:
 TestRevisionTO testRevisionTO = new TestRevisionTO();
 testRevisionTO.setEnrollment ("20010003");
 testRevisionTO.setDisciplineCode("D3");

Business Patterns Chapter 3

[70]

 LocalDate date = LocalDate.of(2017, 11, 21);
 LocalTime time = LocalTime.of (8, 30);
 LocalDateTime dateTime = LocalDateTime.of(date, time);
 testRevisionTO.setTestDateTime (dateTime);
 event.fire (testRevisionTO);

The TestRevisionTO class is fired as follows:

import java.io.Serializable;
import java.time.LocalDateTime;

public class TestRevisionTO implements Serializable {
 private String enrollment;
 private String disciplineCode;
 private LocalDateTime testDateTime;
 public String getEnrollment() {
 return enrollment;
 }
 public void setEnrollment(String enrollment) {
 this.enrollment = enrollment;
 }
 public String getDisciplineCode() {
 return disciplineCode;
 }
 public void setDisciplineCode(String disciplineCode) {
 this.disciplineCode = disciplineCode;
 }
 public LocalDateTime getTestDateTime() {
 return testDateTime;
 }
 public void setTestDateTime(LocalDateTime testDateTime) {
 this.testDateTime = testDateTime;
 }
}

Explaining the business-object pattern
As the name suggests, a business object represents something in the real world and
something associated with the business of the application. A business object is like an actor
in an application use case. Examples of business objects include bank accounts, car
insurance, college professors, students, employees, purchase orders, and payable or
receivable accounts.

Business Patterns Chapter 3

[71]

When it comes to simple applications with very little business complexity, that is, with few
(or no) business rules, there may not be a need for a BO in the system. Better yet, a POJO
entity that represents a database entity can be considered a BO. It is important to see the
difference here. An entity or a POJO representative of an entity (such as a JPA POJO) is
closer to the technology and structure than to a business-model object. So, for this example,
an entity such as a college student can also be considered a BO or an actor of a college
student use case. In fact, in these simpler cases where the data model is sufficient for the
business, there is no need to define a business object.

In this case, we say that the data model related to the college student closely represents the
conceptual domain model related to the student.

The application is often so simple that business-tier clients, such as a Session Façade (or
even presentation-tier clients), can directly access the data model through DAO. There is no
need for a model object to handle greater complexity for the application business.

Applications with complex business rules
Let's say that we want to increase the complexity of the system (let's say the system needs
to contain more functions, for example). Let's also imagine that a college has members that
consist of professors, employees, and students. Suppose there is a member entity that
almost matches the member table in the related database. In addition, we know that
professors, students, and employees are members of the college, and for that reason, they
have common characteristics that every member should have. However, the professor,
student, and employee also have their own characteristics. A professor's main
characteristics are that they are a member who teaches and has a Masters or PhD
qualification.

Similarly, a student has their own characteristics, such as enrollment in college and the
number of courses they are enrolled in. Professors and students will both also have
relationships with other entities. For this, we can architect the application in terms of the
database and create four tables—Member, Student, Employee, and Professor. We can
establish a one-to-one relationship between Student and Member, Professor and Member,
and also Employee and Member. In any implementation, we can have four JPA entities
related to these tables.

Business Patterns Chapter 3

[72]

However, a professor is an actor of the teaches discipline use case with some business rules.
This more complex professor object combines the Member and Professor entities. We
can then define a ProfessorBO (business object) object, which is the combination of the
Member with Professor. In addition, ProfessorBO may have methods that provide a
richer behavioral value for the object because these methods are used in the use case.
Without such methods, the object becomes an anemic object. However, it could be said that
this is still a relatively low complexity. Consequently, we can think of a use case that shows
all the disciplines taught by a professor, or a professor's skills that are necessary to teach
particular disciplines. Here, we have another table and entity: Discipline.

In addition, a student is related to a particular course. This is another use case with one
more entity: Course. The possibilities conceived for an academic system are innumerable
and are far from being a simple data-model system. Business objects can be used for
complex use cases.

The following diagram shows the Professor, Student, and Employee as more complex
objects:

This scenario is just one of several possible implementations. In our small example, we
consider the existence of an object called ProfessorBO, which uses three entities
(Professor, Member, and Discipline) and has associated business methods.

One could argue that there would be no need to have ProfessorBO. We could have a
Professor Facade that could implement the Session Façade pattern with business methods
and would also manipulate the different combined entities using a DAO (for the execution
of CRUD operations).

Business Patterns Chapter 3

[73]

We can agree with this architecture and, depending on the complexity of the system, it may
even be the best alternative. However, we chose this architecture, which clearly illustrates
the definition and use of the BO pattern, so let's continue with our example.

Therefore, a ProfessorBO object represents a professor who is an actor for one or more use
cases related to the conceptual professor model.

Motivation for using the business-object pattern
Whenever the conceptual model involves a greater complexity, we use the business-object
pattern. This high complexity may be because the BO uses a combination of other objects
and has complex business logic, such as validation rules. So, separating this business logic
from the rest of the application is required (data persistence would be an example of this).

Not implementing this pattern can lead to problems, such as reducing code reusability. As
a consequence of this, there are several possible solutions that make code maintenance
time-consuming, as it would lose the uniformity that comes with using design patterns.

Benefits of business-object pattern usage
Here is a summary of the benefits of the business-object pattern:

BOs are responsible for managing their business rules and persistence. This leads
to a more reusable code. Clients access BOs that are fully responsible for the
behavior of the application. In our example, ProfessorBO can be called from
several points. As well as being reusable, there is a uniformity of behavior. As a
consequence, another benefit is faster and more efficient maintenance.
BOs are responsible for separating the business logic from the rest of the
application, which increases the cohesion of the code (separation of
responsibilities).
BOs help separate business logic from data persistence.

Business Patterns Chapter 3

[74]

The following is the class diagram for the business-object pattern:

For more complex applications, we typically have a Session Façade that represents a set of
related use cases. As we have already seen, the Session Façade offers high-level methods for
clients. For its part, the Session Façade can manage and combine BOs that act as real agents
or representatives of real-world objects.

The following is the Business Object sequence diagram:

Business Patterns Chapter 3

[75]

Implementing the business-object pattern
We are now going to input some code in order to illustrate the business-object pattern.
However, we must again pay attention to the fact that there is likely another approach to
getting the results. For instance, we could use an O-R Mapping (JPA or Hibernate
technology) to map the entities.

As an example, the Professor entity has an n-to-n relationship with the Discipline
entity, which is done with a JPA annotation. However, we know that there are many more
use cases here than simply mapping entities.

We will use ProfessorBO, Professor, Discipline, ProfessorDAO, and
DisciplineDAO. Let's take advantage of the classes shown in the Session Façade example.
We made a small change in the AcademicFacadeImpl class. Now, this Session Façade uses
a BO called ProfessorBO to handle the business related to Professor.

Let's review the ProfessorBO class:

import java.time.LocalDate;
import java.util.List;
import javax.inject.Inject;

public class ProfessorBO {
 private Professor professor;
 private List<Discipline> disciplines;
 @Inject
 private ProfessorDAO professorDAO;
 @Inject
 private DisciplineDAO disciplineDAO;
 public void setProfessor (Professor professor) {
 this.professor = professorDAO.findByName (professor.getName());
 }
 public boolean canTeachDiscipline (Discipline discipline) {
 if (disciplines == null) {
 disciplines = disciplineDAO.getDisciplinesByProfessor (professor);
 }
 return disciplines.stream().anyMatch(d->d.equals(discipline));
 //return disciplines.contains(discipline);
 }
 public LocalDate getInitDate () {
 return professor.getInitDate();
 }
 public String getName () {
 return professor.getName();
 }
}

Business Patterns Chapter 3

[76]

Let's also have a look at the AcademicFacadeImpl class:

@Stateless
@LocalBean
public class AcademicFacadeImpl implements AcademicFacadeRemote,
AcademicFacadeLocal {
 ...
 ...
 @Inject
 private ProfessorBO professorBO;

 @Override
 public List<Professor> getProfessorsByDiscipline(Discipline discipline) {
 return disciplineDAO.getProfessorByDiscipline(discipline);
 }

 public boolean canProfessorTeachDiscipline (Professor professor,
Discipline discipline) {
 /*return disciplineDAO.getDisciplinesByProfessor
(professor).contains(discipline);*/
 professorBO.setProfessor (professor);
 return professorBO.canTeachDiscipline(discipline);
 }

}

As we can see in the preceding code block, the AcademicFacadeImpl Session Façade calls
the canTeachDiscipline method from the ProfessorBO injected bean. ProfessorBO
then uses ProfessorDAO and DisciplineDAO. Next, we will see the part of the
DisciplineDAO code that is used by the ProfessorBO bean:

import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class DisciplineDAO {
static {
 Discipline d1 = new Discipline("D1", "discipline 1");
 Discipline d2 = new Discipline("D2", "discipline 2");
 Discipline d3 = new Discipline("D3", "discipline 3");
 Discipline d4 = new Discipline("D4", "discipline 4");
 disciplines = Arrays.asList(d1, d2, d3, d4);
 ...
 professorXDisciplines.put (new Professor ("professor a"), Arrays.asList
(d1, d2));
 professorXDisciplines.put (new Professor ("professor b"),

Business Patterns Chapter 3

[77]

Arrays.asList (d3));
 professorXDisciplines.put (new Professor ("professor cv"),
Arrays.asList (d1, d3, d4));
}

...

public List<Discipline> getDisciplinesByProfessor(Professor professor) {
 return professorXDisciplines.get (professor);
 }
...

}

Let's see the code used by the ProfessorDAO class:

public class ProfessorDAO {
 private static Set<Professor> professors;
 static {
 Professor p1 = new Professor ("professor a", LocalDate.of (2001, 03,
 22)),
 p2 = new Professor ("professor b", LocalDate.of (1994, 07, 05)),
 p3 = new Professor ("professor c", LocalDate.of (1985, 10, 12)),
 p4 = new Professor ("professor cv", LocalDate.of (2005, 07, 17));
 professors = Arrays
 .stream (new Professor[]{p1, p2, p3, p4})
 .collect (Collectors.toSet());
 }
 public Professor findByName (String name) {
 return professors
 .stream()
 .filter(p->p.getName().equals(name))
 .findAny()
 .get();
 }

}

Finally, let's see the ProfessorBO class:

import java.time.LocalDate;
import java.util.List;
import javax.inject.Inject;

public class ProfessorBO {
 private Professor professor;
 private List<Discipline> disciplines;
 @Inject

Business Patterns Chapter 3

[78]

 private ProfessorDAO professorDAO;
 @Inject
 private DisciplineDAO disciplineDAO;
 public void setProfessor (Professor professor) {
 this.professor = professorDAO.findByName (professor.getName());
 }

 public boolean canTeachDiscipline (Discipline discipline) {
 if (disciplines == null) {
 disciplines = disciplineDAO.getDisciplinesByProfessor
 (professor);
 }
 return disciplines.stream().anyMatch(d->d.equals(discipline));
 //return disciplines.contains(discipline);
 }
 public LocalDate getInitDate () {
 return professor.getInitDate();
 }
 public String getName () {
 return professor.getName();
 }
}

Summary
In this chapter, we explored the fact that the main objective of the Business Delegate is to
hide the details of service implementations from the presentation tier. We have also seen
that, in some situations, its use has been replaced by CDI technology (this technology is
responsible for injecting components into a typesafe way application, such as injecting an
EJB component), but we believe that this is not enough. The Business Delegate is still
widely used in the treatment of more technical exceptions—for example, when it has
remote EJB calls. In addition, the delegate protects the presentation tier from possible
changes in the service layer, and conversely, when there are types of clients other than a
web browser, using a delegate makes it easier for these new clients to access services.

Session Façade centralizes business logic without exposing complex interactions that
involve business objects to the client side. In addition, Session Façade encapsulates
business-tier components and exposes coarse-grained services to both local and remote
clients. Consequently, the clients access a Session Façade instead of directly accessing
the business components. Some services, such as transaction-control or security-
management, are addressed using Session Façade implementations, such as EJBs.

Business Patterns Chapter 3

[79]

The business-object pattern must be used whenever an application presents a high level of
complexity. This may include when the representation of real-world objects cannot be
translated merely as a data-model object, and there is, therefore, a need for reusability and
uniformity in business solutions. Aside from reusability, the immediate benefit of this
includes efficient code maintenance and a rich cohesion between layers caused by the
separation of responsibilities. This is because the business objects separate business logic
and persistence from the rest of the application.

4
Integration Patterns

In this chapter, we are going to explain some integration patterns and look at how they
work on the integration tier of Java EE. After reading this chapter, you will be able to
implement these patterns and use them to solve integration problems between resources or
systems. You will also be able to work on the integration tier and become familiar with the
concepts associated with integration patterns. The topics in this chapter are as follows:

Explaining the concept of the integration tier
Explaining the concept of the data-access object pattern
Implementing the data-access object pattern
Explaining the concept of the domain-store pattern
Implementing the domain-store pattern
Explaining the concept of the service-activator pattern
Implementing the service-activator pattern

Explaining the concept of the integration tier
As discussed in previous chapters, Java EE is divided into three well-known tiers—the
presentation tier, the business tier, and the integration tier. These tiers work together to
promote solutions with a high level of decoupling.

In a business environment, software development is very difficult as we need to think
about the whole ecosystem of the enterprise. An ecosystem includes its data source,
software, data politics, security, and devices. Consequently, the developer needs to think
about how to read and write data in these data sources, how the software communicates
between with each other, how the data policies are implemented on the systems, how the
security works on the business environment, and so on. In this case, it would be beneficial
to create a tier to resolve all integration and communication problems, because
their solutions will be decoupled from business logic. This is the thought process that gave
birth to the integration tier.

Integration Patterns Chapter 4

[81]

The integration tier is the tier responsible for decoupling the business logic from the
integration logic throughout the whole application. This tier has the logic of
communication with an external resource or system, and this stays separate from the
business logic. This tier will make it possible to read and write data from external sources,
making communication between applications and components of the business ecosystem
feasible. Furthermore, this tier will hide all communication complexity from the business
tier. The business tier will then receive the data without knowing the complexity of the
communication between the components and how they are structured.

Nowadays, it is extremely rare to develop an application with integration but without some
kind of integration with an external resource. This is because the application always needs
to read data from a source, and this source is generally outside of the application in
databases or filesystems. If the application has an external data source as its dependency,
then this application needs to be integrated to access the data from the external data
source. The simpler application will then have an integration tier.

Over time, the complexity of integration between resources or systems grew, because more
and more business logic needs to be integrated to promote a good response to businesses.
With this, there emerged a necessity to create a common solution to integration problems
that occur over and over, and with this, the integration patterns were created.

Explaining the concept of the data-access
object pattern
In the business world, the application always needs to be integrated with the data source in
order to read, write, delete, or update data. This data source could be a relational database,
NoSQL database, LDAP (Lightweight Directory Access Protocol), or filesystem, for
example. Each type of data source has its structure and has a complexity to connect to, read,
and write data. These complexities shouldn't be exposed to business logic and instead
should be decoupled from it.

The data-access object pattern is a pattern used to abstract and hides all access to data
sources from the business tier. This pattern encapsulates all data-source access logic and its
complexities from the business tier, decoupling all data-source access logic from it. If we
then want to substitute the data source with another, we will only need to modify the code
of the data-access object pattern, and this modification will not be visible on the business
tier. The following diagram displays the data-access object pattern model:

Integration Patterns Chapter 4

[82]

In the preceding diagram, we have BusinessObject, which has the business logic; DAO,
which has the data access logic; TransferObject, which is the object used to transfer; and
data source, which is the external local where the data resides. When BusinessObject needs
to access the data, it requests data from DAO. The DAO accesses the data source and reads
the data, then returns the data to BusinessObject as TransferObject. Some developers and
professionals think this pattern is only supposed to be used with relational databases and
NoSql, but when our data source is a filesystem or another type of data persistence, we
should also use DAO in order to promote the decoupling between business logic and
persistence logic as well as to organize our code.

Implementing the data-access object pattern
To implement this pattern using the best practices of Java EE 8, we will use a relational
database and implement the data read and write using a JPA specification. In this example,
we will have one table named employee, which contains the employee data. We will also
create a class called EmployeeDao which will have four methods – save(employee),
findByName(name), findAll(), and delete(employee). The save method will receive
one employee and save them on the database, findByName will receive the name as a
parameter and will find the employee by name on the database, and delete will receive an
employee and delete them from the database. Also, we are going to create a transfer object
called Employee, a class that is a JPA entity and has the mapping to a database table.

Integration Patterns Chapter 4

[83]

Implementing the entity with JPA
The JPA entity is a class that represents some table or view of a database. The entity needs
to have an attribute that identifies only one entity, needs to have a constructor with non-
arguments and each object of a class that is a JPA entity identify only one row of table or
view.

In the following code, we have an interface, called Entity, that all JPA entities will
implement according to the following method:

public interface Entity < T > {

 public T getId();
}

In the following code, we have the transfer object, called Employee, which is a JPA entity.
This class has the mapping table, called Employee, as well as its column used by
applications. The business tier only needs to know the transfer objects, the DAOs, and the
parameters to send to the DAOs:

import javax.persistence.*;
import javax.validation.constraints.NotNull;
import java.util.Objects;

@javax.persistence.Entity(name = "Employee")
public class Employee implements Entity<Long> {

 @Id
 @GeneratedValue
 @Column(name = "id")
 private Long id;

 @NotNull
 @Column(name="name")
 private String name;

 @Column(name="address")
 private String address;

 @NotNull
 @Column(name="salary")
 private Double salary;

 public Employee(){}

 public Employee(String name, String address, Double salary){

Integration Patterns Chapter 4

[84]

 this.name = name;
 this.address = address;
 this.salary = salary;

 }

 public void setId(Long id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 public Double getSalary() {
 return salary;
 }

 public void setSalary(Double salary) {
 this.salary = salary;
 }

 @Override
 public Long getId() {
 return this.id;
 }

 @Override
 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;
 Employee employee = (Employee) o;
 return Objects.equals(id, employee.id);
 }

 @Override

Integration Patterns Chapter 4

[85]

 public int hashCode() {

 return Objects.hash(id);
 }
}

Implementing DAO
In order to reuse a lot of code and promote best practices to implement DAO, we will create
an abstract DAO, called AbstractDao, which is the superclass of all DAOs, that has
methods with the generic logic that can be used by all DAOs:

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.persistence.TypedQuery;
import java.lang.reflect.ParameterizedType;
import java.util.List;
import java.util.Map;
import java.util.Optional;

public abstract class AbstractDao <T extends Entity>{

 //EntityManager that provide JPA functionalities
 @PersistenceContext
 protected EntityManager em;

 //Get the type of Subclass that implements Entity interface
 protected Class<T> getType() {
 ParameterizedType genericType = (ParameterizedType)
 this.getClass().getGenericSuperclass();
 return (Class<T>) genericType.getActualTypeArguments()[0];
 }

 //Find entity filtering by id.
 public Optional<T> findById (T entity){

 return Optional.ofNullable(em.find((Class<T>)
 entity.getClass(), entity.getId()));

 }

 public Optional<T> persist (T entity){

 em.persist(entity);
 return Optional.of(entity);

Integration Patterns Chapter 4

[86]

 }

 public Optional<T> update (T entity){

 return Optional.ofNullable(em.merge(entity));

 }

 public void delete (T entity){
 em.remove(entity);
 }

 protected List<T> listWithNamedQuery(String namedQuery, Map<String,
 Object> parameters){

 TypedQuery<T> query = em.createNamedQuery(namedQuery,
 getType());
 parameters.keySet().stream().forEach(key-> query.setParameter(
 key, parameters.get(key)));
 return query.getResultList();

 }

 protected Optional<T> findWithNamedQuery(String namedQuery,
 Map<String, Object> parameters){

 TypedQuery<T> query = em.createNamedQuery(namedQuery,
 getType());
 parameters.keySet().stream().forEach(key-> query.setParameter(
 key, parameters.get(key)));
 return Optional.ofNullable(query.getSingleResult());

 }

}

To prevent the user from instantiating AbstractDao, we created the class in the preceding
code as an abstract class. Another AbstractDao characteristic is the return of methods,
which only return Entity or a list of Entity. This is a good practice, because we know the
object type that is returned by this method and it organizes our code, because we know
what type of value our method could return:

import javax.ejb.Stateless;
import java.util.Collections;
import java.util.List;

Integration Patterns Chapter 4

[87]

@Stateless
public class EmployeeDao extends AbstractDao <Employee> {

 public List<Employee> findByName(String name){

 return this.listWithNamedQuery("Employee.findByName",
 Collections.singletonMap(
 "name", name));

 }

 public List<Employee> findAll(){

 return this.listWithNamedQuery("Employee.findAll",
 Collections.emptyMap());

 }

}

We can see that we have the EmployeeDao class, which is the DAO that reads and writes
data about Employee. This class is an EJB, meaning that it can control all transactions with
the JTA specification—assuming that transactions are managed by the Java EE
container—and make the transaction control transparent to the application. To read
employee data, we can call the findAll, findByName, and findById methods; to write
employee data, we can call the persist and update methods; and to remove (delete)
employee data, we can call the delete method. Note that the business class—a class that
acts on the business tier—doesn't know about the process of reading and writing data; it
only knows the parameters of the method to call as well as its returns. Therefore, we can
substitute the data source without impacting the business logic. We
have EmployeeBusiness using the DAO to read and write data, which we will see here:

import com.packt.javaee8.dao.EmployeeDao;
import com.packt.javaee8.entity.Employee;

import javax.ejb.Stateless;
import javax.inject.Inject;
import java.util.List;
import java.util.Optional;

@Stateless
public class EmployeeBusiness{

 @Inject
 protected EmployeeDao employeeDao;

Integration Patterns Chapter 4

[88]

 public List<Employee> listByName(String name){

 return employeeDao.findByName(name);

 }

 public boolean save (Employee employee){

 return employeeDao.persist(employee).isPresent();

 }

 public List<Employee> listAll(){

 return employeeDao.findAll();

 }

 public Optional<Employee> findById(Employee employee){
 return employeeDao.findById(employee);
 }
}

This is a good pattern; its use is very broad and most applications implement it. When
implementing this pattern, be careful not to expose data-source characteristics, for example,
by sending a SQL query as a parameter to DAO's execution or by sending a path of the file
system as a parameter to DAO's execution.

Explaining the concept of the domain-store
pattern
We covered the data-access object pattern in the previous section and looked at how this
pattern makes an abstraction of the data access logic from the business tier. However, the
data-access object pattern is a stateless pattern that does not save states and intelligence
inside them. Some problems have a complex relationship between data, and the data
persistence needs to be done through an intelligent process. To promote this feature, the
data-access object pattern does not attend. This is because DAO shouldn't maintain
states, shouldn't contain any intelligent processes, and need only contain a process for
saving or updating. To solve this problem, the domain-store pattern was created—a pattern
that can add functionalities to DAO.

Integration Patterns Chapter 4

[89]

The domain-store pattern is a pattern that makes the object-model persistence transparent,
separating the persistence logic from the object model, making it possible for the
application to select the persistence logic according to the object state. Inside this pattern
exists a DAO, designed to communicate and manipulate data with the data source, but this
DAO is hidden from the application. This pattern is rarely implemented by developers
because JPA already works as a domain-store pattern. This is because the JPA implements
some intelligent processes to define when and how to save the data and its intelligent
processes are oriented by the mapping made on JPA entities. However, when we decide to
implement persistence in another type of data source, we may want to implement this
pattern and use it in our application. In the following diagram, we can see the domain-store
pattern model:

Integration Patterns Chapter 4

[90]

Many developers believe that the DAO is dead after JPA. This is because the JPA works
with the domain store pattern and already has an internal DAO. However, to us, the DAO
is a good pattern to use on Java EE projects. This is because JPA has a stronger relationship
with relational databases, and if we substitute the relational database for another type of
data source, we will possibly need to remove the JPA and use another mechanism instead.
If all JPA calls are inside DAO, the application will only see DAO, and the JPA
implementation will be hidden from the application. This makes the business tier more
decoupled from the integration tier and the persistence logic.

Implementing the domain-store pattern
This is a very long pattern. To implement and facilitate this implementation, we will save
all the data on HashMap. This is an important step, because the focus of this subsection is
to demonstrate how to implement domain-store patterns. To facilitate our understanding,
we will look at the same scenario covered in the Implementing the data-access object pattern
subsection. Here, we have the transfer object, called Employee, and we will also read and
write data on the data source. However, persistence will be oriented by object state and will
have an intelligence in its logic.. In this implementation, we have the following classes,
interfaces, and annotations:

PersistenceManagerFactory: This works as a factory pattern and is
responsible for creating instances of the PersistenceManager class.
PersistenceManagerFactory is a singleton and has only one instance on the
entire application.
PersistenceManager: This manages the persistence and queries the data. This
data is an object model that works as a Unit of Work.
Persistence: This is an annotation used as the qualify of CDI. This qualify is
used to define a method of PersistenceManagerFactory, which is responsible
for creating a PersistenceManager instance.
EmployeeStoreManager: This works as a Data-Access Object (DAO),
interacting with the data source and encapsulating all the data source
complexity. DAO is responsible for reading and writing employee data on the
data source.

Integration Patterns Chapter 4

[91]

StageManager: This is an interface used to create all the StageManager
implementations.
EmployeeStageManager: This coordinates the read and writes operations of
data according to its states and rules.
TransactionFactory: This works as a factory pattern and is responsible for
creating Transaction instances. TransactionFactory is a singleton and has
only one instance in the entire application.
Transaction: This is used to create transaction-oriented policies. This class
controls the life cycle of transactions and defines the transaction limits.
Transaction (annotation): Annotation used as the qualify of CDI. This qualify is
used to define a method of TransactionFactory that is responsible for creating
a Transaction instance.

To implement this pattern, we will begin with the PesistenceManagerFactory class,
which is a factory of PersistenceManager.

Implementing the PersistenceManagerFactory
class
In the following code, we have the qualify used to inject the PersistenceManager class:

import javax.inject.Qualifier;
import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;
import java.lang.annotation.Target;

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})

public @interface Persistence {
}

Integration Patterns Chapter 4

[92]

Looking at the following code, we can see that we have
the PersistenceManagerFactory class, which is responsible for creating new instances
of PersistenceManager. This class uses the @Singleton annotation, which is an EJB
annotation used to create a singleton pattern with the Java EE mechanism.
The getPersistenceManager method has the @Produces annotation, which is used to
define a method responsible for creating a new instance. It also has
the @Persistence annotation, which is used as a qualify:

import javax.ejb.Singleton;
import javax.enterprise.inject.Produces;
import java.util.HashSet;
import java.util.Set;

@Singleton
public class PersistenceManagerFactory {

 Set<StageManager> stateManagers = new HashSet<StageManager>();

 public @Produces @Persistence PersistenceManager
 getPersistenceManager(){

 //Logic to build PersistenceManager
 return new PersistenceManager();

 }

}

Implementing the PersistenceManager class
We need to manage all processes of persistence and query data. For this, we need to create
a class.

The PersistenceManager class is responsible for managing all persistence processes and
query processes:

import javax.annotation.PostConstruct;
import javax.inject.Inject;
import java.util.LinkedHashSet;
import java.util.Optional;
import java.util.Set;
import java.util.stream.Collectors;

Integration Patterns Chapter 4

[93]

public class PersistenceManager {

 private Set<StageManager> stateManagers;

 @Inject @Transactional Transaction transaction;

 @PostConstruct
 public void init(){
 stateManagers = new LinkedHashSet<StageManager>();

 }

 public Optional<Entity> persist (Entity entity) {

 if (entity instanceof Employee){
 stateManagers.add(new EmployeeStageManager((Employee)
 entity));
 }

 return Optional.ofNullable(entity);
 }

 public void begin() throws Exception {

 if(!transaction.isOpened()){
 transaction.begin();
 }
 else{

 throw new Exception("Transaction already is opened");

 }
 }

 public Optional<Entity> load(Object id){

 Entity entity = stateManagers.stream()
 .filter(e-> e.getEntity().getId().equals(id))
 .map(s->s.getEntity())
 .findFirst()
 .orElseGet(()-> new EmployeeStoreManager().load(id));

 if(Optional.ofNullable(entity).isPresent()
 && stateManagers.stream().map(s->s.getEntity()
).collect(Collectors.toList()).contains(entity))
 stateManagers.add(new EmployeeStageManager((Employee)
 entity));

Integration Patterns Chapter 4

[94]

 return Optional.ofNullable(entity);

 }

 public void commit() throws Exception {

 if(transaction.isOpened()){
 stateManagers.stream().forEach(s-> s.flush());
 transaction.commit();
 }
 else{

 throw new Exception("Transaction is not opened");

 }
 }

 public void rollback() throws Exception {

 if(transaction.isOpened()) {
 stateManagers = new LinkedHashSet<StageManager>();
 transaction.rollback();
 }

 else {

 throw new Exception("Transaction is not opened");

 }
 }
}

In the preceding code, we have the PersistenceManager class. This class has the
stateManagers attribute, which is a set of StateManager used to control the read and
write of each object model. It also has the Transaction attribute, which is used to control
the transaction lifecycle. This class also has the persist method, which is used to write the
data represented by the object model; the begin method, used to begin the transaction;
the load method, used to read an object model's data; the commit method, used to commit
the transaction; and finally, the rollback method, which is used to roll back the
transaction.

Integration Patterns Chapter 4

[95]

Implementing the EmployeeStoreManager class
The EmployeeStoreManager class is responsible for connecting with the data source as
well as reading and writing employee data:

import com.packt.javaee8.entity.Employee;

import java.util.HashMap;
import java.util.Map;

public class EmployeeStoreManager {

 private Map<Object, Employee> dataSource = new HashMap<>();

 public void storeNew (Employee employee) throws Exception {

 if(dataSource.containsKey(employee.getId())) throw new
Exception("Data already exist");

 dataSource.put(employee.getId(), employee);
 }

 public void update (Employee employee) throws Exception {

 if(!dataSource.containsKey(employee.getId())) throw new
Exception("Data not exist");

 dataSource.put(employee.getId(), employee);
 }

 public void delete (Employee employee) throws Exception {

 if(!dataSource.containsKey(employee.getId())) throw new
Exception("Data not exist");

 dataSource.remove(employee.getId());

 }

 public Employee load(Object key){

 return dataSource.get(key);

 }

}

Integration Patterns Chapter 4

[96]

In the preceding code block, we have the EmployeeStoreManager class, which is
responsible for connecting with the data source and reading and writing employee data.
This class works as a DAO and encapsulates all the data source complexity. It also has the
dataSource attribute, which is a map that represents a data source. Furthermore, this class
has the storeNew method, which is used to write new employee data represented by the
object model. It also has the update method, used to write existing employee data
represented by an object model. This method is used to update stored data. The delete
method is also used to delete existing employee data, and the load method is used to read
employee data in an object model.

Implementing the StageManager interface
StageManager is an interface that is implemented by EmployeeStageManager:

public interface StageManager {

 public void flush();

 public void load();

 public Entity getEntity();
}

In the preceding code block, we have the StageManager interface. This interface is
implemented by EmployeeStageManager:

public class EmployeeStageManager implements StageManager {

 private boolean isNew;

 private Employee employee;

 public EmployeeStageManager (Employee employee){

 this.employee = employee;

 }

 public void flush(){

 EmployeeStoreManager employeeStoreManager = new
EmployeeStoreManager();

 if(isNew){

Integration Patterns Chapter 4

[97]

 try {
 employeeStoreManager.storeNew(employee);
 } catch (Exception e) {
 e.printStackTrace();
 }
 isNew = false;
 }
 else {
 try {
 employeeStoreManager.update(employee);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 }

 public void load() {
 EmployeeStoreManager storeManager =
 new EmployeeStoreManager();
 Employee empl = storeManager.load(employee.getId());
 updateEmployee(empl);
 }

 private void updateEmployee(Employee empl) {

 employee.setId(empl.getId());
 employee.setAddress(empl.getAddress());
 employee.setName(empl.getName());
 employee.setSalary(empl.getSalary());

 isNew = false;

 }

 public Entity getEntity() {

 return employee;

 }

}

Integration Patterns Chapter 4

[98]

In the preceding code block, we have the isNew attribute, which is used to define whether
or not the object model is a new write (new data will be created on data source). The code
also contains the employee attribute, which is the object model used to represent employee
data. We can also see the flush method, used to execute the process for writing data on the
data source; the load method, used to read data from the data source;
the updateEmployee method, which is the private method used to update the employee
attribute; and the getEntity method, which is used to return the employee attribute.

