
[image:]

[image:]

LEARN PYTHON 3

THE

BEGINNER GUIDE

[image:]

How to become a Python programmer, a simple introduction to the Python development world

By:

Tommaso Rossino

Copyright © 2020 by Tommaso Rossino.

All Rights Reserved

No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the author, except for the inclusion of brief quotations in review.

All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without the written permission of the copyright holder and the publisher.

Description

[image:]

I’m sure, by now maybe you know that Python is a super-popular programming language used by everyone from web developers to data scientists to web security to artificial intelligence. Meaning that once you learn Python, the doors are wide open as far as your career options in information technology. But you might still be wondering what exactly Python looks like and how it works. Until you read through this e-book, it’s hard to understand what it’s all about.

We’ve rounded up the basics and concepts of python programming to show you exactly how Python functions in the wild. Each of these Python programming concepts, functions and framework are explained in details with core examples.

You KNOW you need to learn it, so what are you waiting for?

CONTENTS

[image:]

LEARN PYTHON 3

INTRODUCTION

Why Choose Python?

CHAPTER ONE: Data Structures

1.1 Command Line Interface

1.2 Why Python?

1.3 Text Editors and Integrated Development Environment

Why is a Text Editor Or IDE Necessary

1.3.2 What’s the Difference Between Editors and IDEs?

1.4 Algebra with Variables

1.5 Using Good Identifiers in Your Program

1.5.1 Understanding Python Keywords

1.5.2 Understanding Python Naming Convention

1.6 Creating and Assigning Variable in Python

1.6.1 Understanding Different Types of Variables

1.6.2 Working with Dynamic Typing in Python

1.7 String in Python

1.8.1 How to Create String Python

1.9 Number in Python

1.10 Type Conversion

1.11 Python Decimals

1.12 When to Use Decimal Instead of Float

1.13 Python Fractions

1.14 Python Mathematics

1.15 Accessing Values in Lists

CHAPTER TWO: Python Functions and Modules

2.1 Function

2.1.1 Basis of Function and Syntax

2.2.2 How to Call a Function in Python

2.2 The return Statement

2.3 Modules

2.4 The import Statement

2.5
 The
 reload()
 Function

2.6 Custom import name

2.7 Writing Packages

CHAPTER THREE: Conditionals, Loops, and Some Other Statement

3.1 What is If Statement and How Can It Is Used?

3.2 While loop

3.3 The Infinite Loop

3.4 Using else Statement with Loops

3.5 Single Statement Suites

3.6 For Loop

3.7 Using else Statement with Loops

3.8 Loop Control Statements

CHAPTER FOUR: Classes and Objects

4.1 Class Definition in Python

4.2 Creating an Object in Python

CONCLUSION

INTRODUCTION

[image:]

One of the greatest object oriented programming language of the twenty-first century is Python programming. It was conceived in the late 1980s and its implementation was started in December 1989 by Guido van Rossum at Centrum Wiskunde& Informatica (CWI)- a national research institute for mathematics and computer science in the Netherlands, as a successor to ABC programming language (language inspired by SETL) capable of exception handling and interfacing with the Amoeba operating system.

While you may know the python as a large snake, the name of the Python programming language comes from when Guido van Rossum was reading the published scripts of an old BBC comedy sketch series called ''Monty Python's Flying Circus'' from the 1970s.

He thought he needed a name that was short, unique, and slightly mysterious, so he decided to call the language Python.

One of the amazing features of Python is the fact that it is actually one person's work.

Usually, new programming languages are developed and published by large companies employing lots of professionals, and due to copyright rules, it is very hard to name any of the people involved in the project, but Python is an exception.

Of course, Guidovan Rossum did not develop and evolve all the Python components himself. The speed with which Python has spread around the world is a result of the continuous work of thousands (very often anonymous) programmers, testers, users (many of them aren't IT specialists) and enthusiasts, but it must be said that the very first idea (the seed from which Python sprouted) came to one head – Guido's.

Python is one of those rare languages which can claim to be both SIMPLE and POWERFUL. You can learn python without facing any issues.It requires little in the way of specialized equipment; the software tools can all be

downloaded for free off the Internet, and it can be practiced in the safety and comfort of your own home, without having to ask anyone's permission. It has efficient high-level data structures and a simple but effective approach to object-oriented programming.

Its elegant syntax and dynamic typing, together with interpreted nature, make it an ideal language for scripting and rapid application development in many areas on most platforms.

It has the right combination of performance and features that make writing programs in Python both fun and easy.

You will find yourself pleasantly surprised to see how easy it is to concentrate on the solution to the problem rather than the syntax and structure of the language you are programming in.

Why Choose Python?

If you're going to write computer codes, there are actually dozens of programming languages to choose from. Why choose python? Here are some reasons that make Python an appealing programming language:

	
Python is Popular

Python has been increasing in popularity over the past few years. According to the 2018 stack overflow developer survey, Python was ranked as the 7th most famous language and the most sought after technology of the year. World class software Development Company use Python programming language on a daily basis.

According to a research conducted by dice, Python is also one of the hottest skill to have and the sought after programming language in the world based on the popularity of programming language index.

Due to the recognition and general use of python as a programming language, Python developers are needed on a daily basis, with an attractive package and pay as well.

2.

Python as an Interpreted Language

Many programming languages are compiled. This implies that, the source code need to be translated into a language that can be interpreted by the computer, that is, a language that can only be understood by the computer system processor, before it may run. While as, source codes written in an interpreted language such as python are passed instantly to an interpreter that runs them instantly without delay.

