

JavaScript

The Ultimate Guide to Understand
JavaScript Code and its Fundamentals.

Discover Literal and Control Flow.
Learn Variables, Functions, Object and

the Best jQuery.

Mark Graph

© Copyright 2020 - All rights reserved.
The content contained within this book may not be reproduced, duplicated or
transmitted without direct written permission from the author or the
publisher.

Under no circumstances will any blame or legal responsibility be held against
the publisher, or author, for any damages, reparation, or monetary loss due to
the information contained within this book, either directly or indirectly.

Legal Notice:
This book is copyright protected. It is only for personal use. You cannot
amend, distribute, sell, use, quote or paraphrase any part, or the content
within this book, without the consent of the author or publisher.

Disclaimer Notice:
Please note the information contained within this document is for educational
and entertainment purposes only. All effort has been executed to present
accurate, up to date, reliable, complete information. No warranties of any
kind are declared or implied. Readers acknowledge that the author is not
engaging in the rendering of legal, financial, medical or professional advice.
The content within this book has been derived from various sources. Please
consult a licensed professional before attempting any techniques outlined in
this book.

By reading this document, the reader agrees that under no circumstances is
the author responsible for any losses, direct or indirect, that are incurred as a
result of the use of information contained within this document, including,
but not limited to, errors, omissions, or inaccuracies.

Introduction

Chapter 1 Fundamental JavaScript Concepts

Chapter 2 HTML Overview

Chapter 3 JavaScript’s Control Flow Statements

Chapter 4 The Different Types of Loops in JavaScript

Chapter 5 Syntax

Chapter 6 Enabling JavaScript in Browsers

Chapter 7 Placement of JavaScript in Files

Chapter 8 Popup Message

Chapter 9 JavaScript Variables

Chapter 10 JavaScript ECMAScript Standard

Chapter 11 Working With JavaScript: A Brief HTML Guide for
Beginners

Chapter 12 Changing the content of HTML elements using DOM

Chapter 13 Changing CSS using DOM

Chapter 14 Pointers

Chapter 15 Expressions and Operators

Chapter 16 What Are Some Of The JavaScript Variables?

Chapter 17 Variables, data types & constants

Chapter 18 Closures and Callbacks in JavaScript

Chapter 19 Apply, call, and bind methods in JavaScript

Chapter 20 Events

Chapter 21 Arrays in JavaScript

Chapter 22 Values, Types, and Operators

Chapter 23 Definition of Arrays in JavaScript

Conclusion

Introduction
HTML is not very smart. It mostly lets people look at text and images and
allows them to move to other pages where they will do more of the same.
What adds the intelligence to a web page is JavaScript. It makes the website
more engaging, effective, and useful by letting pages respond to our visitors
when they interact with the content.

This book assumes that we already know how to use HTML to specify web
page structure and content. It will be additionally beneficial if we are familiar
how pages are styled with CSS, separate from the web page structure. If this
is the case then we are ready to add a little behavior to the page and make it
more dynamic and interactive with JavaScript. Otherwise, without HTML
and CSS, JavaScript will not do us much good. They are viewed as the three
fundamental pillars of the web page: structure, presentation and behavior.

What is JavaScript?
JavaScript is the scripting language of the web with the sole purpose of
adding interactivity to our pages. In addition to interactivity, modern versions
of JavaScript can also be used to load and parse information from external
sources or even the website's users. JavaScript is essentially a piece of
programming code embedded in the HTML structure of a web page. When
the web browser reads this code it activates a built-in interpreter that
understands how to decipher this language and process its commands.

Although programming is involved during coding, JavaScript is not a
programming language. In conventional web programming languages, like
Java or .NET, the code has to be compiled before it is executed. Compiling
means that the code has to be first sent to a special program that is run on the
server. This program, also known as application server software, translates
the code, creates the requested page and/or functionality and serves this back
as HTML. Scripting languages, like JavaScript, are note compiled, but rather
are interpreted on-the-fly. This means that no special software is involved as
the user's own browser runs and executes the code as it is encountered.

Note: JavaScript was created during a time when Java was a very popular
language. Other than that, the languages are not related and have almost
nothing in common except for basic programming logic.

Implementing JavaScript

Now that we have a general idea as to what JavaScript is, we can start
working with this language. As JavaScript code is part of the HTML
document, we need to know how to tell browsers to run our scripts. There are
two common options available to us when we want to include JavaScript in a
web document and in both cases we will use the <script> element. The
<script> tag is used when we want to tell the browser where the JavaScript
code begins and where it ends within an HTML document. As such, this tag
can be included either in the head or the body section of the page.

The first option is to place the code inline within the document structure. To
do this we will begin by opening a <script> tag, entering the JavaScript code,
and then finish by closing with the </script> tag. We can theoretically leave
the document like this as almost all browsers will assume that the scripting
language between the <script> tags is JavaScript by default. Nevertheless, for
maximum compatibility we will extend this tag with the type attribute and the
text/javascript value in order to instruct the browser how to exactly interpret
the code.

<script type="text/javascript">

//A JavaScript comment
</script>

The second option is to load the JavaScript code from an external file into our
HTML document. For this purpose we can use the <script> element again,
but this time in addition to the type attribute we will also include the URL to
the external file in the src attribute of the <script> element. The external file
must be a text-only file with the .js file extension that contains only pure
JavaScript code without any HTML elements or CSS rules. For example, to
call the external scripts.js file into our browser we would use the following
code:

<script src="script.js" type="text/javascript">

</script>

We put JavaScript in an external file and include it in the web page when we
like to share the functionalities across our entire web site. Otherwise, if we
just need to add some local interactive behavior, we embed the code within
the page.

Note: Script files are loaded in the order in which they are placed in the
HTML code

Chapter 1 Fundamental JavaScript Concepts
Generally, when we hear the term programming we immediately think of
other people typing an incomprehensible string of letters and numbers.
Programming looks like magic beyond the realm of mere mortals.
Nevertheless, the concepts in programming are not difficult to grasp as they
always have real life applications. JavaScript, although it is not as simple as
HTML or CSS, is not an overly complicated language. Unlike other
languages, its "grammar" is more or less descriptive and intuitive making it a
good fit for a first programming language. Basically, learning JavaScript is
like learning a new language, but a new language that is similar to English.
Once we learn the new words, and understand how to put them together to
form "sentences" we'll be good to go.

Syntax

Every language has its own set of characters and words that go along with a
set of rules as to how to arrange these characters and words together into a
well-formed sentence. These rules are also known as the language syntax and
it is the syntax that holds the language together and gives it meaning.

Before start with some examples of JavaScript syntax, let us first set up the
environment for JavaScript. As discussed previously, JavaScript code is
always a part of the HTML code. Therefore, in order to work with JavaScript
we will first need to create a basic HTML document. So to start, let us open a
text editor (like Notepad) and type in the HTML code for the most basic web
page. In addition to the basic HTML tags, we will include a <script> element
in the <head> section where we will start placing the JavaScript code.

<!doctype html>

<head>

<title>First Steps in JavaScript</title>

<script type="text/javascript">

</script>

</head>

<body>

</body>

</html>

Let us save this document as firststeps.html. If we are using Notepad, we
have to remember to change the Save as Type field to ‘All files’.

Statements

To express ourselves in everyday common language we use sentences as the
basic form of communication. Similarly, in JavaScript we also form
sentences to express our intentions which are more formally called
statements. A JavaScript sentence is the basic unit of communication, usually
representing a single step in the program. And just like we put sentences
together to express an opinion, we combine statements together to create a
program.

Let us look at a simple JavaScript statement and see what it does. Between
the opening and closing <script> tag of the html document places the
following text:

alert("JavaScript is starting to make a little sense.");

In further examples we will not show the complete HTML code unless it is
necessary, but for initial reference your document should look like the
following:

<!doctype html>
<head>
<title>First Steps in JavaScript</title>
<script type="text/javascript">
alert("JavaScript is starting to make a little sense.");
</script>
</head>
<body>
</body>
</html>

We can save the firsteps.html document and open it in a web browser. Once
the page opens, we will get an alert window with the message "JavaScript is
starting to make a little sense".

Image 1. Alert window
Now that we know what the effect is, let us go back to the JavaScript
statement and interpret it into common language so it makes more sense.

alert("JavaScript is starting to make a little sense.");

JavaScript statements are instructions which are executed by the web
browser. The statement starts with a command, presented by keyword. The
keyword identifies the action that needs to be performed. In this case the
keyword alert makes the web browser open a dialog box and display a
message. If we just had the statement alert(); the dialog box would have been
empty, however in our case the statement consists of a specific input, the
actual message text, also known as an argument. Finally, just like every
sentence ends with a period, a JavaScript sentence ends with a semicolon.
The semicolon makes it clear that the statement is over and once the
interpreter executes it, it should move on to the next item.

Now we are ready to translate the JavaScript statement. Its plain English
interpretation would be, "Open a dialog box and display the text JavaScript is
starting to make a little sense' in that box."

Note: When passing text arguments, we can use either double quote marks
("sense") or single quote marks ('sense') present the text.
Before we move on, let us look at another JavaScript statement. In the

<script> element replace the previous code with the following and preview it
in a web browser to see the results:

document.write("<p>JavaScript is starting to make a little sense.</p>");

Image 2. Example of a document.write statement
What we can see from the results is that the previously empty document, now
has one paragraph of text. Following the previous interpretation of how
JavaScript works and from the web browser results we can correctly assume
that the document.write keyword commands the browser to write directly
onto the web page. Similar to alert(), it writes whatever is placed between the
opening and closing brackets.

Variables

One of the fundamental aspect of JavaScript, and any programming language
in general, is the concept of variables. A variable is a way to declare and store
information which can later be used. This information can vary with the
circumstances and hence the name variable.

Let us look at the following statement.

var name = "Martin";
In plain language this is the same as saying "My name is Martin". The
keyword var is JavaScript speak for "create a variable", or in a programming
dialect, "declare a variable". What follows is the name of the variable which
can be anything we choose with certain limits. Assigning a value to the
variable is done with the = sign, which is not immediately necessary, as this
can happen later. We can declare an undefined variable in one statement and
assign it a value in a later statement. For example:

var name;
name = "Martin";
As mentioned previously, variable names can be anything, like name, abc,
R2D2, with a few rules. Variable names can contain letters, numbers, dollar
sign ($), or lower line (_), other special characters are not allowed.
Furthermore, a variable name cannot begin with a number, any other allowed
value is acceptable. Finally, variable names are case-sensitive, meaning that
the interpreter in the web browser makes a distinction between uppercase and
lowercase letters, making 'score' different from 'Score'.

Note: Although we can use almost anything for a variable name, it is wise to
use names which are meaningful as this will help us and other programmers
to better understand the written code.

Variable Types
Based on the type of data, variables come in different flavors. The three most
basic types are number, string, and boolean.

A number variable is represented by a numeric character. This variable can
accept whole integers, negative integers and fractional integers. Numbers are
frequently used in calculations, hence our number variables are often
included in mathematical operations. The following statement declares a
variable named age and assigns it a value of 35.

var age = 35;
A string variable is used to represent any series of letters like words or
sentences. Strings are represented as a series of characters enclosed within

quotation marks, with the quotation marks signaling to the interpreter that
what follows is a string variable. JavaScript allows us to use both the double
quotes (") or the single quote (') marks, but we have to be mindful to use the
same type of quotation mark.

var location = "California";
A boolean variable is rather simple as it can accept only one of two values:
true or false. This variable is used when we create JavaScript programs that
we want to intelligently react to user actions.

User Variables
JavaScript would not be fun if it didn't allow us to share our thoughts and
create or alter the variables directly. One of the simplest ways to "give" our
input is to use the prompt() command.

var name = prompt ("What is your name?", "")
document.write(name);

Image 3. A custom prompt dialog box
The result of the prompt() command is a dialog box. Instead of just
displaying a message like the alert dialog box, the prompt dialog box can also
receive an answer. Hence, in the syntax for a prompt dialog box it is
necessary to provide two arguments between the parentheses separated with a
coma. The first argument is the prompt text that is displayed in the box, while
the second argument is the default value for the text box, and consequently,
the variable.

In the example above, the prompt text displayed in the box will be 'What is
your name?' and the default value presented in the box will be empty, as there
is obviously no content between the quotation marks. Once we type in
something in the box and either click OK or press the Enter key, the variable

receives the value that was entered in the field. Consequently, the name will
be displayed on the web page. Otherwise, if we click on Cancel, press the Esc
key or close the prompt box, the returned value would be empty and there
would be no text on the screen.

Note: Instead of prompt() we can also use the more formal window.prompt
command.
Operators

Storing information in a variable is a first step, the beauty of programming is
the ability to manipulate this information in many creative ways. For this,
JavaScript provides different operators that allow us to modify data. An
operator, represented by a symbol or a word, is something that can change
one or more values into something else. The type of operators available are
different based on the data type.

Mathematical Operators
The basic mathematical operators like addition (+), substraction (-),
multiplication (*) and division (/) are readily available in JavaScript. They
can be used in independent statements or used when declaring variables. For
example, by "operating" with the variables currentYear and yearofBirth, we
can determine the value of the variable age.

var currentYear = 2015;
var yearofBirth = 1979;
var age = currentYear - yearofBirth;
document.write(age);

Image 4. Using variables to calculate age
Note: "Calling" a variable to be presented on a web page is easy. Simply use
the document.write() command.
Mathematical operators, specifically the addition operator, can be used to
combine two or more strings. This process of combining strings is called
concatenation. In the following example:

var firstName = "Martwan";

var lastName = "Jenkins";

var fullName = firstName+lastName;

document.write(fullName);

Image 5. Concatenating strings into a full name
The value for fullName will end up being MartwanJenkins. To make sure that
everything is in its proper form we need to include the empty space as a
string in quotation marks. For example, we can use the following declaration:

var fullName = firstName+" "+lastName;

Image 6. Concatenating strings with spaces
We can see that operators are also useful when we want to join text and/or
combine variables. As a matter of fact, we can use this to construct more
logical sentences. For example, we can combine the "My name is" text with a
value from a calculated variable.

var firstName = "Martwan";
var lastName = "Jenkins";
var fullName = firstName+" "+lastName;
document.write("My name is " +fullName);

Image 7. Concatenating a full sentence
Note: When performing several mathematical operations in one statement,
the rules of precedence apply.

Assignment Operators
Just like things change in real life, so do variables within a JavaScript
program. And to change variables within JavaScript we will use assignment
operators. We are already familiar with the fundamental assignment operator,
the equal sign (=), which is used to give an initial or a new value to a
variable. There are other assignment operators that also change the value of a
variable, but they do this in a slightly different way.

For example, as the year passes we grow older and our age incrementally
changes by one. To make this change in JavaScript there are several different
approaches we can take, all with the same results. To play around with the
possibilities of changing variables, we can try the following code where after
the age variable changes its value is displayed in the browser:

var age = 35;

document.write("<p>My age is "+age+"</p>");

age = age + 1;

document.write("<p>A year has passed, so now I am " +age+"</p>");

age += 10;

document.write("<p>What? Are you telling me that I am a grandad now? But
I am only " +age+"</p>");

Image 8. Changing variables with assignment operators
While at first these operations might appear slightly confusing, they are still
logical if viewed from the programming angle. For example, if we read the
statement age=age+1 backwards what happens is that the value of 1 is added
to the current age of 35 which would make 36 the new value of age.
Additionally, we can use a complex assign operator such as (+=) in the
statement age+=10, to increase the value of the variable by 10. We can also
use the same logic to other operations like subtraction, division and
multiplication.

age-=5;is the same asage = age - 5;

age*= 5;is the same asage = age * 5;

age/=5;is the same asage = age / 5;
Additionally, when we want to increase/decrease the value of the variable by
1, we can also use the following assignment operators:

age++;is the same asage = age + 1;
age--;is the same asage = age - 1;

Comparison Operators
Like the name suggests comparison operators are used to compare two
values. After the comparison is made a value of either true or false is returned
depending on whether the comparison was exact or not.

The following table summarizes the most common comparison operators.

Table 1. Comparison operators

Chapter 2 HTML Overview
HTML, CSS, and Javascript work in tandem to give users a seamless web
experience. A lot of budding web developers have these three confused. If
you’re completely new to the world of web development, this chapter should
give you a quick tour of HTML. On the other hand, if you already know
HTML, feel free to skip or skim this chapter.

Choosing a Text Editor
Before you start creating interactive webpages, you’ll have to download a
good text editor. While Macs and PCs usually have built-in text editors that
can save files in html format, they lack a lot of useful utilities that make web
development a lot easier like syntax highlighting and auto-completion. That
being said, here are some of the best text editors for web development:

1. Atom – Atom is a relatively new text editor by Github. It’s free,
open source, and has plenty of customization options.
Basically, Atom is like a programmable text editor; it can do
almost anything you want it to with the right plug-ins. Among
its many features would be the Fuzzy finder, which allows you
to jump to different files with a simple cmd+t command, and
the wide range of available themes. It works on Mac OS X,
Windows, and Linux and comes at no cost, so try it out and see
if suits you.

2. Sublime Text – Sublime Text is quite aptly named, as it offers a
sublime writing experience due to its intuitive commands and
beautiful interface. Like Atom, Sublime Text is also highly
customizable and works on Mac OSX, Windows, and Linux.
Its trial version is free, but the full version costs about $70.

3. Notepad++ - Notepad++ has been a crowd favorite for quite
some time because of its unrivaled simplicity and speed. If you
just need a no-nonsense text editor that’ll let you edit a couple
of html files without the need for complex file structures, you
may opt to give this text editor a try. Keep in mind, however,
that this text editor is only available in Windows.

4. Brackets – Brackets is quite a unique text editor from Adobe, as
it’s designed to work in tandem with Adobe’s other products,

specifically Photoshop. If you’re interested in creating sleek
user interfaces from Photoshop, Brackets allows you to extract
information seamlessly from the PSDs you’ve created and
convert them into CSS code. This text editor works with
Windows, Linux, and Mac OSX, so if you’re interested in web
design, you’ll want to have this installed in your system.

If you’re not trying to save space on your system, I recommend downloading
these four text editors and trying them out for yourself, assuming that you’re
running a compatible operating system. The exercises and code snippets in
this book do not require a specific text editor so feel free to jump in and out
of different text editors until you find one that fits your needs.

What is HTML?
HTML basically allows you to present your site’s content in a structured
manner. Think of it as a blueprint for building a house; it tells you where the
living room, bathroom, kitchen, and other rooms will be placed and how they
harmoniously interconnect.

Learning the structure of an HTML file is quite simple; it’s structured almost
like an essay - you provide a title, a skeletal structure, and content that flows
coherently within the structure. Whenever you read an article, the title tells
you what the article talks about, and the content is structured in a particular
way, oftentimes with a sentence that piques your interest, followed by
anecdotes, facts and figures, arguments, and a conclusion. When you start
coding in HTML, you’ll see how similarly structured it is to articles you read
or write.

Creating an HTML file, then, is as simple as saving your file with a .html file
extension. When you create documents in a word processor like Microsoft
Word, you’ll notice that when you save your file it has either an .odt, .doc,
.docx, or something similar at the end of the filename. This tells the computer
to read and format the contents of the file in a very specific way. This is
because whenever you save something you’ve created using a word processor
you’re not just saving a bunch of words you’ve typed; you’re also saving the
font size, font styles, and other formatting styles you’ve used so that when
you open your file, your computer will check the file extension, read the
contents according to the file extension specified, and then present you the

file you’ve created, making sure that it looks exactly the same way when
you’ve saved it.

HTML basically acts the same way, but this time you use tags in order to tell
the computer what to do with the data enclosed by the tags; this allows you to
easily change the font styles and other aspects of your web page. Think of
HTML as a more precise version of a Word Document. For example, take a
look at the text below:

This is a sentence.