Implementing the TransactionFactory class
In the following code, we have the Transactional annotation, which is a
Qualifier used to inject the Transaction class:

import javax.inject.Qualifier;
import java.lang.annotation.Retention;
import java.lang.annotation.Target;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.RUNTIME;

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Transactional {
}

In the preceding code block, we have the TransactionFactory class, which is responsible
for creating new instances of the Transaction class. This class uses
the @Singleton annotation, which is an EJB annotation used to create a singleton pattern
with the Java EE mechanism. The getTransaction method has
the @Produces annotation, used to define a method responsible for creating a new
instance, and the @Transactional annotation, used as a qualify:

import javax.ejb.Singleton;
import javax.enterprise.inject.Produces;

@Singleton
public class TransactionFactory {

 public @Produces @Transactional Transaction getTransaction(){
 //Logic to create Transations.
 return new Transaction();
 }
}

Integration Patterns Chapter 4

[99]

Implementing the Transaction class
The Transaction class is responsible for controlling the transaction lifecycle and defining
the transaction delimit:

package com.packt.javaee8.domainstore;

import javax.annotation.PostConstruct;

public class Transaction {

 private boolean opened;

 @PostConstruct
 public void init(){
 this.opened = false;
 }

 public void commit() throws Exception {
 if(!opened) throw new Exception("Transaction is not opened");
 opened = false;
 }

 public void rollback() throws Exception {
 if(!opened) throw new Exception("Transaction is not opened");
 opened = false;
 }

 public void begin() throws Exception {
 if(opened) throw new Exception("Transaction already is opened");
 opened = true;
 }

 public boolean isOpened(){
 return opened;
 }
}

In the preceding code block, we have the Transaction class, which is responsible for
controlling the transaction lifecycle and defining the transaction delimit. This class has the
init() method, annotated with @PostConstruct, which configures this method to be
called after the constructor is executed. Furthermore, this class has the commit method,
which is used when the user needs to confirm the transaction; the rollback method, used
to undo all transactions; the begin method, used to open a transaction; and the
isOpened method, which is used to verify whether a transaction is open or not.

Integration Patterns Chapter 4

[100]

The transaction is closed if the begin method was not called or if the commit or rollback
methods were called and a new call to the begin method was not made.

Implementing the EmployeeBusiness class
The EmployeeBusiness class has the employee business logic:

import javax.ejb.Stateless;
import javax.inject.Inject;
import java.util.Optional;

@Stateless
public class EmployeeBusiness{

 @Inject @Persistence
 protected PersistenceManager persistenceManager;

 public boolean save (Employee employee) throws Exception {
 //Begin Transaction
 persistenceManager.begin();
 persistenceManager.persist(employee);
 //End Transaction
 persistenceManager.commit();

 return true;

 }

 public Optional<Employee> findById(Employee employee){
 return Optional.ofNullable((Employee)
persistenceManager.load(employee.getId()).get());
 }

}

Integration Patterns Chapter 4

[101]

In the preceding code block, we have the EmployeeBusiness class, which has the
employee business logic. This class has the save(Employee) method, which is used to
save employee data, and findById(Employee), which is used to find an employee
according to their ID. Note that, on the save method, we call the begin() method as well
as commit() from the PersistenceManager class. These calls define the delimiting of a
transaction and only the data is saved at the data source when the commit() method is
called.

Explaining the concept of the service-
activator pattern
Suppose a client needs to request a business service, which is a process that takes a long
time. In this case, the client should not wait in a synchronous way until the end of the
process. Instead, there must be a way to make an asynchronous service call that does not
block the client or user. This service can then be activated at some point in the future. There
may be several reasons for the delay of a process. For example, there may be a database
query that consumes a lot of time, or an access to a legacy system that is beyond the control
of the current application. The pattern of asynchronously performing the required task is
known as the service activator.

So, the service activator pattern is always used when the client needs to call a service
asynchronously. This means that the client makes the request and does not wait for the
response.

We can imagine some alternative solutions to this problem. One method would be to send
the request to a queue, while another service would read the request from this queue and
execute the task within it. Alternatively, when the client requests a service, this service
could be placed in a database, and there could be a listener or a job that would check the
tasks that had not yet been performed. If a task had not yet been performed, it would be
executed.

In fact, the JEE specification gives us very good solutions that are used to implement the
service-activator pattern. These solutions are described as follows:

Java Message Service (JMS)
EJB asynchronous methods
Asynchronous events: producers and observers

Integration Patterns Chapter 4

[102]

These three solutions were offered in the given order within the evolution of the JEE
specification. We'll look at each of these solutions in more detail in the following sections.

Java Message Service (JMS)
A message-driven middleware (MOM) is an architecture that uses message exchanges,
which refers to sending and receiving messages, between the modules of an application or
between distributed systems. The MOM provides some good services, such as message
persistence or message-delivery guarantees. A message broker is based on a MOM, for
instance.

Java Message Service (JMS) is an application programming interface (API) that provides a
MOM interface for clients who want an asynchronous process. JMS became part of the EJB
technology in the EJB 2.0 specification and a new session bean was then introduced: the
message-driven bean (MDB).

An MDB bean is a stateless session bean that is used to listen to requests or objects arriving
in a JMS queue. It is important to note that an MDB can implement any type of message,
but it is more commonly used to handle JMS messages.

A message-driven bean listens to messages that have been sent to a queue or to a topic.
However, we will only see the example of messages sent to a queue. Messages can be sent
by any JEE component or by another application outside the JEE context.

The following diagram shows the trajectory of a message, from being sent to being received
by an MDB:

Integration Patterns Chapter 4

[103]

Later in this chapter, we'll see an example of the implementation of message producers and
a message receiver. The receiver of the message will be implemented with an MDB. For
now, we will quote some important items about the MDB. The MDB implementation has
the following structure:

@MessageDriven (mappedName = "myQueue")
public class BeanMessage implements MessageListener {
 @Override
 public void onMessage (Message message) {
 try {
 // message process
 }catch (JMSException ex) {
 // handle exception
 }
 }
}

The @MessageDriven annotation sets the bean to be message-driven. In addition, the bean
class must be public but cannot be abstract or final, and the class must contain a public
constructor with no arguments.

The mappedName attribute specifies the JNDI name of the JMS that will receive the message
to be consumed. There are other attributes in the @MessageDriven annotation that are
used to configure the bean. For example, the activationConfig attribute may contain an
@ActivationConfigProperty annotation array that contains a key/value pair used to
improve the bean's configuration.

The bean must implement the MessageListener interface, which has only one method,
known as onMessage. This method is called by the container whenever the message is
consumed by the MDB.

We can identify the following characteristics of an MDB:

It is not in the same transaction context as the message sender
It is not called directly by another session bean
It can invoke other session beans
It can send JMS messages
It does not have remote or local interfaces related to client access

Integration Patterns Chapter 4

[104]

EJB asynchronous methods
The EJB 3.1 specification incorporated asynchronous methods to session beans with the use
of an @javax.ejb.Asynchronous annotation. Consequently, we can have asynchronous
processing from a simple call to an EJB method.

The @javax.ejb.Asynchronous annotation can be applied to a class of a session bean or
applied to individual methods of this class. If applied to the entire class, all business
methods of this bean are called asynchronously. Otherwise, only the methods with the
annotation will be called asynchronously:

@Stateless
public class MyBean
 @Asynchronous
 public void veryTimeConsumingProcess1 (SomeFilterBean filter) {
 //código para cadastrar um pedido
 }
 @Asynchronous
 public Future veryTimeConsumingProcess2 (SomeFilterBean filter) {
 //autoriza demora
 }
}

The second method returns an instance of java.util.concurrent.Future. With this
object, the client can check whether the result has already arrived, or can even abort the
task. However, the method returns immediately to the client thread and does not block the
process.

Asynchronous events – producers and observers
Another alternative that appeared on the evolutionary scale of the JEE platform was the
event mechanism that is a part of the CDI specification. The mechanism is composed of
producers and consumers of events, meaning that one component fires an event and
another component of the application receives the event, acting as a listener or observer.

Up to the JEE8 specification, this event mechanism was done synchronously. With the
introduction of CDI 2.0 in the JEE8 specification, the events API included improvements
such as asynchronous use.

Integration Patterns Chapter 4

[105]

The following diagram shows the asynchronous mechanism for sending and receiving
events:

Now, we will see the basics of how to implement the codes of a producer and an observer of
an asynchronous event:

public class SomeProducer {

 @Inject private Event<BeanTO> someEvent;

 public void finalizaCompra() {
 BeanTO bean = new BeanTO(...);
 someEvent.fireAsync(bean);
 }
}

public class SomeObserver {

 public void doSomething (@ObservesAsync BeanTO bean) {
 // do some task with bean (like send email, calling another business
process, etc.
 }
}

Integration Patterns Chapter 4

[106]

The someEvent event is injected into the SomeProducer class, and the
Event.fireAsync() method is responsible for the asynchronous event-firing. After some
time, observers also receive the event asynchronously. The observer methods have
parameters annotated with @ObservesAsync.

Asynchronous observers are called in a new transaction context. However, they belong to
the same security context as the invocation of Event.fireAsync.

Implementing the service-activator pattern
We are now going to show code examples of the three solutions offered by the Java EE
platform.

Implementing sending and receiving messages
with JMS
The following is an example of a JMS message sender. This is a CDI bean that is responsible
for sending messages:

public class MessageSender {
 @Inject
 @JMSConnectionFactory("jms/connectionFactory")
 JMSContext context;

 @Resource(mappedName = "jms/myQueue")
 Destination queue;

 public void sendSomeMessage (String message) {
 context.createProducer().send(queue, message);
 }
}

The @JMSConnectionFactory annotation indicates which ConnectionFactory should
be used to create the JMSContext. The following code block shows an MDB that receives
the message generated by the producer described earlier:

@MessageDriven(
 activationConfig = { @ActivationConfigProperty(
 propertyName = "destinationType", propertyValue = "javax.jms.Queue")
 })
public class EmailService implements MessageListener {
 @Resource

Integration Patterns Chapter 4

[107]

 private MessageDrivenContext mdc;

 public void onMessage (Message message) {
 try {
 String str = message.getBody (String.class);
 }
 catch (JMSException ex){
 // handling exception ...
 mdc.setRollbackOnly();
 }
}

As previously mentioned, the @MessageDriven annotation converts a simple bean into an
MDB. This annotation has many activation configuration properties, defined by the JMS
specification. The two important properties shown in the example are as follows:

destinationLookup: The JNDI lookup name of the queue or topic
destinationType: The queue type, javax.jms.Queue or javax.jms.Topic

Similar to a stateless session bean, the container can make an instance pool to handle
multiple messages. The onMessage method belongs to a single transaction context, and this
context is propagated to the other methods invoked within onMessage.

A MessageDrivenContext object can be injected into an MDB. This object provides access
to the MDB context at runtime. We can, for example, roll back a transaction using the
setRollbackOnly() method shown in the earlier mentioned example.

Implementing the EJB asynchronous methods
The following code shows an example of a stateless EJB asynchronous method. Suppose
there is a method responsible for approving and scheduling student test reviews and we
want to call this method in an asynchronous way:

@javax.ejb.Stateless
public AcademicServiceBean {
 @javax.ejb.Asynchronous
 public Future requestTestReview(Test test) {
 // ...
 }
 }

Integration Patterns Chapter 4

[108]

 We will look at a bean client that requests a test review service, as follows:

@Named
@SessionScope
public TestController {
 @Inject
 private AcademicServiceBean academicBean;
 private Future statusTestReview;
 public void requestTestReview(){
/* get Test object which has the test data, like: test date; student who
made the test; discipline, etc.*/
 Test testToBeReviewed = ...;
 this.statusTestReview = academicBean.requestTestReview
(testToBeReviewed);
 }
 public Future<TestReview> checkTestReviewStatus()
 {
 // ...
 }
}

Asynchronous methods can return void, or as an instance of
java.util.concurrent.Future <T>. In the preceding example, the return is an instance
of Future <TestReview>. The result of invoking the asynchronous method is returned
immediately and there is no lock on the client thread. However, the client can consult this
instance of Future at any time in order to check the result. The TestReview object contains
information such as the Boolean type, whether or not the test review was approved, and the
test review schedule date.

Implementing asynchronous events – producers
and observers
Suppose a client wants to send emails to college students, inviting them to a science and
technology seminar. And suppose that the emails that were sent generate statistical
information for later analysis. In this case, the client does not need to wait for the
answer immediately. We can make an event producer and two event observers: an observer
responsible for sending the email itself and an observer responsible for statistical control.
The two processes are independent of each other. The following code shows the producer
and the two observers.

Integration Patterns Chapter 4

[109]

This is the SeminarProducer class:

public class SeminarProducer {
 @Inject private Event<Seminar> seminarEvent;
 public void sendEmailProcess(Date date, String title, String
description) {
 Seminar seminar = new Seminar(date, title, description);
 seminarEvent.fireAsync(seminar);
 }
}

These are the two observers:

public class SeminarServiceBean {

 public void inviteToSeminar (@ObservesAsync Seminar seminar) {
 // sen email for the college students inviting for the seminar
 }
}

public class StatisticControlingBean {

 public void generateStatistic (@ObservesAsync Seminar seminar) {
 // create some statistic data
 }
}

Summary
In this chapter, you learned about the integration tier, as well as integration patterns and
how they are implemented. The integration patterns that we learned about included the
data-access object pattern, the domain-store pattern, and the service-activator pattern. We
also learned about the implementations of these patterns. Furthermore, we learned about
the concept of the data-access object pattern, as well as when and how to implement it
using the best practices of Java EE 8. We also learned about domain-store pattern concepts,
the differences between the domain-store pattern and the data-access object pattern, and
when and how to implement domain-store patterns. Finally, we learned about service-
activator pattern concepts and when and how to implement this using JMS, EJB
asynchronous methods, asynchronous event mechanisms, and the best practices of Java EE
8.

In the next chapter, we will cover reactive patterns, focusing on when to use them and how
to implement them using best practices of Java EE 8.

5
Aspect-Oriented Programming

and Design Patterns
In this chapter, we will look at the concept of aspect-oriented programming (AOP),
focusing on which situations AOP should be used in, as well as how to achieve AOP with
the use of CDI interceptors and decorators. Finally, we will also look at some examples of
its implementation. By the end of this chapter, you will be able to identify a situation that
requires AOP with the use of interceptors and decorators. Furthermore, you will also be
able to identify the best approach to implementing these concepts. The topics covered in
this chapter are as follows:

Aspect-oriented programming
AOP in a JEE scenario – the interceptor
EJB interceptor implementation
CDI interceptor implementation
The decorator pattern
The decorator pattern in a JEE scenario
Decorator implementation

Aspect-Oriented Programming and Design Patterns Chapter 5

[111]

Aspect-oriented programming
AOP is a programming paradigm that allows us to separate business logic from some
technical code that crosscuts all applications. In other words, AOP allows the separation of
crosscutting concerns. We will encounter crosscutting code when we input the logging code
in certain methods to show technical support information. We also encounter it when we
input statistic code to see how many times a method calls or who the user using the
application is, or even for exception and error handling. We see this kind of code in almost
all parts of an application—it is code that is repeated along the whole application. This kind
of code has its own objectives and concerns, and it is a very good idea to separate it from
the business code, which is related to the application use cases.

These aspects of the system (such as logging or exception handling) are very difficult to
implement in a modular way. What we are saying here is that we don't want to mix these
aspects with business code. By mixing these two types of code, we are left with a final
code that is more difficult to maintain.

With AOP, we can join or add an executable code to our source code without changing it,
meaning that the source code remains intact. As we said, if we want to log a method, for
instance, then we can do that without disrupting our business code with a service code,
such as the logging service.

Compile-time versus run-time AOP
AOP is achieved through code injection during compile-time or runtime.

Frameworks that implement AOP at compile-time change the binary code (the .class file),
so when the interceptor code is injected, we are left with a .class file that is different from
the .class that would be generated without the injection code. The resulting .class file
then becomes incompatible with the source code.

On the other hand, the run-time injection does not modify either the source code or the
.class file. In this case, the interception method is done in a separate code from the class
or place that contains the method. As a consequence, the interception codes that are
executed before and after the method's original call are found in another class.

Aspect-Oriented Programming and Design Patterns Chapter 5

[112]

Java does not offer a built-in solution for AOP, but some third-party frameworks, such as
Eclipse AspectJ and Spring, are widely used in Java applications. We could use Eclipse
AspectJ, for instance, to implement AOP. Eclipse AspectJ is a seamless aspect-oriented
extension to the Java programming language. It is a Java platform that is compatible and
easy to use. However, JEE implements AOP using a new idea concept known as
an interceptor, and we will see how this functions in the following section. All JEE
programmers can have AOP using interceptors, without it being necessary to get the JAR's
dependency related to the AspectJ solution and putting this into our application.

AOP in JEE scenario – the interceptor
Aspect-oriented software development enables the clean modularization of crosscutting
concerns. For the benefit of all JEE programmers, we can also separate business code from
crosscutting concerns, which is a solution that the interceptor technologies offer by
implementing JEE.

When an EJB method or a managed bean is called and there is an interceptor associated
with this call (we will see how this is implemented soon), we can write a code to be
executed immediately before the method calls and also just after the method calls (that is,
after the return of the method).

Intercepting filter patterns is another pattern that is used for intercepting a request. In JEE,
we can implement the filter pattern using web filters and servlets. By using a web filter, a
Java web application implements the interception of web requests and responses. The web
application can intercept the request, fulfill an action, and also intercept the response. The
following list contains several examples of filters that have many actions:

Authentication/authorization filters
Logging and auditing filters
Image conversion filters
Data compression filters
Encryption filters
Tokenizing filters

The interceptor acts as a filter, and therefore we can consider a web filter as an interceptor.
However, this mechanism is related to web requests and responses. We will not talk about
this type of interception in this chapter. Instead, we will cover the interceptor patterns that
are used in managed beans—that is, the EJB interceptor, the CDI beans interceptor, and a
kind of business logic interceptor referred to as the decorator.

Aspect-Oriented Programming and Design Patterns Chapter 5

[113]

A brief word about CDI and beans
We are presuming that the reader knows the basic characteristics that surround the CDI, as
well as its main objectives and uses. However, it is very important to emphasize some
definitions and aspects of the CDI.

The CDI technology is one of the pillars of the JEE platform, and it is present in most of its
services. This means that these services depend in some way on the CDI mechanism—CDI
is closely related to the bean concept within the EE specification, so let's take a look at what
a bean actually is.

The bean
The idea of a bean is quite generic. Here, we are not talking about the concept of JavaBeans,
with the getters and setters access method. Instead, we are talking about the concept of the
bean as a web component or business component. In this scenario, we encounter several
types of beans, such as Java classes in web and JEE-related beans, such as EJB beans and
JSF-managed beans. There are even some third-party frameworks outside of the JEE
specification (such as Spring) that have a different concept of the bean. The concept of a JEE
bean is known as a managed bean, which is managed by a container that requires little
intervention by the programmer and has a well-defined life cycle. As well as this, a
managed bean can provide mechanisms for intercepting its execution and life cycle callback
methods, and can be injected into other beans or JEE objects.

Consequently, an object that has a well-defined life cycle context can be considered a bean
or a managed bean. In other words, a managed bean is a component that the container
constructs and destroys (as part of managing its life cycle). CDI includes built-in support
for several different kinds of bean. The following Java EE components can be injected:

Managed beans: EJB session beans, classes annotated with @ManagedBean,
decorators, and classes that conform to the CDI rules for becoming a managed
bean
Java EE resources: Resources that can be referenced from the component
environment naming space
Arbitrary objects: Objects that are returned by producer methods and fields

Managed beans may also inject other beans.

Aspect-Oriented Programming and Design Patterns Chapter 5

[114]

Obs: The JSF specification also describes a technology known as managed beans. These
managed beans are different from the ones we describe here. The Java EE foundational
managed beans are a generalization of the JSF ones, and are not limited to web modules.

There are other objects from the JEE platform (such as the servlet and interceptor objects)
that are not classified as JEE beans, and which may have injected beans via the CDI
mechanism. The JEE platform components that may have beans injected are as follows:

Servlets (including servlet filters and servlet event listeners)
JSP tag handlers and tag library event listeners
JSF scope-managed beans
JAX–RS components
JAX–WS service endpoints and handlers
WebSocket endpoints

Managed beans in CDI
There are several ways to declare a Java class as a managed bean. For example, if we
annotate a class with @ManageBean, it is defined as a managed bean. However, the CDI
specification insists that a class has to be considered as a managed bean according to certain
criteria. These criteria are as follows:

It is not a nonstatic inner class
It is a concrete class or it is annotated with @Decorator
It is not an EJB component
It does not implement javax.enterprise.inject.spi.Extension
It either has a no-argument constructor, or declares a constructor annotated
with @Inject

Loose coupling
Some of the objectives of using patterns in the JEE context are to reduce the coupling
between classes on different layers—or even on the same layer—as well as the code reuse
(that is, the use of some existing code that provides a certain functionality). With these two
objectives, we are able to improve software maintenance and quality. But how?

Aspect-Oriented Programming and Design Patterns Chapter 5

[115]

Loose coupling allows programmers to fix bugs or to develop new functionalities in a layer
with minimum impact on the other layers. In addition, with every tested code, methods of
special beans or objects may be called from different parts of an application, thereby
improving software organization and clarity. As a result of this, software quality is
improved and development time decreased.

As we know, loose coupling makes the code easier to maintain.

In fact, the CDI provides loose coupling. In addition, the CDI works in a strong, safe way
using qualifier annotations instead of string identification.

In JEE, the use of events, interceptors, and decorators provides loose coupling, as described
in the following list:

Event notifications: Establish a decoupling between event-generating clients and
event listeners (observers)
Interceptors: Separate technical concerns from business logic
Decorators: Allow business concerns to be extended (adding business
functionality to existing ones)

In this chapter, we will see how the interceptors and decorators achieve this goal.

Interceptors in the JEE platform
An Oracle tutorial defines an interceptor as follows:

"An interceptor is a class used to interpose in invocation methods or life cycle events that
occur in an associated target class."

As previously mentioned, interceptors are generally used for technical tasks, referred to as
cross-cutting tasks. This includes auditing, logging, controlling statistics, and so on. These
tasks are separate from the business logic, and may be repeated over the entire application.
Consequently, we can put the interceptor code into a separate class that is different from
the target class that we want to intercept in order to improve code maintenance.

The concept of the interceptor was first introduced in JEE5, and it was only used for EJBs
(session beans and message-driven beans). With the introduction of context and
dependency injection (CDI) in JEE6, the interceptors were extended to all managed
beans—that is, to beans that meet the CDI-managed bean.

Interceptor methods are invoked on an associated target class.

Aspect-Oriented Programming and Design Patterns Chapter 5

[116]

We can define an interceptor within the target class as an interceptor method, or we can
define an interceptor in a separate class (called an interceptor class) that contains the
interceptor method. Interceptor methods are always invoked when a target class method is
annotated to be intercepted and is then invoked, or when a life cycle callback method is
intercepted (such as before the construction or after the destruction of a bean). It is
important to note that for simple applications, we can put interceptors in the target class.
However, for a more complex application, or for when the application grows in complexity,
we should put the interceptor in a separate class.

Each element that you want to intercept is called an advice. We say that an interceptor
decorates the advice, and each time an advice is called, an interceptor code is executed (if it
exists). The location of the point where this code is executed is called the pointcut.

Interceptor methods on an associated target class are invoked when
advice target class methods are invoked, or when there is a life cycle event
and the life cycle callback method related to the event is called.

The following figure shows an interceptor sequence diagram:

This sequence diagram shows a chain of interceptors. When a client calls a business method
and there is a chain of interceptors associated with it, the first interceptor is called and does
something (that is, this first interceptor method's code is executed), then calls the second
interceptor explicitly, and so on. This continues until the last interceptor in the chain calls
the bean's business method. We will see how this call is made later. For now, we can say
that an element of the chain of interceptors calls the next element in the same way until the
last element—which is the business method of the managed bean itself—is invoked.

Aspect-Oriented Programming and Design Patterns Chapter 5

[117]

We can define interceptor classes and interceptor methods using annotations, or,
alternatively, we can define the deployment descriptor of the application. However, in this
section, we will only cover the use of annotations. The following table shows the
annotations used in interceptor methods that define the condition or when the interception
occurs:

Interceptor annotation Description

javax.interceptor.AroundConstruct
This defines an intercept method that receives a
callback when the constructor of the target class is
invoked

javax.interceptor.AroundInvoke
This defines an intercept method that is executed when
a method of the target class that is marked to be
intercepted with an annotation is invoked

javax.interceptor.AroundTimeout This defines an interceptor method that interposes on
timeout methods

javax.annotation.PostConstruct This defines an interceptor method for post-construct
life cycle events

javax.annotation.PreDestroy This defines an interceptor method for predestroy life
cycle events

EJB interceptor implementation
In this section, we will look at an example of the original EJB interceptor implementation.

Suppose that there is a stateless session EJB, such as AcademicFacadeImpl, as well as a
business method called testReview. This method is responsible for scheduling a student
test review. Let's say that we want to know, statistically, which students have made the
most test review requests. We could do this within the business code, but that is not what
we want. Instead, we want to separate statistic logic from business logic statistics—we want
a statistic interceptor.

First of all, we will create an EJB target class named AcademicFacadeImpl (this class was
already created in the last chapter). In the beginning, there is no interceptor reference, as
shown in the following code:

@Stateless
@LocalBean
public class AcademicFacadeImpl {
 ...
 ...
 // this method will be intercepted for some statistical
 // interceptor:
 public void requestTestReview (@Observes TestRevisionTO

Aspect-Oriented Programming and Design Patterns Chapter 5

[118]

 testRevisionTO) {
 System.out.println("enrollment : " +
 testRevisionTO.getEnrollment());
 LocalDateTime dateTime = scheduleTestReview (testRevisionTO);
 // send an email with the schedule date for review:
 sendEmail (testRevisionTO, dateTime);
 }
}

So, we define an interceptor using one of the interceptor annotations listed in the previous
table. This can be found within the target class or in a separate interceptor class. The
following code shows an @AroundInvoke interceptor method declared in the target class:

@Stateless
public class AcademicFacadeImpl {
 ...
 ...
 @AroundInvoke
 public Object statisticMethod (InvocationContext invocationContext)
throws Exception{
 ...
}

}

Alternatively, we can use a separate interceptor class. We may apply the
@Interceptor annotation, but interceptor classes do not have to be annotated. An
interceptor class must have a public and no-argument constructor. The following code
shows an interceptor class with an @Interceptor and @AroundInvoke interceptor
method:

@Interceptor
public class StatisticInterceptor implements Serializable {
 @Inject
 private Event<String> event;
 @AroundInvoke
 public Object statisticMethod (InvocationContext invocationContext)
throws Exception{
 System.out.println("Statistical method : "
 + invocationContext.getMethod().getName() + " "
 + invocationContext.getMethod().getDeclaringClass()
);
 // get the enrollment:
 TestRevisionTO testRevisionTO =
 (TestRevisionTO)invocationContext.getParameters()[0];
 System.out.println("Enrolment : " +
 testRevisionTO.getEnrollment());

Aspect-Oriented Programming and Design Patterns Chapter 5

[119]

 // fire an asynchronous statistical event:
 event.fire (testRevisionTO.getEnrollment());
 return invocationContext.proceed();

 }
}

In this example, we use the CDI event API. This API is used to implement an event-firing
mechanism. Basically, this uses a bean to fire an event, and one or more beans observe this
firing. This mechanism is implemented from an Event class object, as shown in the code.
We use a String type to qualify the event, but we could use any other type, or use
qualifiers to qualify our event.

We can also see the InvocationContext object that is a parameter of the
statisticMethod method. This object provides information about the context of the
intercepted invocation. In addition, this object has methods for controlling the chain
interceptor. For example, the proceed method calls the next interceptor in the interceptor
chain, or the intercepted method of the business object. We will learn more
about InvocationContext later.

Next, we must use the @Interceptors annotation to define at least one interceptor. We
can define interceptors at the class or method level of the target class by indicating whether
we want to intercept all the business methods or just some specific business methods. The
following code shows only one interceptor declared at the class level:

@Stateless
@Interceptors({StatisticInterceptor.class})
public class AcademicFacadeImpl

The following code declares the same interceptor, but at the method level:

@Stateless
public class AcademicFacadeImpl{
 ...
 @Interceptors({StatisticInterceptor.class})
 public void requestTestReview (@Observes TestRevisionTO
 testRevisionTO) {
 ...
 }
}

We will put @Interceptors at the method level. This is because we don't want to intercept
all other EJB methods.

Aspect-Oriented Programming and Design Patterns Chapter 5

[120]

Finally, we must create a class that will observe the statistical event. This class will handle
statistical issues. This is shown in the following code:

public class StatisticalFacadeImpl {

 public void control (@Observes String enrolment) {
 System.out.println("This enrolment is asking for a test
 revision : " + enrolment);
 // Here we can persist this information, for example.
 }
}

When the requestTestReview method of the AcademicFacadeImpl class is called, it is
intercepted (this method is marked with an interceptor), so the statisticMethod method
of the StatisticInterceptor class is called. During the execution of this method, a
statistical event is triggered. The purpose here is to perform statistical control
asynchronously for execution of the business method.

As an alternative, we could convert the StatisticalFacadeImpl into an EJB and
annotate the control method with @Asynchronous. As a result, we would not have to fire
a statistical event, and instead, we could call the following asynchronous method:

@Stateless
@LocalBean
public class StatisticalFacadeImpl {
 @Asynchronous
 public void control (String enrolment) {
 System.out.println("This enrolment is asking for a test
 revision : " + enrolment);
 }
}

Intercepting method invocation
If we want a specific method to be a pointcut, we have to annotate it with
the @AroundInvoke annotation. The @AroundInvoke method (or the pointcut
method) must return an object, and must have a parameter of the InvocationContext
type. As well as this, the pointcut method should throw an exception.

Aspect-Oriented Programming and Design Patterns Chapter 5

[121]

The InvocationContext methods can be called in order to access information about
the current context, such as the name of the pointcut, the method annotations, the method
parameters, and so on. However, it is important to note that in an interception situation, the
target class method is invoked only when the @AroundInvoke method calls the proceed
method. As a result, the @AroundInvoke method must call the proceed method in order
to invoke the target class method. In the case of the chain of interceptors, every time an EJB
business method is called, each @AroundInvoke method of each chain interceptor is called
in the order that is configured for them (via @Interceptors) until the target class method
is invoked.

These @AroundInvoke interceptor methods can have any of the access-level
modifiers—public, protected, private, or package. However, the methods must not be static
or final. Keep in mind that only one @AroundInvoke interceptor method per class is
permitted.

AroundInvoke interceptor methods have the following form:
@AroundInvoke
[public, protected, private or package-level] Object
method-name (InvocationContext) throws Exception { ...}

Only one AroundInvoke interceptor method per class is allowed.

Another important thing to keep in mind is that an AroundInvoke interceptor can have the
same transaction context as the target method.

Interceptor class and multiple method interceptors
Having an interceptor in a separate class improves code maintenance by providing a clear
division of responsibilities between classes, meaning that the classes become more cohesive.
In addition, interceptor classes may have resources and managed beans injected into them.

Another important factor worth mentioning is that the interceptor method belongs to the
same EJB transaction context. So, whenever we want to intercept a business logic to do a
technical task, such as logging or statistic persistence, we must take care. For instance, we
don't want any errors to be thrown during statistic control, thereby generating a business
transaction rollback.

Aspect-Oriented Programming and Design Patterns Chapter 5

[122]

In this case, we should perform asynchronous statistic controlling. This would guarantee
that any eventual error would occur in a new transaction, separate from the current
transaction. So, it is essential that good software design and strong business knowledge are
achieved before coding.

Interceptor classes may have resources and managed beans injected into
them.

The @Interceptors annotation is used to inject one or more interceptors into the EJB
target class or into the EJB target method. See the following code:

@Interceptors({PrimaryInterceptor.class, SecondaryInterceptor.class,
 LastInterceptor.class})
public void method(String prm) { ... }

The interceptors are invoked in the order in which they were defined within
the @Interceptors annotation. However, if the interceptors are also defined in the
deployment descriptor, this order can be overridden. Consequently, if there is an
interceptor chain, an interceptor calls the next one by invoking the
InvocationContext.proceed method within the order specified in @Interceptors.
This continues until the business method is invoked.

The interceptor class is referenced in the EJB target class, which causes the target class to
discover the interceptor class. This situation establishes a coupling between both classes.
We will cover how the CDI interceptor mechanism corrects this situation later.

Intercepting life cycle callback events
The interceptor methods that are used for the life cycle callback events (AroundConstruct,
PostConstruct, and PreDestroy) follow the same model for implementing the
interceptors as previously described in regards to location. This may be defined in the
target class, in interceptor classes, or in both classes. In this chapter, we will only see
examples of PostConstruct and PreDestroy callback events.

As described in the previous table containing the interceptor annotations, a method with
the @PostConstruct annotation is used to intercept the PostConstruct life cycle event,
and a method with a @PreDestroy annotation is used to intercept the PreDestroy life
cycle event. Intercepting classes have the same life cycle as the target classes. This means
that when an instance of the target class is created, an interceptor object is also created for
each declaration of the interceptor class in the target class.

Aspect-Oriented Programming and Design Patterns Chapter 5

[123]

However, there is another way to approach this. We can define callback methods for life
cycle events and define interceptor methods for these callback methods. So what we really
want is to intercept a callback method. The callback method for a life cycle event within the
target class (or a life cycle event interceptor on the target class side) has the following
syntax:

void someMethod() { ... }

An example of this could be the following:

@PostConstruct
void initialize() { ... }

@PreDestroy
void finalize () { ...}

The interceptor method for this callback method defined in an interceptor class (or a life
cycle event interceptor on the interceptor class side) has the following syntax:

void someOtherMethod(InvocationContext ctx) { ... }

An example could be the following:

@PostConstruct
void initialize (InvocationContext ctx){...}
@PreDestroy
void cleanup(InvocationContext ctx) { ... }

We can define callback methods for life cycle events (AroundConstruct,
PostConstruct, and PreDestroy) and we can also define interceptor
methods for these callback methods.

When testing various situations, we noticed some interesting things.

