

1. 1. Meet Kafka

a. Publish/Subscribe Messaging

i. How It Starts

ii. Individual Queue Systems

b. Enter Kafka

i. Messages and Batches

ii. Schemas

iii. Topics and Partitions

iv. Producers and Consumers

v. Brokers and Clusters

vi. Multiple Clusters

c. Why Kafka?

i. Multiple Producers

ii. Multiple Consumers

iii. Disk-Based Retention

iv. Scalable

v. High Performance

d. The Data Ecosystem

i. Use Cases

e. Kafka’s Origin

i. LinkedIn’s Problem

ii. The Birth of Kafka

iii. Open Source

iv. Commercial Engagement

v. The Name

f. Getting Started with Kafka

2. 2. Managing Apache Kafka Programmatically

a. AdminClient Overview

i. Asynchronous and Eventually Consistent

API

ii. Options

iii. Flat Hierarchy

iv. Additional Notes

b. AdminClient Lifecycle: Creating, Configuring

and Closing

i. client.dns.lookup

ii. request.timeout.ms

c. Essential Topic Management

d. Configuration management

e. Consumer group management

i. Exploring Consumer Groups

ii. Modifying consumer groups

f. Cluster Metadata

g. Advanced Admin Operations

i. Adding partitions to a topic

ii. Deleting records from a topic

iii. Leader Election

iv. Reassigning Replicas

h. Testing

i. Summary

Kafka: The Definitive Guide

SECOND EDITION

Real-Time Data and Stream Processing at

Scale

With Early Release ebooks, you get books in their earliest form—

the authors’ raw and unedited content as they write—so you can

take advantage of these technologies long before the official

release of these titles.

Gwen Shapira, Todd Palino, Rajini Sivaram,
and Neha Narkhede

Kafka: The Definitive Guide
by Gwen Shapira, Todd Palino, Rajini Sivaram, and Neha

Narkhede

Copyright © 2022 Gwen Shapira, Todd Palino, Rajini Sivaram,

and Neha Narkhede. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway

North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or

sales promotional use. Online editions are also available for

most titles (http://oreilly.com). For more information, contact

our corporate/institutional sales department: 800-998-9938

or corporate@oreilly.com.

Acquisitions Editor: Jonathan Hassell

Development Editor: Gary O’Brien

Production Editor: Kate Galloway

Interior Designer: David Futato

Cover Designer: Karen Montgomery

http://oreilly.com/

Illustrator: Rebecca Demarest

October 2021: Second Edition

Revision History for the Early
Release

2020-05-22: First Release

See http://oreilly.com/catalog/errata.csp?

isbn=9781492043089 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media,

Inc. Kafka: The Definitive Guide, the cover image, and related

trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith

efforts to ensure that the information and instructions

contained in this work are accurate, the publisher and the

authors disclaim all responsibility for errors or omissions,

including without limitation responsibility for damages

resulting from the use of or reliance on this work. Use of the

information and instructions contained in this work is at your

own risk. If any code samples or other technology this work

contains or describes is subject to open source licenses or the

intellectual property rights of others, it is your responsibility to

http://oreilly.com/catalog/errata.csp?isbn=9781492043089

ensure that your use thereof complies with such licenses

and/or rights.

978-1-492-04301-0

Chapter 1. Meet Kafka

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw
and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
author at cshapi+ktdg@gmail.com.

Every enterprise is powered by data. We take information in,

analyze it, manipulate it, and create more as output. Every

application creates data, whether it is log messages, metrics,

user activity, outgoing messages, or something else. Every byte

of data has a story to tell, something of importance that will

inform the next thing to be done. In order to know what that is,

we need to get the data from where it is created to where it can

be analyzed. We see this every day on websites like Amazon,

where our clicks on items of interest to us are turned into

recommendations that are shown to us a little later.

The faster we can do this, the more agile and responsive our

organizations can be. The less effort we spend on moving data

mailto:cshapi+ktdg@gmail.com

around, the more we can focus on the core business at hand.

This is why the pipeline is a critical component in the data-

driven enterprise. How we move the data becomes nearly as

important as the data itself.

Any time scientists disagree, it’s because we have

insufficient data. Then we can agree on what kind of data to

get; we get the data; and the data solves the problem.

Either I’m right, or you’re right, or we’re both wrong. And

we move on.

—Neil deGrasse Tyson

Publish/Subscribe Messaging
Before discussing the specifics of Apache Kafka, it is important

for us to understand the concept of publish/subscribe

messaging and why it is important. Publish/subscribe

messaging is a pattern that is characterized by the sender

(publisher) of a piece of data (message) not specifically

directing it to a receiver. Instead, the publisher classifies the

message somehow, and that receiver (subscriber) subscribes to

receive certain classes of messages. Pub/sub systems often

have a broker, a central point where messages are published, to

facilitate this.

How It Starts

Many use cases for publish/subscribe start out the same way:

with a simple message queue or interprocess communication

channel. For example, you create an application that needs to

send monitoring information somewhere, so you write in a

direct connection from your application to an app that displays

your metrics on a dashboard, and push metrics over that

connection, as seen in Figure 1-1.

Figure 1-1. A single, direct metrics publisher

This is a simple solution to a simple problem that works when

you are getting started with monitoring. Before long, you

decide you would like to analyze your metrics over a longer

term, and that doesn’t work well in the dashboard. You start a

new service that can receive metrics, store them, and analyze

them. In order to support this, you modify your application to

write metrics to both systems. By now you have three more

applications that are generating metrics, and they all make the

same connections to these two services. Your coworker thinks it

would be a good idea to do active polling of the services for

alerting as well, so you add a server on each of the applications

to provide metrics on request. After a while, you have more

applications that are using those servers to get individual

metrics and use them for various purposes. This architecture

can look much like Figure 1-2, with connections that are even

harder to trace.

Figure 1-2. Many metrics publishers, using direct connections

The technical debt built up here is obvious, so you decide to pay

some of it back. You set up a single application that receives

metrics from all the applications out there, and provide a server

to query those metrics for any system that needs them. This

reduces the complexity of the architecture to something similar

to Figure 1-3. Congratulations, you have built a publish-

subscribe messaging system!

Figure 1-3. A metrics publish/subscribe system

Individual Queue Systems

At the same time that you have been waging this war with

metrics, one of your coworkers has been doing similar work

with log messages. Another has been working on tracking user

behavior on the frontend website and providing that

information to developers who are working on machine

learning, as well as creating some reports for management. You

have all followed a similar path of building out systems that

decouple the publishers of the information from the

subscribers to that information. Figure 1-4 shows such an

infrastructure, with three separate pub/sub systems.

Figure 1-4. Multiple publish/subscribe systems

This is certainly a lot better than utilizing point-to-point

connections (as in Figure 1-2), but there is a lot of duplication.

Your company is maintaining multiple systems for queuing

data, all of which have their own individual bugs and

limitations. You also know that there will be more use cases for

messaging coming soon. What you would like to have is a single

centralized system that allows for publishing generic types of

data, which will grow as your business grows.

Enter Kafka
Apache Kafka is a publish/subscribe messaging system

designed to solve this problem. It is often described as a

“distributed commit log” or more recently as a “distributing

streaming platform.” A filesystem or database commit log is

designed to provide a durable record of all transactions so that

they can be replayed to consistently build the state of a system.

Similarly, data within Kafka is stored durably, in order, and can

be read deterministically. In addition, the data can be

distributed within the system to provide additional protections

against failures, as well as significant opportunities for scaling

performance.

Messages and Batches

The unit of data within Kafka is called a message. If you are

approaching Kafka from a database background, you can think

of this as similar to a row or a record. A message is simply an

array of bytes as far as Kafka is concerned, so the data

contained within it does not have a specific format or meaning

to Kafka. A message can have an optional bit of metadata,

which is referred to as a key. The key is also a byte array and, as

with the message, has no specific meaning to Kafka. Keys are

used when messages are to be written to partitions in a more

controlled manner. The simplest such scheme is to generate a

consistent hash of the key, and then select the partition number

for that message by taking the result of the hash modulo, the

total number of partitions in the topic. This assures that

messages with the same key are always written to the same

partition.

For efficiency, messages are written into Kafka in batches. A

batch is just a collection of messages, all of which are being

produced to the same topic and partition. An individual

roundtrip across the network for each message would result in

excessive overhead, and collecting messages together into a

batch reduces this. Of course, this is a tradeoff between latency

and throughput: the larger the batches, the more messages that

can be handled per unit of time, but the longer it takes an

individual message to propagate. Batches are also typically

compressed, providing more efficient data transfer and storage

at the cost of some processing power. Both keys and batches

are discussed in more detail in Chapter 4.

Schemas

While messages are opaque byte arrays to Kafka itself, it is

recommended that additional structure, or schema, be imposed

on the message content so that it can be easily understood.

There are many options available for message schema,

depending on your application’s individual needs. Simplistic

systems, such as Javascript Object Notation (JSON) and

Extensible Markup Language (XML), are easy to use and

human-readable. However, they lack features such as robust

type handling and compatibility between schema versions.

Many Kafka developers favor the use of Apache Avro, which is

a serialization framework originally developed for Hadoop.

Avro provides a compact serialization format; schemas that are

separate from the message payloads and that do not require

code to be generated when they change; and strong data typing

and schema evolution, with both backward and forward

compatibility.