If you save this as a Word Document, it will save not only the text, but also
its font style, size, and structure. The attributes of the document you've just
saved is tucked neatly inside the file and accessible only through the word
processor menus. However, if you want to display the same sentence in
HTML form, the HTML file would look like this:

<html>
<head>
</head>
<body>

<p>This is a sentence.</p>
</body>

</html>

By saving this file with a .html extension, you get a basic webpage that
displays "This is a sentence." Notice how it has the same string of text as the
previous text box, but it contains additional tags you may or may not be
familiar with. When your browser opens this file, it understands the tags and
displays only the content on the previous text box; it doesn’t actually show
the tags to the user. The most basic tags are shown in the code example:

The <html> tag - contains everything in your web page. It’s the
alpha and the omega, literally; never forget the <html> tag or
else your site won’t work properly!
The <head> tag - keeps the title and other preliminary scripts
that the body might use. For instance, if you want to use a set

of design protocols (typically in the form of CSS) that dictate
what type of fonts to use, their colors, etc., you can place the
code or its reference here.
The <body> tag - this is where your content goes. From text, to
sound, to images, to videos, this is where everything happens.

Don’t worry too much if you don’t yet fully understand how these tags work;
you’ll learn better how they work by trying them out in future sample codes
and exercises.

HTML Essentials
Now that you have a general overview of how HTML works, we’re going to
have a quick run through the basics, just enough to help you learn how to
integrate JavaScript seamlessly into it.

We’ve discussed how HTML files are like Word Documents with additional
tags, so let’s start with a simple line of text. Type this into your text editor:

Hi There!

Now create a folder in your computer where you can store all the html files
are created and save what you’ve just typed with a .html extension (e.g., "My
First Website.html"). A standard practice for programmers is to create a
folder called 'Developer' -- this is where all your files that pertain to
programming are stored. You can place this in your home folder. Inside the
Developer folder, create a folder called 'Web Development' and for now,
place all your html files here. If you’re using TextEdit or other text editors
that aren’t built specifically for html files, remember to check the settings and
make sure that “Plain text” format is selected.

Now that you’ve created your first html file, open it using any web browser
you have and see a simple string of text appear before your very eyes! Notice,
however, that what you’ve typed into the text editor (referred to as “source
code”) looks just like what the browser displayed; it didn’t have the <html>
tags and other stuff. What gives?

Now, try changing your html file by adding a few tags. It should then look
like this:

<!DOCTYPE html>

<html>
<body>

Hi There!
</body>

</html>

Now reload your browser and see what happens.

Your browser isn’t malfunctioning; the web page looks pretty much the same
despite the addition of tags in the source code. At this point you may not fully
understand why tags are used, but don’t worry; you’ll see what they're for
when you start programming in HTML more.

Conclusion
You’ve just had your first dive into HTML- nothing too thorough, just
enough of the basics to help you use JavaScript with HTML properly. If
you’re interested in learning more about HTML, you’ll want to take a look at
online tutorials and references, as well as see how other web developers code
their own sites. You can do the latter by right-clicking a site and clicking on
'view page source' or something along those lines. If you’re ready to take the
plunge into JavaScript, head over to

Chapter 3 JavaScript’s Control Flow Statements
This language offers a compact group of control flow statements that you can
add to your codes. In general, a control flow statement boosts the
functionality and interactivity of a JavaScript program. This section of the
book focuses on control flow statements.

The Block Statement
Programmers consider this as the most basic statement in JavaScript. Use this
to group your JavaScript statements. When writing your programs, enclose
the block statement using a pair of brackets.

The image below shows the syntax of a block
statement:

In general, programmers use block statements for control flow statements
(i.e. for, if, while, etc.). Here’s an example:
while (y > 69) {

123;
In the code snippet given above, “123;” serves as the block statement.

The Conditional Statements
Conditional statements are sets of commands that run if the assigned
condition is true. The JavaScript language offers two kinds of conditional
statements: (1) if… else and (2) switch.
Let’s discuss these conditional statements in detail:

The “if… else” Statement
With this statement, you can run a command as long as the assigned
condition is true. It involves an “else” clause (which is optional). The “else”
clause holds a statement that will run if the assigned

condition is false. The syntax of a basic “if… else”
statement is:

Since your condition must get either “true” or “false,” you must use Boolean
expressions when writing a conditional statement. If the condition is true, the
first statement will run; otherwise, the second one will run.
JavaScript allows you to set multiple conditions in your conditional
statements. You just have to combine several “if” and “else” clauses in a
conditional statement. Here’s the syntax that you must

use:

To run multiple statements, you must place them inside a block statement
(i.e. { … }). Programming experts claim that it’s best to utilize block
statements, particularly when combining if statements.

Check the following example:

If possible, avoid using simple assignments in your conditional expressions.
This is because simple assignments are often confused with equality when
checking JavaScript codes. For instance, you must not add the following code
into your statements:
if (a = b) {

/* sample_statement */
If you really need to use a simple assignment in your conditional expressions,
place it between a pair of parentheses. Here’s an example:
if ((x = y)) {

/* sample_statement */
The Falsy Values

A “falsy value” is a value that evaluates to false. Here are the falsy values
that you will encounter while using JavaScript:

null
false
undefined
NaN
(“ ”) (i.e. an empty string)

Any value not listed above evaluates to true when used in conditional
statements.
The “Switch” Statement
This kind of statement allows an application to check an expression and

compare it with a predetermined set of cases. If there’s a match, the
application runs the assigned command. Here is the syntax of a basic switch
statement:

First, the application will search for a case with a label that matches the
expression’s value. Then, it will pass the control flow to that particular
clause, performing the assigned statement/s. If no match is found, the
application will check the default clause (which is optional) and pass the
control flow to that clause, running the assigned statement/s. If the statement
has no default clause, the application will simply run the statement after the
switch. Typically, the final clause of a switch statement serves as the default
clause, but it isn’t mandatory.
You may also add a break statement in your switches. A break statement
makes sure that the application will get out of the switch statement once a
match is found. When the application gets out of the switch, the system will
run the statement right after the switch statement. If your code doesn’t have a
break, the application will simply run all of the commands within your switch
statement.

How to Handle Exceptions
JavaScript allows you to throw and manage exceptions. To do these things,
you must use the following statements:

the “throw” statement
the “try… catch” statement

The Different Types of Exceptions
In JavaScript, you can throw any type of object. However, thrown objects
may possess different characteristics. Although it is usual to throw strings

and/or numbers as error messages, it is usually more beneficial to utilize the
exception types designed for this purpose. Here are two of the most popular
exceptions in JavaScript:

DOMError – This exception represents a named error object.
DOMException - This exception indicates an abnormal
situation that happens while a property or method is being
used. To use this exception, you must add DOMError() into
your code.

The “throw” Statement
Obviously, this statement allows you to throw exceptions. While throwing an

exception, you must indicate the expression holding the
data to be thrown. Here’s the syntax:

The syntax given above can throw any type of expression. The following list
shows some examples:

throw “Error1”; // A String type exception
throw 1; // A Number type exception
throw false; // A Boolean type exception

Important Note: You may specify objects while throwing an exception. Then,
you may specify the properties of the object/s inside the “catch” section of
your statement.
The “try… catch” Statement
This statement looks for statement blocks that you can try. It also specifies a
response that will be used in case an exception is thrown. The try… catch
statement catches thrown exceptions.
Try… catch statements have three parts, which are:

1. The “try” section – It holds one or more JavaScript statements.
This part is mandatory.

2. The “catch” section – This part holds statements that indicate

what the program must do in case an exception gets thrown.
That means if the “try” section doesn’t succeed, the program
control will go to the “catch” section. If a statement inside the
“try” section throws an exception, the program control will
immediately go to the catch section. If no exceptions arise,
however, the system will skip the statement’s catch section.

In JavaScript, you may use the catch section to manage all exceptions that

may be thrown in the try section. Here’s the syntax
that you should use:

In the syntax given above, “catchID” represents the identifier that contains
the value assigned in your throw statement. You may employ this identifier to
acquire data regarding the thrown exception/s. JavaScript generates this
identifier whenever the catch section executes. The identifier lasts only while
the catch section is active. That means the identifier will cease to exist once
the catch section has finished its execution.
For instance, the code below generates an exception. Once the exception is

thrown, program control will
go to the catch section.

Important Note: This section is completely optional.

3. The “finally” section – It holds statements that will run after
executing the previous sections. The statements placed inside
the “finally” section will run whether or not the program
encountered an exception. Additionally, statements within this

section will still run even if the statement has no “catch”
section.

In general, programmers use this section to set graceful exits for their projects
whenever an exception happens. For instance, they may need to liberate some
resources that are affected by the

problematic script. The image
below will help you understand how this section works.

With the code given above, JavaScript opens a file and runs statements that
utilize the file. If JavaScript encounters an error, the “finally” section will
close the file before the whole code terminates.

How to Utilize an Error Object
In some cases, you may get more information about an error by checking its
properties (i.e. its ‘name’ and ‘message’). This functionality is extremely
useful if your code’s catch section doesn’t indicate whether errors are
generated by the user or the system itself. To utilize error objects, you

have to use a JavaScript

tool called “Error Constructor.” Here’s an example:

JavaScript Promises
The JavaScript language now supports “promises” (i.e. an object that allows
programmers to manage the flow of delayed and asynchronous processes).
Promises undergo the following states:

Pending – This is the initial status of a promise. In this state, a
promise may get rejected or fulfilled.
Fulfilled – A promise becomes “fulfilled” if the system
successfully completes all of the assigned processes.
Settled – A settled promise can be either rejected or fulfilled.
Rejected – In a rejected promise, the system failed to complete
the assigned processes.

Chapter 4 The Different Types of Loops in JavaScript
A loop allows you to repeat code snippets quickly and easily. This chapter
will concentrate on the different kinds of loops offered by JavaScript.

General Information
While writing your own codes, you’ll find situations where you have to use
the same codes over and over again. This kind of task is boring and time-
consuming. However, you can’t skip it since your application won’t work
properly without the proper codes.
Fortunately, JavaScript supports loop statements. A loop statement allows
you to repeat code blocks automatically. That means you won’t have to spend
much time and effort in completing your JavaScript codes.
Loops are designed to repeat codes. They have different mechanisms that can
be adjusted to improve their effectiveness in copying codes. Additionally,
each loop type has distinct characteristics that make them extremely useful
and convenient in certain situations. Here are the loop statements that you’ll
find in JavaScript:

“for”
“while”
“do… while”
“label”
“break”
“for… of”
“for… in”
“continue”

The “for” Loop
Basically, “for” loops repeat a statement until an assigned condition results to

false. The syntax of JavaScript
“for” loops is similar to that of C and Java. Here’s the syntax:

The following things happen whenever a “for” loop runs:

1. The loop’s initializing expression (represented by
initialExpression in the syntax above) performs its function/s.
Often, an initializing expression triggers multiple loop
counters. That means the syntax given above accepts different
levels of complexity. You may also use this expression to
declare variables.

Important Note: The initializing expression is optional; thus, you can create
effective “for” loops without using any initializing expression.

2. The system evaluates the conditional expression. If the
evaluation is true, the statements contained in the loop will run.
However, if the evaluation is false, the entire loop will stop.

Important Note: The conditional expression is optional. If you won’t add a
conditional expression in your “for” loop, the system will assume that the
evaluation is true.

3. The statement runs. If you want to run multiple statements, you
must group them into a block (i.e. by enclosing them in curly
braces).

4. The final expression (represented by incrementExpression in
the syntax) updates the entire loop, then the control flow will
go back to the second step (see above).

The “while” Loop
“While” loops execute their statement/s while the assigned condition results

to “true.” Here is the syntax of a “while” loop:

Once the condition results to “false”, the loop will stop running the
assignments assigned to it, then the control flow will go to the statement right
after the “while” loop.
The system evaluates the condition prior to running the loop itself. If the

condition is true, the statement/s inside the loop will run and the system will
check the condition again. If the condition is false, the loop will stop and the
control flow will move on to the next statement.
Important Note: Since the condition test happens first, a “while” loop may
never run. That means you have to be extremely careful when creating
“while” loops in your JavaScript programs.
JavaScript allows you to enclose multiple statements using a pair of curly
braces. Use this option if you want to include various statements in your
“while” loops.

The “do… while” Loop
This kind of loop runs its statement/s until the assigned condition becomes

false. When creating a “do… while” loop, you
must use the following syntax:

Here, the system executes the statements once before checking the assigned
condition. If the condition is true, the system will execute the statements
again. This process will continue until the condition becomes false. Once the
condition evaluates to false, the control flow will go to the statement right
after the “do… while” loop.
In this type of loop, the statements are guaranteed to run at least once even if
the condition is false.

The “label” Statement
This kind of statement allows you to “label” (i.e. assign an identifier) your
statements. By labeling your JavaScript statements, you can easily repeat
them at any part of your application. For instance, you may label a certain
loop, and utilize other statements to either continue or disrupt its execution.

Here is the syntax of a “label” statement:

When creating a label, you may use any identifier that isn’t a JavaScript
keyword. You may use the syntax given above for any statement.

The “break” Statement
Programmers use this statement to end loop or switch statements. When
using a “break” statement, you must remember the following rules:

If your break statement doesn’t have a label, it will terminate
the innermost loop/switch and pass the control flow to the next
statement.
If your break statement has a label, it will terminate the labeled
statement.

The syntax of a break statement is:

Use the first variant of the syntax if you don’t need to specify a label. This
will terminate the innermost loop/switch. Use the second variant if you want
to terminate a certain loop/switch. Just enter the label of that particular loop
or switch. When using the second variant, only the specified loop/switch will
be terminated.

The “for… of” Statement
This statement is a recent addition to the JavaScript language. It creates a
loop that can repeat “iterable objects” (e.g. maps, sets, arrays, arguments,
etc.). It also invokes an iteration hook that will run for each distinct property
of an object. JavaScript allows you to customize the iteration hook of

any “for… of” statement. Here is the syntax that
you must use:

The “for… in” Statement

A “for… in” statement repeats the assigned statement/s over the properties of
any object. JavaScript will execute the assigned statement/s for every

property. The syntax of a “for… in” statement
is:

The “continue” Statement
You may use this statement to restart other statements (e.g. for, while, do…
while, and label). Here are the two rules that you must remember when using
a “continue” statement:

If you won’t include a label in your continue statement, it will
terminate the current process of the innermost loop and
continue the next one. Unlike a break statement, a continue
statement cannot terminate an entire loop. If used on “while”
loops, the control flow will return to the assigned condition. If
used on a “for” loop, on the other hand, the control flow will go
back to the increment expression.
If you’ll include a label in your continue statement, it will only
affect the statement linked to that label.

The syntax of a continue statement has two
forms, which are:

Chapter 5 Syntax
As mentioned previously, JavaScript needs to be embedded in the HTML
document or has to be referenced from the same. In order to embed the script,
the script needs to be placed with the script tag, which looks like –

<script>…</script>
The script enclosed within these tags must be placed inside the HTML
document. Although, this script can appear anywhere inside the HTML
document, its placement inside the <head>…</head> is recommended. All
the JavaScript code written within the <script>…</script> block is
interpreted by the browser. Two attributes can be provided along with the
script tag. These attributes are –

Type
The type attribute is used to specify the scripting language that is being used.
In this case, type must be set to the value “text/javascript”.

Language
This attribute has now been phased out. However, earlier versions of HTML
still use it. Its value must typically be set to “javascript”.

The JavaScript part of the code will now look like –

<script language="javascript" type="text/javascript">
…

</script>

Writing Your First JavaScript
Assuming that you have some experience of coding in HTML, let us work
through our first example. This piece of code prints ‘Hello World!’ As you
can see, the code is embedded into an HTML document. The output for the
code is shown in the image that appears below it.

<html>
<body>
<script language="javascript" type="text/javascript">
<!--

document.write("Hello World..")
//-->
</script>
</body>

</html>

The JavaScript code is enclosed within the <script></script> tag. This script
is embedded inside the HTML file by placing it inside the <body></body> of
the <html></html> tags. As you can see, the code is also enclosed inside
HTML comments. The reason for doing this is that it prevents browsers that
do not understand JavaScript to use this code unlawfully.

As part of the main code, document.write function is called, which prints the
string given to it as parameter on the screen. This function can be used to

write HTML as well. In order to execute this code, open a text editor and
copy this code to the file. Save the file as index.htm and open it in a web
browser that supports JavaScript. The result of this can be shown in the
image below.

Line Breaks and Whitespaces
You are free to use whitespaces, tabs and newlines in your code to make it
readable and well organized. These characters are completely ignored by
JavaScript.

Optional Use of Semicolons
Most conventional programming languages like C, Java and C++ require you
to place semicolon at the end of each statement to indicate the termination of
an statement. However, in Java, if you have written code in such a manner
that each statement is on a different line, then you can omit the use of
semicolons. Example of this concept is the code shown below –

<script language="javascript" type="text/javascript">
<!--
variab1 = 15
variab2 = 35
//-->
</script>

However, if all the statements are written in continuity, then you must use
semicolons to tell JavaScript where a statement ends and a new one starts.
Sample code to demonstrate the use of semicolon is given below –

<script language="javascript" type="text/javascript">
<!—
variab1 = 15;
variab2 = 35;
//-->

</script>

With this said, it is important to mention that the use of semicolon is

recommended as it is considered a good programming practice.

Case Sensitivity
JavaScript is sensitive to capitalization or case of the letters being used. For
instance, I and i are two different identifiers for JavaScript. This holds true
for any keyword, function name or variable name that you use. Anything you
write in JavaScript must have a consistent case for it to be identifiable by
JavaScript.

Writing Comments
JavaScript identifies both C and C++ style of comments. The single line
comments can be made by writing // at the beginning of the line. In this
scenario, anything that is written between the // characters and end of the line
are treated as comments and ignored by JavaScript. The other type of
comments supported by JavaScript is the multi-line comment. Such a
comment begins with /* and ends with */. JavaScript ignores any character
and number of lines that lie between these two character sequences.

Besides the above-mentioned, JavaScript also supports HTML style of
commenting. However, it only recognizes <!-- and treats the characters
following this character phrase till the end of the line as a single line
comment. JavaScript does not recognize the HTML comment closing
character sequence, -->. Therefore, as and when you require the use of this
character phrase, you must precede it with //. In order to help you understand
this in a better way, sample code has been given below.

<script language="javascript" type="text/javascript">
<!--
// Single line comment.
/* Multi-line comment
Similar to the comments in C and C++ */
//-->
</script>

Chapter 6 Enabling JavaScript in Browsers
Most of the browsers that are being used today support JavaScript. However,
you may be required to disable or enable this feature of your browser. You
may perform this operation manually. This chapter gives you a quick insight
into how manual enabling and disabling of JavaScript can be performed for
browsers like Firefox, Google Chrome and Internet Explorer.

Internet Explorer (IE)
In order to enable or disable JavaScript on IE, you need to follow the steps
given below –

In the IE panel, go to Tools and from the menu, open Internet Options. Look
for Security tab and select the same. Choose the button named Custom Level.
Now scroll down and you will see an option of the name, Scripting. Under
this heading, select the radio button that says Active Scripting. Click ok and
you will be back to the browser.

If you wish to disable JavaScript, you need to follow the same set of steps
and at the point where you choose Active Scripting you must choose the
Disable button.

Firefox
In order to enable or disable JavaScript on Firefox, you need to follow the
steps given below –

Open a new window and in the address bar of the tab, type – about: config.
This will bring a dialog box in front of you, which shall give you a warning.
Choose the option that says ‘I’ll careful, I promise!’ Once you choose this
option, the browser will present you with a list of configure options. Type -
javascript.enabled - in the search bar. If you right click on this value, you will
see an option that says select toggle. Choosing this option will simply toggle
the value. If JavaScript is enabled, then choosing this option will disable it
else it will be enabled.