For the @Interceptors at class level, if both methods for the same life cycle event are
defined in both the target class and interceptor class, then only the callback interceptor is
called. However, if there is an explicit invocation of InvocationContext.proceed inside
the callback interceptor, then the callback method in the target class is also called. Let's see
what happens when we annotate both the EJB class and the Interceptor class with the
@PostConstruct annotation.

Aspect-Oriented Programming and Design Patterns Chapter 5

[124]

The following code shows the initialize method (which has a @PostConstruct) of the
EJB AcademicFacadelImpl class:

public AcademicFacadelImpl () {
 System.out.println ("creating bean.");
}

@PostConstruct
public void initialize () {
 System.out.println ("post construct of bean.");
}

The following code shows the initialize method (which has a @PostConstruct) of the
Interceptor class:

@PostConstruct
 public void initialize (InvocationContext ctx) {
 System.out.println ("intercepting post construct of bean.");
 }

We will then receive the following response:

creating bean.
intercepting post construct of bean.

However, we may do this in the Interceptor class, as follows:

@PostConstruct
 public void initialize (InvocationContext ctx) {
 System.out.println ("intercepting post construct of bean.");
 ctx.proceed();
 }

By doing this, we will receive the following response:

creating bean.
intercepting post construct of bean.
post construct of bean

For the @Interceptors at the method level, only the callback method is called, regardless
of whether the InvocationContext.proceed is called at the interceptor class.

Aspect-Oriented Programming and Design Patterns Chapter 5

[125]

CDI interceptor implementation
Along with the introduction to the CDI mechanism, a new approach to interceptors was
built based on the functionality of the Java EE interceptors that were previously seen. With
the CDI engine, you can intercept business methods for the CDI-managed beans, not just
for the EJB beans. A key difference for the interceptor under the CDI context is the way in
which the interceptor is injected into the managed bean. We now have the concept of the
interceptor binding type. This is an annotation that qualifies the desired type of interceptor
for the bean.

Suppose we want to create an interceptor for logging. In this case, we would initially create
an interceptor binding type named @Loggable, which is described as follows:

@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD, TYPE})
public @interface Loggable {
}

We will then create an interceptor class. The interceptor class is annotated with both the
interceptor binding type and the @Interceptor annotation. For this example, we create
the LoggedInterceptor class, as shown in the following code:

@Loggable
@Interceptor
public class LoggedInterceptor implements Serializable {

 @AroundInvoke
 public Object logMethod (InvocationContext invocationContext) throws
 Exception{
 System.out.println("Entering method : "
 + invocationContext.getMethod().getName() + " "
 + invocationContext.getMethod().getDeclaringClass()
);
 return invocationContext.proceed();
 }
}

The @AroundInvoke method works in the same way as previously described in the EJB
interceptor.

Furthermore, @Loggable works as a qualifier for the class interceptor. Since it is a kind of
qualifier, it is always interesting to declare the interceptor binding type as an adjective.
Consequently, we use the word loggable, which means that it is suitable for logging.

Aspect-Oriented Programming and Design Patterns Chapter 5

[126]

Once we have created the interceptor binding type and the interceptor class, we can
annotate the entire bean or some individual bean methods with the binding type to
intercept either all bean methods or specific methods. Look at the following examples:

@Loggable
public class ProfessorDAO implements Serializable {
 ...
}

For specific methods, we would use the following:

public class ProfessorDAO implements Serializable {
 ...
 @Loggable
 public Professor findByName (String name) {
 ...
 }
}

For an interceptor CDI to be invoked, it must be specified in the beans.xml, as shown in
the following code:

<interceptors>
 <class>academic.interceptors.LoggedInterceptor</class>
 </interceptors>

An application may use multiple interceptors. If an application uses more than one
interceptor, then the interceptors are invoked in the order specified in the beans.xml file.

There is a fundamental difference between the CDI interceptor and past EJB interceptors.
The CDI bean knows nothing about the interceptor implementation class; it only knows
about the interceptor binding type. This approach results in loose coupling.

Let's use the same example as the EJB interceptor. However, this time we are going to use
the CDI interceptor mechanism. We will use the same EJB of AcademicFacadeImpl, but
instead of @Interceptors, we will use an interceptor binding type called Statistic and
will annotate the Statisticlnterceptor class with this binding type.

Let's look at the following code:

@Inherited
@InterceptorBinding
@Retention (RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface Statistic {
}
@Statistical

Aspect-Oriented Programming and Design Patterns Chapter 5

[127]

@Interceptor
public class StatisticInterceptor implements Serializable {
 @Inject
 Event<String> event;
 @AroundInvoke
 public Object statisticMethod (InvocationContext invocationContext)
 throws Exception{
 System.out.println("Statistical method : "
 + invocationContext.getMethod().getName() + " "
 + invocationContext.getMethod().getDeclaringClass()
);
 // get the enrolment:
 TestRevisionTO testRevisionTO =
(TestRevisionTO)invocationContext.getParameters()[0];
 System.out.println("Enrollment : " +
testRevisionTO.getEnrollment());
 // fire an asynchronous statistical event:
 event.fire (testRevisionTO.getEnrollment());
 return invocationContext.proceed();
 }
}

We will use the same EJB of StatisticalFacadeImpl to handle the statistical elements, as
shown in the following code:

/**
 * Session Bean implementation class StatisticalFacadeImpl
 */
@Stateless
public class StatisticalFacadeImpl {

 /**
 * Default constructor.
 */
 public StatisticalFacadeImpl() {
 // TODO Auto-generated constructor stub
 }
 public void control (@Observes String enrolment) {
 System.out.println("This enrolment is asking for a test revision
: " + enrolment);
 }

}

Aspect-Oriented Programming and Design Patterns Chapter 5

[128]

Finally, we will annotate our business method (or class) with @Statistic. In this case, we
will annotate a business method:

**
 * Session Bean implementation class AcademicFacadeImpl
 */
@Stateless
public class AcademicFacadeImpl {
 ...
 ...
@Statistic
public void requestTestReview (@Observes TestRevisionTO testRevisionTO)
{
 System.out.println("Enrollment : " +
testRevisionTO.getEnrollment());
 LocalDateTime dateTime = scheduleTestReview (testRevisionTO);
 sendEmail (testRevisionTO, dateTime); // send an email with the
schedule date for the test review:
 }
 ...
 ...
}

Every time a client calls the EJB method (or any intercepted method of any CDI-managed
bean) that is annotated with @Statistic, the @AroundInvoke method of
the StatisticInterceptor class is invoked first. In our example, the @AroundInvoke
method fires an asynchronous event. It was deliberately set up in this way so that statistical
control does not participate in the business process.

Decorator
A decorator is a pattern that makes it possible to extend the business logic of a specific
functionality at run-time dynamically. The decorator pattern works as a business
component wrapper, intercepting the call method that is responsible for executing the
function. In other words, this pattern decorates the original business object by packaging
the same object and providing additional functionality while also keeping the existing
functionality intact. The decorator pattern is a structural design pattern.

This pattern dynamically changes the way in which an object functions at run-time without
impacting the existing functionality of the objects. In short, this pattern adds additional
behavior to the object by wrapping it.

Aspect-Oriented Programming and Design Patterns Chapter 5

[129]

The decorator pattern
The decorator pattern is one of the most frequently used GoF structural patterns. Its class
diagram is shown in the following figure:

The constituent elements of this pattern are described in Design Patterns: Elements Of
Reusable Object-Oriented Software (the GoF book), and are shown in the following table:

Component This defines the interface for objects that can have responsibilities added to
them dynamically

ConcreteComponent This defines an object to which additional responsibilities can be attached

Decorator This maintains a reference to a component object, and defines an interface that
conforms to a component's interface

ConcreteDecorator This adds responsibilities to the component

We can always use inheritance or composition to extend the basic behavior of a business
class or domain in compile-time. However, we cannot do this at run-time. The decorator
pattern is used to accomplish the task of extending functionality at run-time.

Aspect-Oriented Programming and Design Patterns Chapter 5

[130]

In order to explain the decorator pattern better, let's take an example from the academic
world. Imagine that we have a domain class called BasicEngineering, and this class has
a method that performs the task of listing the disciplines used for basic engineering. Let's
say that we also have two other engineering models—mechanical engineering and electrical
engineering. Each of these models has their own disciplines. Consequently, each of the
engineering models has a list of the basic disciplines plus its own list of specific disciplines.

The following class diagram shows this arrangement:

We could implement this pattern in a classic decorator pattern, but this is not our goal. In
fact, we do not need to implement it in a trivial way because JEE technology already
provides us with a mechanism for implementing the decorator pattern with the use of CDI
technology. We will use the @Decorator annotation to implement this pattern.

The decorator in a JEE scenario
First of all, we create an Engineering interface that has the business method we want to
decorate. We then create an abstract class named BasicEngineering that extends
Engineering. As the following code shows, we can make an abstract
EngineeringDecorator using two concrete decorators, or we can make two abstract
decorator classes that implement Engineering directly. There is no obligation to keep the
decorator classes concrete.

Aspect-Oriented Programming and Design Patterns Chapter 5

[131]

For the sake of simplicity, let's create the two decorator classes as abstract, without having
to extend them from a basic decorator class. So, both the ElectronicDecorator and
MechanicalDecorator classes will decorate the Engineering objects
(ElectronicEngineering and MechanicalEngineering).

The following code shows the model classes that are used in this example:

public interface Engineering {
 List<String> getDisciplines ();
}
public class BasicEngineering implements Engineering {

 @Override
 public List<String> getDisciplines() {
 return Arrays.asList("d7", "d3");
 }
}
@Electronic
public class ElectronicEngineering extends BasicEngineering {
 ...
}
@Mechanical
public class MechanicalEngineering extends BasicEngineering {
 ...
}

We can see that the ElectronicEngineering and MechanicalEngineering classes are
qualified with the @Electronic and @Mechanical decorators respectively. We can see
that with the qualifiers, we can identify which type of object we are going to decorate. Thus,
the MechanicalDecorator decorates any Engineering that has the
@Mechanical qualifier, and the ElectronicDecorator decorates any Engineering that
has the @Electronic qualifier.

Decorator implementation
The following code shows the MechanicalDecorator and the
ElectronicDecorator decorator classes:

@Decorator
public abstract class MechanicalDecorator implements Engineering {
 @Mechanical
 @Any
 @Inject
 @Delegate
 Engineering engineering;

Aspect-Oriented Programming and Design Patterns Chapter 5

[132]

 @Override
 public List<String> getDisciplines() {
 System.out.println("Decorating Mechanical Engineering");
 List<String> disciplines = new ArrayList<>
 (engineering.getDisciplines());
 disciplines.addAll (Arrays.asList("d31", "d37", "d33", "d34",
 "d32"));
 return disciplines;
 }
}
@Decorator
public abstract class EngineeringDecorator implements Engineering {
 @Electronic
 @Any
 @Inject
 @Delegate
 Engineering engineering;

 @Override
 public List<String> getDisciplines() {
 System.out.println("Decorating Electronic");
 List<String> disciplines = new ArrayList<>
 (engineering.getDisciplines());
 disciplines.addAll (Arrays.asList("d21", "d27", "d23", "d24",
 "d22"));
 return disciplines;
 }
}

We can see that the Engineering object is annotated with @Delegate. This is the business
object that will be decorated. When invoked, the getDisciplines business method will
pass the call to the getDisciplines method of the decorator. At this point, the decorator
takes care of the situation. The decorator's getDisciplines method calls the delegate
object's getDisciplines method and adds decorated disciplines. This means that it
extends the functionality by adding the specific disciplines to the basic ones.

It is also important to bear in mind that the @Electronic qualifier identifies the decorated
object. So, ElectronicDecorator decorates the @Electronic object while
MechanicalDecorator decorates the @Mechanical object.

It is logical to wonder why the getDisciplines method cannot be put into each of the
model classes. Depending on the type of business, this approach would be better. However,
let's say that the disciplines can vary widely, and that we have a large number of
engineering models. In this case, things can get more complicated, and the use of a
decorator adds functionality to something already established.

Aspect-Oriented Programming and Design Patterns Chapter 5

[133]

A decorator can be declared as an abstract class so that it does not have to implement all the
business methods of the interface.

Furthermore, for a decorator to be invoked in a CDI context, it must be specified—like an
interceptor—in the beans.xml file. So, the decorators of our example are specified as
follows:

<decorators>
 <class>book.chapter3.decorator.ElectronicDecorator</class>
 <class>book.chapter3.decorator.MechanicalDecorator</class>
 </decorators>

If an application uses more than one decorator, then the decorators are invoked in the order
in which they are specified in the beans.xml file.

If an application has both interceptors and decorators, then the interceptors are invoked
first.

A decorator must be specified like an interceptor in the beans.xml
file. The decorators are invoked in the order in which they are specified in
the beans.xml file.

In fact, we could create another decorator, known as BasicEngineeringDecorator,
which would be responsible for decorating any Engineering. We then simply input the
@any qualifier to qualify the Engineering object. Of course, we should also worry about
the order. This should be the first factor to be called. Consequently, the decorators are listed
in the beans.xml file, as follows:

<decorators>
 <class>book.chapter3.decorator.BasicEngineeringDecorator</class>
<class>book.chapter3.decorator.ElectronicEngineeringDecorator</class>
<class>book.chapter3.decorator.MechanicalEngineeringDecorator</class>
 </decorators>

Aspect-Oriented Programming and Design Patterns Chapter 5

[134]

Summary
In this chapter, we have seen that interceptors and decorators are the platforms through
which the JEE platform provides aspect-oriented programming. Interceptors are used to
interpose the invocation of some method or life cycle events that occur in an associated
target class. The interceptor takes care of technical tasks, called crosscutting tasks, that are
repeated throughout an application, such as logging, auditing, and exception handling.
These tasks are separate from business logic, and it's a good idea to put the interceptor in a
separate class for easy maintenance.

We learned how the classic interceptor mechanism works for EJB, as well as the CDI
inspector mechanism, which can intercept any managed bean and not just EJB-managed
beans.

While the interceptor takes care of the technical tasks, we can add functionality to the
existing business logic with the decorators. We learned that the decorator pattern is a well-
known structural design pattern. A decorator is a type of interceptor for business classes,
and is used when we want to add functionality to a business class while also keeping it
intact.

The use of interceptor and decorators promotes low coupling and easy maintenance.
However, we must use them carefully. For example, with regards to decorators, we should
avoid excessively spreading them through the application. Excessive decentralization can
cause an inverse effect and worsen code maintenance.

An interceptor belongs to the same transactional context of the business class that it
interposes. As an interceptor only deals with technical issues, tasks related to it cannot
influence the execution of business logic. Consequently, errors generated in technical tasks
cannot be thrown to the business logic. In a similar way, the execution time of these tasks
cannot compose the execution time of business logic.

6
Reactive Patterns

In this chapter, we are going to explore the concepts and implementations of reactive
patterns, looking at how we can use them to implement a better application. We will also
cover reactive programming concepts, focusing on how they can aid application
development. After reading this chapter, we will be able to use reactive patterns using the
best practices of Java EE 8.

The following topics will be explored in this chapter:

Explaining the concept of reactive programming
Explaining the concept of an event in CDI
Implementing an event in CDI
Explaining the concept of an asynchronous EJB method
Implementing an asynchronous EJB method
Explaining the concept of an asynchronous REST service
Implementing an asynchronous REST service

For a long time, applications processed all requests in a synchronous manner. In a
synchronous process, the users request a resource and wait for its response. When this type
of process begins, each step is executed right after the previous one.

Reactive Patterns Chapter 6

[136]

In the following diagram, we can see the process of the workflow when it is executed in a
synchronous manner:

In a synchronous process, each call to a function or resource works in a step-by-step,
sequential manner. However, some tasks take longer to execute, thus blocking this process
for a long time. An example of a task that can take a long time to execute is an I/O request
when the application reads data from a disk or data source.

With the growth of web application access, several web applications needed to
become able to receive and process a large number of requests in order to respond to these
requests. With this, synchronous processing began to encounter problems with responding
to large volumes of requests and building a response to the requests quickly. To solve this,
web applications began working through asynchronous processes, making it possible for
the applications to build a response quickly.

In an asynchronous process, calls to functions or resources can be carried out in a parallel
manner without having to wait for a task to end in order to execute the next one. Because of
this, executing an I/O request will not delay the next task's execution—they can proceed at
the same time.

Reactive Patterns Chapter 6

[137]

Reactive programming is a style of programming that develops applications in a functional
form. Here, the development occurs in an asynchronous data stream that is sent by a
requester. Furthermore, we can have a resource that reacts with this data stream as the data
flow is received. Each task then works as a function and does not handle variables outside
of its scope, making it possible for this function to execute several times in a parallel
manner without having any collateral effects.

In reactive programming, we have elements that react to events, then when a user requests
a resource, it starts an event that operates a data stream. When this event begins, an
element or task reacts to the data stream and processes its algorithm. This makes it possible
for the web application to process a large amount of data and scale it without difficulty.
This paradigm works with the following four concepts:

Elastic: This reacts to demands. Applications can use multicore and multiple
servers to process the requests.
Resilient: This reacts to faults. Applications can react to and recover from faults
and errors in software, hardware, and networks.
Message-driven: This reacts to events. Applications are composed of event
managers that are asynchronous and nonblocking, as opposed to being
composed of multiple synchronous threads.
Responsive: This reacts to users. Applications offer rich iterations in real time.

Java EE 8 has tools that permit developers to use reactive programming in their
applications. Some of these tools are events in CDI, asynchronous EJB methods, and
asynchronous rest services.

Explaining the concept of an event in CDI
As reactive programming grew in the development environment, the Java language and
Java EE needed to create tools to permit developers to develop systems using reactive
programming. On Java EE, some solutions were introduced that made it possible to use the
style function and to create processes asynchronously. One of these solutions is Event in
CDI; this solution could launch a synchronous and blocking event, or an asynchronous and
nonblocking event using CDI.

In CDI, Event is a solution that Java EE built using the observer pattern, making it possible
to develop and launch an event to separate components doing the processing, working as
a synchronous and blocking or asynchronous and nonblocking process. This separate task
is an observer that reacts to an event launched with its data. In this chapter, we will focus
on asynchronous CDI, using Event in CDI to launch asynchronous events.

Reactive Patterns Chapter 6

[138]

Implementing an event in CDI
As an example of implementing an event in CDI, we think about asynchronous CDI and
imagine a scene in which we want to create an application that makes it possible to
upload three types (or extensions) of file—this includes ZIP, JPG, and PDF extensions.
Depending on the extension received at the request, it is intended that one event is
launched and one observer will save its file on a disk using an asynchronous process. Each
extension will have an observer, which will have an algorithm making it possible to save
the file on a disk. To develop this example, we have the following classes:

FileUploadResource: This is a class that represents the resource that receives
all the requests in order to upload and launches respective events according to
the file extension.
FileEvent: This is a bean that contains the file data and is sent to an event.
FileHandler: This is an interface of all the observers. In this example, all classes
that react to FileEvent need to implement FileHandler.
JpgHandler: This is an implementation of FileHandler that saves a JPG file on a
disk. This class is an observer that reacts with FileEvent launched to a JPG file.
PdfHandler: This is an implementation of FileHandler that saves a PDF file on
a disk. This class is an observer that reacts with FileEvent launched to a PDF
file.
ZipHandler: This is an implementation of FileHandler that saves a ZIP file on
a disk. This class is an observer that reacts with FileEvent launched to a ZIP
file.
Jpg: This is a qualifier used to establish that the JpgHandler observers need to
react to an event.
Pdf: This is a qualifier used to establish that the PdfHandler observer needs to
react to an event.
Zip: This is a qualifier used to establish that the ZipHandler observer needs to
react to an event.
FileSystemUtils: This is a utility class to treat issues on a filesystem.

Implementing the FileUploadResource class
FileUploadResource is a resource class that uses JAX-RS to create a RESTful service to
upload a file with JPG, PDF, and ZIP extensions. In the following code, we have the code of
qualifiers that are used to select the correct observer to react to an event as well as the code
for FileUploadResource.

Reactive Patterns Chapter 6

[139]

Bean sent on the event
FileEvent is a bean that is sent to the event—the observers will receive this:

import java.io.File;

public class FileEvent {

 private File file;

 private String mimeType;

 public FileEvent(){}

 public FileEvent(File file, String mimeType){

 this.file = file;
 this.mimeType = mimeType;

 }

 public File getFile() {
 return file;
 }

 public void setFile(File file) {
 this.file = file;
 }

 public String getMimeType() {
 return mimeType;
 }

 public void setMimeType(String mimeType) {
 this.mimeType = mimeType;
 }
}

Qualifier to select the JpgHandler observer to react to
an event
In the following code, we have the Jpg qualifier, used to define the correct handler:

import javax.inject.Qualifier;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;

Reactive Patterns Chapter 6

[140]

import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE, ElementType.PARAMETER,
ElementType.FIELD})
public @interface Jpg {
}

Qualifier to select the PdfHandler observer to react to
an event
In the following code, we have the Pdf qualifier, used to define the correct handler:

import javax.inject.Qualifier;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE, ElementType.PARAMETER,
ElementType.FIELD})
public @interface Pdf {

Qualifier to select the ZipHandler observer to react to
an event
In the following code, we have the Zip qualifier, used to define the correct handler:

import javax.inject.Qualifier;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;

@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE, ElementType.PARAMETER,
ElementType.FIELD})
public @interface Zip {
}

Reactive Patterns Chapter 6

[141]

The FIleUploadResource class
In the following code block, we have the JFileUploadResource class, which uses JAX-RS
and is a REST service:

import javax.enterprise.event.Event;
import javax.enterprise.util.AnnotationLiteral;
import javax.inject.Inject;
import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;
import java.io.File;
import java.util.Objects;

@Path("upload")
public class FileUploadResource {

 @Inject
 Event<FileEvent> fileEvent;

 @Consumes("application/pdf")
 @POST
 public Response uploadPdf(File file){

 FileEvent fileEvent = new FileEvent(file, "pdf");

 Event<FileEvent> pdfEvent = this.fileEvent.select(new
 AnnotationLiteral<Pdf>() {});

 pdfEvent.fireAsync(fileEvent)
 .whenCompleteAsync((event, err)->{

 if(Objects.isNull(err))
 System.out.println("PDF saved");
 else
 err.printStackTrace();

 });

 return Response.ok().build();

 }

 @Consumes("image/jpeg")
 @POST
 public Response uploadJpg(File file){

Reactive Patterns Chapter 6

[142]

 FileEvent fileEvent = new FileEvent(file, "jpg");

 Event<FileEvent> jpgEvent = this.fileEvent.select(new
 AnnotationLiteral<Jpg>() {});

 jpgEvent.fireAsync(fileEvent)
 .whenCompleteAsync((event, err)->{

 if(Objects.isNull(err))
 System.out.println("JPG saved");
 else
 err.printStackTrace();

 });

 return Response.ok().build();

 }

 @Consumes("application/zip")
 @POST
 public Response uploadZip(File file){

 FileEvent fileEvent = new FileEvent(file, "zip");

 Event<FileEvent> zipEvent = this.fileEvent.select(new
 AnnotationLiteral<Zip>() {});

 zipEvent.fireAsync(fileEvent)
 .whenCompleteAsync((event, err)->{

 if(Objects.isNull(err))
 System.out.println("PDF saved");
 else
 err.printStackTrace();

 });

 return Response.ok().build();

 }
}

Reactive Patterns Chapter 6

[143]

The preceding code contains the uploadPdf(File file), uploadJpg(File file), and
uploadZip(File file) methods that are called when a user wants to upload a file with
PDF, JPG, or ZIP extensions, respectively. Furthermore, this class has the
fileEvent attribute of the Event<FileEvent> type. Event<FileEvent> is the class
responsible for launching an event driven by a qualifier. In the following code, we have
a code snippet that selects a correct Event, using an annotation as a qualifier:

Event<FileEvent> zipEvent = this.fileEvent.select(new
AnnotationLiteral<Zip>() {});

Another way to establish the correct event to launch is to use the qualifier at the point
where the object is injected using @Inject, but this way, the event becomes static and all
events launched by the Event object are of the same type. Using the select
(Annotation... var) method, we can launch a dynamic event as well as other event
types. The following is an example of Event with a static event type:

@Inject
@Pdf //Qualifier
Event<FileEvent> pdfEvent;

In the preceding example, pdfEvent will always launch an event to an observer that
processes an event marked by the @Pdf qualifier.

To launch an asynchronous event, we need to call the fireAsync(U var) method, which
returns CompletionStage. In the following code block, we have a snippet that calls this
method and prepares a callback function to execute when the process is complete:

 zipEvent.fireAsync(fileEvent)
 .whenCompleteAsync((event, err)->{

 if(Objects.isNull(err))
 System.out.println("PDF saved");
 else
 err.printStackTrace();

 });

Implementing observers
When an event is launched by a launcher, some elements will react to this event and
process a task with the data given on an event. These elements are called observers and
work as observer patterns, which create a one-to-many relationship between objects.

Reactive Patterns Chapter 6

[144]

This occurs when one object is the subject and the other objects are the observers. Then,
when the subject object is updated, all observer objects that are related to this subject-object
are updated too.

CDI has a mechanism for creating observers that will react with its events. In our example,
we will launch an event, create observers to react to these events, and process a task. To do
this, we will create handlers that represent our observer and process tasks. These handlers
will be classes that implement the FileHandler interface as well as methods, called
handle(FileEvent file). Note that the parameter of the handler(FileEvent
file) method is a FileEvent type. This is the same type of data as sent to the event in the
preceding example. In the following example, we have the code for the FileHandler
interface and its implementations:

import java.io.IOException;

public interface FileHandler {

 public void handle(FileEvent file) throws IOException;
}

In the following code, we have the JpgHandler class, which is an implementation of
FileHandler. This is responsible for saving the JPG files on a filesystem. This observer is
called when an event is launched to the @Jpg qualifier:

import javax.enterprise.event.ObservesAsync;
import java.io.IOException;
import java.util.Date;

public class JpgHandler implements FileHandler {

 @Override
 public void handle(@ObservesAsync @Jpg FileEvent file) throws
 IOException {

 FileSystemUtils.save(file.getFile(),"jpg","jpg_"+ new
 Date().getTime() + ".jpg");

 }
}

In the preceding code block, we have the method handler, which has
an @ObservesAsync annotation as well as @Jpg. This is a CDI annotation that configures
this method to observe the FileEvent file, as well as the Qualifier, to configure the
observer to react only to the event launched to the @Jpg qualifier.

Reactive Patterns Chapter 6

[145]

In the following code block, we have the PdfHandler class, which is an implementation
of FileHandler responsible for persisting PDF files on a filesystem. This observer is called
when an event is launched to a @Pdf qualifier:

import javax.enterprise.event.ObservesAsync;
import java.io.IOException;
import java.util.Date;

public class PdfHandler implements FileHandler {

 @Override
 public void handle(@ObservesAsync @Pdf FileEvent file) throws
 IOException {

 FileSystemUtils.save(file.getFile(),"pdf","pdf_"+ new
 Date().getTime() + ".pdf");

 }
}

In the preceding code, we have a handler method with an @ObservesAsync annotation as
well as a @Pdf. This is a CDI annotation that configures the handle(FileEvent
file) method to observe the FileEvent file, and the Qualifier to configure the observer
to react only to an event launched to the @Pdf qualifier.

In the following code, we have the ZipHandler class, which is an implementation
of FileHandler responsible for saving ZIP files on a filesystem. This observer is called
when an event is launched to a @Zip qualifier:

import javax.enterprise.event.ObservesAsync;
import java.io.IOException;
import java.util.Date;

public class ZipHandler implements FileHandler {

 @Override
 public void handle(@ObservesAsync @Zip FileEvent file) throws
 IOException {

 FileSystemUtils.save(file.getFile(),"zip","zip_"+ new
 Date().getTime() + ".zip");

 }
}

Reactive Patterns Chapter 6

[146]

In the preceding code, we have the handler method, which has an @ObservesAsync and
a @Zip annotation. This is a CDI annotation that configures this method to observe
the FileEvent file, and the Qualifier to configure this observer to react only to events
launched to the @Zip qualifier.

Explaining the concept of an
asynchronous EJB method
Launching events to elements that react to these events is a good mechanism for solving
many kinds of problems during development. However, sometimes it is necessary to call a
class method without blocking the process until this method completes the execution.

An asynchronous EJB method is a mechanism of EJB that allows the client to call a method
and receive its return as soon as the method is invoked. The return of a method is in control
of the asynchronous call represented by the Future<T> object. The client can control the
execution of the asynchronous method. These actions can cancel the invocation method,
check whether the invocation is completed, check whether the invocation has launched an
exception, and check whether the invocation was cancelled.

Difference between an asynchronous EJB
method and an event in CDI
An event in CDI and an asynchronous EJB method have the similar characteristic of making
a nonblocking call to a task. Furthermore, the client can cancel and monitor the invocation
of an asynchronous process. However, an asynchronous EJB method and an event in CDI
don't share all the same characteristics. The principal difference between them is that the
asynchronous EJB method works on a one-to-one basis between the caller and the called.
This is because when this method is invoked, it will only process the task and the client
knows what the method is that will be processed. On the event in CDI, the relationship
between the caller and the called is one-to-many. This is because the caller launches an
event, and one or more observers can react to this. Another difference between the
asynchronous EJB method and an event in CDI is that, in CDI, the event works with the
observer pattern and makes it possible to apply a callback method to be executed at another
time. The asynchronous EJB method doesn't work with the observer pattern and doesn't
have the ability to apply a callback method.

Reactive Patterns Chapter 6

[147]

Implementing an asynchronous EJB method
In our implementation example, we will use the same scenario as in the example of an
Event in CDI. Here, we will create an application that makes it possible to upload three
types (or extensions) of files—ZIP, JPG, and PDF extensions. Depending on the type of
extension received, the file received will be saved on the filesystem at its respective
directory. To develop this example, we will use the following classes:

FileUploadResource: This is a class that represents the resource to receive all
request to upload, and calls the respective EJB according to the file extension.
JpgHandler: This is an EJB with an asynchronous method to treat the process
save of a JPG file on disk.
PdfHandler: This is an EJB with an asynchronous method to treat the process
save of a PDF file on disk.
ZipHandler: This is an EJB with an asynchronous method to treat the process
save of a ZIP file on disk.
FileSystemUtils: This is a utility class intended to handle issues with the
filesystem.

Implementing EJBs
To use an asynchronous EJB method, we need to create a session bean and configure it to
have asynchronous methods. In the following code, we have an example of the
implementation of a session bean called PdfHandler, which is responsible for saving PDF
files on a filesystem:

import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.Stateless;
import java.io.IOException;
import java.util.Date;
import java.util.concurrent.Future;

@Stateless
public class PdfHandler {

 @Asynchronous
 public Future<String> handler (FileBean file) throws IOException {

 return new AsyncResult(
 FileSystemUtils.save(

Reactive Patterns Chapter 6

[148]

 file.getFile(),
 "pdf",
 "pdf_"+ new Date().getTime() + ".pdf"));

 }
}

In the preceding code block, we have the PdfHandler class, which contains a
handler(FileBean file) method. This method is annotated with @Asynchronous to
configure it as an asynchronous method.

The following code demonstrates the configuration of the handle(FileBean
file) method:

 @Asynchronous
 public Future<String> handler (FileBean file) throws IOException {
 //Business logic
 }

This method needs to return Future<T>. In our example, we return AsyncResult, which
is an implementation of the Future interface. In our example, the data returned with
the Future object contains the information of the path to the file on the filesystem. In the
following code, we have an example of a Future return:

return new AsyncResult(
 FileSystemUtils.save(
 file.getFile(),
 "pdf",
 "pdf_"+ new Date().getTime() + ".pdf"));

In the following code block, we have an example of the implementation of a session bean
called JpgHandler, which is responsible for saving JPG files on the filesystem:

import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.Stateless;
import java.io.IOException;
import java.util.Date;
import java.util.concurrent.Future;

@Stateless
public class JpgHandler {

 @Asynchronous
 public Future<String> handler (FileBean file) throws IOException {

 return new AsyncResult(

Reactive Patterns Chapter 6

[149]

 FileSystemUtils.save(
 file.getFile(),
 "jpg",
 "jpg_"+ new Date().getTime() + ".jpg"));

 }
}

This method works as the PdfHandler method, but saves the file at another directory and
with another filename pattern. In our example, the data returned with the Future object is
the path to the file on the filesystem.

In the following code, we have an example of an implementation of the session bean
called JpgHandler, which is responsible for saving JPG files on the filesystem:

import javax.ejb.AsyncResult;
import javax.ejb.Asynchronous;
import javax.ejb.Stateless;
import java.io.IOException;
import java.util.Date;
import java.util.concurrent.Future;

@Stateless
public class ZipHandler {

 @Asynchronous
 public Future<String> handler (FileBean file) throws IOException {

 return new AsyncResult(
 FileSystemUtils.save(
 file.getFile(),
 "zip",
 "zip_"+ new Date().getTime() + ".zip"));

 }
}

This method works as the PdfHandler and JpgHandler methods, but saves the file at
another directory and with another filename pattern. In our example, the data returned
with the Future object is the path to the file on the filesystem.