A consistent data format is important in Kafka, as it allows

writing and reading messages to be decoupled. When these

tasks are tightly coupled, applications that subscribe to

messages must be updated to handle the new data format, in

parallel with the old format. Only then can the applications that

publish the messages be updated to utilize the new format. By

using well-defined schemas and storing them in a common

repository, the messages in Kafka can be understood without

coordination. Schemas and serialization are covered in more

detail in Chapter 4.

Topics and Partitions

Messages in Kafka are categorized into topics. The closest

analogies for a topic are a database table or a folder in a

filesystem. Topics are additionally broken down into a number

of partitions. Going back to the “commit log” description, a

partition is a single log. Messages are written to it in an

append-only fashion, and are read in order from beginning to

end. Note that as a topic typically has multiple partitions, there

is no guarantee of message time-ordering across the entire

topic, just within a single partition. Figure 1-5 shows a topic

with four partitions, with writes being appended to the end of

each one. Partitions are also the way that Kafka provides

redundancy and scalability. Each partition can be hosted on a

different server, which means that a single topic can be scaled

horizontally across multiple servers to provide performance far

beyond the ability of a single server.

Figure 1-5. Representation of a topic with multiple partitions

The term stream is often used when discussing data within

systems like Kafka. Most often, a stream is considered to be a

single topic of data, regardless of the number of partitions. This

represents a single stream of data moving from the producers

to the consumers. This way of referring to messages is most

common when discussing stream processing, which is when

frameworks—some of which are Kafka Streams, Apache Samza,

and Storm—operate on the messages in real time. This method

of operation can be compared to the way offline frameworks,

namely Hadoop, are designed to work on bulk data at a later

time. An overview of stream processing is provided in Chapter

14.

Producers and Consumers

Kafka clients are users of the system, and there are two basic

types: producers and consumers. There are also advanced

client APIs—Kafka Connect API for data integration and Kafka

Streams for stream processing. The advanced clients use

producers and consumers as building blocks and provide

higher-level functionality on top.

Producers create new messages. In other publish/subscribe

systems, these may be called publishers or writers. In general,

a message will be produced to a specific topic. By default, the

producer does not care what partition a specific message is

written to and will balance messages over all partitions of a

topic evenly. In some cases, the producer will direct messages

to specific partitions. This is typically done using the message

key and a partitioner that will generate a hash of the key and

map it to a specific partition. This assures that all messages

produced with a given key will get written to the same

partition. The producer could also use a custom partitioner that

follows other business rules for mapping messages to

partitions. Producers are covered in more detail in Chapter 4.

Consumers read messages. In other publish/subscribe systems,

these clients may be called subscribers or readers. The

consumer subscribes to one or more topics and reads the

messages in the order in which they were produced. The

consumer keeps track of which messages it has already

consumed by keeping track of the offset of messages. The offset

is another bit of metadata—an integer value that continually

increases—that Kafka adds to each message as it is produced.

Each message in a given partition has a unique offset. By

storing the offset of the last consumed message for each

partition, either in Zookeeper or in Kafka itself, a consumer can

stop and restart without losing its place.

Consumers work as part of a consumer group, which is one or

more consumers that work together to consume a topic. The

group assures that each partition is only consumed by one

member. In Figure 1-6, there are three consumers in a single

group consuming a topic. Two of the consumers are working

from one partition each, while the third consumer is working

from two partitions. The mapping of a consumer to a partition

is often called ownership of the partition by the consumer.

In this way, consumers can horizontally scale to consume

topics with a large number of messages. Additionally, if a single

consumer fails, the remaining members of the group will

rebalance the partitions being consumed to take over for the

missing member. Consumers and consumer groups are

discussed in more detail in Chapter 6.

Figure 1-6. A consumer group reading from a topic

Brokers and Clusters

A single Kafka server is called a broker. The broker receives

messages from producers, assigns offsets to them, and commits

the messages to storage on disk. It also services consumers,

responding to fetch requests for partitions and responding with

the messages that have been committed to disk. Depending on

the specific hardware and its performance characteristics, a

single broker can easily handle thousands of partitions and

millions of messages per second.

Kafka brokers are designed to operate as part of a cluster.

Within a cluster of brokers, one broker will also function as the

cluster controller (elected automatically from the live members

of the cluster). The controller is responsible for administrative

operations, including assigning partitions to brokers and

monitoring for broker failures. A partition is owned by a single

broker in the cluster, and that broker is called the leader of the

partition. A partition may be assigned to multiple brokers,

which will result in the partition being replicated (as seen in

Figure 1-7). This provides redundancy of messages in the

partition, such that another broker can take over leadership if

there is a broker failure. However, all consumers and producers

operating on that partition must connect to the leader. Cluster

operations, including partition replication, are covered in detail

in Chapter 8.

Figure 1-7. Replication of partitions in a cluster

A key feature of Apache Kafka is that of retention, which is the

durable storage of messages for some period of time. Kafka

brokers are configured with a default retention setting for

topics, either retaining messages for some period of time (e.g.,

7 days) or until the topic reaches a certain size in bytes (e.g., 1

GB). Once these limits are reached, messages are expired and

deleted so that the retention configuration is a minimum

amount of data available at any time. Individual topics can also

be configured with their own retention settings so that

messages are stored for only as long as they are useful. For

example, a tracking topic might be retained for several days,

whereas application metrics might be retained for only a few

hours. Topics can also be configured as log compacted, which

means that Kafka will retain only the last message produced

with a specific key. This can be useful for changelog-type data,

where only the last update is interesting.

Multiple Clusters

As Kafka deployments grow, it is often advantageous to have

multiple clusters. There are several reasons why this can be

useful:

Segregation of types of data

Isolation for security requirements

Multiple datacenters (disaster recovery)

When working with multiple datacenters in particular, it is

often required that messages be copied between them. In this

way, online applications can have access to user activity at both

sites. For example, if a user changes public information in their

profile, that change will need to be visible regardless of the

datacenter in which search results are displayed. Or,

monitoring data can be collected from many sites into a single

central location where the analysis and alerting systems are

hosted. The replication mechanisms within the Kafka clusters

are designed only to work within a single cluster, not between

multiple clusters.

The Kafka project includes a tool called MirrorMaker, used for

this purpose. At its core, MirrorMaker is simply a Kafka

consumer and producer, linked together with a queue.

Messages are consumed from one Kafka cluster and produced

for another. Figure 1-8 shows an example of an architecture

that uses MirrorMaker, aggregating messages from two local

clusters into an aggregate cluster, and then copying that cluster

to other datacenters. The simple nature of the application

belies its power in creating sophisticated data pipelines, which

will be detailed further in Chapter 9.

Figure 1-8. Multiple datacenter architecture

Why Kafka?
There are many choices for publish/subscribe messaging

systems, so what makes Apache Kafka a good choice?

Multiple Producers

Kafka is able to seamlessly handle multiple producers, whether

those clients are using many topics or the same topic. This

makes the system ideal for aggregating data from many

frontend systems and making it consistent. For example, a site

that serves content to users via a number of microservices can

have a single topic for page views that all services can write to

using a common format. Consumer applications can then

receive a single stream of page views for all applications on the

site without having to coordinate consuming from multiple

topics, one for each application.

Multiple Consumers

In addition to multiple producers, Kafka is designed for

multiple consumers to read any single stream of messages

without interfering with each other. This is in contrast to many

queuing systems where once a message is consumed by one

client, it is not available to any other. Multiple Kafka

consumers can choose to operate as part of a group and share a

stream, assuring that the entire group processes a given

message only once.

Disk-Based Retention

Not only can Kafka handle multiple consumers, but durable

message retention means that consumers do not always need to

work in real time. Messages are committed to disk, and will be

stored with configurable retention rules. These options can be

selected on a per-topic basis, allowing for different streams of

messages to have different amounts of retention depending on

the consumer needs. Durable retention means that if a

consumer falls behind, either due to slow processing or a burst

in traffic, there is no danger of losing data. It also means that

maintenance can be performed on consumers, taking

applications offline for a short period of time, with no concern

about messages backing up on the producer or getting lost.

Consumers can be stopped, and the messages will be retained

in Kafka. This allows them to restart and pick up processing

messages where they left off with no data loss.

Scalable

Kafka’s flexible scalability makes it easy to handle any amount

of data. Users can start with a single broker as a proof of

concept, expand to a small development cluster of three

brokers, and move into production with a larger cluster of tens

or even hundreds of brokers that grows over time as the data

scales up. Expansions can be performed while the cluster is

online, with no impact on the availability of the system as a

whole. This also means that a cluster of multiple brokers can

handle the failure of an individual broker, and continue

servicing clients. Clusters that need to tolerate more

simultaneous failures can be configured with higher replication

factors. Replication is discussed in more detail in Chapter 8.

High Performance

All of these features come together to make Apache Kafka a

publish/subscribe messaging system with excellent

performance under high load. Producers, consumers, and

brokers can all be scaled out to handle very large message

streams with ease. This can be done while still providing

subsecond message latency from producing a message to

availability to consumers.

The Data Ecosystem
Many applications participate in the environments we build for

data processing. We have defined inputs in the form of

applications that create data or otherwise introduce it to the

system. We have defined outputs in the form of metrics,

reports, and other data products. We create loops, with some

components reading data from the system, transforming it

using data from other sources, and then introducing it back

into the data infrastructure to be used elsewhere. This is done

for numerous types of data, with each having unique qualities

of content, size, and usage.