This makes for a faster development because you just input your code and run it, without the intermediate compilation step.

One visible downside to interpreted languages are the speed at which such code is executed. Programs which might be than compiled into the native language of the laptop processor have a tendency to run more quickly interpreted programs. For a few programs which can be computationally extensive, like image processing or severe quantity crunching, this may be limiting.

In practical terms, however, for some language, the difference in the speed of execution is measured in milliseconds, or seconds at most and now not significantly great to the user. The expediency of coding in an interpreted language is usually worth it for a lot of applications.

3.

Python is Open Source

The python interpreter is developed beneath an OSI-accepted open-supply license, making it free for anyone to install, use, distribute, even for industrial or commercial purposes.

A version of the interpreter is compatible for any platform, which includes all flavors of Unix, Windows, Mac operating system, smart phones and table devices, and probably any device. Any of the language is available for the half dozen people who use OS/2.

Python is a free, open-source programming language that is available for everyone to use. This means you can download it for free and use it in your application. It also means you can freely distribute copies of the software, read its source code and modify it. If you would like to download and install Python on your computer, you can do for free at www. python.org.

4.

Python is Portable

Because python source codes are interpreted and not compiled into native machine codes, any code written for one platform will work on some other platform, once the python interpreter is installed in it. (This is a common feature for all interpreted language, not only Python.)

5.

Python is Easy to Learn and Fun

As programming languages go, python is especially uncluttered when compared to other languages, and the developers have intentionally kept it that way.

An insight to the complexity of a Python as a programming language can be gleaned from the number of reserved words in the language. These are words which might be reserved for unique accessibility by the interpreter or compiler to designate specific integrated capability of the language.

Python 3 has 33 key reserved words or keywords, and python 2 has 31 reserved words. By contrast, C++ has 62 reserved words, Java has 53 reserved words, and Visual Basic has over 120 reserved words, even though those latter examples likely range really by implementation or the language

Python code has an easy structure that is easy to research and smooth to examine. In practical terms, as you may see, the language definition enforces a code pattern that is easy to read.

6.

Python is an Object Oriented Programming Language

For all its syntactical simplicity, python supports most constructs that could be seen in a high level language, such as complex data types, structured programming and object-oriented programming.

Moreover, a totally great library of classes and capabilities is available that provides functionality beyond the built in functions of the language, such as database manipulation or Graphical User Interface (GUI) programming. Python accomplishes what many programming languages cant; the language itself is simple in its designed, however it is very versatile in terms of what can be accomplish with it.

7. Automatic Memory Management

Python supports automatic memory management. Memory management in Python involves a private heap containing all Python objects and data structures. This means, the memory is cleared and freed automatically. You do not have to bother clearing the memory.

The Python memory manager has different components which deal with various dynamic storage management aspects, like sharing, segmentation, pre-allocation or caching.

8 .Supports Exception Handling

In computer programming, an exception is an event that can occur during program exception and can disrupt the normal flow of program. Python supports exception handling which means we can write less error prone code and can test various scenarios that can cause an exception later on.

In Python, exceptions can be handled using a try statement. That is, critical operation which can raise an exception is placed inside the try clause. The code that handles the exceptions is written in the except clause. Here, we print the name of the exception using the exc_info() method inside sys module.

9. Large Standard Library

Python Standard Library is a collection of script modules/packages accessible to a Python program to simplify the programming process and removing the need to rewrite commonly used commands. They can be used by 'calling/importing' them at the beginning of a script while writing code in Python.

At the end of this e-book, every ascribing reader should understand the basics and concepts of python programming and its core features.

CHAPTER ONE: Data Structures

[image:]

In this chapter, will ease you in gently by introducing you to the parameters you will need to create your python programs: a command-line interface with python and how to develop an interface with python, a text editor for writing scripts, and algebra with variables.

1.1 Command Line Interface

Command Line programs has been with us since the creation of computer programs and are built on commands. A command line program is a program that operates from the command line or from a shell while a Command line interface (CLI) is a text-based interface that is used to operate software and operating systems while allowing the user to respond to visual prompts by typing single commands into the interface and receiving a reply in the same way.

It is also a user interface that is navigated by typing commands at terminals, shells or consoles, instead of using the mouse. The console is a display mode for which the entire monitor screen shows only text, no images and GUI objects.

According to Wikipedia:

The CLI was the primary means of interaction with most computer systems on computer terminals in the mid-1960s, and continued to be used

throughout the 1970s and 1980s on OpenVMS, Unix systems and personal computer systems including MS-DOS, CP/M and Apple DOS. The interface is usually implemented with a command line shell, which is a program that accepts commands as text input and converts commands into appropriate operating system functions.

1.2 Why Python?

Python is usually regarded as a glue code language, that is, it is an advanced scripting language that is being used successfully to glue together large software components, spanning multiple platforms, middleware products, and application domains. Because of it's flexibility and efficiency with existing programs, most Python codes are written as scripts and command-line interfaces (CLI).

Building these command-line interfaces and tools is extremely powerful because it makes it possible to automate almost anything you want.

We are in the age of beautiful and interactive interfaces, UI and UX matters a lot. We need to add these things to Command Lines and people have been able to achieve it and its now being used officially.

There are tons of Python libraries and modules to help build a command line app from parsing arguments and options to flagging to full blown CLI "frameworks"

With these modules, you can create a beautiful and interactive command line interfaces like Heroku and Node.js programs like Vue-init or NPM-init. In order to build something beautiful vueinit cli easily using python,

PyInquirer is a good thing. It works on all platforms including Windows.