Reactive Patterns Chapter 6

[150]

Implementing the FileUploadResource class
FileUploadResource is a resource class that uses JAX-RS to create a RESTful service to
upload a file with JPG, PDF, and ZIP extensions. The following code contains the
FileUploadResource resource class:

import javax.inject.Inject;
import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.core.Response;
import java.io.File;
import java.io.IOException;

@Path("upload")
public class FileUploadResource {

 @Inject
 private PdfHandler pdfHandler;

 @Inject
 private JpgHandler jpgHandler;

 @Inject
 private ZipHandler zipHandler;

 @Consumes("application/pdf")
 @POST
 public Response uploadPdf(File file) throws IOException {

 FileBean fileBean = new FileBean(file, "pdf");

 pdfHandler.handler(fileBean);

 return Response.ok().build();

 }

 @Consumes("image/jpeg")
 @POST
 public Response uploadJpg(File file) throws IOException {

 FileBean fileBean = new FileBean(file, "jpg");

Reactive Patterns Chapter 6

[151]

 jpgHandler.handler(fileBean);

 return Response.ok().build();
 }

 @Consumes("application/zip")
 @POST
 public Response uploadZip(File file) throws IOException {

 FileBean fileBean = new FileBean(file, "zip");

 zipHandler.handler(fileBean);

 return Response.ok().build();

 }
}

In the following code block, the EJB's PdfHandler, JpgHandler, and ZipHandler are
injected with the @Inject annotation from CDI. In the following example, we have the
injection code:

 @Inject
 private PdfHandler pdfHandler;

 @Inject
 private JpgHandler jpgHandler;

 @Inject
 private ZipHandler zipHandler;

When a request is sent to an application, the method responsible for processing a request
gets the file and builds a FileBean. This method calls an asynchronous EJB method to
process this task. In the following code blocks, we have examples of calling the
asynchronous EJB method.

Calling an asynchronous EJB method to save a PDF
We use the following ways to call the asynchronous EJB method. The following code block
demonstrates the saving of a PDF file by calling the EJB method:

 FileBean fileBean = new FileBean(file, "pdf");
 pdfHandler.handler(fileBean);

Reactive Patterns Chapter 6

[152]

Calling an asynchronous EJB method to save a JPG
The following code block demonstrates the saving of a JPG file by calling the asynchronous
EJB method:

 FileBean fileBean = new FileBean(file, "jpg");
 jpgHandler.handler(fileBean);

Calling an asynchronous EJB method to save a ZIP
The following code block demonstrates the saving of a ZIP file by calling the asynchronous
EJB method:

 FileBean fileBean = new FileBean(file, "zip");
 zipHandler.handler(fileBean);

Explaining the concept of an asynchronous
REST service
Over time, the number of REST applications has grown and many APIs have been created
to serve various kinds of services in many environments. In the same way as other
applications, some REST applications need asynchronous processes and work with
nonblocking processes.

An asynchronous REST service is an asynchronous process that makes it easier to process
threads. In contrast, in a request sent to a server, a new thread can be called to process a
nonblocking task, such as operations on a filesystem. JAX-RS supports asynchronous
processing in a client API and server API, but the asynchronous rest service is implemented
at the server API. This is because it is the server API that provides services. The client API
consumes the services and, as a result, we refer to the asynchronous processing in a client
API as the asynchronous REST consume.

The client API can be completed through asynchronous invocation, which returns a
Future<T> object as soon as the request is done, allowing the client to control this
invocation and apply actions to it. This can be done through reactive programming and it
can return a CompletionState<T> object as soon as the request is done. This means that it
is possible to control the invocation and choose a callback method, executed depending on
the stage. In the implementation example covered in the next topic, we will use the
invocation with reactive programming.

Reactive Patterns Chapter 6

[153]

Implementing an asynchronous REST
service
As an example of implementing an asynchronous REST service, we will use the same
scenario used in the example of the event in the CDI and the asynchronous EJB method.
Here, we will create an application that makes it possible to upload three types (or
extensions) of files—ZIP, JPG, and PDF extensions. Depending on the extension received,
we want the file received to be kept in its respective directory on the filesystem. To develop
this example, we have the following classes:

FileUploadResource: This is a class that represents the resource that works
with asynchronous processes to receive all requests to upload, and calls the
respective EJB according to the file extension.
JpgHandler: This is an EJB with an available method for saving a JPG file on a
disk.
PdfHandler: This is an EJB with an available method for saving a PDF file on a
disk.
ZipHandler: This is an EJB with an available method for saving a ZIP file on a
disk.
FileSystemUtils: This is a utility class that deals with issues within the
filesystem.
FileUploadClient: This is a client API implemented through JAX-RS that
makes asynchronous calls to the REST service.

Implementing the EJBs
At this point, we will implement PdfHandler, JpgHandler, and ZipHandler, which are
the EJBs responsible for dealing with the logic to save its files.

In the following code, we have PdfHandler, which is responsible for saving PDF files:

import javax.ejb.Stateless;
import java.io.IOException;
import java.util.Date;

@Stateless
public class PdfHandler {

 public String handler (FileBean file) throws IOException {

Reactive Patterns Chapter 6

[154]

 return FileSystemUtils.save(
 file.getFile(),
 "pdf",
 "pdf_"+ new Date().getTime() + ".pdf");

 }
}

In the following code block, we have JpgHandler, which is responsible for saving JPG
files:

import javax.ejb.Stateless;
import java.io.IOException;
import java.util.Date;

@Stateless
public class JpgHandler {

 public String handler (FileBean file) throws IOException {

 return FileSystemUtils.save(
 file.getFile(),
 "jpg",
 "jpg_"+ new Date().getTime() + ".jpg");

 }
}

In the following code block, we have ZipHandler, which is responsible for saving ZIP files:

import javax.ejb.Stateless;
import java.io.IOException;
import java.util.Date;

@Stateless
public class ZipHandler {

 public String handler (FileBean file) throws IOException {

 return FileSystemUtils.save(
 file.getFile(),
 "zip",
 "zip_"+ new Date().getTime() + ".zip");

 }
}

Reactive Patterns Chapter 6

[155]

Implementing the FileUploadResource class
FileUploadResource is a resource designed to allow clients to upload files to a server
through an asynchronous request using REST. This class uses the JAX-RS to create a REST
resource and, depending on the file extension, this resource delegates the task of saving a
file to its respective EJB. In the following code block, we have the
FileUploadResource class:

import javax.annotation.Resource;
import javax.enterprise.concurrent.ManagedExecutorService;
import javax.enterprise.context.spi.CreationalContext;
import javax.enterprise.inject.spi.Bean;
import javax.enterprise.inject.spi.BeanManager;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.ws.rs.Consumes;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import java.io.File;
import java.io.IOException;
import java.util.concurrent.CompletableFuture;
import java.util.concurrent.CompletionStage;

@Path("upload")
public class FileUploadResource {

 @Resource
 private ManagedExecutorService executor;

 @Consumes("application/pdf")
 @POST
 public CompletionStage<String> uploadPdf(File file) {

 BeanManager beanManager = getBeanManager();

 CompletableFuture<String> completionStage = new
 CompletableFuture<>();
 executor.execute(() -> {
 FileBean fileBean = new FileBean(file, "pdf");

 Bean<PdfHandler> bean = (Bean)
 beanManager.getBeans(PdfHandler.class).iterator().next();
 CreationalContext cCtx =
 beanManager.createCreationalContext(bean);
 PdfHandler pdfHandler = (PdfHandler)
 beanManager.getReference(bean, PdfHandler.class, cCtx);

Reactive Patterns Chapter 6

[156]

 try {

 completionStage.complete(pdfHandler.handler(fileBean));
 } catch (IOException e) {
 e.printStackTrace();
 completionStage.completeExceptionally(e);
 }

 });

 return completionStage;
 }

 private BeanManager getBeanManager(){
 try {
 // manual JNDI lookupCDI for the CDI bean manager (JSR 299)
 return (BeanManager) new InitialContext().lookup(
 "java:comp/BeanManager");

 } catch (NamingException ex) {
 throw new IllegalStateException(
 "cannot perform JNDI lookup for CDI BeanManager");
 }
 }

 @Consumes("image/jpeg")
 @POST
 public CompletionStage<String> uploadJpg(File file) throws
 IOException {

 BeanManager beanManager = getBeanManager();

 CompletableFuture<String> completionStage = new
 CompletableFuture<>();
 executor.execute(() -> {
 FileBean fileBean = new FileBean(file, "jpg");

 Bean<JpgHandler> bean = (Bean)
 beanManager.getBeans(JpgHandler.class).iterator().next();
 CreationalContext cCtx =
 beanManager.createCreationalContext(bean);
 JpgHandler jpgHandler = (JpgHandler)
 beanManager.getReference(bean, JpgHandler.class, cCtx);

 try {

 completionStage.complete(jpgHandler.handler(fileBean));

Reactive Patterns Chapter 6

[157]

 } catch (IOException e) {
 e.printStackTrace();
 completionStage.completeExceptionally(e);
 }

 });

 return completionStage;
 }

 @Consumes("application/zip")
 @POST
 public CompletionStage<String> uploadZip(File file) throws
 IOException {

 BeanManager beanManager = getBeanManager();

 CompletableFuture<String> completionStage = new
 CompletableFuture<>();
 executor.execute(() -> {
 FileBean fileBean = new FileBean(file, "zip");

 Bean<ZipHandler> bean = (Bean)
 beanManager.getBeans(ZipHandler.class).iterator().next();
 CreationalContext cCtx =
 beanManager.createCreationalContext(bean);
 ZipHandler zipHandler = (ZipHandler)
 beanManager.getReference(bean, ZipHandler.class, cCtx);

 try {

 completionStage.complete(zipHandler.handler(fileBean));
 } catch (IOException e) {
 e.printStackTrace();
 completionStage.completeExceptionally(e);
 }

 });

 return completionStage;

 }
}

Reactive Patterns Chapter 6

[158]

In the preceding code block, we have the FileUploadResource class, which has a
class injected named executor. The executor attribute has
the ManagedExecutorService type, which is injected by @Resource of CDI. This
attribute is used to create a new thread to execute a separated task. In the following code
block, we have a code snippet of FileUploadResource, which has an executor
attribute injection:

 @Resource
 private ManagedExecutorService executor;

In addition, this class consists of three methods that receive a request, prepare the
FileBean, and send it to an EJB to process a task that saves the files. In the following code
block, we have the uploadPdf(File file) method, which is responsible for processing
all the requests to upload PDF files:

 @Consumes("application/pdf")
 @POST
 public CompletionStage<String> uploadPdf(File file) {

 BeanManager beanManager = getBeanManager();

 CompletableFuture<String> completionStage = new
 CompletableFuture<>();
 executor.execute(() -> {
 FileBean fileBean = new FileBean(file, "pdf");
 //get the EJB by CDI
 Bean<PdfHandler> bean = (Bean)
 beanManager.getBeans(PdfHandler.class).iterator().next();
 CreationalContext cCtx =
 beanManager.createCreationalContext(bean);
 PdfHandler pdfHandler = (PdfHandler)
 beanManager.getReference(bean, PdfHandler.class, cCtx);

 try {

 completionStage.complete(pdfHandler.handler(fileBean));
 } catch (IOException e) {
 e.printStackTrace();
 completionStage.completeExceptionally(e);
 }

 });

 return completionStage;

 }

Reactive Patterns Chapter 6

[159]

In the preceding code block, we have a FileUploadResource code snippet, which
contains an example of the service for uploading PDFs provided by resources. This service
works with asynchronous processing. To enable the method to work with an asynchronous
method, we should either use AsyncResponse (@Suspended final AsyncResponse ar)
as a parameter of the service method, or this method would need to return a
CompletionState<T> to the client. In our example, we returned CompletionState to the
client. Further, we need to create a separate thread in order to execute a nonblocking task.
In the following code block, we have a code snippet of the uploadPdf method, which
creates a separate task to call the task that saves the PDF file:

executor.execute(() -> {
 FileBean fileBean = new FileBean(file, "pdf");

 Bean<PdfHandler> bean = (Bean)
 beanManager.getBeans(PdfHandler.class).iterator().next();
 CreationalContext cCtx =
 beanManager.createCreationalContext(bean);
 PdfHandler pdfHandler = (PdfHandler)
 beanManager.getReference(bean, PdfHandler.class, cCtx);

 try {

 completionStage.complete(pdfHandler.handler(fileBean));
 } catch (IOException e) {
 e.printStackTrace();
 completionStage.completeExceptionally(e);
 }

 });

Implementing the client API
Now, in order to send an asynchronous request using the reactive programming, we create
an example of the JAX-RS client API. In the following code, we can see an example of the
client API:

public class ClientAPI
{
 private static final String URL =
"http://localhost:8080/asyncRestService/resources/upload";
 private static final String FILE_PATH = "test.pdf";

 public static void main(String[] args) {
 Client client = ClientBuilder.newClient();
 WebTarget target = client.target(URL);

Reactive Patterns Chapter 6

[160]

 try {
 CompletionStage<String> csf = target.request()
 .rx()
 .post(Entity.entity(new FileInputStream(new
 File(FILE_PATH)),"application/pdf"),String.class);

 csf.whenCompleteAsync((path, err)->{

 if(Objects.isNull(err))
 System.out.println("File saved on: " + path);
 else
 err.printStackTrace();

 });

 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 }
}

In the preceding code block, we sent a request to the server, which returned a control as
soon as the request was sent. A callback method was then queued to be executed after the
asynchronous processing was completed. In the following code, we have a code snippet
of ClientAPI, which defines a callback method to be executed after the asynchronous
processing finishes:

 csf.whenCompleteAsync((path, err)->{

 if(Objects.isNull(err))
 System.out.println("File saved on: " + path);
 else
 err.printStackTrace();

 });

Summary
In Chapter 7, Microservice Patterns, we explored the reactive programming paradigm and
how it is implemented using Java EE 8 mechanisms. We also demonstrated how we can
make asynchronous calls using Java EE 8 mechanisms, and how to control these calls and
apply actions to them via asynchronous processing.

Reactive Patterns Chapter 6

[161]

Event in CDI is a mechanism of the CDI specification that can be used in all tiers of an
application. However, using this mechanism is recommended when working with a
presentation tier. This is because CDI has a major focus on the presentation tier and its
scopes are directly related to the HTTP interaction and HTTP session. Furthermore, we
could launch an event with various elements that react to this event.

The asynchronous EJB method doesn't use the reactive programming paradigm but is an
asynchronous process that makes it possible to decrease the time it takes to respond to the
client. This is an EJB mechanism and it is recommended to use it at the business tier. The
benefit of using this mechanism is that we can also use other EJB mechanisms, such as the
transactions control.

The asynchronous REST service is a mechanism of the JAX-RS specification that is able to
create a REST service that can do asynchronous processing. With this mechanism, the
control of the process is returned as soon as a request is sent, and the client, therefore,
doesn't need to wait a long time to process other tasks. This mechanism is always
implemented in the presentation tier.

In the next chapter, we will cover microservice patterns and how to implement them. We
will also look at the aggregator pattern, proxy pattern, chained pattern, branch pattern, and
asynchronous messaging pattern.

7
Microservice Patterns

In this chapter, we will learn about what microservices patterns are. We will also compare
these with the monolithic patterns, looking at the advantages and drawbacks of a
microservices-based application, as well as learn when to use microservices. Furthermore,
we will also demonstrate how to switch from a traditional monolithic application to a
microservices application, using implementation examples throughout. We will then look
at the design patterns used to compose the microservices. After reading this chapter, you
will be able to identify the parts of an application code that are eligible to be microservices,
and you will also know how to implement a microservices-pattern-based application using
Java EE 8.

The following topics will be covered in this chapter:

Explaining microservices patterns
Explaining how microservices architecture works
Explaining when to use microservices architecture
Advantages and drawbacks of a microservices-based application
Microservices architecture patterns
Implementing microservices

Explaining microservices patterns
Many years ago, I had the opportunity to work as a system architect and developer on an
administrative–financial system. This involved the use of modules, such as accounts
receivable and accounts payable, inventory control, purchasing, payroll, accounting, and so
on.

Microservice Patterns Chapter 7

[163]

The whole system was composed of several modules, and the delivery of the system was
constructed in a modular way too. At the end of the application development, we had a
large, integrated system with many dependencies between the modules. It was obvious that
the system should be integrated, and we knew that very well. However, this integration
was made with many dependencies and a strong coupling between modules. Sometime
later, we also discovered that the dependencies and strong coupling were unnecessary.

We faced a lot of problems in maintaining the application (such as difficulty in
implementing new frameworks and excessive bureaucracy), including the fact that
whenever there was a need to include a functionality that originated from a requirement,
we had to find the part of the code that was responsible for the problem, make the change,
test it, and make a redeployment of the entire application. In addition to this, other related
issues sometimes appeared, such as using a third-party library or framework to implement
this new functionality. There was a bit of bureaucracy to that too. In short, a lot of time was
spent on changing the application, and this only got worse as the application became larger.

After the system was ready, we wondered what it would be like if each module had its own
life—that is, if each module behaved as a mini-application, so that it could be deployed
without impacting the other modules. Furthermore, if each module could be developed
practically in parallel, and there was minimum coupling required, then that would be very
beneficial to the development and maintenance of the application.

Bringing it back to the present day, we noticed that among the several characteristics that
are most often desired for the components of a system, we can highlight low coupling,
which guarantees parallel development and much better maintenance.

There is an architecture pattern called microservices architecture that partitions the
application into several small services that have specific functions or responsibilities with
very low coupling between these services, and which provides very good features, such as
excellent evolutionary maintenance.

When it comes to an architecture that is based on microservices, it is much easier to
implement each of the modules of the administrative–financial application as mini-
applications. An accounts payable module, for example, would need its front end, and
would depend on the combination of some microservices (such as a service that provides
the constant accounts, another that provides the variable accounts, another that provides
the payroll, and so on) in order to work.

Microservice Patterns Chapter 7

[164]

Of course, there are advantages and drawbacks to the microservices-based approach, and
we should look closely at an application to determine whether it is worth using this
architecture. The architecture based on microservices acts as a counterpoint to the
traditional monolithic architecture in which the modules are much more coupled. So to
discuss the architecture of microservices and establish a better definition of what
microservices are, we must talk about monolithic architecture. This is exactly what we will
do next.

Here is a brief comparison between microservices and SOA. Some people like to refer to
microservices architecture as a lightweight SOA. Both architectures aim to break a
monolithic scenario to increase scalability and maintenance. However, while SOA is
enterprise-oriented, where applications can speak more easily, microservices are small,
integrated services that form one or more business functionalities. This is the main
difference—microservices are the result of the functional decomposition of a monolithic
application into small, smart, and loosely coupled (such as SOA) components with well-
defined responsibilities and easy maintenance.

Inside a monolithic application
A typical application contains a presentation layer, which is the client side of the
application, a persistence layer or database, and an intermediary layer, which is the server
side of the application and contains the business logic. The layer that interests us is the
intermediary layer. This receives the requests from the client layer, performs some business
logic, accesses the database if necessary (executing queries and updates), and provides the
result to the client layer.

This server-side layer generally consists of several modules or services. Although the
application has a modular architecture, the application is deployed and packaged as a
monolithic block. Modules represented by classes and files are contained in packaging files
(EAR, WAR). These files are deployed together and belong to the same deployment. Most
Java-based applications are packaged in a single .war or .ear file.

Microservice Patterns Chapter 7

[165]

The following diagram shows an example of an academic–financial system in a college:

The various modules of the application are deployed to a single file on the Application
Server. Generally, the application runs in a single process:

For simple applications with a limited number of business tasks, the monolithic way of
doing things such as coding (there is usually only one language for server-side coding, and
there is a unique data persistence technology), testing, and deploying is also fairly
simple. However, some serious problems appear as the application begins to grow in
complexity and the microservices will also be used to solve these problems. Later in this
chapter, we will have a specific section showing the advantages and drawbacks of
microservices architecture.

Microservice Patterns Chapter 7

[166]

Here are some of these problems:

Difficulty in implementing new features and fixing bugs
Long application startup time
Inefficient continuous deployment
Low reliability
Difficulty using new frameworks and technologies

Difficulty in implementing new features and fixing bugs
Over the years, the application grows and more lines of code are added to preexisting
codes. Even when approaching the code with caution using the best object-oriented
practices and patterns (low coupling and code reuse), the number of classes and libraries
tends to grow. Maintenance becomes much more difficult. Common problems may arise,
such as an increase in the responsibilities of some classes. This issue is more critical because
the development team always changes. The code becomes more difficult to understand and
some required changes can be made incorrectly. As a consequence of this, we have a delay
in implementation.

Long application startup time
As an application gets bigger (more classes, libs, and files), its initialization slows
down, and the developer will take a lot of time to start up the application. Doing this
several times a day greatly increases development time, so this is another factor that
impacts the maintenance of the application.

Inefficient continuous deployment
For each required change in the application, you need to deploy it in its entirety.
Continuous deployment is very difficult because every time a part of the code is changed,
the entire application must be deployed. Of course, in a test environment, you can group
multiple changes together and make a single deployment. However, this is still inefficient
as it requires all implementations to be completed. This scenario becomes worse for
applications that require a deployment to be in production several times a day.

Microservice Patterns Chapter 7

[167]

Low reliability
The modules of a monolithic application usually run in the same process. Any error or bug
in a module (such as a memory leak) impacts the entire process and, consequently, the
entire application. Even if an application is executed with several nodes of the clustering
system, and even if there are several instances of the application, the problem can be
propagated by the other instances of the application if the error is due to the code.

Difficulty using new frameworks and technologies
In a large monolithic application with thousands and thousands of lines of written code,
replacing a framework or even including new features is difficult because it will require
changes in many parts of the application. Sometimes we should rewrite almost all of the
code; situations like this are very common. The quality of the product does not improve,
and the effort to maintain this quality gets much higher because the development team
does not have enough time to introduce the new framework.

The scale cube
The Art of Scalability by Martin L. Abbott and Michael T. Fisher presents a three-dimensional
scalability model called the scale cube. See the following diagram for more details:

Microservice Patterns Chapter 7

[168]

This model shows that we can scale an application in three different ways, which are listed
as follows:

X-axis scaling: This is the most common model, and proposes the execution of
multiple clones of an application under the supervision of a load balancer. This
type of scalability is also called horizontal scalability, where the solution for
meeting the demand is the addition of more servers.
Z-axis scaling: This is similar to X-axis scaling (multiple instances running the
same code), but in this case, each server takes responsibility for a part of the data.
This type of scalability uses the concept of sharding, most commonly in the
database.
Y-axis scaling: This has the strategy of decomposing the application in different
services. The architecture of microservices is an example of Y-axis scaling. Using
this scalability approach, a monolithic application is decomposed into a set of
services. Each service is responsible for a set of related functionalities.

What microservices actually are
We can define microservices architecture as a way to develop an application using a set of
small, low-coupling, independent, and deployable services. Each microservice is very well-
defined, meaning that each microservice is responsible for a single task that is well-
defined.

So, microservices are small components that perform a specific job and may be used to
benefit a business. Therefore, when developing an application under the architecture of
microservices, we must break this same application into small components that are the
microservices. As well as the other characteristics that we will see later, microservices can
be changed and deployed without degrading the application itself.

Microservices are not a silver bullet
Like any technological solution, there are advantages and drawbacks to microservices,
which will be explored later in this chapter. If microservices are applied well, then they will
increase the reliability and scalability of an application that grows in complexity. However,
the very nature of microservices can bring problems when they are poorly implemented.

Microservice Patterns Chapter 7

[169]

The strong independence of microservices means that they can be created using different
languages, and can communicate using different protocols and APIs. In addition, an
application may contain numerous microservices that are used for the benefit of the
business. The plurality and quantity of the microservices make the control of these same
microservices quite complex. Some extra care and energy should be taken in the
implementation of an application based on microservices architecture.

Explaining how microservices architecture
works
Although there is still no formal model to follow when implementing microservices
architecture, we can highlight some common characteristics. We can also verify good
practices when developing microservices.

With one or more related functionalities, a microservice is a small portion of the application
that is used to benefit the business. From this definition of microservices, we will now look
at each of the following common characteristics of microservices in detail:

The application is decomposed into smaller components
Multitask teams
Product focus
Simpler and smarter processing.
Decentralized governance of libraries and APIs
Single responsibility principle
Fault tolerance
Evolutionary systems
Decentralized data

Microservice Patterns Chapter 7

[170]

The application is decomposed into smaller
components
While developing an application based on microservices architecture, we should consider
breaking the application into smaller components that will be changed and deployed
separately (as opposed to a monolithic application that must be fully deployed with every
change of code). However, splitting an application into small services that act
independently requires a longer development time.

The following diagram shows the access of the client of an application to a business
component:

Microservice Patterns Chapter 7

[171]

The following diagram shows the same client accessing the same functionality via
microservices:

Because microservices are small and independent, they can cause problems with accessing
more complex services. These problems are described as follows:

Calls to several microservices to meet a functionality: Generally, clients need
services or functionalities that involve calls to several microservices. For
example, in an academic–financial management system, a client who wants rich
detail on the history of a college student may have to access many microservices.
So, making multiple calls to various microservices reduces network performance,
and this is critical when there is a mobile client.
Microservices can use different protocols: Because microservices are
independent, they may require different protocols to be accessed, such as REST,
WebSocket, and so on. In other words, there is no uniformity of protocol for
accessing microservices, and we can imagine how time-consuming it would be to
have to communicate with each of these microservices.
Different types of clients: There are different types of clients, such as mobile
clients and desktop clients. Each of these clients also has different needs. The
amount of information offered to a mobile client is generally less rich than that
offered for a desktop client. Another important issue is that network
performance is different for these different types of client. A mobile network is
slower than a local network.

Microservice Patterns Chapter 7

[172]

In the following diagram, we can see an example of a set of functionalities that are found in
a system and their respective calls to the various microservices of the application:

The price to pay for decomposing an application into a set of microservices is quite clear.
Controlling the various calls to microservices is a complex task, and there is still the
question of having a single database. In these cases, transaction control becomes more
complex.

To meet this set of problems, there is a solution called the API gateway that establishes a
type of frontend for the clients of the application based on microservices. The API gateway
interposes between clients and microservices. Sometimes, the request is just a call to a
microservice, but in other cases, the API gateway functions as a coarse granulation layer
that receives the request to a service and makes several calls to microservices.

Microservice Patterns Chapter 7

[173]

We can see this in the following diagram:

Access to the various microservices from the client application works in the same way as if
we were using an API. The API Gateway is in charge of accessing the different
microservices and worrying about the different protocols used for this access. However,
depending on the type of client application (whether it is a mobile app or a browser
application, for instance), a certain system functionality may be different. For example, if
we are in a mobile application, the amount of information that would be consulted in
accessing the student's history would be less than a browser application would access
(either because the presentation screens are different or because of performance issues in
accessing the various microservices). Taking this problem into account, besides being an
interface layer for microservice calls, the API gateway can still offer a specific API for each
type of client.

Microservice Patterns Chapter 7

[174]

So, a client mobile would access a mobile API, while a web client or a browser would access
a web API. We can see this in the following diagram:

In short, the API Gateway works as a general translator. So, the client focuses on the
business and not on the translation for the requests or the answers. In addition, the client
can make one call instead of several calls (if the functionality requires numerous
microservices), which effectively improves network performance.

Multitask teams
In a monolithic application, there are specialized teams in each part of the application—a
database team, a team that develops in the backend (Java), and a design team.

Microservice Patterns Chapter 7

[175]

In a microservice-based application, there is a multitask team, which is responsible for all
parts of the microservice. Consequently, the team must be a generalist. But we know that
even for a monolithic application, the developer often works as a full stack developer, and
has the task of developing all parts of the application.

Product focus
In a monolithic application, the focus is always the application project, and the code is
usually delivered to the application customer. However, in a microservices-based
application, the focus is always on the product. The team that is responsible for the
microservice can change and evolve the product without the typical delays experienced in a
monolithic application. The product belongs to the development team that is responsible
for the microservice, as shown in the following diagram:

Microservice Patterns Chapter 7

[176]

Simpler and smarter processing
Microservices perform specialized and intelligent tasks through an extremely practical
operation—there is a request, something is processed, and a response is returned to the
microservice client.

Decentralized governance of libraries and APIs
Microservices are used and called in one or more points of an application, or they are used
by various applications. Furthermore, we must keep in mind the independent nature of
microservices. As a result, there is a natural encouragement for the decentralization and
governance of APIs and libraries. This means that microservice developers should use the
tools that they think are necessary for microservice development, as long as the interface
with the client does not change.

Single responsibility principle
A microservice should always have a small set of responsibilities. This definition is based
on a principle called the single responsibility principle, which states that a class must have
only one reason to change. In other words, a class with more than one motive to change
would have more responsibilities, and would not be cohesive. This would create problems,
such as high coupling between the responsibilities of a class, difficulty in reusing code, and
difficult maintenance.

A class that had methods that are responsible for calculation, as well as methods for
formatting the result, would be an example of a class with little cohesion. Let's look at the
following example:

class Insurance {
 public double calculateCotation (...) {...}
 public String generatePDF (...){...}
 public String generateXLS (...){...}
}

The first method (calculateCotation) is directly related to the business domain and the
others (generatePDF and generateXLS) are related to the presentation of the calculated
values.

Microservice Patterns Chapter 7

[177]

The SRP principle is part of a set of five principles called SOLID
principles, which were popularized by Robert Cecil Martin (colloquially
known as Uncle Bob) after the publication of his book Agile Software
Development: Principles, Patterns, and Practices. In fact, these five principles
are a subset of several principles reported in the book. The SOLID
principles are principles of object-oriented programming, a paradigm
whose purpose is to keep code more organized and easy to read. We can
make an association between the word "solid" and the expression "solid
code". Each of the five letters of the acronym SOLID is an initial of a
principle:

 Single responsibility principle (SRP)
 Open closed principle (OCP)
 Liskov substitution principle (LSP)
 Interface segregation principle (ISP)
 Dependency inversion principle (DIP)

Fault tolerance
Because an application is now decomposed into multiple microservices, there is a greater
chance of failure because one or more microservices can and probably will fail.

Implementing a microservice-based application should take this into account. A
microservice is implemented in such a way that it has a small impact in the case of failure
and there is a recovery as soon as possible. As a result, the microservices-based application
must be developed with fault tolerance as its goal. Of course, such an implementation
increases the complexity of development.

The recovery task is facilitated because of the nature of the microservice. Because it is a
small service, it can be created or initialized quickly.

Evolutionary systems
A microservices-based architecture is ideal for systems that have increased requirements
and functionality over time. Systems that have a significant increase in business need
services that can be reused. They also need a clear separation between their responsibilities,
which are offered precisely by microservices.

Microservice Patterns Chapter 7

[178]

Decentralized data
Each microservice has its own database—that is, each microservice has its own way of
managing data, instead of a single, centralized database for the entire application, or even
for the whole company. This means that, depending on the services, the databases may be
quite different. We can have a relational database (or more than one), we can have NoSQL
of several types as a documentary database, a graph database, or other kinds of database.

Explaining when to use microservices
architecture
Taking into account the characteristics of an application based on the architecture of
microservices, we can establish some criteria of when to use microservices architecture, as
shown in the following bullet list:

When a system grows in its amount of requirements and functionalities, meaning
that it has evolved quickly. In this case, the system begins to mix the
responsibilities between its modules.
When we need to reuse services.
When the centralization of the APIs begins to block the evolution of the system.
When there is a need for new features, APIs, libraries, and frameworks, and we
do not want to rewrite all of the software for this.

Imagine that we have a sensational and innovative business model, and we must quickly
make an application available for customers to enjoy this business. The adoption of a
monolithic model, in principle, would make the application develop quickly, with quick
tests and deployments as well. At this point, we might not have to think about the
evolution of the system—we now want to think about the company's financial goal.
Unfortunately, immediate profit may obscure the development of software that could offer
greater profits in the future.

There are two conflicting issues:

Delivering the product quickly so you can reach customers, capitalize the
company, and think about the evolutionary scale of the product later, running
the risk of creating software with poor maintenance

Microservice Patterns Chapter 7

[179]

Once we have identified the criteria for using a microservices strategy, spending
more time developing the application based on microservices

At this point, both the architecture and project management teams should have some
questions in mind:

Will the application evolve?
Does the team multitask?
How will much development time initially be spent on a microservices product
compared to a monolithic product?

How to decompose an application into
microservices
We have two possibilities for decomposing an application—Either there is a monolithic
application and we want to decompose it into microservices, or the application does not
exist and we want to use the microservices strategy to create it.

In the case of existing monolithic applications, it is always possible to establish an
intermediate stage, starting with a monolithic system to create a hybrid architecture, for
example. At this intermediate stage, there may not be an immediate need or sufficient time
to change the entire monolithic application and replace it with another one based on
microservices architecture. For example, we have the critical issue of the single database.

There is not really a definite model for decomposition, but we can perform some tasks that
may help:

Identifying microservices
Taking care of the process of extracting application modules that are candidates
for microservices
Establishing a hexagonal model for the application

Identifying microservices
Microservices can be very varied. There are technical microservices that are used
throughout the application and that meet nonfunctional requirements, and there are
microservices that are related to the application business application.

Microservice Patterns Chapter 7

[180]

We can use two approaches in order to create business microservices—using business
capabilities or use cases:

Business capabilities: This indicates the ability to generate value for the
business application. The decomposition is small and each service would have a
larger scope. For example, in an application that manages a college, we can have
the following business capabilities such as Professor Management Service,
Student Management Service, Course Management Service, Student Financial
Management Service, College Events Service.
Use case: We can perform a decomposition in services based on the use cases. In
this case, the decomposition is large. For example, a college might have a Student
Enrolment Service, Payment of Monthly Fee Service, Test Review Service, and a
Student's Academic Situation Service.