Apache Kafka provides the circulatory system for the data

ecosystem, as shown in Figure 1-9. It carries messages between

the various members of the infrastructure, providing a

consistent interface for all clients. When coupled with a system

to provide message schemas, producers and consumers no

longer require tight coupling or direct connections of any sort.

Components can be added and removed as business cases are

created and dissolved, and producers do not need to be

concerned about who is using the data or the number of

consuming applications.

Figure 1-9. A big data ecosystem

Use Cases

ACTIVITY TRACKING

The original use case for Kafka, as it was designed at LinkedIn,

is that of user activity tracking. A website’s users interact with

frontend applications, which generate messages regarding

actions the user is taking. This can be passive information, such

as page views and click tracking, or it can be more complex

actions, such as information that a user adds to their profile.

The messages are published to one or more topics, which are

then consumed by applications on the backend. These

applications may be generating reports, feeding machine

learning systems, updating search results, or performing other

operations that are necessary to provide a rich user experience.

MESSAGING

Kafka is also used for messaging, where applications need to

send notifications (such as emails) to users. Those applications

can produce messages without needing to be concerned about

formatting or how the messages will actually be sent. A single

application can then read all the messages to be sent and

handle them consistently, including:

Formatting the messages (also known as decorating)

using a common look and feel

Collecting multiple messages into a single notification

to be sent

Applying a user’s preferences for how they want to

receive messages

Using a single application for this avoids the need to duplicate

functionality in multiple applications, as well as allows

operations like aggregation which would not otherwise be

possible.

METRICS AND LOGGING

Kafka is also ideal for collecting application and system metrics

and logs. This is a use case in which the ability to have multiple

applications producing the same type of message shines.

Applications publish metrics on a regular basis to a Kafka topic,

and those metrics can be consumed by systems for monitoring

and alerting. They can also be used in an offline system like

Hadoop to perform longer-term analysis, such as growth

projections. Log messages can be published in the same way,

and can be routed to dedicated log search systems like

Elasticsearch or security analysis applications. Another added

benefit of Kafka is that when the destination system needs to

change (e.g., it’s time to update the log storage system), there is

no need to alter the frontend applications or the means of

aggregation.

COMMIT LOG

Since Kafka is based on the concept of a commit log, database

changes can be published to Kafka and applications can easily

monitor this stream to receive live updates as they happen.

This changelog stream can also be used for replicating database

updates to a remote system, or for consolidating changes from

multiple applications into a single database view. Durable

retention is useful here for providing a buffer for the changelog,

meaning it can be replayed in the event of a failure of the

consuming applications. Alternately, log-compacted topics can

be used to provide longer retention by only retaining a single

change per key.

STREAM PROCESSING

Another area that provides numerous types of applications is

stream processing. While almost all usage of Kafka can be

thought of as stream processing, the term is typically used to

refer to applications that provide similar functionality to

map/reduce processing in Hadoop. Hadoop usually relies on

aggregation of data over a long time frame, either hours or

days. Stream processing operates on data in real time, as

quickly as messages are produced. Stream frameworks allow

users to write small applications to operate on Kafka messages,

performing tasks such as counting metrics, partitioning

messages for efficient processing by other applications, or

transforming messages using data from multiple sources.

Stream processing is covered in Chapter 14.

Kafka’s Origin
Kafka was created to address the data pipeline problem at

LinkedIn. It was designed to provide a high-performance

messaging system that can handle many types of data and

provide clean, structured data about user activity and system

metrics in real time.

Data really powers everything that we do.

—Jeff Weiner, CEO of LinkedIn

LinkedIn’s Problem

Similar to the example described at the beginning of this

chapter, LinkedIn had a system for collecting system and

application metrics that used custom collectors and open

source tools for storing and presenting data internally. In

addition to traditional metrics, such as CPU usage and

application performance, there was a sophisticated request-

tracing feature that used the monitoring system and could

provide introspection into how a single user request

propagated through internal applications. The monitoring

system had many faults, however. This included metrics

collection based on polling, large intervals between metrics,

and no ability for application owners to manage their own

metrics. The system was high-touch, requiring human

intervention for most simple tasks, and inconsistent, with

differing metric names for the same measurement across

different systems.

At the same time, there was a system created for tracking user

activity information. This was an HTTP service that frontend

servers would connect to periodically and publish a batch of

messages (in XML format) to the HTTP service. These batches

were then moved to offline processing, which is where the files

were parsed and collated. This system had many faults. The

XML formatting was inconsistent, and parsing it was

computationally expensive. Changing the type of user activity

that was tracked required a significant amount of coordinated

work between frontends and offline processing. Even then, the

system would break constantly due to changing schemas.

Tracking was built on hourly batching, so it could not be used

in real-time.

Monitoring and user-activity tracking could not use the same

backend service. The monitoring service was too clunky, the

data format was not oriented for activity tracking, and the

polling model for monitoring was not compatible with the push

model for tracking. At the same time, the tracking service was

too fragile to use for metrics, and the batch-oriented processing

was not the right model for real-time monitoring and alerting.

However, the monitoring and tracking data shared many traits,

and correlation of the information (such as how specific types

of user activity affected application performance) was highly

desirable. A drop in specific types of user activity could indicate

problems with the application that serviced it, but hours of

delay in processing activity batches meant a slow response to

these types of issues.

At first, existing off-the-shelf open source solutions were

thoroughly investigated to find a new system that would

provide real-time access to the data and scale out to handle the

amount of message traffic needed. Prototype systems were set

up using ActiveMQ, but at the time it could not handle the

scale. It was also a fragile solution for the way LinkedIn needed

to use it, discovering many flaws in ActiveMQ that would cause

the brokers to pause. This would back up connections to clients

and interfere with the ability of the applications to serve

requests to users. The decision was made to move forward with

a custom infrastructure for the data pipeline.

The Birth of Kafka

The development team at LinkedIn was led by Jay Kreps, a

principal software engineer who was previously responsible for

the development and open source release of Voldemort, a

distributed key-value storage system. The initial team also

included Neha Narkhede and, later, Jun Rao. Together, they set

out to create a messaging system that could meet the needs of

both the monitoring and tracking systems, and scale for the

future. The primary goals were to:

Decouple producers and consumers by using a push-

pull model

Provide persistence for message data within the

messaging system to allow multiple consumers

Optimize for high throughput of messages

Allow for horizontal scaling of the system to grow as the

data streams grew

The result was a publish/subscribe messaging system that had

an interface typical of messaging systems but a storage layer

more like a log-aggregation system. Combined with the

adoption of Apache Avro for message serialization, Kafka was

effective for handling both metrics and user-activity tracking at

a scale of billions of messages per day. The scalability of Kafka

has helped LinkedIn’s usage grow in excess of seven trillion

messages produced (as of February 2020) and over five

petabytes of data consumed daily.

Open Source

Kafka was released as an open source project on GitHub in late

2010. As it started to gain attention in the open source

community, it was proposed and accepted as an Apache

Software Foundation incubator project in July of 2011. Apache

Kafka graduated from the incubator in October of 2012. Since

then, it has continuously been worked on and has found a

robust community of contributors and committers outside of

LinkedIn. Kafka is now used in some of the largest data

pipelines in the world, including those at Netflix, Uber, and

many other companies.

Widespread adoption of Kafka has created a healthy ecosystem

around the core project as well. There are active meetup groups

in dozens of countries around the world, providing local

discussion and support of stream processing. There are also

numerous open source projects related to Apache Kafka. The

largest concentrations of these are from Confluent (including

KSQL, as well as their own schema registy and REST projects),

and LinkedIn (including Cruise Control, Kafka Monitor, and

Burrow).

Commercial Engagement

In the fall of 2014, Jay Kreps, Neha Narkhede, and Jun Rao left

LinkedIn to found Confluent, a company centered around

providing development, enterprise support, and training for

Apache Kafka. They also joined other companies (such as

Heroku) in providing cloud services for Kafka. Confluent,

through a partnership with Google, provides managed Kafka

clusters on Google Cloud Platform, as well as providing similar

services on Amazon Web Services and Azure. One of the other

major initiatives of Confluent is to organize the Kafka Summit

conference series. Started in 2016, with conferences held

annually in the United States and in London, Kafka Summit

provides a place for the community to come together on a

global scale and share knowlege about Apache Kafka and

related projects.

The Name

People often ask how Kafka got its name and if it signifies

anything specific about the application itself. Jay Kreps offered

the following insight:

I thought that since Kafka was a system optimized for

writing, using a writer’s name would make sense. I had

taken a lot of lit classes in college and liked Franz Kafka.

Plus the name sounded cool for an open source project.

So basically there is not much of a relationship.

Getting Started with Kafka
Now that we know all about Kafka and its history, we can set it

up and build our own data pipeline. In the next chapter, we will

explore installing and configuring Kafka. We will also cover

selecting the right hardware to run Kafka on, and some things

to keep in mind when moving to production operations.

Chapter 2. Managing Apache
Kafka Programmatically

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw
and unedited content as they write—so you can take advantage of these
technologies long before the official release of these titles.

This will be the 5th chapter of the final book.

If you have comments about how we might improve the content and/or examples in
this book, or if you notice missing material within this chapter, please reach out to the
author at cshapi+ktdg@gmail.com.