Chrome
In order to enable or disable JavaScript on Google Chrome, you need to
follow the steps given below –

Enter the Chrome menu by clicking on a symbol on the top right hand corner

of the window. From the available options, choose Setting and click on
‘Show Advanced Setting’. The window that will option after this will have a
section named Privacy. Look for the button that says Content settings. You
will be able to locate a JavaScript section under this button. To enable
JavaScript, select Allow all sites to run JavaScript (recommended)’ else
select ‘Do not allow any site to run JavaScript’.

Programming in JavaScript for Non-JavaScript Browsers
If you are writing a JavaScript and the same is run by a user on a non-
JavaScript browser, then you can print a message for the user with the help of
the <noscript> tag. This concept can be implemented in the following
manner.

<html>
<body>
<script language="javascript" type="text/javascript">
<!--
document.write("Hello World…")
//-->
</script>
<noscript>
Warning: JavaScript Required!
</noscript>
</body>
</html>

This message ‘Warning: JavaScript Required!’ will be displayed to the user if
the user attempts to run the script on a non-JavaScript browser.

Chapter 7 Placement of JavaScript in Files
Although, the user is free to include the JavaScript code anywhere inside the
HTML document as long as the code is enclosed inside the <script></script>
tags, there are some preferred ways of its inclusions. These practices are
described below.

Including JavaScript Code in <HEAD></HEAD> Section

Typically, if you wish to trap user clicks, code related to the same is included
in the head section of the HTML document. In order to help you understand
this concept, a sample code is given below.

<html>
<head>
<script type="text/javascript">
<!--
function pHWorld() {
alert("HelloWorld!")
}
//-->
</script>
</head>
<body>
<input type="button" onclick=" pHWorld ()" value="Print HelloWorld!"
/>
</body>
</html>
Including JavaScript Code in <BODY></BODY> Section

If there is some JavaScript functionality that you want to run after the page
has loaded, then this script should appear inside the body of the HTML
document. The code given below shows how JavaScript code can be
embedded into the body of an HTML document.

<html>
<head>
</head>
<body>
<script type="text/javascript">
<!--
document.write("HelloWorld!")
//-->
</script>
<p>Body of HTML document</p>
</body>
</html>

Including JavaScript Code in <HEAD></HEAD> and <BODY></BODY>
Sections

You can have different JavaScript codes embedded in the head and body
sections of the same HTML document. Sample code to illustrate how this can
be done is given below.

<html>
<head>
<script type="text/javascript">
<!--
function printHW() {
alert("HelloWorld!")
}
//-->
</script>
</head>
<body>

<script type="text/javascript">
<!--
document.write("HelloWorld!")
//-->
</script>
<input type="button" onclick="printHW()" value="Print Hello World"
/>
</body>
</html>

Writing JavaScript into External Files
The more pages you have in your website, the more you will realize that you
are writing the same JavaScript code in all these different pages or at least
some of these pages. JavaScript allows you to manage identical code used in
different HTML documents by writing the JavaScript code in external files,
which can then be linked with the page to call the required JavaScript
functionality. You can link external files by using the src attribute of the
script tag. Sample code to illustrate this functionality has been given below.

<html>
<head>
<script type="text/javascript" src="sample.js" ></script>
</head>
<body>
</body>
</html>

Here, sample.js is the JavaScript file containing the script. The code within
this file can be used by the HTML document just like you used the JavaScript
written within the script tag. Please note that the JavaScript code needs to be
written into any text file and must be saved with the extension .js. For
instance, your sample.js can look like this –

function printHW() {

alert("HelloWorld!")

Chapter 8 Popup Message
JavaScript has numerous built-in methods that can help in displaying popup
messages for various purposes. Let us discuss the various popup boxes
provided by JavaScript:

Alert Box
This is used to show a message to a user, particular where the emphasis is
needed. It comes with an OK button that closes the popup when clicked. It is
created by calling the JavaScript’s alert() function.

For example:

<html>
<body>

<h1>Popup</h1>
<script>
alert("Hello World!"); // to display a string message
alert(12); // to display a number
alert(true); // to display a boolean

</script>
</body>
</html>
When you run the code, it will display the first alert box with the string Hello
World! Click OK button and it will display an alert with 12. Again, click the
OK button and it will display an alert box with true. This shows that the alert
box can be used to display a message of any type.

Confirm Box
Sometimes, a user is expected to give a confirmation so as to proceed. For
example, you may want a user to confirm deletion or update of certain details
before the process can be completed. This can be done using the confirm()
function provided by JavaScript. This function will display a popup box to
the user with two buttons namely OK and Cancel. The next step is
determined by the button that the user clicks.

For example:

<html>
<body>

<h1>confirm()</h1>
<p id="del"></p>
<script>

var userChoice;
if (confirm("Do you really want to delete the data?") == true) {

userChoice = "Data deleted successfully!";

} else {
userChoice = "Delete Canceled!";

}
document.getElementById("del").innerHTML = userChoice;
</script>

</body>
</html>

Prompt Box
In some cases, you may need to receive an input from users and use it to
perform further actions on the web page. For example, you may need to
calculate the monthly amount for loan repayment based on the number of
months within which the user wants to settle the loan. In such a case, you can
use the prompt() function provided by JavaScript.

The function should take two string parameters. The first one is the message
that will be displayed while the second one is the default value to be in the
input text once the message has been displayed:

prompt([string display_message], [string default_Value]);
For example:
<html>
<body>

<h1>prompt()</h1>
<p id="pro"></p>
<script>

var age = prompt("What is your age?", "26");

document.getElementById("pro").innerHTML = "You are " + age + "
years old";

</script>
</body>
</html>
The code prompts you to enter your age. If you don’t and click the OK
button, 26 will be used as your default age.

Chapter 9 JavaScript Variables
A variable is a name for a storage location. From its name, it can vary.
Variables hold values that can vary. In JavaScript, we use the var keyword to
declare variables. Each variable must be given a unique name. You are
allowed to assign a value to a variable during the time of its declaration. This
can be done using the equals to symbol (=).

The following is the syntax for declaring and initializing variables in
JavaScript:

var variable-name;
var variable-name = value;
Here are valid examples of this:
var x = 1; // variable storing a numeric value
var y = 'nicholas'; // variable storing a string value
var z; // declare a variable and not assign a value
We have used the var keyword to declare three variables. Two of the
variables have been assigned a value. Note that this has been done at the time
of their declaration.

We can also declare more than one variable in a single line and separate them
by a comma (,). This is demonstrated below:

var x = 1, y = 'nicholas', z;
Note that in JavaScript, one can declare a variable without using the var
keyword. However, if you do this, ensure that you assign a value to the
variable immediately. This is demonstrated below:
x = 1;
y = 'nicholas';
However, I don’t recommend that you declare any variable without the use of
var keyword. This is because you may end up overriding a global variable
without knowing.
If a variable is declared without the var keyword, it automatically becomes a
global variable, regardless of where it has been declared.
Here are the rules that govern the declaration of variable names in JavaScript:

1. The variable name should begin with an underscore (_), a letter
(either A to Z or a to z), or the dollar sign ($).

2. After the first letter, one can use digits in the variable name.
3. JavaScript variable names are case sensitive, example, p is

different from P.

The following example demonstrates how to use variables in JavaScript:
<script>
var a = 12;
var b = 11;
var c= a + b;
document.write(c);
</script>
The code will return the sum of the two variable values, which is 23.

Local Variables
These are variables that are defined within a block or a function. It can only
be accessed from within the block or function within which it has been
defined.
Here is an example:
<script>
function xyz(){
var a=12; // a local variable
}
</script>
The variable a can only be accessed from within the function xyz().
Here is another example of local variable declaration:

<script>
If(5 < 10){
var a = 12; //a JavaScript local variable

}
</script>
The variable a in the above example can only be accessed from within the
block of its declaration.

Global Variables
These are variables that can be accessed from any function. A global variable
is usually declared outside a function or with the JavaScript’s window
object.
For example:
<script>
var val=12; //a global variable
function x(){
document.writeln(val);
}
function y(){
document.writeln(val);
}
x(); //calling a JavaScript function
y(); //calling a JavaScript function
</script>

The code will return the following:

The code demonstrates that the function can be referenced from different
functions and its value will remain the same.

If you need to declare a global variable within a function, you must use the
window object. For example:

window.val=12;
Such a variable can be declared within any function and accessed from any
function.

For example:

<script>
function xy(){
window.val=12; //declaring a global variable using window object
}
function xz(){
alert(window.val); //accessing a global variable from another function
}
xy();
xz();
</script>
We have declared the variable val within the function xy() and assigned it a
value of 12. We have then accessed the same variable from the function xz().
This returns a value of 12.

After declaring a variable outside a function, it is internally added to the
window object. The object can at the same time be accessed via the window
object.

Here is an example:

<script>
var val = 12;
function xy(){
alert(window.val); //accessing a global variable
}
</script>
Each programming language supports a number of data types. They represent
the types of values which can be represented then manipulated in the

programming language. JavaScript supports 3 primitive data types including:

1. Numbers such as 1, 8, 90, 345 etc.

2. Strings, which are texts, for example, “My name” etc.
3. Boolean, which can be true or false?

JavaScript is also capable of supporting 2 trivial data types, namely null and
undefined. It also has a composite data type called object.

Note that in JavaScript, there is no difference between integers and floats. In
JavaScript, all numbers are represented in the form of floating-point values.

Comparing variables
In JavaScript, variables can be compared in different ways. We can compare
whether two variables are equal or not by use of double equals sign.

Example:

<script>
x=30;
y=30;
if (x==y) {

alert("x equals y")

};
</script>

When executed, the script will show a pop up with the text “x equals y” as
shown below:

This is the values of the two values are equal, that is, 10. If not, nothing will

happen once the script is executed.

Other than numbers, we can also compare strings as shown below:

<script>
firstname="Nicholas";
lastname="Samuel";
if (lastname=="Samuel") {alert("Correct name!")};

</script>

The comparison will evaluate to a true, so you will get a popup with the text
“Correct name!” as shown below:

Note that when doing a comparison, we use double equals sign (==). If you
instead use a single equal’ sign, the value on the right side of the sign will
become the value of value (variable) on left side. An example is given below:

if (lastname="Samuel") {alert("Correct name!")};

JavaScript Operators
JavaScript supports the use of operators. An operator performs an operation
on one or many operands to produce a result. For example:

2 + 3
In the above example, 2 and 3 are the operands while + is the operator. 2 is
the left operand while 3 is the right operand. The + operator will add the two
to give a result of 5. Let us discuss the various types of operators supported in
JavaScript.

Logical Operators
These types of operators help us in connecting either one or more conditions.
The following are the logical operators supported in JavaScript:

&&- the AND operator. It checks whether the two operands are
non-zero. If yes, it returns a 1, otherwise, it returns a 0.
||- the OR operator. It checks whether any of the operands is
non-zero. If yes, it returns a 1, otherwise a 0.
!- the NOT operator. For reversing the Boolean result of an
operand or condition.

For example:

<html>
<body>

<h1>Logical Operators</h1>
<p id="pg1"></p>
<p id="pg2"></p>
<p id="pg3"></p>
<p id="pg4"></p>
<p id="pg5"></p>
<script>

var x = 12, y = 5;
document.getElementById("pg1").innerHTML = (x != y) && (x < y);

document.getElementById("pg2").innerHTML = (x > y) || (x == y);
document.getElementById("pg3").innerHTML = (x < y) || (x == y);
document.getElementById("pg4").innerHTML = !(x < y);
document.getElementById("pg5").innerHTML = !(x > y);

</script>
</body>
</html>
The code prints the following result:

In the above example, we have used the values of variables x and y to run
various logical operators.

Arithmetic Operators
In JavaScript, you can perform arithmetic operations on your variables. These
operations include addition (+), subtraction (-), multiplication (*), modulus
(%), increment (++), decrement (--) etc. Example:

<script type="text/javascript">
a=1;
a=1; a++; //a=2
a=1; a--; //a=0
a=1; b=2; c=a+b; //c=3

a=1; d=a+4; //d=5
First="Edwin";
Last="Peter";
Name=First+" "+Last; //Name=Edwin Peter
a=3*7; //a=21
b=10/2; //b=5
c=(10/2)*2; //c=10
d=10/(1*2); //d=5
</script>
The results from the various lines have been shown in the comment section,
that is, after //. The two forward slashes, that is, //, denote the beginning of a
comment in JavaScript.

Assignment Operators
These are operators that help us assign values to variables. They include the
following:

= - to assign the right operand value to the left operand.
+= - to sum up the left and right operand values then assign the
obtained result to left operand.
-= - to subtract the right operand value from the left operand
value then assign the obtained result to left operand.
*= - to multiply the left and right operand values then assign
the obtained result to left operand.
/= - to divide the left operand value by the right operand value
then assign the obtained result to left operand.
%= - to get the modulus of the left operand divided by the right
operand then assign the resulting modulus to left operand.

Here is an example:

<html>
<body>

<h1> Assignment Operators</h1>
<p id="pg1"></p>
<p id="pg2"></p>
<p id="pg3"></p>
<p id="pg4"></p>
<p id="pg5"></p>
<p id="pg6"></p>
<script>

var a = 10, b = 20;
a = b;

document.getElementById("pg1").innerHTML = a;
a += 1;

document.getElementById("pg2").innerHTML = a;
a -= 1;

document.getElementById("pg3").innerHTML = a;
a *= 5;

document.getElementById("pg4").innerHTML = a;
a /= 5;

document.getElementById("pg5").innerHTML = a;
a %= 2;

document.getElementById("pg6").innerHTML = a;
</script>

</body>
</html>
The code will return the following result:

The expression a = b; changed the value of variable a from 10 to 20. That is
why the first statement prints a 20. We then begin to work with a value of a
being 20. The expression a += 1; increases the value of a by 1, so it becomes
21. This becomes the new value of variable a. The expression a -= 1;
subtracts a 1 from the current value of variable a, which is 21, returning a 20.
This becomes the new value of variable a. The expression a *= 5; multiplies
the value of variable a, which is 20 by 5, returning 100. This becomes the
new value of variable a. The expression a /= 5; divides the value of variable a
by 5, returning 20. This becomes the new value of variable a. The expression
a %= 2; returns the remainder after dividing the value of variable a by 2,
returning a 0.

Chapter 10 JavaScript ECMAScript Standard
ECMAScript is a conventional specification for scripting languages regulated
by the ECMA International. It is core to several scripting languages such as
JavaScript, ActionScript, and Jscript.
In this guide, we are not going to look at the history of the ES
standardization. What we are going to do is use the ECMAScript to learn a
bit more about the evolution of JavaScript.
You can however learn more about the ECMAScript standard by visiting the
following resource page:
https://bit.ly/2DZiHQb

A Brief History of JavaScript
JavaScript is the creation of Brendan Eich, who at the time of creating the
scripting language, was an employee at Netscape Communications
Corporation, a corporation that Wikipedia notes had hired him to help embed
their “schema programing language into the Netscape Navigator, one of the
most dominant web browser of the 1990s.”
Wikipedia also notes that before Eich could start his work at Netscape in
1995, the company collaborated with Sun Microsystems with the former
agreeing to use Sun’s static programming language, Java, in their Netscape
Navigator.
JavaScript developed out of the collaboration mentioned above because once
Netscape Communications and Sun’s Microsystem collaborated, Netscape
Communications immediately realized that they needed to create a new
scripting language whose syntax was similar to that of Java so that the two
languages could complement each other well and allow Netscape to create
web technologies platforms that could effectively compete with Microsoft,
one of the giant computing companies of the 1990s.
Netscape tasked Eich with the task of creating a prototype of this scripting
language, which is how, as Wikipedia notes, Eich ended up creating
JavaScript in 10 days of May 1995.
During its developmental stages in the 1990s, JavaScript went by the name
Mocha, and during its beta development stages in Netscape Navigator 2.0, it
was initially called LiveScript a name later changed to JavaScript in
December 1995 with the intent behind the name not being to cause confusion

https://bit.ly/2DZiHQb

or to mean that the language was similar to Java, but to capitalize on the
popularity of Java—and Java was the most popular programming language of
the time.
JavaScript follows the script version released and maintained by the
ECMAScript. In this book, we are going to focus on illustration based on the
latest version of JavaScript i.e. ECMA 2019 which has significant
improvements over the previous versions.

Environment Setup
In this section, we are going to look at some of the tools we are going to use
to write programs in JavaScript. JavaScript does not offer complex working
environment; to work with it effectively, all you truly need is a text editor and
a browser.
For the tutorials in this JavaScript guidebook, we are going to use the Latest
version of Google chrome as our web browser of choice and the Brackets
Text Editor as our text editor of choice for the various illustrations you are
going to find in this guide. You can download these two pieces of software
from the following resource pages:
https://www.google.com/chrome/
http://brackets.io/
You can use any text editor or browser you feel comfortable working with.
To enable the JavaScript console in your browser, Right click inside your
browser and select “developer options” then navigate to

console.

https://www.google.com/chrome/
http://brackets.io/

NOTE: To learn how to use JavaScript to create dynamic and responsive web
pages and applications, you need to have some knowledge of how the web
works, as well as how to work with HTML and CSS.

Chapter 11 Working With JavaScript: A Brief HTML Guide
for Beginners
In this chapter, we are going to look at some of the basic HTML elements
you need to understand in order to learn JavaScript as well as comprehend the
contents as well as the various hands-on tutorials in this JavaScript book.
NOTE: This is not a HTML tutorial. It is simply a basic introduction to
working with HTML because to become learn JavaScript and to become
efficient at using JavaScript to create web applications and pages, you need to
having some basic knowledge of how to work with HTML.
HTML, which stands for Hyper Text Markup Language, is a markup
language that we normally use to define the structure of a web document such
as headings, sub-headings, paragraphs and such. Since it developed at the
advent of the World Wide Web, HTML is old and has advanced and changed
significantly over the years. Today, we normally use HTML to format web
documents for the purpose of sharing information.
To equip you with the basic HTML knowledge you need to have to start
working with JavaScript effectively, we are going to look at several key
aspects of a HTML document:

HTML Basic Structure
All HTML documents have a standard structure, also called the basic
boilerplate. The following tags are in most documents that appear as

html.

Let us explore the document above.

The <!DOCTYPE html> in html is not a primitive HMTL tag
(discussed later). We use it to alert the browser of the version
the HTML document is using. The syntax for the doctype for
HTML 5 and HTML 4 is different. <!DOCTYPE html> is
essential and should always be at the start of any html
document.
The html tag – This is the root tag for the entire html
document. All other tags within the html document must be
within the html tag.
The <head> – In an html document, we use the head tag as a
container for the metadata to be found on the web page. We
place this tag after the html tag and before the body tag.
The body tag – We use this tag to represent the beginning of an
html document body. Not all tags go here, but almost every
other tag such as images, text, and other media in the document
are within these tags.
The title tag – We use this tag to set the title of the HTML
document. We place this title within the opening and closing
title tag as <title>Title page</title>

NOTE: Most html tags require ‘closing.’ HTML5 and some browser may
recognize unclosed tag and fix it. However, getting into the habit of always
closing tags that require closing is a good way to improve your programming
skills.