1.3 Text Editors and Integrated Development Environment

Text editors and integrated development environments (IDEs) are applications for writing code. These applications are the primary user interface for developers to create their own programs.

Vim is an example of a text editor implementation that can be expanded into a full Python IDE using configuration files and plug ins.

Visual Studio Code is another source-code editor made by Microsoft for Windows, Linux and macOS. Features include support for debugging, syntax highlighting, intelligent code completion, snippets, code refactoring, and embedded Git.

Why is a Text Editor Or IDE Necessary

Where will you write your code if you do not have a text editor? Your development environment must include a text editor so you can enter, edit and delete characters to create Python applications.

Preferably your editor will have a monospace font. It will also get out of your way, so no "smart" correction or automatic letter capitalization. The more comfortable you become in your editor of choice the faster you can figure out how to implement that next feature in your application or squash that pesky bug that you just found.

1.3.2 What’s the Difference Between Editors and IDEs?

IDEs contain text editors but many text editors, for example Notepad included with Windows, do not include IDE features. Many text editors such as Vim or Emacs have IDE features by default but then can be further customized to add file trees, syntax highlighting, line numbers and syntax checking that is commonly found in full-featured IDEs.

1.4 Algebra with Variables

One can define variables, assign values to them, and do algebra. Just like the familiar variables x and y in mathematics, we use variables in programming to easily manipulate values. It may be changed by assigning a new value into it or editing the value that is already there. On this note, I will be introducing some of the extraordinary forms of variable that are available if you want to use them when writing your python codes, and I will be showing you a way to construct them into the expressions and statements in python, that will help you turn your written code into working set of instructions. This is where the real practical side of programming takes place. You may be writing your codes from scratch in this chapter: one to manipulate and layout easy text strings and a script that plays a mathematical calculation. All this is made easy and possible through using variables.

Using variables gives you the chance to specify values in your calculation or the possibility to see into the end result of your code while not having to recognize what values you have beforehand. Any value passed into the system must be converted into a variable before you can access it while writing your codes.

1.5
 Using
 Good Identifiers in Your Program

Identifiers are the names used to identify value or things in your code. Python will regard any phrase that has not been commented or delimited by quotation marks, or escape in another way as an identifier of another type

An identifier is a label, so it is able to refer to extra or less something which includes commands, so it enables to maintain matters readable and comprehensible if you pick realistic names. you need to be careful to avoid deciding on names which might be already getting used to your contemporary python consultation to identify your new variables. Deciding on the same call as something else could make the original item with that name inaccessible. This will be in particular terrible if the name you pick is an essential part of the python language, but fortunately, python does now not allow you to call variables after any essential components of the language. Therefore, the next section contains an overview of the maximum critical phrases utilized in python, so that you can keep away from this problem; this is the territory that you will be exploring and studying to work with over the course of this e-book.

1.5.1 Understanding Python Keywords

The following phrases are the keywords, which shape the idea of the python language. When writing your Python codes, you aren't allowed to use these words to name your variables, because they are reserved words. They must be spelled exactly as written right here for the interpreter to understand them as keywords. The phrases True, False and None have a special meaning, which will be explained later in this e-book.

Examples of reserved words or keywords in Python include:

[image:]

1.5.2 Understanding Python Naming Convention

To successfully declare a variable in Python and access it, it is important to learn Python naming convention too. Variable

names have to start with either a letter or an underscore. Despite the fact that they are able to include numbers, Python codes must not start with one. If the interpreter encounters a group of characters beginning with a numeral, instead of a letter or a quotation mark, it will read it as a number. You should start your variable declaration with letters or underscore and letters followed by numbers. That is; Tag1 or _Tag1. Any other way you declare your variable apart from what is mentioned above, you can be sure to encounter compilation error from your codes. Additionally, you need to be aware that python is usually case-

sensitive, which means that lowercase and uppercase letters are interpreted differently by the compiler as being extraordinary characters; consequently, true and True are interpreted as completely unique entities, as are tayvariable, TayVariable, TAyVariable and TAYVARIABLE.

It's also a good programming concept to remain consistent for every variable names you use when writing your code. I suggest having a list of variables at the start when programming, so you can easily find the list of declared variable when you want to access it.

1.6
 Creating
 and Assigning Variable in Python

In many programming languages, there are two major steps to creating a variable:

The first step is to create a value for the variable; this is called initialization, the second step is to assign a value into it; this is called task. Initialization and assignment are accomplished with a single Python command with the equal to sign (=) sign.

So to assign a value to the variable, I will do the following:

Variable = value;

The part of a code that performs an action is called an assignment, and it is known as a statement. The part of the code that is evaluated to produce a return value is known as an expression. The right hand side of an assignment statement can be an expression, like the assignment to total_price as shown in the example of assignment statements below:

total_price = 0;

stitch_size = 1.4;

amount_per_distance = 5;

total_price = stitch_size * amount_per_distance;

1.6.1 Understanding Different Types of Variables

Python acknowledges numerous different types of variables such as string literals, numbers, sequences or lists, mappings or the dictionaries, and Booleans which assign a true or false values. These are the staple components of all python codes. The later part of this chapter will introduce you to the concept of strings and numbers in Python. However, we need to look into python's dynamic typing features.

1.6.2 Working with Dynamic Typing in Python

In Python, once a value has been assigned to a variable, the interpreter will then determine what type of value it is (i.e., a number, a text, or other relevant quality). This concept in Python is referred to as dynamic typing (it has nothing to do with the number of words you can type from your keyboard in one minute). Unlike other programming languages, it isn't always necessary to declare what your variables are before you use them. That is both an advantage and a disadvantage. The significant advantage is that you don't have to worry about the data type, in as much as it behaves the way you want it.