Taking care of the process of extracting application
modules that are candidates for microservices
Here, we must extract the application components or modules with well-defined interfaces.
These modules would be eligible to become microservices. Looking at these module
interfaces, we have to try to find out which of the following two situations is the case:

The modules are independent, meaning that the services are well-defined and
have few responsibilities. Here, we must take care not to generate monolithic
modules.
The modules are reusable. Some clear examples of modules that can be reused
would be modules with more technical tasks that are used throughout all of the
application, such as a print service, an email service, a storage service, a
document download service, and so on. Modules with a higher business
content—such as a ticket payment service, a credit card payment service, and so
on—can also be reused.

Microservice Patterns Chapter 7

[181]

Let's look at the example shown in the following diagram:

When creating technical microservices, we must be careful not to carry a functionality of
the business along with it.

Once this first approach is made, we still have a monolithic block that represents the core
business. We can perform a decomposition of this block based on business capabilities or
use case, and we can also discover new business modules with well-defined interfaces. We
can then have modules such as a Student Status Service, Professor Service, College Event
Service, and Financial Student Service. In addition, we can have microservices of the
business with finer granularity, such as a Ticket Payment Service.

Let's look at the following diagram:

Microservice Patterns Chapter 7

[182]

Similarly, business-connected microservices must not carry the responsibilities of other
microservice candidate modules. This means that we have to see the size of each
microservice, and this is related to their own responsibilities. The microservice should have
few responsibilities, characterizing a cohesive service (we always have to remember the
SRP principle). One way to avoid dependent services is to remember the independent
nature of microservices. If there are two microservices that need to be deployed together, or
one does not exist without the other, then these services should most likely only be one
service.

Another way to obtain this decomposition is to design our application in the hexagonal
model, which we will see in the following section.

Establishing a hexagonal model for the application
A typical application keeps its various functional modules together. Generally, this typical
application has a hexagonal structure or architecture (we will see a better definition of the
hexagonal architecture later) with the core business in the center of the structure. The core
business contains all the management of the services offered by the application. There are
also links with the various components external to this core, such as messaging services,
database, client machines, and so on. These connections with the external world have
specific adapters and protocols, such as a database adapter, REST API, Web API,
Messaging API, WebSocket protocol, and so on, as shown in the following diagram:

Microservice Patterns Chapter 7

[183]

The idea behind the hexagonal model is to isolate the application's core domain from access
to technical infrastructures, such as the database, message queue, storage, and so on. As
previously stated, once the core domain is isolated, we can analyze it more deeply and try
to extract the services connected to the business.

Advantages and drawbacks of a
microservices-based application
Like any other technology, there are advantages and disadvantages in using microservices-
based architecture. Several problems may appear during the implementation of
microservices, but the advantages can overcome the complexity encountered during
development.

The following are the advantages of the microservices architecture:

Small multitask team.
Services can be written in different languages. This is a positive point because
depending on the service, a specific language may provide more tools than
another in obtaining the functionality served by the service.
The deployment is faster and integration is performed more automatically.
Changes of requirements mean only the deployment of the related microservice.
The latest libraries, frameworks, and technologies can be quickly used.
Greater fault tolerance.
The microservice is related to the product and not to the project. The developer
has more freedom and thus can develop the service more quickly.
The knowledge of microservices is transmitted more quickly to the development
team. Consequently, the necessary changes and maintenance of the code are
made more quickly.

The following are the drawbacks of the microservices architecture:

The independence of microservices can bring complexity because the services
can have different protocols for both communication and data.
The increase of microservices makes the control and management of these
services more complicated. For example, In order to maintain fault tolerance,
there must be more programming effort.

Microservice Patterns Chapter 7

[184]

As well as the problem of services with different protocols, the communication
between the services is also more complex because some application
functionalities may involve calls to several microservices, worsening network
traffic. The developer, in these cases, should use tools and strategies such as the
API gateway.
Transaction control is a complicating factor, especially when migrating from
monolithic systems to an architecture based on microservices—for example, in
situations in which a particular functionality or use case needs several
microservices.
Each microservice runs in a single process, which means increasing memory
consumption.
Tests are more difficult to perform because the application is distributed across
microservices.

Microservices architecture patterns
So far, we have seen that microservices architecture is based on the functional
decomposition that produces independent, self-sufficient services that may have different
ways of communicating with the outside world using well-defined interfaces. This favors
low coupling and well-defined functions, allowing high cohesion (well-defined
responsibilities with a reduced number of functions).

Although the services act independently, the purpose of these services is to create an
application—that is, a set of business-related functionalities.

Based on these characteristics, we can extract some patterns that can be used for the
implementation of the microservices architecture. Here are some of these patterns:

Aggregator pattern
Proxy pattern
Chained pattern
Branch pattern
Asynchronous messaging pattern

Microservice Patterns Chapter 7

[185]

Aggregator pattern
As the name itself suggests, this pattern establishes the existence or creation of a somewhat
more complex service that invokes the functions of more internal services. Consequently,
this aggregating microservice acts as an intermediary service that is a composition of other
microservices, in the sense that it calls the microservices, obtains the individual responses
from each microservice, and applies the necessary business rule, returning the final
response to the client. Let's look at the following diagram:

This diagram appears to show that a few parts of the solutions are repeated, which
characterizes the existence of a design pattern. We can make a comparison with a
microservice that acts as a business facade, calling specific microservices to perform a more
complex functionality on an application business level. On a larger scale, this same
aggregator microservice may act as a microservice individual that is called by another
aggregator microservice at a higher level. It is clear that having great knowledge of the
application's business rules is vital.

Proxy pattern
This pattern is a variation of the aggregator pattern, but with one important difference.
There is no data collection for all the internal microservices, meaning that there is no
aggregation. The proxy pattern directs the call to a specific microservice and the analysis of
the request is what determines which microservice should be called (a typical behavior of a
proxy pattern).

Microservice Patterns Chapter 7

[186]

However, there may be some benefit in the implementation of this proxy. Immediately
before the response is returned to the client, there may be a transformation of this response
to the format expected by the requesting client. Remember that different clients (including
web browsers, mobile devices, and so on) can make the request. Let's look at the following
diagram:

We can now see why an API gateway is clearly based on aggregator and proxy patterns.

Chained pattern
The purpose of the chained pattern is to present a more consistent and definitive final
response to the client using a chain of services that communicate sequentially. In this way,
Service A that acts as a first service in the chain communicate with Service B. Service B
communicates with Service C, and so on. The calls are synchronous and the client remains
locked until the final response returns from Service A to the client.

It is important to note here that the requests that arrive at the chain services may be
different. In this way, the request sent from Service A to Service B may be very different
from the request sent from Service B to Service C, and so on. In the same way, the response
of the services may also be different. The response from Service C to Service B may be
different from the response from Service B to Service A.

Microservice Patterns Chapter 7

[187]

Let's look at the following diagram:

A practical example of this implementation is the generation of data for the printing of
bank slips. Let's suppose that a bank provides two soap web services. One for registering
the bank bill data in the bank and the other for getting the bank bill data registered with the
bank. Our application contains two defined microservices—Service A, which registers the
bank bill data in the data bank (that is, it calls the first registration web service); and Service
B, which gets the definitive bank bill data, such as the code bar (meaning that it calls the
second query web service), and returns the data for the bank bill generation.

A client application informs the bank data of a user to Service A. Service A is responsible
for registering with the banking institution and, with the return of this registration, Service
A makes a request to Service B. Service B then gets the definitive data for the generation of
the bank bill. Service B passes this data to Service A, and it can then apply some
transformation to that data and return it to the client.

This same example can be implemented using the aggregator pattern. However, whenever
a sequential order of steps is required to produce a final response, we can think of the chain
pattern as a solution.

Branch pattern
The branch pattern works as an extension of the aggregator pattern and can call different
service chains in parallel. In the branch pattern implementation example, a first service,
called Service A, is called by the client and can act as an aggregator, calling service chains
to compose the response. Alternatively, based on the request, a specific service chain is
called, thereby acting as a proxy pattern. Let's look at the following diagram:

Microservice Patterns Chapter 7

[188]

In fact, the main difference between the chain pattern and the branch pattern is the calling
of different microservice chains. However, if we make an abstraction, and consider each
chain as an individual microservice, in essence, we will have an aggregator or a proxy
pattern.

Asynchronous pattern
When we think of microservices in practical terms, we immediately think of
microservices implemented using the REST protocol. However, microservices based on a
REST pattern are synchronous and therefore blocking. Sometimes, we need microservices
that can be called asynchronously. The asynchronous mechanism is developed with
techniques that are specific to each application (message queue, sending asynchronous
events, and so on). Let's look at the following diagram:

Microservice Patterns Chapter 7

[189]

Service A receives the request from the client and calls Service B in a synchronous manner.
However, Service B depends on Service C and calls it asynchronously through a message
queue, for example. Service C reads the message from the queue, does the required logical
processing, and also returns a response to Service B using the queue mechanism. (We
should always keep in mind the independence of the services that are being called.)

A way of communicating between Service B and Service C could be that Service B sends a
request message to a QRequest queue and listens for a response from a QReply
queue. Service C then reads the request message from the QRequest queue, performs the
necessary processing, and sends a response to the QReply queue. Service B reads the
response message from the QReply queue, applies a transformation or adds some other
information, and then sends the response to Service A. It is clear that the specific details of
this implementation should be taken into account, such as waiting for Service C to time
out.

Implementing microservices
The idea behind the implementation of microservices in our example is to implement a
microservice that provides the bank data for a client to generate a payment slip. The data
returned will be the barcode of the payment slip.

The bank provides two SOAP web services, one to register the payment slip with the bank
and one to provide the data for generating the payment slip that was already registered. As
a result, we will make two microservices, one for registering the payment slip data and
another for the query of the payment slip that was already registered. Each of these
microservices will call the related web service. Next, we will construct a third, more
complex microservice that will add two calls: a call to the registration microservice and
another to retrieve what was registered. Let's look at the following diagram:

Microservice Patterns Chapter 7

[190]

We could, in fact, make a microservice chain here; however, we opted for the aggregator
pattern because we assume that multiple payment slips may have been previously batch-
registered.

We will make three classes—one for each microservice. Each microservice will be
implemented as a REST resource. To make the code simpler, we use only one request class
and only one response class for the two microservices; the registering and querying
microservices.

The payment slip registering class is as follows:

@Path ("/register")
public class PaymentRegisterService {
 @Path ("/paymentSlip/")
 @POST
 @Produces (MediaType.APPLICATION_JSON)
 @Consumes (MediaType.APPLICATION_JSON)
 public Response register (RequestVO requestVO) {
 // calls the bank register web service:
 // ...
 // Prepare the response with the register web service data:
 ResponseVO responseVO = new ResponseVO();
 responseVO.setRegisterNumber (7554433452L); // this is a simulation

Microservice Patterns Chapter 7

[191]

//because this information must be returned from the bank's web service
 responseVO.setUserName (requestVO.getUserName());
 responseVO.setValue (requestVO.getValue());
 responseVO.setStatus ("OK"); // everything is supposed to be correct
 return Response.ok (responseVO).build();
 }
}

The following is the payment slip query class:

@Path ("/query")
public class PaymentQueryService {
 @Path ("/paymentSlip/")
 @POST
 @Produces (MediaType.APPLICATION_JSON)
 @Consumes (MediaType.APPLICATION_JSON)
 public Response query (RequestVO requestVO) {
 // calls the bank query web service:
 // ...
 // Prepare the response with the query web service data:
 ResponseVO responseVO = new ResponseVO();
 responseVO.setCodeBar("8888999977776666");// this is a simulation
//because this information must be returned from the bank's web service
 responseVO.setUserName (requestVO.getUserName());
 responseVO.setStatus ("OK"); // everything is supposed to be
correct
 responseVO.setValue(requestVO.getValue());
 return Response.ok (responseVO).build();
 }
}

The following is the aggregator class:

@Path ("/bank")
public class PaymentSlipGenerating {
 private static String BASE_PATH =
"http://localhost:8080/microservice/ws";
 @Inject private UserService userService;
 private Response callMicroservice (String path, Object entity) {
 Client client = ClientBuilder.newClient();
 WebTarget target = client.target (BASE_PATH);
 Response resp = target.path (path).request().post(Entity.json
(entity));
 return resp;
 }
 @Path ("/paymentSlip/{id}/{value}")
 @GET
 @Produces (MediaType.APPLICATION_JSON)

Microservice Patterns Chapter 7

[192]

 public Response getPaymentSlipData (@PathParam("id") long id,
@PathParam("value") String strValue) {
 // get the payment slip value:
 double value = convertToValue (strValue);
 // get the user information from local DataBase:
 User user = userService.getUserById (id);

 // prepare the payment slip registering request:
 RequestVO registerRequest = new RequestVO();
 registerRequest.setUserCode (user.getCode());
 registerRequest.setUserName (user.getName());
 registerRequest.setValue (value);
 // call registering microservice:
 Response resp = callMicroservice ("/register/paymentSlip",
registerRequest);
 ResponseVO responseRegisterVO = resp.readEntity (ResponseVO.class);
 // prepare the payment slip query request:
 RequestVO queryRequest = new RequestVO();
 queryRequest.setUserName(registerRequest.getUserName());
 queryRequest.setRegisterNumber
(responseRegisterVO.getRegisterNumber());
 queryRequest.setValue (value);
 // call query microservice:
 resp = callMicroservice ("/query/paymentSlip", registerRequest);
 ResponseVO responseQueryVO = resp.readEntity (ResponseVO.class);

 return Response.ok (responseQueryVO).build();
 }
}

Any client can then call this aggregator microservice in order to obtain the barcode and
other information to generate the payment slip.

Summary
In almost every section of this book, we have shown that, besides being solutions to
recurrent problems, patterns aim at the reuse of and low coupling between application
components. Following this principle, the decomposition of an application into small
independent parts that perform intelligent and specific tasks allows this application to
evolve in a natural and organized way. These small parts with specific tasks are called
microservices, and the method of developing a system based on the decomposition of the
application into these small parts is called microservices architecture.

Microservice Patterns Chapter 7

[193]

However, like any technology, there are pros and cons to this. Developing an application
and thinking about the control of the various microservices is a complex task, but once the
microservices are well defined, the application is able to evolve much better than a
monolithic application. In this way, the maintenance of the application is done more
quickly, with the addition of new functionalities and the updating of the current
functionalities.

The inclusion of new frameworks, APIs, and libraries is done much more quickly thanks to
the decentralization of microservices. Teaching microservices to future development teams
is also faster and easier, and deployment is also faster because there is no need to redeploy
the entire application because of a change in one part of the application. We also looked at a
mechanism called an API gateway. The API gateway establishes a type of frontend for the
various clients of the application based on microservices, translating the clients' calls to the
microservices.

Finally, in this chapter, we looked at some of the main design patterns that are used in the
development of the microservices architecture, such as the aggregator pattern, the proxy
pattern, and the chained pattern.

The next chapter, Chapter 8, Cloud-Native Application Patterns, will address the cloud-native
application pattern. Here, we'll look at a cloud application, as well as some of the key
patterns that must be followed when developing an application in the cloud.

8
Cloud-Native Application

Patterns
In this chapter, we will explain cloud-native application patterns, looking at what a cloud-
native application is and what its goals are. We will also show the patterns already
described in previous chapters and new patterns that have emerged to address cloud-based
applications. After reading this chapter, the reader will be able to understand the concepts
and patterns that characterize a cloud architecture.

In this chapter, we will cover the following topics:

Explaining the concept of cloud-native applications
Explaining the goals of a cloud application
Explaining the cloud design patterns

Explaining the concept of cloud-native
applications
The cloud and its resources are increasingly becoming a part of life for businesses. In the
past, cloud resources were used for solutions such as storage management, emails,
documents, and photos. Nowadays, the deployment of enterprise applications in the cloud
structure certainly points the way to be followed by companies.

The cloud has become one of the first strategies to consider when developing a business
application. The big challenge here is to make this application use the features offered by
the cloud, such as elasticity, scalability, and availability, for the benefit of the business.
To start off with, monolithic applications were migrated and deployed in the cloud. Some
gains were achieved such as greater management and control, as well as availability. But
what we really want is an application integrated with the capabilities offered by the cloud,
that is, to leverage the cloud computing resources to better solve the business.

Cloud-Native Application Patterns Chapter 8

[195]

Then comes the cloud-native application, which is an application that uses the benefits and
capabilities provided by the cloud. A set of design patterns is used for the development of
this application. We'll look at some of the main design patterns used in cloud architecture
in more detail later in the chapter.

The cloud computing environment is basically elastic in the sense that computing resources
are used and released according to demand. Consequently, scalability and availability are
achieved with less complexity than they would be if the application were still under
datacenter control.

Based on the cloud-native computing foundation, the properties that guide a cloud-native
application are as follows:

Container-packaged: The applications are executed in isolated units
Dynamically-managed: There is a central orchestration that manages the
applications, improving the use of the resources, and reducing operational costs
Microservices-oriented: Applications in the cloud are loosely-coupled

Hence, a cloud-native application has a strongly-distributed nature. This is because this
application is deployed in the cloud, and these properties are satisfied.

Explaining the goals of the cloud-native
application
Cloud design patterns aim to build secure, reliable applications available in the cloud. The
following list will show these and other characteristics to be achieved by a cloud-native
application:

Availability: The time the application is up and running. What is desired is a
non-stop operation of all the system's functionalities.
Data management: Data handled by an application is the building block of a
cloud application. Data can be distributed or replicated across many servers (or
clusters) to achieve scalability, availability, or even performance.
Messaging: To increase scalability, services or applications in the cloud have low
coupling and often communicate using asynchronous messaging.

Cloud-Native Application Patterns Chapter 8

[196]

Management and monitoring: Because cloud applications run in remote
environments, there must be a way to monitor non-functional property
states—such as the use of computing resources—through logs and reports. Also,
we must be able to deploy new implementations without having to stop the
application (maintaining the availability characteristic).
Performance and scalability: Maintains performance despite an increase in
the use of computing resources and scaling of the application.
Resiliency: A cloud application should be able to overcome a failure quickly.
This issue is important for maintaining availability.
Security: A cloud application exposes several of its elements to users and should
be able to prevent attacks by malicious users or malicious programs.

It is important here to note that there are some issues that should be taken into account
when implementing a distributed application, and specifically a cloud-native application.
These fallacies of distributed computing were made by L. Peter Deutsch and others at Sun
Microsystems, describing false assumptions about distributed programming:

The network is reliable
Latency is zero
Bandwidth is infinite
The network is secure
Topology doesn't change
There is one administrator
The transport cost is zero
The network is homogeneous

With the goals and challenges to be achieved by a cloud-native application on the one hand,
and the difficulties that have always existed for the implementation of a distributed
application on the other, we have launched the design pattern to solve the problems faced
by a cloud-native application. As we progress, we will show the main design patterns used
in the cloud architecture.

Cloud-Native Application Patterns Chapter 8

[197]

Explaining the cloud design patterns
Now that the cloud application concepts and its challenges are defined, let's get straight to
the point and talk about the design patterns used for the implementation of a cloud
architecture:

Composite application (microservices)
Abstraction
Twelve-factor
API Gateway
Service registry
Config server
Circuit breaker

Composite application (microservices)
In Chapter 7, Microservice Patterns, we demonstrated the advantages (and disadvantages)
of decomposing an application into functions and taking several benefits from this pattern,
always aiming at the application business. In that chapter, it was established that a
microservice-based architecture is characterized by decomposing the application into small,
functional, independent components with a well-defined communication interface that is
loosely-coupled.

Abstraction
This pattern states that the focus must be on what the client needs and not on the existing
hardware structure. In this sense, the computational resources of the cloud are used on
demand, which characterizes the elastic scalability. In this way, resources are seen in an
abstract way and are changed according to the needs of the clients.

Twelve-factor
The twelve-factor methodology is based on the twelve factors that guide the creation of a
successful SaaS project. This technology was created during the development of Heroku, a
cloud service platform (PaaS) that supports several programming languages, including
Ruby, Java, Node.js, Scala, Clojure, Python, and PHP.

Cloud-Native Application Patterns Chapter 8

[198]

The experience acquired during the development and support of SaaS applications was
cataloged, that is, observations of the errors encountered, and solutions drawn up for the
problems that occurred. As a consequence, the twelve-factor methodology was created,
which is a set of guidelines that make it easier to develop cloud-based applications. For
teaching purposes, here are some definitions—SaaS stands for Software as a Service, and
PaaS stands for Platform as a Service. SaaS is best known to the end user as it has the highest
growth rate in the market. The twelve factors are as follows:

Code base: One codebase is tracked in revision control, while many deploys
Dependencies: Explicitly declare and isolate dependencies
Config: Store config in the environment
Backing services: Treat backing services as attached resources
Build, release, run: Strictly separate the build and run stages
Processes: Execute the app as one or more stateless processes
Port-binding: Export services via port-binding
Concurrency: Scale-out via the process model
Disposability: Maximize robustness with a fast startup and graceful shutdown
Dev/prod parity: Keep development, staging, and production as similar as
possible
Logs: Treat logs as event streams
Admin processes: Run admin/management tasks as one-off processes

Codebase
A codebase is any single repository where the codes reside. There can only be one codebase
per application. Several applications cannot share a same codebase in the twelve-factor
methodology. In this case, a solution would be to refactor the shared code by generating
libraries that would go into the project as dependencies.

A codebase must be managed by a version control system (such as subversion or Git).
Various deploys are generated from this codebase, each one for a different
environment—development, staging, and production.

Cloud-Native Application Patterns Chapter 8

[199]

The developer has a version of the application (that is, a deploy) running in their local
development environment:

Dependencies
Every dependency that is used by the project must be declared and isolated from the code.
In this case, we can use some package-management tools (such as Maven, grundle, and
npm). As an example, the Maven tool is used for building and documenting projects. The
dependencies are declared in the pom.xml file, where we can declare the project
dependencies:

Cloud-Native Application Patterns Chapter 8

[200]

Config
An application's config is everything that varies between different deploys. It can be:

Hosts, ports, and credentials for database access
Database schema
Cache settings
Hosts, ports, and credentials for accessing message queues

The twelve-factor method requires the separation of config from code. So, the config should
never be in the code, because the configs may vary between deploys but the code does not.
The practice of placing the config in files, such as Java properties, is not recommended by
twelve-factor, as there is always the possibility of placing the same configuration data in
different environments (an example is when a developer commits to the version-control
repository with its own local configs). Another weakness is the security issue of these
configuration files. The twelve-factor method recommends the use of environment
variables that can be injected when deploying an application in a specific environment:

Cloud-Native Application Patterns Chapter 8

[201]

Backing services
Backing services are external services used by the application, such as a database, message
service, file repository, or email service. The twelve-factor method considers each service
that is external to the application as a resource. Each of these resources must be accessed via
a URL or location and credentials attributes that are in the app's config. In this way, any
changes to a service location—such as the database or file repository—does not impact the
application code. The change becomes imperceptible to the code, resulting in a low desired
coupling. We can also use abstractions or interfaces to access these services in addition to
the app's config.

As a first example, we have the file stored in a repository. Access to the repository can be
executed via a URL, regardless of local or remote access (such as Amazon S3). For this, we
use the app's config. Of course, the way to store files locally or remotely, in the last instance,
may be different, but the use of an interface greatly improves this issue.

As a second example, we have the use of a SQL database in different environments
(production, staging, and development). We should only change the URL of the connection
to the database using what is in the application's config. This strategy should be extended
to a possible change of database management systems, such as from MySQL to DB2. Of
course, we know that in practice, the use of specific mechanisms for a database can improve
performance. However, the changes, if they happened, would be minimal:

Cloud-Native Application Patterns Chapter 8

[202]

Build, release, run
The process of transforming a codebase into a given environment must be divided into
three strictly separate stages:

Build: Compiles and generates an executable package; for example, generating
an EAR or WAR archive.
Release: Applies the app's config in the executable package. The resulting
release, which is the combination of the package generated in the build with the
app's config, is ready to be scanned in the environment that contains the config.
Run (or runtime): Initializes the application in the specific environment.

The separation of these steps, that is, the definition of their responsibilities is important for
improving system maintenance and automation. Continuous integration tools are used in
these steps (Maven and Jenkins are examples of these tools):

Processes
The twelve-factor methodology emphasizes that all processes or components of the
application must be stateless and share-nothing, that is, they should not store information.
Therefore, in an application decomposed into microservices, each microservice must not
store information in memory or use the server cache. This is an important factor for
escalating an application. If there is a need to store some states between the requests, or
some data to be used later, we can use a database.

Cloud-Native Application Patterns Chapter 8

[203]

When we use memory to store information for later use in another request, we run a risk
because the next request may be in a different process (or the request can even be processed
by another server):

Port-binding
A twelve-factor app is fully self-contained and does not depend on the use of an external
server, such as Tomcat or Apache, to be exported as a service. A twelve-factor app must
export the HTTP service by port-binding, meaning that the application also interfaces with
the world via a URL. In this way, one application can be the backing service or external
resource of another app.

Concurrency
A twelve-factor app must be designed to scale using a process model that allows execution
of the processes in parallel mode. This is much like the UNIX process model used when
executing daemons. Consequently, we can design processes that only deal with HTTP
requests while we can also have processes that deal with tasks that are very long and
executed in the background. The process model shows its importance when the application
needs to scale, because, at that moment, the application is replicated, making copies of the
processes instead of executing a new instance.

Cloud-Native Application Patterns Chapter 8

[204]

Disposability
In the world of cloud computing, processes are constantly emerging and dying; this is
exactly what causes escalation on-demand. In these conditions, the birth or origination of a
process must be as fast as possible, and your interruption should be as fast, and have an as
little impact, as possible.

The processes of a twelve-factor application are disposable, meaning that they can be
initialized and stopped at any time. A process that ends without impact means that it
should end gracefully, saving the state if necessary, and releasing the allocated computing
resources.

Dev/prod parity
A twelve-factor app should keep the production, testing, and development environments in
as similar a state as possible. This facilitates the process of continuous deployment, while
avoiding possible errors generated when the builds are sent from the development
environment to the production environment.

Logs
The log of a twelve-factor app should be treated as an event stream. In a traditional
environment, the log can be generated for a file. However, problems can arise, such as a
lack of disk space. We know that in a cloud computing environment, where there is elastic
scalability depending on demand, processes are born and die all the time. Likewise,
machines and containers may no longer be used. Log files could get lost in this resizing in
the cloud. Treating a log as an event stream is critical on a platform such as a cloud. In this
way, logs can be directed anywhere. For example, they could be directed to a database in
NoSQL, to another service, to a file in a repository, to a log-indexing-and-analysis system,
or to a data-warehousing system.

Admin processes
The twelve-factor method indicates that maintenance tasks, such as script execution for
data migration, initial data loading, and cache cleaning, should be automated and
performed on time. Because our application will run in multiple environments, and across
multiple servers, it is necessary to use the same set of tools, software, and configuration
files to perform these tasks. Consequently, parity problems between the different
environments are reduced.

Cloud-Native Application Patterns Chapter 8

[205]

The API Gateway
The decomposition of an application into small, intelligent, and well-defined components is
an important design pattern in the world of cloud computing. These components are the
microservices that bind the application business together. However, the control of these
microservices, as seen in Chapter 7, Microservice Patterns, is a complex task as the
functionalities grow in the application history. One solution to this problem is called
the API Gateway. As the API Gateway has already been explored in detail, in Chapter
7, Microservice Patterns, we will only cover it briefly now.

The API Gateway serves as a frontend for cloud-application clients. Sometimes, the request
is a simple call to a specific microservice, but often the API Gateway functions as a coarse-
granulation layer that receives a request and performs several calls to microservices that are
related to the required functionality. This issue is also related to the microservice
aggregator pattern and the microservice proxy pattern. The API name comes exactly from
the way that clients access the microservices, which is similar to the use of an API, as
demonstrated in the following diagram:

Cloud-Native Application Patterns Chapter 8

[206]

Depending on the type of client in question, a given system's functionality may sometimes
work differently and the application may respond with different information. When calling
a system service, a mobile client receives a smaller set of information than a web client
(who uses a desktop computer). Taking this into account, there is an extension to the API
Gateway. The extended API Gateway can provide a specific API for each type of client. In
this way, a mobile client would access a mobile API, while a web client or a browser would
access the web API:

The service-registry pattern
We know that microservices are exposed via access protocols such as HTTP/REST. This
means that the services are accessed via a URL. However, we are in the cloud world, which
has elastic scalability. The IPs of containers and virtual machines are dynamic and can
change frequently. Consequently, the locations of services residing in these containers are
also subject to change. As we have already said, instances of microservices are created and
terminated constantly. Therefore, the following question arises—how can a client of a
microservice handle this problem? The solution is to implement the service registry pattern.
A service registry is a database of registered services. When a microservice is born, it is
recorded on this database, and when it dies, it is unregistered from the database.

Cloud-Native Application Patterns Chapter 8

[207]

A microservice client accesses the service registry that is responsible for knowing whether
the microservice is available, as well as providing its location to the client. Let's look at the
following diagram:

Config server
An application, whether in the cloud or not, has properties such as credentials and database
location, application-specific information, and URLs for accessing external resources. For a
traditional application, these properties are usually in a properties file. If we change a value
of one of these properties, we must stop the application and restart the application
container. This question becomes more critical when there are different environments, such
as production, staging, and development. Each of these environments has their own
configurations.
In the context of the cloud, microservices may be in different locations or servers. Let's
assume that these properties are in the same microservice location. To change a property,
we must locate the microservice, change the property, and restart the container. With a
large number of microservices, this would be quite critical.

Cloud-Native Application Patterns Chapter 8

[208]

To solve this problem, a layer called cloud config server has been introduced and its role is
to manage the properties of the application based on microservices. This layer is
responsible for maintaining these properties, and whenever any of these properties are
changed, this change is reflected in the microservice (or application) without the need to
rebuild or restart the service.

The config server is responsible for providing the properties for each registered
microservice (service registry). When the config server initializes, the microservice
properties are obtained from a path that was specified when the microservice was
registered. The properties obtained are then stored in memory. This path is controlled by a
version server (such as git or subversion). When a registered microservice is initialized, it
goes to the config server and obtains the related properties. When there is a need to change
a property of a microservice, we must go to the path in the config server, change the
properties, and restart the config server, as can be seen in the following diagram:

The circuit-breaker pattern
In the cloud scenario with distributed systems, the probability of service failure exists for
several reasons, such as a lack of connection or an unavailable service. The services created
in the cloud must rely on this scenario and be prepared for fault-tolerance. This way, when
a fault occurs, the reason for the fault will probably be fixed and the service will work
again. However, there are situations where failures are caused by totally unexpected events
and, even though the service tries to work again, it cannot. The situation is even more
critical when there is timeout management.

Cloud-Native Application Patterns Chapter 8

[209]

With very long waiting periods for situations in which the failure does not disappear
within a reasonable period of time, computational resources remain blocked by the timeout
time. Furthermore, as other requirements for the same service arrive, things get worse.
Services that depend on this service (that is, waiting for the fault to end) are also
inoperative, causing the problem to cascade. The solution to this problem is the
implementation of the circuit-breaker pattern. A circuit-breaker pattern handles faults that
take a long time to recover.

The circuit-breaker pattern prevents an operation from repeatedly attempting to run in
situations where it will likely fail during execution. In addition, this pattern checks to see
whether the failure has been resolved. If it has been resolved, the proxy sends the request to
the operation. If the operation fails, the failure counter is immediately incremented.

The circuit-breaker mechanism
The circuit breaker functions as a proxy by routing the request to the operation or returning
an exception immediately. The pattern has this name because its operation is similar to an
electric circuit. This proxy has three distinct states, as demonstrated in the following
diagram:

Closed: The proxy sends the request to the operation. The proxy maintains a
sequential counter of previous failures. If the execution of the operation fails, this
counter is incremented. If the failure counter exceeds an established threshold,
the proxy switches to an open state. However, at this point, a timer is started
with a specified timeout time. The purpose of this is to cause the failure to be
corrected during the timeout. When the timer expires, the proxy becomes half-
open.
Open: When a request arrives, an exception is returned immediately.
Half-open: A limited number of requests are passed to the operation. If these
requests succeed, the state changes to closed, and the failure counter is reset. If
any request fails, the state changes to open and the timeout timer is restarted.
The half-open state is important for avoiding a flood of requests to the operation
in a short time.

Cloud-Native Application Patterns Chapter 8

[210]

Summary
In this chapter, we explained the concept of cloud-native applications as well as the
objectives and characteristics of a cloud application. We saw the main design patterns that
aid in the construction of a cloud application. Among the main patterns, we reviewed the
architecture of microservices and API Gateways. We also learned about the twelve-factor
methodology, which helps in the implementation of a cloud application. Finally, we
explored the service-registry patterns, which return the service location, the config server,
which provides the necessary configurations to the microservices without the need to
restart any containers, and the circuit breaker, a pattern that handles long-term failures.

9
Security Patterns

In this chapter, we will look at security pattern concepts and how they can help us to
implement better security applications. We will also learn about the single-sign-on pattern
and how this can help us to provide a secure application. In addition, we will learn about
the authentication mechanism and authentication interceptor, focusing on how to
implement those concepts. After reading this chapter, we will be able to create a security
application and implement it using Java EE 8. The topics covered in this chapter are as
follows:

Explaining the concept of security patterns
Explaining the concept of the single-sign-on pattern
Implementing the single-sign-on pattern
Explaining the authentication mechanism
Implementing the authentication mechanism
Explaining the authentication interceptor
Implementing the authentication interceptor

Explaining the concept of security patterns
Applications have a close relationship with data and its storage. This is because
applications basically consist of managing data in order to make it possible to optimize the
business using automation tasks, helping with decision-making, organizing tasks, and
managing certain areas. Also, many companies need to store delicate data and validate
access control. Over time, the demand for security software grew significantly, and many
companies increasingly invested in creating safe applications. An integral element of
security is security information, which follows these basic principles:

Confidentiality: The data should not be accessible to non-authorized users or to
any entities that request access to the data.
Integrity: The data cannot be updated or modified in a non-authorized manner.