There are many CLI and GUI tools for managing Kafka (we’ll

discuss them in chapter 9), but there are also times when you

want to execute some administrative commands from within

your client application. Creating new topics on demand based

on user input or data is an especially common use-case: IOT

apps often receive events from user devices, and write events to

topics based on the device type. If the manufacturer produces a

new type of device, you either have to remember, via some

process, to also create a topic. Or alternatively, the application

can dynamically create a new topic if it receives events with

unrecognized device type. The second alternative has

mailto:cshapi+ktdg@gmail.com

downsides but avoiding the dependency on additional process

to generate topics is an attractive feature in the right scenarios.

Apache Kafka added the AdminClient in version 0.11 to provide

a programmatic API for administrative functionality that was

previously done in the command line: Listing, creating and

deleting topics, describing the cluster, managing ACLs and

modifying configuration.

Here’s one example: Your application is going to produce

events to a specific topic. This means that before producing the

first event, the topic has to exist. Before Apache Kafka added

the admin client, there were few options, and none of them

particularly user-friendly: You could capture

UNKNOWN_TOPIC_OR_PARTITION exception from the

producer.send() method and let your user know that they need

to create the topic, or you could hope that the Kafka cluster you

are writing to enabled automatic topic creation, or you can try

to rely on internal APIs and deal with the consequences of no

compatibility guarantees. Now that Apache Kafka provides

AdminClient, there is a much better solution: Use AdminClient

to check whether the topic exists, and if it does not, create it on

the spot.

In this chapter we’ll give an overview of the AdminClient before

we drill down into the details of how to use it in your

applications. We’ll focus on the most commonly used

functionality - management of topics, consumer groups and

entity configuration.

AdminClient Overview
As you start using Kafka AdminClient, it helps to be aware of its

core design principles. When you understand how the

AdminClient was designed and how it should be used, the

specifics of each method will be much more intuitive.

Asynchronous and Eventually Consistent API

Perhaps the most important thing to understand about Kafka’s

AdminClient is that it is asynchronous. Each method returns

immediately after delivering a request to the cluster Controller,

and each method returns one or more Future objects. Future

objects are the results of asynchronous operations and they

have methods for checking the status of the asynchronous

operation, cancelling it, waiting for it to complete and

executing functions after its completion. Kafka’s AdminClient

wraps the Future objects into Result objects, which provide

methods to wait for the operation to complete and helper

methods for common follow-up operations. For example,

KafkaAdminClient.createTopics returns CreateTopicsResult

object which lets you wait until all topics are created, lets you

check each topic status individually and also lets you retrieve

the configuration of a specific topic after it was created.

Because Kafka’s propagation of metadata from the Controller

to the brokers is asynchronous, the Futures that AdminClient

APIs return are considered complete when the Controller state

has been fully updated. It is possible that at that point not every

broker is aware of the new state, so a listTopics request may

end up handled by a broker that is not up to date and will not

contain a topic that was very recently created. This property is

also called eventual consistency - eventually every broker

will know about every topic, but we can’t guarantee exactly

when this will happen.

Options

Every method in AdminClient takes as an argument an Options

object that is specific to that method. For example, listTopics

method takes ListTopicsOptions object as an argument and

describeCluster takes DescribeClusterOptions as an

argument. Those objects contain different settings for how the

request will be handled by the broker. The one setting that all

AdminClient methods have is timeoutMs - this controls how

long the client will wait for a response from the cluster before

throwing a TimeoutException. This limits the time in which

your application may be blocked by AdminClient operation.

Other options can be things like whether listTopics should

also return internal topics and whether describeCluster

should also return which operations the client is authorized to

perform on the cluster.

Flat Hierarchy

All the admin operations that are supported by the Apache

Kafka protocol are implemented in KafkaAdminClient directly.

There is no object hierarchy or namespaces. This is a bit

controversial as the interface can be quite large and perhaps a

bit overwhelming, but the main benefit is that if you want to

know how to programmatically perform any admin operation

on Kafka, you have exactly one JavaDoc to search and your

IDE’s autocomplete will be quite handy. You don’t have to

wonder whether you are just missing the right place to look. If

it isn’t in AdminClient, it was not implemented yet (but

contributions are welcome!).

TIP
If you are interested in contributing to Apache Kafka, take a look at our

How To Contribute guide. Start with smaller, non-controversial bug fixes

and improvements, before tackling a more significant change to the

architecture or the protocol. Non-code contributions such as bug

reports, documentation improvements, responses to questions and blog

posts are also encouraged.

Additional Notes

All the operations that modify the cluster state - create,

delete and alter, are handled by the Controller.

Operations that read the cluster state - list and describe,

can be handled by any broker and are directed to the

least loaded broker (based on what the client knows).

This shouldn’t impact you as a user of the API, but it

can be good to know - in case you are seeing unexpected

behavior, you notice that some operations succeed

while others fail, or if you are trying to figure out why

an operation is taking too long.

https://kafka.apache.org/contributing

At the time we are writing this chapter (Apache Kafka

2.5 is about to be released), most admin operations can

be performed either through AdminClient or directly by

modifying the cluster metadata in Zookeeper. We highly

encourage you to never use Zookeeper directly, and if

you absolutely have to, report this as a bug to Apache

Kafka. The reason is that in the near future, the Apache

Kafka community will remove the Zookeeper

dependency, and every application that uses Zookeeper

directly for admin operations will have to be modified.

The AdminClient API on the other hand, will remain

exactly the same, just with a different implementation

inside the Kafka cluster.

AdminClient Lifecycle: Creating, Configuring
and Closing
In order to use Kafka’s AdminClient, the first thing you have to

do is construct an instance of the AdminClient class. This is

quite straight forward:

Properties props = new Properties();

props.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, "loca

AdminClient admin = AdminClient.create(props);

// TODO: Do something useful with AdminClient

admin.close(Duration.ofSeconds(30));

The static create method takes as an argument a Properties

object with configuration. The only mandatory configuration is

the URI for your cluster - a comma separated list of brokers to

connect to. As usual, in production environments, you want to

specify at least 3 brokers, just in case one is currently

unavailable. We’ll discuss how to configure a secure and

authenticated connection separately in the Kafka Security

chapter.

If you start an AdminClient, eventually you want to close it. It

is important to remember that when you call close, there could

still be some AdminClient operations in progress. Therefore

close method accepts a timeout parameter. Once you call

close, you can’t call any other methods and send any more

requests, but the client will wait for responses until the timeout

expires. After the timeout expires, the client will abort all on-

going operations with timeout exception and release all

resources. Calling close without a timeout implies that you’ll

wait as long as it takes for all on-going operations to complete.

You probably recall from chapters 3 and 4 that the

KafkaProducer and KafkaConsumer have quite a few important

configuration parameters. The good news is that AdminClient

is much simpler and there is not much to configure. You can

read about all the configuration parameters in Configurations

Kafka documentation. In our opinion, the important

configuration parameters are:

client.dns.lookup

https://kafka.apache.org/documentation/#adminclientconfigs

This configuration was introduced in Apache Kafka 2.1.0

release.

By default, Kafka validates, resolves and creates connections

based on the hostname provided in bootstrap server

configuration (and later in the names returned by the brokers

as specified in advertised.listeners configuration). This

simple model works most of the time, but fails to cover two

important use-cases - use of DNS aliases, especially in

bootstrap configuration, and use of a single DNS that maps to

multiple IP addresses. These sound similar, but are slightly

different. Lets look at each of these mutually-exclusive

scenarios in a bit more detail.

USE OF DNS ALIAS

Suppose you have multiple brokers, with the following naming

convention: broker1.hostname.com, broker2.hostname.com,

etc. Rather than specifying all of them in bootstrap servers

configuration, which can easily become challenging to

maintain, you may want to create a single DNS alias that will

map to all of them. You’ll use all-brokers.hostname.com for

bootstrapping, since you don’t actually care which broker gets

the initial connection from clients. This is all very convenient,

except if you use SASL to authenticate. If you use SASL, the

client will try to authenticate all-brokers.hostname.com, but

the server principal will be broker2.hostname.com, if the names

don’t match, SASL will refuse to authenticate (the broker

certificate could be a man-in-the-middle attack), and the

connection will fail.

In this scenario, you’ll want to use

client.dns.lookup=resolve_canonical_bootstrap_servers_on

ly. With this configuration, the client will “expend” the DNS

alias, and the result will be the same as if you included all the

broker names the DNS alias connects to as brokers in the

original bootstrap list.

DNS NAME WITH MULTIPLE IP ADDRESSES

With modern network architectures, it is common to put all the

brokers behind a proxy or a load balancer. This is especially

common if you use Kubernetes, where load-balancers are

necessary to allow connections from outside the Kubernetes

cluster. In these cases, you don’t want the load balancers to

become a single point of failure. It is therefore very common to

make broker1.hostname.com point at a list of IPs, all of which

resolve to load balancers, and all of them route traffic to the

same broker. These IPs are also likely to change over time. By

default, KafkaClient will just try to connect to the first IP that

the hostname resolves. This means that if that IP becomes

unavailable, the client will fail to connect, even though the

broker is fully available. It is therefore highly recommended to

use client.dns.lookup=use_all_dns_ips to make sure the

client doesn’t miss out on the benefits of a highly-available load

balancing layer.

request.timeout.ms

This configuration limits the time that your application can

spend waiting for AdminClient to respond. This includes the

time spent on retrying if the client receives a retriable error.