Dynamic typing makes it less complicated to deal with a different type of unpredictable user input. The interpreter can accept input from user in different forms, to which it assigns a type dynamically. This method shows that a single piece of code can be used to deal with words, numbers, or any other type of data type in Python that the programmer doesn't want to decide what type the information might be with a purpose to assign it to a variable. Now trying to declare variables before you access them makes it tempting to introduce variables at random places within your code.

Take Note: When running your code, Python won't complain unless you try to use a variable earlier than you have assigned it a value; however, it's easy to lose track of what variables you use where you have their values set up in the script.

There are sincerely practical practices; you can adopt that when creating large numbers of different variables. One is to set up a group of default values at the start of every section in which you will need them, preserving all the variables you're going to use together in one part of the text in the form of a list. The other part is to keep the expected types and values of your variables, keeping a table on your layout document for every program that you are writing. Python needs to keep a record of the type of variable for two critical reasons. Majorly, the system needs to set apart enough memory to save the documents, and different type of data takes a different form of memory, a few more predictably than others. The second reason is that keeping track of the different variables helps to avoid and troubleshoot errors. As soon as python has decided what kind of variable is, it will flag up a TypeError if you try to perform an inappropriate operation on that data. Despite the fact that this might at first appear to be unnecessary, you will find out that this may be an exceedingly beneficial feature of the language; as the following command-line example indicates:

b = 3;

c = 'word';

trace = False;

#Example 1

b + c;

#Output

Traceback (most recent call last)

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

#Example 2

c - trace;

#Output

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for -: 'str' and 'bool'

In the code above, an operation is performed on incompatible variable type- integer int(number) and a type string str(textual content).

Traceback is python's manner of alerting you to a potential mistake on your code judgment, in this situation, a TypeError. A TypeError occurs in Python when you attempt to call a function or use an operator on something of the incorrect type.

1.7 String in Python

A string is a sequence of characters. A character is simply a symbol. For example, the English language has 26 characters.

Computers do not deal with characters, they deal with numbers (binary). Even though you may see characters on your screen, internally it is stored and manipulated as a combination of 0s and 1s.

This conversion of character to a number is called encoding, and the reverse process is decoding. ASCII and Unicode are some of the popular encodings used.

In Python, a string is a sequence of Unicode characters. Its a universal character encoding standard. Unicode defines the way individual characters are represented in text files, web pages, and other types of documents. While ASCII only uses one byte to represent each character, unicode supports up to 4 bytes for each character. Unicode was introduced to include every character in all languages and bring uniformity in encoding.

Strings can be created by enclosing characters inside a single quote or double-quotes.

Even triple quotes can be used in Python but generally used to represent multiline strings and docstrings.

Example of string include:

my_tag = "Hello";

my_string = 'Hello';

1.8.1 How to Create String Python

The following code illustrates how to create a string in python:

defining strings in Python

all of the following are equivalent

my_variable = 'Hello'

print(my_variable)

my_tag = "Hello"

print(my_tag)

my_string = '''Hello'''

print(my_string)

triple quotes string can extend multiple lines

my_string = """Hello, welcome to

the world of Python"""

print(my_string)

When you run the program, the output will be:

Hello

Hello

Hello

Hello, welcome to

the world of Python

1.9 Number in Python

Python supports integers, floating-point numbers and complex numbers. They are defined as int, float, and complex classes in Python.

Integers and floating points are separated by the presence or absence of a decimal point. For instance, 5 is an integer whereas 5.0 is a floating-point number.

Complex numbers are written in the form, x + yj, where x is the real part and y is the imaginary part.

We can use the type() function to know which class a variable or a value belongs to and isinstance() function to check if it belongs to a particular

class.

Let's look at an example:

a = 5;

print(type(a));

print(type(5.0));

c = 5 + 3j;

print(c + 3);

print(isinstance(c, complex));

When we run the above program, we get the following output:

<class 'int'>

<class 'float'>

(8+3j)

True

While integers can be of any length, a floating-point number is accurate only up to 15 decimal places (the 16th place is inaccurate).

The numbers we deal with every day are of the decimal (base 10) number system. But computer programmers (generally embedded programmers) need to work with binary (base 2), hexadecimal (base 16) and octal (base 8) number systems.

In Python, we can represent these numbers by appropriately placing a prefix before that number. Some of these prefixes as shown below:

Binary '0b' or '0B'

Octal '0o' or '0O'

Hexadecimal '0x' or '0X'

Here are some examples:

print(0b1101011);

print(0xFB + 0b10);

print(0o15);

When you run the program, the output will be:

107

253

13

1.10 Type Conversion

We can convert one type of number into another. This is also known as coercion.

Operations like addition, subtraction coerce integer to float implicitly (automatically), if one of the operands is float.

#Example

1 + 2.0;

#Output

3.0

We can see above that 1 (integer) is coerced into 1.0 (float) for addition and the result is also a floating point number.

We can also use built-in functions like int(), float() and complex() to convert between types explicitly. These functions can even convert from strings.

Int(2.3);

2

int(-2.8);

-2

float(5);

5.0

complex('3+5j');

(3+5j)

When converting from float to integer, the number gets truncated (decimal parts are removed).

1.11 Python Decimals

Python built-in class float performs some calculations that might amaze us. We all know that the sum of 1.1 and 2.2 is 3.3, but Python seems to disagree.