The Script Tag
Now that we have introduced the concept of tags, let us look at the most
important HTML tag we are going to use in the book, the script tag.
We normally use the script tag <script></script> to include client-side scripts
such as JavaScript code. The opening and closing of the script tag may
contain a reference to an external JavaScript file or can include native
JavaScript code within it. We can classify this tag as a document metadata.
The script tag also accepts other attributes. Let us look at the src attribute that
allows you to specify the location of the external script file. For example, fire
up your text editor and type in the following code. Remember that for the
tutorials in this guide, we shall be using

Brackets:

This script tells the browser to locate the file in the Files directory, under the
name index.js file. A script may have many other attributes; we have merely
used this to illustrate the most important HTML tag whose knowledge of use
you need to have before you can create JavaScript webpages and
applications.
NOTE: As mentioned earlier, you cannot use JavaScript without some
knowledge of HTML and CSS.

Working with JavaScript: A Brief CSS Guide for Beginners
Cascading Style Sheet or CSS is a design language used to present and
modify the appearance of web pages. It allows web developers to change
page features such as the fonts, image presentation and locations of various
html elements.
Like HTML, JavaScript, PHP, Python, and other programming languages,
CSS evolves with time with new features added every time and with each
evolution. This book focuses on the latest version of CSS i.e. CSS3.

CSS Overlay
CSS files are linked externally on the html page. However, you can include
the CSS code within the HTML (inline CSS) but we do not recommend that.
CSS code has three main parts.
It comprises of a set of rules that mainly focus on the styling part, which are
then interpreted by the browser, and then applied to their respective
elements.

CSS’s three main parts are:

A selector – The CSS selector is a HTML tag that the styling is
applied to. It could be a paragraph (using <p> tag).
Property – A property is an attribute of an HTML tag. The
properties include: colors, borders, navigations, etc.
Value – values are defined values assigned to variables. The
border could be 2px wide. The 2px is the value assigned to the
border property.

A typical CSS syntax is:
Selector: {
Property: value;
Property2: value;

}

From the above example, the h1 and p, which represent the heading one and
paragraph respectively, represent the selector. Next, once we select the
element we want to manipulate, we can set properties and values such as
color and set it to blue, red, or aquamarine. In colors, you can set it in RGB or
HEX code.
They are many types of CSS selectors and selection methods. For example,
you can use the * (asterisk) as a global selector. You can also use the element
id to select a specific element in case there are multiple.
NOTE: This is not a CSS book and CSS is therefore beyond the scope of this
book. What this chapter sought to do is give you a basic understanding of the

most important CSS elements you need to know how to use in order to start
learning how to create JavaScript code, web pages, and web applications too.
Now that you have a basic understanding of how to work with HTML and
CSS, we can move on to learning how to work with JavaScript as you pursue
mastery of this important scripting language especially if your intention is to
learn JavaScript so that you can create dynamic webpages and responsive
web applications and websites.

Chapter 12 Changing the content of HTML elements using
DOM
We need to change the content of the HTML elements very often for making
a dynamic web application or website. Some example scenarios include:
● Giving user feedback. Replacing an HTML element’s content instead

of using the ‘alert’ function is a better alternative to give feedback, as you
can modify how an element looks and thus make your feedback display
better visually. This will, in turn, lead to a more pleasurable user
experience.

● Have you seen a live clock, or countdown, on a web application? They
both replace their HTML element’s content when the unit of time they
function on passes by.

● Changing a page’s content on a button click without refreshing.
The ‘.innerHTML’ property
This is perhaps the easiest and the most frequently used way of changing the
content of an HTML element. This property of an element’s object in the
DOM represents the current content of that element, and can be used to get or
set the content of that element. If a value is assigned to this property of an
element's object, then that element’s content changes to the newly assigned
value.
Syntax:

elementObject.innerHTML = ‘new value’;// setting

var x = elementObject.innerHTML;// getting
Note that this property represents everything within the element's tag, even
it’s children and sub-children.
Example demonstrating getting an element's content:
<body>

<div id='outer'>

<div id='inner'>

Hey there
</div>

</div>

<script>

var innerContent = document.getElementById('inner').innerHTML;
var outerContent = document.getElementById('outer').innerHTML;

console.log(innerContent);

console.log(outerContent);
</script>

</body>

The above code produces the following output on the console screen:
Hey there
<div id="inner">
Hey there
</div>
As you can see, the output contains the white spaces and the tabs.
TIP: If you wish to get rid of the extra white spaces and tab spaces at the start
and the end of the content you can use the .trim() method from the string
class on them!
Example demonstrating the changing of an element’s content:
<body>
<div id='outer'>
<div id='inner'>
Hey there
</div>
</div>

<script>

var innerElement = document.getElementById('inner');
innerElement.innerHTML = 'Hola amigos';

// the content of <div> with id ‘inner’ has been changed to ‘Hola amigos’
</script>

</body>

The ‘.textContent’ property
This property is almost same as the ‘.innerHTML’ property. The difference
between this property and ‘.innerHTML.’ is that this property is only used to
get or set the textual content (meaning the children and sub-children
element’s tag name is not included when getting the content of the element),
whereas in the case of the ‘.inner.HTML’ property, the full content of the
element including the children and sub-children element’s tag names and
attribute were also returned.
Let us understand this by using the same example as we used in the case of
the ‘.innerHTML.’ property – but instead, we will use ‘.textContent.’
property in place of the ‘.innerHTML’ property here.
<body>

<div id='outer'>

<div id='inner'>

Hey there
</div>

</div>

<script>

var innerContent = document.getElementById('inner').textContent;
var outerContent = document.getElementById('outer').textContent;

console.log(innerContent);

console.log(outerContent);
</script>

</body>

The above code produces the following output on the console screen:
Hey there
Hey there
The white spaces and the tab spaces at the start and at the ending are included
in the output of this result as well, but note that the <div> tag is not!
Another difference between the two properties is that the content that we get
using the ‘.innerHTML’ property has the characters ‘&’, ‘<’, or ‘>’ replaced
by ‘&’, ‘<’ and ‘>’ respectively, whereas the in the content obtained
using ‘.textContent’ property these characters remain as they are.
The setting action of both properties will work the same. Here is an example:
<body>

<div id='outer'>

<div id='inner'>

Hey there
</div>

</div>

<script>

var innerElement = document.getElementById('inner');
innerElement.textContent = 'Hola amigos';

// the content of <div> with id ‘inner’ has been changed to ‘Hola amigos’
</script>

</body>

Yet another major difference between the two properties is that when you set
an element’s content using .innerHTML property, it is interpreted as HTML
code whereas in the case of .textContent, it is interpreted as raw text.
Example:
<body>

<div id='outer'>

<div id='inner'>

Hey there
</div>

</div>

<script>

var innerElement = document.getElementById('inner');

// no alert box will pop up in this case:
innerElement.textContent = "<script>alert('hey')</script>";
// A alert box will pop up in this case:
innerElement.innerHTML = "<script>alert('hey')</script>";

// this was because, in the latter, the text was interpreted as HTML code
</script>

</body>

Therefore, it is safer to use the .textContent property to set the content of an
element instead of the .innerHTML property when you are expecting the new
content to be plain text only.

Chapter 13 Changing CSS using DOM
CSS is used to style our web pages. Almost everything you see on modern
sites has been styled using CSS. Thus, it becomes important for us to learn
how to change CSS, which can help us to dynamically change the styling of
our web page. Doing so will make our web page more interactive, giving the
user a better experience. An example scenario – when a user is writing in a
text box, you can make textbox background red to indicate that input is
invalid, and green to indicate that it is valid. Have you ever noticed that while
registering on some sites, when filling in the password, the password input
box border color changes from red to orange and then to green to indicate the
strength of password? This is done with the help of JavaScript.
The element.style property
We don’t directly assign a string containing CSS style definition to this
property. Instead, we assign values to “sub-properties” of this property.
Technically, this property is an object itself. You can access a property by
using the convention “element.style.propertyName.” The naming convention
of these “sub-properties” is almost the same as in CSS. For example: to
change text color, we use the property “color” in CSS. To access or modify it
in DOM, we can use element.style.color. Also, note that the naming
convention of these CSS “sub-properties” in DOM is in camelcase not in
kebab-case as in CSS, so the property ‘border-bottom’ becomes
‘borderBottom.'
The values assigned to these “sub-properties” should be in the same format as
in CSS.
Discussed below are some of the important CSS properties and how you can
get and set them using DOM.
Changing an element’s background
You can get or set the background of an element using the ‘.background.’
sub-property of the ‘.style.’ property of an element.
Syntax:
var getVal = element.style.background// GET
element.style.background = set;// SET
Example usage:

<body>
<p style='background:red' id='changeBg'>
This paragraph background color was originally red but will change to blue
by the JavaScript code!
</p>
<script>

var pElement = document.getElementById('changeBg');

console.log(pElement.style.background); // prints ‘red’ on the console
screen

// now let's change its background to blue

pElement.style.background = 'blue';

console.log(pElement.style.background); // prints ‘blue’ on the console
screen
</script>

</body>

You can directly assign values to the .background sub-property in shortland
format too, as you do in CSS. Example:

pElement.style.background = "#00ff00 url('image.png') no-repeat fixed
center";
NOTE: If a color is specified in HEX format(#RRGGBB) in any of the CSS
property, then while accessing it from DOM it will appear in ‘rgb(rrr, ggg,
bbb)’ format.
Example:

var pElement = document.getElementById('changeBg');

pElement.style.background = '#0000ff'; // HEX representation of blue color

console.log(pElement.style.background); // prints ‘rgb(0, 0, 255)’ on the
console screen
Changing an element’s text color
You can get or set the text color of an element using the ‘.color’ sub-property
of the ‘.style’ property of an element.
Syntax:
var getVal = element.style.color// GET
element.style.color = set;// SET
Changing an element’s text size
You can get or set the text size of an element using the ‘.fontSize’ sub-
property(note the camel case here) of the ‘.style’ property of an element.
Syntax:

var getVal = element.style.fontSize// GET

element.style.fontSize = set;// SET
NOTE: When you assign a size to any size-related property like font size,
height width, etc., the sizes should be assigned along with their units (px, em,
vh, etc). Not doing so will result in an error.
Example:
element.style.fontSize = 40;// WRONG
element.style.fontSize = '40'; // WRONG
element.style.fontSize = '40px';// RIGHT
The ‘float’ property, an exception in property naming convention in DOM
The ‘float’ property in CSS is used to specify the position of an element in
the layout. But ‘float’ is also a reserved word in JavaScript. Owing to this, we
cannot use ‘float’ as a property name in JavaScript. We use the name
‘cssFloat’ in JavaScript to refer to the ‘float’ property.
Syntax:
var getVal = element.style.cssFloat// GET
element.style.cssFloat = set;// SET

Modifying CSS style using element.setAttribute() method
The .setAttribute() method is used to change attributes of elements. We can
change the CSS styling of an element by modifying their ‘style’ attribute.
This attribute’s value is plain CSS.
Syntax:
element.setAttribute('style', 'PLAIN CSS HERE')
Example:
element.setAttribute('style', 'background:red; height:15px');
Modifying CSS style by adding a CSS class to it
You can also modify CSS styling of an element through JavaScript by adding
a predefined CSS class to it. You can add classes to an element by adding
them to ‘className’ property of the element.
Syntax for adding a CSS new class:
element.className += ' newClassName'
Note that there must be a space present in the string before the CSS class
name as this property is merely a string containing all the name of all the CSS
classes of the element separated by a space.
Example:
<body>
<p style='background:red' id='changeClass'>
This paragraph’s styling will be changed by JavaScript by adding a CSS class
to it!
</p>
<style>
our custom CSS class:
.myClass {
background:blue;
height:10px;
}
</style>

<script>

var pElement = document.getElementById('changeClass');

pElement.className += ' myClass';
</script>

</body>
You may use any way you like to change the CSS styling, but doing it via
CSS class names is considered a better practice. This helps by making a more
structured codebase similar to stateful architecture, where each class
conceptually represents a state. Consider the scenario of weak and strong
passwords as described in the beginning of this chapter. When the password
has weak strength, you can add a class named ‘weakPassword’ to the
password textbox and a class named ‘mildPassword’ when it is of mild
strength. This helps us to write more organized code.

Chapter 14 Pointers
Pointer make certain complex tasks easier and they are fairly simple to use. A
pointer is defined as a variable that holds the address of another variable.
Much like a variable, before its use it must be defined.
type *var-name;
When using a pointer, the type is whatever the type of the base type is. For
example, if my pointer is pointing to a double variable, my pointer must be a
double. The var-name is the name of your pointer. The asterisk must be used
in order to denote a pointer.

int *int_point; // pointer to an integer
double *dou_point; // pointer to a double

float *flo_point; // pointer to a float

char *ch_point; // pointer to character
The following example shows the information which is stored in a pointer,
run the following code to get a better understanding of pointers.
#include <iostream>
using namespace std;
int main () {

int variable = 10; // actual variable declaration.
int *ipointer; // pointer variable
cout << "Value of variable: ";
cout << variable << endl;
// access the value at the address available in pointer
cout << "Value of *ipointer variable: ";
cout << *ipointer << endl;
return 0; }

Null Pointers
A pointer that is assigned to NULL is referred to as a null pointer. A null
pointer is assigned at the time of declaration. The null pointer is generally

constant and holds a value of zero.

Chapter 15 Expressions and Operators
A JavaScript expression can be loosely defined as a block of code that yields
a value. You've already seen examples of simple expressions:

A literal value, such as 5, "Hi!", true, null, and undefined.
(Later in the book, you'll learn how to formulate literal values
for objects, arrays, and functions. These also constitute
expressions.)
A variable. For example, if you've declared a variable x, then
an occurrence of x in your code is an expression. The value of
the expression is the current value assigned to the variable.
A function call. The value of a function call is the value
returned by the function, or undefined if the function doesn't
return a value. For example, the function call parseFloat(str) is
an expression that has a numeric value.

When an expression forms the left side of an assignment statement, such as
the x in the statement x = 5;, it's more accurate to say that the expression
yields the location or address of a value. The value at that location is replaced
by a new value through the assignment.
Don't confuse an expression with a statement. A statement is a basic unit of
JavaScript code, usually terminated with a semicolon.

Some statements do not contain any expressions, such as a variable
declaration:

var x;
An expression often forms part of a statement, such as the occurrence of the
variable valid in the following if statement:

if (valid)
/* do something... */
And, finally, it's legal for any expression to appear as a complete statement,
although it might not serve a useful purpose:

/* this literal string expression forms a legal but useless statement: */

"Hello";
/* this statement, which consists of an occurrence of the previously declared
variable 'x', is also legal but futile: */
x;
/* this function call expression likewise forms a legal statement, but has a
useful side effect: */
alert ("an alert message");

You can combine expressions using operators to form more complex
expressions. For example, assuming the variable x contains a number, the
following expression consists of two numeric expressions, one a variable and
one a literal number, combined with the + (addition) operator:

x + 5
If the value of x is 2, then the value of the resulting, more complex
expression is 7. The expressions that are combined using an operator (in this
example, the x and the 2) are known as operands.

Operator Precedence
You can include more than one operator in a single expression:

2 * x + 3 * y + z
The value of such an expression depends upon the order in which the
operations are performed. To define the order of operations, the JavaScript
operators have been assigned different levels of precedence. For example, the
* operator (multiplication) has a higher precedence than the + operator
(addition), so in the above expression the multiplications are performed
before the additions.

You can specify any order of evaluation by using parentheses. You might
want to parenthesize an expression if you're uncertain of the precedence of
the operators, or if you simply want to clarify your code by making the order
of operations explicit:

/* here the parentheses clarify the default evaluation order: */
(2 * x) + (3 * y) + z
You can also use parentheses to change the evaluation order from the default.
For instance, if you wanted the additions to be performed before the
multiplications in the example expression, you could parenthesize it like this:

/* here the parentheses change the evaluation order: */
2 * (x + 3) * (y + z)
The following table describes the basic JavaScript operators that are used in
this book, listing them in precedence order. The horizontal bars divide the
table into precedence sections. Operators in the same section (such as . and
[]) have the same precedence. Operators in different sections (such as () and
++) have different precedence, with the operator in the first section having
the higher precedence. The "A" column is explained following the table.
You'll find a complete operator precedence table that includes the more
esoteric operators at http://bit.ly/OpTable.

Operator Description A

http://bit.ly/OpTable

. Access a property of an object L

[] Access an element of an array L

() Call a function L

new Create a new object R

++ Increment R

-- Decrement R

- Negate (unary) R

! Logical NOT R

delete Remove a property from an object R

typeof Get data type R

* / % Multiply, divide, get remainder L

+ - Add, subtract L

+ Concatenate string L

< <= Less than, less than or equal L

> >= Greater than,
greater than or equal

L

instanceof Test object inheritance L

in Test property existence, or construct a for/in
loop

L

== Test for equality, loosely L

!= Test for inequality, loosely L

=== Test for equality, strictly L

!== Test for inequality, strictly L

&& Logical AND L

|| Logical OR L

? : Conditional operator R

= Assign R

+= -= *=
/= %=

Assign, with operation R

, Return right operand L

If operators have the same precedence, their order of evaluation is determined
by their associativity, which is given in the "A" column. Operators with "L"

associativity are evaluated left-to-right. For example, because the + operator
has left-to-right associativity, the expression

a + b + c + d
is evaluated like this:

((a + b) + c) + d
Operators with "R" associativity are evaluated right-to-left. Because the =
operator has right-to-left associativity, the expression

p = q = r = s;
is evaluated as

p = (q = (r = s));
(As you'll see later, the value of a single assignment expression such as r = s
is simply the right operand.)

The book uses the term "assignment statement" as a short description for
what is more accurately termed "a statement consisting of an assignment
expression."
The number of operands that an operator expects is either 1 (a unary
operator), 2 (a binary operator), or 3 (a ternary operator). The unary
operators, the one ternary operator (?:), and the various assignment operators
all have right-to-left associativity. The remaining binary operators have left-
to-right associativity.

The following sections explain many of the operators given in the table.
Some of the operators are used in conjunction with objects, arrays, or
functions, and are discussed in later chapters that cover those topics. The
typeof operator was explained in the previous chapter.

Numeric Operators
The operators + - * / and % perform addition, subtraction, multiplication,
division, and the modulus operation, as in the following expression:

2 * a + b / 3 - 7 * c
Recall that multiplication, division, and the modulus operation are performed
before addition and subtraction.

In some languages, if both operands are integers, the / operator performs
integer division—that is, it returns an integer result. For example, 5 / 2 would
equal 2. JavaScript, however, does not truncate the result of a division to an
integer simply because the operands are both integers, so in JavaScript 5 / 2
equals 2.5.

The modulus operator (%) divides the first operand by the second, and
returns the remainder of the division. For example:

Expression Value

10 % 4 2

-10 % 4 -2

10 % -4 2

-10 % -4 -2

Notice that the sign of the result is always the same as the sign of the first
operand.

As an example of using the % operator, if n is a number, the following
expression could be used to test whether n is odd:

if (n % 2)
/* then n is an odd number */
You can reverse the sign of a numeric value by placing the - operator in front
of it. In this context, - acts as a unary negation operator rather than a
subtraction operator.

var x = 5;

/* displays "-5": */
alert (-x);
/* displays "5": */
alert (-(x - 10));
x = -7;
/* displays "7": */
alert (-x);

JavaScript also provides a set of functions for performing operations on
numbers, many of them more advanced than the actions performed by the
numeric operators, such as calculating a square root or sine.
If you want to increment a variable, you can of course do it like this:

x = x + 1;
A more concise way to increment a variable, however, is to use the ++
(increment) operator:

++x;
The ++ operator is an example of an operator that has a side effect
(incrementing the variable) and returns a value (as do all operators). If you
place the ++ in front of the variable, the operator returns the incremented
value. If you place the ++ after the variable, it returns the original,
unincremented value:

var x = 5;
/* displays 6: */
alert (++x);
/* displays 6: */
alert (x);
/* displays 6: */
alert (x++);
/* displays 7: */

alert (x);
To decrement a variable, you can use the -- (decrement) operator, which is
analogous to ++.