The default value is 120 seconds, which is quite long - but some

AdminClient operations, especially consumer group

management commands, can take a while to respond. As we

mentioned in the Overview section, each AdminClient method

accepts an Options object, which can contain a timeout value

that applies specifically to that call. If an AdminClient

operation is on the critical path for your application, you may

want to use a lower timeout value and handle lack of timely

response from Kafka in a different way. A common example is

that services try to validate existence of specific topics when

they first start, but if Kafka takes longer than 30s to respond,

you may want to continue starting the server and validate the

existence of topics later (or skip this validation entirely).

Essential Topic Management
Now that we created and configured an AdminClient, it is time

to see what we can do with it. The most common use case for

Kafka’s AdminClient is topic management. This includes listing

topics, describing them, creating topics and deleting them.

Lets start by listing all topics in the cluster:

ListTopicsResult topics = admin.listTopics();

topics.names().get().forEach(System.out::println);

Note that admin.listTopics() returns ListTopicsResult

object which is a thin wrapper over a collection of Futures.

topics.name() returns a future set of name. When we call

get() on this future, the executing thread will wait until the

server responds with a set of topic names, or we get a timeout

exception. Once we get the list, we iterate over it to print all the

topic names.

Now lets try something a bit more ambitious: Check if a topic

exists, and create it if it doesn’t. One way to check if a specific

topic exists is to get a list of all topics and check if the topic you

need is in the list. But on a large cluster, this can be inefficient.

In addition, sometimes you want to check for more than just

whether the topic exists - you want to make sure the topic has

the right number of partitions and replicas. For example, Kafka

Connect and Confluent Schema Registry use a Kafka topic to

store configuration. When they start up, they check if the

configuration topic exists, that it has only one partition to

guarantee that configuration changes will arrive in strict order,

that it has three replicas to guarantee availability and that the

topic is compacted so old configuration will be retained

indefinitely.

DescribeTopicsResult demoTopic = admin.describeTopics(TOPIC

To check that the topic exists with the correct

configuration, we call describeTopics() with a list

of topic names that we want to validate. This returns

DescribeTopicResult object, which wraps a map of

topic names to future descriptions.

try {

 topicDescription = demoTopic.values().get(TOPIC_NAME).g

 System.out.println("Description of demo topic:" + topic

 if (topicDescription.partitions().size() != NUM_PARTITI

 System.out.println("Topic has wrong number of partiti

 System.exit(-1);

 }

} catch (ExecutionException e) {

 // exit early for almost all exceptions

 if (! (e.getCause() instanceof UnknownTopicOrPartitionE

 e.printStackTrace();

 throw e;

 }

 // if we are here, topic doesn't exist

 System.out.println("Topic " + TOPIC_NAME +

 " does not exist. Going to create it now");

 // Note that number of partitions and replicas are opti

 // not specified, the defaults configured on the Kafka

 CreateTopicsResult newTopic = admin.createTopics(Collec

 new NewTopic(TOPIC_NAME, NUM_PARTITIONS, REP_FA

 // Check that the topic was created correctly:

 if (newTopic.numPartitions(TOPIC_NAME).get() != NUM_PAR

 System.out.println("Topic has wrong number of parti

 System.exit(-1);

 }

}

https://calibre-pdf-anchor.a/#a168

We’ve already seen that if we wait for the future to

complete, using get(), we can get the result we

wanted, in this case a TopicDescription. But there is

also a possibility that the server can’t complete the

request correctly - if the topic does not exist, the

server can’t respond with its description. In this case

the server will send back and error, and the future

will complete by throwing an ExecutionException.

The actual error sent by the server will be the cause

of the exception. Since we want to handle the case

where the topic doesn’t exist, we handle these

exceptions.

If the topic does exist, the future completes by

returning a TopicDescription, which contains a list

of all the partitions of the topic and for each

partition which broker is the leader, a list of replicas

and a list of in-sync replicas. Note that this does not

include the configuration of the topic. We’ll discuss

configuration later in this chapter.

Note that all AdminClient result objects throw

ExecutionException when Kafka responds with an

error. This is because AdminClient results are

wrapped Future objects and those wrap exceptions.

You always need to examine the cause of

ExecutionException to get the error that Kafka

returned.

https://calibre-pdf-anchor.a/#a169
https://calibre-pdf-anchor.a/#a170

If the topic does not exist, we create a new topic.

When creating a topic, you can specify just the name

and use default values for all the details. You can

also specify the number of partitions, number of

replicas and configuration.

Finally, you want to wait for topic creation to return,

and perhaps validate the result. In this example, we

are checking the number of partitions. Since we

specified the number of partitions when we created

the topic, we are fairly certain it is correct. Checking

the result is more common if you relied on broker

defaults when creating the topic. Note that since we

are again calling get() to check the results of

CreateTopic, this method could throw an exception.

TopicExistsException is common in this scenario

and you’ll want to handle it (perhaps by describing

the topic to check for correct configuration).

Now that we have a topic, lets delete it:

admin.deleteTopics(TOPIC_LIST).all().get();

// Check that it is gone. Note that due to the async nature

// it is possible that at this point the topic still exists

try {

 topicDescription = demoTopic.values().get(TOPIC_NAME).g

 System.out.println("Topic " + TOPIC_NAME + " is still a

} catch (ExecutionException e) {

https://calibre-pdf-anchor.a/#a172
https://calibre-pdf-anchor.a/#a173

At this point the code should be quite familiar. We call the

method deleteTopics with a list of topic names to delete, and

we use get() to wait for this to complete.

WARNING
Although the code is simple, please remember that in Kafka, deletion of

topics is final - there is no “recyclebin” or “trashcan” to help you rescue

the deleted topic and no checks to validate that the topic is empty and

that you really meant to delete it. Deleting the wrong topic could mean

un-recoverable loss of data - so handle this method with extra care.

All the examples so far have used the blocking get() call on the

future returned by the different AdminClient methods. Most of

the time, this is all you need - admin operations are rare and

usually waiting until the operation succeeds or times out is

acceptable. There is one exception - if you are writing a server

that is expected to process large number of admin requests. In

this case, you don’t want to block the server threads while

waiting for Kafka to respond. You want to continue accepting

requests from your users, sending them to Kafka and when

Kafka responds, send the response to the client. In these

scenarios, the versatility of KafkaFuture becomes quite useful.

Here’s a simple example.

 System.out.println("Topic " + TOPIC_NAME + " is gone");

}

We are using Vert.X to create a simple HTTP server.

Whenever this server receives a request, it calls the

requestHandler that we are defining here.

The request includes topic name as a parameter, and

we’ll respond with a description of this topic

We call AdminClient.describeTopics as usual and

get a wrapped Future in response

vertx.createHttpServer().requestHandler(request -> {

 String topic = request.getParam("topic");

 String timeout = request.getParam("timeout");

 int timeoutMs = NumberUtils.toInt(timeout, 1000);

 DescribeTopicsResult demoTopic = admin.describeTopics(

 Collections.singletonList(topic),

 new DescribeTopicsOptions().timeoutMs(timeoutMs

 demoTopic.values().get(topic).whenComplete(

 new KafkaFuture.BiConsumer<TopicDescription, Th

 @Override

 public void accept(final TopicDescription t

 final Throwable throwabl

 if (throwable != null) {

 request.response().end("Error trying

 + topic + " due to " + throwa

 } else {

 request.response().end(topicDescrip

 }

 }

 });

}).listen(8080);

But instead of using the blocking get() call, we

instead construct a function that will be called when

the Future completes.

If the future completes with an exception, we send

the error to the HTTP client

If the future completes successfully, we respond to

the client with the topic description.

The key here is that we are not waiting for response from

Kafka. DescribeTopicResult will send the response to the

HTTP client when a response arrives from Kafka. Meanwhile

the HTTP server can continue processing other requests. You

can check this behavior by using SIGSTOP to pause Kafka (don’t

try this in production!) and send two HTTP requests to Vert.X -

one with long timeout value and one with short value. Even

though you sent the second request after the first, it will

respond earlier thanks to the lower timeout value, and not

block behind the first request.

Configuration management
Configuration management is done by describing and updating

collections of ConfigResource. Config resources can be brokers,

broker loggers and topics. Checking and modifying broker and

broker logging configuration is typically done via tools like

kafka-config.sh or other Kafka management tools, but

https://calibre-pdf-anchor.a/#a185

checking and updating topic configuration from the

applications that use them is quite common.

For example, many applications rely on compacted topics for

their correct operation. It makes sense that periodically (more

frequently than the default retention period, just to be safe),

those applications will check that the topic is indeed compacted

and take action to correct the topic configuration if this is not

the case.

Here’s an example of how this is done:

ConfigResource configResource =

 new ConfigResource(ConfigResource.Type.TOPIC,TOPIC_

DescribeConfigsResult configsResult =

 admin.describeConfigs(Collections.singleton(configR

Config configs = configsResult.all().get().get(configResour

// print non-default configs

configs.entries().stream().filter(

 entry -> !entry.isDefault()).forEach(System.out::pr

// Check if topic is compacted

ConfigEntry compaction = new ConfigEntry(TopicConfig.CLEANU

 TopicConfig.CLEANUP_POLICY_COMPACT);

if (! configs.entries().contains(compaction)) {

 // if topic is not compacted, compact it

 Collection<AlterConfigOp> configOp = new ArrayList<Alte

 configOp.add(new AlterConfigOp(compaction, AlterConfigO

 Map<ConfigResource, Collection<AlterConfigOp>> alterCon

 alterConf.put(configResource, configOp);

 admin.incrementalAlterConfigs(alterConf).all().get();

} else {

As mentioned above, there are several types of

ConfigResource, here we are checking the

configuration for a specific topic. You can specify

multiple different resources from different types in

the same request.