(1.1 + 2.2) == 3.3

False

What is going on?

It turns out that floating-point numbers are implemented in computer hardware as binary fractions as the computer only understands binary (0 and 1). Due to this reason, most of the decimal fractions we know, cannot be accurately stored in our computer.

Let's take an example. We cannot represent the fraction 1/3 as a decimal number. This will give 0.33333333... which is infinitely long, and we

can only approximate it.

It turns out that the decimal fraction 0.1 will result in an infinitely long binary fraction of 0.000110011001100110011... and our computer only stores a finite number of it.

This will only approximate 0.1 but never be equal. Hence, it is the limitation of our computer hardware and not an error in Python.

1.1 + 2.2

3.3000000000000003

To overcome this issue, we can use the decimal module that comes with Python. While floating-point numbers have precision up to 15 decimal places, the decimal module has user-settable precision.

Let's see the difference:

import decimal;

print(0.1)

print(decimal.Decimal(0.1));

Output

0.1

0.1000000000000000055511151231257827021181583404541015625

This module is used when we want to carry out decimal calculations as we learned in school.

It also preserves significance. We know 25.50 kg is more accurate than 25.5 kg as it has two significant decimal places compared to one.

from decimal import Decimal as D;

print(D('1.1') + D('2.2'));

print(D('1.2') * D('2.50'));

Output

3.3

3.000

Notice the trailing zeroes in the above example.

We might ask, why not implement Decimal every time, instead of float? The main reason is efficiency. Floating point operations are carried out must faster than Decimal operations.

1.12 When to Use Decimal Instead of Float

We generally use Decimal in the following cases:

•

When we are making financial applications that need exact decimal representation.

•

When we want to control the level of precision required.

•

When we want to implement the notion of significant decimal places.

1.13 Python Fractions

Python provides operations involving fractional numbers through its fractions module.

A fraction has a numerator and a denominator, both of which are integers. This module has support for rational number arithmetic.

We can create Fraction objects in various ways. Let's have a look at

them.

import fractions;

print(fractions.Fraction(1.5));

print(fractions.Fraction(5));

print(fractions.Fraction(1,3));

Output

3/2

5

1/3

While creating Fraction from float, we might get some unusual results. This is due to the imperfect binary floating point number representation as discussed in the previous section.

Fortunately, Fraction allows us to instantiate with string as well. This is the preferred option when using decimal numbers.

import fractions;

As float

Output: 2476979795053773/2251799813685248

print(fractions.Fraction(1.1));

As string

Output: 11/10

print(fractions.Fraction('1.1'));

Output

2476979795053773/2251799813685248

11/10

This data type supports all basic operations. Here are a few examples:

from fractions import Fraction as F;

print(F(1, 3) + F(1, 3));

print(1 / F(5, 6));

print(F(-3, 10) > 0);

print(F(-3, 10) < 0);

Output

2/3

6/5

False

True

1.14 Python Mathematics

Python offers modules like math to carry out different mathematics like trigonometry, logarithms, probability and statistics, etc. This include:

import math;

print(math.pi);

print(math.cos(math.pi));

print(math.exp(10));

print(math.log10(1000));

print(math.sinh(1));

print(math.factorial(6));

Output

3.141592653589793

-1.0

22026.465794806718

3.0

1.1752011936438014

720

Lists

A list is a data structure in Python that is a mutable, or changeable, ordered sequence of elements. Each element or value that is inside of a list is called an item. Python knows a number of compound data types, used to group together other values. The most versatile is the list, which can be written as a list of comma-separated values (items) between square brackets []. In other word, list enables us to keep data that belongs together, condense your code, and perform the same methods and operations on multiple values at once.

Lists might contain items of different types, but usually the items all have the same type.

squares = [1, 4, 9, 16, 25];

list1 = ['physics', 'chemistry', 1997, 2000];

squares [1, 4, 9, 16, 25];

list2 = [1, 2, 3, 4, 5];

list3 = ["a", "b", "c", "d"].

1.15 Accessing Values in Lists

Like strings (and all other built-in sequence type), access values in lists, can be achieved by using the square brackets for slicing along with the index or indices to obtain value available at that index.

For example

squares[4] # indexing returns the value 5;

list3[0] # indexing returns the value a.

CHAPTER TWO: Python Functions and Modules

[image:]

Programming and running programs mostly follow definite patterns. A program is often run repeatedly with different sets of data and functions on different occasion. Programs have to be stored and rerun. Sometimes a program calls for a modification and a rerun in the modified form. Some situations call for the use of a code segment repeatedly in a program. All these are facilitated in Python through the use of functions and modules.

2.1 Function

A function is a block of organized, reusable code that is used to perform a single, related action.

It is a set of statements that take inputs, do some specific computation and produces output.

Functions provide better modularity for your application and a high degree of code reusing. That is, it avoids repetition and makes the code reusable.

Functions help break our program into smaller and modular chunks. As our program grows larger and larger, functions make it more organized and manageable.

A Python provides built-in functions like print(), etc. but we can also create your own functions. These functions are called user-defined functions.

2.1.1 Basis of Function and Syntax

You can define functions to provide the required functionality. Here are simple rules to define a function in Python.

•

Function blocks begin with the keyword def followed by the function name and parentheses (()).

•

Any input parameters or arguments should be placed within these parentheses. You can also define parameters inside these parentheses.

•

The first statement of a function can be an optional statement - the documentation string of the function or DOCSTRING.

•

The code block within every function starts with a colon (:) and is indented.