You can use the ++ and -- operators with any expression that specifies a data
item whose value can be changed. Such an expression is known as an lvalue,
the l referring to the fact that the expression can appear on the left side of an
assignment operator. The most common lvalue is simply a variable. You'll
learn about two other lvalues later in the book: a property of an object and an
element of an array.

Numeric Conversions

If an operand of a numeric operator is not numeric, JavaScript automatically
converts it to a numeric value, following somewhat complex and arbitrary
rules.

Arithmetic Errors

If you perform an illegal arithmetic operation, JavaScript, in its usual
forgiving manner, simply returns a special value rather than generating a
runtime error.

An expression that divides a positive number by zero returns Infinity. An
expression that divides a negative number by zero returns -Infinity:

var x = -5;
/* displays "-Infinity": */
alert (x/0);
The following expressions return the special value NaN, meaning not-a-
number:

0 / 0
Infinity / Infinity (also equals NaN if either or both operands
are -Infinity)
An expression that attempts to take the square root of a
negative number (for example, calling Math.sqrt (-5))

An expression that attempts to convert an invalid value to a
number (for example, calling parseInt ("bad");)
An expression in which any operand has the value NaN

The value NaN is considered unequal to any other value including itself, so
the expression NaN === NaN is actually false. To test for NaN, you can use
the global function isNaN():

/* get a number as a string: */
var s = prompt ("Enter a number:", "");
/* attempt to convert the string to a number 'n': */
var n = parseFloat (s);
/* check whether the conversion was successful: */
if (isNaN (n))
/* 'n' is not a valid number: */
alert ("You did not enter a valid number.");

else
/* 'n' is a valid number; use it... */
Alternatively, you can use the isFinite() function to test for either NaN or
±Infinity:

isFinite(x): Returns true if x is neither NaN nor ±Infinity; returns false if x is
equal to either of these special values.

The String Concatenation Operator
The + operator can also be used to combine two strings into a single string:

var s = prompt ("Enter your name.", "");
alert ("Your name is " + s + ".");
One common use for string concatenation is to convert a non-string value to a
string and combine it with another string, all in a single operation:

var count = 0;
/* code that increments count... */
alert ("Final count: " + count);
If only one of its operands is a string, + converts the other operand to a string
and joins the two strings. (The + operator favors a string over a number. If
one operand is a string and the other a number, + does not attempt to convert
the string to a numeric value and add the two numbers!)

Recall from hat the automatic conversion of a number, boolean value, null, or
undefined to a string works as expected and is one of the benign forms of
automatic conversion. An easy way to make this conversion is by using the +
operator. If you don't want to add any characters, you can just concatenate
with an empty string:

var count = 0;
/* code that increments count... */
/* done incrementing 'count'; now convert it to a string: */
var s = count + "";

Boolean Operators
The boolean operators all return boolean values, and are of two types:
relational and logical.

Relational Operators

== and != are the standard equality and inequality operators. For example, if
a, b, and c are declared and initialized as follows,

var a = 1;
var b = 1;
var c = 2;
then:

a == btrue

a == c false

b != c true

The problem with the standard equality and inequality operators is that if the
two operands are not of the same type, the operator follows a complex set of
somewhat arbitrary and hard-to-remember rules that determine whether a
conversion takes place, which operand is converted, and the way a
conversion is performed.

Although you could make it a practice to use operands of the same type with
the standard operators, a safer approach is to use the strict equality and
inequality operators, === and !==, which do not perform type conversions.
The === operator returns true only if all three of the following conditions are
true:

Both operands have the same type.
Both operands have the same value.
Neither operand is NaN.

The !== operator returns true if one or more of these conditions fails.

Provided that both operands have the same data type, you can use the strict

equality and inequality operators with any type—for example:

5 === 5 true

5 !== 10 true

"abc" === "abc" true

"ABC" === "abc" false

true === true true

true !== false true

undefined ===
undefined

true

null === null true

NaN === NaN false

You can compare two strings or two numbers using the comparison
operators:

< less than 5 < 12 (true)
"5" < "12" (false)

<=less than or equal 5 <= 5 (true)

> greater than "abc" > "ABC"
(true)

>=greater than or
equal

"1" >= "A" (false)

Strings are compared alphabetically, based on the Unicode values of the
characters. For example, within the set of standard ASCII characters, all
numbers are less than the letters, and all capital letters are less than the
lowercase letters.

Numbers are of course compared numerically. When comparing numbers, if

either operand is NaN, the operator always returns false.

JavaScript doesn't provide strict versions of the comparison operators. If you
supply operands that are neither both strings nor both numbers, the
comparison operators make conversions according to fairly complex and
arbitrary rules. Again, to avoid errors and to create clear code, it's best to first
do any necessary conversions explicitly so that you can make both operands
the same type.

Logical Operators

Sometimes you need to express a truth condition that is more complex than a
simple relational test. For example, in code that searches for an item, you
might want to display the results only if the item was found (i.e. the boolean
variable found is true) and the user wants results shown (i.e. the boolean
variable showResults is true). This could be expressed using the logical AND
operator, &&:

if (found && showResults)
/* then display the search results... */
The following are the three logical operators:

Op Description Example

&& AND (true if both operands are true) a && b

|| OR
(true if either or both operands are
true)

a || b

! NOT
(true if the single operand is false,
false if the operand is true)

!a

If an operand is not boolean, it's converted to boolean according to the
straightforward rules that were explained in Any type to boolean.

Several logical operands can of course be used in a single expression, as in
the following example:

!(a && b) === (!a || !b)
This particular expression is always true regardless of the truth values of its
operands (it's one of DeMorgan's laws). Recall from the table of Operator
Precedence that ! has the highest precedence, then ===, then &&, and finally
||, but that the parentheses override the default order of evaluation.

Short Circuiting
When an && expression is evaluated, if the first operand is false, the second
operand is guaranteed not to be evaluated. This policy can be useful: The first
operand can test whether some object exists before the second operand
attempts to use that object, thus avoiding the runtime error that would occur
if you attempted to use a non-existent object.

Likewise, when an || expression is evaluated, if the first operand is true, the
second operand is guaranteed not to be evaluated.

The Truth About the && and || Operators
The && and || operators don't necessarily return an actual boolean value.
Consider an && expression:
A && B
If A is false or converts to false (that is, it's "falsy"), the expression simply
returns the value of A. If A happens to be a boolean variable, then the
expression does in fact return a boolean value (i.e. false). If A isn't boolean,
the expression doesn't return a boolean value, but rather A's actual value,
which is some falsy value: undefined, null, 0, NaN, or "". (Conversions to
boolean values were explained in Any type to boolean.) If A is "truthy," then
the expression returns the value of B, which might or might not be boolean,
but like all values will be either truthy or falsy.
Now consider an || expression, which works in a similar way:
A || B
If A is truthy, the expression returns the value of A. If A is falsy, it returns
the value of B.
Because of the way it's evaluated, the || operator is often used to select the
first truthy value in a series of values. Say, for example, that you want to use

the current value of variable x if it has a non-zero value, but you want to use
a default literal value (100) if x is set to 0 (or undefined). You could
accomplish this through the following compact || expression:
x = x || 100;

Assignment Operators
The standard assignment operator (=) has the following form,

lval = expression;
where the left operand, lval, is assigned the value of the right operand,
expression. For example:

x = 2 * y + z + 5;
Like the operand of the ++ or -- operator explained previously, the left
operand of the assignment operator must be an lvalue—that is, an expression
that specifies a data item whose value can be changed, such as a variable.
(You'll learn about two other kinds of lvalues later in the book: a property of
an object and an element of an array.)

The assignment operator is an example of an operator that has an important
side effect (namely, making the assignment). Like all operators, it also returns
a value, which is simply the value of the right operand. This method of
evaluation, coupled with the operator's right-to-left associativity), allows you
to chain assignments like this:

a = b = c = 5;
When JavaScript evaluates this expression, it first assigns 5 to c, then takes
the value of that assignment (namely 5) and assigns it to b, then takes the
value of that assignment (5 again) and assigns it to a. As a result, all variables
get set to 5.

JavaScript also provides a set of shortcut operators that perform an operation
and make an assignment. Here are the most common ones:

Operator Example Equivalent
to

+= x += 5;
s += " ft";

x = x + 5;
s = s + " ft";

-= x -= 5; x = x - 5;

*= x *= 10; x = x * 10;

/= x /= 2; x = x / 2;

%= x %= 4; x = x % 4;

Other Operators
The final two operators discussed in this chapter are the conditional operator
and the comma operator.

The Conditional Operator

The conditional operator (?:) is JavaScript's only ternary operator (an
operator with three operands). An expression looks like this:

bool_val ? val1 : val2
If bool_val is true (or converts to true), JavaScript evaluates and returns val1.
If bool_val is false (or converts to false), JavaScript evaluates and returns
val2. Note that only one of the second two subexpressions (val1 or val2) is
evaluated, never both. For an explanation of the way values are converted to
boolean, see Any type to boolean. You'll see examples of the use of this
operator later in the book.

The Comma Operator

Finally, there is the strange comma operator (,), which is a binary operator
that is used like this:

op1, op2
The operator evaluates op1, evaluates op2, returns the value of op2, and
discards the value of op1. The operator actually has a common use in the for-
loop statement.

What Are Some Of The JavaScript Variables?

There are a lot of different parts that you are able to work on when you are
creating your JavaScript code. You will need to have all of these in place if
you would like to make a great code, but learning each of the parts on their
own, before combining them together, will make a big difference in how well
you understand them. In this chapter, we are going to look at how you can
write out variables inside of JavaScript.
The variables are basically the parts in JavaScript that will have a value, and
they are only going to have this value once you assign it. They are going to
be the different kinds of characters that you use inside of the code. The nice
thing about this is you will be able to make the variable equal to any value

that you would like, as long as you set it inside of the compiler. There are a
few types of data that are available for you to use when you are working on
the variables inside of your code. Some of these data types include:

Text: this is the type of data that will be a sequence of words
that then make up a statement. If you would like the program to
say something on your screen when the user enters
information, it would be done with the text variable. You could
keep it something simple like, “Hello!” or you can make it
something longer like, “Thank you for visiting my page. Come
back soon!”

Numbers: you can turn your variables into a number. You
would be able to make a choice between using whole numbers
or decimal numbers inside of the code to make it work the way
that you would like.

Boolean: the third data type that you are able to use in your
JavaScript variables are the Boolean variables. These are going
to work on a true and false basis and will be based on the
information that you place into your code. For example, these
are helpful if you would like something to come up on the
screen only if the input is considered true.

One thing that you should keep in mind when using the JavaScript language
is that there is going to be hardly any difference in the floating point or
integer values that you are using. You will find that JavaScript doesn’t see a
difference between these, and you will be able to use them the same inside of
your code. You won’t have to spend much of your time worrying about how
they work inside of the code.
Working with your variables
For the most part, you will see that the variables inside of JavaScript are
going to be pretty easy to work with. When working with these variables, you
should remember that they are the containers that you are using to hold all the
data inside the code. You will be able to choose how you are using these
containers and what information is going to go inside each of them. The thing
that you need to remember here is to use the perfect keyword, which is going
to be the “var” keyword in this language, so that you can tell the compiler

that you are working with variables at this time. It also helps the compiler to
know the container that it should bring out for you to use.
It is fine if this seems a little bit difficult to understand right from the
beginning. Here is a good example of a code that uses the variable keyword
so that you can see how things are going to work for your needs:
<!DOCTYPE html>

<html>
<head>
<meta charset = “ISO-8859-1”>

<title>JavaScript Variables</title>

<script type = “text/javascript”>

var name = “Appy”;

var age = 21

var salary = 10000, expenses = 12000;

alert(“Name:” +name + “Age:” + age + “/nSalary:” + salary

+”Expenses:” + expenses)

</script>
</head>
<body>
</body>
</html>
Despite this code not being all that long or big, there is actually quite a bit of
information that you can find inside of it. When you look at the variable, you
will need to start out with the variable initialization. This is going to help you
to create a new variable that has a value attached to it. You can also do this
when you choose to use the variable, rather than at the beginning of your
code. The syntax that we listed above is the one that will make it easier to
bring up some of the variables that you want to use, such as age, name, and
salary. Keep in mind that you are able to use as many of these variables as

you would like based on how you are setting up the code.
When you are working with the code above, there are several variables that
you will notice and the user will be able to place the input that they want
inside of there. For example, the user could choose to put in any answer that
they want when the system asks what their age is. When this particular code
is executed onto the screen, using the inputs that are placed in the code
above, the following information is going to be the output:
Name: Appy
Age: 21
Salary: 10000
Expenses: 12000
Learning the scope of your variable
The next thing that we will discuss about your variables is their scopes. This
is going to make a difference as it determines where the variable is going to
be located and where you are able to see that variable within the code. It is
going to help you to find where the variable is located and can give you a bit
of control over who has permission to see these variables as well. There are
two types of scopes that can be placed on the variable and these include
global variables and local variables:

Local variables: the first type of variable that you will work
with are the local variables. These are the ones that you will
only be able to see when you look at their exact location inside
of the code. You will not be able to see them anywhere else,
which can help to give you a bit of security with the code and
makes it easier to set up the parameters for that particular
variable.

Global variable: the other variable that you are able to use.
With this option, you will be able to see the variable at any
point, rather than just in its regular location. This kind of code
is viable for anyone to change it, which could cause issues if
you would like to make sure that everything stays the same.
They will be present in many locations inside of the HTML
document.

When you are choosing which of these two variable types that you would like
to use, you should make sure that they are given names that not only help you
to determine what is in them, but also that the names are not similar. For
example, if you have a variable that is local as well as global, you should
name them separate things, otherwise the program is always going to choose
the local variable over the global variable.
Naming the variable
While we have spent some time learning about the variables and how they
work within your system, it is also important to learn how you should name
them. Naming the variables may seem simple, but it is important that you do
it the proper way to help the program work the way that you want. You don’t
want to end up naming the variable the wrong thing and creating an error
down the road. Some of the things that you will need to keep in mind when
naming your variables include:

Pick a name that makes sense: there are a lot of names that
would be cool for a variable, but if you look at the name later
on and have no idea what it holds inside, it is probably not the
best name to choose. Go with a variable name that tells you
what is inside and makes it easier to find and use the variable
later on.

Keep away from the keywords: in every programming
language that you can use, there are some keywords that are
reserved for giving commands. If you use these as the names of
your variables, you are going to have some trouble because the
compiler will get confused at what you are using. Make sure to
stay away from the reserved keywords in JavaScript when you
are naming your variables.

Keep away from numbers: while you are allowed to use
numbers within the name of your variable, you are not allowed
to use them to start out the name. You can write out the name
of the number so that it is all letters, but no numbers are
allowed at the beginning. Start out the variable name with a
letter or an underscore, and then the rest can be any
combination of numbers, letters, and underscores that you

wish.

Remember that when you are writing out the name of the
variable that they are going to be case sensitive. There are
differences between the upper case and lower case in this
language so make sure to use them properly or you may
confuse the compiler or not get the results that you want.

If you are able to remember some of these simple rules inside of your
variables when you are naming them, you will find that it is easier than you
can imagine to name some of the variables. These rules help you to get the
results that you want, help you to remember what the variable is holding, and
even ensures that the other programmers who are working in your program
have an idea of what the variable is doing.
During this time, you may want to go through and assign the value that you
would like to go with the variable you are working on. The variable is empty
if you don’t add in a value that is going with it. The nice thing here is that
you get some freedom in terms of the value that you would like to assign.
You can keep it simple and give the variable a number as a value or you can
give it a word, such as a color, a name, or something else that will be
assigned to the variable. The value that you will assign to your variable is
going to be different based on what you would like to get done within the
code that you are writing.
Working with variables is important when you are inside of the JavaScript
programming language. They are going to help you to do some classification
within your programming and can help you to store different categories
together all in one place. As long as you learn how to use the variables in the
correct way, using some of the codes that are available inside this chapter,
and you name the variables the right way, you will find that the variables are
going to work out perfectly for your needs.

Chapter 16 Variables, data types & constants
Variables
Variables are always an important aspect of any programming language.
They are used to store values which can be later addressed using those
variable names. Same goes with JavaScript. Let us look at the syntax for
creating a variable:
Syntax

var <variableName>;//Declares a variable

<variableName> = value;//Assigning value to the variable
Or

var <variableName> = value; //Declaration and assignment in
same line
In the first method, we declare the variable first and then assign a value to it
at some later point in the program. The only thing one must keep in mind
here is that declaration must always come before the assignment. However, in
the second method, both the declaration as well as the assignment happen in a
single line.
Let us look at some examples here
var abc;//Declaration
abc = “New variable”;// Assignment

var num = 33;//Declaration and assignment
In above example, the variable “abc” will store the string value “New
variable” while the variable “num” will store the number value 33.
Let us look at one more example:

var marksScience = 85; //Variable name

var marksMaths= 100;

var total = marksScience+ marksMaths; //add and store the
result

In the above example, the variable total will store the

calculated value i.e. 185.
All the variables which are used in the program must have unique names or
else it might end up creating a ruckus while executing the code. These unique
names are called identifiers. For naming a variable, certain rules must be
followed.
Rules for naming a variable

Names must start with a letter, dollar ($), or underscore (_).
You can include letters, digits, underscores, and dollar signs in
a variable name.
Variable names in JavaScript are case-sensitive.
You cannot use reserved words / keywords as variable names.

Some of the examples of valid variable names are as follows:

Marks1

$abc

_fun

marks2
You would have noticed that we make use of an “equal to” symbol to assign
some values to a variable. This “equal to” symbol is called assignment
operator and is used to initialize a variable.
Few important points to remember:

1. When you simply declare a variable, it holds no value.
For example:
var abc;
Here the variable “abc” will not contain any value until we assign it some
value.

2. Many variables can be declared in a single statement. To do
that, we start the statement with var and separate the variables
by a comma.

For example:

var firstName=”Amitabh”, lastName =”Kumar”, age=70;

3. The declaration of variables can span multiple lines.

var firstName=”Amitabh”,
lastName =”Kumar”,
age=70;

4. Most of the time, variables are simply declared and are
initialized at some later point in the program. As mentioned in
the first point, after the declaration, the variable holds no value.
To be precise, it holds the value undefined. For example:

var name;
The variable “name” will contain the value undefined after the above
statement is executed.

5. Even if you re-declare a JavaScript variable, it retains its
previous value.

For example:
var name=”Amitabh”;
var name;
Even after the execution of these statements, the variable “name” will still
have the value “Amitabh.”
Data Types
Data types, as the name suggests, signifies the type of data a variable can
hold. A JavaScript variable can hold several types of data. For example
string, number, object, Boolean, etc.

var age = 70//stores a Number

var lastName = "Kumar"// stores a String

var name = {firstName:"Amitabh",
lastName:"Kumar"}; //
stores an object

var case=true; //Stores a Boolean
Data types is an important aspect of programming because it specifies what
kind of data a variable is holding. This helps the compiler to understand what
kind of operations can be performed on them. The addition operator will have
different results if applied to two numbers and a radically different result if
applied on two strings. For example:
var name =”Amit” + “”+ “Kumar”;
var age = 30+40;
The variable “name” will store the concatenated value of both the strings i.e.
“Amit Kumar” while the variable age will store the added value of 30 & 40
i.e. 70.
Now consider the next example:
var abc = 70 + "Amit";
If we try and relate the above example with normal arithmetic, it does not
makes much sense. Adding a number to a string is not possible in normal
arithmetic. However, it would be interesting to see how JavaScript will treat
the above example. JavaScript will interpret the above example as follows:
var abc = “70” + "Amit";
Whenever we try to add a number with a string, JavaScript will treat the
number as a string. However, what if our expression is a mix of several
numbers and several strings! What will be the result in that case? Let’s look
at the following two examples:
var temp = “Amit” + “ “ + “Kumar” + 30 + 40;
var temp1 = 30 + 40 +“Amit” + “ “ + “Kumar” ;
In the above examples, the temp will store the value “Amit Kumar3040”
whereas the variable temp1 will store “70Amit Kumar”. How similar looking
expressions produced different results? Let’s see how JavaScript treats the
above two example. JavaScript starts evaluating expressions from left to
right. So in the first case when it encountered a string, it considers all the
remaining as a string itself. Therefore 30 and 40 becomes two separate
strings. However, in the second example, since the numbers are written first,
it first adds them and then concatenates with the remaining string.
Before we dive into each type of JavaScript data types, I must point out that

JavaScript has dynamic types. Let me explain it to you what that means. In C
language, we use data types such as int, float, char, etc. Those are static data
types which mean they cannot take any other type of value during the
execution of the program. However, we see no such types here. We simply
declare a variable using the keyword “var” and then go on to mutate it the
way want. Even if we have stored a string value in the variable, at some later
point in the program, we can assign a number to it. Therefore the types in
JavaScript are dynamic in nature. For example:
var rand;//rand is undefined
var rand= “Random”;//rand stores an string
var rand= 70;//Now rand stores a number
Now that we have looked at properties of data types let’s look at each data
types in detail.