Security Patterns Chapter 9

[212]

Availability: The data should be available when it is needed.
Non-repudiation: Users cannot repudiate or deny the relation using data or any
other process.

For an application to be safe, it needs to provide at least these basic principles.

Security patterns are a set of solutions to common security problems that occur over and
over. A large part of these security patterns works to solve problems about authentication,
which is associated with confidentiality and integrity principles. With security patterns, the
developer can write software with a high level of security for targeting known problems
and issues using solutions that are tested and validated.

Explaining the concept of the single-sign-on
pattern
In a business environment, it is very common that, when a user logs in to a system, they are
automatically logged into various other systems within the business without having to
input their login details more than once. One example of this is Google services. Here, if a
user logs in to one Google application (Gmail, YouTube, Google Drive), they are logged in
to all the available Google services. For example, if we log in to Gmail, we can access
YouTube without having to log in again.

Single-sign-on is a security pattern that creates an authentication service that is shared with
several applications of a domain to make the centered validation of authentication and
authenticates a user only once in this domain. The user can then access all applications of
this domain without having to authenticate again. All applications that depend on this type
communicate with service authentication in order to validate the authentication of a user
and log in if they are not yet logged in. These applications can be made in any language or
technology and can stay in several networks or separate physical locations. In the following
diagram, we can see the process of authentication using single-sign-on:

Security Patterns Chapter 9

[213]

In the preceding figure, we have three applications that are accessed by a user as well as a
single point to log in and validate authentication. This single point is shown in our diagram
by Authentication Service. When a user (represented by Actor in the diagram) sends a
request to an application (Application 1, Application 2, or Application 3), this application
waits for Authentication Service to validate whether the user is logged in. If not, they are
redirected to the login page, and the user can log in there. After the user logs in, when they
access Application 1, Application 2, or Application 3, they will not need to log in again.

Security Patterns Chapter 9

[214]

The single-sign-off pattern is a process that occurs when a user logs out of something. At
this point, they are then logged out from all applications that they were logged in to by the
authentication service. This is a good pattern because it makes it possible to log in and out
of all applications only once, and it also separates all authentication logic from business
logic, putting it into a separate service. This then promotes the decoupling of authentication
logic and business logic, making it possible to change the logic authentication without
impacting the business logic. This pattern can be done using OAuth, SAML, or a custom
process of authentication. In a real-world situation, it is very common to use third-party
solutions, such as OAuth0 and Red Hat single-sign-on (RH-SSO). In our example, we will
complete a custom authentication process.

Implementing the single-sign-on pattern
In our example of implementing single-sign-on (SSO), we will create the authentication
service through a custom process to authenticate the users and we will also allow the user
to log in using their login credentials. After this, one token will be generated and sent to the
user. Further, we will create two applications (App1 and App2), and when the user tries to
access these applications when not logged in, the application will authenticate the user on
the authentication service and the user will access App1 and App2 without having to log in
again. The authentication service will be a REST application written using JAX-RS,
and App1 and App2 will be applications that implement a JAX-RS client to validate user
access. With this, the following classes will be created to use with our example:

AuthenticationResource: This is responsible for processing the login request
and validating the authentication of a user. This class is written using JAX-RS
and is inside the authentication service application.
AuthSession: This is a session that contains data and information about logins.
This class has the application scope, that is, a Java EE scope.
Auth: This is a bean that represents the logged-in user. This class contains the
user's login details, password, and date of the last login.
TokenUtils: This is a class that contains a method for generating tokens.

Security Patterns Chapter 9

[215]

App1: This app sends the Welcome to App1 text if the user is logged in. If the
user is not logged in, this application launches an error.
App2: This app sends the Welcome to App2 text if the user is logged in. If the
user is not logged in, this application launches an error.
Auth: This is an interface with methods responsible for calling the authentication
services.
AuthImpl: This is a class that implements the Auth interface. This class is an EJB.

The App1 and App2 applications don't have any process or logic that is required in order to
log a user in; this is the responsibility of the authentication service (the resource that
validates the authentication), which has the AuthenticationResource class with this
responsibility.

Implementing the AuthenticationResource class
AuthenticationResource is a JAX-RS resource, which makes it possible to log in and
validates the authentication of an application. In the following code, we have
its implementation:

import javax.inject.Inject;
import javax.ws.rs.*;
import javax.ws.rs.core.Response;
import java.util.Date;
import java.util.Optional;

@Path("auth")
public class AuthenticationResource {

 @Inject
 private AuthSession authSession;

 @POST
 @Consumes("application/x-www-form-urlencoded")
 public Response login(@FormParam("login") String login,
@FormParam("password") String password) {

 //If user already logged, then get it token
 Optional<String> key = authSession.getToken(login, password);
 if (key.isPresent()){

 return Response.ok(key.get()).build();

Security Patterns Chapter 9

[216]

 }

 //Validade login and password on data source
 if(!authSession.getDataSource().containsKey(login)
 || !authSession.getDataSource()
 .get(login)
 .getPassword()
 .equals(password))
 return
Response.status(Response.Status.UNAUTHORIZED).build();

 String token = TokenUtils.generateToken();
 //Persiste the information of authentication on AuthSession
 authSession.putAuthenticated(token, new Auth(login, password,
new Date()));

 return Response.ok(token).build();

 }

 @HEAD
 @Path("/{token}")
 public Response checkAuthentication(@PathParam("token")String
token) {

 if(authSession.getAuthenticated().containsKey(token)){

 return Response.ok().build();

 }

 return Response.status(Response.Status.UNAUTHORIZED).build();

 }

}

Security Patterns Chapter 9

[217]

In the preceding code block, we have AuthenticationResource, which contains the
authSession attribute that is used to persist the information about the login on the data
source and obtain access to data sources that contain users' information used to validate
login credentials. Further, AuthenticationResource has two methods: login(String
login, String password), which is used to process the login request, and
checkAuthentication(String token), which is used to allow clients to check
whether a user is authenticated. In the following code block, we have the login method
which is used to log a user in:

 @POST
 @Consumes("application/x-www-form-urlencoded")
 public Response login(@FormParam("login") String login,
@FormParam("password") String password) {
 //If user already logged, then get it token
 Optional<String> key = authSession.getToken(login, password);
 if (key.isPresent()){

 return Response.ok(key.get()).build();

 }
 //Validate the login and password on data source
 if(!authSession.getDataSource().containsKey(login)
 || !authSession.getDataSource()
 .get(login)
 .getPassword()
 .equals(password))
 return Response.status(Response.Status.UNAUTHORIZED).build();

 String token = TokenUtils.generateToken();
 //Persiste the information of authentication on the AuthSession.
 authSession.putAuthenticated(token, new Auth(login, password, new
Date()));

 return Response.ok(token).status(Response.Status.CREATED).build();

 }

In the preceding code block, we can see that if a user is already logged in, the token is
returned as a response. If the user is not logged in, the login and password details are
validated and a new token is generated and returned as a response. Note that this method
is called when the client sends a POST request to this resource.

Security Patterns Chapter 9

[218]

The other method is checkAuthentication(String token), which is used to allow
clients to check whether a user is authenticated. In the preceding code block, we have this
method. This method returns the 200 HTTP status code to the client if it is logged in, or
returns the 401 HTTP status code if it is not logged in:

 @HEAD
 @Path("/{token}")
 public Response checkAuthentication(@PathParam("token")String token) {

 if(authSession.getAuthenticated().containsKey(token)){

 return Response.ok().build();

 }

 return Response.status(Response.Status.UNAUTHORIZED).build();

 }

Note that the checkAuthentication(String token) method is called when the client
sends a HEAD request.

The AuthSession class is used in the AuthenticationResource class. The AuthSession
class has an application scope and is used to persist information about users that are logged
in and has a data source that contains all users' login credentials:

import javax.annotation.PostConstruct;
import javax.enterprise.context.ApplicationScoped;
import java.util.HashMap;
import java.util.Map;
import java.util.Optional;

@ApplicationScoped
public class AuthSession {

 private Map<String,Auth> authenticated;

 private Map<String,Auth> dataSource;

 @PostConstruct
 public void init(){

 authenticated = new HashMap<>();
 dataSource = new HashMap<>();

 for(int i = 1; i <= 50; i++){

Security Patterns Chapter 9

[219]

 dataSource.put("login"+i, new Auth("login"+i, "123456"));
 }

 }

 public AuthSession putAuthenticated(String key, Auth auth){

 authenticated.put(key, auth);
 return this;

 }

 public AuthSession removeAuthenticated(String key, Auth auth){

 authenticated.remove(key, auth);
 return this;

 }

 public Map<String, Auth> getAuthenticated() {
 return authenticated;
 }

 public Map<String, Auth> getDataSource() {
 return dataSource;
 }

 public Optional<String> getToken(String login, String password){

 for(String key : authenticated.keySet()){

 Auth auth = authenticated.get(key);
 if(auth.getLogin().equals(login)
 && auth.getPassword().equals(password)){
 return Optional.of(key);
 }

 }

 return Optional.empty();

 }
}

Security Patterns Chapter 9

[220]

Auth is a bean that contains information about users' login details:

import java.util.Date;

public class Auth {

 private String login;

 private String password;

 private Date loginDate;

 public Auth(){}

 public Auth(String login, String password){

 this.login = login;
 this.password = password;

 }

 public Auth(String login, String password, Date loginDate){

 this.login = login;
 this.password = password;
 this.loginDate = loginDate;

 }

 public String getLogin() {
 return login;
 }

 public void setLogin(String login) {
 this.login = login;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public Date getLoginDate() {
 return loginDate;
 }

Security Patterns Chapter 9

[221]

 public void setLoginDate(Date loginDate) {
 this.loginDate = loginDate;
 }

}

As demonstrated, TokenUtils is a class that uses the generateToken() method to
generate a new token:

import java.security.SecureRandom;
import java.util.Date;

public class TokenUtils {

 public static String generateToken(){

 SecureRandom random = new SecureRandom();
 long longToken = Math.abs(random.nextLong());
 return Long.toString(new Date().getTime()) + Long.toString(
longToken, 16);

 }
}

Implementing the App1 and App2 classes
In the preceding code block, we have the code of the App1 application. When this
application is accessed by a GET request, a request is sent to the authentication service to
validate whether the user has already logged in:

import javax.inject.Inject;
import javax.ws.rs.*;
import javax.ws.rs.core.Response;
import java.util.Objects;

@Path("app1")
public class App1 {

 @Inject
 private Auth auth;

 @GET
 public Response helloWorld(String token){

 if(!auth.isLogged(token)){
 throw new

Security Patterns Chapter 9

[222]

WebApplicationException(Response.Status.UNAUTHORIZED);
 }

 return Response.ok("Hello World. Welcome to App1!").build();

 }

 @POST
 @Consumes("application/x-www-form-urlencoded")
 public Response helloWorld(@FormParam("login") String login,
@FormParam("password") String password) {

 if(Objects.isNull(login) || Objects.isNull(password)){
 throw new
WebApplicationException(Response.Status.INTERNAL_SERVER_ERROR);
 }

 String token = auth.login(login,password);

 return Response
 .ok("Hello World. Welcome to App1!")
 .header("token",token)
 .build();
 }

}

In the preceding code, we have the App1 class, which contains the auth parameter, which is
an EJB used to integrate with the authentication service. Further, this class has two
methods, called helloWorld, with different signatures. In helloWorld(String login,
String password), the login is completed and then the Hello World. Welcome to
App1! message is sent to the user. In helloWorld(String token), the token is
validated, and if it is a valid token and the user is logged in, the Hello World. Welcome
to App1! message is sent to the user.

In the following code block, we have the App2 class. This has the same code as App1, but
prints another message to the user. This class stays in another application, known as App2
to us:

import javax.inject.Inject;
import javax.ws.rs.*;
import javax.ws.rs.core.Response;
import java.util.Objects;

@Path("app2")
public class App2 {

Security Patterns Chapter 9

[223]

 @Inject
 private Auth auth;

 @GET
 public Response helloWorld(String token){

 if(!auth.isLogged(token)){
 throw new
WebApplicationException(Response.Status.UNAUTHORIZED);
 }

 return Response.ok("Hello World. Welcome to App2!").build();

 }

 @POST
 @Consumes("application/x-www-form-urlencoded")
 public Response helloWorld(@FormParam("login") String login,
@FormParam("password") String password) {

 if(Objects.isNull(login) || Objects.isNull(password)){
 throw new
WebApplicationException(Response.Status.INTERNAL_SERVER_ERROR);
 }

 String token = auth.login(login,password);

 return Response
 .ok("Hello World. Welcome to App2!")
 .header("token",token)
 .build();
 }

}

In the following code block, we have the Auth interface. This interface contains the contract
with the methods responsible for integrating with the authentication service, validating the
authentication, and logging in:

public interface Auth {

 public boolean isLogged(String token);

 public String login(String login, String password);

 String logout(String token);
}

Security Patterns Chapter 9

[224]

In the following code block, we have the AuthImpl class, which is an implementation of
the Auth interface as well as a stateless EJB:

import javax.ejb.Stateless;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Entity;
import javax.ws.rs.client.WebTarget;
import javax.ws.rs.core.Form;

@Stateless
public class AuthImpl implements Auth {

 private String URL =
"http://localhost:8080/javaEE8ExampleSSOAppService/resources/auth";

 @Override
 public boolean isLogged(String token) {

 return prepareWebTarget().path("/"+ token)
 .request()
 .head().getStatus() == 200;
 }

 @Override
 public String login(String login, String password) {

 return prepareWebTarget()
 .request()
 .post(Entity.form(new Form("login", login)
 .param("password", password)),
 String.class);

 }

 @Override
 public String logout(String token) {

 return prepareWebTarget().path("/"+ token)
 .request()
 .delete(String.class);

 }

 protected WebTarget prepareWebTarget() {

Security Patterns Chapter 9

[225]

 return ClientBuilder.newClient().target(URL);

 }

}

In the preceding code block, we have three methods, called isLogged, login, and logout,
with the signatures isLogged(String token), login(String login, String
password), and logout(String token), respectively.

When a user logs in to an application (either App1 or App2), and when the user navigates to
another application using the token, this user will not need to log in again.

Explaining the authentication mechanism
In an enterprise environment, every application or resource needs to validate the user
access and guarantee that all users that access these applications or resources will be
identified and validated to prevent non-authorized access. When a user requests access to a
protected area, they need to be authenticated and then their permissions will be validated
by the server. To allow a developer to authenticate and validate users, Java EE 8 has to have
an Authentication Mechanism, which is a common solution in Java EE 8 that allows
developers to authenticate and validate users in a fast and easy way. The Java EE 8 has five
mechanisms to authenticate users:

Basic authentication
Form-based authentication
Digest authentication
Client authentication
Mutual authentication

The authentication mechanism works by identifying the roles that define user permissions.
Identity is generally defined by logging in with a username and password. This
information about a user needs to be kept in a database, generally called a realm, to allow
the server to validate the information. To use the authentication mechanism, we configure it
with the deployment descriptor file, using annotation or the programmatic way. Usually,
we will specify an authentication mechanism using annotation or a deployment descriptor
file.

Security Patterns Chapter 9

[226]

Explaining basic authentication
Basic authentication is the default mechanism if the developer uses an authentication
mechanism without defining it. With this authentication mechanism, if the user is not
authenticated when they send a request, then a dialog box requesting a username and
password is returned. This mechanism is not completely safe, because the username and
password are easily captured, making man-in-the-middle attacks possible. To use this
authentication mechanism, it is recommended to use a secure transport mechanism, such as
SSL (HTTPS) or a VPN. The following figure represents a Java EE tutorial showing what
happens when basic authentication is used:

Explaining form authentication
Form-based authentication is an authentication mechanism that uses forms to request a
username and password, allowing the developer to customize the login and error screen.
When a user requests access to a protected resource, the authentication mechanism sends a
login page to the user, who then inputs the username and password and sends them to the
server. If the username or password is not correct, the server will return the error page or
return the requested resource. This mechanism is not safe either, because the username and
password are also easily captured in this way, making a man-in-the-middle attack possible.
As mentioned in the previous section, it is recommended to use a secure transport
mechanism, such as SSL (HTTPS) or a VPN, when using this authentication mechanism.

Security Patterns Chapter 9

[227]

The following diagram represents a Java EE tutorial, showing what happens when form-
based authentication is used:

Explaining digest authentication
Digest authentication is an authentication mechanism that uses a one-way cryptographic
hash of the password and additional data. With this mechanism, the developer does not
need to use a secure transport mechanism to protect login credentials. This is because this
mechanism already provides the security. When a user sends a digest to a server, the digest
authentication needs a clear-text password available in order to digest and validate the
access, comparing the clear-text password sent with the password saved on the server.

Explaining client authentication
Client authentication is a mechanism that authenticates the client by using its public key
certificate instead of a username and password, such as in basic and form-based
authentication. This mechanism is considered more secure because it uses HTTP over SSL
(HTTPS) and uses the client's public key certificate.

Security Patterns Chapter 9

[228]

Explaining mutual authentication
Mutual authentication is an authentication mechanism where a server authenticates a client
and a client authenticates a server. Mutual authentication works with certificate-based or
username/password-based. With certificate-based, the client requests access to a protected
resource, then the server responds, sending its certificate to the client. After this, the client
verifies the server certificate and, if the server's certificate is valid, the client sends its
certificate to the server. The server then verifies the client's certificate and, if the client's
certificate is valid, the server grants the client access to the protected resource. The
following diagram shows what happens when mutual authentication with certificate-based
works:

Security Patterns Chapter 9

[229]

In username/password-based, the client requests access to a protected resource, then the server
responds, sending its certificate to the client. The client then verifies the server certificate
and if it is valid, the client sends its username and password to the server. Following this,
the server verifies the credentials and, if these are valid, the server grants the client
access to the protected resource. The following diagram shows what happens when mutual
authentication with username/password-based works:

Security Patterns Chapter 9

[230]

When to use the deployment descriptor,
annotation, or programmatic configuration
To specify and configure the authentication mechanism, we can either use the deployment
descriptor file, use annotation, or programmatically define the configuration. Generally, we
choose annotation because it is easy to use in Java EE projects. However, sometimes it
easier and more interesting to use deployment descriptors or programmatic configuration.
If this is the case, what are the appropriate scenarios in which to use each?

When we use a deployment descriptor, we define a file of configurations and create a
configuration to a set of resources. This makes it possible to create a single location to
configure our security policies and associate it with a set of resources. However, when we
use an annotation, we define a policy on the specific resource and it overrides the
deployment descriptor, if it exists. Using annotations, we create an authentication's
configurations because it doesn't need to set up an XML file. However, when we use a
programmatic configuration, we can authenticate other characteristics that don't exist and
we can use the authentication mechanism in a dynamic way. Further, when we want to
create configurations for a set of resources, we can use the deployment descriptor file.
When we want to create an authentication using dynamic behavior, we use programmatic
configuration, and when we need to create a configuration in an easy manner, we use
annotation.

Implementing the authentication mechanism
In our example of implementing an authentication mechanism, we will create an
application with resources that receive a request and return hello world messages to the user.
However, this resource is protected and the user needs to be authenticated in order to
access this resource. Further, we will set up some security policies and associations through
the deployment descriptor file, some security policies to some resources using annotation,
and some security policies to some resources using the programmatic configuration. We
will also use basic authentication. To configure the security policies using the deployment
descriptor file and programmatic configuration, we will use a JAX-RS resource. To
configure the security policies using annotation, we will use a servlet. All of the examples
used here are secure in a web application, but Java EE 8 permits the use of authentication
mechanisms on the enterprise application. In this example, the following classes are used:

web.xml: This is a deployment descriptor file that is used to configure the
authentication mechanism.

Security Patterns Chapter 9

[231]

HelloWorld: This is a JAX-RS resource class that contains the authentication
mechanism used by the deployment descriptor file and the programmatic
configuration.
HelloWorldServlet: This is a servlet class that contains the authentication
mechanism used by the annotation.

Implementing the web.xml file
web.xml is a deployment descriptor of a web application and it contains many
configurations about the web application. In the following deployment descriptor, we have
the security configurations for our web application:

<?xml version="1.0" encoding="UTF-8" ?>
<web-app >
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>helloworld</web-resource-name>
 <url-pattern>/resources/helloworld/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
</web-app>

In this deployment descriptor, we define the security to all resources that its URL matches
with the /resources/helloworld/* pattern. In the following XML code, we have a
snippet of web.xml that defines a URL pattern:

 <web-resource-collection>
 <web-resource-name>helloworld</web-resource-name>
 <url-pattern>/resources/helloworld/*</url-pattern>
 </web-resource-collection>

Security Patterns Chapter 9

[232]

The following XML code contains a snippet of web.xml that defines security roles:

<auth-constraint>
 <role-name>user</role-name>
</auth-constraint>

In the following XML code, we have a snippet of web.xml that defines the authentication
mechanism:

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

Implementing the HelloWorld class
The HelloWorld class is a JAX-RS resource that responds to requests sent to
the /helloworld path. This class has two methods with the
respective helloWorldWithDeploymentDescriptor()
and helloWorldWithProgrammatically() signatures. In
helloWorldWithDeploymentDescriptor(), the authentication validation is oriented by
the deployment descriptor configuration, and in helloWorldWithProgrammatically(),
the authentication validation is oriented by codes written by the developer:

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.SecurityContext;

@Path("helloworld")
public class HelloWorld {

 @Context
 private SecurityContext securityContext;

 @GET
 @Path("/deploymentdescriptor")
 public Response helloWorldWithDeploymentDescriptor(){

 return Response
 .ok("Hello World. Welcome to App with validation by
deployment descriptor!")
 .build();

Security Patterns Chapter 9

[233]

 }

 @GET
 @Path("/programmatically")
 public Response helloWorldWithProgrammatically() {

 if (!securityContext.isUserInRole("user")) {
 return Response.status(401).header("WWW-Authenticate",
"Basic").build();
 }

 return Response
 .ok("Hello World. Welcome to App with validation by
programmatically.")
 .build();
 }

}

The preceding code includes the
helloWorldWithDeploymentDescriptor() method, which contains the code that only
responds to the client because the validation of authentication is done by the Java EE
context without using any code together with the core business logic. In the following code,
we have a snippet of the HelloWorld class that includes
the helloWorldWithDeploymentDescriptor() method:

 @GET
 @Path("/deploymentdescriptor")
 public Response helloWorldWithDeploymentDescriptor(){

 return Response
 .ok("Hello World. Welcome to App with validation by
deployment descriptor!")
 .build();

 }

In the following code, we have a snippet of the HelloWorld class that includes a
helloWorldWithProgrammatically() method that uses a code to validate the role
associated with each user that sent a request:

@GET
 @Path("/programmatically")
 public Response helloWorldWithProgrammatically() {

 if (!securityContext.isUserInRole("user")) {
 return Response.status(401).header("WWW-Authenticate",

Security Patterns Chapter 9

[234]

"Basic").build();
 }

 return Response
 .ok("Hello World. Welcome to App with validation by
programmatically.")
 .build();
 }

To show the dialog box in the browser in a programmatic manner, use the following code:

 if (!securityContext.isUserInRole("user")) {
 return Response.status(401).header("WWW-Authenticate",
 "Basic").build();
 }

Implementing the HelloWordServlet class
The HelloWorldServlet class is a servlet class that responds to requests sent to the
/helloworld/annotation path. This class has a doGet(HttpServletRequest
request, HttpServletResponse response) method that responds to all GET requests.
After this method is processed, a validation of authentication is done, and if the user is
associated with the user role, the method is processed. If not, the dialog box is returned to
the user:

import javax.annotation.security.DeclareRoles;
import javax.servlet.ServletException;
import javax.servlet.annotation.HttpConstraint;
import javax.servlet.annotation.ServletSecurity;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;

@WebServlet(name = "HelloWorldServlet", urlPatterns =
"/helloworld/annotation")
@DeclareRoles("user")
@ServletSecurity(@HttpConstraint(transportGuarantee =
ServletSecurity.TransportGuarantee.NONE,
 rolesAllowed = {"user"}))
public class HelloWorldServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException {

 response.getWriter().write("Hello World. Welcome to App with

Security Patterns Chapter 9

[235]

 validation by annotation!");

 }
}

Explaining the authentication interceptor
In an enterprise application, authentication is a very important process and this can be done
using many techniques. In Java EE 8, one of these techniques is the interceptor pattern.

The interceptor pattern is an advanced programming technique that makes it possible to
intercept an object call and process algorithms before or after processing the call. This
works as aspect-oriented programming (AOP), which makes it possible to include
behavior in a process without altering its logic. To implement this using Java EE 8, we can
use either the EJB interceptor or the CDI interceptor. We can also select which kind of
interceptor to use, depending on whether we are intercepting an EJB class/method or a CDI
class/method.

The authentication interceptor is a technique that uses an interceptor pattern either through
an EJB interceptor or a CDI interceptor. This is done to add authentication logic before
or after using the business logic aspect of oriented programming. We can then validate the
authentication without having to couple the authentication logic with the business logic. It
is better to use the EJB interceptor with business logic in an EJB class, and it is better to use
the CDI interceptor with the CDI class in a web tier.

Implementing the authentication interceptor
In our final example of implementing the authentication interceptor, we will create an
application with resources that receives a user request and returns hello world messages to
the user, but this resource is protected and the user needs to be authenticated in order to
access the resource. However, this protection is achieved by authenticating the interceptor
implemented using the CDI interceptor, which captures a call to a resource and validates
the user access. Further, we will use the basic authentication mechanism to do an
authentication validation; the source of the user data will not be managed by the
application server and Java EE, but by a custom data source. In this example, the following
classes are used:

DataSource: This is the data source that contains security user information.
Auth: This is the interface used to define a method to validate authentication and
authorization.

Security Patterns Chapter 9

[236]

AuthImpl: This is the class that implements the Auth interface.
Authentication: This is the qualifier used to configure the method to be
intercepted.
AuthenticationInterceptor: This is the interceptor that intercepts a call to
the HelloWorld methods and validates the user access.
HelloWorld: This is the JAX-RS resource class that contains the authentication
mechanism used by the deployment descriptor file and programmatic
configuration.
AuthUtils: This is the utility class for authentication.

Implementing the CDI interceptor
To implement the CDI interceptor, we need to create a qualifier to be used to configure a
class or method to be intercepted. In the following code block, we have a qualifier, called
Authentication, with a parameter, called roles, and these are used to declare the roles
that are permitted to access a resource:

import javax.enterprise.util.Nonbinding;
import javax.interceptor.InterceptorBinding;
import java.lang.annotation.*;

@Inherited
@InterceptorBinding
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface Authentication {
 @Nonbinding String[] roles() default {};
}

In the following code block, we have the AuthenticationInteceptor class, which is
used as an interceptor. This class is annotated with the @Authentication annotation,
indicating that this class will intercept all calls to methods annotated with
@Authentication and will process the method annotated with @AroundInvoke:

import javax.inject.Inject;
import javax.interceptor.AroundInvoke;
import javax.interceptor.Interceptor;
import javax.interceptor.InvocationContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.Serializable;
import java.util.Arrays;

Security Patterns Chapter 9

[237]

@Authentication
@Interceptor
public class AuthenticationInterceptor implements Serializable{

 @Inject
 private Auth auth;

 @AroundInvoke
 public Object authentication(InvocationContext context) throws
 IOException {

 HttpServletRequest request = getHttpServletRequest(context);
 HttpServletResponse response = getHttpServletResponse(context);

 String[] credentials = AuthUtils.readBasicAuthHeader(request);

 if(credentials.length < 2){
 prepareDialogBox(response);
 return null;
 }

 String login = credentials[AuthUtils.INDEX_LOGIN];
 String password = credentials[AuthUtils.INDEX_PASSWORD];

 Authentication authentication =
 context.getMethod().getAnnotation(Authentication.class);

 if(!auth.isAuthenticated(login, password)){
 prepareDialogBox(response);
 return null;

 }

 if (Arrays.stream(authentication.roles()).noneMatch(role ->
 auth.isAuthorized(login, role))){

 response.sendError(HttpServletResponse.SC_UNAUTHORIZED);
 return null;
 }

 try {
 return context.proceed();
 } catch (Exception e) {
 e.printStackTrace();
 response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
 }

 return null;

Security Patterns Chapter 9

[238]

 }

 public void prepareDialogBox(HttpServletResponse response) throws
 IOException {
 response.addHeader("WWW-Authenticate", "Basic");
 response.sendError(HttpServletResponse.SC_UNAUTHORIZED);
 }

 private HttpServletRequest getHttpServletRequest(InvocationContext
 ic) {

 return (HttpServletRequest) Arrays
 .stream(ic.getParameters()).filter(p -> p instanceof
 HttpServletRequest)
 .findFirst()
 .get();

 }

 private HttpServletResponse
 getHttpServletResponse(InvocationContext ic) {

 return (HttpServletResponse) Arrays
 .stream(ic.getParameters()).filter(p -> p instanceof
 HttpServletResponse)
 .findFirst()
 .get();

 }

}

This snippet of the preceding code block shows how to configure a class to be
the interceptor that captures all calls to methods annotated with @Authentication:

@Authentication
@Interceptor
public class AuthenticationInterceptor implements Serializable{
...
}

Note that this interceptor expects HttpServletRequest and HttpServletResponse
as parameters of the target method. This is done in order to allow for the validation of
authentication and authorization.

Security Patterns Chapter 9

[239]

In the following code block, we have a snippet of the interceptor. This configures a method
to process when a call has been intercepted:

 @AroundInvoke
 public Object authentication(InvocationContext context) throws
IOException {
 ...
 }

In the preceding code block, we have the Auth interface:

public interface Auth {

 public Boolean isAuthorized(String login, String role);

 public Boolean isAuthenticated(String login, String password);

}

In the preceding code block, we have the class that implements an Auth interface. In this
class, we will consult information about the user from a data source. This class is an EJB:

import javax.ejb.Stateless;
import javax.inject.Inject;

@Stateless
public class AuthImpl implements Auth {

 @Inject
 private DataSource dataSource;

 @Override
 public Boolean isAuthorized(String login,String role) {
 return dataSource.readUserRoles(login).contains(role);
 }

 @Override
 public Boolean isAuthenticated(String login, String password) {
 return dataSource.readUserPassword(login).contains(password);
 }
}

Security Patterns Chapter 9

[240]

In the preceding code block, we have a DataSource class. This class has the logic to read
information about users, and all information in this data source stays as maps. However,
we can save this information in a relational database, non-relational database, filesystem, or
LDAP. This class has the application scope and maintains all security data in memory for
all the application life cycles:

import javax.annotation.PostConstruct;
import javax.enterprise.context.ApplicationScoped;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

@ApplicationScoped
public class DataSource {

 private Map<String, List<String>> roles;
 private Map<String, String> passwords;

 @PostConstruct
 public void init(){
 roles = new HashMap<>();
 roles.put("rhuan", Arrays.asList("user","admin"));
 roles.put("joao", Arrays.asList("user","admin"));

 passwords = new HashMap<>();
 passwords.put("rhuan", "123456");
 passwords.put("joao", "123456");
 }

 public List<String> readUserRoles(String login){
 return roles.get(login);
 }

 public String readUserPassword(String login){
 return passwords.get(login);
 }
}

In the following code block, we have AuthUtils. This is an authentication utility class.
This class uses the readBasicHeader method, which receives HttpServletRequest as a
parameter and extracts a username and password if the request uses basic authorization:

import javax.servlet.http.HttpServletRequest;
import java.nio.charset.Charset;
import java.util.Base64;

Security Patterns Chapter 9

[241]

public class AuthUtils {

 public static final int INDEX_LOGIN = 0;
 public static final int INDEX_PASSWORD = 1;

 public static String[] readBasicAuthHeader(HttpServletRequest request
){

 final String authorization = request.getHeader("Authorization");

 if (authorization != null && authorization.startsWith("Basic")) {

 String base64Credentials =
authorization.substring("Basic".length()).trim();
 String credentials =
 new String(
 Base64.getDecoder().decode(
 base64Credentials),
 Charset.forName("UTF-8"));

 return credentials.split(":", 2);
 }

 return new String[0];
 }
}

In the following code block, we have beans.xml, which contains
an <interceptors> tag with a declaration of all CDI interceptors. Its configuration is
needed for the CDI interceptor to work:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
 bean-discovery-mode="all">

 <interceptors>
<class>com.packt.rhuan.interceptors.AuthenticationInterceptor</class>
 </interceptors>

</beans>

Security Patterns Chapter 9

[242]

Implementing the JAX-RS resource
In the following code snippet, we have a JAX-RS resource class, called HelloWorld. This
class receives a request and returns a message to the client. Before the execution of the
resource logic, AuthenticationInterceptor intercepts a call to a method and processes
the authentication logic:

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.Response;

@Path("helloworld")
public class HelloWorld {

 @GET
 @Authentication(roles = {"user"})
 public Response helloWorld(@Context HttpServletRequest request,
 @Context HttpServletResponse response) {

 return Response
 .ok("Hello World. Welcome to App with validation by
 authentication interceptor!")
 .build();

 }

}

Note that the helloWorld(@Context HttpServletRequest request, @Context
HttpServletResponse response) method has
the @Authentication(roles={"user}) annotation, along with the
HttpServletRequest and HttpServletResponse parameters.
With @Authentication(roles={"user}), we configured the helloWorld(@Context
HttpServletRequest request, @Context HttpServletResponse

response) method to be intercepted by AuthenticationInterceptor. As previously
mentioned, the target method must have HttpServletRequest and
HttpServletResponse as parameters:

 @GET
 @Authentication(roles = {"user"})

Security Patterns Chapter 9

[243]

 public Response helloWorld(@Context HttpServletRequest request,
@Context HttpServletResponse response) {
 ...
 }

Summary
In this chapter, we covered security patterns as well as how to implement a security
application using Java EE and its best practices. We also looked at single-sign-on (SSO),
authentication mechanisms, and an authentication interceptor. Further, we demonstrated
how to implement each of these using Java EE 8.