•

The statement return [expression] exits a function, optionally passing back an expression to the caller. A return statement with no arguments is the same as return None.

Syntax

def function_name(parameters):

""docstring""

Statement(s);

or

def functionname(parameters):

"function_docstrings"

Function_suite;

return [expression];

Example 1

def greet(name):

""This function greets to

the person passed in as

a parameter""

print("Hello, " + name + "Good morning!");

Example 2

def printme(str):

"This prints a passed string into this function"

print (str);

return;

By default, parameters have a positional behavior and you need to form them in the same order that they were defined.

2.2.2 How to Call a Function in Python

Once we have defined a function, we only gives it a name, specifies the parameters that are to be included in the function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from another function, program or even directly from the Python prompt.

To call a function we simply type the function name with appropriate

parameters as shown below:

printme("I'm the first call to user defined function!");

printme("Again second call to the same function");

While the function is define thus:

def printme(str):

"This prints a passed string into this function"

print(str);

return;

When the above code is executed, it produces the following result

I'm the first call to user defined function!

Again second call to the same function

2.2 The return Statement

The return statement is used to exit a function and go back to the place from where it was called.

Syntax of return

Return [return_list]

2.3 Modules

In programming, a module is a piece of software that has a specific

functionality. For example, when building a ping pong game, one module would be responsible for the game logic, and another module would be responsible for drawing the game on the screen. Each module is a different file, which can be edited separately.

In other word, a module allows you to logically organize your Python code. Grouping related code into a module makes the code easier to understand and use. A module is a Python object with arbitrarily named attributes that you can bind and reference.

Simply, a module is a file consisting of Python code. A module can define functions, classes and variables. A module can also include run-able code. The Python code for a module named SCRIPT for example, normally resides in a file named SCRIPT.PY.

Here's an example of a simple run-able module-second.py

def print_func(par):

print("Hello: ", par);

return;

Therefore, modules in Python are simply Python files with a .py extension. The name of the module will be the name of the file. Python module can have a set of functions, classes or variables defined and implemented.

2.4 The import Statement

You can use any Python source file as a module by executing an import statement in some other Python source file. The IMPORT has the following syntax −

import module1[, module2[,...moduleN]

When the interpreter encounters an import statement, it imports the module if the module is present in the search path. A search path is a list of directories that the interpreter searches before importing a module.

For example, to import the module second.py, you need to put the following command at the top of the script as shown below-

Import module second

import second;

Now you can call the defined function as follows:

second.print_func("Zara")

When the above code is executed, it produces the following result

Output

Hello: Zara

A module is loaded only once, regardless of the number of times it is imported. This prevents the module execution from happening over and over again if multiple imports occur.

2.5
 The
 reload()
 Function

When the module is imported into a script, the code in the top-level portion of a module is executed only once.

Therefore, if you want to re-execute the top-level code in a module, you can use the reload() function. The reload() function imports a previously imported module again. The syntax of the reload() function is −

reload(module_name)

Here, module_name is the name of the module you want to reload and not the string containing the module name. For example, to reload HELLO module, do the following:

reload(hello)

2.6 Custom import name

We may also load modules under any name we want. This is useful when we want to import a module conditionally to use the same name in the rest of the code. For example, if you have two draw modules with slightly different names - you may do the following:

support.py

game.py

import the draw module

if visual_mode:

in visual mode, we draw using graphics

import draw_visual as draw;

else:

in textual mode, we print out text

import draw_textual as draw;

def main():

result = play_game();

this can either be visual or textual depending on visual_mode

draw.draw_game(result);

2.7 Writing Packages

Packages are namespaces which contain multiple packages and modules themselves. They are simply directories, but with a twist.

Each package in Python is a directory which MUST contain a special file called __init__.py. This file can be empty, and it indicates that the directory it contains is a Python package, so it can be imported the same way a module can be imported.

If we create a directory called foo, which marks the package name, we can then create a module inside that package called bar. We also must not forget to add the __init__.py file inside the foo directory.

To use the module bar, we can import it in two ways:

import foo.bar;

or

from foo import bar;

In the first method, we must use the foo prefix whenever we access the module bar. In the second method, we don't, because we import the module to our module's namespace.

The __init__.py file can also decide which modules the package exports as the API, while keeping other modules internal, by overriding the __all__ variable, like so:

__init__.py:

__all__ = ["bar"]

CHAPTER THREE: Conditionals, Loops, and Some Other Statement

[image:]

Conditional Statement in Python performs different computations or actions depending on whether a specific Boolean constraint evaluates to true or false. Conditional statements are handled by IF statements in Python.

In this chapter, we will see how to apply conditional statements in Python.

3.1 What is If Statement and How Can It Is Used?

In Python, If Statement is used for decision making. It will run the body of code only when IF statement is true.

When you want to justify one condition while the other condition is not true, then you use "if statement".

Syntax:

if expression

Statement;

else

Statement;

Example:

script.py

#Example file for working with conditional statement:

def main():

x,y =8,4;

if(x < y):

st = "x is less than y";

else:

st = "x is greater than y";

print(st);

if __name__ == "__main__":

main();

Explanation

We define two variables x, y = 8, 4

The IF Statement checks for condition x<y which is False in this case

The flow of program control goes to ELSE condition

The variable st is set to "x is greater than y"

The line print st will output the value of variable st which is "x is greater than y".

Therefore, statements are executed sequentially:

The first statement in a function is executed first, followed by the second, and so on.

There may be a situation where you need to execute a block of code several numbers of times.

Programming languages provide various control structures that allow for more complicated execution paths. This type of control structures is called loop.