There are two kinds of data types in JavaScript:

a. Primitive data
b. Non-primitive or complex data

Primitive is the predefined types of data which are inbuilt to a language.
There are five primitive data types in JavaScript:

String
Number
Boolean
Null
Undefined

Non-primitive or complex data are not provided by default but are defined by
the programmer. For example arrays, objects, etc.
Strings
Strings are nothing but a series of characters. They are either enclosed in
single or double quotes. Addition operation on them is nothing but a simple
concatenation.
For example:

var name = “Ämit Kumar”;

var name2= ‘Javed’;
Quotes inside a string are not a problem as long as they are different than the
quotes surrounding the string. For example:

var xyz = "It's done";

var xyz1 = ‘Friends call him “James"';
Numbers
Unlike most of the other programming language, JavaScript does not have a
concept of integer, float, etc. Instead, it just has a single concept of numbers
which may or may not contain decimals
var x = 74.00; // Decimals
var y = 33; // Without decimals
If the number is extremely large, it can be written using scientific notation.
For example:
var x = 333e5; // 33300000
var y = 23e-5; // 0.00023
Booleans
The concept of Boolean is almost same as that of other programming
languages. Booleans have only two values – “true” and “false.” The major
use of these comes while forming conditional statements.
var a = true;
var b = false;
Null
Null means “nothing.” The value null signifies the intentional absence of any
object value. An object can be emptied by setting it to null.
var name=null; //value becomes null
Undefined
The variables which are not assigned any value will contain undefined. For
example:

var abc; // value is undefined
We can also assign the value “undefined” to a variable.
abc= undefined;
People generally get confused between null and undefined. I will explain the
difference at some later point in this chapter.
Those were the primitive types. Now let us look at some non-primitive data
types.

Arrays
Arrays are nothing but a collection of some values. The set of those values is
written using curly braces. Like all other programming language, the index
starts with 0.
var names[] = { “Ram”, “Rahim”, “Jaspaal”};
//names=”Ram”;
Objects
Objects in JavaScript are written as name- value pairs. For example:
var name = {firstName:"Amit",
lastName:"Kumar",

age:70};

Before I close in on the discussion on data types, I must explain about an
operator called “typeof.” Since JavaScript is dynamically typed, at various
point in the program we need to know which type of data the variable
contains. We can determine that using typeof operator.
typeof Operator

Like I mentioned before, typeof operator is used to determining the type of
data a variable is holding. For example
typeof "Amit" // "string"
typeof "" // "string” (empty string)
typeof 314 // "number"
typeof 3.14 // "number"

typeof (3 + 4) // "number"
typeof false // "boolean"
typeof [1,2,3,4] // "object"because arrays are considered as object in
JavaScript
typeof {name:'Amit', age:70} // "object"
Now that I have explained typeof operator let us look at what exactly is the
difference between undefined and null.If we operate typeof on null, it returns
an object whereas if we operate typeof on undefined, undefined is returned.
Constants
Constant as the name suggests are those variables whose value cannot be
changed. These are declared using const Keyword and must be assigned a
value during the time of declaration. It can either be local to a function or can
be a global variable. Constants once assigned cannot be changed. Their value
remains read-only throughout the program. For example:
const pi= 3.14; //Declaring and initializing a constant
This chapter explained variables, data types, and constants. I hope you
enjoyed reading it and found it helpful.

Chapter 17 Closures and Callbacks in JavaScript
The chapter will deal with two very basic concepts of JavaScript, closures
and callbacks. They allow us to make our code concise, crisp and creative.
You will encounter these concepts in your development repeatedly. Let us
have a look.
Closures in JavaScript
Closures, in their most basic form, are inner functions that have access to
variables from outside its scope. The concept of closures requires a legit
understanding of nested functions.
Nested functions are “functions containing functions”. Let’s look at an
example to expand upon the point:
//function 1 is an outer function
function outer(){ //definition of function 1
//body of outer()
//function 2 is an inner function
function inner(){//definition of function 2
//body of inner()
}
}
In above example, function 2(inner()) resides inside the body of function
1(outer()) and hence is called a nested function. Similarly, we can have more
than one nested function inside an outer function.
//function 1 is an outer function
function outer(){ //definition of function 1
//body of outer()
//function inner1 is an inner function
function inner1(){//definition of inner function 1
//body of inner()
}
//function inner2 is an inner function

function inner2(){//definition of inner function 2
//body of inner()
}
.
.
//function innerN is an inner function
function innerN(){//definition of Nth inner function
//body of inner()
}
}
The ability of the inner function to evaluate or perform calculations on the
variables or parameters defined in outer function is closure.
Let us take a very basic example of JavaScript code.
//Example 1
//define a variable a = 5
var a = 5;
//define function add which adds 5 to a and returns value
var add = function(val){
a = a + val;//adding val to a
return a;//return a
}
var result = add(5); //will make result = 10
In above code, the function add() will take the value of variable a from its
outer scope, and will add 5 to it and return the result. So, our output will
show 10. This is the most basic use of closures. Surprised? You might have
used it multiple times while developing code by now.
Closures are popular, as the inner functions are able to retrieve variables from
outside their scope, modify their values, and return the result. The closures
have access to only the following variables:

● variables inside its scope, i.e. variables defined inside the function body
● variables of outer function, i.e. variables of containing function
● global variables
Let us move to a more complicated scenario:
//Example 2
//define function addTo() which takes a parameter
var addTo = function(param_outer){
//define a variable sample of value 10
var sample = 10;
//define function add which takes another parameter
var add = function(){
return sample + param_outer;
}
//return the inner function
return add;
}
Here, we have a nested function add() which can take in parameters from the
outer function addTo(). When user makes a call to addto() with some
parameter, he will get the inner function as a return for it, which in turn will
execute the addition and return the value.
var test = addTo(10);
Internally, param_outer will be equal to 10, and add will take value of
addition of param_outer and sample and will evaluate to 20.
var add = 20 ;
When the addTo() call returns add, the value of test will equal to that of add,
which is 20.
Let us take an even more complicated example:
//Example 3
//define function addTo() which takes a parameter

var addTo = function(param_outer){
//define function add which takes another parameter
var add = function(param_inner){
return param_inner + param_outer;
}
//return the inner function
return add;
}
var test = addTo(10); //value will not be 20
Here, test will take the value of inner function and will become a function
itself, which will have a preserved variable, param_outer equal to 10, set by
us.
So, test will internally look like this:
//this is only a representation of how it will internally look
var test = function(param_inner){
return param_inner + 10;
}
If we want to add 10 to any number, we can simply write:
var x =10;
var y = test(x);
This will make the value of y equal to 20, or 10 + 10.
A good use case is when we want to add a constant to some numbers. We can
use this approach for closures.
Example:
var addThree = addTo(3);
var a = addThree(10);//a will have 3 + 10 = 13
var a = addThree(20);//a will have 3 + 20 = 13
var a = addThree(30);//a will have 3 + 30 = 33
Features of Closures

●The inner functions have access to outer function variables even after they
have been executed, as we saw in our third example. We called the outer
function before calling the inner function and even after returning the value,
we could use the outer function parameters inside the inner function as it was
preserved.
●Closures store references and not actual values to outer functions variables
and can be edited, if needed (refer example 4).
●Closures provide a secure way of dealing with certain data, as we can save
references to variables and prevent accidental changes.
//Example 4
//define a variable a = 5
var a = 5;
//define function add which adds 5 to a and returns value
var add = function(val){
a = a + val;//adding val to a
return a;//return a
}
a = 10; //update value of a
var result = add(5); //will make result equal to 15 and not 10 as //value of a is
updated before the closure is called so saved //reference is updated with new
reference
Closures are powerful but due care needs to be taken, as updated references
can make your code full of bugs. Always make sure to use the capability
carefully.
Note: Closures are functions or inner function which have preserved data
referenced inside them from global or outer scopes.
Callbacks in JavaScript
JavaScript functions are first-class objects. “First-class objects” mean that
they can be used like other objects in the body. Like variables, we can save
their references, pass them as arguments, declare nested functions (refer to
previous sections), and can be return values of functions as we saw earlier.

The capability of a function to be passed as argument to another function
makes JavaScript functions special. A passed function can be executed at a
later stage, or be returned as a function to be executed later by some other
function. This is what constitutes the JavaScript Callbacks.
Callbacks are functions which are passed as parameters to another function
and is executed from the body of the containing function. Since the scenarios
where such capabilities are of use is limited, they can be referred to as
callback patterns.
//define a callback function sum()
var sum = function (num1 , num2){
return num1 + num2;
}
//define a function that will use sum() as parameter
var calling_func = function (a , b , callback){
return callback (a , b);//calling the callback function with //parameters
}
var sample = calling_func(5 , 5 , sum);//new will be assigned 10
Let us walk through the code above. First, we declare a simple function that
adds two values and return the result. Next, we define a function which takes
in two parameters and a third parameter which is “callback”. Callback is
basically a variable which will store the name of function we will pass and
execute it accordingly. It can be called any name. For ease of understanding, I
have named it callback.
The important thing to note is that when we pass a function as variable, we
only send the definition of callback function as in the name (say sum), not the
function call with parenthesis. The function is executed only when it is called
inside the body of the containing function.
As we have seen, callback functions are not called immediately, but are
preserved as references and are only called when specified by the calling
function, thus making them closures as detailed in the previous section.
Callback functions not only can take existing functions as parameters, but can
also define a completely new function in the parameter. It will be called as a

callback by the containing function. Let’s go through an example:
//no callback function is defined
//define a function that will use sum() as parameter
var sum = function(a,b){
return a+b;
}
var some_func= function(a , b , callback){
return callback(a,b);
}
console.log(some_func(5,5,function(a,b){
return a-b;
}));
//output
0
Here, the function is specified directly with a return value. This works fine,
and is used when we have situations where we know a certain function will
only be used once or twice during our development.
Another important point to learn is that we can pass parameters to callback
functions from inside the containing function.
var sum = function(a,b){
return a+b;
}
var b = 10; //define a global variable
var some_func= function(a , callback){
return callback(a,b);//pass global var as a parameter
}
console.log(some_func(5,sum));
//output
//15

Here, we can pass in some reserved or pre-defined parameters to the callback
function which can consume it. This results in better code quality and more
security.
There is a necessary condition that whatever the callback function is should
legitimately be a function. To prevent accidentally passing callback variables
as something other than a function, we can put an “if” condition to check
typeof callback, and only execute further if it is of type “function”.
If(typeof callback === “function”){
//body of our function
}
Callbacks can be more than one function and can be passed as a parameter, as
for a single callback.
var sum = function(a,b){
console.log("Callback")
}
var sum1 = function(a,b){
console.log("Callback2")
}
var b = 10;
var some_func= function(smthn , callback){
console.log("containign func")
callback();

smthn();
}
some_func(sum,sum1);
//output
containing func
Callback
Callback2

Here, we are passing in two callbacks and executing them one after another,
as per our needs. This is the basic concept of callbacks.
Closures and callbacks are developed to facilitate ease of development for us
and should be used as needed. Due attention needs to be paid while using
them. Remember, closures are nothing but functions with preserved data.
Similarly, callbacks can be generalized to “functions containing functions as
parameters”.

Chapter 18 Apply, call, and bind methods in JavaScript
The apply(), call(), and bind() methods in JavaScript allow us to change the
value of the "this" keyword with the help of some arguments. These methods
are useful for calling a specified or targeted function. All three of these
methods are closely related.
In this section, we will review these three methods of JavaScript in brief.
The ‘this’ keyword
Before diving into the details of apply(), call(), and bind() methods, we need
to know about the keyword “this” in JavaScript.
In terms of global context
The keyword “this” refers to the global object outside of any method. In the
following example, we will see the scope of this keyword in the global
context. We will just console.log the “this” keyword in the browser.
console.log(this);
The result in the console is “window”, which is nothing but the global object.
This result implies that:
console.log(this === window); // is true
In the example above, we entered console.log(this) which gave us window
object.
In this example, we will use strict mode and check the value of the “this”
keyword.
function abc(){
'use strict'; // the strict mode
return this;
}
console.log(abc()); // undefined
This time, the value of the ‘this” keyword is undefined because it was not
defined inside the function abc().
In terms of function context
Addressing the “this” keyword in terms of function context, we have the
three methods call(), apply(), and bind().

Let’s talk about these methods in detail.
The apply method
The apply() method invokes a function with the value of “this” keyword, and
parameters provided as an array (or an array-like object).
Syntax:
The method apply() has the following syntax:
functionName.apply(thisArgument, argsArray[])
Parameters
Let's have a look at the arguments provided to the apply() method.
● thisArgument: The value of keyword "this" provided for the invoke the
functionName.
Note: The value of the keyword "this" may not be the original value seen by
the function when working in non-strict mode. The primitive values and the
global object will be replaced by “undefined” and “null”.
● argsArray[]: An argument of an array-like object that specifies the
arguments with which functionName should be called, or undefined or null if
no arguments should be provided to the method.
Example:
In the following example, we will take a look at the basic functionality of the
apply() method.
var student1 = {firstName: 'Abhishek', lastName: 'Kumar'};
var student2 = {firstName: 'Ashok', lastName: 'Mehta'};
function text(hello) {

console.log(hello + ' ' + this.firstName + ' ' + this.lastName + ' ?');
}
text.apply(student1, ['How are you']); // How are you Abhishek Kumar ?
text.apply(student2, ['How are you']); // How are you Ashok Mehta ?
The call method
The call() method invokes a particular function with the help of the "this"
keyword and an individual argument.

Syntax:
The method call() has the following syntax:
functionName.call (thisArgument, argument1, argument2,)
Parameters
Let's have a look at the arguments provided to the apply() method.
● thisArgument: The value of keyword "this" provided for the invoke the
functionName.
Note: As with the apply() method, the value of keyword "this" may not be the
original value seen by the function when working in non-strict mode. The
primitive values and the global object will again be replaced by undefined
and null.
● Argument1, 2 … :Arguments for the different functions
Example:
var student1 = {firstName: 'Abhishek', lastName: 'Kumar'};
var student2 = {firstName: 'Ashok', lastName: 'Mehta'};
function text(hello) {

console.log(hello + ' ' + this.firstName + ' ' + this.lastName + ' ?');
}
text.call(student1, ['How are you']); // How are you Abhishek Kumar ?
text.call(student2, ['How are you']); // How are you Ashok Mehta ?
The bind method
The method bind() calls a newly created function (created by the method
itself), which has the value of the keyword "this" set to the specified value,
with a given pattern of parameters.
Syntax:
The method call() has the following syntax:
function.bind (thisArgument[, argument1[, argument2[, ...]]])
Parameters
Let's have a look at the arguments provided to the apply() method.
● thisArgument: The value to be passed as the keyword this argument to

the specified function when the bound function is invoked.
If the bound function is created using the new operator, the value will be

ignored.
● argument1,[, argument2[, ...]]]: Arguments attached to arguments
provided to the bound function when calls the specified function.
Example:
var student1 = {firstName: 'Abhishek', lastName: 'Kumar'};
var student2 = {firstName: 'Ashok', lastName: 'Mehta'};
function text() {

console.log('hello' + ' ' + this.firstName + ' ' + this.lastName + ' ?');
}
var textHelloAbhishek = text.bind(student1);
var textHelloAshok = text.bind(student2);
textHelloAbhishek(); // How are you Abhishek Kumar ?
textHelloAshok(); // How are you Ashok Mehta ?
Difference between apply, call and bind
The apply() method calls the function and allows you to pass in parameters as
an array or an array-like object.
The call() method calls the function and allows you to pass in parameters one
by one.
The bind() method returns a newly created function and allows you to pass in
any number of arguments.
Now that we know what the call(), apply(), and bind() methods in JavaScript
are, the question still remains “when do I use which methods”?
In this section, we will clear this confusion by comparing all of them based
on a few parameters.
The method call(), and apply() are somewhat interchangeable, depending on
how you as the programmer decide to utilize them. You have a choice to
determine whether it is easier to send a list of arguments separated by
commas, or an array of arguments.

The bind() method is a bit different from the other two.
Where the apply() and call() methods execute the current function on the
spot, the bind() method returns a newly created function.
A bind() method can be used for events such as onClick, where the firing of
such events is uncertain.
We as programmers can't predict when those events will be fired, but we can
serve the context to them.

Chapter 19 Events
So far, all the applications and scripts that have been created have something
in common: they are executed from the first instruction to the last
sequentially. Thanks to the flow control structures (if, for, while) it is
possible to slightly modify this behavior and repeat some pieces of the script
and skip other pieces depending on some conditions.
These types of applications are not very useful since they do not interact with
users and cannot respond to the different events that occur during the
execution of an application. Fortunately, web applications created with the
JavaScript language can use the event-based programming model.
In this type of programming, the scripts are dedicated to waiting for the user
to "do something" (press a key, move the mouse, close the browser window).
Next, the script responds to the user's action by normally processing that
information and generating a result.
Events make it possible for users to transmit information to programs.
JavaScript defines numerous events that allow a complete interaction
between the user and the web pages/applications. Pressing a key constitutes
an event, as well as clicking or moving the mouse, selecting an element of a
form, resizing the browser window, etc.
JavaScript allows you to assign a function to each of the events. In this way,
when any event occurs, JavaScript executes its associated function. These
types of functions are called "event handlers" in English and are usually
translated as "event handlers".

Event Models
Creating web pages and applications has always been much more complex
than it should be due to incompatibilities between browsers. Although there
are dozens of standards for the technologies used, browsers do not fully
support them or even ignore them.
The main incompatibilities occur in the XHTML language, in the support of
CSS stylesheets and, above all, in the implementation of JavaScript. Of all of
them, the most important incompatibility occurs precisely in the browser's
event model. Thus, there are up to three different models to handle events
depending on the browser in which the application runs.

Basic Event Model
This simple event model was introduced for version 4 of the HTML standard
and is considered part of the most basic level of DOM. Although its features
are limited, it is the only model that is compatible in all browsers and
therefore, the only one that allows you to create applications that work the
same way in all browsers.

Standard Event Model
The most advanced versions of the DOM standard (DOM level 2) define a
completely new and much more powerful event model than the original. All
modern browsers include it, except Internet Explorer.

Internet Explorer Event Model
Internet Explorer uses its own event model, which is similar but incompatible
with the standard model. It was first used in Internet Explorer 4 and
Microsoft decided to continue using it in the other versions, despite the fact
that the company had participated in the creation of the DOM standard that
defines the standard event model.