On the topic of a single-sign-on, we implement SSO using JAX-RS and create a service to
deal with all authentication and authorization logic. As discussed, implementing a single-
sign-on is generally done by a third-party application, such as Red Hat single-sign-on (RH-
SSO) or Oracle Enterprise single-sign-on, but we can also create our own solution.

We learned about authentication mechanisms and how to use this HTTP tool with Java EE
8. Using Java EE 8, we implemented a basic mechanism, and saved user information on an
application server at the realm. Further, we demonstrated how to implement authentication
mechanisms in a servlet and REST resource.

We implemented an authentication interceptor using a CDI interceptor and configured it to
intercept a JAX-RS resource. The JAX-RS resource authentication interceptor tends to be a
better solution, but we can use this solution in a servlet or in an EJB class.

In the next chapter, we will explore deployment patterns, why these are important for the
success of a project, what blue/green deployment is, why it is important to use blue/green
deployment, what continuous deployment is, and why we should use continuous
deployment.

10
Deployment Patterns

In this chapter, we will be looking at deployment patterns, why we use them, and how they
impact the delivery of applications. We will also cover the concepts of canary deployment,
blue/green deployment, A/B deployment, and continuous deployment. After reading this
chapter, we should be familiar with the concept of deployment patterns. The topics we will
cover in this chapter are as follows:

The concept of deployment patterns
The concept of canary deployment
The concept of blue/green deployment
The concept of A/B testing
The concept of continuous deployment

Explaining the concept of deployment
patterns
Applications constantly receive updates that function to create new features or correct any
problems. These new features and updates need to be promoted to a production-level
without causing any problems or delays to a service. Furthermore, it is sometimes
necessary to deliver a new version of an application to a select group of users, such as those
in certain countries or certain business areas.

Deployment Patterns Chapter 10

[245]

When we talk about delivery in this context, we are referring to releasing a new version of
an application into the production environment. A software project has various steps that
need to be evaluated and considered in order to permit the delivery of good software.

These steps include following a good process to get the business role, a good process for
testing the application, a good process for developing the code of the application, and a
good process for delivering the project to production, which is the aim of the project. All
software projects have one important common objective—to deliver good, high-quality
software without causing any collateral effects. The deployment step is a very important
step in particular, as this is when the software is delivered; the overall goal of the project
will be achieved here, but if any errors occur, then all projects can be impaired. As a result
of this step, deployment patterns were created.

Deployment patterns (also known as deployment strategies) are a set of solutions for
common deployment-related problems. These patterns make the deployment process safer
and mitigate the chance of errors occurring in new releases. Some examples of deployment
patterns include:

Canary deployment
Blue/green deployment
A/B testing

Continuous deployment is also a deployment pattern, but we did not include this in the list
because it is the most comprehensive method, one that creates a pipeline and works at all
steps of the delivery. Furthermore, continuous deployment more accurately describes the
solution of automating the development stages, and this can be used with any of the
deployment patterns listed previously. With this, the patterns we mentioned work in
reduced scope and the continuous deployment pattern works on a large scope. In the
following diagram, you can see how these two types of deployment patterns work, as well
as the stages they follow:

Deployment Patterns Chapter 10

[246]

In some literature, the concept of continuous deployment is covered together with the
concept of continuous delivery. This is because these two concepts are very similar, with
only some small differences between them. The difference between these concepts will be
shown in detail in the Explaining the concept of continuous deployment section of this chapter.

Deployment Patterns Chapter 10

[247]

Explaining the concept of canary
deployment
As previously mentioned, when we write a new version of an application, we need to
deliver it without stopping or delaying the service in any way. An important step,
therefore, is to deploy and test the new version first. If an error occurs, we will then need to
rollback the deployments and maintain the old version of the application until any
problems with the new version are solved. The canary deployment was created to so solve
deployment-related problems such as this.

The canary deployment is a deployment pattern that allows us to deliver a new version of
an application to the subset of a server. Then, the new version of the application can be
tested, and, if an error occurs, then the delivery rolls back and keeps the old version,
propagating a new version for the remaining servers. In this pattern, we can define some
servers as canary servers. The deployment first occurs in the canary server, after which a
test is done on the canary server. If satisfied, the new version is propagated (or deployed)
to the remaining servers. This pattern consists of the following four basic steps:

Defining the canary servers1.
Deploying the application to canary servers2.
Testing the application and verifying whether it satisfies our criteria3.
Deploying the application to the remaining servers4.

The following diagram shows a visual representation of these steps:

To implement the canary deployment as a solution for delivering an application, you will
first need to configure a proxy that redirects the requests to servers that are not canary
servers. The following diagram demonstrates how canary deployment works:

Deployment Patterns Chapter 10

[248]

Defining the canary servers
In this step, some servers will be selected as a canary server, which is the server used to test
a new version after deploying an application in the remaining servers. Here, we select
which servers should be the canary servers. It is very important to ensure that all steps of
canary deployment are completed without impacting the users who access the application.
Some important questions to consider when creating definitions are as follows:

Do we want to test the behavior of an application in multiple instances of a
server?
How many servers can I use as canary servers without impacting user access?
How well does my application work with the new version and the old version of
an application in the same environment?
What tests will be executed?

Deployment Patterns Chapter 10

[249]

The amount of canary servers used is very important, so we recommend that the number of
canary servers does not exceed 50% of the total servers in the production environment.
Furthermore, when defining the number of canary servers, we need to decide what kind of
scenarios we will be testing for. Whether we test the application's ability to work well with
multiple servers or not, we will still need at least two canary servers. Using two canary
servers is often a good idea, as the number is rarely larger than 50% of the total servers in
the production environment. In other words, the total number of servers in the production
environment is usually bigger than four. If we imagine that the total of servers in a
production environment is four when we use two servers as canary servers, then the other
two servers will be used to access the old version of the application. Depending on the
number of users with access, the application should not have any performance problems.

Deploying the application to canary servers
When an application is deployed in a canary server, the canary server cannot be accessed
by users and the proxy cannot redirect a request to these servers. At this moment, the
production environment stays with two versions of the application—the old version and
the new version. The application needs to prepare to work with two versions in the same
environment. Note that users don't lose access to the application in this scenario, and the
deployment of newer versions is done with transparent behavior and without impacting
users.

Testing the application and verifying whether it
satisfies our criteria
In this step, the application is tested to verify whether or not our criteria are satisfied. This
is done by evaluating certain processes, such as integrating with other applications, CPU,
memory, disk usage, and database connection. These tests can be done through an
automation test, an internal user, or through a few end users. If an error is found in this
step, the deployment is aborted and rolled back and the canary servers receive the old
version, which is then made available to end users.

Deployment Patterns Chapter 10

[250]

Deploying the application to remaining servers
This step is only initialized if an application has been approved and verified as satisfactory.
When this step is started, the canary server becomes a server for the end user access; the
other servers do not receive a new request here because the process of deployment will
have been started. The proxy then redirects all end users' requests to servers with a new
version (in other words, the canary servers) and the deployment of another server is
started. Once deployment is complete, all servers are able to receive access to the end users.

With canary deployment, the end user should not be aware that deployment is occurring.
Users will only be aware if an interface is changed, or if some functionality is made
available or unavailable to them.

Explaining the concept of blue/green
deployment
Blue/green deployment is very similar to canary deployment in the sense that it deploys
new versions of an application using the process of partition. The blue/green method
deploys the application into a subset of servers in the production environment and then
propagates the new version to the remaining servers. This deployment pattern differs from
canary deployment with regard to its goals, because the blue/green deployment aims to
reduce an application's downtime during deployment. With canary deployment, however,
the goal is to reduce the occurrence of an error in the production environment associated
with the new version. Furthermore, with canary deployment, the production environment
can stay with both a new version and an old version and receive requests simultaneously,
while in a blue/green deployment, only one version responds to requests.

The blue/green deployment is a deployment pattern that makes it possible to deploy a new
version of an application without making the application inactive to the end user. With this
pattern, the deployment is effected with a group of servers. If the deployment is completed
successfully, then the remaining servers are deployed.

This pattern has the following three steps:

Defining a group of servers to receive the first deployment1.
Deploying the application to a group of servers2.
Deploying the application to the remaining server3.

Deployment Patterns Chapter 10

[251]

Defining the group of servers to receive the first
deployment
On the blue/green deployment, defining the group of servers to receive the first
deployment is very easy because no tests will run and nothing will be checked; the process
of deployment simply needs to be completed successfully. A good practice is to divide the
production environment into two groups of servers and select one group to receive the
deployment first. Each group will generally have approximately 50%
of production servers.

Deploying the application to a group of servers
In this step, the requests are redirected to the server of the group in order for it to deploy,
and the group to deploy receives the deployment of a new version of an application. All
servers of the group to deploy will be dead in this time and will only respond to requests
once the process of deployment in the group has finished. The following diagram illustrates
an example of this process:

Deployment Patterns Chapter 10

[252]

Deploying the application to the remaining server
This step is started only if the deployment process was successfully completed with the
group that was selected to receive the first deployment. When this step is started, the group
of servers selected to receive the first deployment returns to the activity, and all requests
sent by the end user are processed by servers of this group with a new version deployed.
The deployment of the remaining servers is then initialized, and, until deployment is
complete, the remaining servers are dead. When deployment is finished, all servers will be
able to receive and process requests, and all servers will stay with the new version of the
application. This process is illustrated in the following diagram:

Deployment Patterns Chapter 10

[253]

Explaining the concept of A/B testing
We may sometimes update something in our application and want to check its impact on
end users and their behavior. Generally, these kinds of updates relate to the usability or
popularity of an application and are associated with UI changes. To allow us to check the
impact of an update on an application, we need to create groups of end users, who will be
thrown the new updates and asked to evaluate them. The deployment patterns we've
already discussed don't solve this problem for us as they're unable to throw a new version
of the application to a separate group of end users. Although they allow us to test the
functionality of the application in a separated group, that group doesn't persist for very
long.

A/B testing, however, is a deployment pattern that allows us to throw a new version of an
application to a selected group of end users only. This makes it possible to evaluate the
impact of a new version of an application on end users and therefore decide whether or not
it will be thrown to all end users. This deployment pattern is commonly used by popular
applications such as Facebook, LinkedIn, and Twitter, as these applications are most
successful when their features are popular among users. This pattern can be implemented
with application-level switches or with a proxy that redirects end users to a respective
application. The following diagram illustrates an example of the A/B testing pattern:

Deployment Patterns Chapter 10

[254]

This pattern requires the four following steps:

Defining a group of end users to receive the new version of the application1.
Defining the servers to receive a new version2.
Deploying the new version of an application to selected servers3.
Evaluating the impact of the new version of the application4.

Defining a group of end users
In this step, we select a group of end users to receive a new version of an application. To
define this group, a number of things need to be evaluated. Some of these evaluations
include:

The new features existing in a new version
The localization of end users
Business roles

The end users selected for A/B testing need to be defined and marked by the application in
order to allow it to distinguish between end users with access to the new version and those
without. This can be done using a cookie, filtering by IP address if the group is location-
related, or by using another mechanism that grants an end user access to the new version.

Defining the servers to receive a new version
In this step, we define the group of servers that will receive the deployment of a new
version. The selection and amount of servers to receive the deployment needs to be
evaluated by the percentage of end users that will be able to access the new version.
Depending on various scenarios, we should also evaluate the localization of users.

Deploying the new version
In this step, we deploy the new version of an application to the selected group of servers.
These servers will then become dead and deployment will start. In this step, it is advisable
to use either the canary deployment or the blue/green deployment to minimize the chance
of error. Once deployment is complete, we will grant access to the new version of the
application to the selected group of end users.

Deployment Patterns Chapter 10

[255]

Evaluating the impact of a new version
In this step, we evaluate the impact of the new version of an application. This step can be
done using many different tools and techniques, the use of which depends on what our
goals for the new features are, what the roles involved with these new features are, and any
other questions that may arise according to business logic. This task generally consists of
collecting data and analyzing it to verify the way end users behave with new features. After
the evaluation is complete, we can then decide whether to throw the new version to the
remaining end users or to remove them from the application.

Explaining the concept of continuous
deployment
The process of delivery release to users consists of important steps, and we can sometimes
pass these steps with a manual process. The world is moving on apace, and so the delivery
of a release needs to be swift as well. With this in mind, automating processes is a great
solution for increasing the speed of release delivery; continuous deployment was therefore
created as an evolution of continuous delivery, which itself is an evolution of
continuous integration.

Continuous deployment is a deployment pattern that creates a pipeline where each step is
executed through an automated process. All steps are then executed without human
intervention. If a new release enters the pipeline, all steps will be executed automatically
unless an error occurs. It is important to know that continuous deployment is not
continuous delivery or continuous integration—although these deployment patterns have
many similarities, they are all different. The main difference between them is the level of
automation present; for example, continuous integration is more automated than
continuous delivery, which, in turn, is more automated than continuous deployment. The
following diagram illustrates the pipeline of both deployment patterns and the level of
automation they have:

Deployment Patterns Chapter 10

[256]

The main goal of continuous deployment is to minimize the time between the development
of a release and its delivery in a production environment. It automates the steps of the
developer so as to minimize the scope for human error and make the delivery safer. As
discussed, continuous deployment can be used together with blue/green deployment,
canary deployment, and A/B testing, and these patterns will work in both the Deploy to
production and Post deploy test steps.

To implement continuous deployment, it is necessary to have a good testing culture. This
is because the quality of tests will define the quality of the releases, as well as the success of
its implementation. Furthermore, the documentation needs to update any new
releases together, with all updates in the application reflected in the documentation.

Summary
In this chapter, we covered deployment patterns, including canary deployment, blue/green
deployment, A/B testing, and continuous deployment. We also covered the reasons to use
these deployment patterns and how to decide how they're best used.

Deployment Patterns Chapter 10

[257]

In the Explaining the concept of deployment patterns section, we looked at the principal
concepts of deployment patterns and looked at their uses in a business environment.
Similarly, in the Explaining the concept of canary deployment, Explaining the concept of blue/green
deployment, Explaining the concept of A/B testing, and Explaining the concept of continuous
deployment sections, we explored what each of the patterns are and why we use them.
Finally, in the Explaining the concept of continuous deployment section, we covered the
differences between continuous integration, continuous delivery, and continuous
deployment.

In the next chapter, we will cover the concepts of operational patterns, performance and
scalability patterns, and management and monitoring patterns.

11
Operational Patterns

In this chapter, we will explore operational patterns, focusing in particular on why we use
them and how they impact application projects. We will then cover performance and
scalability patterns as well as management and monitoring patterns. After reading this
chapter, we will have learned about the concept of operational patterns. The topics we will
cover in this chapter are as follows:

The concept of operational patterns
The concept of performance and scalability patterns
The concept of management and monitoring patterns

Explaining the concept of operational
patterns
To solve a problem successfully, we need to evaluate a number of important steps so as to
ensure that the chance of error is minimized. These steps are as follows:

Correctly identifying the problem1.
Defining the operations needed to solve the problem2.
Developing the operations needed to solve the problem3.

In a business environment, both in an application project and in other areas, responding to
problems quickly is integral to the success of a task. It is also important that we create a
well-defined process for solving problems that will increase the chance of success, keep our
work organized, and result in a more reliable solution.

In the first step, as mentioned previously, we identify the problem that needs to be
resolved. Here, it is very important to define the boundaries of the problem and to assess
whether or not the identified issue is indeed the problem.

Operational Patterns Chapter 11

[259]

Next, we define a high-level solution to the problem. In this step, the solution will be
described, but without worrying about how it will be implemented. Instead, we focus on
the threads or operations of the solution at a high level of thought. High-level, middle-level,
and low-level thought refers to the degree of generic thinking, where high-level thinking is
more generic than middle-level, which, in turn, is more generic than low-level.

In the third step, we develop the operations needed to solve the problems. In this step, the
work is more practical, so we need to work with a middle and low level of thought.

The operational patterns work by promoting common high-level solutions to problems that
occur repeatedly. However, although operational patterns describe solutions to a problem,
they don't care about how the solutions are developed. These patterns therefore help us to
simplify the problem and its solution and then define a good, executable process.

Explaining the concept of performance and
scalability patterns
In a business environment, processes and tasks need to be completed quickly in order to
generate responses and solutions. With this in mind, the application also needs to be more
performative and scaleable. Performance refers to how quickly an application responds to
requests, and scalability refers to the application's capacity to respond to an increase in
requests without affecting its performance or capacity. In other words, performance is more
about the time it takes to serve a request, whereas scalability is about the system being able
to upgrade and downgrade resources where needed.

In a business environment, problems with regard to performance are generally problems
surrounding read data or external resources (such as file systems or other applications in a
network). Performance problems generated by incorrect logic or algorithms are rarer
because business environments generally have logic without a hard code, or codes with
a long mathematical calculus. The algorithms of business environments generally use logic
to read and save data via roles; therefore, performance growth generally consists of reading
and writing data and accessing resources as quickly as possible.

Scalability is directly linked to performance because it consists of growing the scale of an
application. In other words, if we grow the scale of an application, we should be able to
respond to an increase in requests without impacting performance, or the application will
respond to requests with increased performance.

Operational Patterns Chapter 11

[260]

Performance and scalability patterns are operational patterns used for solving common
problems with performance and scalability that provide applications with high-
performance and availability at all times. We will cover the following performance and
scalability patterns in this chapter:

Cache-aside: This pattern loads data into a cache from a data store on demand.

CQRS: This pattern segregates operations that read data from operations that
update data by using separate interfaces.

Event sourcing: This pattern uses an append-only store to record the actions
taken on data in a domain.

Index table: This pattern creates indexes over the fields in data stores that are
frequently referenced by queries.

Materialized view: This pattern generates pre-populated views over the data in
one or more data stores when the data isn't ideally formatted for the required
query operations.

Sharding: This pattern divides a data store into a set of horizontal partitions or
shards.

Static content hosting: This pattern deploys static content to a cloud-based
storage service that can deliver data directly to a client.

The cache-aside pattern
As mentioned previously, increased performance generally means minimizing the time it
takes to read data. One way to do this is through the cache-aside pattern.

The cache-aside pattern is a pattern that loads data into a cache from a data store on
demand. It also updates data to the data store if the application updates any data cache.
The data is loaded into the cache if the user requests it and it is not available. So, when next
accessing this data, the application will read from the cache and respond to the user. This
pattern helps us to maintain consistency between data in the cache and the data store. A
cache is another data source that maintains copies of data from the original data store,
permitting the application to read data quickly. However, this pattern does not guarantee
consistency between the data store and the cache, because another application can update
data from the data store and thus make the cache stale.

Operational Patterns Chapter 11

[261]

The following diagram illustrates how the cache-aside pattern works:

As we can see, when an application reads any data from the data store, the application first
consults the data on the cache. However, if the data does not exist, then the application
consults the data in the data store. When an application consults data in the data store, the
data returned by the data store is then loaded in the cache to allow the application to read
the data faster in future. When an application updates the data contained in a cache, the
data is saved in the data store and the data of the cache is then either updated or
invalidated.

When to use the cache-aside pattern
It is recommended that the cache-aside pattern is used when data isn't updated frequently,
or when concurrent updates are infrequent. It is important to note that the cache-aside
pattern should only be used when necessary. This is because the cache increases the
complexity of applications, as dirty readings involving data definitions can sometimes
occur. With this in mind, we recommend that you only apply this pattern if reading data is
a slow process.

Operational Patterns Chapter 11

[262]

The lifetime of cached data
The lifetime of cached data is a very important issue regarding the cache-aside pattern
because the lifetime policy establishes whether or not the cache is efficient. The lifetime
defines the data's expiry time according to an expiration policy that invalidates data and
removes it from the cache if it's not accessed within a specified time limit. Defining a good
lifetime policy therefore means defining a lifetime that is neither too long nor too short. It is
also highly recommended that you do not create a global expiration policy but rather one
for each type of item in the data store. This is because some data is updated more
frequently than others.

Evicting data
Some caches have a limited size and require a policy in order to evict data. In addition to
this, some caches select the least recently-used data to evict. However, we can customize
this policy, and we can even use our own logic for removing data from the cache.
Generally, the logic used to remove data is limited in size, but we can also use logic
regarding updates.

Evicting data is different to setting an expiration policy because the expiration policy is a
static logic that removes data in a cache when it expires. Eviction data, however, involves
dynamic logic. An expiration policy allows us to minimize the chance of getting a dirty
reading, whereas evicting data allows us to create logic that minimizes the chance of the
cache reaching its limit and optimizes the consistency of the cache data.

Priming the cache
We may want to start our cache with data optimized for application use. We should
therefore populate the cache with data from the startup process of an application. It is very
important to point out that we need to evaluate the expiration time of the data loaded in
such a startup process; if the data expires before the application uses it, loading the startup
process data is unnecessary.

Consistency
The cache-aside pattern does not guarantee consistency between the data in the cache and
the data in the data store. This is because an external application or resource can update
data that is not reflected in the cache at any time. Consistency is very important to
remember when implementing in order to avoid the risk of dirty readings.

Operational Patterns Chapter 11

[263]

Local (in-memory) caching
In order to improve the process of reading data, a cache can be local and in-memory as long
as that data is accessed frequently. As the local cache is private, another cache will need to
be created. In this instance, data can be replicated to any local cache. To implement a local
cache, we need to have a server with enough memory to permit our application and to
ensure we do not cause memory overflow.

The CQRS pattern
In an application, executing commands to read and write data from the data store using the
same model or entity is a good approach. This is because managing data is generally easy
in programming, and we can also use a scaffold to generate a project. However, when there
is a lot of write data present, and the risk of concurrent write operations is high, the need to
merge data is more urgent. When we use the same model to execute read and write data,
the operation of reading data generally reads all the data within a model, and the operation
of writing data generally writes all data in the model. Sometimes, however, we need to
write fewer columns of data than there is in the model. In addition, using a single model to
read and write data can increase security because some data is for querying only.

CQRS (Command and Query Responsibility Segregation) is a pattern that segregates read
operations from write operations, creating a separate and decoupled interface for these
operations. With this in mind, we need to create a model to read data and another model to
write data, while only using the data needed for these operations.

When to use the CQRS pattern
It is recommended that the CQRS pattern is used when an application has a complex
business role and its data is updated frequently by resources or events, therefore increasing
the risk of a write operation. Implementing this pattern is also recommended when
performance problems generated by the merging of data and write operations are
concurrent. The use of the CQRS pattern increases the complexity of applications, so this
pattern should only be used when necessary.

Operational Patterns Chapter 11

[264]

The event sourcing pattern
In a typical approach, an application changes the state of data when a user works with it.
However, this approach can often slow down performance and responsiveness and can
also generate other concurrent updates. Unless we use an additional mechanism, we don't
have a mechanism to audit and log operations or generate history.

Event sourcing is a pattern that maintains the current data state and saves data update
events in an event repository. This repository works as an append-only store, and when the
data is accessed by a consumer, it receives the event and applies the update on the domain.
Using this pattern promotes performance by decoupling the event logic and scalability and
by auditing all actions applied to the data.

Understanding the event of event sourcing
In the event sourcing pattern, an event is considered an update that will be applied to the
data. When a user requests a data update, the application will not update it in real-time but
will instead get the data, create an imperative description of an update, and save the event
with that description. This event is then saved in the event repository. Note that the
consumer of an event can be another application or resource.

Using the event sourcing pattern, the end user is able to see older versions of data because
the data is only updated when the event is saved on the event repository and running. With
this in mind, the end user will not see the update in real-time, as the update is scheduled
and can be executed at any time. Remember that the event repository can be a relational
database, file system, or another data source.

The consumer can be a component of the same application that saves the event in the event
repository or it can be another application. The consumer of the event always checks
whether it can run it when it receives one.

Promoting performance
Using the event sourcing pattern should increase performance. This is because any updates
can be done by a consumer at any time, and the update actions can lock data and impact
data queries. This process, therefore, minimizes the risk of update operations colliding.
Furthermore, the update operation can be done as a background process run on the server.

Operational Patterns Chapter 11

[265]

Promoting decoupling
Using the event sourcing pattern will also promote the decoupling of event logic because
the updates can be done by another application or resource. The event publisher doesn't
need to know about the event consumer, and an event can be divided to permit numerous
applications or resources to execute part of the update process.

Promoting scalability
Using the event sourcing pattern will promote scalability because it also promotes the
decoupling of the event publisher and event consumer. Therefore, we can replicate both
the event publisher and event consumer once the measure of the request to an application
or resource has been considered.

Promoting auditing
Using the event sourcing pattern will promote the auditing of all actions applied to the
data because the history of an event can be used to regenerate old information about data.
This is because the event repository does not allow you to update or delete events. All data
history is displayed in an event repository.

Explaining the index table pattern
These days, the volume of data is ever-increasing, and applications need to be able to read a
large quantity of data. To make it possible to read data faster, it is common to resort to a
data structure or index. In a business environment, data can be organized as a collection of
entities that have a primary key. However, we also want to be able to read data using
attributes that don't contain an index as a filter in a query. The following diagram illustrates
the data organization; if data stays organized, we can use an algorithm that retrieves it
faster.

The relational database works with an index and allows us to create one in order to read
data faster. Other data stores will not work with an index to read data, so we need to create
our own index mechanism to promote faster data reading.

The index table pattern is a pattern that creates a table that organizes data using other data
or a specific key. Using this, we can read data quicker. The pattern works using three
strategies; they are as follows:

Duplicating data and organizing it in different keys

Operational Patterns Chapter 11

[266]

Creating index tables organized by different keys and referencing the original
data using the primary key
Creating index tables organized by different keys that duplicate frequently-
retrieved fields

The following diagram illustrates the first strategy:

In the strategy shown in the following diagram, the data is duplicated in each index table.
This works according to denormalization and is more appropriate for use with mostly static
data. The following diagram illustrates the second strategy:

Operational Patterns Chapter 11

[267]

In the strategy shown in the following diagram, the data is organized according to different
keys and references the original data using the primary key. In this strategy, the primary
key of data is retrieved first by an attribute and then by using an ID. The following diagram
illustrates the third strategy:

In the strategy shown in the preceding diagram, the data is organized according to different
keys that duplicate frequently-retrieved attributes in partially normalized index tables.

An index table pattern is a good mechanism for retrieving data quicker. However,
overusing this pattern can generate a performance problem during data updates, as they
require us to reorganize our index tables.

The materialized view pattern
Occasionally, business roles need read data that requires non-trivial queries. The user may
sometimes need to see data that is made by combining data from different physical
locations. This often causes performance problems, making the reading of data slow. For
relational data, these locations are tables. To increase performance, therefore, one strategy
can be to create a pre-populated view of data from multiple physical locations.
Consequently, when the application executes a query, the data will already be made and
will, therefore, be returned faster.

Operational Patterns Chapter 11

[268]

The materialized view pattern is a pattern that creates and materializes data in a format the
application requires in a query. If the query consults data with joins or data that needs to be
calculated, the materialized view pattern increase the performance, making it possible to
read data faster. Note that data in a materialized view is never updated in a materialized
view; it is simply a snapshot of the actual data. When the real data is updated, the
materialized view will need to be rebuilt. The following diagram illustrates the materialized
view pattern:

Rebuilding the materialized view
When data on the data source changes the materialized view, the materialized view must
be rebuilt in order to reflect the changes. Rebuilding a materialized view can be done with
either an automated or manual process. To define the strategy needed for rebuilding the
materialized view, we first need to define whether the data will allow a dirty reading, as
well as looking into the impact of such a reading. If the data cannot have a dirty reading,
the materialized view needs to be rebuilt at the same time the original data is updated.

When to use the materialized view pattern
The materialized view pattern can promote a big increase in performance. This is because
any data is read without performing joins or calculus to retrieve the data. However, if the
data changes too rapidly, the materialized view will be rebuilt more times than necessary,
which will impact performance.

Operational Patterns Chapter 11

[269]

The benefit of using the materialized view pattern is inversely proportional to the speed of
changes in the original data. Therefore, the use of a materialized view is recommended
when data is rarely modified and is not dynamic.

Explaining the sharding pattern
If we have a table that grows rapidly and generates problems reading and writing data in a
business environment, we need to apply a solution that deals with the problem of
performance as well as the problem with data volume.

The sharding pattern is a pattern that divides a data store horizontally into partitions or
shards. This can improve scalability and performance. The shards can run in the same node
or in multiples nodes, but each shard has the same schema. When we divide a single
database into shards, the rows of the database are distributed between them. Furthermore,
a sharding pattern can be implemented by the database, if it has support, or by the
application.

The sharding pattern has three common strategies used during implementation. These
strategies include the following:

The lookup strategy: This strategy divides data into shards and the sharding
logic implements a map that routes a request to the data using a shard key. After
this, each shard is identified by a shard key and contains its own set of data.

The range strategy: This strategy divides data into shards and the sharding logic
implementation group related data together. These shards are identified by the
shard key. This strategy is useful when we want to retrieve data using a range
query.

The hash strategy: This strategy divides data into shards and the sharding logic
implementation allows an even distribution of data between the shards. These
shards are identified by a shard key. Here, the shards are balanced and reduce
the risk of a disproportionate amount of load in a shard.

When to use the sharding pattern
There are benefits to using the sharding pattern, but a downside is that it can also increase
the complexity of a project. Because of this, this pattern should only be used when
necessary, as increasing the complexity of a project increases the chance of errors
occurring.

Operational Patterns Chapter 11

[270]

The sharding pattern should be used when the performance of retrieving data needs to be
increased – in particular, when the data set is very large. The shards reduce the amount of
data that is used to retrieve data, thereby increasing performance. Furthermore, using the
sharding pattern makes it possible to scale the data store and also makes data highly
available.

Explaining the concept of management and
monitoring patterns
The volume of applications running in a cloud is ever-increasing and these applications
commonly run in a remote data center. Because of this, we don't have full control over the
infrastructure of an application, and it can become difficult to manage and monitor
applications running remotely.

The management and monitoring patterns were created to allow us to manage and monitor
our applications and expose runtime information about the application that supports
business changes and customization without having to redeploy the application. Using this
pattern, we can decouple the monitoring logic from the application logic, and we can also
update the ambassador without impacting the application. In this section, we will explain
the following management and monitoring patterns:

The ambassador pattern
The health endpoint monitoring pattern
The external configuration store pattern

The ambassador pattern
In some cases, you may want to implement features such as routing, metering, or
monitoring on a cloud application; you may also want to update network configurations.
However, it is sometimes difficult to maintain the application and update
codes. Furthermore, there may be some libraries that are not maintained by us and
therefore cannot be modified.

Operational Patterns Chapter 11

[271]

The ambassador pattern creates an external process including all of the logic, libraries, and
frameworks needed to fulfill the requirements of management and monitoring. This
external process acts as a proxy between the applications or external services. The following
diagram illustrates the ambassador pattern:

When to use the ambassador pattern
The purpose of the ambassador pattern is to indicate when a supported cloud is needed
for connectivity requirements, or to indicate when applications need to be modified. The
ambassador pattern can also help with building a common set of client connectivity
features for multiple languages or frameworks. However, when there is critical request
latency, this pattern is not recommended. This is because the ambassador
pattern introduces overhead on the network that can impact an application.

Explaining the health endpoint monitoring
pattern
In a business environment, applications always need to be available and to perform
correctly. It is, therefore, necessary to monitor whether this is the case for all services.
Monitoring applications on the cloud, however, is often difficult.

Operational Patterns Chapter 11

[272]

The health endpoint monitoring pattern implements a health monitor by sending requests
to endpoints on the application and verifying the status returned by them. This pattern then
analyzes the result returned by the application and performs the health verification check,
as illustrated in the following diagram:

In the preceding diagram, we can see the Application and the Agent. This represents a
solution that sends a request to the application and the service and checks its returns. Note
that the Agent checks the Data Store too.

The health endpoint monitoring pattern can perform the following checks:

Validating the response code; on the HTTP protocol, the return of
status 200 denotes success
Checking the content of the response to detected errors
Measuring the time interval between a request and its response
Checking resources or services located outside the application
Checking the expiration of SSL certificates
Validating the URL returned by the DNS lookup to ensure correct entries

When to use the health endpoint monitoring pattern
The health endpoint monitoring pattern is recommended for monitoring a web application
or service's availability and performance. It can help with monitoring the middle-tier and
shared service in order to identify and isolate a failure.

Operational Patterns Chapter 11

[273]

Using this pattern can help to identify a failure early and also apply the actions needed to
solve the problem, something that has only a minor impact on the end user. Today, the
capacity to identify failures quickly is very important to businesses.

Explaining the external configuration store
pattern
An application always needs to follow a set of configurations in order to perform its
functions and promote services. Generally, these configurations are made by files that the
application reads and gets information from. These configuration files are often deployed
with an application package. Some updates in these configuration files require the
redeployment of an application, thus increasing the complexity of updates in the
configuration files. Furthermore, deploying the configuration files together with the
application requires the creation of each configuration file for each application, and these
files cannot be shared.