A loop statement allows us to execute a statement or group of statements multiple times. The following illustrates different types of loop statement:

3.2 While loop

Repeat a statement or group of statements while a given condition is TRUE. It tests the condition before executing the loop body.

Syntax

The syntax of a while loop in Python programming language is:

while expression:

statement(s);

Example

count = 0;

while (count <= 4):

print('The count is:', count);

count += 1;

print("Done!");

When the above code is executed, it produces the following result:

The count is: 0

The count is: 1

The count is: 2

The count is: 3

Done!

The block here, consisting of the print and increment statements, is executed repeatedly until count is no longer less than 4. With each iteration, the current value of the index count is displayed and then increased by 1.

3.3 The Infinite Loop

A loop becomes infinite loop if a condition never becomes FALSE. You must use caution when using while loops because of the possibility that this condition never resolves to a FALSE value. This results in a loop that never ends. Such a loop is called an infinite loop.

An infinite loop might be useful in client/server programming where the server needs to run continuously so that client programs can communicate with it as and when required.

test.py

var = 5;

while var == 5: # This constructs an infinite loop

num = raw_input("Enter a number: ");

print ("You entered: ", num);

print("Uncountable!");

When the above code is executed, it produces the following result

Enter a number: 24

You entered: 24

Enter a number: 33

You entered: 33

Enter a number: 8

You entered: 8

Enter a number between: Traceback (most recent call last):

File "test.py", line 5, in <module>

num = raw_input("Enter a number: ")

KeyboardInterrupt

Above example goes in an infinite loop and you need to use CTRL+C to exit the program.

3.4 Using else Statement with Loops

Python supports an else statement associated with a loop statement.

•

If the else statement is used with a for loop, the else statement is executed when the loop has exhausted iterating the list.

•

If the else statement is used with a while loop, the else statement is executed when the condition becomes false.

The following example illustrates the combination of an else statement with a while statement that prints a number as long as it is less than 4, otherwise else statement gets executed.

program.py

count = 0;

while count < 4:

print (count, " is less than 4")

count = count + 1;

else:

print (count, " is not less than 4");

When the above code is executed, it produces the following result

0 is less than 4

1 is less than 4

2 is less than 4

3 is less than 4

4 is not less than 4

3.5 Single Statement Suites

Similar to the if statement syntax, if your while clause consists only of a single statement, it may be placed on the same line as the while header.

Here is the syntax and example of a one-line while clause:

flag.py

flag = 1;

while (flag): print("Given flag is really true!");

print("Good bye!");

It's better not to try above example because it goes into infinite loop and you need to press CTRL+C keys to exit.

3.6 For Loop

It has the ability to iterate over the items of any sequence, such as a list or a string.

Syntax

for iterating_var in sequence:

statements(s)

If a sequence contains an expression list, it is evaluated first. Then, the first item in the sequence is assigned to the iterating variable iterating_var.

Next, the statements block is executed. Each item in the list is assigned to iterating_var, and the statement(s) block is executed until the entire sequence is exhausted.

fruit.py

First Example

for letter in 'Python':

print("Current Letter: ", letter);

Second Example

fruits = ['banana', 'apple', 'mango'];

for fruit in fruits
:

print("Current fruit: ", fruit);

print("Good bye!");

When the above code is executed, it produces the following result:

Current Letter: P

Current Letter: y

Current Letter: t

Current Letter: h

Current Letter: o

Current Letter: n

Current fruit: banana

Current fruit: apple

Current fruit: mango

Good bye!

3.7 Using else Statement with Loops

Python supports to have an else statement associated with a loop statement

•

If the else statement is used with a for loop, the else statement is executed when the loop has exhausted iterating the list.

•

If the else statement is used with a while loop, the else statement is executed when the condition becomes false.

The following example illustrates the combination of an else statement with a for statement that searches for prime numbers from 10 through 20.

control.py

#to iterate between 10 to 20

for num in range(10,20):

#to iterate on the factors of the number

for i in range(2,num):

#to determine the first factor

if num%i == 0:

#to calculate the second factor

j=num/i;

print('%d equals %d * %d' % (num,i,j));

#to move to the next number, the #first FOR

break;

else part of the loop

else:

print(num, 'is a prime number');

When the above code is executed, it produces the following result

10 equals 2 * 5

11 is a prime number

12 equals 2 * 6

13 is a prime number

14 equals 2 * 7

15 equals 3 * 5

16 equals 2 * 8

17 is a prime number

18 equals 2 * 9

19 is a prime number

Nested Loops

Python programming language allows the use of one loop inside another loop. The following section shows few examples to illustrate the concept:

Syntax

f
or iterating_var in sequence:

for iterating_var in sequence:

statements(s)

statements(s)

The syntax for a nested while loop
 statement in Python programming language is as follows:

while expression:

while expression:

statement(s)

statement(s)

A final note on loop nesting is that you can put any type of loop inside of any other type of loop. For example, a for loop
 can be inside a while loop or vice versa.

Example:

The following program uses a nested-for loop to display multiplication tables
from 1-3:

for i in range(1,4):

print('Multiplication table of', i);

for j in range(1,11):

k = i * j;

print(k, end=' ');

print();

print('Good bye!');

When the above code is executed, it produces following result:

Multiplication table of 2

1 2 3 4 5 6 7 8 9 10

Multiplication table of 2

2 4 6 8 10 12 14 16 18 20

Multiplication table of 3

3 6 9 12 15 18 21 24 27 30

Good bye!