Basic Event Model

Types Of Events
In this model, each XHTML element or tag defines its own list of possible
events that can be assigned. The same type of event (for example, clicking
the left mouse button) can be defined for several different XHTML elements
and the same XHTML element can have several different events associated.
The name of each event is constructed using the prefix on, followed by the
English name of the action associated with the event. Thus, the event of
clicking an element with the mouse is called onclick and the event associated
with the action of moving the mouse is called onmousemove.
The most used events in traditional web applications are onload to wait for
the page to load completely, the events onclick, onmouseover, onmouseout to
control the mouse and onsubmit to control the submission of forms.
The typical actions that a user performs on a web page can lead to a
succession of events. Pressing for example on a button of type <input type =
"submit"> triggers the events onmousedown, onclick, onmouseup and

onsubmit consecutively.

Event Handlers
A JavaScript event by itself lacks utility. For events to be useful, JavaScript
functions or code must be associated with each event. In this way, when an
event occurs, the indicated code is executed, so the application can respond to
any event that occurs during its execution.
The functions or JavaScript code defined for each event are called "event
handler" and since JavaScript is a very flexible language, there are several
different ways to indicate the handlers:
▪ Handlers as attributes of the XHTML elements.
▪ Handlers as external JavaScript functions.
▪ "Semantic" handlers.

Event handlers as XHTML attributes
This is the simplest and least professional method of indicating the JavaScript
code that should be executed when an event occurs. In this case, the code is
included in an attribute of the XHTML element itself. In the following
example, we want to show a message when the user clicks on a button:

<input type = "button" value = "Click me and you will see" onclick = "alert
('Thanks for clicking');" />
In this method, XHTML attributes are defined with the same name as the
events to be handled. The previous example only wants to control the event
of clicking with the mouse, whose name is onclick. Thus, the XHTML
element for which you want to define this event must include an attribute
called onclick.
The content of the attribute is a text string that contains all the JavaScript
instructions that are executed when the event occurs. In this case, the
JavaScript code is very simple (alert ('Thanks for clicking');), since it is only
about displaying a message.
In this other example, when the user clicks on the <div> element a message is
displayed and when the user hovers the mouse over the element, another
message is displayed:
<div onclick = "alert ('You clicked with the mouse'); " onmouseover = "alert

('You just ran over the mouse');">
You can click on this element or just hover over the mouse
</div>
This other example includes one of the most used instructions in older
JavaScript applications :
<body onload = "alert ('The page has been fully loaded');"> ...
</body>
The previous message is displayed after the page has been fully loaded, that
is after it has been loaded downloaded your HTML code, your images and
any other object included in the page.
The onload event is one of the most used since, as seen in the DOM chapter,
the functions that allow access and manipulation of the nodes of the DOM
tree are only available when the page has been fully loaded.

Event handlers and ‘this’ Variable
JavaScript variable defines a special variable called this that is created
automatically and used in some advanced programming techniques. In
events, the variable this can be used to refer to the XHTML element that
caused the event.

Event handlers as external functions
The definition of event handlers in XHTML attributes is the simplest but
least advisable method of dealing with events in JavaScript. The main
drawback is that it is complicated in excess as soon as a few instructions are
added, so it is only recommended for the simplest cases.
If complex applications are made, such as the validation of a form, it is
advisable to group all the JavaScript code into an external function and call
this function from the XHTML element.
Following the previous example that shows a message when clicking on a
button:

<input type = "button" value = "Click me and you will see" onclick = "alert
('Thanks for clicking');" /> Using external functions can be transformed into:
function sample Message () {

alert ('Thanks for clicking');
}
<input type = "button" value = "Click me and you will see" onclick =
"sample Message ()" />
This technique consists of extracting all JavaScript instructions and grouping
them into an external function. Once the function is defined, the function
name is included in the attribute of the XHTML element, to indicate that it is
the function that is executed when the event occurs.
The function call is made in the usual way, indicating its name followed by
the parentheses and optionally, including all the necessary arguments and
parameters.
The main drawback of this method is that in the external functions it is not
possible to continue using the variable this and therefore, it is necessary to
pass this variable as a parameter to the function.
In the previous example, the external function is called with the parameter
this, which within the function is called element. The complexity of the
example is mainly due to the way in which different browsers store the value
of the borderColor property.
While Firefox stores (in case the four edges match in color) the black value,
Internet Explorer stores it as black black black black and Opera stores its
hexadecimal representation # 000000.

Semantic event handlers
The methods that have been seen to add event handlers (as XHTML
attributes and as external functions) have a serious drawback: they "dirty" the
XHTML code of the page.
As is known, one of the basic good practices in the design of web pages and
applications is the separation of content (XHTML) and its appearance or
presentation (CSS). Whenever possible, it is also recommended to separate
the contents (XHTML) and its behavior or programming (JavaScript).
Mixing the JavaScript code with the XHTML elements only helps to
complicate the source code of the page, make it difficult to modify and
maintain the page and reduce the semantics of the final document produced.
Fortunately, there is an alternative method to define JavaScript event

handlers. This technique is an evolution of the method of external functions,
since it is based on using the DOM properties of XHTML elements to assign
all external functions that act as event handlers. So, the following example:
<input id = "clickable" type = "button" value = "Click me and you will see"
onclick = "alert ('Thanks for clicking');" />
It can be transformed into:
// External function function sample Message () {
alert ('Thanks for clicking');
}
// Assign the external function to the document.getElementById ("clickable")
element. Onclick = sample Message;
// XHTML element
<input id = "pinchable" type = "button" value = "Click and see" /> The
technique of semantic handlers consists of:
1.Assign a unique identifier to the XHTML element using the id attribute.
2.Create a JavaScript function responsible for handling the event.
3.Assign the external function to the corresponding event in the desired
element.
The last step is the key to this technique. First, you get the element to which
you want to associate the external function: document.getElementById
("clickable");
Next, a property of the element with the same name as the event to be
handled is used. In this case, the property is onclick:
document.getElementById ("clickable"). Onclick = ...
Finally, the external function is assigned by its name without parentheses.
The most important thing (and the most common cause of errors) is to
indicate only the name of the function, that is, dispense with the parentheses
when assigning the function: document.getElementById ("clickable").
Onclick = sample Message;
If the parentheses are added after the name of the function, the function is
actually running and saving the value returned by the function in the element
onclick property.

// Assign an external function to an event of a document.getElementById
("pinchable") element. Onclick = sample Message;
// Execute a function and save its result in a property of a
document.getElementById ("pinchable") element. Onclick = sampleMessage
();
The great advantage of this method is that the resulting XHTML code is very
"clean" since it does not mix with the JavaScript code. In addition, within the
assigned external functions, the variable this can be used to refer to the
element that causes the event.
The only drawback of this method is that the page must be fully loaded
before the DOM functions assigned by the handlers to the XHTML elements
can be used. One of the easiest ways to ensure that certain code is to be
executed after the page is fully loaded is to use the onload event:
window.onload = function () {
document.getElementById ("clickable"). Onclick = sample Message ; }
The prior art uses the concept of anonymous functions, which is not going to
be studied, but which allows to create a compact and very simple code. To
ensure that a JavaScript code is to be executed after the page has been fully
loaded, you only need to include those instructions between the {and}
symbols:
window.onload = function () {...
}
In the following example, you add events to elements of type input = text of a
complex form:
function highlights () {
// JavaScript code}
window.onload = function () {
var form = document.getElementById ("form"); var fieldsInput =
form.getElementsByTagName ("input");
for (var i = 0; i <fieldsInput.length; i ++) {
if (fieldsInput [i] .type == "text") {fieldsInput [i] .onclick = highlights;
}

}
}

Obtaining Event Information (Event Object)
Normally, event handlers require additional information to process their
tasks. If a function, for example, is responsible for processing the onclick
event, you may need to know what position the mouse was at the time of
clicking the button.
However, the most common case in which it is necessary to know additional
information about the event is that of the events associated with the keyboard.
Normally, it is very important to know the key that has been pressed, for
example, to differentiate the normal keys from the special keys (ENTER, tab,
Alt, Ctrl., Etc.).
JavaScript allows you to obtain information about the mouse and keyboard
using a special object called event. Unfortunately, different browsers have
very notable differences in the treatment of information about events.
The main difference lies in the way in which the event object is obtained.
Internet Explorer considers that this object is part of the window object and
the rest of browsers consider it as the only argument that the event handling
functions have.
Although it is a behavior that is very strange at first, all modern browsers
except Internet Explorer magically and automatically create an argument that
is passed to the managing function, so it is not necessary to include it in the
call to the managing function. Thus, to use this "magic argument", it is only
necessary to assign it a name, as browsers automatically create it.
In summary, in Internet Explorer type browsers, the event object is obtained
directly by: var event = window.event;
On the other hand, in the rest of browsers, the event object is obtained
magically from the argument that the browser automatically creates:
function handlerEvents (theEvent) {
var event = theEvent;
}
If you want to program an application that works correctly in all browsers, it

is necessary to obtain the event object correctly according to each browser.
The following code shows the correct way to obtain the event object in any
browser:
function handlerEvents (elEvento) {
var event = elEvento || window.event; }
Once the event object is obtained, all the information related to the event can
be accessed, which depends on the type of event produced.

Information about the event
The type property indicates the type of event produced, which is useful when
the same function is used to handle several events: var type = event.type;
The type property returns the type of event produced, which is equal to the
name of the event but without the prefix on.
Using this property, the previous example in which a section of contents was
highlighted when you hover the mouse over.

Information about keyboard events
Of all the events available in JavaScript, keyboard-related events are the most
incompatible between different browsers and therefore, the most difficult to
handle. First, there are many differences between browsers, keyboards, and
user operating systems, mainly due to differences between languages.
In addition, there are three different events for the keystrokes (onkeyup,
onkeypress, and onkeydown). Finally, there are two types of keys: normal
keys (such as letters, numbers and normal symbols) and special keys (such as
ENTER, Alt, Shift, etc.)
When a user presses a normal key, three events occur in a row and in this
order: onkeydown, onkeypress and onkeyup. The onkeydown event
corresponds to the fact of pressing a key and not releasing it; the onkeypress
event is the key press itself and the onkeyup event refers to the release of a
key that was pressed.
The easiest way to obtain information about the key that has been pressed is
through the onkeypress event. The information provided by the onkeydown
and onkeyup events can be considered as more technical since they return the
internal code of each key and not the character that has been pressed.

Below is a list with all the different properties of all keyboard events in both
Internet Explorer and other browsers:
Keydown event:
▪ Same behavior in all browsers:
▪ KeyCode property: internal code of the key
▪ CharCode property: not defined
Keypress event:
Internet Explorer:
▪ keyCode property: the character code of the key that was pressed
▪ charCode property: not defined
Other browsers:
▪ keyCode property: for normal keys, not defined. For special keys, the
internal code of the key.
▪ charCode property: for normal keys, the character code of the key that was
pressed. For special keys, 0.
Keyup event:
▪ Same behavior in all browsers:
▪ KeyCode property: internal code of the key
▪ charCode property: not defined
To convert the code of a character (not to be confused with the internal code)
when character representing the key that was pressed, the
String.fromCharCode () function is used.
When you press the a key in the Firefox browser, the following sequence of
events is displayed:
------------- -------------------------
Event type: keydown KeyCode
property: 65
charCode property: 0
Character pressed:?

Event type: keypress
KeyCode property: 0
charCode property: 97
Character pressed: a

Event type: keyup KeyCode
property : 65
charCode property: 0 Character pressed:?
Pressing the A key (the same key, but having previously activated the capital
letters) shows the following sequence of events in the Firefox browser:
--------------------- -----------------
Event type: keydown KeyCode
property: 65
charCode property: 0 Character pressed:?

Event type: keypress
KeyCode property: 0
charCode property: 65
Character pressed: A

Event type: keyup KeyCode
property : 65
charCode property: 0 Character pressed:?
In the keydown and keyup events, the keyCode property is still valid in both
cases. The reason is that keyCode stores the internal code of the key, so if the
same key is pressed, the same code is obtained, regardless of the fact that the
same key can produce different characters (for example, upper and lower
case).

In the keypress event, the value of the charCode property varies, since
character a is not the same as character A. In this case, the value of charCode
matches the ASCII code of the pressed character.
Following the Firefox browser, if a special key is pressed, such as the tab, the
following information is displayed:
------------------------ --------------
Event type: keydown KeyCode
property: 9
charCode property: 0 Character pressed:?

Event type: keypress
KeyCode property: 9
charCode property: 0
Character pressed:?

Event type: keyup KeyCode
property: 9
charCode property: 0 Character pressed:?
The special keys do not have the charCode property, since only the internal
code of the key pressed in the keyCode property is saved, in this case, code 9.
If the Enter key is pressed, code 13 is obtained, the key the upper arrow
produces code 38, etc. However, depending on the keyboard used to press the
keys and depending on the arrangement of the keys depending on the
language of the keyboard, these codes may vary.
The result of the execution of the same example above in the Internet
Explorer browser is shown below. Pressing the a key, the following
information is obtained:

Event type: keydown KeyCode
property: 65

charCode property: undefined Character pressed:
---------------------------------- ----
Event type: keypress
KeyCode property: 97
charCode property: undefined Character pressed:
------------------------------ --------
Event type: keyup KeyCode
property: 65
charCode property: undefined Character pressed:
The keyCode property in the keypress event contains the ASCII code of the
key character, so the character can be obtained directly using
String.fromCharCode (keyCode).
If the A key is pressed, the information shown is identical to the previous
one, except that the code that shows the keypress event changes to 65, which
is the ASCII code of the A key:
----------- ---------------------------
Event type: keydown KeyCode
property: 65
charCode property: undefined Character pressed:
------- -------------------------------
Event type: keypress
KeyCode property: 65
charCode property: undefined Character pressed:
--- -----------------------------------
Event type: keyup KeyCode
property: 65
charCode property: undefined Character pressed :
When you press a special key like the tab, Internet Explorer displays the
following information:

--------------------------------- -----
Event type: keydown KeyCode
property: 9
charCode property: undefined Character pressed:
The codes shown for the special keys match those of Firefox and other
browsers but remember that they may vary depending on the keyboard that is
used and in the function of the arrangement of the keys for each language.
Finally, the altKey, ctrlKey and shiftKey properties store a Boolean value
that indicates whether any of those keys were pressed when the keyboard
event occurred. Surprisingly, these three properties work the same way in all
browsers:
if (event.altKey) {
alert ('The ALT key was pressed'); }
Below is the case in which the Shift key is pressed and without releasing it,
you press on the key that contains the number 2 (in this case, it refers to the
key that is at the top of the keyboard and by therefore, it does not refer to the
one found on the numeric keypad). Both Internet Explorer and Firefox show
the same sequence of events:

Event type: keydown KeyCode
property: 16
charCode property: 0 Character pressed:?

Event type: keydown KeyCode
property: 50
charCode property: 0 Character pressed:?

Event type: keypress
KeyCode property: 0
charCode property: 34

Character pressed: "

Event type: keyup KeyCode
property : 50
charCode property: 0 Character pressed:?

Type of event: keyup
Property keyCode: 16
Property charCode: 0 Character pressed:?
The keypress event is the only one that allows to obtain the really pressed
character, since when pressing on key 2 having previously pressed the Shift
key, the character is obtained ", which is precisely the one that shows the
keypress event.
The following JavaScript code allows you to correctly obtain in any browser
the character corresponding to the key pressed:
function handler (elEvento) {
var event = elEvento || window.event; var character = event.charCode ||
event.keyCode; alert ("The clicked character is:" + String.fromCharCode
(character));
} document.onkeypress = handler;

Information about mouse events
The most relevant information about mouse-related events is the coordinates
of the mouse pointer position. Although the origin of the coordinates is
always in the upper left corner, the point taken as a reference of the
coordinates may vary.
In this way, it is possible to obtain the position of the mouse with respect to
the computer screen, with respect to the browser window and with respect to
the HTML page itself (which is used when the user has scrolled over the
page). The simplest coordinates are those that refer to the position of the
pointer with respect to the browser window, which are obtained through the
clientX and clientY properties:

function showsInformation (the Event) {
var event = the Event || window.event; var coordinateX = event.clientX; var
coordinateY = event.clientY; alert ("You clicked on the position:" +
coordinate X + "," + coordinate Y);
} document.onclick = sampleInformation;
The coordinates of the position of the mouse pointer with respect to the full
screen of the user's computer are obtained in the same way, using the screenX
and screenY properties:
var coordinateX = event.screenX; var coordinateY = event.screenY;
In many cases, it is necessary to obtain another pair of different coordinates:
those corresponding to the position of the mouse with respect to the origin of
the page. These coordinates do not always coincide with the coordinates
regarding the origin of the browser window since the user can scroll over the
web page. Internet Explorer does not provide these coordinates directly,
while other browsers do. In this way, it is necessary to detect if the browser is
Internet Explorer type and if so, perform a simple calculation.
The ie variable is true if the browser in which the script is run is of type
Internet Explorer (any version) and false otherwise. For the rest of the
browsers, the coordinates regarding the origin of the page are obtained using
the pageX and pageY properties. In the case of Internet Explorer, they are
obtained by adding the position with respect to the browser window (clientX,
clientY) and the page scrolling (document.body.scrollLeft,
document.body.scrollTop).

Chapter 20 Arrays in JavaScript
What is an array?
An array is a collection of items. It is basically a JavaScript object that is used
to store an ordered collection of items. All the items can be accessed by using
a single name which is the array name. Unlike Java, arrays in JavaScript can
have non-homogenous data stored in them, i.e., items in the array can be of
different data types.
An array is one of the most useful entities in any programming language; a
programming language is incomplete without an array. Often we find the
need to have a list of items, and it is easier to do so with arrays, instead of
having a separate variable for each item, you can refer to the whole list with
just one variable if you use arrays.
Initializing arrays in JavaScript
There are two ways of initializing an array in JavaScript which is listed
below.

Method 1:

This is the most commonly used method to create an array, in this method
array is declared with the help of square brackets [], where the items of the
array are placed between these square brackets separated by commas.
Example:
var myArray = []; //initialzing an empty array

var myArray2 = [‘this’, ‘is’, ‘an’, ‘array’];

Method 2:

This method involves initialization of array with the help of ‘new’ keyword
which is used to initialize an object of Array ‘class’.
Example:
var myArray = new Array(); //initialzing an empty array

var myArray2 = new Array(‘this’, ‘is’, ‘an’, ‘array’);

Accessing elements of array
Array’s elements or items are accessed by referring to their index number

which is the position of element or item in the array. The index number in
JavaScript starts from 0, not from 1, so index number of the first element will
be 0 and that of the second one will be 1 and so on.
Elements can be accessed by typing array name followed by the index
number of the desired element enclosed within square brackets [].
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’];
console.log(myArray.0); // WRONG SYNTAX, array’s elements are not
object’s properties
console.log(myArray); // CORRECT SYNTAX, prints ‘this’ on the console
screen

console.log(myArray); //CORRECT SYNTAX,prints ‘an’ on the console
screen
Unlike objects, in arrays, elements cannot be referred to by string indexes.
But arrays can store objects as one of its elements which can have string
index.
Example:
var myArray = [‘this’, ‘is’, { ‘an’ : ‘example’ }];
console.log(myArray.an);// WRONG SYNTAX

console.log(myArray.an);//CORRECT SYNTAX, prints ‘example’ on the
console screen
Nested array
It is possible to have nested arrays, i.e., arrays within arrays, in JavaScript.
You just have to declare an array, as you normally do, as an element of
another array.
Example:
var myArray = [‘an array’, [‘nested’, ‘array’]];
console.log(myArray); //prints ‘an array’ on the console screen

console.log(myArray); //prints ‘nested’ on the console screen

Modifying and adding elements to array
You can directly assign values to array elements by referring them with their
index number, the same way as you do to access them.
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’];
console.log(myArray); // prints ‘an’ on the console screen
myArray = ‘change’;

console.log(myArray); // prints ‘change’ on the console screen
You can add values to array in the exact manner as you assign values to array
elements, if that particular index is bigger than array’s size then it gets
created automatically.
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’];
myArray = ‘change’; // index 12 doesn’t exists but gets created when we
assign value to this index

console.log(myArray); // prints ‘change’ on the console screen
You can also add elements to the array by using .push() method about which
you will read later in this chapter.
Size or length of an array
You can get the size/length of an array by using the ‘length’ property of the
array object. As the index starts from 0, the valid indexes for an array of
length ‘n’ is from 0 to (n – 1);
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
console.log(myArray.length); //prints ‘5’ on the console screen

console.log(myArray[myArray.length – 1]); //prints ‘example’ on the
console screen
When you add a new value to an array by using an index number that did not
exist previously, the array length is updated accordingly.

Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
console.log(myArray.length); //prints ‘5’ on the console screen
myArray = ‘change’;

console.log(myArray.length); //prints ‘13’ on the console screen
Looping through array
Looping through an array in JavaScript is rather simple, there are many
approaches to do so, some of the most common and easy ways to do so are
discussed below.

Using array’s length:

This method is simple and straightforward; it involves getting an array’s
length using ‘length’ property of the array object and then looping from 0 to
the obtained length.
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
var len = myArray.length;
// notice that we use ‘<’ operator below not ‘<=’ here
for(var i = 0; i < len; i++) {
console.log(myArray[i]);
}

//above example prints each element of the array in separate line on the
console screen

Using .forEach() method:

Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
myArray.forEach(function(item, index, array) {
console.log(index, item);
});

//above example prints index along with the corresponding element of the
array in separate line on the console screen

for-of method:

This method involves usage of the ‘of’ keyword in for loop.
Example usage:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
for (var item ofmyArray) {

console.log(item);
}

//above example prints each element of the array in separate line along with
other properties of the object on the console screen
Some commonly used array object methods

.pop()

This method removes the last element from the array and returns it.
Example usage:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
console.log(myArray.length);//prints ‘5’ on the console screen
console.log(myArray.pop());// prints ‘example’ on the console screen
console.log(myArray.length);//prints ‘4’ on the console screen, as the last
element has been removed using .pop() method, so now length becomes 4

.push(item1, item2 ... itemN)

This method adds element(s) to the end of the array. The element(s) to be
added are passed as an argument of this array.
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
console.log(myArray.length);//prints ‘5’ on the console screen
myArray.push(‘more’, ‘elements’);//adding 2 new elements at the end of the

array
console.log(myArray.length);//prints ‘7’ on the console screen, as two new
elements have been added

.shift()

Same as .pop() method but instead of removing the last element of the array,
this method removes the first element of the array and returns it.
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
console.log(myArray.length);//prints ‘5’ on the console screen
console.log(myArray.shift());// prints ‘this’ on the console screen
console.log(myArray.length);//prints ‘4’ on the console screen, as the first
element has been removed using .shift() method so now length becomes 4

 .unshift(item1, item2 ... itemN)

Same as .pop() method but instead of adding element(s) to the end of the
array, this method adds the element(s) at the start of the array.
Example usage:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
console.log(myArray.length);//prints ‘5’ on the console screen
myArray.unshift(‘more’, ‘elements’);//adding 2 new elements at the end of
the array
console.log(myArray););//prints ‘more’ on the console screen
console.log(myArray.length);//prints ‘7’ on the console screen, as two new
elements have been added

 .join(separator)

This method returns a string consisting of the elements of the array with the
argument passed as the separator between them. The separator argument is
optional if it is not passed then the separator is taken as a comma.
Example:

var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
console.log(myArray.join(‘-’));
//prints “this-is-an-array-example” on the console screen

.slice(startIndex, endIndex):

This method extracts the part of the array starting from startIndex and ending
at (endIndex - 1) and returns it as a new array; the original array stays
unaffected. Both of the arguments are optional, if not specified then whole
array copy is returned.
Example:
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘example’];
var newArray = myArray.slice(1, 3);
console.log(newArray); // prints [‘is’, ‘an’] on the console screen

.indexOf(searchItem)

This method returns the first index of the element which is being searched for
based on the argument passed, returns -1 if no such element was found.
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘an’,‘example’];
console.log(myArray.indexOf(‘an’));//prints ‘2’ on the console screen
console.log(myArray.indexOf(‘random’));//prints ‘-1’ as no such element is
there in the array

.lastIndexOf(searchItem)
This method is same of .indexOf() method but instead of returning the first
index of the searched element it returns the last index of it, if a match was
found, else it returns -1.
var myArray = [‘this’, ‘is’, ‘an’, ‘array’, ‘an’,‘example’];
console.log(myArray.lastIndexOf(‘an’));//prints ‘4’ on the console screen
console.log(myArray.indexOf(‘random’));//prints ‘-1’ as no such element is
there in the array
Arrays are very useful. So learn the array concepts very well. I hope this
chapter was helpful.

Chapter 21 Values, Types, and Operators
In the world of computers, there is data. You can create new data, read data
and change data, which are all stored as a look-alike long succession of bits.
Define bits as zeros and ones that take a strong or weak signal, and high or
low electrical charge from inside the computer. All data and pieces of
information are described as a succession of zeros and ones and represented
in bits.
Values
Take a deep breath and think of an ocean of bits. The latest PCs contains
more than 30 billion bits in its data storage. We use bits to create values. The
computer can function correctly because every bit of information is split into
values. Every value consists of a type that influences its role, and values can
be numbers, text or functions, etc. To generate value, you need to invoke its
name, and it appears from where it was stored.
Arithmetic
Arithmetic is the major thing to do with numbers. The multiplication,
addition, and subtraction of more than one number to produce another
number is an arithmetic operation. This is an example of what they look like
in JavaScript:
100 + 4 * 11
The + and * symbols are called operators, the first means addition while the
other means multiplication. An operator inserted between two values will
produce another value. The - operator is for subtraction and the / operator is
for the division. If operators show together without parentheses, the
precedence of the operators decides the way they are applied. If several
operators with the same precedence show right next to each other like 1 - 2 +
1, apply them left to right: (1 - 2) + 1.
Special numbers
JavaScript consists of three unique values that do not act like numbers but are
regarded as numbers. Infinity and -Infinity are the first two, which mean the
positive and negative infinities, and the last value is the NaN. NaN says “not
a number,” although it is a value of the number type.

Strings

A string is the succession of numbers. The string is the next data type, and
they represent text. Strings confine their content in quotes.
`Down the walkway path. `
"On top of the roof."
'I am at home.'
Quotes are used in different types like the double quotes, single quotes, or the
backticks to mark strings. It is essential that the strings match. The elements
within the quotes create a string value by JavaScript. JavaScript uses the
Unicode standard to assign a number to every character needed, including
Arabic, Armenian, Japanese, etc. You cannot subtract, multiply, or divide
strings but you can use the + operator, which will not add but concatenates
two strings together. Concatenation means to glue strings together.
Unary operators
Symbols do not represent all the operators. You can write some operators in
words. A clear example is a type of operator, and this operator creates a string
value with the name of the typeof its attached value.
console.log(typeof 4.5)
// → number
console.log(typeof "x")
// → string
The second displayed operator is called the binary operator because they use
two values, while operators that use one value are the unary operator.
console.log(- (10 - 2))
// → -8
Boolean values
Boolean is a value that differs only between two possibilities such as “on”
and “off” and so on. The Boolean consists of only true and false.
Comparison
Comparison is a way to create Boolean values:
console.log(3 > 2)
// → true

console.log(3 < 2)
// → false
The > and < characters are the signs that represent “is greater than” and “is
less than,” accordingly. You can use binary operators in a Boolean value that
determines if the contained value if true or false.
You can compare strings in the same manner.
console.log("Aardvark" < "Zoroaster")
// → true
You can instruct strings in alphabetical order, uppercase letters are often
“less” than lowercase, so "Z" < "a," and non-alphabetic characters (! -, and so
on) are also present in the ordering. When JavaScript want to compare
strings, it recognizes characters from left to right, differentiating the Unicode
codes individually.
Here are other related operators <= (less than or equal to), >= (greater than or
equal to), == (equal to), and!= (not equal to).
console.log("Itchy" != "Scratchy")
// → true
console.log("Apple" == "Orange")
// → false
In JavaScript, there is only one value that is not equal to itself, which is the
NaN (“not a number”).
console.log(NaN == NaN)
// → false
Logical operator
JavaScript endorses only three operators that you can apply to Boolean
values, they are and, or, and not. The && operator signifies logical or and its
results depend on where the values imputed are true or false.
console.log(true && false)
// → false
console.log(true && true)

// → true
The || operator indicates logical or. This operator outputs true if the given
value is true.
console.log(false || true)
// → true
console.log(false || false)
// → false
An exclamation mark (!) indicates Not. It is an operator that overturns the set
value, and it changes from true to false and false to true.
The || consists of the lowest precedence of all operators, then &&, the
comparison operators (>, ==, etc.), and so on. The example below states that
parentheses are necessary:
1 + 1 == 2 && 10 * 10 > 50
Empty values
Null and undefined are the only two types of special values that are used to
indicate the non-appearance of an important value. They contain zero data.
Automatic type conversion
Earlier I said that JavaScript accepts practically all given programs, including
programs with odd behaviors. Automatic type conversion illustrates in the
following expressions:
console.log(8 * null)
// → 0
console.log("5" - 1)
// → 4
console.log("5" + 1)
// → 51
console.log("five" * 2)
// → NaN
console.log(false == 0)
// → true

When you assign an operator the wrong value, JavaScript silently returns that
value to the exact type it requires using the type coercion rule. In the first
expression, the null turns to 0, and the 5 in the second remains 5 (from string
to number). In the third expression, there was a string concatenation before
the numeric addition, which converts the 1 to 1 (from number to a string).
When odd numbers such as "five" or undefined changes to the number, it gets
the value of NaN. If you want to differentiate between values of the same
type using ==, the output should be true if the values are similar except NaN.
If you want to test if a value contains a real value, use the == (or! =) operator
to compare it. To avert unexpected type conversions, use the three-character
comparison operators.
Short-circuiting of logical operators
The && and || are called the logical operators. They are used to hold several
types of values in a specific way. They change the values contained in the left
side to Boolean type to decide, although it depends on the operators and the
type of generated result, but will always reinstate the left or right-hand value.
The || operator sends back value to the left when it can be changed to true and
will reinstate the value to the right.
console.log(null || "user")
// → user
console.log("Kate" || "user")
// → Kate
This function is used to return values to its default value and placed within an
empty value as a replacement. Strings and numbers to Boolean value
conversion rules indicate that 0, NaN, and empty string (") count as false
while other values are true. Therefore 0 || -1 outputs -1, and "" || "!?" yields
"!?". The && operator operates identically but the other way around. When
values to the left can be changed to false, return the value, or it sends the
value to the right. Both operators evaluate the value to the right only when it
is required. For example, we have the following values set as true || X, the
value of X will be true and will not consider it. The same rule applies to the
false && X, which the x is false and will overlook it. You can call this
process the short-circuit evaluation.
Summary

This chapter looks at the four types of JavaScript values, which are strings,
numbers, undefined values and Booleans. These values are developed by
inserting their names as true, null or value (13, "ABC"). Operators can
integrate and change values. We looked at binary operators for arithmetic (+,
-, *, /, and %), string concatenation (+), comparison (==, !=, ===, !==, <, >,
<=, >=), and logic (&&, ||), and also various unary operators (- to nullify a
number, ! to nullify logically, and type of to search for a value’s type) and a
ternary operator (?:) to choose one of two values depending on a third value.
You will get sufficient information to use JavaScript like a small calculator,
and you will improve in the following chapters.
Exercise
Write a JavaScript practice to build a variable through a user-defined name.
Solution

Chapter 22 Definition of Arrays in JavaScript
Another thing that we need to take a look at when we work in this language is
what an array is all about. To keep it simple, an array is just going to be a
structure of data that is able to contain our group of elements. In most coding
languages including JavaScript, we will find that these elements are going to
be the same type of data, such as a string or an integer. Arrays are going to be
used in order to help a computer program, or your coding language, organize
data so that a set of values that are related is able to be sorted through or
searched through well.
No matter what kind of coding language you decide to work with, you will
find that keeping the data and the objects organized is going to be important.
If you don’t take care of these objects and types of data, they are going to
float around the work that you are doing, and you will run into some troubles
in the code. The part of the code that you are in will not be able to find the
objects and classes that they need and your code won’t work.
But when you are working with many of the modern types of coding
languages out there, including JavaScript and a few others, you are going to
rely on a bit more organization than what we are going to find in some of the
older languages. You need to make sure that things are organized, and that
the set of values that are related are going to be easy to search through and
sort through as much as you would like.
For example, when we take a look back at the arrays, we may find that a
search engine is going to rely on one of these arrays to help it store some of
the web pages found in one of the many searches that the user was able to
perform. When this same search engine displays its results, the program is
going to output one element of the array at a time. This is going to be done in
several different methods. The search engine is going to either do this with a
specified number of values, with the most important on top, or it will keep on
doing this until all of the values that are stored up in the array that are
showing up.
While the program is able to create a new variable, if it wanted, for all of the
results that are found in it, this can really take up a lot of time and space in
some of the codings that you are doing, and it is definitely not going to be the
most efficient method that you can use here. Instead, you will find that
storing all of the results (while we are still on the search engine example) in
an array is going to be a more efficient method to use to pull up the results

that you want, while also managing your memory.
Now, there are going to be a few different parameters and properties that are
able to come with the array that you would like to create. Being able to make
this come together and work the way you want is important, and
understanding what each of these properties is all about is going to be a great
way to get a better understanding of what you are able to do with them. Some
of the properties that come along with your array object, along with
information on what all of these means, includes:

1. Constructor: This is going to help us get back a reference to our
array function, the one that was able to create the object.

2. Index: This is going to be the property in our array that is going
to represent the zero-based index that will match up to that part
inside of our string.

3. Input: This is going to be a property that we are only going to
see in certain arrays. When an array has been created by a
regular expression and it all matches, then we are going to have
this input.

4. Length: This is going to show us the number of elements that
we are going to be able to see in our array.

5. Prototype: We will discuss this one more in this guidebook, but
this particular property is going to allow us a way to add
methods and properties to our object.

This may not make a lot of sense right now, but we are going to expand upon
it a bit and see more about what we will be able to do with these arrays and
the different parts that come with it. Before we move into this though, we
need to take some time to talk about some of the array methods that are
important to our code. There are a lot of different methods that happen with
our object of an array, so let’s take a look at what all of these mean.

1. Concat: This one is going to return to us a new array that is
going to be comprised of not only this array but with the other
values or arrays that we need.

2. Every(): this one is going to return true if we find that each and
every element that falls in our array is going to satisfy the

testing function that we provided.
3. Filter(): This one is responsible for creating a new array with

all of the elements that fall into the current array for which the
provided filtering function is going to give us truly as the
result.

4. forEach(): This one is responsible for calling up a function for
each of the elements that are inside of our array.

5. indexOf(): This one is going to return the first (or the least)
index that comes with the element that is inside of our array, as
long as it is equal to the value that we specify. Or it will work
with -1 if nothing is found to match in it.

6. Join(): This one is going to join together all of the elements of
an array and can help turn these into a string.

7. lastIndexOf(): This one is going to return the last, or the
greatest, index of your element in the array as long as that
element is equal to the value that we are trying to specify, or we
will work with -1 if we can’t find a match in the array.

8. Map(): This one is responsible for helping us to create a brand
new array with the results of calling up a provided function of
all the elements that fall into this array.

9. Pop(): This one is going to help us remove the last element out
of our array and then will return the element that we want.

10. Push(): This one is nice because it is able to add in at least one,
but sometimes more, elements to the end of your array and then will
return to you the new length that this makes your array.
11. Reduce: This is going to apply the function that you want at the
same time against two values of the array, going from the left side
over to the right side, in order to reduce it by one value.
12. reduceRight(): This is going to be the same idea, but instead of
going from the left side to the right side, we are going to reverse this
and go from the right side to the left side.
13. Reverse: This is going to be responsible for reversing the order
that your array elements are going to be in. The first element in the

array is going to become the last element, and then the element that
was the last one will go to the beginning of the array.
14. Shift(): This one is going to remove the first element out of your
array and then will give you a return of that element.
15. Slice: This one is going to extract a section of your array and will
give you a return that has a brand new array in it.
16. Some(): This one is going to return true as long as you have one
or more elements in the array that is able to satisfy the testing
function that you provided.
17. toSource(): This one is going to help us to represent the source
code that comes with our object.
18. Sort(): This one can be useful because it is going to help us to
sort through all of the elements that come with our array.
19. Splice: This one is going to be there to help us to either add or
remove the elements of the array.
20. toString(): This one is going to return a string that is going to
represent the array and all of the elements that happen in it.
21. Unshift: This final one is going to take some time to add in one
or more elements to the beginning of our array and then will let us
know what the new length of this array is going to be when it is
done.

As we can see here, there are a lot of possibilities that we are able to work
with when it comes to handling the arrays that show up in our codes. These
arrays are going to help us to hold onto some of the data that we have more
efficiently and will ensure that we are able to put it all together and pull out
the elements that we need and want without a lot of struggle along the way.
Make sure to take a look at some of the methods and functions that are
available with these arrays, especially with JavaScript, so you know how to
use them for some of your own needs as well.

Conclusion
The next step is to get started with the JavaScript language and all of the neat
things that we are able to do with this kind of coding language. JavaScript is
a bit higher level for the coding that you want to do compared to some of the
other options, which is going to allow us to have a chance to handle all of the
websites and web pages that you are going to create. There isn’t another
language that can work as well with all of the operating systems while
ensuring that we are able to get the results that we will see.
In this book, I have provided you with the basic knowledge that you will need
to start your journey in programming using JavaScript. The different concepts
taught here, such as functions, loops, branches, and objects will equip you
with the skills that you need to create your first JavaScript project.
Also, continue practicing and taking on small projects to start improving your
skills. Through the knowledge imparted in this book, coupled with practice,
you will be able to work on building your own websites or coding your own
projects.
In your further study, I recommend that you learn and take on advanced
topics such as troubleshooting in JavaScript, explore different frameworks
and libraries, and expand your knowledge in using regular expressions.

	Introduction
	Chapter 1 Fundamental JavaScript Concepts
	Chapter 2 HTML Overview
	Chapter 3 JavaScript’s Control Flow Statements
	Chapter 4 The Different Types of Loops in JavaScript
	Chapter 5 Syntax
	Chapter 6 Enabling JavaScript in Browsers
	Chapter 7 Placement of JavaScript in Files
	Chapter 8 Popup Message
	Chapter 9 JavaScript Variables
	Chapter 10 JavaScript ECMAScript Standard
	Chapter 11 Working With JavaScript: A Brief HTML Guide for Beginners
	Chapter 12 Changing the content of HTML elements using DOM
	Chapter 13 Changing CSS using DOM
	Chapter 14 Pointers
	Chapter 15 Expressions and Operators
	Chapter 16 What Are Some Of The JavaScript Variables?
	Chapter 17 Variables, data types & constants
	Chapter 18 Closures and Callbacks in JavaScript
	Chapter 19 Apply, call, and bind methods in JavaScript
	Chapter 20 Events
	Chapter 21 Arrays in JavaScript
	Chapter 22 Values, Types, and Operators
	Chapter 23 Definition of Arrays in JavaScript
	Conclusion