The external configuration store pattern creates an external repository for configuration
patterns, providing an interface for permitting applications to read configuration files.
Using this, we can update the configuration files without having to redeploy applications,
and we can also share configurations between several applications, making the
environment more organized and easier to manage, as illustrated in the following diagram:

Operational Patterns Chapter 11

[274]

As you can see in the preceding diagram, the applications read the configurations from a
common location called the repository of configuration. If the configuration files are
then updated, all applications will see the update.

When to use the external configuration store pattern
The use of the external configuration store pattern is recommended when sharing
configuration files with applications or when updates are required without the
redeployment of an application. Sharing configuration files allows us to easily manage the
configurations of an application, as all applications will see and be impacted by the update,
which is done in one location. Using this pattern will also minimize the risk of error
when updating the configuration file, so the use of this pattern is a good practice to adopt.

Summary
In this chapter, we explored operational patterns, performance and scalability patterns, and
management and monitoring patterns. We also looked at why we should use these
operational patterns and how to evaluate the best use for them.

On the topic of performance and scalability patterns, we looked at performance and
scalability patterns such as cache-aside, CQRS, event sourcing, index table, materialized
view, and sharding. Then, we explained each pattern's concept, what the benefits of
it are, and when to implement it. We are now familiar with the techniques required for
increasing the performance of an enterprise application, as well as how to make the
application scalable.

On the topic of management and monitoring patterns, we explored management and
monitoring patterns such as ambassador patterns, health endpoint monitoring patterns,
and external configuration store patterns. We explained each pattern's concept, what the
benefits of it are, and when to implement it. We are now familiar with the techniques
required for managing and monitoring an enterprise application.

In the next chapter, we will look at the Eclipse MicroProfile project and its specifications.

12
MicroProfile

This chapter will provide an overview of the Eclipse MicroProfile project, covering its goals,
the expectations of its outcome, when it should be used, and the benefits of using it to
develop our application. This chapter is only an overview and we will not explore how to
implement applications using the MicroProfile project.

The following is the central topic that will be covered in this chapter:

Explaining the Eclipse MicroProfile project approach

Explaining the Eclipse MicroProfile project
approach
Today, the use of microservices architecture is rapidly increasing. New tools have emerged
to facilitate and develop microservice applications using MicroProfile patterns and best
practices. The Eclipse MicroProfile project was created in order to make it possible to
develop applications with microservices architecture, using the power of Java EE to
optimize the Enterprise Java for microservices architecture.

The Eclipse MicroProfile project is an umbrella of specs used to develop applications with
microservices architecture. This umbrella contains some specs of Java EE and some
proprietary specs (created with Eclipse MicroProfile). With this, the Eclipse MicroProfile
project allows us to develop microservice applications using specifications of Java EE, such
as CDI, JAX-RS, and JSON-B. Furthermore, the MicroProfile project provides portable
microservices architecture across multiple Enterprise Java runtimes and permits
interoperable microservices architecture, which allows communication among polyglot
runtimes (not just Java). So far, the current version of the Eclipse MicroProfile project is 2.0
and has the following specifications:

Eclipse MicroProfile Config 1.3
Eclipse MicroProfile Fault Tolerance 1.1

MicroProfile Chapter 12

[276]

Eclipse MicroProfile Health Check 1.0
Eclipse MicroProfile JWT Authentication 1.1
Eclipse MicroProfile Metrics 1.1
Eclipse MicroProfile OpenAPI 1.0
Eclipse MicroProfile OpenTracing 1.1
Eclipse MicroProfile Rest Client 1.1
CDI 2.0
Common Annotations 1.3
JAX-RS 2.1
JSON-B 1.0
JSON-P 1.1

The MicroProfile project was designed to be portable across multiples runtimes, but it
is only portable if we develop it using the preceding specifications. If we use an additional
API or framework, portability is not guaranteed. Furthermore, the MicroProfile project
supports Java 8 but does not support Java 7 and earlier versions.

Eclipse MicroProfile Config 1.3
Applications need to read configurations on the same internal or external location. The
Eclipse MicroProfile Config 1.3 makes it possible to obtain configuration properties from
some internal or external sources to the application, made available through dependency
injection or lookup. With this, we can implement an external configuration store pattern
and consume the configuration properties. The format of configurations can be system
properties, system environment variables, .properties, .xml, or data source.

Eclipse MicroProfile Fault Tolerance 1.1
Applications using a microservices architecture need to have fault tolerance. Fault tolerance
is about leveraging different strategies to guide the execution and the result of logic. Eclipse
MicroProfile Fault Tolerance 1.1 provides the ability to decouple the business logic from the
execution logic separating these logics. With this, we can process an API, such as TimeOut,
RetryPolicy, Fallback, Bulkhead, and Circuit Breaker, which are the most popular concepts
used with microservices.

MicroProfile Chapter 12

[277]

Eclipse MicroProfile Health Check 1.0
In a microservices architecture, the ability to promote a health check of services is very
important when it comes to detecting faults. Eclipse MicroProfile Health Check 1.0
provides the ability to verify the state of a computing node from another machine. With
this, we can implement the health endpoint monitoring pattern using a MicroProfile project
feature, as described in Chapter 11, Operational Patterns.

Eclipse MicroProfile JWT authentication 1.1
Today, microservices architecture is most commonly implemented using the RESTful
architecture style. However, the RESTful architecture style works with stateless services
and does not provide its own security. Thus, the most common practice is to create services
with token-based security. Eclipse MicroProfile JWT Authentication 1.1 provides role-
based access control (RBAC), microservice endpoints using OpenID Connect (OIDC), and
JSON Web Tokens (JWT).

Eclipse MicroProfile Metrics 1.1
Metrics are very important to microservices architecture. This is because they allow us to
better evaluate our services. Eclipse MicroProfile Metrics 1.1 provides a unified way for
MicroProfile servers to export monitoring data to management agents. Metrics will also
provide a common Java API for exposing their telemetry data. This feature can be used to
generate information about the application, making it possible to implement the health
endpoint monitoring pattern in order to allow this pattern to evaluate our services better.

Eclipse MicroProfile OpenAPI 1.0
When we develop a microservice application, we create services that communicate between
themselves. With this, the API documentation is very important for minimizing errors by
not knowing the contract. Consequently, the Eclipse MicroProfile OpenAPI 1.0 provides a
unified Java API for the OpenAPI v3 specification that all application developers can use to
expose their API documentation. We can, therefore, create a contract between services, and
the API is exposed.

MicroProfile Chapter 12

[278]

Eclipse MicroProfile OpenTracing 1.1
In a microservice application, analyzing or debugging operation workflows is difficult. To
facilitate debugging, we can use OpenTracing. OpenTracing is a standard API for
instrumenting microservices for distributed tracing, which helps to troubleshoot
microservices by examining and logging requests as they propagate through a distributed
system.

Eclipse MicroProfile OpenTracing 1.1 defines an API and associated behaviors that allow
services to easily participate in a distributed tracing environment. With this, we can analyze
or debug a workflow of operations without adding any code in order to complete the
tracing.

Eclipse MicroProfile REST Client 1.1
In a microservices architecture, communication is generally effected by an HTTP protocol
using RESTful. We then need to create a client that sends an HTTP request obeying
the defined contract. In this case, the Eclipse MicroProfile REST client provides a type-safe
approach for invoking RESTful services over HTTP. The MicroProfile REST client builds
upon the JAX-RS 2.1 APIs for consistency and ease of use.

CDI 2.0
The MicroProfile project has a Java EE specification embedded inside itself. One of these
specifications is CDI, which provides the base for a growing number of APIs included in
MicroProfile 2.0. The use of implementations beyond CDI 2.0 in MicroProfile is allowed but
not required, as of version 2.0 of MicroProfile.

Common annotations 1.3
The MicroProfile project has some Java EE specifications embedded inside itself. One of
these specifications is Common annotations, which provides annotations for common
semantic concepts across a variety of individual technologies in the Java SE and Java EE
platforms. The use of implementations beyond Common annotations 1.3 in MicroProfile is
allowed but not required, as of version 2.0 of MicroProfile.

MicroProfile Chapter 12

[279]

JAX-RS 2.1
The Eclipse MicroProfile project has Java EE specifications embedded inside itself. One of
these specifications is JAX-RS, which provides both standard client and server APIs for
RESTful communication by MicroProfile 2.0 applications. The use of implementations
beyond JAX-RS 2.1 in MicroProfile is allowed but not required, as of version 2.0 of
MicroProfile.

JSON-B 1.0
Another of the Java EE specifications embedded in the MicroProfile project is JSON-B,
which is included as part of MicroProfile 2.0 to provide standard APIs for binding JSON
documents to Java code. The use of implementations beyond JSON-B 1.0 in MicroProfile is
allowed but not required, as of version 2.0 of MicroProfile.

JSON-P 1.1
Another Java EE specification embedded in The MicroProfile project is JSON-P, which is
part of MicroProfile 2.0 and designed to provide standard APIs for processing JSON
documents. The use of implementations beyond JSON-P 1.1 in MicroProfile is allowed but
not required, as of version 2.0 of MicroProfile.

Why should we use the MicroProfile project?
Using the MicroProfile project, we can create applications with microservices architecture
using features of Java EE and running on Java EE runtimes. Furthermore, using
MicroProfiles means that we can create applications with features of metrics, fault
tolerance, documentation, separate configurations of the application, and easy debugging,
including a decoupled business code from the code of these features.

Java EE is a widely-tested umbrella of specifications. The idea behind using these
specifications to create applications with microservices architecture is highly beneficial; the
use of specifications makes users free from vendors and also makes the application portable
across runtimes.

MicroProfile Chapter 12

[280]

Community
The Eclipse MicroProfile project is maintained by the MicroProfile community (http:/ /
microprofile.io/), which is a semi-new community. The main players in this group are
IBM, Red Hat, Tomitribe, Payara, the London Java Community (LJC), and SouJava. The
aim of this project is to be a community-based project. It also aims to iterate and innovate in
short cycles, get community approval, release a new version, and repeat. With the growth
of applications developed with a microservices architecture, the use of MicroProfile will
increase and other features will also be introduced, ultimately growing the power of
MicroProfile.

Future work
The Eclipse MicroProfile project has supported some Java EE specifications, but the aim is
to grow this support and add other Java EE specifications. The expectation is that the
following specifications are the next to be inserted into the MicroProfile project:

JCache
Persistence
Bean validation
WebSockets

Summary
In this chapter, we looked at an overview of the Eclipse MicroProfile project. Within this
overview, we discussed what the Eclipse MicroProfile project is, what its specifications are,
why we use the MicroProfile project, and what future developments are in store for the
Eclipse MicroProfile project.

This chapter is only intended to be an overview and doesn't aim to teach us how to use
MicroProfile. If you want to learn more about the Eclipse MicroProfile project, please visit
https://projects. eclipse. org/ projects/ technology. microprofile/ releases/
microprofile-2.0.

http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
http://microprofile.io/
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0
https://projects.eclipse.org/projects/technology.microprofile/releases/microprofile-2.0

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Java EE 8 Development with Eclipse - Third Edition
Ram Kulkarni

ISBN: 9781788833776

Set up Eclipse, Tomcat, and Glassfish servers for Java EE application
development
Use JSP, Servlet, JSF, and EJBs to create a user interface and write business logic
Create Java EE database applications using JDBC and JPA
Handle asynchronous messages using MDBs for better scalability
Deploy and debug Java EE applications and create SOAP and REST web services
Write unit tests and calculate code coverage
Use Eclipse MAT (Memory Analysis Tool) to debug memory issues
Create and deploy microservices

https://www.packtpub.com/application-development/java-ee-8-development-eclipse-third-edition

Other Books You May Enjoy

[282]

Java EE 8 High Performance
Romain Manni-Bucau

ISBN: 9781788473064

Identify performance bottlenecks in an application
Locate application hotspots using performance tools
Understand the work done under the hood by EE containers and its impact on
performance
Identify common patterns to integrate with Java EE applications
Implement transparent caching on your applications
Extract more information from your applications using Java EE without
modifying existing code
Ensure constant performance and eliminate regression

https://www.packtpub.com/application-development/java-ee-8-high-performance

Other Books You May Enjoy

[283]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
A/B testing
 concept 253, 254
 group of end users, defining 254
 servers, defining to version 254
 version, deploying 254
 version, impact evaluating 255
Abstract Factory pattern
 about 10
 explaining 15
advice 116
API Gateway 173, 205, 206
application controller pattern
 about 33
 commands, implementing 39
 DownloadApplicationController, implementing 36
 DownloadFrontController, implementing 34
 versus front controller pattern 42
Application Server 165
ApplicationController 34
aspect-oriented programming (AOP)
 about 110, 111
 compile-time, versus run-time 111, 112
 decorator pattern 128
 in JEE scenario 112
asynchronous EJB method
 CDI event, difference between 146
 concept 146
 implementing 147
asynchronous events
 observers 104
 producers 104
asynchronous REST service
 client API, implementing 159, 160
 concept 152
 EJBs, implementing 153, 154

 FileUploadResource class, implementing 155,
158, 159

 implementing 153
authentication interceptor
 about 235
 CDI interceptor, implementing 236, 238, 241
 implementing 235
 JAX-RS resource, implementing 242
authentication mechanism
 about 226
 annotation, using 230
 client authentication 227
 deployment descriptor, using 230
 digest authentication 227
 explaining 225
 form authentication 226
 HelloWordServlet class, implementing 234
 HelloWorld class, implementing 232, 234
 implementing 230
 mutual authentication 228, 229
 programmatic configuration, using 230
 web.xml file, implementing 231

B
bean 113
blue/green deployment
 about 250
 application, deploying to group of servers 251
 application, deploying to server 252
 concept 250
 group of servers, defining 251
Business Delegate pattern
 about 45, 52
 benefits 51
 business tier 45
 client tier 45
 layers 45

[285]

 presentation tier 45
 scenario 48, 51
 tiers 47, 48
business tier 43
business-object pattern
 about 70
 applications, with complex business rules 71, 73
 benefits 73, 74
 implementing 75, 77
 using 73

C
cache-aside pattern
 about 260, 261
 cache, priming 262
 cached data 262
 consistency 262
 evicting data 262
 local caching 263
 need for 261
canary deployment
 application, deploying to canary servers 249
 application, deploying to servers 250
 application, testing 249
 application, verifying 249
 canary servers, defining 248, 249
 concept 247
CDI 113
CDI 2.0 278
CDI interceptor
 implementing 125, 126, 128, 236, 238, 241
circuit-breaker mechanism
 about 209
 closed 209
 half-open 209
 open 209
circuit-breaker pattern 208, 209
Class Factory pattern 10
client authentication 227
cloud config server 208
cloud design pattern
 abstraction 197
 API Gateway 205, 206
 circuit-breaker mechanism 209
 circuit-breaker pattern 208, 209

 composite application 197
 config server 207, 208
 explaining 197
 service-registry pattern 206, 207
 twelve-factor methodology 197, 198
cloud-native application, goals
 availability 195
 data management 195
 management and monitoring 196
 messaging 195
 performance and scalability 196
 resiliency 196
 security 196
cloud-native application
 concept 194, 195
 goals 195
cloud-native applications, concept
 container-packaged 195
 dynamically-managed 195
 micro-services-oriented 195
Common annotations 1.3 278
compile-time
 versus run-time 111, 112
config server 207, 208
context and dependency injection (CDI) 115
continuous deployment
 concept 255
CQRS (Command and Query Responsibility

Segregation) 263
CQRS pattern 263

D
Data-Access Object (DAO) pattern
 about 56, 90
 concept 81
 entity, implementing with JPA 83
 implementing 82, 85, 86, 88
decorator pattern
 about 128, 129, 130
 implementing 131, 133
 in JEE scenario 130, 131
deployment pattern
 concept 244, 245
deployment strategies 245
design pattern

[286]

 Abstract Factory, explaining 15
 advantages 13
 explaining 9
 Facade, explaining 17
 Gang of Four (GoF) design pattern, explaining 9
 Iterator, explaining 17
 of Java 14
 Proxy, explaining 18
 Singleton, explaining 14
design patterns
 versus enterprise patterns 20
digest authentication 227
domain-store pattern
 concept 88, 90
 EmployeeBusiness class, implementing 100
 EmployeeStageManager 91
 EmployeeStoreManager 90
 EmployeeStoreManager class, implementing 95
 implementing 90, 91
 Persistence 90
 PersistenceManager 90
 PersistenceManager class, implementing 92, 94
 PersistenceManagerFactory 90
 PersistenceManagerFactory class, implementing

91

 StageManager 91
 StageManager interface, implementing 96, 98
 Transaction 91
 Transaction (Annotation) 91
 Transaction class, implementing 99
 TransactionFactory 91
 TransactionFactory class, implementing 98

E
Eclipse MicroProfile Config 1.3 276
Eclipse MicroProfile Fault Tolerance 1.1 276
Eclipse MicroProfile Health Check 1.0 277
Eclipse MicroProfile JWT authentication 1.1 277
Eclipse MicroProfile Metrics 1.1 277
Eclipse MicroProfile OpenAPI 1.0 277
Eclipse MicroProfile OpenTracing 1.1 278
Eclipse MicroProfile project approach
 CDI 2.0 278
 Common annotations 1.3 278
 Eclipse MicroProfile Config 1.3 276

 Eclipse MicroProfile Fault Tolerance 1.1 276
 Eclipse MicroProfile Health Check 1.0 277
 Eclipse MicroProfile JWT authentication 1.1 277
 Eclipse MicroProfile Metrics 1.1 277
 Eclipse MicroProfile OpenAPI 1.0 277
 Eclipse MicroProfile OpenTracing 1.1 278
 Eclipse MicroProfile REST Client 1.1 278
 explaining 275, 276
 future 280
 JAX-RS 2.1 279
 JSON-B 1.0 279
 JSON-P 1.1 279
 MicroProfile community 280
 MicroProfile project, need for 279
Eclipse MicroProfile REST Client 1.1 278
EJB interceptor implementation
 about 117, 120
 interceptor class 121, 122
 lifecycle callback events 124
 lifecycle callback events, intercepting 122, 123
 method invocation, intercepting 120, 121
 multiple method interceptors 121, 122
Enterprise Java Beans (EJB)
 about 43
 FileUploadResource class, implementing 150
 implementing 147, 149
enterprise patterns
 explaining 20
 versus design patterns 20
event sourcing pattern
 about 264
 audit, promoting 265
 decoupling, promoting 265
 event of event sourcing 264
 performance, promoting 264
 scalability, promoting 265
event
 about 137
 FileUploadResource class, implementing 138
 implementing 138
 observers, implementing 143
external configuration store pattern
 explaining 273
 need for 274

[287]

F
Facade
 explaining 17
Factory Method pattern 10
FileUploadResource class
 asynchronous EJB method, calling to save JPG

152

 asynchronous EJB method, calling to save PDF
151

 bean, sending to event 139
 FIleUploadResource class 141
 implementing 138, 150
 qualifier, for selecting JpgHandler observer 139
 qualifier, for selecting PdfHandler observer 140
 qualifier, for selecting ZipHandler observer 140
FileUploadResource
 asynchronous EJB method, calling to save ZIP

152

form authentication 226
FrontController pattern
 about 34
 commands, implementing 33
 explaining 30
 implementing 31

G
Gang of Four (GoF) design pattern
 about 53
 abstract factory 11
 adapter 11
 bridge 11
 builder 11
 catalog 11
 chain of responsibility 11
 command 11
 composite 11
 decorator 12
 explaining 9
 facade 12
 factory method 12
 flyweight 12
 interpreter 12
 iterator 12
 mediator 12
 memento 12

 observer 12
 prototype 12
 proxy 12
 singleton 12
 state 12
 strategy 12
 template method 13
 visitor 13

H
health endpoint monitoring pattern
 explaining 272
 need for 272, 273
horizontal scalability 168

I
integration tier 80, 81
intercepting filter pattern
 explaining 24
 filter mapping, deciding 29
 implementing, Java EE 8 used 25
 LogAccessFilter, implementing 25
 LogBrowserFilter, implementing 27
interceptor 112
interceptor class 116
Iterator
 about 18
 explaining 18

J
Java EE 8
 used, for implementing intercepting filter pattern

25

Java EE components
 arbitrary objects 113
 Java EE resources 113
 managed bean 113
Java Message Service (JMS) 102, 103
Java Persistence API (JPA) 43
JAX-RS 2.1 279
JAX-RS resource
 implementing 242
JEE scenario
 aspect-oriented programming (AOP) in 112
 bean 113, 114

[288]

 CDI 113
 CDI interceptor implementation 128
 CDI interceptor, implementing 125, 126
 EJB interceptor implementation 117, 120
 interceptors 115, 117
 loose coupling 114, 115
JEE
 Session Façade pattern, implementing 55
JSON Web Tokens (JWT) 277
JSON-B 1.0 279
JSON-P 1.1 279

L
London Java Community (LJC) 280
loose coupling
 about 114, 115
 decorators 115
 event notifications 115
 interceptors 115

M
managed bean
 about 113
 in CDI 114
management and monitoring patterns
 ambassador pattern 270, 271
 ambassador pattern, need for 271
 concept 270
 external configuration store pattern, explaining

273

 health endpoint monitoring pattern, explaining
271, 272

materialized view pattern
 about 267, 268
 need for 268, 269
 rebuilding 268
message-driven bean (MDB)
 about 102
 characteristics 103
message-driven middleware (MOM) 102
MicroProfile community
 URL 280
MicroProfile project
 need for 279
microservices architecture patterns

 about 184
 aggregator pattern 185
 asynchronous pattern 188
 branch pattern 187
 chained pattern 186
 proxy pattern 185
microservices architecture
 application modules, extracting 180, 182
 application, decomposing 179
 business capabilities 180
 components, decomposing 170, 172, 174
 decentralized data 178
 decentralized governance of APIs 176
 decentralized governance of libraries 176
 evolutionary systems 177
 fault tolerance 177
 hexagonal model, establishing for application

182

 identifying 179
 multitask teams 174
 need for 178
 processing 176
 product focus 175
 single responsibility principle 176
 use case 180
 working 169
microservices patterns
 about 168
 explaining 162
 monolithic application 164
 scale cube 167
microservices-based application
 advantages 183
 disadvantages 183
microservices
 implementing 189, 190, 191
monolithic application
 about 164
 bugs, fixing 166
 continuous deployment 166
 features, implementing 166
 frameworks, using 167
 low reliability 167
 startup time 166
 technologies, using 167

[289]

mutual authentication 228, 229

O
Object Relational Mapping (ORM) 19
observers
 implementing 143
OpenID Connect (OIDC) 277
operational patterns
 concept 258, 259

P
patterns, business tier
 Business Delegate pattern 44
 Business-object pattern 44
 Session Façade pattern 44
performance pattern
 cache-aside pattern 260, 261
 cache-aside pattern, need for 261
 concept 259, 260
 CQRS pattern 263
 CQRS pattern, need for 263
 event sourcing pattern 264
 index table pattern, explaining 265, 266, 267
 materialized view pattern 267, 268
pointcut 116
presentation tier
 explaining 22
 presentation-oriented tier 22
 server-oriented tier 23
principles, security information
 availability 212
 confidentiality 211
 integrity 211
 non-repudiation 212
Proxy
 explaining 18

R
Red Hat single-sign-on (RH-SSO) 214
role-based access control (RBAC) 277

S
scalability pattern
 cache-aside pattern 260, 261

 cache-aside pattern, need for 261
 concept 259, 260
 CQRS pattern 263
 CQRS pattern, need for 263
 event sourcing pattern 264
 index table pattern, explaining 265, 266, 267
 materialized view pattern 267
 sharding pattern, explaining 269
scale cube
 about 167
 X-axis scaling 168
 Y-axis scaling 168
 Z-axis scaling 168
security patterns
 concept 211
service-activator pattern
 asynchronous events 104
 asynchronous events, implementing 108
 concept 101
 EJB asynchronous methods 104
 EJB asynchronous methods, implementing 107
 implementing 106
 Java Message Service (JMS) 102, 103
 JMS message-sender, implementing 106, 107
service-registry pattern 206, 207
Session Façade pattern
 about 53
 benefits 54
 implementing 58, 62, 69
 implementing, in JEE 55
 scenario 55, 58
sharding pattern
 explaining 269
 hash strategy 269
 lookup strategy 269
 need for 269, 270
 range strategy 269
single-sign-on pattern
 App1 classes, implementing 221, 225
 App2 classes, implementing 225
 AuthenticationResource class, implementing

215, 218, 221
 concept 212, 214
 implementing 214
Singleton

 about 14
 explaining 14

T
three-dimension scalability model 167
twelve-factor methodology
 about 198
 admin processes 204
 backing services 201
 build 202

 codebase 198, 199
 concurrency 203
 config 200
 dependencies 199
 dev/prod parity 204
 disposability 204
 logs 204
 port-binding 203
 processes 202, 203
 release 202
 run 202

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapters 1: Introduction to Design Patterns
	Explaining design patterns
	Explaining the Gang of Four design patterns
	The catalog of Gang of Four design patterns

	Understanding the advantages of design patterns
	Understanding the basic design patterns of the Java world
	Explaining Singleton
	Explaining Abstract Factory
	Explaining Facade
	Explaining Iterator
	Explaining Proxy

	Explaining enterprise patterns
	Defining the difference between design patterns and enterprise patterns
	Summary

	Chapters 2: Presentation Patterns
	Explaining the presentation tier
	Explaining intercepting filter pattern
	Implementing the intercepting filter pattern using Java EE 8
	Implementing LogAccessFilter
	Implementing LogBrowserFilter
	Deciding filter mapping

	Explaining the FrontController pattern
	Implementing FrontController
	Implementing the commands

	The application controller pattern
	Implementing DownloadFrontController
	Implementing DownloadApplicationController
	Implementing commands
	The difference between the application controller and front controller patterns

	Summary

	Chapters 3: Business Patterns
	Understanding the business tier
	Explaining the Business Delegate pattern
	Client tier, presentation tier, and business tier
	Layers
	Tiers

	The classic Business Delegate pattern scenario
	The benefits of the Business Delegate pattern
	Business Delegate – obsolete or not

	Explaining the Session Façade pattern
	Benefits of Session Façade
	Implementing the Session Façade pattern in JEE
	The classic Session Façade pattern scenario

	Implementing the Session Façade pattern
	Explaining the business-object pattern
	Applications with complex business rules
	Motivation for using the business-object pattern
	Benefits of business-object pattern usage

	Implementing the business-object pattern
	Summary

	Chapters 4: Integration Patterns
	Explaining the concept of the integration tier
	Explaining the concept of the data-access object pattern
	Implementing the data-access object pattern
	Implementing the entity with JPA
	Implementing DAO

	Explaining the concept of the domain-store pattern
	Implementing the domain-store pattern
	Implementing the PersistenceManagerFactory class
	Implementing the PersistenceManager class
	Implementing the EmployeeStoreManager class
	Implementing the StageManager interface
	Implementing the TransactionFactory class
	Implementing the Transaction class
	Implementing the EmployeeBusiness class

	Explaining the concept of the service-activator pattern
	Java Message Service (JMS)
	EJB asynchronous methods
	Asynchronous events – producers and observers

	Implementing the service-activator pattern
	Implementing sending and receiving messages with JMS
	Implementing the EJB asynchronous methods
	Implementing asynchronous events – producers and observers

	Summary

	Chapters 5: Aspect-Oriented Programming and Design Patterns
	Aspect-oriented programming
	Compile-time versus run-time AOP
	AOP in JEE scenario – the interceptor
	A brief word about CDI and beans
	The bean
	Managed beans in CDI

	Loose coupling
	Interceptors in the JEE platform
	EJB interceptor implementation
	Intercepting method invocation
	Interceptor class and multiple method interceptors
	Intercepting life cycle callback events

	CDI interceptor implementation

	Decorator
	The decorator pattern
	The decorator in a JEE scenario
	Decorator implementation

	Summary

	Chapters 6: Reactive Patterns
	Explaining the concept of an event in CDI
	Implementing an event in CDI
	Implementing the FileUploadResource class
	Bean sent on the event
	Qualifier to select the JpgHandler observer to react to an event
	Qualifier to select the PdfHandler observer to react to an event
	Qualifier to select the ZipHandler observer to react to an event
	The FIleUploadResource class

	Implementing observers

	Explaining the concept of an asynchronous EJB method
	Difference between an asynchronous EJB method and an event in CDI

	Implementing an asynchronous EJB method
	Implementing EJBs
	Implementing the FileUploadResource class
	Calling an asynchronous EJB method to save a PDF
	Calling an asynchronous EJB method to save a JPG
	Calling an asynchronous EJB method to save a ZIP

	Explaining the concept of an asynchronous REST service
	Implementing an asynchronous REST service
	Implementing the EJBs
	Implementing the FileUploadResource class
	Implementing the client API

	Summary

	Chapters 7: Microservice Patterns
	Explaining microservices patterns
	Inside a monolithic application
	Difficulty in implementing new features and fixing bugs
	Long application startup time
	Inefficient continuous deployment
	Low reliability
	Difficulty using new frameworks and technologies

	The scale cube
	What microservices actually are
	Microservices are not a silver bullet

	Explaining how microservices architecture works
	The application is decomposed into smaller components
	Multitask teams
	Product focus
	Simpler and smarter processing
	Decentralized governance of libraries and APIs
	Single responsibility principle
	Fault tolerance
	Evolutionary systems
	Decentralized data

	Explaining when to use microservices architecture
	How to decompose an application into microservices
	Identifying microservices
	Taking care of the process of extracting application modules that are candidates for microservices
	Establishing a hexagonal model for the application

	Advantages and drawbacks of a microservices-based application
	Microservices architecture patterns
	Aggregator pattern
	Proxy pattern
	Chained pattern
	Branch pattern
	Asynchronous pattern

	Implementing microservices
	Summary

	Chapters 8: Cloud-Native Application Patterns
	Explaining the concept of cloud-native applications
	Explaining the goals of the cloud-native application
	Explaining the cloud design patterns
	Composite application (microservices)
	Abstraction
	Twelve-factor
	Codebase
	Dependencies
	Config
	Backing services
	Build, release, run
	Processes
	Port-binding
	Concurrency
	Disposability
	Dev/prod parity
	Logs
	Admin processes

	The API Gateway
	The service-registry pattern
	Config server
	The circuit-breaker pattern
	The circuit-breaker mechanism

	Summary

	Chapters 9: Security Patterns
	Explaining the concept of security patterns
	Explaining the concept of the single-sign-on pattern
	Implementing the single-sign-on pattern
	Implementing the AuthenticationResource class
	Implementing the App1 and App2 classes

	Explaining the authentication mechanism
	Explaining basic authentication
	Explaining form authentication
	Explaining digest authentication
	Explaining client authentication
	Explaining mutual authentication
	When to use the deployment descriptor, annotation, or programmatic configuration

	Implementing the authentication mechanism
	Implementing the web.xml file
	Implementing the HelloWorld class
	Implementing the HelloWordServlet class

	Explaining the authentication interceptor
	Implementing the authentication interceptor
	Implementing the CDI interceptor
	Implementing the JAX-RS resource

	Summary

	Chapters 10: Deployment Patterns
	Explaining the concept of deployment patterns
	Explaining the concept of canary deployment
	Defining the canary servers
	Deploying the application to canary servers
	Testing the application and verifying whether it satisfies our criteria
	Deploying the application to remaining servers

	Explaining the concept of blue/green deployment
	Defining the group of servers to receive the first deployment
	Deploying the application to a group of servers
	Deploying the application to the remaining server

	Explaining the concept of A/B testing
	Defining a group of end users
	Defining the servers to receive a new version
	Deploying the new version
	Evaluating the impact of a new version

	Explaining the concept of continuous deployment
	Summary

	Chapters 11: Operational Patterns
	Explaining the concept of operational patterns
	Explaining the concept of performance and scalability patterns
	The cache-aside pattern
	When to use the cache-aside pattern
	The lifetime of cached data
	Evicting data
	Priming the cache
	Consistency
	Local (in-memory) caching

	The CQRS pattern
	When to use the CQRS pattern
	The event sourcing pattern
	Understanding the event of event sourcing
	Promoting performance
	Promoting decoupling
	Promoting scalability
	Promoting auditing

	Explaining the index table pattern
	The materialized view pattern
	Rebuilding the materialized view
	When to use the materialized view pattern

	Explaining the sharding pattern
	When to use the sharding pattern

	Explaining the concept of management and monitoring patterns
	The ambassador pattern
	When to use the ambassador pattern

	Explaining the health endpoint monitoring pattern
	When to use the health endpoint monitoring pattern

	Explaining the external configuration store pattern
	When to use the external configuration store pattern

	Summary

	Chapters 12: MicroProfile
	Explaining the Eclipse MicroProfile project approach
	Eclipse MicroProfile Config 1.3
	Eclipse MicroProfile Fault Tolerance 1.1
	Eclipse MicroProfile Health Check 1.0
	Eclipse MicroProfile JWT authentication 1.1
	Eclipse MicroProfile Metrics 1.1
	Eclipse MicroProfile OpenAPI 1.0
	Eclipse MicroProfile OpenTracing 1.1
	Eclipse MicroProfile REST Client 1.1
	CDI 2.0
	Common annotations 1.3
	JAX-RS 2.1
	JSON-B 1.0
	JSON-P 1.1
	Why should we use the MicroProfile project?
	Community
	Future work

	Summary

	Other Books You May Enjoy
	Index