3.8 Loop Control Statements

Loop control statements change execution from its normal sequence. When execution leaves a scope, all automatic objects that were created in that scope are destroyed.

Python supports the following control statements:

Break statement-Terminates the loop statement and transfers execution to the statement immediately following the loop.

Continue statement-Causes the loop to skip the remainder of its body and immediately retest its condition prior to reiterating.

Pass statement-The pass statement in Python is used when a statement is required syntactically but you do not want any command or code to execute.

CHAPTER FOUR: Classes and Objects

[image:]

In this chapter, you will learn about the core functionality of Python objects and classes. You'll learn what a class is, how to create it and use it in your Python program.

Python is an object oriented programming language. Unlike procedure oriented programming, where the main emphasis is on functions, object oriented programming stresses on objects.

An object is simply a collection of data (variables) and methods (functions) that act on those data. In other word, objects get theirvariables and functions from classes. Classes are essentially a template to create your objects. Similarly, a class is a blueprint for that object. We can think of class as a sketch (prototype) of a house. It contains all the details about the floors, doors, windows etc. Based on these analogy, we build the house. Therefore, house is the object.

As many houses can be made from a house's blueprint, we can create many objects from a class. An object is also called an instance of a class and the process of creating this object is called instantiation.

Classes provide a means of bundling data and functionality together. Creating a new class creates a new type of object, allowing new instances of that type to be made. Each class instance can have attributes attached to it for maintaining its state. Class instances can also have methods (defined by its class) for modifying its state.

4.1 Class Definition in Pytho
n

Like function definitions begin with the def keyword in Python, class definitions begin with a class keyword. The first string inside the class is called docstring and has a brief description about the class. Although not mandatory, this is highly recommended.

The simplest form of class definition looks like this:

class ClassName:

<statement-1>

.

.

<ststement-N>

A class creates a new local namespace where all its attributes are defined. Attributes may be data or functions. There are also special attributes in it that begins with double underscores __. For example, __doc__ gives us the docstring of that class.

As soon as we define a class, a new class object is created with the same name. This class object allows us to access the different attributes as well as to instantiate new objects of that class.

class Person:

"This is a person class"

age = 10;

def greet(self):

print('Hello');

Output: 10

print(Person.age)

Output: <function Person.greet>

print(Person.greet)

Output: 'This is my second class'

print(Person.__doc__)

Output

10

<function Person.greet at 0x7fc78c6e8160>

This is a person class

4.2 Creating an Object in Python

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

class MyClass:

x = 5;

p1 = MyClass();

print(p1.x);

It can also be used to create new object instances (instantiation) of that class. The procedure to create an object is similar to a function call.

p1= Person();

This will create a new object instance named p1. We can access the attributes of objects using the object name prefix.

Attributes may be data or method. Methods of an object are corresponding functions of that class.

This means to say, since Person.greet is a function object (attribute of class), Person.greet will be a method object.

class Person:

"This is a person class"

age = 10;

def greet(self):

print('Hello');

create a new object of Person class

p1 = Person();

Output: <function Person.greet>

print(Person.greet);

Output: <bound method Person.greet of <__main__.Person object>>

print(p1.greet);

Calling object's greet() method

Output: Hello

p1.greet();

Output

<function Person.greet at 0x7fd288e4e160>

<bound method Person.greet of <__main__.Person object at 0x7fd288e9fa30>>

Hello

In another example, we have:

class MyClass:

variable = "blah";

def function(self):

print("This is a message inside the class.");

myobjectx = MyClass();

myobjectx.function();

This is a message inside the class.

You may have noticed the self parameter in function definition inside the class but we called the method simply as p1.greet() without any arguments. It still worked.

This is because, whenever an object calls its method, the object itself is passed as the first argument. So, p1.greet() translates into Person.greet(p1).

In general, calling a method with a list of n arguments is equivalent to calling the corresponding function with an argument list that is created by inserting the method's object before the first argument.

For these reasons, the first argument of the function in class must be the object itself. This is conventionally called self. It can be named otherwise but we highly recommend to follow the convention.

CONCLUSION

[image:]

In conclusion, Python is an excellent option whether you are a beginning programmer looking to learn the basics and concepts, or an experienced programmer designing an extensive application.

Either way, the basics of Python are easily grasped, or yet its capabilities are vast.

OEBPS/rsrc1DZ.jpg

OEBPS/rsrc1E0.jpg

OEBPS/rsrc1DY.jpg

OEBPS/rsrc1DW.ttf

OEBPS/rsrc1DV.ttf

OEBPS/rsrc1E3.jpg
False
None.
e

and
break
class
continue
et

e

elif
else

excapt

global
if
inport

Larbaa
~onlceal

et

ratse

retumn

hile
aith

yiele

OEBPS/rsrc1E1.jpg

OEBPS/rsrc1E2.jpg

OEBPS/rsrc1DT.ttf

OEBPS/rsrc1DP.ttf

OEBPS/rsrc1DN.ttf

OEBPS/rsrc1DX.jpg
—LEARN

PYTHON 3

THE BEGINNER GUIDE

HOW TO BECOME A PYTHON PROGRAMMER, A SIMPLE
INTRODUCTION TO THE PYTHON DEVELOPMENT WORLD

pia
[reree

True

nd -add back the deselected mirror modifier object

ts.active = modi

ﬂ?)) [“_'

TOMMASO ROSSINO

OEBPS/rsrc1DK.ttf

OEBPS/rsrc1DU.ttf

OEBPS/rsrc1DR.ttf

OEBPS/rsrc1DS.ttf

OEBPS/rsrc1DM.ttf