The result of describeConfigs is a map from each

ConfigResource to a collection of configurations.

Each configuration entry has isDefault() method

that lets us know which configs were modified. A

topic configuration is considered non-default if a

user configured the topic to have a non-default

value, or if a broker level configuration was modified

and the topic that was created inherited this non-

default value from the broker.

In order to modify a configuration, you specify a

map of the ConfigResource you want to modify and

a collection of operations. Each configuration

modifying operation consists of configuration entry

(which is the name and value of the configuration, in

this case cleanup.policy is the configuration name

and compacted is the value) and the operation type.

There are four types of operations that modify

configuration in Kafka: SET, which sets the

 System.out.println("Topic " + TOPIC_NAME + " is compact

}

https://calibre-pdf-anchor.a/#a193
https://calibre-pdf-anchor.a/#a194
https://calibre-pdf-anchor.a/#a195

configuration value, DELETE which removes the value

and resets to default, APPEND and SUBSTRACT - those

apply only to configurations with List type and

allows adding and removing values from the list

without having to send the entire list to Kafka every

time.

Describing configuration can be surprisingly handy in an

emergency. I remember a time when during an upgrade, the

configuration file for the brokers was accidentally replaced with

a broken copy. This was discovered after restarting the first

broker and noticing that it fails to start. The team did not have

a way to recover the original, and we prepared for significant

trial and error as we attempt to reconstruct the correct

configuration and bring the broker back to life. A Site

Reliability Engineer (SRE) saved the day by connecting to one

of the remaining brokers and dumping their configuration

using the AdminClient.

Consumer group management
We’ve mentioned before that unlike most message queues,

Kafka allows you to re-process data in the exact order in which

it was consumed and processed earlier. In Chapter 4, where we

discussed consumer groups, we explained how to use the

Consumer APIs to go back and re-read older messages from a

topic. But using these APIs means that you programmed the

ability to re-process data in advance into your application. Your

application itself must expose the “re-process” functionality.

There are several scenarios in which you’ll want to cause an

application to re-process messages, even if this capability was

not built into the application in advance. Troubleshooting a

malfunctioning application during an incident is one such

scenario. Another is when preparing an application to start

running on a new cluster during a disaster recovery failover

scenario (we’ll discuss this in more detail in Chapter 9, when

we discuss disaster recovery techniques).

In this section, we’ll look at how you can use the AdminClient

to programmatically explore and modify consumer groups and

the offsets that were committed by those groups. In Chapter 10

we’ll look at external tools available to perform the same

operations.

Exploring Consumer Groups

If you want to explore and modify consumer groups, the first

step would be to list them:

Note that by using valid() method, the collection that get()

will return will only contain the consumer groups that the

cluster returned without errors, if any. Any errors will be

admin.listConsumerGroups().valid().get().forEach(System.out

completely ignored, rather than thrown as exceptions. The

errors() method can be used to get all the exceptions. If you

use all() as we did in other examples, only the first error the

cluster returned will be thrown as an exception. Likely causes

of such errors are authorization, where you don’t have

permission to view the group, or cases when the coordinator

for some of the consumer groups is not available.

If we want more information about some of the groups, we can

describe them:

The description contains a wealth of information about the

group. This includes the group members, their identifiers and

hosts, the partitions assigned to them, the algorithm used for

the assignment and the host of the group coordinator. This

description is very useful when troubleshooting consumer

groups. One of the most important pieces of information about

a consumer group is missing from this description - inevitably,

we’ll want to know what was the last offset committed by the

group for each partition that it is consuming, and how much it

is lagging behind the latest messages in the log.

ConsumerGroupDescription groupDescription = admin

 .describeConsumerGroups(CONSUMER_GRP_LIST)

 .describedGroups().get(CONSUMER_GROUP).get();

 System.out.println("Description of group " + CONSUM

 + ":" + groupDescription);

In the past, the only way to get this information was to parse

the commit messages that the consumer groups wrote to an

internal Kafka topic. While this method accomplished its

intent, Kafka does not guarantee compatibility of the internal

message formats and therefore the old method is not

recommended. We’ll take a look at how Kafka’s AdminClient

allows us to retrieve this information.

Map<TopicPartition, OffsetAndMetadata> offsets =

 admin.listConsumerGroupOffsets(CONSUMER_GROUP)

 .partitionsToOffsetAndMetadata().get();

Map<TopicPartition, OffsetSpec> requestLatestOffsets = new

for(TopicPartition tp: offsets.keySet()) {

 requestLatestOffsets.put(tp, OffsetSpec.latest());

}

Map<TopicPartition, ListOffsetsResult.ListOffsetsResultInfo

 admin.listOffsets(requestLatestOffsets).all().get()

for (Map.Entry<TopicPartition, OffsetAndMetadata> e: offset

 String topic = e.getKey().topic();

 int partition = e.getKey().partition();

 long committedOffset = e.getValue().offset();

 long latestOffset = latestOffsets.get(e.getKey()).offse

 System.out.println("Consumer group " + CONSUMER_GROUP

 + " has committed offset " + committedOffset

 + " to topic " + topic + " partition " + partit

 + ". The latest offset in the partition is "

 + latestOffset + " so consumer group is "

 + (latestOffset - committedOffset) + " records

}

We retrieve a map of all topics and partitions that

the consumer group handles, and the latest

committed offset for each. Note that unlike

describeConsumerGroups,

listConsumerGroupOffsets only accepts a single

consumer group and not a collection.

For each one of the topics and partitions in the

results, we want to get the offset of the last message

in the partition. OffsetSpec has three very

convenient implementations - earliest(), latest()

and forTimestamp(), those allow us to get the earlier

and latest offsets in the partition, as well as the

offset of the record written on or immediately after

the time specified.

Finally, we iterate over all the partitions and for each

partition print the last committed offset, the latest

offset in the partition and the lag between them.

Modifying consumer groups

Until now, we just explored available information. AdminClient

also has methods for modifying consumer groups - deleting

groups, removing members, deleting committed offsets and

modifying offsets. These are commonly used by SREs who use

them to build ad-hoc tooling to recover from an emergency.

https://calibre-pdf-anchor.a/#a203

From all those, modifying offsets is the most useful. Deleting

offsets might seem like a simple way to get a consumer to “start

from scratch”, but this really depends on the configuration of

the consumer - if the consumer starts and no offsets are found,

will it start from the beginning? Or jump to the latest message?

Unless we have the code for the consumer, we can’t know.

Explicitly modifying the committed offsets to the earliest

available offsets will force the consumer to start processing

from the beginning of the topic, and essentially cause the

consumer to “reset”.

This is very useful for stateless consumers, but keep in mind

that if the consumer application maintains state (and most

stream processing applications maintain state), resetting the

offsets and causing the consumer group to start processing

from the beginning of the topic can have strange impact on the

stored state. For example, suppose that you have a streams

application that is continuously counting shoes sold in your

store, and suppose that at 8:00 am you discover that there was

an error in inputs and you want to completely re-calculate the

count since 3:00 am. If you reset the offsets to 3:00 am without

appropriately modifying the stored aggregate, you will count

twice every shoe that was sold today (you will also process all

the data between 3:00 am and 8:00 am, but lets assume that

this is necessary to correct the error). You need to take care to

update the stored state accordingly. In development

environment we usually delete the state store completely before

resetting the offsets to the start of the input topic.

Also keep in mind that consumer groups don’t receive updates

when offsets change in the offset topic. They only read offsets

when a consumer is assigned a new partition or on startup. To

prevent you from making changes to offsets that the consumers

will not know about (and will therefore override), Kafka will

prevent you from modifying offsets while the consumer group

is active.

With all these warnings in mind, lets look at an example:

In order to reset the consumer group so it will start

processing from the earliest offset, we need to get

the earliest offsets first.

Map<TopicPartition, ListOffsetsResult.ListOffsetsResultInfo

Map<TopicPartition, OffsetAndMetadata> resetOffsets = new H

for (Map.Entry<TopicPartition, ListOffsetsResult.ListOffset

 earliestOffsets.entrySet()) {

 resetOffsets.put(e.getKey(), new OffsetAndMetadata(e.getV

try {

 admin.alterConsumerGroupOffsets(CONSUMER_GROUP, resetOffs

} catch (ExecutionException e) {

 System.out.println("Failed to update the offsets committe

 + CONSUMER_GROUP + " with error " + e.getMessag

 if (e.getCause() instanceof UnknownMemberIdException)

 System.out.println("Check if consumer group is still

}

https://calibre-pdf-anchor.a/#a208
https://calibre-pdf-anchor.a/#a209

alterConsumerGroupOffsets takes as an argument a

map with OffsetAndMetadata values. But

listOffsets returns ListOffsetsResultInfo, we

need to massage the results of the first method a bit,

so we can use them as an argument.

We are waiting on the future to complete so we can

see if it completed successfully.

One of the most common reasons that

alterConsumerGroupOffsets will fail is when we

didn’t stop the consumer group first. If the group is

still active, our attempt to modify the offsets will

appear to the consumer coordinator as if a client

that is not a member in the group is committing an

offset for that group. In this case, we’ll get

UnknownMemberIdException.

Cluster Metadata
It is rare that an application has to explicitly discover anything

at all about the cluster to which it connected. You can produce

and consume messages without ever learning how many

brokers exist and which one is the controller. Kafka clients

abstract away this information - clients only need to be

concerned with topics and partitions.

But just in case you are curious, this little snippet will satisfy

your curiosity:

https://calibre-pdf-anchor.a/#a210
https://calibre-pdf-anchor.a/#a211

Cluster identifier is a GUID and therefore is not

human readable. It is still useful to check whether

your client connected to the correct cluster.

Advanced Admin Operations
In this subsection, we’ll discuss few methods that are rarely

used, and can be risky to use… but are incredibly useful when

needed. Those are mostly important for SREs during incidents

- but don’t wait until you are in an incident to learn how to use

them. Read and practice before it is too late. Note that the

methods here have little to do with each other, except that they

all fit into this category.

Adding partitions to a topic

Usually the number of partitions in a topic is set when a topic is

created. And since each partition can have very high

throughput, bumping against the capacity limits of a topic is

rare. In addition, if messages in the topic have keys, then

consumers can assume that all messages with the same key will

DescribeClusterResult cluster = admin.describeCluster();

System.out.println("Connected to cluster " + cluster.cluste

System.out.println("The brokers in the cluster are:");

cluster.nodes().get().forEach(node -> System.out.println("

System.out.println("The controller is: " + cluster.controll

https://calibre-pdf-anchor.a/#a217

always go to the same partition and will be processed in the

same order by the same consumer.

For these reasons, adding partitions to a topic is rarely needed

and can be risky - you’ll need to check that the operation will

not break any application that consumes from the topic. At

times, however, you really hit the ceiling of how much

throughput you can process with the existing partitions and

have no choice but to add some.

You can add partitions to a collection of topics using

createPartitions method. Note that if you try to expand

multiple topics at once, it is possible that some of the topics will

be successfully expanded while others will fail.

When expanding topics, you need to specify the total

number of partitions the topic will have after the

partitions are added and not the number of new

partitions.

Map<String, NewPartitions> newPartitions = new HashMap<>();

newPartitions.put(TOPIC_NAME, NewPartitions.increaseTo(NUM_

admin.createPartitions(newPartitions).all().get();

https://calibre-pdf-anchor.a/#a221

TIP
Since createPartition method takes as a parameter the total number of

partitions in the topic after new partitions are added, you may need to

describe the topic it and find out how many partitions exist prior to

expanding it.

Deleting records from a topic

Current privacy laws mandate specific retention policies for

data. Unfortunately, while Kafka has retention policies for

topics, they were not implemented in a way that guarantees

legal compliance. A topic with retention policy of 30 days can

have older data if all the data fits into a single segment in each

partition.

deleteRecords method will delete all the records with offsets

older than those specified when calling the method. Remember

that listOffsets method can be used to get offsets for records

that were written on or immediately after a specific time.

Together, these methods can be used to delete records older

than any specific point in time.

Map<TopicPartition, ListOffsetsResult.ListOffsetsResultInfo

Map<TopicPartition, RecordsToDelete> recordsToDelete = new

for (Map.Entry<TopicPartition, ListOffsetsResult.ListOffset

 olderOffsets.entrySet())

 recordsToDelete.put(e.getKey(), RecordsToDelete.beforeO

 admin.deleteRecords(recordsToDelete).all().get();

Leader Election

This method allows you to trigger two different types of leader

election:

Preferred leader election: Each partition has a replica

that is designated as the “preferred leader”. It is

preferred because if all partitions use their preferred

leader replica as leader, the number of leaders on each

broker should be balanced. By default, Kafka will check

every 5 minutes if the preferred leader replica is indeed

the leader, and if it isn’t but it is eligible to become the

leader, it will elect the preferred leader replica as leader.

If this option is turned off, or if you want this to happen

faster, electLeader() method can trigger this process.

Unclean leader election: If the leader replica of a

partition becomes unavailable, and the other replicas

are not eligible to become leaders (usually because they

are missing data), the partition will be without leader

and therefore unavailable. One way to resolve this is to

trigger “unclean” leader election - which means electing

a replica that is otherwise ineligible to become a leader

as the leader anyway. This will cause data loss - all the

events that were written to the old leader and were not

replicated to the new leader will be lost. electLeader()

method can also be used to trigger unclean leader

elections.

The method is asynchronous, which means that even after it

returns successfully, it takes a while until all brokers become

aware of the new state and calls to describeTopics() can

return inconsistent results. If you trigger leader election for

multiple partitions, it is possible that the operation will be

successful for some partitions and will fail for others.

We are electing the preferred leader on a single

partition of a specific topic. We can specify any

number of partitions and topics. If you call the

command with null instead of a collection of

partitions, it will trigger the election type you chose

for all partitions.

If the cluster is in a healthy state, the command will

do nothing - preferred leader election and unclean

leader election only have effect when a replica other

than the preferred leader is the current leader.

Set<TopicPartition> electableTopics = new HashSet<>();

electableTopics.add(new TopicPartition(TOPIC_NAME, 0));

try {

 admin.electLeaders(ElectionType.PREFERRED, electableTop

} catch (ExecutionException e) {

 if (e.getCause() instanceof ElectionNotNeededException)

 System.out.println("All leaders are preferred alrea

 }

}

https://calibre-pdf-anchor.a/#a225
https://calibre-pdf-anchor.a/#a226

Reassigning Replicas

Sometimes, you don’t like the current location of some of the

replicas. Maybe a broker is overloaded and you want to move

some replicas away. Maybe you want to add more replicas.

Maybe you want to move all replicas away from a broker so you

can remove the machine. Or maybe few topics are so noisy that

you need to isolate them away from the rest of the workload. In

all these scenarios, alterPartitionReassignments gives you

fine-grain control over the placement of every single replica for

a partition. Keep in mind that when you reassign replicas from

one broker to another, it may involve copying large amounts of

data from one broker to another. Be mindful of the available

network bandwidth and throttle replication using quotas if

needed: quotas are broker configuration, so you can describe

them and update them with AdminClient.

For this example, assume that we have a single broker with id

0. Our topic has several partitions, all with one replica on this

broker. After adding a new broker, we want to use it to store

some of the replicas of the topic. So we are going to assign each

partition in the topic in a slightly different way:

Map<TopicPartition, Optional<NewPartitionReassignment>> rea

reassignment.put(new TopicPartition(TOPIC_NAME, 0),

 Optional.of(new NewPartitionReassignment(Arrays.asL

reassignment.put(new TopicPartition(TOPIC_NAME, 1),

 Optional.of(new NewPartitionReassignment(Arrays.asL

reassignment.put(new TopicPartition(TOPIC_NAME, 2),

 Optional.of(new NewPartitionReassignment(Arrays.asL

reassignment.put(new TopicPartition(TOPIC_NAME, 3), Optiona

We’ve added another replica to partition 0, placed

the new replica on the new broker, but left the leader

on the existing broker

We didn’t add any replicas to partition 1, simply

moved the one existing replica to the new broker.

Since I have only one replica, it is also the leader.

We’ve added another replica to partition 2 and made

it the preferred leader. The next preferred leader

election will switch leadership to the new replica on

the new broker. The existing replica will then

become a follower.

There is no on-going reassignment for partition 3,

but if there was, this would have cancelled it and

try {

 admin.alterPartitionReassignments(reassignment).all().g

} catch (ExecutionException e) {

 if (e.getCause() instanceof NoReassignmentInProgressExc

 System.out.println("Cancelling a reassignment that

 }

}

System.out.println("currently reassigning: " +

 admin.listPartitionReassignments().reassignments().

demoTopic = admin.describeTopics(TOPIC_LIST);

topicDescription = demoTopic.values().get(TOPIC_NAME).get()

System.out.println("Description of demo topic:" + topicDesc

https://calibre-pdf-anchor.a/#a230
https://calibre-pdf-anchor.a/#a231
https://calibre-pdf-anchor.a/#a232
https://calibre-pdf-anchor.a/#a233

returned the state to what it was before the

reassignment operation started.

We can list the on-going reassignments

We can also try to print the new state, but remember

that it can take a while until it shows consistent

results

Testing
Apache Kafka provides a test class MockAdminClient, which you

can initialize with any number of brokers and use to test that

your applications behave correctly without having to run an

actual Kafka cluster and really perform the admin operations

on it. Some of the methods have very comprehensive mocking -

you can create topics with MockAdminClient and a subsequent

call to listTopics() will list the topics you “created”.

However, not all methods are mocked - if you use AdminClient

with version 2.5 or earlier and call incrementalAlterConfigs()

of the MockAdminClient, you will get an

UnsupportedOperationException, but you can handle this by

injecting your own implementation.

In order to demonstrate how to test using MockAdminClient,

lets start by implementing a class that is instantiated with an

admin client and uses it to create topics:

https://calibre-pdf-anchor.a/#a234

The logic here isn’t sophisticated: maybeCreateTopic will create

the topic if the topic name starts with “test”. We are also

modifying the topic configuration, so we can show how to

handle a case where the method we use isn’t implemented in

the mock client.

We’ll start testing by instantiating our mock client:

public TopicCreator(AdminClient admin) {

 this.admin = admin;

}

// Example of a method that will create a topic if its name

public void maybeCreateTopic(String topicName)

 throws ExecutionException, InterruptedException {

 Collection<NewTopic> topics = new ArrayList<>();

 topics.add(new NewTopic(topicName, 1, (short) 1));

 if (topicName.toLowerCase().startsWith("test")) {

 admin.createTopics(topics);

 // alter configs just to demonstrate a point

 ConfigResource configResource =

 new ConfigResource(ConfigResource.Type.TO

 ConfigEntry compaction =

 new ConfigEntry(TopicConfig.CLEANUP_POLIC

 TopicConfig.CLEANUP_POLICY_COMPAC

 Collection<AlterConfigOp> configOp = new ArrayList<

 configOp.add(new AlterConfigOp(compaction, AlterCon

 Map<ConfigResource, Collection<AlterConfigOp>> alte

 alterConf.put(configResource, configOp);

 admin.incrementalAlterConfigs(alterConf).all().get(

 }

}

NOTE
We are using the Mockito testing framework to verify that the

MockAdminClient methods are called as expected and to fill in for the

unimplemented methods. Mockito is a fairly simple mocking framework

with nice APIs, which makes it a good fit for a small example of a unit

test.

MockAdminClient is instantiated with a list of brokers

(here I’m using just one), and one broker that will be

our controller. The brokers are just the broker id,

hostname and port - all fake, of course. No brokers

will run while executing these tests. We’ll use

Mockito’s spy injection, so we can later check that

TopicCreator executed correctly.

Here we use Mockito’s doReturn methods to make

sure the mock admin client doesn’t throw

@Before

public void setUp() {

 Node broker = new Node(0,"localhost",9092);

 this.admin = spy(new MockAdminClient(Collections.single

 // without this, the tests will throw

 // `java.lang.UnsupportedOperationException: Not implem

 AlterConfigsResult emptyResult = mock(AlterConfigsResul

 doReturn(KafkaFuture.completedFuture(null)).when(emptyR

 doReturn(emptyResult).when(admin).incrementalAlterConfi

}

https://site.mockito.org/
https://calibre-pdf-anchor.a/#a243
https://calibre-pdf-anchor.a/#a244

exceptions. Since the method we are testing expects

AlterConfigResult that returns a KafkaFuture when

calling its all() method, we made sure that the fake

incrementalAlterConfigs returns exactly that.

Now that we have a properly fake AdminClient, we can use it to

test whether maybeCreateTopic() method works properly:

The topic name starts with “test”, so we expect

maybeCreateTopic() to create a topic. We are

checking that createTopics() was called once.

When the topic name doesn’t start with “test”, we’re

verifying that createTopics() was not called at all.

@Test

public void testCreateTestTopic()

 throws ExecutionException, InterruptedException {

 TopicCreator tc = new TopicCreator(admin);

 tc.maybeCreateTopic("test.is.a.test.topic");

 verify(admin, times(1)).createTopics(any());

}

@Test

public void testNotTopic() throws ExecutionException, Inter

 TopicCreator tc = new TopicCreator(admin);

 tc.maybeCreateTopic("not.a.test");

 verify(admin, never()).createTopics(any());

}

One last note: Apache Kafka published MockAdminClient in a

test jar, so make sure your pom.xml includes a test dependency:

<dependency>

 <groupId>org.apache.kafka</groupId>

 <artifactId>kafka-clients</artifactId>

 <version>2.5.0</version>

 <classifier>test</classifier>

 <scope>test</scope>

</dependency>

Summary
AdminClient is a useful tool to have in your Kafka development

kit. It is useful for application developers who want to create

topics on the fly and validate that the topics they are using are

configured correctly for their application. It is also useful for

operators and SREs who want to create tooling and automation

around Kafka or need to recover from an incident. AdminClient

has so many useful methods that SREs can think of it as a Swiss

Army Knife for Kafka operations.

In this chapter we covered all the basics of using Kafka’s

AdminClient - topic management, configuration management

and consumer group management. Plus few other useful

methods that are good to have in your back pocket - you never

know when you’ll need them.

About the Authors
Gwen Shapira is a system architect at Confluent helping

customers achieve success with their Apache Kafka

implementation. She has 15 years of experience working with

code and customers to build scalable data architectures,

integrating relational and big data technologies. She currently

specializes in building real-time reliable data processing

pipelines using Apache Kafka. Gwen is an Oracle Ace Director,

an author of “Hadoop Application Architectures”, and a

frequent presenter at data driven conferences. Gwen is also a

committer on the Apache Kafka and Apache Sqoop projects.

Todd Palino is a senior staff site reliability engineer at

LinkedIn, tasked with keeping the largest deployment of

Apache Kafka, Zookeeper, and Samza fed and watered. He is

responsible for architecture, day-to-day operations, and tools

development, including the creation of an advanced monitoring

and notification system. Todd is the developer of the open

source project Burrow, a Kafka consumer monitoring tool, and

can be found sharing his experience with Apache Kafka at

industry conferences and tech talks. Todd has spent more than

20 years in the technology industry running infrastructure

services, most recently as a systems engineer at Verisign,

developing service management automation for DNS,

networking, and hardware management, as well as managing

hardware and software standards across the company.

Rajini Sivaram is a Software Engineer at Confluent designing

and developing security features for Kafka. She is an Apache

Kafka Committer and member of the Apache Kafka Program

Management Committee. Prior to joining Confluent, she was at

Pivotal working on a high-performance reactive API for Kafka

based on Project Reactor. Earlier, Rajini was a key developer

on IBM Message Hub which provides Kafka-as-a-Service on

the IBM Bluemix platform. Her experience ranges from parallel

and distributed systems to Java virtual machines and

messaging systems.

Neha Narkhede is cofounder and head of engineering at

Confluent, a company backing the popular Apache Kafka

messaging system. Prior to founding Confluent, Neha led

streams infrastructure at LinkedIn, where she was responsible

for LinkedIn’s streaming infrastructure built on top of Apache

Kafka and Apache Samza. She is one of the initial authors of

Apache Kafka and a committer and PMC member on the

project.

Colophon
The animal on the cover of Kafka: The Definitive Guide is a

blue-winged kookaburra (Dacelo leachii). It is part of the

Alcedinidae family and can be found in southern New Guinea

and the less dry area of northern Australia. They are considered

to be river kingfisher birds.

The male kookaburra has a colorful look. The lower wing and

tail feathers are blue, hence its name, but tails of females are

reddish-brown with black bars. Both sexes have cream colored

undersides with streaks of brown, and white irises in their eyes.

Adult kookaburras are smaller than other kingfishers at just 15

to 17 inches in length and, on average, weigh about 260 to 330

grams.

The diet of the blue-winged kookaburra is heavily carnivorous,

with prey varying slightly given changing seasons. For example,

in the summer months there is a larger abundance of lizards,

insects, and frogs that this bird feeds on, but drier months

introduce more crayfish, fish, rodents, and even smaller birds

into their diet. They’re not alone in eating other birds, however,

as red goshawks and rufous owls have the blue-winged

kookaburra on their menu when in season.

Breeding for the blue-winged kookaburra occurs in the months

of September through December. Nests are hollows in the high

parts of trees. Raising young is a community effort, as there is

at least one helper bird to help mom and dad. Three to four

eggs are laid and incubated for about 26 days. Chicks will

fledge around 36 days after hatching—if they survive. Older

siblings have been known to kill the younger ones in their

aggressive and competitive first week of life. Those who aren’t

victims of fratricide or other causes of death will be trained by

their parents to hunt for 6 to 10 weeks before heading off on

their own.

Many of the animals on O’Reilly covers are endangered; all of

them are important to the world. To learn more about how you

can help, go to animals.oreilly.com.

The cover image is from English Cyclopedia. The cover fonts

are URW Typewriter and Guardian Sans. The text font is Adobe

Minion Pro; the heading font is Adobe Myriad Condensed; and

the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com/

	1. Meet Kafka
	Publish/Subscribe Messaging
	How It Starts
	Individual Queue Systems

	Enter Kafka
	Messages and Batches
	Schemas
	Topics and Partitions
	Producers and Consumers
	Brokers and Clusters
	Multiple Clusters

	Why Kafka?
	Multiple Producers
	Multiple Consumers
	Disk-Based Retention
	Scalable
	High Performance

	The Data Ecosystem
	Use Cases

	Kafka’s Origin
	LinkedIn’s Problem
	The Birth of Kafka
	Open Source
	Commercial Engagement
	The Name

	Getting Started with Kafka

	2. Managing Apache Kafka Programmatically
	AdminClient Overview
	Asynchronous and Eventually Consistent API
	Options
	Flat Hierarchy
	Additional Notes

	AdminClient Lifecycle: Creating, Configuring and Closing
	client.dns.lookup
	request.timeout.ms

	Essential Topic Management
	Configuration management
	Consumer group management
	Exploring Consumer Groups
	Modifying consumer groups

	Cluster Metadata
	Advanced Admin Operations
	Adding partitions to a topic
	Deleting records from a topic
	Leader Election
	Reassigning Replicas

	Testing
	Summary

